|
| 1 | +# PLAID Benchmarks |
| 2 | + |
| 3 | +<img src="assets/images/plaid_benchmarks.png" class="align-center" width="60%" |
| 4 | +alt="PLAID Benchmarks" /> |
| 5 | + |
| 6 | +We provide interactive benchmarks hosted on Hugging Face, in which |
| 7 | +anyone can test their own SciML method. These benchmarks involve |
| 8 | +regression problems posed on datasets provided in PLAID format. Some of |
| 9 | +these datasets have been introduced in the MMGP (Mesh Morphing Gaussian |
| 10 | +Process) paper `casenave2023mmgp`, and the PLAID paper |
| 11 | +`casenave2025plaid`. A ranking is automatically updated based on a score |
| 12 | +computed on the testing set of each dataset. For the benchmarks to be |
| 13 | +meaningful, the outputs on the testing sets are not made public. |
| 14 | + |
| 15 | +The relative RMSE is the considered metric for comparing methods. Let |
| 16 | +$\{ \mathbf{U}^i_{\rm ref} \}_{i=1}^{n_\star}$ and |
| 17 | +$\{ \mathbf{U}^i_{\rm pred} \}_{i=1}^{n_\star}$ be the test observations |
| 18 | +and predictions, respectively, of a given field of interest. The |
| 19 | +relative RMSE is defined as |
| 20 | + |
| 21 | +$$\mathrm{RRMSE}_f(\mathbf{U}_{\rm ref}, \mathbf{U}_{\rm pred}) = \left( \frac{1}{n_\star}\sum_{i=1}^{n_\star} \frac{\frac{1}{N^i}\|\mathbf{U}^i_{\rm ref} - \mathbf{U}^i_{\rm pred}\|_2^2}{\|\mathbf{U}^i_{\rm ref}\|_\infty^2} \right)^{1/2},$$ |
| 22 | + |
| 23 | +where $N^i$ is the number of nodes in the mesh $i$, and |
| 24 | +$\max(\mathbf{U}^i_{\rm ref})$ is the maximum entry in the vector |
| 25 | +$\mathbf{U}^i_{\rm ref}$. Similarly for scalar outputs: |
| 26 | + |
| 27 | +$$\mathrm{RRMSE}_s(\mathbf{w}_{\rm ref}, \mathbf{w}_{\rm pred}) = \left( \frac{1}{n_\star} \sum_{i=1}^{n_\star} \frac{|w^i_{\rm ref} - w_{\rm pred}^i|^2}{|w^i_{\rm ref}|^2} \right)^{1/2}.$$ |
| 28 | + |
| 29 | +## Resources |
| 30 | + |
| 31 | +<table style="width:99%;"> |
| 32 | +<colgroup> |
| 33 | +<col style="width: 19%" /> |
| 34 | +<col style="width: 48%" /> |
| 35 | +<col style="width: 31%" /> |
| 36 | +</colgroup> |
| 37 | +<thead> |
| 38 | +<tr class="header"> |
| 39 | +<th></th> |
| 40 | +<th><blockquote> |
| 41 | +<p>Dataset</p> |
| 42 | +</blockquote></th> |
| 43 | +<th><blockquote> |
| 44 | +<p>Benchmark</p> |
| 45 | +</blockquote></th> |
| 46 | +</tr> |
| 47 | +</thead> |
| 48 | +<tbody> |
| 49 | +<tr class="odd"> |
| 50 | +<td><strong>Tensile2d</strong></td> |
| 51 | +<td><a |
| 52 | +href="https://huggingface.co/datasets/PLAID-datasets/Tensile2d"><img |
| 53 | +src="https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg" |
| 54 | +alt="Tensile2d_HF" /></a> <a |
| 55 | +href="https://doi.org/10.5281/zenodo.14840177"><img |
| 56 | +src="https://zenodo.org/badge/DOI/10.5281/zenodo.14840177.svg" |
| 57 | +alt="Tensile2d_Z" /></a></td> |
| 58 | +<td><a |
| 59 | +href="https://huggingface.co/spaces/PLAIDcompetitions/Tensile2dBenchmark"><img |
| 60 | +src="https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm-dark.svg" |
| 61 | +alt="Tensile2d_Be" /></a></td> |
| 62 | +</tr> |
| 63 | +<tr class="even"> |
| 64 | +<td><strong>2D_MultiScHypEl</strong></td> |
| 65 | +<td><a |
| 66 | +href="https://huggingface.co/datasets/PLAID-datasets/2D_Multiscale_Hyperelasticity"><img |
| 67 | +src="https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg" |
| 68 | +alt="2D_MultiScHypEl_HF" /></a> <a |
| 69 | +href="https://doi.org/10.5281/zenodo.14840446"><img |
| 70 | +src="https://zenodo.org/badge/DOI/10.5281/zenodo.14840446.svg" |
| 71 | +alt="2D_MultiScHypEl_Z" /></a></td> |
| 72 | +<td><a |
| 73 | +href="https://huggingface.co/spaces/PLAIDcompetitions/2DMultiscaleHyperelasticityBenchmark"><img |
| 74 | +src="https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm-dark.svg" |
| 75 | +alt="2D_MultiScHypEl_Be" /></a></td> |
| 76 | +</tr> |
| 77 | +<tr class="odd"> |
| 78 | +<td><strong>2D_ElPlDynamics</strong></td> |
| 79 | +<td><a |
| 80 | +href="https://huggingface.co/datasets/PLAID-datasets/2D_ElastoPlastoDynamics"><img |
| 81 | +src="https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg" |
| 82 | +alt="2D_ElPlDynamics_HF" /></a> <a |
| 83 | +href="https://doi.org/10.5281/zenodo.15286369"><img |
| 84 | +src="https://zenodo.org/badge/DOI/10.5281/zenodo.15286369.svg" |
| 85 | +alt="2D_ElPlDynamics_Z" /></a></td> |
| 86 | +<td><a |
| 87 | +href="https://huggingface.co/spaces/PLAIDcompetitions/2DElastoPlastoDynamics"><img |
| 88 | +src="https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm-dark.svg" |
| 89 | +alt="2D_ElPlDynamics_Be" /></a></td> |
| 90 | +</tr> |
| 91 | +<tr class="even"> |
| 92 | +<td><strong>Rotor37</strong></td> |
| 93 | +<td><a |
| 94 | +href="https://huggingface.co/datasets/PLAID-datasets/Rotor37"><img |
| 95 | +src="https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg" |
| 96 | +alt="Rotor37_HF" /></a> <a |
| 97 | +href="https://doi.org/10.5281/zenodo.14840190"><img |
| 98 | +src="https://zenodo.org/badge/DOI/10.5281/zenodo.14840190.svg" |
| 99 | +alt="Rotor37_Z" /></a></td> |
| 100 | +<td><a |
| 101 | +href="https://huggingface.co/spaces/PLAIDcompetitions/Rotor37Benchmark"><img |
| 102 | +src="https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm-dark.svg" |
| 103 | +alt="Rotor37_Be" /></a></td> |
| 104 | +</tr> |
| 105 | +<tr class="odd"> |
| 106 | +<td><strong>2D_profile</strong></td> |
| 107 | +<td><a |
| 108 | +href="https://huggingface.co/datasets/PLAID-datasets/2D_profile"><img |
| 109 | +src="https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg" |
| 110 | +alt="2D_profile_HF" /></a> <a |
| 111 | +href="https://doi.org/10.5281/zenodo.15155119"><img |
| 112 | +src="https://zenodo.org/badge/DOI/10.5281/zenodo.15155119.svg" |
| 113 | +alt="2D_profile_Z" /></a></td> |
| 114 | +<td><a |
| 115 | +href="https://huggingface.co/spaces/PLAIDcompetitions/2DprofileBenchmark"><img |
| 116 | +src="https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm-dark.svg" |
| 117 | +alt="2D_profile_Be" /></a></td> |
| 118 | +</tr> |
| 119 | +<tr class="even"> |
| 120 | +<td><strong>VKI-LS59</strong></td> |
| 121 | +<td><a |
| 122 | +href="https://huggingface.co/datasets/PLAID-datasets/VKI-LS59"><img |
| 123 | +src="https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg" |
| 124 | +alt="VKI-LS59_HF" /></a> <a |
| 125 | +href="https://doi.org/10.5281/zenodo.14840512"><img |
| 126 | +src="https://zenodo.org/badge/DOI/10.5281/zenodo.14840512.svg" |
| 127 | +alt="VKI-LS59_Z" /></a></td> |
| 128 | +<td><a |
| 129 | +href="https://huggingface.co/spaces/PLAIDcompetitions/VKILS59Benchmark"><img |
| 130 | +src="https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm-dark.svg" |
| 131 | +alt="VKI-LS59_Be" /></a></td> |
| 132 | +</tr> |
| 133 | +</tbody> |
| 134 | +</table> |
| 135 | + |
| 136 | +AirfRANS, introduced in `airfrans` is an additional dataset provided in |
| 137 | +PLAID format and various variants. Since the outputs on the testing sets |
| 138 | +are public, no benchmark application is provided for this dataset. |
| 139 | + |
| 140 | +| | | |
| 141 | +|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
| 142 | +| **AirfRANS original** | [](https://huggingface.co/datasets/PLAID-datasets/AirfRANS_original) [](https://doi.org/10.5281/zenodo.14840387) | |
| 143 | +| **AirfRANS clipped** | [](https://huggingface.co/datasets/PLAID-datasets/AirfRANS_clipped) [](https://doi.org/10.5281/zenodo.14840377) | |
| 144 | +| **AirfRANS remeshed** | [](https://huggingface.co/datasets/PLAID-datasets/AirfRANS_remeshed) [](https://doi.org/10.5281/zenodo.14840388) | |
| 145 | + |
| 146 | +## Benchmark results |
| 147 | + |
| 148 | +As of August 5, 2025 |
| 149 | + |
| 150 | +| Dataset | MGN | MMGP | Vi-Transf. | Augur | FNO | MARIO | |
| 151 | +|------------------------------------------------|--------|--------|------------|--------|--------|--------| |
| 152 | +| <span class="title-ref">Tensile2d</span> | 0.0673 | 0.0026 | 0.0116 | 0.0154 | 0.0123 | 0.0038 | |
| 153 | +| <span class="title-ref">2D_MultiScHypEl</span> | 0.0437 | ❌ | 0.0325 | 0.0232 | 0.0302 | 0.0573 | |
| 154 | +| <span class="title-ref">2D_ElPlDynamics</span> | 0.1202 | ❌ | 0.0227 | 0.0346 | 0.0215 | 0.0319 | |
| 155 | +| <span class="title-ref">Rotor37</span> | 0.0074 | 0.0014 | 0.0029 | 0.0033 | 0.0313 | 0.0017 | |
| 156 | +| <span class="title-ref">2D_profile</span> | 0.0593 | 0.0365 | 0.0312 | 0.0425 | 0.0972 | 0.0307 | |
| 157 | +| <span class="title-ref">VKI-LS59</span> | 0.0684 | 0.0312 | 0.0193 | 0.0267 | 0.0215 | 0.0124 | |
| 158 | + |
| 159 | +❌: Not compatible with topology variation |
| 160 | + |
| 161 | +<div class="note"> |
| 162 | + |
| 163 | +<div class="title"> |
| 164 | + |
| 165 | +Note |
| 166 | + |
| 167 | +</div> |
| 168 | + |
| 169 | +- MMGP does not support variable mesh topologies, which limits its |
| 170 | + applicability to certain datasets and often necessitates custom |
| 171 | + preprocessing for new cases. However, when morphing is either |
| 172 | + unnecessary or inexpensive, it offers a highly efficient solution, |
| 173 | + combining fast training with good accuracy (e.g., `Tensile2d` and |
| 174 | + `Rotor37`). |
| 175 | +- MARIO is computationally expensive to train but achieves consistently |
| 176 | + a very strong performance across most datasets. Its result on |
| 177 | + `2D_MultiScHypEl` is slightly worse than other tested methods, which |
| 178 | + may reflect the challenge of capturing complex shape variability in |
| 179 | + these cases. |
| 180 | +- Vi-Transformer and Augur perform well across all datasets, showing |
| 181 | + strong versatility and generalization capabilities. |
| 182 | +- FNO suffers on datasets featuring unstructured meshes with pronounced |
| 183 | + anisotropies, due to the loss of accuracy introduced by projections to |
| 184 | + and from regular grids (e.g., `Rotor37` and `2D_profile`). |
| 185 | + Additionally, the use of a 3D regular grid on `Rotor37` results in |
| 186 | + substantial computational overhead. |
| 187 | + |
| 188 | +</div> |
| 189 | + |
0 commit comments