-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataloader.py
114 lines (96 loc) · 4.08 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
import random
import numpy as np
import pandas as pd
import tensorflow as tf
from augment import Augment
AUTO = tf.data.experimental.AUTOTUNE
def set_dataset(task, data_path):
trainset = pd.read_csv(
os.path.join(
data_path, 'imagenet_trainset.csv'
)).values.tolist()
trainset = [[os.path.join(data_path, t[0]), t[1]] for t in trainset]
if task == 'lincls':
valset = pd.read_csv(
os.path.join(
data_path, 'imagenet_valset.csv'
)).values.tolist()
valset = [[os.path.join(data_path, t[0]), t[1]] for t in valset]
return np.array(trainset, dtype='object'), np.array(valset, dtype='object')
return np.array(trainset, dtype='object')
class DataLoader:
def __init__(self, args, mode, datalist, batch_size, num_workers=1, shuffle=True):
self.args = args
self.mode = mode
self.datalist = datalist
self.batch_size = batch_size
self.num_workers = num_workers
self.shuffle = shuffle
self.dataloader = self._dataloader()
def __len__(self):
return len(self.datalist)
def fetch_dataset(self, path, y=None):
x = tf.io.read_file(path)
if y is not None:
return tf.data.Dataset.from_tensors((x, y))
return tf.data.Dataset.from_tensors(x)
def augmentation(self, img, shape):
augset = Augment(self.args, self.mode)
if self.args.task in ['v1', 'v2']:
img_list = []
for _ in range(2): # query, key
aug_img = tf.identity(img)
if self.args.task == 'v1':
aug_img = augset._augmentv1(aug_img, shape) # moco v1
else:
radius = np.random.choice([3, 5])
aug_img = augset._augmentv2(aug_img, shape, (radius, radius)) # moco v2
img_list.append(aug_img)
return img_list
else:
return augset._augment_lincls(img, shape)
def dataset_parser(self, value, label=None):
shape = tf.image.extract_jpeg_shape(value)
img = tf.io.decode_jpeg(value, channels=3)
if label is None:
# moco
query, key = self.augmentation(img, shape)
inputs = {'query': query, 'key': key}
labels = tf.zeros([])
else:
# lincls
inputs = self.augmentation(img, shape)
labels = tf.one_hot(label, self.args.classes)
return (inputs, labels)
def shuffle_BN(self, value, labels):
if self.num_workers > 1:
pre_shuffle = [(i, value['key'][i]) for i in range(self.batch_size)]
random.shuffle(pre_shuffle)
shuffle_idx = []
value_temp = []
for vv in pre_shuffle:
shuffle_idx.append(vv[0])
value_temp.append(tf.expand_dims(vv[1], axis=0))
value['key'] = tf.concat(value_temp, axis=0)
unshuffle_idx = np.array(shuffle_idx).argsort().tolist()
value.update({'unshuffle': unshuffle_idx})
return (value, labels)
def _dataloader(self):
self.imglist = self.datalist[:,0].tolist()
if self.args.task in ['v1', 'v2']:
dataset = tf.data.Dataset.from_tensor_slices(self.imglist)
else:
self.labellist = self.datalist[:,1].tolist()
dataset = tf.data.Dataset.from_tensor_slices((self.imglist, self.labellist))
dataset = dataset.repeat()
if self.shuffle:
dataset = dataset.shuffle(len(self.datalist))
dataset = dataset.interleave(self.fetch_dataset, num_parallel_calls=AUTO)
dataset = dataset.map(self.dataset_parser, num_parallel_calls=AUTO)
dataset = dataset.batch(self.batch_size)
dataset = dataset.prefetch(AUTO)
if self.args.shuffle_bn and self.args.task in ['v1', 'v2']:
# only moco
dataset = dataset.map(self.shuffle_BN, num_parallel_calls=AUTO)
return dataset