-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearner.py
499 lines (418 loc) · 24.4 KB
/
learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import os
import time
import random
import gym
import numpy as np
import torch
from algorithms.online_storage import OnlineStorage
from algorithms.ppo import PPO
from environments.parallel_envs import make_vec_envs
from models.policy import Policy
from utils import evaluation as utl_eval
from utils import helpers as utl
from utils.tb_logger import TBLogger
from vae import CorepVAE
from collections import deque
from utils.helpers import device
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Learner:
"""
Learner class with the main training loop.
"""
def __init__(self, args):
self.args = args
utl.seed(self.args.seed, self.args.deterministic_execution)
# calculate number of updates and keep count of frames/iterations
self.num_updates = int(args.num_frames) // args.policy_num_steps // args.num_processes
self.frames = 0
self.iter_idx = -1
# initialise tensorboard logger
self.logger = TBLogger(self.args, self.args.exp_label)
# initialise environments
self.envs = make_vec_envs(env_name=args.env_name, seed=args.seed, num_processes=args.num_processes,
gamma=args.policy_gamma, device=device,
episodes_per_task=self.args.max_rollouts_per_task,
normalise_rew=args.norm_rew_for_policy, ret_rms=None,
tasks=None
)
if self.args.single_task_mode:
# get the current tasks (which will be num_process many different tasks)
self.train_tasks = self.envs.get_task()
# set the tasks to the first task (i.e. just a random task)
self.train_tasks[1:] = self.train_tasks[0]
# make it a list
self.train_tasks = [t for t in self.train_tasks]
# re-initialise environments with those tasks
self.envs = make_vec_envs(env_name=args.env_name, seed=args.seed, num_processes=args.num_processes,
gamma=args.policy_gamma, device=device,
episodes_per_task=self.args.max_rollouts_per_task,
normalise_rew=args.norm_rew_for_policy, ret_rms=None,
tasks=self.train_tasks
)
# save the training tasks so we can evaluate on the same envs later
utl.save_obj(self.train_tasks, self.logger.full_output_folder, "train_tasks")
else:
self.train_tasks = None
# calculate what the maximum length of the trajectories is
self.args.max_trajectory_len = self.envs._max_episode_steps
self.args.max_trajectory_len *= self.args.max_rollouts_per_task
# get policy input dimensions
self.args.state_dim = self.envs.observation_space.shape[0]
self.args.task_dim = self.envs.task_dim
self.args.belief_dim = self.envs.belief_dim
self.args.num_states = self.envs.num_states
# get policy output (action) dimensions
self.args.action_space = self.envs.action_space
if isinstance(self.envs.action_space, gym.spaces.discrete.Discrete):
self.args.action_dim = 1
else:
self.args.action_dim = self.envs.action_space.shape[0]
# initialise VAE and policy
self.vae = CorepVAE(self.args, self.logger, lambda: self.iter_idx)
self.policy_storage = self.initialise_policy_storage()
self.policy = self.initialise_policy()
self.freeze = False
self.td_buffer = deque(maxlen=self.args.td_buffer_size)
def initialise_policy_storage(self):
return OnlineStorage(args=self.args,
num_steps=self.args.policy_num_steps,
num_processes=self.args.num_processes,
state_dim=self.args.state_dim,
latent_dim=self.args.latent_dim,
belief_dim=self.args.belief_dim,
task_dim=self.args.task_dim,
action_space=self.args.action_space,
hidden_size=self.args.encoder_gru_hidden_size,
normalise_rewards=self.args.norm_rew_for_policy,
)
def initialise_policy(self):
# initialise policy network
policy_net = Policy(
args=self.args,
#
pass_state_to_policy=self.args.pass_state_to_policy,
pass_latent_to_policy=self.args.pass_latent_to_policy,
pass_belief_to_policy=self.args.pass_belief_to_policy,
pass_task_to_policy=self.args.pass_task_to_policy,
dim_state=self.args.state_dim,
dim_latent=self.args.latent_dim * 2,
dim_belief=self.args.belief_dim,
dim_task=self.args.task_dim,
#
hidden_layers=self.args.policy_layers,
activation_function=self.args.policy_activation_function,
policy_initialisation=self.args.policy_initialisation,
#
action_space=self.envs.action_space,
init_std=self.args.policy_init_std,
).to(device)
# initialise policy trainer
if self.args.policy == 'ppo':
policy = PPO(
self.args,
policy_net,
self.args.policy_value_loss_coef,
self.args.policy_entropy_coef,
policy_optimiser=self.args.policy_optimiser,
policy_anneal_lr=self.args.policy_anneal_lr,
train_steps=self.num_updates,
lr=self.args.lr_policy,
eps=self.args.policy_eps,
ppo_epoch=self.args.ppo_num_epochs,
num_mini_batch=self.args.ppo_num_minibatch,
use_huber_loss=self.args.ppo_use_huberloss,
use_clipped_value_loss=self.args.ppo_use_clipped_value_loss,
clip_param=self.args.ppo_clip_param,
optimiser_vae=self.vae.optimiser_vae,
)
else:
raise NotImplementedError
return policy
def train(self):
""" Main Training loop """
start_time = time.time()
# reset environments
prev_state, belief, task = utl.reset_env(self.envs, self.args)
# insert initial observation / embeddings to rollout storage
self.policy_storage.prev_state[0].copy_(prev_state)
# log once before training
with torch.no_grad():
self.log(None, None, start_time)
for self.iter_idx in range(self.num_updates):
# First, re-compute the hidden states given the current rollouts (since the VAE might've changed)
with torch.no_grad():
latent_sample, latent_mean, latent_logvar, hidden_state = self.encode_running_trajectory()
# add this initial hidden state to the policy storage
assert len(self.policy_storage.latent_mean) == 0 # make sure we emptied buffers
self.policy_storage.hidden_states[0].copy_(hidden_state)
self.policy_storage.latent_samples.append(latent_sample.clone())
self.policy_storage.latent_mean.append(latent_mean.clone())
self.policy_storage.latent_logvar.append(latent_logvar.clone())
# rollout policies for a few steps
for step in range(self.args.policy_num_steps):
# sample actions from policy
with torch.no_grad():
value, action = utl.select_action(
args=self.args,
policy=self.policy,
state=prev_state,
belief=belief,
task=task,
deterministic=False,
latent_sample=latent_sample,
latent_mean=latent_mean,
latent_logvar=latent_logvar,
)
# take step in the environment
[next_state, belief, task], (rew_raw, rew_normalised), done, infos = utl.env_step(self.envs, action, self.args)
degree = 0.5
non_stationarity = (1 +\
degree * np.random.normal(0.5, 0.5) * np.cos(degree * np.random.normal(0.5, 0.5) * step) +\
degree * np.random.normal(0.5, 0.5) * np.sin(degree * np.random.normal(0.5, 0.5) * self.iter_idx))
next_state = next_state * non_stationarity
if task:
task *= non_stationarity
done = torch.from_numpy(np.array(done, dtype=int)).to(device).float().view((-1, 1))
# create mask for episode ends
masks_done = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done]).to(device)
# bad_mask is true if episode ended because time limit was reached
bad_masks = torch.FloatTensor([[0.0] if 'bad_transition' in info.keys() else [1.0] for info in infos]).to(device)
with torch.no_grad():
# compute next embedding (for next loop and/or value prediction bootstrap)
latent_sample, latent_mean, latent_logvar, hidden_state = utl.update_encoding(
encoder=self.vae.encoder,
next_obs=next_state,
action=action,
reward=rew_raw,
done=done,
hidden_state=hidden_state)
# before resetting, update the embedding and add to vae buffer
# (last state might include useful task info)
if not (self.args.disable_decoder and self.args.disable_kl_term):
self.vae.rollout_storage.insert(prev_state.clone(),
action.detach().clone(),
next_state.clone(),
rew_raw.clone(),
done.clone(),
task.clone() if task is not None else None)
# add the obs before reset to the policy storage
self.policy_storage.next_state[step] = next_state.clone()
# reset environments that are done
done_indices = np.argwhere(done.cpu().flatten()).flatten()
if len(done_indices) > 0:
next_state, belief, task = utl.reset_env(self.envs, self.args,
indices=done_indices, state=next_state)
# TODO: deal with resampling for posterior sampling algorithm
# latent_sample = latent_sample
# latent_sample[i] = latent_sample[i]
# add experience to policy buffer
self.policy_storage.insert(
state=next_state,
belief=belief,
task=task,
actions=action,
rewards_raw=rew_raw,
rewards_normalised=rew_normalised,
value_preds=value,
masks=masks_done,
bad_masks=bad_masks,
done=done,
hidden_states=hidden_state.squeeze(0),
latent_sample=latent_sample,
latent_mean=latent_mean,
latent_logvar=latent_logvar,
)
prev_state = next_state
self.frames += self.args.num_processes
# --- UPDATE ---
if self.args.precollect_len <= self.frames:
# check if we are pre-training the VAE
if self.args.pretrain_len > self.iter_idx:
for p in range(self.args.num_vae_updates_per_pretrain):
self.vae.compute_vae_loss(update=True,
pretrain_index=self.iter_idx * self.args.num_vae_updates_per_pretrain + p)
# otherwise do the normal update (policy + vae)
else:
train_stats = self.update(state=prev_state,
belief=belief,
task=task,
latent_sample=latent_sample,
latent_mean=latent_mean,
latent_logvar=latent_logvar)
# log
run_stats = [action, self.policy_storage.action_log_probs, value]
with torch.no_grad():
self.log(run_stats, train_stats, start_time)
# clean up after update
self.policy_storage.after_update()
self.envs.close()
def encode_running_trajectory(self):
"""
(Re-)Encodes (for each process) the entire current trajectory.
Returns sample/mean/logvar and hidden state (if applicable) for the current timestep.
:return:
"""
# for each process, get the current batch (zero-padded obs/act/rew + length indicators)
prev_obs, next_obs, act, rew, lens = self.vae.rollout_storage.get_running_batch()
# get embedding - will return (1+sequence_len) * batch * input_size -- includes the prior!
all_latent_samples, all_latent_means, all_latent_logvars, all_hidden_states, _, _ = self.vae.encoder(actions=act,
states=next_obs,
rewards=rew,
hidden_state=None,
return_prior=True)
# get the embedding / hidden state of the current time step (need to do this since we zero-padded)
latent_sample = (torch.stack([all_latent_samples[lens[i]][i] for i in range(len(lens))])).to(device)
latent_mean = (torch.stack([all_latent_means[lens[i]][i] for i in range(len(lens))])).to(device)
latent_logvar = (torch.stack([all_latent_logvars[lens[i]][i] for i in range(len(lens))])).to(device)
hidden_state = (torch.stack([all_hidden_states[lens[i]][i] for i in range(len(lens))])).to(device)
return latent_sample, latent_mean, latent_logvar, hidden_state
def get_value(self, state, belief, task, latent_sample, latent_mean, latent_logvar):
latent = utl.get_latent_for_policy(self.args, latent_sample=latent_sample, latent_mean=latent_mean, latent_logvar=latent_logvar)
return self.policy.actor_critic.get_value(state=state, belief=belief, task=task, latent=latent).detach()
def update(self, state, belief, task, latent_sample, latent_mean, latent_logvar):
"""
Update.
Here the policy is updated for good average performance across tasks.
:return:
"""
# update policy (if we are not pre-training, have enough data in the vae buffer, and are not at iteration 0)
if self.iter_idx >= self.args.pretrain_len and self.iter_idx > 0:
# bootstrap next value prediction
with torch.no_grad():
next_value = self.get_value(state=state,
belief=belief,
task=task,
latent_sample=latent_sample,
latent_mean=latent_mean,
latent_logvar=latent_logvar)
# compute returns for current rollouts
self.policy_storage.compute_returns(next_value, self.args.policy_use_gae, self.args.policy_gamma,
self.args.policy_tau,
use_proper_time_limits=self.args.use_proper_time_limits)
# update agent (this will also call the VAE update!)
policy_train_stats = self.policy.update(
policy_storage=self.policy_storage,
encoder=self.vae.encoder,
rlloss_through_encoder=self.args.rlloss_through_encoder,
compute_vae_loss=self.vae.compute_vae_loss,
freeze=self.freeze
)
td = policy_train_stats[0]
if len(self.td_buffer) > 0:
td_mean = np.mean(self.td_buffer)
td_std = np.std(self.td_buffer)
else:
td_mean = 0
td_std = 0
self.td_buffer.append(td)
recent_td = np.array(self.td_buffer)[-int(len(self.td_buffer) * self.args.td_recent_size):].mean()
# greedy
if recent_td < td_mean + self.args.confidence * td_std and\
recent_td > td_mean - self.args.confidence * td_std and\
np.random.rand() > self.args.freeze_eps:
self.freeze = True
else:
self.freeze = False
else:
policy_train_stats = 0, 0, 0, 0
# pre-train the VAE
if self.iter_idx < self.args.pretrain_len:
self.vae.compute_vae_loss(update=True)
return policy_train_stats
def log(self, run_stats, train_stats, start_time):
# --- visualise behaviour of policy ---
if (self.iter_idx + 1) % self.args.vis_interval == 0:
ret_rms = self.envs.venv.ret_rms if self.args.norm_rew_for_policy else None
utl_eval.visualise_behaviour(args=self.args,
policy=self.policy,
image_folder=self.logger.full_output_folder,
iter_idx=self.iter_idx,
ret_rms=ret_rms,
encoder=self.vae.encoder,
reward_decoder=self.vae.reward_decoder,
state_decoder=self.vae.state_decoder,
task_decoder=self.vae.task_decoder,
compute_rew_reconstruction_loss=self.vae.compute_rew_reconstruction_loss,
compute_state_reconstruction_loss=self.vae.compute_state_reconstruction_loss,
compute_task_reconstruction_loss=self.vae.compute_task_reconstruction_loss,
compute_kl_loss=self.vae.compute_kl_loss,
tasks=self.train_tasks,
)
# --- evaluate policy ----
if (self.iter_idx + 1) % self.args.eval_interval == 0:
ret_rms = self.envs.venv.ret_rms if self.args.norm_rew_for_policy else None
returns_per_episode = utl_eval.evaluate(args=self.args,
policy=self.policy,
ret_rms=ret_rms,
encoder=self.vae.encoder,
iter_idx=self.iter_idx,
tasks=self.train_tasks,
)
# log the return avg/std across tasks (=processes)
returns_avg = returns_per_episode.mean(dim=0)
returns_std = returns_per_episode.std(dim=0)
for k in range(len(returns_avg)):
self.logger.add('return_avg_per_iter/episode_{}'.format(k + 1), returns_avg[k], self.iter_idx)
self.logger.add('return_avg_per_frame/episode_{}'.format(k + 1), returns_avg[k], self.frames)
self.logger.add('return_std_per_iter/episode_{}'.format(k + 1), returns_std[k], self.iter_idx)
self.logger.add('return_std_per_frame/episode_{}'.format(k + 1), returns_std[k], self.frames)
print(f"Updates {self.iter_idx}, "
f"Frames {self.frames}, "
f"FPS {int(self.frames / (time.time() - start_time))}, "
f"\n Mean return (train): {returns_avg[-1].item()} \n"
)
# --- save models ---
if (self.iter_idx + 1) % self.args.save_interval == 0:
save_path = os.path.join(self.logger.full_output_folder, 'models')
if not os.path.exists(save_path):
os.mkdir(save_path)
idx_labels = ['']
if self.args.save_intermediate_models:
idx_labels.append(int(self.iter_idx))
for idx_label in idx_labels:
torch.save(self.policy.actor_critic, os.path.join(save_path, f"policy{idx_label}.pt"))
torch.save(self.vae.encoder, os.path.join(save_path, f"encoder{idx_label}.pt"))
if self.vae.state_decoder is not None:
torch.save(self.vae.state_decoder, os.path.join(save_path, f"state_decoder{idx_label}.pt"))
if self.vae.reward_decoder is not None:
torch.save(self.vae.reward_decoder, os.path.join(save_path, f"reward_decoder{idx_label}.pt"))
if self.vae.task_decoder is not None:
torch.save(self.vae.task_decoder, os.path.join(save_path, f"task_decoder{idx_label}.pt"))
# save normalisation params of envs
if self.args.norm_rew_for_policy:
rew_rms = self.envs.venv.ret_rms
utl.save_obj(rew_rms, save_path, f"env_rew_rms{idx_label}")
# --- log some other things ---
if ((self.iter_idx + 1) % self.args.log_interval == 0) and (train_stats is not None):
self.logger.add('environment/state_max', self.policy_storage.prev_state.max(), self.iter_idx)
self.logger.add('environment/state_min', self.policy_storage.prev_state.min(), self.iter_idx)
self.logger.add('environment/rew_max', self.policy_storage.rewards_raw.max(), self.iter_idx)
self.logger.add('environment/rew_min', self.policy_storage.rewards_raw.min(), self.iter_idx)
self.logger.add('policy_losses/value_loss', train_stats[0], self.iter_idx)
self.logger.add('policy_losses/action_loss', train_stats[1], self.iter_idx)
self.logger.add('policy_losses/dist_entropy', train_stats[2], self.iter_idx)
self.logger.add('policy_losses/sum', train_stats[3], self.iter_idx)
self.logger.add('policy/action', run_stats[0][0].float().mean(), self.iter_idx)
if hasattr(self.policy.actor_critic, 'logstd'):
self.logger.add('policy/action_logstd', self.policy.actor_critic.dist.logstd.mean(), self.iter_idx)
self.logger.add('policy/action_logprob', run_stats[1].mean(), self.iter_idx)
self.logger.add('policy/value', run_stats[2].mean(), self.iter_idx)
self.logger.add('encoder/latent_mean', torch.cat(self.policy_storage.latent_mean).mean(), self.iter_idx)
self.logger.add('encoder/latent_logvar', torch.cat(self.policy_storage.latent_logvar).mean(), self.iter_idx)
# log the average weights and gradients of all models (where applicable)
for [model, name] in [
[self.policy.actor_critic, 'policy'],
[self.vae.encoder, 'encoder'],
[self.vae.reward_decoder, 'reward_decoder'],
[self.vae.state_decoder, 'state_transition_decoder'],
[self.vae.task_decoder, 'task_decoder']
]:
if model is not None:
param_list = list(model.parameters())
param_mean = np.mean([param_list[i].data.cpu().numpy().mean() for i in range(len(param_list))])
self.logger.add('weights/{}'.format(name), param_mean, self.iter_idx)
if name == 'policy':
self.logger.add('weights/policy_std', param_list[0].data.mean(), self.iter_idx)
if param_list[0].grad is not None:
param_grad_mean = np.mean([param_list[i].grad.cpu().numpy().mean() for i in range(len(param_list))])
self.logger.add('gradients/{}'.format(name), param_grad_mean, self.iter_idx)