-
Notifications
You must be signed in to change notification settings - Fork 345
/
post_process.py
155 lines (137 loc) · 5.67 KB
/
post_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import cv2
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
"""
Args:
box_scores (N, 5): boxes in corner-form and probabilities.
iou_threshold: intersection over union threshold.
top_k: keep top_k results. If k <= 0, keep all the results.
candidate_size: only consider the candidates with the highest scores.
Returns:
picked: a list of indexes of the kept boxes
"""
scores = box_scores[:, -1]
boxes = box_scores[:, :-1]
picked = []
indexes = np.argsort(scores)
indexes = indexes[-candidate_size:]
while len(indexes) > 0:
current = indexes[-1]
picked.append(current)
if 0 < top_k == len(picked) or len(indexes) == 1:
break
current_box = boxes[current, :]
indexes = indexes[:-1]
rest_boxes = boxes[indexes, :]
iou = iou_of(
rest_boxes,
np.expand_dims(current_box, axis=0), )
indexes = indexes[iou <= iou_threshold]
return box_scores[picked, :]
def iou_of(boxes0, boxes1, eps=1e-5):
"""Return intersection-over-union (Jaccard index) of boxes.
Args:
boxes0 (N, 4): ground truth boxes.
boxes1 (N or 1, 4): predicted boxes.
eps: a small number to avoid 0 as denominator.
Returns:
iou (N): IoU values.
"""
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
overlap_area = area_of(overlap_left_top, overlap_right_bottom)
area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
return overlap_area / (area0 + area1 - overlap_area + eps)
def area_of(left_top, right_bottom):
"""Compute the areas of rectangles given two corners.
Args:
left_top (N, 2): left top corner.
right_bottom (N, 2): right bottom corner.
Returns:
area (N): return the area.
"""
hw = np.clip(right_bottom - left_top, 0.0, None)
return hw[..., 0] * hw[..., 1]
class PPYOLOEPostProcess(object):
"""
Args:
input_shape (int): network input image size
scale_factor (float): scale factor of ori image
"""
def __init__(self,
score_threshold=0.4,
nms_threshold=0.5,
nms_top_k=10000,
keep_top_k=300):
self.score_threshold = score_threshold
self.nms_threshold = nms_threshold
self.nms_top_k = nms_top_k
self.keep_top_k = keep_top_k
def _non_max_suppression(self, prediction, scale_factor):
batch_size = prediction.shape[0]
out_boxes_list = []
box_num_list = []
for batch_id in range(batch_size):
bboxes, confidences = prediction[batch_id][..., :4], prediction[
batch_id][..., 4:]
# nms
picked_box_probs = []
picked_labels = []
for class_index in range(0, confidences.shape[1]):
probs = confidences[:, class_index]
mask = probs > self.score_threshold
probs = probs[mask]
if probs.shape[0] == 0:
continue
subset_boxes = bboxes[mask, :]
box_probs = np.concatenate(
[subset_boxes, probs.reshape(-1, 1)], axis=1)
box_probs = hard_nms(
box_probs,
iou_threshold=self.nms_threshold,
top_k=self.nms_top_k)
picked_box_probs.append(box_probs)
picked_labels.extend([class_index] * box_probs.shape[0])
if len(picked_box_probs) == 0:
out_boxes_list.append(np.empty((0, 6)))
else:
picked_box_probs = np.concatenate(picked_box_probs)
# resize output boxes
picked_box_probs[:, 0] /= scale_factor[batch_id][1]
picked_box_probs[:, 2] /= scale_factor[batch_id][1]
picked_box_probs[:, 1] /= scale_factor[batch_id][0]
picked_box_probs[:, 3] /= scale_factor[batch_id][0]
# clas score box
out_box = np.concatenate(
[
np.expand_dims(np.array(picked_labels), axis=-1),
np.expand_dims(picked_box_probs[:, 4], axis=-1),
picked_box_probs[:, :4]
],
axis=1)
if out_box.shape[0] > self.keep_top_k:
out_box = out_box[out_box[:, 1].argsort()[::-1]
[:self.keep_top_k]]
out_boxes_list.append(out_box)
box_num_list.append(out_box.shape[0])
out_boxes_list = np.concatenate(out_boxes_list, axis=0)
box_num_list = np.array(box_num_list)
return out_boxes_list, box_num_list
def __call__(self, outs, scale_factor):
out_boxes_list, box_num_list = self._non_max_suppression(
outs, scale_factor)
return {'bbox': out_boxes_list, 'bbox_num': box_num_list}