forked from RobeeF/M1DGMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathm1dgmm.py
432 lines (322 loc) · 18.5 KB
/
m1dgmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 6 08:52:28 2020
@author: RobF
"""
from copy import deepcopy
from utilities import isnumeric
from numeric_stability import ensure_psd
from parameter_selection import r_select, k_select
from identifiability_DGMM import identifiable_estim_DGMM, compute_z_moments, \
diagonal_cond
from MCEM_DGMM import draw_z_s, fz2_z1s, draw_z2_z1s, fz_ys,\
E_step_DGMM, M_step_DGMM
from MCEM_GLLVM import draw_zl1_ys, fy_zl1, E_step_GLLVM, \
bin_params_GLLVM, ord_params_GLLVM, categ_params_GLLVM,\
cont_params_GLLVM
from hyperparameters_selection import M_growth, look_for_simpler_network
from utilities import compute_path_params, compute_chsi, compute_rho
import autograd.numpy as np
from autograd.numpy import transpose as t
from autograd.numpy import newaxis as n_axis
from gower import gower_matrix
from sklearn.metrics import silhouette_score
#import matplotlib.pyplot as plt
# !!! TO DO: Add original data as output
def M1DGMM(y, n_clusters, r, k, init, var_distrib, nj, it = 50, \
eps = 1E-05, maxstep = 100, seed = None, perform_selec = True,\
dm = [], max_patience = 1, use_silhouette = True):# dm small hack to remove
''' Fit a Generalized Linear Mixture of Latent Variables Model (GLMLVM)
y (numobs x p ndarray): The observations containing mixed variables
n_clusters (int): The number of clusters to look for in the data
r (list): The dimension of latent variables through the first 2 layers
k (list): The number of components of the latent Gaussian mixture layers
init (dict): The initialisation parameters for the algorithm
var_distrib (p 1darray): An array containing the types of the variables in y
nj (p 1darray): For binary/count data: The maximum values that the variable can take.
For ordinal data: the number of different existing categories for each variable
it (int): The maximum number of MCEM iterations of the algorithm
eps (float): If the likelihood increase by less than eps then the algorithm stops
maxstep (int): The maximum number of optimisation step for each variable
seed (int): The random state seed to set (Only for numpy generated data for the moment)
perform_selec (Bool): Whether to perform architecture selection or not
use_silhouette (Bool): If True use the silhouette as quality criterion (best for clustering) else use
the likelihood (best for data augmentation).
------------------------------------------------------------------------------------------------
returns (dict): The predicted classes, the likelihood through the EM steps
and a continuous representation of the data
'''
prev_lik = - 1E16
best_lik = -1E16
best_sil = -1
new_sil = -1
tol = 0.01
patience = 0
is_looking_for_better_arch = False
# Initialize the parameters
eta = deepcopy(init['eta'])
psi = deepcopy(init['psi'])
lambda_bin = deepcopy(init['lambda_bin'])
lambda_ord = deepcopy(init['lambda_ord'])
lambda_cont = deepcopy(init['lambda_cont'])
lambda_categ = deepcopy(init['lambda_categ'])
H = deepcopy(init['H'])
w_s = deepcopy(init['w_s']) # Probability of path s' through the network for all s' in Omega
numobs = len(y)
likelihood = []
silhouette = []
it_num = 0
ratio = 1000
np.random.seed = seed
out = {} # Store the full output
# Dispatch variables between categories
y_bin = y[:, np.logical_or(var_distrib == 'bernoulli',var_distrib == 'binomial')]
nj_bin = nj[np.logical_or(var_distrib == 'bernoulli',var_distrib == 'binomial')].astype(int)
nb_bin = len(nj_bin)
y_ord = y[:, var_distrib == 'ordinal']
nj_ord = nj[var_distrib == 'ordinal'].astype(int)
nb_ord = len(nj_ord)
y_categ = y[:, var_distrib == 'categorical']
nj_categ = nj[var_distrib == 'categorical'].astype(int)
nb_categ = len(nj_categ)
y_cont = y[:, var_distrib == 'continuous'].astype(float)
nb_cont = y_cont.shape[1]
# Set y_count standard error to 1
y_cont = y_cont / y_cont.std(axis = 0, keepdims = True)
L = len(k)
k_aug = k + [1]
S = np.array([np.prod(k_aug[l:]) for l in range(L + 1)])
M = M_growth(1, r, numobs)
assert nb_bin + nb_ord + nb_cont + nb_categ > 0
if nb_bin + nb_ord + nb_cont + nb_categ != len(var_distrib):
raise ValueError('Some variable types were not understood,\
existing types are: continuous, categorical,\
ordinal, binomial and bernoulli')
# Compute the Gower matrix
if len(dm) == 0:
cat_features = np.logical_or(var_distrib == 'categorical', var_distrib == 'bernoulli')
dm = gower_matrix(y, cat_features = cat_features)
# Do not stop the iterations if there are some iterations left or if the likelihood is increasing
# or if we have not reached the maximum patience and if a new architecture was looked for
# in the previous iteration
while ((it_num < it) & (ratio > eps) & (patience <= max_patience)) | is_looking_for_better_arch:
print("Iteration", it_num)
# The clustering layer is the one used to perform the clustering
# i.e. the layer l such that k[l] == n_clusters
if not(isnumeric(n_clusters)):
if n_clusters == 'auto':
clustering_layer = 0
else:
raise ValueError('Please enter an int or "auto" for n_clusters')
else:
assert (np.array(k) == n_clusters).any()
clustering_layer = np.argmax(np.array(k) == n_clusters)
#####################################################################################
################################# S step ############################################
#####################################################################################
#=====================================================================
# Draw from f(z^{l} | s, Theta) for all s in Omega
#=====================================================================
mu_s, sigma_s = compute_path_params(eta, H, psi)
sigma_s = ensure_psd(sigma_s)
z_s, zc_s = draw_z_s(mu_s, sigma_s, eta, M)
#========================================================================
# Draw from f(z^{l+1} | z^{l}, s, Theta) for l >= 1
#========================================================================
chsi = compute_chsi(H, psi, mu_s, sigma_s)
chsi = ensure_psd(chsi)
rho = compute_rho(eta, H, psi, mu_s, sigma_s, zc_s, chsi)
# In the following z2 and z1 will denote z^{l+1} and z^{l} respectively
z2_z1s = draw_z2_z1s(chsi, rho, M, r)
#=======================================================================
# Compute the p(y| z1) for all variable categories
#=======================================================================
py_zl1 = fy_zl1(lambda_bin, y_bin, nj_bin, lambda_ord, y_ord, nj_ord, \
lambda_categ, y_categ, nj_categ, y_cont, lambda_cont, z_s[0])
#========================================================================
# Draw from p(z1 | y, s) proportional to p(y | z1) * p(z1 | s) for all s
#========================================================================
zl1_ys = draw_zl1_ys(z_s, py_zl1, M)
#####################################################################################
################################# E step ############################################
#####################################################################################
#=====================================================================
# Compute conditional probabilities used in the appendix of asta paper
#=====================================================================
pzl1_ys, ps_y, p_y = E_step_GLLVM(z_s[0], mu_s[0], sigma_s[0], w_s, py_zl1)
#=====================================================================
# Compute p(z^{(l)}| s, y). Equation (5) of the paper
#=====================================================================
pz2_z1s = fz2_z1s(t(pzl1_ys, (1, 0, 2)), z2_z1s, chsi, rho, S)
pz_ys = fz_ys(t(pzl1_ys, (1, 0, 2)), pz2_z1s)
#=====================================================================
# Compute MFA expectations
#=====================================================================
Ez_ys, E_z1z2T_ys, E_z2z2T_ys, EeeT_ys = \
E_step_DGMM(zl1_ys, H, z_s, zc_s, z2_z1s, pz_ys, pz2_z1s, S)
###########################################################################
############################ M step #######################################
###########################################################################
#=======================================================
# Compute MFA Parameters
#=======================================================
w_s = np.mean(ps_y, axis = 0)
eta, H, psi = M_step_DGMM(Ez_ys, E_z1z2T_ys, E_z2z2T_ys, EeeT_ys, ps_y, H, k)
#=======================================================
# Identifiability conditions
#=======================================================
# Update eta, H and Psi values
H = diagonal_cond(H, psi)
Ez, AT = compute_z_moments(w_s, eta, H, psi)
eta, H, psi = identifiable_estim_DGMM(eta, H, psi, Ez, AT)
del(Ez)
#=======================================================
# Compute GLLVM Parameters
#=======================================================
lambda_bin = bin_params_GLLVM(y_bin, nj_bin, lambda_bin, ps_y, pzl1_ys, z_s[0], AT[0],\
tol = tol, maxstep = maxstep)
lambda_ord = ord_params_GLLVM(y_ord, nj_ord, lambda_ord, ps_y, pzl1_ys, z_s[0], AT[0],\
tol = tol, maxstep = maxstep)
lambda_categ = categ_params_GLLVM(y_categ, nj_categ, lambda_categ, ps_y, pzl1_ys, z_s[0], AT[0],\
tol = tol, maxstep = maxstep)
lambda_cont = cont_params_GLLVM(y_cont, lambda_cont, ps_y, pzl1_ys, z_s[0], AT[0],\
tol = tol, maxstep = maxstep)
###########################################################################
################## Clustering parameters updating #########################
###########################################################################
new_lik = np.sum(np.log(p_y))
likelihood.append(new_lik)
silhouette.append(new_sil)
ratio = abs((new_lik - prev_lik)/prev_lik)
idx_to_sum = tuple(set(range(1, L + 1)) - set([clustering_layer + 1]))
psl_y = ps_y.reshape(numobs, *k, order = 'C').sum(idx_to_sum)
temp_class = np.argmax(psl_y, axis = 1)
try:
new_sil = silhouette_score(dm, temp_class, metric = 'precomputed')
except ValueError:
new_sil = -1
# Store the params according to the silhouette or likelihood
is_better = (best_sil < new_sil) if use_silhouette else (best_lik < new_lik)
if is_better:
z = (ps_y[..., n_axis] * Ez_ys[clustering_layer]).sum(1)
best_sil = deepcopy(new_sil)
classes = deepcopy(temp_class)
'''
plt.figure(figsize=(8,8))
plt.scatter(z[:, 0], z[:, 1], c = classes)
plt.show()
'''
# Store the output
out['classes'] = deepcopy(classes)
out['best_z'] = deepcopy(z_s[0])
out['Ez.y'] = z
out['best_k'] = deepcopy(k)
out['best_r'] = deepcopy(r)
out['best_w_s'] = deepcopy(w_s)
out['lambda_bin'] = deepcopy(lambda_bin)
out['lambda_ord'] = deepcopy(lambda_ord)
out['lambda_categ'] = deepcopy(lambda_categ)
out['lambda_cont'] = deepcopy(lambda_cont)
out['eta'] = deepcopy(eta)
out['mu'] = deepcopy(mu_s)
out['sigma'] = deepcopy(sigma_s)
out['psl_y'] = deepcopy(psl_y)
out['ps_y'] = deepcopy(ps_y)
out['psi'] = deepcopy(psi)
out['H'] = deepcopy(H)
out['w_s'] = deepcopy(w_s)
# Refresh the classes only if they provide a better explanation of the data
if best_lik < new_lik:
best_lik = deepcopy(prev_lik)
if prev_lik < new_lik:
patience = 0
M = M_growth(it_num + 2, r, numobs)
else:
patience += 1
###########################################################################
######################## Parameter selection #############################
###########################################################################
min_nb_clusters = 2
if isnumeric(n_clusters): # To change when add multi mode
is_not_min_specif = not(np.all(np.array(k) == n_clusters) & np.array_equal(r, [2,1]))
else:
is_not_min_specif = not(np.all(np.array(k) == min_nb_clusters) & np.array_equal(r, [2,1]))
is_looking_for_better_arch = look_for_simpler_network(it_num) & perform_selec & is_not_min_specif
if is_looking_for_better_arch:
r_to_keep = r_select(y_bin, y_ord, y_categ, y_cont, zl1_ys, z2_z1s, w_s)
# If r_l == 0, delete the last l + 1: layers
new_L = np.sum([len(rl) != 0 for rl in r_to_keep]) - 1
k_to_keep = k_select(w_s, k, new_L, clustering_layer, not(isnumeric(n_clusters)))
is_L_unchanged = (L == new_L)
is_r_unchanged = np.all([len(r_to_keep[l]) == r[l] for l in range(new_L + 1)])
is_k_unchanged = np.all([len(k_to_keep[l]) == k[l] for l in range(new_L)])
is_selection = not(is_r_unchanged & is_k_unchanged & is_L_unchanged)
assert new_L > 0
if is_selection:
eta = [eta[l][k_to_keep[l]] for l in range(new_L)]
eta = [eta[l][:, r_to_keep[l]] for l in range(new_L)]
H = [H[l][k_to_keep[l]] for l in range(new_L)]
H = [H[l][:, r_to_keep[l]] for l in range(new_L)]
H = [H[l][:, :, r_to_keep[l + 1]] for l in range(new_L)]
psi = [psi[l][k_to_keep[l]] for l in range(new_L)]
psi = [psi[l][:, r_to_keep[l]] for l in range(new_L)]
psi = [psi[l][:, :, r_to_keep[l]] for l in range(new_L)]
if nb_bin > 0:
# Add the intercept:
bin_r_to_keep = np.concatenate([[0], np.array(r_to_keep[0]) + 1])
lambda_bin = lambda_bin[:, bin_r_to_keep]
if nb_ord > 0:
# Intercept coefficients handling is a little more complicated here
lambda_ord_intercept = [lambda_ord_j[:-r[0]] for lambda_ord_j in lambda_ord]
Lambda_ord_var = np.stack([lambda_ord_j[-r[0]:] for lambda_ord_j in lambda_ord])
Lambda_ord_var = Lambda_ord_var[:, r_to_keep[0]]
lambda_ord = [np.concatenate([lambda_ord_intercept[j], Lambda_ord_var[j]])\
for j in range(nb_ord)]
# To recheck
if nb_cont > 0:
# Add the intercept:
cont_r_to_keep = np.concatenate([[0], np.array(r_to_keep[0]) + 1])
lambda_cont = lambda_cont[:, cont_r_to_keep]
if nb_categ > 0:
lambda_categ_intercept = [lambda_categ[j][:, 0] for j in range(nb_categ)]
Lambda_categ_var = [lambda_categ_j[:,-r[0]:] for lambda_categ_j in lambda_categ]
Lambda_categ_var = [lambda_categ_j[:, r_to_keep[0]] for lambda_categ_j in lambda_categ]
lambda_categ = [np.hstack([lambda_categ_intercept[j][..., n_axis], Lambda_categ_var[j]])\
for j in range(nb_categ)]
w = w_s.reshape(*k, order = 'C')
new_k_idx_grid = np.ix_(*k_to_keep[:new_L])
# If layer deletion, sum the last components of the paths
if L > new_L:
deleted_dims = tuple(range(L)[new_L:])
w_s = w[new_k_idx_grid].sum(deleted_dims).flatten(order = 'C')
else:
w_s = w[new_k_idx_grid].flatten(order = 'C')
w_s /= w_s.sum()
# Refresh the classes: TO RECHECK
#idx_to_sum = tuple(set(range(1, L + 1)) - set([clustering_layer + 1]))
#ps_y_tmp = ps_y.reshape(numobs, *k, order = 'C').sum(idx_to_sum)
#np.argmax(ps_y_tmp[:, k_to_keep[0]], axis = 1)
k = [len(k_to_keep[l]) for l in range(new_L)]
r = [len(r_to_keep[l]) for l in range(new_L + 1)]
k_aug = k + [1]
S = np.array([np.prod(k_aug[l:]) for l in range(new_L + 1)])
L = new_L
patience = 0
# Identifiability conditions
H = diagonal_cond(H, psi)
Ez, AT = compute_z_moments(w_s, eta, H, psi)
eta, H, psi = identifiable_estim_DGMM(eta, H, psi, Ez, AT)
del(Ez)
print('New architecture:')
print('k', k)
print('r', r)
print('L', L)
print('S',S)
print("w_s", len(w_s))
prev_lik = deepcopy(new_lik)
it_num = it_num + 1
print("Likelyhood", likelihood)
print("silhouette", silhouette)
out['likelihood'] = likelihood
out['silhouette'] = silhouette
return(out)