-
Notifications
You must be signed in to change notification settings - Fork 349
/
Copy pathdataset.py
165 lines (151 loc) · 5.76 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import os
import numpy as np
import paddle
class COCOValDataset(paddle.io.Dataset):
def __init__(self,
dataset_dir=None,
image_dir=None,
anno_path=None,
img_size=[640, 640],
input_name='x2paddle_images'):
from pycocotools.coco import COCO
self.dataset_dir = dataset_dir
self.image_dir = image_dir
self.img_size = img_size
self.input_name = input_name
self.ann_file = os.path.join(dataset_dir, anno_path)
self.coco = COCO(self.ann_file)
ori_ids = list(sorted(self.coco.imgs.keys()))
# check gt bbox
clean_ids = []
for idx in ori_ids:
ins_anno_ids = self.coco.getAnnIds(imgIds=[idx], iscrowd=False)
instances = self.coco.loadAnns(ins_anno_ids)
num_bbox = 0
for inst in instances:
if inst.get('ignore', False):
continue
if 'bbox' not in inst.keys():
continue
elif not any(np.array(inst['bbox'])):
continue
else:
num_bbox += 1
if num_bbox > 0:
clean_ids.append(idx)
self.ids = clean_ids
def __getitem__(self, idx):
img_id = self.ids[idx]
img = self._get_img_data_from_img_id(img_id)
img, scale_factor = self.image_preprocess(img, self.img_size)
return {
'image': img,
'im_id': np.array([img_id]),
'scale_factor': scale_factor
}
def __len__(self):
return len(self.ids)
def _get_img_data_from_img_id(self, img_id):
img_info = self.coco.loadImgs(img_id)[0]
img_path = os.path.join(self.dataset_dir, self.image_dir,
img_info['file_name'])
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def _generate_scale(self, im, target_shape, keep_ratio=True):
"""
Args:
im (np.ndarray): image (np.ndarray)
Returns:
im_scale_x: the resize ratio of X
im_scale_y: the resize ratio of Y
"""
origin_shape = im.shape[:2]
if keep_ratio:
im_size_min = np.min(origin_shape)
im_size_max = np.max(origin_shape)
target_size_min = np.min(target_shape)
target_size_max = np.max(target_shape)
im_scale = float(target_size_min) / float(im_size_min)
if np.round(im_scale * im_size_max) > target_size_max:
im_scale = float(target_size_max) / float(im_size_max)
im_scale_x = im_scale
im_scale_y = im_scale
else:
resize_h, resize_w = target_shape
im_scale_y = resize_h / float(origin_shape[0])
im_scale_x = resize_w / float(origin_shape[1])
return im_scale_y, im_scale_x
def image_preprocess(self, img, target_shape):
# Resize image
im_scale_y, im_scale_x = self._generate_scale(img, target_shape)
img = cv2.resize(
img,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=cv2.INTER_LINEAR)
# Pad
im_h, im_w = img.shape[:2]
h, w = target_shape[:]
if h != im_h or w != im_w:
canvas = np.ones((h, w, 3), dtype=np.float32)
canvas *= np.array([114.0, 114.0, 114.0], dtype=np.float32)
canvas[0:im_h, 0:im_w, :] = img.astype(np.float32)
img = canvas
img = np.transpose(img / 255, [2, 0, 1])
scale_factor = np.array([im_scale_y, im_scale_x])
return img.astype(np.float32), scale_factor
class COCOTrainDataset(COCOValDataset):
def __getitem__(self, idx):
img_id = self.ids[idx]
img = self._get_img_data_from_img_id(img_id)
img, scale_factor = self.image_preprocess(img, self.img_size)
return {self.input_name: img}
def _generate_scale(im, target_shape):
origin_shape = im.shape[:2]
im_size_min = np.min(origin_shape)
im_size_max = np.max(origin_shape)
target_size_min = np.min(target_shape)
target_size_max = np.max(target_shape)
im_scale = float(target_size_min) / float(im_size_min)
if np.round(im_scale * im_size_max) > target_size_max:
im_scale = float(target_size_max) / float(im_size_max)
im_scale_x = im_scale
im_scale_y = im_scale
return im_scale_y, im_scale_x
def yolo_image_preprocess(img, target_shape=[640, 640]):
# Resize image
im_scale_y, im_scale_x = _generate_scale(img, target_shape)
img = cv2.resize(
img,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=cv2.INTER_LINEAR)
# Pad
im_h, im_w = img.shape[:2]
h, w = target_shape[:]
if h != im_h or w != im_w:
canvas = np.ones((h, w, 3), dtype=np.float32)
canvas *= np.array([114.0, 114.0, 114.0], dtype=np.float32)
canvas[0:im_h, 0:im_w, :] = img.astype(np.float32)
img = canvas
img = np.transpose(img / 255, [2, 0, 1])
return img.astype(np.float32)