forked from bio-phys/cnt-lipid14-analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
geometry.py
81 lines (58 loc) · 2.12 KB
/
geometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import numpy.linalg as la
def dist_pbc(r1,r2,boxdim):
"""Calculates the distance vector between two points under periodic boundary conditions
:Arguments:
*r1: (r1x,r1y,r1z) numpy array, one point in space
*r2: (r2x,r2y,r2z) numpy array, another point in space
*box: (bx,by,bz) numpy array, dimensions of (rectangular) periodic box
:Returns:
*dist: The distance between the points
"""
dist = np.array([0,0,0])
for i, di in enumerate(dist):
#print i
dist[i] = r1[i]-r2[i]
if dist[i] > boxdim[i]/2:
dist[i] = dist[i]-np.sign(dist[i])*boxdim[i]
return dist
def dist_point_line(p,a,n):
"""Calculates the distance of a point to a line
:Arguments:
*p: (x0,y0,z0) numpy array, One point in space
*a,n: numpy array, point and vector defining the line
:Returns:
*distance: The distance between the point and the line
"""
distance = (a-p)-np.dot((a-p),n)*n
return np.linalg.norm(distance)
def dist_point_line_pbc(p,a,n,boxdim):
"""Calculates the distance of a point to a line
:Arguments:
*p: (x0,y0,z0) numpy array, One point in space
*a,n: numpy array, point and vector defining the line
:Returns:
*distance: The distance between the point and the line
"""
#print n, a, p, boxdim
#print dist_pbc(a,p,boxdim)
#print np.dot(dist_pbc(a,p,boxdim),n)
#print np.dot(dist_pbc(a,p,boxdim),n)*n
distance = dist_pbc(a,p,boxdim) - np.dot(dist_pbc(a,p,boxdim),n)*n
return np.linalg.norm(distance)
def tilt(calpha):
"""
Purpose:
calculate the angle between the principal axis of one alpha
helix and the z-axis
The principal axis of the helix is calculated using the MDAnalysis
function
Arguments:
calpha: alpha atoms object within MDAnalysis
"""
P1,P2,P3=calpha.principalAxes()
zaxis=np.array([0,0,1])
"""angle"""
cosang = np.dot(P1, zaxis)
sinang = la.norm(np.cross(P1, zaxis))
return np.arctan2(sinang, cosang)