-
Notifications
You must be signed in to change notification settings - Fork 974
/
Copy pathinfogan-mnist-6.1.1.py
349 lines (312 loc) · 13.4 KB
/
infogan-mnist-6.1.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
'''Trains infoGAN on MNIST using Keras
This version of infoGAN is similar to DCGAN. The difference mainly
is that the z-vector of geneerator is conditioned by a one-hot label
to produce specific fake images. The discriminator is trained to
discriminate real from fake images and predict the corresponding
one-hot labels.
[1] Radford, Alec, Luke Metz, and Soumith Chintala.
"Unsupervised representation learning with deep convolutional
generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
[2] Chen, Xi, et al. "Infogan: Interpretable representation learning by
information maximizing generative adversarial nets."
Advances in Neural Information Processing Systems. 2016.
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.keras.layers import Input
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import load_model
from tensorflow.keras import backend as K
import numpy as np
import argparse
import sys
sys.path.append("..")
from lib import gan
# from ..lib import gan
def train(models, data, params):
"""Train the Discriminator and Adversarial networks
Alternately train discriminator and adversarial networks by batch.
Discriminator is trained first with real and fake images,
corresponding one-hot labels and continuous codes.
Adversarial is trained next with fake images pretending
to be real, corresponding one-hot labels and continous codes.
Generate sample images per save_interval.
# Arguments
models (Models): Generator, Discriminator, Adversarial models
data (tuple): x_train, y_train data
params (tuple): Network parameters
"""
# the GAN models
generator, discriminator, adversarial = models
# images and their one-hot labels
x_train, y_train = data
# network parameters
batch_size, latent_size, train_steps, num_labels, model_name = \
params
# the generator image is saved every 500 steps
save_interval = 500
# code standard deviation
code_std = 0.5
# noise vector to see how the generator output
# evolves during training
noise_input = np.random.uniform(-1.0,
1.0,
size=[16, latent_size])
# random class labels and codes
noise_label = np.eye(num_labels)[np.arange(0, 16) % num_labels]
noise_code1 = np.random.normal(scale=code_std, size=[16, 1])
noise_code2 = np.random.normal(scale=code_std, size=[16, 1])
# number of elements in train dataset
train_size = x_train.shape[0]
print(model_name,
"Labels for generated images: ",
np.argmax(noise_label, axis=1))
for i in range(train_steps):
# train the discriminator for 1 batch
# 1 batch of real (label=1.0) and fake images (label=0.0)
# randomly pick real images and
# corresponding labels from dataset
rand_indexes = np.random.randint(0,
train_size,
size=batch_size)
real_images = x_train[rand_indexes]
real_labels = y_train[rand_indexes]
# random codes for real images
real_code1 = np.random.normal(scale=code_std,
size=[batch_size, 1])
real_code2 = np.random.normal(scale=code_std,
size=[batch_size, 1])
# generate fake images, labels and codes
noise = np.random.uniform(-1.0,
1.0,
size=[batch_size, latent_size])
fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
batch_size)]
fake_code1 = np.random.normal(scale=code_std,
size=[batch_size, 1])
fake_code2 = np.random.normal(scale=code_std,
size=[batch_size, 1])
inputs = [noise, fake_labels, fake_code1, fake_code2]
fake_images = generator.predict(inputs)
# real + fake images = 1 batch of train data
x = np.concatenate((real_images, fake_images))
labels = np.concatenate((real_labels, fake_labels))
codes1 = np.concatenate((real_code1, fake_code1))
codes2 = np.concatenate((real_code2, fake_code2))
# label real and fake images
# real images label is 1.0
y = np.ones([2 * batch_size, 1])
# fake images label is 0.0
y[batch_size:, :] = 0
# train discriminator network,
# log the loss and label accuracy
outputs = [y, labels, codes1, codes2]
# metrics = ['loss', 'activation_1_loss', 'label_loss',
# 'code1_loss', 'code2_loss', 'activation_1_acc',
# 'label_acc', 'code1_acc', 'code2_acc']
# from discriminator.metrics_names
metrics = discriminator.train_on_batch(x, outputs)
fmt = "%d: [dis: %f, bce: %f, ce: %f, mi: %f, mi:%f, acc: %f]"
log = fmt % (i, metrics[0], metrics[1], metrics[2], metrics[3], metrics[4], metrics[6])
# train the adversarial network for 1 batch
# 1 batch of fake images with label=1.0 and
# corresponding one-hot label or class + random codes
# since the discriminator weights are frozen
# in adversarial network only the generator is trained
# generate fake images, labels and codes
noise = np.random.uniform(-1.0,
1.0,
size=[batch_size, latent_size])
fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
batch_size)]
fake_code1 = np.random.normal(scale=code_std,
size=[batch_size, 1])
fake_code2 = np.random.normal(scale=code_std,
size=[batch_size, 1])
# label fake images as real
y = np.ones([batch_size, 1])
# train the adversarial network
# note that unlike in discriminator training,
# we do not save the fake images in a variable
# the fake images go to the discriminator
# input of the adversarial for classification
# log the loss and label accuracy
inputs = [noise, fake_labels, fake_code1, fake_code2]
outputs = [y, fake_labels, fake_code1, fake_code2]
metrics = adversarial.train_on_batch(inputs, outputs)
fmt = "%s [adv: %f, bce: %f, ce: %f, mi: %f, mi:%f, acc: %f]"
log = fmt % (log, metrics[0], metrics[1], metrics[2], metrics[3], metrics[4], metrics[6])
print(log)
if (i + 1) % save_interval == 0:
# plot generator images on a periodic basis
gan.plot_images(generator,
noise_input=noise_input,
noise_label=noise_label,
noise_codes=[noise_code1, noise_code2],
show=False,
step=(i + 1),
model_name=model_name)
# save the model after training the generator
# the trained generator can be reloaded for
# future MNIST digit generation
if (i + 1) % (2 * save_interval) == 0:
generator.save(model_name + ".h5")
def mi_loss(c, q_of_c_given_x):
""" Mutual information, Equation 5 in [2],
assuming H(c) is constant
"""
# mi_loss = -c * log(Q(c|x))
return -K.mean(K.sum(c * K.log(q_of_c_given_x + K.epsilon()),
axis=1))
def build_and_train_models(latent_size=100):
"""Load the dataset, build InfoGAN discriminator,
generator, and adversarial models.
Call the InfoGAN train routine.
"""
# load MNIST dataset
(x_train, y_train), (_, _) = mnist.load_data()
# reshape data for CNN as (28, 28, 1) and normalize
image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
# train labels
num_labels = len(np.unique(y_train))
y_train = to_categorical(y_train)
model_name = "infogan_mnist"
# network parameters
batch_size = 64
train_steps = 40000
lr = 2e-4
decay = 6e-8
input_shape = (image_size, image_size, 1)
label_shape = (num_labels, )
code_shape = (1, )
# build discriminator model
inputs = Input(shape=input_shape, name='discriminator_input')
# call discriminator builder with 4 outputs:
# source, label, and 2 codes
discriminator = gan.discriminator(inputs,
num_labels=num_labels,
num_codes=2)
# [1] uses Adam, but discriminator converges easily with RMSprop
optimizer = RMSprop(lr=lr, decay=decay)
# loss functions: 1) probability image is real
# (binary crossentropy)
# 2) categorical cross entropy image label,
# 3) and 4) mutual information loss
loss = ['binary_crossentropy',
'categorical_crossentropy',
mi_loss,
mi_loss]
# lamda or mi_loss weight is 0.5
loss_weights = [1.0, 1.0, 0.5, 0.5]
discriminator.compile(loss=loss,
loss_weights=loss_weights,
optimizer=optimizer,
metrics=['accuracy'])
discriminator.summary()
# build generator model
input_shape = (latent_size, )
inputs = Input(shape=input_shape, name='z_input')
labels = Input(shape=label_shape, name='labels')
code1 = Input(shape=code_shape, name="code1")
code2 = Input(shape=code_shape, name="code2")
# call generator with inputs,
# labels and codes as total inputs to generator
generator = gan.generator(inputs,
image_size,
labels=labels,
codes=[code1, code2])
generator.summary()
# build adversarial model = generator + discriminator
optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
discriminator.trainable = False
# total inputs = noise code, labels, and codes
inputs = [inputs, labels, code1, code2]
adversarial = Model(inputs,
discriminator(generator(inputs)),
name=model_name)
# same loss as discriminator
adversarial.compile(loss=loss,
loss_weights=loss_weights,
optimizer=optimizer,
metrics=['accuracy'])
adversarial.summary()
# train discriminator and adversarial networks
models = (generator, discriminator, adversarial)
data = (x_train, y_train)
params = (batch_size,
latent_size,
train_steps,
num_labels,
model_name)
train(models, data, params)
def test_generator(generator, params, latent_size=100):
label, code1, code2, p1, p2 = params
noise_input = np.random.uniform(-1.0, 1.0, size=[16, latent_size])
step = 0
if label is None:
num_labels = 10
noise_label = np.eye(num_labels)[np.random.choice(num_labels, 16)]
else:
noise_label = np.zeros((16, 10))
noise_label[:,label] = 1
step = label
code_std = 2
if code1 is None:
noise_code1 = np.random.normal(scale=0.5, size=[16, 1])
else:
if p1:
a = np.linspace(-code_std, code_std, 16)
a = np.reshape(a, [16, 1])
noise_code1 = np.ones((16, 1)) * a
else:
noise_code1 = np.ones((16, 1)) * code1
print(noise_code1)
if code2 is None:
noise_code2 = np.random.normal(scale=0.5, size=[16, 1])
else:
if p2:
a = np.linspace(-code_std, code_std, 16)
a = np.reshape(a, [16, 1])
noise_code2 = np.ones((16, 1)) * a
else:
noise_code2 = np.ones((16, 1)) * code2
print(noise_code2)
gan.plot_images(generator,
noise_input=noise_input,
noise_label=noise_label,
noise_codes=[noise_code1, noise_code2],
show=True,
step=step,
model_name="test_outputs")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
help_ = "Load generator h5 model with trained weights"
parser.add_argument("-g", "--generator", help=help_)
help_ = "Specify a specific digit to generate"
parser.add_argument("-d", "--digit", type=int, help=help_)
help_ = "Specify latent code 1"
parser.add_argument("-a", "--code1", type=float, help=help_)
help_ = "Specify latent code 2"
parser.add_argument("-b", "--code2", type=float, help=help_)
help_ = "Plot digits with code1 ranging fr -n1 to +n2"
parser.add_argument("--p1", action='store_true', help=help_)
help_ = "Plot digits with code2 ranging fr -n1 to +n2"
parser.add_argument("--p2", action='store_true', help=help_)
args = parser.parse_args()
if args.generator:
generator = load_model(args.generator)
label = args.digit
code1 = args.code1
code2 = args.code2
p1 = args.p1
p2 = args.p2
params = (label, code1, code2, p1, p2)
test_generator(generator, params, latent_size=62)
else:
build_and_train_models(latent_size=62)