-
Notifications
You must be signed in to change notification settings - Fork 974
/
Copy pathdqn-cartpole-9.6.1.py
345 lines (284 loc) · 11 KB
/
dqn-cartpole-9.6.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
"""Trains a DQN/DDQN to solve CartPole-v0 problem
"""
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from collections import deque
import numpy as np
import random
import argparse
import gym
from gym import wrappers, logger
class DQNAgent:
def __init__(self,
state_space,
action_space,
episodes=500):
"""DQN Agent on CartPole-v0 environment
Arguments:
state_space (tensor): state space
action_space (tensor): action space
episodes (int): number of episodes to train
"""
self.action_space = action_space
# experience buffer
self.memory = []
# discount rate
self.gamma = 0.9
# initially 90% exploration, 10% exploitation
self.epsilon = 1.0
# iteratively applying decay til
# 10% exploration/90% exploitation
self.epsilon_min = 0.1
self.epsilon_decay = self.epsilon_min / self.epsilon
self.epsilon_decay = self.epsilon_decay ** \
(1. / float(episodes))
# Q Network weights filename
self.weights_file = 'dqn_cartpole.h5'
# Q Network for training
n_inputs = state_space.shape[0]
n_outputs = action_space.n
self.q_model = self.build_model(n_inputs, n_outputs)
self.q_model.compile(loss='mse', optimizer=Adam())
# target Q Network
self.target_q_model = self.build_model(n_inputs, n_outputs)
# copy Q Network params to target Q Network
self.update_weights()
self.replay_counter = 0
def build_model(self, n_inputs, n_outputs):
"""Q Network is 256-256-256 MLP
Arguments:
n_inputs (int): input dim
n_outputs (int): output dim
Return:
q_model (Model): DQN
"""
inputs = Input(shape=(n_inputs, ), name='state')
x = Dense(256, activation='relu')(inputs)
x = Dense(256, activation='relu')(x)
x = Dense(256, activation='relu')(x)
x = Dense(n_outputs,
activation='linear',
name='action')(x)
q_model = Model(inputs, x)
q_model.summary()
return q_model
def save_weights(self):
"""save Q Network params to a file"""
self.q_model.save_weights(self.weights_file)
def update_weights(self):
"""copy trained Q Network params to target Q Network"""
self.target_q_model.set_weights(self.q_model.get_weights())
def act(self, state):
"""eps-greedy policy
Return:
action (tensor): action to execute
"""
if np.random.rand() < self.epsilon:
# explore - do random action
return self.action_space.sample()
# exploit
q_values = self.q_model.predict(state)
# select the action with max Q-value
action = np.argmax(q_values[0])
return action
def remember(self, state, action, reward, next_state, done):
"""store experiences in the replay buffer
Arguments:
state (tensor): env state
action (tensor): agent action
reward (float): reward received after executing
action on state
next_state (tensor): next state
"""
item = (state, action, reward, next_state, done)
self.memory.append(item)
def get_target_q_value(self, next_state, reward):
"""compute Q_max
Use of target Q Network solves the
non-stationarity problem
Arguments:
reward (float): reward received after executing
action on state
next_state (tensor): next state
Return:
q_value (float): max Q-value computed
"""
# max Q value among next state's actions
# DQN chooses the max Q value among next actions
# selection and evaluation of action is
# on the target Q Network
# Q_max = max_a' Q_target(s', a')
q_value = np.amax(\
self.target_q_model.predict(next_state)[0])
# Q_max = reward + gamma * Q_max
q_value *= self.gamma
q_value += reward
return q_value
def replay(self, batch_size):
"""experience replay addresses the correlation issue
between samples
Arguments:
batch_size (int): replay buffer batch
sample size
"""
# sars = state, action, reward, state' (next_state)
sars_batch = random.sample(self.memory, batch_size)
state_batch, q_values_batch = [], []
# fixme: for speedup, this could be done on the tensor level
# but easier to understand using a loop
for state, action, reward, next_state, done in sars_batch:
# policy prediction for a given state
q_values = self.q_model.predict(state)
# get Q_max
q_value = self.get_target_q_value(next_state, reward)
# correction on the Q value for the action used
q_values[0][action] = reward if done else q_value
# collect batch state-q_value mapping
state_batch.append(state[0])
q_values_batch.append(q_values[0])
# train the Q-network
self.q_model.fit(np.array(state_batch),
np.array(q_values_batch),
batch_size=batch_size,
epochs=1,
verbose=0)
# update exploration-exploitation probability
self.update_epsilon()
# copy new params on old target after
# every 10 training updates
if self.replay_counter % 10 == 0:
self.update_weights()
self.replay_counter += 1
def update_epsilon(self):
"""decrease the exploration, increase exploitation"""
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
class DDQNAgent(DQNAgent):
def __init__(self,
state_space,
action_space,
episodes=500):
super().__init__(state_space,
action_space,
episodes)
"""DDQN Agent on CartPole-v0 environment
Arguments:
state_space (tensor): state space
action_space (tensor): action space
episodes (int): number of episodes to train
"""
# Q Network weights filename
self.weights_file = 'ddqn_cartpole.h5'
print("-------------DDQN------------")
def get_target_q_value(self, next_state, reward):
"""compute Q_max
Use of target Q Network solves the
non-stationarity problem
Arguments:
reward (float): reward received after executing
action on state
next_state (tensor): next state
Returns:
q_value (float): max Q-value computed
"""
# max Q value among next state's actions
# DDQN
# current Q Network selects the action
# a'_max = argmax_a' Q(s', a')
action = np.argmax(self.q_model.predict(next_state)[0])
# target Q Network evaluates the action
# Q_max = Q_target(s', a'_max)
q_value = self.target_q_model.predict(\
next_state)[0][action]
# Q_max = reward + gamma * Q_max
q_value *= self.gamma
q_value += reward
return q_value
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=None)
parser.add_argument('env_id',
nargs='?',
default='CartPole-v0',
help='Select the environment to run')
parser.add_argument("-d",
"--ddqn",
action='store_true',
help="Use Double DQN")
parser.add_argument("-r",
"--no-render",
action='store_true',
help="Disable rendering (for env w/o graphics")
args = parser.parse_args()
# the number of trials without falling over
win_trials = 100
# the CartPole-v0 is considered solved if
# for 100 consecutive trials, he cart pole has not
# fallen over and it has achieved an average
# reward of 195.0
# a reward of +1 is provided for every timestep
# the pole remains upright
win_reward = { 'CartPole-v0' : 195.0 }
# stores the reward per episode
scores = deque(maxlen=win_trials)
logger.setLevel(logger.ERROR)
env = gym.make(args.env_id)
outdir = "/tmp/dqn-%s" % args.env_id
if args.ddqn:
outdir = "/tmp/ddqn-%s" % args.env_id
if args.no_render:
env = wrappers.Monitor(env,
directory=outdir,
video_callable=False,
force=True)
else:
env = wrappers.Monitor(env, directory=outdir, force=True)
env.seed(0)
# instantiate the DQN/DDQN agent
if args.ddqn:
agent = DDQNAgent(env.observation_space, env.action_space)
else:
agent = DQNAgent(env.observation_space, env.action_space)
# should be solved in this number of episodes
episode_count = 3000
state_size = env.observation_space.shape[0]
batch_size = 64
# by default, CartPole-v0 has max episode steps = 200
# you can use this to experiment beyond 200
# env._max_episode_steps = 4000
# Q-Learning sampling and fitting
for episode in range(episode_count):
state = env.reset()
state = np.reshape(state, [1, state_size])
done = False
total_reward = 0
while not done:
# in CartPole-v0, action=0 is left and action=1 is right
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
# in CartPole-v0:
# state = [pos, vel, theta, angular speed]
next_state = np.reshape(next_state, [1, state_size])
# store every experience unit in replay buffer
agent.remember(state, action, reward, next_state, done)
state = next_state
total_reward += reward
# call experience relay
if len(agent.memory) >= batch_size:
agent.replay(batch_size)
scores.append(total_reward)
mean_score = np.mean(scores)
if mean_score >= win_reward[args.env_id] \
and episode >= win_trials:
print("Solved in episode %d: \
Mean survival = %0.2lf in %d episodes"
% (episode, mean_score, win_trials))
print("Epsilon: ", agent.epsilon)
agent.save_weights()
break
if (episode + 1) % win_trials == 0:
print("Episode %d: Mean survival = \
%0.2lf in %d episodes" %
((episode + 1), mean_score, win_trials))
# close the env and write monitor result info to disk
env.close()