-
Notifications
You must be signed in to change notification settings - Fork 36
/
train.py
192 lines (149 loc) · 6.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
"""
# Pytorch implementation for AAAI2021 paper from
# https://arxiv.org/pdf/2101.01368.
# "Similarity Reasoning and Filtration for Image-Text Matching"
# Haiwen Diao, Ying Zhang, Lin Ma, Huchuan Lu
#
# Writen by Haiwen Diao, 2020
"""
import os
import time
import shutil
import torch
import numpy
import data
import opts
from vocab import Vocabulary, deserialize_vocab
from model import SGRAF
from evaluation import i2t, t2i, AverageMeter, LogCollector, encode_data, shard_attn_scores
import logging
import tensorboard_logger as tb_logger
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def main():
opt = opts.parse_opt()
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
tb_logger.configure(opt.logger_name, flush_secs=5)
# Load Vocabulary Wrapper
vocab = deserialize_vocab(os.path.join(opt.vocab_path, '%s_vocab.json' % opt.data_name))
opt.vocab_size = len(vocab)
# Load data loaders
train_loader, val_loader = data.get_loaders(opt.data_name, vocab, opt.batch_size, opt.workers, opt)
# Construct the model
model = SGRAF(opt)
# Train the Model
best_rsum = 0
for epoch in range(opt.num_epochs):
print(opt.logger_name)
print(opt.model_name)
adjust_learning_rate(opt, model.optimizer, epoch)
# train for one epoch
train(opt, train_loader, model, epoch, val_loader)
# evaluate on validation set
r_sum = validate(opt, val_loader, model)
# remember best R@ sum and save checkpoint
is_best = r_sum > best_rsum
best_rsum = max(r_sum, best_rsum)
if not os.path.exists(opt.model_name):
os.mkdir(opt.model_name)
save_checkpoint({
'epoch': epoch + 1,
'model': model.state_dict(),
'best_rsum': best_rsum,
'opt': opt,
'Eiters': model.Eiters,
}, is_best, filename='checkpoint_{}.pth.tar'.format(epoch), prefix=opt.model_name + '/')
def train(opt, train_loader, model, epoch, val_loader):
# average meters to record the training statistics
batch_time = AverageMeter()
data_time = AverageMeter()
train_logger = LogCollector()
end = time.time()
for i, train_data in enumerate(train_loader):
# switch to train mode
model.train_start()
# measure data loading time
data_time.update(time.time() - end)
# make sure train logger is used
model.logger = train_logger
# Update the model
model.train_emb(*train_data)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# Print log info
if model.Eiters % opt.log_step == 0:
logging.info(
'Epoch: [{0}][{1}/{2}]\t'
'{e_log}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, e_log=str(model.logger)))
# Record logs in tensorboard
tb_logger.log_value('epoch', epoch, step=model.Eiters)
tb_logger.log_value('step', i, step=model.Eiters)
tb_logger.log_value('batch_time', batch_time.val, step=model.Eiters)
tb_logger.log_value('data_time', data_time.val, step=model.Eiters)
model.logger.tb_log(tb_logger, step=model.Eiters)
# validate at every val_step
if model.Eiters % opt.val_step == 0:
validate(opt, val_loader, model)
def validate(opt, val_loader, model):
# compute the encoding for all the validation images and captions
img_embs, cap_embs, cap_lens = encode_data(model, val_loader, opt.log_step, logging.info)
# clear duplicate 5*images and keep 1*images
img_embs = numpy.array([img_embs[i] for i in range(0, len(img_embs), 5)])
# record computation time of validation
start = time.time()
sims = shard_attn_scores(model, img_embs, cap_embs, cap_lens, opt, shard_size=100)
end = time.time()
print("calculate similarity time:", end-start)
# caption retrieval
(r1, r5, r10, medr, meanr) = i2t(img_embs, cap_embs, cap_lens, sims)
logging.info("Image to text: %.1f, %.1f, %.1f, %.1f, %.1f" % (r1, r5, r10, medr, meanr))
# image retrieval
(r1i, r5i, r10i, medri, meanr) = t2i(img_embs, cap_embs, cap_lens, sims)
logging.info("Text to image: %.1f, %.1f, %.1f, %.1f, %.1f" % (r1i, r5i, r10i, medri, meanr))
# sum of recalls to be used for early stopping
r_sum = r1 + r5 + r10 + r1i + r5i + r10i
# record metrics in tensorboard
tb_logger.log_value('r1', r1, step=model.Eiters)
tb_logger.log_value('r5', r5, step=model.Eiters)
tb_logger.log_value('r10', r10, step=model.Eiters)
tb_logger.log_value('medr', medr, step=model.Eiters)
tb_logger.log_value('meanr', meanr, step=model.Eiters)
tb_logger.log_value('r1i', r1i, step=model.Eiters)
tb_logger.log_value('r5i', r5i, step=model.Eiters)
tb_logger.log_value('r10i', r10i, step=model.Eiters)
tb_logger.log_value('medri', medri, step=model.Eiters)
tb_logger.log_value('meanr', meanr, step=model.Eiters)
tb_logger.log_value('r_sum', r_sum, step=model.Eiters)
return r_sum
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', prefix=''):
tries = 15
error = None
# deal with unstable I/O. Usually not necessary.
while tries:
try:
torch.save(state, prefix + filename)
if is_best:
shutil.copyfile(prefix + filename, prefix + 'model_best.pth.tar')
except IOError as e:
error = e
tries -= 1
else:
break
print('model save {} failed, remaining {} trials'.format(filename, tries))
if not tries:
raise error
def adjust_learning_rate(opt, optimizer, epoch):
"""
Sets the learning rate to the initial LR
decayed by 10 after opt.lr_update epoch
"""
lr = opt.learning_rate * (0.1 ** (epoch // opt.lr_update))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
main()