-
Notifications
You must be signed in to change notification settings - Fork 29
/
encoders.py
147 lines (134 loc) · 5.22 KB
/
encoders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as tvm
class ResNet18(nn.Module):
def __init__(self, pretrained=False) -> None:
super().__init__()
self.net = tvm.resnet18(pretrained=pretrained)
def forward(self, x):
self = self.net
x1 = x
x = self.conv1(x1)
x = self.bn1(x)
x2 = self.relu(x)
x = self.maxpool(x2)
x4 = self.layer1(x)
x8 = self.layer2(x4)
x16 = self.layer3(x8)
x32 = self.layer4(x16)
return {32:x32,16:x16,8:x8,4:x4,2:x2,1:x1}
def train(self, mode=True):
super().train(mode)
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
pass
class ResNet50(nn.Module):
def __init__(self, pretrained=False, high_res = False, weights = None, dilation = None, freeze_bn = True, anti_aliased = False) -> None:
super().__init__()
if dilation is None:
dilation = [False,False,False]
if anti_aliased:
pass
else:
if weights is not None:
self.net = tvm.resnet50(weights = weights,replace_stride_with_dilation=dilation)
else:
self.net = tvm.resnet50(pretrained=pretrained,replace_stride_with_dilation=dilation)
self.high_res = high_res
self.freeze_bn = freeze_bn
def forward(self, x):
net = self.net
feats = {1:x}
x = net.conv1(x)
x = net.bn1(x)
x = net.relu(x)
feats[2] = x
x = net.maxpool(x)
x = net.layer1(x)
feats[4] = x
x = net.layer2(x)
feats[8] = x
x = net.layer3(x)
feats[16] = x
x = net.layer4(x)
feats[32] = x
return feats
def train(self, mode=True):
super().train(mode)
if self.freeze_bn:
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
pass
class ResNet101(nn.Module):
def __init__(self, pretrained=False, high_res = False, weights = None) -> None:
super().__init__()
if weights is not None:
self.net = tvm.resnet101(weights = weights)
else:
self.net = tvm.resnet101(pretrained=pretrained)
self.high_res = high_res
self.scale_factor = 1 if not high_res else 1.5
def forward(self, x):
net = self.net
feats = {1:x}
sf = self.scale_factor
if self.high_res:
x = F.interpolate(x, scale_factor=sf, align_corners=False, mode="bicubic")
x = net.conv1(x)
x = net.bn1(x)
x = net.relu(x)
feats[2] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.maxpool(x)
x = net.layer1(x)
feats[4] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.layer2(x)
feats[8] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.layer3(x)
feats[16] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.layer4(x)
feats[32] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
return feats
def train(self, mode=True):
super().train(mode)
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
pass
class WideResNet50(nn.Module):
def __init__(self, pretrained=False, high_res = False, weights = None) -> None:
super().__init__()
if weights is not None:
self.net = tvm.wide_resnet50_2(weights = weights)
else:
self.net = tvm.wide_resnet50_2(pretrained=pretrained)
self.high_res = high_res
self.scale_factor = 1 if not high_res else 1.5
def forward(self, x):
net = self.net
feats = {1:x}
sf = self.scale_factor
if self.high_res:
x = F.interpolate(x, scale_factor=sf, align_corners=False, mode="bicubic")
x = net.conv1(x)
x = net.bn1(x)
x = net.relu(x)
feats[2] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.maxpool(x)
x = net.layer1(x)
feats[4] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.layer2(x)
feats[8] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.layer3(x)
feats[16] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
x = net.layer4(x)
feats[32] = x if not self.high_res else F.interpolate(x,scale_factor=1/sf,align_corners=False, mode="bilinear")
return feats
def train(self, mode=True):
super().train(mode)
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
pass