-
Notifications
You must be signed in to change notification settings - Fork 974
/
Copy pathcgan-mnist-4.3.1.py
375 lines (321 loc) · 13.5 KB
/
cgan-mnist-4.3.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
'''Trains CGAN on MNIST using Keras
CGAN is Conditional Generative Adversarial Network.
This version of CGAN is similar to DCGAN. The difference mainly
is that the z-vector of geneerator is conditioned by a one-hot label
to produce specific fake images. The discriminator is trained to
discriminate real from fake images that are conditioned on
specific one-hot labels.
[1] Radford, Alec, Luke Metz, and Soumith Chintala.
"Unsupervised representation learning with deep convolutional
generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
[2] Mirza, Mehdi, and Simon Osindero. "Conditional generative
adversarial nets." arXiv preprint arXiv:1411.1784 (2014).
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.keras.layers import Activation, Dense, Input
from tensorflow.keras.layers import Conv2D, Flatten
from tensorflow.keras.layers import Reshape, Conv2DTranspose
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import concatenate
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import load_model
import numpy as np
import math
import matplotlib.pyplot as plt
import os
import argparse
def build_generator(inputs, labels, image_size):
"""Build a Generator Model
Inputs are concatenated before Dense layer.
Stack of BN-ReLU-Conv2DTranpose to generate fake images.
Output activation is sigmoid instead of tanh in orig DCGAN.
Sigmoid converges easily.
Arguments:
inputs (Layer): Input layer of the generator (the z-vector)
labels (Layer): Input layer for one-hot vector to condition
the inputs
image_size: Target size of one side (assuming square image)
Returns:
generator (Model): Generator Model
"""
image_resize = image_size // 4
# network parameters
kernel_size = 5
layer_filters = [128, 64, 32, 1]
x = concatenate([inputs, labels], axis=1)
x = Dense(image_resize * image_resize * layer_filters[0])(x)
x = Reshape((image_resize, image_resize, layer_filters[0]))(x)
for filters in layer_filters:
# first two convolution layers use strides = 2
# the last two use strides = 1
if filters > layer_filters[-2]:
strides = 2
else:
strides = 1
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2DTranspose(filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same')(x)
x = Activation('sigmoid')(x)
# input is conditioned by labels
generator = Model([inputs, labels], x, name='generator')
return generator
def build_discriminator(inputs, labels, image_size):
"""Build a Discriminator Model
Inputs are concatenated after Dense layer.
Stack of LeakyReLU-Conv2D to discriminate real from fake.
The network does not converge with BN so it is not used here
unlike in DCGAN paper.
Arguments:
inputs (Layer): Input layer of the discriminator (the image)
labels (Layer): Input layer for one-hot vector to condition
the inputs
image_size: Target size of one side (assuming square image)
Returns:
discriminator (Model): Discriminator Model
"""
kernel_size = 5
layer_filters = [32, 64, 128, 256]
x = inputs
y = Dense(image_size * image_size)(labels)
y = Reshape((image_size, image_size, 1))(y)
x = concatenate([x, y])
for filters in layer_filters:
# first 3 convolution layers use strides = 2
# last one uses strides = 1
if filters == layer_filters[-1]:
strides = 1
else:
strides = 2
x = LeakyReLU(alpha=0.2)(x)
x = Conv2D(filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same')(x)
x = Flatten()(x)
x = Dense(1)(x)
x = Activation('sigmoid')(x)
# input is conditioned by labels
discriminator = Model([inputs, labels], x, name='discriminator')
return discriminator
def train(models, data, params):
"""Train the Discriminator and Adversarial Networks
Alternately train Discriminator and Adversarial networks by batch.
Discriminator is trained first with properly labelled real and fake images.
Adversarial is trained next with fake images pretending to be real.
Discriminator inputs are conditioned by train labels for real images,
and random labels for fake images.
Adversarial inputs are conditioned by random labels.
Generate sample images per save_interval.
Arguments:
models (list): Generator, Discriminator, Adversarial models
data (list): x_train, y_train data
params (list): Network parameters
"""
# the GAN models
generator, discriminator, adversarial = models
# images and labels
x_train, y_train = data
# network parameters
batch_size, latent_size, train_steps, num_labels, model_name = params
# the generator image is saved every 500 steps
save_interval = 500
# noise vector to see how the generator output evolves during training
noise_input = np.random.uniform(-1.0, 1.0, size=[16, latent_size])
# one-hot label the noise will be conditioned to
noise_class = np.eye(num_labels)[np.arange(0, 16) % num_labels]
# number of elements in train dataset
train_size = x_train.shape[0]
print(model_name,
"Labels for generated images: ",
np.argmax(noise_class, axis=1))
for i in range(train_steps):
# train the discriminator for 1 batch
# 1 batch of real (label=1.0) and fake images (label=0.0)
# randomly pick real images from dataset
rand_indexes = np.random.randint(0, train_size, size=batch_size)
real_images = x_train[rand_indexes]
# corresponding one-hot labels of real images
real_labels = y_train[rand_indexes]
# generate fake images from noise using generator
# generate noise using uniform distribution
noise = np.random.uniform(-1.0,
1.0,
size=[batch_size, latent_size])
# assign random one-hot labels
fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
batch_size)]
# generate fake images conditioned on fake labels
fake_images = generator.predict([noise, fake_labels])
# real + fake images = 1 batch of train data
x = np.concatenate((real_images, fake_images))
# real + fake one-hot labels = 1 batch of train one-hot labels
labels = np.concatenate((real_labels, fake_labels))
# label real and fake images
# real images label is 1.0
y = np.ones([2 * batch_size, 1])
# fake images label is 0.0
y[batch_size:, :] = 0.0
# train discriminator network, log the loss and accuracy
loss, acc = discriminator.train_on_batch([x, labels], y)
log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)
# train the adversarial network for 1 batch
# 1 batch of fake images conditioned on fake 1-hot labels
# w/ label=1.0
# since the discriminator weights are frozen in
# adversarial network only the generator is trained
# generate noise using uniform distribution
noise = np.random.uniform(-1.0,
1.0,
size=[batch_size, latent_size])
# assign random one-hot labels
fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
batch_size)]
# label fake images as real or 1.0
y = np.ones([batch_size, 1])
# train the adversarial network
# note that unlike in discriminator training,
# we do not save the fake images in a variable
# the fake images go to the discriminator input
# of the adversarial for classification
# log the loss and accuracy
loss, acc = adversarial.train_on_batch([noise, fake_labels], y)
log = "%s [adversarial loss: %f, acc: %f]" % (log, loss, acc)
print(log)
if (i + 1) % save_interval == 0:
# plot generator images on a periodic basis
plot_images(generator,
noise_input=noise_input,
noise_class=noise_class,
show=False,
step=(i + 1),
model_name=model_name)
# save the model after training the generator
# the trained generator can be reloaded for
# future MNIST digit generation
generator.save(model_name + ".h5")
def plot_images(generator,
noise_input,
noise_class,
show=False,
step=0,
model_name="gan"):
"""Generate fake images and plot them
For visualization purposes, generate fake images
then plot them in a square grid
Arguments:
generator (Model): The Generator Model for fake images generation
noise_input (ndarray): Array of z-vectors
show (bool): Whether to show plot or not
step (int): Appended to filename of the save images
model_name (string): Model name
"""
os.makedirs(model_name, exist_ok=True)
filename = os.path.join(model_name, "%05d.png" % step)
images = generator.predict([noise_input, noise_class])
print(model_name , " labels for generated images: ", np.argmax(noise_class, axis=1))
plt.figure(figsize=(2.2, 2.2))
num_images = images.shape[0]
image_size = images.shape[1]
rows = int(math.sqrt(noise_input.shape[0]))
for i in range(num_images):
plt.subplot(rows, rows, i + 1)
image = np.reshape(images[i], [image_size, image_size])
plt.imshow(image, cmap='gray')
plt.axis('off')
plt.savefig(filename)
if show:
plt.show()
else:
plt.close('all')
def build_and_train_models():
# load MNIST dataset
(x_train, y_train), (_, _) = mnist.load_data()
# reshape data for CNN as (28, 28, 1) and normalize
image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
num_labels = np.amax(y_train) + 1
y_train = to_categorical(y_train)
model_name = "cgan_mnist"
# network parameters
# the latent or z vector is 100-dim
latent_size = 100
batch_size = 64
train_steps = 40000
lr = 2e-4
decay = 6e-8
input_shape = (image_size, image_size, 1)
label_shape = (num_labels, )
# build discriminator model
inputs = Input(shape=input_shape, name='discriminator_input')
labels = Input(shape=label_shape, name='class_labels')
discriminator = build_discriminator(inputs, labels, image_size)
# [1] or original paper uses Adam,
# but discriminator converges easily with RMSprop
optimizer = RMSprop(lr=lr, decay=decay)
discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
discriminator.summary()
# build generator model
input_shape = (latent_size, )
inputs = Input(shape=input_shape, name='z_input')
generator = build_generator(inputs, labels, image_size)
generator.summary()
# build adversarial model = generator + discriminator
optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
# freeze the weights of discriminator during adversarial training
discriminator.trainable = False
outputs = discriminator([generator([inputs, labels]), labels])
adversarial = Model([inputs, labels],
outputs,
name=model_name)
adversarial.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
adversarial.summary()
# train discriminator and adversarial networks
models = (generator, discriminator, adversarial)
data = (x_train, y_train)
params = (batch_size, latent_size, train_steps, num_labels, model_name)
train(models, data, params)
def test_generator(generator, class_label=None):
noise_input = np.random.uniform(-1.0, 1.0, size=[16, 100])
step = 0
if class_label is None:
num_labels = 10
noise_class = np.eye(num_labels)[np.random.choice(num_labels, 16)]
else:
noise_class = np.zeros((16, 10))
noise_class[:,class_label] = 1
step = class_label
plot_images(generator,
noise_input=noise_input,
noise_class=noise_class,
show=True,
step=step,
model_name="test_outputs")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
help_ = "Load generator h5 model with trained weights"
parser.add_argument("-g", "--generator", help=help_)
help_ = "Specify a specific digit to generate"
parser.add_argument("-d", "--digit", type=int, help=help_)
args = parser.parse_args()
if args.generator:
generator = load_model(args.generator)
class_label = None
if args.digit is not None:
class_label = args.digit
test_generator(generator, class_label)
else:
build_and_train_models()