forked from ChrisWu1997/PQ-NET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
123 lines (97 loc) · 3.67 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
from tqdm import tqdm
import numpy as np
import torch
import h5py
from dataset import get_dataloader
from config import get_config
from agent import PQNET
from util.utils import ensure_dir
def reconstruct(config):
"""run reconstruction"""
# create the whole framwork
pqnet = PQNET(config)
# create dataloader
test_loader = get_dataloader('test', config)
# output dest
save_dir = os.path.join(config.exp_dir, "results/rec-ckpt-{}-{}-p{}".format(config.ckpt, config.format,
int(config.by_part)))
ensure_dir(save_dir)
# run testing
pbar = tqdm(test_loader)
for data in pbar:
data_id = data['path'][0].split('/')[-1].split('.')[0]
with torch.no_grad():
pqnet.reconstruct(data)
output_shape = pqnet.generate_shape(format=config.format, by_part=config.by_part)
save_output(output_shape, data_id, save_dir, format=config.format)
def encode(config):
"""encode each data to shape latent space """
# create the whole framwork
pqnet = PQNET(config)
# output dest
save_dir = os.path.join(config.exp_dir, "results/enc-ckpt-{}".format(config.ckpt))
ensure_dir(save_dir)
phases = ['train', 'val', 'test']
for pha in phases:
data_loader = get_dataloader(pha, config, is_shuffle=False)
save_phase_dir = os.path.join(save_dir, pha)
ensure_dir(save_phase_dir)
pbar = tqdm(data_loader)
for data in pbar:
data_id = data['path'][0].split('/')[-1].split('.')[0]
with torch.no_grad():
shape_code = pqnet.encode(data).detach().cpu().numpy()
save_path = os.path.join(save_phase_dir, "{}.npy".format(data_id))
np.save(save_path, shape_code)
def decode(config):
"""decode given latent codes to final shape"""
# create the whole framwork
pqnet = PQNET(config)
# load source h5 file
with h5py.File(config.fake_z_path, 'r') as fp:
all_zs = fp['zs'][:]
# output dest
fake_name = config.fake_z_path.split('/')[-1].split('.')[0]
save_dir = os.path.join(config.exp_dir, "results/{}-{}-p{}".format(fake_name, config.format,
int(config.by_part)))
ensure_dir(save_dir)
# decoding
pbar = tqdm(range(all_zs.shape[0]))
for i in pbar:
z = all_zs[i]
z1, z2 = np.split(z, 2)
z = np.stack([z1, z2])
z = torch.tensor(z, dtype=torch.float32).unsqueeze(1).cuda()
with torch.no_grad():
pqnet.decode_seq(z)
output_shape = pqnet.generate_shape(format=config.format, by_part=config.by_part)
data_id = "%04d" % i
save_output(output_shape, data_id, save_dir, format=config.format)
def save_output(shape, data_id, save_dir, format):
if format == 'voxel':
save_path = os.path.join(save_dir, "{}.h5".format(data_id))
with h5py.File(save_path, 'w') as fp:
fp.create_dataset('voxel', data=shape, compression=9)
elif format == "mesh":
save_path = os.path.join(save_dir, "{}.obj".format(data_id))
shape.export(save_path)
else:
raise NotImplementedError
def main():
# create experiment config
config = get_config('pqnet')('test')
if not config.module == 'seq2seq':
raise ValueError("specify args.module == 'seq2seq' when testing")
config.batch_size = 1
config.num_worker = 1
if config.rec:
reconstruct(config)
elif config.enc:
encode(config)
elif config.dec:
decode(config)
else:
pass
if __name__ == '__main__':
main()