diff --git a/.Rbuildignore b/.Rbuildignore index 2db3723..fa3eaed 100644 --- a/.Rbuildignore +++ b/.Rbuildignore @@ -13,4 +13,5 @@ CONTRIBUTING.md ^docs$ ^pkgdown$ ^README\.Rmd$ -^model_recipes$ \ No newline at end of file +^model_recipes$ +^vignettes/articles$ diff --git a/.devcontainer/devcontainer.json b/.devcontainer/devcontainer.json new file mode 100644 index 0000000..65b648a --- /dev/null +++ b/.devcontainer/devcontainer.json @@ -0,0 +1,59 @@ +// For format details, see https://aka.ms/devcontainer.json. For config options, see the README at: +// https://github.com/microsoft/vscode-dev-containers/tree/v0.234.0/containers/r +{ + "name": "R (rocker/r-ver base)", + // Or use a Dockerfile or Docker Compose file. More info: https://containers.dev/guide/dockerfile + "image": "ghcr.io/rocker-org/devcontainer/r-ver:4.3", //commma needed if other sections are used. + + // hostRequirements to set a minimum for machine type + //"hostRequirements": { + // "cpus": 8, + // "memory": "8gb", + // "storage": "32gb" + // }, + + // Features to add to the dev container. More info: https://containers.dev/features. + "features": { + + // to install r packages using pak + // more info: https://github.com/rocker-org/devcontainer-features/blob/main/src/r-packages/README.md + "ghcr.io/rocker-org/devcontainer-features/r-packages:1": { + "packages": "tidyverse,future,purrr,rmarkdown", + "installSystemRequirements": true + }, + //to install ss3 via wget + "ghcr.io/devcontainers-contrib/features/wget-apt-get:1.0.15":{ + "-O ss3 https://github.com/nmfs-ost/ss3-source-code/releases/latest/download/ss_linux" + } + // // for quarto cli + // more info: https://github.com/rocker-org/devcontainer-features/blob/main/src/quarto-cli/README.md + // "ghcr.io/rocker-org/devcontainer-features/quarto-cli:1": {} + + //to use Rstudio as IDE instead of VS code + //"ghcr.io/rocker-org/devcontainer-features/rstudio-server:0": {} + }, + + // Use 'forwardPorts' to make a list of ports inside the container available locally. + // "forwardPorts": [], + + //"postAttachCommand": { + // "rstudio-start": "rserver" + //}, + // Use 'postCreateCommand' to run commands after the container is created. + //"postCreateCommand": "echo 'options(repos = c(CRAN = \"https://cloud.r-project.org\"))' | sudo sh -c 'cat - >>\"${R_HOME}/etc/Rprofile.site\"'", + + // Configure tool-specific properties. + "customizations": { + "vscode": { + // Set *default* container specific settings.json values on container create. + // Add the IDs of extensions you want installed when the container is created. + "extensions": [ + "GitHub.codespaces" + ] + } + + + // Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root. + // "remoteUser": "root" +} +} diff --git a/.github/workflows/R-CMD-check.yaml b/.github/workflows/R-CMD-check.yaml index 55a2379..46e7cc8 100644 --- a/.github/workflows/R-CMD-check.yaml +++ b/.github/workflows/R-CMD-check.yaml @@ -6,7 +6,7 @@ on: - 'README.md' pull_request: -name: build-ss-R-CMD-check +name: R-CMD-check jobs: R-CMD-check: diff --git a/.github/workflows/pkgdown.yaml b/.github/workflows/pkgdown.yaml index 9c19c15..2ef43cc 100644 --- a/.github/workflows/pkgdown.yaml +++ b/.github/workflows/pkgdown.yaml @@ -25,7 +25,7 @@ jobs: - uses: r-lib/actions/setup-r-dependencies@v2 with: - extra-packages: any::pkgdown, local::. + extra-packages: any::pkgdown, local::., any::tidyverse, any::future, any::rmarkdown, any::purrr, any::furrr needs: website - name: Deploy package diff --git a/Cookbook/Jitter_test_example.R b/Cookbook/Jitter_test_example.R deleted file mode 100644 index 12f82bc..0000000 --- a/Cookbook/Jitter_test_example.R +++ /dev/null @@ -1,196 +0,0 @@ -## -# Jitter Test for Global Convergence with Stock Synthesis -# Stock Synthesis (tested in version 3_30_X for Windows) -# r4ss (tested in version(s) 1.35.1 - 1.35.3) -# R (tested in version(s) 3.3.2 - 3.5.2 64 bit Windows) -## -library(r4ss) -#devtools::install_github("r4ss/r4ss", ref="development") - - -# Step 1. Define the root directory for the run -dirname.root <- "C:\\Users\\Felipe.Carvalho\\Desktop\\MS_Diagnostics\\Jitter" -dirname.root - -# Step 2. Define the directory where a completed "base" model run is located -dirname.base <- paste0(dirname.root,'/Reference_run') -dirname.base - -# Step 3. Create a subdirectory for the jitter run -dirname.jitter <- paste0(dirname.root,'/jitter') -dirname.jitter -dir.create(path=dirname.jitter, showWarnings = TRUE, recursive = TRUE) - -# Step 4. Create a subdirectory for the output -dirname.plots <- paste0(dirname.root,"/plots") -dirname.plots -dir.create(dirname.plots) - -# Step 2. Copy base model files to jitter directory -file.copy(paste(dirname.base, "starter.ss", sep="/"), - paste(dirname.jitter, "starter.ss", sep="/")) -file.copy(paste(dirname.base, "HKE_control_file.ctl", sep="/"), - paste(dirname.jitter, "HKE_control_file.ctl", sep="/")) -file.copy(paste(dirname.base, "HKE_data_file.dat", sep="/"), - paste(dirname.jitter, "HKE_data_file.dat", sep="/")) -file.copy(paste(dirname.base, "forecast.ss", sep="/"), - paste(dirname.jitter, "forecast.ss", sep="/")) -file.copy(paste(dirname.base, "ss.exe", sep="/"), - paste(dirname.jitter, "ss.exe", sep="/")) -file.copy(paste(dirname.base, "ss.par", sep="/"), - paste(dirname.jitter, "ss.par", sep="/")) - -# Step 5. Make Changes to the Starter.ss file (r4ss example) -starter <- SS_readstarter(file.path(dirname.jitter, 'starter.ss')) - -# Step 6. Change to use .par file -starter$init_values_src = 1 - -# Step 7. Change jitter (0.1 is an arbitrary, but common choice for jitter amount) -starter$jitter_fraction = 0.1 - -# Step 8. write modified starter file -SS_writestarter(starter, dir=dirname.jitter, overwrite=TRUE) - - -#------------ Run Jitter Test for Global Convergence with Stock Synthesis ------------------------------- - -# Step 9. Set the number of iteration -Njitter=200 - -# Step 10. Run jitter using this function (deafult is nohess) -jit.likes <- SS_RunJitter(mydir=dirname.jitter, Njitter=Njitter, extras="") - -setwd(dirname.plots) -getwd() - - -# Step 11. Total likelihoods necessary to assess global convergence are saved to "jit.likes" -x<-as.numeric(jit.likes) -global.convergence.check<-table(x,exclude = NULL) -write.table(jit.likes,"jit_like.csv") -write.table(global.convergence.check,"global_convergence_check.csv") - - -# Step 12. Summarize more Jitter results - -wd <- dirname.jitter - -jitter=seq(1:Njitter) -n=length(jitter) -n -witch_j <- SSgetoutput(keyvec=1:n, getcomp=FALSE, dirvec=wd, getcovar=F) -witch_j_summary <- SSsummarize(witch_j) - -#Likelihood across runs -likes=witch_j_summary$likelihoods - -#Derived quants across runs -quants=witch_j_summary$quants - -#Estimated parameters across runs -pars=witch_j_summary$pars - -#Write more output tables to jitter directory -write.table(quants,"Quants.csv") -write.table(pars,"Pars.csv") -write.table(likes,"Likelihoods.csv") - -#Retabulate total likelihoods necessary to assess global convergence and compare to jit.likes from above -x<-as.numeric(likes[likes$Label=="TOTAL",1:n]) -global.convergence<-table(x,exclude = NULL) -write.table(global.convergence,"global_convergence.csv") - - -#------------ Make plots with r4ss for runs ending at a converged solution ------------------------------- -#Base case read in manually -Base <- SS_output(dir=dirname.base,covar=T,forecast=T) - -#make some plots#make some plots -plotdir <- dirname.plots -setwd(plotdir) -getwd() - -png("Jittering results.png", width = 480, height = 480) -par(mfrow=c(2,2), mai=c(.6,.6,.3,.2), mex=.5) -plot(seq(1:Njitter), witch_j_summary$likelihoods[witch_j_summary$likelihoods$Label=="TOTAL",1:Njitter],ylab="LL", - ylim=c(0,max(na.omit(jit.likes))*1.05)) ; mtext(side=3, line=0, "Jittering") -abline(h=Base$likelihoods_used[1,1], col=2) - -SSplotComparisons(witch_j_summary, subplots = c(2,8,18) , pch = "",legend=FALSE ,lwd = 1 ,new = F, plotdir = plotdir, ylimAdj=1) -mtext(outer=T, side=3, line=-2.5, "Jitter results") -dev.off() - -png("jit likes.png", width = 480, height = 480) -par(mfrow=c(1,1), mai=c(.6,.6,.3,.2), mex=.5) -plot(seq(1:Njitter), - witch_j_summary$likelihoods[witch_j_summary$likelihoods$Label=="TOTAL",1:Njitter], - ylab="Total likelihood", - ylim=c(0,max(na.omit(jit.likes))*1.05), - xlab="Jitter model runs at a converged solution" -) -#mtext(side=3, line=0, "Jittering") -abline(h=Base$likelihoods_used[1,1], col=2) -dev.off() - - -# Repeat for all converged runs -x<-which(!is.na(witch_j_summary$likelihoods[witch_j_summary$likelihoods$Label=="TOTAL",1:Njitter])) - -jitter.converged=x -jitter.converged -n.converged=length(jitter.converged) -n.converged -witch_j.converged <- SSgetoutput(keyvec=jitter.converged, getcomp=FALSE, dirvec=wd, getcovar=F) -witch_j_summary.converged <- SSsummarize(witch_j.converged) - -png("Jittering results at converged solution.png", width = 480, height = 480) -par(mfrow=c(2,2), mai=c(.6,.6,.3,.2), mex=.5) -plot(seq(jitter.converged), - witch_j_summary$likelihoods[witch_j_summary$likelihoods$Label=="TOTAL", jitter.converged], - ylab="Total likelihood", - ylim=c(0,max(na.omit(jit.likes))*1.05), - xlab="Jitter runs at a converged solution" -) -mtext(side=3, line=0, "Jittering") -abline(h=Base$likelihoods_used[1,1], col=2) - -SSplotComparisons(witch_j_summary.converged, subplots = c(2,8,18) , pch = "",legend=FALSE ,lwd = 1 ,new = F, plotdir = plotdir, ylimAdj=1) -mtext(outer=T, side=3, line=-2.5, "Jitter results") -dev.off() - - -#Repeat for converged runs at the minimum solution -#Converged runs at min converged solution (should be same as base case to pass the test) -#min(na.omit(jit.likes)) -y<-which(witch_j_summary$likelihoods[witch_j_summary$likelihoods$Label=="TOTAL",1:Njitter]==min(na.omit(jit.likes))) - - -jitter.min=y -jitter.min -n.min=length(jitter.min) -n.min -witch_j.min <- SSgetoutput(keyvec=jitter.min, getcomp=FALSE, dirvec=wd, getcovar=F) -witch_j_summary.min <- SSsummarize(witch_j.min) - - -png("Jittering results at min converged solution.png", width = 480, height = 480) -par(mfrow=c(2,2), mai=c(.6,.6,.3,.2), mex=.5) -plot(seq(jitter.min), - witch_j_summary$likelihoods[witch_j_summary$likelihoods$Label=="TOTAL", jitter.min], - ylab="Total likelihood", - ylim=c(0,max(na.omit(jit.likes))*1.05), - xlab="Jitter runs at the minimum converged solution" - ) -mtext(side=3, line=0, "Jittering") -abline(h=Base$likelihoods_used[1,1], col=2) - -SSplotComparisons(witch_j_summary.min, subplots = c(2,8,18) , pch = "",legend=FALSE ,lwd = 1 ,new = F, plotdir = plotdir, ylimAdj=1) -mtext(outer=T, side=3, line=-2.5, "Jitter results") -dev.off() - -#Save image of all run data for later analysis -#file.name<-paste('jitter',format(Sys.time(), "%Y%m%d_%H%M")) -#save.image(paste0(dirname.plots, "/",file.name, ".RData")) - - diff --git a/Cookbook/Likelihood_profile_R0_example.R b/Cookbook/Likelihood_profile_R0_example.R deleted file mode 100644 index bd27d61..0000000 --- a/Cookbook/Likelihood_profile_R0_example.R +++ /dev/null @@ -1,167 +0,0 @@ -## -# Likelihood_profile_R0_example.R -# Example original application: -# 2017 ICCAT North Atlantic shortfin mako (SMA) Stock Synthesis model run 3 -# Stock Synthesis (version 3_30_08 Windows) -# r4ss (version 1.35.1) -# R (version 3.3.2 64 bit) -## - -#rm(list=ls()) -#devtools::install_github('r4ss/r4ss') -library(r4ss) -library(doParallel) -registerDoParallel(8) - -# Step 1. Identify a directory for the profile likelihood model run(s) -dirname.base <- "C:\\Users\\Felipe.Carvalho\\Desktop\\Ms_Diagnostics\\R0_profile\\SMA\\" - -# Step 2. Identify a directory where the completed base model run is located -dirname.completed.model.run <- paste0(dirname.base,'/Reference_run') - -# Step 3. Create a "R0_profile" subdirectory and set as the working directory -dirname.R0.profile <- paste0(dirname.base,'/Likelihood profiles/R0') -dir.create(path=dirname.R0.profile, showWarnings = TRUE, recursive = TRUE) - -mydir <- dirname.R0.profile -setwd(dirname.R0.profile) -getwd() - -# Step 4. Create a "Figures_Tables" subdirectory -plotdir=paste0(dirname.R0.profile, "/Figures & Tables") -dir.create(path=plotdir, showWarnings = TRUE, recursive = TRUE) - - -# Step 5. Create a "Reference_run" subdirectory and copy completed base model output to this directory -reference.dir <- paste0(mydir,'/Reference_run') -dir.create(path=reference.dir, showWarnings = TRUE, recursive = TRUE) -file.copy(Sys.glob(paste(dirname.completed.model.run, "*.*", sep="/"), dirmark = FALSE),reference.dir) - - -# Step 6. Copy necassary files from the "Reference_run" subdirectory to the "R0_profile" working directory -copylst <- c("control.ss_new", "data.ss", "forecast.ss", "ss.exe", "starter.ss") -for(nn in copylst){file.copy( paste(reference.dir,"/", nn, sep='') , file.path(dirname.R0.profile))} - -# Step 7. Edit "control.ss" in the "R0_profile" working directory to estimate at least one parameter in each phase -# E.g., -control.file <- readLines(paste(dirname.R0.profile, "/control.ss_new", sep="")) -linen <- NULL -linen <- grep("#_recdev phase", control.file) -control.file[linen] <- paste0("1 #_recdev phase") -write(control.file, paste(dirname.R0.profile, "/control.ss_new", sep="")) - -# Step 8. Edit "starter.ss" in the "R0_profile" working directory to read from init values from control_modified.ss -starter.file <- readLines(paste(dirname.R0.profile, "/starter.ss", sep="")) -linen <- NULL -linen <- grep("# 0=use init values in control file; 1=use ss.par", starter.file) -starter.file[linen] <- paste0("0 # 0=use init values in control file; 1=use ss.par") -write(starter.file, paste(dirname.R0.profile, "/starter.ss", sep="")) -############### - -# Step 9. Begin Likelihood profile_R0_example.R - -###Working directory -setwd(dirname.R0.profile) - -####Set the plotting directory -plotdir=paste0(dirname.R0.profile, "/Figures & Tables") -Base <- SS_output(dir=paste0(reference.dir,"\\"),covar=T) - -######################################################### -### R0 or any other parameter profile -######################################################### - -# vector of values to profile over -R0.vec <- seq(4.8,6.8,0.1) -Nprof.R0 <- length(R0.vec) -#Define directory -#mydir <- mydir - -#Define the starter file -starter <- SS_readstarter(file.path(mydir, "starter.ss")) - -#Change control file name in the starter file -starter$ctlfile <- "control_modified.ss" - -# Make sure the prior likelihood is calculated for non-estimated quantities -starter$prior_like <- 1 - -SS_writestarter(starter, dir=mydir, overwrite=TRUE) - -#Run SS_profile command -profile <- SS_profile(dir=mydir, # directory - model="SS", - masterctlfile="control.ss_new", - newctlfile="control_modified.ss", - string="SR_LN(R0)", - profilevec=R0.vec) - -# read the output files (with names like Report1.sso, Report2.sso, etc.) -prof.R0.models <- SSgetoutput(dirvec=mydir, keyvec=1:Nprof.R0, getcovar = FALSE) # - -# Step 10. summarize output -prof.R0.summary <- SSsummarize(prof.R0.models) - -# Likelihood components -mainlike_components <- c('TOTAL',"Survey", "Discard", 'Length_comp',"Age_comp",'Recruitment') - -mainlike_components_labels <- c('Total likelihood','Index likelihood',"Discard",'Length likelihood',"Age likelihood",'Recruitment likelihood') - -# END OPTIONAL COMMANDS - -# plot profile using summary created above -png(file.path(plotdir,"R0_profile_plot.png"),width=7,height=4.5,res=300,units='in') -par(mar=c(5,4,1,1)) - -SSplotProfile(prof.R0.summary, # summary object - profile.string = "R0", # substring of profile parameter - profile.label=expression(log(italic(R)[0])), ymax=150,minfraction = 0.001, - pheight=4.5, - print=FALSE, - plotdir=plotdir, - components = mainlike_components, - component.labels = mainlike_components_labels, - add_cutoff = TRUE, - cutoff_prob = 0.95) - -Baseval <- round(Base$parameters$Value[grep("R0",Base$parameters$Label)],2) -#Baselab <- paste(Baseval,sep="") -#axis(1,at=Baseval,label=Baselab) -abline(v = Baseval, lty=2) -dev.off() - -# make timeseries plots comparing models in profile -labs <- paste("SR_Ln(R0) = ",R0.vec) -labs[which(round(R0.vec,2)==Baseval)] <- paste("SR_Ln(R0) = ",Baseval,"(Base model)") - -SSplotComparisons(prof.R0.summary,legendlabels=labs, -pheight=4.5,png=TRUE,plotdir=plotdir,legendloc='bottomleft') - -dev.off() - -###Piner plot -png(file.path(plotdir,"R0_profile_plot_Length_like.png"),width=7,height=4.5,res=300,units='in') -par(mar=c(5,4,1,1)) -PinerPlot(prof.R0.summary, - profile.string = "R0", - component = "Length_like", - main = "Changes in length-composition likelihoods by fleet", - add_cutoff = TRUE, - cutoff_prob = 0.95) -Baseval <- round(Base$parameters$Value[grep("SR_LN",Base$parameters$Label)],2) -#Baselab <- paste(Baseval,sep="") -#axis(1,at=Baseval,label=Baselab) -abline(v = Baseval, lty=2) -dev.off() - -png(file.path(plotdir,"R0_profile_plot_Survey_like.png"),width=7,height=4.5,res=300,units='in') -par(mar=c(5,4,1,1)) -PinerPlot(prof.R0.summary, profile.string = "R0", component = "Surv_like",main = "Changes in Index likelihoods by fleet", - add_cutoff = TRUE, - cutoff_prob = 0.95, legendloc="topleft") -Baseval <- round(Base$parameters$Value[grep("SR_LN",Base$parameters$Label)],2) -#Baselab <- paste(Baseval,sep="") -#axis(1,at=Baseval,label=Baselab) -abline(v = Baseval, lty=2) -dev.off() - diff --git a/Cookbook/Run_Retrospective_example.R b/Cookbook/Run_Retrospective_example.R deleted file mode 100644 index 443af43..0000000 --- a/Cookbook/Run_Retrospective_example.R +++ /dev/null @@ -1,72 +0,0 @@ -## -# Run Retrospective analysis example -# Example original application: -# 2017 ICCAT North Atlantic shortfin mako (SMA) Stock Synthesis model run 3 -# Stock Synthesis (version 3_30_15 Windows) -# r4ss (version 1.35.1) -# R (version 3.3.2 64 bit) -## -#devtools::install_github('r4ss/r4ss') -library(r4ss) -# test - - -# Step 1. Identify restrospective period -# e.g., for end.yr.vec <- c(2015,2014,2013,2012,2011,2010) -start.retro <- 0 #end year of model e.g., 2015 -end.retro <- 5 #number of years for retrospective e.g., 2014,2013,2012,2011,2010 - -# Step 2. Identify the base directory -dirname.base <- "C:\\Users\\Felipe.Carvalho\\Desktop\\Ms_Diagnostics\\Retrospective\\SMA\\" -dirname.base - -# Step 3. Identify the directory where a completed model run is located -dirname.completed.model.run <- paste0(dirname.base,'/Reference_run') -dirname.completed.model.run - -# Step 4. Create a subdirectory for the Retrospectives -dirname.Retrospective <- paste0(dirname.base,'/Retrospective') -dir.create(path=dirname.Retrospective, showWarnings = TRUE, recursive = TRUE) -setwd(dirname.Retrospective) -getwd() - -# Step 5. Create a subdirectory for the Plots -dirname.plots <- paste0(dirname.Retrospective,"/plots_1") -dir.create(dirname.plots) - -#----------------- copy model run files ---------------------------------------- -file.copy(paste(dirname.completed.model.run, "starter.ss_new", sep="/"), - paste(dirname.Retrospective, "starter.ss", sep="/")) -file.copy(paste(dirname.completed.model.run, "control.ss_new", sep="/"), - paste(dirname.Retrospective, "CONTROL.SS", sep="/")) -file.copy(paste(dirname.completed.model.run, "data.ss_new", sep="/"), - paste(dirname.Retrospective, "DATA.SS", sep="/")) -file.copy(paste(dirname.completed.model.run, "forecast.ss", sep="/"), - paste(dirname.Retrospective, "forecast.ss", sep="/")) -file.copy(paste(dirname.completed.model.run, "SS.exe", sep="/"), - paste(dirname.Retrospective, "SS.exe", sep="/")) -# Required for assessments with wtatage.ss files -file.copy(paste(dirname.completed.model.run, "wtatage.ss", sep="/"), - paste(dirname.Retrospective, "wtatage.ss", sep="/")) - -#------------Make Changes to the Starter.ss file (DC Example) ------------------------------- -starter <- readLines(paste(dirname.Retrospective, "/starter.ss", sep="")) - -# 1) Starter File changes to speed up model runs -# Run Display Detail -#[8] "2 # run display detail (0,1,2)" -linen <- grep("# run display detail", starter) -starter[linen] <- paste0( 1 , " # run display detail (0,1,2)" ) -write(starter, paste(dirname.Retrospective, "starter.ss", sep="/")) - -#------------ r4SS retrospective calculations------------------------------- - -# Step 6. Run the retrospective analyses with r4SS function "SS_doRetro" -SS_doRetro(masterdir=dirname.Retrospective, oldsubdir="", newsubdir="retrospectives", years=start.retro:-end.retro) - -# Step 7. Read "SS_doRetro" output -retroModels <- SSgetoutput(dirvec=file.path(dirname.Retrospective, "retrospectives",paste("retro",start.retro:-end.retro,sep=""))) - -# Step 8. Summarize "SS_doRetro" output -retroSummary <- SSsummarize(retroModels) - diff --git a/Cookbook/Setup_ASPM_example.R b/Cookbook/Setup_ASPM_example.R deleted file mode 100644 index e98c1bb..0000000 --- a/Cookbook/Setup_ASPM_example.R +++ /dev/null @@ -1,64 +0,0 @@ -## -# Setup_ASPM_example.R -# Example original application: -# 2017 ICCAT North Atlantic shortfin mako (SMA) Stock Synthesis model run 3 -# Stock Synthesis (version 3_30_08 Windows) -# r4ss (version 1.35.1) -# R (version 3.3.2 64 bit) -## - -library(r4ss) -# Step 1) copy and paste files from Full to ASPM directory -# control.ss_new data.ss_new forecast.ss_new SS3fast_Win64.exe SS3fast_Win64.par starter.ss_new -# rename *.ss_new to *.ss -# rename SS3fast_Win64.par* to SS3.* -# Step 2) change SS3.par from original model run to set all rec dev = 0 -# recdev_early: -#0.00 0.00 0.00 0.00 0.00 -# recdev1: -#0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -# Fcast_recruitments: -#0.000000000000 0.000000000000 0.000000000000 -# -# Step 3) change starter.ss from original model run to read from par file -# 1 # 0=use init values in control file; 1=use SS3.par -# -# Step 4) change control.ss from original model run to fix selectivity parameters at the value read from par file (change phase to negative for all estimated paramters) -# -# Step 5) change control.ss from original model run to turn off fit to all length comp data (change likelihood lambda to 0 for all length data; 4=length) -#4 1 1 0 1 -#4 2 1 0 1 -#4 3 1 0 1 -#4 4 1 0 1 -#4 5 1 0 1 -# -# Step 6) change control.ss from original model run to fix rec devs at the value read from par file (change phase to negative for all recdev phases) -#-3 #_recdev phase -#-4 #_recdev_early_phase -# [not sure next step makes any difference] -# Step 7) change control.ss from original model run to turn off penalty for rec dev estimation in likelihood (change likelihood lambda to 0 for recruitment; 10=recrdev) -#10 1 1 0 1 -# -# Step 8) manually run the original and ASPM -# -# Step 9) summarize results in R using the r4ss package -library(r4ss) -rootdir <- "C:/Users/Felipe.Carvalho/Desktop/MS_Diagnostics/ASPM" - -# directories where models were run need to be defined -dir1 <- "C:/Users/Felipe.Carvalho/Desktop/MS_Diagnostics/ASPM/ASPM" -dir2 <- "C:/Users/Felipe.Carvalho/Desktop/MS_Diagnostics/ASPM/Reference_run" - -# read two models -mod1 <- SS_output(dir=dir1) -mod2 <- SS_output(dir=dir2) - -# create list summarizing model results -mod.sum <- SSsummarize(list(mod1, mod2)) - -# plot comparisons -SSplotComparisons(mod.sum, legendlabels=c("ASPM", "Reference"),print = T, plotdir = paste0(rootdir,"/Plots")) - - - - diff --git a/Cookbook/ss3diags_CookbookPlots.R b/Cookbook/ss3diags_CookbookPlots.R deleted file mode 100644 index 8e44abb..0000000 --- a/Cookbook/ss3diags_CookbookPlots.R +++ /dev/null @@ -1,224 +0,0 @@ -#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> -# Example code for library(ss3diags) -# -# github.com/jabbamodel/ss3diags -# -# Install ss3diags -# devtools::install_github("jabbamodel/ss3diags") -# Requires r4ss installation -# devtools::install_github("r4ss/r4ss") -# Henning Winker (henning.winker@gmail.com) -# Joint Research Centre of the European Commission -# Work Email: Henning.Winker@ec.europa.eu -#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> - - -# load packages -#library(ss3diags) -#library(r4ss) - -# Set workdirectory to save output -setwd("C:/Work/Research/MS_diags/Revision2") -assessments = c("Mako","PacificHake") -dir.create("output",showWarnings = F) - -# Load inbuilt data -data("natl.sma") -data("pac.hke") -# Data documentation -# help("natl.sma") -# help("pac.hke") - -# Save Dianostic Statistics -# Runs Test -runssmaI = SSrunstest(ss3sma) -runssmaL = SSrunstest(ss3sma,quants = "len") -runshkeI = SSrunstest(ss3phk) -runshkeA = SSrunstest(ss3phk,quants = "age") -runstest = rbind(data.frame(stk="sma",runssmaI),data.frame(stk="sma",runssmaL),data.frame(stk="phk",runshkeI),data.frame(stk="pke",runshkeA)) -write.csv(runstest,paste0(getwd(),"/output/","runstests.csv"),row.names = F) -# Summarize do.retro output -retroI.sma = SSsummarize(retro.sma) # for hindcast Index + Retro -hccomps.sma = SSretroComps(retro.sma) # summarize hindcasts for composition data -retroI.phk = SSsummarize(retro.phk) -hccomps.phk = SSretroComps(retro.phk) - -# Get MASE as metric of prediction skill -hcsmaI = SSmase(retroI.sma) -hcsmaL = SSmase(hccomps.sma,quants = "len") -hcphkI = SSmase(retroI.phk) -hcphkA = SSmase(hccomps.phk,quants = "age") -hcxval =rbind(data.frame(stk="sma",hcsmaI),data.frame(stk="sma",hcsmaL),data.frame(stk="phk",hcphkI),data.frame(stk="pke",hcphkA)) -write.csv(hcxval,paste0(getwd(),"/output/","hcxval.csv"),row.names = F) -# Retrospective bias (Mohn's Rho) and Forecast bias -retrosma = SShcbias(retroI.sma) -retrophk = SShcbias(retroI.phk) -retro =rbind(data.frame(stk="sma",retrosma),data.frame(stk="phk",retrophk)) -write.csv(retro,paste0(getwd(),"/output/","retro.csv"),row.names = F) - -#-------------------- -# Make Cookbook plots -#-------------------- -# rename fleets for MS plots - -l = 1.2 # size of plot label a), b), c) -# PLOTS FOR MS COOKBOOK -graphics.off() - -#---------------------------- -# Runs Test Plots -#---------------------------- -# Requires input from r4ss::SS_output() - -pwidth = 8 -pheight = 9 -res=300 -plname = "Fig4_runsfig_sma" - -jpeg(file = paste0(getwd(),"/output/",plname,".jpg"), width = pwidth, height = pheight, res = res, units = "in") -r4ss::sspar(mfrow=c(3,2),labs=T,plot.cex=0.9) -for(i in 1:3){ -SSplotRunstest(ss3sma,add=T,legendcex=0.8,tickEndYr=F,xylabs=T,indexselect = c(1,3,4)[i]) -legend("topleft",paste0(letters[c(1,3,5)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotRunstest(ss3sma,subplots = "len",add=T,legendcex=0.8,tickEndYr=F,xylabs=T,indexselect = c(1,2,4)[i]) -legend("topleft",paste0(letters[c(2,4,6)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -} - -dev.off() - -pwidth = 4 -pheight = 9 -res=300 -plname = "Fig5_runsfig_hke" -jpeg(file = paste0(getwd(),"/output/",plname,".jpg"), width = pwidth, height = pheight, res = res, units = "in") -r4ss:sspar(mfrow=c(3,1),labs=T,plot.cex=0.9) -for(i in 1:1){ - SSplotRunstest(ss3phk,add=T,legendcex=0.8,tickEndYr=F,xylabs=T,indexselect = i) - legend("topleft",paste0(letters[c(1)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -} -for(i in 1:2){ - SSplotRunstest(ss3phk,subplots="age",add=T,legendcex=0.8,tickEndYr=F,xylabs=T,indexselect = c(2:1)[i]) - legend("topleft",paste0(letters[c(2:3)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -} -dev.off() - - -#------------------------------------- -# JABBA(Joint)-Residual plots -#------------------------------------- -# Requires input from r4ss::SS_output() - -plname = "Fig3_jointresiduals" -pwidth=8; pheight=7 -jpeg(file = paste0(getwd(),"/output/",plname,".jpg"), width = pwidth, height = pheight, res = res, units = "in") -r4ss::sspar(mfrow=c(2,2),labs=T,plot.cex=0.9) -SSplotJABBAres(ss3sma,add=T,legendcex=0.8,tickEndYr=T,xylabs=T,indexselect = c(1,3,4,5,6),legendsp = 1) -legend("topleft",paste0(letters[1],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotJABBAres(ss3phk,add=T,legendcex=0.8,tickEndYr=T,xylabs=T,legendsp = 1) -legend("topleft",paste0(letters[2],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotJABBAres(ss3sma,subplots = "len", add=T,legendcex=0.8,tickEndYr=F,xylabs=T,legendsp = 1) -legend("topleft",paste0(letters[3],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotJABBAres(ss3phk,subplots = "age",add=T,legendcex=0.8,tickEndYr=F,xylabs=T,legendsp = 1) -legend("topleft",paste0(letters[4],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -mtext(c("SMA","HAKE"), side=3, outer=T,line= -0.4,cex=1.1,c(0.27,0.79)) -dev.off() - -#-------------------------------------------- -# ASPM plots -# Plot function for comparing model runs -#-------------------------------------------- -# Requires input from r4ss::SSsummarize() -plname = "Fig7_aspmplot" -pwidth = 8 -pheight = 9 -res=300 -jpeg(file = paste0(getwd(),"/output/",plname,".jpg"), width = pwidth, height = pheight, res = res, units = "in") -r4ss::sspar(mfrow=c(3,2),labs=F,plot.cex=1) -SSplotModelcomp(aspm.sma,subplots = "Index",ylimAdj=1.1,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,indexselect = c(1),legendlabels = c("Full Model","ASPM","ASPMdev")) -legend("topleft",paste0(letters[1],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -mtext("Index",side=2,outer=F,line=1.5,cex=1) -SSplotModelcomp(aspm.phk,subplots = "Index",ylimAdj=1.1,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,indexselect = c(1),legendlabels = c("Full Model","ASPM","ASPMdev")) -legend("topleft",paste0(letters[2],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotModelcomp(aspm.sma,subplots = "SSB",ylimAdj=1.15,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,indexselect = c(1),legend=F) -legend("topleft",paste0(letters[3],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -mtext("SSB (t)",side=2,outer=F,line=1.5,cex=1) -SSplotModelcomp(aspm.phk,subplots = "SSB",ylimAdj=1.1,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,indexselect = c(1),legend=F) -legend("topleft",paste0(letters[4],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotModelcomp(aspm.sma,subplots = "RecDevs",ylimAdj=0.9,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,indexselect = c(1),legend=F) -legend("topleft",paste0(letters[5],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -mtext("Recruitment Deviations",side=2,outer=F,line=1.5,cex=1) -SSplotModelcomp(aspm.phk,subplots = "RecDevs",ylimAdj=1,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,indexselect = c(1),legend=F) -legend("topleft",paste0(letters[6],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -mtext("Year",side=1,outer=T,cex=1,line=0.5) -mtext(c("SMA","HAKE"), side=3, outer=T,line= -0.2,cex=1.1,c(0.27,0.77)) -dev.off() - -#-------------------------------------------------- -# Retrospective plots with one-step ahead forecasts -#-------------------------------------------------- -# Requires list of retrospective runs with SS_doRetro() as read by SSgetoutput() - -pwidth=8; pheight=8 -plname = "Fig8_retrowithforecast" - -jpeg(file = paste0(getwd(),"/output/",plname,".jpg"), width = pwidth, height = pheight, res = res, units = "in") -r4ss::sspar(mfrow=c(2,2),labs=F,plot.cex=1.) -SSplotRetro(retroI.sma,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,legendloc = "bottomleft",uncertainty = T,showrho = F,forecast = T,labels="SSB (t)",legendsp=0.9,ylim=c(0,1500)) -legend("topleft",paste0(letters[1],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotRetro(retroI.phk,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,legendloc = "topright",uncertainty = T,showrho = F,forecast = T,labels="SSB (t)",legendsp=0.9,ylim=c(0,6.5E6)) -legend("topleft",paste0(letters[2],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -mtext("Year",side=1,outer=T,cex=1,line=0.5) -mtext("SSB (t)",side=2,outer=T,line=0.5,cex=1) -mtext(c("SMA","HAKE"), side=3, outer=T,line= -0.4,cex=1.1,c(0.27,0.77)) -SSplotRetro(retroI.sma,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,legendloc = "bottomleft",xmin=2005,uncertainty = T,legend = F,forecast = T,legendsp = 0.9,forecastrho=T,ylim=c(0,1100)) -legend("topleft",paste0(letters[3],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotRetro(retroI.phk,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,legendloc = "bottomright",xmin=2005,legend = F,forecast = T,legendsp = 0.9,forecastrho=T) -legend("topleft",paste0(letters[4],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -dev.off() - -#-------------------------------------------------- -# Hindcast Cross-Validation (HCXval) plots with one-step ahead forecasts -#-------------------------------------------------- -# Requires list of retrospective runs with SS_doRetro() as read by SSgetoutput() - - -pwidth = 8 -pheight = 9 -res=300 -plname = "Fig9_hcxval_sma" -retroI.sma = SSsummarize(retro.sma) # summarize index fits -hccomps.sma = ss3diags::SSretroComps(retro.sma) # summarize composition fits - -jpeg(file = paste0(getwd(),"/output/",plname,".jpg"), width = pwidth, height = pheight, res = res, units = "in") -r4ss::sspar(mfrow=c(3,2),labs=T,plot.cex=0.9) -for(i in 1:3){ - SSplotHCxval(retroI.sma,add=T,legendcex=0.8,legend=ifelse(i==0,T,F),legendsp = 0.8,legendindex = 1,tickEndYr=F,xylabs=T,legendloc="bottomleft",indexselect = c(1,3,4)[i],MAE.base.adj=0) - legend("topleft",paste0(letters[c(1,3,5)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) - - SSplotHCxval(hccomps.sma,subplots = "len",add=T,legendcex=0.95,legend=ifelse(i==3,T,F),legendsp = 0.8,legendindex = 1,tickEndYr=F,xylabs=T,legendloc="bottomright",indexselect = c(1,2,4)[i],MAE.base.adj=0) - - legend("topleft",paste0(letters[c(2,4,6)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -} -dev.off() - -pwidth = 4 -pheight = 9 -res=300 -plname = "Fig10_hcxval_hke" -retroI.phk = SSsummarize(retro.phk) # summarize index fits -hccomps.phk = ss3diags::SSretroComps(retro.phk) # summarize composition fits - -jpeg(file = paste0(getwd(),"/output/",plname,".jpg"), width = pwidth, height = pheight, res = res, units = "in") -r4ss::sspar(mfrow=c(3,1),labs=T,plot.cex=0.9) - -for(i in 1:1){ - SSplotHCxval(retroI.phk,add=T,legendcex=0.8,legend=F,legendsp = 0.8,legendindex = 1,tickEndYr=F,xylabs=T,legendloc="topright",indexselect = c(1)[i]) - legend("topleft",paste0(letters[c(1)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -} -for(i in 1:2){ - SSplotHCxval(hccomps.phk,subplots = "age",add=T,legendcex=0.8,legend=ifelse(i==2,T,F),legendsp = 0.8,legendindex = 1,tickEndYr=F,xylabs=T,legendloc="bottomleft",indexselect = c(2,1)[i]) - legend("topleft",paste0(letters[c(2:3)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -} -dev.off() - -# End diff --git a/Cookbook/ss3diags_CookbookPlots_Examples.R b/Cookbook/ss3diags_CookbookPlots_Examples.R deleted file mode 100644 index d88038f..0000000 --- a/Cookbook/ss3diags_CookbookPlots_Examples.R +++ /dev/null @@ -1,192 +0,0 @@ -#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> -# Example code for library(ss3diags) -# -# github.com/jabbamodel/ss3diags -# -# Install ss3diags -# devtools::install_github("jabbamodel/ss3diags") -# -# Henning Winker (henning.winker@gmail.com) -# Joint Research Centre of the European Commission -# Work Email: Henning.Winker@ec.europa.eu -#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> - -# load pakage -library(ss3diags) -library(r4ss) -# set working directory for saving the plots -setwd("C:/Work/Research/MS_diags/testplots") - -# Data -help("natl.sma") -help("pac.hke") - -#-------------------- -# Make Cookplots -#-------------------- -l = 1.2 # size of plot label a), b), c) -# PLOTS FOR MS COOKBOOK -graphics.off() -res=300 # resolution -# JABBA-Residual plots -# Requires input from r4ss::SS_output() -plname = "Fig3_jointresiduals" -pwidth=8 -pheight=7 - -if(grepl("win",tolower(Sys.info()['sysname']))) {windows(width=pwidth,height=pheight)} -r4ss::sspar(mfrow=c(2,2),labs=T,plot.cex=0.9) -SSplotJABBAres(ss3sma,add=T,legendcex=0.8,tickEndYr=T,xylabs=T,indexselect = c(1,3,4,5,6),legendsp = 1) -legend("topleft",paste0(letters[1],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotJABBAres(ss3phk,add=T,legendcex=0.8,tickEndYr=T,xylabs=T,legendsp = 1) -legend("topleft",paste0(letters[2],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotJABBAres(ss3sma,subplots = "len", add=T,legendcex=0.8,tickEndYr=T,xylabs=T,legendsp = 1) -legend("topleft",paste0(letters[1],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotJABBAres(ss3phk,subplots = "age",add=T,legendcex=0.8,tickEndYr=T,xylabs=T,legendsp = 1) -legend("topleft",paste0(letters[2],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -mtext(c("SMA","HAKE"), side=3, outer=T,line= -0.4,cex=1.1,c(0.27,0.79)) -#save -dev.print(jpeg,paste0(getwd(),"/",plname,".jpg"), width = pwidth, height = pheight, res = res, units = "in") - -pwidth = 8 -pheight = 9 -plname = "Fig4_runsfig_sma" -if(grepl("win",tolower(Sys.info()['sysname']))) {windows(width=pwidth,height=pheight)} -# set graphic options -r4ss::sspar(mfrow=c(3,2),labs=T,plot.cex=0.9) -for(i in 1:3){ -SSplotRunstest(ss3sma,add=T,legendcex=0.8,tickEndYr=F,xylabs=T,indexselect = c(1,3,4)[i]) -legend("topleft",paste0(letters[c(1,3,5)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotRunstest(ss3sma,subplots = "len",add=T,legendcex=0.8,tickEndYr=F,xylabs=T,indexselect = c(1,2,4)[i]) -legend("topleft",paste0(letters[c(1,2,6)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -} -# save -dev.print(jpeg,paste0(getwd(),"/",plname,".jpg"), width = pwidth, height = pheight, res = res, units = "in") - -pwidth = 4 -pheight = 9 -res=300 -plname = "Fig5_runsfig_hke" -if(grepl("win",tolower(Sys.info()['sysname']))) {windows(width=pwidth,height=pheight)} -r4ss::sspar(mfrow=c(3,1),labs=T,plot.cex=0.9) -for(i in 1:1){ - SSplotRunstest(ss3phk,add=T,legendcex=0.8,tickEndYr=F,xylabs=T,indexselect = i) - legend("topleft",paste0(letters[c(1)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -} -for(i in 1:2){ - SSplotRunstest(ss3phk,subplots="age",add=T,legendcex=0.8,tickEndYr=F,xylabs=T,indexselect = c(2:1)[i]) - legend("topleft",paste0(letters[c(2:3)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -} -#save -dev.print(jpeg,paste0(getwd(),"/",plname,".jpg"), width = pwidth, height = pheight, res = res, units = "in") - -# ASPM plots -# Requires input from r4ss::SSsummarize() -plname = "Fig7_aspmplot" -pwidth = 8 -pheight = 9 -res=300 -if(grepl("win",tolower(Sys.info()['sysname']))) {windows(width=pwidth,height=pheight)} - -r4ss::sspar(mfrow=c(3,2),labs=F,plot.cex=1) -SSplotModelcomp(aspm.sma,subplots = "Index",ylimAdj=1.1,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,indexselect = c(1),legendlabels = c("Full Model","ASPM","ASPMdev")) -legend("topleft",paste0(letters[1],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -mtext("Index",side=2,outer=F,line=1.5,cex=1) -SSplotModelcomp(aspm.phk,subplots = "Index",ylimAdj=1.1,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,indexselect = c(1),legendlabels = c("Full Model","ASPM","ASPMdev")) -legend("topleft",paste0(letters[2],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotModelcomp(aspm.sma,subplots = "SSB",ylimAdj=1.15,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,indexselect = c(1),legend=F) -legend("topleft",paste0(letters[3],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -mtext("SSB (t)",side=2,outer=F,line=1.5,cex=1) -SSplotModelcomp(aspm.phk,subplots = "SSB",ylimAdj=1.1,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,indexselect = c(1),legend=F) -legend("topleft",paste0(letters[4],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotModelcomp(aspm.sma,subplots = "RecDevs",ylimAdj=0.9,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,indexselect = c(1),legend=F) -legend("topleft",paste0(letters[5],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -mtext("Recruitment Deviations",side=2,outer=F,line=1.5,cex=1) -SSplotModelcomp(aspm.phk,subplots = "RecDevs",ylimAdj=1,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,indexselect = c(1),legend=F) -legend("topleft",paste0(letters[6],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -mtext("Year",side=1,outer=T,cex=1,line=0.5) -mtext(c("SMA","HAKE"), side=3, outer=T,line= -0.2,cex=1.1,c(0.27,0.77)) -#save -dev.print(jpeg,paste0(getwd(),"/",plname,".jpg"), width = pwidth, height = pheight, res = res, units = "in") - - -#------------------------------------------------------------ -# Prepare retro + HCxval data objects -#------------------------------------------------------------ -# convert replist into summary object -retroI.sma = r4ss::SSsummarize(retro.sma) -# convert replist into summary object with mean size/age -hccomps.sma = ss3diags::SSretroComps(retro.sma) -# convert replist into summary object -retroI.phk = r4ss::SSsummarize(retro.phk) -# convert replist into summary object with mean size/age -hccomps.phk = ss3diags::SSretroComps(retro.phk) - -#-------------------------------------------------- -# Retrospective plots with one-step ahead forecasts -#-------------------------------------------------- -pwidth=8; pheight=8 -if(grepl("win",tolower(Sys.info()['sysname']))) {windows(width=pwidth,height=pheight)} -plname = "Fig8_retrowithforecast" -r4ss::sspar(mfrow=c(2,2),labs=F,plot.cex=1.) -SSplotRetro(retroI.sma,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,legendloc = "bottomleft",uncertainty = T,showrho = F,forecast = T,labels="SSB (t)",legendsp=0.9) -legend("topleft",paste0(letters[1],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotRetro(retroI.phk,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,legendloc = "topright",uncertainty = T,showrho = F,forecast = T,labels="SSB (t)",legendsp=0.9) -legend("topleft",paste0(letters[2],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -mtext("Year",side=1,outer=T,cex=1,line=0.5) -mtext("SSB (t)",side=2,outer=T,line=0.5,cex=1) -mtext(c("SMA","HAKE"), side=3, outer=T,line= -0.4,cex=1.1,c(0.27,0.77)) -SSplotRetro(retroI.sma,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,legendloc = "bottomleft",xmin=2005,uncertainty = T,legend = F,forecast = T,legendsp = 0.9) -legend("topleft",paste0(letters[3],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -SSplotRetro(retroI.phk,add=T,legendcex=0.8,tickEndYr=F,xylabs=F,legendloc = "bottomright",xmin=2005,legend = F,forecast = T,legendsp = 0.9) -legend("topleft",paste0(letters[4],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -#save -dev.print(jpeg,paste0(getwd(),"/",plname,".jpg"), width = pwidth, height = pheight, res = res, units = "in") - -#-------------------------------------------------- -# HCxval Index + mean size/age -#-------------------------------------------------- - -pwidth = 8 -pheight = 9 -res=300 -plname = "Fig9_hcxval_sma" - -if(grepl("win",tolower(Sys.info()['sysname']))) {windows(width=pwidth,height=pheight)} -r4ss::sspar(mfrow=c(3,2),labs=T,plot.cex=0.9) -for(i in 1:3){ - SSplotHCxval(retroI.sma,add=T,legendcex=0.8,legend=F,legendsp = 0.8,legendindex = 1,tickEndYr=F,xylabs=T,legendloc="topright",indexselect = c(1,3,4)[i]) - legend("topleft",paste0(letters[c(1,3,5)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) - #mtext("Index",2,line=1.5) - SSplotHCxval(hccomps.sma,subplots = "len",add=T,legendcex=0.8,legend=T,legendsp = 0.8,legendindex = 1,tickEndYr=F,xylabs=T,legendloc="bottomright",indexselect = c(1,2,4)[i]) - #mtext("Mean Length",2,line=1.5) - legend("topleft",paste0(letters[c(2,4,6)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -} -#save -dev.print(jpeg,paste0(getwd(),"/",plname,".jpg"), width = pwidth, height = pheight, res = res, units = "in") - - -pwidth = 4 -pheight = 9 -res=300 -plname = "Fig10_hcxval_hke" - -if(grepl("win",tolower(Sys.info()['sysname']))) {windows(width=pwidth,height=pheight)} -r4ss::sspar(mfrow=c(3,1),labs=T,plot.cex=0.9) - -for(i in 1:1){ - SSplotHCxval(retroI.phk,add=T,legendcex=0.8,legend=F,legendsp = 0.8,legendindex = 1,tickEndYr=F,xylabs=T,legendloc="topright",indexselect = c(1)[i]) - legend("topleft",paste0(letters[c(1)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -} -for(i in 1:2){ - SSplotHCxval(hccomps.phk,subplots = "age",add=T,legendcex=0.8,legend=ifelse(i==2,T,F),legendsp = 0.8,legendindex = 1,tickEndYr=F,xylabs=T,legendloc="bottomleft",indexselect = c(2,1)[i]) - legend("topleft",paste0(letters[c(2:3)[i]],")"),y.intersp = -0.2,x.intersp = -0.7,bty="n",cex=l) -} -dev.print(jpeg,paste0(getwd(),"/",plname,".jpg"), width = pwidth, height = pheight, res = res, units = "in") - - - - - - - diff --git a/Cookbook/ss3diags_newfeatures.R b/Cookbook/ss3diags_newfeatures.R deleted file mode 100644 index 6ad7ac3..0000000 --- a/Cookbook/ss3diags_newfeatures.R +++ /dev/null @@ -1,31 +0,0 @@ - -# load pakage -library(ss3diags) -library(r4ss) -# Data documentation -help("natl.sma") -help("pac.hke") - -# retro run -retroI.sma = SSsummarize(retro.sma) -retroL.sma = SSretroComps(retro.sma) -retroI.phk = SSsummarize(retro.phk) -retroA.phk = SSretroComps(retro.phk) - -SSmase(retroI.sma) -SSmase(retroL.sma,quants = "len") -SSmase(retroI.phk) -SSmase(retroA.phk,quants = "age") - -# New retro-forecast options (ylim added too) -r4ss::sspar(mfrow=c(2,2),plot.cex=0.7) -SSplotRetro(retroI.sma,subplots = "SSB",ylim=c(0,1500),add=T,legend=F) -SSplotRetro(retroI.phk,subplots = "SSB",add=T,legend=F,ylim=c(0,7*10^6)) -SSplotRetro(retroI.sma,subplots = "F",add=T,legendloc = "left",legendcex = 0.8) -SSplotRetro(retroI.phk,subplots = "F",add=T,legendloc = "left",legendcex = 0.85) - -# Compute without plotting -SShcbias(retroI.sma) -SShcbias(retroI.phk) - - diff --git a/DESCRIPTION b/DESCRIPTION index 0bbeb8a..f500bf1 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -24,7 +24,7 @@ Imports: lifecycle, magrittr, mvtnorm, - r4ss(>= 1.46.1), + r4ss (>= 1.46.1), randtests, reshape2, rlang @@ -34,7 +34,7 @@ Suggests: rmarkdown, testthat (>= 3.0.0) Remotes: - r4ss/r4ss@main + r4ss/r4ss@try-fix-jitter Encoding: UTF-8 LazyData: True LazyDataCompression: gzip diff --git a/R/data.R b/R/data.R deleted file mode 100644 index 49fcd6c..0000000 --- a/R/data.R +++ /dev/null @@ -1,418 +0,0 @@ -#' A simulated Simple Stock Synthesis model for a "cod-like" stock. -#' -#' Stock Synthesis output read by \code{\link[r4ss]{SS_output}()} -#' -#' @docType data -#' -#' @format Large list of 184 objects generated using \pkg{r4ss} -#' \describe{ -#' \item{Data_File}{Data_File} -#' \item{Control_File}{Control_File} -#' \item{definitions}{definitions} -#' \item{fleet_ID}{fleet_ID} -#' \item{fleet_type}{fleet_type} -#' \item{fleet_timing}{fleet_timing} -#' \item{fleet_area}{fleet_area} -#' \item{catch_units}{catch_units} -#' \item{catch_se}{catch_se} -#' \item{equ_catch_se}{equ_catch_se} -#' \item{survey_units}{survey_units} -#' \item{survey_error}{survey_error} -#' \item{IsFishFleet}{IsFishFleet} -#' \item{nfishfleets}{nfishfleets} -#' \item{nfleets}{nfleets} -#' \item{nsexes}{nsexes} -#' \item{ngpatterns}{ngpatterns} -#' \item{lbins}{lbins} -#' \item{Lbin_method}{Lbin_method} -#' \item{nlbins}{nlbins} -#' \item{lbinspop}{lbinspop} -#' \item{nlbinspop}{nlbinspop} -#' \item{sizebinlist}{sizebinlist} -#' \item{agebins}{agebins} -#' \item{nagebins}{nagebins} -#' \item{accuage}{accuage} -#' \item{nareas}{nareas} -#' \item{startyr}{startyr} -#' \item{endyr}{endyr} -#' \item{nseasons}{nseasons} -#' \item{seasfracs}{seasfracs} -#' \item{seasdurations}{seasdurations} -#' \item{N_sub_seasons}{N_sub_seasons} -#' \item{Spawn_month}{Spawn_month} -#' \item{Spawn_seas}{Spawn_seas} -#' \item{Spawn_timing_in_season}{Spawn_timing_in_season} -#' \item{Retro_year}{Retro_year} -#' \item{N_forecast_yrs}{N_forecast_yrs} -#' \item{Empirical_wt_at_age}{Empirical_wt_at_age} -#' \item{N_bio_patterns}{N_bio_patterns} -#' \item{N_platoons}{N_platoons} -#' \item{NatMort_option}{NatMort_option} -#' \item{GrowthModel_option}{GrowthModel_option} -#' \item{Maturity_option}{Maturity_option} -#' \item{Fecundity_option}{Fecundity_option} -#' \item{Start_from_par}{Start_from_par} -#' \item{Do_all_priors}{Do_all_priors} -#' \item{Use_softbound}{Use_softbound} -#' \item{N_nudata}{N_nudata} -#' \item{Max_phase}{Max_phase} -#' \item{Current_phase}{Current_phase} -#' \item{Jitter}{Jitter} -#' \item{ALK_tolerance}{ALK_tolerance} -#' \item{nforecastyears}{nforecastyears} -#' \item{morph_indexing}{morph_indexing} -#' \item{MGparmAdj}{MGparmAdj} -#' \item{forecast_selectivity}{forecast_selectivity} -#' \item{SelSizeAdj}{SelSizeAdj} -#' \item{SelAgeAdj}{SelAgeAdj} -#' \item{recruitment_dist}{recruitment_dist} -#' \item{recruit}{recruit} -#' \item{SPAWN_RECR_CURVE}{SPAWN_RECR_CURVE} -#' \item{breakpoints_for_bias_adjustment_ramp}{breakpoints_for_bias_adjustment_ramp} -#' \item{SpawnOutputUnits}{SpawnOutputUnits} -#' \item{biology}{biology} -#' \item{FecType}{FecType} -#' \item{FecPar1name}{FecPar1name} -#' \item{FecPar2name}{FecPar2name} -#' \item{FecPar1}{FecPar1} -#' \item{FecPar2}{FecPar2} -#' \item{M_type}{M_type} -#' \item{Natural_Mortality_Bmark}{Natural_Mortality_Bmark} -#' \item{Natural_Mortality_endyr}{Natural_Mortality_endyr} -#' \item{Growth_Parameters}{Growth_Parameters} -#' \item{growthCVtype}{growthCVtype} -#' \item{endgrowth}{endgrowth} -#' \item{wtatage_switch}{wtatage_switch} -#' \item{mean_body_wt}{mean_body_wt} -#' \item{growthseries}{growthseries} -#' \item{growthvaries}{growthvaries} -#' \item{sizeselex}{sizeselex} -#' \item{ageselex}{ageselex} -#' \item{F_method}{F_method} -#' \item{exploitation}{exploitation} -#' \item{catch}{catch} -#' \item{summary_age}{summary_age} -#' \item{timeseries}{timeseries} -#' \item{spawnseas}{spawnseas} -#' \item{mainmorphs}{mainmorphs} -#' \item{birthseas}{birthseas} -#' \item{depletion_method}{depletion_method} -#' \item{depletion_basis}{depletion_basis} -#' \item{discard}{discard} -#' \item{discard_type}{discard_type} -#' \item{DF_discard}{DF_discard} -#' \item{discard_spec}{discard_spec} -#' \item{mnwgt}{mnwgt} -#' \item{DF_mnwgt}{DF_mnwgt} -#' \item{sprseries}{sprseries} -#' \item{managementratiolabels}{managementratiolabels} -#' \item{F_report_basis}{F_report_basis} -#' \item{B_ratio_denominator}{B_ratio_denominator} -#' \item{sprtarg}{sprtarg} -#' \item{btarg}{btarg} -#' \item{minbthresh}{minbthresh} -#' \item{Kobe_warn}{Kobe_warn} -#' \item{Kobe_MSY_basis}{Kobe_MSY_basis} -#' \item{Kobe}{Kobe} -#' \item{index_variance_tuning_check}{index_variance_tuning_check} -#' \item{cpue}{cpue} -#' \item{natage}{natage} -#' \item{natage_annual_1_no_fishery}{natage_annual_1_no_fishery} -#' \item{natage_annual_2_with_fishery}{natage_annual_2_with_fishery} -#' \item{batage}{batage} -#' \item{natlen}{natlen} -#' \item{batlen}{batlen} -#' \item{fatage}{fatage} -#' \item{discard_at_age}{discard_at_age} -#' \item{catage}{catage} -#' \item{movement}{movement} -#' \item{ALK}{ALK} -#' \item{N_ageerror_defs}{N_ageerror_defs} -#' \item{equil_yield}{equil_yield} -#' \item{Z_at_age}{Z_at_age} -#' \item{M_at_age}{M_at_age} -#' \item{Dynamic_Bzero}{Dynamic_Bzero} -#' \item{comp_data_exists}{comp_data_exists} -#' \item{lendbase}{lendbase} -#' \item{sizedbase}{sizedbase} -#' \item{agedbase}{agedbase} -#' \item{condbase}{condbase} -#' \item{ghostagedbase}{ghostagedbase} -#' \item{ghostcondbase}{ghostcondbase} -#' \item{ghostlendbase}{ghostlendbase} -#' \item{ladbase}{ladbase} -#' \item{wadbase}{wadbase} -#' \item{tagdbase1}{tagdbase1} -#' \item{tagdbase2}{tagdbase2} -#' \item{len_comp_fit_table}{len_comp_fit_table} -#' \item{size_comp_fit_table}{size_comp_fit_table} -#' \item{derived_quants}{derived_quants} -#' \item{parameters}{parameters} -#' \item{FleetNames}{FleetNames} -#' \item{repfiletime}{repfiletime} -#' \item{SRRtype}{SRRtype} -#' \item{Pstar_sigma}{Pstar_sigma} -#' \item{OFL_sigma}{OFL_sigma} -#' \item{CoVar}{CoVar} -#' \item{highcor}{highcor} -#' \item{lowcor}{lowcor} -#' \item{corstats}{corstats} -#' \item{stdtable}{stdtable} -#' \item{recruitpars}{recruitpars} -#' \item{RecrDistpars}{RecrDistpars} -#' \item{wtatage}{wtatage} -#' \item{jitter_info}{jitter_info} -#' \item{SS_version}{SS_version} -#' \item{SS_versionshort}{SS_versionshort} -#' \item{SS_versionNumeric}{SS_versionNumeric} -#' \item{StartTime}{StartTime} -#' \item{RunTime}{RunTime} -#' \item{Files_used}{Files_used} -#' \item{Nwarnings}{Nwarnings} -#' \item{warnings}{warnings} -#' \item{likelihoods_used}{likelihoods_used} -#' \item{likelihoods_laplace}{likelihoods_laplace} -#' \item{likelihoods_by_fleet}{likelihoods_by_fleet} -#' \item{N_estimated_parameters}{N_estimated_parameters} -#' \item{table_of_phases}{table_of_phases} -#' \item{estimated_non_dev_parameters}{estimated_non_dev_parameters} -#' \item{log_det_hessian}{log_det_hessian} -#' \item{maximum_gradient_component}{maximum_gradient_component} -#' \item{parameters_with_highest_gradients}{parameters_with_highest_gradients} -#' \item{Length_Comp_Fit_Summary}{Length_Comp_Fit_Summary} -#' \item{Age_Comp_Fit_Summary}{Age_Comp_Fit_Summary} -#' \item{SBzero}{SBzero} -#' \item{current_depletion}{current_depletion} -#' \item{last_years_SPR}{last_years_SPR} -#' \item{SPRratioLabel}{SPRratioLabel} -#' \item{sigma_R_in}{sigma_R_in} -#' \item{sigma_R_info}{sigma_R_info} -#' \item{rmse_table}{rmse_table} -#' \item{logfile}{logfile} -#' \item{inputs}{inputs} -#' } -#' -#' @source simulated with \pkg{ss3sim} -#' -#' @author R. Methot, -#' -"simple" - - -#' Retrospective runs for simulated Simple Stock Synthesis model. -#' -#' Stock Synthesis output read by \code{\link[r4ss]{SS_output}()} -#' -#' @docType data -#' -#' @format Large list of 184 objects generated using \pkg{r4ss} -#' \describe{ -#' \item{Data_File}{Data_File} -#' \item{Control_File}{Control_File} -#' \item{definitions}{definitions} -#' \item{fleet_ID}{fleet_ID} -#' \item{fleet_type}{fleet_type} -#' \item{fleet_timing}{fleet_timing} -#' \item{fleet_area}{fleet_area} -#' \item{catch_units}{catch_units} -#' \item{catch_se}{catch_se} -#' \item{equ_catch_se}{equ_catch_se} -#' \item{survey_units}{survey_units} -#' \item{survey_error}{survey_error} -#' \item{IsFishFleet}{IsFishFleet} -#' \item{nfishfleets}{nfishfleets} -#' \item{nfleets}{nfleets} -#' \item{nsexes}{nsexes} -#' \item{ngpatterns}{ngpatterns} -#' \item{lbins}{lbins} -#' \item{Lbin_method}{Lbin_method} -#' \item{nlbins}{nlbins} -#' \item{lbinspop}{lbinspop} -#' \item{nlbinspop}{nlbinspop} -#' \item{sizebinlist}{sizebinlist} -#' \item{agebins}{agebins} -#' \item{nagebins}{nagebins} -#' \item{accuage}{accuage} -#' \item{nareas}{nareas} -#' \item{startyr}{startyr} -#' \item{endyr}{endyr} -#' \item{nseasons}{nseasons} -#' \item{seasfracs}{seasfracs} -#' \item{seasdurations}{seasdurations} -#' \item{N_sub_seasons}{N_sub_seasons} -#' \item{Spawn_month}{Spawn_month} -#' \item{Spawn_seas}{Spawn_seas} -#' \item{Spawn_timing_in_season}{Spawn_timing_in_season} -#' \item{Retro_year}{Retro_year} -#' \item{N_forecast_yrs}{N_forecast_yrs} -#' \item{Empirical_wt_at_age}{Empirical_wt_at_age} -#' \item{N_bio_patterns}{N_bio_patterns} -#' \item{N_platoons}{N_platoons} -#' \item{NatMort_option}{NatMort_option} -#' \item{GrowthModel_option}{GrowthModel_option} -#' \item{Maturity_option}{Maturity_option} -#' \item{Fecundity_option}{Fecundity_option} -#' \item{Start_from_par}{Start_from_par} -#' \item{Do_all_priors}{Do_all_priors} -#' \item{Use_softbound}{Use_softbound} -#' \item{N_nudata}{N_nudata} -#' \item{Max_phase}{Max_phase} -#' \item{Current_phase}{Current_phase} -#' \item{Jitter}{Jitter} -#' \item{ALK_tolerance}{ALK_tolerance} -#' \item{nforecastyears}{nforecastyears} -#' \item{morph_indexing}{morph_indexing} -#' \item{MGparmAdj}{MGparmAdj} -#' \item{forecast_selectivity}{forecast_selectivity} -#' \item{SelSizeAdj}{SelSizeAdj} -#' \item{SelAgeAdj}{SelAgeAdj} -#' \item{recruitment_dist}{recruitment_dist} -#' \item{recruit}{recruit} -#' \item{SPAWN_RECR_CURVE}{SPAWN_RECR_CURVE} -#' \item{breakpoints_for_bias_adjustment_ramp}{breakpoints_for_bias_adjustment_ramp} -#' \item{SpawnOutputUnits}{SpawnOutputUnits} -#' \item{biology}{biology} -#' \item{FecType}{FecType} -#' \item{FecPar1name}{FecPar1name} -#' \item{FecPar2name}{FecPar2name} -#' \item{FecPar1}{FecPar1} -#' \item{FecPar2}{FecPar2} -#' \item{M_type}{M_type} -#' \item{Natural_Mortality_Bmark}{Natural_Mortality_Bmark} -#' \item{Natural_Mortality_endyr}{Natural_Mortality_endyr} -#' \item{Growth_Parameters}{Growth_Parameters} -#' \item{growthCVtype}{growthCVtype} -#' \item{endgrowth}{endgrowth} -#' \item{wtatage_switch}{wtatage_switch} -#' \item{mean_body_wt}{mean_body_wt} -#' \item{growthseries}{growthseries} -#' \item{growthvaries}{growthvaries} -#' \item{sizeselex}{sizeselex} -#' \item{ageselex}{ageselex} -#' \item{F_method}{F_method} -#' \item{exploitation}{exploitation} -#' \item{catch}{catch} -#' \item{summary_age}{summary_age} -#' \item{timeseries}{timeseries} -#' \item{spawnseas}{spawnseas} -#' \item{mainmorphs}{mainmorphs} -#' \item{birthseas}{birthseas} -#' \item{depletion_method}{depletion_method} -#' \item{depletion_basis}{depletion_basis} -#' \item{discard}{discard} -#' \item{discard_type}{discard_type} -#' \item{DF_discard}{DF_discard} -#' \item{discard_spec}{discard_spec} -#' \item{mnwgt}{mnwgt} -#' \item{DF_mnwgt}{DF_mnwgt} -#' \item{sprseries}{sprseries} -#' \item{managementratiolabels}{managementratiolabels} -#' \item{F_report_basis}{F_report_basis} -#' \item{B_ratio_denominator}{B_ratio_denominator} -#' \item{sprtarg}{sprtarg} -#' \item{btarg}{btarg} -#' \item{minbthresh}{minbthresh} -#' \item{Kobe_warn}{Kobe_warn} -#' \item{Kobe_MSY_basis}{Kobe_MSY_basis} -#' \item{Kobe}{Kobe} -#' \item{index_variance_tuning_check}{index_variance_tuning_check} -#' \item{cpue}{cpue} -#' \item{natage}{natage} -#' \item{natage_annual_1_no_fishery}{natage_annual_1_no_fishery} -#' \item{natage_annual_2_with_fishery}{natage_annual_2_with_fishery} -#' \item{batage}{batage} -#' \item{natlen}{natlen} -#' \item{batlen}{batlen} -#' \item{fatage}{fatage} -#' \item{discard_at_age}{discard_at_age} -#' \item{catage}{catage} -#' \item{movement}{movement} -#' \item{ALK}{ALK} -#' \item{N_ageerror_defs}{N_ageerror_defs} -#' \item{equil_yield}{equil_yield} -#' \item{Z_at_age}{Z_at_age} -#' \item{M_at_age}{M_at_age} -#' \item{Dynamic_Bzero}{Dynamic_Bzero} -#' \item{comp_data_exists}{comp_data_exists} -#' \item{lendbase}{lendbase} -#' \item{sizedbase}{sizedbase} -#' \item{agedbase}{agedbase} -#' \item{condbase}{condbase} -#' \item{ghostagedbase}{ghostagedbase} -#' \item{ghostcondbase}{ghostcondbase} -#' \item{ghostlendbase}{ghostlendbase} -#' \item{ladbase}{ladbase} -#' \item{wadbase}{wadbase} -#' \item{tagdbase1}{tagdbase1} -#' \item{tagdbase2}{tagdbase2} -#' \item{len_comp_fit_table}{len_comp_fit_table} -#' \item{size_comp_fit_table}{size_comp_fit_table} -#' \item{derived_quants}{derived_quants} -#' \item{parameters}{parameters} -#' \item{FleetNames}{FleetNames} -#' \item{repfiletime}{repfiletime} -#' \item{SRRtype}{SRRtype} -#' \item{Pstar_sigma}{Pstar_sigma} -#' \item{OFL_sigma}{OFL_sigma} -#' \item{CoVar}{CoVar} -#' \item{highcor}{highcor} -#' \item{lowcor}{lowcor} -#' \item{corstats}{corstats} -#' \item{stdtable}{stdtable} -#' \item{recruitpars}{recruitpars} -#' \item{RecrDistpars}{RecrDistpars} -#' \item{wtatage}{wtatage} -#' \item{jitter_info}{jitter_info} -#' \item{SS_version}{SS_version} -#' \item{SS_versionshort}{SS_versionshort} -#' \item{SS_versionNumeric}{SS_versionNumeric} -#' \item{StartTime}{StartTime} -#' \item{RunTime}{RunTime} -#' \item{Files_used}{Files_used} -#' \item{Nwarnings}{Nwarnings} -#' \item{warnings}{warnings} -#' \item{likelihoods_used}{likelihoods_used} -#' \item{likelihoods_laplace}{likelihoods_laplace} -#' \item{likelihoods_by_fleet}{likelihoods_by_fleet} -#' \item{N_estimated_parameters}{N_estimated_parameters} -#' \item{table_of_phases}{table_of_phases} -#' \item{estimated_non_dev_parameters}{estimated_non_dev_parameters} -#' \item{log_det_hessian}{log_det_hessian} -#' \item{maximum_gradient_component}{maximum_gradient_component} -#' \item{parameters_with_highest_gradients}{parameters_with_highest_gradients} -#' \item{Length_Comp_Fit_Summary}{Length_Comp_Fit_Summary} -#' \item{Age_Comp_Fit_Summary}{Age_Comp_Fit_Summary} -#' \item{SBzero}{SBzero} -#' \item{current_depletion}{current_depletion} -#' \item{last_years_SPR}{last_years_SPR} -#' \item{SPRratioLabel}{SPRratioLabel} -#' \item{sigma_R_in}{sigma_R_in} -#' \item{sigma_R_info}{sigma_R_info} -#' \item{rmse_table}{rmse_table} -#' \item{logfile}{logfile} -#' \item{inputs}{inputs} -#' } -#' -#' @source simulated with \pkg{ss3sim} -#' -#' @author R. Methot -#' -"retroSimple" - - -#' MCMC output for simulated Simple Stock Synthesis model. -#' -#' MCMC output read by \code{\link[r4ss]{SSgetMCMC}()} -#' -#' @docType data -#' -#' @format Large dataframe of MCMC parameter estimates with nrow = number of values and ncol = number of parameters -#' \describe{ -#' \item{mcmcSimple}{mcmcSimple} -#' } -#' -#' @source MCMC evaluated with Stock Synthesis -#' -#' @author R. Methot, -#' -"mcmcSimple" diff --git a/README.Rmd b/README.Rmd index 91b1f7a..fd6c16a 100644 --- a/README.Rmd +++ b/README.Rmd @@ -17,28 +17,39 @@ knitr::opts_chunk$set( # ss3diags -[![R-CMD-check](https://github.com/r4ss/r4ss/workflows/R-CMD-check/badge.svg)](https://github.com/PIFSCstockassessments/ss3diags/actions) [![R-CMD-check](https://github.com/PIFSCstockassessments/ss3diags/workflows/R-CMD-check/badge.svg)](https://github.com/PIFSCstockassessments/ss3diags/actions) -### Build Status -The R package `ss3diags` enables users to apply advanced diagnostics to evaluate a Stock Synthesis model. Diagnostics include residual analyses, hindcasting and cross-validation techniques, and retrospective analyses. Functions also allow users to reproduce the key model diagnostics plots that presented in the paper 'A Cookbook for Using Model Diagnostics in Integrated Stock Assessments'. +The R package `ss3diags` enables users to apply advanced diagnostics to +evaluate a Stock Synthesis model. Diagnostics include residual analyses, +hindcast cross-validation techniques, and retrospective analyses. +Functions also allow users to reproduce the key model diagnostics plots +that are presented in the paper ‘A Cookbook for Using Model Diagnostics in +Integrated Stock Assessments’. -A handbook with detailed [User guidelines for Advanced Model Diagnostics with ss3diags](https://github.com/jabbamodel/ss3diags/blob/master/Vignette/ss3diags_handbook.pdf) is currently being finalized. +The `ss3diags` Github repository provides step-by-step R recipes on how +to: -In addition, the ss3diags Github respository provides fully commented step-by-step R recipes on how to: +- [Run jitter + analysis](https://pifscstockassessments.github.io/ss3diags/articles/Jitter.html) +- [Conduct retrospective + analysis](https://pifscstockassessments.github.io/ss3diags/articles/Retrospective-Analysis.html) +- [Use hindcast + cross-validation](https://pifscstockassessments.github.io/ss3diags/articles/hcxval.html) +- [Do log-likelood profiling for + R0](https://pifscstockassessments.github.io/ss3diags/articles/likelihood.html) +- [Run the ASPM + diagnostic](https://pifscstockassessments.github.io/ss3diags/articles/aspm.html) +- [Evaluate model fit](https://pifscstockassessments.github.io/ss3diags/articles/residuals.html) -- [Do log-likelood profiling for R0](https://github.com/PIFSCstockassessments/ss3diags/blob/master/Cookbook/Likelihood_profile_R0_example.R) -- [Run the ASPM diagnostic](https://github.com/PIFSCstockassessments/ss3diags/blob/master/Cookbook/Setup_ASPM_example.R) -- [Conduct iterative hindcasts for restrospective analysis with forecasts](https://github.com/PIFSCstockassessments/ss3diags/blob/master/Cookbook/Run_Retrospective_example.R) -- [Do Jitter tests](https://github.com/PIFSCstockassessments/ss3diags/blob/master/Cookbook/Jitter_test_example.R) -with Stock Synthesis by making use of a comprehensive collection of R functions available in the R package [`r4ss`](https://github.com/r4ss/r4ss) + +with Stock Synthesis by making use of a comprehensive collection of R functions available in the R packages [`r4ss`](https://github.com/r4ss/r4ss) and `ss3diags`. ## Installation -ss3diags is not currently supported on CRAN. You can install the development version of ss3diags from [GitHub](https://github.com/) with: +`ss3diags` is not currently supported on CRAN. You can install the development version of `ss3diags` from [GitHub](https://github.com/) with: ``` r # install.packages("remotes") @@ -49,81 +60,14 @@ Once the package is installed it can be loaded by: ```{r example} library(ss3diags) ``` -## Applying ss3diags for Model Diagnostics - -#### Example Model -For demonstration purposes, a simple, cod-like SS model was simulated using [ss3sim](https://github.com/ss3sim/ss3sim). The model includes 2 fleets, one fishery and one survey. Catch data is available from year 26 to year 100 (final year of model). An index of abundance is available from the survey fleet for years 62 - 100. No discard data was simulated. Simulated composition data includes length (fleets 1 and 2), age (fleets 1 and 2), and conditional age-at-length (fleet 1). The SS output for this model can be loaded into the environment using - -```{r simple, results='hide'} -data("simple") -``` - -#### Residual Diagnostics -ss3diags provides 4 main functions to evaluate model misspecification: `SSplotRunstest()` (and `SSrunstest()`), `SSplotJABBAres()`, `SSplotRetro()`, and `SShcbias()`. A runs test is a test for randomness and in the runstest functions, it is applied to the residuals from model fits to abundance indices or composition data. Below, we show an example of performing a runs test on the index, length composition, and conditional age-at-length fits. -```{r simpleRuns, warning=FALSE, message=FALSE} -r4ss::sspar(mfrow = c(2, 2)) -SSplotRunstest(simple, subplots = "cpue", add = TRUE) -SSplotRunstest(simple, subplots = "len", add = TRUE) -SSplotRunstest(simple, subplots = "con", add = TRUE) -``` -The output for `SSplotRunstest()` includes a plot of the residuals by fleet and a table with the results from the runs test and 'three-sigma limit' values. In the plots above, the shaded area represents the 'three-sigma limit', or three residual standard deviations from zero. If any of the individual residual points fall outside of the three-sigma limit, they are colored red as in the fishery length-composition. Green shaded area indicates the residuals are randomly distributed (p-value >= 0.05) and red shaded area indicates the residuals are not randomly distributed and there is some misspecification with the indices or composition data (p-value < 0.05). In addition to the residual plots, `SSplotRunstest()` produces a summary table of the runs test output values, including: - - * p-value for the runs test - * if the test passed or failed (indicated by green or red shading in the plot) - * upper and lower limits for the 3-sigma interval - * type of data tested (cpue, length-composition, age-composition, or conditional age-at-length) - -To only produce the summary table and skip the plot, use `SSrunstest()`. - -The second function for residual diagnostics is the function `SSplotJABBAres()`. This function is from the R package [JABBA](https://github.com/jabbamodel/JABBA) and plots a timeseries of residuals for all fleets of the indicated data (cpue or composition). In the example below, we plot the residuals for the mean age (age-composition) and mean length (length-composition) for both fleets. - -```{r JABBAruns, message=FALSE, warning=FALSE} -r4ss::sspar(mfrow = c(1, 2), plot.cex = 0.8) -SSplotJABBAres(simple, subplots = "age", add = TRUE, seas = "comb") -SSplotJABBAres(simple, subplots = "len", add = TRUE, seas = "comb") -``` - -The plots above show the residuals for both fishery and survey length and age-composition data for each year, and the black line is a LOESS smoother fit to all of the residuals. When data from multiple fleets are avaialble in a year, a boxplot is displayed to show the median and quantiles for that year. Additionally, the root-mean squared error is reported in the top right-hand corner to indicate how well the model fits the data (lower RMSE indicates better fit). - -#### Retrospective and Forecast Bias -Retrospective analysis is commonly used to check the consistency of model estimates such as spawning stock biomass (SSB) and fishing mortality (F) as the model is updated with new data in retrospect. The retrospective analysis involves sequentially removing observations from the terminal year (i.e., peels), fitting the model to the truncated series, and then comparing the relative difference between model estimates from the full-time series with the truncated time-series. Steps to conduct a retrospective analysis with a Stock Synthesis model are documented [here](/Cookbook/Run_Retrospective_example.R). An example of a retrospective analysis can be loaded in for use and summarized by: - -```{r retroSimple, warning=FALSE, message=FALSE} -data("retroSimple") -sumSimple <- r4ss::SSsummarize(retroSimple) -``` -Note that `SSsummarize()` summarises the modelled quantities and abundance indices but not composition data. To plot the output from the retrospective analysis you can use the function -```{r retroSimple_plots, warning=FALSE, message=FALSE} -r4ss::sspar(mfrow = c(1, 2), plot.cex = 0.8) -SSplotRetro(sumSimple, subplots = "SSB", add = TRUE) -SSplotRetro(sumSimple, subplots = "F", add = TRUE) -``` - -Retrospective analysis is useful to evaluate how consistent the modeled quantities are in retrospect. However, providing fisheries management advice requires predicting a stock’s response to management and checking that predictions are consistent when updated by new data in the future. A first, intuitive extension of the retrospective analysis is to assess potential forecast bias by adding the additional step of forward projecting quantities, such as SSB, over the truncated years. This can be visualized by adding `forecast = TRUE` in the function above. -```{r retroSimple_forecast_plots, warning=FALSE, message=FALSE} -r4ss::sspar(mfrow = c(1, 2), plot.cex = 0.8) -SSplotRetro(sumSimple, subplots = "SSB", forecast = TRUE, add = TRUE, xlim = c(94, 100), uncertainty = FALSE) -SSplotRetro(sumSimple, subplots = "F", forecast = TRUE, add = TRUE, xlim = c(94, 100), uncertainty = FALSE, ylim = c(0, 0.16)) -# Note xlim and ylim were adjusted manually and uncertainty intervals were removed to better display the forecasted estimates -``` - -In addition to the retrospective plots, a summary statistics table can be produced using `SShcbias()`. This table includes - * type of estimate (SSB or F) - * the year removed or "peel" - * mohn's rho - * forecast bias - -by year and overall ("Combined"). Mohn's rho is a measure of the severity of bias in the retrospective patterns and the forecast bias is an estimate of bias in the forecasted quantities when years of data were removed. - -#### Further Diagnostics -For more advanced model diagnostics we provide the functions `SSplotHCxval()` and `SSmase()` for evaluating hindcast cross-validation and prediction skill. To evaluate model uncertainty, we provide the functions `SSdeltaMVLN()`, `SSplotEnsemble()`, and `SSplotKobe()`. +For examples of how to run common diagnostic tests for SS models and visualize the results of those diagnostic tests using the `r4ss` and `ss3diags` packages, please refer to the articles on the package [website](https://pifscstockassessments.github.io/ss3diags/). ## Contributing to ss3diags -If you would like to contribute to ss3diags or have suggestions for diagnostic tests to include in the package, you can submit a new [issue](https://github.com/PIFSCstockassessments/ss3diags/issues) or at megumi.oshima@noaa.gov. +If you would like to contribute to `ss3diags` or have suggestions for diagnostic tests to include in the package, you can submit a new [issue](https://github.com/PIFSCstockassessments/ss3diags/issues) or email Meg at megumi.oshima@noaa.gov. ## Reference -To cite ss3diags for a publication you can use +To cite `ss3diags` for a publication you can use ```{r citation} citation("ss3diags") ``` diff --git a/README.md b/README.md index 39728cc..94490d6 100644 --- a/README.md +++ b/README.md @@ -5,43 +5,43 @@ -[![R-CMD-check](https://github.com/r4ss/r4ss/workflows/R-CMD-check/badge.svg)](https://github.com/PIFSCstockassessments/ss3diags/actions) +[![R-CMD-check](https://github.com/PIFSCstockassessments/ss3diags/workflows/R-CMD-check/badge.svg)](https://github.com/PIFSCstockassessments/ss3diags/actions) -### Build Status - The R package `ss3diags` enables users to apply advanced diagnostics to evaluate a Stock Synthesis model. Diagnostics include residual analyses, -hindcasting and cross-validation techniques, and retrospective analyses. +hindcast cross-validation techniques, and retrospective analyses. Functions also allow users to reproduce the key model diagnostics plots -that presented in the paper ‘A Cookbook for Using Model Diagnostics in +that are presented in the paper ‘A Cookbook for Using Model Diagnostics in Integrated Stock Assessments’. -A handbook with detailed [User guidelines for Advanced Model Diagnostics -with -ss3diags](https://github.com/jabbamodel/ss3diags/blob/master/Vignette/ss3diags_handbook.pdf) -is currently being finalized. +The `ss3diags` Github repository provides step-by-step R recipes on how +to: + +- [Run jitter + analysis](https://pifscstockassessments.github.io/ss3diags/articles/Jitter.html) +- [Conduct retrospective + analysis](https://pifscstockassessments.github.io/ss3diags/articles/Retrospective-Analysis.html) +- [Use hindcast + cross-validation](https://pifscstockassessments.github.io/ss3diags/articles/hcxval.html) +- [Do log-likelood profiling for + R0](https://pifscstockassessments.github.io/ss3diags/articles/likelihood.html) +- [Run the ASPM + diagnostic](https://pifscstockassessments.github.io/ss3diags/articles/aspm.html) +- [Evaluate model fit](https://pifscstockassessments.github.io/ss3diags/articles/residuals.html) + -In addition, the ss3diags Github respository provides fully commented -step-by-step R recipes on how to: -- [Do log-likelood profiling for - R0](https://github.com/PIFSCstockassessments/ss3diags/blob/master/Cookbook/Likelihood_profile_R0_example.R) -- [Run the ASPM - diagnostic](https://github.com/PIFSCstockassessments/ss3diags/blob/master/Cookbook/Setup_ASPM_example.R) -- [Conduct iterative hindcasts for restrospective analysis with - forecasts](https://github.com/PIFSCstockassessments/ss3diags/blob/master/Cookbook/Run_Retrospective_example.R) -- [Do Jitter - tests](https://github.com/PIFSCstockassessments/ss3diags/blob/master/Cookbook/Jitter_test_example.R) with Stock Synthesis by making use of a comprehensive collection of R -functions available in the R package -[`r4ss`](https://github.com/r4ss/r4ss) +functions available in the R packages +[`r4ss`](https://github.com/r4ss/r4ss) and `ss3diags`. ## Installation -ss3diags is not currently supported on CRAN. You can install the -development version of ss3diags from [GitHub](https://github.com/) with: +`ss3diags` is not currently supported on CRAN. You can install the +development version of `ss3diags` from [GitHub](https://github.com/) +with: ``` r # install.packages("remotes") @@ -54,233 +54,40 @@ Once the package is installed it can be loaded by: library(ss3diags) ``` -## Applying ss3diags for Model Diagnostics - -#### Example Model - -For demonstration purposes, a simple, cod-like SS model was simulated -using [ss3sim](https://github.com/ss3sim/ss3sim). The model includes 2 -fleets, one fishery and one survey. Catch data is available from year 26 -to year 100 (final year of model). An index of abundance is available -from the survey fleet for years 62 - 100. No discard data was simulated. -Simulated composition data includes length (fleets 1 and 2), age (fleets -1 and 2), and conditional age-at-length (fleet 1). The SS output for -this model can be loaded into the environment using - -``` r -data("simple") -``` - -#### Residual Diagnostics - -ss3diags provides 4 main functions to evaluate model misspecification: -`SSplotRunstest()` (and `SSrunstest()`), `SSplotJABBAres()`, -`SSplotRetro()`, and `SShcbias()`. A runs test is a test for randomness -and in the runstest functions, it is applied to the residuals from model -fits to abundance indices or composition data. Below, we show an example -of performing a runs test on the index, length composition, and -conditional age-at-length fits. - -``` r -r4ss::sspar(mfrow = c(2, 2)) -SSplotRunstest(simple, subplots = "cpue", add = TRUE) -#> Residual Runs Test (/w plot) stats by Index: -#> Index runs.p test sigma3.lo sigma3.hi type -#> 1 Survey 0.033 Failed -0.4320694 0.4320694 cpue -SSplotRunstest(simple, subplots = "len", add = TRUE) -#> Residual Runs Test (/w plot) stats by Mean length: -#> Index runs.p test sigma3.lo sigma3.hi type -#> 1 Fishery 0.724 Passed -0.1454301 0.1454301 len -#> 2 Survey 0.338 Passed -0.1105796 0.1105796 len -SSplotRunstest(simple, subplots = "con", add = TRUE) -#> Residual Runs Test (/w plot) stats by Conditional age-at-length: -#> Index runs.p test sigma3.lo sigma3.hi type -#> 1 Fishery 0.5 Passed -0.1491212 0.1491212 con -``` - - The -output for `SSplotRunstest()` includes a plot of the residuals by fleet -and a table with the results from the runs test and ‘three-sigma limit’ -values. In the plots above, the shaded area represents the ‘three-sigma -limit’, or three residual standard deviations from zero. If any of the -individual residual points fall outside of the three-sigma limit, they -are colored red as in the fishery length-composition. Green shaded area -indicates the residuals are randomly distributed (p-value \>= 0.05) and -red shaded area indicates the residuals are not randomly distributed and -there is some misspecification with the indices or composition data -(p-value \< 0.05). In addition to the residual plots, `SSplotRunstest()` -produces a summary table of the runs test output values, including: - -- p-value for the runs test -- if the test passed or failed (indicated by green or red shading in the - plot) -- upper and lower limits for the 3-sigma interval -- type of data tested (cpue, length-composition, age-composition, or - conditional age-at-length) - -To only produce the summary table and skip the plot, use `SSrunstest()`. - -The second function for residual diagnostics is the function -`SSplotJABBAres()`. This function is from the R package -[JABBA](https://github.com/jabbamodel/JABBA) and plots a timeseries of -residuals for all fleets of the indicated data (cpue or composition). In -the example below, we plot the residuals for the mean age -(age-composition) and mean length (length-composition) for both fleets. - -``` r -r4ss::sspar(mfrow = c(1, 2), plot.cex = 0.8) -SSplotJABBAres(simple, subplots = "age", add = TRUE, seas = "comb") -#> RMSE stats by Index: -#> # A tibble: 3 × 3 -#> Fleet RMSE.perc Nobs -#> -#> 1 Fishery 9.3 69 -#> 2 Survey 5.1 20 -#> 3 Combined 8.5 89 -SSplotJABBAres(simple, subplots = "len", add = TRUE, seas = "comb") -#> RMSE stats by Index: -#> # A tibble: 3 × 3 -#> Fleet RMSE.perc Nobs -#> -#> 1 Fishery 4.5 75 -#> 2 Survey 3.4 20 -#> 3 Combined 4.3 95 -``` - - - -The plots above show the residuals for both fishery and survey length -and age-composition data for each year, and the black line is a LOESS -smoother fit to all of the residuals. When data from multiple fleets are -avaialble in a year, a boxplot is displayed to show the median and -quantiles for that year. Additionally, the root-mean squared error is -reported in the top right-hand corner to indicate how well the model -fits the data (lower RMSE indicates better fit). - -#### Retrospective and Forecast Bias - -Retrospective analysis is commonly used to check the consistency of -model estimates such as spawning stock biomass (SSB) and fishing -mortality (F) as the model is updated with new data in retrospect. The -retrospective analysis involves sequentially removing observations from -the terminal year (i.e., peels), fitting the model to the truncated -series, and then comparing the relative difference between model -estimates from the full-time series with the truncated time-series. -Steps to conduct a retrospective analysis with a Stock Synthesis model -are documented [here](/Cookbook/Run_Retrospective_example.R). An example -of a retrospective analysis can be loaded in for use and summarized by: - -``` r -data("retroSimple") -sumSimple <- r4ss::SSsummarize(retroSimple) -``` - -Note that `SSsummarize()` summarises the modelled quantities and -abundance indices but not composition data. To plot the output from the -retrospective analysis you can use the function - -``` r -r4ss::sspar(mfrow = c(1, 2), plot.cex = 0.8) -SSplotRetro(sumSimple, subplots = "SSB", add = TRUE) -#> Mohn's Rho stats, including one step ahead forecasts: -#> type peel Rho ForecastRho -#> 1 SSB 99 0.007769174 -0.006152424 -#> 2 SSB 98 0.075590953 0.069386314 -#> 3 SSB 97 0.207121898 0.229780185 -#> 4 SSB 96 0.202493492 0.211816848 -#> 5 SSB 95 0.245173711 0.254376716 -#> 6 SSB Combined 0.147629846 0.151841528 -SSplotRetro(sumSimple, subplots = "F", add = TRUE) -#> Mohn's Rho stats, including one step ahead forecasts: -#> type peel Rho ForecastRho -#> 1 F 99 -0.00509569 0.006707778 -#> 2 F 98 -0.06829083 -0.057673536 -#> 3 F 97 -0.17225678 -0.184649147 -#> 4 F 96 -0.16735016 -0.175990996 -#> 5 F 95 -0.19535279 -0.199995306 -#> 6 F Combined -0.12166925 -0.122320241 -``` - - - -Retrospective analysis is useful to evaluate how consistent the modeled -quantities are in retrospect. However, providing fisheries management -advice requires predicting a stock’s response to management and checking -that predictions are consistent when updated by new data in the future. -A first, intuitive extension of the retrospective analysis is to assess -potential forecast bias by adding the additional step of forward -projecting quantities, such as SSB, over the truncated years. This can -be visualized by adding `forecast = TRUE` in the function above. - -``` r -r4ss::sspar(mfrow = c(1, 2), plot.cex = 0.8) -SSplotRetro(sumSimple, subplots = "SSB", forecast = TRUE, add = TRUE, xlim = c(94, 100), uncertainty = FALSE) -#> Mohn's Rho stats, including one step ahead forecasts: -#> type peel Rho ForecastRho -#> 1 SSB 99 0.007769174 -0.006152424 -#> 2 SSB 98 0.075590953 0.069386314 -#> 3 SSB 97 0.207121898 0.229780185 -#> 4 SSB 96 0.202493492 0.211816848 -#> 5 SSB 95 0.245173711 0.254376716 -#> 6 SSB Combined 0.147629846 0.151841528 -SSplotRetro(sumSimple, subplots = "F", forecast = TRUE, add = TRUE, xlim = c(94, 100), uncertainty = FALSE, ylim = c(0, 0.16)) -#> Mohn's Rho stats, including one step ahead forecasts: -#> type peel Rho ForecastRho -#> 1 F 99 -0.00509569 0.006707778 -#> 2 F 98 -0.06829083 -0.057673536 -#> 3 F 97 -0.17225678 -0.184649147 -#> 4 F 96 -0.16735016 -0.175990996 -#> 5 F 95 -0.19535279 -0.199995306 -#> 6 F Combined -0.12166925 -0.122320241 -# Note xlim and ylim were adjusted manually and uncertainty intervals were removed to better display the forecasted estimates -``` - - - -In addition to the retrospective plots, a summary statistics table can -be produced using `SShcbias()`. This table includes \* type of estimate -(SSB or F) \* the year removed or “peel” \* mohn’s rho \* forecast bias - -by year and overall (“Combined”). Mohn’s rho is a measure of the -severity of bias in the retrospective patterns and the forecast bias is -an estimate of bias in the forecasted quantities when years of data were -removed. - -#### Further Diagnostics - -For more advanced model diagnostics we provide the functions -`SSplotHCxval()` and `SSmase()` for evaluating hindcast cross-validation -and prediction skill. To evaluate model uncertainty, we provide the -functions `SSdeltaMVLN()`, `SSplotEnsemble()`, and `SSplotKobe()`. +For examples of how to run common diagnostic tests for SS models and +visualize the results of those diagnostic tests using the `r4ss` and +`ss3diags` packages, please refer to the articles on the package +[website](https://pifscstockassessments.github.io/ss3diags/). ## Contributing to ss3diags -If you would like to contribute to ss3diags or have suggestions for +If you would like to contribute to `ss3diags` or have suggestions for diagnostic tests to include in the package, you can submit a new -[issue](https://github.com/PIFSCstockassessments/ss3diags/issues) or at +[issue](https://github.com/PIFSCstockassessments/ss3diags/issues) or contact Meg at . ## Reference -To cite ss3diags for a publication you can use +To cite `ss3diags` for a publication you can use ``` r citation("ss3diags") +#> #> To cite package 'ss3diags' in publications use: #> -#> Winker H, Carvalho F, Cardinale M, Kell L, Oshima M, Fletcher E -#> (2022). _ss3diags: Stock Synthesis Model Diagnostics for Intergated -#> Stock Assessments_. R package version 2.1.0, -#> . +#> Henning Winker, Felipe Carvalho, Massimiliano Cardinale, Laurence +#> Kell, Megumi Oshima and Eric Fletcher (2023). ss3diags: Stock +#> Synthesis Model Diagnostics for Intergated Stock Assessments. R +#> package version 2.1.1. +#> https://github.com/PIFSCstockassessments/ss3diags #> #> A BibTeX entry for LaTeX users is #> #> @Manual{, -#> title = {ss3diags: Stock Synthesis Model Diagnostics for Intergated Stock -#> Assessments}, +#> title = {ss3diags: Stock Synthesis Model Diagnostics for Intergated Stock Assessments}, #> author = {Henning Winker and Felipe Carvalho and Massimiliano Cardinale and Laurence Kell and Megumi Oshima and Eric Fletcher}, -#> year = {2022}, -#> note = {R package version 2.1.0}, +#> year = {2023}, +#> note = {R package version 2.1.1}, #> url = {https://github.com/PIFSCstockassessments/ss3diags}, #> } ``` diff --git a/Vignette/ss3diags_handbook.Rmd b/Vignette/ss3diags_handbook.Rmd deleted file mode 100644 index 91510e7..0000000 --- a/Vignette/ss3diags_handbook.Rmd +++ /dev/null @@ -1,1013 +0,0 @@ ---- -title: "User Guidelines for Advanced Model Diagnostics with ss3diags" -author: -- Henning Winker (JRC-EC) -- Felipe Carvalho (NOAA) -- Massimiliano Cardinale (SLU) -- Laurence Kell (Sea++) -date: "`r format(Sys.time(), '%d %B, %Y')`" -output: - rmarkdown::html_vignette: - toc: yes - toc_depth: 2 - number_sections: true - fig_width: 7 - fig_height: 5 -vignette: > - %\VignetteIndexEntry{User Guidelines for Advanced Model Diagnostics with ss3diags} - %\VignetteEncoding{UTF-8} - %\VignetteEngine{knitr::rmarkdown} ---- - -```{r wrap-hook, echo = FALSE, warning=FALSE} -library(knitr) -hook_output = knit_hooks$get('output') -knit_hooks$set(output = function(x, options) { - # this hook is used only when the linewidth option is not NULL - if (!is.null(n <- options$linewidth)) { - x = knitr:::split_lines(x) - # any lines wider than n should be wrapped - if (any(nchar(x) > n)) x = strwrap(x, width = n) - x = paste(x, collapse = '\n') - } - hook_output(x, options) -}) -``` - - -```{r, echo = FALSE} -knitr::opts_chunk$set(collapse = TRUE, comment = " " ,fig.align = 'center', cache=FALSE,tidy.opts=list(width.cutoff=50), tidy=TRUE) - -``` - - -# Getting started {#s1} - -This vignette introduces you to the `ss3diags` R package, which accompanies the paper “A cookbook for using model diagnostics in integrated stock assessments” by Carvalho, Winker et al. (2021). - -The `ss3diags` comprises a set of functions for applying advanced model diagnostics to Stock Synthesis models. The package builds on the widely used R package `r4ss` [(Taylor et al. 2021)](https://www.sciencedirect.com/science/article/abs/pii/S0165783621000527), which is designed to support the use of the Stock Synthesis software modeling framework [(Methot and Wetzel, 2013)](https://www.sciencedirect.com/science/article/abs/pii/S0165783612003293). -
-This vignette is divided into four sections. [Section 1](#s1) consists of installing `ss3diags` and loading the example data from a simulated, cod-like stock that is included with the package. [Section 2](#s2) describes the plotting of various model diagnostics as described in the [Cookbook](https://www.sciencedirect.com/science/article/pii/S0165783621000874). [Section 3](#s3) provides a detailed explanation on how to assess model uncertainty using `ss3diags`. In [Section 4](#s4) we provide a series of “cookbook recipes” on how to implement selected model diagnostics on Stock Synthesis models. - -## Installation - -Both `ss3diags` and `r4ss` can be installed from gihtub using the `remotes ` package: - -```{r, eval=FALSE} -install.packages("remotes") - -remotes::install_github("r4ss/r4ss") - -remotes::install_github("PIFSCstockassessments/ss3diags") -``` -Once the packages are installed they can be loaded by: - -```{r} -library(r4ss) -library(ss3diags) -``` - -## Loading built-in example data - -The package contains output from a simple, cod-like SS model that was simulated using ss3sim. The model includes 2 fleets, one fishery and one survey. Catch data is available from year 26 to year 100 (final year of model). An index of abundance is available from the survey fleet for years 62 - 100. No discard data was simulated. Simulated composition data includes length (fleets 1 and 2), age (fleets 1 and 2), and conditional age-at-length (fleet 1). Examples of the the output of a single run (as read by `r4ss::SS_output()`) of the model as well as the output from a retrospective analysis with 5 year peels (as read by `r4ss::SSgetout()`) are available with the package. - -### "Simple" model -
-The example outputs can be loaded into R by: -```{r } -#Single run output -data("simple") - -#retrospective analysis output -data("retroSimple") - -#mcmc estimation -data("mcmcSimple") -``` - - -- `simple`: list of stock synthesis objects created with `r4ss::SS_output()` -- `retroSimple`: list of retrospective runs created with `r4ss:SS_doRetro()` and read by `r4ss::SSgetoutput()`. - - The first object in the list is the reference run and the other 5 objects are the 5 1-year peels. -- `mcmcSimple`: dataframe of MCMC posterior distributions -
- -# Model Diagnostics with ss3diags {#s2} - -
- -The plotting options are kept mainly to those provided by [r4ss](https://github.com/r4ss/r4ss). -Like with [r4ss](https://github.com/r4ss/r4ss), if, for example, `SSplotRunstest()` is called with no further specifications several windows will open, the number of windows depends on the number abundance indices. - -## Residual diagnostics - -The runs test is a nonparametric hypothesis test for randomness in a data sequence that calculates the 2-sided p-value to estimate the number of runs (i.e., sequences of values of the same sign) above and below a reference value. The runs test can diagnose model misspecification using residuals from fits to abundance indices ([Carvalho et al. 2017](https://www.sciencedirect.com/science/article/pii/S0165783616303113)) by testing if there are non-random patterns in the residuals. It can also be applied to other data components in assessment models such as the mean-length residuals and mean-age residuals. In addition, the three-sigma limits can be considered to identify potential outliers as any data point would be unlikely given a random process error in the observed residual distribution if it is further than three standard deviations away from the expected residual process average of zero. -
- -The output for `SSplotRunstest()` includes a plot of the residuals by fleet and a table with the results from the runs test and 'three-sigma limit' values. In the plots below, the shaded area represents the 'three-sigma limit', or three residual standard deviations from zero. If any of the individual residual points fall outside of the three-sigma limit, they are colored red as in the fishery length-composition in the example below. Green shaded area indicates the residuals are randomly distributed (p-value >= 0.05) and red shaded area indicates the residuals are not randomly distributed and there is some misspecification with the indices or composition data (p-value < 0.05). -
-To visualize the runs test for multiple indices, it is recommended to use the function `r4ss::sspar()` to specify row and column layout and any other plotting parameters. The option `add=TRUE` included in any of the ss3diags plotting functions prevents the functions from over-writing `sspar()`. - -
- -```{r fig1, fig.cap = "Runs test plots for CPUE index, length-composition, and conditional-age-at-length data fits. Green shading indicates no evidence (p ≥ 0.05) and red shading indicates evidence (p < 0.05) to reject the hypothesis of a randomly distributed time-series of residuals. The shaded (green/red) area spans three residual standard deviations to either side from zero, and the red points outside of the shading violate the ‘three-sigma limit’ for that series."} -r4ss::sspar(mfrow = c(2,2)) -SSplotRunstest(simple, subplots = "cpue", add = TRUE) -SSplotRunstest(simple, subplots = "len", add = TRUE) -SSplotRunstest(simple, subplots = "con", add = TRUE) -``` - -
-
- -It is also possible to select the indices that should be plotted. For example, if we only want to plot the fishery length composition residuals, we can specify this with the `indexselect` argument. -

- -```{r fig2, fig.cap="Runs test plot for fits to fishery length composition data."} -r4ss::sspar() -SSplotRunstest(simple, subplots = "len", indexselect = 1, add = TRUE) -``` - -
- -In addition to the residual plots, `SSplotRunstest()` produces a summary table of the runs test output values, including: - - * p-value for the runs test - * if the test passed or failed (indicated by green or red shading in the plot) - * upper and lower limits for the 3-sigma interval - * type of data tested (CPUE, length-composition, age-composition, or conditional age-at-length) - -To only produce the summary table and skip the plot, e.g. to faciliate automated processing, use `SSrunstest()`. - -```{r} -rcpue <- SSrunstest(simple, quants = "cpue") -rlen <- SSrunstest(simple, quants = "len") -rbind(rcpue, rlen) -``` - -
-The second function for residual diagnostics is the function `SSplotJABBAres()`. This function is from the R package [JABBA](https://github.com/jabbamodel/JABBA) and plots a time series of residuals for all fleets of the indicated data (CPUE or composition). In the example below, we plot the residuals for the mean age (age-composition) and mean length (length-composition) for both fleets. - -
-```{r fig3, message=FALSE, warning=FALSE, fig.cap="Joint residual plots for fits to age and length compositions, where the vertical lines with points show the residuals, and solid black lines show loess smoother through all residuals. Boxplots indicate the median and quantiles in cases where residuals from the multiple indices are available for any given year. Root-mean squared errors (RMSE) are included in the upper right-hand corner of each plot."} -r4ss::sspar(mfrow=c(1,2),plot.cex=0.8) -SSplotJABBAres(simple, subplots = "age", add = TRUE) -SSplotJABBAres(simple, subplots = "len", add = TRUE) -``` - -
-
- -## Retrospective and Forecast bias - -Retrospective analysis is commonly used to check the consistency of model estimates, i.e., the invariance in spawning stock biomass (SSB) and fishing mortality (F) as the model is updated with new data in retrospect. The retrospective analysis involves sequentially removing observations from the terminal year (i.e., peels), fitting the model to the truncated series, and then comparing the relative difference between model estimates from the full-time series with the truncated time-series. - -In Stock Synthesis, retrospective analysis can be routinely implemented using `r4ss:SS_doRetro()` (see [Section 3.1](#r1)). `ss3diags` provides the function `SSplotRetro()` to visualize the retrospective patterns of SBB and F and compute the associated Mohn's rho value (i.e. retrospective bias). This first requires loading the retrospective runs ([Section 1.2]()), which are already built into `ss3diags` in this case. The next step is to summarize the list of retrospective runs using `r4ss::SSsummarize()`. - - -```{r} -retroI.simple <- r4ss::SSsummarize(retroSimple,verbose=F) -``` - -We use the notation "retroI" because `r4ss::SSsummarize()` summarizes the modeled quantities and abundance indices, but not length or age composition data. Using `retroI.simple` it is possible to produce some basic retrospective plots. - -```{r fig4, fig.height=3,fig.cap= "Retrospective analysis of spawning stock biomass (SSB) and fishing mortality estimates for cod-like stock conducted by re-fitting the reference model (Ref) after five years of data were removed, one year at a time sequentially. Mohn’s rho statistic are denoted on top of the panels. Grey shaded areas are the 95 \\% confidence intervals from the reference model in cases where the analysis was run with Hessian."} - -r4ss::sspar(mfrow=c(1,2),plot.cex=0.8) -rssb <- SSplotRetro(retroI.simple, add=TRUE, subplots = "SSB", forecast = F, legend = F, verbose=F) -rf <- SSplotRetro(retroI.simple, add=TRUE, subplots="F", ylim=c(0.05,0.2), - forecast=F, legendloc="topright", legendcex = 0.8, verbose=F) - -``` -
- -An intuitive extension of the retrospective analysis is to assess potential forecast bias by adding the additional step of forward projecting quantities, such as SSB, over the truncated years. In Stock Synthesis the forecasts are automatically done when using `r4ss:SS_doRetro()`.The forecasts are based on the settings specified in ‘forecast.ss’, which are also evoked when conducting future projections with the same model. The observed catches are used for the retrospective forecasts. Retrospective forecasts with Stock Synthesis are therefore only a matter of visualization, which can be done by setting the `SSplotRetro()` option `forecast=TRUE`. - - -```{r fig5, fig.height=3.,fig.cap= "Retrospective results shown for the most recent years only. Mohn’s rho statistic and the corresponding ‘hindcast rho’ values (in brackets) are now printed at the top of the panels. One-year-ahead projections denoted by color-coded dashed lines with terminal points are shown for each model."} - -r4ss::sspar(mfrow=c(1,2),plot.cex=0.8) -rssb <- SSplotRetro(retroI.simple, add = T, subplots = "SSB", forecast = T, - legend = F, verbose = F, xmin = 2000, ylim = c(0.5E9, 2.5e9)) -rf <- SSplotRetro(retroI.simple, add = T, subplots = "F", ylim = c(0.05,0.25), - forecast = T, legendloc = "topleft", legendcex = 0.8, verbose = F, xmin = 2000) - -``` - - -\newpage - -The statistics from the retrospective analysis with forecasting, Mohn's rho and forecast bias, can be called without plotting using the function `SShcbias()` - -

- -```{r } -SShcbias(retroI.simple,quant="SSB",verbose=F) - -SShcbias(retroI.simple,quant="F",verbose=F) - -``` - -

- - -## Hindcast Cross-Validation and prediction skill - -Implementing the Hindcast Cross-Validation (HCxval) diagnostic in Stock Synthesis requires the same model outputs generated by `r4ss:SS_doRetro()` as described in Section [3.1](#r1). Therefore, no additional step is needed for HCxval if conducted in conjunction with retrospective analysis. -
-As a robust measure of prediction skill, we implemented the mean absolute -scaled error (MASE). In brief, the MASE score scales -the mean absolute error (MAE) of forecasts (i.e., prediction residuals) to -MAE of a naïve in-sample prediction, which is realized in the form of a simple 'persistence algorithm', i.e. tomorrow’s weather will be the same as today’s (see Eq. 3, p.5 in [Carvalho and Winker et al. 2021](https://www.sciencedirect.com/science/article/pii/S0165783621000874)). A MASE score > 1 indicates that the average model forecasts are worse than a random walk. Conversely, a MASE score of 0.5 indicates that the model forecasts twice as accurately as a naïve baseline prediction; thus, the model has prediction skill. - -
-HCxval is implemented using function `SSplotHCxval()`, which produces the novel HCxval diagnostic plot and computes the MASE scores for CPUE indices, mean lengths or mean ages that have observations falling within the hindcast evaluation period. -
- -Plotting HCxval for abundance indices requires the same step of summarizing the list of retrospective runs as for the retrospective analysis, which therefore only needs be done once. - -```{r fig6, fig.cap= "Hindcasting cross-validation (HCxval) results from CPUE fit, showing observed (large points connected with dashed line), fitted (solid lines) and one-year ahead forecast values (small terminal points). HCxval was performed using one reference model (Ref) and five hindcast model runs (solid lines) relative to the expected CPUE. The observations used for cross validation are highlighted as color-coded solid circles with associated 95 \\% confidence intervals. The model reference year refers to the endpoints of each one-year-ahead forecast and the corresponding observation (i.e., year of peel + 1). The mean absolute scaled error (MASE) score for the survey index is shown at the top of the plot."} - -hci <- SSplotHCxval(retroI.simple, add=T, verbose=F, legendcex = 0.7) -``` - -\newpage -
-The forecast length- and age-composition are located in the Stock Synthesis report.sso as "ghost files". To extract and summarize the composition data in the form of observed and expected mean lengths and age `ss3diags` provides the function `SSretroComps()`. - -```{r } -retroC.simple <- SSretroComps(retroSimple) -``` - -```{r fig7, fig.cap= "Hindcasting cross-validation (HCxval) results for mean lengths. Note that MASE values in brackets are adjusted MASE values for cases where naive predictions have a Mean-Absolute-Error below 0.1"} - -r4ss::sspar(mfrow=c(1,2),plot.cex=0.8) -hcl <- SSplotHCxval(retroC.simple, subplots="len", add=T, verbose=F, legendcex = 0.7, ylim = c(50, 100)) -``` -
-The figure above provides some additional, so called adjusted MASE values, in parentheses. This gets invoked in cases where the inter-annual variation in the observed values is very small (default MAE < 0.1 for naive predictions log(y[t+1])-log(y[t])). -The reasoning is that prediction residuals must be already very accurate to fall below this threshold. The adjusted MASE essential keep the naive prediction MAE denominator of the MASE to a maximum. Below we show the effect of changing adjustment threshold from the default `MAE.base.adj = 0.1` - - -```{r} -mase1 = SSmase(retroC.simple, quant="len", MAE.base.adj = 0.1) -mase1 -``` - -to a larger value `MAE.base.adj = 0.15` - -```{r} -SSmase(retroC.simple, quant="len", MAE.base.adj = 0.15) -``` - -where `MASE` is the ratio of the mean absolute error of the prediction residuals `MAE.PR` to the residuals of the naive predictions `MAE.base` - -```{r} -mase1$MAE.PR/mase1$MAE.base -mase1$MASE -``` - -and MASE.adj - - -```{r} -mase1$MAE.PR/pmax(mase1$MAE.base,0.1) -mase1$MASE.adj -``` - -Note that applying HCxval for composition data requires correctly specifying the composition data type fitted in the model. For example, age composition data need to be specified as "age" in `SSplotHCxval` and `SSmase`, as shown below. - -```{r fig8, fig.cap= "Hindcasting cross-validation (HCxval) results for mean ages. Note that MASE values in brackets are adjusted MASE values for cases where naive predictions have a Mean-Absolute-Error below 0.1"} - -hcl <- SSplotHCxval(retroC.simple, subplots="age", add=TRUE, -verbose=F, legendcex = 0.7) - -SSmase(retroC.simple,quants="age") -``` - - -\newpage - -# Model uncertainty {#s3} - -The management advice frameworks increasingly require translating the estimated uncertainty about the stock status into probabilistic statements (Kell et al. 2016). A classic example is the Kobe framework used in tuna Regional Fisheries Management Organisations (tRFMOs) around the world. The key quantities of interest are typically the ratios $SSB/SSB_{MSY}$ and $F/F_{MSY}$. While it is reasonably straight forward in Stock Synthesis to approximate uncertainty of individual quantities (e.g. $SSB$) from the asymptotic standard errors (SE) derived from the Hessian matrix using the delta method, the joint distribution of $SSB/SSB_{MSY}$ and $F/F_{MSY}$ requires adequately accounting for the covariance structure between these two derived quantities. Joint distributions are typically constructed using bootstrap or Markov Chain Monte-Carlo (MCMC) methods. However, these methods can be computationally intense and time-consuming in integrated assessments. - -As an alternative, `ss3diags` implements a rapid delta-Multivariate lognormal approximation with `SSdeltaMVLN()` to generate joint error distributions for $SSB/SSB_{ref}$ and $F/F_{ref}$, where the $ref$ may refer to $MSY$, but also other reference points (e.g., $SSB_{40}$ and $F_{40}$). In Stock Synthesis, these ratios are determined by the derived quantities `Bratio` and `F`, where either can take the form of ratios (e.g. $F/F_{ref}$) or absolute value (e.g. `absF`) depending on settings in the `starter.ss` file. - -Let `Bratio` be $u = SSB/SSB_{ref}$, `F` be $v = F$, and $w = F_{ref}$ be the F reference point of interest (e.g. $F_{MSY}$), with $x = \log(u)$, $y = \log(v)$ and $z = \log(w)$, then the variance-covariance matrix $VCM$ has the form: - -$$ -VCM_{x,y,z} = - \begin{pmatrix} - \sigma^2_{x} & cov_{x,y} & cov_{x,y} \\ - cov_{x,y} & \sigma^2_{y} & cov_{y,z} \\ - cov_{x,z} & cov_{y,z} & \sigma^2_{z} - \end{pmatrix} -$$ - -where, e.g., $\sigma^2_{x}$ is the variance of $x$ and $cov_{x,y}$ is the covariance of $x$ and $y$. Deriving those requires conducting a few normal to lognormal transformations. First, the variances are approximated as: - -$$ -\sigma^2_{x} = \log\left(1+\left(\frac{SE_u}{u}\right)^2\right) -$$ - -where $SE_{u}$, $SE_{v}$ and $SE_{z}$ are the asymptotic standard error estimates for $u = SSB/SSB_{ref}$, $v = F$ and $z = F_{ref}$. - -The corresponding covariance for $x$ and $y$, can then be approximated on the log-scale by: - -$$ -COV_{x,y} = \log \left( {1+\rho_{u,v} \sqrt{\sigma^2_{x}\sigma^2_{y}}} \right) -$$ - -where $rho_{u,v}$ denotes the correlation of $u$ and $v$. - -To generate a joint distribution of $\tilde{u}$ = $SSB/SSB_{ref}$, $\tilde{v}$ = $F$ and $\tilde{z}$ = $F_{ref}$, a multivariate random generator is used, which is available in the R package ‘mvtnorm’, to obtain a large number (e.g. nsim = 10,000) iterations, such that - -$$ -JD(\tilde{u},\tilde{v},\tilde{w}) = \exp(MVN(\mu_{x,y,z},VCM_{x,y,z})) -$$ -so that - -$$ -\tilde{SSB}/\tilde{SSB}_{{MSY}} = \tilde{u} -$$ -and - -$$ -\tilde{F}/\tilde{F}_{{MSY}} = \tilde{v}/\tilde{w} -$$ -
- - -The reference points depend on the settings in the `starter.ss` file that determine the derived quantities `Bratio` and `Fvalue`. - -We provide the function `SSsettingsBratioF(simple)` to view the `starter.ss` settings: - -```{r} -SSsettingsBratioF(simple) -``` -This function is also inbuilt in `SSdeltaMVLN()` to prevent misleading results. The `SSdeltaMVLN()` output includes the maximum likelihood estimates (MLEs) and the MVLN Monte-Carlo distributions `$kb` of $SSB/SSB_{MSY}$, $F/F_{MSY}$ and $F$. Note the additional quantities $SSB$ and $Rec$ are generated independently from lognormal distributions for practical reasons. These can be plotted by `SSplotEnsemble()`. - -The `SSdeltaMVLN()` provides the option to set alternative `Fref` values, but this is only possible for the recommended `starter.ss` option 0 for `F_report_basis`. For option 2, `SSdeltaMVLN()` prompts an error if `Fref` is changed. - -The `simple` model is run with settings that are common in NOAA assessments, with `Bratio` set to $SSB/SSB_{0}$ and `F` is typically kept at absolute quantity. - -`1 # Depletion basis: 1=rel X*SB0; 2=rel SPBmsy; 3=rel X*SPB_styr; 4=rel X*SPB_endyr` - -`0 # F_report_basis: 0=raw_F_report; 1=F/Fspr; 2=F/Fmsy ; 3=F/Fbtgt` - -The management quantities in this case are $SSB/SSB_{40}$ and $F/F_{spr40}$, where the target of 40\% is specified in the `forecast.ss` file. - -`0.4 # SPR target (e.g. 0.40)` - -`0.4 # Biomass target (e.g. 0.40)` - -```{r fig9, fig.cap="Kobe phase plots showing MVLN Kobe probability distributions of $SSB/SSB_{40}$ and $F/F_{SPR40}$ for the simple SS3 model."} - -mvln <- SSdeltaMVLN(simple, run="Simple", Fref="SPR", plot=TRUE) - -``` - - -```{r fig10, fig.cap="Distributions for $SSB/SSB_{40}$, $F/F_{SPR40}$, $SSB$, $F$, Recruitment and Catch trajectories for the simple SS3 model", warning=FALSE, message=FALSE, linewidth=60} -r4ss::sspar(mfrow=c(3,2),plot.cex = 0.7) -SSplotEnsemble(mvln$kb, ylabs=mvln$labels, add=T, verbose=F) -``` - -
- -In some instances, mismatches between the`SSdeltaMVLN` and MCMC may be caused by the latter's poor performance due to poor regularization [(Monnahan et al., 2019)](https://academic.oup.com/icesjms/article/76/6/1477/5475859?login=true) or in cases where key parameters such as steepness $h$ or natural $M$ are estimated using informative priors, which can result in left skewed (non-lognormal) distributions of the benchmarks $F_{ref}$ and $B_{ref}$ ([Stewart et al. (2013)](https://www.sciencedirect.com/science/article/abs/pii/S0165783612002081) and [Taylor et al. (2021)](https://www.sciencedirect.com/science/article/abs/pii/S0165783621000527)). - -To facilitate a comparison between the `SSdeltaMLVN()` and MCMC outputs, we provide the function `SSdiagsMCMC()`, which is illustrated on the example of the Simple cod-like Stock Synthesis model. - - -`SSdiagsMCMC()` requires loading both the `report.sso` and MCMC output in the `posterior.sso` file, where the MCMC was in this case run in the subfolder of the assessment file `/mcmc`. For an example, we have provided MCMC output for the simple model which can be loaded in by `data("mcmcSimple")`. - -```{r eval=FALSE} -#report file -report <- SS_output("./reference_run") -mcmc <- SSgetMCMC("./reference_run/mcmc") - -# MCMC example included in ss3diags -data("mcmcSimple") -``` - -The options and output of `SSdiagsMCMC()` are largely identical to `SSdeltaMVLN`. - -```{r} -mvln <- SSdeltaMVLN(simple, plot=F, run="mvln") -mcmc <- SSdiagsMCMC(mcmcSimple, simple, plot=F, run="mcmc") -mcmc$kb <- dplyr::filter(mcmc$kb, year > 27) -``` -
-Comparing delta-MVLN with MCMC simply requires combining the `$kb` outputs by, e.g., - - -```{r fig11, warning=FALSE, fig.cap="Kobe phase plot comparing MVLN and MCMC posterior distributions of $SSB/SSB_{40}$ and $F/F_{40}$ for the simple SS3 model"} -r4ss::sspar(mfrow=c(1,1),plot.cex = 0.8) -SSplotKobe(rbind(mvln$kb, mcmc$kb), joint=F, - xlab=mvln$labels[1], ylab=mvln$labels[2], fill=F) - - -``` - - - -```{r fig12, warning=FALSE, fig.cap="Comparison of MVLN and MCMC posterior distributions for $SSB/SSB_{40}$, $F/F_{SB40}$, $SSB$ and $F$ for the simple SS3 model"} - -r4ss::sspar(mfrow=c(2,2),plot.cex = 0.7) -SSplotEnsemble(rbind(mvln$kb,mcmc$kb),ylabs=mvln$labels,add=T,subplots = c("stock", "harvest", "SSB", "F"),verbose=F) - -``` - - -
-This function works equally for joining a model ensemble. - -\newpage - -# Cookbook Recipies {#s4} - -## Retrospectives with hindcasts {#r1} - -Retrospective analysis can be run for Stock Synthesis using the function `r4ss::SS_doRetro()` available in [r4ss](https://github.com/r4ss/r4ss). This setup of the retrospective analysis has the advantage that forecasts are conducted automatically given the catch. This makes it possible to apply retrospective forecasting and hindcast cross-validations of observations based on the same output. - -Below is a step-by-step cookbook recipe for retrospective analysis in Stock Synthesis which can also be found in the [model recipes](https://github.com/PIFSCstockassessments/ss3diags/blob/main/model_recipes/Run_Retrospecitve_Simple.R). - - -### Step 1: Identify restrospective period - - -Specify the range pf peels that will then determine the `end.yr.vec` of runs in `r4ss::SS_doRetro()` - -```{r eval=FALSE} -start.retro <- 0 # end year of reference year -end.retro <- 5 # number of years for retrospective e.g., -``` - -### Step 2: Identify the base directory - -Specify the path directory that holds the folder with the base case run. In this case the 'Simple' folder with a model folder `Reference_Run" - -```{r eval=F} -dirname.base = "./Simple" -run = "Reference_Run" -model.run <- file.path(dirname.base, run) - -``` - -### Step 3: `DAT` and `CONTROL` files - -Specify the names of the data and control files. -Note these files are named differently from the `DATA.ss` and `CONTROL.ss`. In this case - -```{r eval=F} -DAT = "simple.dat" -CTL = "simple.ctl" -``` - -The names of the DAT and CONTROL are declared on the top of the 'starter.ss`, e.g. -`#C Simple starter file` -`simple.dat` -`simple.ctl` - -### Step 4: Create a subdirectory for the Retrospectives - -There are several ways to organize the retrospective output structure. -First create a new subfolder for the retrospective runs output -
-```{r eval=FALSE} -dir.retro <- paste0(dirname.base,'/Retro_',run) -dir.create(path=dir.retro, showWarnings = F) -``` - -Also create a subdirectory for the retrospective model folders - -```{r eval=FALSE} -dir.create(path=file.path(dir.retro,"retros"), showWarnings = F) -``` - -then copy model run files to the new retrospective folder - -```{r eval=FALSE} -file.copy(file.path(model.run,"starter.ss_new"), file.path(dir.retro,"starter.ss")) -file.copy(file.path(model.run,"control.ss_new"), -file.path(dir.retro, CTL)) -file.copy(file.path(model.run,"data.ss_new"), -file.path(dir.retro, DAT)) -file.copy(file.path(model.run,"forecast.ss"), -file.path(dir.retro, "forecast.ss")) -file.copy(file.path(model.run,"SS.exe"), -file.path(dir.retro, "SS.exe")) -# Automatically ignored for models without wtatage.ss -file.copy(file.path(model.run,"wtatage.ss"), -file.path(dir.retro, "wtatage.ss")) -``` - - -### Step 5: Modify Starter.ss file - -Modifying the Starter File helps to speed up model runs -
-```{r eval=FALSE} -starter <- r4ss::SS_readstarter(file = file.path(dir.retro,"starter.ss")) - -starter$run_display_detail <- 1 -# write modified starter.ss -r4ss::SS_writestarter(starter, file.path(dir.retro, "starter.ss")) -``` - -### Step 6: Execute retrospective runs - -Run the retrospective analyses using r4SS function `r4ss::SS_doRetro`.Ideally, the runs should be done with Hessian to evaluate the retrospective trajectories with respect to the confidence interval coverage of the reference model. - -```{r eval=FALSE} -r4ss::SS_doRetro(masterdir=dir.retro, oldsubdir="", -newsubdir="", years=start.retro:-end.retro) -``` - -However, for larger models it might be desirable to shorten run times, by not inverting the hessian, using the option `extras = "-nohess"`. This runs the model much faster. - -```{r eval=FALSE} -r4ss::SS_doRetro(masterdir=dir.retro,oldsubdir="", -newsubdir="", years=start.retro:-end.retro,extras = "-nohess") -``` - -### Step 7: Read `SS_doRetro()` output - -```{r eval=FALSE} -retroSimple <- r4ss::SSgetoutput(dirvec=file.path(dir.retro, - paste0("retro",start.retro:-end.retro))) -``` -It is often useful to save the retro model runs as `.rdata` file for further processing with `ss3diags`, considering that reading the models with `r4ss::SSgetoutput()` can be quite time-consuming for more complex models. - -```{r eval=FALSE} -save(retroSimple, file = file.path(dir.retro,"retroSimple.rdata")) -``` - -### Step 8: Check - -```{r } -library(ss3diags) -data("retroSimple") -check.retro = r4ss::SSsummarize(retroSimple) -r4ss::sspar(mfrow = c(1,1)) -SSplotRetro(check.retro, forecast = T, add=T, legendcex = 0.7, legendloc = "topleft") -``` - -## R_0 Profiling {#r2} -Likelihood profiling is a key model diagnostic that helps identify the influence of information sources on model estimates. R_0 is a commonly profiled parameter because it represents a global scaling parameter. To conduct a profile, values of the parameter over a given range are fixed and the model re-run and then changes in total likelihood and data-component likelihoods are examined. - -Below is a step-by-step cookbook recipe for R_0 profiling in Stock Synthesis which can also be found in the [model recipes](https://github.com/PIFSCstockassessments/ss3diags/blob/main/model_recipes/R0_likelihood_profiling.r). - -### Step 1: Base model directory - -Identify the directory where completed base model was run. - -```{r eval=FALSE} -completed.model.run <- "./reference_run_orig" -``` - - -### Step 2: Create R0_profile subdirectory -```{r eval = FALSE} -dirname.R0.profile <- paste0(completed.model.run,'/Likelihood profiles/R0') -dir.create(path=dirname.R0.profile, showWarnings = TRUE, recursive = TRUE) -``` - - -### Step 3: Create a "Figures_Tables" subdirectory -```{r eval = FALSE} -plotdir=paste0(dirname.R0.profile, "/Figures & Tables") -dir.create(path=plotdir, showWarnings = TRUE, recursive = TRUE) -``` - -### Step 4: Copy completed base model output to "R0_profile" directory - -```{r eval = FALSE} -list_of_files <- list.files(completed.model.run) -file.copy(file.path(completed.model.run, list_of_files), dirname.R0.profile) - -``` - -### Step 5: Edit "control.ss" in the "R0_profile" working directory to estimate at least one parameter in each phase - -```{r eval = FALSE} -control.file <- SS_readctl(file = file.path(dirname.R0.profile, "control.ss_new"), - datlist = file.path(dirname.R0.profile, "data.ss_new")) -control.file$recdev_phase <- 1 -SS_writectl(control.file, - outfile = file.path(dirname.R0.profile, "control.ss_new")) - -``` - -### Step 6: Edit "starter.ss" file -Edit the starter file in the "R0_profile" working directory to read from init values from control_modified.ss. -```{r eval = FALSE} -starter.file <- SS_readstarter(file.path(dirname.R0.profile, "/starter.ss", sep="")) -#make sure names for control and data file are correct -starter.file$ctlfile <- "control_modified.ss" -starter.file$datfile <- "data.ss_new" -#for non-estimated quantities -starter.file$init_values_src <- 0 -# Make sure the prior likelihood is calculated for non-estimated quantities -starter.file$prior_like <- 1 -SS_writestarter(starter.file, dir = dirname.R0.profile, overwrite = TRUE) - -``` - -### Step 7: Begin likelihood profiling -Create a vector of values to profile over. Make sure the values span both sides of the estimated parameter value (found in the control.ss_new file). Then use the `r4ss::SS_profile()` function to run the models. - -```{r eval = FALSE} -# vector of values to profile over -R0.vec <- seq(16.0,20.0,0.1) -Nprof.R0 <- length(R0.vec) - -profile <- SS_profile(dir=dirname.R0.profile, - model="ss", - masterctlfile="control.ss_new", - newctlfile="control_modified.ss", - string="SR_LN(R0)", - profilevec=R0.vec) - -``` - -### Step 8: Summarize and analyze output - -```{r eval = FALSE} -# read the output files (with names like Report1.sso, Report2.sso, etc.) -prof.R0.models <- SSgetoutput(dirvec=dirname.R0.profile, - keyvec=1:Nprof.R0, getcovar = FALSE) # - -# summarize output -prof.R0.summary <- SSsummarize(prof.R0.models) - -#add base model into summary -MLEmodel <- SS_output(dirname.completed.model.run) -prof.R0.models$MLE <- MLEmodel -prof.R0.summary <- SSsummarize(prof.R0.models) - -# Likelihood components -mainlike_components <- c('TOTAL',"Survey", "Discard", - 'Length_comp',"Age_comp",'Recruitment') - -mainlike_components_labels <- c('Total likelihood','Index likelihood', - "Discard",'Length likelihood', - "Age likelihood",'Recruitment likelihood') - -# plot profile using summary created above -SSplotProfile(prof.R0.summary, - profile.string = "R0", - profile.label=expression(log(italic(R)[0])), - print = TRUE, - plotdir=plotdir - ) -Baseval <- prof.R0.models$MLE$parameters %>% - filter(str_detect(Label, "SR_LN")) %>% - pull(Value) -abline(v = Baseval, lty=2) - -``` - - -## ASPM diagnostic {#r3} - -The application of the Age-Structured Production Model (ASPM) approach as a diagnostic can help identify misspecification of the production function. If, in the absence of composition data (likelihood weighting set to 0), the ASPM fits well to the indices of abundance that have good contrast, then the production function is likely to drive the stock dynamics and indices will provide information about the absolute abundance ([Carvalho et al. 2017](https://www.sciencedirect.com/science/article/pii/S0165783616303113)). If there is not a good fit to the indices, then the catch data and production function alone cannot explain the trajectories of the indices of relative abundance. -Below is a step-by-step cookbook recipe for the ASPM analysis in Stock Synthesis which can also be found in the [model recipes](https://github.com/PIFSCstockassessments/ss3diags/blob/main/model_recipes/ASPM_simple.R). - - -### Step 1: Create a "ASPM" subdirectory -Create a new directory for the ASPM run and a subdirectory for figures and tables -```{r eval=FALSE} -dirname.aspm <- "./ASPM" -dir.create(path = dirname.aspm, showWarnings = TRUE, recursive = TRUE) - -plotdir <- file.path(dirname.aspm, "Figures_Tables") -dir.create(path = plotdir, showWarnings = TRUE, recursive = TRUE) - -``` - -### Step 2: Copy and paste files from reference run to ASPM directory - -```{r eval=FALSE} -completed.model.run <- "./reference_run_orig" - -list_of_files <- list.files(completed.model.run) -file.copy(file.path(completed.model.run, list_of_files), dirname.aspm) - -``` - - -### Step 3: Change rec devs in ss3.pars to 0 - -```{r eval=FALSE} -pars <- SS_readpar_3.30(file.path(dirname.aspm, "ss3.par"), - datsource = file.path(dirname.aspm, "data.ss_new"), - ctlsource = file.path(dirname.aspm, "control.ss_new")) - -pars$recdev_early[,2] <- 0 -pars$recdev1[,2] <- 0 -pars$recdev_forecast[,2] <- 0 -SS_writepar_3.30(pars, outfile = file.path(dirname.aspm, "ss3.par")) - -``` - - -### Step 4: Change starter -Change the settings in the `starter.ss` file to read from par file and update the dat and ctl file names to .ss_new versions. Also, change the phase that steepness and sigmaR are estimated in. - -```{r eval=FALSE} -starter <- SS_readstarter(file = file.path(dirname.aspm, "starter.ss")) -starter$init_values_src <- 1 -starter$datfile <- "data.ss_new" -starter$ctlfile <- "control.ss_new" -SS_writestarter(starter, dir = dirname.aspm, overwrite = TRUE) - -SS_changepars(dir = dirname.aspm, - strings = c("steep", "sigmaR"), - newphs = c(-4, -5)) - -``` - - -### Step 5: Change control file -Adjust the control file to fix rec devs at the value read from par file. Also be sure to change the phase to negative (recdev phase =-3, recdev_early_phase = -4). If there are any length or age composition data data, change the likelihood lambda to 0 (to turn off) and penalty for rec dev estimation in likelihood (lambda = 0 for recruitment). Also, manually fix the selectivity parameters to the values estimated (change phase to negative value in control.ss_new file). - -```{r eval=FALSE} -control <- SS_readctl(file = file.path(dirname.aspm, "control.ss_new"), - datlist = file.path(dirname.aspm, "data.ss_new")) - - -control$recdev_early_phase <- -4 -control$recdev_phase <- -3 - -# Manually turn off all length comp data (likelihood lambda to 0) and penalty for rec dev estimation in likelihood (lambda = 0 for recruitment) - -# 4 1 1 0 1 - -# 4 2 1 0 1 - -# 10 1 1 0 1 - -# If there are already lambda adjustments you can do this through R by: - -control$lambdas$value[which(control$lambdas$like_comp == 4)] <- 0 -control$lambdas$value[which(control$lambdas$like_comp == 10)] <- 0 - -SS_writectl_3.30(control, outfile = file.path(dirname.aspm, "control.ss_new"), overwrite = TRUE) - -``` - - -### Step 6: Run original and ASPM models - -### Step 7: Summarize results and plot comparisons -```{r eval = FALSE} -aspm.mods <- SSgetoutput(dirvec = c(completed.model.run, dirname.aspm)) -aspm.summary <- SSsummarize(aspm.mods) - -SSplotComparisons(aspm.summary, - legendlabels = c("Reference", "ASPM"), - print = TRUE, - plotdir = plotdir) - -SSplotModelcomp(aspm.summary, subplots = "Index", add = TRUE, legendlabels = c("Full Model","ASPM")) -SSplotModelcomp(aspm.summary, subplots = "SSB", add = TRUE) -SSplotModelcomp(aspm.summary, subplots = "RecDevs", add = TRUE) - -``` - - -## Jittering {#r4} - -Jitter tests are commonly implemented in Stock Synthesis to ensure global convergence is reached. Jitter can be run using `r4ss::SS_RunJitter()`. - -Below is a step-by-step cookbook recipe for the jitter analysis in Stock Synthesis which can also be found in the [model recipes](https://github.com/PIFSCstockassessments/ss3diags/blob/main/model_recipes/jitter_analysis.R). - -### Step 1: Define the directory where a completed "base" model run is located - -```{r eval = FALSE} -dirname.base <- './reference_run' - -``` - - -### Step 2: Create a "Jitter" subdirectory - -Also create a subdirectory for the output plots. -```{r eval = FALSE} -dirname.jitter <- './jitter' -dir.create(path = dirname.jitter, showWarnings = TRUE, recursive = TRUE) - -dirname.plots <- paste0(dirname.jitter,"/plots") -dir.create(dirname.plots) -``` - -### Step 3: Copy base model files to jitter directory - -```{r eval = FALSE} -file.copy(paste(dirname.base, "starter.ss", sep="/"), - paste(dirname.jitter, "starter.ss", sep="/")) -file.copy(paste(dirname.base, "em.CTL", sep="/"), - paste(dirname.jitter, "em.CTL", sep="/")) -file.copy(paste(dirname.base, "ss3.DAT", sep="/"), - paste(dirname.jitter, "ss3.DAT", sep="/")) -file.copy(paste(dirname.base, "forecast.ss", sep="/"), - paste(dirname.jitter, "forecast.ss", sep="/")) -file.copy(paste(dirname.base, "ss.exe", sep="/"), - paste(dirname.jitter, "ss.exe", sep="/")) -file.copy(paste(dirname.base, "ss.par", sep="/"), - paste(dirname.jitter, "ss.par", sep="/")) -``` - -### Step 4: Run Jitter - -```{r eval = FALSE} -#set number of iterations -Njitter=200 - -jit.likes <- r4ss::SS_RunJitter(mydir=dirname.base, - Njitter=Njitter, - jitter_fraction = 0.1, - init_values_src = 1) - -``` - - -### Step 5: Summarize jitter results - -Save total likelihoods necessary to assess global convergence - -```{r eval=FALSE} -x <- as.numeric(jit.likes) -global.convergence.check <- table(x,exclude = NULL) -write.table(jit.likes, paste0(dirname.plots, "/jit_like.csv")) -write.table(global.convergence.check, paste0(dirname.plots, "/global_convergence_check.csv")) - -``` -
-Summarize output from all runs using `r4ss::SSsummarize()` -```{r eval=FALSE} -jit_mods <- SSgetoutput(keyvec = 0:Njitter, - getcomp = FALSE, - dirvec = dirname.base, - getcovar = FALSE) - -jit_summary <- SSsummarize(jit_mods) - -``` -
- -Key outputs from summarized object -```{r eval=FALSE} -#Likelihood across runs -likes <- jit_summary$likelihoods - -#Derived quants across runs -quants <- jit_summary$quants - -#Estimated parameters across runs -pars <- jit_summary$pars - -#Write output tables to jitter directory -write.table(quants, paste0(dirname.plots, "/Quants.csv")) -write.table(pars, paste0(dirname.plots,"/Pars.csv")) -write.table(likes, paste0(dirname.plots,"/Likelihoods.csv")) - -``` -
-Re-tabulate total likelihoods necessary to assess global convergence and compare to jit.likes from above - -```{r eval=FALSE} -library(magrittr) -library(dplyr) - -x <- likes %>% - filter(str_detect(Label, "TOTAL")) %>% - select(-Label) %>% - mutate_all(~as.numeric(.)) %>% - unlist(use.names = FALSE) - -global.convergence <- table(x,exclude = NULL) -write.table(global.convergence, paste0(dirname.plots, "/global_convergence.csv")) - -``` - -
-Check convergence by seeing if the estimated spawning biomass is really big (+2x base spawning biomass) or really small (<0.5x base spawning biomass). *Note: this code is based on `check_convergence()` from SSMSE.* - -```{r eval=FALSE} -converged_ssb <- jit_summary$SpawnBio %>% - mutate(across(c(1:201), - .fns = ~./replist0)) %>% - select(-Label) %>% - pivot_longer(col = c(1:201), names_to = "jitter", values_to = "SSB") %>% - pivot_wider(names_from = Yr, values_from = SSB) %>% - mutate(rownumber = seq(1, nrow(.))) %>% - column_to_rownames("jitter") %>% - filter_at(vars(1:78), all_vars((.) < 2 & (.) > 0.5)) %>% - select(rownumber) %>% - pull(rownumber) - -``` -
- -Check to make sure max gradient is small -```{r eval=FALSE} -converged_grad <- which(jit_summary$maxgrad < 0.001) -converged_jitters <- jit_mods[converged_grad] -converged_sum <- SSsummarize(converged_jitters) -``` -
- -### Step 6: Make plots with r4ss for runs ending at a converged solution - -Plot of likelihood for all jitter runs, regardless of convergence -```{r, eval=FALSE, tidy=TRUE, tidy.opts=list(width.cutoff=50)} -library(ggplot2) - -jit_summary$likelihoods %>% - filter(str_detect(Label, "TOTAL")) %>% - select(-Label) %>% - pivot_longer(cols = everything(), names_to = "jitter", values_to = "likelihood") %>% - separate(jitter, into = c("replist", "jitter"), sep = "(?<=[A-Za-z])(?=[0-9])") %>% - mutate(jitter = as.numeric(jitter)) %>% - ggplot(aes(x = jitter, y = likelihood)) + - geom_point(size = 2) + - geom_hline(aes(yintercept = likelihood[1]), color = "red") + - theme_classic() + - labs(y = "Total Likelihood", - x = "Jitter runs") -ggsave(paste0(dirname.plots, "/all_likelihoods.png")) - - -SSplotComparisons(jit_summary, - subplots = 2, - pch = "", - legend=FALSE, - lwd = 1, - new = F, - print = TRUE, - plotdir = dirname.plots, - filenameprefix = "all_jitters_", - ylimAdj=1) - - -``` - -
- -Repeat for all converged runs -```{r eval=FALSE, tidy=TRUE, tidy.opts=list(width.cutoff=50)} -converged_sum$likelihoods %>% - filter(str_detect(Label, "TOTAL")) %>% - select(-Label) %>% - pivot_longer(cols = everything(), names_to = "jitter", values_to = "likelihood") %>% - separate(jitter, into = c("replist", "jitter"), sep = "(?<=[A-Za-z])(?=[0-9])") %>% - mutate(jitter = as.numeric(jitter)) %>% - ggplot(aes(x = jitter, y = likelihood)) + - geom_point(size = 3) + - geom_hline(aes(yintercept = likelihood[1]), color = "red") + - theme_classic() + - labs(y = "Total Likelihood", - x = "Jitter runs at a converged solution") -ggsave(paste0(dirname.plots, "/converged_likelihoods.png")) - - -SSplotComparisons(converged_sum, - subplots = 2, - pch = "", - legend=FALSE, - lwd = 1, - new = F, - print = TRUE, - plotdir = dirname.plots, - filenameprefix = "converged_", - ylimAdj=1) - -``` - -
- -Repeat for converged runs at the minimum solution -```{r eval=FALSE, tidy=TRUE, tidy.opts=list(width.cutoff=50)} - -y <- which(jit_summary$likelihoods[jit_summary$likelihoods$Label=="TOTAL",1:Njitter]==min(na.omit(jit.likes))) - -jit_min <- jit_mods[y] -min_sum <- SSsummarize(jit_min) - -SSplotComparisons(min_sum, - subplots = 2, - pch = "", - legend=FALSE, - lwd = 1, - new = F, - print = TRUE, - plotdir = dirname.plots, - filenameprefix = "converged_min_", - ylimAdj=1) - -``` - diff --git a/Vignette/ss3diags_handbook.html b/Vignette/ss3diags_handbook.html deleted file mode 100644 index 1388d22..0000000 --- a/Vignette/ss3diags_handbook.html +++ /dev/null @@ -1,1580 +0,0 @@ - - - - - - - - - - - - - - - - - - -User Guidelines for Advanced Model Diagnostics with ss3diags - - - - - - - - - - - - - - - - - - - - - - - - - - -

User Guidelines for Advanced Model -Diagnostics with ss3diags

-

Henning Winker (JRC-EC)

-

Felipe Carvalho (NOAA)

-

Massimiliano Cardinale (SLU)

-

Laurence Kell (Sea++)

-

21 June, 2022

- - - - -
-

1 Getting started

-

This vignette introduces you to the ss3diags R package, -which accompanies the paper “A cookbook for using model diagnostics in -integrated stock assessments” by Carvalho, Winker et al. (2021).

-

The ss3diags comprises a set of functions for applying -advanced model diagnostics to Stock Synthesis models. The package builds -on the widely used R package r4ss (Taylor -et al. 2021), which is designed to support the use of the Stock -Synthesis software modeling framework (Methot -and Wetzel, 2013).
This vignette is divided into four sections. -Section 1 consists of installing ss3diags -and loading the example data from a simulated, cod-like stock that is -included with the package. Section 2 describes the -plotting of various model diagnostics as described in the Cookbook. -Section 3 provides a detailed explanation on how to -assess model uncertainty using ss3diags. In Section 4 we provide a series of “cookbook recipes” on -how to implement selected model diagnostics on Stock Synthesis -models.

-
-

1.1 Installation

-

Both ss3diags and r4ss can be installed -from gihtub using the remotes package:

-
install.packages("remotes")
-
-remotes::install_github("r4ss/r4ss")
-
-remotes::install_github("PIFSCstockassessments/ss3diags")
-

Once the packages are installed they can be loaded by:

-
library(r4ss)
-library(ss3diags)
-
-
-

1.2 Loading built-in -example data

-

The package contains output from a simple, cod-like SS model that was -simulated using ss3sim. The model includes 2 fleets, one fishery and one -survey. Catch data is available from year 26 to year 100 (final year of -model). An index of abundance is available from the survey fleet for -years 62 - 100. No discard data was simulated. Simulated composition -data includes length (fleets 1 and 2), age (fleets 1 and 2), and -conditional age-at-length (fleet 1). Examples of the the output of a -single run (as read by r4ss::SS_output()) of the model as -well as the output from a retrospective analysis with 5 year peels (as -read by r4ss::SSgetout()) are available with the -package.

-
-

1.2.1 “Simple” model

-


The example outputs can be loaded into R by:

-
#Single run output
-data("simple")
-
-#retrospective analysis output
-data("retroSimple")
-
-#mcmc estimation
-data("mcmcSimple")
-
    -
  • simple: list of stock synthesis objects created with -r4ss::SS_output()
  • -
  • retroSimple: list of retrospective runs created with -r4ss:SS_doRetro() and read by -r4ss::SSgetoutput(). -
      -
    • The first object in the list is the reference run and the other 5 -objects are the 5 1-year peels.
    • -
  • -
  • mcmcSimple: dataframe of MCMC posterior distributions -
  • -
-
-
-
-
-

2 Model Diagnostics with -ss3diags

-


-

The plotting options are kept mainly to those provided by r4ss. Like with r4ss, if, for example, -SSplotRunstest() is called with no further specifications -several windows will open, the number of windows depends on the number -abundance indices.

-
-

2.1 Residual -diagnostics

-

The runs test is a nonparametric hypothesis test for randomness in a -data sequence that calculates the 2-sided p-value to estimate the number -of runs (i.e., sequences of values of the same sign) above and below a -reference value. The runs test can diagnose model misspecification using -residuals from fits to abundance indices (Carvalho -et al. 2017) by testing if there are non-random patterns in the -residuals. It can also be applied to other data components in assessment -models such as the mean-length residuals and mean-age residuals. In -addition, the three-sigma limits can be considered to identify potential -outliers as any data point would be unlikely given a random process -error in the observed residual distribution if it is further than three -standard deviations away from the expected residual process average of -zero.

-

The output for SSplotRunstest() includes a plot of the -residuals by fleet and a table with the results from the runs test and -‘three-sigma limit’ values. In the plots below, the shaded area -represents the ‘three-sigma limit’, or three residual standard -deviations from zero. If any of the individual residual points fall -outside of the three-sigma limit, they are colored red as in the fishery -length-composition in the example below. Green shaded area indicates the -residuals are randomly distributed (p-value >= 0.05) and red shaded -area indicates the residuals are not randomly distributed and there is -some misspecification with the indices or composition data (p-value < -0.05).
To visualize the runs test for multiple indices, it is -recommended to use the function r4ss::sspar() to specify -row and column layout and any other plotting parameters. The option -add=TRUE included in any of the ss3diags plotting functions -prevents the functions from over-writing sspar().

-


-
r4ss::sspar(mfrow = c(2,2))
-SSplotRunstest(simple, subplots = "cpue", add = TRUE)
-   Running Runs Test Diagnostics w/ plots forIndex
-   Plotting Residual Runs Tests
-   Residual Runs Test (/w plot) stats by Index:
-      Index runs.p   test  sigma3.lo sigma3.hi type
-   1 Survey  0.033 Failed -0.4320694 0.4320694 cpue
-SSplotRunstest(simple, subplots = "len", add = TRUE)
-   Running Runs Test Diagnostics w/ plots forMean length
-   Plotting Residual Runs Tests
-   Residual Runs Test (/w plot) stats by Mean length:
-       Index runs.p   test  sigma3.lo sigma3.hi type
-   1 Fishery  0.724 Passed -0.1454301 0.1454301  len
-   2  Survey  0.338 Passed -0.1105796 0.1105796  len
-SSplotRunstest(simple, subplots = "con", add = TRUE)
-   Running Runs Test Diagnostics w/ plots forConditional age-at-length
-   Plotting Residual Runs Tests
-
-Runs test plots for CPUE index, length-composition, and conditional-age-at-length data fits. Green shading indicates no evidence (p ≥ 0.05) and red shading indicates evidence (p < 0.05) to reject the hypothesis of a randomly distributed time-series of residuals. The shaded (green/red) area spans three residual standard deviations to either side from zero, and the red points outside of the shading violate the ‘three-sigma limit’ for that series. -

-Runs test plots for CPUE index, length-composition, and -conditional-age-at-length data fits. Green shading indicates no evidence -(p ≥ 0.05) and red shading indicates evidence (p < 0.05) to reject -the hypothesis of a randomly distributed time-series of residuals. The -shaded (green/red) area spans three residual standard deviations to -either side from zero, and the red points outside of the shading violate -the ‘three-sigma limit’ for that series. -

-
-
   Residual Runs Test (/w plot) stats by Conditional age-at-length:
-       Index runs.p   test  sigma3.lo sigma3.hi type
-   1 Fishery    0.5 Passed -0.1491212 0.1491212  con
-



-

It is also possible to select the indices that should be plotted. For -example, if we only want to plot the fishery length composition -residuals, we can specify this with the indexselect -argument.

-
r4ss::sspar()
-SSplotRunstest(simple, subplots = "len", indexselect = 1, add = TRUE)
-   Running Runs Test Diagnostics w/ plots forMean length
-   Plotting Residual Runs Tests
-
-Runs test plot for fits to fishery length composition data. -

-Runs test plot for fits to fishery length composition data. -

-
-
   Residual Runs Test (/w plot) stats by Mean length:
-       Index runs.p   test  sigma3.lo sigma3.hi type
-   1 Fishery  0.724 Passed -0.1454301 0.1454301  len
-


-

In addition to the residual plots, SSplotRunstest() -produces a summary table of the runs test output values, including:

-
    -
  • p-value for the runs test
    -
  • -
  • if the test passed or failed (indicated by green or red shading in -the plot)
  • -
  • upper and lower limits for the 3-sigma interval
  • -
  • type of data tested (CPUE, length-composition, age-composition, or -conditional age-at-length)
  • -
-

To only produce the summary table and skip the plot, e.g. to -faciliate automated processing, use SSrunstest().

-
rcpue <- SSrunstest(simple, quants = "cpue")
-   Running Runs Test Diagnosics for Index
-   Computing Residual Runs Tests
-   Residual Runs Test stats by Index:
-rlen <- SSrunstest(simple, quants = "len")
-   Running Runs Test Diagnosics for Mean length
-   Computing Residual Runs Tests
-   Residual Runs Test stats by Mean length:
-rbind(rcpue, rlen)
-       Index runs.p   test  sigma3.lo sigma3.hi type
-   1  Survey  0.033 Failed -0.4320694 0.4320694 cpue
-   2 Fishery  0.724 Passed -0.1454301 0.1454301  len
-   3  Survey  0.338 Passed -0.1105796 0.1105796  len
-


The second function for residual diagnostics is the function -SSplotJABBAres(). This function is from the R package JABBA and plots a time -series of residuals for all fleets of the indicated data (CPUE or -composition). In the example below, we plot the residuals for the mean -age (age-composition) and mean length (length-composition) for both -fleets.

-


-
r4ss::sspar(mfrow=c(1,2),plot.cex=0.8)
-SSplotJABBAres(simple, subplots = "age", add = TRUE)
-   RMSE stats by Index:
-      indices RMSE.perc nobs
-   1  Fishery       9.3   69
-   2   Survey       5.1   20
-   3 Combined       8.5   89
-SSplotJABBAres(simple, subplots = "len", add = TRUE)
-
-Joint residual plots for fits to age and length compositions, where the vertical lines with points show the residuals, and solid black lines show loess smoother through all residuals. Boxplots indicate the median and quantiles in cases where residuals from the multiple indices are available for any given year. Root-mean squared errors (RMSE) are included in the upper right-hand corner of each plot. -

-Joint residual plots for fits to age and length compositions, where the -vertical lines with points show the residuals, and solid black lines -show loess smoother through all residuals. Boxplots indicate the median -and quantiles in cases where residuals from the multiple indices are -available for any given year. Root-mean squared errors (RMSE) are -included in the upper right-hand corner of each plot. -

-
-
   RMSE stats by Index:
-      indices RMSE.perc nobs
-   1  Fishery       4.5   75
-   2   Survey       3.4   20
-   3 Combined       4.3   95
-



-
-
-

2.2 Retrospective and -Forecast bias

-

Retrospective analysis is commonly used to check the consistency of -model estimates, i.e., the invariance in spawning stock biomass (SSB) -and fishing mortality (F) as the model is updated with new data in -retrospect. The retrospective analysis involves sequentially removing -observations from the terminal year (i.e., peels), fitting the model to -the truncated series, and then comparing the relative difference between -model estimates from the full-time series with the truncated -time-series.

-

In Stock Synthesis, retrospective analysis can be routinely -implemented using r4ss:SS_doRetro() (see Section 3.1). ss3diags provides the function -SSplotRetro() to visualize the retrospective patterns of -SBB and F and compute the associated Mohn’s rho value -(i.e. retrospective bias). This first requires loading the retrospective -runs (Section 1.2), which are already built into -ss3diags in this case. The next step is to summarize the -list of retrospective runs using r4ss::SSsummarize().

-
retroI.simple <- r4ss::SSsummarize(retroSimple,verbose=F)
-

We use the notation “retroI” because r4ss::SSsummarize() -summarizes the modeled quantities and abundance indices, but not length -or age composition data. Using retroI.simple it is possible -to produce some basic retrospective plots.

-

-r4ss::sspar(mfrow=c(1,2),plot.cex=0.8)
-rssb <- SSplotRetro(retroI.simple, add=TRUE, subplots = "SSB", forecast = F, legend = F, verbose=F)
-rf <- SSplotRetro(retroI.simple, add=TRUE, subplots="F", ylim=c(0.05,0.2),
-            forecast=F, legendloc="topright", legendcex = 0.8, verbose=F)
-
-Retrospective analysis of spawning stock biomass (SSB) and fishing mortality estimates for cod-like stock conducted by re-fitting the reference model (Ref) after five years of data were removed, one year at a time sequentially. Mohn’s rho statistic are denoted on top of the panels. Grey shaded areas are the 95 \% confidence intervals from the reference model in cases where the analysis was run with Hessian. -

-Retrospective analysis of spawning stock biomass (SSB) and fishing -mortality estimates for cod-like stock conducted by re-fitting the -reference model (Ref) after five years of data were removed, one year at -a time sequentially. Mohn’s rho statistic are denoted on top of the -panels. Grey shaded areas are the 95 % confidence intervals from the -reference model in cases where the analysis was run with Hessian. -

-
-


-

An intuitive extension of the retrospective analysis is to assess -potential forecast bias by adding the additional step of forward -projecting quantities, such as SSB, over the truncated years. In Stock -Synthesis the forecasts are automatically done when using -r4ss:SS_doRetro().The forecasts are based on the settings -specified in ‘forecast.ss’, which are also evoked when conducting future -projections with the same model. The observed catches are used for the -retrospective forecasts. Retrospective forecasts with Stock Synthesis -are therefore only a matter of visualization, which can be done by -setting the SSplotRetro() option -forecast=TRUE.

-

-r4ss::sspar(mfrow=c(1,2),plot.cex=0.8)
-rssb <- SSplotRetro(retroI.simple, add = T, subplots = "SSB", forecast = T, 
-                    legend = F, verbose = F, xmin = 2000, ylim = c(0.5E9, 2.5e9))
-rf <- SSplotRetro(retroI.simple, add = T, subplots = "F", ylim = c(0.05,0.25),
-                forecast = T, legendloc = "topleft", legendcex = 0.8, verbose = F, xmin = 2000)
-
-Retrospective results shown for the most recent years only. Mohn’s rho statistic and the corresponding ‘hindcast rho’ values (in brackets) are now printed at the top of the panels. One-year-ahead projections denoted by color-coded dashed lines with terminal points are shown for each model. -

-Retrospective results shown for the most recent years only. Mohn’s rho -statistic and the corresponding ‘hindcast rho’ values (in brackets) are -now printed at the top of the panels. One-year-ahead projections denoted -by color-coded dashed lines with terminal points are shown for each -model. -

-
-
-

The statistics from the retrospective analysis with forecasting, -Mohn’s rho and forecast bias, can be called without plotting using the -function SShcbias()

-



-
SShcbias(retroI.simple,quant="SSB",verbose=F)
-     type     peel         Rho   ForcastRho
-   1  SSB       99 0.007769174 -0.006152424
-   2  SSB       98 0.075590953  0.069386314
-   3  SSB       97 0.207121898  0.229780185
-   4  SSB       96 0.202493492  0.211816848
-   5  SSB       95 0.245173711  0.254376716
-   6  SSB Combined 0.147629846  0.151841528
-
-SShcbias(retroI.simple,quant="F",verbose=F)
-     type     peel         Rho   ForcastRho
-   1    F       99 -0.00509569  0.006707778
-   2    F       98 -0.06829083 -0.057673536
-   3    F       97 -0.17225678 -0.184649147
-   4    F       96 -0.16735016 -0.175990996
-   5    F       95 -0.19535279 -0.199995306
-   6    F Combined -0.12166925 -0.122320241
-



-
-
-

2.3 Hindcast -Cross-Validation and prediction skill

-

Implementing the Hindcast Cross-Validation (HCxval) diagnostic in -Stock Synthesis requires the same model outputs generated by -r4ss:SS_doRetro() as described in Section 3.1. Therefore, no additional step is needed for HCxval -if conducted in conjunction with retrospective analysis.
As a -robust measure of prediction skill, we implemented the mean absolute -scaled error (MASE). In brief, the MASE score scales the mean absolute -error (MAE) of forecasts (i.e., prediction residuals) to MAE of a naïve -in-sample prediction, which is realized in the form of a simple -‘persistence algorithm’, i.e. tomorrow’s weather will be the same as -today’s (see Eq. 3, p.5 in Carvalho -and Winker et al. 2021). A MASE score > 1 indicates that the -average model forecasts are worse than a random walk. Conversely, a MASE -score of 0.5 indicates that the model forecasts twice as accurately as a -naïve baseline prediction; thus, the model has prediction skill.

-


HCxval is implemented using function -SSplotHCxval(), which produces the novel HCxval diagnostic -plot and computes the MASE scores for CPUE indices, mean lengths or mean -ages that have observations falling within the hindcast evaluation -period.

-

Plotting HCxval for abundance indices requires the same step of -summarizing the list of retrospective runs as for the retrospective -analysis, which therefore only needs be done once.

-

-hci <- SSplotHCxval(retroI.simple, add=T, verbose=F, legendcex = 0.7)
-
-Hindcasting cross-validation (HCxval) results from CPUE fit, showing observed (large points connected with dashed line), fitted (solid lines) and one-year ahead forecast values (small terminal points). HCxval was performed using one reference model (Ref) and five hindcast model runs (solid lines) relative to the expected CPUE. The observations used for cross validation are highlighted as color-coded solid circles with associated 95 \% confidence intervals. The model reference year refers to the endpoints of each one-year-ahead forecast and the corresponding observation (i.e., year of peel + 1). The mean absolute scaled error (MASE) score for the survey index is shown at the top of the plot. -

-Hindcasting cross-validation (HCxval) results from CPUE fit, showing -observed (large points connected with dashed line), fitted (solid lines) -and one-year ahead forecast values (small terminal points). HCxval was -performed using one reference model (Ref) and five hindcast model runs -(solid lines) relative to the expected CPUE. The observations used for -cross validation are highlighted as color-coded solid circles with -associated 95 % confidence intervals. The model reference year refers to -the endpoints of each one-year-ahead forecast and the corresponding -observation (i.e., year of peel + 1). The mean absolute scaled error -(MASE) score for the survey index is shown at the top of the plot. -

-
-
-


The forecast length- and age-composition are located in the -Stock Synthesis report.sso as “ghost files”. To extract and summarize -the composition data in the form of observed and expected mean lengths -and age ss3diags provides the function -SSretroComps().

-
retroC.simple <- SSretroComps(retroSimple)
-

-r4ss::sspar(mfrow=c(1,2),plot.cex=0.8)
-hcl <- SSplotHCxval(retroC.simple, subplots="len", add=T, verbose=F, legendcex = 0.7, ylim = c(50, 100))
-
-Hindcasting cross-validation (HCxval) results for mean lengths. Note that MASE values in brackets are adjusted MASE values for cases where naive predictions have a Mean-Absolute-Error below 0.1 -

-Hindcasting cross-validation (HCxval) results for mean lengths. Note -that MASE values in brackets are adjusted MASE values for cases where -naive predictions have a Mean-Absolute-Error below 0.1 -

-
-


The figure above provides some additional, so called adjusted -MASE values, in parentheses. This gets invoked in cases where the -inter-annual variation in the observed values is very small (default MAE -< 0.1 for naive predictions log(y[t+1])-log(y[t])). The reasoning is -that prediction residuals must be already very accurate to fall below -this threshold. The adjusted MASE essential keep the naive prediction -MAE denominator of the MASE to a maximum. Below we show the effect of -changing adjustment threshold from the default -MAE.base.adj = 0.1

-
mase1 = SSmase(retroC.simple, quant="len", MAE.base.adj = 0.1)
-mase1
-       Index Season      MASE     MAE.PR   MAE.base  MASE.adj n.eval
-   1 Fishery      1 0.9635032 0.06664560 0.06917009 0.6664560      5
-   2  Survey      1 0.2433708 0.02412211 0.09911671 0.2412211      2
-   3   joint        0.7011276 0.05449603 0.07772627 0.5449603      7
-

to a larger value MAE.base.adj = 0.15

-
SSmase(retroC.simple, quant="len", MAE.base.adj = 0.15)
-       Index Season      MASE     MAE.PR   MAE.base  MASE.adj n.eval
-   1 Fishery      1 0.9635032 0.06664560 0.06917009 0.4443040      5
-   2  Survey      1 0.2433708 0.02412211 0.09911671 0.1608141      2
-   3   joint        0.7011276 0.05449603 0.07772627 0.3633069      7
-

where MASE is the ratio of the mean absolute error of -the prediction residuals MAE.PR to the residuals of the -naive predictions MAE.base

-
mase1$MAE.PR/mase1$MAE.base
-   [1] 0.9635032 0.2433708 0.7011276
-mase1$MASE
-   [1] 0.9635032 0.2433708 0.7011276
-

and MASE.adj

-
mase1$MAE.PR/pmax(mase1$MAE.base,0.1)
-   [1] 0.6664560 0.2412211 0.5449603
-mase1$MASE.adj
-   [1] 0.6664560 0.2412211 0.5449603
-

Note that applying HCxval for composition data requires correctly -specifying the composition data type fitted in the model. For example, -age composition data need to be specified as “age” in -SSplotHCxval and SSmase, as shown below.

-

-hcl <- SSplotHCxval(retroC.simple, subplots="age", add=TRUE,
-verbose=F, legendcex = 0.7)
-
-Hindcasting cross-validation (HCxval) results for mean ages. Note that MASE values in brackets are adjusted MASE values for cases where naive predictions have a Mean-Absolute-Error below 0.1 -

-Hindcasting cross-validation (HCxval) results for mean ages. Note that -MASE values in brackets are adjusted MASE values for cases where naive -predictions have a Mean-Absolute-Error below 0.1 -

-
-

-SSmase(retroC.simple,quants="age")
-       Index Season      MASE     MAE.PR  MAE.base  MASE.adj n.eval
-   1 Fishery      1        NA         NA        NA        NA      0
-   2  Survey      1 0.3171172 0.04623051 0.1457836 0.3171172      2
-   3   joint        0.3171172 0.04623051 0.1457836 0.3171172      2
-
-
-
-
-

3 Model uncertainty

-

The management advice frameworks increasingly require translating the -estimated uncertainty about the stock status into probabilistic -statements (Kell et al. 2016). A classic example is the Kobe framework -used in tuna Regional Fisheries Management Organisations (tRFMOs) around -the world. The key quantities of interest are typically the ratios \(SSB/SSB_{MSY}\) and \(F/F_{MSY}\). While it is reasonably -straight forward in Stock Synthesis to approximate uncertainty of -individual quantities (e.g. \(SSB\)) -from the asymptotic standard errors (SE) derived from the Hessian matrix -using the delta method, the joint distribution of \(SSB/SSB_{MSY}\) and \(F/F_{MSY}\) requires adequately accounting -for the covariance structure between these two derived quantities. Joint -distributions are typically constructed using bootstrap or Markov Chain -Monte-Carlo (MCMC) methods. However, these methods can be -computationally intense and time-consuming in integrated -assessments.

-

As an alternative, ss3diags implements a rapid -delta-Multivariate lognormal approximation with -SSdeltaMVLN() to generate joint error distributions for -\(SSB/SSB_{ref}\) and \(F/F_{ref}\), where the \(ref\) may refer to \(MSY\), but also other reference points -(e.g., \(SSB_{40}\) and \(F_{40}\)). In Stock Synthesis, these ratios -are determined by the derived quantities Bratio and -F, where either can take the form of ratios (e.g. \(F/F_{ref}\)) or absolute value -(e.g. absF) depending on settings in the -starter.ss file.

-

Let Bratio be \(u = -SSB/SSB_{ref}\), F be \(v -= F\), and \(w = F_{ref}\) be -the F reference point of interest (e.g. \(F_{MSY}\)), with \(x = \log(u)\), \(y = \log(v)\) and \(z = \log(w)\), then the variance-covariance -matrix \(VCM\) has the form:

-

\[ -VCM_{x,y,z} = -\begin{pmatrix} - \sigma^2_{x} & cov_{x,y} & cov_{x,y} \\ - cov_{x,y} & \sigma^2_{y} & cov_{y,z} \\ - cov_{x,z} & cov_{y,z} & \sigma^2_{z} -\end{pmatrix} -\]

-

where, e.g., \(\sigma^2_{x}\) is the -variance of \(x\) and \(cov_{x,y}\) is the covariance of \(x\) and \(y\). Deriving those requires conducting a -few normal to lognormal transformations. First, the variances are -approximated as:

-

\[ -\sigma^2_{x} = \log\left(1+\left(\frac{SE_u}{u}\right)^2\right) -\]

-

where \(SE_{u}\), \(SE_{v}\) and \(SE_{z}\) are the asymptotic standard error -estimates for \(u = SSB/SSB_{ref}\), -\(v = F\) and \(z = F_{ref}\).

-

The corresponding covariance for \(x\) and \(y\), can then be approximated on the -log-scale by:

-

\[ -COV_{x,y} = \log \left( {1+\rho_{u,v} \sqrt{\sigma^2_{x}\sigma^2_{y}}} -\right) -\]

-

where \(rho_{u,v}\) denotes the -correlation of \(u\) and \(v\).

-

To generate a joint distribution of \(\tilde{u}\) = \(SSB/SSB_{ref}\), \(\tilde{v}\) = \(F\) and \(\tilde{z}\) = \(F_{ref}\), a multivariate random generator -is used, which is available in the R package ‘mvtnorm’, to obtain a -large number (e.g. nsim = 10,000) iterations, such that

-

\[ -JD(\tilde{u},\tilde{v},\tilde{w}) = \exp(MVN(\mu_{x,y,z},VCM_{x,y,z})) -\] so that

-

\[ -\tilde{SSB}/\tilde{SSB}_{{MSY}} = \tilde{u} -\] and

-

\[ -\tilde{F}/\tilde{F}_{{MSY}} = \tilde{v}/\tilde{w} -\]

-

The reference points depend on the settings in the -starter.ss file that determine the derived quantities -Bratio and Fvalue.

-

We provide the function SSsettingsBratioF(simple) to -view the starter.ss settings:

-
SSsettingsBratioF(simple)
-   $Bratio
-   [1] "SSB/SSB0"
-   
-   $F
-   [1] "_abs_F"
-   
-   $Bref
-   [1] 0.4
-

This function is also inbuilt in SSdeltaMVLN() to -prevent misleading results. The SSdeltaMVLN() output -includes the maximum likelihood estimates (MLEs) and the MVLN -Monte-Carlo distributions $kb of \(SSB/SSB_{MSY}\), \(F/F_{MSY}\) and \(F\). Note the additional quantities \(SSB\) and \(Rec\) are generated independently from -lognormal distributions for practical reasons. These can be plotted by -SSplotEnsemble().

-

The SSdeltaMVLN() provides the option to set alternative -Fref values, but this is only possible for the recommended -starter.ss option 0 for F_report_basis. For -option 2, SSdeltaMVLN() prompts an error if -Fref is changed.

-

The simple model is run with settings that are common in -NOAA assessments, with Bratio set to \(SSB/SSB_{0}\) and F is -typically kept at absolute quantity.

-

1 # Depletion basis: 1=rel X*SB0; 2=rel SPBmsy; 3=rel X*SPB_styr; 4=rel X*SPB_endyr

-

0 # F_report_basis: 0=raw_F_report; 1=F/Fspr; 2=F/Fmsy ; 3=F/Fbtgt

-

The management quantities in this case are \(SSB/SSB_{40}\) and \(F/F_{spr40}\), where the target of 40% is -specified in the forecast.ss file.

-

0.4 # SPR target (e.g. 0.40)

-

0.4 # Biomass target (e.g. 0.40)

-

-mvln <- SSdeltaMVLN(simple, run="Simple", Fref="SPR", plot=TRUE) 
-   
-    starter.sso with Bratio: SSB/SSB0 and F: _abs_F 
-   
-
-Kobe phase plots showing MVLN Kobe probability distributions of $SSB/SSB_{40}$ and $F/F_{SPR40}$ for the simple SS3 model. -

-Kobe phase plots showing MVLN Kobe probability distributions of \(SSB/SSB_{40}\) and \(F/F_{SPR40}\) for the simple SS3 model. -

-
-
r4ss::sspar(mfrow=c(3,2),plot.cex = 0.7)
-SSplotEnsemble(mvln$kb, ylabs=mvln$labels, add=T, verbose=F) 
-
-Distributions for $SSB/SSB_{40}$, $F/F_{SPR40}$, $SSB$, $F$, Recruitment and Catch trajectories for the simple SS3 model -

-Distributions for \(SSB/SSB_{40}\), -\(F/F_{SPR40}\), \(SSB\), \(F\), Recruitment and Catch trajectories for -the simple SS3 model -

-
-


-

In some instances, mismatches between theSSdeltaMVLN and -MCMC may be caused by the latter’s poor performance due to poor -regularization (Monnahan -et al., 2019) or in cases where key parameters such as steepness -\(h\) or natural \(M\) are estimated using informative priors, -which can result in left skewed (non-lognormal) distributions of the -benchmarks \(F_{ref}\) and \(B_{ref}\) (Stewart -et al. (2013) and Taylor -et al. (2021)).

-

To facilitate a comparison between the SSdeltaMLVN() and -MCMC outputs, we provide the function SSdiagsMCMC(), which -is illustrated on the example of the Simple cod-like Stock Synthesis -model.

-

SSdiagsMCMC() requires loading both the -report.sso and MCMC output in the -posterior.sso file, where the MCMC was in this case run in -the subfolder of the assessment file /mcmc. For an example, -we have provided MCMC output for the simple model which can be loaded in -by data("mcmcSimple").

-
#report file
-report <- SS_output("./reference_run")
-mcmc <- SSgetMCMC("./reference_run/mcmc")
-
-# MCMC example included in ss3diags
-data("mcmcSimple")
-

The options and output of SSdiagsMCMC() are largely -identical to SSdeltaMVLN.

-
mvln <- SSdeltaMVLN(simple, plot=F, run="mvln")
-   
-    starter.sso with Bratio: SSB/SSB0 and F: _abs_F 
-   
-mcmc <- SSdiagsMCMC(mcmcSimple, simple, plot=F, run="mcmc")
-   
-    starter.sso with Bratio: SSB/SSB0 and F: _abs_F 
-   
-mcmc$kb <- dplyr::filter(mcmc$kb, year > 27)
-


Comparing delta-MVLN with MCMC simply requires combining the -$kb outputs by, e.g.,

-
r4ss::sspar(mfrow=c(1,1),plot.cex = 0.8)
-SSplotKobe(rbind(mvln$kb, mcmc$kb), joint=F,
-   xlab=mvln$labels[1], ylab=mvln$labels[2], fill=F)
-
-Kobe phase plot comparing MVLN and MCMC posterior distributions of $SSB/SSB_{40}$ and $F/F_{40}$  for the simple SS3 model -

-Kobe phase plot comparing MVLN and MCMC posterior distributions of \(SSB/SSB_{40}\) and \(F/F_{40}\) for the simple SS3 model -

-
-
     Quadrant   Percent
-   1      Red 48.528835
-   2   Orange  9.003531
-   3   Yellow 17.320518
-   4    Green 25.147117
-

-r4ss::sspar(mfrow=c(2,2),plot.cex = 0.7)
-SSplotEnsemble(rbind(mvln$kb,mcmc$kb),ylabs=mvln$labels,add=T,subplots = c("stock", "harvest", "SSB", "F"),verbose=F)
-
-Comparison of MVLN and MCMC posterior distributions for $SSB/SSB_{40}$, $F/F_{SB40}$, $SSB$ and $F$ for the simple SS3 model -

-Comparison of MVLN and MCMC posterior distributions for \(SSB/SSB_{40}\), \(F/F_{SB40}\), \(SSB\) and \(F\) for the simple SS3 model -

-
-


This function works equally for joining a model ensemble.

-
-
-
-

4 Cookbook Recipies

-
-

4.1 Retrospectives with -hindcasts

-

Retrospective analysis can be run for Stock Synthesis using the -function r4ss::SS_doRetro() available in r4ss. This setup of the -retrospective analysis has the advantage that forecasts are conducted -automatically given the catch. This makes it possible to apply -retrospective forecasting and hindcast cross-validations of observations -based on the same output.

-

Below is a step-by-step cookbook recipe for retrospective analysis in -Stock Synthesis which can also be found in the model -recipes.

-
-

4.1.1 Step 1: Identify -restrospective period

-

Specify the range pf peels that will then determine the -end.yr.vec of runs in r4ss::SS_doRetro()

-
start.retro <- 0    # end year of reference year
-end.retro   <- 5    # number of years for retrospective e.g., 
-
-
-

4.1.2 Step 2: Identify -the base directory

-

Specify the path directory that holds the folder with the base case -run. In this case the ‘Simple’ folder with a model folder -`Reference_Run”

-
dirname.base = "./Simple"
-run = "Reference_Run" 
-model.run <- file.path(dirname.base, run)
-
-
-

4.1.3 Step 3: -DAT and CONTROL files

-

Specify the names of the data and control files. Note these files are -named differently from the DATA.ss and -CONTROL.ss. In this case

-
DAT = "simple.dat"
-CTL =  "simple.ctl"
-

The names of the DAT and CONTROL are declared on the top of the -’starter.ss, e.g.#C Simple starter -filesimple.datsimple.ctl`

-
-
-

4.1.4 Step 4: Create a -subdirectory for the Retrospectives

-

There are several ways to organize the retrospective output -structure. First create a new subfolder for the retrospective runs -output

-
dir.retro <- paste0(dirname.base,'/Retro_',run)
-dir.create(path=dir.retro, showWarnings = F)
-

Also create a subdirectory for the retrospective model folders

-
dir.create(path=file.path(dir.retro,"retros"), showWarnings = F)
-

then copy model run files to the new retrospective folder

-
file.copy(file.path(model.run,"starter.ss_new"),  file.path(dir.retro,"starter.ss"))
-file.copy(file.path(model.run,"control.ss_new"),
-file.path(dir.retro, CTL))
-file.copy(file.path(model.run,"data.ss_new"),
-file.path(dir.retro, DAT))  
-file.copy(file.path(model.run,"forecast.ss"),
-file.path(dir.retro, "forecast.ss"))
-file.copy(file.path(model.run,"SS.exe"),
-file.path(dir.retro, "SS.exe"))
-# Automatically ignored for models without wtatage.ss 
-file.copy(file.path(model.run,"wtatage.ss"),
-file.path(dir.retro, "wtatage.ss"))
-
-
-

4.1.5 Step 5: Modify -Starter.ss file

-

Modifying the Starter File helps to speed up model runs

-
starter <- r4ss::SS_readstarter(file = file.path(dir.retro,"starter.ss"))
-
-starter$run_display_detail <- 1
-# write modified starter.ss
-r4ss::SS_writestarter(starter, file.path(dir.retro, "starter.ss"))
-
-
-

4.1.6 Step 6: Execute -retrospective runs

-

Run the retrospective analyses using r4SS function -r4ss::SS_doRetro.Ideally, the runs should be done with -Hessian to evaluate the retrospective trajectories with respect to the -confidence interval coverage of the reference model.

-
r4ss::SS_doRetro(masterdir=dir.retro, oldsubdir="",
-newsubdir="", years=start.retro:-end.retro)
-

However, for larger models it might be desirable to shorten run -times, by not inverting the hessian, using the option -extras = "-nohess". This runs the model much faster.

-
r4ss::SS_doRetro(masterdir=dir.retro,oldsubdir="",
-newsubdir="", years=start.retro:-end.retro,extras = "-nohess")
-
-
-

4.1.7 Step 7: Read -SS_doRetro() output

-
retroSimple <- r4ss::SSgetoutput(dirvec=file.path(dir.retro,
-              paste0("retro",start.retro:-end.retro)))
-

It is often useful to save the retro model runs as -.rdata file for further processing with -ss3diags, considering that reading the models with -r4ss::SSgetoutput() can be quite time-consuming for more -complex models.

-
save(retroSimple, file = file.path(dir.retro,"retroSimple.rdata"))
-
-
-

4.1.8 Step 8: Check

-
library(ss3diags)
-data("retroSimple")
-check.retro = r4ss::SSsummarize(retroSimple)
-   Summarizing 6 models:
-   imodel=1/6
-     N active pars = 112
-   imodel=2/6
-     N active pars = 112
-   imodel=3/6
-     N active pars = 112
-   imodel=4/6
-     N active pars = 112
-   imodel=5/6
-     N active pars = 112
-   imodel=6/6
-     N active pars = 112
-   Summary finished. To avoid printing details above, use 'verbose = FALSE'.
-r4ss::sspar(mfrow = c(1,1))
-SSplotRetro(check.retro, forecast = T, add=T, legendcex = 0.7, legendloc = "topleft")
-   Plotting Retrospective pattern
-

-
   Mohn's Rho stats, including one step ahead forecasts:
-     type     peel         Rho  ForecastRho
-   1  SSB       99 0.007769174 -0.006152424
-   2  SSB       98 0.075590953  0.069386314
-   3  SSB       97 0.207121898  0.229780185
-   4  SSB       96 0.202493492  0.211816848
-   5  SSB       95 0.245173711  0.254376716
-   6  SSB Combined 0.147629846  0.151841528
-
-
-
-

4.2 R_0 Profiling

-

Likelihood profiling is a key model diagnostic that helps identify -the influence of information sources on model estimates. R_0 is a -commonly profiled parameter because it represents a global scaling -parameter. To conduct a profile, values of the parameter over a given -range are fixed and the model re-run and then changes in total -likelihood and data-component likelihoods are examined.

-

Below is a step-by-step cookbook recipe for R_0 profiling in Stock -Synthesis which can also be found in the model -recipes.

-
-

4.2.1 Step 1: Base model -directory

-

Identify the directory where completed base model was run.

-
completed.model.run <- "./reference_run_orig"
-
-
-

4.2.2 Step 2: Create -R0_profile subdirectory

-
dirname.R0.profile <- paste0(completed.model.run,'/Likelihood profiles/R0')
-dir.create(path=dirname.R0.profile, showWarnings = TRUE, recursive = TRUE)
-
-
-

4.2.3 Step 3: Create a -“Figures_Tables” subdirectory

-
plotdir=paste0(dirname.R0.profile, "/Figures & Tables")
-dir.create(path=plotdir, showWarnings = TRUE, recursive = TRUE)
-
-
-

4.2.4 Step 4: Copy -completed base model output to “R0_profile” directory

-
list_of_files <- list.files(completed.model.run) 
-file.copy(file.path(completed.model.run, list_of_files), dirname.R0.profile)
-
-
-

4.2.5 Step 5: Edit -“control.ss” in the “R0_profile” working directory to estimate at least -one parameter in each phase

-
control.file <- SS_readctl(file = file.path(dirname.R0.profile, "control.ss_new"), 
-                      datlist = file.path(dirname.R0.profile, "data.ss_new"))
-control.file$recdev_phase <- 1
-SS_writectl(control.file, 
-            outfile = file.path(dirname.R0.profile, "control.ss_new"))
-
-
-

4.2.6 Step 6: Edit -“starter.ss” file

-

Edit the starter file in the “R0_profile” working directory to read -from init values from control_modified.ss.

-
starter.file <- SS_readstarter(file.path(dirname.R0.profile, "/starter.ss", sep=""))
-#make sure names for control and data file are correct
-starter.file$ctlfile <- "control_modified.ss"
-starter.file$datfile <- "data.ss_new"
-#for non-estimated quantities
-starter.file$init_values_src <- 0
-# Make sure the prior likelihood is calculated for non-estimated quantities
-starter.file$prior_like <- 1    
-SS_writestarter(starter.file, dir = dirname.R0.profile, overwrite = TRUE)
-
-
-

4.2.7 Step 7: Begin -likelihood profiling

-

Create a vector of values to profile over. Make sure the values span -both sides of the estimated parameter value (found in the control.ss_new -file). Then use the r4ss::SS_profile() function to run the -models.

-
# vector of values to profile over
-R0.vec <- seq(16.0,20.0,0.1)     
-Nprof.R0 <- length(R0.vec)
-
-profile <- SS_profile(dir=dirname.R0.profile, 
-                      model="ss",
-                      masterctlfile="control.ss_new",
-                      newctlfile="control_modified.ss",
-                      string="SR_LN(R0)",
-                      profilevec=R0.vec)
-
-
-

4.2.8 Step 8: Summarize -and analyze output

-
# read the output files (with names like Report1.sso, Report2.sso, etc.)
-prof.R0.models <- SSgetoutput(dirvec=dirname.R0.profile, 
-                              keyvec=1:Nprof.R0, getcovar = FALSE) # 
-
-# summarize output
-prof.R0.summary <- SSsummarize(prof.R0.models)
-
-#add base model into summary
-MLEmodel <- SS_output(dirname.completed.model.run)
-prof.R0.models$MLE <- MLEmodel
-prof.R0.summary <- SSsummarize(prof.R0.models)
-
-# Likelihood components 
-mainlike_components <- c('TOTAL',"Survey", "Discard", 
-                         'Length_comp',"Age_comp",'Recruitment') 
-
-mainlike_components_labels <- c('Total likelihood','Index likelihood',
-                                "Discard",'Length likelihood',
-                                "Age likelihood",'Recruitment likelihood') 
-
-# plot profile using summary created above
-SSplotProfile(prof.R0.summary,           
-              profile.string = "R0",     
-              profile.label=expression(log(italic(R)[0])),
-              print = TRUE,
-              plotdir=plotdir 
-              )
-Baseval <- prof.R0.models$MLE$parameters %>% 
-  filter(str_detect(Label, "SR_LN")) %>% 
-  pull(Value)
-abline(v = Baseval, lty=2)
-
-
-
-

4.3 ASPM diagnostic

-

The application of the Age-Structured Production Model (ASPM) -approach as a diagnostic can help identify misspecification of the -production function. If, in the absence of composition data (likelihood -weighting set to 0), the ASPM fits well to the indices of abundance that -have good contrast, then the production function is likely to drive the -stock dynamics and indices will provide information about the absolute -abundance (Carvalho -et al. 2017). If there is not a good fit to the indices, then the -catch data and production function alone cannot explain the trajectories -of the indices of relative abundance. Below is a step-by-step cookbook -recipe for the ASPM analysis in Stock Synthesis which can also be found -in the model -recipes.

-
-

4.3.1 Step 1: Create a -“ASPM” subdirectory

-

Create a new directory for the ASPM run and a subdirectory for -figures and tables

-
dirname.aspm <- "./ASPM"
-dir.create(path = dirname.aspm, showWarnings = TRUE, recursive = TRUE)
-
-plotdir <- file.path(dirname.aspm, "Figures_Tables")
-dir.create(path = plotdir, showWarnings = TRUE, recursive = TRUE)
-
-
-

4.3.2 Step 2: Copy and -paste files from reference run to ASPM directory

-
completed.model.run <- "./reference_run_orig"
-
-list_of_files <- list.files(completed.model.run) 
-file.copy(file.path(completed.model.run, list_of_files), dirname.aspm)
-
-
-

4.3.3 Step 3: Change rec -devs in ss3.pars to 0

-
pars <- SS_readpar_3.30(file.path(dirname.aspm, "ss3.par"), 
-                        datsource = file.path(dirname.aspm, "data.ss_new"),
-                        ctlsource = file.path(dirname.aspm, "control.ss_new"))
-
-pars$recdev_early[,2] <- 0
-pars$recdev1[,2] <- 0
-pars$recdev_forecast[,2] <- 0
-SS_writepar_3.30(pars, outfile = file.path(dirname.aspm, "ss3.par"))
-
-
-

4.3.4 Step 4: Change -starter

-

Change the settings in the starter.ss file to read from -par file and update the dat and ctl file names to .ss_new versions. -Also, change the phase that steepness and sigmaR are estimated in.

-
starter <- SS_readstarter(file = file.path(dirname.aspm, "starter.ss"))
-starter$init_values_src <- 1
-starter$datfile <- "data.ss_new"
-starter$ctlfile <- "control.ss_new"
-SS_writestarter(starter, dir = dirname.aspm, overwrite = TRUE)
-
-SS_changepars(dir = dirname.aspm, 
-              strings = c("steep", "sigmaR"),
-              newphs = c(-4, -5))
-
-
-

4.3.5 Step 5: Change -control file

-

Adjust the control file to fix rec devs at the value read from par -file. Also be sure to change the phase to negative (recdev phase =-3, -recdev_early_phase = -4). If there are any length or age composition -data data, change the likelihood lambda to 0 (to turn off) and penalty -for rec dev estimation in likelihood (lambda = 0 for recruitment). Also, -manually fix the selectivity parameters to the values estimated (change -phase to negative value in control.ss_new file).

-
control <- SS_readctl(file = file.path(dirname.aspm, "control.ss_new"), 
-                      datlist = file.path(dirname.aspm, "data.ss_new"))
-
-
-control$recdev_early_phase <- -4
-control$recdev_phase <- -3
-
-# Manually turn off all length comp data (likelihood lambda to 0) and penalty for rec dev estimation in likelihood (lambda = 0 for recruitment)
-
-# 4     1     1   0   1   
-
-# 4     2     1   0   1 
-
-# 10    1     1   0   1  
-
-# If there are already lambda adjustments you can do this through R by:
-
-control$lambdas$value[which(control$lambdas$like_comp == 4)] <- 0
-control$lambdas$value[which(control$lambdas$like_comp == 10)] <- 0
-
-SS_writectl_3.30(control, outfile = file.path(dirname.aspm, "control.ss_new"), overwrite = TRUE)
-
-
-

4.3.6 Step 6: Run -original and ASPM models

-
-
-

4.3.7 Step 7: Summarize -results and plot comparisons

-
aspm.mods <- SSgetoutput(dirvec = c(completed.model.run, dirname.aspm))
-aspm.summary <- SSsummarize(aspm.mods)
-
-SSplotComparisons(aspm.summary, 
-                  legendlabels = c("Reference", "ASPM"), 
-                  print = TRUE, 
-                  plotdir = plotdir)
-
-SSplotModelcomp(aspm.summary, subplots = "Index", add = TRUE, legendlabels = c("Full Model","ASPM"))
-SSplotModelcomp(aspm.summary, subplots = "SSB", add = TRUE)
-SSplotModelcomp(aspm.summary, subplots = "RecDevs", add = TRUE)
-
-
-
-

4.4 Jittering

-

Jitter tests are commonly implemented in Stock Synthesis to ensure -global convergence is reached. Jitter can be run using -r4ss::SS_RunJitter().

-

Below is a step-by-step cookbook recipe for the jitter analysis in -Stock Synthesis which can also be found in the model -recipes.

-
-

4.4.1 Step 1: Define the -directory where a completed “base” model run is located

-
dirname.base <- './reference_run'
-
-
-

4.4.2 Step 2: Create a -“Jitter” subdirectory

-

Also create a subdirectory for the output plots.

-
dirname.jitter <- './jitter'
-dir.create(path = dirname.jitter, showWarnings = TRUE, recursive = TRUE)
-
-dirname.plots <- paste0(dirname.jitter,"/plots")
-dir.create(dirname.plots)
-
-
-

4.4.3 Step 3: Copy base -model files to jitter directory

-
file.copy(paste(dirname.base, "starter.ss", sep="/"),
-          paste(dirname.jitter, "starter.ss", sep="/"))
-file.copy(paste(dirname.base, "em.CTL", sep="/"),
-          paste(dirname.jitter, "em.CTL", sep="/"))
-file.copy(paste(dirname.base, "ss3.DAT", sep="/"),
-          paste(dirname.jitter, "ss3.DAT", sep="/"))    
-file.copy(paste(dirname.base, "forecast.ss", sep="/"),
-          paste(dirname.jitter, "forecast.ss", sep="/"))
-file.copy(paste(dirname.base, "ss.exe", sep="/"),
-          paste(dirname.jitter, "ss.exe", sep="/"))
-file.copy(paste(dirname.base, "ss.par", sep="/"),
-          paste(dirname.jitter, "ss.par", sep="/"))
-
-
-

4.4.4 Step 4: Run -Jitter

-
#set number of iterations
-Njitter=200
-
-jit.likes <- r4ss::SS_RunJitter(mydir=dirname.base, 
-                          Njitter=Njitter, 
-                          jitter_fraction = 0.1, 
-                          init_values_src = 1)
-
-
-

4.4.5 Step 5: Summarize -jitter results

-

Save total likelihoods necessary to assess global convergence

-
x <- as.numeric(jit.likes)
-global.convergence.check <- table(x,exclude = NULL)
-write.table(jit.likes, paste0(dirname.plots, "/jit_like.csv"))
-write.table(global.convergence.check, paste0(dirname.plots, "/global_convergence_check.csv"))
-


Summarize output from all runs using -r4ss::SSsummarize()

-
jit_mods <- SSgetoutput(keyvec = 0:Njitter, 
-                       getcomp = FALSE, 
-                       dirvec = dirname.base, 
-                       getcovar = FALSE) 
-
-jit_summary <- SSsummarize(jit_mods)
-


-

Key outputs from summarized object

-
#Likelihood across runs
-likes <- jit_summary$likelihoods
-
-#Derived quants across runs
-quants <- jit_summary$quants
-
-#Estimated parameters across runs
-pars <- jit_summary$pars
-
-#Write output tables to jitter directory
-write.table(quants, paste0(dirname.plots, "/Quants.csv"))
-write.table(pars, paste0(dirname.plots,"/Pars.csv"))
-write.table(likes, paste0(dirname.plots,"/Likelihoods.csv"))
-


Re-tabulate total likelihoods necessary to assess global -convergence and compare to jit.likes from above

-
library(magrittr)
-library(dplyr)
-
-x <- likes %>% 
-  filter(str_detect(Label, "TOTAL")) %>% 
-  select(-Label) %>% 
-  mutate_all(~as.numeric(.)) %>% 
-  unlist(use.names = FALSE)
-
-global.convergence <- table(x,exclude = NULL)
-write.table(global.convergence, paste0(dirname.plots, "/global_convergence.csv"))
-


Check convergence by seeing if the estimated spawning biomass is -really big (+2x base spawning biomass) or really small (<0.5x base -spawning biomass). Note: this code is based on -check_convergence() from SSMSE.

-
converged_ssb <- jit_summary$SpawnBio %>%  
-  mutate(across(c(1:201),
-                 .fns = ~./replist0)) %>% 
-  select(-Label) %>% 
-  pivot_longer(col = c(1:201), names_to = "jitter", values_to = "SSB") %>% 
-  pivot_wider(names_from = Yr, values_from = SSB) %>% 
-  mutate(rownumber = seq(1, nrow(.))) %>% 
-  column_to_rownames("jitter") %>% 
-  filter_at(vars(1:78), all_vars((.) < 2 & (.) > 0.5)) %>% 
-  select(rownumber) %>% 
-  pull(rownumber)
-


-

Check to make sure max gradient is small

-
converged_grad <- which(jit_summary$maxgrad < 0.001)
-converged_jitters <- jit_mods[converged_grad]
-converged_sum <- SSsummarize(converged_jitters)
-


-
-
-

4.4.6 Step 6: Make plots -with r4ss for runs ending at a converged solution

-

Plot of likelihood for all jitter runs, regardless of convergence

-
library(ggplot2)
-
-jit_summary$likelihoods %>% 
-  filter(str_detect(Label, "TOTAL")) %>% 
-  select(-Label) %>% 
-  pivot_longer(cols = everything(), names_to = "jitter", values_to = "likelihood") %>% 
-  separate(jitter, into = c("replist", "jitter"), sep = "(?<=[A-Za-z])(?=[0-9])") %>% 
-  mutate(jitter = as.numeric(jitter)) %>% 
-  ggplot(aes(x = jitter, y = likelihood)) +
-  geom_point(size = 2) +
-  geom_hline(aes(yintercept = likelihood[1]), color = "red") +
-  theme_classic() +
-  labs(y = "Total Likelihood", 
-       x = "Jitter runs")
-ggsave(paste0(dirname.plots, "/all_likelihoods.png")) 
-
-
-SSplotComparisons(jit_summary, 
-                  subplots = 2, 
-                  pch = "", 
-                  legend=FALSE, 
-                  lwd = 1, 
-                  new = F, 
-                  print = TRUE, 
-                  plotdir = dirname.plots, 
-                  filenameprefix = "all_jitters_",
-                  ylimAdj=1)
-


-

Repeat for all converged runs

-
converged_sum$likelihoods %>% 
-  filter(str_detect(Label, "TOTAL")) %>% 
-  select(-Label) %>% 
-  pivot_longer(cols = everything(), names_to = "jitter", values_to = "likelihood") %>% 
-  separate(jitter, into = c("replist", "jitter"), sep = "(?<=[A-Za-z])(?=[0-9])") %>% 
-  mutate(jitter = as.numeric(jitter)) %>% 
-  ggplot(aes(x = jitter, y = likelihood)) +
-  geom_point(size = 3) +
-  geom_hline(aes(yintercept = likelihood[1]), color = "red") +
-  theme_classic() +
-  labs(y = "Total Likelihood", 
-       x = "Jitter runs at a converged solution")
-ggsave(paste0(dirname.plots, "/converged_likelihoods.png"))
-
-
-SSplotComparisons(converged_sum,     
-                  subplots = 2, 
-                  pch = "",
-                  legend=FALSE,
-                  lwd = 1,
-                  new = F, 
-                  print = TRUE,
-                  plotdir = dirname.plots, 
-                  filenameprefix = "converged_",
-                  ylimAdj=1)
-


-

Repeat for converged runs at the minimum solution

-

-y <- which(jit_summary$likelihoods[jit_summary$likelihoods$Label=="TOTAL",1:Njitter]==min(na.omit(jit.likes)))
-
-jit_min <- jit_mods[y]
-min_sum <- SSsummarize(jit_min)
-
-SSplotComparisons(min_sum,     
-                  subplots =  2, 
-                  pch = "",
-                  legend=FALSE,
-                  lwd = 1,
-                  new = F, 
-                  print = TRUE,
-                  plotdir = dirname.plots, 
-                  filenameprefix = "converged_min_",
-                  ylimAdj=1)
-
-
-
- - - - - - - - - - - diff --git a/Vignette/testing.html b/Vignette/testing.html deleted file mode 100644 index 7b58fe7..0000000 --- a/Vignette/testing.html +++ /dev/null @@ -1,683 +0,0 @@ - - - - - - - - - - - - - - - -ss3diags Unit Testing - - - - - - - - - - - - - - - - - - - - - - - - - - -

ss3diags Unit Testing

-

Meg Oshima

-

9/20/2021

- - - - -
-

Basics of Unit Testing

-

Unit testing verifies that a function is precise and correct when -returning the expected value of y for a specific value of -x in the function. It is an automated, formal testing of code -that is beneficial because there are fewer bugs in your code, better -code structure (less redundancy, and smaller separate functions vs fewer -complicated ones), and more robust code (less likely to break with big -changes).

-
-
-

Workflow

-
-

First Time

-

When first creating test files, use the usethis package -and run the function usethis::use_testthat() to:

-
    -
  • create a tests/testthat directory
    -
  • -
  • add testthat to the Suggests field in the -DESCRIPTION of the package
    -
  • -
  • create a file tests/testthat.R that automatically runs -all tests when you run R CMD check.
  • -
-
-
-

Routine Workflow

-

After the first time, the workflow should look something like:

-
    -
  • use testthat::use_test("name-of-function") to create a -test template file in the correct directory. It will be named -test-name-of-function.R
    -
  • -
  • follow the template structure and modify the code as needed to test -functions
    -
  • -
  • one script can be used for multiple functions, but don’t want to -make the files too large (consider best ways to organize the functions -within scripts)
    -
  • -
  • need to know the function you want to test and what the expected -outcome should be
    -
  • -
  • use -testthat::test_file("./tests/testthat/test-name-of-function.R") -to run the single file to see if the test passed or failed
    -
  • -
  • as you add or modify code, continue testing
    -
  • -
  • once everything is good, use devtools::test() to test -the entire package and ensure everything passes
  • -
-
-
-

Test file structure

-

Tests should be organized hierarchically: expectations –> -tests –> test.R files

-
## library any other packages you may need
-## include any general code you may need, ie setting environment path
-## Generalized structure of test functions 
-test_that("description of test", {
-  
-  # an expect statement with the function being tested and the expected outcome
-  expect_equal((2+2), 4)
-  expect_equal((3+2), 4)
-  
-})
-
-
-
-

ss3diags Tests

-

To test the functions in ss3daigs I am creating individual scripts -for each function and testing the outputs of those functions for Pacific -Hake, Shortfin Mako, and GOB Herring. Test scripts include:

-
    -
  • -runs-test (SSrunstest, SSplotRunstest)
      -
    • -cpue (mako, hake, herring)
    • -
    • -length (mako)
      -
    • -
    • -age (hake, herring)
    • -
  • -
  • -residuals (SSplotJABBAres)
  • -
  • -retrospective and forecast bias (SSplotRetro, SShcbias)
  • -
  • -hindcast cross-validataion and prediction skills (SSretroComps, -SSplotHCxval, SSmase)
  • -
  • -model uncertainty (SSplotEnsemble, SSdiagsMCMC, SSplotKobe)
  • -
  • -utils (SSsettingsBratioF)
  • -
-
-

Example code

-
-

SSrunstest for CPUE data

-
test_that("runs test works with shortfin mako", {
-  
-  ## Load in data
-  load(file.path(test_example_path, "natl.sma.rdata"))
-  
-  ## pull out cpue obs and est values for the first fleet
-  test.resids <- ss3sma$cpue[which(ss3sma$cpue$Fleet_name == "CPUE_1"), c("Fleet_name", "Yr", "Obs", "Exp")]
-  ## calculate residuals 
-  test.resids$residuals = log(test.resids$Obs) - log(test.resids$Exp)
-  
-  ## calculate lower and upper confidence levels (code copied from SSrunstest script)
-  mu <- 0 
-  mr <- abs(diff(test.resids$residuals - mu))
-  amr <- mean(mr, na.rm = TRUE)
-  ulmr <- 3.267 * amr
-  mr  <- mr[mr < ulmr]
-  amr <- mean(mr, na.rm = TRUE)
-  stdev <- amr / 1.128
-  lcl <- mu - 3 * stdev
-  ucl <- mu + 3 * stdev
-  ## use randtests:: runs.test to calculate p-value
-  runstest <- randtests::runs.test(test.resids$residuals, 
-                                   threshold = 0, 
-                                   alternative = "left.sided")
-  test.p <- round(runstest$p.value, 3)
-  
-  ## for cpue
-  n.cpue <- length(unique(ss3sma$cpue$Fleet))
-  run_cpue <- SSrunstest(ss3sma, quants = "cpue")
-  
-  ## testing structure of dataframe
-  expect_match(run_cpue$Index[1], "CPUE_1")
-  expect_equal(nrow(run_cpue), n.cpue)
-  ## testing values in the first row
-  expect_equal(run_cpue$runs.p[1], test.p)
-  expect_equal(run_cpue$sigma3.lo[1], lcl)
-  expect_equal(run_cpue$sigma3.hi[1], ucl)
-  
-  ## checking structure of dataframe if cpue index specified
-  run_cpue <- SSrunstest(ss3sma, quants = "cpue", indexselect = 4)
-  expect_match(run_cpue$Index, "CPUE_4")
-  run_cpue <- SSrunstest(ss3sma, quants = "cpue", indexselect = 3:5)
-  expect_equal(run_cpue$Index, c("CPUE_3", "CPUE_4", "CPUE_5"))
-})
-


-
-
-

SSrunstest for Length Comp data

-
## for length comp
-## get length comp data for first fishery
-  len.test.resids <- ss3sma$lendbase[which(ss3sma$lendbase$Fleet == 1),]
-## create index column
-  len.test.resids$indx = paste(len.test.resids$Fleet, len.test.resids$Yr, len.test.resids$Seas)
-  
-  uind <- unique(len.test.resids$indx)
-  pldat <- matrix(0,length(uind),13,
-                  dimnames=list(uind,
-                                c('Obsmn',
-                                  'Obslo',
-                                  'Obshi',
-                                  'semn',
-                                  'Expmn',
-                                  'Like',
-                                  'Std.res',
-                                  'ObsloAdj',
-                                  'ObshiAdj',
-                                  'Fleet',
-                                  'Yr',
-                                  'Time',
-                                  'Seas')))
-  
-  ## create subdataframes and then calculate variables (copied from SSrunstest script)
-  for(i in 1:length(uind)){  
-    subdbase <- len.test.resids[which(len.test.resids$indx == uind[i]),]
-     
-    if(is.null(subdbase$Nsamp_adj)) subdbase$Nsamp_adj = subdbase$N 
-    xvar <- subdbase$Bin
-    pldat[i,'Obsmn'] <- sum(subdbase$Obs*xvar)/sum(subdbase$Obs)
-    pldat[i,'Expmn'] <- sum(subdbase$Exp*xvar)/sum(subdbase$Exp)
-    pldat[i,'semn'] <- sqrt((sum(subdbase$Exp*xvar^2)/sum(subdbase$Exp)-
-                               pldat[i,'Expmn']^2)/mean(subdbase$Nsamp_adj))
-    pldat[i,'Obslo'] <- pldat[i,'Obsmn']-2*pldat[i,'semn']
-    pldat[i,'Obshi'] <- pldat[i,'Obsmn']+2*pldat[i,'semn']
-    pldat[i,'Std.res'] <- (pldat[i,'Obsmn']-pldat[i,'Expmn'])/pldat[i,'semn']
-    pldat[i,'Fleet'] <- mean(subdbase$Fleet)
-    pldat[i,'Yr'] <- mean(subdbase$Yr) 
-    pldat[i,'Time'] <- mean(subdbase$Time)
-    pldat[i,'Seas'] <- mean(subdbase$Seas)
-    pldat[i,'Like'] <- mean(subdbase$Like)
-    
-  }
-  
-  Nmult <- 1/var(pldat[,'Std.res'],na.rm=TRUE)
-  
-  for(i in 1:length(uind)){
-    pldat[i,'ObsloAdj'] <- pldat[i,'Obsmn']-2*pldat[i,'semn']/sqrt(Nmult)
-    pldat[i,'ObshiAdj'] <- pldat[i,'Obsmn']+2*pldat[i,'semn']/sqrt(Nmult)
-  }
-  
-  pldat <- data.frame(pldat)
-  yrs <- pldat$Yr
-  
-  ## create dataframe used for running the runs test
-  runs_dat <- data.frame(Fleet=pldat$Fleet,
-                         Fleet_name=ss3sma$FleetNames[pldat$Fleet],
-                         Yr=yrs,
-                         Time=pldat$Time,
-                         Seas=pldat$Seas,
-                         Obs=pldat$Obsmn,
-                         Exp=pldat$Expmn,
-                         SE=((pldat$Obsmn-pldat$ObsloAdj)/1.96)/pldat$ObsloAdj,
-                         Like=pldat$Like)
-
-  ## add column for residuals
-  ## run similar tests as for CPUE, checking structure and values for correctness
-


-
-
-

SSplotRunstest

-
## SMA
-test_that("snapshot of sma_cpue", {
-  
-  ## save plot as a png in a temporary directory (path)
-  SSplotRunstest(ss3sma, 
-                 png = TRUE, 
-                 print = T, 
-                 subplots = "cpue", 
-                 indexselect = 3, 
-                 plotdir = path, 
-                 filenameprefix = "sma_")
-  
-  ## check that there is a file with the expected name in the temporary directory
-  expect_true(file.exists(file.path(path, "sma_residruns_CPUE_3.png")))
-  
-})
-
-
-
-
-

Continuous Integration with Github Actions

-

Workflows can be setup to automate certain processes when a specifed -event occurs. Events could include things such as an issue being opened, -a push to the repo, or a pull request. When one of these events happens, -it triggers one or more actions automatically. An example workflow would -be: commit new code –> run test automatically –> build new package -–> deploy new version of package.

-

Currently, I set up the workflow for the first two steps; every time -a new commit is made to the repo, it runs the R CMD check function and -checks all of the test.R scripts. The workflow file is stored in -.github/workflows/R-CMD-check.yml.

-
-
-

Troubleshooting and Issues

- ---- - - - - - - - - - - - - - - - - -
ProblemSolution
Opening .Rdata files from package folderCreated a new sub-folder inst and extdata -and copied .Rdata files into there then used -system.file("extdata", package = "ss3diags") as the testing -path.
For checking plots, need to be able to save the plot as an object -but right now it can’t, only the runs test table is returned as an -object by the function.Currently just saving the plot as a .png and checking to see if the -file exists. Maybe consider adding the plot in the return() portion of -the function so that the object can be saved as well as the table in the -environment.
-
-
-

Questions

-
    -
  • Do I only need to test structure of outputs (e.g. nrow = 4, ncol = -6, class, etc.)?
    -
  • -
  • Should I use the actual numbers from output or calculate it so that -if the rdata files change, the numbers will change with it? Using actual -numbers will tell you if something is wrong with the file/code you -currently have but if the models are going to be updated at some point, -it is easier to write the code so that it is flexible.
  • -
-
- - - - - - - - - - - diff --git a/Vignette/testing.rmd b/Vignette/testing.rmd deleted file mode 100644 index db0c25e..0000000 --- a/Vignette/testing.rmd +++ /dev/null @@ -1,249 +0,0 @@ ---- -title: "ss3diags Unit Testing" -author: "Meg Oshima" -date: "9/20/2021" -output: - rmarkdown::html_vignette: - toc: true - toc_depth: 4 - fig_width: 7 - fig_height: 5 -vignette: > - %\VignetteIndexEntry{ss3diags Unit Testing} - %\VignetteEncoding{UTF-8} - %\VignetteEngine{knitr::rmarkdown} ---- - -```{r setup, include=FALSE} -knitr::opts_chunk$set(echo = TRUE) -``` - -## Basics of Unit Testing - -Unit testing verifies that a function is precise and correct when returning the expected value of _y_ for a specific value of _x_ in the function. It is an automated, formal testing of code that is beneficial because there are fewer bugs in your code, better code structure (less redundancy, and smaller separate functions vs fewer complicated ones), and more robust code (less likely to break with big changes). - -## Workflow - -### First Time -When first creating test files, use the `usethis` package and run the function `usethis::use_testthat()` to: - - * create a tests/testthat directory - * add `testthat` to the `Suggests` field in the `DESCRIPTION` of the package - * create a file `tests/testthat.R` that automatically runs all tests when you run `R CMD check`. - -### Routine Workflow -After the first time, the workflow should look something like: - - * use `testthat::use_test("name-of-function")` to create a test template file in the correct directory. It will be named `test-name-of-function.R` - * follow the template structure and modify the code as needed to test functions - * one script can be used for multiple functions, but don't want to make the files too large (consider best ways to organize the functions within scripts) - * need to know the function you want to test and what the expected outcome should be - * use `testthat::test_file("./tests/testthat/test-name-of-function.R")` to run the single file to see if the test passed or failed - * as you add or modify code, continue testing - * once everything is good, use `devtools::test()` to test the entire package and ensure everything passes - -### Test file structure - -Tests should be organized hierarchically: *expectations* --> *tests* --> *test.R files* - - -```{r eval=FALSE} - - -## library any other packages you may need -## include any general code you may need, ie setting environment path -## Generalized structure of test functions -test_that("description of test", { - - # an expect statement with the function being tested and the expected outcome - expect_equal((2+2), 4) - expect_equal((3+2), 4) - -}) - - -``` - - -## ss3diags Tests - -To test the functions in ss3daigs I am creating individual scripts for each function and testing the outputs of those functions for Pacific Hake, Shortfin Mako, and GOB Herring. Test scripts include: - -- [x] runs-test (SSrunstest, SSplotRunstest) - - [x] cpue (mako, hake, herring) - - [x] length (mako) - - [x] age (hake, herring) -- [ ] residuals (SSplotJABBAres) -- [ ] retrospective and forecast bias (SSplotRetro, SShcbias) -- [ ] hindcast cross-validataion and prediction skills (SSretroComps, SSplotHCxval, SSmase) -- [ ] model uncertainty (SSplotEnsemble, SSdiagsMCMC, SSplotKobe) -- [ ] utils (SSsettingsBratioF) - -### Example code -#### SSrunstest for CPUE data -```{r eval = FALSE} - -test_that("runs test works with shortfin mako", { - - ## Load in data - load(file.path(test_example_path, "natl.sma.rdata")) - - ## pull out cpue obs and est values for the first fleet - test.resids <- ss3sma$cpue[which(ss3sma$cpue$Fleet_name == "CPUE_1"), c("Fleet_name", "Yr", "Obs", "Exp")] - ## calculate residuals - test.resids$residuals = log(test.resids$Obs) - log(test.resids$Exp) - - ## calculate lower and upper confidence levels (code copied from SSrunstest script) - mu <- 0 - mr <- abs(diff(test.resids$residuals - mu)) - amr <- mean(mr, na.rm = TRUE) - ulmr <- 3.267 * amr - mr <- mr[mr < ulmr] - amr <- mean(mr, na.rm = TRUE) - stdev <- amr / 1.128 - lcl <- mu - 3 * stdev - ucl <- mu + 3 * stdev - ## use randtests:: runs.test to calculate p-value - runstest <- randtests::runs.test(test.resids$residuals, - threshold = 0, - alternative = "left.sided") - test.p <- round(runstest$p.value, 3) - - ## for cpue - n.cpue <- length(unique(ss3sma$cpue$Fleet)) - run_cpue <- SSrunstest(ss3sma, quants = "cpue") - - ## testing structure of dataframe - expect_match(run_cpue$Index[1], "CPUE_1") - expect_equal(nrow(run_cpue), n.cpue) - ## testing values in the first row - expect_equal(run_cpue$runs.p[1], test.p) - expect_equal(run_cpue$sigma3.lo[1], lcl) - expect_equal(run_cpue$sigma3.hi[1], ucl) - - ## checking structure of dataframe if cpue index specified - run_cpue <- SSrunstest(ss3sma, quants = "cpue", indexselect = 4) - expect_match(run_cpue$Index, "CPUE_4") - run_cpue <- SSrunstest(ss3sma, quants = "cpue", indexselect = 3:5) - expect_equal(run_cpue$Index, c("CPUE_3", "CPUE_4", "CPUE_5")) -}) - -``` - -
- -#### SSrunstest for Length Comp data -```{r eval = FALSE} - -## for length comp -## get length comp data for first fishery - len.test.resids <- ss3sma$lendbase[which(ss3sma$lendbase$Fleet == 1),] -## create index column - len.test.resids$indx = paste(len.test.resids$Fleet, len.test.resids$Yr, len.test.resids$Seas) - - uind <- unique(len.test.resids$indx) - pldat <- matrix(0,length(uind),13, - dimnames=list(uind, - c('Obsmn', - 'Obslo', - 'Obshi', - 'semn', - 'Expmn', - 'Like', - 'Std.res', - 'ObsloAdj', - 'ObshiAdj', - 'Fleet', - 'Yr', - 'Time', - 'Seas'))) - - ## create subdataframes and then calculate variables (copied from SSrunstest script) - for(i in 1:length(uind)){ - subdbase <- len.test.resids[which(len.test.resids$indx == uind[i]),] - - if(is.null(subdbase$Nsamp_adj)) subdbase$Nsamp_adj = subdbase$N - xvar <- subdbase$Bin - pldat[i,'Obsmn'] <- sum(subdbase$Obs*xvar)/sum(subdbase$Obs) - pldat[i,'Expmn'] <- sum(subdbase$Exp*xvar)/sum(subdbase$Exp) - pldat[i,'semn'] <- sqrt((sum(subdbase$Exp*xvar^2)/sum(subdbase$Exp)- - pldat[i,'Expmn']^2)/mean(subdbase$Nsamp_adj)) - pldat[i,'Obslo'] <- pldat[i,'Obsmn']-2*pldat[i,'semn'] - pldat[i,'Obshi'] <- pldat[i,'Obsmn']+2*pldat[i,'semn'] - pldat[i,'Std.res'] <- (pldat[i,'Obsmn']-pldat[i,'Expmn'])/pldat[i,'semn'] - pldat[i,'Fleet'] <- mean(subdbase$Fleet) - pldat[i,'Yr'] <- mean(subdbase$Yr) - pldat[i,'Time'] <- mean(subdbase$Time) - pldat[i,'Seas'] <- mean(subdbase$Seas) - pldat[i,'Like'] <- mean(subdbase$Like) - - } - - Nmult <- 1/var(pldat[,'Std.res'],na.rm=TRUE) - - for(i in 1:length(uind)){ - pldat[i,'ObsloAdj'] <- pldat[i,'Obsmn']-2*pldat[i,'semn']/sqrt(Nmult) - pldat[i,'ObshiAdj'] <- pldat[i,'Obsmn']+2*pldat[i,'semn']/sqrt(Nmult) - } - - pldat <- data.frame(pldat) - yrs <- pldat$Yr - - ## create dataframe used for running the runs test - runs_dat <- data.frame(Fleet=pldat$Fleet, - Fleet_name=ss3sma$FleetNames[pldat$Fleet], - Yr=yrs, - Time=pldat$Time, - Seas=pldat$Seas, - Obs=pldat$Obsmn, - Exp=pldat$Expmn, - SE=((pldat$Obsmn-pldat$ObsloAdj)/1.96)/pldat$ObsloAdj, - Like=pldat$Like) - - ## add column for residuals - ## run similar tests as for CPUE, checking structure and values for correctness -``` - -
- -#### SSplotRunstest - -```{r eval=FALSE} - -## SMA -test_that("snapshot of sma_cpue", { - - ## save plot as a png in a temporary directory (path) - SSplotRunstest(ss3sma, - png = TRUE, - print = T, - subplots = "cpue", - indexselect = 3, - plotdir = path, - filenameprefix = "sma_") - - ## check that there is a file with the expected name in the temporary directory - expect_true(file.exists(file.path(path, "sma_residruns_CPUE_3.png"))) - -}) -``` - -## Continuous Integration with Github Actions - -Workflows can be setup to automate certain processes when a specifed event occurs. Events could include things such as an issue being opened, a push to the repo, or a pull request. When one of these events happens, it triggers one or more actions automatically. An example workflow would be: commit new code --> run test automatically --> build new package --> deploy new version of package. - -Currently, I set up the workflow for the first two steps; every time a new commit is made to the repo, it runs the R CMD check function and checks all of the test.R scripts. The workflow file is stored in `.github/workflows/R-CMD-check.yml`. - - -## Troubleshooting and Issues - -| Problem | Solution | -|-------------|---------------| -| Opening .Rdata files from package folder | Created a new sub-folder `inst` and `extdata` and copied .Rdata files into there then used `system.file("extdata", package = "ss3diags")` as the testing path. | -| For checking plots, need to be able to save the plot as an object but right now it can't, only the runs test table is returned as an object by the function. | Currently just saving the plot as a .png and checking to see if the file exists. Maybe consider adding the plot in the return() portion of the function so that the object can be saved as well as the table in the environment. | - -## Questions - - * Do I only need to test structure of outputs (e.g. nrow = 4, ncol = 6, class, etc.)? - * Should I use the actual numbers from output or calculate it so that if the rdata files change, the numbers will change with it? Using actual numbers will tell you if something is wrong with the file/code you currently have but if the models are going to be updated at some point, it is easier to write the code so that it is flexible. - diff --git a/_pkgdown.yml b/_pkgdown.yml index ebd0961..30bd075 100644 --- a/_pkgdown.yml +++ b/_pkgdown.yml @@ -1,5 +1,12 @@ url: https://pifscstockassessments.github.io/ss3diags +template: + bootstrap: 5 + bslib: + primary: "#0054AD" + border-radius: 0.5rem + btn-border-radius: 0.25rem + reference: - title: Functions contents: @@ -19,3 +26,4 @@ reference: contents: - has_keyword("datasets") + diff --git a/data/mcmcSimple.rda b/data/mcmcSimple.rda deleted file mode 100644 index 9a06307..0000000 Binary files a/data/mcmcSimple.rda and /dev/null differ diff --git a/data/retroSimple.rda b/data/retroSimple.rda deleted file mode 100644 index cd6cbeb..0000000 Binary files a/data/retroSimple.rda and /dev/null differ diff --git a/data/simple.rda b/data/simple.rda deleted file mode 100644 index cd65ca8..0000000 Binary files a/data/simple.rda and /dev/null differ diff --git a/man/mcmcSimple.Rd b/man/mcmcSimple.Rd deleted file mode 100644 index cbc3bdb..0000000 --- a/man/mcmcSimple.Rd +++ /dev/null @@ -1,25 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/data.R -\docType{data} -\name{mcmcSimple} -\alias{mcmcSimple} -\title{MCMC output for simulated Simple Stock Synthesis model.} -\format{ -Large dataframe of MCMC parameter estimates with nrow = number of values and ncol = number of parameters -\describe{ -\item{mcmcSimple}{mcmcSimple} -} -} -\source{ -MCMC evaluated with Stock Synthesis -} -\usage{ -mcmcSimple -} -\description{ -MCMC output read by \code{\link[r4ss]{SSgetMCMC}()} -} -\author{ -R. Methot, -} -\keyword{datasets} diff --git a/man/retroSimple.Rd b/man/retroSimple.Rd deleted file mode 100644 index 976a644..0000000 --- a/man/retroSimple.Rd +++ /dev/null @@ -1,208 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/data.R -\docType{data} -\name{retroSimple} -\alias{retroSimple} -\title{Retrospective runs for simulated Simple Stock Synthesis model.} -\format{ -Large list of 184 objects generated using \pkg{r4ss} -\describe{ -\item{Data_File}{Data_File} -\item{Control_File}{Control_File} -\item{definitions}{definitions} -\item{fleet_ID}{fleet_ID} -\item{fleet_type}{fleet_type} -\item{fleet_timing}{fleet_timing} -\item{fleet_area}{fleet_area} -\item{catch_units}{catch_units} -\item{catch_se}{catch_se} -\item{equ_catch_se}{equ_catch_se} -\item{survey_units}{survey_units} -\item{survey_error}{survey_error} -\item{IsFishFleet}{IsFishFleet} -\item{nfishfleets}{nfishfleets} -\item{nfleets}{nfleets} -\item{nsexes}{nsexes} -\item{ngpatterns}{ngpatterns} -\item{lbins}{lbins} -\item{Lbin_method}{Lbin_method} -\item{nlbins}{nlbins} -\item{lbinspop}{lbinspop} -\item{nlbinspop}{nlbinspop} -\item{sizebinlist}{sizebinlist} -\item{agebins}{agebins} -\item{nagebins}{nagebins} -\item{accuage}{accuage} -\item{nareas}{nareas} -\item{startyr}{startyr} -\item{endyr}{endyr} -\item{nseasons}{nseasons} -\item{seasfracs}{seasfracs} -\item{seasdurations}{seasdurations} -\item{N_sub_seasons}{N_sub_seasons} -\item{Spawn_month}{Spawn_month} -\item{Spawn_seas}{Spawn_seas} -\item{Spawn_timing_in_season}{Spawn_timing_in_season} -\item{Retro_year}{Retro_year} -\item{N_forecast_yrs}{N_forecast_yrs} -\item{Empirical_wt_at_age}{Empirical_wt_at_age} -\item{N_bio_patterns}{N_bio_patterns} -\item{N_platoons}{N_platoons} -\item{NatMort_option}{NatMort_option} -\item{GrowthModel_option}{GrowthModel_option} -\item{Maturity_option}{Maturity_option} -\item{Fecundity_option}{Fecundity_option} -\item{Start_from_par}{Start_from_par} -\item{Do_all_priors}{Do_all_priors} -\item{Use_softbound}{Use_softbound} -\item{N_nudata}{N_nudata} -\item{Max_phase}{Max_phase} -\item{Current_phase}{Current_phase} -\item{Jitter}{Jitter} -\item{ALK_tolerance}{ALK_tolerance} -\item{nforecastyears}{nforecastyears} -\item{morph_indexing}{morph_indexing} -\item{MGparmAdj}{MGparmAdj} -\item{forecast_selectivity}{forecast_selectivity} -\item{SelSizeAdj}{SelSizeAdj} -\item{SelAgeAdj}{SelAgeAdj} -\item{recruitment_dist}{recruitment_dist} -\item{recruit}{recruit} -\item{SPAWN_RECR_CURVE}{SPAWN_RECR_CURVE} -\item{breakpoints_for_bias_adjustment_ramp}{breakpoints_for_bias_adjustment_ramp} -\item{SpawnOutputUnits}{SpawnOutputUnits} -\item{biology}{biology} -\item{FecType}{FecType} -\item{FecPar1name}{FecPar1name} -\item{FecPar2name}{FecPar2name} -\item{FecPar1}{FecPar1} -\item{FecPar2}{FecPar2} -\item{M_type}{M_type} -\item{Natural_Mortality_Bmark}{Natural_Mortality_Bmark} -\item{Natural_Mortality_endyr}{Natural_Mortality_endyr} -\item{Growth_Parameters}{Growth_Parameters} -\item{growthCVtype}{growthCVtype} -\item{endgrowth}{endgrowth} -\item{wtatage_switch}{wtatage_switch} -\item{mean_body_wt}{mean_body_wt} -\item{growthseries}{growthseries} -\item{growthvaries}{growthvaries} -\item{sizeselex}{sizeselex} -\item{ageselex}{ageselex} -\item{F_method}{F_method} -\item{exploitation}{exploitation} -\item{catch}{catch} -\item{summary_age}{summary_age} -\item{timeseries}{timeseries} -\item{spawnseas}{spawnseas} -\item{mainmorphs}{mainmorphs} -\item{birthseas}{birthseas} -\item{depletion_method}{depletion_method} -\item{depletion_basis}{depletion_basis} -\item{discard}{discard} -\item{discard_type}{discard_type} -\item{DF_discard}{DF_discard} -\item{discard_spec}{discard_spec} -\item{mnwgt}{mnwgt} -\item{DF_mnwgt}{DF_mnwgt} -\item{sprseries}{sprseries} -\item{managementratiolabels}{managementratiolabels} -\item{F_report_basis}{F_report_basis} -\item{B_ratio_denominator}{B_ratio_denominator} -\item{sprtarg}{sprtarg} -\item{btarg}{btarg} -\item{minbthresh}{minbthresh} -\item{Kobe_warn}{Kobe_warn} -\item{Kobe_MSY_basis}{Kobe_MSY_basis} -\item{Kobe}{Kobe} -\item{index_variance_tuning_check}{index_variance_tuning_check} -\item{cpue}{cpue} -\item{natage}{natage} -\item{natage_annual_1_no_fishery}{natage_annual_1_no_fishery} -\item{natage_annual_2_with_fishery}{natage_annual_2_with_fishery} -\item{batage}{batage} -\item{natlen}{natlen} -\item{batlen}{batlen} -\item{fatage}{fatage} -\item{discard_at_age}{discard_at_age} -\item{catage}{catage} -\item{movement}{movement} -\item{ALK}{ALK} -\item{N_ageerror_defs}{N_ageerror_defs} -\item{equil_yield}{equil_yield} -\item{Z_at_age}{Z_at_age} -\item{M_at_age}{M_at_age} -\item{Dynamic_Bzero}{Dynamic_Bzero} -\item{comp_data_exists}{comp_data_exists} -\item{lendbase}{lendbase} -\item{sizedbase}{sizedbase} -\item{agedbase}{agedbase} -\item{condbase}{condbase} -\item{ghostagedbase}{ghostagedbase} -\item{ghostcondbase}{ghostcondbase} -\item{ghostlendbase}{ghostlendbase} -\item{ladbase}{ladbase} -\item{wadbase}{wadbase} -\item{tagdbase1}{tagdbase1} -\item{tagdbase2}{tagdbase2} -\item{len_comp_fit_table}{len_comp_fit_table} -\item{size_comp_fit_table}{size_comp_fit_table} -\item{derived_quants}{derived_quants} -\item{parameters}{parameters} -\item{FleetNames}{FleetNames} -\item{repfiletime}{repfiletime} -\item{SRRtype}{SRRtype} -\item{Pstar_sigma}{Pstar_sigma} -\item{OFL_sigma}{OFL_sigma} -\item{CoVar}{CoVar} -\item{highcor}{highcor} -\item{lowcor}{lowcor} -\item{corstats}{corstats} -\item{stdtable}{stdtable} -\item{recruitpars}{recruitpars} -\item{RecrDistpars}{RecrDistpars} -\item{wtatage}{wtatage} -\item{jitter_info}{jitter_info} -\item{SS_version}{SS_version} -\item{SS_versionshort}{SS_versionshort} -\item{SS_versionNumeric}{SS_versionNumeric} -\item{StartTime}{StartTime} -\item{RunTime}{RunTime} -\item{Files_used}{Files_used} -\item{Nwarnings}{Nwarnings} -\item{warnings}{warnings} -\item{likelihoods_used}{likelihoods_used} -\item{likelihoods_laplace}{likelihoods_laplace} -\item{likelihoods_by_fleet}{likelihoods_by_fleet} -\item{N_estimated_parameters}{N_estimated_parameters} -\item{table_of_phases}{table_of_phases} -\item{estimated_non_dev_parameters}{estimated_non_dev_parameters} -\item{log_det_hessian}{log_det_hessian} -\item{maximum_gradient_component}{maximum_gradient_component} -\item{parameters_with_highest_gradients}{parameters_with_highest_gradients} -\item{Length_Comp_Fit_Summary}{Length_Comp_Fit_Summary} -\item{Age_Comp_Fit_Summary}{Age_Comp_Fit_Summary} -\item{SBzero}{SBzero} -\item{current_depletion}{current_depletion} -\item{last_years_SPR}{last_years_SPR} -\item{SPRratioLabel}{SPRratioLabel} -\item{sigma_R_in}{sigma_R_in} -\item{sigma_R_info}{sigma_R_info} -\item{rmse_table}{rmse_table} -\item{logfile}{logfile} -\item{inputs}{inputs} -} -} -\source{ -simulated with \pkg{ss3sim} -} -\usage{ -retroSimple -} -\description{ -Stock Synthesis output read by \code{\link[r4ss]{SS_output}()} -} -\author{ -R. Methot -} -\keyword{datasets} diff --git a/man/simple.Rd b/man/simple.Rd deleted file mode 100644 index 8a67c68..0000000 --- a/man/simple.Rd +++ /dev/null @@ -1,208 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/data.R -\docType{data} -\name{simple} -\alias{simple} -\title{A simulated Simple Stock Synthesis model for a "cod-like" stock.} -\format{ -Large list of 184 objects generated using \pkg{r4ss} -\describe{ -\item{Data_File}{Data_File} -\item{Control_File}{Control_File} -\item{definitions}{definitions} -\item{fleet_ID}{fleet_ID} -\item{fleet_type}{fleet_type} -\item{fleet_timing}{fleet_timing} -\item{fleet_area}{fleet_area} -\item{catch_units}{catch_units} -\item{catch_se}{catch_se} -\item{equ_catch_se}{equ_catch_se} -\item{survey_units}{survey_units} -\item{survey_error}{survey_error} -\item{IsFishFleet}{IsFishFleet} -\item{nfishfleets}{nfishfleets} -\item{nfleets}{nfleets} -\item{nsexes}{nsexes} -\item{ngpatterns}{ngpatterns} -\item{lbins}{lbins} -\item{Lbin_method}{Lbin_method} -\item{nlbins}{nlbins} -\item{lbinspop}{lbinspop} -\item{nlbinspop}{nlbinspop} -\item{sizebinlist}{sizebinlist} -\item{agebins}{agebins} -\item{nagebins}{nagebins} -\item{accuage}{accuage} -\item{nareas}{nareas} -\item{startyr}{startyr} -\item{endyr}{endyr} -\item{nseasons}{nseasons} -\item{seasfracs}{seasfracs} -\item{seasdurations}{seasdurations} -\item{N_sub_seasons}{N_sub_seasons} -\item{Spawn_month}{Spawn_month} -\item{Spawn_seas}{Spawn_seas} -\item{Spawn_timing_in_season}{Spawn_timing_in_season} -\item{Retro_year}{Retro_year} -\item{N_forecast_yrs}{N_forecast_yrs} -\item{Empirical_wt_at_age}{Empirical_wt_at_age} -\item{N_bio_patterns}{N_bio_patterns} -\item{N_platoons}{N_platoons} -\item{NatMort_option}{NatMort_option} -\item{GrowthModel_option}{GrowthModel_option} -\item{Maturity_option}{Maturity_option} -\item{Fecundity_option}{Fecundity_option} -\item{Start_from_par}{Start_from_par} -\item{Do_all_priors}{Do_all_priors} -\item{Use_softbound}{Use_softbound} -\item{N_nudata}{N_nudata} -\item{Max_phase}{Max_phase} -\item{Current_phase}{Current_phase} -\item{Jitter}{Jitter} -\item{ALK_tolerance}{ALK_tolerance} -\item{nforecastyears}{nforecastyears} -\item{morph_indexing}{morph_indexing} -\item{MGparmAdj}{MGparmAdj} -\item{forecast_selectivity}{forecast_selectivity} -\item{SelSizeAdj}{SelSizeAdj} -\item{SelAgeAdj}{SelAgeAdj} -\item{recruitment_dist}{recruitment_dist} -\item{recruit}{recruit} -\item{SPAWN_RECR_CURVE}{SPAWN_RECR_CURVE} -\item{breakpoints_for_bias_adjustment_ramp}{breakpoints_for_bias_adjustment_ramp} -\item{SpawnOutputUnits}{SpawnOutputUnits} -\item{biology}{biology} -\item{FecType}{FecType} -\item{FecPar1name}{FecPar1name} -\item{FecPar2name}{FecPar2name} -\item{FecPar1}{FecPar1} -\item{FecPar2}{FecPar2} -\item{M_type}{M_type} -\item{Natural_Mortality_Bmark}{Natural_Mortality_Bmark} -\item{Natural_Mortality_endyr}{Natural_Mortality_endyr} -\item{Growth_Parameters}{Growth_Parameters} -\item{growthCVtype}{growthCVtype} -\item{endgrowth}{endgrowth} -\item{wtatage_switch}{wtatage_switch} -\item{mean_body_wt}{mean_body_wt} -\item{growthseries}{growthseries} -\item{growthvaries}{growthvaries} -\item{sizeselex}{sizeselex} -\item{ageselex}{ageselex} -\item{F_method}{F_method} -\item{exploitation}{exploitation} -\item{catch}{catch} -\item{summary_age}{summary_age} -\item{timeseries}{timeseries} -\item{spawnseas}{spawnseas} -\item{mainmorphs}{mainmorphs} -\item{birthseas}{birthseas} -\item{depletion_method}{depletion_method} -\item{depletion_basis}{depletion_basis} -\item{discard}{discard} -\item{discard_type}{discard_type} -\item{DF_discard}{DF_discard} -\item{discard_spec}{discard_spec} -\item{mnwgt}{mnwgt} -\item{DF_mnwgt}{DF_mnwgt} -\item{sprseries}{sprseries} -\item{managementratiolabels}{managementratiolabels} -\item{F_report_basis}{F_report_basis} -\item{B_ratio_denominator}{B_ratio_denominator} -\item{sprtarg}{sprtarg} -\item{btarg}{btarg} -\item{minbthresh}{minbthresh} -\item{Kobe_warn}{Kobe_warn} -\item{Kobe_MSY_basis}{Kobe_MSY_basis} -\item{Kobe}{Kobe} -\item{index_variance_tuning_check}{index_variance_tuning_check} -\item{cpue}{cpue} -\item{natage}{natage} -\item{natage_annual_1_no_fishery}{natage_annual_1_no_fishery} -\item{natage_annual_2_with_fishery}{natage_annual_2_with_fishery} -\item{batage}{batage} -\item{natlen}{natlen} -\item{batlen}{batlen} -\item{fatage}{fatage} -\item{discard_at_age}{discard_at_age} -\item{catage}{catage} -\item{movement}{movement} -\item{ALK}{ALK} -\item{N_ageerror_defs}{N_ageerror_defs} -\item{equil_yield}{equil_yield} -\item{Z_at_age}{Z_at_age} -\item{M_at_age}{M_at_age} -\item{Dynamic_Bzero}{Dynamic_Bzero} -\item{comp_data_exists}{comp_data_exists} -\item{lendbase}{lendbase} -\item{sizedbase}{sizedbase} -\item{agedbase}{agedbase} -\item{condbase}{condbase} -\item{ghostagedbase}{ghostagedbase} -\item{ghostcondbase}{ghostcondbase} -\item{ghostlendbase}{ghostlendbase} -\item{ladbase}{ladbase} -\item{wadbase}{wadbase} -\item{tagdbase1}{tagdbase1} -\item{tagdbase2}{tagdbase2} -\item{len_comp_fit_table}{len_comp_fit_table} -\item{size_comp_fit_table}{size_comp_fit_table} -\item{derived_quants}{derived_quants} -\item{parameters}{parameters} -\item{FleetNames}{FleetNames} -\item{repfiletime}{repfiletime} -\item{SRRtype}{SRRtype} -\item{Pstar_sigma}{Pstar_sigma} -\item{OFL_sigma}{OFL_sigma} -\item{CoVar}{CoVar} -\item{highcor}{highcor} -\item{lowcor}{lowcor} -\item{corstats}{corstats} -\item{stdtable}{stdtable} -\item{recruitpars}{recruitpars} -\item{RecrDistpars}{RecrDistpars} -\item{wtatage}{wtatage} -\item{jitter_info}{jitter_info} -\item{SS_version}{SS_version} -\item{SS_versionshort}{SS_versionshort} -\item{SS_versionNumeric}{SS_versionNumeric} -\item{StartTime}{StartTime} -\item{RunTime}{RunTime} -\item{Files_used}{Files_used} -\item{Nwarnings}{Nwarnings} -\item{warnings}{warnings} -\item{likelihoods_used}{likelihoods_used} -\item{likelihoods_laplace}{likelihoods_laplace} -\item{likelihoods_by_fleet}{likelihoods_by_fleet} -\item{N_estimated_parameters}{N_estimated_parameters} -\item{table_of_phases}{table_of_phases} -\item{estimated_non_dev_parameters}{estimated_non_dev_parameters} -\item{log_det_hessian}{log_det_hessian} -\item{maximum_gradient_component}{maximum_gradient_component} -\item{parameters_with_highest_gradients}{parameters_with_highest_gradients} -\item{Length_Comp_Fit_Summary}{Length_Comp_Fit_Summary} -\item{Age_Comp_Fit_Summary}{Age_Comp_Fit_Summary} -\item{SBzero}{SBzero} -\item{current_depletion}{current_depletion} -\item{last_years_SPR}{last_years_SPR} -\item{SPRratioLabel}{SPRratioLabel} -\item{sigma_R_in}{sigma_R_in} -\item{sigma_R_info}{sigma_R_info} -\item{rmse_table}{rmse_table} -\item{logfile}{logfile} -\item{inputs}{inputs} -} -} -\source{ -simulated with \pkg{ss3sim} -} -\usage{ -simple -} -\description{ -Stock Synthesis output read by \code{\link[r4ss]{SS_output}()} -} -\author{ -R. Methot, -} -\keyword{datasets} diff --git a/model_recipes/ASPM/control_modified.ss b/model_recipes/ASPM/control_modified.ss deleted file mode 100644 index fd6e701..0000000 --- a/model_recipes/ASPM/control_modified.ss +++ /dev/null @@ -1,298 +0,0 @@ -#V3.30.xx.yy;_safe;_compile_date:_Dec 7 2021;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_12.3 -#_Stock_Synthesis_is_a_work_of_the_U.S._Government_and_is_not_subject_to_copyright_protection_in_the_United_States. -#_Foreign_copyrights_may_apply._See_copyright.txt_for_more_information. -#_User_support_available_at:NMFS.Stock.Synthesis@noaa.gov -#_User_info_available_at:https://vlab.noaa.gov/group/stock-synthesis -#_Source_code_at:_https://github.com/nmfs-stock-synthesis/stock-synthesis - -#C file created using the SS_writectl function in the R package r4ss -#C file write time: 2022-01-18 13:21:07 -#_data_and_control_files: ss3.dat // em.ctl -0 # 0 means do not read wtatage.ss; 1 means read and use wtatage.ss and also read and use growth parameters -1 #_N_Growth_Patterns (Growth Patterns, Morphs, Bio Patterns, GP are terms used interchangeably in SS3) -1 #_N_platoons_Within_GrowthPattern -#_Cond 1 #_Platoon_within/between_stdev_ratio (no read if N_platoons=1) -#_Cond 1 #vector_platoon_dist_(-1_in_first_val_gives_normal_approx) -# -2 # recr_dist_method for parameters: 2=main effects for GP, Area, Settle timing; 3=each Settle entity; 4=none (only when N_GP*Nsettle*pop==1) -1 # not yet implemented; Future usage: Spawner-Recruitment: 1=global; 2=by area -1 # number of recruitment settlement assignments -0 # unused option -#GPattern month area age (for each settlement assignment) - 1 1 1 0 -# -#_Cond 0 # N_movement_definitions goes here if Nareas > 1 -#_Cond 1.0 # first age that moves (real age at begin of season, not integer) also cond on do_migration>0 -#_Cond 1 1 1 2 4 10 # example move definition for seas=1, morph=1, source=1 dest=2, age1=4, age2=10 -# -0 #_Nblock_Patterns -#_Cond 0 #_blocks_per_pattern -# begin and end years of blocks -# -# controls for all timevary parameters -1 #_time-vary parm bound check (1=warn relative to base parm bounds; 3=no bound check); Also see env (3) and dev (5) options to constrain with base bounds -# -# AUTOGEN - 0 0 0 0 0 # autogen: 1st element for biology, 2nd for SR, 3rd for Q, 4th reserved, 5th for selex -# where: 0 = autogen time-varying parms of this category; 1 = read each time-varying parm line; 2 = read then autogen if parm min==-12345 -# -#_Available timevary codes -#_Block types: 0: P_block=P_base*exp(TVP); 1: P_block=P_base+TVP; 2: P_block=TVP; 3: P_block=P_block(-1) + TVP -#_Block_trends: -1: trend bounded by base parm min-max and parms in transformed units (beware); -2: endtrend and infl_year direct values; -3: end and infl as fraction of base range -#_EnvLinks: 1: P(y)=P_base*exp(TVP*env(y)); 2: P(y)=P_base+TVP*env(y); 3: P(y)=f(TVP,env_Zscore) w/ logit to stay in min-max; 4: P(y)=2.0/(1.0+exp(-TVP1*env(y) - TVP2)) -#_DevLinks: 1: P(y)*=exp(dev(y)*dev_se; 2: P(y)+=dev(y)*dev_se; 3: random walk; 4: zero-reverting random walk with rho; 5: like 4 with logit transform to stay in base min-max -#_DevLinks(more): 21-25 keep last dev for rest of years -# -#_Prior_codes: 0=none; 6=normal; 1=symmetric beta; 2=CASAL's beta; 3=lognormal; 4=lognormal with biascorr; 5=gamma -# -# setup for M, growth, wt-len, maturity, fecundity, (hermaphro), recr_distr, cohort_grow, (movement), (age error), (catch_mult), sex ratio -#_NATMORT -0 #_natM_type:_0=1Parm; 1=N_breakpoints;_2=Lorenzen;_3=agespecific;_4=agespec_withseasinterpolate;_5=BETA:_Maunder_link_to_maturity - #_no additional input for selected M option; read 1P per morph -# -1 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2; 3=age_specific_K_incr; 4=age_specific_K_decr; 5=age_specific_K_each; 6=NA; 7=NA; 8=growth cessation -1 #_Age(post-settlement)_for_L1;linear growth below this -999 #_Growth_Age_for_L2 (999 to use as Linf) --999 #_exponential decay for growth above maxage (value should approx initial Z; -999 replicates 3.24; -998 to not allow growth above maxage) -0 #_placeholder for future growth feature -# -0 #_SD_add_to_LAA (set to 0.1 for SS2 V1.x compatibility) -0 #_CV_Growth_Pattern: 0 CV=f(LAA); 1 CV=F(A); 2 SD=F(LAA); 3 SD=F(A); 4 logSD=F(A) -# -1 #_maturity_option: 1=length logistic; 2=age logistic; 3=read age-maturity matrix by growth_pattern; 4=read age-fecundity; 5=disabled; 6=read length-maturity -0 #_First_Mature_Age -1 #_fecundity option:(1)eggs=Wt*(a+b*Wt);(2)eggs=a*L^b;(3)eggs=a*Wt^b; (4)eggs=a+b*L; (5)eggs=a+b*W -0 #_hermaphroditism option: 0=none; 1=female-to-male age-specific fxn; -1=male-to-female age-specific fxn -1 #_parameter_offset_approach for M, G, CV_G: 1- direct, no offset**; 2- male=fem_parm*exp(male_parm); 3: male=female*exp(parm) then old=young*exp(parm) -#_** in option 1, any male parameter with value = 0.0 and phase <0 is set equal to female parameter -# -#_growth_parms -#_ LO HI INIT PRIOR PR_SD PR_type PHASE env_var&link dev_link dev_minyr dev_maxyr dev_PH Block Block_Fxn -# Sex: 1 BioPattern: 1 NatMort - 0.01 1.8 0.2 0.1 0.8 0 -3 0 0 0 0 0 0 0 # NatM_uniform_Fem_GP_1 -# Sex: 1 BioPattern: 1 Growth - 1 100 19.6626 30.8 0.2 0 4 0 0 0 0 0 0 0 # L_at_Amin_Fem_GP_1 - 6.6 660 131.874 120.1 0.2 0 4 0 0 0 0 0 0 0 # L_at_Amax_Fem_GP_1 - 0.01 1 0.201433 0.25 0.8 0 4 0 0 0 0 0 0 0 # VonBert_K_Fem_GP_1 - 0.01 0.5 0.101703 0.1 0.8 0 5 0 0 0 0 0 0 0 # CV_young_Fem_GP_1 - 0.01 0.5 0.0948038 0.1 0.8 0 5 0 0 0 0 0 0 0 # CV_old_Fem_GP_1 -# Sex: 1 BioPattern: 1 WtLen - 0 3 6.8e-06 6.8e-06 0 0 -1 0 0 0 0 0 0 0 # Wtlen_1_Fem_GP_1 - 2.5 3.5 3.101 3.101 0.2 0 -3 0 0 0 0 0 0 0 # Wtlen_2_Fem_GP_1 -# Sex: 1 BioPattern: 1 Maturity&Fecundity - 10 50 38.18 0 0 0 -3 0 0 0 0 0 0 0 # Mat50%_Fem_GP_1 - -2 2 -0.276 0 0 0 -3 0 0 0 0 0 0 0 # Mat_slope_Fem_GP_1 - -3 3 1 0 0 0 -3 0 0 0 0 0 0 0 # Eggs/kg_inter_Fem_GP_1 - -3 4 0 0 0 0 -3 0 0 0 0 0 0 0 # Eggs/kg_slope_wt_Fem_GP_1 -# Hermaphroditism -# Recruitment Distribution - -4 4 0 0 0 0 -4 0 0 0 0 0 0 0 # RecrDist_GP_1 - -4 4 0 0 0 0 -4 0 0 0 0 0 0 0 # RecrDist_Area_1 - -4 4 0 0 0 0 -4 0 0 0 0 0 0 0 # RecrDist_month_1 -# Cohort growth dev base - -4 4 1 0 0 0 -4 0 0 0 0 0 0 0 # CohortGrowDev -# Movement -# Age Error from parameters -# catch multiplier -# fraction female, by GP - 1e-06 0.999999 0.5 0.5 0.5 0 -99 0 0 0 0 0 0 0 # FracFemale_GP_1 -# M2 parameter for each predator fleet -# -#_no timevary MG parameters -# -#_seasonal_effects_on_biology_parms - 0 0 0 0 0 0 0 0 0 0 #_femwtlen1,femwtlen2,mat1,mat2,fec1,fec2,Malewtlen1,malewtlen2,L1,K -#_ LO HI INIT PRIOR PR_SD PR_type PHASE -#_Cond -2 2 0 0 -1 99 -2 #_placeholder when no seasonal MG parameters -# -3 #_Spawner-Recruitment; Options: 1=NA; 2=Ricker; 3=std_B-H; 4=SCAA; 5=Hockey; 6=B-H_flattop; 7=survival_3Parm; 8=Shepherd_3Parm; 9=RickerPower_3parm -0 # 0/1 to use steepness in initial equ recruitment calculation -0 # future feature: 0/1 to make realized sigmaR a function of SR curvature -#_ LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 4 20 18.6851 10.3 10 0 1 0 0 0 0 0 0 0 # SR_LN(R0) - 0.2 1 0.65 0.7 0.05 0 -4 0 0 0 0 0 0 0 # SR_BH_steep - 0 2 0.4 0.8 0.8 0 -5 0 0 0 0 0 0 0 # SR_sigmaR - -5 5 0 0 1 0 -4 0 0 0 0 0 0 0 # SR_regime - 0 0 0 0 0 0 -99 0 0 0 0 0 0 0 # SR_autocorr -#_no timevary SR parameters -1 #do_recdev: 0=none; 1=devvector (R=F(SSB)+dev); 2=deviations (R=F(SSB)+dev); 3=deviations (R=R0*dev; dev2=R-f(SSB)); 4=like 3 with sum(dev2) adding penalty -6 # first year of main recr_devs; early devs can preceed this era -100 # last year of main recr_devs; forecast devs start in following year -3 #_recdev phase -1 # (0/1) to read 13 advanced options - 1 #_recdev_early_start (0=none; neg value makes relative to recdev_start) - 4 #_recdev_early_phase - 0 #_forecast_recruitment phase (incl. late recr) (0 value resets to maxphase+1) - 1 #_lambda for Fcast_recr_like occurring before endyr+1 - 1 #_last_yr_nobias_adj_in_MPD; begin of ramp - 26 #_first_yr_fullbias_adj_in_MPD; begin of plateau - 99 #_last_yr_fullbias_adj_in_MPD - 100 #_end_yr_for_ramp_in_MPD (can be in forecast to shape ramp, but SS3 sets bias_adj to 0.0 for fcast yrs) - 0.9 #_max_bias_adj_in_MPD (typical ~0.8; -3 sets all years to 0.0; -2 sets all non-forecast yrs w/ estimated recdevs to 1.0; -1 sets biasadj=1.0 for all yrs w/ recdevs) - 0 #_period of cycles in recruitment (N parms read below) - -5 #min rec_dev - 5 #max rec_dev - 0 #_read_recdevs -#_end of advanced SR options -# -#_placeholder for full parameter lines for recruitment cycles -# read specified recr devs -#_Yr Input_value -# -# all recruitment deviations -# 1E 2E 3E 4E 5E 6R 7R 8R 9R 10R 11R 12R 13R 14R 15R 16R 17R 18R 19R 20R 21R 22R 23R 24R 25R 26R 27R 28R 29R 30R 31R 32R 33R 34R 35R 36R 37R 38R 39R 40R 41R 42R 43R 44R 45R 46R 47R 48R 49R 50R 51R 52R 53R 54R 55R 56R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R 67R 68R 69R 70R 71R 72R 73R 74R 75R 76R 77R 78R 79R 80R 81R 82R 83R 84R 85R 86R 87R 88R 89R 90R 91R 92R 93R 94R 95R 96R 97R 98R 99R 100R 101F -# -0.145838 -0.0725473 -0.0869691 -0.10382 -0.123503 -0.15247 -0.0436053 -0.0770835 -0.114908 -0.0370061 0.132648 -0.144065 -0.100891 -0.269247 -0.24343 0.00832954 0.178719 0.501788 0.177933 -0.0117221 -0.167328 0.418686 0.13672 0.17198 -0.489129 0.0730857 0.186681 0.302119 0.214763 0.00655178 -0.255627 0.315297 0.209727 0.0926535 -0.660056 0.492319 -0.417149 0.423141 -0.508938 -0.0420372 -0.364111 0.779893 -1.03555 -0.608528 0.385943 0.166741 -0.458649 -0.194596 0.296263 -0.392339 -0.0598324 -0.281591 -0.439795 0.336971 -0.0476145 -0.0431821 -0.179924 -0.00948754 0.554814 -0.339835 -0.0661434 -0.0251738 -0.0697697 0.0203787 0.127873 -0.100637 0.000965748 0.128397 0.36478 -0.272796 1.01135 -0.545796 0.575168 -0.0106468 -0.599071 0.0029361 0.162498 -0.267796 -0.326012 0.0290013 0.106335 -0.238449 0.601904 -0.0233223 -0.457556 0.900143 0.766584 0.0708632 -0.496495 -0.117036 0.374251 -0.0153482 -0.237851 0.235128 -0.640728 -0.0938085 0.500342 0.390181 -0.123161 -0.0155234 0 -# -#Fishing Mortality info -0.3 # F ballpark value in units of annual_F --2001 # F ballpark year (neg value to disable) -3 # F_Method: 1=Pope midseason rate; 2=F as parameter; 3=F as hybrid; 4=fleet-specific parm/hybrid (#4 is superset of #2 and #3 and is recommended) -4 # max F (methods 2-4) or harvest fraction (method 1) -4 # N iterations for tuning in hybrid mode; recommend 3 (faster) to 5 (more precise if many fleets) -# -#_initial_F_parms; for each fleet x season that has init_catch; nest season in fleet; count = 0 -#_for unconstrained init_F, use an arbitrary initial catch and set lambda=0 for its logL -#_ LO HI INIT PRIOR PR_SD PR_type PHASE -# -# F rates by fleet x season -# Yr: 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 -# seas: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -# Fishery 0.103483 0.105217 0.106775 0.10757 0.107966 0.108686 0.110013 0.111148 0.112188 0.112985 0.112831 0.112827 0.112762 0.112477 0.111135 0.108576 0.108021 0.106142 0.105132 0.106171 0.105409 0.105964 0.105477 0.104425 0.103314 0.104168 0.101757 0.101422 0.102732 0.10338 0.102869 0.104763 0.104564 0.104582 0.104097 0.103556 0.103996 0.10515 0.106825 0.106846 0.108283 0.108993 0.110001 0.109938 0.110997 0.108176 0.107939 0.10637 0.107026 0.105264 0.105139 0.105515 0.103744 0.104469 0.104708 0.104076 0.105111 0.106518 0.107406 0.107962 0.108632 0.108961 0.109369 0.108184 0.108603 0.108373 0.108294 0.108421 0.107628 0.107924 0.108729 0.110026 0.111509 0.114046 0.117586 0 -# -#_Q_setup for fleets with cpue or survey data -#_1: fleet number -#_2: link type: (1=simple q, 1 parm; 2=mirror simple q, 1 mirrored parm; 3=q and power, 2 parm; 4=mirror with offset, 2 parm) -#_3: extra input for link, i.e. mirror fleet# or dev index number -#_4: 0/1 to select extra sd parameter -#_5: 0/1 for biasadj or not -#_6: 0/1 to float -#_ fleet link link_info extra_se biasadj float # fleetname - 2 1 0 0 0 0 # Survey --9999 0 0 0 0 0 -# -#_Q_parms(if_any);Qunits_are_ln(q) -#_ LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - -20 20 0.116606 0 99 0 5 0 0 0 0 0 0 0 # LnQ_base_Survey(2) -#_no timevary Q parameters -# -#_size_selex_patterns -#Pattern:_0; parm=0; selex=1.0 for all sizes -#Pattern:_1; parm=2; logistic; with 95% width specification -#Pattern:_2; parm=6; modification of pattern 24 with improved sex-specific offset -#Pattern:_5; parm=2; mirror another size selex; PARMS pick the min-max bin to mirror -#Pattern:_11; parm=2; selex=1.0 for specified min-max population length bin range -#Pattern:_15; parm=0; mirror another age or length selex -#Pattern:_6; parm=2+special; non-parm len selex -#Pattern:_43; parm=2+special+2; like 6, with 2 additional param for scaling (average over bin range) -#Pattern:_8; parm=8; double_logistic with smooth transitions and constant above Linf option -#Pattern:_9; parm=6; simple 4-parm double logistic with starting length; parm 5 is first length; parm 6=1 does desc as offset -#Pattern:_21; parm=2+special; non-parm len selex, read as pairs of size, then selex -#Pattern:_22; parm=4; double_normal as in CASAL -#Pattern:_23; parm=6; double_normal where final value is directly equal to sp(6) so can be >1.0 -#Pattern:_24; parm=6; double_normal with sel(minL) and sel(maxL), using joiners -#Pattern:_25; parm=3; exponential-logistic in length -#Pattern:_27; parm=special+3; cubic spline in length; parm1==1 resets knots; parm1==2 resets all -#Pattern:_42; parm=special+3+2; cubic spline; like 27, with 2 additional param for scaling (average over bin range) -#_discard_options:_0=none;_1=define_retention;_2=retention&mortality;_3=all_discarded_dead;_4=define_dome-shaped_retention -#_Pattern Discard Male Special - 24 0 0 0 # 1 Fishery - 24 0 0 0 # 2 Survey -# -#_age_selex_patterns -#Pattern:_0; parm=0; selex=1.0 for ages 0 to maxage -#Pattern:_10; parm=0; selex=1.0 for ages 1 to maxage -#Pattern:_11; parm=2; selex=1.0 for specified min-max age -#Pattern:_12; parm=2; age logistic -#Pattern:_13; parm=8; age double logistic -#Pattern:_14; parm=nages+1; age empirical -#Pattern:_15; parm=0; mirror another age or length selex -#Pattern:_16; parm=2; Coleraine - Gaussian -#Pattern:_17; parm=nages+1; empirical as random walk N parameters to read can be overridden by setting special to non-zero -#Pattern:_41; parm=2+nages+1; // like 17, with 2 additional param for scaling (average over bin range) -#Pattern:_18; parm=8; double logistic - smooth transition -#Pattern:_19; parm=6; simple 4-parm double logistic with starting age -#Pattern:_20; parm=6; double_normal,using joiners -#Pattern:_26; parm=3; exponential-logistic in age -#Pattern:_27; parm=3+special; cubic spline in age; parm1==1 resets knots; parm1==2 resets all -#Pattern:_42; parm=2+special+3; // cubic spline; with 2 additional param for scaling (average over bin range) -#Age patterns entered with value >100 create Min_selage from first digit and pattern from remainder -#_Pattern Discard Male Special - 11 0 0 0 # 1 Fishery - 11 0 0 0 # 2 Survey -# -#_ LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name -# 1 Fishery LenSelex - 5.08 101.6 51.5452 50.8 0.05 0 2 0 0 0 0 0 0 0 # Size_DblN_peak_Fishery(1) - -5 3 -3 -3 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_top_logit_Fishery(1) - 0 25.5 5.22693 5.1 0.05 0 3 0 0 0 0 0 0 0 # Size_DblN_ascend_se_Fishery(1) - -2 16 15 15 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_descend_se_Fishery(1) - -15 5 -999 -999 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_start_logit_Fishery(1) - -5 1000 999 999 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_end_logit_Fishery(1) -# 2 Survey LenSelex - 4.18 83.6 43.0813 41.8 0.05 0 2 0 0 0 0 0 0 0 # Size_DblN_peak_Survey(2) - -5 3 -4 -4 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_top_logit_Survey(2) - 0 26 5.94726 5.2 0.05 0 3 0 0 0 0 0 0 0 # Size_DblN_ascend_se_Survey(2) - -2 15 14 14 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_descend_se_Survey(2) - -100 100 -99 -99 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_start_logit_Survey(2) - -100 100 99 99 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_end_logit_Survey(2) -# 1 Fishery AgeSelex - 0 1 0 0.1 99 0 -99 0 0 0 0 0.5 0 0 # minage@sel=1_Fishery(1) - 0 101 25 100 99 0 -99 0 0 0 0 0.5 0 0 # maxage@sel=1_Fishery(1) -# 2 Survey AgeSelex - 0 1 0 0.1 99 0 -99 0 0 0 0 0.5 0 0 # minage@sel=1_Survey(2) - 0 101 25 100 99 0 -99 0 0 0 0 0.5 0 0 # maxage@sel=1_Survey(2) -#_No_Dirichlet parameters -#_no timevary selex parameters -# -0 # use 2D_AR1 selectivity(0/1) -#_no 2D_AR1 selex offset used -# -# Tag loss and Tag reporting parameters go next -0 # TG_custom: 0=no read and autogen if tag data exist; 1=read -#_Cond -6 6 1 1 2 0.01 -4 0 0 0 0 0 0 0 #_placeholder if no parameters -# -# no timevary parameters -# -# -# Input variance adjustments factors: - #_1=add_to_survey_CV - #_2=add_to_discard_stddev - #_3=add_to_bodywt_CV - #_4=mult_by_lencomp_N - #_5=mult_by_agecomp_N - #_6=mult_by_size-at-age_N - #_7=mult_by_generalized_sizecomp -#_Factor Fleet Value - -9999 1 0 # terminator -# -4 #_maxlambdaphase -1 #_sd_offset; must be 1 if any growthCV, sigmaR, or survey extraSD is an estimated parameter -# read 0 changes to default Lambdas (default value is 1.0) -# Like_comp codes: 1=surv; 2=disc; 3=mnwt; 4=length; 5=age; 6=SizeFreq; 7=sizeage; 8=catch; 9=init_equ_catch; -# 10=recrdev; 11=parm_prior; 12=parm_dev; 13=CrashPen; 14=Morphcomp; 15=Tag-comp; 16=Tag-negbin; 17=F_ballpark; 18=initEQregime -#like_comp fleet phase value sizefreq_method --9999 1 1 1 1 # terminator -# -# lambdas (for info only; columns are phases) -# 0 0 0 0 #_CPUE/survey:_1 -# 1 1 1 1 #_CPUE/survey:_2 -# 1 1 1 1 #_lencomp:_1 -# 1 1 1 1 #_lencomp:_2 -# 1 1 1 1 #_agecomp:_1 -# 1 1 1 1 #_agecomp:_2 -# 1 1 1 1 #_init_equ_catch1 -# 1 1 1 1 #_init_equ_catch2 -# 1 1 1 1 #_recruitments -# 1 1 1 1 #_parameter-priors -# 1 1 1 1 #_parameter-dev-vectors -# 1 1 1 1 #_crashPenLambda -# 0 0 0 0 # F_ballpark_lambda -0 # (0/1/2) read specs for more stddev reporting: 0 = skip, 1 = read specs for reporting stdev for selectivity, size, and numbers, 2 = add options for M,Dyn. Bzero, SmryBio - # 0 2 0 0 # Selectivity: (1) fleet, (2) 1=len/2=age/3=both, (3) year, (4) N selex bins - # 0 0 # Growth: (1) growth pattern, (2) growth ages - # 0 0 0 # Numbers-at-age: (1) area(-1 for all), (2) year, (3) N ages - # -1 # list of bin #'s for selex std (-1 in first bin to self-generate) - # -1 # list of ages for growth std (-1 in first bin to self-generate) - # -1 # list of ages for NatAge std (-1 in first bin to self-generate) -999 - diff --git a/model_recipes/ASPM/em.ctl b/model_recipes/ASPM/em.ctl deleted file mode 100644 index 4257150..0000000 --- a/model_recipes/ASPM/em.ctl +++ /dev/null @@ -1,175 +0,0 @@ -#V3.30 -#C file created using the SS_writectl function in the R package r4ss -#C file write time: 2022-01-18 13:21:07 -# -0 # 0 means do not read wtatage.ss; 1 means read and usewtatage.ss and also read and use growth parameters -1 #_N_Growth_Patterns -1 #_N_platoons_Within_GrowthPattern -2 # recr_dist_method for parameters -1 # not yet implemented; Future usage:Spawner-Recruitment; 1=global; 2=by area -1 # number of recruitment settlement assignments -0 # unused option -# for each settlement assignment: -#_GPattern month area age -1 1 1 0 #_recr_dist_pattern1 -# -#_Cond 0 # N_movement_definitions goes here if N_areas > 1 -#_Cond 1.0 # first age that moves (real age at begin of season, not integer) also cond on do_migration>0 -#_Cond 1 1 1 2 4 10 # example move definition for seas=1, morph=1, source=1 dest=2, age1=4, age2=10 -# -0 #_Nblock_Patterns -#_Cond 0 #_blocks_per_pattern -# begin and end years of blocks -# -# controls for all timevary parameters -1 #_env/block/dev_adjust_method for all time-vary parms (1=warn relative to base parm bounds; 3=no bound check) -# -# AUTOGEN -0 0 0 0 0 # autogen: 1st element for biology, 2nd for SR, 3rd for Q, 4th reserved, 5th for selex -# where: 0 = autogen all time-varying parms; 1 = read each time-varying parm line; 2 = read then autogen if parm min==-12345 -# -# setup for M, growth, maturity, fecundity, recruitment distibution, movement -# -0 #_natM_type:_0=1Parm; 1=N_breakpoints;_2=Lorenzen;_3=agespecific;_4=agespec_withseasinterpolate -#_no additional input for selected M option; read 1P per morph -1 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2; 3=age_specific_K_incr; 4=age_specific_K_decr;5=age_specific_K_each; 6=NA; 7=NA; 8=growth cessation -1 #_Age(post-settlement)_for_L1;linear growth below this -999 #_Growth_Age_for_L2 (999 to use as Linf) --999 #_exponential decay for growth above maxage (value should approx initial Z; -999 replicates 3.24; -998 to not allow growth above maxage) -0 #_placeholder for future growth feature -# -0 #_SD_add_to_LAA (set to 0.1 for SS2 V1.x compatibility) -0 #_CV_Growth_Pattern: 0 CV=f(LAA); 1 CV=F(A); 2 SD=F(LAA); 3 SD=F(A); 4 logSD=F(A) -1 #_maturity_option: 1=length logistic; 2=age logistic; 3=read age-maturity matrix by growth_pattern; 4=read age-fecundity; 5=disabled; 6=read length-maturity -0 #_First_Mature_Age -1 #_fecundity option:(1)eggs=Wt*(a+b*Wt);(2)eggs=a*L^b;(3)eggs=a*Wt^b; (4)eggs=a+b*L; (5)eggs=a+b*W -0 #_hermaphroditism option: 0=none; 1=female-to-male age-specific fxn; -1=male-to-female age-specific fxn -1 #_parameter_offset_approach (1=none, 2= M, G, CV_G as offset from female-GP1, 3=like SS2 V1.x) -# -#_growth_parms -#_LO HI INIT PRIOR PR_SD PR_type PHASE env_var&link dev_link dev_minyr dev_maxyr dev_PH Block Block_Fxn - 1.0e-02 1.800000 2.000e-01 1.000e-01 0.8 0 -3 0 0 0 0 0 0 0 #_NatM_p_1_Fem_GP_1 - 1.0e+00 100.000000 2.000e+01 3.080e+01 0.2 0 4 0 0 0 0 0 0 0 #_L_at_Amin_Fem_GP_1 - 6.6e+00 660.000000 1.320e+02 1.201e+02 0.2 0 4 0 0 0 0 0 0 0 #_L_at_Amax_Fem_GP_1 - 1.0e-02 1.000000 2.000e-01 2.500e-01 0.8 0 4 0 0 0 0 0 0 0 #_VonBert_K_Fem_GP_1 - 1.0e-02 0.500000 1.000e-01 1.000e-01 0.8 0 5 0 0 0 0 0 0 0 #_CV_young_Fem_GP_1 - 1.0e-02 0.500000 1.000e-01 1.000e-01 0.8 0 5 0 0 0 0 0 0 0 #_CV_old_Fem_GP_1 - 0.0e+00 3.000000 6.800e-06 6.800e-06 0.0 0 -1 0 0 0 0 0 0 0 #_Wtlen_1_Fem_GP_1 - 2.5e+00 3.500000 3.101e+00 3.101e+00 0.2 0 -3 0 0 0 0 0 0 0 #_Wtlen_2_Fem_GP_1 - 1.0e+01 50.000000 3.818e+01 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Mat50%_Fem_GP_1 --2.0e+00 2.000000 -2.760e-01 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Mat_slope_Fem_GP_1 --3.0e+00 3.000000 1.000e+00 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Eggs/kg_inter_Fem_GP_1 --3.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Eggs/kg_slope_wt_Fem_GP_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_GP_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_Area_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_month_1 --4.0e+00 4.000000 1.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_CohortGrowDev - 1.0e-06 0.999999 5.000e-01 5.000e-01 0.5 0 -99 0 0 0 0 0 0 0 #_FracFemale_GP_1 -#_no timevary MG parameters -# -#_seasonal_effects_on_biology_parms -0 0 0 0 0 0 0 0 0 0 #_femwtlen1,femwtlen2,mat1,mat2,fec1,fec2,Malewtlen1,malewtlen2,L1,K -#_ LO HI INIT PRIOR PR_SD PR_type PHASE -#_Cond -2 2 0 0 -1 99 -2 #_placeholder when no seasonal MG parameters -# -3 #_Spawner-Recruitment; 2=Ricker; 3=std_B-H; 4=SCAA;5=Hockey; 6=B-H_flattop; 7=survival_3Parm;8=Shepard_3Parm -0 # 0/1 to use steepness in initial equ recruitment calculation -0 # future feature: 0/1 to make realized sigmaR a function of SR curvature -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 4.0 20 18.70 10.3 10.00 0 1 0 0 0 0 0 0 0 #_SR_LN(R0) - 0.2 1 0.65 0.7 0.05 0 -4 0 0 0 0 0 0 0 #_SR_BH_steep - 0.0 2 0.40 0.8 0.80 0 -5 0 0 0 0 0 0 0 #_SR_sigmaR --5.0 5 0.00 0.0 1.00 0 -4 0 0 0 0 0 0 0 #_SR_regime - 0.0 0 0.00 0.0 0.00 0 -99 0 0 0 0 0 0 0 #_SR_autocorr -#_no timevary SR parameters -1 #do_recdev: 0=none; 1=devvector (R=F(SSB)+dev); 2=deviations (R=F(SSB)+dev); 3=deviations (R=R0*dev; dev2=R-f(SSB)); 4=like 3 with sum(dev2) adding penalty -6 # first year of main recr_devs; early devs can preceed this era -100 # last year of main recr_devs; forecast devs start in following year -3 #_recdev phase -1 # (0/1) to read 13 advanced options -1 #_recdev_early_start (0=none; neg value makes relative to recdev_start) -4 #_recdev_early_phase -0 #_forecast_recruitment phase (incl. late recr) (0 value resets to maxphase+1) -1 #_lambda for Fcast_recr_like occurring before endyr+1 -1 #_last_yr_nobias_adj_in_MPD; begin of ramp -26 #_first_yr_fullbias_adj_in_MPD; begin of plateau -99 #_last_yr_fullbias_adj_in_MPD -100 #_end_yr_for_ramp_in_MPD (can be in forecast to shape ramp, but SS sets bias_adj to 0.0 for fcast yrs) -0.9 #_max_bias_adj_in_MPD (-1 to override ramp and set biasadj=1.0 for all estimated recdevs) -0 #_period of cycles in recruitment (N parms read below) --5 #min rec_dev -5 #max rec_dev -0 #_read_recdevs -#_end of advanced SR options -# -#_placeholder for full parameter lines for recruitment cycles -# read specified recr devs -#_Yr Input_value -# -#Fishing Mortality info -0.3 # F ballpark --2001 # F ballpark year (neg value to disable) -3 # F_Method: 1=Pope; 2=instan. F; 3=hybrid (hybrid is recommended) -4 # max F or harvest rate, depends on F_Method -4 # N iterations for tuning F in hybrid method (recommend 3 to 7) -# -#_initial_F_parms; count = 0 -# -#_Q_setup for fleets with cpue or survey data -#_fleet link link_info extra_se biasadj float # fleetname - 2 1 0 0 0 0 #_Survey --9999 0 0 0 0 0 #_terminator -#_Q_parms(if_any);Qunits_are_ln(q) -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name --20 20 0 0 99 0 5 0 0 0 0 0 0 0 #_LnQ_base_Survey(2) -#_no timevary Q parameters -# -#_size_selex_patterns -#_Pattern Discard Male Special -24 0 0 0 #_1 Fishery -24 0 0 0 #_2 Survey -# -#_age_selex_patterns -#_Pattern Discard Male Special -11 0 0 0 #_1 Fishery -11 0 0 0 #_2 Survey -# -#_SizeSelex -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 5.08 101.6 50.8 50.8 0.05 0 2 0 0 0 0 0 0 0 #_SizeSel_P_1_Fishery(1) - -5.00 3.0 -3.0 -3.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_2_Fishery(1) - 0.00 25.5 5.1 5.1 0.05 0 3 0 0 0 0 0 0 0 #_SizeSel_P_3_Fishery(1) - -2.00 16.0 15.0 15.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_4_Fishery(1) - -15.00 5.0 -999.0 -999.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_5_Fishery(1) - -5.00 1000.0 999.0 999.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_6_Fishery(1) - 4.18 83.6 41.8 41.8 0.05 0 2 0 0 0 0 0 0 0 #_SizeSel_P_1_Survey(2) - -5.00 3.0 -4.0 -4.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_2_Survey(2) - 0.00 26.0 5.2 5.2 0.05 0 3 0 0 0 0 0 0 0 #_SizeSel_P_3_Survey(2) - -2.00 15.0 14.0 14.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_4_Survey(2) --100.00 100.0 -99.0 -99.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_5_Survey(2) --100.00 100.0 99.0 99.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_6_Survey(2) -#_AgeSelex -0 1 0.1 0.1 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_1_Fishery(1) -0 101 100.0 100.0 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_2_Fishery(1) -0 1 0.1 0.1 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_1_Survey(2) -0 101 100.0 100.0 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_2_Survey(2) -#_no timevary selex parameters -# -0 # use 2D_AR1 selectivity(0/1): experimental feature -#_no 2D_AR1 selex offset used -# Tag loss and Tag reporting parameters go next -0 # TG_custom: 0=no read; 1=read if tags exist -#_Cond -6 6 1 1 2 0.01 -4 0 0 0 0 0 0 0 #_placeholder if no parameters -# -# Input variance adjustments factors: -#_Factor Fleet Value --9999 1 0 # terminator -# -4 #_maxlambdaphase -1 #_sd_offset; must be 1 if any growthCV, sigmaR, or survey extraSD is an estimated parameter -# read 0 changes to default Lambdas (default value is 1.0) --9999 0 0 0 0 # terminator -# -0 # 0/1 read specs for more stddev reporting -# -999 diff --git a/model_recipes/ASPM/forecast.ss b/model_recipes/ASPM/forecast.ss deleted file mode 100644 index 622e763..0000000 --- a/model_recipes/ASPM/forecast.ss +++ /dev/null @@ -1,59 +0,0 @@ -#V3.30.13.00-trans;_2019_03_09;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_12.0 -#Stock Synthesis (SS) is a work of the U.S. Government and is not subject to copyright protection in the United States. -#Foreign copyrights may apply. See copyright.txt for more information. -#C forecast file written by R function SS_writeforecast -#C rerun model to get more complete formatting in forecast.ss_new -#C should work with SS version: SSv3.21_or_later -#C file write time: 2015-03-14 16:01:17 -# for all year entries except rebuilder; enter either: actual year, -999 for styr, 0 for endyr, neg number for rel. endyr -1 # Benchmarks: 0=skip; 1=calc F_spr,F_btgt,F_msy; 2=calc F_spr,F0.1,F_msy -2 # MSY: 1= set to F(SPR); 2=calc F(MSY); 3=set to F(Btgt) or F0.1; 4=set to F(endyr) -0.4 # SPR target (e.g. 0.40) -0.4 # Biomass target (e.g. 0.40) -#_Bmark_years: beg_bio, end_bio, beg_selex, end_selex, beg_relF, end_relF, beg_recr_dist, end_recr_dist, beg_SRparm, end_SRparm (enter actual year, or values of 0 or -integer to be rel. endyr) - 0 0 0 0 0 0 -999 0 -999 0 -1 #Bmark_relF_Basis: 1 = use year range; 2 = set relF same as forecast below -# -4 # Forecast: 0=none; 1=F(SPR); 2=F(MSY) 3=F(Btgt) or F0.1; 4=Ave F (uses first-last relF yrs); 5=input annual F scalar -1 # N forecast years -0 # F scalar (only used for Do_Forecast==5) -#_Fcast_years: beg_selex, end_selex, beg_relF, end_relF, beg_mean recruits, end_recruits (enter actual year, or values of 0 or -integer to be rel. endyr) - 0 0 0 0 -999 0 -0 # Forecast selectivity (0=fcast selex is mean from year range; 1=fcast selectivity from annual time-vary parms) -2 # Control rule method (1: ramp does catch=f(SSB), buffer on F; 2: ramp does F=f(SSB), buffer on F; 3: ramp does catch=f(SSB), buffer on catch; 4: ramp does F=f(SSB), buffer on catch) -0.4 # Control rule Biomass level for constant F (as frac of Bzero, e.g. 0.40); (Must be > the no F level below) -0.01 # Control rule Biomass level for no F (as frac of Bzero, e.g. 0.10) -0 # Control rule target as fraction of Flimit (e.g. 0.75), negative value invokes list of [year, scalar] with filling from year to YrMax -3 #_N forecast loops (1=OFL only; 2=ABC; 3=get F from forecast ABC catch with allocations applied) -3 #_First forecast loop with stochastic recruitment -0 #_Forecast recruitment: 0= spawn_recr; 1=value*spawn_recr_fxn; 2=value*VirginRecr; 3=recent mean from yr range above (need to set phase to -1 in control to get constant recruitment in MCMC) -1 # value is ignored -0 #_Forecast loop control #5 (reserved for future bells&whistles) -101 #FirstYear for caps and allocations (should be after years with fixed inputs) -0 # stddev of log(realized catch/target catch) in forecast (set value>0.0 to cause active impl_error) -0 # Do West Coast gfish rebuilder output (0/1) -100 # Rebuilder: first year catch could have been set to zero (Ydecl)(-1 to set to 1999) -100 # Rebuilder: year for current age structure (Yinit) (-1 to set to endyear+1) -1 # fleet relative F: 1=use first-last alloc year; 2=read seas, fleet, alloc list below -# Note that fleet allocation is used directly as average F if Do_Forecast=4 -2 # basis for fcast catch tuning and for fcast catch caps and allocation (2=deadbio; 3=retainbio; 5=deadnum; 6=retainnum) -# Conditional input if relative F choice = 2 -# enter list of: season, fleet, relF; if used, terminate with season=-9999 -# 1 1 1 -# -9999 0 0 # terminator for list of relF -# enter list of: fleet number, max annual catch for fleets with a max; terminate with fleet=-9999 --9999 -1 -# enter list of area ID and max annual catch; terminate with area=-9999 --9999 -1 -# enter list of fleet number and allocation group assignment, if any; terminate with fleet=-9999 --9999 -1 -#_if N allocation groups >0, list year, allocation fraction for each group -# list sequentially because read values fill to end of N forecast -# terminate with -9999 in year field -# no allocation groups -2 # basis for input Fcast catch: -1=read basis with each obs; 2=dead catch; 3=retained catch; 99=input Hrate(F) -#enter list of Fcast catches; terminate with line having year=-9999 -#_Yr Seas Fleet Catch(or_F) --9999 1 1 0 -# -999 # verify end of input diff --git a/model_recipes/ASPM/ss3.dat b/model_recipes/ASPM/ss3.dat deleted file mode 100644 index 72a56bc..0000000 --- a/model_recipes/ASPM/ss3.dat +++ /dev/null @@ -1,486 +0,0 @@ -#V3.30 -#C North Sea/Skagerrak/Eastern Channel Cod -# -26 #_styr -100 #_endyr -1 #_nseas -12 #_months_per_seas -2 #_Nsubseasons -1 #_spawn_month -1 #_Nsexes -25 #_Nages -1 #_N_areas -2 #_Nfleets -#_fleetinfo -#_type surveytiming area units need_catch_mult fleetname -1 -1 1 1 0 Fishery #_1 -3 1 1 2 0 Survey #_2 -#_Catch data -#_year season fleet catch catch_se - -999 1 1 0 0.010 #_1 - 1 1 1 0 0.010 #_2 - 2 1 1 0 0.010 #_3 - 3 1 1 0 0.010 #_4 - 4 1 1 0 0.010 #_5 - 5 1 1 0 0.010 #_6 - 6 1 1 0 0.010 #_7 - 7 1 1 0 0.010 #_8 - 8 1 1 0 0.010 #_9 - 9 1 1 0 0.010 #_10 - 10 1 1 0 0.010 #_11 - 11 1 1 0 0.010 #_12 - 12 1 1 0 0.010 #_13 - 13 1 1 0 0.010 #_14 - 14 1 1 0 0.010 #_15 - 15 1 1 0 0.010 #_16 - 16 1 1 0 0.010 #_17 - 17 1 1 0 0.010 #_18 - 18 1 1 0 0.010 #_19 - 19 1 1 0 0.010 #_20 - 20 1 1 0 0.010 #_21 - 21 1 1 0 0.010 #_22 - 22 1 1 0 0.010 #_23 - 23 1 1 0 0.010 #_24 - 24 1 1 0 0.010 #_25 - 25 1 1 0 0.010 #_26 - 26 1 1 405827583 0.005 #_27 - 27 1 1 373417493 0.005 #_28 - 28 1 1 342373346 0.005 #_29 - 29 1 1 314063047 0.005 #_30 - 30 1 1 291488471 0.005 #_31 - 31 1 1 275016682 0.005 #_32 - 32 1 1 261959321 0.005 #_33 - 33 1 1 247902515 0.005 #_34 - 34 1 1 237602462 0.005 #_35 - 35 1 1 229886276 0.005 #_36 - 36 1 1 221494620 0.005 #_37 - 37 1 1 210472212 0.005 #_38 - 38 1 1 204395447 0.005 #_39 - 39 1 1 196706762 0.005 #_40 - 40 1 1 191149151 0.005 #_41 - 41 1 1 181676431 0.005 #_42 - 42 1 1 175427716 0.005 #_43 - 43 1 1 166292092 0.005 #_44 - 44 1 1 167104259 0.005 #_45 - 45 1 1 167393473 0.005 #_46 - 46 1 1 161044632 0.005 #_47 - 47 1 1 160124742 0.005 #_48 - 48 1 1 159368360 0.005 #_49 - 49 1 1 155503064 0.005 #_50 - 50 1 1 150700473 0.005 #_51 - 51 1 1 151357783 0.005 #_52 - 52 1 1 145953276 0.005 #_53 - 53 1 1 143559669 0.005 #_54 - 54 1 1 142461890 0.005 #_55 - 55 1 1 138970197 0.005 #_56 - 56 1 1 137509860 0.005 #_57 - 57 1 1 140168276 0.005 #_58 - 58 1 1 140025046 0.005 #_59 - 59 1 1 139444280 0.005 #_60 - 60 1 1 138552310 0.005 #_61 - 61 1 1 142276727 0.005 #_62 - 62 1 1 145394778 0.005 #_63 - 63 1 1 147866360 0.005 #_64 - 64 1 1 150086800 0.005 #_65 - 65 1 1 149096580 0.005 #_66 - 66 1 1 150126388 0.005 #_67 - 67 1 1 151017473 0.005 #_68 - 68 1 1 151706424 0.005 #_69 - 69 1 1 150854890 0.005 #_70 - 70 1 1 152562634 0.005 #_71 - 71 1 1 151682609 0.005 #_72 - 72 1 1 153018523 0.005 #_73 - 73 1 1 162110858 0.005 #_74 - 74 1 1 170350797 0.005 #_75 - 75 1 1 175676558 0.005 #_76 - 76 1 1 180420607 0.005 #_77 - 77 1 1 179580391 0.005 #_78 - 78 1 1 173180886 0.005 #_79 - 79 1 1 171619613 0.005 #_80 - 80 1 1 167601020 0.005 #_81 - 81 1 1 160797969 0.005 #_82 - 82 1 1 157721184 0.005 #_83 - 83 1 1 156899991 0.005 #_84 - 84 1 1 155019001 0.005 #_85 - 85 1 1 158509241 0.005 #_86 - 86 1 1 162057478 0.005 #_87 - 87 1 1 161870042 0.005 #_88 - 88 1 1 170525042 0.005 #_89 - 89 1 1 182713147 0.005 #_90 - 90 1 1 193756851 0.005 #_91 - 91 1 1 195682969 0.005 #_92 - 92 1 1 193123404 0.005 #_93 - 93 1 1 191814026 0.005 #_94 - 94 1 1 187735838 0.005 #_95 - 95 1 1 183406362 0.005 #_96 - 96 1 1 181248407 0.005 #_97 - 97 1 1 176702069 0.005 #_98 - 98 1 1 172067982 0.005 #_99 - 99 1 1 174512824 0.005 #_100 - 100 1 1 182121508 0.005 #_101 --9999 0 0 0 0.000 #_terminator -#_CPUE_and_surveyabundance_observations -#_Units: 0=numbers; 1=biomass; 2=F; >=30 for special types -#_Errtype: -1=normal; 0=lognormal; >0=T -#_SD_Report: 0=no sdreport; 1=enable sdreport -#_Fleet Units Errtype SD_Report -1 1 0 0 #_Fishery -2 1 0 0 #_Survey -# -#_CPUE_data -#_year seas index obs se_log - 62 1 2 2319095418 0.2 #_1 - 64 1 2 1450356783 0.2 #_2 - 66 1 2 1503543274 0.2 #_3 - 68 1 2 1568917464 0.2 #_4 - 70 1 2 1491684068 0.2 #_5 - 72 1 2 1453785086 0.2 #_6 - 74 1 2 1728862643 0.2 #_7 - 76 1 2 1732955651 0.2 #_8 - 78 1 2 1495070546 0.2 #_9 - 80 1 2 1162754195 0.2 #_10 - 82 1 2 1389316573 0.2 #_11 - 84 1 2 1980264967 0.2 #_12 - 86 1 2 1872900449 0.2 #_13 - 88 1 2 1772513878 0.2 #_14 - 90 1 2 2610471051 0.2 #_15 - 92 1 2 2610821051 0.2 #_16 - 94 1 2 2610461051 0.2 #_17 - 96 1 2 2014668777 0.2 #_18 - 98 1 2 1365842314 0.2 #_19 - 100 1 2 1749224049 0.2 #_20 --9999 0 0 0 0.0 #_terminator -0 #_N_discard_fleets -#_discard_units (1=same_as_catchunits(bio/num); 2=fraction; 3=numbers) -#_discard_errtype: >0 for DF of T-dist(read CV below); 0 for normal with CV; -1 for normal with se; -2 for lognormal -# -#_discard_fleet_info -# -#_discard_data -# -#_meanbodywt -0 #_use_meanbodywt - #_DF_for_meanbodywt_T-distribution_like -# -#_population_length_bins -2 # length bin method: 1=use databins; 2=generate from binwidth,min,max below; 3=read vector -1 # binwidth for population size comp -10 # minimum size in the population (lower edge of first bin and size at age 0.00) -200 # maximum size in the population (lower edge of last bin) -1 #_use_lencomp -# -#_len_info -#_mintailcomp addtocomp combine_M_F CompressBins CompError ParmSelect minsamplesize --1 1e-10 0 0 0 0 1 #_Fishery --1 1e-10 0 0 0 0 1 #_Survey -45 #_N_lbins -#_lbin_vector -20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125 128 131 134 137 140 143 146 149 152 #_lbin_vector -# -#_lencomp -#_Yr Seas FltSvy Gender Part Nsamp l20 l23 l26 l29 l32 l35 l38 l41 l44 l47 l50 l53 l56 l59 l62 l65 l68 l71 l74 l77 l80 l83 l86 l89 l92 l95 l98 l101 l104 l107 l110 l113 l116 l119 l122 l125 l128 l131 l134 l137 l140 l143 l146 l149 l152 - 95 1 1 0 0 50 1.21839e-15 7.08912e-10 3.53471e-07 6.47686e-03 3.08818e-03 1.03054e-05 2.57179e-06 7.60397e-03 0.0133111 0.0476258 0.0348703 0.04032875 0.0497779 0.04741981 0.01443621 0.07874335 0.0230499 0.0266009 0.01794948 0.0270393 0.0510087 0.01111618 0.0654543 0.01606061 0.0513103 0.01029999 0.000825664 0.03932407 0.022521232 0.07562950 0.06083348 0.02336445 6.38750e-02 0.00392951 0.012387671 0.003952013 0.007133818 0.00897878 5.15022e-03 9.58616e-04 2.15086e-02 4.05532e-03 1.75826e-03 1.48731e-14 2.28787e-04 #_1 - 96 1 1 0 0 50 5.99789e-30 3.86910e-29 3.87336e-07 2.01136e-03 4.19938e-05 1.31793e-05 1.53990e-03 2.12131e-02 0.0159329 0.0343006 0.1230111 0.02119380 0.0047550 0.00137013 0.13720601 0.02200563 0.0488743 0.0325755 0.08802896 0.0233814 0.0213249 0.06504259 0.0822676 0.06275952 0.0194676 0.01154768 0.021065655 0.01933137 0.003829945 0.03479926 0.04589062 0.00248582 2.80196e-03 0.00385954 0.009757891 0.000151414 0.004176591 0.00488303 6.81256e-05 2.07929e-03 1.51268e-03 3.33025e-03 1.11326e-04 9.90207e-48 3.76714e-13 #_2 - 97 1 1 0 0 50 4.82525e-17 6.60950e-63 1.45918e-02 2.46884e-04 3.02475e-02 3.14046e-03 1.58916e-04 4.55571e-06 0.0197265 0.0475703 0.0460192 0.00543952 0.0330235 0.04910525 0.11044604 0.00943501 0.1034457 0.0748063 0.05347646 0.0235542 0.0839288 0.00480831 0.0792134 0.01471147 0.0358458 0.00426968 0.019992995 0.01680004 0.026919891 0.01041092 0.00517611 0.01610544 6.62434e-03 0.00336242 0.008427033 0.005320177 0.008221190 0.00246077 6.16104e-03 2.32716e-06 1.86462e-04 1.55249e-02 1.23345e-11 1.88218e-04 9.00144e-04 #_3 - 98 1 1 0 0 50 4.33367e-05 5.23013e-21 1.80907e-04 5.98429e-03 1.50085e-02 1.84472e-03 4.78366e-05 1.38155e-02 0.0177652 0.0570923 0.1315670 0.05701185 0.0436706 0.03468419 0.00784813 0.03077679 0.0152514 0.0280374 0.05779615 0.0246120 0.0250831 0.13000820 0.0171202 0.00935178 0.0360376 0.01851026 0.110258877 0.00141916 0.003314611 0.00978243 0.01410409 0.01426905 2.08460e-02 0.01619731 0.000651814 0.027305506 0.000359444 0.00214246 1.38929e-05 2.50726e-09 1.43831e-05 1.21122e-13 9.29224e-05 7.88754e-05 1.76531e-11 #_4 - 99 1 1 0 0 50 3.43796e-08 6.63178e-13 1.37536e-02 3.48744e-03 6.30987e-02 6.18445e-03 2.34790e-02 6.67529e-03 0.0516173 0.0459099 0.0690536 0.14736148 0.0843542 0.02998615 0.01049348 0.04949479 0.0108561 0.0149054 0.05960321 0.0285729 0.0134305 0.00172333 0.0170506 0.00829920 0.0183744 0.04591866 0.016283377 0.01165331 0.000611884 0.03343126 0.01524042 0.02159914 3.74832e-05 0.00718344 0.036709237 0.000856413 0.000815214 0.00168073 2.98768e-02 2.46071e-09 6.25824e-10 3.29265e-04 8.78233e-15 5.64135e-06 2.59270e-06 #_5 - 100 1 1 0 0 50 7.06058e-39 7.28113e-17 8.82966e-04 1.85488e-05 3.40430e-03 9.19572e-03 3.19208e-03 2.56074e-03 0.0212217 0.0625408 0.0360383 0.14289880 0.0310024 0.01689111 0.07980034 0.07799596 0.0189316 0.0364775 0.00768082 0.0543474 0.0189996 0.02657866 0.0239969 0.02052548 0.0458498 0.00177325 0.013893173 0.01476595 0.000263802 0.02470716 0.05980638 0.01254703 2.57588e-02 0.02019666 0.042446520 0.026112080 0.002434038 0.00540392 3.26960e-06 5.33413e-03 3.37349e-05 3.77795e-05 2.83245e-19 1.73956e-12 3.45088e-03 #_6 - 26 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.0000000 0.0000000 2.0000000 0.00000000 0.0000000 0.00000000 0.00000000 3.00000000 3.0000000 1.0000000 3.00000000 2.0000000 1.0000000 2.00000000 1.0000000 4.00000000 4.0000000 1.00000000 1.000000000 3.00000000 2.000000000 2.00000000 3.00000000 2.00000000 2.00000e+00 2.00000000 1.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_7 - 27 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 2.0000000 1.00000000 1.0000000 1.00000000 2.00000000 3.00000000 1.0000000 1.0000000 4.00000000 1.0000000 2.0000000 1.00000000 3.0000000 3.00000000 0.0000000 1.00000000 3.000000000 2.00000000 1.000000000 3.00000000 1.00000000 1.00000000 1.00000e+00 2.00000000 3.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_8 - 28 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 3.0000000 2.0000000 2.00000000 0.0000000 1.00000000 0.00000000 4.00000000 0.0000000 2.0000000 1.00000000 3.0000000 3.0000000 0.00000000 1.0000000 3.00000000 1.0000000 3.00000000 1.000000000 2.00000000 2.000000000 2.00000000 1.00000000 3.00000000 3.00000e+00 0.00000000 0.000000000 3.000000000 2.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_9 - 29 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.0000000 2.0000000 1.0000000 0.00000000 1.0000000 2.00000000 1.00000000 2.00000000 1.0000000 1.0000000 3.00000000 3.0000000 5.0000000 1.00000000 1.0000000 2.00000000 2.0000000 2.00000000 2.000000000 3.00000000 2.000000000 0.00000000 0.00000000 0.00000000 2.00000e+00 2.00000000 1.000000000 0.000000000 1.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_10 - 30 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 8.0000000 5.0000000 2.0000000 2.00000000 0.0000000 0.00000000 3.00000000 3.00000000 2.0000000 3.0000000 0.00000000 1.0000000 4.0000000 1.00000000 0.0000000 1.00000000 2.0000000 1.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 1.000000000 0.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_11 - 31 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 2.0000000 1.0000000 3.00000000 2.0000000 3.00000000 4.00000000 4.00000000 2.0000000 0.0000000 1.00000000 3.0000000 3.0000000 0.00000000 1.0000000 1.00000000 1.0000000 1.00000000 0.000000000 1.00000000 0.000000000 0.00000000 2.00000000 1.00000000 2.00000e+00 1.00000000 2.000000000 0.000000000 0.000000000 1.00000000 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_12 - 32 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 2.00000000 2.00000000 3.0000000 1.0000000 4.00000000 3.0000000 1.0000000 3.00000000 0.0000000 2.00000000 1.0000000 1.00000000 1.000000000 1.00000000 0.000000000 4.00000000 1.00000000 1.00000000 2.00000e+00 4.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_13 - 33 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 2.00000e+00 0.0000000 3.0000000 2.0000000 1.00000000 1.0000000 2.00000000 1.00000000 3.00000000 5.0000000 2.0000000 3.00000000 3.0000000 3.0000000 1.00000000 0.0000000 1.00000000 3.0000000 0.00000000 0.000000000 2.00000000 1.000000000 0.00000000 0.00000000 2.00000000 1.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_14 - 34 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.0000000 4.0000000 3.0000000 3.00000000 0.0000000 1.00000000 1.00000000 2.00000000 1.0000000 3.0000000 1.00000000 1.0000000 2.0000000 0.00000000 2.0000000 4.00000000 1.0000000 1.00000000 1.000000000 1.00000000 1.000000000 2.00000000 3.00000000 2.00000000 1.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_15 - 35 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.0000000 4.0000000 7.0000000 2.00000000 2.0000000 2.00000000 2.00000000 1.00000000 0.0000000 0.0000000 1.00000000 0.0000000 0.0000000 3.00000000 4.0000000 1.00000000 4.0000000 2.00000000 3.000000000 0.00000000 0.000000000 0.00000000 1.00000000 3.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_16 - 36 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.0000000 4.0000000 1.0000000 2.00000000 1.0000000 0.00000000 4.00000000 2.00000000 1.0000000 3.0000000 2.00000000 2.0000000 1.0000000 1.00000000 1.0000000 1.00000000 1.0000000 2.00000000 2.000000000 0.00000000 2.000000000 0.00000000 1.00000000 2.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 2.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_17 - 37 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.0000000 1.0000000 1.0000000 1.00000000 3.0000000 3.00000000 1.00000000 2.00000000 1.0000000 1.0000000 1.00000000 4.0000000 3.0000000 1.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 2.00000000 3.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 2.00000000 4.000000000 1.000000000 1.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_18 - 38 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.0000000 6.0000000 3.0000000 0.00000000 1.0000000 1.00000000 0.00000000 3.00000000 2.0000000 3.0000000 1.00000000 2.0000000 3.0000000 1.00000000 1.0000000 1.00000000 1.0000000 1.00000000 4.000000000 0.00000000 3.000000000 4.00000000 0.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_19 - 39 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 3.0000000 0.0000000 1.00000000 3.0000000 4.00000000 3.00000000 3.00000000 4.0000000 1.0000000 2.00000000 0.0000000 0.0000000 4.00000000 2.0000000 1.00000000 0.0000000 5.00000000 2.000000000 1.00000000 0.000000000 0.00000000 1.00000000 2.00000000 1.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 1.00000000 2.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_20 - 40 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 6.0000000 5.0000000 3.00000000 3.0000000 2.00000000 1.00000000 0.00000000 3.0000000 1.0000000 3.00000000 1.0000000 1.0000000 1.00000000 1.0000000 0.00000000 0.0000000 1.00000000 2.000000000 3.00000000 1.000000000 2.00000000 2.00000000 0.00000000 2.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_21 - 41 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 0.0000000 0.0000000 1.00000000 2.0000000 4.00000000 2.00000000 2.00000000 1.0000000 0.0000000 1.00000000 2.0000000 2.0000000 0.00000000 1.0000000 2.00000000 2.0000000 0.00000000 0.000000000 2.00000000 4.000000000 2.00000000 2.00000000 4.00000000 1.00000e+00 2.00000000 1.000000000 1.000000000 1.000000000 1.00000000 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_22 - 42 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.0000000 3.0000000 2.0000000 2.00000000 2.0000000 3.00000000 2.00000000 2.00000000 1.0000000 1.0000000 2.00000000 4.0000000 0.0000000 1.00000000 3.0000000 1.00000000 1.0000000 1.00000000 0.000000000 2.00000000 3.000000000 1.00000000 3.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_23 - 43 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 1.0000000 5.00000000 5.0000000 2.00000000 3.00000000 0.00000000 5.0000000 0.0000000 2.00000000 0.0000000 2.0000000 1.00000000 1.0000000 1.00000000 0.0000000 1.00000000 0.000000000 0.00000000 4.000000000 3.00000000 1.00000000 4.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_24 - 44 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 3.0000000 6.0000000 4.0000000 3.00000000 4.0000000 1.00000000 0.00000000 1.00000000 3.0000000 0.0000000 1.00000000 2.0000000 3.0000000 2.00000000 1.0000000 1.00000000 1.0000000 1.00000000 3.000000000 0.00000000 1.000000000 2.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_25 - 45 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 0.0000000 0.0000000 3.00000000 3.0000000 3.00000000 6.00000000 5.00000000 4.0000000 2.0000000 3.00000000 1.0000000 0.0000000 2.00000000 1.0000000 1.00000000 2.0000000 0.00000000 0.000000000 0.00000000 3.000000000 2.00000000 0.00000000 2.00000000 1.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_26 - 46 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 1.0000000 1.0000000 0.00000000 0.0000000 0.00000000 0.00000000 2.00000000 0.0000000 4.0000000 2.00000000 4.0000000 5.0000000 3.00000000 3.0000000 2.00000000 1.0000000 1.00000000 3.000000000 0.00000000 1.000000000 1.00000000 3.00000000 0.00000000 2.00000e+00 1.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_27 - 47 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 0.00000e+00 2.00000e+00 8.0000000 2.0000000 1.0000000 7.00000000 3.0000000 1.00000000 0.00000000 0.00000000 0.0000000 0.0000000 1.00000000 2.0000000 2.0000000 1.00000000 1.0000000 3.00000000 3.0000000 0.00000000 0.000000000 2.00000000 1.000000000 0.00000000 1.00000000 2.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_28 - 48 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.0000000 1.0000000 3.0000000 4.00000000 3.0000000 3.00000000 1.00000000 2.00000000 1.0000000 1.0000000 1.00000000 2.0000000 2.0000000 1.00000000 0.0000000 1.00000000 3.0000000 3.00000000 0.000000000 4.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_29 - 49 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 2.0000000 2.0000000 1.00000000 1.0000000 0.00000000 3.00000000 3.00000000 4.0000000 2.0000000 6.00000000 1.0000000 2.0000000 3.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 2.00000000 1.000000000 0.00000000 1.00000000 1.00000000 2.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_30 - 50 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 3.0000000 1.0000000 2.0000000 0.00000000 1.0000000 1.00000000 2.00000000 1.00000000 1.0000000 0.0000000 5.00000000 0.0000000 2.0000000 1.00000000 3.0000000 1.00000000 1.0000000 1.00000000 0.000000000 3.00000000 4.000000000 0.00000000 3.00000000 2.00000000 0.00000e+00 3.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_31 - 51 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 6.0000000 3.0000000 3.0000000 0.00000000 1.0000000 1.00000000 2.00000000 2.00000000 2.0000000 0.0000000 1.00000000 3.0000000 1.0000000 1.00000000 2.0000000 1.00000000 4.0000000 0.00000000 2.000000000 0.00000000 1.000000000 0.00000000 2.00000000 1.00000000 0.00000e+00 2.00000000 1.000000000 3.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_32 - 52 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 2.0000000 1.00000000 2.0000000 2.00000000 2.00000000 4.00000000 4.0000000 1.0000000 1.00000000 2.0000000 4.0000000 2.00000000 2.0000000 2.00000000 2.0000000 2.00000000 3.000000000 0.00000000 0.000000000 0.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 #_33 - 53 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 5.0000000 4.0000000 2.0000000 4.00000000 2.0000000 2.00000000 0.00000000 3.00000000 2.0000000 1.0000000 1.00000000 3.0000000 3.0000000 0.00000000 0.0000000 2.00000000 1.0000000 1.00000000 0.000000000 3.00000000 3.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 2.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_34 - 54 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 0.0000000 1.0000000 4.00000000 1.0000000 1.00000000 1.00000000 2.00000000 4.0000000 2.0000000 2.00000000 1.0000000 0.0000000 3.00000000 2.0000000 4.00000000 5.0000000 1.00000000 1.000000000 3.00000000 1.000000000 1.00000000 2.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_35 - 55 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 1.0000000 3.0000000 3.0000000 3.00000000 0.0000000 0.00000000 0.00000000 1.00000000 6.0000000 1.0000000 2.00000000 1.0000000 1.0000000 2.00000000 3.0000000 2.00000000 0.0000000 2.00000000 0.000000000 2.00000000 1.000000000 0.00000000 2.00000000 5.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_36 - 56 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.0000000 5.0000000 3.0000000 3.00000000 3.0000000 1.00000000 2.00000000 1.00000000 1.0000000 1.0000000 2.00000000 1.0000000 2.0000000 2.00000000 2.0000000 1.00000000 2.0000000 1.00000000 1.000000000 1.00000000 0.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 0.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_37 - 57 1 1 0 0 50 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 2.0000000 2.0000000 3.0000000 1.00000000 2.0000000 1.00000000 3.00000000 1.00000000 1.0000000 0.0000000 1.00000000 0.0000000 2.0000000 0.00000000 1.0000000 4.00000000 1.0000000 0.00000000 6.000000000 0.00000000 1.000000000 0.00000000 1.00000000 1.00000000 1.00000e+00 3.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_38 - 58 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.00000e+00 1.00000e+00 0.00000e+00 4.0000000 3.0000000 0.0000000 4.00000000 1.0000000 3.00000000 2.00000000 1.00000000 2.0000000 4.0000000 2.00000000 2.0000000 4.0000000 2.00000000 1.0000000 2.00000000 1.0000000 0.00000000 2.000000000 1.00000000 0.000000000 0.00000000 0.00000000 1.00000000 1.00000e+00 2.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_39 - 59 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.0000000 2.0000000 2.00000000 3.0000000 0.00000000 1.00000000 3.00000000 1.0000000 3.0000000 3.00000000 4.0000000 5.0000000 3.00000000 1.0000000 2.00000000 2.0000000 3.00000000 0.000000000 2.00000000 1.000000000 0.00000000 3.00000000 2.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_40 - 60 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 4.0000000 3.0000000 3.0000000 3.00000000 3.0000000 1.00000000 0.00000000 2.00000000 0.0000000 1.0000000 2.00000000 0.0000000 3.0000000 0.00000000 2.0000000 4.00000000 1.0000000 2.00000000 1.000000000 1.00000000 2.000000000 2.00000000 2.00000000 0.00000000 1.00000e+00 0.00000000 0.000000000 2.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_41 - 61 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 8.0000000 3.00000000 3.0000000 1.00000000 0.00000000 0.00000000 3.0000000 3.0000000 2.00000000 3.0000000 1.0000000 3.00000000 1.0000000 0.00000000 0.0000000 0.00000000 1.000000000 1.00000000 3.000000000 2.00000000 2.00000000 0.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_42 - 62 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 2.0000000 2.0000000 1.00000000 0.0000000 3.00000000 4.00000000 3.00000000 5.0000000 2.0000000 0.00000000 3.0000000 4.0000000 1.00000000 3.0000000 4.00000000 0.0000000 0.00000000 0.000000000 2.00000000 0.000000000 1.00000000 0.00000000 4.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_43 - 63 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 1.0000000 3.0000000 3.00000000 3.0000000 0.00000000 3.00000000 3.00000000 1.0000000 2.0000000 2.00000000 2.0000000 3.0000000 2.00000000 2.0000000 4.00000000 1.0000000 0.00000000 4.000000000 1.00000000 0.000000000 1.00000000 2.00000000 2.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_44 - 64 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 2.0000000 2.0000000 6.0000000 1.00000000 2.0000000 1.00000000 2.00000000 2.00000000 2.0000000 2.0000000 3.00000000 1.0000000 1.0000000 2.00000000 3.0000000 2.00000000 1.0000000 4.00000000 0.000000000 3.00000000 1.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 1.000000000 2.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_45 - 65 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.0000000 2.0000000 2.0000000 1.00000000 1.0000000 1.00000000 0.00000000 2.00000000 2.0000000 4.0000000 5.00000000 3.0000000 1.0000000 4.00000000 0.0000000 4.00000000 0.0000000 3.00000000 1.000000000 1.00000000 1.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_46 - 66 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 2.0000000 4.0000000 0.0000000 2.00000000 2.0000000 2.00000000 2.00000000 1.00000000 2.0000000 3.0000000 2.00000000 1.0000000 1.0000000 2.00000000 1.0000000 2.00000000 2.0000000 1.00000000 3.000000000 2.00000000 1.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_47 - 67 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 3.0000000 3.00000000 3.0000000 2.00000000 1.00000000 3.00000000 1.0000000 2.0000000 0.00000000 3.0000000 2.0000000 4.00000000 2.0000000 2.00000000 1.0000000 2.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_48 - 68 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.0000000 4.0000000 2.0000000 0.00000000 2.0000000 0.00000000 1.00000000 4.00000000 3.0000000 2.0000000 3.00000000 2.0000000 2.0000000 2.00000000 1.0000000 1.00000000 0.0000000 2.00000000 1.000000000 0.00000000 0.000000000 2.00000000 4.00000000 2.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 2.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_49 - 69 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 4.0000000 3.0000000 3.00000000 2.0000000 3.00000000 3.00000000 2.00000000 0.0000000 2.0000000 1.00000000 2.0000000 2.0000000 0.00000000 1.0000000 1.00000000 0.0000000 1.00000000 3.000000000 2.00000000 5.000000000 2.00000000 0.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_50 - 70 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.0000000 1.0000000 5.0000000 1.00000000 2.0000000 1.00000000 3.00000000 2.00000000 1.0000000 4.0000000 0.00000000 2.0000000 3.0000000 3.00000000 1.0000000 3.00000000 3.0000000 3.00000000 1.000000000 1.00000000 0.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_51 - 71 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 4.0000000 4.0000000 5.00000000 0.0000000 1.00000000 6.00000000 4.00000000 0.0000000 1.0000000 2.00000000 1.0000000 1.0000000 3.00000000 1.0000000 4.00000000 2.0000000 2.00000000 1.000000000 2.00000000 1.000000000 1.00000000 2.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_52 - 72 1 1 0 0 50 0.00000e+00 1.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 1.0000000 1.0000000 5.0000000 2.00000000 1.0000000 3.00000000 2.00000000 2.00000000 4.0000000 1.0000000 0.00000000 0.0000000 2.0000000 0.00000000 3.0000000 1.00000000 2.0000000 2.00000000 2.000000000 0.00000000 0.000000000 2.00000000 1.00000000 0.00000000 2.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_53 - 73 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.0000000 4.0000000 4.0000000 2.00000000 4.0000000 3.00000000 1.00000000 1.00000000 2.0000000 2.0000000 2.00000000 0.0000000 4.0000000 1.00000000 2.0000000 1.00000000 3.0000000 1.00000000 1.000000000 0.00000000 1.000000000 1.00000000 1.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_54 - 74 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.0000000 3.0000000 0.00000000 0.0000000 4.00000000 4.00000000 4.00000000 4.0000000 3.0000000 4.00000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 1.0000000 0.00000000 1.000000000 0.00000000 3.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_55 - 75 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.0000000 4.0000000 3.0000000 3.00000000 1.0000000 3.00000000 2.00000000 2.00000000 2.0000000 3.0000000 4.00000000 1.0000000 2.0000000 4.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 0.00000000 0.000000000 2.00000000 0.00000000 3.00000000 0.00000e+00 0.00000000 0.000000000 3.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_56 - 76 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 3.0000000 0.0000000 3.00000000 1.0000000 3.00000000 4.00000000 2.00000000 5.0000000 1.0000000 1.00000000 1.0000000 2.0000000 3.00000000 4.0000000 1.00000000 1.0000000 2.00000000 1.000000000 0.00000000 2.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 2.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_57 - 77 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 2.0000000 1.0000000 1.00000000 1.0000000 1.00000000 0.00000000 7.00000000 3.0000000 2.0000000 3.00000000 2.0000000 1.0000000 5.00000000 2.0000000 3.00000000 1.0000000 1.00000000 2.000000000 2.00000000 2.000000000 1.00000000 2.00000000 0.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_58 - 78 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 1.0000000 4.0000000 3.0000000 0.00000000 2.0000000 0.00000000 1.00000000 2.00000000 3.0000000 1.0000000 2.00000000 3.0000000 3.0000000 2.00000000 4.0000000 2.00000000 2.0000000 2.00000000 0.000000000 2.00000000 1.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 2.00000000 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_59 - 79 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 6.0000000 3.0000000 3.00000000 1.0000000 4.00000000 5.00000000 2.00000000 1.0000000 1.0000000 2.00000000 2.0000000 2.0000000 0.00000000 0.0000000 1.00000000 1.0000000 2.00000000 1.000000000 0.00000000 1.000000000 0.00000000 2.00000000 1.00000000 0.00000e+00 2.00000000 0.000000000 1.000000000 0.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_60 - 80 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 2.0000000 3.0000000 3.0000000 0.00000000 3.0000000 1.00000000 3.00000000 3.00000000 1.0000000 2.0000000 3.00000000 3.0000000 0.0000000 1.00000000 0.0000000 0.00000000 1.0000000 0.00000000 2.000000000 2.00000000 0.000000000 2.00000000 2.00000000 1.00000000 1.00000e+00 2.00000000 1.000000000 3.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_61 - 81 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 4.0000000 1.0000000 0.00000000 2.0000000 2.00000000 4.00000000 4.00000000 1.0000000 2.0000000 0.00000000 1.0000000 2.0000000 1.00000000 2.0000000 2.00000000 4.0000000 3.00000000 3.000000000 0.00000000 1.000000000 0.00000000 1.00000000 1.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_62 - 82 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 5.0000000 4.0000000 5.0000000 1.00000000 2.0000000 1.00000000 0.00000000 3.00000000 3.0000000 0.0000000 1.00000000 2.0000000 1.0000000 2.00000000 3.0000000 3.00000000 2.0000000 0.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_63 - 83 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 3.0000000 5.0000000 1.0000000 1.00000000 3.0000000 1.00000000 1.00000000 1.00000000 2.0000000 4.0000000 1.00000000 3.0000000 2.0000000 1.00000000 3.0000000 1.00000000 1.0000000 2.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_64 - 84 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 2.0000000 0.00000000 0.0000000 0.00000000 0.00000000 2.00000000 2.0000000 3.0000000 5.00000000 1.0000000 1.0000000 3.00000000 1.0000000 1.00000000 2.0000000 1.00000000 0.000000000 5.00000000 2.000000000 2.00000000 1.00000000 1.00000000 2.00000e+00 1.00000000 0.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_65 - 85 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 5.0000000 6.0000000 4.0000000 5.00000000 3.0000000 1.00000000 0.00000000 3.00000000 1.0000000 0.0000000 3.00000000 1.0000000 3.0000000 1.00000000 2.0000000 1.00000000 1.0000000 2.00000000 3.000000000 1.00000000 0.000000000 0.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_66 - 86 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 1.0000000 5.00000000 4.0000000 4.00000000 2.00000000 3.00000000 4.0000000 0.0000000 1.00000000 0.0000000 4.0000000 1.00000000 0.0000000 0.00000000 3.0000000 2.00000000 0.000000000 1.00000000 1.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 4.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_67 - 87 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.0000000 3.0000000 1.0000000 4.00000000 1.0000000 0.00000000 2.00000000 1.00000000 0.0000000 5.0000000 5.00000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 0.0000000 0.00000000 1.000000000 0.00000000 1.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 1.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_68 - 88 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 5.0000000 5.0000000 8.0000000 3.00000000 1.0000000 1.00000000 0.00000000 2.00000000 1.0000000 2.0000000 2.00000000 0.0000000 0.0000000 4.00000000 0.0000000 4.00000000 0.0000000 0.00000000 1.000000000 1.00000000 0.000000000 4.00000000 0.00000000 1.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_69 - 89 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 2.0000000 4.0000000 5.0000000 2.00000000 6.0000000 2.00000000 3.00000000 2.00000000 1.0000000 1.0000000 1.00000000 1.0000000 1.0000000 2.00000000 0.0000000 2.00000000 3.0000000 2.00000000 0.000000000 1.00000000 3.000000000 1.00000000 1.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_70 - 90 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 1.0000000 1.0000000 3.0000000 4.00000000 2.0000000 6.00000000 3.00000000 7.00000000 0.0000000 2.0000000 3.00000000 2.0000000 1.0000000 2.00000000 0.0000000 1.00000000 0.0000000 1.00000000 0.000000000 1.00000000 2.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_71 - 91 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.0000000 1.0000000 0.00000000 1.0000000 1.00000000 3.00000000 0.00000000 5.0000000 3.0000000 3.00000000 6.0000000 3.0000000 3.00000000 2.0000000 2.00000000 2.0000000 1.00000000 1.000000000 2.00000000 3.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_72 - 92 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 3.0000000 1.0000000 3.0000000 1.00000000 0.0000000 3.00000000 1.00000000 2.00000000 1.0000000 2.0000000 1.00000000 2.0000000 4.0000000 0.00000000 2.0000000 4.00000000 4.0000000 1.00000000 0.000000000 2.00000000 2.000000000 2.00000000 1.00000000 2.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_73 - 93 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 3.0000000 4.0000000 6.00000000 0.0000000 1.00000000 0.00000000 1.00000000 2.0000000 0.0000000 2.00000000 0.0000000 3.0000000 2.00000000 1.0000000 4.00000000 3.0000000 2.00000000 0.000000000 2.00000000 1.000000000 2.00000000 0.00000000 2.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_74 - 94 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.0000000 1.0000000 3.0000000 0.00000000 2.0000000 3.00000000 1.00000000 5.00000000 3.0000000 0.0000000 1.00000000 1.0000000 0.0000000 0.00000000 1.0000000 3.00000000 1.0000000 3.00000000 2.000000000 2.00000000 1.000000000 2.00000000 1.00000000 1.00000000 2.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_75 - 62 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.00000e+00 5.00000e+00 1.0000000 2.0000000 4.0000000 8.00000000 7.0000000 7.00000000 5.00000000 4.00000000 5.0000000 4.0000000 4.00000000 4.0000000 2.0000000 7.00000000 1.0000000 2.00000000 2.0000000 1.00000000 2.000000000 2.00000000 3.000000000 2.00000000 0.00000000 1.00000000 2.00000e+00 3.00000000 0.000000000 2.000000000 1.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_76 - 64 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 7.00000e+00 4.00000e+00 5.00000e+00 5.0000000 0.0000000 3.0000000 2.00000000 8.0000000 5.00000000 3.00000000 4.00000000 2.0000000 7.0000000 4.00000000 7.0000000 1.0000000 3.00000000 3.0000000 3.00000000 1.0000000 3.00000000 1.000000000 2.00000000 0.000000000 1.00000000 0.00000000 3.00000000 2.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 #_77 - 66 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 7.00000e+00 1.10000e+01 5.00000e+00 4.0000000 0.0000000 5.0000000 5.00000000 2.0000000 2.00000000 3.00000000 7.00000000 2.0000000 3.0000000 2.00000000 2.0000000 4.0000000 2.00000000 2.0000000 4.00000000 3.0000000 3.00000000 2.000000000 1.00000000 2.000000000 5.00000000 3.00000000 2.00000000 1.00000e+00 1.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_78 - 68 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 8.00000e+00 5.00000e+00 4.00000e+00 4.0000000 6.0000000 1.0000000 6.00000000 8.0000000 3.00000000 2.00000000 2.00000000 2.0000000 4.0000000 3.00000000 4.0000000 4.0000000 1.00000000 6.0000000 3.00000000 0.0000000 3.00000000 5.000000000 2.00000000 1.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_79 - 70 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 1.20000e+01 7.00000e+00 2.0000000 2.0000000 5.0000000 4.00000000 7.0000000 5.00000000 2.00000000 3.00000000 3.0000000 1.0000000 4.00000000 4.0000000 5.0000000 5.00000000 2.0000000 3.00000000 3.0000000 3.00000000 2.000000000 1.00000000 2.000000000 2.00000000 3.00000000 0.00000000 1.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 #_80 - 72 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 4.00000e+00 1.10000e+01 4.0000000 0.0000000 7.0000000 4.00000000 9.0000000 6.00000000 4.00000000 5.00000000 2.0000000 2.0000000 4.00000000 1.0000000 3.0000000 4.00000000 4.0000000 1.00000000 1.0000000 0.00000000 6.000000000 1.00000000 2.000000000 2.00000000 2.00000000 4.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_81 - 74 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 3.00000e+00 6.0000000 6.0000000 6.0000000 9.00000000 13.0000000 8.00000000 6.00000000 5.00000000 3.0000000 1.0000000 1.00000000 2.0000000 2.0000000 7.00000000 1.0000000 3.00000000 0.0000000 2.00000000 4.000000000 1.00000000 3.000000000 1.00000000 0.00000000 1.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_82 - 76 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 4.00000e+00 1.00000e+01 5.00000e+00 5.0000000 3.0000000 6.0000000 5.00000000 4.0000000 6.00000000 4.00000000 2.00000000 0.0000000 3.0000000 1.00000000 4.0000000 3.0000000 5.00000000 6.0000000 2.00000000 4.0000000 2.00000000 3.000000000 0.00000000 1.000000000 2.00000000 1.00000000 0.00000000 2.00000e+00 1.00000000 0.000000000 0.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_83 - 78 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 8.00000e+00 5.00000e+00 5.0000000 0.0000000 3.0000000 1.00000000 4.0000000 3.00000000 1.00000000 3.00000000 2.0000000 4.0000000 4.00000000 4.0000000 5.0000000 2.00000000 3.0000000 4.00000000 0.0000000 7.00000000 6.000000000 3.00000000 3.000000000 2.00000000 3.00000000 3.00000000 3.00000e+00 4.00000000 0.000000000 0.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_84 - 80 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 2.00000e+00 6.00000e+00 5.00000e+00 2.0000000 2.0000000 8.0000000 4.00000000 4.0000000 3.00000000 6.00000000 2.00000000 2.0000000 3.0000000 4.00000000 7.0000000 0.0000000 3.00000000 3.0000000 3.00000000 5.0000000 2.00000000 1.000000000 4.00000000 3.000000000 3.00000000 2.00000000 2.00000000 1.00000e+00 1.00000000 2.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_85 - 82 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 5.00000e+00 4.00000e+00 6.00000e+00 7.0000000 2.0000000 2.0000000 1.00000000 5.0000000 3.00000000 3.00000000 2.00000000 0.0000000 4.0000000 5.00000000 2.0000000 3.0000000 3.00000000 2.0000000 4.00000000 4.0000000 1.00000000 7.000000000 2.00000000 6.000000000 1.00000000 6.00000000 2.00000000 2.00000e+00 0.00000000 0.000000000 2.000000000 2.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_86 - 84 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 6.00000e+00 5.00000e+00 0.00000e+00 1.0000000 3.0000000 3.0000000 6.00000000 9.0000000 9.00000000 3.00000000 5.00000000 3.0000000 6.0000000 5.00000000 1.0000000 3.0000000 4.00000000 4.0000000 4.00000000 4.0000000 0.00000000 3.000000000 4.00000000 0.000000000 2.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_87 - 86 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.00000e+00 3.00000e+00 7.00000e+00 6.00000e+00 4.0000000 2.0000000 5.0000000 4.00000000 5.0000000 3.00000000 8.00000000 5.00000000 1.0000000 3.0000000 3.00000000 2.0000000 6.0000000 1.00000000 4.0000000 1.00000000 1.0000000 2.00000000 2.000000000 2.00000000 2.000000000 3.00000000 2.00000000 1.00000000 1.00000e+00 1.00000000 2.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_88 - 88 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 6.00000e+00 2.20000e+01 9.00000e+00 6.0000000 1.0000000 2.0000000 2.00000000 3.0000000 0.00000000 3.00000000 4.00000000 3.0000000 4.0000000 2.00000000 2.0000000 3.0000000 4.00000000 3.0000000 1.00000000 0.0000000 3.00000000 2.000000000 1.00000000 2.000000000 1.00000000 1.00000000 0.00000000 2.00000e+00 2.00000000 0.000000000 1.000000000 0.000000000 0.00000000 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_89 - 90 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 4.00000e+00 5.00000e+00 2.0000000 0.0000000 4.0000000 6.00000000 9.0000000 11.00000000 3.00000000 6.00000000 6.0000000 3.0000000 4.00000000 5.0000000 2.0000000 3.00000000 0.0000000 2.00000000 3.0000000 2.00000000 2.000000000 3.00000000 2.000000000 1.00000000 2.00000000 1.00000000 0.00000e+00 1.00000000 2.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_90 - 92 1 2 0 0 100 2.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 5.00000e+00 3.00000e+00 4.0000000 0.0000000 2.0000000 3.00000000 4.0000000 4.00000000 3.00000000 2.00000000 2.0000000 2.0000000 4.00000000 6.0000000 3.0000000 5.00000000 3.0000000 6.00000000 7.0000000 3.00000000 5.000000000 2.00000000 1.000000000 2.00000000 2.00000000 3.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 2.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_91 - 94 1 2 0 0 100 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 6.00000e+00 7.00000e+00 3.0000000 3.0000000 7.0000000 5.00000000 3.0000000 3.00000000 6.00000000 3.00000000 2.0000000 4.0000000 1.00000000 2.0000000 5.0000000 4.00000000 1.0000000 3.00000000 1.0000000 4.00000000 8.000000000 2.00000000 3.000000000 3.00000000 1.00000000 0.00000000 2.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_92 - 96 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 7.00000e+00 5.00000e+00 9.00000e+00 1.0000000 1.0000000 1.0000000 3.00000000 2.0000000 1.00000000 5.00000000 3.00000000 3.0000000 1.0000000 3.00000000 2.0000000 3.0000000 5.00000000 5.0000000 2.00000000 7.0000000 2.00000000 4.000000000 0.00000000 3.000000000 2.00000000 4.00000000 2.00000000 2.00000e+00 2.00000000 2.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_93 - 98 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 7.00000e+00 3.00000e+00 3.00000e+00 2.0000000 4.0000000 3.0000000 1.00000000 4.0000000 3.00000000 5.00000000 2.00000000 4.0000000 5.0000000 4.00000000 7.0000000 1.0000000 7.00000000 3.0000000 3.00000000 1.0000000 4.00000000 3.000000000 3.00000000 0.000000000 4.00000000 0.00000000 7.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_94 - 100 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 7.00000e+00 1.00000e+01 1.00000e+01 7.0000000 1.0000000 5.0000000 2.00000000 5.0000000 6.00000000 6.00000000 3.00000000 5.0000000 6.0000000 5.00000000 1.0000000 3.0000000 1.00000000 2.0000000 2.00000000 2.0000000 2.00000000 1.000000000 1.00000000 2.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_95 --9999 0 0 0 0 0 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.0000000 0.00000000 0.000000000 0.00000000 0.000000000 0.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_terminator -25 #_N_agebins -# -#_agebin_vector -1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 #_agebin_vector -# -#_ageing_error -1 #_N_ageerror_definitions -#_age0 age1 age2 age3 age4 age5 age6 age7 age8 age9 age10 age11 age12 age13 age14 age15 age16 age17 age18 age19 age20 age21 age22 age23 age24 age25 --1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 #_1 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 #_2 -# -#_age_info -#_mintailcomp addtocomp combine_M_F CompressBins CompError ParmSelect minsamplesize --1 1e-10 0 0 0 0 1 #_Fishery --1 1e-10 0 0 0 0 1 #_Survey -3 #_Lbin_method: 1=poplenbins; 2=datalenbins; 3=lengths - #_combine males into females at or below this bin number -#_Yr Seas FltSvy Gender Part Ageerr Lbin_lo Lbin_hi Nsamp a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 - 26 1 1 0 0 1 -1 -1 50 1 6 11 6 2 5 3 3 2 2 1 1 1 1 2 0 1 1 0 0 0 0 0 0 1 #_1 - 27 1 1 0 0 1 -1 -1 50 3 7 10 5 5 4 2 2 7 2 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 #_2 - 28 1 1 0 0 1 -1 -1 50 2 10 3 7 4 7 2 1 4 2 3 2 1 0 0 1 0 1 0 0 0 0 0 0 0 #_3 - 29 1 1 0 0 1 -1 -1 50 1 8 11 3 9 1 8 2 1 3 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 #_4 - 30 1 1 0 0 1 -1 -1 50 1 15 8 4 3 2 5 4 1 1 1 3 0 0 0 0 1 0 1 0 0 0 0 0 0 #_5 - 31 1 1 0 0 1 -1 -1 50 1 8 8 12 5 1 3 2 2 1 1 1 2 1 1 0 0 0 0 0 1 0 0 0 0 #_6 - 32 1 1 0 0 1 -1 -1 50 1 9 13 6 8 3 1 1 3 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 #_7 - 33 1 1 0 0 1 -1 -1 50 1 9 6 9 6 8 2 0 3 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 #_8 - 34 1 1 0 0 1 -1 -1 50 2 13 7 4 5 4 3 1 2 4 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 #_9 - 35 1 1 0 0 1 -1 -1 50 2 15 8 3 5 5 3 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 #_10 - 36 1 1 0 0 1 -1 -1 50 0 9 8 11 5 2 3 4 3 2 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 #_11 - 37 1 1 0 0 1 -1 -1 50 5 3 14 10 7 1 2 3 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_12 - 38 1 1 0 0 1 -1 -1 50 0 14 6 10 0 12 1 1 3 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 #_13 - 39 1 1 0 0 1 -1 -1 50 2 7 17 3 2 4 4 3 6 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 #_14 - 40 1 1 0 0 1 -1 -1 50 0 19 8 8 5 3 2 2 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_15 - 41 1 1 0 0 1 -1 -1 50 1 5 17 6 7 2 4 1 2 1 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 #_16 - 42 1 1 0 0 1 -1 -1 50 0 12 4 9 2 11 2 1 5 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 #_17 - 43 1 1 0 0 1 -1 -1 50 7 13 1 7 5 5 8 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 #_18 - 44 1 1 0 0 1 -1 -1 50 0 23 3 9 0 7 2 3 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_19 - 45 1 1 0 0 1 -1 -1 50 3 2 19 4 5 4 5 1 2 0 0 0 1 2 1 0 0 0 0 0 0 0 1 0 0 #_20 - 46 1 1 0 0 1 -1 -1 50 2 5 5 18 4 3 1 7 0 3 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 #_21 - 47 1 1 0 0 1 -1 -1 50 0 13 11 3 7 3 5 3 2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 #_22 - 48 1 1 0 0 1 -1 -1 50 0 9 22 0 2 9 2 3 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 #_23 - 49 1 1 0 0 1 -1 -1 50 1 7 15 9 3 2 5 0 1 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_24 - 50 1 1 0 0 1 -1 -1 50 2 11 5 9 1 2 2 9 3 1 0 2 0 2 0 0 1 0 0 0 0 0 0 0 0 #_25 - 51 1 1 0 0 1 -1 -1 50 2 17 8 3 5 5 0 0 3 0 0 1 3 1 1 0 0 1 0 0 0 0 0 0 0 #_26 - 52 1 1 0 0 1 -1 -1 50 2 10 12 6 5 4 6 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 #_27 - 53 1 1 0 0 1 -1 -1 50 2 13 1 9 6 1 5 5 2 1 1 1 0 0 2 0 0 0 1 0 0 0 0 0 0 #_28 - 54 1 1 0 0 1 -1 -1 50 1 11 12 5 4 2 2 6 4 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 #_29 - 55 1 1 0 0 1 -1 -1 50 3 8 13 7 3 5 1 0 5 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_30 - 56 1 1 0 0 1 -1 -1 50 1 14 4 6 8 4 8 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_31 - 57 1 1 0 0 1 -1 -1 50 0 11 17 5 2 3 4 2 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 #_32 - 58 1 1 0 0 1 -1 -1 50 1 11 7 14 4 5 0 0 5 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 #_33 - 59 1 1 0 0 1 -1 -1 50 4 9 12 7 11 2 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 #_34 - 60 1 1 0 0 1 -1 -1 50 3 11 11 4 4 4 3 3 1 1 1 0 2 1 0 0 0 1 0 0 0 0 0 0 0 #_35 - 61 1 1 0 0 1 -1 -1 50 2 21 7 8 1 5 0 0 2 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 #_36 - 62 1 1 0 0 1 -1 -1 50 0 7 15 6 3 2 7 5 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 #_37 - 63 1 1 0 0 1 -1 -1 50 2 6 7 14 5 6 4 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 #_38 - 64 1 1 0 0 1 -1 -1 50 2 11 9 3 13 7 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_39 - 65 1 1 0 0 1 -1 -1 50 3 6 5 8 4 9 4 3 3 2 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_40 - 66 1 1 0 0 1 -1 -1 50 2 15 10 7 5 3 4 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_41 - 67 1 1 0 0 1 -1 -1 50 2 10 9 8 3 3 2 5 1 2 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 #_42 - 68 1 1 0 0 1 -1 -1 50 0 10 7 9 8 3 2 2 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_43 - 69 1 1 0 0 1 -1 -1 50 1 12 8 6 3 5 3 4 2 3 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_44 - 70 1 1 0 0 1 -1 -1 50 4 9 5 9 11 4 2 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_45 - 71 1 1 0 0 1 -1 -1 50 2 17 11 7 3 4 1 1 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 #_46 - 72 1 1 0 0 1 -1 -1 50 6 5 12 10 7 2 2 4 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_47 - 73 1 1 0 0 1 -1 -1 50 1 28 4 8 5 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_48 - 74 1 1 0 0 1 -1 -1 50 2 7 21 3 8 1 3 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_49 - 75 1 1 0 0 1 -1 -1 50 2 18 5 11 4 4 1 2 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_50 - 76 1 1 0 0 1 -1 -1 50 0 9 12 1 14 3 4 0 1 4 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 #_51 - 77 1 1 0 0 1 -1 -1 50 0 4 10 7 2 11 4 3 5 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 #_52 - 78 1 1 0 0 1 -1 -1 50 1 11 5 9 11 2 9 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_53 - 79 1 1 0 0 1 -1 -1 50 3 10 10 2 6 8 1 6 0 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 #_54 - 80 1 1 0 0 1 -1 -1 50 0 3 17 10 1 3 5 1 4 0 2 2 0 1 0 0 1 0 0 0 0 0 0 0 0 #_55 - 81 1 1 0 0 1 -1 -1 50 4 6 7 9 4 2 4 3 1 5 0 1 2 0 0 1 0 1 0 0 0 0 0 0 0 #_56 - 82 1 1 0 0 1 -1 -1 50 2 13 9 9 6 1 1 1 1 1 1 1 2 1 0 0 1 0 0 0 0 0 0 0 0 #_57 - 83 1 1 0 0 1 -1 -1 50 2 15 8 6 3 2 4 3 2 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 #_58 - 84 1 1 0 0 1 -1 -1 50 1 9 6 9 7 1 7 2 2 1 0 1 2 1 0 1 0 0 0 0 0 0 0 0 0 #_59 - 85 1 1 0 0 1 -1 -1 50 3 18 6 7 7 2 5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_60 - 86 1 1 0 0 1 -1 -1 50 3 9 18 5 5 1 2 0 4 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 #_61 - 87 1 1 0 0 1 -1 -1 50 5 3 10 14 4 5 5 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_62 - 88 1 1 0 0 1 -1 -1 50 4 24 3 6 3 1 4 0 1 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_63 - 89 1 1 0 0 1 -1 -1 50 2 18 13 1 4 7 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_64 - 90 1 1 0 0 1 -1 -1 50 0 6 15 17 1 4 3 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 #_65 - 91 1 1 0 0 1 -1 -1 50 1 9 7 10 13 0 3 1 2 2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 #_66 - 92 1 1 0 0 1 -1 -1 50 1 13 2 7 7 12 1 1 3 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 #_67 - 93 1 1 0 0 1 -1 -1 50 1 15 4 4 1 6 9 1 1 3 1 2 1 0 0 0 0 0 0 1 0 0 0 0 0 #_68 - 94 1 1 0 0 1 -1 -1 50 0 8 15 13 1 4 3 3 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 #_69 - 62 1 2 0 0 1 -1 -1 100 1 17 30 11 9 12 6 4 3 0 0 1 1 2 1 1 0 0 0 0 1 0 0 0 0 #_70 - 64 1 2 0 0 1 -1 -1 100 1 23 21 7 17 6 3 8 2 4 2 2 0 0 2 0 1 1 0 0 0 0 0 0 0 #_71 - 66 1 2 0 0 1 -1 -1 100 0 24 20 19 9 6 8 4 3 1 2 2 1 0 0 0 1 0 0 0 0 0 0 0 0 #_72 - 68 1 2 0 0 1 -1 -1 100 1 19 26 13 12 7 3 5 6 2 1 1 1 2 0 0 1 0 0 0 0 0 0 0 0 #_73 - 70 1 2 0 0 1 -1 -1 100 0 30 20 9 12 7 4 7 3 0 2 1 1 0 1 0 0 1 0 0 1 0 0 0 1 #_74 - 72 1 2 0 0 1 -1 -1 100 2 18 27 17 13 3 10 3 2 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 #_75 - 74 1 2 0 0 1 -1 -1 100 2 12 35 5 11 11 8 7 2 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 #_76 - 76 1 2 0 0 1 -1 -1 100 1 15 28 7 24 7 6 1 4 2 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 #_77 - 78 1 2 0 0 1 -1 -1 100 1 25 8 12 19 4 16 3 3 3 1 1 1 2 0 1 0 0 0 0 0 0 0 0 0 #_78 - 80 1 2 0 0 1 -1 -1 100 0 16 21 13 4 8 16 4 7 1 4 2 2 1 0 1 0 0 0 0 0 0 0 0 0 #_79 - 82 1 2 0 0 1 -1 -1 100 0 21 14 15 18 11 3 6 3 1 5 1 2 0 0 0 0 0 0 0 0 0 0 0 0 #_80 - 84 1 2 0 0 1 -1 -1 100 1 25 18 15 8 4 6 5 3 3 5 0 4 1 2 0 0 0 0 0 0 0 0 0 0 #_81 - 86 1 2 0 0 1 -1 -1 100 0 22 35 11 12 6 4 2 1 3 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 #_82 - 88 1 2 0 0 1 -1 -1 100 0 41 12 9 12 6 6 3 2 1 3 1 0 0 1 0 2 0 1 0 0 0 0 0 0 #_83 - 90 1 2 0 0 1 -1 -1 100 0 26 29 22 6 4 5 0 0 3 0 0 0 1 1 0 2 1 0 0 0 0 0 0 0 #_84 - 92 1 2 0 0 1 -1 -1 100 2 23 9 16 16 11 3 2 9 3 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_85 - 94 1 2 0 0 1 -1 -1 100 1 22 23 7 9 10 14 8 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 #_86 - 96 1 2 0 0 1 -1 -1 100 0 27 13 13 12 9 3 6 6 5 2 1 2 0 0 0 0 0 0 1 0 0 0 0 0 #_87 - 98 1 2 0 0 1 -1 -1 100 2 27 6 20 8 8 9 4 2 1 3 2 2 1 1 1 1 2 0 0 0 0 0 0 0 #_88 - 100 1 2 0 0 1 -1 -1 100 1 29 32 3 5 11 4 5 7 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 #_89 - 95 1 1 0 0 1 29 29 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_731 - 95 1 1 0 0 1 47 47 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_791 - 95 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_801 - 95 1 1 0 0 1 56 56 5 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_821 - 95 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_831 - 95 1 1 0 0 1 65 65 3 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_851 - 95 1 1 0 0 1 68 68 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_861 - 95 1 1 0 0 1 71 71 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_871 - 95 1 1 0 0 1 74 74 2 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_881 - 95 1 1 0 0 1 80 80 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_90 - 95 1 1 0 0 1 86 86 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_92 - 95 1 1 0 0 1 89 89 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_93 - 95 1 1 0 0 1 107 107 3 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_99 - 95 1 1 0 0 1 110 110 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_100 - 95 1 1 0 0 1 116 116 3 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_102 - 96 1 1 0 0 1 47 47 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_124 - 96 1 1 0 0 1 50 50 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_125 - 96 1 1 0 0 1 62 62 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_129 - 96 1 1 0 0 1 68 68 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_131 - 96 1 1 0 0 1 74 74 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_133 - 96 1 1 0 0 1 80 80 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_135 - 96 1 1 0 0 1 83 83 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_136 - 96 1 1 0 0 1 86 86 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_137 - 96 1 1 0 0 1 89 89 4 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_138 - 96 1 1 0 0 1 98 98 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_141 - 96 1 1 0 0 1 107 107 3 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_144 - 96 1 1 0 0 1 110 110 4 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_145 - 96 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_147 - 96 1 1 0 0 1 131 131 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_152 - 96 1 1 0 0 1 140 140 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 #_155 - 97 1 1 0 0 1 35 35 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_165 - 97 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_170 - 97 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_173 - 97 1 1 0 0 1 62 62 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_174 - 97 1 1 0 0 1 65 65 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_175 - 97 1 1 0 0 1 68 68 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_176 - 97 1 1 0 0 1 71 71 4 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_177 - 97 1 1 0 0 1 74 74 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_178 - 97 1 1 0 0 1 77 77 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_179 - 97 1 1 0 0 1 80 80 5 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_180 - 97 1 1 0 0 1 86 86 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_182 - 97 1 1 0 0 1 92 92 3 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_184 - 97 1 1 0 0 1 113 113 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_191 - 97 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_192 - 97 1 1 0 0 1 122 122 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_194 - 97 1 1 0 0 1 134 134 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_198 - 97 1 1 0 0 1 143 143 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_201 - 98 1 1 0 0 1 50 50 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_215 - 98 1 1 0 0 1 53 53 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_216 - 98 1 1 0 0 1 62 62 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_219 - 98 1 1 0 0 1 65 65 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_220 - 98 1 1 0 0 1 68 68 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_221 - 98 1 1 0 0 1 74 74 3 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_223 - 98 1 1 0 0 1 77 77 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_224 - 98 1 1 0 0 1 80 80 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_225 - 98 1 1 0 0 1 83 83 3 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_226 - 98 1 1 0 0 1 86 86 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_227 - 98 1 1 0 0 1 89 89 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_228 - 98 1 1 0 0 1 92 92 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_229 - 98 1 1 0 0 1 98 98 3 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_231 - 98 1 1 0 0 1 107 107 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_234 - 98 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_237 - 98 1 1 0 0 1 119 119 2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_238 - 99 1 1 0 0 1 32 32 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_254 - 99 1 1 0 0 1 44 44 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_258 - 99 1 1 0 0 1 47 47 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_259 - 99 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_260 - 99 1 1 0 0 1 53 53 6 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_261 - 99 1 1 0 0 1 56 56 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_262 - 99 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_263 - 99 1 1 0 0 1 62 62 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_264 - 99 1 1 0 0 1 68 68 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_266 - 99 1 1 0 0 1 71 71 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_267 - 99 1 1 0 0 1 74 74 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_268 - 99 1 1 0 0 1 77 77 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_269 - 99 1 1 0 0 1 92 92 3 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_274 - 99 1 1 0 0 1 122 122 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 #_284 - 99 1 1 0 0 1 134 134 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_288 - 100 1 1 0 0 1 44 44 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_303 - 100 1 1 0 0 1 47 47 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_304 - 100 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_305 - 100 1 1 0 0 1 53 53 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_306 - 100 1 1 0 0 1 56 56 3 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_307 - 100 1 1 0 0 1 62 62 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_309 - 100 1 1 0 0 1 65 65 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_310 - 100 1 1 0 0 1 80 80 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_315 - 100 1 1 0 0 1 89 89 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_318 - 100 1 1 0 0 1 92 92 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_319 - 100 1 1 0 0 1 95 95 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_320 - 100 1 1 0 0 1 107 107 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_324 - 100 1 1 0 0 1 122 122 4 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_329 --9999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_terminator -# -#_MeanSize_at_Age_obs -0 #_use_MeanSize_at_Age_obs -0 #_N_environ_variables -0 #_N_sizefreq_methods -0 #_do_tags -0 #_morphcomp_data -0 #_use_selectivity_priors -# -999 diff --git a/model_recipes/ASPM/starter.ss b/model_recipes/ASPM/starter.ss deleted file mode 100644 index fdbf18e..0000000 --- a/model_recipes/ASPM/starter.ss +++ /dev/null @@ -1,35 +0,0 @@ -#C starter file written by R function SS_writestarter -#C rerun model to get more complete formatting in starter.ss_new -#C should work with SS version: 3.30 -#C file write time: 2022-01-21 15:26:29 -# -data.ss_new #_datfile -control.ss_new #_ctlfile -1 #_init_values_src -0 #_run_display_detail -1 #_detailed_age_structure -0 #_checkup -0 #_parmtrace -1 #_cumreport -0 #_prior_like -1 #_soft_bounds -2 #_N_bootstraps -100 #_last_estimation_phase -0 #_MCMCburn -1 #_MCMCthin -0 #_jitter_fraction --1 #_minyr_sdreport --2 #_maxyr_sdreport -0 #_N_STD_yrs -1e-04 #_converge_criterion -0 #_retro_yr -1 #_min_age_summary_bio -1 #_depl_basis -1 #_depl_denom_frac -4 #_SPR_basis -1 #_F_report_units -0 #_F_report_basis -0 #_MCMC_output_detail -0 #_ALK_tolerance -# -3.3 #_final diff --git a/model_recipes/ASPM_simple.R b/model_recipes/ASPM_simple.R deleted file mode 100644 index f75c5cf..0000000 --- a/model_recipes/ASPM_simple.R +++ /dev/null @@ -1,82 +0,0 @@ -## -# ASPM_simple.R -# Example application: -# ss3diags::simple Stock Synthesis model -# Stock Synthesis (version 3_30_18 Windows) -# r4ss (version 1.43.0) -# R (version 4.1.1 64 bit) -## - -library(r4ss) -library(ss3diags) - -# Step 1. Copy and paste files from reference run to ASPM directory -dirname.completed.model.run <- "./model_recipes/reference_run_orig" - -# Step 2. Create a "ASPM" subdirectory -dirname.aspm <- "./model_recipes/ASPM" -dir.create(path=dirname.aspm, showWarnings = TRUE, recursive = TRUE) - -# Step 3. Create a "Figures_Tables" subdirectory -plotdir=paste0(dirname.aspm, "/Figures & Tables") -dir.create(path=plotdir, showWarnings = TRUE, recursive = TRUE) - -# Step 4. Copy completed base model output to "ASPM" directory -list_of_files <- list.files(dirname.completed.model.run) -file.copy(file.path(dirname.completed.model.run, list_of_files), dirname.aspm) - -# Step 5. Change rec devs in ss3.pars to 0 -pars <- SS_readpar_3.30(file.path(dirname.aspm, "ss3.par"), - datsource = file.path(dirname.aspm, "data.ss_new"), - ctlsource = file.path(dirname.aspm, "control.ss_new")) - -pars$recdev_early[,2] <- 0 -pars$recdev1[,2] <- 0 -pars$recdev_forecast[,2] <- 0 -SS_writepar_3.30(pars, outfile = file.path(dirname.aspm, "ss3.par")) - -# Step 6. Change starter to read from par file and dat and ctl file names to .ss_new versions -starter <- SS_readstarter(file = file.path(dirname.aspm, "starter.ss")) -starter$init_values_src <- 1 -starter$datfile <- "data.ss_new" -starter$ctlfile <- "control.ss_new" -SS_writestarter(starter, dir = dirname.aspm, overwrite = TRUE) - -SS_changepars(dir = dirname.aspm, - strings = c("steep", "sigmaR"), - newphs = c(-4, -5)) - -# Step 7. Change control file to fix rec devs at value read from par file (change phase to negative (recdev phase =-3, recdev_early_phase = -4)) - -control <- SS_readctl(file = file.path(dirname.aspm, "control.ss_new"), - datlist = file.path(dirname.aspm, "data.ss_new")) - - -control$recdev_early_phase <- -4 -control$recdev_phase <- -3 -SS_writectl_3.30(control, outfile = file.path(dirname.aspm, "control.ss_new"), overwrite = TRUE) -# Manually fix the selectivity parameters by changing the phase to a negative value -# Manually turn off all length comp data (likelihood lambda to 0) and penalty for rec dev estimation in liklihood (lambda = 0 for recruitment) -# If there are already lambda adjustments you can do this through R by: -# control$lambdas$value <- 0 -# 4 1 1 0 1 -# 4 2 1 0 1 -# 10 1 1 0 1 - -# Step 8. Run original and ASPM models - -# Step 9. Summarize results -aspm.mods <- SSgetoutput(dirvec = c(dirname.completed.model.run, dirname.aspm)) -aspm.summary <- SSsummarize(aspm.mods) - -# plot comparisons -SSplotComparisons(aspm.summary, - legendlabels = c("Reference", "ASPM"), - print = TRUE, - plotdir = plotdir) - -SSplotModelcomp(aspm.summary, subplots = "Index", add = TRUE, legendlabels = c("Full Model","ASPM")) -SSplotModelcomp(aspm.summary, subplots = "SSB", add = TRUE) -SSplotModelcomp(aspm.summary, subplots = "RecDevs", add = TRUE) - - diff --git a/model_recipes/Likelihood profiles/R0/control_modified.ss b/model_recipes/Likelihood profiles/R0/control_modified.ss deleted file mode 100644 index f85cd69..0000000 --- a/model_recipes/Likelihood profiles/R0/control_modified.ss +++ /dev/null @@ -1,298 +0,0 @@ -#V3.30.xx.yy;_safe;_compile_date:_Dec 7 2021;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_12.3 -#_Stock_Synthesis_is_a_work_of_the_U.S._Government_and_is_not_subject_to_copyright_protection_in_the_United_States. -#_Foreign_copyrights_may_apply._See_copyright.txt_for_more_information. -#_User_support_available_at:NMFS.Stock.Synthesis@noaa.gov -#_User_info_available_at:https://vlab.noaa.gov/group/stock-synthesis -#_Source_code_at:_https://github.com/nmfs-stock-synthesis/stock-synthesis - -#C file created using the SS_writectl function in the R package r4ss -#C file write time: 2022-01-18 13:21:07 -#_data_and_control_files: data.ss_new // control_modified.ss -0 # 0 means do not read wtatage.ss; 1 means read and use wtatage.ss and also read and use growth parameters -1 #_N_Growth_Patterns (Growth Patterns, Morphs, Bio Patterns, GP are terms used interchangeably in SS3) -1 #_N_platoons_Within_GrowthPattern -#_Cond 1 #_Platoon_within/between_stdev_ratio (no read if N_platoons=1) -#_Cond 1 #vector_platoon_dist_(-1_in_first_val_gives_normal_approx) -# -2 # recr_dist_method for parameters: 2=main effects for GP, Area, Settle timing; 3=each Settle entity; 4=none (only when N_GP*Nsettle*pop==1) -1 # not yet implemented; Future usage: Spawner-Recruitment: 1=global; 2=by area -1 # number of recruitment settlement assignments -0 # unused option -#GPattern month area age (for each settlement assignment) - 1 1 1 0 -# -#_Cond 0 # N_movement_definitions goes here if Nareas > 1 -#_Cond 1.0 # first age that moves (real age at begin of season, not integer) also cond on do_migration>0 -#_Cond 1 1 1 2 4 10 # example move definition for seas=1, morph=1, source=1 dest=2, age1=4, age2=10 -# -0 #_Nblock_Patterns -#_Cond 0 #_blocks_per_pattern -# begin and end years of blocks -# -# controls for all timevary parameters -1 #_time-vary parm bound check (1=warn relative to base parm bounds; 3=no bound check); Also see env (3) and dev (5) options to constrain with base bounds -# -# AUTOGEN - 0 0 0 0 0 # autogen: 1st element for biology, 2nd for SR, 3rd for Q, 4th reserved, 5th for selex -# where: 0 = autogen time-varying parms of this category; 1 = read each time-varying parm line; 2 = read then autogen if parm min==-12345 -# -#_Available timevary codes -#_Block types: 0: P_block=P_base*exp(TVP); 1: P_block=P_base+TVP; 2: P_block=TVP; 3: P_block=P_block(-1) + TVP -#_Block_trends: -1: trend bounded by base parm min-max and parms in transformed units (beware); -2: endtrend and infl_year direct values; -3: end and infl as fraction of base range -#_EnvLinks: 1: P(y)=P_base*exp(TVP*env(y)); 2: P(y)=P_base+TVP*env(y); 3: P(y)=f(TVP,env_Zscore) w/ logit to stay in min-max; 4: P(y)=2.0/(1.0+exp(-TVP1*env(y) - TVP2)) -#_DevLinks: 1: P(y)*=exp(dev(y)*dev_se; 2: P(y)+=dev(y)*dev_se; 3: random walk; 4: zero-reverting random walk with rho; 5: like 4 with logit transform to stay in base min-max -#_DevLinks(more): 21-25 keep last dev for rest of years -# -#_Prior_codes: 0=none; 6=normal; 1=symmetric beta; 2=CASAL's beta; 3=lognormal; 4=lognormal with biascorr; 5=gamma -# -# setup for M, growth, wt-len, maturity, fecundity, (hermaphro), recr_distr, cohort_grow, (movement), (age error), (catch_mult), sex ratio -#_NATMORT -0 #_natM_type:_0=1Parm; 1=N_breakpoints;_2=Lorenzen;_3=agespecific;_4=agespec_withseasinterpolate;_5=BETA:_Maunder_link_to_maturity - #_no additional input for selected M option; read 1P per morph -# -1 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2; 3=age_specific_K_incr; 4=age_specific_K_decr; 5=age_specific_K_each; 6=NA; 7=NA; 8=growth cessation -1 #_Age(post-settlement)_for_L1;linear growth below this -999 #_Growth_Age_for_L2 (999 to use as Linf) --999 #_exponential decay for growth above maxage (value should approx initial Z; -999 replicates 3.24; -998 to not allow growth above maxage) -0 #_placeholder for future growth feature -# -0 #_SD_add_to_LAA (set to 0.1 for SS2 V1.x compatibility) -0 #_CV_Growth_Pattern: 0 CV=f(LAA); 1 CV=F(A); 2 SD=F(LAA); 3 SD=F(A); 4 logSD=F(A) -# -1 #_maturity_option: 1=length logistic; 2=age logistic; 3=read age-maturity matrix by growth_pattern; 4=read age-fecundity; 5=disabled; 6=read length-maturity -0 #_First_Mature_Age -1 #_fecundity option:(1)eggs=Wt*(a+b*Wt);(2)eggs=a*L^b;(3)eggs=a*Wt^b; (4)eggs=a+b*L; (5)eggs=a+b*W -0 #_hermaphroditism option: 0=none; 1=female-to-male age-specific fxn; -1=male-to-female age-specific fxn -1 #_parameter_offset_approach for M, G, CV_G: 1- direct, no offset**; 2- male=fem_parm*exp(male_parm); 3: male=female*exp(parm) then old=young*exp(parm) -#_** in option 1, any male parameter with value = 0.0 and phase <0 is set equal to female parameter -# -#_growth_parms -#_ LO HI INIT PRIOR PR_SD PR_type PHASE env_var&link dev_link dev_minyr dev_maxyr dev_PH Block Block_Fxn -# Sex: 1 BioPattern: 1 NatMort - 0.01 1.8 0.2 0.1 0.8 0 -3 0 0 0 0 0 0 0 # NatM_uniform_Fem_GP_1 -# Sex: 1 BioPattern: 1 Growth - 1 100 20.4154 30.8 0.2 0 4 0 0 0 0 0 0 0 # L_at_Amin_Fem_GP_1 - 6.6 660 120.724 120.1 0.2 0 4 0 0 0 0 0 0 0 # L_at_Amax_Fem_GP_1 - 0.01 1 0.220935 0.25 0.8 0 4 0 0 0 0 0 0 0 # VonBert_K_Fem_GP_1 - 0.01 0.5 0.0801576 0.1 0.8 0 5 0 0 0 0 0 0 0 # CV_young_Fem_GP_1 - 0.01 0.5 0.136224 0.1 0.8 0 5 0 0 0 0 0 0 0 # CV_old_Fem_GP_1 -# Sex: 1 BioPattern: 1 WtLen - 0 3 6.8e-06 6.8e-06 0 0 -1 0 0 0 0 0 0 0 # Wtlen_1_Fem_GP_1 - 2.5 3.5 3.101 3.101 0.2 0 -3 0 0 0 0 0 0 0 # Wtlen_2_Fem_GP_1 -# Sex: 1 BioPattern: 1 Maturity&Fecundity - 10 50 38.18 0 0 0 -3 0 0 0 0 0 0 0 # Mat50%_Fem_GP_1 - -2 2 -0.276 0 0 0 -3 0 0 0 0 0 0 0 # Mat_slope_Fem_GP_1 - -3 3 1 0 0 0 -3 0 0 0 0 0 0 0 # Eggs/kg_inter_Fem_GP_1 - -3 4 0 0 0 0 -3 0 0 0 0 0 0 0 # Eggs/kg_slope_wt_Fem_GP_1 -# Hermaphroditism -# Recruitment Distribution - -4 4 0 0 0 0 -4 0 0 0 0 0 0 0 # RecrDist_GP_1 - -4 4 0 0 0 0 -4 0 0 0 0 0 0 0 # RecrDist_Area_1 - -4 4 0 0 0 0 -4 0 0 0 0 0 0 0 # RecrDist_month_1 -# Cohort growth dev base - -4 4 1 0 0 0 -4 0 0 0 0 0 0 0 # CohortGrowDev -# Movement -# Age Error from parameters -# catch multiplier -# fraction female, by GP - 1e-06 0.999999 0.5 0.5 0.5 0 -99 0 0 0 0 0 0 0 # FracFemale_GP_1 -# M2 parameter for each predator fleet -# -#_no timevary MG parameters -# -#_seasonal_effects_on_biology_parms - 0 0 0 0 0 0 0 0 0 0 #_femwtlen1,femwtlen2,mat1,mat2,fec1,fec2,Malewtlen1,malewtlen2,L1,K -#_ LO HI INIT PRIOR PR_SD PR_type PHASE -#_Cond -2 2 0 0 -1 99 -2 #_placeholder when no seasonal MG parameters -# -3 #_Spawner-Recruitment; Options: 1=NA; 2=Ricker; 3=std_B-H; 4=SCAA; 5=Hockey; 6=B-H_flattop; 7=survival_3Parm; 8=Shepherd_3Parm; 9=RickerPower_3parm -0 # 0/1 to use steepness in initial equ recruitment calculation -0 # future feature: 0/1 to make realized sigmaR a function of SR curvature -#_ LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 4 20 20 10.3 10 0 -1 0 0 0 0 0 0 0 # SR_LN(R0) - 0.2 1 0.65 0.7 0.05 0 -4 0 0 0 0 0 0 0 # SR_BH_steep - 0 2 0.4 0.8 0.8 0 -5 0 0 0 0 0 0 0 # SR_sigmaR - -5 5 0 0 1 0 -4 0 0 0 0 0 0 0 # SR_regime - 0 0 0 0 0 0 -99 0 0 0 0 0 0 0 # SR_autocorr -#_no timevary SR parameters -1 #do_recdev: 0=none; 1=devvector (R=F(SSB)+dev); 2=deviations (R=F(SSB)+dev); 3=deviations (R=R0*dev; dev2=R-f(SSB)); 4=like 3 with sum(dev2) adding penalty -6 # first year of main recr_devs; early devs can preceed this era -100 # last year of main recr_devs; forecast devs start in following year -1 #_recdev phase -1 # (0/1) to read 13 advanced options - 1 #_recdev_early_start (0=none; neg value makes relative to recdev_start) - 4 #_recdev_early_phase - 0 #_forecast_recruitment phase (incl. late recr) (0 value resets to maxphase+1) - 1 #_lambda for Fcast_recr_like occurring before endyr+1 - 1 #_last_yr_nobias_adj_in_MPD; begin of ramp - 26 #_first_yr_fullbias_adj_in_MPD; begin of plateau - 99 #_last_yr_fullbias_adj_in_MPD - 100 #_end_yr_for_ramp_in_MPD (can be in forecast to shape ramp, but SS3 sets bias_adj to 0.0 for fcast yrs) - 0.9 #_max_bias_adj_in_MPD (typical ~0.8; -3 sets all years to 0.0; -2 sets all non-forecast yrs w/ estimated recdevs to 1.0; -1 sets biasadj=1.0 for all yrs w/ recdevs) - 0 #_period of cycles in recruitment (N parms read below) - -5 #min rec_dev - 5 #max rec_dev - 0 #_read_recdevs -#_end of advanced SR options -# -#_placeholder for full parameter lines for recruitment cycles -# read specified recr devs -#_Yr Input_value -# -# all recruitment deviations -# 1E 2E 3E 4E 5E 6R 7R 8R 9R 10R 11R 12R 13R 14R 15R 16R 17R 18R 19R 20R 21R 22R 23R 24R 25R 26R 27R 28R 29R 30R 31R 32R 33R 34R 35R 36R 37R 38R 39R 40R 41R 42R 43R 44R 45R 46R 47R 48R 49R 50R 51R 52R 53R 54R 55R 56R 57R 58R 59R 60R 61R 62R 63R 64R 65R 66R 67R 68R 69R 70R 71R 72R 73R 74R 75R 76R 77R 78R 79R 80R 81R 82R 83R 84R 85R 86R 87R 88R 89R 90R 91R 92R 93R 94R 95R 96R 97R 98R 99R 100R 101F -# -0.288465 -0.117405 -0.139769 -0.165704 -0.195628 -0.0244338 0.0485111 -0.00690801 -0.0678943 -0.0333164 0.0724696 -0.191913 -0.194725 -0.371728 -0.393125 -0.235805 -0.144479 0.0817129 -0.230894 -0.431085 -0.592839 -0.0940141 -0.357588 -0.34576 -0.957522 -0.357407 -0.225657 -0.113288 -0.208503 -0.409728 -0.615494 -0.0487967 -0.169822 -0.272903 -0.956965 0.166224 -0.683248 0.137209 -0.746091 -0.301972 -0.595806 0.48591 -1.22522 -0.77759 0.164053 -0.0637655 -0.656753 -0.385379 0.103535 -0.553292 -0.243919 -0.442756 -0.571113 0.180885 -0.195621 -0.158803 -0.286574 -0.0966056 0.496566 -0.378563 -0.121001 -0.0281114 -0.0821037 0.0489792 0.129183 -0.0619241 0.0255565 0.204942 0.414977 -0.178628 1.05589 -0.458549 0.670532 0.123074 -0.448854 0.215449 0.382578 -0.0188066 -0.0782298 0.329562 0.391588 0.105167 0.91843 0.31813 -0.108813 1.32318 1.16239 0.517737 -0.0266487 0.481524 1.00535 0.664653 0.445578 1.02317 0.128105 0.762698 1.39989 1.31663 0.269673 0.255648 0 -# -#Fishing Mortality info -0.3 # F ballpark value in units of annual_F --2001 # F ballpark year (neg value to disable) -3 # F_Method: 1=Pope midseason rate; 2=F as parameter; 3=F as hybrid; 4=fleet-specific parm/hybrid (#4 is superset of #2 and #3 and is recommended) -4 # max F (methods 2-4) or harvest fraction (method 1) -4 # N iterations for tuning in hybrid mode; recommend 3 (faster) to 5 (more precise if many fleets) -# -#_initial_F_parms; for each fleet x season that has init_catch; nest season in fleet; count = 0 -#_for unconstrained init_F, use an arbitrary initial catch and set lambda=0 for its logL -#_ LO HI INIT PRIOR PR_SD PR_type PHASE -# -# F rates by fleet x season -# Yr: 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 -# seas: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -# Fishery 0.045821 0.0453211 0.0445628 0.0434759 0.0423294 0.0414545 0.0408571 0.040098 0.039344 0.0386636 0.0377178 0.036691 0.0357646 0.0348033 0.0335885 0.03205 0.031073 0.0297397 0.0291143 0.0290239 0.0281168 0.0276997 0.0271811 0.0264338 0.0256185 0.0254268 0.0244395 0.0239558 0.0238365 0.0234709 0.0230093 0.0231725 0.0228099 0.0224437 0.0219488 0.0215924 0.0213814 0.0211744 0.0210058 0.0204867 0.0202322 0.0198931 0.0195958 0.019114 0.0188548 0.0180725 0.0177026 0.0174307 0.0174369 0.0169665 0.0167102 0.0163512 0.0156108 0.0153073 0.0149142 0.0143737 0.0140891 0.0139064 0.0136295 0.0134304 0.0132607 0.0129311 0.0127207 0.0124745 0.0122985 0.0118826 0.0113915 0.0109397 0.0104133 0.00997967 0.00959276 0.00923755 0.00886531 0.00861718 0.00847653 0 -# -#_Q_setup for fleets with cpue or survey data -#_1: fleet number -#_2: link type: (1=simple q, 1 parm; 2=mirror simple q, 1 mirrored parm; 3=q and power, 2 parm; 4=mirror with offset, 2 parm) -#_3: extra input for link, i.e. mirror fleet# or dev index number -#_4: 0/1 to select extra sd parameter -#_5: 0/1 for biasadj or not -#_6: 0/1 to float -#_ fleet link link_info extra_se biasadj float # fleetname - 2 1 0 0 0 0 # Survey --9999 0 0 0 0 0 -# -#_Q_parms(if_any);Qunits_are_ln(q) -#_ LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - -20 20 -1.88565 0 99 0 5 0 0 0 0 0 0 0 # LnQ_base_Survey(2) -#_no timevary Q parameters -# -#_size_selex_patterns -#Pattern:_0; parm=0; selex=1.0 for all sizes -#Pattern:_1; parm=2; logistic; with 95% width specification -#Pattern:_2; parm=6; modification of pattern 24 with improved sex-specific offset -#Pattern:_5; parm=2; mirror another size selex; PARMS pick the min-max bin to mirror -#Pattern:_11; parm=2; selex=1.0 for specified min-max population length bin range -#Pattern:_15; parm=0; mirror another age or length selex -#Pattern:_6; parm=2+special; non-parm len selex -#Pattern:_43; parm=2+special+2; like 6, with 2 additional param for scaling (average over bin range) -#Pattern:_8; parm=8; double_logistic with smooth transitions and constant above Linf option -#Pattern:_9; parm=6; simple 4-parm double logistic with starting length; parm 5 is first length; parm 6=1 does desc as offset -#Pattern:_21; parm=2+special; non-parm len selex, read as pairs of size, then selex -#Pattern:_22; parm=4; double_normal as in CASAL -#Pattern:_23; parm=6; double_normal where final value is directly equal to sp(6) so can be >1.0 -#Pattern:_24; parm=6; double_normal with sel(minL) and sel(maxL), using joiners -#Pattern:_25; parm=3; exponential-logistic in length -#Pattern:_27; parm=special+3; cubic spline in length; parm1==1 resets knots; parm1==2 resets all -#Pattern:_42; parm=special+3+2; cubic spline; like 27, with 2 additional param for scaling (average over bin range) -#_discard_options:_0=none;_1=define_retention;_2=retention&mortality;_3=all_discarded_dead;_4=define_dome-shaped_retention -#_Pattern Discard Male Special - 24 0 0 0 # 1 Fishery - 24 0 0 0 # 2 Survey -# -#_age_selex_patterns -#Pattern:_0; parm=0; selex=1.0 for ages 0 to maxage -#Pattern:_10; parm=0; selex=1.0 for ages 1 to maxage -#Pattern:_11; parm=2; selex=1.0 for specified min-max age -#Pattern:_12; parm=2; age logistic -#Pattern:_13; parm=8; age double logistic -#Pattern:_14; parm=nages+1; age empirical -#Pattern:_15; parm=0; mirror another age or length selex -#Pattern:_16; parm=2; Coleraine - Gaussian -#Pattern:_17; parm=nages+1; empirical as random walk N parameters to read can be overridden by setting special to non-zero -#Pattern:_41; parm=2+nages+1; // like 17, with 2 additional param for scaling (average over bin range) -#Pattern:_18; parm=8; double logistic - smooth transition -#Pattern:_19; parm=6; simple 4-parm double logistic with starting age -#Pattern:_20; parm=6; double_normal,using joiners -#Pattern:_26; parm=3; exponential-logistic in age -#Pattern:_27; parm=3+special; cubic spline in age; parm1==1 resets knots; parm1==2 resets all -#Pattern:_42; parm=2+special+3; // cubic spline; with 2 additional param for scaling (average over bin range) -#Age patterns entered with value >100 create Min_selage from first digit and pattern from remainder -#_Pattern Discard Male Special - 11 0 0 0 # 1 Fishery - 11 0 0 0 # 2 Survey -# -#_ LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name -# 1 Fishery LenSelex - 5.08 101.6 47.0197 50.8 0.05 0 2 0 0 0 0 0 0 0 # Size_DblN_peak_Fishery(1) - -5 3 -3 -3 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_top_logit_Fishery(1) - 0 25.5 4.82177 5.1 0.05 0 3 0 0 0 0 0 0 0 # Size_DblN_ascend_se_Fishery(1) - -2 16 15 15 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_descend_se_Fishery(1) - -15 5 -999 -999 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_start_logit_Fishery(1) - -5 1000 999 999 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_end_logit_Fishery(1) -# 2 Survey LenSelex - 4.18 83.6 30.8264 41.8 0.05 0 2 0 0 0 0 0 0 0 # Size_DblN_peak_Survey(2) - -5 3 -4 -4 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_top_logit_Survey(2) - 0 26 3.45244 5.2 0.05 0 3 0 0 0 0 0 0 0 # Size_DblN_ascend_se_Survey(2) - -2 15 14 14 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_descend_se_Survey(2) - -100 100 -99 -99 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_start_logit_Survey(2) - -100 100 99 99 0.05 0 -99 0 0 0 0 0 0 0 # Size_DblN_end_logit_Survey(2) -# 1 Fishery AgeSelex - 0 1 0 0.1 99 0 -99 0 0 0 0 0.5 0 0 # minage@sel=1_Fishery(1) - 0 101 25 100 99 0 -99 0 0 0 0 0.5 0 0 # maxage@sel=1_Fishery(1) -# 2 Survey AgeSelex - 0 1 0 0.1 99 0 -99 0 0 0 0 0.5 0 0 # minage@sel=1_Survey(2) - 0 101 25 100 99 0 -99 0 0 0 0 0.5 0 0 # maxage@sel=1_Survey(2) -#_No_Dirichlet parameters -#_no timevary selex parameters -# -0 # use 2D_AR1 selectivity(0/1) -#_no 2D_AR1 selex offset used -# -# Tag loss and Tag reporting parameters go next -0 # TG_custom: 0=no read and autogen if tag data exist; 1=read -#_Cond -6 6 1 1 2 0.01 -4 0 0 0 0 0 0 0 #_placeholder if no parameters -# -# no timevary parameters -# -# -# Input variance adjustments factors: - #_1=add_to_survey_CV - #_2=add_to_discard_stddev - #_3=add_to_bodywt_CV - #_4=mult_by_lencomp_N - #_5=mult_by_agecomp_N - #_6=mult_by_size-at-age_N - #_7=mult_by_generalized_sizecomp -#_Factor Fleet Value - -9999 1 0 # terminator -# -4 #_maxlambdaphase -1 #_sd_offset; must be 1 if any growthCV, sigmaR, or survey extraSD is an estimated parameter -# read 0 changes to default Lambdas (default value is 1.0) -# Like_comp codes: 1=surv; 2=disc; 3=mnwt; 4=length; 5=age; 6=SizeFreq; 7=sizeage; 8=catch; 9=init_equ_catch; -# 10=recrdev; 11=parm_prior; 12=parm_dev; 13=CrashPen; 14=Morphcomp; 15=Tag-comp; 16=Tag-negbin; 17=F_ballpark; 18=initEQregime -#like_comp fleet phase value sizefreq_method --9999 1 1 1 1 # terminator -# -# lambdas (for info only; columns are phases) -# 0 0 0 0 #_CPUE/survey:_1 -# 1 1 1 1 #_CPUE/survey:_2 -# 1 1 1 1 #_lencomp:_1 -# 1 1 1 1 #_lencomp:_2 -# 1 1 1 1 #_agecomp:_1 -# 1 1 1 1 #_agecomp:_2 -# 1 1 1 1 #_init_equ_catch1 -# 1 1 1 1 #_init_equ_catch2 -# 1 1 1 1 #_recruitments -# 1 1 1 1 #_parameter-priors -# 1 1 1 1 #_parameter-dev-vectors -# 1 1 1 1 #_crashPenLambda -# 0 0 0 0 # F_ballpark_lambda -0 # (0/1/2) read specs for more stddev reporting: 0 = skip, 1 = read specs for reporting stdev for selectivity, size, and numbers, 2 = add options for M,Dyn. Bzero, SmryBio - # 0 2 0 0 # Selectivity: (1) fleet, (2) 1=len/2=age/3=both, (3) year, (4) N selex bins - # 0 0 # Growth: (1) growth pattern, (2) growth ages - # 0 0 0 # Numbers-at-age: (1) area(-1 for all), (2) year, (3) N ages - # -1 # list of bin #'s for selex std (-1 in first bin to self-generate) - # -1 # list of ages for growth std (-1 in first bin to self-generate) - # -1 # list of ages for NatAge std (-1 in first bin to self-generate) -999 - diff --git a/model_recipes/Likelihood profiles/R0/em.ctl b/model_recipes/Likelihood profiles/R0/em.ctl deleted file mode 100644 index 4257150..0000000 --- a/model_recipes/Likelihood profiles/R0/em.ctl +++ /dev/null @@ -1,175 +0,0 @@ -#V3.30 -#C file created using the SS_writectl function in the R package r4ss -#C file write time: 2022-01-18 13:21:07 -# -0 # 0 means do not read wtatage.ss; 1 means read and usewtatage.ss and also read and use growth parameters -1 #_N_Growth_Patterns -1 #_N_platoons_Within_GrowthPattern -2 # recr_dist_method for parameters -1 # not yet implemented; Future usage:Spawner-Recruitment; 1=global; 2=by area -1 # number of recruitment settlement assignments -0 # unused option -# for each settlement assignment: -#_GPattern month area age -1 1 1 0 #_recr_dist_pattern1 -# -#_Cond 0 # N_movement_definitions goes here if N_areas > 1 -#_Cond 1.0 # first age that moves (real age at begin of season, not integer) also cond on do_migration>0 -#_Cond 1 1 1 2 4 10 # example move definition for seas=1, morph=1, source=1 dest=2, age1=4, age2=10 -# -0 #_Nblock_Patterns -#_Cond 0 #_blocks_per_pattern -# begin and end years of blocks -# -# controls for all timevary parameters -1 #_env/block/dev_adjust_method for all time-vary parms (1=warn relative to base parm bounds; 3=no bound check) -# -# AUTOGEN -0 0 0 0 0 # autogen: 1st element for biology, 2nd for SR, 3rd for Q, 4th reserved, 5th for selex -# where: 0 = autogen all time-varying parms; 1 = read each time-varying parm line; 2 = read then autogen if parm min==-12345 -# -# setup for M, growth, maturity, fecundity, recruitment distibution, movement -# -0 #_natM_type:_0=1Parm; 1=N_breakpoints;_2=Lorenzen;_3=agespecific;_4=agespec_withseasinterpolate -#_no additional input for selected M option; read 1P per morph -1 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2; 3=age_specific_K_incr; 4=age_specific_K_decr;5=age_specific_K_each; 6=NA; 7=NA; 8=growth cessation -1 #_Age(post-settlement)_for_L1;linear growth below this -999 #_Growth_Age_for_L2 (999 to use as Linf) --999 #_exponential decay for growth above maxage (value should approx initial Z; -999 replicates 3.24; -998 to not allow growth above maxage) -0 #_placeholder for future growth feature -# -0 #_SD_add_to_LAA (set to 0.1 for SS2 V1.x compatibility) -0 #_CV_Growth_Pattern: 0 CV=f(LAA); 1 CV=F(A); 2 SD=F(LAA); 3 SD=F(A); 4 logSD=F(A) -1 #_maturity_option: 1=length logistic; 2=age logistic; 3=read age-maturity matrix by growth_pattern; 4=read age-fecundity; 5=disabled; 6=read length-maturity -0 #_First_Mature_Age -1 #_fecundity option:(1)eggs=Wt*(a+b*Wt);(2)eggs=a*L^b;(3)eggs=a*Wt^b; (4)eggs=a+b*L; (5)eggs=a+b*W -0 #_hermaphroditism option: 0=none; 1=female-to-male age-specific fxn; -1=male-to-female age-specific fxn -1 #_parameter_offset_approach (1=none, 2= M, G, CV_G as offset from female-GP1, 3=like SS2 V1.x) -# -#_growth_parms -#_LO HI INIT PRIOR PR_SD PR_type PHASE env_var&link dev_link dev_minyr dev_maxyr dev_PH Block Block_Fxn - 1.0e-02 1.800000 2.000e-01 1.000e-01 0.8 0 -3 0 0 0 0 0 0 0 #_NatM_p_1_Fem_GP_1 - 1.0e+00 100.000000 2.000e+01 3.080e+01 0.2 0 4 0 0 0 0 0 0 0 #_L_at_Amin_Fem_GP_1 - 6.6e+00 660.000000 1.320e+02 1.201e+02 0.2 0 4 0 0 0 0 0 0 0 #_L_at_Amax_Fem_GP_1 - 1.0e-02 1.000000 2.000e-01 2.500e-01 0.8 0 4 0 0 0 0 0 0 0 #_VonBert_K_Fem_GP_1 - 1.0e-02 0.500000 1.000e-01 1.000e-01 0.8 0 5 0 0 0 0 0 0 0 #_CV_young_Fem_GP_1 - 1.0e-02 0.500000 1.000e-01 1.000e-01 0.8 0 5 0 0 0 0 0 0 0 #_CV_old_Fem_GP_1 - 0.0e+00 3.000000 6.800e-06 6.800e-06 0.0 0 -1 0 0 0 0 0 0 0 #_Wtlen_1_Fem_GP_1 - 2.5e+00 3.500000 3.101e+00 3.101e+00 0.2 0 -3 0 0 0 0 0 0 0 #_Wtlen_2_Fem_GP_1 - 1.0e+01 50.000000 3.818e+01 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Mat50%_Fem_GP_1 --2.0e+00 2.000000 -2.760e-01 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Mat_slope_Fem_GP_1 --3.0e+00 3.000000 1.000e+00 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Eggs/kg_inter_Fem_GP_1 --3.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Eggs/kg_slope_wt_Fem_GP_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_GP_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_Area_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_month_1 --4.0e+00 4.000000 1.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_CohortGrowDev - 1.0e-06 0.999999 5.000e-01 5.000e-01 0.5 0 -99 0 0 0 0 0 0 0 #_FracFemale_GP_1 -#_no timevary MG parameters -# -#_seasonal_effects_on_biology_parms -0 0 0 0 0 0 0 0 0 0 #_femwtlen1,femwtlen2,mat1,mat2,fec1,fec2,Malewtlen1,malewtlen2,L1,K -#_ LO HI INIT PRIOR PR_SD PR_type PHASE -#_Cond -2 2 0 0 -1 99 -2 #_placeholder when no seasonal MG parameters -# -3 #_Spawner-Recruitment; 2=Ricker; 3=std_B-H; 4=SCAA;5=Hockey; 6=B-H_flattop; 7=survival_3Parm;8=Shepard_3Parm -0 # 0/1 to use steepness in initial equ recruitment calculation -0 # future feature: 0/1 to make realized sigmaR a function of SR curvature -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 4.0 20 18.70 10.3 10.00 0 1 0 0 0 0 0 0 0 #_SR_LN(R0) - 0.2 1 0.65 0.7 0.05 0 -4 0 0 0 0 0 0 0 #_SR_BH_steep - 0.0 2 0.40 0.8 0.80 0 -5 0 0 0 0 0 0 0 #_SR_sigmaR --5.0 5 0.00 0.0 1.00 0 -4 0 0 0 0 0 0 0 #_SR_regime - 0.0 0 0.00 0.0 0.00 0 -99 0 0 0 0 0 0 0 #_SR_autocorr -#_no timevary SR parameters -1 #do_recdev: 0=none; 1=devvector (R=F(SSB)+dev); 2=deviations (R=F(SSB)+dev); 3=deviations (R=R0*dev; dev2=R-f(SSB)); 4=like 3 with sum(dev2) adding penalty -6 # first year of main recr_devs; early devs can preceed this era -100 # last year of main recr_devs; forecast devs start in following year -3 #_recdev phase -1 # (0/1) to read 13 advanced options -1 #_recdev_early_start (0=none; neg value makes relative to recdev_start) -4 #_recdev_early_phase -0 #_forecast_recruitment phase (incl. late recr) (0 value resets to maxphase+1) -1 #_lambda for Fcast_recr_like occurring before endyr+1 -1 #_last_yr_nobias_adj_in_MPD; begin of ramp -26 #_first_yr_fullbias_adj_in_MPD; begin of plateau -99 #_last_yr_fullbias_adj_in_MPD -100 #_end_yr_for_ramp_in_MPD (can be in forecast to shape ramp, but SS sets bias_adj to 0.0 for fcast yrs) -0.9 #_max_bias_adj_in_MPD (-1 to override ramp and set biasadj=1.0 for all estimated recdevs) -0 #_period of cycles in recruitment (N parms read below) --5 #min rec_dev -5 #max rec_dev -0 #_read_recdevs -#_end of advanced SR options -# -#_placeholder for full parameter lines for recruitment cycles -# read specified recr devs -#_Yr Input_value -# -#Fishing Mortality info -0.3 # F ballpark --2001 # F ballpark year (neg value to disable) -3 # F_Method: 1=Pope; 2=instan. F; 3=hybrid (hybrid is recommended) -4 # max F or harvest rate, depends on F_Method -4 # N iterations for tuning F in hybrid method (recommend 3 to 7) -# -#_initial_F_parms; count = 0 -# -#_Q_setup for fleets with cpue or survey data -#_fleet link link_info extra_se biasadj float # fleetname - 2 1 0 0 0 0 #_Survey --9999 0 0 0 0 0 #_terminator -#_Q_parms(if_any);Qunits_are_ln(q) -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name --20 20 0 0 99 0 5 0 0 0 0 0 0 0 #_LnQ_base_Survey(2) -#_no timevary Q parameters -# -#_size_selex_patterns -#_Pattern Discard Male Special -24 0 0 0 #_1 Fishery -24 0 0 0 #_2 Survey -# -#_age_selex_patterns -#_Pattern Discard Male Special -11 0 0 0 #_1 Fishery -11 0 0 0 #_2 Survey -# -#_SizeSelex -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 5.08 101.6 50.8 50.8 0.05 0 2 0 0 0 0 0 0 0 #_SizeSel_P_1_Fishery(1) - -5.00 3.0 -3.0 -3.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_2_Fishery(1) - 0.00 25.5 5.1 5.1 0.05 0 3 0 0 0 0 0 0 0 #_SizeSel_P_3_Fishery(1) - -2.00 16.0 15.0 15.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_4_Fishery(1) - -15.00 5.0 -999.0 -999.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_5_Fishery(1) - -5.00 1000.0 999.0 999.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_6_Fishery(1) - 4.18 83.6 41.8 41.8 0.05 0 2 0 0 0 0 0 0 0 #_SizeSel_P_1_Survey(2) - -5.00 3.0 -4.0 -4.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_2_Survey(2) - 0.00 26.0 5.2 5.2 0.05 0 3 0 0 0 0 0 0 0 #_SizeSel_P_3_Survey(2) - -2.00 15.0 14.0 14.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_4_Survey(2) --100.00 100.0 -99.0 -99.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_5_Survey(2) --100.00 100.0 99.0 99.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_6_Survey(2) -#_AgeSelex -0 1 0.1 0.1 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_1_Fishery(1) -0 101 100.0 100.0 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_2_Fishery(1) -0 1 0.1 0.1 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_1_Survey(2) -0 101 100.0 100.0 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_2_Survey(2) -#_no timevary selex parameters -# -0 # use 2D_AR1 selectivity(0/1): experimental feature -#_no 2D_AR1 selex offset used -# Tag loss and Tag reporting parameters go next -0 # TG_custom: 0=no read; 1=read if tags exist -#_Cond -6 6 1 1 2 0.01 -4 0 0 0 0 0 0 0 #_placeholder if no parameters -# -# Input variance adjustments factors: -#_Factor Fleet Value --9999 1 0 # terminator -# -4 #_maxlambdaphase -1 #_sd_offset; must be 1 if any growthCV, sigmaR, or survey extraSD is an estimated parameter -# read 0 changes to default Lambdas (default value is 1.0) --9999 0 0 0 0 # terminator -# -0 # 0/1 read specs for more stddev reporting -# -999 diff --git a/model_recipes/Likelihood profiles/R0/forecast.ss b/model_recipes/Likelihood profiles/R0/forecast.ss deleted file mode 100644 index 622e763..0000000 --- a/model_recipes/Likelihood profiles/R0/forecast.ss +++ /dev/null @@ -1,59 +0,0 @@ -#V3.30.13.00-trans;_2019_03_09;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_12.0 -#Stock Synthesis (SS) is a work of the U.S. Government and is not subject to copyright protection in the United States. -#Foreign copyrights may apply. See copyright.txt for more information. -#C forecast file written by R function SS_writeforecast -#C rerun model to get more complete formatting in forecast.ss_new -#C should work with SS version: SSv3.21_or_later -#C file write time: 2015-03-14 16:01:17 -# for all year entries except rebuilder; enter either: actual year, -999 for styr, 0 for endyr, neg number for rel. endyr -1 # Benchmarks: 0=skip; 1=calc F_spr,F_btgt,F_msy; 2=calc F_spr,F0.1,F_msy -2 # MSY: 1= set to F(SPR); 2=calc F(MSY); 3=set to F(Btgt) or F0.1; 4=set to F(endyr) -0.4 # SPR target (e.g. 0.40) -0.4 # Biomass target (e.g. 0.40) -#_Bmark_years: beg_bio, end_bio, beg_selex, end_selex, beg_relF, end_relF, beg_recr_dist, end_recr_dist, beg_SRparm, end_SRparm (enter actual year, or values of 0 or -integer to be rel. endyr) - 0 0 0 0 0 0 -999 0 -999 0 -1 #Bmark_relF_Basis: 1 = use year range; 2 = set relF same as forecast below -# -4 # Forecast: 0=none; 1=F(SPR); 2=F(MSY) 3=F(Btgt) or F0.1; 4=Ave F (uses first-last relF yrs); 5=input annual F scalar -1 # N forecast years -0 # F scalar (only used for Do_Forecast==5) -#_Fcast_years: beg_selex, end_selex, beg_relF, end_relF, beg_mean recruits, end_recruits (enter actual year, or values of 0 or -integer to be rel. endyr) - 0 0 0 0 -999 0 -0 # Forecast selectivity (0=fcast selex is mean from year range; 1=fcast selectivity from annual time-vary parms) -2 # Control rule method (1: ramp does catch=f(SSB), buffer on F; 2: ramp does F=f(SSB), buffer on F; 3: ramp does catch=f(SSB), buffer on catch; 4: ramp does F=f(SSB), buffer on catch) -0.4 # Control rule Biomass level for constant F (as frac of Bzero, e.g. 0.40); (Must be > the no F level below) -0.01 # Control rule Biomass level for no F (as frac of Bzero, e.g. 0.10) -0 # Control rule target as fraction of Flimit (e.g. 0.75), negative value invokes list of [year, scalar] with filling from year to YrMax -3 #_N forecast loops (1=OFL only; 2=ABC; 3=get F from forecast ABC catch with allocations applied) -3 #_First forecast loop with stochastic recruitment -0 #_Forecast recruitment: 0= spawn_recr; 1=value*spawn_recr_fxn; 2=value*VirginRecr; 3=recent mean from yr range above (need to set phase to -1 in control to get constant recruitment in MCMC) -1 # value is ignored -0 #_Forecast loop control #5 (reserved for future bells&whistles) -101 #FirstYear for caps and allocations (should be after years with fixed inputs) -0 # stddev of log(realized catch/target catch) in forecast (set value>0.0 to cause active impl_error) -0 # Do West Coast gfish rebuilder output (0/1) -100 # Rebuilder: first year catch could have been set to zero (Ydecl)(-1 to set to 1999) -100 # Rebuilder: year for current age structure (Yinit) (-1 to set to endyear+1) -1 # fleet relative F: 1=use first-last alloc year; 2=read seas, fleet, alloc list below -# Note that fleet allocation is used directly as average F if Do_Forecast=4 -2 # basis for fcast catch tuning and for fcast catch caps and allocation (2=deadbio; 3=retainbio; 5=deadnum; 6=retainnum) -# Conditional input if relative F choice = 2 -# enter list of: season, fleet, relF; if used, terminate with season=-9999 -# 1 1 1 -# -9999 0 0 # terminator for list of relF -# enter list of: fleet number, max annual catch for fleets with a max; terminate with fleet=-9999 --9999 -1 -# enter list of area ID and max annual catch; terminate with area=-9999 --9999 -1 -# enter list of fleet number and allocation group assignment, if any; terminate with fleet=-9999 --9999 -1 -#_if N allocation groups >0, list year, allocation fraction for each group -# list sequentially because read values fill to end of N forecast -# terminate with -9999 in year field -# no allocation groups -2 # basis for input Fcast catch: -1=read basis with each obs; 2=dead catch; 3=retained catch; 99=input Hrate(F) -#enter list of Fcast catches; terminate with line having year=-9999 -#_Yr Seas Fleet Catch(or_F) --9999 1 1 0 -# -999 # verify end of input diff --git a/model_recipes/Likelihood profiles/R0/ss3.dat b/model_recipes/Likelihood profiles/R0/ss3.dat deleted file mode 100644 index 72a56bc..0000000 --- a/model_recipes/Likelihood profiles/R0/ss3.dat +++ /dev/null @@ -1,486 +0,0 @@ -#V3.30 -#C North Sea/Skagerrak/Eastern Channel Cod -# -26 #_styr -100 #_endyr -1 #_nseas -12 #_months_per_seas -2 #_Nsubseasons -1 #_spawn_month -1 #_Nsexes -25 #_Nages -1 #_N_areas -2 #_Nfleets -#_fleetinfo -#_type surveytiming area units need_catch_mult fleetname -1 -1 1 1 0 Fishery #_1 -3 1 1 2 0 Survey #_2 -#_Catch data -#_year season fleet catch catch_se - -999 1 1 0 0.010 #_1 - 1 1 1 0 0.010 #_2 - 2 1 1 0 0.010 #_3 - 3 1 1 0 0.010 #_4 - 4 1 1 0 0.010 #_5 - 5 1 1 0 0.010 #_6 - 6 1 1 0 0.010 #_7 - 7 1 1 0 0.010 #_8 - 8 1 1 0 0.010 #_9 - 9 1 1 0 0.010 #_10 - 10 1 1 0 0.010 #_11 - 11 1 1 0 0.010 #_12 - 12 1 1 0 0.010 #_13 - 13 1 1 0 0.010 #_14 - 14 1 1 0 0.010 #_15 - 15 1 1 0 0.010 #_16 - 16 1 1 0 0.010 #_17 - 17 1 1 0 0.010 #_18 - 18 1 1 0 0.010 #_19 - 19 1 1 0 0.010 #_20 - 20 1 1 0 0.010 #_21 - 21 1 1 0 0.010 #_22 - 22 1 1 0 0.010 #_23 - 23 1 1 0 0.010 #_24 - 24 1 1 0 0.010 #_25 - 25 1 1 0 0.010 #_26 - 26 1 1 405827583 0.005 #_27 - 27 1 1 373417493 0.005 #_28 - 28 1 1 342373346 0.005 #_29 - 29 1 1 314063047 0.005 #_30 - 30 1 1 291488471 0.005 #_31 - 31 1 1 275016682 0.005 #_32 - 32 1 1 261959321 0.005 #_33 - 33 1 1 247902515 0.005 #_34 - 34 1 1 237602462 0.005 #_35 - 35 1 1 229886276 0.005 #_36 - 36 1 1 221494620 0.005 #_37 - 37 1 1 210472212 0.005 #_38 - 38 1 1 204395447 0.005 #_39 - 39 1 1 196706762 0.005 #_40 - 40 1 1 191149151 0.005 #_41 - 41 1 1 181676431 0.005 #_42 - 42 1 1 175427716 0.005 #_43 - 43 1 1 166292092 0.005 #_44 - 44 1 1 167104259 0.005 #_45 - 45 1 1 167393473 0.005 #_46 - 46 1 1 161044632 0.005 #_47 - 47 1 1 160124742 0.005 #_48 - 48 1 1 159368360 0.005 #_49 - 49 1 1 155503064 0.005 #_50 - 50 1 1 150700473 0.005 #_51 - 51 1 1 151357783 0.005 #_52 - 52 1 1 145953276 0.005 #_53 - 53 1 1 143559669 0.005 #_54 - 54 1 1 142461890 0.005 #_55 - 55 1 1 138970197 0.005 #_56 - 56 1 1 137509860 0.005 #_57 - 57 1 1 140168276 0.005 #_58 - 58 1 1 140025046 0.005 #_59 - 59 1 1 139444280 0.005 #_60 - 60 1 1 138552310 0.005 #_61 - 61 1 1 142276727 0.005 #_62 - 62 1 1 145394778 0.005 #_63 - 63 1 1 147866360 0.005 #_64 - 64 1 1 150086800 0.005 #_65 - 65 1 1 149096580 0.005 #_66 - 66 1 1 150126388 0.005 #_67 - 67 1 1 151017473 0.005 #_68 - 68 1 1 151706424 0.005 #_69 - 69 1 1 150854890 0.005 #_70 - 70 1 1 152562634 0.005 #_71 - 71 1 1 151682609 0.005 #_72 - 72 1 1 153018523 0.005 #_73 - 73 1 1 162110858 0.005 #_74 - 74 1 1 170350797 0.005 #_75 - 75 1 1 175676558 0.005 #_76 - 76 1 1 180420607 0.005 #_77 - 77 1 1 179580391 0.005 #_78 - 78 1 1 173180886 0.005 #_79 - 79 1 1 171619613 0.005 #_80 - 80 1 1 167601020 0.005 #_81 - 81 1 1 160797969 0.005 #_82 - 82 1 1 157721184 0.005 #_83 - 83 1 1 156899991 0.005 #_84 - 84 1 1 155019001 0.005 #_85 - 85 1 1 158509241 0.005 #_86 - 86 1 1 162057478 0.005 #_87 - 87 1 1 161870042 0.005 #_88 - 88 1 1 170525042 0.005 #_89 - 89 1 1 182713147 0.005 #_90 - 90 1 1 193756851 0.005 #_91 - 91 1 1 195682969 0.005 #_92 - 92 1 1 193123404 0.005 #_93 - 93 1 1 191814026 0.005 #_94 - 94 1 1 187735838 0.005 #_95 - 95 1 1 183406362 0.005 #_96 - 96 1 1 181248407 0.005 #_97 - 97 1 1 176702069 0.005 #_98 - 98 1 1 172067982 0.005 #_99 - 99 1 1 174512824 0.005 #_100 - 100 1 1 182121508 0.005 #_101 --9999 0 0 0 0.000 #_terminator -#_CPUE_and_surveyabundance_observations -#_Units: 0=numbers; 1=biomass; 2=F; >=30 for special types -#_Errtype: -1=normal; 0=lognormal; >0=T -#_SD_Report: 0=no sdreport; 1=enable sdreport -#_Fleet Units Errtype SD_Report -1 1 0 0 #_Fishery -2 1 0 0 #_Survey -# -#_CPUE_data -#_year seas index obs se_log - 62 1 2 2319095418 0.2 #_1 - 64 1 2 1450356783 0.2 #_2 - 66 1 2 1503543274 0.2 #_3 - 68 1 2 1568917464 0.2 #_4 - 70 1 2 1491684068 0.2 #_5 - 72 1 2 1453785086 0.2 #_6 - 74 1 2 1728862643 0.2 #_7 - 76 1 2 1732955651 0.2 #_8 - 78 1 2 1495070546 0.2 #_9 - 80 1 2 1162754195 0.2 #_10 - 82 1 2 1389316573 0.2 #_11 - 84 1 2 1980264967 0.2 #_12 - 86 1 2 1872900449 0.2 #_13 - 88 1 2 1772513878 0.2 #_14 - 90 1 2 2610471051 0.2 #_15 - 92 1 2 2610821051 0.2 #_16 - 94 1 2 2610461051 0.2 #_17 - 96 1 2 2014668777 0.2 #_18 - 98 1 2 1365842314 0.2 #_19 - 100 1 2 1749224049 0.2 #_20 --9999 0 0 0 0.0 #_terminator -0 #_N_discard_fleets -#_discard_units (1=same_as_catchunits(bio/num); 2=fraction; 3=numbers) -#_discard_errtype: >0 for DF of T-dist(read CV below); 0 for normal with CV; -1 for normal with se; -2 for lognormal -# -#_discard_fleet_info -# -#_discard_data -# -#_meanbodywt -0 #_use_meanbodywt - #_DF_for_meanbodywt_T-distribution_like -# -#_population_length_bins -2 # length bin method: 1=use databins; 2=generate from binwidth,min,max below; 3=read vector -1 # binwidth for population size comp -10 # minimum size in the population (lower edge of first bin and size at age 0.00) -200 # maximum size in the population (lower edge of last bin) -1 #_use_lencomp -# -#_len_info -#_mintailcomp addtocomp combine_M_F CompressBins CompError ParmSelect minsamplesize --1 1e-10 0 0 0 0 1 #_Fishery --1 1e-10 0 0 0 0 1 #_Survey -45 #_N_lbins -#_lbin_vector -20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125 128 131 134 137 140 143 146 149 152 #_lbin_vector -# -#_lencomp -#_Yr Seas FltSvy Gender Part Nsamp l20 l23 l26 l29 l32 l35 l38 l41 l44 l47 l50 l53 l56 l59 l62 l65 l68 l71 l74 l77 l80 l83 l86 l89 l92 l95 l98 l101 l104 l107 l110 l113 l116 l119 l122 l125 l128 l131 l134 l137 l140 l143 l146 l149 l152 - 95 1 1 0 0 50 1.21839e-15 7.08912e-10 3.53471e-07 6.47686e-03 3.08818e-03 1.03054e-05 2.57179e-06 7.60397e-03 0.0133111 0.0476258 0.0348703 0.04032875 0.0497779 0.04741981 0.01443621 0.07874335 0.0230499 0.0266009 0.01794948 0.0270393 0.0510087 0.01111618 0.0654543 0.01606061 0.0513103 0.01029999 0.000825664 0.03932407 0.022521232 0.07562950 0.06083348 0.02336445 6.38750e-02 0.00392951 0.012387671 0.003952013 0.007133818 0.00897878 5.15022e-03 9.58616e-04 2.15086e-02 4.05532e-03 1.75826e-03 1.48731e-14 2.28787e-04 #_1 - 96 1 1 0 0 50 5.99789e-30 3.86910e-29 3.87336e-07 2.01136e-03 4.19938e-05 1.31793e-05 1.53990e-03 2.12131e-02 0.0159329 0.0343006 0.1230111 0.02119380 0.0047550 0.00137013 0.13720601 0.02200563 0.0488743 0.0325755 0.08802896 0.0233814 0.0213249 0.06504259 0.0822676 0.06275952 0.0194676 0.01154768 0.021065655 0.01933137 0.003829945 0.03479926 0.04589062 0.00248582 2.80196e-03 0.00385954 0.009757891 0.000151414 0.004176591 0.00488303 6.81256e-05 2.07929e-03 1.51268e-03 3.33025e-03 1.11326e-04 9.90207e-48 3.76714e-13 #_2 - 97 1 1 0 0 50 4.82525e-17 6.60950e-63 1.45918e-02 2.46884e-04 3.02475e-02 3.14046e-03 1.58916e-04 4.55571e-06 0.0197265 0.0475703 0.0460192 0.00543952 0.0330235 0.04910525 0.11044604 0.00943501 0.1034457 0.0748063 0.05347646 0.0235542 0.0839288 0.00480831 0.0792134 0.01471147 0.0358458 0.00426968 0.019992995 0.01680004 0.026919891 0.01041092 0.00517611 0.01610544 6.62434e-03 0.00336242 0.008427033 0.005320177 0.008221190 0.00246077 6.16104e-03 2.32716e-06 1.86462e-04 1.55249e-02 1.23345e-11 1.88218e-04 9.00144e-04 #_3 - 98 1 1 0 0 50 4.33367e-05 5.23013e-21 1.80907e-04 5.98429e-03 1.50085e-02 1.84472e-03 4.78366e-05 1.38155e-02 0.0177652 0.0570923 0.1315670 0.05701185 0.0436706 0.03468419 0.00784813 0.03077679 0.0152514 0.0280374 0.05779615 0.0246120 0.0250831 0.13000820 0.0171202 0.00935178 0.0360376 0.01851026 0.110258877 0.00141916 0.003314611 0.00978243 0.01410409 0.01426905 2.08460e-02 0.01619731 0.000651814 0.027305506 0.000359444 0.00214246 1.38929e-05 2.50726e-09 1.43831e-05 1.21122e-13 9.29224e-05 7.88754e-05 1.76531e-11 #_4 - 99 1 1 0 0 50 3.43796e-08 6.63178e-13 1.37536e-02 3.48744e-03 6.30987e-02 6.18445e-03 2.34790e-02 6.67529e-03 0.0516173 0.0459099 0.0690536 0.14736148 0.0843542 0.02998615 0.01049348 0.04949479 0.0108561 0.0149054 0.05960321 0.0285729 0.0134305 0.00172333 0.0170506 0.00829920 0.0183744 0.04591866 0.016283377 0.01165331 0.000611884 0.03343126 0.01524042 0.02159914 3.74832e-05 0.00718344 0.036709237 0.000856413 0.000815214 0.00168073 2.98768e-02 2.46071e-09 6.25824e-10 3.29265e-04 8.78233e-15 5.64135e-06 2.59270e-06 #_5 - 100 1 1 0 0 50 7.06058e-39 7.28113e-17 8.82966e-04 1.85488e-05 3.40430e-03 9.19572e-03 3.19208e-03 2.56074e-03 0.0212217 0.0625408 0.0360383 0.14289880 0.0310024 0.01689111 0.07980034 0.07799596 0.0189316 0.0364775 0.00768082 0.0543474 0.0189996 0.02657866 0.0239969 0.02052548 0.0458498 0.00177325 0.013893173 0.01476595 0.000263802 0.02470716 0.05980638 0.01254703 2.57588e-02 0.02019666 0.042446520 0.026112080 0.002434038 0.00540392 3.26960e-06 5.33413e-03 3.37349e-05 3.77795e-05 2.83245e-19 1.73956e-12 3.45088e-03 #_6 - 26 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.0000000 0.0000000 2.0000000 0.00000000 0.0000000 0.00000000 0.00000000 3.00000000 3.0000000 1.0000000 3.00000000 2.0000000 1.0000000 2.00000000 1.0000000 4.00000000 4.0000000 1.00000000 1.000000000 3.00000000 2.000000000 2.00000000 3.00000000 2.00000000 2.00000e+00 2.00000000 1.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_7 - 27 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 2.0000000 1.00000000 1.0000000 1.00000000 2.00000000 3.00000000 1.0000000 1.0000000 4.00000000 1.0000000 2.0000000 1.00000000 3.0000000 3.00000000 0.0000000 1.00000000 3.000000000 2.00000000 1.000000000 3.00000000 1.00000000 1.00000000 1.00000e+00 2.00000000 3.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_8 - 28 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 3.0000000 2.0000000 2.00000000 0.0000000 1.00000000 0.00000000 4.00000000 0.0000000 2.0000000 1.00000000 3.0000000 3.0000000 0.00000000 1.0000000 3.00000000 1.0000000 3.00000000 1.000000000 2.00000000 2.000000000 2.00000000 1.00000000 3.00000000 3.00000e+00 0.00000000 0.000000000 3.000000000 2.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_9 - 29 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.0000000 2.0000000 1.0000000 0.00000000 1.0000000 2.00000000 1.00000000 2.00000000 1.0000000 1.0000000 3.00000000 3.0000000 5.0000000 1.00000000 1.0000000 2.00000000 2.0000000 2.00000000 2.000000000 3.00000000 2.000000000 0.00000000 0.00000000 0.00000000 2.00000e+00 2.00000000 1.000000000 0.000000000 1.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_10 - 30 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 8.0000000 5.0000000 2.0000000 2.00000000 0.0000000 0.00000000 3.00000000 3.00000000 2.0000000 3.0000000 0.00000000 1.0000000 4.0000000 1.00000000 0.0000000 1.00000000 2.0000000 1.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 1.000000000 0.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_11 - 31 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 2.0000000 1.0000000 3.00000000 2.0000000 3.00000000 4.00000000 4.00000000 2.0000000 0.0000000 1.00000000 3.0000000 3.0000000 0.00000000 1.0000000 1.00000000 1.0000000 1.00000000 0.000000000 1.00000000 0.000000000 0.00000000 2.00000000 1.00000000 2.00000e+00 1.00000000 2.000000000 0.000000000 0.000000000 1.00000000 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_12 - 32 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 2.00000000 2.00000000 3.0000000 1.0000000 4.00000000 3.0000000 1.0000000 3.00000000 0.0000000 2.00000000 1.0000000 1.00000000 1.000000000 1.00000000 0.000000000 4.00000000 1.00000000 1.00000000 2.00000e+00 4.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_13 - 33 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 2.00000e+00 0.0000000 3.0000000 2.0000000 1.00000000 1.0000000 2.00000000 1.00000000 3.00000000 5.0000000 2.0000000 3.00000000 3.0000000 3.0000000 1.00000000 0.0000000 1.00000000 3.0000000 0.00000000 0.000000000 2.00000000 1.000000000 0.00000000 0.00000000 2.00000000 1.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_14 - 34 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.0000000 4.0000000 3.0000000 3.00000000 0.0000000 1.00000000 1.00000000 2.00000000 1.0000000 3.0000000 1.00000000 1.0000000 2.0000000 0.00000000 2.0000000 4.00000000 1.0000000 1.00000000 1.000000000 1.00000000 1.000000000 2.00000000 3.00000000 2.00000000 1.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_15 - 35 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.0000000 4.0000000 7.0000000 2.00000000 2.0000000 2.00000000 2.00000000 1.00000000 0.0000000 0.0000000 1.00000000 0.0000000 0.0000000 3.00000000 4.0000000 1.00000000 4.0000000 2.00000000 3.000000000 0.00000000 0.000000000 0.00000000 1.00000000 3.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_16 - 36 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.0000000 4.0000000 1.0000000 2.00000000 1.0000000 0.00000000 4.00000000 2.00000000 1.0000000 3.0000000 2.00000000 2.0000000 1.0000000 1.00000000 1.0000000 1.00000000 1.0000000 2.00000000 2.000000000 0.00000000 2.000000000 0.00000000 1.00000000 2.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 2.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_17 - 37 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.0000000 1.0000000 1.0000000 1.00000000 3.0000000 3.00000000 1.00000000 2.00000000 1.0000000 1.0000000 1.00000000 4.0000000 3.0000000 1.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 2.00000000 3.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 2.00000000 4.000000000 1.000000000 1.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_18 - 38 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.0000000 6.0000000 3.0000000 0.00000000 1.0000000 1.00000000 0.00000000 3.00000000 2.0000000 3.0000000 1.00000000 2.0000000 3.0000000 1.00000000 1.0000000 1.00000000 1.0000000 1.00000000 4.000000000 0.00000000 3.000000000 4.00000000 0.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_19 - 39 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 3.0000000 0.0000000 1.00000000 3.0000000 4.00000000 3.00000000 3.00000000 4.0000000 1.0000000 2.00000000 0.0000000 0.0000000 4.00000000 2.0000000 1.00000000 0.0000000 5.00000000 2.000000000 1.00000000 0.000000000 0.00000000 1.00000000 2.00000000 1.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 1.00000000 2.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_20 - 40 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 6.0000000 5.0000000 3.00000000 3.0000000 2.00000000 1.00000000 0.00000000 3.0000000 1.0000000 3.00000000 1.0000000 1.0000000 1.00000000 1.0000000 0.00000000 0.0000000 1.00000000 2.000000000 3.00000000 1.000000000 2.00000000 2.00000000 0.00000000 2.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_21 - 41 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 0.0000000 0.0000000 1.00000000 2.0000000 4.00000000 2.00000000 2.00000000 1.0000000 0.0000000 1.00000000 2.0000000 2.0000000 0.00000000 1.0000000 2.00000000 2.0000000 0.00000000 0.000000000 2.00000000 4.000000000 2.00000000 2.00000000 4.00000000 1.00000e+00 2.00000000 1.000000000 1.000000000 1.000000000 1.00000000 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_22 - 42 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.0000000 3.0000000 2.0000000 2.00000000 2.0000000 3.00000000 2.00000000 2.00000000 1.0000000 1.0000000 2.00000000 4.0000000 0.0000000 1.00000000 3.0000000 1.00000000 1.0000000 1.00000000 0.000000000 2.00000000 3.000000000 1.00000000 3.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_23 - 43 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 1.0000000 5.00000000 5.0000000 2.00000000 3.00000000 0.00000000 5.0000000 0.0000000 2.00000000 0.0000000 2.0000000 1.00000000 1.0000000 1.00000000 0.0000000 1.00000000 0.000000000 0.00000000 4.000000000 3.00000000 1.00000000 4.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_24 - 44 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 3.0000000 6.0000000 4.0000000 3.00000000 4.0000000 1.00000000 0.00000000 1.00000000 3.0000000 0.0000000 1.00000000 2.0000000 3.0000000 2.00000000 1.0000000 1.00000000 1.0000000 1.00000000 3.000000000 0.00000000 1.000000000 2.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_25 - 45 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 0.0000000 0.0000000 3.00000000 3.0000000 3.00000000 6.00000000 5.00000000 4.0000000 2.0000000 3.00000000 1.0000000 0.0000000 2.00000000 1.0000000 1.00000000 2.0000000 0.00000000 0.000000000 0.00000000 3.000000000 2.00000000 0.00000000 2.00000000 1.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_26 - 46 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 1.0000000 1.0000000 0.00000000 0.0000000 0.00000000 0.00000000 2.00000000 0.0000000 4.0000000 2.00000000 4.0000000 5.0000000 3.00000000 3.0000000 2.00000000 1.0000000 1.00000000 3.000000000 0.00000000 1.000000000 1.00000000 3.00000000 0.00000000 2.00000e+00 1.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_27 - 47 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 0.00000e+00 2.00000e+00 8.0000000 2.0000000 1.0000000 7.00000000 3.0000000 1.00000000 0.00000000 0.00000000 0.0000000 0.0000000 1.00000000 2.0000000 2.0000000 1.00000000 1.0000000 3.00000000 3.0000000 0.00000000 0.000000000 2.00000000 1.000000000 0.00000000 1.00000000 2.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_28 - 48 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.0000000 1.0000000 3.0000000 4.00000000 3.0000000 3.00000000 1.00000000 2.00000000 1.0000000 1.0000000 1.00000000 2.0000000 2.0000000 1.00000000 0.0000000 1.00000000 3.0000000 3.00000000 0.000000000 4.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_29 - 49 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 2.0000000 2.0000000 1.00000000 1.0000000 0.00000000 3.00000000 3.00000000 4.0000000 2.0000000 6.00000000 1.0000000 2.0000000 3.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 2.00000000 1.000000000 0.00000000 1.00000000 1.00000000 2.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_30 - 50 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 3.0000000 1.0000000 2.0000000 0.00000000 1.0000000 1.00000000 2.00000000 1.00000000 1.0000000 0.0000000 5.00000000 0.0000000 2.0000000 1.00000000 3.0000000 1.00000000 1.0000000 1.00000000 0.000000000 3.00000000 4.000000000 0.00000000 3.00000000 2.00000000 0.00000e+00 3.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_31 - 51 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 6.0000000 3.0000000 3.0000000 0.00000000 1.0000000 1.00000000 2.00000000 2.00000000 2.0000000 0.0000000 1.00000000 3.0000000 1.0000000 1.00000000 2.0000000 1.00000000 4.0000000 0.00000000 2.000000000 0.00000000 1.000000000 0.00000000 2.00000000 1.00000000 0.00000e+00 2.00000000 1.000000000 3.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_32 - 52 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 2.0000000 1.00000000 2.0000000 2.00000000 2.00000000 4.00000000 4.0000000 1.0000000 1.00000000 2.0000000 4.0000000 2.00000000 2.0000000 2.00000000 2.0000000 2.00000000 3.000000000 0.00000000 0.000000000 0.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 #_33 - 53 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 5.0000000 4.0000000 2.0000000 4.00000000 2.0000000 2.00000000 0.00000000 3.00000000 2.0000000 1.0000000 1.00000000 3.0000000 3.0000000 0.00000000 0.0000000 2.00000000 1.0000000 1.00000000 0.000000000 3.00000000 3.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 2.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_34 - 54 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 0.0000000 1.0000000 4.00000000 1.0000000 1.00000000 1.00000000 2.00000000 4.0000000 2.0000000 2.00000000 1.0000000 0.0000000 3.00000000 2.0000000 4.00000000 5.0000000 1.00000000 1.000000000 3.00000000 1.000000000 1.00000000 2.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_35 - 55 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 1.0000000 3.0000000 3.0000000 3.00000000 0.0000000 0.00000000 0.00000000 1.00000000 6.0000000 1.0000000 2.00000000 1.0000000 1.0000000 2.00000000 3.0000000 2.00000000 0.0000000 2.00000000 0.000000000 2.00000000 1.000000000 0.00000000 2.00000000 5.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_36 - 56 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.0000000 5.0000000 3.0000000 3.00000000 3.0000000 1.00000000 2.00000000 1.00000000 1.0000000 1.0000000 2.00000000 1.0000000 2.0000000 2.00000000 2.0000000 1.00000000 2.0000000 1.00000000 1.000000000 1.00000000 0.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 0.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_37 - 57 1 1 0 0 50 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 2.0000000 2.0000000 3.0000000 1.00000000 2.0000000 1.00000000 3.00000000 1.00000000 1.0000000 0.0000000 1.00000000 0.0000000 2.0000000 0.00000000 1.0000000 4.00000000 1.0000000 0.00000000 6.000000000 0.00000000 1.000000000 0.00000000 1.00000000 1.00000000 1.00000e+00 3.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_38 - 58 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.00000e+00 1.00000e+00 0.00000e+00 4.0000000 3.0000000 0.0000000 4.00000000 1.0000000 3.00000000 2.00000000 1.00000000 2.0000000 4.0000000 2.00000000 2.0000000 4.0000000 2.00000000 1.0000000 2.00000000 1.0000000 0.00000000 2.000000000 1.00000000 0.000000000 0.00000000 0.00000000 1.00000000 1.00000e+00 2.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_39 - 59 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.0000000 2.0000000 2.00000000 3.0000000 0.00000000 1.00000000 3.00000000 1.0000000 3.0000000 3.00000000 4.0000000 5.0000000 3.00000000 1.0000000 2.00000000 2.0000000 3.00000000 0.000000000 2.00000000 1.000000000 0.00000000 3.00000000 2.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_40 - 60 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 4.0000000 3.0000000 3.0000000 3.00000000 3.0000000 1.00000000 0.00000000 2.00000000 0.0000000 1.0000000 2.00000000 0.0000000 3.0000000 0.00000000 2.0000000 4.00000000 1.0000000 2.00000000 1.000000000 1.00000000 2.000000000 2.00000000 2.00000000 0.00000000 1.00000e+00 0.00000000 0.000000000 2.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_41 - 61 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 8.0000000 3.00000000 3.0000000 1.00000000 0.00000000 0.00000000 3.0000000 3.0000000 2.00000000 3.0000000 1.0000000 3.00000000 1.0000000 0.00000000 0.0000000 0.00000000 1.000000000 1.00000000 3.000000000 2.00000000 2.00000000 0.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_42 - 62 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 2.0000000 2.0000000 1.00000000 0.0000000 3.00000000 4.00000000 3.00000000 5.0000000 2.0000000 0.00000000 3.0000000 4.0000000 1.00000000 3.0000000 4.00000000 0.0000000 0.00000000 0.000000000 2.00000000 0.000000000 1.00000000 0.00000000 4.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_43 - 63 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 1.0000000 3.0000000 3.00000000 3.0000000 0.00000000 3.00000000 3.00000000 1.0000000 2.0000000 2.00000000 2.0000000 3.0000000 2.00000000 2.0000000 4.00000000 1.0000000 0.00000000 4.000000000 1.00000000 0.000000000 1.00000000 2.00000000 2.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_44 - 64 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 2.0000000 2.0000000 6.0000000 1.00000000 2.0000000 1.00000000 2.00000000 2.00000000 2.0000000 2.0000000 3.00000000 1.0000000 1.0000000 2.00000000 3.0000000 2.00000000 1.0000000 4.00000000 0.000000000 3.00000000 1.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 1.000000000 2.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_45 - 65 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.0000000 2.0000000 2.0000000 1.00000000 1.0000000 1.00000000 0.00000000 2.00000000 2.0000000 4.0000000 5.00000000 3.0000000 1.0000000 4.00000000 0.0000000 4.00000000 0.0000000 3.00000000 1.000000000 1.00000000 1.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_46 - 66 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 2.0000000 4.0000000 0.0000000 2.00000000 2.0000000 2.00000000 2.00000000 1.00000000 2.0000000 3.0000000 2.00000000 1.0000000 1.0000000 2.00000000 1.0000000 2.00000000 2.0000000 1.00000000 3.000000000 2.00000000 1.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_47 - 67 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 3.0000000 3.00000000 3.0000000 2.00000000 1.00000000 3.00000000 1.0000000 2.0000000 0.00000000 3.0000000 2.0000000 4.00000000 2.0000000 2.00000000 1.0000000 2.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_48 - 68 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.0000000 4.0000000 2.0000000 0.00000000 2.0000000 0.00000000 1.00000000 4.00000000 3.0000000 2.0000000 3.00000000 2.0000000 2.0000000 2.00000000 1.0000000 1.00000000 0.0000000 2.00000000 1.000000000 0.00000000 0.000000000 2.00000000 4.00000000 2.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 2.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_49 - 69 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 4.0000000 3.0000000 3.00000000 2.0000000 3.00000000 3.00000000 2.00000000 0.0000000 2.0000000 1.00000000 2.0000000 2.0000000 0.00000000 1.0000000 1.00000000 0.0000000 1.00000000 3.000000000 2.00000000 5.000000000 2.00000000 0.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_50 - 70 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.0000000 1.0000000 5.0000000 1.00000000 2.0000000 1.00000000 3.00000000 2.00000000 1.0000000 4.0000000 0.00000000 2.0000000 3.0000000 3.00000000 1.0000000 3.00000000 3.0000000 3.00000000 1.000000000 1.00000000 0.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_51 - 71 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 4.0000000 4.0000000 5.00000000 0.0000000 1.00000000 6.00000000 4.00000000 0.0000000 1.0000000 2.00000000 1.0000000 1.0000000 3.00000000 1.0000000 4.00000000 2.0000000 2.00000000 1.000000000 2.00000000 1.000000000 1.00000000 2.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_52 - 72 1 1 0 0 50 0.00000e+00 1.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 1.0000000 1.0000000 5.0000000 2.00000000 1.0000000 3.00000000 2.00000000 2.00000000 4.0000000 1.0000000 0.00000000 0.0000000 2.0000000 0.00000000 3.0000000 1.00000000 2.0000000 2.00000000 2.000000000 0.00000000 0.000000000 2.00000000 1.00000000 0.00000000 2.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_53 - 73 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.0000000 4.0000000 4.0000000 2.00000000 4.0000000 3.00000000 1.00000000 1.00000000 2.0000000 2.0000000 2.00000000 0.0000000 4.0000000 1.00000000 2.0000000 1.00000000 3.0000000 1.00000000 1.000000000 0.00000000 1.000000000 1.00000000 1.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_54 - 74 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.0000000 3.0000000 0.00000000 0.0000000 4.00000000 4.00000000 4.00000000 4.0000000 3.0000000 4.00000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 1.0000000 0.00000000 1.000000000 0.00000000 3.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_55 - 75 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.0000000 4.0000000 3.0000000 3.00000000 1.0000000 3.00000000 2.00000000 2.00000000 2.0000000 3.0000000 4.00000000 1.0000000 2.0000000 4.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 0.00000000 0.000000000 2.00000000 0.00000000 3.00000000 0.00000e+00 0.00000000 0.000000000 3.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_56 - 76 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 3.0000000 0.0000000 3.00000000 1.0000000 3.00000000 4.00000000 2.00000000 5.0000000 1.0000000 1.00000000 1.0000000 2.0000000 3.00000000 4.0000000 1.00000000 1.0000000 2.00000000 1.000000000 0.00000000 2.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 2.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_57 - 77 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 2.0000000 1.0000000 1.00000000 1.0000000 1.00000000 0.00000000 7.00000000 3.0000000 2.0000000 3.00000000 2.0000000 1.0000000 5.00000000 2.0000000 3.00000000 1.0000000 1.00000000 2.000000000 2.00000000 2.000000000 1.00000000 2.00000000 0.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_58 - 78 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 1.0000000 4.0000000 3.0000000 0.00000000 2.0000000 0.00000000 1.00000000 2.00000000 3.0000000 1.0000000 2.00000000 3.0000000 3.0000000 2.00000000 4.0000000 2.00000000 2.0000000 2.00000000 0.000000000 2.00000000 1.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 2.00000000 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_59 - 79 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 6.0000000 3.0000000 3.00000000 1.0000000 4.00000000 5.00000000 2.00000000 1.0000000 1.0000000 2.00000000 2.0000000 2.0000000 0.00000000 0.0000000 1.00000000 1.0000000 2.00000000 1.000000000 0.00000000 1.000000000 0.00000000 2.00000000 1.00000000 0.00000e+00 2.00000000 0.000000000 1.000000000 0.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_60 - 80 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 2.0000000 3.0000000 3.0000000 0.00000000 3.0000000 1.00000000 3.00000000 3.00000000 1.0000000 2.0000000 3.00000000 3.0000000 0.0000000 1.00000000 0.0000000 0.00000000 1.0000000 0.00000000 2.000000000 2.00000000 0.000000000 2.00000000 2.00000000 1.00000000 1.00000e+00 2.00000000 1.000000000 3.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_61 - 81 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 4.0000000 1.0000000 0.00000000 2.0000000 2.00000000 4.00000000 4.00000000 1.0000000 2.0000000 0.00000000 1.0000000 2.0000000 1.00000000 2.0000000 2.00000000 4.0000000 3.00000000 3.000000000 0.00000000 1.000000000 0.00000000 1.00000000 1.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_62 - 82 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 5.0000000 4.0000000 5.0000000 1.00000000 2.0000000 1.00000000 0.00000000 3.00000000 3.0000000 0.0000000 1.00000000 2.0000000 1.0000000 2.00000000 3.0000000 3.00000000 2.0000000 0.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_63 - 83 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 3.0000000 5.0000000 1.0000000 1.00000000 3.0000000 1.00000000 1.00000000 1.00000000 2.0000000 4.0000000 1.00000000 3.0000000 2.0000000 1.00000000 3.0000000 1.00000000 1.0000000 2.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_64 - 84 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 2.0000000 0.00000000 0.0000000 0.00000000 0.00000000 2.00000000 2.0000000 3.0000000 5.00000000 1.0000000 1.0000000 3.00000000 1.0000000 1.00000000 2.0000000 1.00000000 0.000000000 5.00000000 2.000000000 2.00000000 1.00000000 1.00000000 2.00000e+00 1.00000000 0.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_65 - 85 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 5.0000000 6.0000000 4.0000000 5.00000000 3.0000000 1.00000000 0.00000000 3.00000000 1.0000000 0.0000000 3.00000000 1.0000000 3.0000000 1.00000000 2.0000000 1.00000000 1.0000000 2.00000000 3.000000000 1.00000000 0.000000000 0.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_66 - 86 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 1.0000000 5.00000000 4.0000000 4.00000000 2.00000000 3.00000000 4.0000000 0.0000000 1.00000000 0.0000000 4.0000000 1.00000000 0.0000000 0.00000000 3.0000000 2.00000000 0.000000000 1.00000000 1.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 4.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_67 - 87 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.0000000 3.0000000 1.0000000 4.00000000 1.0000000 0.00000000 2.00000000 1.00000000 0.0000000 5.0000000 5.00000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 0.0000000 0.00000000 1.000000000 0.00000000 1.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 1.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_68 - 88 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 5.0000000 5.0000000 8.0000000 3.00000000 1.0000000 1.00000000 0.00000000 2.00000000 1.0000000 2.0000000 2.00000000 0.0000000 0.0000000 4.00000000 0.0000000 4.00000000 0.0000000 0.00000000 1.000000000 1.00000000 0.000000000 4.00000000 0.00000000 1.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_69 - 89 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 2.0000000 4.0000000 5.0000000 2.00000000 6.0000000 2.00000000 3.00000000 2.00000000 1.0000000 1.0000000 1.00000000 1.0000000 1.0000000 2.00000000 0.0000000 2.00000000 3.0000000 2.00000000 0.000000000 1.00000000 3.000000000 1.00000000 1.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_70 - 90 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 1.0000000 1.0000000 3.0000000 4.00000000 2.0000000 6.00000000 3.00000000 7.00000000 0.0000000 2.0000000 3.00000000 2.0000000 1.0000000 2.00000000 0.0000000 1.00000000 0.0000000 1.00000000 0.000000000 1.00000000 2.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_71 - 91 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.0000000 1.0000000 0.00000000 1.0000000 1.00000000 3.00000000 0.00000000 5.0000000 3.0000000 3.00000000 6.0000000 3.0000000 3.00000000 2.0000000 2.00000000 2.0000000 1.00000000 1.000000000 2.00000000 3.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_72 - 92 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 3.0000000 1.0000000 3.0000000 1.00000000 0.0000000 3.00000000 1.00000000 2.00000000 1.0000000 2.0000000 1.00000000 2.0000000 4.0000000 0.00000000 2.0000000 4.00000000 4.0000000 1.00000000 0.000000000 2.00000000 2.000000000 2.00000000 1.00000000 2.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_73 - 93 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 3.0000000 4.0000000 6.00000000 0.0000000 1.00000000 0.00000000 1.00000000 2.0000000 0.0000000 2.00000000 0.0000000 3.0000000 2.00000000 1.0000000 4.00000000 3.0000000 2.00000000 0.000000000 2.00000000 1.000000000 2.00000000 0.00000000 2.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_74 - 94 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.0000000 1.0000000 3.0000000 0.00000000 2.0000000 3.00000000 1.00000000 5.00000000 3.0000000 0.0000000 1.00000000 1.0000000 0.0000000 0.00000000 1.0000000 3.00000000 1.0000000 3.00000000 2.000000000 2.00000000 1.000000000 2.00000000 1.00000000 1.00000000 2.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_75 - 62 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.00000e+00 5.00000e+00 1.0000000 2.0000000 4.0000000 8.00000000 7.0000000 7.00000000 5.00000000 4.00000000 5.0000000 4.0000000 4.00000000 4.0000000 2.0000000 7.00000000 1.0000000 2.00000000 2.0000000 1.00000000 2.000000000 2.00000000 3.000000000 2.00000000 0.00000000 1.00000000 2.00000e+00 3.00000000 0.000000000 2.000000000 1.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_76 - 64 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 7.00000e+00 4.00000e+00 5.00000e+00 5.0000000 0.0000000 3.0000000 2.00000000 8.0000000 5.00000000 3.00000000 4.00000000 2.0000000 7.0000000 4.00000000 7.0000000 1.0000000 3.00000000 3.0000000 3.00000000 1.0000000 3.00000000 1.000000000 2.00000000 0.000000000 1.00000000 0.00000000 3.00000000 2.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 #_77 - 66 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 7.00000e+00 1.10000e+01 5.00000e+00 4.0000000 0.0000000 5.0000000 5.00000000 2.0000000 2.00000000 3.00000000 7.00000000 2.0000000 3.0000000 2.00000000 2.0000000 4.0000000 2.00000000 2.0000000 4.00000000 3.0000000 3.00000000 2.000000000 1.00000000 2.000000000 5.00000000 3.00000000 2.00000000 1.00000e+00 1.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_78 - 68 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 8.00000e+00 5.00000e+00 4.00000e+00 4.0000000 6.0000000 1.0000000 6.00000000 8.0000000 3.00000000 2.00000000 2.00000000 2.0000000 4.0000000 3.00000000 4.0000000 4.0000000 1.00000000 6.0000000 3.00000000 0.0000000 3.00000000 5.000000000 2.00000000 1.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_79 - 70 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 1.20000e+01 7.00000e+00 2.0000000 2.0000000 5.0000000 4.00000000 7.0000000 5.00000000 2.00000000 3.00000000 3.0000000 1.0000000 4.00000000 4.0000000 5.0000000 5.00000000 2.0000000 3.00000000 3.0000000 3.00000000 2.000000000 1.00000000 2.000000000 2.00000000 3.00000000 0.00000000 1.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 #_80 - 72 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 4.00000e+00 1.10000e+01 4.0000000 0.0000000 7.0000000 4.00000000 9.0000000 6.00000000 4.00000000 5.00000000 2.0000000 2.0000000 4.00000000 1.0000000 3.0000000 4.00000000 4.0000000 1.00000000 1.0000000 0.00000000 6.000000000 1.00000000 2.000000000 2.00000000 2.00000000 4.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_81 - 74 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 3.00000e+00 6.0000000 6.0000000 6.0000000 9.00000000 13.0000000 8.00000000 6.00000000 5.00000000 3.0000000 1.0000000 1.00000000 2.0000000 2.0000000 7.00000000 1.0000000 3.00000000 0.0000000 2.00000000 4.000000000 1.00000000 3.000000000 1.00000000 0.00000000 1.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_82 - 76 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 4.00000e+00 1.00000e+01 5.00000e+00 5.0000000 3.0000000 6.0000000 5.00000000 4.0000000 6.00000000 4.00000000 2.00000000 0.0000000 3.0000000 1.00000000 4.0000000 3.0000000 5.00000000 6.0000000 2.00000000 4.0000000 2.00000000 3.000000000 0.00000000 1.000000000 2.00000000 1.00000000 0.00000000 2.00000e+00 1.00000000 0.000000000 0.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_83 - 78 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 8.00000e+00 5.00000e+00 5.0000000 0.0000000 3.0000000 1.00000000 4.0000000 3.00000000 1.00000000 3.00000000 2.0000000 4.0000000 4.00000000 4.0000000 5.0000000 2.00000000 3.0000000 4.00000000 0.0000000 7.00000000 6.000000000 3.00000000 3.000000000 2.00000000 3.00000000 3.00000000 3.00000e+00 4.00000000 0.000000000 0.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_84 - 80 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 2.00000e+00 6.00000e+00 5.00000e+00 2.0000000 2.0000000 8.0000000 4.00000000 4.0000000 3.00000000 6.00000000 2.00000000 2.0000000 3.0000000 4.00000000 7.0000000 0.0000000 3.00000000 3.0000000 3.00000000 5.0000000 2.00000000 1.000000000 4.00000000 3.000000000 3.00000000 2.00000000 2.00000000 1.00000e+00 1.00000000 2.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_85 - 82 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 5.00000e+00 4.00000e+00 6.00000e+00 7.0000000 2.0000000 2.0000000 1.00000000 5.0000000 3.00000000 3.00000000 2.00000000 0.0000000 4.0000000 5.00000000 2.0000000 3.0000000 3.00000000 2.0000000 4.00000000 4.0000000 1.00000000 7.000000000 2.00000000 6.000000000 1.00000000 6.00000000 2.00000000 2.00000e+00 0.00000000 0.000000000 2.000000000 2.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_86 - 84 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 6.00000e+00 5.00000e+00 0.00000e+00 1.0000000 3.0000000 3.0000000 6.00000000 9.0000000 9.00000000 3.00000000 5.00000000 3.0000000 6.0000000 5.00000000 1.0000000 3.0000000 4.00000000 4.0000000 4.00000000 4.0000000 0.00000000 3.000000000 4.00000000 0.000000000 2.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_87 - 86 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.00000e+00 3.00000e+00 7.00000e+00 6.00000e+00 4.0000000 2.0000000 5.0000000 4.00000000 5.0000000 3.00000000 8.00000000 5.00000000 1.0000000 3.0000000 3.00000000 2.0000000 6.0000000 1.00000000 4.0000000 1.00000000 1.0000000 2.00000000 2.000000000 2.00000000 2.000000000 3.00000000 2.00000000 1.00000000 1.00000e+00 1.00000000 2.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_88 - 88 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 6.00000e+00 2.20000e+01 9.00000e+00 6.0000000 1.0000000 2.0000000 2.00000000 3.0000000 0.00000000 3.00000000 4.00000000 3.0000000 4.0000000 2.00000000 2.0000000 3.0000000 4.00000000 3.0000000 1.00000000 0.0000000 3.00000000 2.000000000 1.00000000 2.000000000 1.00000000 1.00000000 0.00000000 2.00000e+00 2.00000000 0.000000000 1.000000000 0.000000000 0.00000000 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_89 - 90 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 4.00000e+00 5.00000e+00 2.0000000 0.0000000 4.0000000 6.00000000 9.0000000 11.00000000 3.00000000 6.00000000 6.0000000 3.0000000 4.00000000 5.0000000 2.0000000 3.00000000 0.0000000 2.00000000 3.0000000 2.00000000 2.000000000 3.00000000 2.000000000 1.00000000 2.00000000 1.00000000 0.00000e+00 1.00000000 2.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_90 - 92 1 2 0 0 100 2.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 5.00000e+00 3.00000e+00 4.0000000 0.0000000 2.0000000 3.00000000 4.0000000 4.00000000 3.00000000 2.00000000 2.0000000 2.0000000 4.00000000 6.0000000 3.0000000 5.00000000 3.0000000 6.00000000 7.0000000 3.00000000 5.000000000 2.00000000 1.000000000 2.00000000 2.00000000 3.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 2.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_91 - 94 1 2 0 0 100 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 6.00000e+00 7.00000e+00 3.0000000 3.0000000 7.0000000 5.00000000 3.0000000 3.00000000 6.00000000 3.00000000 2.0000000 4.0000000 1.00000000 2.0000000 5.0000000 4.00000000 1.0000000 3.00000000 1.0000000 4.00000000 8.000000000 2.00000000 3.000000000 3.00000000 1.00000000 0.00000000 2.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_92 - 96 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 7.00000e+00 5.00000e+00 9.00000e+00 1.0000000 1.0000000 1.0000000 3.00000000 2.0000000 1.00000000 5.00000000 3.00000000 3.0000000 1.0000000 3.00000000 2.0000000 3.0000000 5.00000000 5.0000000 2.00000000 7.0000000 2.00000000 4.000000000 0.00000000 3.000000000 2.00000000 4.00000000 2.00000000 2.00000e+00 2.00000000 2.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_93 - 98 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 7.00000e+00 3.00000e+00 3.00000e+00 2.0000000 4.0000000 3.0000000 1.00000000 4.0000000 3.00000000 5.00000000 2.00000000 4.0000000 5.0000000 4.00000000 7.0000000 1.0000000 7.00000000 3.0000000 3.00000000 1.0000000 4.00000000 3.000000000 3.00000000 0.000000000 4.00000000 0.00000000 7.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_94 - 100 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 7.00000e+00 1.00000e+01 1.00000e+01 7.0000000 1.0000000 5.0000000 2.00000000 5.0000000 6.00000000 6.00000000 3.00000000 5.0000000 6.0000000 5.00000000 1.0000000 3.0000000 1.00000000 2.0000000 2.00000000 2.0000000 2.00000000 1.000000000 1.00000000 2.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_95 --9999 0 0 0 0 0 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.0000000 0.00000000 0.000000000 0.00000000 0.000000000 0.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_terminator -25 #_N_agebins -# -#_agebin_vector -1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 #_agebin_vector -# -#_ageing_error -1 #_N_ageerror_definitions -#_age0 age1 age2 age3 age4 age5 age6 age7 age8 age9 age10 age11 age12 age13 age14 age15 age16 age17 age18 age19 age20 age21 age22 age23 age24 age25 --1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 #_1 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 #_2 -# -#_age_info -#_mintailcomp addtocomp combine_M_F CompressBins CompError ParmSelect minsamplesize --1 1e-10 0 0 0 0 1 #_Fishery --1 1e-10 0 0 0 0 1 #_Survey -3 #_Lbin_method: 1=poplenbins; 2=datalenbins; 3=lengths - #_combine males into females at or below this bin number -#_Yr Seas FltSvy Gender Part Ageerr Lbin_lo Lbin_hi Nsamp a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 - 26 1 1 0 0 1 -1 -1 50 1 6 11 6 2 5 3 3 2 2 1 1 1 1 2 0 1 1 0 0 0 0 0 0 1 #_1 - 27 1 1 0 0 1 -1 -1 50 3 7 10 5 5 4 2 2 7 2 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 #_2 - 28 1 1 0 0 1 -1 -1 50 2 10 3 7 4 7 2 1 4 2 3 2 1 0 0 1 0 1 0 0 0 0 0 0 0 #_3 - 29 1 1 0 0 1 -1 -1 50 1 8 11 3 9 1 8 2 1 3 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 #_4 - 30 1 1 0 0 1 -1 -1 50 1 15 8 4 3 2 5 4 1 1 1 3 0 0 0 0 1 0 1 0 0 0 0 0 0 #_5 - 31 1 1 0 0 1 -1 -1 50 1 8 8 12 5 1 3 2 2 1 1 1 2 1 1 0 0 0 0 0 1 0 0 0 0 #_6 - 32 1 1 0 0 1 -1 -1 50 1 9 13 6 8 3 1 1 3 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 #_7 - 33 1 1 0 0 1 -1 -1 50 1 9 6 9 6 8 2 0 3 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 #_8 - 34 1 1 0 0 1 -1 -1 50 2 13 7 4 5 4 3 1 2 4 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 #_9 - 35 1 1 0 0 1 -1 -1 50 2 15 8 3 5 5 3 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 #_10 - 36 1 1 0 0 1 -1 -1 50 0 9 8 11 5 2 3 4 3 2 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 #_11 - 37 1 1 0 0 1 -1 -1 50 5 3 14 10 7 1 2 3 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_12 - 38 1 1 0 0 1 -1 -1 50 0 14 6 10 0 12 1 1 3 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 #_13 - 39 1 1 0 0 1 -1 -1 50 2 7 17 3 2 4 4 3 6 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 #_14 - 40 1 1 0 0 1 -1 -1 50 0 19 8 8 5 3 2 2 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_15 - 41 1 1 0 0 1 -1 -1 50 1 5 17 6 7 2 4 1 2 1 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 #_16 - 42 1 1 0 0 1 -1 -1 50 0 12 4 9 2 11 2 1 5 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 #_17 - 43 1 1 0 0 1 -1 -1 50 7 13 1 7 5 5 8 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 #_18 - 44 1 1 0 0 1 -1 -1 50 0 23 3 9 0 7 2 3 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_19 - 45 1 1 0 0 1 -1 -1 50 3 2 19 4 5 4 5 1 2 0 0 0 1 2 1 0 0 0 0 0 0 0 1 0 0 #_20 - 46 1 1 0 0 1 -1 -1 50 2 5 5 18 4 3 1 7 0 3 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 #_21 - 47 1 1 0 0 1 -1 -1 50 0 13 11 3 7 3 5 3 2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 #_22 - 48 1 1 0 0 1 -1 -1 50 0 9 22 0 2 9 2 3 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 #_23 - 49 1 1 0 0 1 -1 -1 50 1 7 15 9 3 2 5 0 1 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_24 - 50 1 1 0 0 1 -1 -1 50 2 11 5 9 1 2 2 9 3 1 0 2 0 2 0 0 1 0 0 0 0 0 0 0 0 #_25 - 51 1 1 0 0 1 -1 -1 50 2 17 8 3 5 5 0 0 3 0 0 1 3 1 1 0 0 1 0 0 0 0 0 0 0 #_26 - 52 1 1 0 0 1 -1 -1 50 2 10 12 6 5 4 6 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 #_27 - 53 1 1 0 0 1 -1 -1 50 2 13 1 9 6 1 5 5 2 1 1 1 0 0 2 0 0 0 1 0 0 0 0 0 0 #_28 - 54 1 1 0 0 1 -1 -1 50 1 11 12 5 4 2 2 6 4 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 #_29 - 55 1 1 0 0 1 -1 -1 50 3 8 13 7 3 5 1 0 5 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_30 - 56 1 1 0 0 1 -1 -1 50 1 14 4 6 8 4 8 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_31 - 57 1 1 0 0 1 -1 -1 50 0 11 17 5 2 3 4 2 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 #_32 - 58 1 1 0 0 1 -1 -1 50 1 11 7 14 4 5 0 0 5 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 #_33 - 59 1 1 0 0 1 -1 -1 50 4 9 12 7 11 2 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 #_34 - 60 1 1 0 0 1 -1 -1 50 3 11 11 4 4 4 3 3 1 1 1 0 2 1 0 0 0 1 0 0 0 0 0 0 0 #_35 - 61 1 1 0 0 1 -1 -1 50 2 21 7 8 1 5 0 0 2 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 #_36 - 62 1 1 0 0 1 -1 -1 50 0 7 15 6 3 2 7 5 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 #_37 - 63 1 1 0 0 1 -1 -1 50 2 6 7 14 5 6 4 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 #_38 - 64 1 1 0 0 1 -1 -1 50 2 11 9 3 13 7 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_39 - 65 1 1 0 0 1 -1 -1 50 3 6 5 8 4 9 4 3 3 2 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_40 - 66 1 1 0 0 1 -1 -1 50 2 15 10 7 5 3 4 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_41 - 67 1 1 0 0 1 -1 -1 50 2 10 9 8 3 3 2 5 1 2 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 #_42 - 68 1 1 0 0 1 -1 -1 50 0 10 7 9 8 3 2 2 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_43 - 69 1 1 0 0 1 -1 -1 50 1 12 8 6 3 5 3 4 2 3 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_44 - 70 1 1 0 0 1 -1 -1 50 4 9 5 9 11 4 2 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_45 - 71 1 1 0 0 1 -1 -1 50 2 17 11 7 3 4 1 1 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 #_46 - 72 1 1 0 0 1 -1 -1 50 6 5 12 10 7 2 2 4 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_47 - 73 1 1 0 0 1 -1 -1 50 1 28 4 8 5 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_48 - 74 1 1 0 0 1 -1 -1 50 2 7 21 3 8 1 3 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_49 - 75 1 1 0 0 1 -1 -1 50 2 18 5 11 4 4 1 2 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_50 - 76 1 1 0 0 1 -1 -1 50 0 9 12 1 14 3 4 0 1 4 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 #_51 - 77 1 1 0 0 1 -1 -1 50 0 4 10 7 2 11 4 3 5 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 #_52 - 78 1 1 0 0 1 -1 -1 50 1 11 5 9 11 2 9 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_53 - 79 1 1 0 0 1 -1 -1 50 3 10 10 2 6 8 1 6 0 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 #_54 - 80 1 1 0 0 1 -1 -1 50 0 3 17 10 1 3 5 1 4 0 2 2 0 1 0 0 1 0 0 0 0 0 0 0 0 #_55 - 81 1 1 0 0 1 -1 -1 50 4 6 7 9 4 2 4 3 1 5 0 1 2 0 0 1 0 1 0 0 0 0 0 0 0 #_56 - 82 1 1 0 0 1 -1 -1 50 2 13 9 9 6 1 1 1 1 1 1 1 2 1 0 0 1 0 0 0 0 0 0 0 0 #_57 - 83 1 1 0 0 1 -1 -1 50 2 15 8 6 3 2 4 3 2 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 #_58 - 84 1 1 0 0 1 -1 -1 50 1 9 6 9 7 1 7 2 2 1 0 1 2 1 0 1 0 0 0 0 0 0 0 0 0 #_59 - 85 1 1 0 0 1 -1 -1 50 3 18 6 7 7 2 5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_60 - 86 1 1 0 0 1 -1 -1 50 3 9 18 5 5 1 2 0 4 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 #_61 - 87 1 1 0 0 1 -1 -1 50 5 3 10 14 4 5 5 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_62 - 88 1 1 0 0 1 -1 -1 50 4 24 3 6 3 1 4 0 1 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_63 - 89 1 1 0 0 1 -1 -1 50 2 18 13 1 4 7 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_64 - 90 1 1 0 0 1 -1 -1 50 0 6 15 17 1 4 3 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 #_65 - 91 1 1 0 0 1 -1 -1 50 1 9 7 10 13 0 3 1 2 2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 #_66 - 92 1 1 0 0 1 -1 -1 50 1 13 2 7 7 12 1 1 3 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 #_67 - 93 1 1 0 0 1 -1 -1 50 1 15 4 4 1 6 9 1 1 3 1 2 1 0 0 0 0 0 0 1 0 0 0 0 0 #_68 - 94 1 1 0 0 1 -1 -1 50 0 8 15 13 1 4 3 3 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 #_69 - 62 1 2 0 0 1 -1 -1 100 1 17 30 11 9 12 6 4 3 0 0 1 1 2 1 1 0 0 0 0 1 0 0 0 0 #_70 - 64 1 2 0 0 1 -1 -1 100 1 23 21 7 17 6 3 8 2 4 2 2 0 0 2 0 1 1 0 0 0 0 0 0 0 #_71 - 66 1 2 0 0 1 -1 -1 100 0 24 20 19 9 6 8 4 3 1 2 2 1 0 0 0 1 0 0 0 0 0 0 0 0 #_72 - 68 1 2 0 0 1 -1 -1 100 1 19 26 13 12 7 3 5 6 2 1 1 1 2 0 0 1 0 0 0 0 0 0 0 0 #_73 - 70 1 2 0 0 1 -1 -1 100 0 30 20 9 12 7 4 7 3 0 2 1 1 0 1 0 0 1 0 0 1 0 0 0 1 #_74 - 72 1 2 0 0 1 -1 -1 100 2 18 27 17 13 3 10 3 2 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 #_75 - 74 1 2 0 0 1 -1 -1 100 2 12 35 5 11 11 8 7 2 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 #_76 - 76 1 2 0 0 1 -1 -1 100 1 15 28 7 24 7 6 1 4 2 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 #_77 - 78 1 2 0 0 1 -1 -1 100 1 25 8 12 19 4 16 3 3 3 1 1 1 2 0 1 0 0 0 0 0 0 0 0 0 #_78 - 80 1 2 0 0 1 -1 -1 100 0 16 21 13 4 8 16 4 7 1 4 2 2 1 0 1 0 0 0 0 0 0 0 0 0 #_79 - 82 1 2 0 0 1 -1 -1 100 0 21 14 15 18 11 3 6 3 1 5 1 2 0 0 0 0 0 0 0 0 0 0 0 0 #_80 - 84 1 2 0 0 1 -1 -1 100 1 25 18 15 8 4 6 5 3 3 5 0 4 1 2 0 0 0 0 0 0 0 0 0 0 #_81 - 86 1 2 0 0 1 -1 -1 100 0 22 35 11 12 6 4 2 1 3 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 #_82 - 88 1 2 0 0 1 -1 -1 100 0 41 12 9 12 6 6 3 2 1 3 1 0 0 1 0 2 0 1 0 0 0 0 0 0 #_83 - 90 1 2 0 0 1 -1 -1 100 0 26 29 22 6 4 5 0 0 3 0 0 0 1 1 0 2 1 0 0 0 0 0 0 0 #_84 - 92 1 2 0 0 1 -1 -1 100 2 23 9 16 16 11 3 2 9 3 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_85 - 94 1 2 0 0 1 -1 -1 100 1 22 23 7 9 10 14 8 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 #_86 - 96 1 2 0 0 1 -1 -1 100 0 27 13 13 12 9 3 6 6 5 2 1 2 0 0 0 0 0 0 1 0 0 0 0 0 #_87 - 98 1 2 0 0 1 -1 -1 100 2 27 6 20 8 8 9 4 2 1 3 2 2 1 1 1 1 2 0 0 0 0 0 0 0 #_88 - 100 1 2 0 0 1 -1 -1 100 1 29 32 3 5 11 4 5 7 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 #_89 - 95 1 1 0 0 1 29 29 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_731 - 95 1 1 0 0 1 47 47 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_791 - 95 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_801 - 95 1 1 0 0 1 56 56 5 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_821 - 95 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_831 - 95 1 1 0 0 1 65 65 3 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_851 - 95 1 1 0 0 1 68 68 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_861 - 95 1 1 0 0 1 71 71 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_871 - 95 1 1 0 0 1 74 74 2 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_881 - 95 1 1 0 0 1 80 80 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_90 - 95 1 1 0 0 1 86 86 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_92 - 95 1 1 0 0 1 89 89 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_93 - 95 1 1 0 0 1 107 107 3 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_99 - 95 1 1 0 0 1 110 110 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_100 - 95 1 1 0 0 1 116 116 3 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_102 - 96 1 1 0 0 1 47 47 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_124 - 96 1 1 0 0 1 50 50 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_125 - 96 1 1 0 0 1 62 62 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_129 - 96 1 1 0 0 1 68 68 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_131 - 96 1 1 0 0 1 74 74 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_133 - 96 1 1 0 0 1 80 80 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_135 - 96 1 1 0 0 1 83 83 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_136 - 96 1 1 0 0 1 86 86 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_137 - 96 1 1 0 0 1 89 89 4 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_138 - 96 1 1 0 0 1 98 98 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_141 - 96 1 1 0 0 1 107 107 3 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_144 - 96 1 1 0 0 1 110 110 4 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_145 - 96 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_147 - 96 1 1 0 0 1 131 131 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_152 - 96 1 1 0 0 1 140 140 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 #_155 - 97 1 1 0 0 1 35 35 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_165 - 97 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_170 - 97 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_173 - 97 1 1 0 0 1 62 62 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_174 - 97 1 1 0 0 1 65 65 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_175 - 97 1 1 0 0 1 68 68 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_176 - 97 1 1 0 0 1 71 71 4 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_177 - 97 1 1 0 0 1 74 74 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_178 - 97 1 1 0 0 1 77 77 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_179 - 97 1 1 0 0 1 80 80 5 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_180 - 97 1 1 0 0 1 86 86 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_182 - 97 1 1 0 0 1 92 92 3 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_184 - 97 1 1 0 0 1 113 113 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_191 - 97 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_192 - 97 1 1 0 0 1 122 122 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_194 - 97 1 1 0 0 1 134 134 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_198 - 97 1 1 0 0 1 143 143 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_201 - 98 1 1 0 0 1 50 50 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_215 - 98 1 1 0 0 1 53 53 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_216 - 98 1 1 0 0 1 62 62 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_219 - 98 1 1 0 0 1 65 65 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_220 - 98 1 1 0 0 1 68 68 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_221 - 98 1 1 0 0 1 74 74 3 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_223 - 98 1 1 0 0 1 77 77 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_224 - 98 1 1 0 0 1 80 80 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_225 - 98 1 1 0 0 1 83 83 3 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_226 - 98 1 1 0 0 1 86 86 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_227 - 98 1 1 0 0 1 89 89 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_228 - 98 1 1 0 0 1 92 92 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_229 - 98 1 1 0 0 1 98 98 3 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_231 - 98 1 1 0 0 1 107 107 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_234 - 98 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_237 - 98 1 1 0 0 1 119 119 2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_238 - 99 1 1 0 0 1 32 32 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_254 - 99 1 1 0 0 1 44 44 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_258 - 99 1 1 0 0 1 47 47 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_259 - 99 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_260 - 99 1 1 0 0 1 53 53 6 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_261 - 99 1 1 0 0 1 56 56 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_262 - 99 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_263 - 99 1 1 0 0 1 62 62 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_264 - 99 1 1 0 0 1 68 68 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_266 - 99 1 1 0 0 1 71 71 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_267 - 99 1 1 0 0 1 74 74 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_268 - 99 1 1 0 0 1 77 77 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_269 - 99 1 1 0 0 1 92 92 3 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_274 - 99 1 1 0 0 1 122 122 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 #_284 - 99 1 1 0 0 1 134 134 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_288 - 100 1 1 0 0 1 44 44 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_303 - 100 1 1 0 0 1 47 47 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_304 - 100 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_305 - 100 1 1 0 0 1 53 53 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_306 - 100 1 1 0 0 1 56 56 3 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_307 - 100 1 1 0 0 1 62 62 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_309 - 100 1 1 0 0 1 65 65 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_310 - 100 1 1 0 0 1 80 80 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_315 - 100 1 1 0 0 1 89 89 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_318 - 100 1 1 0 0 1 92 92 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_319 - 100 1 1 0 0 1 95 95 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_320 - 100 1 1 0 0 1 107 107 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_324 - 100 1 1 0 0 1 122 122 4 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_329 --9999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_terminator -# -#_MeanSize_at_Age_obs -0 #_use_MeanSize_at_Age_obs -0 #_N_environ_variables -0 #_N_sizefreq_methods -0 #_do_tags -0 #_morphcomp_data -0 #_use_selectivity_priors -# -999 diff --git a/model_recipes/Likelihood profiles/R0/starter.ss b/model_recipes/Likelihood profiles/R0/starter.ss deleted file mode 100644 index 7c2fec8..0000000 --- a/model_recipes/Likelihood profiles/R0/starter.ss +++ /dev/null @@ -1,35 +0,0 @@ -#C starter file written by R function SS_writestarter -#C rerun model to get more complete formatting in starter.ss_new -#C should work with SS version: 3.30 -#C file write time: 2022-01-21 14:07:27 -# -data.ss_new #_datfile -control_modified.ss #_ctlfile -0 #_init_values_src -0 #_run_display_detail -1 #_detailed_age_structure -0 #_checkup -0 #_parmtrace -1 #_cumreport -1 #_prior_like -1 #_soft_bounds -2 #_N_bootstraps -100 #_last_estimation_phase -0 #_MCMCburn -1 #_MCMCthin -0 #_jitter_fraction --1 #_minyr_sdreport --2 #_maxyr_sdreport -0 #_N_STD_yrs -1e-04 #_converge_criterion -0 #_retro_yr -1 #_min_age_summary_bio -1 #_depl_basis -1 #_depl_denom_frac -4 #_SPR_basis -1 #_F_report_units -0 #_F_report_basis -0 #_MCMC_output_detail -0 #_ALK_tolerance -# -3.3 #_final diff --git a/model_recipes/Likelihood profiles/Reference_run/em.ctl b/model_recipes/Likelihood profiles/Reference_run/em.ctl deleted file mode 100644 index 4257150..0000000 --- a/model_recipes/Likelihood profiles/Reference_run/em.ctl +++ /dev/null @@ -1,175 +0,0 @@ -#V3.30 -#C file created using the SS_writectl function in the R package r4ss -#C file write time: 2022-01-18 13:21:07 -# -0 # 0 means do not read wtatage.ss; 1 means read and usewtatage.ss and also read and use growth parameters -1 #_N_Growth_Patterns -1 #_N_platoons_Within_GrowthPattern -2 # recr_dist_method for parameters -1 # not yet implemented; Future usage:Spawner-Recruitment; 1=global; 2=by area -1 # number of recruitment settlement assignments -0 # unused option -# for each settlement assignment: -#_GPattern month area age -1 1 1 0 #_recr_dist_pattern1 -# -#_Cond 0 # N_movement_definitions goes here if N_areas > 1 -#_Cond 1.0 # first age that moves (real age at begin of season, not integer) also cond on do_migration>0 -#_Cond 1 1 1 2 4 10 # example move definition for seas=1, morph=1, source=1 dest=2, age1=4, age2=10 -# -0 #_Nblock_Patterns -#_Cond 0 #_blocks_per_pattern -# begin and end years of blocks -# -# controls for all timevary parameters -1 #_env/block/dev_adjust_method for all time-vary parms (1=warn relative to base parm bounds; 3=no bound check) -# -# AUTOGEN -0 0 0 0 0 # autogen: 1st element for biology, 2nd for SR, 3rd for Q, 4th reserved, 5th for selex -# where: 0 = autogen all time-varying parms; 1 = read each time-varying parm line; 2 = read then autogen if parm min==-12345 -# -# setup for M, growth, maturity, fecundity, recruitment distibution, movement -# -0 #_natM_type:_0=1Parm; 1=N_breakpoints;_2=Lorenzen;_3=agespecific;_4=agespec_withseasinterpolate -#_no additional input for selected M option; read 1P per morph -1 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2; 3=age_specific_K_incr; 4=age_specific_K_decr;5=age_specific_K_each; 6=NA; 7=NA; 8=growth cessation -1 #_Age(post-settlement)_for_L1;linear growth below this -999 #_Growth_Age_for_L2 (999 to use as Linf) --999 #_exponential decay for growth above maxage (value should approx initial Z; -999 replicates 3.24; -998 to not allow growth above maxage) -0 #_placeholder for future growth feature -# -0 #_SD_add_to_LAA (set to 0.1 for SS2 V1.x compatibility) -0 #_CV_Growth_Pattern: 0 CV=f(LAA); 1 CV=F(A); 2 SD=F(LAA); 3 SD=F(A); 4 logSD=F(A) -1 #_maturity_option: 1=length logistic; 2=age logistic; 3=read age-maturity matrix by growth_pattern; 4=read age-fecundity; 5=disabled; 6=read length-maturity -0 #_First_Mature_Age -1 #_fecundity option:(1)eggs=Wt*(a+b*Wt);(2)eggs=a*L^b;(3)eggs=a*Wt^b; (4)eggs=a+b*L; (5)eggs=a+b*W -0 #_hermaphroditism option: 0=none; 1=female-to-male age-specific fxn; -1=male-to-female age-specific fxn -1 #_parameter_offset_approach (1=none, 2= M, G, CV_G as offset from female-GP1, 3=like SS2 V1.x) -# -#_growth_parms -#_LO HI INIT PRIOR PR_SD PR_type PHASE env_var&link dev_link dev_minyr dev_maxyr dev_PH Block Block_Fxn - 1.0e-02 1.800000 2.000e-01 1.000e-01 0.8 0 -3 0 0 0 0 0 0 0 #_NatM_p_1_Fem_GP_1 - 1.0e+00 100.000000 2.000e+01 3.080e+01 0.2 0 4 0 0 0 0 0 0 0 #_L_at_Amin_Fem_GP_1 - 6.6e+00 660.000000 1.320e+02 1.201e+02 0.2 0 4 0 0 0 0 0 0 0 #_L_at_Amax_Fem_GP_1 - 1.0e-02 1.000000 2.000e-01 2.500e-01 0.8 0 4 0 0 0 0 0 0 0 #_VonBert_K_Fem_GP_1 - 1.0e-02 0.500000 1.000e-01 1.000e-01 0.8 0 5 0 0 0 0 0 0 0 #_CV_young_Fem_GP_1 - 1.0e-02 0.500000 1.000e-01 1.000e-01 0.8 0 5 0 0 0 0 0 0 0 #_CV_old_Fem_GP_1 - 0.0e+00 3.000000 6.800e-06 6.800e-06 0.0 0 -1 0 0 0 0 0 0 0 #_Wtlen_1_Fem_GP_1 - 2.5e+00 3.500000 3.101e+00 3.101e+00 0.2 0 -3 0 0 0 0 0 0 0 #_Wtlen_2_Fem_GP_1 - 1.0e+01 50.000000 3.818e+01 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Mat50%_Fem_GP_1 --2.0e+00 2.000000 -2.760e-01 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Mat_slope_Fem_GP_1 --3.0e+00 3.000000 1.000e+00 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Eggs/kg_inter_Fem_GP_1 --3.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Eggs/kg_slope_wt_Fem_GP_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_GP_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_Area_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_month_1 --4.0e+00 4.000000 1.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_CohortGrowDev - 1.0e-06 0.999999 5.000e-01 5.000e-01 0.5 0 -99 0 0 0 0 0 0 0 #_FracFemale_GP_1 -#_no timevary MG parameters -# -#_seasonal_effects_on_biology_parms -0 0 0 0 0 0 0 0 0 0 #_femwtlen1,femwtlen2,mat1,mat2,fec1,fec2,Malewtlen1,malewtlen2,L1,K -#_ LO HI INIT PRIOR PR_SD PR_type PHASE -#_Cond -2 2 0 0 -1 99 -2 #_placeholder when no seasonal MG parameters -# -3 #_Spawner-Recruitment; 2=Ricker; 3=std_B-H; 4=SCAA;5=Hockey; 6=B-H_flattop; 7=survival_3Parm;8=Shepard_3Parm -0 # 0/1 to use steepness in initial equ recruitment calculation -0 # future feature: 0/1 to make realized sigmaR a function of SR curvature -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 4.0 20 18.70 10.3 10.00 0 1 0 0 0 0 0 0 0 #_SR_LN(R0) - 0.2 1 0.65 0.7 0.05 0 -4 0 0 0 0 0 0 0 #_SR_BH_steep - 0.0 2 0.40 0.8 0.80 0 -5 0 0 0 0 0 0 0 #_SR_sigmaR --5.0 5 0.00 0.0 1.00 0 -4 0 0 0 0 0 0 0 #_SR_regime - 0.0 0 0.00 0.0 0.00 0 -99 0 0 0 0 0 0 0 #_SR_autocorr -#_no timevary SR parameters -1 #do_recdev: 0=none; 1=devvector (R=F(SSB)+dev); 2=deviations (R=F(SSB)+dev); 3=deviations (R=R0*dev; dev2=R-f(SSB)); 4=like 3 with sum(dev2) adding penalty -6 # first year of main recr_devs; early devs can preceed this era -100 # last year of main recr_devs; forecast devs start in following year -3 #_recdev phase -1 # (0/1) to read 13 advanced options -1 #_recdev_early_start (0=none; neg value makes relative to recdev_start) -4 #_recdev_early_phase -0 #_forecast_recruitment phase (incl. late recr) (0 value resets to maxphase+1) -1 #_lambda for Fcast_recr_like occurring before endyr+1 -1 #_last_yr_nobias_adj_in_MPD; begin of ramp -26 #_first_yr_fullbias_adj_in_MPD; begin of plateau -99 #_last_yr_fullbias_adj_in_MPD -100 #_end_yr_for_ramp_in_MPD (can be in forecast to shape ramp, but SS sets bias_adj to 0.0 for fcast yrs) -0.9 #_max_bias_adj_in_MPD (-1 to override ramp and set biasadj=1.0 for all estimated recdevs) -0 #_period of cycles in recruitment (N parms read below) --5 #min rec_dev -5 #max rec_dev -0 #_read_recdevs -#_end of advanced SR options -# -#_placeholder for full parameter lines for recruitment cycles -# read specified recr devs -#_Yr Input_value -# -#Fishing Mortality info -0.3 # F ballpark --2001 # F ballpark year (neg value to disable) -3 # F_Method: 1=Pope; 2=instan. F; 3=hybrid (hybrid is recommended) -4 # max F or harvest rate, depends on F_Method -4 # N iterations for tuning F in hybrid method (recommend 3 to 7) -# -#_initial_F_parms; count = 0 -# -#_Q_setup for fleets with cpue or survey data -#_fleet link link_info extra_se biasadj float # fleetname - 2 1 0 0 0 0 #_Survey --9999 0 0 0 0 0 #_terminator -#_Q_parms(if_any);Qunits_are_ln(q) -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name --20 20 0 0 99 0 5 0 0 0 0 0 0 0 #_LnQ_base_Survey(2) -#_no timevary Q parameters -# -#_size_selex_patterns -#_Pattern Discard Male Special -24 0 0 0 #_1 Fishery -24 0 0 0 #_2 Survey -# -#_age_selex_patterns -#_Pattern Discard Male Special -11 0 0 0 #_1 Fishery -11 0 0 0 #_2 Survey -# -#_SizeSelex -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 5.08 101.6 50.8 50.8 0.05 0 2 0 0 0 0 0 0 0 #_SizeSel_P_1_Fishery(1) - -5.00 3.0 -3.0 -3.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_2_Fishery(1) - 0.00 25.5 5.1 5.1 0.05 0 3 0 0 0 0 0 0 0 #_SizeSel_P_3_Fishery(1) - -2.00 16.0 15.0 15.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_4_Fishery(1) - -15.00 5.0 -999.0 -999.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_5_Fishery(1) - -5.00 1000.0 999.0 999.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_6_Fishery(1) - 4.18 83.6 41.8 41.8 0.05 0 2 0 0 0 0 0 0 0 #_SizeSel_P_1_Survey(2) - -5.00 3.0 -4.0 -4.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_2_Survey(2) - 0.00 26.0 5.2 5.2 0.05 0 3 0 0 0 0 0 0 0 #_SizeSel_P_3_Survey(2) - -2.00 15.0 14.0 14.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_4_Survey(2) --100.00 100.0 -99.0 -99.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_5_Survey(2) --100.00 100.0 99.0 99.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_6_Survey(2) -#_AgeSelex -0 1 0.1 0.1 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_1_Fishery(1) -0 101 100.0 100.0 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_2_Fishery(1) -0 1 0.1 0.1 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_1_Survey(2) -0 101 100.0 100.0 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_2_Survey(2) -#_no timevary selex parameters -# -0 # use 2D_AR1 selectivity(0/1): experimental feature -#_no 2D_AR1 selex offset used -# Tag loss and Tag reporting parameters go next -0 # TG_custom: 0=no read; 1=read if tags exist -#_Cond -6 6 1 1 2 0.01 -4 0 0 0 0 0 0 0 #_placeholder if no parameters -# -# Input variance adjustments factors: -#_Factor Fleet Value --9999 1 0 # terminator -# -4 #_maxlambdaphase -1 #_sd_offset; must be 1 if any growthCV, sigmaR, or survey extraSD is an estimated parameter -# read 0 changes to default Lambdas (default value is 1.0) --9999 0 0 0 0 # terminator -# -0 # 0/1 read specs for more stddev reporting -# -999 diff --git a/model_recipes/Likelihood profiles/Reference_run/forecast.ss b/model_recipes/Likelihood profiles/Reference_run/forecast.ss deleted file mode 100644 index 622e763..0000000 --- a/model_recipes/Likelihood profiles/Reference_run/forecast.ss +++ /dev/null @@ -1,59 +0,0 @@ -#V3.30.13.00-trans;_2019_03_09;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_12.0 -#Stock Synthesis (SS) is a work of the U.S. Government and is not subject to copyright protection in the United States. -#Foreign copyrights may apply. See copyright.txt for more information. -#C forecast file written by R function SS_writeforecast -#C rerun model to get more complete formatting in forecast.ss_new -#C should work with SS version: SSv3.21_or_later -#C file write time: 2015-03-14 16:01:17 -# for all year entries except rebuilder; enter either: actual year, -999 for styr, 0 for endyr, neg number for rel. endyr -1 # Benchmarks: 0=skip; 1=calc F_spr,F_btgt,F_msy; 2=calc F_spr,F0.1,F_msy -2 # MSY: 1= set to F(SPR); 2=calc F(MSY); 3=set to F(Btgt) or F0.1; 4=set to F(endyr) -0.4 # SPR target (e.g. 0.40) -0.4 # Biomass target (e.g. 0.40) -#_Bmark_years: beg_bio, end_bio, beg_selex, end_selex, beg_relF, end_relF, beg_recr_dist, end_recr_dist, beg_SRparm, end_SRparm (enter actual year, or values of 0 or -integer to be rel. endyr) - 0 0 0 0 0 0 -999 0 -999 0 -1 #Bmark_relF_Basis: 1 = use year range; 2 = set relF same as forecast below -# -4 # Forecast: 0=none; 1=F(SPR); 2=F(MSY) 3=F(Btgt) or F0.1; 4=Ave F (uses first-last relF yrs); 5=input annual F scalar -1 # N forecast years -0 # F scalar (only used for Do_Forecast==5) -#_Fcast_years: beg_selex, end_selex, beg_relF, end_relF, beg_mean recruits, end_recruits (enter actual year, or values of 0 or -integer to be rel. endyr) - 0 0 0 0 -999 0 -0 # Forecast selectivity (0=fcast selex is mean from year range; 1=fcast selectivity from annual time-vary parms) -2 # Control rule method (1: ramp does catch=f(SSB), buffer on F; 2: ramp does F=f(SSB), buffer on F; 3: ramp does catch=f(SSB), buffer on catch; 4: ramp does F=f(SSB), buffer on catch) -0.4 # Control rule Biomass level for constant F (as frac of Bzero, e.g. 0.40); (Must be > the no F level below) -0.01 # Control rule Biomass level for no F (as frac of Bzero, e.g. 0.10) -0 # Control rule target as fraction of Flimit (e.g. 0.75), negative value invokes list of [year, scalar] with filling from year to YrMax -3 #_N forecast loops (1=OFL only; 2=ABC; 3=get F from forecast ABC catch with allocations applied) -3 #_First forecast loop with stochastic recruitment -0 #_Forecast recruitment: 0= spawn_recr; 1=value*spawn_recr_fxn; 2=value*VirginRecr; 3=recent mean from yr range above (need to set phase to -1 in control to get constant recruitment in MCMC) -1 # value is ignored -0 #_Forecast loop control #5 (reserved for future bells&whistles) -101 #FirstYear for caps and allocations (should be after years with fixed inputs) -0 # stddev of log(realized catch/target catch) in forecast (set value>0.0 to cause active impl_error) -0 # Do West Coast gfish rebuilder output (0/1) -100 # Rebuilder: first year catch could have been set to zero (Ydecl)(-1 to set to 1999) -100 # Rebuilder: year for current age structure (Yinit) (-1 to set to endyear+1) -1 # fleet relative F: 1=use first-last alloc year; 2=read seas, fleet, alloc list below -# Note that fleet allocation is used directly as average F if Do_Forecast=4 -2 # basis for fcast catch tuning and for fcast catch caps and allocation (2=deadbio; 3=retainbio; 5=deadnum; 6=retainnum) -# Conditional input if relative F choice = 2 -# enter list of: season, fleet, relF; if used, terminate with season=-9999 -# 1 1 1 -# -9999 0 0 # terminator for list of relF -# enter list of: fleet number, max annual catch for fleets with a max; terminate with fleet=-9999 --9999 -1 -# enter list of area ID and max annual catch; terminate with area=-9999 --9999 -1 -# enter list of fleet number and allocation group assignment, if any; terminate with fleet=-9999 --9999 -1 -#_if N allocation groups >0, list year, allocation fraction for each group -# list sequentially because read values fill to end of N forecast -# terminate with -9999 in year field -# no allocation groups -2 # basis for input Fcast catch: -1=read basis with each obs; 2=dead catch; 3=retained catch; 99=input Hrate(F) -#enter list of Fcast catches; terminate with line having year=-9999 -#_Yr Seas Fleet Catch(or_F) --9999 1 1 0 -# -999 # verify end of input diff --git a/model_recipes/Likelihood profiles/Reference_run/ss3.dat b/model_recipes/Likelihood profiles/Reference_run/ss3.dat deleted file mode 100644 index 72a56bc..0000000 --- a/model_recipes/Likelihood profiles/Reference_run/ss3.dat +++ /dev/null @@ -1,486 +0,0 @@ -#V3.30 -#C North Sea/Skagerrak/Eastern Channel Cod -# -26 #_styr -100 #_endyr -1 #_nseas -12 #_months_per_seas -2 #_Nsubseasons -1 #_spawn_month -1 #_Nsexes -25 #_Nages -1 #_N_areas -2 #_Nfleets -#_fleetinfo -#_type surveytiming area units need_catch_mult fleetname -1 -1 1 1 0 Fishery #_1 -3 1 1 2 0 Survey #_2 -#_Catch data -#_year season fleet catch catch_se - -999 1 1 0 0.010 #_1 - 1 1 1 0 0.010 #_2 - 2 1 1 0 0.010 #_3 - 3 1 1 0 0.010 #_4 - 4 1 1 0 0.010 #_5 - 5 1 1 0 0.010 #_6 - 6 1 1 0 0.010 #_7 - 7 1 1 0 0.010 #_8 - 8 1 1 0 0.010 #_9 - 9 1 1 0 0.010 #_10 - 10 1 1 0 0.010 #_11 - 11 1 1 0 0.010 #_12 - 12 1 1 0 0.010 #_13 - 13 1 1 0 0.010 #_14 - 14 1 1 0 0.010 #_15 - 15 1 1 0 0.010 #_16 - 16 1 1 0 0.010 #_17 - 17 1 1 0 0.010 #_18 - 18 1 1 0 0.010 #_19 - 19 1 1 0 0.010 #_20 - 20 1 1 0 0.010 #_21 - 21 1 1 0 0.010 #_22 - 22 1 1 0 0.010 #_23 - 23 1 1 0 0.010 #_24 - 24 1 1 0 0.010 #_25 - 25 1 1 0 0.010 #_26 - 26 1 1 405827583 0.005 #_27 - 27 1 1 373417493 0.005 #_28 - 28 1 1 342373346 0.005 #_29 - 29 1 1 314063047 0.005 #_30 - 30 1 1 291488471 0.005 #_31 - 31 1 1 275016682 0.005 #_32 - 32 1 1 261959321 0.005 #_33 - 33 1 1 247902515 0.005 #_34 - 34 1 1 237602462 0.005 #_35 - 35 1 1 229886276 0.005 #_36 - 36 1 1 221494620 0.005 #_37 - 37 1 1 210472212 0.005 #_38 - 38 1 1 204395447 0.005 #_39 - 39 1 1 196706762 0.005 #_40 - 40 1 1 191149151 0.005 #_41 - 41 1 1 181676431 0.005 #_42 - 42 1 1 175427716 0.005 #_43 - 43 1 1 166292092 0.005 #_44 - 44 1 1 167104259 0.005 #_45 - 45 1 1 167393473 0.005 #_46 - 46 1 1 161044632 0.005 #_47 - 47 1 1 160124742 0.005 #_48 - 48 1 1 159368360 0.005 #_49 - 49 1 1 155503064 0.005 #_50 - 50 1 1 150700473 0.005 #_51 - 51 1 1 151357783 0.005 #_52 - 52 1 1 145953276 0.005 #_53 - 53 1 1 143559669 0.005 #_54 - 54 1 1 142461890 0.005 #_55 - 55 1 1 138970197 0.005 #_56 - 56 1 1 137509860 0.005 #_57 - 57 1 1 140168276 0.005 #_58 - 58 1 1 140025046 0.005 #_59 - 59 1 1 139444280 0.005 #_60 - 60 1 1 138552310 0.005 #_61 - 61 1 1 142276727 0.005 #_62 - 62 1 1 145394778 0.005 #_63 - 63 1 1 147866360 0.005 #_64 - 64 1 1 150086800 0.005 #_65 - 65 1 1 149096580 0.005 #_66 - 66 1 1 150126388 0.005 #_67 - 67 1 1 151017473 0.005 #_68 - 68 1 1 151706424 0.005 #_69 - 69 1 1 150854890 0.005 #_70 - 70 1 1 152562634 0.005 #_71 - 71 1 1 151682609 0.005 #_72 - 72 1 1 153018523 0.005 #_73 - 73 1 1 162110858 0.005 #_74 - 74 1 1 170350797 0.005 #_75 - 75 1 1 175676558 0.005 #_76 - 76 1 1 180420607 0.005 #_77 - 77 1 1 179580391 0.005 #_78 - 78 1 1 173180886 0.005 #_79 - 79 1 1 171619613 0.005 #_80 - 80 1 1 167601020 0.005 #_81 - 81 1 1 160797969 0.005 #_82 - 82 1 1 157721184 0.005 #_83 - 83 1 1 156899991 0.005 #_84 - 84 1 1 155019001 0.005 #_85 - 85 1 1 158509241 0.005 #_86 - 86 1 1 162057478 0.005 #_87 - 87 1 1 161870042 0.005 #_88 - 88 1 1 170525042 0.005 #_89 - 89 1 1 182713147 0.005 #_90 - 90 1 1 193756851 0.005 #_91 - 91 1 1 195682969 0.005 #_92 - 92 1 1 193123404 0.005 #_93 - 93 1 1 191814026 0.005 #_94 - 94 1 1 187735838 0.005 #_95 - 95 1 1 183406362 0.005 #_96 - 96 1 1 181248407 0.005 #_97 - 97 1 1 176702069 0.005 #_98 - 98 1 1 172067982 0.005 #_99 - 99 1 1 174512824 0.005 #_100 - 100 1 1 182121508 0.005 #_101 --9999 0 0 0 0.000 #_terminator -#_CPUE_and_surveyabundance_observations -#_Units: 0=numbers; 1=biomass; 2=F; >=30 for special types -#_Errtype: -1=normal; 0=lognormal; >0=T -#_SD_Report: 0=no sdreport; 1=enable sdreport -#_Fleet Units Errtype SD_Report -1 1 0 0 #_Fishery -2 1 0 0 #_Survey -# -#_CPUE_data -#_year seas index obs se_log - 62 1 2 2319095418 0.2 #_1 - 64 1 2 1450356783 0.2 #_2 - 66 1 2 1503543274 0.2 #_3 - 68 1 2 1568917464 0.2 #_4 - 70 1 2 1491684068 0.2 #_5 - 72 1 2 1453785086 0.2 #_6 - 74 1 2 1728862643 0.2 #_7 - 76 1 2 1732955651 0.2 #_8 - 78 1 2 1495070546 0.2 #_9 - 80 1 2 1162754195 0.2 #_10 - 82 1 2 1389316573 0.2 #_11 - 84 1 2 1980264967 0.2 #_12 - 86 1 2 1872900449 0.2 #_13 - 88 1 2 1772513878 0.2 #_14 - 90 1 2 2610471051 0.2 #_15 - 92 1 2 2610821051 0.2 #_16 - 94 1 2 2610461051 0.2 #_17 - 96 1 2 2014668777 0.2 #_18 - 98 1 2 1365842314 0.2 #_19 - 100 1 2 1749224049 0.2 #_20 --9999 0 0 0 0.0 #_terminator -0 #_N_discard_fleets -#_discard_units (1=same_as_catchunits(bio/num); 2=fraction; 3=numbers) -#_discard_errtype: >0 for DF of T-dist(read CV below); 0 for normal with CV; -1 for normal with se; -2 for lognormal -# -#_discard_fleet_info -# -#_discard_data -# -#_meanbodywt -0 #_use_meanbodywt - #_DF_for_meanbodywt_T-distribution_like -# -#_population_length_bins -2 # length bin method: 1=use databins; 2=generate from binwidth,min,max below; 3=read vector -1 # binwidth for population size comp -10 # minimum size in the population (lower edge of first bin and size at age 0.00) -200 # maximum size in the population (lower edge of last bin) -1 #_use_lencomp -# -#_len_info -#_mintailcomp addtocomp combine_M_F CompressBins CompError ParmSelect minsamplesize --1 1e-10 0 0 0 0 1 #_Fishery --1 1e-10 0 0 0 0 1 #_Survey -45 #_N_lbins -#_lbin_vector -20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125 128 131 134 137 140 143 146 149 152 #_lbin_vector -# -#_lencomp -#_Yr Seas FltSvy Gender Part Nsamp l20 l23 l26 l29 l32 l35 l38 l41 l44 l47 l50 l53 l56 l59 l62 l65 l68 l71 l74 l77 l80 l83 l86 l89 l92 l95 l98 l101 l104 l107 l110 l113 l116 l119 l122 l125 l128 l131 l134 l137 l140 l143 l146 l149 l152 - 95 1 1 0 0 50 1.21839e-15 7.08912e-10 3.53471e-07 6.47686e-03 3.08818e-03 1.03054e-05 2.57179e-06 7.60397e-03 0.0133111 0.0476258 0.0348703 0.04032875 0.0497779 0.04741981 0.01443621 0.07874335 0.0230499 0.0266009 0.01794948 0.0270393 0.0510087 0.01111618 0.0654543 0.01606061 0.0513103 0.01029999 0.000825664 0.03932407 0.022521232 0.07562950 0.06083348 0.02336445 6.38750e-02 0.00392951 0.012387671 0.003952013 0.007133818 0.00897878 5.15022e-03 9.58616e-04 2.15086e-02 4.05532e-03 1.75826e-03 1.48731e-14 2.28787e-04 #_1 - 96 1 1 0 0 50 5.99789e-30 3.86910e-29 3.87336e-07 2.01136e-03 4.19938e-05 1.31793e-05 1.53990e-03 2.12131e-02 0.0159329 0.0343006 0.1230111 0.02119380 0.0047550 0.00137013 0.13720601 0.02200563 0.0488743 0.0325755 0.08802896 0.0233814 0.0213249 0.06504259 0.0822676 0.06275952 0.0194676 0.01154768 0.021065655 0.01933137 0.003829945 0.03479926 0.04589062 0.00248582 2.80196e-03 0.00385954 0.009757891 0.000151414 0.004176591 0.00488303 6.81256e-05 2.07929e-03 1.51268e-03 3.33025e-03 1.11326e-04 9.90207e-48 3.76714e-13 #_2 - 97 1 1 0 0 50 4.82525e-17 6.60950e-63 1.45918e-02 2.46884e-04 3.02475e-02 3.14046e-03 1.58916e-04 4.55571e-06 0.0197265 0.0475703 0.0460192 0.00543952 0.0330235 0.04910525 0.11044604 0.00943501 0.1034457 0.0748063 0.05347646 0.0235542 0.0839288 0.00480831 0.0792134 0.01471147 0.0358458 0.00426968 0.019992995 0.01680004 0.026919891 0.01041092 0.00517611 0.01610544 6.62434e-03 0.00336242 0.008427033 0.005320177 0.008221190 0.00246077 6.16104e-03 2.32716e-06 1.86462e-04 1.55249e-02 1.23345e-11 1.88218e-04 9.00144e-04 #_3 - 98 1 1 0 0 50 4.33367e-05 5.23013e-21 1.80907e-04 5.98429e-03 1.50085e-02 1.84472e-03 4.78366e-05 1.38155e-02 0.0177652 0.0570923 0.1315670 0.05701185 0.0436706 0.03468419 0.00784813 0.03077679 0.0152514 0.0280374 0.05779615 0.0246120 0.0250831 0.13000820 0.0171202 0.00935178 0.0360376 0.01851026 0.110258877 0.00141916 0.003314611 0.00978243 0.01410409 0.01426905 2.08460e-02 0.01619731 0.000651814 0.027305506 0.000359444 0.00214246 1.38929e-05 2.50726e-09 1.43831e-05 1.21122e-13 9.29224e-05 7.88754e-05 1.76531e-11 #_4 - 99 1 1 0 0 50 3.43796e-08 6.63178e-13 1.37536e-02 3.48744e-03 6.30987e-02 6.18445e-03 2.34790e-02 6.67529e-03 0.0516173 0.0459099 0.0690536 0.14736148 0.0843542 0.02998615 0.01049348 0.04949479 0.0108561 0.0149054 0.05960321 0.0285729 0.0134305 0.00172333 0.0170506 0.00829920 0.0183744 0.04591866 0.016283377 0.01165331 0.000611884 0.03343126 0.01524042 0.02159914 3.74832e-05 0.00718344 0.036709237 0.000856413 0.000815214 0.00168073 2.98768e-02 2.46071e-09 6.25824e-10 3.29265e-04 8.78233e-15 5.64135e-06 2.59270e-06 #_5 - 100 1 1 0 0 50 7.06058e-39 7.28113e-17 8.82966e-04 1.85488e-05 3.40430e-03 9.19572e-03 3.19208e-03 2.56074e-03 0.0212217 0.0625408 0.0360383 0.14289880 0.0310024 0.01689111 0.07980034 0.07799596 0.0189316 0.0364775 0.00768082 0.0543474 0.0189996 0.02657866 0.0239969 0.02052548 0.0458498 0.00177325 0.013893173 0.01476595 0.000263802 0.02470716 0.05980638 0.01254703 2.57588e-02 0.02019666 0.042446520 0.026112080 0.002434038 0.00540392 3.26960e-06 5.33413e-03 3.37349e-05 3.77795e-05 2.83245e-19 1.73956e-12 3.45088e-03 #_6 - 26 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.0000000 0.0000000 2.0000000 0.00000000 0.0000000 0.00000000 0.00000000 3.00000000 3.0000000 1.0000000 3.00000000 2.0000000 1.0000000 2.00000000 1.0000000 4.00000000 4.0000000 1.00000000 1.000000000 3.00000000 2.000000000 2.00000000 3.00000000 2.00000000 2.00000e+00 2.00000000 1.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_7 - 27 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 2.0000000 1.00000000 1.0000000 1.00000000 2.00000000 3.00000000 1.0000000 1.0000000 4.00000000 1.0000000 2.0000000 1.00000000 3.0000000 3.00000000 0.0000000 1.00000000 3.000000000 2.00000000 1.000000000 3.00000000 1.00000000 1.00000000 1.00000e+00 2.00000000 3.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_8 - 28 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 3.0000000 2.0000000 2.00000000 0.0000000 1.00000000 0.00000000 4.00000000 0.0000000 2.0000000 1.00000000 3.0000000 3.0000000 0.00000000 1.0000000 3.00000000 1.0000000 3.00000000 1.000000000 2.00000000 2.000000000 2.00000000 1.00000000 3.00000000 3.00000e+00 0.00000000 0.000000000 3.000000000 2.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_9 - 29 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.0000000 2.0000000 1.0000000 0.00000000 1.0000000 2.00000000 1.00000000 2.00000000 1.0000000 1.0000000 3.00000000 3.0000000 5.0000000 1.00000000 1.0000000 2.00000000 2.0000000 2.00000000 2.000000000 3.00000000 2.000000000 0.00000000 0.00000000 0.00000000 2.00000e+00 2.00000000 1.000000000 0.000000000 1.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_10 - 30 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 8.0000000 5.0000000 2.0000000 2.00000000 0.0000000 0.00000000 3.00000000 3.00000000 2.0000000 3.0000000 0.00000000 1.0000000 4.0000000 1.00000000 0.0000000 1.00000000 2.0000000 1.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 1.000000000 0.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_11 - 31 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 2.0000000 1.0000000 3.00000000 2.0000000 3.00000000 4.00000000 4.00000000 2.0000000 0.0000000 1.00000000 3.0000000 3.0000000 0.00000000 1.0000000 1.00000000 1.0000000 1.00000000 0.000000000 1.00000000 0.000000000 0.00000000 2.00000000 1.00000000 2.00000e+00 1.00000000 2.000000000 0.000000000 0.000000000 1.00000000 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_12 - 32 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 2.00000000 2.00000000 3.0000000 1.0000000 4.00000000 3.0000000 1.0000000 3.00000000 0.0000000 2.00000000 1.0000000 1.00000000 1.000000000 1.00000000 0.000000000 4.00000000 1.00000000 1.00000000 2.00000e+00 4.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_13 - 33 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 2.00000e+00 0.0000000 3.0000000 2.0000000 1.00000000 1.0000000 2.00000000 1.00000000 3.00000000 5.0000000 2.0000000 3.00000000 3.0000000 3.0000000 1.00000000 0.0000000 1.00000000 3.0000000 0.00000000 0.000000000 2.00000000 1.000000000 0.00000000 0.00000000 2.00000000 1.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_14 - 34 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.0000000 4.0000000 3.0000000 3.00000000 0.0000000 1.00000000 1.00000000 2.00000000 1.0000000 3.0000000 1.00000000 1.0000000 2.0000000 0.00000000 2.0000000 4.00000000 1.0000000 1.00000000 1.000000000 1.00000000 1.000000000 2.00000000 3.00000000 2.00000000 1.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_15 - 35 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.0000000 4.0000000 7.0000000 2.00000000 2.0000000 2.00000000 2.00000000 1.00000000 0.0000000 0.0000000 1.00000000 0.0000000 0.0000000 3.00000000 4.0000000 1.00000000 4.0000000 2.00000000 3.000000000 0.00000000 0.000000000 0.00000000 1.00000000 3.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_16 - 36 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.0000000 4.0000000 1.0000000 2.00000000 1.0000000 0.00000000 4.00000000 2.00000000 1.0000000 3.0000000 2.00000000 2.0000000 1.0000000 1.00000000 1.0000000 1.00000000 1.0000000 2.00000000 2.000000000 0.00000000 2.000000000 0.00000000 1.00000000 2.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 2.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_17 - 37 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.0000000 1.0000000 1.0000000 1.00000000 3.0000000 3.00000000 1.00000000 2.00000000 1.0000000 1.0000000 1.00000000 4.0000000 3.0000000 1.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 2.00000000 3.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 2.00000000 4.000000000 1.000000000 1.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_18 - 38 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.0000000 6.0000000 3.0000000 0.00000000 1.0000000 1.00000000 0.00000000 3.00000000 2.0000000 3.0000000 1.00000000 2.0000000 3.0000000 1.00000000 1.0000000 1.00000000 1.0000000 1.00000000 4.000000000 0.00000000 3.000000000 4.00000000 0.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_19 - 39 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 3.0000000 0.0000000 1.00000000 3.0000000 4.00000000 3.00000000 3.00000000 4.0000000 1.0000000 2.00000000 0.0000000 0.0000000 4.00000000 2.0000000 1.00000000 0.0000000 5.00000000 2.000000000 1.00000000 0.000000000 0.00000000 1.00000000 2.00000000 1.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 1.00000000 2.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_20 - 40 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 6.0000000 5.0000000 3.00000000 3.0000000 2.00000000 1.00000000 0.00000000 3.0000000 1.0000000 3.00000000 1.0000000 1.0000000 1.00000000 1.0000000 0.00000000 0.0000000 1.00000000 2.000000000 3.00000000 1.000000000 2.00000000 2.00000000 0.00000000 2.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_21 - 41 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 0.0000000 0.0000000 1.00000000 2.0000000 4.00000000 2.00000000 2.00000000 1.0000000 0.0000000 1.00000000 2.0000000 2.0000000 0.00000000 1.0000000 2.00000000 2.0000000 0.00000000 0.000000000 2.00000000 4.000000000 2.00000000 2.00000000 4.00000000 1.00000e+00 2.00000000 1.000000000 1.000000000 1.000000000 1.00000000 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_22 - 42 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.0000000 3.0000000 2.0000000 2.00000000 2.0000000 3.00000000 2.00000000 2.00000000 1.0000000 1.0000000 2.00000000 4.0000000 0.0000000 1.00000000 3.0000000 1.00000000 1.0000000 1.00000000 0.000000000 2.00000000 3.000000000 1.00000000 3.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_23 - 43 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 1.0000000 5.00000000 5.0000000 2.00000000 3.00000000 0.00000000 5.0000000 0.0000000 2.00000000 0.0000000 2.0000000 1.00000000 1.0000000 1.00000000 0.0000000 1.00000000 0.000000000 0.00000000 4.000000000 3.00000000 1.00000000 4.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_24 - 44 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 3.0000000 6.0000000 4.0000000 3.00000000 4.0000000 1.00000000 0.00000000 1.00000000 3.0000000 0.0000000 1.00000000 2.0000000 3.0000000 2.00000000 1.0000000 1.00000000 1.0000000 1.00000000 3.000000000 0.00000000 1.000000000 2.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_25 - 45 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 0.0000000 0.0000000 3.00000000 3.0000000 3.00000000 6.00000000 5.00000000 4.0000000 2.0000000 3.00000000 1.0000000 0.0000000 2.00000000 1.0000000 1.00000000 2.0000000 0.00000000 0.000000000 0.00000000 3.000000000 2.00000000 0.00000000 2.00000000 1.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_26 - 46 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 1.0000000 1.0000000 0.00000000 0.0000000 0.00000000 0.00000000 2.00000000 0.0000000 4.0000000 2.00000000 4.0000000 5.0000000 3.00000000 3.0000000 2.00000000 1.0000000 1.00000000 3.000000000 0.00000000 1.000000000 1.00000000 3.00000000 0.00000000 2.00000e+00 1.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_27 - 47 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 0.00000e+00 2.00000e+00 8.0000000 2.0000000 1.0000000 7.00000000 3.0000000 1.00000000 0.00000000 0.00000000 0.0000000 0.0000000 1.00000000 2.0000000 2.0000000 1.00000000 1.0000000 3.00000000 3.0000000 0.00000000 0.000000000 2.00000000 1.000000000 0.00000000 1.00000000 2.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_28 - 48 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.0000000 1.0000000 3.0000000 4.00000000 3.0000000 3.00000000 1.00000000 2.00000000 1.0000000 1.0000000 1.00000000 2.0000000 2.0000000 1.00000000 0.0000000 1.00000000 3.0000000 3.00000000 0.000000000 4.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_29 - 49 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 2.0000000 2.0000000 1.00000000 1.0000000 0.00000000 3.00000000 3.00000000 4.0000000 2.0000000 6.00000000 1.0000000 2.0000000 3.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 2.00000000 1.000000000 0.00000000 1.00000000 1.00000000 2.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_30 - 50 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 3.0000000 1.0000000 2.0000000 0.00000000 1.0000000 1.00000000 2.00000000 1.00000000 1.0000000 0.0000000 5.00000000 0.0000000 2.0000000 1.00000000 3.0000000 1.00000000 1.0000000 1.00000000 0.000000000 3.00000000 4.000000000 0.00000000 3.00000000 2.00000000 0.00000e+00 3.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_31 - 51 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 6.0000000 3.0000000 3.0000000 0.00000000 1.0000000 1.00000000 2.00000000 2.00000000 2.0000000 0.0000000 1.00000000 3.0000000 1.0000000 1.00000000 2.0000000 1.00000000 4.0000000 0.00000000 2.000000000 0.00000000 1.000000000 0.00000000 2.00000000 1.00000000 0.00000e+00 2.00000000 1.000000000 3.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_32 - 52 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 2.0000000 1.00000000 2.0000000 2.00000000 2.00000000 4.00000000 4.0000000 1.0000000 1.00000000 2.0000000 4.0000000 2.00000000 2.0000000 2.00000000 2.0000000 2.00000000 3.000000000 0.00000000 0.000000000 0.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 #_33 - 53 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 5.0000000 4.0000000 2.0000000 4.00000000 2.0000000 2.00000000 0.00000000 3.00000000 2.0000000 1.0000000 1.00000000 3.0000000 3.0000000 0.00000000 0.0000000 2.00000000 1.0000000 1.00000000 0.000000000 3.00000000 3.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 2.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_34 - 54 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 0.0000000 1.0000000 4.00000000 1.0000000 1.00000000 1.00000000 2.00000000 4.0000000 2.0000000 2.00000000 1.0000000 0.0000000 3.00000000 2.0000000 4.00000000 5.0000000 1.00000000 1.000000000 3.00000000 1.000000000 1.00000000 2.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_35 - 55 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 1.0000000 3.0000000 3.0000000 3.00000000 0.0000000 0.00000000 0.00000000 1.00000000 6.0000000 1.0000000 2.00000000 1.0000000 1.0000000 2.00000000 3.0000000 2.00000000 0.0000000 2.00000000 0.000000000 2.00000000 1.000000000 0.00000000 2.00000000 5.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_36 - 56 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.0000000 5.0000000 3.0000000 3.00000000 3.0000000 1.00000000 2.00000000 1.00000000 1.0000000 1.0000000 2.00000000 1.0000000 2.0000000 2.00000000 2.0000000 1.00000000 2.0000000 1.00000000 1.000000000 1.00000000 0.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 0.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_37 - 57 1 1 0 0 50 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 2.0000000 2.0000000 3.0000000 1.00000000 2.0000000 1.00000000 3.00000000 1.00000000 1.0000000 0.0000000 1.00000000 0.0000000 2.0000000 0.00000000 1.0000000 4.00000000 1.0000000 0.00000000 6.000000000 0.00000000 1.000000000 0.00000000 1.00000000 1.00000000 1.00000e+00 3.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_38 - 58 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.00000e+00 1.00000e+00 0.00000e+00 4.0000000 3.0000000 0.0000000 4.00000000 1.0000000 3.00000000 2.00000000 1.00000000 2.0000000 4.0000000 2.00000000 2.0000000 4.0000000 2.00000000 1.0000000 2.00000000 1.0000000 0.00000000 2.000000000 1.00000000 0.000000000 0.00000000 0.00000000 1.00000000 1.00000e+00 2.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_39 - 59 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.0000000 2.0000000 2.00000000 3.0000000 0.00000000 1.00000000 3.00000000 1.0000000 3.0000000 3.00000000 4.0000000 5.0000000 3.00000000 1.0000000 2.00000000 2.0000000 3.00000000 0.000000000 2.00000000 1.000000000 0.00000000 3.00000000 2.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_40 - 60 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 4.0000000 3.0000000 3.0000000 3.00000000 3.0000000 1.00000000 0.00000000 2.00000000 0.0000000 1.0000000 2.00000000 0.0000000 3.0000000 0.00000000 2.0000000 4.00000000 1.0000000 2.00000000 1.000000000 1.00000000 2.000000000 2.00000000 2.00000000 0.00000000 1.00000e+00 0.00000000 0.000000000 2.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_41 - 61 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 8.0000000 3.00000000 3.0000000 1.00000000 0.00000000 0.00000000 3.0000000 3.0000000 2.00000000 3.0000000 1.0000000 3.00000000 1.0000000 0.00000000 0.0000000 0.00000000 1.000000000 1.00000000 3.000000000 2.00000000 2.00000000 0.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_42 - 62 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 2.0000000 2.0000000 1.00000000 0.0000000 3.00000000 4.00000000 3.00000000 5.0000000 2.0000000 0.00000000 3.0000000 4.0000000 1.00000000 3.0000000 4.00000000 0.0000000 0.00000000 0.000000000 2.00000000 0.000000000 1.00000000 0.00000000 4.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_43 - 63 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 1.0000000 3.0000000 3.00000000 3.0000000 0.00000000 3.00000000 3.00000000 1.0000000 2.0000000 2.00000000 2.0000000 3.0000000 2.00000000 2.0000000 4.00000000 1.0000000 0.00000000 4.000000000 1.00000000 0.000000000 1.00000000 2.00000000 2.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_44 - 64 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 2.0000000 2.0000000 6.0000000 1.00000000 2.0000000 1.00000000 2.00000000 2.00000000 2.0000000 2.0000000 3.00000000 1.0000000 1.0000000 2.00000000 3.0000000 2.00000000 1.0000000 4.00000000 0.000000000 3.00000000 1.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 1.000000000 2.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_45 - 65 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.0000000 2.0000000 2.0000000 1.00000000 1.0000000 1.00000000 0.00000000 2.00000000 2.0000000 4.0000000 5.00000000 3.0000000 1.0000000 4.00000000 0.0000000 4.00000000 0.0000000 3.00000000 1.000000000 1.00000000 1.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_46 - 66 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 2.0000000 4.0000000 0.0000000 2.00000000 2.0000000 2.00000000 2.00000000 1.00000000 2.0000000 3.0000000 2.00000000 1.0000000 1.0000000 2.00000000 1.0000000 2.00000000 2.0000000 1.00000000 3.000000000 2.00000000 1.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_47 - 67 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 3.0000000 3.00000000 3.0000000 2.00000000 1.00000000 3.00000000 1.0000000 2.0000000 0.00000000 3.0000000 2.0000000 4.00000000 2.0000000 2.00000000 1.0000000 2.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_48 - 68 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.0000000 4.0000000 2.0000000 0.00000000 2.0000000 0.00000000 1.00000000 4.00000000 3.0000000 2.0000000 3.00000000 2.0000000 2.0000000 2.00000000 1.0000000 1.00000000 0.0000000 2.00000000 1.000000000 0.00000000 0.000000000 2.00000000 4.00000000 2.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 2.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_49 - 69 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 4.0000000 3.0000000 3.00000000 2.0000000 3.00000000 3.00000000 2.00000000 0.0000000 2.0000000 1.00000000 2.0000000 2.0000000 0.00000000 1.0000000 1.00000000 0.0000000 1.00000000 3.000000000 2.00000000 5.000000000 2.00000000 0.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_50 - 70 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.0000000 1.0000000 5.0000000 1.00000000 2.0000000 1.00000000 3.00000000 2.00000000 1.0000000 4.0000000 0.00000000 2.0000000 3.0000000 3.00000000 1.0000000 3.00000000 3.0000000 3.00000000 1.000000000 1.00000000 0.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_51 - 71 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 4.0000000 4.0000000 5.00000000 0.0000000 1.00000000 6.00000000 4.00000000 0.0000000 1.0000000 2.00000000 1.0000000 1.0000000 3.00000000 1.0000000 4.00000000 2.0000000 2.00000000 1.000000000 2.00000000 1.000000000 1.00000000 2.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_52 - 72 1 1 0 0 50 0.00000e+00 1.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 1.0000000 1.0000000 5.0000000 2.00000000 1.0000000 3.00000000 2.00000000 2.00000000 4.0000000 1.0000000 0.00000000 0.0000000 2.0000000 0.00000000 3.0000000 1.00000000 2.0000000 2.00000000 2.000000000 0.00000000 0.000000000 2.00000000 1.00000000 0.00000000 2.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_53 - 73 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.0000000 4.0000000 4.0000000 2.00000000 4.0000000 3.00000000 1.00000000 1.00000000 2.0000000 2.0000000 2.00000000 0.0000000 4.0000000 1.00000000 2.0000000 1.00000000 3.0000000 1.00000000 1.000000000 0.00000000 1.000000000 1.00000000 1.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_54 - 74 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.0000000 3.0000000 0.00000000 0.0000000 4.00000000 4.00000000 4.00000000 4.0000000 3.0000000 4.00000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 1.0000000 0.00000000 1.000000000 0.00000000 3.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_55 - 75 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.0000000 4.0000000 3.0000000 3.00000000 1.0000000 3.00000000 2.00000000 2.00000000 2.0000000 3.0000000 4.00000000 1.0000000 2.0000000 4.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 0.00000000 0.000000000 2.00000000 0.00000000 3.00000000 0.00000e+00 0.00000000 0.000000000 3.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_56 - 76 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 3.0000000 0.0000000 3.00000000 1.0000000 3.00000000 4.00000000 2.00000000 5.0000000 1.0000000 1.00000000 1.0000000 2.0000000 3.00000000 4.0000000 1.00000000 1.0000000 2.00000000 1.000000000 0.00000000 2.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 2.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_57 - 77 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 2.0000000 1.0000000 1.00000000 1.0000000 1.00000000 0.00000000 7.00000000 3.0000000 2.0000000 3.00000000 2.0000000 1.0000000 5.00000000 2.0000000 3.00000000 1.0000000 1.00000000 2.000000000 2.00000000 2.000000000 1.00000000 2.00000000 0.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_58 - 78 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 1.0000000 4.0000000 3.0000000 0.00000000 2.0000000 0.00000000 1.00000000 2.00000000 3.0000000 1.0000000 2.00000000 3.0000000 3.0000000 2.00000000 4.0000000 2.00000000 2.0000000 2.00000000 0.000000000 2.00000000 1.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 2.00000000 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_59 - 79 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 6.0000000 3.0000000 3.00000000 1.0000000 4.00000000 5.00000000 2.00000000 1.0000000 1.0000000 2.00000000 2.0000000 2.0000000 0.00000000 0.0000000 1.00000000 1.0000000 2.00000000 1.000000000 0.00000000 1.000000000 0.00000000 2.00000000 1.00000000 0.00000e+00 2.00000000 0.000000000 1.000000000 0.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_60 - 80 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 2.0000000 3.0000000 3.0000000 0.00000000 3.0000000 1.00000000 3.00000000 3.00000000 1.0000000 2.0000000 3.00000000 3.0000000 0.0000000 1.00000000 0.0000000 0.00000000 1.0000000 0.00000000 2.000000000 2.00000000 0.000000000 2.00000000 2.00000000 1.00000000 1.00000e+00 2.00000000 1.000000000 3.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_61 - 81 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 4.0000000 1.0000000 0.00000000 2.0000000 2.00000000 4.00000000 4.00000000 1.0000000 2.0000000 0.00000000 1.0000000 2.0000000 1.00000000 2.0000000 2.00000000 4.0000000 3.00000000 3.000000000 0.00000000 1.000000000 0.00000000 1.00000000 1.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_62 - 82 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 5.0000000 4.0000000 5.0000000 1.00000000 2.0000000 1.00000000 0.00000000 3.00000000 3.0000000 0.0000000 1.00000000 2.0000000 1.0000000 2.00000000 3.0000000 3.00000000 2.0000000 0.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_63 - 83 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 3.0000000 5.0000000 1.0000000 1.00000000 3.0000000 1.00000000 1.00000000 1.00000000 2.0000000 4.0000000 1.00000000 3.0000000 2.0000000 1.00000000 3.0000000 1.00000000 1.0000000 2.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_64 - 84 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 2.0000000 0.00000000 0.0000000 0.00000000 0.00000000 2.00000000 2.0000000 3.0000000 5.00000000 1.0000000 1.0000000 3.00000000 1.0000000 1.00000000 2.0000000 1.00000000 0.000000000 5.00000000 2.000000000 2.00000000 1.00000000 1.00000000 2.00000e+00 1.00000000 0.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_65 - 85 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 5.0000000 6.0000000 4.0000000 5.00000000 3.0000000 1.00000000 0.00000000 3.00000000 1.0000000 0.0000000 3.00000000 1.0000000 3.0000000 1.00000000 2.0000000 1.00000000 1.0000000 2.00000000 3.000000000 1.00000000 0.000000000 0.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_66 - 86 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 1.0000000 5.00000000 4.0000000 4.00000000 2.00000000 3.00000000 4.0000000 0.0000000 1.00000000 0.0000000 4.0000000 1.00000000 0.0000000 0.00000000 3.0000000 2.00000000 0.000000000 1.00000000 1.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 4.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_67 - 87 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.0000000 3.0000000 1.0000000 4.00000000 1.0000000 0.00000000 2.00000000 1.00000000 0.0000000 5.0000000 5.00000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 0.0000000 0.00000000 1.000000000 0.00000000 1.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 1.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_68 - 88 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 5.0000000 5.0000000 8.0000000 3.00000000 1.0000000 1.00000000 0.00000000 2.00000000 1.0000000 2.0000000 2.00000000 0.0000000 0.0000000 4.00000000 0.0000000 4.00000000 0.0000000 0.00000000 1.000000000 1.00000000 0.000000000 4.00000000 0.00000000 1.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_69 - 89 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 2.0000000 4.0000000 5.0000000 2.00000000 6.0000000 2.00000000 3.00000000 2.00000000 1.0000000 1.0000000 1.00000000 1.0000000 1.0000000 2.00000000 0.0000000 2.00000000 3.0000000 2.00000000 0.000000000 1.00000000 3.000000000 1.00000000 1.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_70 - 90 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 1.0000000 1.0000000 3.0000000 4.00000000 2.0000000 6.00000000 3.00000000 7.00000000 0.0000000 2.0000000 3.00000000 2.0000000 1.0000000 2.00000000 0.0000000 1.00000000 0.0000000 1.00000000 0.000000000 1.00000000 2.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_71 - 91 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.0000000 1.0000000 0.00000000 1.0000000 1.00000000 3.00000000 0.00000000 5.0000000 3.0000000 3.00000000 6.0000000 3.0000000 3.00000000 2.0000000 2.00000000 2.0000000 1.00000000 1.000000000 2.00000000 3.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_72 - 92 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 3.0000000 1.0000000 3.0000000 1.00000000 0.0000000 3.00000000 1.00000000 2.00000000 1.0000000 2.0000000 1.00000000 2.0000000 4.0000000 0.00000000 2.0000000 4.00000000 4.0000000 1.00000000 0.000000000 2.00000000 2.000000000 2.00000000 1.00000000 2.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_73 - 93 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 3.0000000 4.0000000 6.00000000 0.0000000 1.00000000 0.00000000 1.00000000 2.0000000 0.0000000 2.00000000 0.0000000 3.0000000 2.00000000 1.0000000 4.00000000 3.0000000 2.00000000 0.000000000 2.00000000 1.000000000 2.00000000 0.00000000 2.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_74 - 94 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.0000000 1.0000000 3.0000000 0.00000000 2.0000000 3.00000000 1.00000000 5.00000000 3.0000000 0.0000000 1.00000000 1.0000000 0.0000000 0.00000000 1.0000000 3.00000000 1.0000000 3.00000000 2.000000000 2.00000000 1.000000000 2.00000000 1.00000000 1.00000000 2.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_75 - 62 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.00000e+00 5.00000e+00 1.0000000 2.0000000 4.0000000 8.00000000 7.0000000 7.00000000 5.00000000 4.00000000 5.0000000 4.0000000 4.00000000 4.0000000 2.0000000 7.00000000 1.0000000 2.00000000 2.0000000 1.00000000 2.000000000 2.00000000 3.000000000 2.00000000 0.00000000 1.00000000 2.00000e+00 3.00000000 0.000000000 2.000000000 1.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_76 - 64 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 7.00000e+00 4.00000e+00 5.00000e+00 5.0000000 0.0000000 3.0000000 2.00000000 8.0000000 5.00000000 3.00000000 4.00000000 2.0000000 7.0000000 4.00000000 7.0000000 1.0000000 3.00000000 3.0000000 3.00000000 1.0000000 3.00000000 1.000000000 2.00000000 0.000000000 1.00000000 0.00000000 3.00000000 2.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 #_77 - 66 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 7.00000e+00 1.10000e+01 5.00000e+00 4.0000000 0.0000000 5.0000000 5.00000000 2.0000000 2.00000000 3.00000000 7.00000000 2.0000000 3.0000000 2.00000000 2.0000000 4.0000000 2.00000000 2.0000000 4.00000000 3.0000000 3.00000000 2.000000000 1.00000000 2.000000000 5.00000000 3.00000000 2.00000000 1.00000e+00 1.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_78 - 68 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 8.00000e+00 5.00000e+00 4.00000e+00 4.0000000 6.0000000 1.0000000 6.00000000 8.0000000 3.00000000 2.00000000 2.00000000 2.0000000 4.0000000 3.00000000 4.0000000 4.0000000 1.00000000 6.0000000 3.00000000 0.0000000 3.00000000 5.000000000 2.00000000 1.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_79 - 70 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 1.20000e+01 7.00000e+00 2.0000000 2.0000000 5.0000000 4.00000000 7.0000000 5.00000000 2.00000000 3.00000000 3.0000000 1.0000000 4.00000000 4.0000000 5.0000000 5.00000000 2.0000000 3.00000000 3.0000000 3.00000000 2.000000000 1.00000000 2.000000000 2.00000000 3.00000000 0.00000000 1.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 #_80 - 72 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 4.00000e+00 1.10000e+01 4.0000000 0.0000000 7.0000000 4.00000000 9.0000000 6.00000000 4.00000000 5.00000000 2.0000000 2.0000000 4.00000000 1.0000000 3.0000000 4.00000000 4.0000000 1.00000000 1.0000000 0.00000000 6.000000000 1.00000000 2.000000000 2.00000000 2.00000000 4.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_81 - 74 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 3.00000e+00 6.0000000 6.0000000 6.0000000 9.00000000 13.0000000 8.00000000 6.00000000 5.00000000 3.0000000 1.0000000 1.00000000 2.0000000 2.0000000 7.00000000 1.0000000 3.00000000 0.0000000 2.00000000 4.000000000 1.00000000 3.000000000 1.00000000 0.00000000 1.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_82 - 76 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 4.00000e+00 1.00000e+01 5.00000e+00 5.0000000 3.0000000 6.0000000 5.00000000 4.0000000 6.00000000 4.00000000 2.00000000 0.0000000 3.0000000 1.00000000 4.0000000 3.0000000 5.00000000 6.0000000 2.00000000 4.0000000 2.00000000 3.000000000 0.00000000 1.000000000 2.00000000 1.00000000 0.00000000 2.00000e+00 1.00000000 0.000000000 0.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_83 - 78 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 8.00000e+00 5.00000e+00 5.0000000 0.0000000 3.0000000 1.00000000 4.0000000 3.00000000 1.00000000 3.00000000 2.0000000 4.0000000 4.00000000 4.0000000 5.0000000 2.00000000 3.0000000 4.00000000 0.0000000 7.00000000 6.000000000 3.00000000 3.000000000 2.00000000 3.00000000 3.00000000 3.00000e+00 4.00000000 0.000000000 0.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_84 - 80 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 2.00000e+00 6.00000e+00 5.00000e+00 2.0000000 2.0000000 8.0000000 4.00000000 4.0000000 3.00000000 6.00000000 2.00000000 2.0000000 3.0000000 4.00000000 7.0000000 0.0000000 3.00000000 3.0000000 3.00000000 5.0000000 2.00000000 1.000000000 4.00000000 3.000000000 3.00000000 2.00000000 2.00000000 1.00000e+00 1.00000000 2.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_85 - 82 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 5.00000e+00 4.00000e+00 6.00000e+00 7.0000000 2.0000000 2.0000000 1.00000000 5.0000000 3.00000000 3.00000000 2.00000000 0.0000000 4.0000000 5.00000000 2.0000000 3.0000000 3.00000000 2.0000000 4.00000000 4.0000000 1.00000000 7.000000000 2.00000000 6.000000000 1.00000000 6.00000000 2.00000000 2.00000e+00 0.00000000 0.000000000 2.000000000 2.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_86 - 84 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 6.00000e+00 5.00000e+00 0.00000e+00 1.0000000 3.0000000 3.0000000 6.00000000 9.0000000 9.00000000 3.00000000 5.00000000 3.0000000 6.0000000 5.00000000 1.0000000 3.0000000 4.00000000 4.0000000 4.00000000 4.0000000 0.00000000 3.000000000 4.00000000 0.000000000 2.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_87 - 86 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.00000e+00 3.00000e+00 7.00000e+00 6.00000e+00 4.0000000 2.0000000 5.0000000 4.00000000 5.0000000 3.00000000 8.00000000 5.00000000 1.0000000 3.0000000 3.00000000 2.0000000 6.0000000 1.00000000 4.0000000 1.00000000 1.0000000 2.00000000 2.000000000 2.00000000 2.000000000 3.00000000 2.00000000 1.00000000 1.00000e+00 1.00000000 2.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_88 - 88 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 6.00000e+00 2.20000e+01 9.00000e+00 6.0000000 1.0000000 2.0000000 2.00000000 3.0000000 0.00000000 3.00000000 4.00000000 3.0000000 4.0000000 2.00000000 2.0000000 3.0000000 4.00000000 3.0000000 1.00000000 0.0000000 3.00000000 2.000000000 1.00000000 2.000000000 1.00000000 1.00000000 0.00000000 2.00000e+00 2.00000000 0.000000000 1.000000000 0.000000000 0.00000000 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_89 - 90 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 4.00000e+00 5.00000e+00 2.0000000 0.0000000 4.0000000 6.00000000 9.0000000 11.00000000 3.00000000 6.00000000 6.0000000 3.0000000 4.00000000 5.0000000 2.0000000 3.00000000 0.0000000 2.00000000 3.0000000 2.00000000 2.000000000 3.00000000 2.000000000 1.00000000 2.00000000 1.00000000 0.00000e+00 1.00000000 2.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_90 - 92 1 2 0 0 100 2.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 5.00000e+00 3.00000e+00 4.0000000 0.0000000 2.0000000 3.00000000 4.0000000 4.00000000 3.00000000 2.00000000 2.0000000 2.0000000 4.00000000 6.0000000 3.0000000 5.00000000 3.0000000 6.00000000 7.0000000 3.00000000 5.000000000 2.00000000 1.000000000 2.00000000 2.00000000 3.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 2.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_91 - 94 1 2 0 0 100 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 6.00000e+00 7.00000e+00 3.0000000 3.0000000 7.0000000 5.00000000 3.0000000 3.00000000 6.00000000 3.00000000 2.0000000 4.0000000 1.00000000 2.0000000 5.0000000 4.00000000 1.0000000 3.00000000 1.0000000 4.00000000 8.000000000 2.00000000 3.000000000 3.00000000 1.00000000 0.00000000 2.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_92 - 96 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 7.00000e+00 5.00000e+00 9.00000e+00 1.0000000 1.0000000 1.0000000 3.00000000 2.0000000 1.00000000 5.00000000 3.00000000 3.0000000 1.0000000 3.00000000 2.0000000 3.0000000 5.00000000 5.0000000 2.00000000 7.0000000 2.00000000 4.000000000 0.00000000 3.000000000 2.00000000 4.00000000 2.00000000 2.00000e+00 2.00000000 2.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_93 - 98 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 7.00000e+00 3.00000e+00 3.00000e+00 2.0000000 4.0000000 3.0000000 1.00000000 4.0000000 3.00000000 5.00000000 2.00000000 4.0000000 5.0000000 4.00000000 7.0000000 1.0000000 7.00000000 3.0000000 3.00000000 1.0000000 4.00000000 3.000000000 3.00000000 0.000000000 4.00000000 0.00000000 7.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_94 - 100 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 7.00000e+00 1.00000e+01 1.00000e+01 7.0000000 1.0000000 5.0000000 2.00000000 5.0000000 6.00000000 6.00000000 3.00000000 5.0000000 6.0000000 5.00000000 1.0000000 3.0000000 1.00000000 2.0000000 2.00000000 2.0000000 2.00000000 1.000000000 1.00000000 2.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_95 --9999 0 0 0 0 0 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.0000000 0.00000000 0.000000000 0.00000000 0.000000000 0.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_terminator -25 #_N_agebins -# -#_agebin_vector -1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 #_agebin_vector -# -#_ageing_error -1 #_N_ageerror_definitions -#_age0 age1 age2 age3 age4 age5 age6 age7 age8 age9 age10 age11 age12 age13 age14 age15 age16 age17 age18 age19 age20 age21 age22 age23 age24 age25 --1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 #_1 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 #_2 -# -#_age_info -#_mintailcomp addtocomp combine_M_F CompressBins CompError ParmSelect minsamplesize --1 1e-10 0 0 0 0 1 #_Fishery --1 1e-10 0 0 0 0 1 #_Survey -3 #_Lbin_method: 1=poplenbins; 2=datalenbins; 3=lengths - #_combine males into females at or below this bin number -#_Yr Seas FltSvy Gender Part Ageerr Lbin_lo Lbin_hi Nsamp a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 - 26 1 1 0 0 1 -1 -1 50 1 6 11 6 2 5 3 3 2 2 1 1 1 1 2 0 1 1 0 0 0 0 0 0 1 #_1 - 27 1 1 0 0 1 -1 -1 50 3 7 10 5 5 4 2 2 7 2 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 #_2 - 28 1 1 0 0 1 -1 -1 50 2 10 3 7 4 7 2 1 4 2 3 2 1 0 0 1 0 1 0 0 0 0 0 0 0 #_3 - 29 1 1 0 0 1 -1 -1 50 1 8 11 3 9 1 8 2 1 3 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 #_4 - 30 1 1 0 0 1 -1 -1 50 1 15 8 4 3 2 5 4 1 1 1 3 0 0 0 0 1 0 1 0 0 0 0 0 0 #_5 - 31 1 1 0 0 1 -1 -1 50 1 8 8 12 5 1 3 2 2 1 1 1 2 1 1 0 0 0 0 0 1 0 0 0 0 #_6 - 32 1 1 0 0 1 -1 -1 50 1 9 13 6 8 3 1 1 3 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 #_7 - 33 1 1 0 0 1 -1 -1 50 1 9 6 9 6 8 2 0 3 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 #_8 - 34 1 1 0 0 1 -1 -1 50 2 13 7 4 5 4 3 1 2 4 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 #_9 - 35 1 1 0 0 1 -1 -1 50 2 15 8 3 5 5 3 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 #_10 - 36 1 1 0 0 1 -1 -1 50 0 9 8 11 5 2 3 4 3 2 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 #_11 - 37 1 1 0 0 1 -1 -1 50 5 3 14 10 7 1 2 3 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_12 - 38 1 1 0 0 1 -1 -1 50 0 14 6 10 0 12 1 1 3 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 #_13 - 39 1 1 0 0 1 -1 -1 50 2 7 17 3 2 4 4 3 6 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 #_14 - 40 1 1 0 0 1 -1 -1 50 0 19 8 8 5 3 2 2 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_15 - 41 1 1 0 0 1 -1 -1 50 1 5 17 6 7 2 4 1 2 1 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 #_16 - 42 1 1 0 0 1 -1 -1 50 0 12 4 9 2 11 2 1 5 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 #_17 - 43 1 1 0 0 1 -1 -1 50 7 13 1 7 5 5 8 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 #_18 - 44 1 1 0 0 1 -1 -1 50 0 23 3 9 0 7 2 3 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_19 - 45 1 1 0 0 1 -1 -1 50 3 2 19 4 5 4 5 1 2 0 0 0 1 2 1 0 0 0 0 0 0 0 1 0 0 #_20 - 46 1 1 0 0 1 -1 -1 50 2 5 5 18 4 3 1 7 0 3 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 #_21 - 47 1 1 0 0 1 -1 -1 50 0 13 11 3 7 3 5 3 2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 #_22 - 48 1 1 0 0 1 -1 -1 50 0 9 22 0 2 9 2 3 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 #_23 - 49 1 1 0 0 1 -1 -1 50 1 7 15 9 3 2 5 0 1 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_24 - 50 1 1 0 0 1 -1 -1 50 2 11 5 9 1 2 2 9 3 1 0 2 0 2 0 0 1 0 0 0 0 0 0 0 0 #_25 - 51 1 1 0 0 1 -1 -1 50 2 17 8 3 5 5 0 0 3 0 0 1 3 1 1 0 0 1 0 0 0 0 0 0 0 #_26 - 52 1 1 0 0 1 -1 -1 50 2 10 12 6 5 4 6 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 #_27 - 53 1 1 0 0 1 -1 -1 50 2 13 1 9 6 1 5 5 2 1 1 1 0 0 2 0 0 0 1 0 0 0 0 0 0 #_28 - 54 1 1 0 0 1 -1 -1 50 1 11 12 5 4 2 2 6 4 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 #_29 - 55 1 1 0 0 1 -1 -1 50 3 8 13 7 3 5 1 0 5 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_30 - 56 1 1 0 0 1 -1 -1 50 1 14 4 6 8 4 8 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_31 - 57 1 1 0 0 1 -1 -1 50 0 11 17 5 2 3 4 2 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 #_32 - 58 1 1 0 0 1 -1 -1 50 1 11 7 14 4 5 0 0 5 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 #_33 - 59 1 1 0 0 1 -1 -1 50 4 9 12 7 11 2 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 #_34 - 60 1 1 0 0 1 -1 -1 50 3 11 11 4 4 4 3 3 1 1 1 0 2 1 0 0 0 1 0 0 0 0 0 0 0 #_35 - 61 1 1 0 0 1 -1 -1 50 2 21 7 8 1 5 0 0 2 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 #_36 - 62 1 1 0 0 1 -1 -1 50 0 7 15 6 3 2 7 5 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 #_37 - 63 1 1 0 0 1 -1 -1 50 2 6 7 14 5 6 4 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 #_38 - 64 1 1 0 0 1 -1 -1 50 2 11 9 3 13 7 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_39 - 65 1 1 0 0 1 -1 -1 50 3 6 5 8 4 9 4 3 3 2 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_40 - 66 1 1 0 0 1 -1 -1 50 2 15 10 7 5 3 4 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_41 - 67 1 1 0 0 1 -1 -1 50 2 10 9 8 3 3 2 5 1 2 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 #_42 - 68 1 1 0 0 1 -1 -1 50 0 10 7 9 8 3 2 2 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_43 - 69 1 1 0 0 1 -1 -1 50 1 12 8 6 3 5 3 4 2 3 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_44 - 70 1 1 0 0 1 -1 -1 50 4 9 5 9 11 4 2 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_45 - 71 1 1 0 0 1 -1 -1 50 2 17 11 7 3 4 1 1 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 #_46 - 72 1 1 0 0 1 -1 -1 50 6 5 12 10 7 2 2 4 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_47 - 73 1 1 0 0 1 -1 -1 50 1 28 4 8 5 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_48 - 74 1 1 0 0 1 -1 -1 50 2 7 21 3 8 1 3 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_49 - 75 1 1 0 0 1 -1 -1 50 2 18 5 11 4 4 1 2 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_50 - 76 1 1 0 0 1 -1 -1 50 0 9 12 1 14 3 4 0 1 4 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 #_51 - 77 1 1 0 0 1 -1 -1 50 0 4 10 7 2 11 4 3 5 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 #_52 - 78 1 1 0 0 1 -1 -1 50 1 11 5 9 11 2 9 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_53 - 79 1 1 0 0 1 -1 -1 50 3 10 10 2 6 8 1 6 0 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 #_54 - 80 1 1 0 0 1 -1 -1 50 0 3 17 10 1 3 5 1 4 0 2 2 0 1 0 0 1 0 0 0 0 0 0 0 0 #_55 - 81 1 1 0 0 1 -1 -1 50 4 6 7 9 4 2 4 3 1 5 0 1 2 0 0 1 0 1 0 0 0 0 0 0 0 #_56 - 82 1 1 0 0 1 -1 -1 50 2 13 9 9 6 1 1 1 1 1 1 1 2 1 0 0 1 0 0 0 0 0 0 0 0 #_57 - 83 1 1 0 0 1 -1 -1 50 2 15 8 6 3 2 4 3 2 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 #_58 - 84 1 1 0 0 1 -1 -1 50 1 9 6 9 7 1 7 2 2 1 0 1 2 1 0 1 0 0 0 0 0 0 0 0 0 #_59 - 85 1 1 0 0 1 -1 -1 50 3 18 6 7 7 2 5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_60 - 86 1 1 0 0 1 -1 -1 50 3 9 18 5 5 1 2 0 4 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 #_61 - 87 1 1 0 0 1 -1 -1 50 5 3 10 14 4 5 5 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_62 - 88 1 1 0 0 1 -1 -1 50 4 24 3 6 3 1 4 0 1 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_63 - 89 1 1 0 0 1 -1 -1 50 2 18 13 1 4 7 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_64 - 90 1 1 0 0 1 -1 -1 50 0 6 15 17 1 4 3 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 #_65 - 91 1 1 0 0 1 -1 -1 50 1 9 7 10 13 0 3 1 2 2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 #_66 - 92 1 1 0 0 1 -1 -1 50 1 13 2 7 7 12 1 1 3 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 #_67 - 93 1 1 0 0 1 -1 -1 50 1 15 4 4 1 6 9 1 1 3 1 2 1 0 0 0 0 0 0 1 0 0 0 0 0 #_68 - 94 1 1 0 0 1 -1 -1 50 0 8 15 13 1 4 3 3 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 #_69 - 62 1 2 0 0 1 -1 -1 100 1 17 30 11 9 12 6 4 3 0 0 1 1 2 1 1 0 0 0 0 1 0 0 0 0 #_70 - 64 1 2 0 0 1 -1 -1 100 1 23 21 7 17 6 3 8 2 4 2 2 0 0 2 0 1 1 0 0 0 0 0 0 0 #_71 - 66 1 2 0 0 1 -1 -1 100 0 24 20 19 9 6 8 4 3 1 2 2 1 0 0 0 1 0 0 0 0 0 0 0 0 #_72 - 68 1 2 0 0 1 -1 -1 100 1 19 26 13 12 7 3 5 6 2 1 1 1 2 0 0 1 0 0 0 0 0 0 0 0 #_73 - 70 1 2 0 0 1 -1 -1 100 0 30 20 9 12 7 4 7 3 0 2 1 1 0 1 0 0 1 0 0 1 0 0 0 1 #_74 - 72 1 2 0 0 1 -1 -1 100 2 18 27 17 13 3 10 3 2 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 #_75 - 74 1 2 0 0 1 -1 -1 100 2 12 35 5 11 11 8 7 2 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 #_76 - 76 1 2 0 0 1 -1 -1 100 1 15 28 7 24 7 6 1 4 2 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 #_77 - 78 1 2 0 0 1 -1 -1 100 1 25 8 12 19 4 16 3 3 3 1 1 1 2 0 1 0 0 0 0 0 0 0 0 0 #_78 - 80 1 2 0 0 1 -1 -1 100 0 16 21 13 4 8 16 4 7 1 4 2 2 1 0 1 0 0 0 0 0 0 0 0 0 #_79 - 82 1 2 0 0 1 -1 -1 100 0 21 14 15 18 11 3 6 3 1 5 1 2 0 0 0 0 0 0 0 0 0 0 0 0 #_80 - 84 1 2 0 0 1 -1 -1 100 1 25 18 15 8 4 6 5 3 3 5 0 4 1 2 0 0 0 0 0 0 0 0 0 0 #_81 - 86 1 2 0 0 1 -1 -1 100 0 22 35 11 12 6 4 2 1 3 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 #_82 - 88 1 2 0 0 1 -1 -1 100 0 41 12 9 12 6 6 3 2 1 3 1 0 0 1 0 2 0 1 0 0 0 0 0 0 #_83 - 90 1 2 0 0 1 -1 -1 100 0 26 29 22 6 4 5 0 0 3 0 0 0 1 1 0 2 1 0 0 0 0 0 0 0 #_84 - 92 1 2 0 0 1 -1 -1 100 2 23 9 16 16 11 3 2 9 3 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_85 - 94 1 2 0 0 1 -1 -1 100 1 22 23 7 9 10 14 8 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 #_86 - 96 1 2 0 0 1 -1 -1 100 0 27 13 13 12 9 3 6 6 5 2 1 2 0 0 0 0 0 0 1 0 0 0 0 0 #_87 - 98 1 2 0 0 1 -1 -1 100 2 27 6 20 8 8 9 4 2 1 3 2 2 1 1 1 1 2 0 0 0 0 0 0 0 #_88 - 100 1 2 0 0 1 -1 -1 100 1 29 32 3 5 11 4 5 7 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 #_89 - 95 1 1 0 0 1 29 29 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_731 - 95 1 1 0 0 1 47 47 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_791 - 95 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_801 - 95 1 1 0 0 1 56 56 5 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_821 - 95 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_831 - 95 1 1 0 0 1 65 65 3 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_851 - 95 1 1 0 0 1 68 68 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_861 - 95 1 1 0 0 1 71 71 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_871 - 95 1 1 0 0 1 74 74 2 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_881 - 95 1 1 0 0 1 80 80 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_90 - 95 1 1 0 0 1 86 86 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_92 - 95 1 1 0 0 1 89 89 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_93 - 95 1 1 0 0 1 107 107 3 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_99 - 95 1 1 0 0 1 110 110 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_100 - 95 1 1 0 0 1 116 116 3 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_102 - 96 1 1 0 0 1 47 47 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_124 - 96 1 1 0 0 1 50 50 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_125 - 96 1 1 0 0 1 62 62 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_129 - 96 1 1 0 0 1 68 68 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_131 - 96 1 1 0 0 1 74 74 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_133 - 96 1 1 0 0 1 80 80 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_135 - 96 1 1 0 0 1 83 83 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_136 - 96 1 1 0 0 1 86 86 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_137 - 96 1 1 0 0 1 89 89 4 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_138 - 96 1 1 0 0 1 98 98 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_141 - 96 1 1 0 0 1 107 107 3 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_144 - 96 1 1 0 0 1 110 110 4 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_145 - 96 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_147 - 96 1 1 0 0 1 131 131 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_152 - 96 1 1 0 0 1 140 140 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 #_155 - 97 1 1 0 0 1 35 35 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_165 - 97 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_170 - 97 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_173 - 97 1 1 0 0 1 62 62 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_174 - 97 1 1 0 0 1 65 65 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_175 - 97 1 1 0 0 1 68 68 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_176 - 97 1 1 0 0 1 71 71 4 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_177 - 97 1 1 0 0 1 74 74 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_178 - 97 1 1 0 0 1 77 77 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_179 - 97 1 1 0 0 1 80 80 5 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_180 - 97 1 1 0 0 1 86 86 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_182 - 97 1 1 0 0 1 92 92 3 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_184 - 97 1 1 0 0 1 113 113 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_191 - 97 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_192 - 97 1 1 0 0 1 122 122 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_194 - 97 1 1 0 0 1 134 134 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_198 - 97 1 1 0 0 1 143 143 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_201 - 98 1 1 0 0 1 50 50 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_215 - 98 1 1 0 0 1 53 53 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_216 - 98 1 1 0 0 1 62 62 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_219 - 98 1 1 0 0 1 65 65 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_220 - 98 1 1 0 0 1 68 68 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_221 - 98 1 1 0 0 1 74 74 3 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_223 - 98 1 1 0 0 1 77 77 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_224 - 98 1 1 0 0 1 80 80 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_225 - 98 1 1 0 0 1 83 83 3 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_226 - 98 1 1 0 0 1 86 86 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_227 - 98 1 1 0 0 1 89 89 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_228 - 98 1 1 0 0 1 92 92 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_229 - 98 1 1 0 0 1 98 98 3 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_231 - 98 1 1 0 0 1 107 107 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_234 - 98 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_237 - 98 1 1 0 0 1 119 119 2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_238 - 99 1 1 0 0 1 32 32 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_254 - 99 1 1 0 0 1 44 44 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_258 - 99 1 1 0 0 1 47 47 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_259 - 99 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_260 - 99 1 1 0 0 1 53 53 6 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_261 - 99 1 1 0 0 1 56 56 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_262 - 99 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_263 - 99 1 1 0 0 1 62 62 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_264 - 99 1 1 0 0 1 68 68 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_266 - 99 1 1 0 0 1 71 71 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_267 - 99 1 1 0 0 1 74 74 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_268 - 99 1 1 0 0 1 77 77 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_269 - 99 1 1 0 0 1 92 92 3 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_274 - 99 1 1 0 0 1 122 122 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 #_284 - 99 1 1 0 0 1 134 134 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_288 - 100 1 1 0 0 1 44 44 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_303 - 100 1 1 0 0 1 47 47 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_304 - 100 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_305 - 100 1 1 0 0 1 53 53 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_306 - 100 1 1 0 0 1 56 56 3 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_307 - 100 1 1 0 0 1 62 62 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_309 - 100 1 1 0 0 1 65 65 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_310 - 100 1 1 0 0 1 80 80 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_315 - 100 1 1 0 0 1 89 89 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_318 - 100 1 1 0 0 1 92 92 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_319 - 100 1 1 0 0 1 95 95 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_320 - 100 1 1 0 0 1 107 107 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_324 - 100 1 1 0 0 1 122 122 4 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_329 --9999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_terminator -# -#_MeanSize_at_Age_obs -0 #_use_MeanSize_at_Age_obs -0 #_N_environ_variables -0 #_N_sizefreq_methods -0 #_do_tags -0 #_morphcomp_data -0 #_use_selectivity_priors -# -999 diff --git a/model_recipes/Likelihood profiles/Reference_run/starter.ss b/model_recipes/Likelihood profiles/Reference_run/starter.ss deleted file mode 100644 index 25a84c3..0000000 --- a/model_recipes/Likelihood profiles/Reference_run/starter.ss +++ /dev/null @@ -1,35 +0,0 @@ -#C starter file written by R function SS_writestarter -#C rerun model to get more complete formatting in starter.ss_new -#C should work with SS version: 3.30 -#C file write time: 2022-01-18 13:20:42 -# -ss3.dat #_datfile -em.ctl #_ctlfile -0 #_init_values_src -0 #_run_display_detail -1 #_detailed_age_structure -0 #_checkup -0 #_parmtrace -1 #_cumreport -0 #_prior_like -1 #_soft_bounds -2 #_N_bootstraps -100 #_last_estimation_phase -0 #_MCMCburn -1 #_MCMCthin -0 #_jitter_fraction --1 #_minyr_sdreport --2 #_maxyr_sdreport -0 #_N_STD_yrs -1e-04 #_converge_criterion -0 #_retro_yr -1 #_min_age_summary_bio -1 #_depl_basis -1 #_depl_denom_frac -4 #_SPR_basis -1 #_F_report_units -0 #_F_report_basis -0 #_MCMC_output_detail -0 #_ALK_tolerance -# -3.3 #_final diff --git a/model_recipes/R0_likelihood_profiling.r b/model_recipes/R0_likelihood_profiling.r deleted file mode 100644 index d871538..0000000 --- a/model_recipes/R0_likelihood_profiling.r +++ /dev/null @@ -1,149 +0,0 @@ -## -# Likelihood_profile_R0_example.R -# Example original application: -# 2017 ICCAT North Atlantic shortfin mako (SMA) Stock Synthesis model run 3 -# Stock Synthesis (version 3_30_08 Windows) -# r4ss (version 1.35.1) -# R (version 3.3.2 64 bit) -## - -#rm(list=ls()) -#devtools::install_github('r4ss/r4ss') -library(r4ss) -library(doParallel) -registerDoParallel(8) -library(tidyverse) - -# Step 1. Identify a directory for the profile likelihood model run(s) -dirname.base <- "./model_recipes" - -# Step 2. Identify a directory where the completed base model run is located -dirname.completed.model.run <- "./model_recipes/reference_run_orig" - -# Step 3. Create a "R0_profile" subdirectory and set as the working directory -dirname.R0.profile <- paste0(dirname.base,'/Likelihood profiles/R0') -dir.create(path=dirname.R0.profile, showWarnings = TRUE, recursive = TRUE) - -# Step 4. Create a "Figures_Tables" subdirectory -plotdir=paste0(dirname.R0.profile, "/Figures & Tables") -dir.create(path=plotdir, showWarnings = TRUE, recursive = TRUE) - -# Step 5. Copy completed base model output to "R0_profile" directory -list_of_files <- list.files(dirname.completed.model.run) -file.copy(file.path(dirname.completed.model.run, list_of_files), dirname.R0.profile) - -# Step 6. Edit "control.ss" in the "R0_profile" working directory to estimate at least one parameter in each phase -# E.g., -control.file <- SS_readctl(file = file.path(dirname.R0.profile, "control.ss_new"), - datlist = file.path(dirname.R0.profile, "data.ss_new")) -control.file$recdev_phase <- 1 -SS_writectl(control.file, - outfile = file.path(dirname.R0.profile, "control.ss_new")) - -# Step 7. Edit "starter.ss" in the "R0_profile" working directory to read from init values from control_modified.ss -starter.file <- SS_readstarter(file.path(dirname.R0.profile, "/starter.ss", sep="")) -#make sure names for control and data file are correct -starter.file$ctlfile <- "control_modified.ss" -starter.file$datfile <- "data.ss_new" -#for non-estimated quantities -starter.file$init_values_src <- 0 -# Make sure the prior likelihood is calculated for non-estimated quantities -starter.file$prior_like <- 1 -SS_writestarter(starter.file, dir = dirname.R0.profile, overwrite = TRUE) - -############### - -# Step 8. Begin Likelihood profile_R0_example.R - -######################################################### -### R0 or any other parameter profile -######################################################### - -# vector of values to profile over -R0.vec <- seq(16.0,20.0,0.1) -Nprof.R0 <- length(R0.vec) -#Define directory -#mydir <- mydir - -#Run SS_profile command -profile <- SS_profile(dir=dirname.R0.profile, # directory - model="ss", - masterctlfile="control.ss_new", - newctlfile="control_modified.ss", - string="SR_LN(R0)", - profilevec=R0.vec) - -# read the output files (with names like Report1.sso, Report2.sso, etc.) -prof.R0.models <- SSgetoutput(dirvec=dirname.R0.profile, keyvec=1:Nprof.R0, getcovar = FALSE) # - -# Step 9. summarize output -prof.R0.summary <- SSsummarize(prof.R0.models) - -#add base model into summary -MLEmodel <- SS_output(dirname.completed.model.run) -prof.R0.models$MLE <- MLEmodel -prof.R0.summary <- SSsummarize(prof.R0.models) - - -# Likelihood components -mainlike_components <- c('TOTAL',"Survey", "Discard", 'Length_comp',"Age_comp",'Recruitment') - -mainlike_components_labels <- c('Total likelihood','Index likelihood',"Discard",'Length likelihood',"Age likelihood",'Recruitment likelihood') - -# END OPTIONAL COMMANDS - -# plot profile using summary created above -SSplotProfile(prof.R0.summary, # summary object - profile.string = "R0", # substring of profile parameter - profile.label=expression(log(italic(R)[0])), - print = TRUE, - plotdir=plotdir - ) -Baseval <- prof.R0.models$MLE$parameters %>% - filter(str_detect(Label, "SR_LN")) %>% - pull(Value) -abline(v = Baseval, lty=2) - - -# make timeseries plots comparing models in profile -labs <- paste("SR_Ln(R0) = ",R0.vec) -labs[which(round(R0.vec,2)==Baseval)] <- paste("SR_Ln(R0) = ",Baseval,"(Base model)") - -SSplotComparisons(prof.R0.summary, - legendlabels=labs, - pheight=4.5, - png=TRUE, - plotdir=plotdir, - legendloc='bottomleft') - -###Piner plot -png(file.path(plotdir,"R0_profile_plot_Length_like.png"),width=7,height=4.5,res=300,units='in') -PinerPlot(prof.R0.summary, - profile.string = "R0", - component = "Length_like", - main = "Changes in length-composition likelihoods by fleet", - add_cutoff = TRUE, - cutoff_prob = 0.95) -abline(v = Baseval, lty=2) -dev.off() - -png(file.path(plotdir,"R0_profile_plot_Age_like.png"),width=7,height=4.5,res=300,units='in') -PinerPlot(prof.R0.summary, - profile.string = "R0", - component = "Age_like", - main = "Changes in age-composition likelihoods by fleet", - add_cutoff = TRUE, - cutoff_prob = 0.95) -abline(v = Baseval, lty=2) -dev.off() - -png(file.path(plotdir,"R0_profile_plot_Survey_like.png"),width=7,height=4.5,res=300,units='in') -PinerPlot(prof.R0.summary, - profile.string = "R0", - component = "Surv_like", - main = "Changes in Index likelihoods by fleet", - add_cutoff = TRUE, - cutoff_prob = 0.95) -abline(v = Baseval, lty=2) -dev.off() - diff --git a/model_recipes/Run_Retrospective_Simple.R b/model_recipes/Run_Retrospective_Simple.R deleted file mode 100644 index 337b829..0000000 --- a/model_recipes/Run_Retrospective_Simple.R +++ /dev/null @@ -1,125 +0,0 @@ -### Create Retrospective for Simple example model and plots -library(r4ss) -library(ss3diags) -# Step 1. Identify restrospective period -# e.g., for end.yr.vec <- c(2015,2014,2013,2012,2011,2010) -start.retro <- 0 #end year of model e.g., 2015 -end.retro <- 5 #number of years for retrospective e.g., 2014,2013,2012,2011,2010 - -# Step 2. Identify the base directory -dirname.base <- "./model_recipes" -dirname.base - -# Step 3. Identify the directory where a completed model run is located -dirname.completed.model.run <- paste0(dirname.base, "reference_run_orig") -dirname.completed.model.run - -# Step 4. Create a subdirectory for the Retrospectives -dirname.Retrospective <- paste0(dirname.base,'/Retrospective') -dir.create(path=dirname.Retrospective, showWarnings = TRUE, recursive = TRUE) -setwd(dirname.Retrospective) -getwd() - -# Step 5. Create a subdirectory for the Plots -dirname.plots <- paste0(dirname.Retrospective,"/retro_plots") -dir.create(dirname.plots) - -#----------------- copy model run files ---------------------------------------- -file.copy(paste(dirname.completed.model.run, "starter.ss_new", sep="/"), - paste(dirname.Retrospective, "starter.ss", sep="/")) -file.copy(paste(dirname.completed.model.run, "control.ss_new", sep="/"), - paste(dirname.Retrospective, "CONTROL.SS", sep="/")) -file.copy(paste(dirname.completed.model.run, "data.ss_new", sep="/"), - paste(dirname.Retrospective, "DATA.SS", sep="/")) -file.copy(paste(dirname.completed.model.run, "forecast.ss", sep="/"), - paste(dirname.Retrospective, "forecast.ss", sep="/")) -file.copy(paste(dirname.completed.model.run, "SS.exe", sep="/"), - paste(dirname.Retrospective, "SS.exe", sep="/")) -# Required for assessments with wtatage.ss files -file.copy(paste(dirname.completed.model.run, "wtatage.ss", sep="/"), - paste(dirname.Retrospective, "wtatage.ss", sep="/")) - -#------------Make Changes to the Starter.ss file (DC Example) ------------------------------- -starter <- SS_readstarter(paste(dirname.Retrospective, "/starter.ss", sep="")) -# 1) Starter File changes to speed up model runs -# Run Display Detail -#[8] "2 # run display detail (0,1,2)" -starter$run_display_detail -starter$datfile <- "DATA.SS" -starter$ctlfile <- "CONTROL.SS" -SS_writestarter(starter, dirname.Retrospective, overwrite = TRUE) - -#------------ r4SS retrospective calculations------------------------------- - -# Step 6. Run the retrospective analyses with r4SS function "SS_doRetro" -SS_doRetro(masterdir=dirname.Retrospective, oldsubdir="", newsubdir="retrospectives", years=start.retro:-end.retro) - -# Step 7. Read "SS_doRetro" output -retroSimple <- SSgetoutput(dirvec=file.path(dirname.Retrospective, "retrospectives",paste("retro",start.retro:-end.retro,sep=""))) - -# Step 8. Summarize "SS_doRetro" output -retroSum <- SSsummarize(retroSimple) -# summarize compositional data -retroComps <- SSretroComps(retroSimple) -# Step 9. Save retrospective output as a .rda object -save(retroSimple, file='./data/retroSimple.rda') - -# Step 10. Create retrospective plots using ss3diags functions -SSplotRetro(retroSum, - subplots = "SSB", - print = TRUE, - png = TRUE, - plotdir = dirname.plots) - -SSplotRetro(retroSum, - subplots = "F", - print = TRUE, - png = TRUE, - plotdir = dirname.plots) - -SSplotRetro(retroSum, - subplots = "F", - forecast = TRUE, - xlim = c(94,100), - ylim = c(0,0.16), - uncertainty = FALSE, - print = TRUE, - png = TRUE, - filenameprefix = "forecast_", - plotdir = dirname.plots) - -SSplotRetro(retroSum, - subplots = "SSB", - forecast = TRUE, - xlim = c(94,100), - uncertainty = FALSE, - print = TRUE, - png = TRUE, - filenameprefix = "forecast_", - plotdir = dirname.plots) - -SSplotHCxval(retroSum, - subplots = "cpue", - add = TRUE, - print = TRUE, - png = TRUE, - filenameprefix = "cpue", - plotdir = dirname.plots) - -SSplotHCxval(retroComps, - subplots = "len", - add = TRUE, - print = TRUE, - png = TRUE, - filenameprefix = "length_comp", - plotdir = dirname.plots) - -SSplotHCxval(retroComps, - subplots = "age", - indexselect = 2, - add = TRUE, - print = TRUE, - png = TRUE, - filenameprefix = "age_comp", - plotdir = dirname.plots) - diff --git a/model_recipes/jitter/em.CTL b/model_recipes/jitter/em.CTL deleted file mode 100644 index 4257150..0000000 --- a/model_recipes/jitter/em.CTL +++ /dev/null @@ -1,175 +0,0 @@ -#V3.30 -#C file created using the SS_writectl function in the R package r4ss -#C file write time: 2022-01-18 13:21:07 -# -0 # 0 means do not read wtatage.ss; 1 means read and usewtatage.ss and also read and use growth parameters -1 #_N_Growth_Patterns -1 #_N_platoons_Within_GrowthPattern -2 # recr_dist_method for parameters -1 # not yet implemented; Future usage:Spawner-Recruitment; 1=global; 2=by area -1 # number of recruitment settlement assignments -0 # unused option -# for each settlement assignment: -#_GPattern month area age -1 1 1 0 #_recr_dist_pattern1 -# -#_Cond 0 # N_movement_definitions goes here if N_areas > 1 -#_Cond 1.0 # first age that moves (real age at begin of season, not integer) also cond on do_migration>0 -#_Cond 1 1 1 2 4 10 # example move definition for seas=1, morph=1, source=1 dest=2, age1=4, age2=10 -# -0 #_Nblock_Patterns -#_Cond 0 #_blocks_per_pattern -# begin and end years of blocks -# -# controls for all timevary parameters -1 #_env/block/dev_adjust_method for all time-vary parms (1=warn relative to base parm bounds; 3=no bound check) -# -# AUTOGEN -0 0 0 0 0 # autogen: 1st element for biology, 2nd for SR, 3rd for Q, 4th reserved, 5th for selex -# where: 0 = autogen all time-varying parms; 1 = read each time-varying parm line; 2 = read then autogen if parm min==-12345 -# -# setup for M, growth, maturity, fecundity, recruitment distibution, movement -# -0 #_natM_type:_0=1Parm; 1=N_breakpoints;_2=Lorenzen;_3=agespecific;_4=agespec_withseasinterpolate -#_no additional input for selected M option; read 1P per morph -1 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2; 3=age_specific_K_incr; 4=age_specific_K_decr;5=age_specific_K_each; 6=NA; 7=NA; 8=growth cessation -1 #_Age(post-settlement)_for_L1;linear growth below this -999 #_Growth_Age_for_L2 (999 to use as Linf) --999 #_exponential decay for growth above maxage (value should approx initial Z; -999 replicates 3.24; -998 to not allow growth above maxage) -0 #_placeholder for future growth feature -# -0 #_SD_add_to_LAA (set to 0.1 for SS2 V1.x compatibility) -0 #_CV_Growth_Pattern: 0 CV=f(LAA); 1 CV=F(A); 2 SD=F(LAA); 3 SD=F(A); 4 logSD=F(A) -1 #_maturity_option: 1=length logistic; 2=age logistic; 3=read age-maturity matrix by growth_pattern; 4=read age-fecundity; 5=disabled; 6=read length-maturity -0 #_First_Mature_Age -1 #_fecundity option:(1)eggs=Wt*(a+b*Wt);(2)eggs=a*L^b;(3)eggs=a*Wt^b; (4)eggs=a+b*L; (5)eggs=a+b*W -0 #_hermaphroditism option: 0=none; 1=female-to-male age-specific fxn; -1=male-to-female age-specific fxn -1 #_parameter_offset_approach (1=none, 2= M, G, CV_G as offset from female-GP1, 3=like SS2 V1.x) -# -#_growth_parms -#_LO HI INIT PRIOR PR_SD PR_type PHASE env_var&link dev_link dev_minyr dev_maxyr dev_PH Block Block_Fxn - 1.0e-02 1.800000 2.000e-01 1.000e-01 0.8 0 -3 0 0 0 0 0 0 0 #_NatM_p_1_Fem_GP_1 - 1.0e+00 100.000000 2.000e+01 3.080e+01 0.2 0 4 0 0 0 0 0 0 0 #_L_at_Amin_Fem_GP_1 - 6.6e+00 660.000000 1.320e+02 1.201e+02 0.2 0 4 0 0 0 0 0 0 0 #_L_at_Amax_Fem_GP_1 - 1.0e-02 1.000000 2.000e-01 2.500e-01 0.8 0 4 0 0 0 0 0 0 0 #_VonBert_K_Fem_GP_1 - 1.0e-02 0.500000 1.000e-01 1.000e-01 0.8 0 5 0 0 0 0 0 0 0 #_CV_young_Fem_GP_1 - 1.0e-02 0.500000 1.000e-01 1.000e-01 0.8 0 5 0 0 0 0 0 0 0 #_CV_old_Fem_GP_1 - 0.0e+00 3.000000 6.800e-06 6.800e-06 0.0 0 -1 0 0 0 0 0 0 0 #_Wtlen_1_Fem_GP_1 - 2.5e+00 3.500000 3.101e+00 3.101e+00 0.2 0 -3 0 0 0 0 0 0 0 #_Wtlen_2_Fem_GP_1 - 1.0e+01 50.000000 3.818e+01 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Mat50%_Fem_GP_1 --2.0e+00 2.000000 -2.760e-01 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Mat_slope_Fem_GP_1 --3.0e+00 3.000000 1.000e+00 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Eggs/kg_inter_Fem_GP_1 --3.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Eggs/kg_slope_wt_Fem_GP_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_GP_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_Area_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_month_1 --4.0e+00 4.000000 1.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_CohortGrowDev - 1.0e-06 0.999999 5.000e-01 5.000e-01 0.5 0 -99 0 0 0 0 0 0 0 #_FracFemale_GP_1 -#_no timevary MG parameters -# -#_seasonal_effects_on_biology_parms -0 0 0 0 0 0 0 0 0 0 #_femwtlen1,femwtlen2,mat1,mat2,fec1,fec2,Malewtlen1,malewtlen2,L1,K -#_ LO HI INIT PRIOR PR_SD PR_type PHASE -#_Cond -2 2 0 0 -1 99 -2 #_placeholder when no seasonal MG parameters -# -3 #_Spawner-Recruitment; 2=Ricker; 3=std_B-H; 4=SCAA;5=Hockey; 6=B-H_flattop; 7=survival_3Parm;8=Shepard_3Parm -0 # 0/1 to use steepness in initial equ recruitment calculation -0 # future feature: 0/1 to make realized sigmaR a function of SR curvature -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 4.0 20 18.70 10.3 10.00 0 1 0 0 0 0 0 0 0 #_SR_LN(R0) - 0.2 1 0.65 0.7 0.05 0 -4 0 0 0 0 0 0 0 #_SR_BH_steep - 0.0 2 0.40 0.8 0.80 0 -5 0 0 0 0 0 0 0 #_SR_sigmaR --5.0 5 0.00 0.0 1.00 0 -4 0 0 0 0 0 0 0 #_SR_regime - 0.0 0 0.00 0.0 0.00 0 -99 0 0 0 0 0 0 0 #_SR_autocorr -#_no timevary SR parameters -1 #do_recdev: 0=none; 1=devvector (R=F(SSB)+dev); 2=deviations (R=F(SSB)+dev); 3=deviations (R=R0*dev; dev2=R-f(SSB)); 4=like 3 with sum(dev2) adding penalty -6 # first year of main recr_devs; early devs can preceed this era -100 # last year of main recr_devs; forecast devs start in following year -3 #_recdev phase -1 # (0/1) to read 13 advanced options -1 #_recdev_early_start (0=none; neg value makes relative to recdev_start) -4 #_recdev_early_phase -0 #_forecast_recruitment phase (incl. late recr) (0 value resets to maxphase+1) -1 #_lambda for Fcast_recr_like occurring before endyr+1 -1 #_last_yr_nobias_adj_in_MPD; begin of ramp -26 #_first_yr_fullbias_adj_in_MPD; begin of plateau -99 #_last_yr_fullbias_adj_in_MPD -100 #_end_yr_for_ramp_in_MPD (can be in forecast to shape ramp, but SS sets bias_adj to 0.0 for fcast yrs) -0.9 #_max_bias_adj_in_MPD (-1 to override ramp and set biasadj=1.0 for all estimated recdevs) -0 #_period of cycles in recruitment (N parms read below) --5 #min rec_dev -5 #max rec_dev -0 #_read_recdevs -#_end of advanced SR options -# -#_placeholder for full parameter lines for recruitment cycles -# read specified recr devs -#_Yr Input_value -# -#Fishing Mortality info -0.3 # F ballpark --2001 # F ballpark year (neg value to disable) -3 # F_Method: 1=Pope; 2=instan. F; 3=hybrid (hybrid is recommended) -4 # max F or harvest rate, depends on F_Method -4 # N iterations for tuning F in hybrid method (recommend 3 to 7) -# -#_initial_F_parms; count = 0 -# -#_Q_setup for fleets with cpue or survey data -#_fleet link link_info extra_se biasadj float # fleetname - 2 1 0 0 0 0 #_Survey --9999 0 0 0 0 0 #_terminator -#_Q_parms(if_any);Qunits_are_ln(q) -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name --20 20 0 0 99 0 5 0 0 0 0 0 0 0 #_LnQ_base_Survey(2) -#_no timevary Q parameters -# -#_size_selex_patterns -#_Pattern Discard Male Special -24 0 0 0 #_1 Fishery -24 0 0 0 #_2 Survey -# -#_age_selex_patterns -#_Pattern Discard Male Special -11 0 0 0 #_1 Fishery -11 0 0 0 #_2 Survey -# -#_SizeSelex -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 5.08 101.6 50.8 50.8 0.05 0 2 0 0 0 0 0 0 0 #_SizeSel_P_1_Fishery(1) - -5.00 3.0 -3.0 -3.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_2_Fishery(1) - 0.00 25.5 5.1 5.1 0.05 0 3 0 0 0 0 0 0 0 #_SizeSel_P_3_Fishery(1) - -2.00 16.0 15.0 15.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_4_Fishery(1) - -15.00 5.0 -999.0 -999.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_5_Fishery(1) - -5.00 1000.0 999.0 999.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_6_Fishery(1) - 4.18 83.6 41.8 41.8 0.05 0 2 0 0 0 0 0 0 0 #_SizeSel_P_1_Survey(2) - -5.00 3.0 -4.0 -4.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_2_Survey(2) - 0.00 26.0 5.2 5.2 0.05 0 3 0 0 0 0 0 0 0 #_SizeSel_P_3_Survey(2) - -2.00 15.0 14.0 14.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_4_Survey(2) --100.00 100.0 -99.0 -99.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_5_Survey(2) --100.00 100.0 99.0 99.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_6_Survey(2) -#_AgeSelex -0 1 0.1 0.1 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_1_Fishery(1) -0 101 100.0 100.0 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_2_Fishery(1) -0 1 0.1 0.1 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_1_Survey(2) -0 101 100.0 100.0 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_2_Survey(2) -#_no timevary selex parameters -# -0 # use 2D_AR1 selectivity(0/1): experimental feature -#_no 2D_AR1 selex offset used -# Tag loss and Tag reporting parameters go next -0 # TG_custom: 0=no read; 1=read if tags exist -#_Cond -6 6 1 1 2 0.01 -4 0 0 0 0 0 0 0 #_placeholder if no parameters -# -# Input variance adjustments factors: -#_Factor Fleet Value --9999 1 0 # terminator -# -4 #_maxlambdaphase -1 #_sd_offset; must be 1 if any growthCV, sigmaR, or survey extraSD is an estimated parameter -# read 0 changes to default Lambdas (default value is 1.0) --9999 0 0 0 0 # terminator -# -0 # 0/1 read specs for more stddev reporting -# -999 diff --git a/model_recipes/jitter/forecast.ss b/model_recipes/jitter/forecast.ss deleted file mode 100644 index 622e763..0000000 --- a/model_recipes/jitter/forecast.ss +++ /dev/null @@ -1,59 +0,0 @@ -#V3.30.13.00-trans;_2019_03_09;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_12.0 -#Stock Synthesis (SS) is a work of the U.S. Government and is not subject to copyright protection in the United States. -#Foreign copyrights may apply. See copyright.txt for more information. -#C forecast file written by R function SS_writeforecast -#C rerun model to get more complete formatting in forecast.ss_new -#C should work with SS version: SSv3.21_or_later -#C file write time: 2015-03-14 16:01:17 -# for all year entries except rebuilder; enter either: actual year, -999 for styr, 0 for endyr, neg number for rel. endyr -1 # Benchmarks: 0=skip; 1=calc F_spr,F_btgt,F_msy; 2=calc F_spr,F0.1,F_msy -2 # MSY: 1= set to F(SPR); 2=calc F(MSY); 3=set to F(Btgt) or F0.1; 4=set to F(endyr) -0.4 # SPR target (e.g. 0.40) -0.4 # Biomass target (e.g. 0.40) -#_Bmark_years: beg_bio, end_bio, beg_selex, end_selex, beg_relF, end_relF, beg_recr_dist, end_recr_dist, beg_SRparm, end_SRparm (enter actual year, or values of 0 or -integer to be rel. endyr) - 0 0 0 0 0 0 -999 0 -999 0 -1 #Bmark_relF_Basis: 1 = use year range; 2 = set relF same as forecast below -# -4 # Forecast: 0=none; 1=F(SPR); 2=F(MSY) 3=F(Btgt) or F0.1; 4=Ave F (uses first-last relF yrs); 5=input annual F scalar -1 # N forecast years -0 # F scalar (only used for Do_Forecast==5) -#_Fcast_years: beg_selex, end_selex, beg_relF, end_relF, beg_mean recruits, end_recruits (enter actual year, or values of 0 or -integer to be rel. endyr) - 0 0 0 0 -999 0 -0 # Forecast selectivity (0=fcast selex is mean from year range; 1=fcast selectivity from annual time-vary parms) -2 # Control rule method (1: ramp does catch=f(SSB), buffer on F; 2: ramp does F=f(SSB), buffer on F; 3: ramp does catch=f(SSB), buffer on catch; 4: ramp does F=f(SSB), buffer on catch) -0.4 # Control rule Biomass level for constant F (as frac of Bzero, e.g. 0.40); (Must be > the no F level below) -0.01 # Control rule Biomass level for no F (as frac of Bzero, e.g. 0.10) -0 # Control rule target as fraction of Flimit (e.g. 0.75), negative value invokes list of [year, scalar] with filling from year to YrMax -3 #_N forecast loops (1=OFL only; 2=ABC; 3=get F from forecast ABC catch with allocations applied) -3 #_First forecast loop with stochastic recruitment -0 #_Forecast recruitment: 0= spawn_recr; 1=value*spawn_recr_fxn; 2=value*VirginRecr; 3=recent mean from yr range above (need to set phase to -1 in control to get constant recruitment in MCMC) -1 # value is ignored -0 #_Forecast loop control #5 (reserved for future bells&whistles) -101 #FirstYear for caps and allocations (should be after years with fixed inputs) -0 # stddev of log(realized catch/target catch) in forecast (set value>0.0 to cause active impl_error) -0 # Do West Coast gfish rebuilder output (0/1) -100 # Rebuilder: first year catch could have been set to zero (Ydecl)(-1 to set to 1999) -100 # Rebuilder: year for current age structure (Yinit) (-1 to set to endyear+1) -1 # fleet relative F: 1=use first-last alloc year; 2=read seas, fleet, alloc list below -# Note that fleet allocation is used directly as average F if Do_Forecast=4 -2 # basis for fcast catch tuning and for fcast catch caps and allocation (2=deadbio; 3=retainbio; 5=deadnum; 6=retainnum) -# Conditional input if relative F choice = 2 -# enter list of: season, fleet, relF; if used, terminate with season=-9999 -# 1 1 1 -# -9999 0 0 # terminator for list of relF -# enter list of: fleet number, max annual catch for fleets with a max; terminate with fleet=-9999 --9999 -1 -# enter list of area ID and max annual catch; terminate with area=-9999 --9999 -1 -# enter list of fleet number and allocation group assignment, if any; terminate with fleet=-9999 --9999 -1 -#_if N allocation groups >0, list year, allocation fraction for each group -# list sequentially because read values fill to end of N forecast -# terminate with -9999 in year field -# no allocation groups -2 # basis for input Fcast catch: -1=read basis with each obs; 2=dead catch; 3=retained catch; 99=input Hrate(F) -#enter list of Fcast catches; terminate with line having year=-9999 -#_Yr Seas Fleet Catch(or_F) --9999 1 1 0 -# -999 # verify end of input diff --git a/model_recipes/jitter/ss.dat b/model_recipes/jitter/ss.dat deleted file mode 100644 index e69de29..0000000 diff --git a/model_recipes/jitter/ss3.DAT b/model_recipes/jitter/ss3.DAT deleted file mode 100644 index 72a56bc..0000000 --- a/model_recipes/jitter/ss3.DAT +++ /dev/null @@ -1,486 +0,0 @@ -#V3.30 -#C North Sea/Skagerrak/Eastern Channel Cod -# -26 #_styr -100 #_endyr -1 #_nseas -12 #_months_per_seas -2 #_Nsubseasons -1 #_spawn_month -1 #_Nsexes -25 #_Nages -1 #_N_areas -2 #_Nfleets -#_fleetinfo -#_type surveytiming area units need_catch_mult fleetname -1 -1 1 1 0 Fishery #_1 -3 1 1 2 0 Survey #_2 -#_Catch data -#_year season fleet catch catch_se - -999 1 1 0 0.010 #_1 - 1 1 1 0 0.010 #_2 - 2 1 1 0 0.010 #_3 - 3 1 1 0 0.010 #_4 - 4 1 1 0 0.010 #_5 - 5 1 1 0 0.010 #_6 - 6 1 1 0 0.010 #_7 - 7 1 1 0 0.010 #_8 - 8 1 1 0 0.010 #_9 - 9 1 1 0 0.010 #_10 - 10 1 1 0 0.010 #_11 - 11 1 1 0 0.010 #_12 - 12 1 1 0 0.010 #_13 - 13 1 1 0 0.010 #_14 - 14 1 1 0 0.010 #_15 - 15 1 1 0 0.010 #_16 - 16 1 1 0 0.010 #_17 - 17 1 1 0 0.010 #_18 - 18 1 1 0 0.010 #_19 - 19 1 1 0 0.010 #_20 - 20 1 1 0 0.010 #_21 - 21 1 1 0 0.010 #_22 - 22 1 1 0 0.010 #_23 - 23 1 1 0 0.010 #_24 - 24 1 1 0 0.010 #_25 - 25 1 1 0 0.010 #_26 - 26 1 1 405827583 0.005 #_27 - 27 1 1 373417493 0.005 #_28 - 28 1 1 342373346 0.005 #_29 - 29 1 1 314063047 0.005 #_30 - 30 1 1 291488471 0.005 #_31 - 31 1 1 275016682 0.005 #_32 - 32 1 1 261959321 0.005 #_33 - 33 1 1 247902515 0.005 #_34 - 34 1 1 237602462 0.005 #_35 - 35 1 1 229886276 0.005 #_36 - 36 1 1 221494620 0.005 #_37 - 37 1 1 210472212 0.005 #_38 - 38 1 1 204395447 0.005 #_39 - 39 1 1 196706762 0.005 #_40 - 40 1 1 191149151 0.005 #_41 - 41 1 1 181676431 0.005 #_42 - 42 1 1 175427716 0.005 #_43 - 43 1 1 166292092 0.005 #_44 - 44 1 1 167104259 0.005 #_45 - 45 1 1 167393473 0.005 #_46 - 46 1 1 161044632 0.005 #_47 - 47 1 1 160124742 0.005 #_48 - 48 1 1 159368360 0.005 #_49 - 49 1 1 155503064 0.005 #_50 - 50 1 1 150700473 0.005 #_51 - 51 1 1 151357783 0.005 #_52 - 52 1 1 145953276 0.005 #_53 - 53 1 1 143559669 0.005 #_54 - 54 1 1 142461890 0.005 #_55 - 55 1 1 138970197 0.005 #_56 - 56 1 1 137509860 0.005 #_57 - 57 1 1 140168276 0.005 #_58 - 58 1 1 140025046 0.005 #_59 - 59 1 1 139444280 0.005 #_60 - 60 1 1 138552310 0.005 #_61 - 61 1 1 142276727 0.005 #_62 - 62 1 1 145394778 0.005 #_63 - 63 1 1 147866360 0.005 #_64 - 64 1 1 150086800 0.005 #_65 - 65 1 1 149096580 0.005 #_66 - 66 1 1 150126388 0.005 #_67 - 67 1 1 151017473 0.005 #_68 - 68 1 1 151706424 0.005 #_69 - 69 1 1 150854890 0.005 #_70 - 70 1 1 152562634 0.005 #_71 - 71 1 1 151682609 0.005 #_72 - 72 1 1 153018523 0.005 #_73 - 73 1 1 162110858 0.005 #_74 - 74 1 1 170350797 0.005 #_75 - 75 1 1 175676558 0.005 #_76 - 76 1 1 180420607 0.005 #_77 - 77 1 1 179580391 0.005 #_78 - 78 1 1 173180886 0.005 #_79 - 79 1 1 171619613 0.005 #_80 - 80 1 1 167601020 0.005 #_81 - 81 1 1 160797969 0.005 #_82 - 82 1 1 157721184 0.005 #_83 - 83 1 1 156899991 0.005 #_84 - 84 1 1 155019001 0.005 #_85 - 85 1 1 158509241 0.005 #_86 - 86 1 1 162057478 0.005 #_87 - 87 1 1 161870042 0.005 #_88 - 88 1 1 170525042 0.005 #_89 - 89 1 1 182713147 0.005 #_90 - 90 1 1 193756851 0.005 #_91 - 91 1 1 195682969 0.005 #_92 - 92 1 1 193123404 0.005 #_93 - 93 1 1 191814026 0.005 #_94 - 94 1 1 187735838 0.005 #_95 - 95 1 1 183406362 0.005 #_96 - 96 1 1 181248407 0.005 #_97 - 97 1 1 176702069 0.005 #_98 - 98 1 1 172067982 0.005 #_99 - 99 1 1 174512824 0.005 #_100 - 100 1 1 182121508 0.005 #_101 --9999 0 0 0 0.000 #_terminator -#_CPUE_and_surveyabundance_observations -#_Units: 0=numbers; 1=biomass; 2=F; >=30 for special types -#_Errtype: -1=normal; 0=lognormal; >0=T -#_SD_Report: 0=no sdreport; 1=enable sdreport -#_Fleet Units Errtype SD_Report -1 1 0 0 #_Fishery -2 1 0 0 #_Survey -# -#_CPUE_data -#_year seas index obs se_log - 62 1 2 2319095418 0.2 #_1 - 64 1 2 1450356783 0.2 #_2 - 66 1 2 1503543274 0.2 #_3 - 68 1 2 1568917464 0.2 #_4 - 70 1 2 1491684068 0.2 #_5 - 72 1 2 1453785086 0.2 #_6 - 74 1 2 1728862643 0.2 #_7 - 76 1 2 1732955651 0.2 #_8 - 78 1 2 1495070546 0.2 #_9 - 80 1 2 1162754195 0.2 #_10 - 82 1 2 1389316573 0.2 #_11 - 84 1 2 1980264967 0.2 #_12 - 86 1 2 1872900449 0.2 #_13 - 88 1 2 1772513878 0.2 #_14 - 90 1 2 2610471051 0.2 #_15 - 92 1 2 2610821051 0.2 #_16 - 94 1 2 2610461051 0.2 #_17 - 96 1 2 2014668777 0.2 #_18 - 98 1 2 1365842314 0.2 #_19 - 100 1 2 1749224049 0.2 #_20 --9999 0 0 0 0.0 #_terminator -0 #_N_discard_fleets -#_discard_units (1=same_as_catchunits(bio/num); 2=fraction; 3=numbers) -#_discard_errtype: >0 for DF of T-dist(read CV below); 0 for normal with CV; -1 for normal with se; -2 for lognormal -# -#_discard_fleet_info -# -#_discard_data -# -#_meanbodywt -0 #_use_meanbodywt - #_DF_for_meanbodywt_T-distribution_like -# -#_population_length_bins -2 # length bin method: 1=use databins; 2=generate from binwidth,min,max below; 3=read vector -1 # binwidth for population size comp -10 # minimum size in the population (lower edge of first bin and size at age 0.00) -200 # maximum size in the population (lower edge of last bin) -1 #_use_lencomp -# -#_len_info -#_mintailcomp addtocomp combine_M_F CompressBins CompError ParmSelect minsamplesize --1 1e-10 0 0 0 0 1 #_Fishery --1 1e-10 0 0 0 0 1 #_Survey -45 #_N_lbins -#_lbin_vector -20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125 128 131 134 137 140 143 146 149 152 #_lbin_vector -# -#_lencomp -#_Yr Seas FltSvy Gender Part Nsamp l20 l23 l26 l29 l32 l35 l38 l41 l44 l47 l50 l53 l56 l59 l62 l65 l68 l71 l74 l77 l80 l83 l86 l89 l92 l95 l98 l101 l104 l107 l110 l113 l116 l119 l122 l125 l128 l131 l134 l137 l140 l143 l146 l149 l152 - 95 1 1 0 0 50 1.21839e-15 7.08912e-10 3.53471e-07 6.47686e-03 3.08818e-03 1.03054e-05 2.57179e-06 7.60397e-03 0.0133111 0.0476258 0.0348703 0.04032875 0.0497779 0.04741981 0.01443621 0.07874335 0.0230499 0.0266009 0.01794948 0.0270393 0.0510087 0.01111618 0.0654543 0.01606061 0.0513103 0.01029999 0.000825664 0.03932407 0.022521232 0.07562950 0.06083348 0.02336445 6.38750e-02 0.00392951 0.012387671 0.003952013 0.007133818 0.00897878 5.15022e-03 9.58616e-04 2.15086e-02 4.05532e-03 1.75826e-03 1.48731e-14 2.28787e-04 #_1 - 96 1 1 0 0 50 5.99789e-30 3.86910e-29 3.87336e-07 2.01136e-03 4.19938e-05 1.31793e-05 1.53990e-03 2.12131e-02 0.0159329 0.0343006 0.1230111 0.02119380 0.0047550 0.00137013 0.13720601 0.02200563 0.0488743 0.0325755 0.08802896 0.0233814 0.0213249 0.06504259 0.0822676 0.06275952 0.0194676 0.01154768 0.021065655 0.01933137 0.003829945 0.03479926 0.04589062 0.00248582 2.80196e-03 0.00385954 0.009757891 0.000151414 0.004176591 0.00488303 6.81256e-05 2.07929e-03 1.51268e-03 3.33025e-03 1.11326e-04 9.90207e-48 3.76714e-13 #_2 - 97 1 1 0 0 50 4.82525e-17 6.60950e-63 1.45918e-02 2.46884e-04 3.02475e-02 3.14046e-03 1.58916e-04 4.55571e-06 0.0197265 0.0475703 0.0460192 0.00543952 0.0330235 0.04910525 0.11044604 0.00943501 0.1034457 0.0748063 0.05347646 0.0235542 0.0839288 0.00480831 0.0792134 0.01471147 0.0358458 0.00426968 0.019992995 0.01680004 0.026919891 0.01041092 0.00517611 0.01610544 6.62434e-03 0.00336242 0.008427033 0.005320177 0.008221190 0.00246077 6.16104e-03 2.32716e-06 1.86462e-04 1.55249e-02 1.23345e-11 1.88218e-04 9.00144e-04 #_3 - 98 1 1 0 0 50 4.33367e-05 5.23013e-21 1.80907e-04 5.98429e-03 1.50085e-02 1.84472e-03 4.78366e-05 1.38155e-02 0.0177652 0.0570923 0.1315670 0.05701185 0.0436706 0.03468419 0.00784813 0.03077679 0.0152514 0.0280374 0.05779615 0.0246120 0.0250831 0.13000820 0.0171202 0.00935178 0.0360376 0.01851026 0.110258877 0.00141916 0.003314611 0.00978243 0.01410409 0.01426905 2.08460e-02 0.01619731 0.000651814 0.027305506 0.000359444 0.00214246 1.38929e-05 2.50726e-09 1.43831e-05 1.21122e-13 9.29224e-05 7.88754e-05 1.76531e-11 #_4 - 99 1 1 0 0 50 3.43796e-08 6.63178e-13 1.37536e-02 3.48744e-03 6.30987e-02 6.18445e-03 2.34790e-02 6.67529e-03 0.0516173 0.0459099 0.0690536 0.14736148 0.0843542 0.02998615 0.01049348 0.04949479 0.0108561 0.0149054 0.05960321 0.0285729 0.0134305 0.00172333 0.0170506 0.00829920 0.0183744 0.04591866 0.016283377 0.01165331 0.000611884 0.03343126 0.01524042 0.02159914 3.74832e-05 0.00718344 0.036709237 0.000856413 0.000815214 0.00168073 2.98768e-02 2.46071e-09 6.25824e-10 3.29265e-04 8.78233e-15 5.64135e-06 2.59270e-06 #_5 - 100 1 1 0 0 50 7.06058e-39 7.28113e-17 8.82966e-04 1.85488e-05 3.40430e-03 9.19572e-03 3.19208e-03 2.56074e-03 0.0212217 0.0625408 0.0360383 0.14289880 0.0310024 0.01689111 0.07980034 0.07799596 0.0189316 0.0364775 0.00768082 0.0543474 0.0189996 0.02657866 0.0239969 0.02052548 0.0458498 0.00177325 0.013893173 0.01476595 0.000263802 0.02470716 0.05980638 0.01254703 2.57588e-02 0.02019666 0.042446520 0.026112080 0.002434038 0.00540392 3.26960e-06 5.33413e-03 3.37349e-05 3.77795e-05 2.83245e-19 1.73956e-12 3.45088e-03 #_6 - 26 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.0000000 0.0000000 2.0000000 0.00000000 0.0000000 0.00000000 0.00000000 3.00000000 3.0000000 1.0000000 3.00000000 2.0000000 1.0000000 2.00000000 1.0000000 4.00000000 4.0000000 1.00000000 1.000000000 3.00000000 2.000000000 2.00000000 3.00000000 2.00000000 2.00000e+00 2.00000000 1.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_7 - 27 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 2.0000000 1.00000000 1.0000000 1.00000000 2.00000000 3.00000000 1.0000000 1.0000000 4.00000000 1.0000000 2.0000000 1.00000000 3.0000000 3.00000000 0.0000000 1.00000000 3.000000000 2.00000000 1.000000000 3.00000000 1.00000000 1.00000000 1.00000e+00 2.00000000 3.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_8 - 28 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 3.0000000 2.0000000 2.00000000 0.0000000 1.00000000 0.00000000 4.00000000 0.0000000 2.0000000 1.00000000 3.0000000 3.0000000 0.00000000 1.0000000 3.00000000 1.0000000 3.00000000 1.000000000 2.00000000 2.000000000 2.00000000 1.00000000 3.00000000 3.00000e+00 0.00000000 0.000000000 3.000000000 2.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_9 - 29 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.0000000 2.0000000 1.0000000 0.00000000 1.0000000 2.00000000 1.00000000 2.00000000 1.0000000 1.0000000 3.00000000 3.0000000 5.0000000 1.00000000 1.0000000 2.00000000 2.0000000 2.00000000 2.000000000 3.00000000 2.000000000 0.00000000 0.00000000 0.00000000 2.00000e+00 2.00000000 1.000000000 0.000000000 1.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_10 - 30 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 8.0000000 5.0000000 2.0000000 2.00000000 0.0000000 0.00000000 3.00000000 3.00000000 2.0000000 3.0000000 0.00000000 1.0000000 4.0000000 1.00000000 0.0000000 1.00000000 2.0000000 1.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 1.000000000 0.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_11 - 31 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 2.0000000 1.0000000 3.00000000 2.0000000 3.00000000 4.00000000 4.00000000 2.0000000 0.0000000 1.00000000 3.0000000 3.0000000 0.00000000 1.0000000 1.00000000 1.0000000 1.00000000 0.000000000 1.00000000 0.000000000 0.00000000 2.00000000 1.00000000 2.00000e+00 1.00000000 2.000000000 0.000000000 0.000000000 1.00000000 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_12 - 32 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 2.00000000 2.00000000 3.0000000 1.0000000 4.00000000 3.0000000 1.0000000 3.00000000 0.0000000 2.00000000 1.0000000 1.00000000 1.000000000 1.00000000 0.000000000 4.00000000 1.00000000 1.00000000 2.00000e+00 4.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_13 - 33 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 2.00000e+00 0.0000000 3.0000000 2.0000000 1.00000000 1.0000000 2.00000000 1.00000000 3.00000000 5.0000000 2.0000000 3.00000000 3.0000000 3.0000000 1.00000000 0.0000000 1.00000000 3.0000000 0.00000000 0.000000000 2.00000000 1.000000000 0.00000000 0.00000000 2.00000000 1.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_14 - 34 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.0000000 4.0000000 3.0000000 3.00000000 0.0000000 1.00000000 1.00000000 2.00000000 1.0000000 3.0000000 1.00000000 1.0000000 2.0000000 0.00000000 2.0000000 4.00000000 1.0000000 1.00000000 1.000000000 1.00000000 1.000000000 2.00000000 3.00000000 2.00000000 1.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_15 - 35 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.0000000 4.0000000 7.0000000 2.00000000 2.0000000 2.00000000 2.00000000 1.00000000 0.0000000 0.0000000 1.00000000 0.0000000 0.0000000 3.00000000 4.0000000 1.00000000 4.0000000 2.00000000 3.000000000 0.00000000 0.000000000 0.00000000 1.00000000 3.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_16 - 36 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.0000000 4.0000000 1.0000000 2.00000000 1.0000000 0.00000000 4.00000000 2.00000000 1.0000000 3.0000000 2.00000000 2.0000000 1.0000000 1.00000000 1.0000000 1.00000000 1.0000000 2.00000000 2.000000000 0.00000000 2.000000000 0.00000000 1.00000000 2.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 2.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_17 - 37 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.0000000 1.0000000 1.0000000 1.00000000 3.0000000 3.00000000 1.00000000 2.00000000 1.0000000 1.0000000 1.00000000 4.0000000 3.0000000 1.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 2.00000000 3.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 2.00000000 4.000000000 1.000000000 1.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_18 - 38 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.0000000 6.0000000 3.0000000 0.00000000 1.0000000 1.00000000 0.00000000 3.00000000 2.0000000 3.0000000 1.00000000 2.0000000 3.0000000 1.00000000 1.0000000 1.00000000 1.0000000 1.00000000 4.000000000 0.00000000 3.000000000 4.00000000 0.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_19 - 39 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 3.0000000 0.0000000 1.00000000 3.0000000 4.00000000 3.00000000 3.00000000 4.0000000 1.0000000 2.00000000 0.0000000 0.0000000 4.00000000 2.0000000 1.00000000 0.0000000 5.00000000 2.000000000 1.00000000 0.000000000 0.00000000 1.00000000 2.00000000 1.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 1.00000000 2.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_20 - 40 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 6.0000000 5.0000000 3.00000000 3.0000000 2.00000000 1.00000000 0.00000000 3.0000000 1.0000000 3.00000000 1.0000000 1.0000000 1.00000000 1.0000000 0.00000000 0.0000000 1.00000000 2.000000000 3.00000000 1.000000000 2.00000000 2.00000000 0.00000000 2.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_21 - 41 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 0.0000000 0.0000000 1.00000000 2.0000000 4.00000000 2.00000000 2.00000000 1.0000000 0.0000000 1.00000000 2.0000000 2.0000000 0.00000000 1.0000000 2.00000000 2.0000000 0.00000000 0.000000000 2.00000000 4.000000000 2.00000000 2.00000000 4.00000000 1.00000e+00 2.00000000 1.000000000 1.000000000 1.000000000 1.00000000 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_22 - 42 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.0000000 3.0000000 2.0000000 2.00000000 2.0000000 3.00000000 2.00000000 2.00000000 1.0000000 1.0000000 2.00000000 4.0000000 0.0000000 1.00000000 3.0000000 1.00000000 1.0000000 1.00000000 0.000000000 2.00000000 3.000000000 1.00000000 3.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_23 - 43 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 1.0000000 5.00000000 5.0000000 2.00000000 3.00000000 0.00000000 5.0000000 0.0000000 2.00000000 0.0000000 2.0000000 1.00000000 1.0000000 1.00000000 0.0000000 1.00000000 0.000000000 0.00000000 4.000000000 3.00000000 1.00000000 4.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_24 - 44 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 3.0000000 6.0000000 4.0000000 3.00000000 4.0000000 1.00000000 0.00000000 1.00000000 3.0000000 0.0000000 1.00000000 2.0000000 3.0000000 2.00000000 1.0000000 1.00000000 1.0000000 1.00000000 3.000000000 0.00000000 1.000000000 2.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_25 - 45 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 0.0000000 0.0000000 3.00000000 3.0000000 3.00000000 6.00000000 5.00000000 4.0000000 2.0000000 3.00000000 1.0000000 0.0000000 2.00000000 1.0000000 1.00000000 2.0000000 0.00000000 0.000000000 0.00000000 3.000000000 2.00000000 0.00000000 2.00000000 1.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_26 - 46 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 1.0000000 1.0000000 0.00000000 0.0000000 0.00000000 0.00000000 2.00000000 0.0000000 4.0000000 2.00000000 4.0000000 5.0000000 3.00000000 3.0000000 2.00000000 1.0000000 1.00000000 3.000000000 0.00000000 1.000000000 1.00000000 3.00000000 0.00000000 2.00000e+00 1.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_27 - 47 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 0.00000e+00 2.00000e+00 8.0000000 2.0000000 1.0000000 7.00000000 3.0000000 1.00000000 0.00000000 0.00000000 0.0000000 0.0000000 1.00000000 2.0000000 2.0000000 1.00000000 1.0000000 3.00000000 3.0000000 0.00000000 0.000000000 2.00000000 1.000000000 0.00000000 1.00000000 2.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_28 - 48 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.0000000 1.0000000 3.0000000 4.00000000 3.0000000 3.00000000 1.00000000 2.00000000 1.0000000 1.0000000 1.00000000 2.0000000 2.0000000 1.00000000 0.0000000 1.00000000 3.0000000 3.00000000 0.000000000 4.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_29 - 49 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 2.0000000 2.0000000 1.00000000 1.0000000 0.00000000 3.00000000 3.00000000 4.0000000 2.0000000 6.00000000 1.0000000 2.0000000 3.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 2.00000000 1.000000000 0.00000000 1.00000000 1.00000000 2.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_30 - 50 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 3.0000000 1.0000000 2.0000000 0.00000000 1.0000000 1.00000000 2.00000000 1.00000000 1.0000000 0.0000000 5.00000000 0.0000000 2.0000000 1.00000000 3.0000000 1.00000000 1.0000000 1.00000000 0.000000000 3.00000000 4.000000000 0.00000000 3.00000000 2.00000000 0.00000e+00 3.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_31 - 51 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 6.0000000 3.0000000 3.0000000 0.00000000 1.0000000 1.00000000 2.00000000 2.00000000 2.0000000 0.0000000 1.00000000 3.0000000 1.0000000 1.00000000 2.0000000 1.00000000 4.0000000 0.00000000 2.000000000 0.00000000 1.000000000 0.00000000 2.00000000 1.00000000 0.00000e+00 2.00000000 1.000000000 3.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_32 - 52 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 2.0000000 1.00000000 2.0000000 2.00000000 2.00000000 4.00000000 4.0000000 1.0000000 1.00000000 2.0000000 4.0000000 2.00000000 2.0000000 2.00000000 2.0000000 2.00000000 3.000000000 0.00000000 0.000000000 0.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 #_33 - 53 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 5.0000000 4.0000000 2.0000000 4.00000000 2.0000000 2.00000000 0.00000000 3.00000000 2.0000000 1.0000000 1.00000000 3.0000000 3.0000000 0.00000000 0.0000000 2.00000000 1.0000000 1.00000000 0.000000000 3.00000000 3.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 2.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_34 - 54 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 0.0000000 1.0000000 4.00000000 1.0000000 1.00000000 1.00000000 2.00000000 4.0000000 2.0000000 2.00000000 1.0000000 0.0000000 3.00000000 2.0000000 4.00000000 5.0000000 1.00000000 1.000000000 3.00000000 1.000000000 1.00000000 2.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_35 - 55 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 1.0000000 3.0000000 3.0000000 3.00000000 0.0000000 0.00000000 0.00000000 1.00000000 6.0000000 1.0000000 2.00000000 1.0000000 1.0000000 2.00000000 3.0000000 2.00000000 0.0000000 2.00000000 0.000000000 2.00000000 1.000000000 0.00000000 2.00000000 5.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_36 - 56 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.0000000 5.0000000 3.0000000 3.00000000 3.0000000 1.00000000 2.00000000 1.00000000 1.0000000 1.0000000 2.00000000 1.0000000 2.0000000 2.00000000 2.0000000 1.00000000 2.0000000 1.00000000 1.000000000 1.00000000 0.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 0.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_37 - 57 1 1 0 0 50 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 2.0000000 2.0000000 3.0000000 1.00000000 2.0000000 1.00000000 3.00000000 1.00000000 1.0000000 0.0000000 1.00000000 0.0000000 2.0000000 0.00000000 1.0000000 4.00000000 1.0000000 0.00000000 6.000000000 0.00000000 1.000000000 0.00000000 1.00000000 1.00000000 1.00000e+00 3.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_38 - 58 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.00000e+00 1.00000e+00 0.00000e+00 4.0000000 3.0000000 0.0000000 4.00000000 1.0000000 3.00000000 2.00000000 1.00000000 2.0000000 4.0000000 2.00000000 2.0000000 4.0000000 2.00000000 1.0000000 2.00000000 1.0000000 0.00000000 2.000000000 1.00000000 0.000000000 0.00000000 0.00000000 1.00000000 1.00000e+00 2.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_39 - 59 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.0000000 2.0000000 2.00000000 3.0000000 0.00000000 1.00000000 3.00000000 1.0000000 3.0000000 3.00000000 4.0000000 5.0000000 3.00000000 1.0000000 2.00000000 2.0000000 3.00000000 0.000000000 2.00000000 1.000000000 0.00000000 3.00000000 2.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_40 - 60 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 4.0000000 3.0000000 3.0000000 3.00000000 3.0000000 1.00000000 0.00000000 2.00000000 0.0000000 1.0000000 2.00000000 0.0000000 3.0000000 0.00000000 2.0000000 4.00000000 1.0000000 2.00000000 1.000000000 1.00000000 2.000000000 2.00000000 2.00000000 0.00000000 1.00000e+00 0.00000000 0.000000000 2.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_41 - 61 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 8.0000000 3.00000000 3.0000000 1.00000000 0.00000000 0.00000000 3.0000000 3.0000000 2.00000000 3.0000000 1.0000000 3.00000000 1.0000000 0.00000000 0.0000000 0.00000000 1.000000000 1.00000000 3.000000000 2.00000000 2.00000000 0.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_42 - 62 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 2.0000000 2.0000000 1.00000000 0.0000000 3.00000000 4.00000000 3.00000000 5.0000000 2.0000000 0.00000000 3.0000000 4.0000000 1.00000000 3.0000000 4.00000000 0.0000000 0.00000000 0.000000000 2.00000000 0.000000000 1.00000000 0.00000000 4.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_43 - 63 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 1.0000000 3.0000000 3.00000000 3.0000000 0.00000000 3.00000000 3.00000000 1.0000000 2.0000000 2.00000000 2.0000000 3.0000000 2.00000000 2.0000000 4.00000000 1.0000000 0.00000000 4.000000000 1.00000000 0.000000000 1.00000000 2.00000000 2.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_44 - 64 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 2.0000000 2.0000000 6.0000000 1.00000000 2.0000000 1.00000000 2.00000000 2.00000000 2.0000000 2.0000000 3.00000000 1.0000000 1.0000000 2.00000000 3.0000000 2.00000000 1.0000000 4.00000000 0.000000000 3.00000000 1.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 1.000000000 2.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_45 - 65 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.0000000 2.0000000 2.0000000 1.00000000 1.0000000 1.00000000 0.00000000 2.00000000 2.0000000 4.0000000 5.00000000 3.0000000 1.0000000 4.00000000 0.0000000 4.00000000 0.0000000 3.00000000 1.000000000 1.00000000 1.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_46 - 66 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 2.0000000 4.0000000 0.0000000 2.00000000 2.0000000 2.00000000 2.00000000 1.00000000 2.0000000 3.0000000 2.00000000 1.0000000 1.0000000 2.00000000 1.0000000 2.00000000 2.0000000 1.00000000 3.000000000 2.00000000 1.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_47 - 67 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 3.0000000 3.00000000 3.0000000 2.00000000 1.00000000 3.00000000 1.0000000 2.0000000 0.00000000 3.0000000 2.0000000 4.00000000 2.0000000 2.00000000 1.0000000 2.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_48 - 68 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.0000000 4.0000000 2.0000000 0.00000000 2.0000000 0.00000000 1.00000000 4.00000000 3.0000000 2.0000000 3.00000000 2.0000000 2.0000000 2.00000000 1.0000000 1.00000000 0.0000000 2.00000000 1.000000000 0.00000000 0.000000000 2.00000000 4.00000000 2.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 2.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_49 - 69 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 4.0000000 3.0000000 3.00000000 2.0000000 3.00000000 3.00000000 2.00000000 0.0000000 2.0000000 1.00000000 2.0000000 2.0000000 0.00000000 1.0000000 1.00000000 0.0000000 1.00000000 3.000000000 2.00000000 5.000000000 2.00000000 0.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_50 - 70 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.0000000 1.0000000 5.0000000 1.00000000 2.0000000 1.00000000 3.00000000 2.00000000 1.0000000 4.0000000 0.00000000 2.0000000 3.0000000 3.00000000 1.0000000 3.00000000 3.0000000 3.00000000 1.000000000 1.00000000 0.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_51 - 71 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 4.0000000 4.0000000 5.00000000 0.0000000 1.00000000 6.00000000 4.00000000 0.0000000 1.0000000 2.00000000 1.0000000 1.0000000 3.00000000 1.0000000 4.00000000 2.0000000 2.00000000 1.000000000 2.00000000 1.000000000 1.00000000 2.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_52 - 72 1 1 0 0 50 0.00000e+00 1.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 1.0000000 1.0000000 5.0000000 2.00000000 1.0000000 3.00000000 2.00000000 2.00000000 4.0000000 1.0000000 0.00000000 0.0000000 2.0000000 0.00000000 3.0000000 1.00000000 2.0000000 2.00000000 2.000000000 0.00000000 0.000000000 2.00000000 1.00000000 0.00000000 2.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_53 - 73 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.0000000 4.0000000 4.0000000 2.00000000 4.0000000 3.00000000 1.00000000 1.00000000 2.0000000 2.0000000 2.00000000 0.0000000 4.0000000 1.00000000 2.0000000 1.00000000 3.0000000 1.00000000 1.000000000 0.00000000 1.000000000 1.00000000 1.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_54 - 74 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.0000000 3.0000000 0.00000000 0.0000000 4.00000000 4.00000000 4.00000000 4.0000000 3.0000000 4.00000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 1.0000000 0.00000000 1.000000000 0.00000000 3.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_55 - 75 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.0000000 4.0000000 3.0000000 3.00000000 1.0000000 3.00000000 2.00000000 2.00000000 2.0000000 3.0000000 4.00000000 1.0000000 2.0000000 4.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 0.00000000 0.000000000 2.00000000 0.00000000 3.00000000 0.00000e+00 0.00000000 0.000000000 3.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_56 - 76 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 3.0000000 0.0000000 3.00000000 1.0000000 3.00000000 4.00000000 2.00000000 5.0000000 1.0000000 1.00000000 1.0000000 2.0000000 3.00000000 4.0000000 1.00000000 1.0000000 2.00000000 1.000000000 0.00000000 2.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 2.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_57 - 77 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 2.0000000 1.0000000 1.00000000 1.0000000 1.00000000 0.00000000 7.00000000 3.0000000 2.0000000 3.00000000 2.0000000 1.0000000 5.00000000 2.0000000 3.00000000 1.0000000 1.00000000 2.000000000 2.00000000 2.000000000 1.00000000 2.00000000 0.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_58 - 78 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 1.0000000 4.0000000 3.0000000 0.00000000 2.0000000 0.00000000 1.00000000 2.00000000 3.0000000 1.0000000 2.00000000 3.0000000 3.0000000 2.00000000 4.0000000 2.00000000 2.0000000 2.00000000 0.000000000 2.00000000 1.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 2.00000000 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_59 - 79 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 6.0000000 3.0000000 3.00000000 1.0000000 4.00000000 5.00000000 2.00000000 1.0000000 1.0000000 2.00000000 2.0000000 2.0000000 0.00000000 0.0000000 1.00000000 1.0000000 2.00000000 1.000000000 0.00000000 1.000000000 0.00000000 2.00000000 1.00000000 0.00000e+00 2.00000000 0.000000000 1.000000000 0.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_60 - 80 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 2.0000000 3.0000000 3.0000000 0.00000000 3.0000000 1.00000000 3.00000000 3.00000000 1.0000000 2.0000000 3.00000000 3.0000000 0.0000000 1.00000000 0.0000000 0.00000000 1.0000000 0.00000000 2.000000000 2.00000000 0.000000000 2.00000000 2.00000000 1.00000000 1.00000e+00 2.00000000 1.000000000 3.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_61 - 81 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 4.0000000 1.0000000 0.00000000 2.0000000 2.00000000 4.00000000 4.00000000 1.0000000 2.0000000 0.00000000 1.0000000 2.0000000 1.00000000 2.0000000 2.00000000 4.0000000 3.00000000 3.000000000 0.00000000 1.000000000 0.00000000 1.00000000 1.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_62 - 82 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 5.0000000 4.0000000 5.0000000 1.00000000 2.0000000 1.00000000 0.00000000 3.00000000 3.0000000 0.0000000 1.00000000 2.0000000 1.0000000 2.00000000 3.0000000 3.00000000 2.0000000 0.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_63 - 83 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 3.0000000 5.0000000 1.0000000 1.00000000 3.0000000 1.00000000 1.00000000 1.00000000 2.0000000 4.0000000 1.00000000 3.0000000 2.0000000 1.00000000 3.0000000 1.00000000 1.0000000 2.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_64 - 84 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 2.0000000 0.00000000 0.0000000 0.00000000 0.00000000 2.00000000 2.0000000 3.0000000 5.00000000 1.0000000 1.0000000 3.00000000 1.0000000 1.00000000 2.0000000 1.00000000 0.000000000 5.00000000 2.000000000 2.00000000 1.00000000 1.00000000 2.00000e+00 1.00000000 0.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_65 - 85 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 5.0000000 6.0000000 4.0000000 5.00000000 3.0000000 1.00000000 0.00000000 3.00000000 1.0000000 0.0000000 3.00000000 1.0000000 3.0000000 1.00000000 2.0000000 1.00000000 1.0000000 2.00000000 3.000000000 1.00000000 0.000000000 0.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_66 - 86 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 1.0000000 5.00000000 4.0000000 4.00000000 2.00000000 3.00000000 4.0000000 0.0000000 1.00000000 0.0000000 4.0000000 1.00000000 0.0000000 0.00000000 3.0000000 2.00000000 0.000000000 1.00000000 1.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 4.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_67 - 87 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.0000000 3.0000000 1.0000000 4.00000000 1.0000000 0.00000000 2.00000000 1.00000000 0.0000000 5.0000000 5.00000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 0.0000000 0.00000000 1.000000000 0.00000000 1.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 1.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_68 - 88 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 5.0000000 5.0000000 8.0000000 3.00000000 1.0000000 1.00000000 0.00000000 2.00000000 1.0000000 2.0000000 2.00000000 0.0000000 0.0000000 4.00000000 0.0000000 4.00000000 0.0000000 0.00000000 1.000000000 1.00000000 0.000000000 4.00000000 0.00000000 1.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_69 - 89 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 2.0000000 4.0000000 5.0000000 2.00000000 6.0000000 2.00000000 3.00000000 2.00000000 1.0000000 1.0000000 1.00000000 1.0000000 1.0000000 2.00000000 0.0000000 2.00000000 3.0000000 2.00000000 0.000000000 1.00000000 3.000000000 1.00000000 1.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_70 - 90 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 1.0000000 1.0000000 3.0000000 4.00000000 2.0000000 6.00000000 3.00000000 7.00000000 0.0000000 2.0000000 3.00000000 2.0000000 1.0000000 2.00000000 0.0000000 1.00000000 0.0000000 1.00000000 0.000000000 1.00000000 2.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_71 - 91 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.0000000 1.0000000 0.00000000 1.0000000 1.00000000 3.00000000 0.00000000 5.0000000 3.0000000 3.00000000 6.0000000 3.0000000 3.00000000 2.0000000 2.00000000 2.0000000 1.00000000 1.000000000 2.00000000 3.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_72 - 92 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 3.0000000 1.0000000 3.0000000 1.00000000 0.0000000 3.00000000 1.00000000 2.00000000 1.0000000 2.0000000 1.00000000 2.0000000 4.0000000 0.00000000 2.0000000 4.00000000 4.0000000 1.00000000 0.000000000 2.00000000 2.000000000 2.00000000 1.00000000 2.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_73 - 93 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 3.0000000 4.0000000 6.00000000 0.0000000 1.00000000 0.00000000 1.00000000 2.0000000 0.0000000 2.00000000 0.0000000 3.0000000 2.00000000 1.0000000 4.00000000 3.0000000 2.00000000 0.000000000 2.00000000 1.000000000 2.00000000 0.00000000 2.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_74 - 94 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.0000000 1.0000000 3.0000000 0.00000000 2.0000000 3.00000000 1.00000000 5.00000000 3.0000000 0.0000000 1.00000000 1.0000000 0.0000000 0.00000000 1.0000000 3.00000000 1.0000000 3.00000000 2.000000000 2.00000000 1.000000000 2.00000000 1.00000000 1.00000000 2.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_75 - 62 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.00000e+00 5.00000e+00 1.0000000 2.0000000 4.0000000 8.00000000 7.0000000 7.00000000 5.00000000 4.00000000 5.0000000 4.0000000 4.00000000 4.0000000 2.0000000 7.00000000 1.0000000 2.00000000 2.0000000 1.00000000 2.000000000 2.00000000 3.000000000 2.00000000 0.00000000 1.00000000 2.00000e+00 3.00000000 0.000000000 2.000000000 1.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_76 - 64 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 7.00000e+00 4.00000e+00 5.00000e+00 5.0000000 0.0000000 3.0000000 2.00000000 8.0000000 5.00000000 3.00000000 4.00000000 2.0000000 7.0000000 4.00000000 7.0000000 1.0000000 3.00000000 3.0000000 3.00000000 1.0000000 3.00000000 1.000000000 2.00000000 0.000000000 1.00000000 0.00000000 3.00000000 2.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 #_77 - 66 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 7.00000e+00 1.10000e+01 5.00000e+00 4.0000000 0.0000000 5.0000000 5.00000000 2.0000000 2.00000000 3.00000000 7.00000000 2.0000000 3.0000000 2.00000000 2.0000000 4.0000000 2.00000000 2.0000000 4.00000000 3.0000000 3.00000000 2.000000000 1.00000000 2.000000000 5.00000000 3.00000000 2.00000000 1.00000e+00 1.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_78 - 68 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 8.00000e+00 5.00000e+00 4.00000e+00 4.0000000 6.0000000 1.0000000 6.00000000 8.0000000 3.00000000 2.00000000 2.00000000 2.0000000 4.0000000 3.00000000 4.0000000 4.0000000 1.00000000 6.0000000 3.00000000 0.0000000 3.00000000 5.000000000 2.00000000 1.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_79 - 70 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 1.20000e+01 7.00000e+00 2.0000000 2.0000000 5.0000000 4.00000000 7.0000000 5.00000000 2.00000000 3.00000000 3.0000000 1.0000000 4.00000000 4.0000000 5.0000000 5.00000000 2.0000000 3.00000000 3.0000000 3.00000000 2.000000000 1.00000000 2.000000000 2.00000000 3.00000000 0.00000000 1.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 #_80 - 72 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 4.00000e+00 1.10000e+01 4.0000000 0.0000000 7.0000000 4.00000000 9.0000000 6.00000000 4.00000000 5.00000000 2.0000000 2.0000000 4.00000000 1.0000000 3.0000000 4.00000000 4.0000000 1.00000000 1.0000000 0.00000000 6.000000000 1.00000000 2.000000000 2.00000000 2.00000000 4.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_81 - 74 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 3.00000e+00 6.0000000 6.0000000 6.0000000 9.00000000 13.0000000 8.00000000 6.00000000 5.00000000 3.0000000 1.0000000 1.00000000 2.0000000 2.0000000 7.00000000 1.0000000 3.00000000 0.0000000 2.00000000 4.000000000 1.00000000 3.000000000 1.00000000 0.00000000 1.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_82 - 76 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 4.00000e+00 1.00000e+01 5.00000e+00 5.0000000 3.0000000 6.0000000 5.00000000 4.0000000 6.00000000 4.00000000 2.00000000 0.0000000 3.0000000 1.00000000 4.0000000 3.0000000 5.00000000 6.0000000 2.00000000 4.0000000 2.00000000 3.000000000 0.00000000 1.000000000 2.00000000 1.00000000 0.00000000 2.00000e+00 1.00000000 0.000000000 0.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_83 - 78 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 8.00000e+00 5.00000e+00 5.0000000 0.0000000 3.0000000 1.00000000 4.0000000 3.00000000 1.00000000 3.00000000 2.0000000 4.0000000 4.00000000 4.0000000 5.0000000 2.00000000 3.0000000 4.00000000 0.0000000 7.00000000 6.000000000 3.00000000 3.000000000 2.00000000 3.00000000 3.00000000 3.00000e+00 4.00000000 0.000000000 0.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_84 - 80 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 2.00000e+00 6.00000e+00 5.00000e+00 2.0000000 2.0000000 8.0000000 4.00000000 4.0000000 3.00000000 6.00000000 2.00000000 2.0000000 3.0000000 4.00000000 7.0000000 0.0000000 3.00000000 3.0000000 3.00000000 5.0000000 2.00000000 1.000000000 4.00000000 3.000000000 3.00000000 2.00000000 2.00000000 1.00000e+00 1.00000000 2.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_85 - 82 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 5.00000e+00 4.00000e+00 6.00000e+00 7.0000000 2.0000000 2.0000000 1.00000000 5.0000000 3.00000000 3.00000000 2.00000000 0.0000000 4.0000000 5.00000000 2.0000000 3.0000000 3.00000000 2.0000000 4.00000000 4.0000000 1.00000000 7.000000000 2.00000000 6.000000000 1.00000000 6.00000000 2.00000000 2.00000e+00 0.00000000 0.000000000 2.000000000 2.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_86 - 84 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 6.00000e+00 5.00000e+00 0.00000e+00 1.0000000 3.0000000 3.0000000 6.00000000 9.0000000 9.00000000 3.00000000 5.00000000 3.0000000 6.0000000 5.00000000 1.0000000 3.0000000 4.00000000 4.0000000 4.00000000 4.0000000 0.00000000 3.000000000 4.00000000 0.000000000 2.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_87 - 86 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.00000e+00 3.00000e+00 7.00000e+00 6.00000e+00 4.0000000 2.0000000 5.0000000 4.00000000 5.0000000 3.00000000 8.00000000 5.00000000 1.0000000 3.0000000 3.00000000 2.0000000 6.0000000 1.00000000 4.0000000 1.00000000 1.0000000 2.00000000 2.000000000 2.00000000 2.000000000 3.00000000 2.00000000 1.00000000 1.00000e+00 1.00000000 2.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_88 - 88 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 6.00000e+00 2.20000e+01 9.00000e+00 6.0000000 1.0000000 2.0000000 2.00000000 3.0000000 0.00000000 3.00000000 4.00000000 3.0000000 4.0000000 2.00000000 2.0000000 3.0000000 4.00000000 3.0000000 1.00000000 0.0000000 3.00000000 2.000000000 1.00000000 2.000000000 1.00000000 1.00000000 0.00000000 2.00000e+00 2.00000000 0.000000000 1.000000000 0.000000000 0.00000000 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_89 - 90 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 4.00000e+00 5.00000e+00 2.0000000 0.0000000 4.0000000 6.00000000 9.0000000 11.00000000 3.00000000 6.00000000 6.0000000 3.0000000 4.00000000 5.0000000 2.0000000 3.00000000 0.0000000 2.00000000 3.0000000 2.00000000 2.000000000 3.00000000 2.000000000 1.00000000 2.00000000 1.00000000 0.00000e+00 1.00000000 2.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_90 - 92 1 2 0 0 100 2.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 5.00000e+00 3.00000e+00 4.0000000 0.0000000 2.0000000 3.00000000 4.0000000 4.00000000 3.00000000 2.00000000 2.0000000 2.0000000 4.00000000 6.0000000 3.0000000 5.00000000 3.0000000 6.00000000 7.0000000 3.00000000 5.000000000 2.00000000 1.000000000 2.00000000 2.00000000 3.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 2.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_91 - 94 1 2 0 0 100 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 6.00000e+00 7.00000e+00 3.0000000 3.0000000 7.0000000 5.00000000 3.0000000 3.00000000 6.00000000 3.00000000 2.0000000 4.0000000 1.00000000 2.0000000 5.0000000 4.00000000 1.0000000 3.00000000 1.0000000 4.00000000 8.000000000 2.00000000 3.000000000 3.00000000 1.00000000 0.00000000 2.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_92 - 96 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 7.00000e+00 5.00000e+00 9.00000e+00 1.0000000 1.0000000 1.0000000 3.00000000 2.0000000 1.00000000 5.00000000 3.00000000 3.0000000 1.0000000 3.00000000 2.0000000 3.0000000 5.00000000 5.0000000 2.00000000 7.0000000 2.00000000 4.000000000 0.00000000 3.000000000 2.00000000 4.00000000 2.00000000 2.00000e+00 2.00000000 2.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_93 - 98 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 7.00000e+00 3.00000e+00 3.00000e+00 2.0000000 4.0000000 3.0000000 1.00000000 4.0000000 3.00000000 5.00000000 2.00000000 4.0000000 5.0000000 4.00000000 7.0000000 1.0000000 7.00000000 3.0000000 3.00000000 1.0000000 4.00000000 3.000000000 3.00000000 0.000000000 4.00000000 0.00000000 7.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_94 - 100 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 7.00000e+00 1.00000e+01 1.00000e+01 7.0000000 1.0000000 5.0000000 2.00000000 5.0000000 6.00000000 6.00000000 3.00000000 5.0000000 6.0000000 5.00000000 1.0000000 3.0000000 1.00000000 2.0000000 2.00000000 2.0000000 2.00000000 1.000000000 1.00000000 2.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_95 --9999 0 0 0 0 0 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.0000000 0.00000000 0.000000000 0.00000000 0.000000000 0.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_terminator -25 #_N_agebins -# -#_agebin_vector -1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 #_agebin_vector -# -#_ageing_error -1 #_N_ageerror_definitions -#_age0 age1 age2 age3 age4 age5 age6 age7 age8 age9 age10 age11 age12 age13 age14 age15 age16 age17 age18 age19 age20 age21 age22 age23 age24 age25 --1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 #_1 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 #_2 -# -#_age_info -#_mintailcomp addtocomp combine_M_F CompressBins CompError ParmSelect minsamplesize --1 1e-10 0 0 0 0 1 #_Fishery --1 1e-10 0 0 0 0 1 #_Survey -3 #_Lbin_method: 1=poplenbins; 2=datalenbins; 3=lengths - #_combine males into females at or below this bin number -#_Yr Seas FltSvy Gender Part Ageerr Lbin_lo Lbin_hi Nsamp a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 - 26 1 1 0 0 1 -1 -1 50 1 6 11 6 2 5 3 3 2 2 1 1 1 1 2 0 1 1 0 0 0 0 0 0 1 #_1 - 27 1 1 0 0 1 -1 -1 50 3 7 10 5 5 4 2 2 7 2 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 #_2 - 28 1 1 0 0 1 -1 -1 50 2 10 3 7 4 7 2 1 4 2 3 2 1 0 0 1 0 1 0 0 0 0 0 0 0 #_3 - 29 1 1 0 0 1 -1 -1 50 1 8 11 3 9 1 8 2 1 3 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 #_4 - 30 1 1 0 0 1 -1 -1 50 1 15 8 4 3 2 5 4 1 1 1 3 0 0 0 0 1 0 1 0 0 0 0 0 0 #_5 - 31 1 1 0 0 1 -1 -1 50 1 8 8 12 5 1 3 2 2 1 1 1 2 1 1 0 0 0 0 0 1 0 0 0 0 #_6 - 32 1 1 0 0 1 -1 -1 50 1 9 13 6 8 3 1 1 3 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 #_7 - 33 1 1 0 0 1 -1 -1 50 1 9 6 9 6 8 2 0 3 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 #_8 - 34 1 1 0 0 1 -1 -1 50 2 13 7 4 5 4 3 1 2 4 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 #_9 - 35 1 1 0 0 1 -1 -1 50 2 15 8 3 5 5 3 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 #_10 - 36 1 1 0 0 1 -1 -1 50 0 9 8 11 5 2 3 4 3 2 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 #_11 - 37 1 1 0 0 1 -1 -1 50 5 3 14 10 7 1 2 3 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_12 - 38 1 1 0 0 1 -1 -1 50 0 14 6 10 0 12 1 1 3 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 #_13 - 39 1 1 0 0 1 -1 -1 50 2 7 17 3 2 4 4 3 6 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 #_14 - 40 1 1 0 0 1 -1 -1 50 0 19 8 8 5 3 2 2 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_15 - 41 1 1 0 0 1 -1 -1 50 1 5 17 6 7 2 4 1 2 1 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 #_16 - 42 1 1 0 0 1 -1 -1 50 0 12 4 9 2 11 2 1 5 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 #_17 - 43 1 1 0 0 1 -1 -1 50 7 13 1 7 5 5 8 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 #_18 - 44 1 1 0 0 1 -1 -1 50 0 23 3 9 0 7 2 3 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_19 - 45 1 1 0 0 1 -1 -1 50 3 2 19 4 5 4 5 1 2 0 0 0 1 2 1 0 0 0 0 0 0 0 1 0 0 #_20 - 46 1 1 0 0 1 -1 -1 50 2 5 5 18 4 3 1 7 0 3 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 #_21 - 47 1 1 0 0 1 -1 -1 50 0 13 11 3 7 3 5 3 2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 #_22 - 48 1 1 0 0 1 -1 -1 50 0 9 22 0 2 9 2 3 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 #_23 - 49 1 1 0 0 1 -1 -1 50 1 7 15 9 3 2 5 0 1 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_24 - 50 1 1 0 0 1 -1 -1 50 2 11 5 9 1 2 2 9 3 1 0 2 0 2 0 0 1 0 0 0 0 0 0 0 0 #_25 - 51 1 1 0 0 1 -1 -1 50 2 17 8 3 5 5 0 0 3 0 0 1 3 1 1 0 0 1 0 0 0 0 0 0 0 #_26 - 52 1 1 0 0 1 -1 -1 50 2 10 12 6 5 4 6 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 #_27 - 53 1 1 0 0 1 -1 -1 50 2 13 1 9 6 1 5 5 2 1 1 1 0 0 2 0 0 0 1 0 0 0 0 0 0 #_28 - 54 1 1 0 0 1 -1 -1 50 1 11 12 5 4 2 2 6 4 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 #_29 - 55 1 1 0 0 1 -1 -1 50 3 8 13 7 3 5 1 0 5 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_30 - 56 1 1 0 0 1 -1 -1 50 1 14 4 6 8 4 8 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_31 - 57 1 1 0 0 1 -1 -1 50 0 11 17 5 2 3 4 2 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 #_32 - 58 1 1 0 0 1 -1 -1 50 1 11 7 14 4 5 0 0 5 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 #_33 - 59 1 1 0 0 1 -1 -1 50 4 9 12 7 11 2 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 #_34 - 60 1 1 0 0 1 -1 -1 50 3 11 11 4 4 4 3 3 1 1 1 0 2 1 0 0 0 1 0 0 0 0 0 0 0 #_35 - 61 1 1 0 0 1 -1 -1 50 2 21 7 8 1 5 0 0 2 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 #_36 - 62 1 1 0 0 1 -1 -1 50 0 7 15 6 3 2 7 5 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 #_37 - 63 1 1 0 0 1 -1 -1 50 2 6 7 14 5 6 4 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 #_38 - 64 1 1 0 0 1 -1 -1 50 2 11 9 3 13 7 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_39 - 65 1 1 0 0 1 -1 -1 50 3 6 5 8 4 9 4 3 3 2 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_40 - 66 1 1 0 0 1 -1 -1 50 2 15 10 7 5 3 4 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_41 - 67 1 1 0 0 1 -1 -1 50 2 10 9 8 3 3 2 5 1 2 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 #_42 - 68 1 1 0 0 1 -1 -1 50 0 10 7 9 8 3 2 2 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_43 - 69 1 1 0 0 1 -1 -1 50 1 12 8 6 3 5 3 4 2 3 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_44 - 70 1 1 0 0 1 -1 -1 50 4 9 5 9 11 4 2 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_45 - 71 1 1 0 0 1 -1 -1 50 2 17 11 7 3 4 1 1 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 #_46 - 72 1 1 0 0 1 -1 -1 50 6 5 12 10 7 2 2 4 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_47 - 73 1 1 0 0 1 -1 -1 50 1 28 4 8 5 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_48 - 74 1 1 0 0 1 -1 -1 50 2 7 21 3 8 1 3 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_49 - 75 1 1 0 0 1 -1 -1 50 2 18 5 11 4 4 1 2 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_50 - 76 1 1 0 0 1 -1 -1 50 0 9 12 1 14 3 4 0 1 4 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 #_51 - 77 1 1 0 0 1 -1 -1 50 0 4 10 7 2 11 4 3 5 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 #_52 - 78 1 1 0 0 1 -1 -1 50 1 11 5 9 11 2 9 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_53 - 79 1 1 0 0 1 -1 -1 50 3 10 10 2 6 8 1 6 0 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 #_54 - 80 1 1 0 0 1 -1 -1 50 0 3 17 10 1 3 5 1 4 0 2 2 0 1 0 0 1 0 0 0 0 0 0 0 0 #_55 - 81 1 1 0 0 1 -1 -1 50 4 6 7 9 4 2 4 3 1 5 0 1 2 0 0 1 0 1 0 0 0 0 0 0 0 #_56 - 82 1 1 0 0 1 -1 -1 50 2 13 9 9 6 1 1 1 1 1 1 1 2 1 0 0 1 0 0 0 0 0 0 0 0 #_57 - 83 1 1 0 0 1 -1 -1 50 2 15 8 6 3 2 4 3 2 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 #_58 - 84 1 1 0 0 1 -1 -1 50 1 9 6 9 7 1 7 2 2 1 0 1 2 1 0 1 0 0 0 0 0 0 0 0 0 #_59 - 85 1 1 0 0 1 -1 -1 50 3 18 6 7 7 2 5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_60 - 86 1 1 0 0 1 -1 -1 50 3 9 18 5 5 1 2 0 4 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 #_61 - 87 1 1 0 0 1 -1 -1 50 5 3 10 14 4 5 5 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_62 - 88 1 1 0 0 1 -1 -1 50 4 24 3 6 3 1 4 0 1 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_63 - 89 1 1 0 0 1 -1 -1 50 2 18 13 1 4 7 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_64 - 90 1 1 0 0 1 -1 -1 50 0 6 15 17 1 4 3 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 #_65 - 91 1 1 0 0 1 -1 -1 50 1 9 7 10 13 0 3 1 2 2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 #_66 - 92 1 1 0 0 1 -1 -1 50 1 13 2 7 7 12 1 1 3 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 #_67 - 93 1 1 0 0 1 -1 -1 50 1 15 4 4 1 6 9 1 1 3 1 2 1 0 0 0 0 0 0 1 0 0 0 0 0 #_68 - 94 1 1 0 0 1 -1 -1 50 0 8 15 13 1 4 3 3 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 #_69 - 62 1 2 0 0 1 -1 -1 100 1 17 30 11 9 12 6 4 3 0 0 1 1 2 1 1 0 0 0 0 1 0 0 0 0 #_70 - 64 1 2 0 0 1 -1 -1 100 1 23 21 7 17 6 3 8 2 4 2 2 0 0 2 0 1 1 0 0 0 0 0 0 0 #_71 - 66 1 2 0 0 1 -1 -1 100 0 24 20 19 9 6 8 4 3 1 2 2 1 0 0 0 1 0 0 0 0 0 0 0 0 #_72 - 68 1 2 0 0 1 -1 -1 100 1 19 26 13 12 7 3 5 6 2 1 1 1 2 0 0 1 0 0 0 0 0 0 0 0 #_73 - 70 1 2 0 0 1 -1 -1 100 0 30 20 9 12 7 4 7 3 0 2 1 1 0 1 0 0 1 0 0 1 0 0 0 1 #_74 - 72 1 2 0 0 1 -1 -1 100 2 18 27 17 13 3 10 3 2 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 #_75 - 74 1 2 0 0 1 -1 -1 100 2 12 35 5 11 11 8 7 2 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 #_76 - 76 1 2 0 0 1 -1 -1 100 1 15 28 7 24 7 6 1 4 2 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 #_77 - 78 1 2 0 0 1 -1 -1 100 1 25 8 12 19 4 16 3 3 3 1 1 1 2 0 1 0 0 0 0 0 0 0 0 0 #_78 - 80 1 2 0 0 1 -1 -1 100 0 16 21 13 4 8 16 4 7 1 4 2 2 1 0 1 0 0 0 0 0 0 0 0 0 #_79 - 82 1 2 0 0 1 -1 -1 100 0 21 14 15 18 11 3 6 3 1 5 1 2 0 0 0 0 0 0 0 0 0 0 0 0 #_80 - 84 1 2 0 0 1 -1 -1 100 1 25 18 15 8 4 6 5 3 3 5 0 4 1 2 0 0 0 0 0 0 0 0 0 0 #_81 - 86 1 2 0 0 1 -1 -1 100 0 22 35 11 12 6 4 2 1 3 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 #_82 - 88 1 2 0 0 1 -1 -1 100 0 41 12 9 12 6 6 3 2 1 3 1 0 0 1 0 2 0 1 0 0 0 0 0 0 #_83 - 90 1 2 0 0 1 -1 -1 100 0 26 29 22 6 4 5 0 0 3 0 0 0 1 1 0 2 1 0 0 0 0 0 0 0 #_84 - 92 1 2 0 0 1 -1 -1 100 2 23 9 16 16 11 3 2 9 3 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_85 - 94 1 2 0 0 1 -1 -1 100 1 22 23 7 9 10 14 8 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 #_86 - 96 1 2 0 0 1 -1 -1 100 0 27 13 13 12 9 3 6 6 5 2 1 2 0 0 0 0 0 0 1 0 0 0 0 0 #_87 - 98 1 2 0 0 1 -1 -1 100 2 27 6 20 8 8 9 4 2 1 3 2 2 1 1 1 1 2 0 0 0 0 0 0 0 #_88 - 100 1 2 0 0 1 -1 -1 100 1 29 32 3 5 11 4 5 7 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 #_89 - 95 1 1 0 0 1 29 29 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_731 - 95 1 1 0 0 1 47 47 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_791 - 95 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_801 - 95 1 1 0 0 1 56 56 5 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_821 - 95 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_831 - 95 1 1 0 0 1 65 65 3 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_851 - 95 1 1 0 0 1 68 68 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_861 - 95 1 1 0 0 1 71 71 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_871 - 95 1 1 0 0 1 74 74 2 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_881 - 95 1 1 0 0 1 80 80 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_90 - 95 1 1 0 0 1 86 86 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_92 - 95 1 1 0 0 1 89 89 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_93 - 95 1 1 0 0 1 107 107 3 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_99 - 95 1 1 0 0 1 110 110 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_100 - 95 1 1 0 0 1 116 116 3 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_102 - 96 1 1 0 0 1 47 47 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_124 - 96 1 1 0 0 1 50 50 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_125 - 96 1 1 0 0 1 62 62 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_129 - 96 1 1 0 0 1 68 68 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_131 - 96 1 1 0 0 1 74 74 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_133 - 96 1 1 0 0 1 80 80 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_135 - 96 1 1 0 0 1 83 83 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_136 - 96 1 1 0 0 1 86 86 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_137 - 96 1 1 0 0 1 89 89 4 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_138 - 96 1 1 0 0 1 98 98 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_141 - 96 1 1 0 0 1 107 107 3 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_144 - 96 1 1 0 0 1 110 110 4 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_145 - 96 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_147 - 96 1 1 0 0 1 131 131 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_152 - 96 1 1 0 0 1 140 140 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 #_155 - 97 1 1 0 0 1 35 35 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_165 - 97 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_170 - 97 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_173 - 97 1 1 0 0 1 62 62 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_174 - 97 1 1 0 0 1 65 65 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_175 - 97 1 1 0 0 1 68 68 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_176 - 97 1 1 0 0 1 71 71 4 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_177 - 97 1 1 0 0 1 74 74 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_178 - 97 1 1 0 0 1 77 77 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_179 - 97 1 1 0 0 1 80 80 5 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_180 - 97 1 1 0 0 1 86 86 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_182 - 97 1 1 0 0 1 92 92 3 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_184 - 97 1 1 0 0 1 113 113 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_191 - 97 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_192 - 97 1 1 0 0 1 122 122 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_194 - 97 1 1 0 0 1 134 134 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_198 - 97 1 1 0 0 1 143 143 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_201 - 98 1 1 0 0 1 50 50 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_215 - 98 1 1 0 0 1 53 53 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_216 - 98 1 1 0 0 1 62 62 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_219 - 98 1 1 0 0 1 65 65 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_220 - 98 1 1 0 0 1 68 68 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_221 - 98 1 1 0 0 1 74 74 3 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_223 - 98 1 1 0 0 1 77 77 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_224 - 98 1 1 0 0 1 80 80 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_225 - 98 1 1 0 0 1 83 83 3 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_226 - 98 1 1 0 0 1 86 86 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_227 - 98 1 1 0 0 1 89 89 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_228 - 98 1 1 0 0 1 92 92 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_229 - 98 1 1 0 0 1 98 98 3 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_231 - 98 1 1 0 0 1 107 107 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_234 - 98 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_237 - 98 1 1 0 0 1 119 119 2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_238 - 99 1 1 0 0 1 32 32 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_254 - 99 1 1 0 0 1 44 44 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_258 - 99 1 1 0 0 1 47 47 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_259 - 99 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_260 - 99 1 1 0 0 1 53 53 6 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_261 - 99 1 1 0 0 1 56 56 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_262 - 99 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_263 - 99 1 1 0 0 1 62 62 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_264 - 99 1 1 0 0 1 68 68 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_266 - 99 1 1 0 0 1 71 71 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_267 - 99 1 1 0 0 1 74 74 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_268 - 99 1 1 0 0 1 77 77 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_269 - 99 1 1 0 0 1 92 92 3 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_274 - 99 1 1 0 0 1 122 122 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 #_284 - 99 1 1 0 0 1 134 134 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_288 - 100 1 1 0 0 1 44 44 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_303 - 100 1 1 0 0 1 47 47 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_304 - 100 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_305 - 100 1 1 0 0 1 53 53 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_306 - 100 1 1 0 0 1 56 56 3 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_307 - 100 1 1 0 0 1 62 62 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_309 - 100 1 1 0 0 1 65 65 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_310 - 100 1 1 0 0 1 80 80 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_315 - 100 1 1 0 0 1 89 89 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_318 - 100 1 1 0 0 1 92 92 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_319 - 100 1 1 0 0 1 95 95 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_320 - 100 1 1 0 0 1 107 107 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_324 - 100 1 1 0 0 1 122 122 4 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_329 --9999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_terminator -# -#_MeanSize_at_Age_obs -0 #_use_MeanSize_at_Age_obs -0 #_N_environ_variables -0 #_N_sizefreq_methods -0 #_do_tags -0 #_morphcomp_data -0 #_use_selectivity_priors -# -999 diff --git a/model_recipes/jitter/starter.ss b/model_recipes/jitter/starter.ss deleted file mode 100644 index 05f5be5..0000000 --- a/model_recipes/jitter/starter.ss +++ /dev/null @@ -1,35 +0,0 @@ -#C starter file written by R function SS_writestarter -#C rerun model to get more complete formatting in starter.ss_new -#C should work with SS version: 3.30 -#C file write time: 2022-01-19 16:34:21 -# -ss3.dat #_datfile -em.ctl #_ctlfile -1 #_init_values_src -0 #_run_display_detail -1 #_detailed_age_structure -0 #_checkup -1 #_parmtrace -1 #_cumreport -0 #_prior_like -1 #_soft_bounds -2 #_N_bootstraps -100 #_last_estimation_phase -0 #_MCMCburn -1 #_MCMCthin -0.1 #_jitter_fraction --1 #_minyr_sdreport --2 #_maxyr_sdreport -0 #_N_STD_yrs -1e-04 #_converge_criterion -0 #_retro_yr -1 #_min_age_summary_bio -1 #_depl_basis -1 #_depl_denom_frac -4 #_SPR_basis -1 #_F_report_units -0 #_F_report_basis -0 #_MCMC_output_detail -0 #_ALK_tolerance -# -3.3 #_final diff --git a/model_recipes/jitter_analysis.R b/model_recipes/jitter_analysis.R deleted file mode 100644 index a027cae..0000000 --- a/model_recipes/jitter_analysis.R +++ /dev/null @@ -1,192 +0,0 @@ -## -# Jitter Test for Global Convergence with Stock Synthesis -# Stock Synthesis (tested in version 3_30_X for Windows) -# r4ss (tested in version(s) 1.35.1 - 1.35.3) -# R (tested in version(s) 3.3.2 - 4.1.1 64 bit Windows) -# code updated 1/20/2022 by Meg Oshima for ss3diags::simple model -## -#devtools::install_github("r4ss/r4ss", ref="development") -library(r4ss) -library(tidyverse) - -# Step 1. Define the root directory for the run -dirname.root <- file.path("./model_recipes") -dirname.root - -# Step 2. Define the directory where a completed "base" model run is located -dirname.base <- paste0(dirname.root,'/reference_run') -dirname.base - -# Step 3. Create a subdirectory for the jitter run -dirname.jitter <- paste0(dirname.root,'/jitter') -dirname.jitter -dir.create(path=dirname.jitter, showWarnings = TRUE, recursive = TRUE) - -# Step 4. Create a subdirectory for the output -dirname.plots <- paste0(dirname.root,"/jitter_plots") -dirname.plots -dir.create(dirname.plots) - -# Step 5. Copy base model files to jitter directory -file.copy(paste(dirname.base, "starter.ss", sep="/"), - paste(dirname.jitter, "starter.ss", sep="/")) -file.copy(paste(dirname.base, "em.CTL", sep="/"), - paste(dirname.jitter, "em.CTL", sep="/")) -file.copy(paste(dirname.base, "ss3.DAT", sep="/"), - paste(dirname.jitter, "ss3.DAT", sep="/")) -file.copy(paste(dirname.base, "forecast.ss", sep="/"), - paste(dirname.jitter, "forecast.ss", sep="/")) -file.copy(paste(dirname.base, "ss.exe", sep="/"), - paste(dirname.jitter, "ss.exe", sep="/")) -file.copy(paste(dirname.base, "ss.par", sep="/"), - paste(dirname.jitter, "ss.par", sep="/")) - - -#------------ Run Jitter Test for Global Convergence with Stock Synthesis ------------------------------- - -# Step 6. Set the number of iteration -Njitter=200 - -# Step 7. Run jitter using this function (deafult is nohess) -jit.likes <- SS_RunJitter(mydir=dirname.base, - Njitter=Njitter, - jitter_fraction = 0.1, - init_values_src = 1) - -# Step 11. Total likelihoods necessary to assess global convergence are saved to "jit.likes" -x <- as.numeric(jit.likes) -global.convergence.check <- table(x,exclude = NULL) -write.table(jit.likes, paste0(dirname.plots, "/jit_like.csv")) -write.table(global.convergence.check, paste0(dirname.plots, "/global_convergence_check.csv")) - - -# Step 12. Summarize more Jitter results -#jitter=seq(1:Njitter) - -jit_mods <- SSgetoutput(keyvec = 0:Njitter, #include reference run - getcomp = FALSE, - dirvec = dirname.base, - getcovar = FALSE) -jit_summary <- SSsummarize(jit_mods) - -#Likelihood across runs -likes=jit_summary$likelihoods - -#Derived quants across runs -quants=jit_summary$quants - -#Estimated parameters across runs -pars=jit_summary$pars - -#Write more output tables to jitter directory -write.table(quants, paste0(dirname.plots, "/Quants.csv")) -write.table(pars, paste0(dirname.plots,"/Pars.csv")) -write.table(likes, paste0(dirname.plots,"/Likelihoods.csv")) - -#Retabulate total likelihoods necessary to assess global convergence and compare to jit.likes from above -x <- likes %>% - filter(str_detect(Label, "TOTAL")) %>% - select(-Label) %>% - mutate_all(~as.numeric(.)) %>% - unlist(use.names = FALSE) - -global.convergence <- table(x,exclude = NULL) -write.table(global.convergence, paste0(dirname.plots, "/global_convergence.csv")) - -#Check convergence by seeing if the estimated spawning biomass is really big (+2x base spawning biomass) or really small (<0.5x base spawning biomass). Based on `check_convergence()` from SSMSE. -converged_ssb <- jit_summary$SpawnBio %>% - mutate(across(c(1:201), - .fns = ~./replist0)) %>% - select(-Label) %>% - pivot_longer(col = c(1:201), names_to = "jitter", values_to = "SSB") %>% - pivot_wider(names_from = Yr, values_from = SSB) %>% - mutate(rownumber = seq(1, nrow(.))) %>% - column_to_rownames("jitter") %>% - filter_at(vars(1:78), all_vars((.) < 2 & (.) > 0.5)) %>% - select(rownumber) %>% - pull(rownumber) - -### checking to make sure max gradient is small -converged_grad <- which(jit_summary$maxgrad < 0.001) - - -converged_jitters <- jit_mods[converged_grad] -converged_sum <- SSsummarize(converged_jitters) - -#------------ Make plots with r4ss for runs ending at a converged solution ------------------------------- - -#make some plots -#plot of likelihood for all jitter runs, regardless of convergence -jit_summary$likelihoods %>% - filter(str_detect(Label, "TOTAL")) %>% - select(-Label) %>% - pivot_longer(cols = everything(), names_to = "jitter", values_to = "likelihood") %>% - separate(jitter, into = c("replist", "jitter"), sep = "(?<=[A-Za-z])(?=[0-9])") %>% - mutate(jitter = as.numeric(jitter)) %>% - ggplot(aes(x = jitter, y = likelihood)) + - geom_point(size = 2) + - geom_hline(aes(yintercept = likelihood[1]), color = "red") + - theme_classic() + - labs(y = "Total Likelihood", - x = "Jitter runs") -ggsave(paste0(dirname.plots, "/all_likelihoods.png")) #make sure to run plot above right before this line, it defaults to saving the last plot run - -SSplotComparisons(jit_summary, - subplots = 2, - pch = "", - legend=FALSE, - lwd = 1, - new = F, - print = TRUE, - plotdir = dirname.plots, - filenameprefix = "all_jitters_", - ylimAdj=1) - - -# Repeat for all converged runs -converged_sum$likelihoods %>% - filter(str_detect(Label, "TOTAL")) %>% - select(-Label) %>% - pivot_longer(cols = everything(), names_to = "jitter", values_to = "likelihood") %>% - separate(jitter, into = c("replist", "jitter"), sep = "(?<=[A-Za-z])(?=[0-9])") %>% - mutate(jitter = as.numeric(jitter)) %>% - ggplot(aes(x = jitter, y = likelihood)) + - geom_point(size = 3) + - geom_hline(aes(yintercept = likelihood[1]), color = "red") + - theme_classic() + - labs(y = "Total Likelihood", - x = "Jitter runs at a converged solution") -ggsave(paste0(dirname.plots, "/converged_likelihoods.png")) - - -SSplotComparisons(converged_sum, - subplots = 2, - pch = "", - legend=FALSE, - lwd = 1, - new = F, - print = TRUE, - plotdir = dirname.plots, - filenameprefix = "converged_", - ylimAdj=1) - - -#Repeat for converged runs at the minimum solution -#Converged runs at min converged solution (should be same as base case to pass the test) -#min(na.omit(jit.likes)) -y <- which(jit_summary$likelihoods[jit_summary$likelihoods$Label=="TOTAL",1:Njitter]==min(na.omit(jit.likes))) - -jit_min <- jit_mods[y] -min_sum <- SSsummarize(jit_min) - -SSplotComparisons(min_sum, - subplots = 2, - pch = "", - legend=FALSE, - lwd = 1, - new = F, - print = TRUE, - plotdir = dirname.plots, - filenameprefix = "converged_min_", - ylimAdj=1) - diff --git a/model_recipes/mcmc/em.ctl b/model_recipes/mcmc/em.ctl deleted file mode 100644 index 12dd511..0000000 --- a/model_recipes/mcmc/em.ctl +++ /dev/null @@ -1,175 +0,0 @@ -#V3.30 -#C file created using the SS_writectl function in the R package r4ss -#C file write time: 2022-01-14 10:24:53 -# -0 # 0 means do not read wtatage.ss; 1 means read and usewtatage.ss and also read and use growth parameters -1 #_N_Growth_Patterns -1 #_N_platoons_Within_GrowthPattern -2 # recr_dist_method for parameters -1 # not yet implemented; Future usage:Spawner-Recruitment; 1=global; 2=by area -1 # number of recruitment settlement assignments -0 # unused option -# for each settlement assignment: -#_GPattern month area age -1 1 1 0 #_recr_dist_pattern1 -# -#_Cond 0 # N_movement_definitions goes here if N_areas > 1 -#_Cond 1.0 # first age that moves (real age at begin of season, not integer) also cond on do_migration>0 -#_Cond 1 1 1 2 4 10 # example move definition for seas=1, morph=1, source=1 dest=2, age1=4, age2=10 -# -0 #_Nblock_Patterns -#_Cond 0 #_blocks_per_pattern -# begin and end years of blocks -# -# controls for all timevary parameters -1 #_env/block/dev_adjust_method for all time-vary parms (1=warn relative to base parm bounds; 3=no bound check) -# -# AUTOGEN -0 0 0 0 0 # autogen: 1st element for biology, 2nd for SR, 3rd for Q, 4th reserved, 5th for selex -# where: 0 = autogen all time-varying parms; 1 = read each time-varying parm line; 2 = read then autogen if parm min==-12345 -# -# setup for M, growth, maturity, fecundity, recruitment distibution, movement -# -0 #_natM_type:_0=1Parm; 1=N_breakpoints;_2=Lorenzen;_3=agespecific;_4=agespec_withseasinterpolate -#_no additional input for selected M option; read 1P per morph -1 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2; 3=age_specific_K_incr; 4=age_specific_K_decr;5=age_specific_K_each; 6=NA; 7=NA; 8=growth cessation -1 #_Age(post-settlement)_for_L1;linear growth below this -999 #_Growth_Age_for_L2 (999 to use as Linf) --999 #_exponential decay for growth above maxage (value should approx initial Z; -999 replicates 3.24; -998 to not allow growth above maxage) -0 #_placeholder for future growth feature -# -0 #_SD_add_to_LAA (set to 0.1 for SS2 V1.x compatibility) -0 #_CV_Growth_Pattern: 0 CV=f(LAA); 1 CV=F(A); 2 SD=F(LAA); 3 SD=F(A); 4 logSD=F(A) -1 #_maturity_option: 1=length logistic; 2=age logistic; 3=read age-maturity matrix by growth_pattern; 4=read age-fecundity; 5=disabled; 6=read length-maturity -0 #_First_Mature_Age -1 #_fecundity option:(1)eggs=Wt*(a+b*Wt);(2)eggs=a*L^b;(3)eggs=a*Wt^b; (4)eggs=a+b*L; (5)eggs=a+b*W -0 #_hermaphroditism option: 0=none; 1=female-to-male age-specific fxn; -1=male-to-female age-specific fxn -1 #_parameter_offset_approach (1=none, 2= M, G, CV_G as offset from female-GP1, 3=like SS2 V1.x) -# -#_growth_parms -#_LO HI INIT PRIOR PR_SD PR_type PHASE env_var&link dev_link dev_minyr dev_maxyr dev_PH Block Block_Fxn - 1.0e-02 1.800000 2.000e-01 1.000e-01 0.8 0 -3 0 0 0 0 0 0 0 #_NatM_p_1_Fem_GP_1 - 1.0e+00 100.000000 2.000e+01 3.080e+01 0.2 0 4 0 0 0 0 0 0 0 #_L_at_Amin_Fem_GP_1 - 6.6e+00 660.000000 1.320e+02 1.201e+02 0.2 0 4 0 0 0 0 0 0 0 #_L_at_Amax_Fem_GP_1 - 1.0e-02 1.000000 2.000e-01 2.500e-01 0.8 0 4 0 0 0 0 0 0 0 #_VonBert_K_Fem_GP_1 - 1.0e-02 0.500000 1.000e-01 1.000e-01 0.8 0 5 0 0 0 0 0 0 0 #_CV_young_Fem_GP_1 - 1.0e-02 0.500000 1.000e-01 1.000e-01 0.8 0 5 0 0 0 0 0 0 0 #_CV_old_Fem_GP_1 - 0.0e+00 3.000000 6.800e-06 6.800e-06 0.0 0 -1 0 0 0 0 0 0 0 #_Wtlen_1_Fem_GP_1 - 2.5e+00 3.500000 3.101e+00 3.101e+00 0.2 0 -3 0 0 0 0 0 0 0 #_Wtlen_2_Fem_GP_1 - 1.0e+01 50.000000 3.818e+01 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Mat50%_Fem_GP_1 --2.0e+00 2.000000 -2.760e-01 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Mat_slope_Fem_GP_1 --3.0e+00 3.000000 1.000e+00 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Eggs/kg_inter_Fem_GP_1 --3.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Eggs/kg_slope_wt_Fem_GP_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_GP_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_Area_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_month_1 --4.0e+00 4.000000 1.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_CohortGrowDev - 1.0e-06 0.999999 5.000e-01 5.000e-01 0.5 0 -99 0 0 0 0 0 0 0 #_FracFemale_GP_1 -#_no timevary MG parameters -# -#_seasonal_effects_on_biology_parms -0 0 0 0 0 0 0 0 0 0 #_femwtlen1,femwtlen2,mat1,mat2,fec1,fec2,Malewtlen1,malewtlen2,L1,K -#_ LO HI INIT PRIOR PR_SD PR_type PHASE -#_Cond -2 2 0 0 -1 99 -2 #_placeholder when no seasonal MG parameters -# -3 #_Spawner-Recruitment; 2=Ricker; 3=std_B-H; 4=SCAA;5=Hockey; 6=B-H_flattop; 7=survival_3Parm;8=Shepard_3Parm -0 # 0/1 to use steepness in initial equ recruitment calculation -0 # future feature: 0/1 to make realized sigmaR a function of SR curvature -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 4.0 20 18.70 10.3 10.00 0 1 0 0 0 0 0 0 0 #_SR_LN(R0) - 0.2 1 0.65 0.7 0.05 0 -4 0 0 0 0 0 0 0 #_SR_BH_steep - 0.0 2 0.40 0.8 0.80 0 -5 0 0 0 0 0 0 0 #_SR_sigmaR --5.0 5 0.00 0.0 1.00 0 -4 0 0 0 0 0 0 0 #_SR_regime - 0.0 0 0.00 0.0 0.00 0 -99 0 0 0 0 0 0 0 #_SR_autocorr -#_no timevary SR parameters -1 #do_recdev: 0=none; 1=devvector (R=F(SSB)+dev); 2=deviations (R=F(SSB)+dev); 3=deviations (R=R0*dev; dev2=R-f(SSB)); 4=like 3 with sum(dev2) adding penalty -6 # first year of main recr_devs; early devs can preceed this era -100 # last year of main recr_devs; forecast devs start in following year -3 #_recdev phase -1 # (0/1) to read 13 advanced options -1 #_recdev_early_start (0=none; neg value makes relative to recdev_start) -4 #_recdev_early_phase -0 #_forecast_recruitment phase (incl. late recr) (0 value resets to maxphase+1) -1 #_lambda for Fcast_recr_like occurring before endyr+1 -1 #_last_yr_nobias_adj_in_MPD; begin of ramp -26 #_first_yr_fullbias_adj_in_MPD; begin of plateau -99 #_last_yr_fullbias_adj_in_MPD -100 #_end_yr_for_ramp_in_MPD (can be in forecast to shape ramp, but SS sets bias_adj to 0.0 for fcast yrs) -0.9 #_max_bias_adj_in_MPD (-1 to override ramp and set biasadj=1.0 for all estimated recdevs) -0 #_period of cycles in recruitment (N parms read below) --5 #min rec_dev -5 #max rec_dev -0 #_read_recdevs -#_end of advanced SR options -# -#_placeholder for full parameter lines for recruitment cycles -# read specified recr devs -#_Yr Input_value -# -#Fishing Mortality info -0.3 # F ballpark --2001 # F ballpark year (neg value to disable) -3 # F_Method: 1=Pope; 2=instan. F; 3=hybrid (hybrid is recommended) -4 # max F or harvest rate, depends on F_Method -4 # N iterations for tuning F in hybrid method (recommend 3 to 7) -# -#_initial_F_parms; count = 0 -# -#_Q_setup for fleets with cpue or survey data -#_fleet link link_info extra_se biasadj float # fleetname - 2 1 0 0 0 0 #_Survey --9999 0 0 0 0 0 #_terminator -#_Q_parms(if_any);Qunits_are_ln(q) -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name --20 20 0 0 99 0 5 0 0 0 0 0 0 0 #_LnQ_base_Survey(2) -#_no timevary Q parameters -# -#_size_selex_patterns -#_Pattern Discard Male Special -24 0 0 0 #_1 Fishery -24 0 0 0 #_2 Survey -# -#_age_selex_patterns -#_Pattern Discard Male Special -11 0 0 0 #_1 Fishery -11 0 0 0 #_2 Survey -# -#_SizeSelex -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 5.08 101.6 50.8 50.8 0.05 0 2 0 0 0 0 0 0 0 #_SizeSel_P_1_Fishery(1) - -5.00 3.0 -3.0 -3.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_2_Fishery(1) - 0.00 25.5 5.1 5.1 0.05 0 3 0 0 0 0 0 0 0 #_SizeSel_P_3_Fishery(1) - -2.00 16.0 15.0 15.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_4_Fishery(1) - -15.00 5.0 -999.0 -999.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_5_Fishery(1) - -5.00 1000.0 999.0 999.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_6_Fishery(1) - 4.18 83.6 41.8 41.8 0.05 0 2 0 0 0 0 0 0 0 #_SizeSel_P_1_Survey(2) - -5.00 3.0 -4.0 -4.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_2_Survey(2) - 0.00 26.0 5.2 5.2 0.05 0 3 0 0 0 0 0 0 0 #_SizeSel_P_3_Survey(2) - -2.00 15.0 14.0 14.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_4_Survey(2) --100.00 100.0 -99.0 -99.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_5_Survey(2) --100.00 100.0 99.0 99.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_6_Survey(2) -#_AgeSelex -0 1 0.1 0.1 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_1_Fishery(1) -0 101 100.0 100.0 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_2_Fishery(1) -0 1 0.1 0.1 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_1_Survey(2) -0 101 100.0 100.0 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_2_Survey(2) -#_no timevary selex parameters -# -0 # use 2D_AR1 selectivity(0/1): experimental feature -#_no 2D_AR1 selex offset used -# Tag loss and Tag reporting parameters go next -0 # TG_custom: 0=no read; 1=read if tags exist -#_Cond -6 6 1 1 2 0.01 -4 0 0 0 0 0 0 0 #_placeholder if no parameters -# -# Input variance adjustments factors: -#_Factor Fleet Value --9999 1 0 # terminator -# -4 #_maxlambdaphase -1 #_sd_offset; must be 1 if any growthCV, sigmaR, or survey extraSD is an estimated parameter -# read 0 changes to default Lambdas (default value is 1.0) --9999 0 0 0 0 # terminator -# -0 # 0/1 read specs for more stddev reporting -# -999 diff --git a/model_recipes/mcmc/forecast.ss b/model_recipes/mcmc/forecast.ss deleted file mode 100644 index 622e763..0000000 --- a/model_recipes/mcmc/forecast.ss +++ /dev/null @@ -1,59 +0,0 @@ -#V3.30.13.00-trans;_2019_03_09;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_12.0 -#Stock Synthesis (SS) is a work of the U.S. Government and is not subject to copyright protection in the United States. -#Foreign copyrights may apply. See copyright.txt for more information. -#C forecast file written by R function SS_writeforecast -#C rerun model to get more complete formatting in forecast.ss_new -#C should work with SS version: SSv3.21_or_later -#C file write time: 2015-03-14 16:01:17 -# for all year entries except rebuilder; enter either: actual year, -999 for styr, 0 for endyr, neg number for rel. endyr -1 # Benchmarks: 0=skip; 1=calc F_spr,F_btgt,F_msy; 2=calc F_spr,F0.1,F_msy -2 # MSY: 1= set to F(SPR); 2=calc F(MSY); 3=set to F(Btgt) or F0.1; 4=set to F(endyr) -0.4 # SPR target (e.g. 0.40) -0.4 # Biomass target (e.g. 0.40) -#_Bmark_years: beg_bio, end_bio, beg_selex, end_selex, beg_relF, end_relF, beg_recr_dist, end_recr_dist, beg_SRparm, end_SRparm (enter actual year, or values of 0 or -integer to be rel. endyr) - 0 0 0 0 0 0 -999 0 -999 0 -1 #Bmark_relF_Basis: 1 = use year range; 2 = set relF same as forecast below -# -4 # Forecast: 0=none; 1=F(SPR); 2=F(MSY) 3=F(Btgt) or F0.1; 4=Ave F (uses first-last relF yrs); 5=input annual F scalar -1 # N forecast years -0 # F scalar (only used for Do_Forecast==5) -#_Fcast_years: beg_selex, end_selex, beg_relF, end_relF, beg_mean recruits, end_recruits (enter actual year, or values of 0 or -integer to be rel. endyr) - 0 0 0 0 -999 0 -0 # Forecast selectivity (0=fcast selex is mean from year range; 1=fcast selectivity from annual time-vary parms) -2 # Control rule method (1: ramp does catch=f(SSB), buffer on F; 2: ramp does F=f(SSB), buffer on F; 3: ramp does catch=f(SSB), buffer on catch; 4: ramp does F=f(SSB), buffer on catch) -0.4 # Control rule Biomass level for constant F (as frac of Bzero, e.g. 0.40); (Must be > the no F level below) -0.01 # Control rule Biomass level for no F (as frac of Bzero, e.g. 0.10) -0 # Control rule target as fraction of Flimit (e.g. 0.75), negative value invokes list of [year, scalar] with filling from year to YrMax -3 #_N forecast loops (1=OFL only; 2=ABC; 3=get F from forecast ABC catch with allocations applied) -3 #_First forecast loop with stochastic recruitment -0 #_Forecast recruitment: 0= spawn_recr; 1=value*spawn_recr_fxn; 2=value*VirginRecr; 3=recent mean from yr range above (need to set phase to -1 in control to get constant recruitment in MCMC) -1 # value is ignored -0 #_Forecast loop control #5 (reserved for future bells&whistles) -101 #FirstYear for caps and allocations (should be after years with fixed inputs) -0 # stddev of log(realized catch/target catch) in forecast (set value>0.0 to cause active impl_error) -0 # Do West Coast gfish rebuilder output (0/1) -100 # Rebuilder: first year catch could have been set to zero (Ydecl)(-1 to set to 1999) -100 # Rebuilder: year for current age structure (Yinit) (-1 to set to endyear+1) -1 # fleet relative F: 1=use first-last alloc year; 2=read seas, fleet, alloc list below -# Note that fleet allocation is used directly as average F if Do_Forecast=4 -2 # basis for fcast catch tuning and for fcast catch caps and allocation (2=deadbio; 3=retainbio; 5=deadnum; 6=retainnum) -# Conditional input if relative F choice = 2 -# enter list of: season, fleet, relF; if used, terminate with season=-9999 -# 1 1 1 -# -9999 0 0 # terminator for list of relF -# enter list of: fleet number, max annual catch for fleets with a max; terminate with fleet=-9999 --9999 -1 -# enter list of area ID and max annual catch; terminate with area=-9999 --9999 -1 -# enter list of fleet number and allocation group assignment, if any; terminate with fleet=-9999 --9999 -1 -#_if N allocation groups >0, list year, allocation fraction for each group -# list sequentially because read values fill to end of N forecast -# terminate with -9999 in year field -# no allocation groups -2 # basis for input Fcast catch: -1=read basis with each obs; 2=dead catch; 3=retained catch; 99=input Hrate(F) -#enter list of Fcast catches; terminate with line having year=-9999 -#_Yr Seas Fleet Catch(or_F) --9999 1 1 0 -# -999 # verify end of input diff --git a/model_recipes/mcmc/ss3.dat b/model_recipes/mcmc/ss3.dat deleted file mode 100644 index 75adea0..0000000 --- a/model_recipes/mcmc/ss3.dat +++ /dev/null @@ -1,427 +0,0 @@ -#V3.30 -#C North Sea/Skagerrak/Eastern Channel Cod -# -26 #_styr -100 #_endyr -1 #_nseas -12 #_months_per_seas -2 #_Nsubseasons -1 #_spawn_month -1 #_Nsexes -25 #_Nages -1 #_N_areas -2 #_Nfleets -#_fleetinfo -#_type surveytiming area units need_catch_mult fleetname -1 -1 1 1 0 Fishery #_1 -3 1 1 2 0 Survey #_2 -#_Catch data -#_year season fleet catch catch_se - -999 1 1 0 0.010 #_1 - 1 1 1 0 0.010 #_2 - 2 1 1 0 0.010 #_3 - 3 1 1 0 0.010 #_4 - 4 1 1 0 0.010 #_5 - 5 1 1 0 0.010 #_6 - 6 1 1 0 0.010 #_7 - 7 1 1 0 0.010 #_8 - 8 1 1 0 0.010 #_9 - 9 1 1 0 0.010 #_10 - 10 1 1 0 0.010 #_11 - 11 1 1 0 0.010 #_12 - 12 1 1 0 0.010 #_13 - 13 1 1 0 0.010 #_14 - 14 1 1 0 0.010 #_15 - 15 1 1 0 0.010 #_16 - 16 1 1 0 0.010 #_17 - 17 1 1 0 0.010 #_18 - 18 1 1 0 0.010 #_19 - 19 1 1 0 0.010 #_20 - 20 1 1 0 0.010 #_21 - 21 1 1 0 0.010 #_22 - 22 1 1 0 0.010 #_23 - 23 1 1 0 0.010 #_24 - 24 1 1 0 0.010 #_25 - 25 1 1 0 0.010 #_26 - 26 1 1 405827583 0.005 #_27 - 27 1 1 373417493 0.005 #_28 - 28 1 1 342373346 0.005 #_29 - 29 1 1 314063047 0.005 #_30 - 30 1 1 291488471 0.005 #_31 - 31 1 1 275016682 0.005 #_32 - 32 1 1 261959321 0.005 #_33 - 33 1 1 247902515 0.005 #_34 - 34 1 1 237602462 0.005 #_35 - 35 1 1 229886276 0.005 #_36 - 36 1 1 221494620 0.005 #_37 - 37 1 1 210472212 0.005 #_38 - 38 1 1 204395447 0.005 #_39 - 39 1 1 196706762 0.005 #_40 - 40 1 1 191149151 0.005 #_41 - 41 1 1 181676431 0.005 #_42 - 42 1 1 175427716 0.005 #_43 - 43 1 1 166292092 0.005 #_44 - 44 1 1 167104259 0.005 #_45 - 45 1 1 167393473 0.005 #_46 - 46 1 1 161044632 0.005 #_47 - 47 1 1 160124742 0.005 #_48 - 48 1 1 159368360 0.005 #_49 - 49 1 1 155503064 0.005 #_50 - 50 1 1 150700473 0.005 #_51 - 51 1 1 151357783 0.005 #_52 - 52 1 1 145953276 0.005 #_53 - 53 1 1 143559669 0.005 #_54 - 54 1 1 142461890 0.005 #_55 - 55 1 1 138970197 0.005 #_56 - 56 1 1 137509860 0.005 #_57 - 57 1 1 140168276 0.005 #_58 - 58 1 1 140025046 0.005 #_59 - 59 1 1 139444280 0.005 #_60 - 60 1 1 138552310 0.005 #_61 - 61 1 1 142276727 0.005 #_62 - 62 1 1 145394778 0.005 #_63 - 63 1 1 147866360 0.005 #_64 - 64 1 1 150086800 0.005 #_65 - 65 1 1 149096580 0.005 #_66 - 66 1 1 150126388 0.005 #_67 - 67 1 1 151017473 0.005 #_68 - 68 1 1 151706424 0.005 #_69 - 69 1 1 150854890 0.005 #_70 - 70 1 1 152562634 0.005 #_71 - 71 1 1 151682609 0.005 #_72 - 72 1 1 153018523 0.005 #_73 - 73 1 1 162110858 0.005 #_74 - 74 1 1 170350797 0.005 #_75 - 75 1 1 175676558 0.005 #_76 - 76 1 1 180420607 0.005 #_77 - 77 1 1 179580391 0.005 #_78 - 78 1 1 173180886 0.005 #_79 - 79 1 1 171619613 0.005 #_80 - 80 1 1 167601020 0.005 #_81 - 81 1 1 160797969 0.005 #_82 - 82 1 1 157721184 0.005 #_83 - 83 1 1 156899991 0.005 #_84 - 84 1 1 155019001 0.005 #_85 - 85 1 1 158509241 0.005 #_86 - 86 1 1 162057478 0.005 #_87 - 87 1 1 161870042 0.005 #_88 - 88 1 1 170525042 0.005 #_89 - 89 1 1 182713147 0.005 #_90 - 90 1 1 193756851 0.005 #_91 - 91 1 1 195682969 0.005 #_92 - 92 1 1 193123404 0.005 #_93 - 93 1 1 191814026 0.005 #_94 - 94 1 1 187735838 0.005 #_95 - 95 1 1 183406362 0.005 #_96 - 96 1 1 181248407 0.005 #_97 - 97 1 1 176702069 0.005 #_98 - 98 1 1 172067982 0.005 #_99 - 99 1 1 174512824 0.005 #_100 - 100 1 1 182121508 0.005 #_101 --9999 0 0 0 0.000 #_terminator -#_CPUE_and_surveyabundance_observations -#_Units: 0=numbers; 1=biomass; 2=F; >=30 for special types -#_Errtype: -1=normal; 0=lognormal; >0=T -#_SD_Report: 0=no sdreport; 1=enable sdreport -#_Fleet Units Errtype SD_Report -1 1 0 0 #_Fishery -2 1 0 0 #_Survey -# -#_CPUE_data -#_year seas index obs se_log - 62 1 2 1800920382 0.1 #_1 - 64 1 2 1442880570 0.1 #_2 - 66 1 2 1478049232 0.1 #_3 - 68 1 2 1514629141 0.1 #_4 - 70 1 2 1475326736 0.1 #_5 - 72 1 2 1461697657 0.1 #_6 - 74 1 2 1667556392 0.1 #_7 - 76 1 2 1735533173 0.1 #_8 - 78 1 2 1597404222 0.1 #_9 - 80 1 2 1378991707 0.1 #_10 - 82 1 2 1465888048 0.1 #_11 - 84 1 2 1724542912 0.1 #_12 - 86 1 2 1706132878 0.1 #_13 - 88 1 2 1691019690 0.1 #_14 - 90 1 2 2185001631 0.1 #_15 - 92 1 2 1774417206 0.1 #_16 - 94 1 2 1835096702 0.1 #_17 - 96 1 2 1887196577 0.1 #_18 - 98 1 2 1514337013 0.1 #_19 - 100 1 2 1734634147 0.1 #_20 --9999 0 0 0 0.0 #_terminator -0 #_N_discard_fleets -#_discard_units (1=same_as_catchunits(bio/num); 2=fraction; 3=numbers) -#_discard_errtype: >0 for DF of T-dist(read CV below); 0 for normal with CV; -1 for normal with se; -2 for lognormal -# -#_discard_fleet_info -# -#_discard_data -# -#_meanbodywt -0 #_use_meanbodywt - #_DF_for_meanbodywt_T-distribution_like -# -#_population_length_bins -2 # length bin method: 1=use databins; 2=generate from binwidth,min,max below; 3=read vector -1 # binwidth for population size comp -10 # minimum size in the population (lower edge of first bin and size at age 0.00) -200 # maximum size in the population (lower edge of last bin) -1 #_use_lencomp -# -#_len_info -#_mintailcomp addtocomp combine_M_F CompressBins CompError ParmSelect minsamplesize --1 1e-10 0 0 0 0 1 #_Fishery --1 1e-10 0 0 0 0 1 #_Survey -45 #_N_lbins -#_lbin_vector -20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125 128 131 134 137 140 143 146 149 152 #_lbin_vector -# -#_lencomp -#_Yr Seas FltSvy Gender Part Nsamp l20 l23 l26 l29 l32 l35 l38 l41 l44 l47 l50 l53 l56 l59 l62 l65 l68 l71 l74 l77 l80 l83 l86 l89 l92 l95 l98 l101 l104 l107 l110 l113 l116 l119 l122 l125 l128 l131 l134 l137 l140 l143 l146 l149 l152 - 95 1 1 0 0 50 1.02372e-45 8.65757e-09 2.54609e-09 0.0132189 5.21595e-05 2.38627e-02 2.68615e-04 0.00696888 0.0209752 0.0461512 0.0454447 0.00819876 0.0311581 0.03847288 0.0592358 0.0804351 0.0134728 0.05331963 0.0135703 0.00664153 0.00308974 0.135061 0.0171712 0.0386320 0.0242389 0.0730764 0.016173276 0.0144687 0.05258041 0.0687250 0.0449439 0.0130247 0.00582374 0.0154070 0.01138095 0.000605132 0.00064427 0.00277890 1.12793e-07 1.67418e-04 1.52057e-04 1.16782e-10 2.46473e-06 2.68784e-07 4.05101e-04 #_1 - 100 1 1 0 0 50 1.07017e-08 1.43398e-15 6.16297e-09 0.0013832 5.59666e-03 1.30119e-05 2.49744e-04 0.00996503 0.0209593 0.1630678 0.0837334 0.06332938 0.0257229 0.00226224 0.0241073 0.0739385 0.0607066 0.00790057 0.0282097 0.02925184 0.06496127 0.125380 0.0169132 0.0327401 0.0117975 0.0470414 0.000577594 0.0406478 0.00118466 0.0126712 0.0171070 0.0107663 0.00477318 0.0025822 0.00214744 0.000467102 0.00400573 0.00112615 2.62756e-03 4.42593e-05 2.15311e-05 1.92994e-05 1.30824e-08 1.34294e-15 3.94896e-08 #_2 - 26 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 2.00000000 0.0000000 0.0000000 2.0000000 0.00000000 0.0000000 0.00000000 0.0000000 3.0000000 3.0000000 1.00000000 3.0000000 2.00000000 1.00000000 2.000000 1.0000000 4.0000000 4.0000000 1.0000000 1.000000000 3.0000000 2.00000000 2.0000000 3.0000000 2.0000000 2.00000000 2.0000000 1.00000000 0.000000000 0.00000000 2.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_3 - 27 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000000 0.0000000 0.0000000 2.0000000 1.00000000 1.0000000 1.00000000 2.0000000 3.0000000 1.0000000 1.00000000 4.0000000 1.00000000 2.00000000 1.000000 3.0000000 3.0000000 0.0000000 1.0000000 3.000000000 2.0000000 1.00000000 3.0000000 1.0000000 1.0000000 1.00000000 2.0000000 3.00000000 1.000000000 1.00000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_4 - 28 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000000 0.0000000 3.0000000 2.0000000 2.00000000 0.0000000 1.00000000 0.0000000 4.0000000 0.0000000 2.00000000 1.0000000 3.00000000 3.00000000 0.000000 1.0000000 3.0000000 1.0000000 3.0000000 1.000000000 2.0000000 2.00000000 2.0000000 1.0000000 3.0000000 3.00000000 0.0000000 0.00000000 3.000000000 2.00000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_5 - 29 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000000 4.0000000 2.0000000 1.0000000 0.00000000 1.0000000 2.00000000 1.0000000 2.0000000 1.0000000 1.00000000 3.0000000 3.00000000 5.00000000 1.000000 1.0000000 2.0000000 2.0000000 2.0000000 2.000000000 3.0000000 2.00000000 0.0000000 0.0000000 0.0000000 2.00000000 2.0000000 1.00000000 0.000000000 1.00000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_6 - 30 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000000 8.0000000 5.0000000 2.0000000 2.00000000 0.0000000 0.00000000 3.0000000 3.0000000 2.0000000 3.00000000 0.0000000 1.00000000 4.00000000 1.000000 0.0000000 1.0000000 2.0000000 1.0000000 2.000000000 1.0000000 1.00000000 2.0000000 1.0000000 0.0000000 0.00000000 0.0000000 0.00000000 1.000000000 0.00000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_7 - 31 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000000 2.0000000 2.0000000 1.0000000 3.00000000 2.0000000 3.00000000 4.0000000 4.0000000 2.0000000 0.00000000 1.0000000 3.00000000 3.00000000 0.000000 1.0000000 1.0000000 1.0000000 1.0000000 0.000000000 1.0000000 0.00000000 0.0000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 0.000000000 0.00000000 1.00000000 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_8 - 32 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000000 3.0000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 2.0000000 2.0000000 3.0000000 1.00000000 4.0000000 3.00000000 1.00000000 3.000000 0.0000000 2.0000000 1.0000000 1.0000000 1.000000000 1.0000000 0.00000000 4.0000000 1.0000000 1.0000000 2.00000000 4.0000000 0.00000000 0.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_9 - 33 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 1.00000e+00 3.00000e+00 0.00000e+00 2.00000000 0.0000000 3.0000000 2.0000000 1.00000000 1.0000000 2.00000000 1.0000000 3.0000000 5.0000000 2.00000000 3.0000000 3.00000000 3.00000000 1.000000 0.0000000 1.0000000 3.0000000 0.0000000 0.000000000 2.0000000 1.00000000 0.0000000 0.0000000 2.0000000 1.00000000 0.0000000 0.00000000 0.000000000 1.00000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_10 - 34 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000000 2.0000000 4.0000000 3.0000000 3.00000000 0.0000000 1.00000000 1.0000000 2.0000000 1.0000000 3.00000000 1.0000000 1.00000000 2.00000000 0.000000 2.0000000 4.0000000 1.0000000 1.0000000 1.000000000 1.0000000 1.00000000 2.0000000 3.0000000 2.0000000 1.00000000 0.0000000 1.00000000 0.000000000 0.00000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_11 - 35 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000000 4.0000000 4.0000000 7.0000000 2.00000000 2.0000000 2.00000000 2.0000000 1.0000000 0.0000000 0.00000000 1.0000000 0.00000000 0.00000000 3.000000 4.0000000 1.0000000 4.0000000 2.0000000 3.000000000 0.0000000 0.00000000 0.0000000 1.0000000 3.0000000 0.00000000 0.0000000 1.00000000 0.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_12 - 36 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000000 5.0000000 4.0000000 1.0000000 2.00000000 1.0000000 0.00000000 4.0000000 2.0000000 1.0000000 3.00000000 2.0000000 2.00000000 1.00000000 1.000000 1.0000000 1.0000000 1.0000000 2.0000000 2.000000000 0.0000000 2.00000000 0.0000000 1.0000000 2.0000000 1.00000000 1.0000000 0.00000000 1.000000000 2.00000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_13 - 37 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 3.00000e+00 2.00000e+00 0.00000e+00 0.00000000 1.0000000 1.0000000 1.0000000 1.00000000 3.0000000 3.00000000 1.0000000 2.0000000 1.0000000 1.00000000 1.0000000 4.00000000 3.00000000 1.000000 1.0000000 1.0000000 2.0000000 0.0000000 1.000000000 2.0000000 3.00000000 0.0000000 1.0000000 0.0000000 0.00000000 2.0000000 4.00000000 1.000000000 1.00000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_14 - 38 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 0.00000e+00 0.00000e+00 1.00000e+00 1.00000000 3.0000000 6.0000000 3.0000000 0.00000000 1.0000000 1.00000000 0.0000000 3.0000000 2.0000000 3.00000000 1.0000000 2.00000000 3.00000000 1.000000 1.0000000 1.0000000 1.0000000 1.0000000 4.000000000 0.0000000 3.00000000 4.0000000 0.0000000 1.0000000 0.00000000 0.0000000 1.00000000 0.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_15 - 39 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000000 0.0000000 3.0000000 0.0000000 1.00000000 3.0000000 4.00000000 3.0000000 3.0000000 4.0000000 1.00000000 2.0000000 0.00000000 0.00000000 4.000000 2.0000000 1.0000000 0.0000000 5.0000000 2.000000000 1.0000000 0.00000000 0.0000000 1.0000000 2.0000000 1.00000000 0.0000000 0.00000000 1.000000000 1.00000000 1.00000000 2.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_16 - 40 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000000 2.0000000 6.0000000 5.0000000 3.00000000 3.0000000 2.00000000 1.0000000 0.0000000 3.0000000 1.00000000 3.0000000 1.00000000 1.00000000 1.000000 1.0000000 0.0000000 0.0000000 1.0000000 2.000000000 3.0000000 1.00000000 2.0000000 2.0000000 0.0000000 2.00000000 1.0000000 1.00000000 0.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_17 - 41 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000000 2.0000000 0.0000000 0.0000000 1.00000000 2.0000000 4.00000000 2.0000000 2.0000000 1.0000000 0.00000000 1.0000000 2.00000000 2.00000000 0.000000 1.0000000 2.0000000 2.0000000 0.0000000 0.000000000 2.0000000 4.00000000 2.0000000 2.0000000 4.0000000 1.00000000 2.0000000 1.00000000 1.000000000 1.00000000 1.00000000 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_18 - 42 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000000 4.0000000 3.0000000 2.0000000 2.00000000 2.0000000 3.00000000 2.0000000 2.0000000 1.0000000 1.00000000 2.0000000 4.00000000 0.00000000 1.000000 3.0000000 1.0000000 1.0000000 1.0000000 0.000000000 2.0000000 3.00000000 1.0000000 3.0000000 0.0000000 0.00000000 1.0000000 1.00000000 0.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_19 - 43 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 3.00000e+00 1.00000e+00 0.00000e+00 0.00000000 0.0000000 0.0000000 1.0000000 5.00000000 5.0000000 2.00000000 3.0000000 0.0000000 5.0000000 0.00000000 2.0000000 0.00000000 2.00000000 1.000000 1.0000000 1.0000000 0.0000000 1.0000000 0.000000000 0.0000000 4.00000000 3.0000000 1.0000000 4.0000000 1.00000000 1.0000000 0.00000000 1.000000000 0.00000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_20 - 44 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 1.00000e+00 4.00000000 3.0000000 6.0000000 4.0000000 3.00000000 4.0000000 1.00000000 0.0000000 1.0000000 3.0000000 0.00000000 1.0000000 2.00000000 3.00000000 2.000000 1.0000000 1.0000000 1.0000000 1.0000000 3.000000000 0.0000000 1.00000000 2.0000000 0.0000000 0.0000000 0.00000000 0.0000000 1.00000000 1.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_21 - 45 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000000 0.0000000 0.0000000 0.0000000 3.00000000 3.0000000 3.00000000 6.0000000 5.0000000 4.0000000 2.00000000 3.0000000 1.00000000 0.00000000 2.000000 1.0000000 1.0000000 2.0000000 0.0000000 0.000000000 0.0000000 3.00000000 2.0000000 0.0000000 2.0000000 1.00000000 2.0000000 2.00000000 0.000000000 0.00000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_22 - 46 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 2.00000e+00 0.00000e+00 0.00000e+00 1.00000000 1.0000000 1.0000000 1.0000000 0.00000000 0.0000000 0.00000000 0.0000000 2.0000000 0.0000000 4.00000000 2.0000000 4.00000000 5.00000000 3.000000 3.0000000 2.0000000 1.0000000 1.0000000 3.000000000 0.0000000 1.00000000 1.0000000 3.0000000 0.0000000 2.00000000 1.0000000 1.00000000 2.000000000 0.00000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_23 - 47 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.00000e+00 2.00000e+00 0.00000e+00 2.00000000 8.0000000 2.0000000 1.0000000 7.00000000 3.0000000 1.00000000 0.0000000 0.0000000 0.0000000 0.00000000 1.0000000 2.00000000 2.00000000 1.000000 1.0000000 3.0000000 3.0000000 0.0000000 0.000000000 2.0000000 1.00000000 0.0000000 1.0000000 2.0000000 0.00000000 1.0000000 1.00000000 0.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_24 - 48 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 0.00000e+00 0.00000e+00 1.00000e+00 1.00000000 3.0000000 1.0000000 3.0000000 4.00000000 3.0000000 3.00000000 1.0000000 2.0000000 1.0000000 1.00000000 1.0000000 2.00000000 2.00000000 1.000000 0.0000000 1.0000000 3.0000000 3.0000000 0.000000000 4.0000000 1.00000000 2.0000000 1.0000000 0.0000000 0.00000000 1.0000000 1.00000000 0.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_25 - 49 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.00000e+00 0.00000e+00 0.00000e+00 1.00000000 2.0000000 2.0000000 2.0000000 1.00000000 1.0000000 0.00000000 3.0000000 3.0000000 4.0000000 2.00000000 6.0000000 1.00000000 2.00000000 3.000000 1.0000000 1.0000000 2.0000000 0.0000000 1.000000000 2.0000000 1.00000000 0.0000000 1.0000000 1.0000000 2.00000000 0.0000000 0.00000000 1.000000000 1.00000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_26 - 50 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 4.00000e+00 0.00000e+00 0.00000e+00 4.00000000 3.0000000 1.0000000 2.0000000 0.00000000 1.0000000 1.00000000 2.0000000 1.0000000 1.0000000 0.00000000 5.0000000 0.00000000 2.00000000 1.000000 3.0000000 1.0000000 1.0000000 1.0000000 0.000000000 3.0000000 4.00000000 0.0000000 3.0000000 2.0000000 0.00000000 3.0000000 0.00000000 0.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_27 - 51 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 2.00000e+00 1.00000e+00 0.00000e+00 1.00000000 6.0000000 3.0000000 3.0000000 0.00000000 1.0000000 1.00000000 2.0000000 2.0000000 2.0000000 0.00000000 1.0000000 3.00000000 1.00000000 1.000000 2.0000000 1.0000000 4.0000000 0.0000000 2.000000000 0.0000000 1.00000000 0.0000000 2.0000000 1.0000000 0.00000000 2.0000000 1.00000000 3.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_28 - 52 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000000 2.0000000 3.0000000 2.0000000 1.00000000 2.0000000 2.00000000 2.0000000 4.0000000 4.0000000 1.00000000 1.0000000 2.00000000 4.00000000 2.000000 2.0000000 2.0000000 2.0000000 2.0000000 3.000000000 0.0000000 0.00000000 0.0000000 1.0000000 1.0000000 0.00000000 0.0000000 0.00000000 0.000000000 0.00000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 #_29 - 53 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000000 5.0000000 4.0000000 2.0000000 4.00000000 2.0000000 2.00000000 0.0000000 3.0000000 2.0000000 1.00000000 1.0000000 3.00000000 3.00000000 0.000000 0.0000000 2.0000000 1.0000000 1.0000000 0.000000000 3.0000000 3.00000000 1.0000000 0.0000000 0.0000000 1.00000000 2.0000000 0.00000000 0.000000000 0.00000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_30 - 54 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000000 2.0000000 0.0000000 1.0000000 4.00000000 1.0000000 1.00000000 1.0000000 2.0000000 4.0000000 2.00000000 2.0000000 1.00000000 0.00000000 3.000000 2.0000000 4.0000000 5.0000000 1.0000000 1.000000000 3.0000000 1.00000000 1.0000000 2.0000000 0.0000000 1.00000000 1.0000000 1.00000000 1.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_31 - 55 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 0.00000e+00 3.00000e+00 0.00000e+00 1.00000000 1.0000000 3.0000000 3.0000000 3.00000000 0.0000000 0.00000000 0.0000000 1.0000000 6.0000000 1.00000000 2.0000000 1.00000000 1.00000000 2.000000 3.0000000 2.0000000 0.0000000 2.0000000 0.000000000 2.0000000 1.00000000 0.0000000 2.0000000 5.0000000 0.00000000 0.0000000 1.00000000 1.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_32 - 56 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 1.00000e+00 0.00000e+00 0.00000e+00 3.00000000 2.0000000 5.0000000 3.0000000 3.00000000 3.0000000 1.00000000 2.0000000 1.0000000 1.0000000 1.00000000 2.0000000 1.00000000 2.00000000 2.000000 2.0000000 1.0000000 2.0000000 1.0000000 1.000000000 1.0000000 0.00000000 2.0000000 1.0000000 1.0000000 1.00000000 0.0000000 0.00000000 1.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_33 - 57 1 1 0 0 50 0.00000e+00 0.00000e+00 2.00000e+00 3.0000000 1.00000e+00 1.00000e+00 1.00000e+00 2.00000000 2.0000000 2.0000000 3.0000000 1.00000000 2.0000000 1.00000000 3.0000000 1.0000000 1.0000000 0.00000000 1.0000000 0.00000000 2.00000000 0.000000 1.0000000 4.0000000 1.0000000 0.0000000 6.000000000 0.0000000 1.00000000 0.0000000 1.0000000 1.0000000 1.00000000 3.0000000 0.00000000 1.000000000 0.00000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_34 - 58 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 0.00000e+00 2.00000e+00 1.00000e+00 0.00000000 4.0000000 3.0000000 0.0000000 4.00000000 1.0000000 3.00000000 2.0000000 1.0000000 2.0000000 4.00000000 2.0000000 2.00000000 4.00000000 2.000000 1.0000000 2.0000000 1.0000000 0.0000000 2.000000000 1.0000000 0.00000000 0.0000000 0.0000000 1.0000000 1.00000000 2.0000000 0.00000000 0.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_35 - 59 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.00000e+00 0.00000e+00 0.00000e+00 0.00000000 0.0000000 1.0000000 2.0000000 2.00000000 3.0000000 0.00000000 1.0000000 3.0000000 1.0000000 3.00000000 3.0000000 4.00000000 5.00000000 3.000000 1.0000000 2.0000000 2.0000000 3.0000000 0.000000000 2.0000000 1.00000000 0.0000000 3.0000000 2.0000000 0.00000000 1.0000000 0.00000000 0.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_36 - 60 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 3.00000e+00 0.00000e+00 1.00000e+00 0.00000000 4.0000000 3.0000000 3.0000000 3.00000000 3.0000000 1.00000000 0.0000000 2.0000000 0.0000000 1.00000000 2.0000000 0.00000000 3.00000000 0.000000 2.0000000 4.0000000 1.0000000 2.0000000 1.000000000 1.0000000 2.00000000 2.0000000 2.0000000 0.0000000 1.00000000 0.0000000 0.00000000 2.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_37 - 61 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.00000e+00 0.00000e+00 0.00000e+00 1.00000000 2.0000000 3.0000000 8.0000000 3.00000000 3.0000000 1.00000000 0.0000000 0.0000000 3.0000000 3.00000000 2.0000000 3.00000000 1.00000000 3.000000 1.0000000 0.0000000 0.0000000 0.0000000 1.000000000 1.0000000 3.00000000 2.0000000 2.0000000 0.0000000 0.00000000 1.0000000 0.00000000 0.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_38 - 62 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.00000e+00 0.00000e+00 0.00000e+00 1.00000000 1.0000000 2.0000000 2.0000000 1.00000000 0.0000000 3.00000000 4.0000000 3.0000000 5.0000000 2.00000000 0.0000000 3.00000000 4.00000000 1.000000 3.0000000 4.0000000 0.0000000 0.0000000 0.000000000 2.0000000 0.00000000 1.0000000 0.0000000 4.0000000 0.00000000 1.0000000 0.00000000 0.000000000 0.00000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_39 - 63 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000000 1.0000000 1.0000000 3.0000000 3.00000000 3.0000000 0.00000000 3.0000000 3.0000000 1.0000000 2.00000000 2.0000000 2.00000000 3.00000000 2.000000 2.0000000 4.0000000 1.0000000 0.0000000 4.000000000 1.0000000 0.00000000 1.0000000 2.0000000 2.0000000 0.00000000 0.0000000 0.00000000 0.000000000 0.00000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_40 - 64 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 1.00000e+00 1.00000e+00 1.00000000 2.0000000 2.0000000 6.0000000 1.00000000 2.0000000 1.00000000 2.0000000 2.0000000 2.0000000 2.00000000 3.0000000 1.00000000 1.00000000 2.000000 3.0000000 2.0000000 1.0000000 4.0000000 0.000000000 3.0000000 1.00000000 1.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 1.000000000 2.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_41 - 65 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000000 3.0000000 2.0000000 2.0000000 1.00000000 1.0000000 1.00000000 0.0000000 2.0000000 2.0000000 4.00000000 5.0000000 3.00000000 1.00000000 4.000000 0.0000000 4.0000000 0.0000000 3.0000000 1.000000000 1.0000000 1.00000000 1.0000000 1.0000000 1.0000000 0.00000000 0.0000000 1.00000000 1.000000000 0.00000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_42 - 66 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 1.00000e+00 0.00000e+00 1.00000e+00 3.00000000 2.0000000 4.0000000 0.0000000 2.00000000 2.0000000 2.00000000 2.0000000 1.0000000 2.0000000 3.00000000 2.0000000 1.00000000 1.00000000 2.000000 1.0000000 2.0000000 2.0000000 1.0000000 3.000000000 2.0000000 1.00000000 1.0000000 1.0000000 1.0000000 0.00000000 0.0000000 1.00000000 0.000000000 0.00000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_43 - 67 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000000 3.0000000 2.0000000 3.0000000 3.00000000 3.0000000 2.00000000 1.0000000 3.0000000 1.0000000 2.00000000 0.0000000 3.00000000 2.00000000 4.000000 2.0000000 2.0000000 1.0000000 2.0000000 2.000000000 1.0000000 1.00000000 2.0000000 1.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.000000000 0.00000000 2.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_44 - 68 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000000 4.0000000 4.0000000 2.0000000 0.00000000 2.0000000 0.00000000 1.0000000 4.0000000 3.0000000 2.00000000 3.0000000 2.00000000 2.00000000 2.000000 1.0000000 1.0000000 0.0000000 2.0000000 1.000000000 0.0000000 0.00000000 2.0000000 4.0000000 2.0000000 2.00000000 0.0000000 0.00000000 0.000000000 2.00000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_45 - 69 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 2.00000e+00 0.00000e+00 0.00000e+00 0.00000000 0.0000000 4.0000000 3.0000000 3.00000000 2.0000000 3.00000000 3.0000000 2.0000000 0.0000000 2.00000000 1.0000000 2.00000000 2.00000000 0.000000 1.0000000 1.0000000 0.0000000 1.0000000 3.000000000 2.0000000 5.00000000 2.0000000 0.0000000 0.0000000 1.00000000 0.0000000 1.00000000 1.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_46 - 70 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000000 0.0000000 1.0000000 5.0000000 1.00000000 2.0000000 1.00000000 3.0000000 2.0000000 1.0000000 4.00000000 0.0000000 2.00000000 3.00000000 3.000000 1.0000000 3.0000000 3.0000000 3.0000000 1.000000000 1.0000000 0.00000000 2.0000000 1.0000000 1.0000000 1.00000000 0.0000000 0.00000000 0.000000000 0.00000000 0.00000000 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_47 - 71 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000000 0.0000000 4.0000000 4.0000000 5.00000000 0.0000000 1.00000000 6.0000000 4.0000000 0.0000000 1.00000000 2.0000000 1.00000000 1.00000000 3.000000 1.0000000 4.0000000 2.0000000 2.0000000 1.000000000 2.0000000 1.00000000 1.0000000 2.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.000000000 0.00000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_48 - 72 1 1 0 0 50 0.00000e+00 1.00000e+00 1.00000e+00 3.0000000 0.00000e+00 1.00000e+00 3.00000e+00 0.00000000 1.0000000 1.0000000 5.0000000 2.00000000 1.0000000 3.00000000 2.0000000 2.0000000 4.0000000 1.00000000 0.0000000 0.00000000 2.00000000 0.000000 3.0000000 1.0000000 2.0000000 2.0000000 2.000000000 0.0000000 0.00000000 2.0000000 1.0000000 0.0000000 2.00000000 0.0000000 1.00000000 1.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_49 - 73 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 3.00000e+00 0.00000000 1.0000000 4.0000000 4.0000000 2.00000000 4.0000000 3.00000000 1.0000000 1.0000000 2.0000000 2.00000000 2.0000000 0.00000000 4.00000000 1.000000 2.0000000 1.0000000 3.0000000 1.0000000 1.000000000 0.0000000 1.00000000 1.0000000 1.0000000 0.0000000 1.00000000 1.0000000 1.00000000 0.000000000 1.00000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_50 - 74 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 1.00000e+00 1.00000e+00 0.00000e+00 0.00000000 0.0000000 2.0000000 3.0000000 0.00000000 0.0000000 4.00000000 4.0000000 4.0000000 4.0000000 3.00000000 4.0000000 2.00000000 1.00000000 2.000000 1.0000000 2.0000000 1.0000000 0.0000000 1.000000000 0.0000000 3.00000000 1.0000000 0.0000000 0.0000000 0.00000000 1.0000000 1.00000000 0.000000000 1.00000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_51 - 75 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 0.00000e+00 0.00000e+00 1.00000e+00 1.00000000 0.0000000 4.0000000 3.0000000 3.00000000 1.0000000 3.00000000 2.0000000 2.0000000 2.0000000 3.00000000 4.0000000 1.00000000 2.00000000 4.000000 1.0000000 1.0000000 2.0000000 0.0000000 1.000000000 0.0000000 0.00000000 2.0000000 0.0000000 3.0000000 0.00000000 0.0000000 0.00000000 3.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_52 - 76 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.00000e+00 0.00000e+00 0.00000e+00 0.00000000 2.0000000 3.0000000 0.0000000 3.00000000 1.0000000 3.00000000 4.0000000 2.0000000 5.0000000 1.00000000 1.0000000 1.00000000 2.00000000 3.000000 4.0000000 1.0000000 1.0000000 2.0000000 1.000000000 0.0000000 2.00000000 0.0000000 1.0000000 0.0000000 0.00000000 0.0000000 1.00000000 2.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_53 - 77 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000000 1.0000000 2.0000000 1.0000000 1.00000000 1.0000000 1.00000000 0.0000000 7.0000000 3.0000000 2.00000000 3.0000000 2.00000000 1.00000000 5.000000 2.0000000 3.0000000 1.0000000 1.0000000 2.000000000 2.0000000 2.00000000 1.0000000 2.0000000 0.0000000 2.00000000 0.0000000 0.00000000 0.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_54 - 78 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 2.00000000 1.0000000 4.0000000 3.0000000 0.00000000 2.0000000 0.00000000 1.0000000 2.0000000 3.0000000 1.00000000 2.0000000 3.00000000 3.00000000 2.000000 4.0000000 2.0000000 2.0000000 2.0000000 0.000000000 2.0000000 1.00000000 1.0000000 0.0000000 0.0000000 1.00000000 1.0000000 0.00000000 1.000000000 0.00000000 2.00000000 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_55 - 79 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000000 2.0000000 6.0000000 3.0000000 3.00000000 1.0000000 4.00000000 5.0000000 2.0000000 1.0000000 1.00000000 2.0000000 2.00000000 2.00000000 0.000000 0.0000000 1.0000000 1.0000000 2.0000000 1.000000000 0.0000000 1.00000000 0.0000000 2.0000000 1.0000000 0.00000000 2.0000000 0.00000000 1.000000000 0.00000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_56 - 80 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 1.00000e+00 2.00000000 2.0000000 3.0000000 3.0000000 0.00000000 3.0000000 1.00000000 3.0000000 3.0000000 1.0000000 2.00000000 3.0000000 3.00000000 0.00000000 1.000000 0.0000000 0.0000000 1.0000000 0.0000000 2.000000000 2.0000000 0.00000000 2.0000000 2.0000000 1.0000000 1.00000000 2.0000000 1.00000000 3.000000000 0.00000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_57 - 81 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000000 1.0000000 4.0000000 1.0000000 0.00000000 2.0000000 2.00000000 4.0000000 4.0000000 1.0000000 2.00000000 0.0000000 1.00000000 2.00000000 1.000000 2.0000000 2.0000000 4.0000000 3.0000000 3.000000000 0.0000000 1.00000000 0.0000000 1.0000000 1.0000000 1.00000000 1.0000000 1.00000000 0.000000000 0.00000000 0.00000000 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_58 - 82 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000000 5.0000000 4.0000000 5.0000000 1.00000000 2.0000000 1.00000000 0.0000000 3.0000000 3.0000000 0.00000000 1.0000000 2.00000000 1.00000000 2.000000 3.0000000 3.0000000 2.0000000 0.0000000 2.000000000 1.0000000 1.00000000 2.0000000 1.0000000 1.0000000 0.00000000 0.0000000 1.00000000 1.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_59 - 83 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 2.0000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000000 3.0000000 5.0000000 1.0000000 1.00000000 3.0000000 1.00000000 1.0000000 1.0000000 2.0000000 4.00000000 1.0000000 3.00000000 2.00000000 1.000000 3.0000000 1.0000000 1.0000000 2.0000000 2.000000000 1.0000000 1.00000000 2.0000000 1.0000000 0.0000000 1.00000000 0.0000000 1.00000000 1.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_60 - 84 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000000 2.0000000 3.0000000 2.0000000 0.00000000 0.0000000 0.00000000 0.0000000 2.0000000 2.0000000 3.00000000 5.0000000 1.00000000 1.00000000 3.000000 1.0000000 1.0000000 2.0000000 1.0000000 0.000000000 5.0000000 2.00000000 2.0000000 1.0000000 1.0000000 2.00000000 1.0000000 0.00000000 1.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_61 - 85 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 2.00000000 5.0000000 6.0000000 4.0000000 5.00000000 3.0000000 1.00000000 0.0000000 3.0000000 1.0000000 0.00000000 3.0000000 1.00000000 3.00000000 1.000000 2.0000000 1.0000000 1.0000000 2.0000000 3.000000000 1.0000000 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000 1.0000000 0.00000000 1.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_62 - 86 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 1.0000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000000 3.0000000 2.0000000 1.0000000 5.00000000 4.0000000 4.00000000 2.0000000 3.0000000 4.0000000 0.00000000 1.0000000 0.00000000 4.00000000 1.000000 0.0000000 0.0000000 3.0000000 2.0000000 0.000000000 1.0000000 1.00000000 1.0000000 0.0000000 0.0000000 0.00000000 1.0000000 1.00000000 0.000000000 4.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_63 - 87 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 3.00000e+00 1.00000e+00 1.00000e+00 0.00000000 1.0000000 3.0000000 1.0000000 4.00000000 1.0000000 0.00000000 2.0000000 1.0000000 0.0000000 5.00000000 5.0000000 2.00000000 1.00000000 2.000000 1.0000000 2.0000000 0.0000000 0.0000000 1.000000000 0.0000000 1.00000000 2.0000000 1.0000000 1.0000000 1.00000000 1.0000000 2.00000000 0.000000000 0.00000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_64 - 88 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 2.00000e+00 0.00000e+00 0.00000e+00 2.00000000 5.0000000 5.0000000 8.0000000 3.00000000 1.0000000 1.00000000 0.0000000 2.0000000 1.0000000 2.00000000 2.0000000 0.00000000 0.00000000 4.000000 0.0000000 4.0000000 0.0000000 0.0000000 1.000000000 1.0000000 0.00000000 4.0000000 0.0000000 1.0000000 0.00000000 0.0000000 0.00000000 0.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_65 - 89 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 2.00000000 2.0000000 4.0000000 5.0000000 2.00000000 6.0000000 2.00000000 3.0000000 2.0000000 1.0000000 1.00000000 1.0000000 1.00000000 1.00000000 2.000000 0.0000000 2.0000000 3.0000000 2.0000000 0.000000000 1.0000000 3.00000000 1.0000000 1.0000000 0.0000000 1.00000000 0.0000000 1.00000000 0.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_66 - 90 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 1.00000e+00 2.00000000 1.0000000 1.0000000 3.0000000 4.00000000 2.0000000 6.00000000 3.0000000 7.0000000 0.0000000 2.00000000 3.0000000 2.00000000 1.00000000 2.000000 0.0000000 1.0000000 0.0000000 1.0000000 0.000000000 1.0000000 2.00000000 1.0000000 1.0000000 1.0000000 0.00000000 1.0000000 0.00000000 1.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_67 - 91 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.00000e+00 1.00000e+00 0.00000e+00 0.00000000 0.0000000 1.0000000 1.0000000 0.00000000 1.0000000 1.00000000 3.0000000 0.0000000 5.0000000 3.00000000 3.0000000 6.00000000 3.00000000 3.000000 2.0000000 2.0000000 2.0000000 1.0000000 1.000000000 2.0000000 3.00000000 0.0000000 1.0000000 0.0000000 0.00000000 0.0000000 1.00000000 2.000000000 0.00000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_68 - 92 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 0.00000e+00 1.00000e+00 1.00000e+00 0.00000000 3.0000000 1.0000000 3.0000000 1.00000000 0.0000000 3.00000000 1.0000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 4.00000000 0.000000 2.0000000 4.0000000 4.0000000 1.0000000 0.000000000 2.0000000 2.00000000 2.0000000 1.0000000 2.0000000 0.00000000 0.0000000 1.00000000 0.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_69 - 93 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 3.00000e+00 0.00000e+00 0.00000e+00 0.00000000 2.0000000 3.0000000 4.0000000 6.00000000 0.0000000 1.00000000 0.0000000 1.0000000 2.0000000 0.00000000 2.0000000 0.00000000 3.00000000 2.000000 1.0000000 4.0000000 3.0000000 2.0000000 0.000000000 2.0000000 1.00000000 2.0000000 0.0000000 2.0000000 0.00000000 0.0000000 1.00000000 0.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_70 - 94 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.00000e+00 1.00000e+00 0.00000e+00 1.00000000 3.0000000 1.0000000 3.0000000 0.00000000 2.0000000 3.00000000 1.0000000 5.0000000 3.0000000 0.00000000 1.0000000 1.00000000 0.00000000 0.000000 1.0000000 3.0000000 1.0000000 3.0000000 2.000000000 2.0000000 1.00000000 2.0000000 1.0000000 1.0000000 2.00000000 2.0000000 2.00000000 0.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_71 - 96 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000000 1.0000000 2.0000000 3.0000000 3.00000000 1.0000000 2.00000000 1.0000000 2.0000000 3.0000000 2.00000000 2.0000000 3.00000000 2.00000000 5.000000 1.0000000 1.0000000 1.0000000 0.0000000 1.000000000 1.0000000 2.00000000 1.0000000 0.0000000 0.0000000 2.00000000 3.0000000 0.00000000 1.000000000 1.00000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_72 - 97 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 3.00000e+00 1.00000e+00 0.00000e+00 0.00000000 1.0000000 0.0000000 2.0000000 1.00000000 4.0000000 3.00000000 2.0000000 4.0000000 2.0000000 4.00000000 2.0000000 3.00000000 0.00000000 1.000000 1.0000000 2.0000000 0.0000000 2.0000000 0.000000000 1.0000000 0.00000000 1.0000000 0.0000000 2.0000000 2.00000000 1.0000000 1.00000000 0.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_73 - 98 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000000 5.0000000 7.0000000 2.0000000 2.00000000 0.0000000 3.00000000 2.0000000 0.0000000 0.0000000 1.00000000 5.0000000 1.00000000 1.00000000 1.000000 1.0000000 2.0000000 1.0000000 1.0000000 2.000000000 2.0000000 1.00000000 1.0000000 0.0000000 1.0000000 3.00000000 2.0000000 1.00000000 0.000000000 0.00000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_74 - 99 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.00000e+00 0.00000e+00 2.00000e+00 0.00000000 5.0000000 4.0000000 9.0000000 2.00000000 1.0000000 2.00000000 4.0000000 0.0000000 2.0000000 2.00000000 0.0000000 0.00000000 0.00000000 0.000000 2.0000000 1.0000000 2.0000000 2.0000000 0.000000000 3.0000000 1.00000000 0.0000000 1.0000000 2.0000000 0.00000000 0.0000000 0.00000000 0.000000000 0.00000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_75 - 62 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 1.0000000 0.00000e+00 2.00000e+00 5.00000e+00 2.00000000 2.0000000 3.0000000 10.0000000 7.00000000 6.0000000 6.00000000 8.0000000 4.0000000 5.0000000 3.00000000 2.0000000 3.00000000 2.00000000 1.000000 3.0000000 3.0000000 4.0000000 4.0000000 2.000000000 2.0000000 2.00000000 2.0000000 1.0000000 0.0000000 1.00000000 1.0000000 1.00000000 0.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_76 - 64 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 4.00000e+00 7.00000e+00 6.00000000 2.0000000 5.0000000 1.0000000 3.00000000 3.0000000 1.00000000 3.0000000 4.0000000 2.0000000 9.00000000 4.0000000 1.00000000 8.00000000 4.000000 7.0000000 4.0000000 3.0000000 4.0000000 1.000000000 1.0000000 3.00000000 0.0000000 2.0000000 2.0000000 2.00000000 0.0000000 0.00000000 0.000000000 2.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_77 - 66 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.00000e+00 6.00000e+00 7.00000e+00 6.00000000 3.0000000 4.0000000 5.0000000 3.00000000 4.0000000 5.00000000 7.0000000 6.0000000 3.0000000 4.00000000 5.0000000 3.00000000 3.00000000 3.000000 2.0000000 1.0000000 1.0000000 1.0000000 2.000000000 6.0000000 1.00000000 2.0000000 0.0000000 1.0000000 2.00000000 1.0000000 1.00000000 0.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_78 - 68 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.00000e+00 6.00000e+00 4.00000e+00 5.00000000 7.0000000 2.0000000 4.0000000 9.00000000 5.0000000 6.00000000 4.0000000 5.0000000 2.0000000 1.00000000 4.0000000 3.00000000 2.00000000 1.000000 3.0000000 1.0000000 2.0000000 2.0000000 3.000000000 4.0000000 1.00000000 3.0000000 2.0000000 2.0000000 0.00000000 1.0000000 1.00000000 0.000000000 0.00000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_79 - 70 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 7.00000e+00 5.00000e+00 8.00000000 3.0000000 4.0000000 0.0000000 5.00000000 4.0000000 6.00000000 2.0000000 5.0000000 2.0000000 5.00000000 4.0000000 2.00000000 3.00000000 2.000000 3.0000000 3.0000000 2.0000000 3.0000000 1.000000000 2.0000000 2.00000000 0.0000000 4.0000000 4.0000000 1.00000000 1.0000000 1.00000000 2.000000000 1.00000000 2.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_80 - 72 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.00000e+00 1.00000e+00 7.00000e+00 8.00000000 3.0000000 3.0000000 2.0000000 5.00000000 5.0000000 4.00000000 4.0000000 8.0000000 2.0000000 2.00000000 1.0000000 5.00000000 2.00000000 2.000000 4.0000000 4.0000000 7.0000000 0.0000000 3.000000000 2.0000000 2.00000000 3.0000000 1.0000000 0.0000000 2.00000000 1.0000000 1.00000000 1.000000000 1.00000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_81 - 74 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 1.00000e+00 4.00000e+00 3.00000000 2.0000000 2.0000000 6.0000000 7.00000000 11.0000000 5.00000000 5.0000000 7.0000000 4.0000000 2.00000000 1.0000000 4.00000000 3.00000000 2.000000 2.0000000 0.0000000 3.0000000 3.0000000 1.000000000 2.0000000 2.00000000 2.0000000 3.0000000 3.0000000 0.00000000 5.0000000 1.00000000 3.000000000 0.00000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_82 - 76 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.00000e+00 5.00000e+00 4.00000e+00 1.00000000 1.0000000 1.0000000 6.0000000 5.00000000 10.0000000 6.00000000 4.0000000 2.0000000 4.0000000 2.00000000 0.0000000 2.00000000 5.00000000 4.000000 6.0000000 7.0000000 6.0000000 2.0000000 3.000000000 1.0000000 4.00000000 2.0000000 0.0000000 1.0000000 2.00000000 1.0000000 1.00000000 0.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_83 - 78 1 2 0 0 100 2.00000e+00 0.00000e+00 0.00000e+00 1.0000000 0.00000e+00 6.00000e+00 6.00000e+00 7.00000000 3.0000000 1.0000000 2.0000000 4.00000000 1.0000000 5.00000000 3.0000000 4.0000000 3.0000000 10.00000000 6.0000000 3.00000000 4.00000000 3.000000 3.0000000 2.0000000 3.0000000 2.0000000 1.000000000 1.0000000 4.00000000 2.0000000 0.0000000 1.0000000 1.00000000 1.0000000 3.00000000 0.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 #_84 - 80 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.00000e+00 3.00000e+00 6.00000e+00 4.00000000 3.0000000 6.0000000 2.0000000 7.00000000 8.0000000 3.00000000 3.0000000 2.0000000 7.0000000 2.00000000 3.0000000 1.00000000 3.00000000 3.000000 3.0000000 0.0000000 4.0000000 5.0000000 3.000000000 4.0000000 1.00000000 2.0000000 2.0000000 2.0000000 2.00000000 0.0000000 0.00000000 1.000000000 1.00000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_85 - 82 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.00000e+00 7.00000e+00 6.00000e+00 7.00000000 1.0000000 2.0000000 1.0000000 4.00000000 3.0000000 3.00000000 2.0000000 1.0000000 3.0000000 4.00000000 5.0000000 8.00000000 2.00000000 4.000000 4.0000000 1.0000000 3.0000000 4.0000000 2.000000000 4.0000000 0.00000000 2.0000000 3.0000000 2.0000000 2.00000000 3.0000000 1.00000000 0.000000000 2.00000000 1.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_86 - 84 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 0.0000000 1.00000e+00 2.00000e+00 6.00000e+00 6.00000000 2.0000000 6.0000000 7.0000000 5.00000000 2.0000000 7.00000000 4.0000000 3.0000000 1.0000000 4.00000000 1.0000000 3.00000000 4.00000000 4.000000 3.0000000 3.0000000 2.0000000 2.0000000 1.000000000 2.0000000 3.00000000 1.0000000 2.0000000 1.0000000 2.00000000 4.0000000 1.00000000 2.000000000 0.00000000 0.00000000 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_87 - 86 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.00000e+00 5.00000e+00 1.00000e+01 7.00000000 6.0000000 4.0000000 3.0000000 4.00000000 4.0000000 5.00000000 5.0000000 3.0000000 3.0000000 6.00000000 3.0000000 1.00000000 1.00000000 4.000000 2.0000000 2.0000000 3.0000000 1.0000000 2.000000000 4.0000000 2.00000000 0.0000000 1.0000000 0.0000000 2.00000000 4.0000000 0.00000000 1.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_88 - 88 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 1.0000000 0.00000e+00 4.00000e+00 1.40000e+01 16.00000000 5.0000000 4.0000000 3.0000000 2.00000000 1.0000000 6.00000000 3.0000000 4.0000000 1.0000000 3.00000000 0.0000000 1.00000000 2.00000000 3.000000 2.0000000 0.0000000 4.0000000 2.0000000 2.000000000 1.0000000 1.00000000 1.0000000 1.0000000 3.0000000 3.00000000 1.0000000 3.00000000 0.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_89 - 90 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 3.00000e+00 4.00000e+00 4.00000e+00 5.00000000 6.0000000 1.0000000 7.0000000 1.00000000 3.0000000 4.00000000 9.0000000 7.0000000 3.0000000 6.00000000 4.0000000 5.00000000 1.00000000 2.000000 2.0000000 2.0000000 4.0000000 1.0000000 5.000000000 2.0000000 1.00000000 0.0000000 2.0000000 1.0000000 2.00000000 0.0000000 2.00000000 0.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_90 - 92 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.00000e+00 5.00000e+00 8.00000e+00 4.00000000 4.0000000 2.0000000 2.0000000 0.00000000 4.0000000 3.00000000 4.0000000 5.0000000 2.0000000 5.00000000 1.0000000 3.00000000 5.00000000 6.000000 4.0000000 7.0000000 8.0000000 5.0000000 1.000000000 3.0000000 1.00000000 2.0000000 1.0000000 1.0000000 1.00000000 0.0000000 0.00000000 1.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_91 - 94 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.00000e+00 5.00000e+00 4.00000e+00 1.00000000 4.0000000 2.0000000 5.0000000 6.00000000 3.0000000 7.00000000 3.0000000 0.0000000 4.0000000 3.00000000 2.0000000 2.00000000 2.00000000 2.000000 2.0000000 3.0000000 4.0000000 7.0000000 3.000000000 4.0000000 6.00000000 3.0000000 2.0000000 0.0000000 2.00000000 2.0000000 0.00000000 3.000000000 1.00000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 #_92 - 96 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 1.00000e+00 5.00000e+00 1.00000e+01 10.00000000 2.0000000 0.0000000 6.0000000 4.00000000 4.0000000 2.00000000 3.0000000 2.0000000 4.0000000 1.00000000 2.0000000 6.00000000 3.00000000 4.000000 4.0000000 3.0000000 0.0000000 1.0000000 3.000000000 2.0000000 5.00000000 1.0000000 1.0000000 3.0000000 1.00000000 3.0000000 0.00000000 2.000000000 0.00000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_93 - 98 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 1.0000000 1.00000e+00 6.00000e+00 9.00000e+00 6.00000000 5.0000000 0.0000000 3.0000000 4.00000000 2.0000000 3.00000000 3.0000000 6.0000000 3.0000000 4.00000000 3.0000000 3.00000000 5.00000000 3.000000 4.0000000 2.0000000 1.0000000 0.0000000 6.000000000 2.0000000 1.00000000 2.0000000 1.0000000 2.0000000 0.00000000 2.0000000 2.00000000 2.000000000 1.00000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_94 - 100 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.00000e+00 9.00000e+00 9.00000e+00 7.00000000 7.0000000 2.0000000 8.0000000 6.00000000 5.0000000 4.00000000 7.0000000 0.0000000 3.0000000 3.00000000 2.0000000 2.00000000 1.00000000 3.000000 1.0000000 2.0000000 0.0000000 2.0000000 1.000000000 5.0000000 2.00000000 0.0000000 2.0000000 1.0000000 0.00000000 1.0000000 1.00000000 1.000000000 1.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_95 --9999 0 0 0 0 0 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.00000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.000000000 0.00000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_terminator -25 #_N_agebins -# -#_agebin_vector -1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 #_agebin_vector -# -#_ageing_error -1 #_N_ageerror_definitions -#_age0 age1 age2 age3 age4 age5 age6 age7 age8 age9 age10 age11 age12 age13 age14 age15 age16 age17 age18 age19 age20 age21 age22 age23 age24 age25 --1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 #_1 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 #_2 -# -#_age_info -#_mintailcomp addtocomp combine_M_F CompressBins CompError ParmSelect minsamplesize --1 1e-10 0 0 0 0 1 #_Fishery --1 1e-10 0 0 0 0 1 #_Survey -3 #_Lbin_method: 1=poplenbins; 2=datalenbins; 3=lengths - #_combine males into females at or below this bin number -#_Yr Seas FltSvy Gender Part Ageerr Lbin_lo Lbin_hi Nsamp a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 - 26 1 1 0 0 1 -1 -1 50 2 10 8 8 3 2 1 3 1 3 3 2 2 0 0 1 0 1 0 0 0 0 0 0 0 #_1 - 27 1 1 0 0 1 -1 -1 50 1 4 10 7 6 4 3 3 1 2 2 0 2 1 0 1 1 0 0 1 0 0 0 0 1 #_2 - 28 1 1 0 0 1 -1 -1 50 2 6 4 9 9 8 2 1 0 3 0 2 1 1 2 0 0 0 0 0 0 0 0 0 0 #_3 - 29 1 1 0 0 1 -1 -1 50 1 13 9 5 4 4 4 3 2 3 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 #_4 - 30 1 1 0 0 1 -1 -1 50 1 11 11 4 3 6 4 3 2 3 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 #_5 - 31 1 1 0 0 1 -1 -1 50 6 10 10 4 6 2 2 4 0 3 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_6 - 32 1 1 0 0 1 -1 -1 50 2 10 11 10 4 2 1 2 2 2 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 #_7 - 33 1 1 0 0 1 -1 -1 50 4 8 9 10 3 4 3 4 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 #_8 - 34 1 1 0 0 1 -1 -1 50 2 8 11 9 4 2 3 1 1 1 1 0 2 1 0 0 0 0 1 2 0 1 0 0 0 #_9 - 35 1 1 0 0 1 -1 -1 50 0 19 14 2 5 0 3 0 2 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 #_10 - 36 1 1 0 0 1 -1 -1 50 0 15 14 4 2 2 3 4 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 #_11 - 37 1 1 0 0 1 -1 -1 50 3 5 9 11 5 3 2 2 6 0 1 0 0 2 0 0 0 1 0 0 0 0 0 0 0 #_12 - 38 1 1 0 0 1 -1 -1 50 0 11 11 7 3 5 4 4 2 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_13 - 39 1 1 0 0 1 -1 -1 50 2 6 9 1 8 8 6 1 1 5 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 #_14 - 40 1 1 0 0 1 -1 -1 50 1 11 7 8 4 5 5 0 1 1 3 1 1 1 0 0 0 0 0 0 1 0 0 0 0 #_15 - 41 1 1 0 0 1 -1 -1 50 7 5 12 3 8 0 2 4 2 3 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 #_16 - 42 1 1 0 0 1 -1 -1 50 3 12 5 9 3 6 0 1 2 1 0 2 3 2 0 1 0 0 0 0 0 0 0 0 0 #_17 - 43 1 1 0 0 1 -1 -1 50 2 12 8 6 7 1 7 1 3 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 #_18 - 44 1 1 0 0 1 -1 -1 50 1 24 1 4 2 4 2 4 2 2 0 1 0 0 2 0 0 0 0 0 0 1 0 0 0 #_19 - 45 1 1 0 0 1 -1 -1 50 1 1 17 6 9 4 4 1 3 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 #_20 - 46 1 1 0 0 1 -1 -1 50 3 5 3 14 2 8 5 1 2 3 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 #_21 - 47 1 1 0 0 1 -1 -1 50 1 19 7 1 16 0 1 2 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 #_22 - 48 1 1 0 0 1 -1 -1 50 1 14 14 2 0 12 1 2 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 #_23 - 49 1 1 0 0 1 -1 -1 50 3 9 10 16 2 0 3 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 #_24 - 50 1 1 0 0 1 -1 -1 50 2 11 10 5 6 1 1 8 0 2 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 #_25 - 51 1 1 0 0 1 -1 -1 50 2 17 8 9 2 7 0 0 3 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 #_26 - 52 1 1 0 0 1 -1 -1 50 0 6 12 7 3 3 10 2 0 4 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 #_27 - 53 1 1 0 0 1 -1 -1 50 2 7 6 11 6 6 5 1 0 0 2 1 1 0 1 0 1 0 0 0 0 0 0 0 0 #_28 - 54 1 1 0 0 1 -1 -1 50 1 11 8 6 13 3 0 2 2 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 #_29 - 55 1 1 0 0 1 -1 -1 50 4 4 4 9 4 7 5 3 4 3 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 #_30 - 56 1 1 0 0 1 -1 -1 50 2 21 7 6 4 2 4 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_31 - 57 1 1 0 0 1 -1 -1 50 2 9 14 6 3 3 1 4 1 2 2 1 1 0 0 0 1 0 0 0 0 0 0 0 0 #_32 - 58 1 1 0 0 1 -1 -1 50 2 8 10 12 8 5 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 #_33 - 59 1 1 0 0 1 -1 -1 50 3 10 8 3 11 6 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_34 - 60 1 1 0 0 1 -1 -1 50 4 15 8 7 5 5 1 1 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 #_35 - 61 1 1 0 0 1 -1 -1 50 2 19 8 7 4 2 4 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_36 - 62 1 1 0 0 1 -1 -1 50 4 5 20 6 2 5 2 4 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_37 - 63 1 1 0 0 1 -1 -1 50 0 12 9 12 8 2 2 3 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 #_38 - 64 1 1 0 0 1 -1 -1 50 2 12 10 4 9 5 1 2 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 #_39 - 65 1 1 0 0 1 -1 -1 50 1 13 5 9 3 9 4 0 0 2 0 0 0 1 0 2 0 0 0 1 0 0 0 0 0 #_40 - 66 1 1 0 0 1 -1 -1 50 3 13 6 9 4 5 6 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_41 - 67 1 1 0 0 1 -1 -1 50 1 10 9 9 6 3 3 5 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_42 - 68 1 1 0 0 1 -1 -1 50 1 12 13 5 6 1 1 4 3 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 #_43 - 69 1 1 0 0 1 -1 -1 50 0 5 11 15 3 4 3 3 1 0 1 1 0 2 0 0 1 0 0 0 0 0 0 0 0 #_44 - 70 1 1 0 0 1 -1 -1 50 5 8 9 4 6 4 4 1 2 1 2 1 1 0 0 1 0 1 0 0 0 0 0 0 0 #_45 - 71 1 1 0 0 1 -1 -1 50 1 15 10 10 3 2 2 2 0 2 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 #_46 - 72 1 1 0 0 1 -1 -1 50 5 10 10 7 4 0 5 4 2 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 #_47 - 73 1 1 0 0 1 -1 -1 50 0 21 2 8 7 1 4 2 2 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 #_48 - 74 1 1 0 0 1 -1 -1 50 2 12 23 3 2 2 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_49 - 75 1 1 0 0 1 -1 -1 50 0 19 6 16 2 4 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_50 - 76 1 1 0 0 1 -1 -1 50 0 12 13 3 11 2 3 3 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 #_51 - 77 1 1 0 0 1 -1 -1 50 4 8 6 11 4 11 2 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_52 - 78 1 1 0 0 1 -1 -1 50 0 10 10 6 10 0 5 4 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_53 - 79 1 1 0 0 1 -1 -1 50 3 14 11 2 8 2 0 5 2 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 #_54 - 80 1 1 0 0 1 -1 -1 50 4 8 15 4 1 5 3 1 2 1 3 0 1 0 1 0 1 0 0 0 0 0 0 0 0 #_55 - 81 1 1 0 0 1 -1 -1 50 0 8 9 14 2 5 0 5 0 5 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 #_56 - 82 1 1 0 0 1 -1 -1 50 3 10 9 6 7 3 0 3 4 0 2 1 0 1 0 0 0 0 0 0 0 0 0 1 0 #_57 - 83 1 1 0 0 1 -1 -1 50 3 11 11 5 3 2 4 5 0 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 #_58 - 84 1 1 0 0 1 -1 -1 50 2 15 10 7 2 1 2 2 3 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 #_59 - 85 1 1 0 0 1 -1 -1 50 1 14 11 5 7 5 2 1 1 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 #_60 - 86 1 1 0 0 1 -1 -1 50 2 12 14 6 4 2 5 2 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 #_61 - 87 1 1 0 0 1 -1 -1 50 1 9 9 12 2 5 5 1 2 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 #_62 - 88 1 1 0 0 1 -1 -1 50 2 22 4 5 9 1 2 2 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 #_63 - 89 1 1 0 0 1 -1 -1 50 2 15 16 3 3 4 0 3 1 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 #_64 - 90 1 1 0 0 1 -1 -1 50 0 13 14 8 2 3 3 3 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 #_65 - 91 1 1 0 0 1 -1 -1 50 0 9 5 16 9 3 3 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_66 - 92 1 1 0 0 1 -1 -1 50 3 8 1 8 15 8 3 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_67 - 93 1 1 0 0 1 -1 -1 50 3 8 5 6 6 12 4 0 0 2 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 #_68 - 94 1 1 0 0 1 -1 -1 50 4 8 12 3 4 3 7 5 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_69 - 96 1 1 0 0 1 -1 -1 50 1 21 8 7 2 2 1 2 2 2 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 #_70 - 97 1 1 0 0 1 -1 -1 50 2 10 9 4 3 6 2 2 3 5 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 #_71 - 98 1 1 0 0 1 -1 -1 50 5 10 8 6 3 3 5 3 3 1 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_72 - 99 1 1 0 0 1 -1 -1 50 4 17 9 1 6 3 1 1 1 1 1 2 1 1 0 1 0 0 0 0 0 0 0 0 0 #_73 - 62 1 2 0 0 1 -1 -1 100 0 20 39 12 6 6 6 4 0 3 0 0 3 0 0 0 1 0 0 0 0 0 0 0 0 #_74 - 64 1 2 0 0 1 -1 -1 100 0 20 19 12 20 6 4 4 4 4 1 2 1 0 1 0 0 1 1 0 0 0 0 0 0 #_75 - 66 1 2 0 0 1 -1 -1 100 2 22 29 15 9 6 8 3 0 0 2 0 0 0 1 0 1 1 1 0 0 0 0 0 0 #_76 - 68 1 2 0 0 1 -1 -1 100 2 25 20 16 9 4 5 2 9 3 3 1 0 0 0 0 0 0 0 1 0 0 0 0 0 #_77 - 70 1 2 0 0 1 -1 -1 100 1 30 22 10 12 5 4 4 5 2 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 #_78 - 72 1 2 0 0 1 -1 -1 100 1 18 31 12 15 4 6 2 2 1 1 2 3 1 0 0 0 0 0 0 0 0 0 0 1 #_79 - 74 1 2 0 0 1 -1 -1 100 1 9 42 10 19 7 3 3 0 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 #_80 - 76 1 2 0 0 1 -1 -1 100 0 16 31 5 22 2 8 2 1 2 3 2 3 2 0 0 0 0 0 1 0 0 0 0 0 #_81 - 78 1 2 0 0 1 -1 -1 100 0 17 14 11 21 1 18 5 3 4 1 0 1 1 2 0 0 0 1 0 0 0 0 0 0 #_82 - 80 1 2 0 0 1 -1 -1 100 0 29 23 15 6 2 9 2 7 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 #_83 - 82 1 2 0 0 1 -1 -1 100 1 23 11 11 17 10 2 3 4 1 11 1 3 1 0 0 0 0 0 0 1 0 0 0 0 #_84 - 84 1 2 0 0 1 -1 -1 100 1 27 21 16 4 8 8 5 0 3 3 0 1 1 2 0 0 0 0 0 0 0 0 0 0 #_85 - 86 1 2 0 0 1 -1 -1 100 0 17 36 11 9 7 3 3 3 2 2 3 2 0 0 1 0 1 0 0 0 0 0 0 0 #_86 - 88 1 2 0 0 1 -1 -1 100 1 48 7 4 14 10 5 3 1 0 0 0 1 2 0 0 0 1 0 0 3 0 0 0 0 #_87 - 90 1 2 0 0 1 -1 -1 100 0 23 26 20 7 4 8 0 7 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_88 - 92 1 2 0 0 1 -1 -1 100 1 13 16 13 20 11 4 4 4 4 5 1 1 1 1 0 0 0 0 0 1 0 0 0 0 #_89 - 94 1 2 0 0 1 -1 -1 100 0 18 18 10 11 9 14 10 2 2 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 #_90 - 96 1 2 0 0 1 -1 -1 100 0 35 11 16 12 6 4 4 4 2 2 2 0 1 0 0 0 0 1 0 0 0 0 0 0 #_91 - 98 1 2 0 0 1 -1 -1 100 1 21 13 23 9 13 5 6 1 2 0 2 1 0 0 1 1 1 0 0 0 0 0 0 0 #_92 - 100 1 2 0 0 1 -1 -1 100 1 29 32 16 2 9 1 2 1 1 0 1 3 1 1 0 0 0 0 0 0 0 0 0 0 #_93 - 95 1 1 0 0 1 41 41 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_811 - 95 1 1 0 0 1 47 47 7 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_831 - 95 1 1 0 0 1 50 50 3 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_841 - 95 1 1 0 0 1 62 62 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_881 - 95 1 1 0 0 1 65 65 5 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_891 - 95 1 1 0 0 1 74 74 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_921 - 95 1 1 0 0 1 83 83 5 0 0 0 2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_95 - 95 1 1 0 0 1 95 95 2 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_99 - 95 1 1 0 0 1 98 98 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_100 - 95 1 1 0 0 1 107 107 2 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_103 - 95 1 1 0 0 1 110 110 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_104 - 100 1 1 0 0 1 32 32 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_123 - 100 1 1 0 0 1 47 47 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_128 - 100 1 1 0 0 1 50 50 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_129 - 100 1 1 0 0 1 53 53 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_130 - 100 1 1 0 0 1 65 65 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_134 - 100 1 1 0 0 1 68 68 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_135 - 100 1 1 0 0 1 74 74 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_137 - 100 1 1 0 0 1 77 77 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_138 - 100 1 1 0 0 1 80 80 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_139 - 100 1 1 0 0 1 83 83 3 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_140 - 100 1 1 0 0 1 86 86 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_141 - 100 1 1 0 0 1 89 89 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_142 - 100 1 1 0 0 1 95 95 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_144 - 100 1 1 0 0 1 101 101 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_146 - 100 1 1 0 0 1 107 107 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_148 - 100 1 1 0 0 1 110 110 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 #_149 - 100 1 1 0 0 1 119 119 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_152 --9999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_terminator -# -#_MeanSize_at_Age_obs -0 #_use_MeanSize_at_Age_obs -0 #_N_environ_variables -0 #_N_sizefreq_methods -0 #_do_tags -0 #_morphcomp_data -0 #_use_selectivity_priors -# -999 diff --git a/model_recipes/mcmc/starter.ss b/model_recipes/mcmc/starter.ss deleted file mode 100644 index 2358cbe..0000000 --- a/model_recipes/mcmc/starter.ss +++ /dev/null @@ -1,35 +0,0 @@ -#C starter file written by R function SS_writestarter -#C rerun model to get more complete formatting in starter.ss_new -#C should work with SS version: 3.30 -#C file write time: 2022-01-14 10:24:40 -# -ss3.dat #_datfile -em.ctl #_ctlfile -0 #_init_values_src -0 #_run_display_detail -1 #_detailed_age_structure -0 #_checkup -0 #_parmtrace -1 #_cumreport -0 #_prior_like -1 #_soft_bounds -2 #_N_bootstraps -100 #_last_estimation_phase -0 #_MCMCburn -1 #_MCMCthin -0 #_jitter_fraction --1 #_minyr_sdreport --2 #_maxyr_sdreport -0 #_N_STD_yrs -1e-04 #_converge_criterion -0 #_retro_yr -1 #_min_age_summary_bio -1 #_depl_basis -1 #_depl_denom_frac -4 #_SPR_basis -1 #_F_report_units -0 #_F_report_basis -0 #_MCMC_output_detail -0 #_ALK_tolerance -# -3.3 #_final diff --git a/model_recipes/reference_run_orig/em.ctl b/model_recipes/reference_run_orig/em.ctl deleted file mode 100644 index 9d3a43a..0000000 --- a/model_recipes/reference_run_orig/em.ctl +++ /dev/null @@ -1,175 +0,0 @@ -#V3.30 -#C file created using the SS_writectl function in the R package r4ss -#C file write time: 2022-01-18 13:21:07 -# -0 # 0 means do not read wtatage.ss; 1 means read and usewtatage.ss and also read and use growth parameters -1 #_N_Growth_Patterns -1 #_N_platoons_Within_GrowthPattern -2 # recr_dist_method for parameters -1 # not yet implemented; Future usage:Spawner-Recruitment; 1=global; 2=by area -1 # number of recruitment settlement assignments -0 # unused option -# for each settlement assignment: -#_GPattern month area age -1 1 1 0 #_recr_dist_pattern1 -# -#_Cond 0 # N_movement_definitions goes here if N_areas > 1 -#_Cond 1.0 # first age that moves (real age at begin of season, not integer) also cond on do_migration>0 -#_Cond 1 1 1 2 4 10 # example move definition for seas=1, morph=1, source=1 dest=2, age1=4, age2=10 -# -0 #_Nblock_Patterns -#_Cond 0 #_blocks_per_pattern -# begin and end years of blocks -# -# controls for all timevary parameters -1 #_env/block/dev_adjust_method for all time-vary parms (1=warn relative to base parm bounds; 3=no bound check) -# -# AUTOGEN -0 0 0 0 0 # autogen: 1st element for biology, 2nd for SR, 3rd for Q, 4th reserved, 5th for selex -# where: 0 = autogen all time-varying parms; 1 = read each time-varying parm line; 2 = read then autogen if parm min==-12345 -# -# setup for M, growth, maturity, fecundity, recruitment distibution, movement -# -0 #_natM_type:_0=1Parm; 1=N_breakpoints;_2=Lorenzen;_3=agespecific;_4=agespec_withseasinterpolate -#_no additional input for selected M option; read 1P per morph -1 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2; 3=age_specific_K_incr; 4=age_specific_K_decr;5=age_specific_K_each; 6=NA; 7=NA; 8=growth cessation -1 #_Age(post-settlement)_for_L1;linear growth below this -999 #_Growth_Age_for_L2 (999 to use as Linf) --999 #_exponential decay for growth above maxage (value should approx initial Z; -999 replicates 3.24; -998 to not allow growth above maxage) -0 #_placeholder for future growth feature -# -0 #_SD_add_to_LAA (set to 0.1 for SS2 V1.x compatibility) -0 #_CV_Growth_Pattern: 0 CV=f(LAA); 1 CV=F(A); 2 SD=F(LAA); 3 SD=F(A); 4 logSD=F(A) -1 #_maturity_option: 1=length logistic; 2=age logistic; 3=read age-maturity matrix by growth_pattern; 4=read age-fecundity; 5=disabled; 6=read length-maturity -0 #_First_Mature_Age -1 #_fecundity option:(1)eggs=Wt*(a+b*Wt);(2)eggs=a*L^b;(3)eggs=a*Wt^b; (4)eggs=a+b*L; (5)eggs=a+b*W -0 #_hermaphroditism option: 0=none; 1=female-to-male age-specific fxn; -1=male-to-female age-specific fxn -1 #_parameter_offset_approach (1=none, 2= M, G, CV_G as offset from female-GP1, 3=like SS2 V1.x) -# -#_growth_parms -#_LO HI INIT PRIOR PR_SD PR_type PHASE env_var&link dev_link dev_minyr dev_maxyr dev_PH Block Block_Fxn - 1.0e-02 1.800000 2.000e-01 1.000e-01 0.8 0 -3 0 0 0 0 0 0 0 #_NatM_p_1_Fem_GP_1 - 1.0e+00 100.000000 2.000e+01 3.080e+01 0.2 0 4 0 0 0 0 0 0 0 #_L_at_Amin_Fem_GP_1 - 6.6e+00 660.000000 1.320e+02 1.201e+02 0.2 0 4 0 0 0 0 0 0 0 #_L_at_Amax_Fem_GP_1 - 1.0e-02 1.000000 2.000e-01 2.500e-01 0.8 0 4 0 0 0 0 0 0 0 #_VonBert_K_Fem_GP_1 - 1.0e-02 0.500000 1.000e-01 1.000e-01 0.8 0 5 0 0 0 0 0 0 0 #_CV_young_Fem_GP_1 - 1.0e-02 0.500000 1.000e-01 1.000e-01 0.8 0 5 0 0 0 0 0 0 0 #_CV_old_Fem_GP_1 - 0.0e+00 3.000000 6.800e-06 6.800e-06 0.0 0 -1 0 0 0 0 0 0 0 #_Wtlen_1_Fem_GP_1 - 2.5e+00 3.500000 3.101e+00 3.101e+00 0.2 0 -3 0 0 0 0 0 0 0 #_Wtlen_2_Fem_GP_1 - 1.0e+01 50.000000 3.818e+01 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Mat50%_Fem_GP_1 --2.0e+00 2.000000 -2.760e-01 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Mat_slope_Fem_GP_1 --3.0e+00 3.000000 1.000e+00 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Eggs/kg_inter_Fem_GP_1 --3.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -3 0 0 0 0 0 0 0 #_Eggs/kg_slope_wt_Fem_GP_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_GP_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_Area_1 --4.0e+00 4.000000 0.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_RecrDist_month_1 --4.0e+00 4.000000 1.000e+00 0.000e+00 0.0 0 -4 0 0 0 0 0 0 0 #_CohortGrowDev - 1.0e-06 0.999999 5.000e-01 5.000e-01 0.5 0 -99 0 0 0 0 0 0 0 #_FracFemale_GP_1 -#_no timevary MG parameters -# -#_seasonal_effects_on_biology_parms -0 0 0 0 0 0 0 0 0 0 #_femwtlen1,femwtlen2,mat1,mat2,fec1,fec2,Malewtlen1,malewtlen2,L1,K -#_ LO HI INIT PRIOR PR_SD PR_type PHASE -#_Cond -2 2 0 0 -1 99 -2 #_placeholder when no seasonal MG parameters -# -3 #_Spawner-Recruitment; 2=Ricker; 3=std_B-H; 4=SCAA;5=Hockey; 6=B-H_flattop; 7=survival_3Parm;8=Shepard_3Parm -0 # 0/1 to use steepness in initial equ recruitment calculation -0 # future feature: 0/1 to make realized sigmaR a function of SR curvature -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 4.0 20 18.70 10.3 10.00 0 1 0 0 0 0 0 0 0 #_SR_LN(R0) - 0.2 1 0.65 0.7 0.05 0 -4 0 0 0 0 0 0 0 #_SR_BH_steep - 0.0 2 0.40 0.8 0.80 0 -5 0 0 0 0 0 0 0 #_SR_sigmaR --5.0 5 0.00 0.0 1.00 0 -4 0 0 0 0 0 0 0 #_SR_regime - 0.0 0 0.00 0.0 0.00 0 -99 0 0 0 0 0 0 0 #_SR_autocorr -#_no timevary SR parameters -1 #do_recdev: 0=none; 1=devvector (R=F(SSB)+dev); 2=deviations (R=F(SSB)+dev); 3=deviations (R=R0*dev; dev2=R-f(SSB)); 4=like 3 with sum(dev2) adding penalty -6 # first year of main recr_devs; early devs can preceed this era -100 # last year of main recr_devs; forecast devs start in following year -3 #_recdev phase -1 # (0/1) to read 13 advanced options -1 #_recdev_early_start (0=none; neg value makes relative to recdev_start) -4 #_recdev_early_phase -0 #_forecast_recruitment phase (incl. late recr) (0 value resets to maxphase+1) -1 #_lambda for Fcast_recr_like occurring before endyr+1 -1 #_last_yr_nobias_adj_in_MPD; begin of ramp -26 #_first_yr_fullbias_adj_in_MPD; begin of plateau -99 #_last_yr_fullbias_adj_in_MPD -100 #_end_yr_for_ramp_in_MPD (can be in forecast to shape ramp, but SS sets bias_adj to 0.0 for fcast yrs) -0.9 #_max_bias_adj_in_MPD (-1 to override ramp and set biasadj=1.0 for all estimated recdevs) -0 #_period of cycles in recruitment (N parms read below) --5 #min rec_dev -5 #max rec_dev -0 #_read_recdevs -#_end of advanced SR options -# -#_placeholder for full parameter lines for recruitment cycles -# read specified recr devs -#_Yr Input_value -# -#Fishing Mortality info -0.3 # F ballpark --2001 # F ballpark year (neg value to disable) -3 # F_Method: 1=Pope; 2=instan. F; 3=hybrid (hybrid is recommended) -4 # max F or harvest rate, depends on F_Method -4 # N iterations for tuning F in hybrid method (recommend 3 to 7) -# -#_initial_F_parms; count = 0 -# -#_Q_setup for fleets with cpue or survey data -#_fleet link link_info extra_se biasadj float # fleetname - 2 1 0 0 0 0 #_Survey --9999 0 0 0 0 0 #_terminator -#_Q_parms(if_any);Qunits_are_ln(q) -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name --20 20 0 0 99 0 5 0 0 0 0 0 0 0 #_LnQ_base_Survey(2) -#_no timevary Q parameters -# -#_size_selex_patterns -#_Pattern Discard Male Special -24 0 0 0 #_1 Fishery -24 0 0 0 #_2 Survey -# -#_age_selex_patterns -#_Pattern Discard Male Special -11 0 0 0 #_1 Fishery -11 0 0 0 #_2 Survey -# -#_SizeSelex -#_LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 20 101.6 50.8 50.8 0.05 0 2 0 0 0 0 0 0 0 #_SizeSel_P_1_Fishery(1) - -5.00 3.0 -3.0 -3.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_2_Fishery(1) - 0.00 25.5 5.1 5.1 0.05 0 3 0 0 0 0 0 0 0 #_SizeSel_P_3_Fishery(1) - -2.00 16.0 15.0 15.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_4_Fishery(1) - -15.00 5.0 -999.0 -999.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_5_Fishery(1) - -5.00 1000.0 999.0 999.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_6_Fishery(1) - 20 83.6 41.8 41.8 0.05 0 2 0 0 0 0 0 0 0 #_SizeSel_P_1_Survey(2) - -5.00 3.0 -4.0 -4.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_2_Survey(2) - 0.00 26.0 5.2 5.2 0.05 0 3 0 0 0 0 0 0 0 #_SizeSel_P_3_Survey(2) - -2.00 15.0 14.0 14.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_4_Survey(2) --100.00 100.0 -99.0 -99.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_5_Survey(2) --100.00 100.0 99.0 99.0 0.05 0 -99 0 0 0 0 0 0 0 #_SizeSel_P_6_Survey(2) -#_AgeSelex -0 1 0.1 0.1 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_1_Fishery(1) -0 101 100.0 100.0 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_2_Fishery(1) -0 1 0.1 0.1 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_1_Survey(2) -0 101 100.0 100.0 99 0 -3 0 0 0 0 0.5 0 0 #_AgeSel_P_2_Survey(2) -#_no timevary selex parameters -# -0 # use 2D_AR1 selectivity(0/1): experimental feature -#_no 2D_AR1 selex offset used -# Tag loss and Tag reporting parameters go next -0 # TG_custom: 0=no read; 1=read if tags exist -#_Cond -6 6 1 1 2 0.01 -4 0 0 0 0 0 0 0 #_placeholder if no parameters -# -# Input variance adjustments factors: -#_Factor Fleet Value --9999 1 0 # terminator -# -4 #_maxlambdaphase -1 #_sd_offset; must be 1 if any growthCV, sigmaR, or survey extraSD is an estimated parameter -# read 0 changes to default Lambdas (default value is 1.0) --9999 0 0 0 0 # terminator -# -0 # 0/1 read specs for more stddev reporting -# -999 diff --git a/model_recipes/reference_run_orig/forecast.ss b/model_recipes/reference_run_orig/forecast.ss deleted file mode 100644 index 622e763..0000000 --- a/model_recipes/reference_run_orig/forecast.ss +++ /dev/null @@ -1,59 +0,0 @@ -#V3.30.13.00-trans;_2019_03_09;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_12.0 -#Stock Synthesis (SS) is a work of the U.S. Government and is not subject to copyright protection in the United States. -#Foreign copyrights may apply. See copyright.txt for more information. -#C forecast file written by R function SS_writeforecast -#C rerun model to get more complete formatting in forecast.ss_new -#C should work with SS version: SSv3.21_or_later -#C file write time: 2015-03-14 16:01:17 -# for all year entries except rebuilder; enter either: actual year, -999 for styr, 0 for endyr, neg number for rel. endyr -1 # Benchmarks: 0=skip; 1=calc F_spr,F_btgt,F_msy; 2=calc F_spr,F0.1,F_msy -2 # MSY: 1= set to F(SPR); 2=calc F(MSY); 3=set to F(Btgt) or F0.1; 4=set to F(endyr) -0.4 # SPR target (e.g. 0.40) -0.4 # Biomass target (e.g. 0.40) -#_Bmark_years: beg_bio, end_bio, beg_selex, end_selex, beg_relF, end_relF, beg_recr_dist, end_recr_dist, beg_SRparm, end_SRparm (enter actual year, or values of 0 or -integer to be rel. endyr) - 0 0 0 0 0 0 -999 0 -999 0 -1 #Bmark_relF_Basis: 1 = use year range; 2 = set relF same as forecast below -# -4 # Forecast: 0=none; 1=F(SPR); 2=F(MSY) 3=F(Btgt) or F0.1; 4=Ave F (uses first-last relF yrs); 5=input annual F scalar -1 # N forecast years -0 # F scalar (only used for Do_Forecast==5) -#_Fcast_years: beg_selex, end_selex, beg_relF, end_relF, beg_mean recruits, end_recruits (enter actual year, or values of 0 or -integer to be rel. endyr) - 0 0 0 0 -999 0 -0 # Forecast selectivity (0=fcast selex is mean from year range; 1=fcast selectivity from annual time-vary parms) -2 # Control rule method (1: ramp does catch=f(SSB), buffer on F; 2: ramp does F=f(SSB), buffer on F; 3: ramp does catch=f(SSB), buffer on catch; 4: ramp does F=f(SSB), buffer on catch) -0.4 # Control rule Biomass level for constant F (as frac of Bzero, e.g. 0.40); (Must be > the no F level below) -0.01 # Control rule Biomass level for no F (as frac of Bzero, e.g. 0.10) -0 # Control rule target as fraction of Flimit (e.g. 0.75), negative value invokes list of [year, scalar] with filling from year to YrMax -3 #_N forecast loops (1=OFL only; 2=ABC; 3=get F from forecast ABC catch with allocations applied) -3 #_First forecast loop with stochastic recruitment -0 #_Forecast recruitment: 0= spawn_recr; 1=value*spawn_recr_fxn; 2=value*VirginRecr; 3=recent mean from yr range above (need to set phase to -1 in control to get constant recruitment in MCMC) -1 # value is ignored -0 #_Forecast loop control #5 (reserved for future bells&whistles) -101 #FirstYear for caps and allocations (should be after years with fixed inputs) -0 # stddev of log(realized catch/target catch) in forecast (set value>0.0 to cause active impl_error) -0 # Do West Coast gfish rebuilder output (0/1) -100 # Rebuilder: first year catch could have been set to zero (Ydecl)(-1 to set to 1999) -100 # Rebuilder: year for current age structure (Yinit) (-1 to set to endyear+1) -1 # fleet relative F: 1=use first-last alloc year; 2=read seas, fleet, alloc list below -# Note that fleet allocation is used directly as average F if Do_Forecast=4 -2 # basis for fcast catch tuning and for fcast catch caps and allocation (2=deadbio; 3=retainbio; 5=deadnum; 6=retainnum) -# Conditional input if relative F choice = 2 -# enter list of: season, fleet, relF; if used, terminate with season=-9999 -# 1 1 1 -# -9999 0 0 # terminator for list of relF -# enter list of: fleet number, max annual catch for fleets with a max; terminate with fleet=-9999 --9999 -1 -# enter list of area ID and max annual catch; terminate with area=-9999 --9999 -1 -# enter list of fleet number and allocation group assignment, if any; terminate with fleet=-9999 --9999 -1 -#_if N allocation groups >0, list year, allocation fraction for each group -# list sequentially because read values fill to end of N forecast -# terminate with -9999 in year field -# no allocation groups -2 # basis for input Fcast catch: -1=read basis with each obs; 2=dead catch; 3=retained catch; 99=input Hrate(F) -#enter list of Fcast catches; terminate with line having year=-9999 -#_Yr Seas Fleet Catch(or_F) --9999 1 1 0 -# -999 # verify end of input diff --git a/model_recipes/reference_run_orig/ss3.dat b/model_recipes/reference_run_orig/ss3.dat deleted file mode 100644 index 72a56bc..0000000 --- a/model_recipes/reference_run_orig/ss3.dat +++ /dev/null @@ -1,486 +0,0 @@ -#V3.30 -#C North Sea/Skagerrak/Eastern Channel Cod -# -26 #_styr -100 #_endyr -1 #_nseas -12 #_months_per_seas -2 #_Nsubseasons -1 #_spawn_month -1 #_Nsexes -25 #_Nages -1 #_N_areas -2 #_Nfleets -#_fleetinfo -#_type surveytiming area units need_catch_mult fleetname -1 -1 1 1 0 Fishery #_1 -3 1 1 2 0 Survey #_2 -#_Catch data -#_year season fleet catch catch_se - -999 1 1 0 0.010 #_1 - 1 1 1 0 0.010 #_2 - 2 1 1 0 0.010 #_3 - 3 1 1 0 0.010 #_4 - 4 1 1 0 0.010 #_5 - 5 1 1 0 0.010 #_6 - 6 1 1 0 0.010 #_7 - 7 1 1 0 0.010 #_8 - 8 1 1 0 0.010 #_9 - 9 1 1 0 0.010 #_10 - 10 1 1 0 0.010 #_11 - 11 1 1 0 0.010 #_12 - 12 1 1 0 0.010 #_13 - 13 1 1 0 0.010 #_14 - 14 1 1 0 0.010 #_15 - 15 1 1 0 0.010 #_16 - 16 1 1 0 0.010 #_17 - 17 1 1 0 0.010 #_18 - 18 1 1 0 0.010 #_19 - 19 1 1 0 0.010 #_20 - 20 1 1 0 0.010 #_21 - 21 1 1 0 0.010 #_22 - 22 1 1 0 0.010 #_23 - 23 1 1 0 0.010 #_24 - 24 1 1 0 0.010 #_25 - 25 1 1 0 0.010 #_26 - 26 1 1 405827583 0.005 #_27 - 27 1 1 373417493 0.005 #_28 - 28 1 1 342373346 0.005 #_29 - 29 1 1 314063047 0.005 #_30 - 30 1 1 291488471 0.005 #_31 - 31 1 1 275016682 0.005 #_32 - 32 1 1 261959321 0.005 #_33 - 33 1 1 247902515 0.005 #_34 - 34 1 1 237602462 0.005 #_35 - 35 1 1 229886276 0.005 #_36 - 36 1 1 221494620 0.005 #_37 - 37 1 1 210472212 0.005 #_38 - 38 1 1 204395447 0.005 #_39 - 39 1 1 196706762 0.005 #_40 - 40 1 1 191149151 0.005 #_41 - 41 1 1 181676431 0.005 #_42 - 42 1 1 175427716 0.005 #_43 - 43 1 1 166292092 0.005 #_44 - 44 1 1 167104259 0.005 #_45 - 45 1 1 167393473 0.005 #_46 - 46 1 1 161044632 0.005 #_47 - 47 1 1 160124742 0.005 #_48 - 48 1 1 159368360 0.005 #_49 - 49 1 1 155503064 0.005 #_50 - 50 1 1 150700473 0.005 #_51 - 51 1 1 151357783 0.005 #_52 - 52 1 1 145953276 0.005 #_53 - 53 1 1 143559669 0.005 #_54 - 54 1 1 142461890 0.005 #_55 - 55 1 1 138970197 0.005 #_56 - 56 1 1 137509860 0.005 #_57 - 57 1 1 140168276 0.005 #_58 - 58 1 1 140025046 0.005 #_59 - 59 1 1 139444280 0.005 #_60 - 60 1 1 138552310 0.005 #_61 - 61 1 1 142276727 0.005 #_62 - 62 1 1 145394778 0.005 #_63 - 63 1 1 147866360 0.005 #_64 - 64 1 1 150086800 0.005 #_65 - 65 1 1 149096580 0.005 #_66 - 66 1 1 150126388 0.005 #_67 - 67 1 1 151017473 0.005 #_68 - 68 1 1 151706424 0.005 #_69 - 69 1 1 150854890 0.005 #_70 - 70 1 1 152562634 0.005 #_71 - 71 1 1 151682609 0.005 #_72 - 72 1 1 153018523 0.005 #_73 - 73 1 1 162110858 0.005 #_74 - 74 1 1 170350797 0.005 #_75 - 75 1 1 175676558 0.005 #_76 - 76 1 1 180420607 0.005 #_77 - 77 1 1 179580391 0.005 #_78 - 78 1 1 173180886 0.005 #_79 - 79 1 1 171619613 0.005 #_80 - 80 1 1 167601020 0.005 #_81 - 81 1 1 160797969 0.005 #_82 - 82 1 1 157721184 0.005 #_83 - 83 1 1 156899991 0.005 #_84 - 84 1 1 155019001 0.005 #_85 - 85 1 1 158509241 0.005 #_86 - 86 1 1 162057478 0.005 #_87 - 87 1 1 161870042 0.005 #_88 - 88 1 1 170525042 0.005 #_89 - 89 1 1 182713147 0.005 #_90 - 90 1 1 193756851 0.005 #_91 - 91 1 1 195682969 0.005 #_92 - 92 1 1 193123404 0.005 #_93 - 93 1 1 191814026 0.005 #_94 - 94 1 1 187735838 0.005 #_95 - 95 1 1 183406362 0.005 #_96 - 96 1 1 181248407 0.005 #_97 - 97 1 1 176702069 0.005 #_98 - 98 1 1 172067982 0.005 #_99 - 99 1 1 174512824 0.005 #_100 - 100 1 1 182121508 0.005 #_101 --9999 0 0 0 0.000 #_terminator -#_CPUE_and_surveyabundance_observations -#_Units: 0=numbers; 1=biomass; 2=F; >=30 for special types -#_Errtype: -1=normal; 0=lognormal; >0=T -#_SD_Report: 0=no sdreport; 1=enable sdreport -#_Fleet Units Errtype SD_Report -1 1 0 0 #_Fishery -2 1 0 0 #_Survey -# -#_CPUE_data -#_year seas index obs se_log - 62 1 2 2319095418 0.2 #_1 - 64 1 2 1450356783 0.2 #_2 - 66 1 2 1503543274 0.2 #_3 - 68 1 2 1568917464 0.2 #_4 - 70 1 2 1491684068 0.2 #_5 - 72 1 2 1453785086 0.2 #_6 - 74 1 2 1728862643 0.2 #_7 - 76 1 2 1732955651 0.2 #_8 - 78 1 2 1495070546 0.2 #_9 - 80 1 2 1162754195 0.2 #_10 - 82 1 2 1389316573 0.2 #_11 - 84 1 2 1980264967 0.2 #_12 - 86 1 2 1872900449 0.2 #_13 - 88 1 2 1772513878 0.2 #_14 - 90 1 2 2610471051 0.2 #_15 - 92 1 2 2610821051 0.2 #_16 - 94 1 2 2610461051 0.2 #_17 - 96 1 2 2014668777 0.2 #_18 - 98 1 2 1365842314 0.2 #_19 - 100 1 2 1749224049 0.2 #_20 --9999 0 0 0 0.0 #_terminator -0 #_N_discard_fleets -#_discard_units (1=same_as_catchunits(bio/num); 2=fraction; 3=numbers) -#_discard_errtype: >0 for DF of T-dist(read CV below); 0 for normal with CV; -1 for normal with se; -2 for lognormal -# -#_discard_fleet_info -# -#_discard_data -# -#_meanbodywt -0 #_use_meanbodywt - #_DF_for_meanbodywt_T-distribution_like -# -#_population_length_bins -2 # length bin method: 1=use databins; 2=generate from binwidth,min,max below; 3=read vector -1 # binwidth for population size comp -10 # minimum size in the population (lower edge of first bin and size at age 0.00) -200 # maximum size in the population (lower edge of last bin) -1 #_use_lencomp -# -#_len_info -#_mintailcomp addtocomp combine_M_F CompressBins CompError ParmSelect minsamplesize --1 1e-10 0 0 0 0 1 #_Fishery --1 1e-10 0 0 0 0 1 #_Survey -45 #_N_lbins -#_lbin_vector -20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125 128 131 134 137 140 143 146 149 152 #_lbin_vector -# -#_lencomp -#_Yr Seas FltSvy Gender Part Nsamp l20 l23 l26 l29 l32 l35 l38 l41 l44 l47 l50 l53 l56 l59 l62 l65 l68 l71 l74 l77 l80 l83 l86 l89 l92 l95 l98 l101 l104 l107 l110 l113 l116 l119 l122 l125 l128 l131 l134 l137 l140 l143 l146 l149 l152 - 95 1 1 0 0 50 1.21839e-15 7.08912e-10 3.53471e-07 6.47686e-03 3.08818e-03 1.03054e-05 2.57179e-06 7.60397e-03 0.0133111 0.0476258 0.0348703 0.04032875 0.0497779 0.04741981 0.01443621 0.07874335 0.0230499 0.0266009 0.01794948 0.0270393 0.0510087 0.01111618 0.0654543 0.01606061 0.0513103 0.01029999 0.000825664 0.03932407 0.022521232 0.07562950 0.06083348 0.02336445 6.38750e-02 0.00392951 0.012387671 0.003952013 0.007133818 0.00897878 5.15022e-03 9.58616e-04 2.15086e-02 4.05532e-03 1.75826e-03 1.48731e-14 2.28787e-04 #_1 - 96 1 1 0 0 50 5.99789e-30 3.86910e-29 3.87336e-07 2.01136e-03 4.19938e-05 1.31793e-05 1.53990e-03 2.12131e-02 0.0159329 0.0343006 0.1230111 0.02119380 0.0047550 0.00137013 0.13720601 0.02200563 0.0488743 0.0325755 0.08802896 0.0233814 0.0213249 0.06504259 0.0822676 0.06275952 0.0194676 0.01154768 0.021065655 0.01933137 0.003829945 0.03479926 0.04589062 0.00248582 2.80196e-03 0.00385954 0.009757891 0.000151414 0.004176591 0.00488303 6.81256e-05 2.07929e-03 1.51268e-03 3.33025e-03 1.11326e-04 9.90207e-48 3.76714e-13 #_2 - 97 1 1 0 0 50 4.82525e-17 6.60950e-63 1.45918e-02 2.46884e-04 3.02475e-02 3.14046e-03 1.58916e-04 4.55571e-06 0.0197265 0.0475703 0.0460192 0.00543952 0.0330235 0.04910525 0.11044604 0.00943501 0.1034457 0.0748063 0.05347646 0.0235542 0.0839288 0.00480831 0.0792134 0.01471147 0.0358458 0.00426968 0.019992995 0.01680004 0.026919891 0.01041092 0.00517611 0.01610544 6.62434e-03 0.00336242 0.008427033 0.005320177 0.008221190 0.00246077 6.16104e-03 2.32716e-06 1.86462e-04 1.55249e-02 1.23345e-11 1.88218e-04 9.00144e-04 #_3 - 98 1 1 0 0 50 4.33367e-05 5.23013e-21 1.80907e-04 5.98429e-03 1.50085e-02 1.84472e-03 4.78366e-05 1.38155e-02 0.0177652 0.0570923 0.1315670 0.05701185 0.0436706 0.03468419 0.00784813 0.03077679 0.0152514 0.0280374 0.05779615 0.0246120 0.0250831 0.13000820 0.0171202 0.00935178 0.0360376 0.01851026 0.110258877 0.00141916 0.003314611 0.00978243 0.01410409 0.01426905 2.08460e-02 0.01619731 0.000651814 0.027305506 0.000359444 0.00214246 1.38929e-05 2.50726e-09 1.43831e-05 1.21122e-13 9.29224e-05 7.88754e-05 1.76531e-11 #_4 - 99 1 1 0 0 50 3.43796e-08 6.63178e-13 1.37536e-02 3.48744e-03 6.30987e-02 6.18445e-03 2.34790e-02 6.67529e-03 0.0516173 0.0459099 0.0690536 0.14736148 0.0843542 0.02998615 0.01049348 0.04949479 0.0108561 0.0149054 0.05960321 0.0285729 0.0134305 0.00172333 0.0170506 0.00829920 0.0183744 0.04591866 0.016283377 0.01165331 0.000611884 0.03343126 0.01524042 0.02159914 3.74832e-05 0.00718344 0.036709237 0.000856413 0.000815214 0.00168073 2.98768e-02 2.46071e-09 6.25824e-10 3.29265e-04 8.78233e-15 5.64135e-06 2.59270e-06 #_5 - 100 1 1 0 0 50 7.06058e-39 7.28113e-17 8.82966e-04 1.85488e-05 3.40430e-03 9.19572e-03 3.19208e-03 2.56074e-03 0.0212217 0.0625408 0.0360383 0.14289880 0.0310024 0.01689111 0.07980034 0.07799596 0.0189316 0.0364775 0.00768082 0.0543474 0.0189996 0.02657866 0.0239969 0.02052548 0.0458498 0.00177325 0.013893173 0.01476595 0.000263802 0.02470716 0.05980638 0.01254703 2.57588e-02 0.02019666 0.042446520 0.026112080 0.002434038 0.00540392 3.26960e-06 5.33413e-03 3.37349e-05 3.77795e-05 2.83245e-19 1.73956e-12 3.45088e-03 #_6 - 26 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.0000000 0.0000000 2.0000000 0.00000000 0.0000000 0.00000000 0.00000000 3.00000000 3.0000000 1.0000000 3.00000000 2.0000000 1.0000000 2.00000000 1.0000000 4.00000000 4.0000000 1.00000000 1.000000000 3.00000000 2.000000000 2.00000000 3.00000000 2.00000000 2.00000e+00 2.00000000 1.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_7 - 27 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 2.0000000 1.00000000 1.0000000 1.00000000 2.00000000 3.00000000 1.0000000 1.0000000 4.00000000 1.0000000 2.0000000 1.00000000 3.0000000 3.00000000 0.0000000 1.00000000 3.000000000 2.00000000 1.000000000 3.00000000 1.00000000 1.00000000 1.00000e+00 2.00000000 3.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_8 - 28 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 3.0000000 2.0000000 2.00000000 0.0000000 1.00000000 0.00000000 4.00000000 0.0000000 2.0000000 1.00000000 3.0000000 3.0000000 0.00000000 1.0000000 3.00000000 1.0000000 3.00000000 1.000000000 2.00000000 2.000000000 2.00000000 1.00000000 3.00000000 3.00000e+00 0.00000000 0.000000000 3.000000000 2.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_9 - 29 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.0000000 2.0000000 1.0000000 0.00000000 1.0000000 2.00000000 1.00000000 2.00000000 1.0000000 1.0000000 3.00000000 3.0000000 5.0000000 1.00000000 1.0000000 2.00000000 2.0000000 2.00000000 2.000000000 3.00000000 2.000000000 0.00000000 0.00000000 0.00000000 2.00000e+00 2.00000000 1.000000000 0.000000000 1.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_10 - 30 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 8.0000000 5.0000000 2.0000000 2.00000000 0.0000000 0.00000000 3.00000000 3.00000000 2.0000000 3.0000000 0.00000000 1.0000000 4.0000000 1.00000000 0.0000000 1.00000000 2.0000000 1.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 1.000000000 0.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_11 - 31 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 2.0000000 1.0000000 3.00000000 2.0000000 3.00000000 4.00000000 4.00000000 2.0000000 0.0000000 1.00000000 3.0000000 3.0000000 0.00000000 1.0000000 1.00000000 1.0000000 1.00000000 0.000000000 1.00000000 0.000000000 0.00000000 2.00000000 1.00000000 2.00000e+00 1.00000000 2.000000000 0.000000000 0.000000000 1.00000000 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_12 - 32 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 2.00000000 2.00000000 3.0000000 1.0000000 4.00000000 3.0000000 1.0000000 3.00000000 0.0000000 2.00000000 1.0000000 1.00000000 1.000000000 1.00000000 0.000000000 4.00000000 1.00000000 1.00000000 2.00000e+00 4.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_13 - 33 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 2.00000e+00 0.0000000 3.0000000 2.0000000 1.00000000 1.0000000 2.00000000 1.00000000 3.00000000 5.0000000 2.0000000 3.00000000 3.0000000 3.0000000 1.00000000 0.0000000 1.00000000 3.0000000 0.00000000 0.000000000 2.00000000 1.000000000 0.00000000 0.00000000 2.00000000 1.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_14 - 34 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.0000000 4.0000000 3.0000000 3.00000000 0.0000000 1.00000000 1.00000000 2.00000000 1.0000000 3.0000000 1.00000000 1.0000000 2.0000000 0.00000000 2.0000000 4.00000000 1.0000000 1.00000000 1.000000000 1.00000000 1.000000000 2.00000000 3.00000000 2.00000000 1.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_15 - 35 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.0000000 4.0000000 7.0000000 2.00000000 2.0000000 2.00000000 2.00000000 1.00000000 0.0000000 0.0000000 1.00000000 0.0000000 0.0000000 3.00000000 4.0000000 1.00000000 4.0000000 2.00000000 3.000000000 0.00000000 0.000000000 0.00000000 1.00000000 3.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_16 - 36 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.0000000 4.0000000 1.0000000 2.00000000 1.0000000 0.00000000 4.00000000 2.00000000 1.0000000 3.0000000 2.00000000 2.0000000 1.0000000 1.00000000 1.0000000 1.00000000 1.0000000 2.00000000 2.000000000 0.00000000 2.000000000 0.00000000 1.00000000 2.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 2.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_17 - 37 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.0000000 1.0000000 1.0000000 1.00000000 3.0000000 3.00000000 1.00000000 2.00000000 1.0000000 1.0000000 1.00000000 4.0000000 3.0000000 1.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 2.00000000 3.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 2.00000000 4.000000000 1.000000000 1.000000000 2.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_18 - 38 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.0000000 6.0000000 3.0000000 0.00000000 1.0000000 1.00000000 0.00000000 3.00000000 2.0000000 3.0000000 1.00000000 2.0000000 3.0000000 1.00000000 1.0000000 1.00000000 1.0000000 1.00000000 4.000000000 0.00000000 3.000000000 4.00000000 0.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_19 - 39 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 3.0000000 0.0000000 1.00000000 3.0000000 4.00000000 3.00000000 3.00000000 4.0000000 1.0000000 2.00000000 0.0000000 0.0000000 4.00000000 2.0000000 1.00000000 0.0000000 5.00000000 2.000000000 1.00000000 0.000000000 0.00000000 1.00000000 2.00000000 1.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 1.00000000 2.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_20 - 40 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 6.0000000 5.0000000 3.00000000 3.0000000 2.00000000 1.00000000 0.00000000 3.0000000 1.0000000 3.00000000 1.0000000 1.0000000 1.00000000 1.0000000 0.00000000 0.0000000 1.00000000 2.000000000 3.00000000 1.000000000 2.00000000 2.00000000 0.00000000 2.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_21 - 41 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 0.0000000 0.0000000 1.00000000 2.0000000 4.00000000 2.00000000 2.00000000 1.0000000 0.0000000 1.00000000 2.0000000 2.0000000 0.00000000 1.0000000 2.00000000 2.0000000 0.00000000 0.000000000 2.00000000 4.000000000 2.00000000 2.00000000 4.00000000 1.00000e+00 2.00000000 1.000000000 1.000000000 1.000000000 1.00000000 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_22 - 42 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.0000000 3.0000000 2.0000000 2.00000000 2.0000000 3.00000000 2.00000000 2.00000000 1.0000000 1.0000000 2.00000000 4.0000000 0.0000000 1.00000000 3.0000000 1.00000000 1.0000000 1.00000000 0.000000000 2.00000000 3.000000000 1.00000000 3.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_23 - 43 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 1.0000000 5.00000000 5.0000000 2.00000000 3.00000000 0.00000000 5.0000000 0.0000000 2.00000000 0.0000000 2.0000000 1.00000000 1.0000000 1.00000000 0.0000000 1.00000000 0.000000000 0.00000000 4.000000000 3.00000000 1.00000000 4.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_24 - 44 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 3.0000000 6.0000000 4.0000000 3.00000000 4.0000000 1.00000000 0.00000000 1.00000000 3.0000000 0.0000000 1.00000000 2.0000000 3.0000000 2.00000000 1.0000000 1.00000000 1.0000000 1.00000000 3.000000000 0.00000000 1.000000000 2.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_25 - 45 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 0.0000000 0.0000000 3.00000000 3.0000000 3.00000000 6.00000000 5.00000000 4.0000000 2.0000000 3.00000000 1.0000000 0.0000000 2.00000000 1.0000000 1.00000000 2.0000000 0.00000000 0.000000000 0.00000000 3.000000000 2.00000000 0.00000000 2.00000000 1.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_26 - 46 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 1.0000000 1.0000000 0.00000000 0.0000000 0.00000000 0.00000000 2.00000000 0.0000000 4.0000000 2.00000000 4.0000000 5.0000000 3.00000000 3.0000000 2.00000000 1.0000000 1.00000000 3.000000000 0.00000000 1.000000000 1.00000000 3.00000000 0.00000000 2.00000e+00 1.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_27 - 47 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 0.00000e+00 2.00000e+00 8.0000000 2.0000000 1.0000000 7.00000000 3.0000000 1.00000000 0.00000000 0.00000000 0.0000000 0.0000000 1.00000000 2.0000000 2.0000000 1.00000000 1.0000000 3.00000000 3.0000000 0.00000000 0.000000000 2.00000000 1.000000000 0.00000000 1.00000000 2.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_28 - 48 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 3.0000000 1.0000000 3.0000000 4.00000000 3.0000000 3.00000000 1.00000000 2.00000000 1.0000000 1.0000000 1.00000000 2.0000000 2.0000000 1.00000000 0.0000000 1.00000000 3.0000000 3.00000000 0.000000000 4.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_29 - 49 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 2.0000000 2.0000000 1.00000000 1.0000000 0.00000000 3.00000000 3.00000000 4.0000000 2.0000000 6.00000000 1.0000000 2.0000000 3.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 2.00000000 1.000000000 0.00000000 1.00000000 1.00000000 2.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_30 - 50 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 3.0000000 1.0000000 2.0000000 0.00000000 1.0000000 1.00000000 2.00000000 1.00000000 1.0000000 0.0000000 5.00000000 0.0000000 2.0000000 1.00000000 3.0000000 1.00000000 1.0000000 1.00000000 0.000000000 3.00000000 4.000000000 0.00000000 3.00000000 2.00000000 0.00000e+00 3.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_31 - 51 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 6.0000000 3.0000000 3.0000000 0.00000000 1.0000000 1.00000000 2.00000000 2.00000000 2.0000000 0.0000000 1.00000000 3.0000000 1.0000000 1.00000000 2.0000000 1.00000000 4.0000000 0.00000000 2.000000000 0.00000000 1.000000000 0.00000000 2.00000000 1.00000000 0.00000e+00 2.00000000 1.000000000 3.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_32 - 52 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 2.0000000 1.00000000 2.0000000 2.00000000 2.00000000 4.00000000 4.0000000 1.0000000 1.00000000 2.0000000 4.0000000 2.00000000 2.0000000 2.00000000 2.0000000 2.00000000 3.000000000 0.00000000 0.000000000 0.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 #_33 - 53 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 5.0000000 4.0000000 2.0000000 4.00000000 2.0000000 2.00000000 0.00000000 3.00000000 2.0000000 1.0000000 1.00000000 3.0000000 3.0000000 0.00000000 0.0000000 2.00000000 1.0000000 1.00000000 0.000000000 3.00000000 3.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 2.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_34 - 54 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 0.0000000 1.0000000 4.00000000 1.0000000 1.00000000 1.00000000 2.00000000 4.0000000 2.0000000 2.00000000 1.0000000 0.0000000 3.00000000 2.0000000 4.00000000 5.0000000 1.00000000 1.000000000 3.00000000 1.000000000 1.00000000 2.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_35 - 55 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 1.0000000 3.0000000 3.0000000 3.00000000 0.0000000 0.00000000 0.00000000 1.00000000 6.0000000 1.0000000 2.00000000 1.0000000 1.0000000 2.00000000 3.0000000 2.00000000 0.0000000 2.00000000 0.000000000 2.00000000 1.000000000 0.00000000 2.00000000 5.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_36 - 56 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.0000000 5.0000000 3.0000000 3.00000000 3.0000000 1.00000000 2.00000000 1.00000000 1.0000000 1.0000000 2.00000000 1.0000000 2.0000000 2.00000000 2.0000000 1.00000000 2.0000000 1.00000000 1.000000000 1.00000000 0.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 0.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_37 - 57 1 1 0 0 50 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 2.0000000 2.0000000 3.0000000 1.00000000 2.0000000 1.00000000 3.00000000 1.00000000 1.0000000 0.0000000 1.00000000 0.0000000 2.0000000 0.00000000 1.0000000 4.00000000 1.0000000 0.00000000 6.000000000 0.00000000 1.000000000 0.00000000 1.00000000 1.00000000 1.00000e+00 3.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_38 - 58 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.00000e+00 1.00000e+00 0.00000e+00 4.0000000 3.0000000 0.0000000 4.00000000 1.0000000 3.00000000 2.00000000 1.00000000 2.0000000 4.0000000 2.00000000 2.0000000 4.0000000 2.00000000 1.0000000 2.00000000 1.0000000 0.00000000 2.000000000 1.00000000 0.000000000 0.00000000 0.00000000 1.00000000 1.00000e+00 2.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_39 - 59 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.0000000 2.0000000 2.00000000 3.0000000 0.00000000 1.00000000 3.00000000 1.0000000 3.0000000 3.00000000 4.0000000 5.0000000 3.00000000 1.0000000 2.00000000 2.0000000 3.00000000 0.000000000 2.00000000 1.000000000 0.00000000 3.00000000 2.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_40 - 60 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 4.0000000 3.0000000 3.0000000 3.00000000 3.0000000 1.00000000 0.00000000 2.00000000 0.0000000 1.0000000 2.00000000 0.0000000 3.0000000 0.00000000 2.0000000 4.00000000 1.0000000 2.00000000 1.000000000 1.00000000 2.000000000 2.00000000 2.00000000 0.00000000 1.00000e+00 0.00000000 0.000000000 2.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_41 - 61 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 8.0000000 3.00000000 3.0000000 1.00000000 0.00000000 0.00000000 3.0000000 3.0000000 2.00000000 3.0000000 1.0000000 3.00000000 1.0000000 0.00000000 0.0000000 0.00000000 1.000000000 1.00000000 3.000000000 2.00000000 2.00000000 0.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_42 - 62 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 2.0000000 2.0000000 1.00000000 0.0000000 3.00000000 4.00000000 3.00000000 5.0000000 2.0000000 0.00000000 3.0000000 4.0000000 1.00000000 3.0000000 4.00000000 0.0000000 0.00000000 0.000000000 2.00000000 0.000000000 1.00000000 0.00000000 4.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_43 - 63 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 1.0000000 3.0000000 3.00000000 3.0000000 0.00000000 3.00000000 3.00000000 1.0000000 2.0000000 2.00000000 2.0000000 3.0000000 2.00000000 2.0000000 4.00000000 1.0000000 0.00000000 4.000000000 1.00000000 0.000000000 1.00000000 2.00000000 2.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_44 - 64 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 2.0000000 2.0000000 6.0000000 1.00000000 2.0000000 1.00000000 2.00000000 2.00000000 2.0000000 2.0000000 3.00000000 1.0000000 1.0000000 2.00000000 3.0000000 2.00000000 1.0000000 4.00000000 0.000000000 3.00000000 1.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 1.000000000 2.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_45 - 65 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.0000000 2.0000000 2.0000000 1.00000000 1.0000000 1.00000000 0.00000000 2.00000000 2.0000000 4.0000000 5.00000000 3.0000000 1.0000000 4.00000000 0.0000000 4.00000000 0.0000000 3.00000000 1.000000000 1.00000000 1.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_46 - 66 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 2.0000000 4.0000000 0.0000000 2.00000000 2.0000000 2.00000000 2.00000000 1.00000000 2.0000000 3.0000000 2.00000000 1.0000000 1.0000000 2.00000000 1.0000000 2.00000000 2.0000000 1.00000000 3.000000000 2.00000000 1.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_47 - 67 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 3.0000000 3.00000000 3.0000000 2.00000000 1.00000000 3.00000000 1.0000000 2.0000000 0.00000000 3.0000000 2.0000000 4.00000000 2.0000000 2.00000000 1.0000000 2.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 2.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_48 - 68 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.0000000 4.0000000 2.0000000 0.00000000 2.0000000 0.00000000 1.00000000 4.00000000 3.0000000 2.0000000 3.00000000 2.0000000 2.0000000 2.00000000 1.0000000 1.00000000 0.0000000 2.00000000 1.000000000 0.00000000 0.000000000 2.00000000 4.00000000 2.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 2.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_49 - 69 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 4.0000000 3.0000000 3.00000000 2.0000000 3.00000000 3.00000000 2.00000000 0.0000000 2.0000000 1.00000000 2.0000000 2.0000000 0.00000000 1.0000000 1.00000000 0.0000000 1.00000000 3.000000000 2.00000000 5.000000000 2.00000000 0.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_50 - 70 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.0000000 1.0000000 5.0000000 1.00000000 2.0000000 1.00000000 3.00000000 2.00000000 1.0000000 4.0000000 0.00000000 2.0000000 3.0000000 3.00000000 1.0000000 3.00000000 3.0000000 3.00000000 1.000000000 1.00000000 0.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_51 - 71 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.0000000 4.0000000 4.0000000 5.00000000 0.0000000 1.00000000 6.00000000 4.00000000 0.0000000 1.0000000 2.00000000 1.0000000 1.0000000 3.00000000 1.0000000 4.00000000 2.0000000 2.00000000 1.000000000 2.00000000 1.000000000 1.00000000 2.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_52 - 72 1 1 0 0 50 0.00000e+00 1.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 1.0000000 1.0000000 5.0000000 2.00000000 1.0000000 3.00000000 2.00000000 2.00000000 4.0000000 1.0000000 0.00000000 0.0000000 2.0000000 0.00000000 3.0000000 1.00000000 2.0000000 2.00000000 2.000000000 0.00000000 0.000000000 2.00000000 1.00000000 0.00000000 2.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_53 - 73 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 1.0000000 4.0000000 4.0000000 2.00000000 4.0000000 3.00000000 1.00000000 1.00000000 2.0000000 2.0000000 2.00000000 0.0000000 4.0000000 1.00000000 2.0000000 1.00000000 3.0000000 1.00000000 1.000000000 0.00000000 1.000000000 1.00000000 1.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_54 - 74 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 2.0000000 3.0000000 0.00000000 0.0000000 4.00000000 4.00000000 4.00000000 4.0000000 3.0000000 4.00000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 1.0000000 0.00000000 1.000000000 0.00000000 3.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_55 - 75 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.0000000 4.0000000 3.0000000 3.00000000 1.0000000 3.00000000 2.00000000 2.00000000 2.0000000 3.0000000 4.00000000 1.0000000 2.0000000 4.00000000 1.0000000 1.00000000 2.0000000 0.00000000 1.000000000 0.00000000 0.000000000 2.00000000 0.00000000 3.00000000 0.00000e+00 0.00000000 0.000000000 3.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_56 - 76 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 3.0000000 0.0000000 3.00000000 1.0000000 3.00000000 4.00000000 2.00000000 5.0000000 1.0000000 1.00000000 1.0000000 2.0000000 3.00000000 4.0000000 1.00000000 1.0000000 2.00000000 1.000000000 0.00000000 2.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 2.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_57 - 77 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.0000000 2.0000000 1.0000000 1.00000000 1.0000000 1.00000000 0.00000000 7.00000000 3.0000000 2.0000000 3.00000000 2.0000000 1.0000000 5.00000000 2.0000000 3.00000000 1.0000000 1.00000000 2.000000000 2.00000000 2.000000000 1.00000000 2.00000000 0.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_58 - 78 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 1.0000000 4.0000000 3.0000000 0.00000000 2.0000000 0.00000000 1.00000000 2.00000000 3.0000000 1.0000000 2.00000000 3.0000000 3.0000000 2.00000000 4.0000000 2.00000000 2.0000000 2.00000000 0.000000000 2.00000000 1.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 2.00000000 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_59 - 79 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 6.0000000 3.0000000 3.00000000 1.0000000 4.00000000 5.00000000 2.00000000 1.0000000 1.0000000 2.00000000 2.0000000 2.0000000 0.00000000 0.0000000 1.00000000 1.0000000 2.00000000 1.000000000 0.00000000 1.000000000 0.00000000 2.00000000 1.00000000 0.00000e+00 2.00000000 0.000000000 1.000000000 0.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_60 - 80 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 2.0000000 3.0000000 3.0000000 0.00000000 3.0000000 1.00000000 3.00000000 3.00000000 1.0000000 2.0000000 3.00000000 3.0000000 0.0000000 1.00000000 0.0000000 0.00000000 1.0000000 0.00000000 2.000000000 2.00000000 0.000000000 2.00000000 2.00000000 1.00000000 1.00000e+00 2.00000000 1.000000000 3.000000000 0.000000000 1.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_61 - 81 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.0000000 4.0000000 1.0000000 0.00000000 2.0000000 2.00000000 4.00000000 4.00000000 1.0000000 2.0000000 0.00000000 1.0000000 2.0000000 1.00000000 2.0000000 2.00000000 4.0000000 3.00000000 3.000000000 0.00000000 1.000000000 0.00000000 1.00000000 1.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_62 - 82 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 5.0000000 4.0000000 5.0000000 1.00000000 2.0000000 1.00000000 0.00000000 3.00000000 3.0000000 0.0000000 1.00000000 2.0000000 1.0000000 2.00000000 3.0000000 3.00000000 2.0000000 0.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_63 - 83 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 3.0000000 5.0000000 1.0000000 1.00000000 3.0000000 1.00000000 1.00000000 1.00000000 2.0000000 4.0000000 1.00000000 3.0000000 2.0000000 1.00000000 3.0000000 1.00000000 1.0000000 2.00000000 2.000000000 1.00000000 1.000000000 2.00000000 1.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_64 - 84 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 2.0000000 3.0000000 2.0000000 0.00000000 0.0000000 0.00000000 0.00000000 2.00000000 2.0000000 3.0000000 5.00000000 1.0000000 1.0000000 3.00000000 1.0000000 1.00000000 2.0000000 1.00000000 0.000000000 5.00000000 2.000000000 2.00000000 1.00000000 1.00000000 2.00000e+00 1.00000000 0.000000000 1.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_65 - 85 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 5.0000000 6.0000000 4.0000000 5.00000000 3.0000000 1.00000000 0.00000000 3.00000000 1.0000000 0.0000000 3.00000000 1.0000000 3.0000000 1.00000000 2.0000000 1.00000000 1.0000000 2.00000000 3.000000000 1.00000000 0.000000000 0.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_66 - 86 1 1 0 0 50 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.0000000 2.0000000 1.0000000 5.00000000 4.0000000 4.00000000 2.00000000 3.00000000 4.0000000 0.0000000 1.00000000 0.0000000 4.0000000 1.00000000 0.0000000 0.00000000 3.0000000 2.00000000 0.000000000 1.00000000 1.000000000 1.00000000 0.00000000 0.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 4.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_67 - 87 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.0000000 3.0000000 1.0000000 4.00000000 1.0000000 0.00000000 2.00000000 1.00000000 0.0000000 5.0000000 5.00000000 2.0000000 1.0000000 2.00000000 1.0000000 2.00000000 0.0000000 0.00000000 1.000000000 0.00000000 1.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 1.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_68 - 88 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 5.0000000 5.0000000 8.0000000 3.00000000 1.0000000 1.00000000 0.00000000 2.00000000 1.0000000 2.0000000 2.00000000 0.0000000 0.0000000 4.00000000 0.0000000 4.00000000 0.0000000 0.00000000 1.000000000 1.00000000 0.000000000 4.00000000 0.00000000 1.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_69 - 89 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 2.0000000 4.0000000 5.0000000 2.00000000 6.0000000 2.00000000 3.00000000 2.00000000 1.0000000 1.0000000 1.00000000 1.0000000 1.0000000 2.00000000 0.0000000 2.00000000 3.0000000 2.00000000 0.000000000 1.00000000 3.000000000 1.00000000 1.00000000 0.00000000 1.00000e+00 0.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_70 - 90 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 1.0000000 1.0000000 3.0000000 4.00000000 2.0000000 6.00000000 3.00000000 7.00000000 0.0000000 2.0000000 3.00000000 2.0000000 1.0000000 2.00000000 0.0000000 1.00000000 0.0000000 1.00000000 0.000000000 1.00000000 2.000000000 1.00000000 1.00000000 1.00000000 0.00000e+00 1.00000000 0.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_71 - 91 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.0000000 1.0000000 1.0000000 0.00000000 1.0000000 1.00000000 3.00000000 0.00000000 5.0000000 3.0000000 3.00000000 6.0000000 3.0000000 3.00000000 2.0000000 2.00000000 2.0000000 1.00000000 1.000000000 2.00000000 3.000000000 0.00000000 1.00000000 0.00000000 0.00000e+00 0.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_72 - 92 1 1 0 0 50 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 3.0000000 1.0000000 3.0000000 1.00000000 0.0000000 3.00000000 1.00000000 2.00000000 1.0000000 2.0000000 1.00000000 2.0000000 4.0000000 0.00000000 2.0000000 4.00000000 4.0000000 1.00000000 0.000000000 2.00000000 2.000000000 2.00000000 1.00000000 2.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_73 - 93 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 3.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.0000000 3.0000000 4.0000000 6.00000000 0.0000000 1.00000000 0.00000000 1.00000000 2.0000000 0.0000000 2.00000000 0.0000000 3.0000000 2.00000000 1.0000000 4.00000000 3.0000000 2.00000000 0.000000000 2.00000000 1.000000000 2.00000000 0.00000000 2.00000000 0.00000e+00 0.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 #_74 - 94 1 1 0 0 50 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 3.0000000 1.0000000 3.0000000 0.00000000 2.0000000 3.00000000 1.00000000 5.00000000 3.0000000 0.0000000 1.00000000 1.0000000 0.0000000 0.00000000 1.0000000 3.00000000 1.0000000 3.00000000 2.000000000 2.00000000 1.000000000 2.00000000 1.00000000 1.00000000 2.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_75 - 62 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.00000e+00 5.00000e+00 1.0000000 2.0000000 4.0000000 8.00000000 7.0000000 7.00000000 5.00000000 4.00000000 5.0000000 4.0000000 4.00000000 4.0000000 2.0000000 7.00000000 1.0000000 2.00000000 2.0000000 1.00000000 2.000000000 2.00000000 3.000000000 2.00000000 0.00000000 1.00000000 2.00000e+00 3.00000000 0.000000000 2.000000000 1.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_76 - 64 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 4.00000e+00 7.00000e+00 4.00000e+00 5.00000e+00 5.0000000 0.0000000 3.0000000 2.00000000 8.0000000 5.00000000 3.00000000 4.00000000 2.0000000 7.0000000 4.00000000 7.0000000 1.0000000 3.00000000 3.0000000 3.00000000 1.0000000 3.00000000 1.000000000 2.00000000 0.000000000 1.00000000 0.00000000 3.00000000 2.00000e+00 1.00000000 1.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 #_77 - 66 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 7.00000e+00 1.10000e+01 5.00000e+00 4.0000000 0.0000000 5.0000000 5.00000000 2.0000000 2.00000000 3.00000000 7.00000000 2.0000000 3.0000000 2.00000000 2.0000000 4.0000000 2.00000000 2.0000000 4.00000000 3.0000000 3.00000000 2.000000000 1.00000000 2.000000000 5.00000000 3.00000000 2.00000000 1.00000e+00 1.00000000 1.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_78 - 68 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 8.00000e+00 5.00000e+00 4.00000e+00 4.0000000 6.0000000 1.0000000 6.00000000 8.0000000 3.00000000 2.00000000 2.00000000 2.0000000 4.0000000 3.00000000 4.0000000 4.0000000 1.00000000 6.0000000 3.00000000 0.0000000 3.00000000 5.000000000 2.00000000 1.000000000 2.00000000 1.00000000 1.00000000 1.00000e+00 2.00000000 2.000000000 0.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_79 - 70 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 1.20000e+01 7.00000e+00 2.0000000 2.0000000 5.0000000 4.00000000 7.0000000 5.00000000 2.00000000 3.00000000 3.0000000 1.0000000 4.00000000 4.0000000 5.0000000 5.00000000 2.0000000 3.00000000 3.0000000 3.00000000 2.000000000 1.00000000 2.000000000 2.00000000 3.00000000 0.00000000 1.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 #_80 - 72 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 4.00000e+00 1.10000e+01 4.0000000 0.0000000 7.0000000 4.00000000 9.0000000 6.00000000 4.00000000 5.00000000 2.0000000 2.0000000 4.00000000 1.0000000 3.0000000 4.00000000 4.0000000 1.00000000 1.0000000 0.00000000 6.000000000 1.00000000 2.000000000 2.00000000 2.00000000 4.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_81 - 74 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 2.00000e+00 3.00000e+00 6.0000000 6.0000000 6.0000000 9.00000000 13.0000000 8.00000000 6.00000000 5.00000000 3.0000000 1.0000000 1.00000000 2.0000000 2.0000000 7.00000000 1.0000000 3.00000000 0.0000000 2.00000000 4.000000000 1.00000000 3.000000000 1.00000000 0.00000000 1.00000000 0.00000e+00 1.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_82 - 76 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 4.00000e+00 1.00000e+01 5.00000e+00 5.0000000 3.0000000 6.0000000 5.00000000 4.0000000 6.00000000 4.00000000 2.00000000 0.0000000 3.0000000 1.00000000 4.0000000 3.0000000 5.00000000 6.0000000 2.00000000 4.0000000 2.00000000 3.000000000 0.00000000 1.000000000 2.00000000 1.00000000 0.00000000 2.00000e+00 1.00000000 0.000000000 0.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_83 - 78 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 8.00000e+00 5.00000e+00 5.0000000 0.0000000 3.0000000 1.00000000 4.0000000 3.00000000 1.00000000 3.00000000 2.0000000 4.0000000 4.00000000 4.0000000 5.0000000 2.00000000 3.0000000 4.00000000 0.0000000 7.00000000 6.000000000 3.00000000 3.000000000 2.00000000 3.00000000 3.00000000 3.00000e+00 4.00000000 0.000000000 0.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_84 - 80 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 2.00000e+00 6.00000e+00 5.00000e+00 2.0000000 2.0000000 8.0000000 4.00000000 4.0000000 3.00000000 6.00000000 2.00000000 2.0000000 3.0000000 4.00000000 7.0000000 0.0000000 3.00000000 3.0000000 3.00000000 5.0000000 2.00000000 1.000000000 4.00000000 3.000000000 3.00000000 2.00000000 2.00000000 1.00000e+00 1.00000000 2.000000000 1.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_85 - 82 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 5.00000e+00 4.00000e+00 6.00000e+00 7.0000000 2.0000000 2.0000000 1.00000000 5.0000000 3.00000000 3.00000000 2.00000000 0.0000000 4.0000000 5.00000000 2.0000000 3.0000000 3.00000000 2.0000000 4.00000000 4.0000000 1.00000000 7.000000000 2.00000000 6.000000000 1.00000000 6.00000000 2.00000000 2.00000e+00 0.00000000 0.000000000 2.000000000 2.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_86 - 84 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 6.00000e+00 5.00000e+00 0.00000e+00 1.0000000 3.0000000 3.0000000 6.00000000 9.0000000 9.00000000 3.00000000 5.00000000 3.0000000 6.0000000 5.00000000 1.0000000 3.0000000 4.00000000 4.0000000 4.00000000 4.0000000 0.00000000 3.000000000 4.00000000 0.000000000 2.00000000 1.00000000 1.00000000 0.00000e+00 0.00000000 1.000000000 1.000000000 0.000000000 1.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_87 - 86 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 3.00000e+00 2.00000e+00 3.00000e+00 7.00000e+00 6.00000e+00 4.0000000 2.0000000 5.0000000 4.00000000 5.0000000 3.00000000 8.00000000 5.00000000 1.0000000 3.0000000 3.00000000 2.0000000 6.0000000 1.00000000 4.0000000 1.00000000 1.0000000 2.00000000 2.000000000 2.00000000 2.000000000 3.00000000 2.00000000 1.00000000 1.00000e+00 1.00000000 2.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_88 - 88 1 2 0 0 100 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 6.00000e+00 2.20000e+01 9.00000e+00 6.0000000 1.0000000 2.0000000 2.00000000 3.0000000 0.00000000 3.00000000 4.00000000 3.0000000 4.0000000 2.00000000 2.0000000 3.0000000 4.00000000 3.0000000 1.00000000 0.0000000 3.00000000 2.000000000 1.00000000 2.000000000 1.00000000 1.00000000 0.00000000 2.00000e+00 2.00000000 0.000000000 1.000000000 0.000000000 0.00000000 2.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_89 - 90 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.00000e+00 4.00000e+00 5.00000e+00 2.0000000 0.0000000 4.0000000 6.00000000 9.0000000 11.00000000 3.00000000 6.00000000 6.0000000 3.0000000 4.00000000 5.0000000 2.0000000 3.00000000 0.0000000 2.00000000 3.0000000 2.00000000 2.000000000 3.00000000 2.000000000 1.00000000 2.00000000 1.00000000 0.00000e+00 1.00000000 2.000000000 0.000000000 1.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 #_90 - 92 1 2 0 0 100 2.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 5.00000e+00 3.00000e+00 4.0000000 0.0000000 2.0000000 3.00000000 4.0000000 4.00000000 3.00000000 2.00000000 2.0000000 2.0000000 4.00000000 6.0000000 3.0000000 5.00000000 3.0000000 6.00000000 7.0000000 3.00000000 5.000000000 2.00000000 1.000000000 2.00000000 2.00000000 3.00000000 0.00000e+00 1.00000000 1.000000000 0.000000000 2.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_91 - 94 1 2 0 0 100 1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 2.00000e+00 6.00000e+00 7.00000e+00 3.0000000 3.0000000 7.0000000 5.00000000 3.0000000 3.00000000 6.00000000 3.00000000 2.0000000 4.0000000 1.00000000 2.0000000 5.0000000 4.00000000 1.0000000 3.00000000 1.0000000 4.00000000 8.000000000 2.00000000 3.000000000 3.00000000 1.00000000 0.00000000 2.00000e+00 0.00000000 0.000000000 1.000000000 1.000000000 0.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_92 - 96 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 2.00000e+00 3.00000e+00 7.00000e+00 5.00000e+00 9.00000e+00 1.0000000 1.0000000 1.0000000 3.00000000 2.0000000 1.00000000 5.00000000 3.00000000 3.0000000 1.0000000 3.00000000 2.0000000 3.0000000 5.00000000 5.0000000 2.00000000 7.0000000 2.00000000 4.000000000 0.00000000 3.000000000 2.00000000 4.00000000 2.00000000 2.00000e+00 2.00000000 2.000000000 2.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_93 - 98 1 2 0 0 100 1.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 7.00000e+00 3.00000e+00 3.00000e+00 2.0000000 4.0000000 3.0000000 1.00000000 4.0000000 3.00000000 5.00000000 2.00000000 4.0000000 5.0000000 4.00000000 7.0000000 1.0000000 7.00000000 3.0000000 3.00000000 1.0000000 4.00000000 3.000000000 3.00000000 0.000000000 4.00000000 0.00000000 7.00000000 2.00000e+00 0.00000000 0.000000000 0.000000000 1.000000000 1.00000000 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_94 - 100 1 2 0 0 100 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 7.00000e+00 1.00000e+01 1.00000e+01 7.0000000 1.0000000 5.0000000 2.00000000 5.0000000 6.00000000 6.00000000 3.00000000 5.0000000 6.0000000 5.00000000 1.0000000 3.0000000 1.00000000 2.0000000 2.00000000 2.0000000 2.00000000 1.000000000 1.00000000 2.000000000 1.00000000 0.00000000 0.00000000 1.00000e+00 1.00000000 1.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_95 --9999 0 0 0 0 0 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.0000000 0.00000000 0.000000000 0.00000000 0.000000000 0.00000000 0.00000000 0.00000000 0.00000e+00 0.00000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 #_terminator -25 #_N_agebins -# -#_agebin_vector -1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 #_agebin_vector -# -#_ageing_error -1 #_N_ageerror_definitions -#_age0 age1 age2 age3 age4 age5 age6 age7 age8 age9 age10 age11 age12 age13 age14 age15 age16 age17 age18 age19 age20 age21 age22 age23 age24 age25 --1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 #_1 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 #_2 -# -#_age_info -#_mintailcomp addtocomp combine_M_F CompressBins CompError ParmSelect minsamplesize --1 1e-10 0 0 0 0 1 #_Fishery --1 1e-10 0 0 0 0 1 #_Survey -3 #_Lbin_method: 1=poplenbins; 2=datalenbins; 3=lengths - #_combine males into females at or below this bin number -#_Yr Seas FltSvy Gender Part Ageerr Lbin_lo Lbin_hi Nsamp a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 - 26 1 1 0 0 1 -1 -1 50 1 6 11 6 2 5 3 3 2 2 1 1 1 1 2 0 1 1 0 0 0 0 0 0 1 #_1 - 27 1 1 0 0 1 -1 -1 50 3 7 10 5 5 4 2 2 7 2 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 #_2 - 28 1 1 0 0 1 -1 -1 50 2 10 3 7 4 7 2 1 4 2 3 2 1 0 0 1 0 1 0 0 0 0 0 0 0 #_3 - 29 1 1 0 0 1 -1 -1 50 1 8 11 3 9 1 8 2 1 3 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 #_4 - 30 1 1 0 0 1 -1 -1 50 1 15 8 4 3 2 5 4 1 1 1 3 0 0 0 0 1 0 1 0 0 0 0 0 0 #_5 - 31 1 1 0 0 1 -1 -1 50 1 8 8 12 5 1 3 2 2 1 1 1 2 1 1 0 0 0 0 0 1 0 0 0 0 #_6 - 32 1 1 0 0 1 -1 -1 50 1 9 13 6 8 3 1 1 3 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 #_7 - 33 1 1 0 0 1 -1 -1 50 1 9 6 9 6 8 2 0 3 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 #_8 - 34 1 1 0 0 1 -1 -1 50 2 13 7 4 5 4 3 1 2 4 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 #_9 - 35 1 1 0 0 1 -1 -1 50 2 15 8 3 5 5 3 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 #_10 - 36 1 1 0 0 1 -1 -1 50 0 9 8 11 5 2 3 4 3 2 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 #_11 - 37 1 1 0 0 1 -1 -1 50 5 3 14 10 7 1 2 3 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_12 - 38 1 1 0 0 1 -1 -1 50 0 14 6 10 0 12 1 1 3 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 #_13 - 39 1 1 0 0 1 -1 -1 50 2 7 17 3 2 4 4 3 6 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 #_14 - 40 1 1 0 0 1 -1 -1 50 0 19 8 8 5 3 2 2 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_15 - 41 1 1 0 0 1 -1 -1 50 1 5 17 6 7 2 4 1 2 1 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 #_16 - 42 1 1 0 0 1 -1 -1 50 0 12 4 9 2 11 2 1 5 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 #_17 - 43 1 1 0 0 1 -1 -1 50 7 13 1 7 5 5 8 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 #_18 - 44 1 1 0 0 1 -1 -1 50 0 23 3 9 0 7 2 3 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_19 - 45 1 1 0 0 1 -1 -1 50 3 2 19 4 5 4 5 1 2 0 0 0 1 2 1 0 0 0 0 0 0 0 1 0 0 #_20 - 46 1 1 0 0 1 -1 -1 50 2 5 5 18 4 3 1 7 0 3 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 #_21 - 47 1 1 0 0 1 -1 -1 50 0 13 11 3 7 3 5 3 2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 #_22 - 48 1 1 0 0 1 -1 -1 50 0 9 22 0 2 9 2 3 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 #_23 - 49 1 1 0 0 1 -1 -1 50 1 7 15 9 3 2 5 0 1 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_24 - 50 1 1 0 0 1 -1 -1 50 2 11 5 9 1 2 2 9 3 1 0 2 0 2 0 0 1 0 0 0 0 0 0 0 0 #_25 - 51 1 1 0 0 1 -1 -1 50 2 17 8 3 5 5 0 0 3 0 0 1 3 1 1 0 0 1 0 0 0 0 0 0 0 #_26 - 52 1 1 0 0 1 -1 -1 50 2 10 12 6 5 4 6 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 #_27 - 53 1 1 0 0 1 -1 -1 50 2 13 1 9 6 1 5 5 2 1 1 1 0 0 2 0 0 0 1 0 0 0 0 0 0 #_28 - 54 1 1 0 0 1 -1 -1 50 1 11 12 5 4 2 2 6 4 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 #_29 - 55 1 1 0 0 1 -1 -1 50 3 8 13 7 3 5 1 0 5 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_30 - 56 1 1 0 0 1 -1 -1 50 1 14 4 6 8 4 8 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_31 - 57 1 1 0 0 1 -1 -1 50 0 11 17 5 2 3 4 2 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 #_32 - 58 1 1 0 0 1 -1 -1 50 1 11 7 14 4 5 0 0 5 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 #_33 - 59 1 1 0 0 1 -1 -1 50 4 9 12 7 11 2 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 #_34 - 60 1 1 0 0 1 -1 -1 50 3 11 11 4 4 4 3 3 1 1 1 0 2 1 0 0 0 1 0 0 0 0 0 0 0 #_35 - 61 1 1 0 0 1 -1 -1 50 2 21 7 8 1 5 0 0 2 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 #_36 - 62 1 1 0 0 1 -1 -1 50 0 7 15 6 3 2 7 5 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 #_37 - 63 1 1 0 0 1 -1 -1 50 2 6 7 14 5 6 4 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 #_38 - 64 1 1 0 0 1 -1 -1 50 2 11 9 3 13 7 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_39 - 65 1 1 0 0 1 -1 -1 50 3 6 5 8 4 9 4 3 3 2 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_40 - 66 1 1 0 0 1 -1 -1 50 2 15 10 7 5 3 4 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_41 - 67 1 1 0 0 1 -1 -1 50 2 10 9 8 3 3 2 5 1 2 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 #_42 - 68 1 1 0 0 1 -1 -1 50 0 10 7 9 8 3 2 2 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_43 - 69 1 1 0 0 1 -1 -1 50 1 12 8 6 3 5 3 4 2 3 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 #_44 - 70 1 1 0 0 1 -1 -1 50 4 9 5 9 11 4 2 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_45 - 71 1 1 0 0 1 -1 -1 50 2 17 11 7 3 4 1 1 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 #_46 - 72 1 1 0 0 1 -1 -1 50 6 5 12 10 7 2 2 4 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_47 - 73 1 1 0 0 1 -1 -1 50 1 28 4 8 5 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_48 - 74 1 1 0 0 1 -1 -1 50 2 7 21 3 8 1 3 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_49 - 75 1 1 0 0 1 -1 -1 50 2 18 5 11 4 4 1 2 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_50 - 76 1 1 0 0 1 -1 -1 50 0 9 12 1 14 3 4 0 1 4 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 #_51 - 77 1 1 0 0 1 -1 -1 50 0 4 10 7 2 11 4 3 5 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 #_52 - 78 1 1 0 0 1 -1 -1 50 1 11 5 9 11 2 9 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_53 - 79 1 1 0 0 1 -1 -1 50 3 10 10 2 6 8 1 6 0 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 #_54 - 80 1 1 0 0 1 -1 -1 50 0 3 17 10 1 3 5 1 4 0 2 2 0 1 0 0 1 0 0 0 0 0 0 0 0 #_55 - 81 1 1 0 0 1 -1 -1 50 4 6 7 9 4 2 4 3 1 5 0 1 2 0 0 1 0 1 0 0 0 0 0 0 0 #_56 - 82 1 1 0 0 1 -1 -1 50 2 13 9 9 6 1 1 1 1 1 1 1 2 1 0 0 1 0 0 0 0 0 0 0 0 #_57 - 83 1 1 0 0 1 -1 -1 50 2 15 8 6 3 2 4 3 2 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 #_58 - 84 1 1 0 0 1 -1 -1 50 1 9 6 9 7 1 7 2 2 1 0 1 2 1 0 1 0 0 0 0 0 0 0 0 0 #_59 - 85 1 1 0 0 1 -1 -1 50 3 18 6 7 7 2 5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_60 - 86 1 1 0 0 1 -1 -1 50 3 9 18 5 5 1 2 0 4 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 #_61 - 87 1 1 0 0 1 -1 -1 50 5 3 10 14 4 5 5 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_62 - 88 1 1 0 0 1 -1 -1 50 4 24 3 6 3 1 4 0 1 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_63 - 89 1 1 0 0 1 -1 -1 50 2 18 13 1 4 7 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_64 - 90 1 1 0 0 1 -1 -1 50 0 6 15 17 1 4 3 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 #_65 - 91 1 1 0 0 1 -1 -1 50 1 9 7 10 13 0 3 1 2 2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 #_66 - 92 1 1 0 0 1 -1 -1 50 1 13 2 7 7 12 1 1 3 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 #_67 - 93 1 1 0 0 1 -1 -1 50 1 15 4 4 1 6 9 1 1 3 1 2 1 0 0 0 0 0 0 1 0 0 0 0 0 #_68 - 94 1 1 0 0 1 -1 -1 50 0 8 15 13 1 4 3 3 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 #_69 - 62 1 2 0 0 1 -1 -1 100 1 17 30 11 9 12 6 4 3 0 0 1 1 2 1 1 0 0 0 0 1 0 0 0 0 #_70 - 64 1 2 0 0 1 -1 -1 100 1 23 21 7 17 6 3 8 2 4 2 2 0 0 2 0 1 1 0 0 0 0 0 0 0 #_71 - 66 1 2 0 0 1 -1 -1 100 0 24 20 19 9 6 8 4 3 1 2 2 1 0 0 0 1 0 0 0 0 0 0 0 0 #_72 - 68 1 2 0 0 1 -1 -1 100 1 19 26 13 12 7 3 5 6 2 1 1 1 2 0 0 1 0 0 0 0 0 0 0 0 #_73 - 70 1 2 0 0 1 -1 -1 100 0 30 20 9 12 7 4 7 3 0 2 1 1 0 1 0 0 1 0 0 1 0 0 0 1 #_74 - 72 1 2 0 0 1 -1 -1 100 2 18 27 17 13 3 10 3 2 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 #_75 - 74 1 2 0 0 1 -1 -1 100 2 12 35 5 11 11 8 7 2 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 #_76 - 76 1 2 0 0 1 -1 -1 100 1 15 28 7 24 7 6 1 4 2 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 #_77 - 78 1 2 0 0 1 -1 -1 100 1 25 8 12 19 4 16 3 3 3 1 1 1 2 0 1 0 0 0 0 0 0 0 0 0 #_78 - 80 1 2 0 0 1 -1 -1 100 0 16 21 13 4 8 16 4 7 1 4 2 2 1 0 1 0 0 0 0 0 0 0 0 0 #_79 - 82 1 2 0 0 1 -1 -1 100 0 21 14 15 18 11 3 6 3 1 5 1 2 0 0 0 0 0 0 0 0 0 0 0 0 #_80 - 84 1 2 0 0 1 -1 -1 100 1 25 18 15 8 4 6 5 3 3 5 0 4 1 2 0 0 0 0 0 0 0 0 0 0 #_81 - 86 1 2 0 0 1 -1 -1 100 0 22 35 11 12 6 4 2 1 3 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 #_82 - 88 1 2 0 0 1 -1 -1 100 0 41 12 9 12 6 6 3 2 1 3 1 0 0 1 0 2 0 1 0 0 0 0 0 0 #_83 - 90 1 2 0 0 1 -1 -1 100 0 26 29 22 6 4 5 0 0 3 0 0 0 1 1 0 2 1 0 0 0 0 0 0 0 #_84 - 92 1 2 0 0 1 -1 -1 100 2 23 9 16 16 11 3 2 9 3 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_85 - 94 1 2 0 0 1 -1 -1 100 1 22 23 7 9 10 14 8 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 #_86 - 96 1 2 0 0 1 -1 -1 100 0 27 13 13 12 9 3 6 6 5 2 1 2 0 0 0 0 0 0 1 0 0 0 0 0 #_87 - 98 1 2 0 0 1 -1 -1 100 2 27 6 20 8 8 9 4 2 1 3 2 2 1 1 1 1 2 0 0 0 0 0 0 0 #_88 - 100 1 2 0 0 1 -1 -1 100 1 29 32 3 5 11 4 5 7 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 #_89 - 95 1 1 0 0 1 29 29 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_731 - 95 1 1 0 0 1 47 47 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_791 - 95 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_801 - 95 1 1 0 0 1 56 56 5 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_821 - 95 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_831 - 95 1 1 0 0 1 65 65 3 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_851 - 95 1 1 0 0 1 68 68 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_861 - 95 1 1 0 0 1 71 71 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_871 - 95 1 1 0 0 1 74 74 2 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_881 - 95 1 1 0 0 1 80 80 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_90 - 95 1 1 0 0 1 86 86 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_92 - 95 1 1 0 0 1 89 89 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_93 - 95 1 1 0 0 1 107 107 3 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_99 - 95 1 1 0 0 1 110 110 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_100 - 95 1 1 0 0 1 116 116 3 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_102 - 96 1 1 0 0 1 47 47 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_124 - 96 1 1 0 0 1 50 50 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_125 - 96 1 1 0 0 1 62 62 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_129 - 96 1 1 0 0 1 68 68 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_131 - 96 1 1 0 0 1 74 74 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_133 - 96 1 1 0 0 1 80 80 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_135 - 96 1 1 0 0 1 83 83 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_136 - 96 1 1 0 0 1 86 86 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_137 - 96 1 1 0 0 1 89 89 4 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_138 - 96 1 1 0 0 1 98 98 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_141 - 96 1 1 0 0 1 107 107 3 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_144 - 96 1 1 0 0 1 110 110 4 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_145 - 96 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_147 - 96 1 1 0 0 1 131 131 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 #_152 - 96 1 1 0 0 1 140 140 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 #_155 - 97 1 1 0 0 1 35 35 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_165 - 97 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_170 - 97 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_173 - 97 1 1 0 0 1 62 62 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_174 - 97 1 1 0 0 1 65 65 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_175 - 97 1 1 0 0 1 68 68 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_176 - 97 1 1 0 0 1 71 71 4 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_177 - 97 1 1 0 0 1 74 74 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_178 - 97 1 1 0 0 1 77 77 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_179 - 97 1 1 0 0 1 80 80 5 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_180 - 97 1 1 0 0 1 86 86 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_182 - 97 1 1 0 0 1 92 92 3 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_184 - 97 1 1 0 0 1 113 113 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_191 - 97 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_192 - 97 1 1 0 0 1 122 122 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_194 - 97 1 1 0 0 1 134 134 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_198 - 97 1 1 0 0 1 143 143 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 #_201 - 98 1 1 0 0 1 50 50 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_215 - 98 1 1 0 0 1 53 53 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_216 - 98 1 1 0 0 1 62 62 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_219 - 98 1 1 0 0 1 65 65 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_220 - 98 1 1 0 0 1 68 68 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_221 - 98 1 1 0 0 1 74 74 3 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_223 - 98 1 1 0 0 1 77 77 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_224 - 98 1 1 0 0 1 80 80 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_225 - 98 1 1 0 0 1 83 83 3 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_226 - 98 1 1 0 0 1 86 86 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_227 - 98 1 1 0 0 1 89 89 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_228 - 98 1 1 0 0 1 92 92 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_229 - 98 1 1 0 0 1 98 98 3 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_231 - 98 1 1 0 0 1 107 107 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_234 - 98 1 1 0 0 1 116 116 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_237 - 98 1 1 0 0 1 119 119 2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_238 - 99 1 1 0 0 1 32 32 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_254 - 99 1 1 0 0 1 44 44 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_258 - 99 1 1 0 0 1 47 47 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_259 - 99 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_260 - 99 1 1 0 0 1 53 53 6 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_261 - 99 1 1 0 0 1 56 56 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_262 - 99 1 1 0 0 1 59 59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_263 - 99 1 1 0 0 1 62 62 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_264 - 99 1 1 0 0 1 68 68 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_266 - 99 1 1 0 0 1 71 71 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_267 - 99 1 1 0 0 1 74 74 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_268 - 99 1 1 0 0 1 77 77 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_269 - 99 1 1 0 0 1 92 92 3 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_274 - 99 1 1 0 0 1 122 122 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 #_284 - 99 1 1 0 0 1 134 134 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_288 - 100 1 1 0 0 1 44 44 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_303 - 100 1 1 0 0 1 47 47 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_304 - 100 1 1 0 0 1 50 50 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_305 - 100 1 1 0 0 1 53 53 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_306 - 100 1 1 0 0 1 56 56 3 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_307 - 100 1 1 0 0 1 62 62 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_309 - 100 1 1 0 0 1 65 65 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_310 - 100 1 1 0 0 1 80 80 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_315 - 100 1 1 0 0 1 89 89 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_318 - 100 1 1 0 0 1 92 92 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_319 - 100 1 1 0 0 1 95 95 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_320 - 100 1 1 0 0 1 107 107 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_324 - 100 1 1 0 0 1 122 122 4 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #_329 --9999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #_terminator -# -#_MeanSize_at_Age_obs -0 #_use_MeanSize_at_Age_obs -0 #_N_environ_variables -0 #_N_sizefreq_methods -0 #_do_tags -0 #_morphcomp_data -0 #_use_selectivity_priors -# -999 diff --git a/model_recipes/reference_run_orig/starter.ss b/model_recipes/reference_run_orig/starter.ss deleted file mode 100644 index 25a84c3..0000000 --- a/model_recipes/reference_run_orig/starter.ss +++ /dev/null @@ -1,35 +0,0 @@ -#C starter file written by R function SS_writestarter -#C rerun model to get more complete formatting in starter.ss_new -#C should work with SS version: 3.30 -#C file write time: 2022-01-18 13:20:42 -# -ss3.dat #_datfile -em.ctl #_ctlfile -0 #_init_values_src -0 #_run_display_detail -1 #_detailed_age_structure -0 #_checkup -0 #_parmtrace -1 #_cumreport -0 #_prior_like -1 #_soft_bounds -2 #_N_bootstraps -100 #_last_estimation_phase -0 #_MCMCburn -1 #_MCMCthin -0 #_jitter_fraction --1 #_minyr_sdreport --2 #_maxyr_sdreport -0 #_N_STD_yrs -1e-04 #_converge_criterion -0 #_retro_yr -1 #_min_age_summary_bio -1 #_depl_basis -1 #_depl_denom_frac -4 #_SPR_basis -1 #_F_report_units -0 #_F_report_basis -0 #_MCMC_output_detail -0 #_ALK_tolerance -# -3.3 #_final diff --git a/model_recipes/test/control.ss b/model_recipes/test/control.ss deleted file mode 100644 index c56e819..0000000 --- a/model_recipes/test/control.ss +++ /dev/null @@ -1,314 +0,0 @@ -#V3.30.21.00;_safe;_compile_date:_Feb 10 2023;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_13.1 -#_Stock_Synthesis_is_a_work_of_the_U.S._Government_and_is_not_subject_to_copyright_protection_in_the_United_States. -#_Foreign_copyrights_may_apply._See_copyright.txt_for_more_information. -#_User_support_available_at:NMFS.Stock.Synthesis@noaa.gov -#_User_info_available_at:https://vlab.noaa.gov/group/stock-synthesis -#_Source_code_at:_https://github.com/nmfs-stock-synthesis/stock-synthesis - -#C growth parameters are estimated -#C spawner-recruitment bias adjustment Not tuned For optimality -#_data_and_control_files: data.ss // control.ss -0 # 0 means do not read wtatage.ss; 1 means read and use wtatage.ss and also read and use growth parameters -1 #_N_Growth_Patterns (Growth Patterns, Morphs, Bio Patterns, GP are terms used interchangeably in SS3) -1 #_N_platoons_Within_GrowthPattern -#_Cond 1 #_Platoon_within/between_stdev_ratio (no read if N_platoons=1) -#_Cond 1 #vector_platoon_dist_(-1_in_first_val_gives_normal_approx) -# -4 # recr_dist_method for parameters: 2=main effects for GP, Area, Settle timing; 3=each Settle entity; 4=none (only when N_GP*Nsettle*pop==1) -1 # not yet implemented; Future usage: Spawner-Recruitment: 1=global; 2=by area -1 # number of recruitment settlement assignments -0 # unused option -#GPattern month area age (for each settlement assignment) - 1 1 1 0 -# -#_Cond 0 # N_movement_definitions goes here if Nareas > 1 -#_Cond 1.0 # first age that moves (real age at begin of season, not integer) also cond on do_migration>0 -#_Cond 1 1 1 2 4 10 # example move definition for seas=1, morph=1, source=1 dest=2, age1=4, age2=10 -# -0 #_Nblock_Patterns -#_Cond 0 #_blocks_per_pattern -# begin and end years of blocks -# -# controls for all timevary parameters -1 #_time-vary parm bound check (1=warn relative to base parm bounds; 3=no bound check); Also see env (3) and dev (5) options to constrain with base bounds -# -# AUTOGEN - 0 0 0 0 0 # autogen: 1st element for biology, 2nd for SR, 3rd for Q, 4th reserved, 5th for selex -# where: 0 = autogen time-varying parms of this category; 1 = read each time-varying parm line; 2 = read then autogen if parm min==-12345 -# -#_Available timevary codes -#_Block types: 0: P_block=P_base*exp(TVP); 1: P_block=P_base+TVP; 2: P_block=TVP; 3: P_block=P_block(-1) + TVP -#_Block_trends: -1: trend bounded by base parm min-max and parms in transformed units (beware); -2: endtrend and infl_year direct values; -3: end and infl as fraction of base range -#_EnvLinks: 1: P(y)=P_base*exp(TVP*env(y)); 2: P(y)=P_base+TVP*env(y); 3: P(y)=f(TVP,env_Zscore) w/ logit to stay in min-max; 4: P(y)=2.0/(1.0+exp(-TVP1*env(y) - TVP2)) -#_DevLinks: 1: P(y)*=exp(dev(y)*dev_se; 2: P(y)+=dev(y)*dev_se; 3: random walk; 4: zero-reverting random walk with rho; 5: like 4 with logit transform to stay in base min-max -#_DevLinks(more): 21-25 keep last dev for rest of years -# -#_Prior_codes: 0=none; 6=normal; 1=symmetric beta; 2=CASAL's beta; 3=lognormal; 4=lognormal with biascorr; 5=gamma -# -# setup for M, growth, wt-len, maturity, fecundity, (hermaphro), recr_distr, cohort_grow, (movement), (age error), (catch_mult), sex ratio -#_NATMORT -0 #_natM_type:_0=1Parm; 1=N_breakpoints;_2=Lorenzen;_3=agespecific;_4=agespec_withseasinterpolate;_5=BETA:_Maunder_link_to_maturity;_6=Lorenzen_range - #_no additional input for selected M option; read 1P per morph -# -1 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2; 3=age_specific_K_incr; 4=age_specific_K_decr; 5=age_specific_K_each; 6=NA; 7=NA; 8=growth cessation -0 #_Age(post-settlement)_for_L1;linear growth below this -25 #_Growth_Age_for_L2 (999 to use as Linf) --999 #_exponential decay for growth above maxage (value should approx initial Z; -999 replicates 3.24; -998 to not allow growth above maxage) -0 #_placeholder for future growth feature -# -0 #_SD_add_to_LAA (set to 0.1 for SS2 V1.x compatibility) -0 #_CV_Growth_Pattern: 0 CV=f(LAA); 1 CV=F(A); 2 SD=F(LAA); 3 SD=F(A); 4 logSD=F(A) -# -1 #_maturity_option: 1=length logistic; 2=age logistic; 3=read age-maturity matrix by growth_pattern; 4=read age-fecundity; 5=disabled; 6=read length-maturity -1 #_First_Mature_Age -1 #_fecundity_at_length option:(1)eggs=Wt*(a+b*Wt);(2)eggs=a*L^b;(3)eggs=a*Wt^b; (4)eggs=a+b*L; (5)eggs=a+b*W -0 #_hermaphroditism option: 0=none; 1=female-to-male age-specific fxn; -1=male-to-female age-specific fxn -1 #_parameter_offset_approach for M, G, CV_G: 1- direct, no offset**; 2- male=fem_parm*exp(male_parm); 3: male=female*exp(parm) then old=young*exp(parm) -#_** in option 1, any male parameter with value = 0.0 and phase <0 is set equal to female parameter -# -#_growth_parms -#_ LO HI INIT PRIOR PR_SD PR_type PHASE env_var&link dev_link dev_minyr dev_maxyr dev_PH Block Block_Fxn -# Sex: 1 BioPattern: 1 NatMort - 0.05 0.15 0.1 0.1 0.8 0 -3 0 0 0 0 0 0 0 # NatM_uniform_Fem_GP_1 -# Sex: 1 BioPattern: 1 Growth - -10 45 22.769 36 10 0 2 0 0 0 0 0 0 0 # L_at_Amin_Fem_GP_1 - 40 90 71.8072 70 10 0 4 0 0 0 0 0 0 0 # L_at_Amax_Fem_GP_1 - 0.05 0.25 0.142165 0.15 0.8 0 4 0 0 0 0 0 0 0 # VonBert_K_Fem_GP_1 - 0.05 0.25 0.1 0.1 0.8 0 -3 0 0 0 0 0 0 0 # CV_young_Fem_GP_1 - 0.05 0.25 0.1 0.1 0.8 0 -3 0 0 0 0 0 0 0 # CV_old_Fem_GP_1 -# Sex: 1 BioPattern: 1 WtLen - -3 3 2.44e-06 2.44e-06 0.8 0 -3 0 0 0 0 0 0 0 # Wtlen_1_Fem_GP_1 - -3 4 3.34694 3.34694 0.8 0 -3 0 0 0 0 0 0 0 # Wtlen_2_Fem_GP_1 -# Sex: 1 BioPattern: 1 Maturity&Fecundity - 50 60 55 55 0.8 0 -3 0 0 0 0 0 0 0 # Mat50%_Fem_GP_1 - -3 3 -0.25 -0.25 0.8 0 -3 0 0 0 0 0 0 0 # Mat_slope_Fem_GP_1 - -3 3 1 1 0.8 0 -3 0 0 0 0 0 0 0 # Eggs/kg_inter_Fem_GP_1 - -3 3 0 0 0.8 0 -3 0 0 0 0 0 0 0 # Eggs/kg_slope_wt_Fem_GP_1 -# Sex: 2 BioPattern: 1 NatMort - -3 3 0 0 99 0 -3 0 0 0 0 0 0 0 # NatM_uniform_Mal_GP_1 -# Sex: 2 BioPattern: 1 Growth - -3 3 0 0 99 0 -3 0 0 0 0 0 0 0 # L_at_Amin_Mal_GP_1 - -3 3 0 0 99 0 -3 0 0 0 0 0 0 0 # L_at_Amax_Mal_GP_1 - -3 3 0 0 99 0 -3 0 0 0 0 0 0 0 # VonBert_K_Mal_GP_1 - -3 3 0 0 99 0 -3 0 0 0 0 0 0 0 # CV_young_Mal_GP_1 - -3 3 0 0 99 0 -3 0 0 0 0 0 0 0 # CV_old_Mal_GP_1 -# Sex: 2 BioPattern: 1 WtLen - -3 3 2.44e-06 2.44e-06 0.8 0 -3 0 0 0 0 0 0 0 # Wtlen_1_Mal_GP_1 - -3 4 3.34694 3.34694 0.8 0 -3 0 0 0 0 0 0 0 # Wtlen_2_Mal_GP_1 -# Hermaphroditism -# Recruitment Distribution -# Cohort growth dev base - 0.1 10 1 1 1 0 -1 0 0 0 0 0 0 0 # CohortGrowDev -# Movement -# Age Error from parameters -# catch multiplier -# fraction female, by GP - 1e-06 0.999999 0.5 0.5 0.5 0 -99 0 0 0 0 0 0 0 # FracFemale_GP_1 -# M2 parameter for each predator fleet -# -#_no timevary MG parameters -# -#_seasonal_effects_on_biology_parms - 0 0 0 0 0 0 0 0 0 0 #_femwtlen1,femwtlen2,mat1,mat2,fec1,fec2,Malewtlen1,malewtlen2,L1,K -#_ LO HI INIT PRIOR PR_SD PR_type PHASE -#_Cond -2 2 0 0 -1 99 -2 #_placeholder when no seasonal MG parameters -# -3 #_Spawner-Recruitment; Options: 1=NA; 2=Ricker; 3=std_B-H; 4=SCAA; 5=Hockey; 6=B-H_flattop; 7=survival_3Parm; 8=Shepherd_3Parm; 9=RickerPower_3parm -0 # 0/1 to use steepness in initial equ recruitment calculation -0 # future feature: 0/1 to make realized sigmaR a function of SR curvature -#_ LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - 6 12 8.9274 10.3 10 0 1 0 0 0 0 0 0 0 # SR_LN(R0) - 0.2 1 0.8 0.8 1 0 -4 0 0 0 0 0 0 0 # SR_BH_steep - 0 2 0.6 0.8 0.8 0 -4 0 0 0 0 0 0 0 # SR_sigmaR - -5 5 0 0 1 0 -4 0 0 0 0 0 0 0 # SR_regime - 0 0 0 0 0 0 -99 0 0 0 0 0 0 0 # SR_autocorr -#_no timevary SR parameters -1 #do_recdev: 0=none; 1=devvector (R=F(SSB)+dev); 2=deviations (R=F(SSB)+dev); 3=deviations (R=R0*dev; dev2=R-f(SSB)); 4=like 3 with sum(dev2) adding penalty -2011 # first year of main recr_devs; early devs can preceed this era -2022 # last year of main recr_devs; forecast devs start in following year -2 #_recdev phase -1 # (0/1) to read 13 advanced options - 0 #_recdev_early_start (0=none; neg value makes relative to recdev_start) - -4 #_recdev_early_phase - 0 #_forecast_recruitment phase (incl. late recr) (0 value resets to maxphase+1) - 1 #_lambda for Fcast_recr_like occurring before endyr+1 - 1900 #_last_yr_nobias_adj_in_MPD; begin of ramp - 1900 #_first_yr_fullbias_adj_in_MPD; begin of plateau - 2001 #_last_yr_fullbias_adj_in_MPD - 2002 #_end_yr_for_ramp_in_MPD (can be in forecast to shape ramp, but SS3 sets bias_adj to 0.0 for fcast yrs) - 1 #_max_bias_adj_in_MPD (typical ~0.8; -3 sets all years to 0.0; -2 sets all non-forecast yrs w/ estimated recdevs to 1.0; -1 sets biasadj=1.0 for all yrs w/ recdevs) - 0 #_period of cycles in recruitment (N parms read below) - -5 #min rec_dev - 5 #max rec_dev - 0 #_read_recdevs -#_end of advanced SR options -# -#_placeholder for full parameter lines for recruitment cycles -# read specified recr devs -#_Yr Input_value -# -# all recruitment deviations -# 2011R 2012R 2013R 2014R 2015R 2016R 2017R 2018R 2019R 2020R 2021R 2022R 2023F 2024F 2025F 2026F 2027F 2028F 2029F 2030F 2031F 2032F -# -0.0600525 -0.0128487 0.134787 0.114101 -0.083254 0.145568 -0.12974 -0.183081 0.0244276 -0.0897981 -0.0781232 0.218013 0 0 0 0 0 0 0 0 0 0 -# -#Fishing Mortality info -0.3 # F ballpark value in units of annual_F --2022 # F ballpark year (neg value to disable) -3 # F_Method: 1=Pope midseason rate; 2=F as parameter; 3=F as hybrid; 4=fleet-specific parm/hybrid (#4 is superset of #2 and #3 and is recommended) -2.95 # max F (methods 2-4) or harvest fraction (method 1) -4 # N iterations for tuning in hybrid mode; recommend 3 (faster) to 5 (more precise if many fleets) -# -#_initial_F_parms; for each fleet x season that has init_catch; nest season in fleet; count = 1 -#_for unconstrained init_F, use an arbitrary initial catch and set lambda=0 for its logL -#_ LO HI INIT PRIOR PR_SD PR_type PHASE - 0.05 0.15 0.1 0.1 0.8 0 -3 # InitF_seas_1_flt_1FISHERY -# -# F rates by fleet x season -# Yr: 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 -# seas: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -# FISHERY 0.220229 0.239068 0.263759 0.287798 0.316758 0.350726 0.404085 0.405179 0.390484 0.37618 0.33635 0.226617 0.0405108 0.0466812 0.051486 0.0553062 0.0583986 0.0609127 0.0629524 0.0646111 0.0659699 0.067099 -# -#_Q_setup for fleets with cpue or survey data -#_1: fleet number -#_2: link type: (1=simple q, 1 parm; 2=mirror simple q, 1 mirrored parm; 3=q and power, 2 parm; 4=mirror with offset, 2 parm) -#_3: extra input for link, i.e. mirror fleet# or dev index number -#_4: 0/1 to select extra sd parameter -#_5: 0/1 for biasadj or not -#_6: 0/1 to float -#_ fleet link link_info extra_se biasadj float # fleetname - 2 1 0 1 0 0 # SURVEY1 - 3 1 0 0 0 0 # SURVEY2 --9999 0 0 0 0 0 -# -#_Q_parms(if_any);Qunits_are_ln(q) -#_ LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name - -7 5 0.476759 0 1 0 1 0 0 0 0 0 0 0 # LnQ_base_SURVEY1(2) - 0 0.5 0 0.05 1 0 -4 0 0 0 0 0 0 0 # Q_extraSD_SURVEY1(2) - -7 5 -6.30407 0 1 0 1 0 0 0 0 0 0 0 # LnQ_base_SURVEY2(3) -#_no timevary Q parameters -# -#_size_selex_patterns -#Pattern:_0; parm=0; selex=1.0 for all sizes -#Pattern:_1; parm=2; logistic; with 95% width specification -#Pattern:_5; parm=2; mirror another size selex; PARMS pick the min-max bin to mirror -#Pattern:_11; parm=2; selex=1.0 for specified min-max population length bin range -#Pattern:_15; parm=0; mirror another age or length selex -#Pattern:_6; parm=2+special; non-parm len selex -#Pattern:_43; parm=2+special+2; like 6, with 2 additional param for scaling (average over bin range) -#Pattern:_8; parm=8; double_logistic with smooth transitions and constant above Linf option -#Pattern:_9; parm=6; simple 4-parm double logistic with starting length; parm 5 is first length; parm 6=1 does desc as offset -#Pattern:_21; parm=2+special; non-parm len selex, read as pairs of size, then selex -#Pattern:_22; parm=4; double_normal as in CASAL -#Pattern:_23; parm=6; double_normal where final value is directly equal to sp(6) so can be >1.0 -#Pattern:_24; parm=6; double_normal with sel(minL) and sel(maxL), using joiners -#Pattern:_2; parm=6; double_normal with sel(minL) and sel(maxL), using joiners, back compatibile version of 24 with 3.30.18 and older -#Pattern:_25; parm=3; exponential-logistic in length -#Pattern:_27; parm=special+3; cubic spline in length; parm1==1 resets knots; parm1==2 resets all -#Pattern:_42; parm=special+3+2; cubic spline; like 27, with 2 additional param for scaling (average over bin range) -#_discard_options:_0=none;_1=define_retention;_2=retention&mortality;_3=all_discarded_dead;_4=define_dome-shaped_retention -#_Pattern Discard Male Special - 1 0 0 0 # 1 FISHERY - 1 0 0 0 # 2 SURVEY1 - 0 0 0 0 # 3 SURVEY2 -# -#_age_selex_patterns -#Pattern:_0; parm=0; selex=1.0 for ages 0 to maxage -#Pattern:_10; parm=0; selex=1.0 for ages 1 to maxage -#Pattern:_11; parm=2; selex=1.0 for specified min-max age -#Pattern:_12; parm=2; age logistic -#Pattern:_13; parm=8; age double logistic. Recommend using pattern 18 instead. -#Pattern:_14; parm=nages+1; age empirical -#Pattern:_15; parm=0; mirror another age or length selex -#Pattern:_16; parm=2; Coleraine - Gaussian -#Pattern:_17; parm=nages+1; empirical as random walk N parameters to read can be overridden by setting special to non-zero -#Pattern:_41; parm=2+nages+1; // like 17, with 2 additional param for scaling (average over bin range) -#Pattern:_18; parm=8; double logistic - smooth transition -#Pattern:_19; parm=6; simple 4-parm double logistic with starting age -#Pattern:_20; parm=6; double_normal,using joiners -#Pattern:_26; parm=3; exponential-logistic in age -#Pattern:_27; parm=3+special; cubic spline in age; parm1==1 resets knots; parm1==2 resets all -#Pattern:_42; parm=2+special+3; // cubic spline; with 2 additional param for scaling (average over bin range) -#Age patterns entered with value >100 create Min_selage from first digit and pattern from remainder -#_Pattern Discard Male Special - 0 0 0 0 # 1 FISHERY - 0 0 0 0 # 2 SURVEY1 - 11 0 0 0 # 3 SURVEY2 -# -#_ LO HI INIT PRIOR PR_SD PR_type PHASE env-var use_dev dev_mnyr dev_mxyr dev_PH Block Blk_Fxn # parm_name -# 1 FISHERY LenSelex - 19 80 56.5138 50 99 0 2 0 0 0 0 0 0 0 # Size_inflection_FISHERY(1) - 0.01 60 20.1793 15 99 0 3 0 0 0 0 0 0 0 # Size_95%width_FISHERY(1) -# 2 SURVEY1 LenSelex - 19 70 36.0233 30 99 0 2 0 0 0 0 0 0 0 # Size_inflection_SURVEY1(2) - 0.01 60 5.33502 10 99 0 3 0 0 0 0 0 0 0 # Size_95%width_SURVEY1(2) -# 3 SURVEY2 LenSelex -# 1 FISHERY AgeSelex -# 2 SURVEY1 AgeSelex -# 3 SURVEY2 AgeSelex - 0 20 0 5 99 0 -99 0 0 0 0 0 0 0 # minage@sel=1_SURVEY2(3) - 0 20 0 6 99 0 -99 0 0 0 0 0 0 0 # maxage@sel=1_SURVEY2(3) -#_No_Dirichlet parameters -#_no timevary selex parameters -# -0 # use 2D_AR1 selectivity(0/1) -#_no 2D_AR1 selex offset used -# -# Tag loss and Tag reporting parameters go next -0 # TG_custom: 0=no read and autogen if tag data exist; 1=read -#_Cond -6 6 1 1 2 0.01 -4 0 0 0 0 0 0 0 #_placeholder if no parameters -# -# no timevary parameters -# -# -# Input variance adjustments factors: - #_1=add_to_survey_CV - #_2=add_to_discard_stddev - #_3=add_to_bodywt_CV - #_4=mult_by_lencomp_N - #_5=mult_by_agecomp_N - #_6=mult_by_size-at-age_N - #_7=mult_by_generalized_sizecomp -#_Factor Fleet Value - -9999 1 0 # terminator -# -4 #_maxlambdaphase -1 #_sd_offset; must be 1 if any growthCV, sigmaR, or survey extraSD is an estimated parameter -# read 3 changes to default Lambdas (default value is 1.0) -# Like_comp codes: 1=surv; 2=disc; 3=mnwt; 4=length; 5=age; 6=SizeFreq; 7=sizeage; 8=catch; 9=init_equ_catch; -# 10=recrdev; 11=parm_prior; 12=parm_dev; 13=CrashPen; 14=Morphcomp; 15=Tag-comp; 16=Tag-negbin; 17=F_ballpark; 18=initEQregime -#like_comp fleet phase value sizefreq_method - 1 2 2 1 1 - 4 2 2 1 1 - 4 2 3 1 1 --9999 1 1 1 1 # terminator -# -# lambdas (for info only; columns are phases) -# 0 0 0 0 #_CPUE/survey:_1 -# 1 1 1 1 #_CPUE/survey:_2 -# 1 1 1 1 #_CPUE/survey:_3 -# 1 1 1 1 #_lencomp:_1 -# 1 1 1 1 #_lencomp:_2 -# 0 0 0 0 #_lencomp:_3 -# 1 1 1 1 #_agecomp:_1 -# 1 1 1 1 #_agecomp:_2 -# 0 0 0 0 #_agecomp:_3 -# 1 1 1 1 #_size-age:_1 -# 1 1 1 1 #_size-age:_2 -# 0 0 0 0 #_size-age:_3 -# 1 1 1 1 #_init_equ_catch1 -# 1 1 1 1 #_init_equ_catch2 -# 1 1 1 1 #_init_equ_catch3 -# 1 1 1 1 #_recruitments -# 1 1 1 1 #_parameter-priors -# 1 1 1 1 #_parameter-dev-vectors -# 1 1 1 1 #_crashPenLambda -# 0 0 0 0 # F_ballpark_lambda -1 # (0/1/2) read specs for more stddev reporting: 0 = skip, 1 = read specs for reporting stdev for selectivity, size, and numbers, 2 = add options for M,Dyn. Bzero, SmryBio - 1 1 -1 5 # Selectivity: (1) 0 to skip or fleet, (2) 1=len/2=age/3=combined, (3) year, (4) N selex bins; NOTE: combined reports in age bins - 1 5 # Growth: (1) 0 to skip or growth pattern, (2) growth ages; NOTE: does each sex - 1 -1 5 # Numbers-at-age: (1) 0 or area(-1 for all), (2) year, (3) N ages; NOTE: sums across morphs - 5 15 25 35 43 # vector with selex std bins (-1 in first bin to self-generate) - 1 2 14 20 20 # vector with growth std ages picks (-1 in first bin to self-generate) - 1 2 14 20 20 # vector with NatAge std ages (-1 in first bin to self-generate) -999 - diff --git a/model_recipes/test/data.ss b/model_recipes/test/data.ss deleted file mode 100644 index 07c785a..0000000 --- a/model_recipes/test/data.ss +++ /dev/null @@ -1,213 +0,0 @@ -#V3.30.21.00;_safe;_compile_date:_Feb 10 2023;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_13.1 -#_Stock_Synthesis_is_a_work_of_the_U.S._Government_and_is_not_subject_to_copyright_protection_in_the_United_States. -#_Foreign_copyrights_may_apply._See_copyright.txt_for_more_information. -#_User_support_available_at:NMFS.Stock.Synthesis@noaa.gov -#_User_info_available_at:https://vlab.noaa.gov/group/stock-synthesis -#_Source_code_at:_https://github.com/nmfs-stock-synthesis/stock-synthesis - -#_Start_time: Tue Feb 28 13:44:05 2023 -#_echo_input_data -#C data file for simple example -#V3.30.21.00;_safe;_compile_date:_Feb 10 2023;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_13.1 -2011 #_StartYr -2022 #_EndYr -1 #_Nseas - 12 #_months/season -2 #_Nsubseasons (even number, minimum is 2) -1 #_spawn_month -2 #_Ngenders: 1, 2, -1 (use -1 for 1 sex setup with SSB multiplied by female_frac parameter) -20 #_Nages=accumulator age, first age is always age 0 -1 #_Nareas -3 #_Nfleets (including surveys) -#_fleet_type: 1=catch fleet; 2=bycatch only fleet; 3=survey; 4=predator(M2) -#_sample_timing: -1 for fishing fleet to use season-long catch-at-age for observations, or 1 to use observation month; (always 1 for surveys) -#_fleet_area: area the fleet/survey operates in -#_units of catch: 1=bio; 2=num (ignored for surveys; their units read later) -#_catch_mult: 0=no; 1=yes -#_rows are fleets -#_fleet_type fishery_timing area catch_units need_catch_mult fleetname - 1 -1 1 1 0 FISHERY # 1 - 3 1 1 2 0 SURVEY1 # 2 - 3 1 1 2 0 SURVEY2 # 3 -#Bycatch_fleet_input_goes_next -#a: fleet index -#b: 1=include dead bycatch in total dead catch for F0.1 and MSY optimizations and forecast ABC; 2=omit from total catch for these purposes (but still include the mortality) -#c: 1=Fmult scales with other fleets; 2=bycatch F constant at input value; 3=bycatch F from range of years -#d: F or first year of range -#e: last year of range -#f: not used -# a b c d e f -#_Catch data: yr, seas, fleet, catch, catch_se -#_catch_se: standard error of log(catch) -#_NOTE: catch data is ignored for survey fleets --999 1 1 4153.75 0.2 -2011 1 1 10015.9 0.01 -2012 1 1 10026.4 0.01 -2013 1 1 10124.8 0.01 -2014 1 1 10036.8 0.01 -2015 1 1 9969.51 0.01 -2016 1 1 9893.53 0.01 -2017 1 1 10107 0.01 -2018 1 1 9003.8 0.01 -2019 1 1 7882.21 0.01 -2020 1 1 7053.95 0.01 -2021 1 1 6000.76 0.01 -2022 1 1 4024.62 0.01 --9999 0 0 0 0 -# -#_CPUE_and_surveyabundance_and_index_observations -#_Units: 0=numbers; 1=biomass; 2=F; 30=spawnbio; 31=exp(recdev); 36=recdev; 32=spawnbio*recdev; 33=recruitment; 34=depletion(&see Qsetup); 35=parm_dev(&see Qsetup) -#_Errtype: -1=normal; 0=lognormal; >0=T -#_SD_Report: 0=no sdreport; 1=enable sdreport -#_note that link functions are specified in Q_setup section of control file -#_Fleet Units Errtype SD_Report -1 1 0 0 # FISHERY -2 1 0 1 # SURVEY1 -3 0 0 0 # SURVEY2 -#_yr month fleet obs stderr -2013 7 2 144745 0.3 #_ SURVEY1 -2016 7 2 63760.3 0.3 #_ SURVEY1 -2019 7 2 59242.9 0.3 #_ SURVEY1 -2022 7 2 49649.7 0.3 #_ SURVEY1 -2011 7 3 11.5668 0.7 #_ SURVEY2 -2012 7 3 13.9955 0.7 #_ SURVEY2 -2013 7 3 12.5783 0.7 #_ SURVEY2 -2014 7 3 16.7479 0.7 #_ SURVEY2 -2015 7 3 7.7595 0.7 #_ SURVEY2 -2016 7 3 9.36206 0.7 #_ SURVEY2 -2017 7 3 16.9079 0.7 #_ SURVEY2 -2018 7 3 6.90196 0.7 #_ SURVEY2 -2019 7 3 14.6227 0.7 #_ SURVEY2 -2020 7 3 7.4737 0.7 #_ SURVEY2 -2021 7 3 7.60085 0.7 #_ SURVEY2 -2022 7 3 15.8286 0.7 #_ SURVEY2 --9999 1 1 1 1 # terminator for survey observations -# -0 #_N_fleets_with_discard -#_discard_units (1=same_as_catchunits(bio/num); 2=fraction; 3=numbers) -#_discard_errtype: >0 for DF of T-dist(read CV below); 0 for normal with CV; -1 for normal with se; -2 for lognormal; -3 for trunc normal with CV -# note: only enter units and errtype for fleets with discard -# note: discard data is the total for an entire season, so input of month here must be to a month in that season -#_Fleet units errtype -# -9999 0 0 0.0 0.0 # terminator for discard data -# -0 #_use meanbodysize_data (0/1) -#_COND_0 #_DF_for_meanbodysize_T-distribution_like -# note: type=1 for mean length; type=2 for mean body weight -#_yr month fleet part type obs stderr -# -9999 0 0 0 0 0 0 # terminator for mean body size data -# -# set up population length bin structure (note - irrelevant if not using size data and using empirical wtatage -2 # length bin method: 1=use databins; 2=generate from binwidth,min,max below; 3=read vector -2 # binwidth for population size comp -10 # minimum size in the population (lower edge of first bin and size at age 0.00) -94 # maximum size in the population (lower edge of last bin) -1 # use length composition data (0/1/2) where 2 invokes new comp_control format -#_mintailcomp: upper and lower distribution for females and males separately are accumulated until exceeding this level. -#_addtocomp: after accumulation of tails; this value added to all bins -#_combM+F: males and females treated as combined gender below this bin number -#_compressbins: accumulate upper tail by this number of bins; acts simultaneous with mintailcomp; set=0 for no forced accumulation -#_Comp_Error: 0=multinomial, 1=dirichlet using Theta*n, 2=dirichlet using beta, 3=MV_Tweedie -#_ParmSelect: consecutive index for dirichlet or MV_Tweedie -#_minsamplesize: minimum sample size; set to 1 to match 3.24, minimum value is 0.001 -# -#_Using old format for composition controls -#_mintailcomp addtocomp combM+F CompressBins CompError ParmSelect minsamplesize --1 0.0001 0 0 0 0 0.1 #_fleet:1_FISHERY --1 0.0001 0 0 0 0 0.1 #_fleet:2_SURVEY1 --1 0.0001 0 0 0 0 0.1 #_fleet:3_SURVEY2 -# sex codes: 0=combined; 1=use female only; 2=use male only; 3=use both as joint sexxlength distribution -# partition codes: (0=combined; 1=discard; 2=retained -25 #_N_LengthBins; then enter lower edge of each length bin - 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 68 72 76 80 90 -#_yr month fleet sex part Nsamp datavector(female-male) - 2011 7 1 3 0 50 0 0 0 0 0 0 0 1 0 1 1 2 0 0 0 0 3 5 1 3 5 1 2 0 1 0 0 1 0 0 0 0 0 0 2 2 1 2 0 3 0 0 0 3 5 2 3 0 0 0 - 2012 7 1 3 0 50 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 3 1 4 1 5 1 3 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 3 4 4 4 2 0 1 0 0 - 2013 7 1 3 0 50 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 2 0 4 3 1 2 2 0 1 0 0 0 0 0 1 1 1 1 0 2 0 0 1 2 1 2 0 2 6 6 1 1 1 1 0 - 2014 7 1 3 0 50 0 0 0 0 1 0 0 0 0 1 5 0 1 1 2 3 2 0 2 3 3 1 1 0 1 0 0 1 0 0 0 1 1 0 2 0 0 1 2 1 1 2 1 1 5 1 1 1 1 0 - 2015 7 1 3 0 50 0 0 0 0 0 1 0 0 0 0 1 0 0 2 0 0 1 0 2 4 4 2 2 0 0 0 0 1 1 0 0 0 0 1 2 0 3 1 1 2 1 1 3 4 2 4 1 2 1 0 - 2016 7 1 3 0 50 1 0 0 0 0 0 0 0 0 2 0 2 1 2 5 3 1 0 4 1 5 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 2 0 0 2 1 2 3 3 1 2 2 0 0 - 2017 7 1 3 0 50 0 0 0 0 1 0 0 0 0 0 1 0 1 2 3 2 1 3 2 6 2 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 2 0 1 1 2 3 3 3 2 2 0 2 0 - 2018 7 1 3 0 50 0 0 0 0 0 0 1 0 0 1 0 3 2 1 7 3 2 2 0 4 4 1 0 1 0 0 0 0 0 1 0 0 1 0 1 2 0 1 1 2 1 0 0 1 3 2 2 0 0 0 - 2019 7 1 3 0 50 1 0 0 0 0 0 0 0 1 2 0 0 1 4 5 1 6 1 1 3 4 0 1 0 0 0 0 0 0 0 1 1 0 0 3 0 0 0 1 1 1 0 1 2 3 4 1 0 0 0 - 2020 7 1 3 0 50 0 0 0 0 1 2 0 0 1 2 1 1 1 2 4 1 2 1 0 6 0 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 3 4 0 2 4 1 0 1 1 1 1 0 - 2021 7 1 3 0 50 0 0 0 1 1 0 0 1 1 2 2 0 1 1 1 2 2 2 1 2 3 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 3 4 2 2 3 1 2 3 3 0 0 0 0 - 2022 7 1 3 0 50 0 0 0 0 0 0 1 0 0 2 2 0 1 2 2 1 0 2 1 4 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 2 1 1 3 3 2 3 1 2 2 2 4 1 0 0 - 2013 7 2 3 0 50 0 0 0 0 0 2 0 3 1 4 2 2 0 4 1 2 2 0 1 3 2 0 0 2 0 0 0 0 1 1 0 0 1 1 1 2 2 0 1 3 0 2 0 0 2 1 1 0 0 0 - 2016 7 2 3 0 50 0 0 0 0 2 0 1 0 0 2 0 2 2 2 1 0 1 4 1 2 3 1 0 0 0 0 0 0 0 1 1 2 1 4 2 1 0 4 0 2 1 0 2 1 0 3 0 1 0 0 - 2019 7 2 3 0 50 0 0 0 0 1 1 0 4 1 1 4 0 0 3 1 2 2 1 0 2 0 0 0 0 0 1 0 1 0 0 2 1 2 3 1 3 4 3 1 0 2 1 0 1 0 0 1 0 0 0 - 2022 7 2 3 0 50 0 0 0 1 3 0 2 0 0 0 0 1 6 2 2 0 4 0 1 4 1 0 1 0 0 0 0 0 0 1 1 0 4 0 1 1 1 3 1 2 2 1 0 1 1 2 0 0 0 0 --9999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -# -15 #_N_age_bins - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -2 #_N_ageerror_definitions - 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 - 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5 - 0.5 0.65 0.67 0.7 0.73 0.76 0.8 0.84 0.88 0.92 0.97 1.03 1.09 1.16 1.23 1.32 1.41 1.51 1.62 1.75 1.89 -#_mintailcomp: upper and lower distribution for females and males separately are accumulated until exceeding this level. -#_addtocomp: after accumulation of tails; this value added to all bins -#_combM+F: males and females treated as combined gender below this bin number -#_compressbins: accumulate upper tail by this number of bins; acts simultaneous with mintailcomp; set=0 for no forced accumulation -#_Comp_Error: 0=multinomial, 1=dirichlet using Theta*n, 2=dirichlet using beta, 3=MV_Tweedie -#_ParmSelect: consecutive index for dirichlet or MV_Tweedie -#_minsamplesize: minimum sample size; set to 1 to match 3.24, minimum value is 0.001 -# -#_mintailcomp addtocomp combM+F CompressBins CompError ParmSelect minsamplesize --1 0.0001 0 0 0 0 0.1 #_fleet:1_FISHERY --1 0.0001 0 0 0 0 0.1 #_fleet:2_SURVEY1 --1 0.0001 0 0 0 0 0.1 #_fleet:3_SURVEY2 -1 #_Lbin_method_for_Age_Data: 1=poplenbins; 2=datalenbins; 3=lengths -# sex codes: 0=combined; 1=use female only; 2=use male only; 3=use both as joint sexxlength distribution -# partition codes: (0=combined; 1=discard; 2=retained -#_yr month fleet sex part ageerr Lbin_lo Lbin_hi Nsamp datavector(female-male) - 2011 7 1 3 0 2 1 -1 25 0 1 0 0 0 2 2 0 0 1 0 0 0 0 4 0 0 2 0 2 1 1 1 1 0 2 0 0 1 4 - 2012 7 1 3 0 2 1 -1 25 0 0 2 0 1 1 1 2 1 1 0 0 1 0 2 0 1 1 1 0 1 0 2 1 0 2 1 1 1 1 - 2013 7 1 3 0 2 1 -1 25 1 0 2 1 2 1 1 1 0 1 1 0 0 0 3 0 1 0 0 1 1 3 0 1 0 0 1 0 2 1 - 2014 7 1 3 0 2 1 -1 25 1 1 1 2 1 1 1 0 0 1 2 0 1 0 3 0 0 1 2 2 0 0 1 0 1 0 1 0 0 2 - 2015 7 1 3 0 2 1 -1 25 0 0 0 1 0 2 1 0 2 0 2 1 0 1 3 0 0 0 3 1 0 1 0 3 0 0 0 1 0 3 - 2016 7 1 3 0 2 1 -1 25 1 1 1 1 2 2 3 2 1 1 0 0 2 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 2 - 2017 7 1 3 0 2 1 -1 25 0 1 2 2 0 2 1 2 0 0 0 0 1 1 1 0 0 1 0 1 1 2 2 0 2 1 0 0 1 1 - 2018 7 1 3 0 2 1 -1 25 0 1 1 3 3 0 2 0 1 1 1 0 1 0 1 0 1 0 2 0 2 0 0 2 0 1 0 1 0 1 - 2019 7 1 3 0 2 1 -1 25 0 0 3 2 0 1 2 0 2 0 0 0 0 0 1 0 1 0 1 2 0 1 1 2 3 1 1 0 0 1 - 2020 7 1 3 0 2 1 -1 25 0 0 2 1 0 0 3 0 1 1 2 0 0 1 2 0 0 1 0 0 0 1 4 0 1 1 1 1 0 2 - 2021 7 1 3 0 2 1 -1 25 0 1 3 0 2 2 1 0 1 0 0 1 0 0 1 0 0 1 2 2 3 0 1 0 0 1 0 0 1 2 - 2022 7 1 3 0 2 1 -1 25 0 0 0 1 0 4 1 2 4 2 0 0 1 0 0 0 1 0 0 0 1 3 1 2 0 1 1 0 0 0 - 2013 7 2 3 0 2 1 -1 25 0 2 0 0 0 3 1 0 0 0 0 0 0 0 1 1 0 2 3 2 2 0 2 0 1 3 0 0 0 2 - 2016 7 2 3 0 2 1 -1 25 0 2 3 4 0 2 1 3 0 1 1 0 0 0 2 0 0 1 1 2 0 1 0 0 1 0 0 0 0 0 - 2019 7 2 3 0 2 1 -1 25 2 0 2 4 3 3 1 0 0 1 0 0 0 0 0 1 0 0 2 2 2 0 1 0 1 0 0 0 0 0 - 2022 7 2 3 0 2 1 -1 25 0 5 1 2 0 0 1 1 0 0 1 0 0 0 1 1 2 1 2 1 1 1 1 0 2 0 0 0 0 1 --9999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -# -1 #_Use_MeanSize-at-Age_obs (0/1) -# sex codes: 0=combined; 1=use female only; 2=use male only; 3=use both as joint sexxlength distribution -# partition codes: (0=combined; 1=discard; 2=retained -# ageerr codes: positive means mean length-at-age; negative means mean bodywt_at_age -#_yr month fleet sex part ageerr ignore datavector(female-male) -# samplesize(female-male) - 2011 7 1 3 0 1 2 31.1001 37.6247 44.5123 49.1577 55.1767 54.8937 57.8764 60.9767 63.407 65.7124 66.0334 66.4773 68.9837 66.6942 71.1547 33.5091 39.7331 44.3663 51.8999 58.3478 56.2476 56.8415 61.0979 62.6753 66.6534 63.2961 68.0089 70.3394 63.6221 64.0669 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 - 2022 7 1 3 0 1 2 34.0009 39.7221 47.1123 45.7161 53.0591 55.0899 59.624 59.0393 60.7682 62.2977 66.8939 69.1026 64.3979 70.8878 70.3055 29.1412 38.5441 43.7912 49.411 53.6436 51.6203 56.6552 58.4004 57.7949 60.8038 60.1757 68.7121 65.4931 71.1546 68.5105 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 - 2011 7 2 3 0 1 2 37.0771 42.2374 45.8496 46.4639 48.0909 53.0877 51.8078 53.4516 59.9566 63.2883 65.2691 61.7347 65.8296 62.7968 65.2321 35.7322 39.2453 41.9728 43.2482 51.1391 51.5264 56.5467 57.8468 59.1265 55.1627 63.584 64.4084 66.1779 67.2428 76.4436 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 - 2022 7 2 3 0 1 2 35.8298 39.9798 43.9049 47.5526 51.4533 55.7381 58.9463 55.3783 64.3036 61.418 59.7164 63.6052 65.2001 65.1717 62.5297 34.9269 40.0321 40.2621 46.1732 49.9184 54.0177 50.9587 56.7169 62.4114 65.9328 63.2853 65.8266 71.7125 69.1363 71.1985 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 --9999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -# -0 #_N_environ_variables -# -2 in yr will subtract mean for that env_var; -1 will subtract mean and divide by stddev (e.g. Z-score) -#Yr Variable Value -# -# Sizefreq data. Defined by method because a fleet can use multiple methods -0 # N sizefreq methods to read (or -1 for expanded options) -# -0 # do tags (0/1/2); where 2 allows entry of TG_min_recap -# -0 # morphcomp data(0/1) -# Nobs, Nmorphs, mincomp -# yr, seas, type, partition, Nsamp, datavector_by_Nmorphs -# -0 # Do dataread for selectivity priors(0/1) -# Yr, Seas, Fleet, Age/Size, Bin, selex_prior, prior_sd -# feature not yet implemented -# -999 - diff --git a/model_recipes/test/forecast.ss b/model_recipes/test/forecast.ss deleted file mode 100644 index 5db7ba5..0000000 --- a/model_recipes/test/forecast.ss +++ /dev/null @@ -1,64 +0,0 @@ -#V3.30.21.00;_safe;_compile_date:_Feb 10 2023;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_13.1 -#C forecast file written by R function SS_writeforecast -#C rerun model to get more complete formatting in forecast.ss_new -#C should work with SS version: 3.3 -#C file write time: 2022-06-15 15:53:34 -# for all year entries except rebuilder; enter either: actual year, -999 for styr, 0 for endyr, neg number for rel. endyr -1 # Benchmarks: 0=skip; 1=calc F_spr,F_btgt,F_msy; 2=calc F_spr,F0.1,F_msy; 3=add F_Blimit; -2 # Do_MSY: 1= set to F(SPR); 2=calc F(MSY); 3=set to F(Btgt) or F0.1; 4=set to F(endyr); 5=calc F(MEY) with MSY_unit options -# if Do_MSY=5, enter MSY_Units; then list fleet_ID, cost/F, price/mt, include_in_Fmey_scaling; # -fleet_ID to fill; -9999 to terminate -0.5 # SPR target (e.g. 0.40) -0.4 # Biomass target (e.g. 0.40) -#_Bmark_years: beg_bio, end_bio, beg_selex, end_selex, beg_relF, end_relF, beg_recr_dist, end_recr_dist, beg_SRparm, end_SRparm (enter actual year, or values of 0 or -integer to be rel. endyr) - 0 0 0 0 0 0 0 0 0 0 -# 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 -# value <0 convert to endyr-value; except -999 converts to start_yr; must be >=start_yr and <=endyr -1 #Bmark_relF_Basis: 1 = use year range; 2 = set relF same as forecast below -# -1 # Forecast: -1=none; 0=simple_1yr; 1=F(SPR); 2=F(MSY) 3=F(Btgt) or F0.1; 4=Ave F (uses first-last relF yrs); 5=input annual F scalar -# where none and simple require no input after this line; simple sets forecast F same as end year F -10 # N forecast years -0.2 # Fmult (only used for Do_Forecast==5) such that apical_F(f)=Fmult*relF(f) -#_Fcast_years: beg_selex, end_selex, beg_relF, end_relF, beg_mean recruits, end_recruits (enter actual year, or values of 0 or -integer to be rel. endyr) - 0 0 0 0 0 0 -# 2022 2022 2022 2022 2022 2022 -0 # Forecast selectivity (0=fcast selex is mean from year range; 1=fcast selectivity from annual time-vary parms) -1 # Control rule method (0: none; 1: ramp does catch=f(SSB), buffer on F; 2: ramp does F=f(SSB), buffer on F; 3: ramp does catch=f(SSB), buffer on catch; 4: ramp does F=f(SSB), buffer on catch) -# values for top, bottom and buffer exist, but not used when Policy=0 -0.4 # Control rule inflection for constant F (as frac of Bzero, e.g. 0.40); must be > control rule cutoff, or set to -1 to use Bmsy/SSB_unf -0.1 # Control rule cutoff for no F (as frac of Bzero, e.g. 0.10) -0.75 # Buffer: enter Control rule target as fraction of Flimit (e.g. 0.75), negative value invokes list of [year, scalar] with filling from year to YrMax -3 #_N forecast loops (1=OFL only; 2=ABC; 3=get F from forecast ABC catch with allocations applied) -3 #_First forecast loop with stochastic recruitment -1 #_Forecast recruitment: 0= spawn_recr; 1=value*spawn_recr_fxn; 2=value*VirginRecr; 3=recent mean from yr range above (need to set phase to -1 in control to get constant recruitment in MCMC) -1 # value is multiplier of SRR -0 #_Forecast loop control #5 (reserved for future bells&whistles) -2050 #FirstYear for caps and allocations (should be after years with fixed inputs) -0 # stddev of log(realized catch/target catch) in forecast (set value>0.0 to cause active impl_error) -0 # Do West Coast gfish rebuilder output: 0=no; 1=yes -1999 # Rebuilder: first year catch could have been set to zero (Ydecl)(-1 to set to 1999) -2002 # Rebuilder: year for current age structure (Yinit) (-1 to set to endyear+1) -1 # fleet relative F: 1=use first-last alloc year; 2=read seas, fleet, alloc list below -# Note that fleet allocation is used directly as average F if Do_Forecast=4 -2 # basis for fcast catch tuning and for fcast catch caps and allocation (2=deadbio; 3=retainbio; 5=deadnum; 6=retainnum); NOTE: same units for all fleets -# Conditional input if relative F choice = 2 -# enter list of: season, fleet, relF; if used, terminate with season=-9999 -# 1 1 1 -# -9999 0 0 # terminator for list of relF -# enter list of: fleet number, max annual catch for fleets with a max; terminate with fleet=-9999 --9999 -1 -# enter list of area ID and max annual catch; terminate with area=-9999 --9999 -1 -# enter list of fleet number and allocation group assignment, if any; terminate with fleet=-9999 --9999 -1 -#_if N allocation groups >0, list year, allocation fraction for each group -# list sequentially because read values fill to end of N forecast -# terminate with -9999 in year field -# no allocation groups -# -2 # basis for input Fcast catch: -1=read basis with each obs; 2=dead catch; 3=retained catch; 99=input apical_F; NOTE: bio vs num based on fleet's catchunits -#enter list of Fcast catches or Fa; terminate with line having year=-9999 -#_Yr Seas Fleet Catch(or_F) --9999 1 1 0 -# -999 # verify end of input diff --git a/model_recipes/test/starter.ss b/model_recipes/test/starter.ss deleted file mode 100644 index f75b160..0000000 --- a/model_recipes/test/starter.ss +++ /dev/null @@ -1,47 +0,0 @@ -#V3.30.21.00;_safe;_compile_date:_Feb 10 2023;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_13.1 -#_Stock_Synthesis_is_a_work_of_the_U.S._Government_and_is_not_subject_to_copyright_protection_in_the_United_States. -#_Foreign_copyrights_may_apply._See_copyright.txt_for_more_information. -#_User_support_available_at:NMFS.Stock.Synthesis@noaa.gov -#_User_info_available_at:https://vlab.noaa.gov/group/stock-synthesis -#_Source_code_at:_https://github.com/nmfs-stock-synthesis/stock-synthesis - -#C starter file written by R function SS_writestarter -#C rerun model to get more complete formatting in starter.ss_new -#C should work with SS version: 3.30 -#C file write time: 2022-06-15 15:53:34 -data.ss -control.ss -0 # 0=use init values in control file; 1=use ss.par -0 # run display detail (0,1,2) -1 # detailed output (0=minimal for data-limited, 1=high (w/ wtatage.ss_new), 2=brief, 3=custom) -# custom report options: -100 to start with minimal; -101 to start with all; -number to remove, +number to add, -999 to end -0 # write 1st iteration details to echoinput.sso file (0,1) -0 # write parm values to ParmTrace.sso (0=no,1=good,active; 2=good,all; 3=every_iter,all_parms; 4=every,active) -0 # write to cumreport.sso (0=no,1=like×eries; 2=add survey fits) -1 # Include prior_like for non-estimated parameters (0,1) -1 # Use Soft Boundaries to aid convergence (0,1) (recommended) -# -3 # Number of datafiles to produce: 0 turns off all *.ss_new; 1st is data_echo.ss_new, 2nd is data_expval.ss, 3rd and higher are data_boot_**N.ss, -10 # Turn off estimation for parameters entering after this phase -# -0 # MCeval burn interval -1 # MCeval thin interval -0 # jitter initial parm value by this fraction --1 # min yr for sdreport outputs (-1 for styr); #_2009 --2 # max yr for sdreport outputs (-1 for endyr+1; -2 for endyr+Nforecastyrs); #_2032 -0 # N individual STD years -#vector of year values - -0.0001 # final convergence criteria (e.g. 1.0e-04) -0 # retrospective year relative to end year (e.g. -4) -1 # min age for calc of summary biomass -1 # Depletion basis: denom is: 0=skip; 1=X*SPBvirgin; 2=X*SPBmsy; 3=X*SPB_styr; 4=X*SPB_endyr; 5=X*dyn_Bzero; values>=11 invoke N multiyr (up to 9!) with 10's digit; >100 invokes log(ratio) -1 # Fraction (X) for Depletion denominator (e.g. 0.4) -1 # SPR_report_basis: 0=skip; 1=(1-SPR)/(1-SPR_tgt); 2=(1-SPR)/(1-SPR_MSY); 3=(1-SPR)/(1-SPR_Btarget); 4=rawSPR -3 # F_reporting_units: 0=skip; 1=exploitation(Bio); 2=exploitation(Num); 3=sum(Apical_F's); 4=true F for range of ages; 5=unweighted avg. F for range of ages -#COND 10 15 #_min and max age over which average F will be calculated with F_reporting=4 or 5 -0 # F_std_basis: 0=raw_annual_F; 1=F/Fspr; 2=F/Fmsy; 3=F/Fbtgt; where F means annual_F; values >=11 invoke N multiyr (up to 9!) with 10's digit; >100 invokes log(ratio) -0 # MCMC output detail: integer part (0=default; 1=adds obj func components; 2= +write_report_for_each_mceval); and decimal part (added to SR_LN(R0) on first call to mcmc) -0 # ALK tolerance ***disabled in code (example 0.0001) --1 # random number seed for bootstrap data (-1 to use long(time) as seed): # 1677620645 -3.30 # check value for end of file and for version control diff --git a/tests/testthat/test-HCxval.R b/tests/testthat/test-HCxval.R index c983af2..f2b2012 100644 --- a/tests/testthat/test-HCxval.R +++ b/tests/testthat/test-HCxval.R @@ -56,12 +56,12 @@ test_that("SSretroComps returns the correct comp data for simple model", { !exists("retrosum.simple"), message = "skipping test that requires SS3 executable" ) - retro_comps <- SSretroComps(retroSimple) + retro_comps <- SSretroComps(retroModels) - expect_equal(retro_comps$n, 6) - expect_equal(retro_comps$startyrs, rep(26, 6)) - expect_equal(retro_comps$endyrs, rep(100, 6)) - expect_gt(nrow(retro_comps$con), 1) + expect_equal(retro_comps$n, 4) + expect_equal(retro_comps$startyrs, rep(2011, 4)) + expect_equal(retro_comps$endyrs, rep(2022, 4)) + # expect_gt(nrow(retro_comps$con), 1) expect_gt(nrow(retro_comps$len), 1) expect_gt(nrow(retro_comps$age), 1) }) diff --git a/vignettes/.gitignore b/vignettes/.gitignore new file mode 100644 index 0000000..097b241 --- /dev/null +++ b/vignettes/.gitignore @@ -0,0 +1,2 @@ +*.html +*.R diff --git a/vignettes/articles/Jitter.Rmd b/vignettes/articles/Jitter.Rmd new file mode 100644 index 0000000..db9974f --- /dev/null +++ b/vignettes/articles/Jitter.Rmd @@ -0,0 +1,136 @@ +--- +title: "Jitter Analysis" +--- + +```{r, include = FALSE} +knitr::opts_chunk$set( + collapse = TRUE, + comment = "#>" +) +``` + +```{r setup, message=FALSE} +library(ss3diags) +library(r4ss) +library(tidyverse) +``` + +Jitter analyses are commonly implemented in Stock Synthesis to ensure a model has reached global convergence. Jitter involves changing the parameter start values by a small increment and rerunning the model to see if that adjustment causes the model to converge at a lower likelihood. This can be useful for distinguishing if a model reached a local minimum or a global minimum. The number of jitter iterations should be anywhere between 50-100 to ensure a good spread of start values. If any of those runs has a lower likelihood than your current model, parameter start values should be adjusted to use those from the run with a lower likelihood. You can do this by adjusting the values in the control.ss file to match those in the ss.par_#_of_the_lower_likelihood_run. We provide the steps for running jitter analysis using `r4ss::jitter()` below. + +## Model inputs +To run a stock synthesis model, 4 input files are required: starter, forecast, control, and data. The input files for the example model can be found within the `ss3diags` package and accessed as shown below. Also, if you do not have `r4ss` installed, you will need to install for this tutorial. + +```{r eval=FALSE} +install_github("r4ss/r4ss") +``` + +```{r message=FALSE, warning=FALSE} +library(r4ss) + +files_path <- system.file("extdata", package = "ss3diags") +dir_jitter <- file.path(tempdir(check = TRUE), "jitter") +dir.create(dir_jitter, showWarnings = FALSE, recursive = TRUE) +list.files(files_path) +file.copy(from = list.files(files_path, full.names = TRUE), to = dir_jitter) +``` + +You will need to make sure you have the [SS executable](https://github.com/nmfs-stock-synthesis/stock-synthesis) file either in your path or in the directory you are running the retrospective from (in this case `dir_jitter`). An easy way to get the latest release of stock synthesis is to use the `r4ss` function `get_ss3_exe()`. + +```{r} +r4ss::get_ss3_exe(dir = dir_jitter, version = "v3.30.21") +``` + +We will run the model in `dir_jitter` first to produce the necessary output files. It is recommended to do jitter runs in a subdirectory of your model run. This will keep all of the output files separate from other diagnostic tests you may run. +```{r} +r4ss::run(dir = dir_jitter, exe = "ss3", verbose = FALSE) +``` + +## Jitter +For this example, we will run 50 jitters. The `jitter()` function automates the entire process so you only need to give it a few arguments and it will run and produce the total likelihoods for each run. Full documentation of the `jitter()` function can be found at the [r4ss website](https://r4ss.github.io/r4ss/reference/jitter.html). + +```{r run-jitter} +Njitter <- 50 +jit.likes <- r4ss::jitter( + dir = dir_jitter, + Njitter = Njitter, + init_values_src = 1, + jitter_fraction = 0.1, + exe = "ss3", + printlikes = FALSE, + verbose = FALSE +) +``` + +To analyze the output of all 50 runs, use `r4ss::SSgetoutput()` and `r4ss::SSsummarize()` as shown below. + +```{r } +jit_mods <- SSgetoutput( + keyvec = 0:Njitter, # 0 to include reference run (Report0.sso) + getcomp = FALSE, + dirvec = dir_jitter, + getcovar = FALSE, + verbose = FALSE +) +jit_summary <- SSsummarize(jit_mods, verbose = FALSE) +``` + +Some key sections you may want to check and compare across models are, likelihoods, derived quantities, and estimated parameters. +```{r } +head(jit_summary$likelihoods) +head(jit_summary$quants) +head(jit_summary$pars) +``` + +You may also want to check that the models converged. To do this you can check the maximum gradients to make sure they are all small (< 0.0001). You can also compare the estimated spawning biomass, if they are extreme values (+2x or <0.5x the base spawning biomass) this suggests the model didn't converge. + +```{r } +# Maximum gradient +converged_grad <- which(jit_summary$maxgrad < 0.0001) + +converged_ssb <- jit_summary$SpawnBio %>% + mutate(across(c(1:(Njitter + 1)), + .fns = ~ . / replist0 + )) %>% # for each column, divide SSB by SSB from the reference run (replist) + select(-Label) %>% + pivot_longer(col = c(1:(Njitter + 1)), names_to = "jitter", values_to = "SSB") %>% + pivot_wider(names_from = Yr, values_from = SSB) %>% + mutate(rownumber = seq(1, nrow(.))) %>% + tibble::column_to_rownames("jitter") %>% + filter_at(vars(1:(ncol(.) - 1)), all_vars((.) < 2 & (.) > 0.5)) %>% # keep only rows where SSB is a reasonable value + select(rownumber) %>% + pull(rownumber) +converged_mods <- intersect(converged_grad, converged_ssb) # getting which models are in both groups +converged_jitters <- jit_mods[converged_grad] +converged_sum <- SSsummarize(converged_jitters, verbose = FALSE) +``` + + +## Visualizing Output +To compare the likelihoods of all runs, we plot them as shown below. There are no built in functions (as of writing this vignette) in `r4ss` or `ss3diags` to generate a likelihood plot, therefore we provide code in the tidyverse syntax (using `ggplot2`) to visualize the results. +```{r } +converged_sum$likelihoods %>% + filter(str_detect(Label, "TOTAL")) %>% + select(-Label) %>% + pivot_longer(cols = everything(), names_to = "jitter", values_to = "likelihood") %>% + separate(jitter, into = c("replist", "jitter"), sep = "(?<=[A-Za-z])(?=[0-9])") %>% + mutate(jitter = as.numeric(jitter)) %>% + ggplot(aes(x = jitter, y = likelihood)) + + geom_point(size = 3) + + geom_hline(aes(yintercept = likelihood[1]), color = "red") + + theme_classic() + + labs( + y = "Total Likelihood", + x = "Jitter runs at a converged solution" + ) +``` + +The figure plots the Total likelihood from each jitter run and the red line indicates the total likelihood value from the reference run. If there are any runs with points below the red line, use the parameter values from the run with the lowest likelihood value. +We can also use `r4ss::SSplotComparisons()` to compare the spawning biomass trajectories between jitter runs to see the impact of different parameter values on the estimated quantities. +```{r } +SSplotComparisons(converged_sum, + subplots = 2, + ylimAdj = 1, + new = FALSE +) +``` + diff --git a/vignettes/articles/Retrospective-Analysis.Rmd b/vignettes/articles/Retrospective-Analysis.Rmd new file mode 100644 index 0000000..7e29be5 --- /dev/null +++ b/vignettes/articles/Retrospective-Analysis.Rmd @@ -0,0 +1,93 @@ +--- +title: "Retrospective Analysis" +--- + +```{r, include = FALSE} +knitr::opts_chunk$set( + collapse = TRUE, + comment = "#>" +) +``` + +```{r setup} +library(ss3diags) +``` + +Retrospective analysis is commonly used to check the consistency of model estimates such as spawning stock biomass (SSB) and fishing mortality (F) as the model is updated with new data in retrospect. The retrospective analysis involves sequentially removing observations from the terminal year (i.e., peels), fitting the model to the truncated series, and then comparing the relative difference between model estimates from the full-time series with the truncated time-series. To implement a retrospective analysis with stock synthesis the `r4ss` package provides the `retro()` function. Here we provide a step-by-step example of how to run and analyze a retrospective analysis using a simple, example SS model. + +## Model inputs +To run a stock synthesis model, 4 input files are required: starter, forecast, control, and data. The input files for the example model can be found within the `ss3diags` package and accessed as shown below. Also, if you do not have `r4ss` installed, you will need to install for this tutorial. + +```{r eval=FALSE} +install.packages("pak") +pak::pkg_install("r4ss/r4ss") +``` + +```{r message=FALSE, warning=FALSE} +library(r4ss) + +files_path <- system.file("extdata", package = "ss3diags") +dir_retro <- file.path(tempdir(check = TRUE), "retrospectives") +dir.create(dir_retro, showWarnings = FALSE) +list.files(files_path) +file.copy(from = list.files(files_path, full.names = TRUE), to = dir_retro) +``` + + +You will need to make sure you have the [SS executable](https://github.com/nmfs-stock-synthesis/stock-synthesis) file either in your path or in the directory you are running the retrospective from (in this case `dir_retro`). An easy way to get the latest release of stock synthesis is to use the `r4ss` function `get_ss3_exe()`. + +```{r} +r4ss::get_ss3_exe(dir = dir_retro, version = "v3.30.21") +``` + +## Retrospective Analysis +Once you have the 4 input files and SS executable, you can run retrospective analysis as shown below. We are running it for 5 1-year peels, so with each run, *n* years of data are removed from the reference model and the model is re-run for a total of 5 times (i.e. peel 1 removes the last year of data, peel 2 removes the last 2 years of data, etc.) . The number of year peels can be adjusted with the `years` argument. If the SS executable file you are using is named something other than "ss3" (e.g. ss_opt_win.exe), you will need to specify this with the argument `exe = "ss_opt_win"`. Full documentation of the `retro()` function can be found on the [r4ss website](https://r4ss.github.io/r4ss/reference/retro.html). + +```{r message=FALSE} +r4ss::retro(dir = dir_retro, exe = "ss3", years = 0:-5, verbose = FALSE) +``` +## Visualizing Output + +To visualize the output and inspect for any patterns or biases, you need to load the report files into R and can use the `SSplotRetro()` function from `ss3diags`. The easiest way to load multiple report files is using `r4ss::SSgetoutput()` and `r4ss::SSsummarize()` functions. The default sub-directories for each peel, 0 to 5, are labeled `retro0` to `retro-5`. + +```{r get_retro_files, message=FALSE, warning=FALSE} +retro_mods <- r4ss::SSgetoutput(dirvec = file.path(dir_retro, "retrospectives", paste0("retro", seq(0, -5, by = -1))), verbose = F) +retroSummary <- r4ss::SSsummarize(retro_mods, verbose = F) +SSplotRetro(retroSummary, subplots = "SSB", add = TRUE) +``` +The default settings plot the spawning stock biomass time series for each peel, with the reference run (e.g. model with no years removed) as the "Ref" line and each successive peel as colored lines labeled by their end year. The solid line ends at the end year and the dashed line to the point shows the 1 year forecast. Displaying the projected SSB can help assess forecast bias. Note, forecasts are done automatically when using `r4ss::retro()` and are based on the settings in forecast.ss. The grey shaded area represents the 95% confidence intervals of uncertainty around the spawning biomass time series. Displayed in the center of the plot is the combined Mohn's $\rho$ for all retrospective runs, and in parentheses is the forecast Mohn's $\rho$. + +### Customizing the Plot + +Retro plots can be customized in many ways, some common features that you may want to specify are: + +* removing uncertainty intervals +* adjusting the years shown on the x-axis +* turning off the 1-year ahead forecasting +* not displaying the combined $\rho$ value on the plot + +Examples of each of these changes are shown below, incrementally making each adjustment. +```{r message=FALSE, warning=FALSE} +r4ss::sspar(mfrow = c(2, 2), plot.cex = 0.8) +retro1 <- SSplotRetro(retroSummary, subplots = "SSB", add = TRUE, uncertainty = FALSE) +retro2 <- SSplotRetro(retroSummary, subplots = "SSB", add = TRUE, uncertainty = FALSE, xlim = c(2015, 2022)) +retro3 <- SSplotRetro(retroSummary, subplots = "SSB", add = TRUE, uncertainty = FALSE, xlim = c(2015, 2022), forecast = FALSE) +retro4 <- SSplotRetro(retroSummary, subplots = "SSB", add = TRUE, uncertainty = FALSE, xlim = c(2015, 2022), forecast = FALSE, showrho = FALSE, forecastrho = FALSE) +``` +Additionally, the fishing mortality can be plotted instead of spawning biomass by replacing `subplots = "SSB"` with `subplots = "F"` + +### Summary Table + +In addition to the retrospective plots, a summary statistics table can be produced using `SShcbias()`. This table includes + +* type of estimate (SSB or F) +* the year removed or "peel" +* Mohn's $\rho$ +* forecast bias + +by year and overall ("Combined"). Mohn's $\rho$ is a measure of the severity of bias in the retrospective patterns and the forecast bias is an estimate of bias in the forecasted quantities when years of data were removed. The rule of thumb proposed by Hurtado-Ferror et al. (2014) for Mohn's $\rho$ values is that for long-lived species, the $\rho$ value should fall between -0.15 and 0.20. + +```{r} +SShcbias(retroSummary) +``` + diff --git a/vignettes/articles/aspm.Rmd b/vignettes/articles/aspm.Rmd new file mode 100644 index 0000000..019306f --- /dev/null +++ b/vignettes/articles/aspm.Rmd @@ -0,0 +1,167 @@ +--- +title: "ASPM" +output: html_document +date: "2023-08-25" +--- + +```{r setup, include=FALSE} +knitr::opts_chunk$set(echo = TRUE) +``` + +The application of the Age-Structured Production Model (ASPM) approach as a diagnostic can help identify misspecification of the production function. If, in the absence of composition data (likelihood weighting set to 0), the ASPM fits well to the indices of abundance that have good contrast, then the production function is likely to drive the stock dynamics and indices will provide information about the absolute abundance ([Carvalho et al. 2017](https://www.sciencedirect.com/science/article/pii/S0165783616303113)). If there is not a good fit to the indices, then the catch data and production function alone cannot explain the trajectories of the indices of relative abundance. + +## Model inputs +To run a stock synthesis model, 4 input files are required: starter, forecast, control, and data. The input files for the example model can be found within the `ss3diags` package and accessed as shown below. Also, if you do not have `r4ss` installed, you will need to install for this tutorial. + +```{r eval=FALSE} +install.packages("pak") +pak::pkg_install("r4ss/r4ss") +``` + +```{r message=FALSE, warning=FALSE} +library(r4ss) + +files_path <- system.file("extdata", package = "ss3diags") +dir_tmp <- tempdir(check = TRUE) +dir_aspm <- file.path(dir_tmp, "aspm") +dir.create(dir_aspm, showWarnings = FALSE, recursive = TRUE) +list.files(files_path) +file.copy(from = list.files(files_path, full.names = TRUE), to = dir_tmp) +``` + + + + +You will need to make sure you have the [SS executable](https://github.com/nmfs-stock-synthesis/stock-synthesis) file either in your path or in the directory you are running the ASPM from (in this case `dir_aspm`). An easy way to get the latest release of stock synthesis is to use the `r4ss` function `get_ss3_exe()`. + +```{r} +r4ss::get_ss3_exe(dir = dir_tmp, version = "v3.30.21") +``` + +## ASPM +Once you have the 4 input files, you need to determine what components need to be turned off to run the ASPM. ASPM only depend on index of abundance and catch data, so any composition data, recruitment deviations, etc. need to be turned off. We provide an example that includes multiple types of data and recruitment deviations, however, the exact steps necessary for an individual model may vary depending on the complexity and components included. Therefore these steps may not be fully comprehensive for your model so be sure check what other components you may need to change. +Below, we show how to use the `r4ss` functions to make all the necessary changes to the `control.ss` and `ss.par` files. + +### Generate files + +In order to get the `ss.par` file, you need to run the model once. This will also produce a new data and control file that we will use as the input files. We will run the model in `dir_tmp` then copy the new files over to `dir_aspm`. + + +```{r} +r4ss::run(dir = dir_tmp, verbose = FALSE, exe = "ss3") +files <- c("data_echo.ss_new", "control.ss_new", "starter.ss", "forecast.ss", "ss.par", "ss3") +file.copy(from = file.path(dir_tmp, files), to = dir_aspm) +``` + +### Recruitment Deviations + +Set the recruitment devations in `ss.par` to 0. + +```{r} +par <- SS_readpar_3.30( + parfile = file.path(dir_aspm, "ss.par"), + datsource = file.path(dir_aspm, "data_echo.ss_new"), + ctlsource = file.path(dir_aspm, "control.ss_new"), + verbose = FALSE +) +par$recdev1 +par$recdev_forecast + +par$recdev1[, "recdev"] <- 0 + +# Would run if forecasts recdevs were not already 0 +# par$recdev_forecast[,"recdev"] <- 0 +SS_writepar_3.30( + parlist = par, + outfile = file.path(dir_aspm, "ss.par"), + overwrite = T, verbose = FALSE +) +``` + +### Starter File +Change the starter file to read from `ss.par` (`init_values_src = 1`) and to use the new data and control files. +```{r} +starter <- SS_readstarter(file = file.path(dir_aspm, "starter.ss"), verbose = FALSE) +starter$datfile <- "data_echo.ss_new" +starter$ctlfile <- "control.ss_new" +starter$init_values_src <- 1 +SS_writestarter(starter, + dir = dir_aspm, + overwrite = TRUE, + verbose = FALSE +) +``` + +### Control File +Some things in the control file that may need to be changed, are phases for parameters such as: + +* length selectivity +* age selectivity +* size selectivity +* steepness +* sigmaR +* recruitment deviations + +Additionally, the likelihood for some components may need to be turned off as well. You can do this using the lambda options in the control file. Some examples include: + +* length-composition data +* age-composition data +* size-composition data +* initial F + +```{r} +control <- SS_readctl_3.30( + file = file.path(dir_aspm, "control.ss_new"), + datlist = file.path(dir_aspm, "data_echo.ss_new"), + verbose = FALSE +) + +control$SR_parms +# Would need to run if PHASES were positive for "steep" and "sigmaR" +# control$SR_parms[c(2,3),"PHASE"] <- c(-4,-4) +control$age_selex_parms +# would need to run if PHASES were positive for age selectivity +# control$age_selex_parms[,"PHASE"] <- control$age_selex_parms[,"PHASE"] * -1 +control$size_selex_parms[, "PHASE"] <- control$size_selex_parms[, "PHASE"] * -1 +control$recdev_early_phase <- -4 +control$recdev_phase <- -2 + +new_lambdas <- data.frame( + like_comp = c(4, 4, 5, 5, 7, 7, 9, 9, 9, 10), + fleet = c(1, 2, 1, 2, 1, 2, 1, 2, 3, 1), + phase = rep(1, 10), + value = rep(0, 10), + sizefreq_method = rep(1, 10) +) +new_lambdas +control$lambdas <- new_lambdas +control$N_lambdas <- nrow(new_lambdas) +SS_writectl_3.30(control, + outfile = file.path(dir_aspm, "control.ss_new"), + overwrite = TRUE, verbose = FALSE +) +``` + +### Run ASPM + +```{r} +r4ss::run(dir = dir_aspm, exe = "ss3", skipfinished = FALSE, verbose = FALSE) +``` + +### Visualize Results + +To compare the ASPM model with the age-structured model, you can use `SSplotComparisons()`. Comparing spawning biomass and F estimates between the two models and fits to indices of abundance can help to understand if there is enough information in the indices to inform the production function. +```{r warning=FALSE} +mods <- SSgetoutput(dirvec = c( + dir_tmp, + dir_aspm +), verbose = FALSE) + +mods_sum <- SSsummarize(mods, verbose = FALSE) + +SSplotComparisons(mods_sum, + legendlabels = c("Ref", "ASPM"), + subplots = c(2, 8, 14), new = F +) +``` + diff --git a/vignettes/articles/hcxval.Rmd b/vignettes/articles/hcxval.Rmd new file mode 100644 index 0000000..cb4d62d --- /dev/null +++ b/vignettes/articles/hcxval.Rmd @@ -0,0 +1,127 @@ +--- +title: "Hindcast Cross-Validation" +--- + +```{r, include = FALSE} +knitr::opts_chunk$set( + collapse = TRUE, + comment = "#>" +) +``` + +```{r setup} +library(ss3diags) +``` + +Hindcast Cross-Validation is used to evaluate the prediction skill of a model by removing a portion of data, fitting the model to the subsequent time series, then projecting over the period that was removed and comparing the projected values to the observations that were omitted. Prediction skill is determined using the mean absolute scaled error (MASE) for input data (index of abundance, length composition, etc). In brief, the MASE score scales the mean absolute error (MAE) of forecasts (i.e., prediction residuals) to mean absolute error (MAE) of a naïve in-sample prediction, which is realized in the form of a simple 'persistence algorithm', i.e. index of abunduance will be the same next year as it is this year (see Eq. 3, p.5 in [Carvalho and Winker et al. 2021](https://www.sciencedirect.com/science/article/pii/S0165783621000874)). A MASE score > 1 indicates that the average model forecasts are worse than a random walk. Conversely, a MASE score < 1 indicates a level of prediction skill, for example, a MASE of 0.5 indicates that the model forecasts twice as accurately as a naïve baseline prediction; thus, the model has prediction skill. + +Implementing the Hindcast Cross-Validation (HCxval) diagnostic in Stock Synthesis requires the same model outputs generated when running a retrospective analysis. Therefore, no additional step is needed for HCxval if conducted in conjunction with retrospective analysis (see how to conduct a [restrospective analysis](https://pifscstockassessments.github.io/ss3diags/articles/Retrospective-Analysis.html)). For this example we will use the same output created in the retrospective example. + +```{r echo=FALSE, message=FALSE, results=FALSE, warning=FALSE} +library(r4ss) + +files_path <- system.file("extdata", package = "ss3diags") +dir_retro <- file.path(tempdir(check = TRUE), "retrospectives") +dir.create(dir_retro, showWarnings = FALSE) +file.copy(from = list.files(files_path, full.names = TRUE), to = dir_retro) +r4ss::get_ss3_exe(dir = dir_retro, version = "v3.30.21") +r4ss::retro(dir = dir_retro, exe = "ss3", years = 0:-5, verbose = FALSE) +``` + +Analyzing HCxval results requires the same first step of summarizing the list of retrospective runs as for the retrospective analysis. +```{r} +retro_mods <- r4ss::SSgetoutput(dirvec = file.path(dir_retro, "retrospectives", paste0("retro", seq(0, -5, by = -1))), verbose = F) +retroSummary <- r4ss::SSsummarize(retro_mods, verbose = F) +``` + + +## Visualizing Output + +HCxval is implemented using `ss3diags::SSplotHCxval()`, which produces the novel HCxval diagnostic plot and computes the MASE scores for indices of abundance, mean lengths, or mean ages that have observations falling within the hindcast evaluation period. + +```{r} +r4ss::sspar(mfrow = c(1, 2)) +SSplotHCxval(retroSummary, subplots = "cpue", add = TRUE) +``` + +In the plots above, we see that for both fleets, the model has fairly good prediction skill (compared to a random walk) of index of abundance data. In the plots, the white points and white dashed line are the observed data that were included in the model with a truncated time series. The larger colored points are the observed data from each retrospective peel (i.e. data that was removed in that peel). The smaller colored point and dashed line show the model predicted value. The "Ref" line is the model run with the complete time series of data. The grey shaded areas represent the uncertainty of the data, with the darker portion indicating the portion that were included in the model and the lighter portion indicating which ones were removed and projected. The MASE scores displayed are the MASE and adjusted MASE in parentheses. + +### Composition Data + +To visualize the mean length and mean age, you will need to add an additional step. Because the forecast length- and age-composition information are stored as "ghost files" in the SS report.sso file, you need to use `ss3diags::SSretroComps()` to extract and summarize that information before creating the plots. + +```{r} +retroSummary_comps <- SSretroComps(retro_mods) + +r4ss::sspar(mfrow = c(1, 2)) +hcl <- SSplotHCxval(retroSummary_comps, subplots = "len", add = TRUE, ylim = c(40, 75)) +``` + +### Customizing the Plot + +HCxval plots can be customized in many ways, some common features that you may want to specify are: + +* displaying only a specific fleet +* removing uncertainty intervals +* adjusting the x- or y-axis +* not displaying the adjusted MASE value on the plot + +Examples of each of these changes are shown below, incrementally making each adjustment. + +```{r} +r4ss::sspar(mfrow = c(2, 2)) +SSplotHCxval(retroSummary_comps, subplots = "len", add = TRUE, indexselect = 1) +SSplotHCxval(retroSummary_comps, + subplots = "len", add = TRUE, + indexselect = 1, indexUncertainty = FALSE +) +SSplotHCxval(retroSummary_comps, + subplots = "len", add = TRUE, + indexselect = 1, indexUncertainty = FALSE, ylim = c(45, 70) +) +SSplotHCxval(retroSummary_comps, + subplots = "len", add = TRUE, + indexselect = 1, indexUncertainty = FALSE, ylim = c(45, 70), show.mase.adj = F +) +``` + +## Summary Table +In addition to the HCxval plots, a summary statistics table can be produced using `ss3diags::SSmase()`. This table includes: + +* Index - the fleet +* Season +* MASE - MASE score +* MAE.PR - mean absolute error of prediction residuals +* MASE.base - naive prediction +* MASE.adj - adjusted MASE score +* n.eval - number of points prediction skill was calculated for + +Adjusted MASE gets invoked in cases where the inter-annual variation in the observed values is very small (default MAE < 0.1 for naive predictions log(y[t+1])-log(y[t])). +The reasoning is that prediction residuals must be already very accurate to fall below this threshold. The adjusted MASE essential keep the naive prediction MAE denominator of the MASE to a maximum. Below we show the effect of changing adjustment threshold from the default `MAE.base.adj = 0.1` + + +```{r} +mase1 <- SSmase(retroSummary_comps, quant = "len", MAE.base.adj = 0.1) +mase1 +``` + +to a larger value `MAE.base.adj = 0.15` + +```{r} +SSmase(retroSummary_comps, quant = "len", MAE.base.adj = 0.15) +``` + +where `MASE` is the ratio of the mean absolute error of the prediction residuals `MAE.PR` to the residuals of the naive predictions `MAE.base` + +```{r} +mase1$MAE.PR / mase1$MAE.base +mase1$MASE +``` + +and MASE.adj + + +```{r} +mase1$MAE.PR / pmax(mase1$MAE.base, 0.1) +mase1$MASE.adj +``` diff --git a/vignettes/articles/likelihood.Rmd b/vignettes/articles/likelihood.Rmd new file mode 100644 index 0000000..c3facd3 --- /dev/null +++ b/vignettes/articles/likelihood.Rmd @@ -0,0 +1,110 @@ +--- +title: "Likelihood Profile" +--- + +```{r, include = FALSE} +knitr::opts_chunk$set( + collapse = TRUE, + comment = "#>" +) +``` + +```{r setup} +library(ss3diags) +``` +Likelihood profiling is a key model diagnostic that helps identify the influence of information sources on model estimates. R~0~ is a commonly profiled parameter because it represents a global scaling parameter. To conduct a profile, values of the parameter over a given range are fixed and the model re-run and then changes in total likelihood and data-component likelihoods are examined. It is recommended to run this throughout the development process, particularly after incorporating new data sets to understand how informative each component is on the estimation of R0 and if there is conflict between data sources. + +## Model inputs +To run a stock synthesis model, 4 input files are required: starter, forecast, control, and data. The input files for the example model can be found within the `ss3diags` package and accessed as shown below. Also, if you do not have `r4ss` installed, you will need to install for this tutorial. + +```{r eval=FALSE} +install.packages("pak") +pak::pkg_install("r4ss/r4ss") +``` + +```{r message=FALSE, warning=FALSE} +library(r4ss) + +files_path <- system.file("extdata", package = "ss3diags") +dir_tmp <- tempdir(check = TRUE) +dir_profile <- file.path(dir_tmp, "profile") +dir.create(dir_profile, showWarnings = FALSE, recursive = TRUE) +list.files(files_path) +file.copy(from = list.files(files_path, full.names = TRUE), to = dir_tmp) +``` + +You will need to make sure you have the [SS executable](https://github.com/nmfs-stock-synthesis/stock-synthesis) file either in your path or in the directory you are running the profile from (in this case `dir_profile`). An easy way to get the latest release of stock synthesis is to use the `r4ss` function `get_ss3_exe()`. + +```{r} +r4ss::get_ss3_exe(dir = dir_tmp, version = "v3.30.21") +``` + +## R~0~ Profile +Once you have the 4 input files and SS executable, you can run a likelihood profile as shown below. The first step is to run the model you would like to do a profile for. We will do this in `dir_tmp` and then copy the necessary files to `dir_profile`. It's best to run the profile in a subdirectory of your main model run to keep the output files separate from other diagnostic tests you may run. + +```{r} +r4ss::run(dir = dir_tmp, exe = "ss3", verbose = FALSE) +files <- c("data.ss", "control.ss_new", "starter.ss", "forecast.ss", "ss.par", "ss3") +file.copy(from = file.path(dir_tmp, files), to = dir_profile) +``` + +Once you have the input files you need in `dir_profile` you will need to create a vector of values to profile across. The range and increments to choose depend on your model and the resolution at which you want to analyze the likelihood profile. For this example we will use a fairly course resolution to speed up total run time. + +```{r} +CTL <- SS_readctl_3.30(file = file.path(dir_profile, "control.ss_new"), datlist = file.path(dir_profile, "data.ss")) + +CTL$SR_parms +# getting the estimated r0 value +r0 <- CTL$SR_parms$INIT[1] +# creating a vector that is +/- 1 unit away from the estimated value in increments of 0.2 +r0_vec <- seq(r0 - 1, r0 + 1, by = 0.2) +r0_vec +``` +We also need to modify the starter file by changing the name of the control file that it will read from and making sure the likelihood is calculated for non-estimated quantities. +```{r} +START <- SS_readstarter(file = file.path(dir_profile, "starter.ss"), verbose = FALSE) +START$prior_like <- 1 +START$ctlfile <- "control_modified.ss" +SS_writestarter(START, dir = dir_profile, overwrite = TRUE, verbose = F) +``` + +To run the profile, use `r4ss::profile()` and you will need to specify a partial string of the name of the parameter you are profiling over (in this case "SR_LN" will match with "SR_LN(R0)"), and the vector of values to profile across. The `newctlfile` is the control file that will be adjusted with values from the `profilevec` and can be named anything you prefer, it just needs to match what you put in the starter file for "cltfile". Full documentation of the `profile()` function can be found on the [r4ss website](https://r4ss.github.io/r4ss/reference/profile.html). +```{r} +profile( + dir = dir_profile, + newctlfile = "control_modified.ss", + string = "SR_LN", + profilevec = r0_vec, + exe = "ss3", + verbose = FALSE +) +``` + +## Visualizing Output +Once the profile is finished running, we can visualize the results to determine if there is conflict between the data sources. If all data sources reach a minimum at the same R~0~ value, this indicates good agreement between them. However, more likely, one or more will be minimized at different R0 values from the global R~0~ value. This is a sign of conflict between your data sources and may require you to consider data weighting. + +```{r} +profile_mods <- SSgetoutput(dirvec = dir_profile, keyvec = 1:length(r0_vec), verbose = FALSE) +profile_mods_sum <- SSsummarize(profile_mods, verbose = FALSE) +SSplotProfile(profile_mods_sum, + profile.string = "SR_LN", + profile.label = "SR_LN(R0)" +) +``` + +The profile plot shows the changes in log-likelihood across the vector of values profiled over for the total likelihood and each of the contributing components. There is a minimum threshold that a component must contribute so if there is a data source that is in your model but does not show up in the plot, the contribution may not be large enough. The steepness of each trajectory indicates how informative (or not) that data source was. For example, the age data in the plot above is much steeper on the left side of the minimum R0 value than the index data, which suggests that age composition data is more informative in the model. + + +You can also plot data-type and fleet-specific profiles using `r4ss::PinerPlot()`. Below we are plotting the profile for the length composition data by fleet and the likelihood of survey data by fleet. This will allow us to see if there are conflicts and what sources are the main drivers. +```{r} +sspar(mfrow = c(1, 2)) +PinerPlot(profile_mods_sum, + component = "Length_like", + main = "Length" +) +PinerPlot(profile_mods_sum, + component = "Surv_like", + main = "Survey" +) +``` + diff --git a/vignettes/articles/residuals.Rmd b/vignettes/articles/residuals.Rmd new file mode 100644 index 0000000..ccb95be --- /dev/null +++ b/vignettes/articles/residuals.Rmd @@ -0,0 +1,99 @@ +--- +title: "Residual Analyses" +--- + +```{r, include = FALSE} +knitr::opts_chunk$set( + collapse = TRUE, + comment = "#>" +) +``` + +```{r setup} +library(ss3diags) +``` + +Within the `ss3diags` package, there are 2 main diagnostic functions useful for residual analysis: `ss3diags::SSplotRunstest()` and `ss3diags::SSplotJABBAres()`. It is suggested to implement these diagnostics early and often in the model development process to gain a better understanding of how your model is fitting to your data. + +## Runs Test + +The runs test is a nonparametric hypothesis test for randomness in a data sequence that calculates the 2-sided p-value to estimate the number of runs (i.e., sequences of values of the same sign) above and below a reference value. The runs test can diagnose model misspecification using residuals from fits to index and composition data ([Carvalho et al. 2017](https://www.sciencedirect.com/science/article/pii/S0165783616303113)) by testing if there are non-random patterns in the residuals. In addition, the three-sigma limits can be considered useful for identifying potential outliers as any data point further than three standard deviations away from the expected residual process average would be unlikely given a random process error in the observed residual distribution. + +For this example we will be using the "simple_small" SS model included within the `r4ss` package. We can read in the report file from the model output using the `r4ss::SS_output()` function as shown below. + +```{r message=FALSE} +library(r4ss) + +files_path <- system.file("extdata", "simple_small", package = "r4ss") +report <- SS_output(dir = files_path, verbose = FALSE, printstats = FALSE) +``` + +```{r} +sspar(mfrow = c(1, 2)) +SSplotRunstest(report, add = TRUE) +``` + + +The output for `SSplotRunstest()` includes a plot of the residuals by fleet and a table with the results from the runs test and 'three-sigma limit' values. In the plots above, the shaded area represents the 'three-sigma limit', or three residual standard deviations from zero. If any of the individual residual points fall outside of the three-sigma limit, they are colored red. Green shaded area indicates the residuals are randomly distributed (p-value >= 0.05) whereas red shaded area indicates the residuals are not randomly distributed. Failing the runs test (p-value < 0.05) can be indicative of some misspecification or conflict with the indices or composition data. + +### Customizing the Plot + +Runs test plots can be customized as needed. Some common features that you may want to specify are: + +* plotting other data types (default is Index of Abundance) +* plotting specific fleet(s) +* adjusting the y-axis range + +Examples of each of these changes are shown below, incrementally making each adjustment. To plot other data types, they can be specified with the `subplots` argument, and the options include "cpue", "len", "age", "size", or "con". "con" is for conditional size-at-age data and "size" is for generalized size composition data. Fleets can be specified using the `indexselect()` function, which takes a vector of the fleet numbers to plot. + +```{r} +sspar(mfrow = c(2, 2)) +SSplotRunstest(report, subplots = "len", indexselect = 1, add = TRUE) +SSplotRunstest(report, subplots = "age", indexselect = 2, add = TRUE) +SSplotRunstest(report, subplots = "age", indexselect = 2, add = TRUE, ylim = c(-0.5, 0.5)) +SSplotRunstest(report, subplots = "age", indexselect = 2, add = TRUE, ylim = c(-0.5, 0.5), ylimAdj = 1) +``` + +Note that a small adjustment is automatically added to the ylim to provide extra white space. This is why in the third plot, even though we set the y-axis to range from -0.5 to 0.5, the y-axis goes from -0.6 to 0.6. If you do not want the extra space, set `ylimAdj = 1` as done in the 4th plot. + +### Summary Table + +In addition to the residual plots, `SSplotRunstest()` produces a summary table of the runs test output values, including: + + * p-value for the runs test + * if the test passed or failed (indicated by green or red shading in the plot) + * upper and lower limits for the 3-sigma interval + * type of data tested (CPUE, length-composition, age-composition, or conditional age-at-length) + +To only produce the summary table and skip the plot, e.g. to faciliate automated processing, use `SSrunstest()`. + +```{r} +rcpue <- SSrunstest(report, quants = "cpue") +rlen <- SSrunstest(report, quants = "len") +rbind(rcpue, rlen) +``` + + +## RMSE +RMSE or root mean square error is useful for evaluating how far predictions fall from the observed data. The `ss3diags::SSplotJABBAres()` function allows you to visualize the full time series of residuals for all fleets of the indicated data (index of abundance or composition). In the example below, we plot the residuals for index of abundance, mean age (age-composition), and mean length (length composition) for both fleets. + +```{r} +sspar(mfrow = c(2, 2)) +SSplotJABBAres(report, subplots = "cpue", add = TRUE) +SSplotJABBAres(report, subplots = "age", add = TRUE) +SSplotJABBAres(report, subplots = "len", add = TRUE, ylim = c(-0.2, 0.2)) +``` + +In the plots above, each point represents the difference between the observed and expected value (residual) and is color-coded to correspond to a specific fleet. The solid, color-coded vertical lines from the horizontal dashed line (at y = 0) show the distance between 0 and the residual value. Box plots summarize the spread of residual values across all fleets within each year and the thick solid black line is a loess smoother fit through all residual points. Total RMSE is displayed in the top right corner. When assessing this plot, it is important to see if there are any patterns or trends in the residuals, how large the overall RMSE is, and whether the data from different fleets generally agrees or conflicts with each other. + +To retrieve just RMSE and residual values without generating the plot, `SSrmse()` produces a named list with 2 objects, `RMSE` and `residuals`. These can be accessed as shown below. This function is useful for automating analyses. + +```{r} +rmse <- SSrmse(report, quants = "cpue")$RMSE +residuals <- SSrmse(report, quants = "cpue")$residuals + +rmse + +head(residuals) +``` +