-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate.py
126 lines (105 loc) · 3.84 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import pandas as pd
from petab.v1.C import (
OBSERVABLE_ID,
SIMULATION_CONDITION_ID,
TIME,
PREEQUILIBRATION_CONDITION_ID,
SIMULATION,
)
__all__ = [
"evaluate_llh",
"evaluate_chi2",
"evaluate_simulations",
"absolute_simulations_distance_for_tables",
"absolute_simulations_distance_for_array",
"absolute_simulations_distance_for_table",
]
def evaluate_chi2(chi2: float, gt_chi2: float, tol: float = 1e-3):
"""Evaluate whether chi square values match."""
if chi2 is None:
return False
return abs(chi2 - gt_chi2) < tol
def evaluate_llh(llh: float, gt_llh: float, tol: float = 1e-3):
"""Evaluate whether log likelihoods match."""
if llh is None:
return False
return abs(llh - gt_llh) < tol
def evaluate_simulations(
simulation_dfs: list[pd.DataFrame] | pd.DataFrame,
gt_simulation_dfs: list[pd.DataFrame] | pd.DataFrame,
tol: float = 1e-3,
):
"""Evaluate whether simulations match."""
return (
absolute_simulations_distance_for_tables(
simulation_dfs, gt_simulation_dfs
)
< tol
)
def absolute_simulations_distance_for_tables(
simulation_dfs: list[pd.DataFrame] | pd.DataFrame,
gt_simulation_dfs: list[pd.DataFrame] | pd.DataFrame,
):
"""Compute absolute normalized distance between simulations.
Parameters
----------
simulation_dfs: PEtab simulation tables proposed by the tool under review.
gt_simulation_dfs: Ground truth simulation tables.
Returns
-------
distance: The normalized absolute distance.
"""
# convenience
if isinstance(simulation_dfs, pd.DataFrame):
simulation_dfs = [simulation_dfs]
if isinstance(gt_simulation_dfs, pd.DataFrame):
gt_simulation_dfs = [gt_simulation_dfs]
distances = []
for simulation_df, gt_simulation_df in zip(
simulation_dfs, gt_simulation_dfs
):
distance = absolute_simulations_distance_for_table(
simulation_df, gt_simulation_df
)
distances.append(distance)
distance = sum(distances) / len(distances)
return distance
def absolute_simulations_distance_for_table(
simulations: pd.DataFrame, gt_simulations: pd.DataFrame
):
"""Compute absolute normalized distance between simulations."""
# grouping columns
grouping_cols = [OBSERVABLE_ID, SIMULATION_CONDITION_ID, TIME]
if PREEQUILIBRATION_CONDITION_ID in simulations:
grouping_cols.append(PREEQUILIBRATION_CONDITION_ID)
relevant_cols = grouping_cols.copy()
# append simulation column last for correct sorting
relevant_cols.append(SIMULATION)
# restrict tables
simulations = simulations[relevant_cols]
gt_simulations = gt_simulations[relevant_cols]
# sort both in the same way to enable direct comparison
# and to get the smallest distance
simulations = simulations.sort_values(by=relevant_cols)
gt_simulations = gt_simulations.sort_values(by=relevant_cols)
# check if equal grouping is applied
for col in grouping_cols:
vals, gt_vals = simulations[col], gt_simulations[col]
if col == TIME:
vals, gt_vals = vals.astype(float), gt_vals.astype(float)
matches = np.isclose(vals, gt_vals).all()
else:
vals, gt_vals = vals.astype(str), gt_vals.astype(str)
matches = (vals == gt_vals).all()
if not matches:
raise AssertionError("Simulation dataframes do not match.")
# compute distance
return absolute_simulations_distance_for_array(
np.array(simulations[SIMULATION]), np.array(gt_simulations[SIMULATION])
)
def absolute_simulations_distance_for_array(
simulations: np.ndarray, gt_simulations: np.ndarray
):
"""Compute absolute normalized distance between simulations."""
return np.abs(simulations - gt_simulations).sum() / len(simulations)