|
1 |
| -!!! info |
2 |
| - Page under construction |
| 1 | +<div style="text-align:center;"> |
| 2 | +<img src="../assets/images/plaid_benchmarks.png" class="align-center" width="60%" |
| 3 | +alt="PLAID Benchmarks" /> |
| 4 | +</div> |
3 | 5 |
|
4 |
| -Six interactive benchmarks are provided in by the [PLAID competitions on Hugging Face](https://huggingface.co/PLAIDcompetitions). |
| 6 | + |
| 7 | +We provide interactive benchmarks hosted on Hugging Face, in which |
| 8 | +anyone can test their own SciML method. These benchmarks involve |
| 9 | +regression problems posed on datasets provided in PLAID format. Some of |
| 10 | +these datasets have been introduced in the MMGP (Mesh Morphing Gaussian |
| 11 | +Process) paper [@casenave2023mmgp], and the PLAID paper |
| 12 | +[@casenave2025plaid]. A ranking is automatically updated based on a score |
| 13 | +computed on the testing set of each dataset. For the benchmarks to be |
| 14 | +meaningful, the outputs on the testing sets are not made public. |
| 15 | + |
| 16 | +The relative RMSE is the considered metric for comparing methods. Let |
| 17 | +$\{ \mathbf{U}^i_{\rm ref} \}_{i=1}^{n_\star}$ and |
| 18 | +$\{ \mathbf{U}^i_{\rm pred} \}_{i=1}^{n_\star}$ be the test observations |
| 19 | +and predictions, respectively, of a given field of interest. The |
| 20 | +relative RMSE is defined as |
| 21 | + |
| 22 | +$$ |
| 23 | +\mathrm{RRMSE}_f(\mathbf{U}_{\rm ref}, \mathbf{U}_{\rm pred}) = \left( \frac{1}{n_\star}\sum_{i=1}^{n_\star} \frac{\frac{1}{N^i}\|\mathbf{U}^i_{\rm ref} - \mathbf{U}^i_{\rm pred}\|_2^2}{\|\mathbf{U}^i_{\rm ref}\|_\infty^2} \right)^{1/2}, |
| 24 | +$$ |
| 25 | + |
| 26 | +where $N^i$ is the number of nodes in the mesh $i$, and |
| 27 | +$\max(\mathbf{U}^i_{\rm ref})$ is the maximum entry in the vector |
| 28 | +$\mathbf{U}^i_{\rm ref}$. Similarly for scalar outputs: |
| 29 | + |
| 30 | +$$ |
| 31 | +\mathrm{RRMSE}_s(\mathbf{w}_{\rm ref}, \mathbf{w}_{\rm pred}) = \left( \frac{1}{n_\star} \sum_{i=1}^{n_\star} \frac{|w^i_{\rm ref} - w_{\rm pred}^i|^2}{|w^i_{\rm ref}|^2} \right)^{1/2}. |
| 32 | +$$ |
| 33 | + |
| 34 | +## Interactive benchmark applications |
| 35 | + |
| 36 | + |
| 37 | +<div class="grid cards"> |
| 38 | + |
| 39 | + <div class="card"> |
| 40 | + <p><strong>Tensile2d</strong></p> |
| 41 | + <div class="card-badges"> |
| 42 | + <a href="https://huggingface.co/spaces/PLAIDcompetitions/Tensile2dBenchmark"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm-dark.svg" alt="Tensile2d_Be" style="height:30px;"/></a> |
| 43 | + </div> |
| 44 | + </div> |
| 45 | + |
| 46 | + <div class="card"> |
| 47 | + <p><strong>2D_MultiScHypEl</strong></p> |
| 48 | + <div class="card-badges"> |
| 49 | + <a href="https://huggingface.co/spaces/PLAIDcompetitions/2DMultiscaleHyperelasticityBenchmark"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm-dark.svg" alt="2D_MultiScHypEl_Be" style="height:30px;"/></a> |
| 50 | + </div> |
| 51 | + </div> |
| 52 | + |
| 53 | + <div class="card"> |
| 54 | + <p><strong>2D_ElPlDynamics</strong></p> |
| 55 | + <div class="card-badges"> |
| 56 | + <a href="https://huggingface.co/spaces/PLAIDcompetitions/2DElastoPlastoDynamics"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm-dark.svg" alt="2D_ElPlDynamics_Be" style="height:30px;"/></a> |
| 57 | + </div> |
| 58 | + </div> |
| 59 | + |
| 60 | + <div class="card"> |
| 61 | + <p><strong>Rotor37</strong></p> |
| 62 | + <div class="card-badges"> |
| 63 | + <a href="https://huggingface.co/spaces/PLAIDcompetitions/Rotor37Benchmark"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm-dark.svg" alt="Rotor37_Be" style="height:30px;"/></a> |
| 64 | + </div> |
| 65 | + </div> |
| 66 | + |
| 67 | + <div class="card"> |
| 68 | + <p><strong>2D_profile</strong></p> |
| 69 | + <div class="card-badges"> |
| 70 | + <a href="https://huggingface.co/spaces/PLAIDcompetitions/2DprofileBenchmark"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm-dark.svg" alt="2D_profile_Be" style="height:30px;"/></a> |
| 71 | + </div> |
| 72 | + </div> |
| 73 | + |
| 74 | + <div class="card"> |
| 75 | + <p><strong>KI-LS59</strong></p> |
| 76 | + <div class="card-badges"> |
| 77 | + <a href="https://huggingface.co/spaces/PLAIDcompetitions/VKILS59Benchmark"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm-dark.svg" alt="VKI-LS59_Be" style="height:30px;"/></a> |
| 78 | + </div> |
| 79 | + </div> |
| 80 | + |
| 81 | +</div> |
| 82 | + |
| 83 | + |
| 84 | + |
| 85 | +## Benchmark results |
| 86 | + |
| 87 | +As of August 5, 2025 |
| 88 | + |
| 89 | +| <div style="text-align:center;"><p>Benchmark<p></div> | <div style="text-align:center;"><p>MGN<p></div> | <div style="text-align:center;"><p>MMGP<p></div> | <div style="text-align:center;"><p>Vi-Transf.<p></div> | <div style="text-align:center;"><p>Augur<p></div> | <div style="text-align:center;"><p>FNO<p></div> | <div style="text-align:center;"><p>MARIO<p></div> | |
| 90 | +|------------------------------------------------|--------|--------|------------|--------|--------|--------| |
| 91 | +| <span class="title-ref">Tensile2d</span> | 0.0673 | 0.0026 | 0.0116 | 0.0154 | 0.0123 | 0.0038 | |
| 92 | +| <span class="title-ref">2D_MultiScHypEl</span> | 0.0437 | ❌ | 0.0325 | 0.0232 | 0.0302 | 0.0573 | |
| 93 | +| <span class="title-ref">2D_ElPlDynamics</span> | 0.1202 | ❌ | 0.0227 | 0.0346 | 0.0215 | 0.0319 | |
| 94 | +| <span class="title-ref">Rotor37</span> | 0.0074 | 0.0014 | 0.0029 | 0.0033 | 0.0313 | 0.0017 | |
| 95 | +| <span class="title-ref">2D_profile</span> | 0.0593 | 0.0365 | 0.0312 | 0.0425 | 0.0972 | 0.0307 | |
| 96 | +| <span class="title-ref">VKI-LS59</span> | 0.0684 | 0.0312 | 0.0193 | 0.0267 | 0.0215 | 0.0124 | |
| 97 | + |
| 98 | +❌: Not compatible with topology variation |
| 99 | + |
| 100 | + |
| 101 | + |
| 102 | +!!! note |
| 103 | + - MMGP does not support variable mesh topologies, which limits its |
| 104 | + applicability to certain datasets and often necessitates custom |
| 105 | + preprocessing for new cases. However, when morphing is either |
| 106 | + unnecessary or inexpensive, it offers a highly efficient solution, |
| 107 | + combining fast training with good accuracy (e.g., `Tensile2d` and |
| 108 | + `Rotor37`). |
| 109 | + - MARIO is computationally expensive to train but achieves consistently |
| 110 | + a very strong performance across most datasets. Its result on |
| 111 | + `2D_MultiScHypEl` is slightly worse than other tested methods, which |
| 112 | + may reflect the challenge of capturing complex shape variability in |
| 113 | + these cases. |
| 114 | + - Vi-Transformer and Augur perform well across all datasets, showing |
| 115 | + strong versatility and generalization capabilities. |
| 116 | + - FNO suffers on datasets featuring unstructured meshes with pronounced |
| 117 | + anisotropies, due to the loss of accuracy introduced by projections to |
| 118 | + and from regular grids (e.g., `Rotor37` and `2D_profile`). |
| 119 | + Additionally, the use of a 3D regular grid on `Rotor37` results in |
| 120 | + substantial computational overhead. |
| 121 | + |
| 122 | + |
| 123 | +## References |
| 124 | +\bibliography |
0 commit comments