forked from prassepaul/mlmed_ranking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGDSC_ELWC_ranking_tfrecord_writer.py
545 lines (418 loc) · 23.2 KB
/
GDSC_ELWC_ranking_tfrecord_writer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
#!/usr/bin/env python
# coding: utf-8
import pandas as pd
import numpy as np
from tqdm import tqdm_notebook as tqdm
import tensorflow as tf
from tensorflow_serving.apis import input_pb2
import os
import joblib
import pickle
flag_use_pickle = True # specify if you want to use pickle or joblib
tf.__version__ # I used 2.1.0
def create_feature_dict(data_df,
data_dir = 'data/gdsc_data/',
gene_feature = 'paccmann',
cell_wise = True):
if not flag_use_pickle:
cell_line_path = data_dir + 'cell_line_data.joblib'
drug_path = data_dir + 'drug_data.joblib'
# load data
cell_line_dict = joblib.load(cell_line_path)
drug_dict = joblib.load(drug_path)
else:
cell_line_path = data_dir + 'cell_line_data.pickle'
drug_path = data_dir + 'drug_data.pickle'
with open(cell_line_path, 'rb') as handle:
cell_line_dict = pickle.load(handle)
with open(drug_path, 'rb') as handle:
drug_dict = pickle.load(handle)
cell_lines = cell_line_dict['cell_line_dict']
drugs = drug_dict['drug_dict']
# loop over dataframe
data_matrix = np.array(data_df.to_numpy())
num_not_nan = np.sum(~np.isnan(data_matrix))
data_cell_lines = list(data_df.index)
data_drugs = list(data_df.columns)
counter = 0
annotations = []
drug_list = []
cell_line_list = []
for i in range(data_matrix.shape[0]):
for j in range(data_matrix.shape[1]):
if np.isnan(data_matrix[i,j]):
continue
smiles_feature_vec = drugs[data_drugs[j]]['feature_vec']
gene_feature_vec = cell_lines[str(data_cell_lines[i])][gene_feature + '_vector']
if counter == 0:
gene_features = np.zeros([num_not_nan,len(gene_feature_vec)])
smiles_features = np.zeros([num_not_nan,len(smiles_feature_vec)],dtype=np.int32)
label = np.zeros([num_not_nan,])
gene_features[counter,:] = gene_feature_vec
smiles_features[counter,:] = smiles_feature_vec
label[counter] = data_matrix[i,j]
annotations.append((data_cell_lines[i],data_drugs[j],data_drugs[j]))
drug_list.append(data_drugs[j])
cell_line_list.append(str(data_cell_lines[i]))
counter += 1
feature_dict={ 'selected_genes_20': gene_features,
'smiles_atom_tokens': smiles_features,
'label': label,
'drug_list':drug_list,
'cell_line_list':cell_line_list}
num_gene_features = gene_features.shape[1]
num_smiles_features = smiles_features.shape[1]
vocab_size = np.max(list(drug_dict['token_id_dict'].values()))
return feature_dict, num_gene_features, num_smiles_features, vocab_size
def create_feature_dict_from_dicts(data_df,
cell_line_dict,
drug_dict,
gene_feature = 'paccmann',
cell_wise = True):
cell_lines = cell_line_dict
drugs = drug_dict
# loop over dataframe
data_matrix = np.array(data_df.to_numpy())
num_not_nan = np.sum(~np.isnan(data_matrix))
data_cell_lines = list(data_df.index)
data_drugs = list(data_df.columns)
counter = 0
annotations = []
drug_list = []
cell_line_list = []
for i in range(data_matrix.shape[0]):
for j in range(data_matrix.shape[1]):
if np.isnan(data_matrix[i,j]):
continue
smiles_feature_vec = drugs[data_drugs[j]]['feature_vec']
gene_feature_vec = cell_lines[str(data_cell_lines[i])][gene_feature + '_vector']
if counter == 0:
gene_features = np.zeros([num_not_nan,len(gene_feature_vec)])
smiles_features = np.zeros([num_not_nan,len(smiles_feature_vec)],dtype=np.int32)
label = np.zeros([num_not_nan,])
gene_features[counter,:] = gene_feature_vec
smiles_features[counter,:] = smiles_feature_vec
label[counter] = data_matrix[i,j]
annotations.append((data_cell_lines[i],data_drugs[j],data_drugs[j]))
drug_list.append(data_drugs[j])
cell_line_list.append(str(data_cell_lines[i]))
counter += 1
feature_dict={ 'selected_genes_20': gene_features,
'smiles_atom_tokens': smiles_features,
'label': label,
'drug_list':drug_list,
'cell_line_list':cell_line_list}
num_gene_features = gene_features.shape[1]
num_smiles_features = smiles_features.shape[1]
return feature_dict, num_gene_features, num_smiles_features
def create_context_dict(data_df,
data_dir = 'data/gdsc_data/',
gene_feature = 'paccmann',
cell_wise = True):
if not flag_use_pickle:
cell_line_path = data_dir + 'cell_line_data.joblib'
drug_path = data_dir + 'drug_data.joblib'
# load data
cell_line_dict = joblib.load(cell_line_path)
drug_dict = joblib.load(drug_path)
else:
cell_line_path = data_dir + 'cell_line_data.pickle'
drug_path = data_dir + 'drug_data.pickle'
with open(cell_line_path, 'rb') as handle:
cell_line_dict = pickle.load(handle)
with open(drug_path, 'rb') as handle:
drug_dict = pickle.load(handle)
cell_lines = cell_line_dict['cell_line_dict']
drugs = drug_dict['drug_dict']
# loop over dataframe
data_matrix = np.array(data_df.to_numpy())
num_not_nan = np.sum(~np.isnan(data_matrix))
data_cell_lines = list(data_df.index)
data_drugs = list(data_df.columns)
counter = 0
annotations = []
for i in range(data_matrix.shape[0]):
for j in range(data_matrix.shape[1]):
if np.isnan(data_matrix[i,j]):
continue
smiles_feature_vec = drugs[data_drugs[j]]['feature_vec']
gene_feature_vec = cell_lines[str(data_cell_lines[i])][gene_feature + '_vector']
if counter == 0:
gene_features = np.zeros([num_not_nan,len(gene_feature_vec)])
smiles_features = np.zeros([num_not_nan,len(smiles_feature_vec)],dtype=np.int32)
label = np.zeros([num_not_nan,])
gene_features[counter,:] = gene_feature_vec
smiles_features[counter,:] = smiles_feature_vec
label[counter] = data_matrix[i,j]
annotations.append((data_cell_lines[i],data_drugs[j],data_drugs[j]))
counter += 1
context_dict = get_ELWC_dict(feature_dict={ 'selected_genes_20': gene_features,
'smiles_atom_tokens': smiles_features,
'label': label},
annotations=annotations,
cell_wise=cell_wise)
num_gene_features = gene_features.shape[1]
num_smiles_features = smiles_features.shape[1]
vocab_size = np.max(list(drug_dict['token_id_dict'].values()))
return context_dict, num_gene_features, num_smiles_features, vocab_size
def create_context_dict_from_dicts(data_df,
cell_lines_dict,
drug_dict,
token_id_dict,
gene_feature = 'paccmann',
gene_appendix = '',
cell_wise = True):
cell_lines = cell_lines_dict
drugs = drug_dict
# loop over dataframe
data_matrix = np.array(data_df.to_numpy())
num_not_nan = np.sum(~np.isnan(data_matrix))
data_cell_lines = list(data_df.index)
data_drugs = list(data_df.columns)
counter = 0
annotations = []
for i in range(data_matrix.shape[0]):
for j in range(data_matrix.shape[1]):
if np.isnan(data_matrix[i,j]):
continue
smiles_feature_vec = drugs[data_drugs[j]]['feature_vec']
if str(data_cell_lines[i]) in cell_lines:
gene_feature_vec = cell_lines[str(data_cell_lines[i])][gene_feature + '_vector' + gene_appendix]
elif data_cell_lines[i] in cell_lines:
gene_feature_vec = cell_lines[data_cell_lines[i]][gene_feature + '_vector' + gene_appendix]
elif int(data_cell_lines[i]) in cell_lines:
gene_feature_vec = cell_lines[int(data_cell_lines[i])][gene_feature + '_vector' + gene_appendix]
else:
print('not found')
print(allo)
if counter == 0:
gene_features = np.zeros([num_not_nan,len(gene_feature_vec)])
smiles_features = np.zeros([num_not_nan,len(smiles_feature_vec)],dtype=np.int32)
label = np.zeros([num_not_nan,])
gene_features[counter,:] = gene_feature_vec
smiles_features[counter,:] = smiles_feature_vec
label[counter] = data_matrix[i,j]
annotations.append((data_cell_lines[i],data_drugs[j],data_drugs[j]))
counter += 1
context_dict = get_ELWC_dict(feature_dict={ 'selected_genes_20': gene_features,
'smiles_atom_tokens': smiles_features,
'label': label},
annotations=annotations,
cell_wise=cell_wise)
num_gene_features = gene_features.shape[1]
num_smiles_features = smiles_features.shape[1]
vocab_size = np.max(list(token_id_dict.values()))
return context_dict, num_gene_features, num_smiles_features, vocab_size
def get_context_dict(tfrecord_path = 'data/tfrecords/',
data_path='data/joined_paccmann_data/',
smiles_feature_path = 'data/joined_paccmann_data/smiles_atom_tokens.npy',
gene_feature_path = 'data/joined_paccmann_data/selected_genes_20.npy',
cell_wise=True
):
annotation_data_path = data_path + '/annotations.csv'
label_data_path = data_path + '/ic50.npy'
# cell and drug annotations of the drug-sensitivity experiments
annotations= pd.read_csv(annotation_data_path)
# IC50 values
response = np.load(label_data_path)
response = pd.Series(response)
print("preprocessing")
# get the features and filter out cell-drug pairs which were queried via the annotation_data but are not in the data
features, annotations_filtered = get_features(data=annotations, label=response,
smiles_feature_path=smiles_feature_path,
gene_feature_path=gene_feature_path)
# restructure the dicts to a list of drugs or cells (item) for each cell or drug (context) depending on cell_wise
context_dict = get_ELWC_dict(feature_dict=features, annotations=annotations_filtered, cell_wise=cell_wise)
return context_dict
def get_features(data, label,
smiles_feature_path = 'data/joined_paccmann_data/smiles_atom_tokens.npy',
gene_feature_path = 'data/joined_paccmann_data/selected_genes_20.npy'):
"""
function to get the features for the drugs and cells named in data from
the paccmann data in smiles_feature_path (e.g. "data\\joined_paccmann_data\\smiles_atom_tokens.npy")
Arguments:
data: pandas DataFrame with columns "cosmic_id", "inchi_key", the queried cell-drug experiments
label: pandas Series, Series of ground the truth drug sensitivities of the experiments
Returns:
a tuple of a feature dict with keys "selected_genes_20", "smiles_atom_tokens", "label" and
annotations of the dict
"""
annotations = pd.read_csv("data/joined_paccmann_data/annotations.csv")
all_drugs = annotations.inchi_key.unique()
all_cells = annotations.cosmic_id.unique()
# remove drugs and cells which are queried, but we do not have data for
cells_in_query = data.cosmic_id.unique()
drugs_in_query = data.inchi_key.unique()
cells_not_in_data = set(cells_in_query)-set(all_cells)
drugs_not_in_data = set(drugs_in_query)-set(all_drugs)
if(cells_not_in_data):
print("Removing " + str(len(cells_not_in_data)) + " of the queried cells, because missing data. ")
keep_row = np.array([True]*len(data))
# find all rows of the data which relate to cells, for which we have no kernel data
for cell in cells_not_in_data:
keep_row = keep_row&(data.cosmic_id!= cell)
data = data.loc[keep_row, :]
label = label.loc[keep_row]
if(drugs_not_in_data):
print("Removing " + str(len(drugs_not_in_data)) + " of the queried drugs, because missing data. ")
keep_row = np.array([True]*len(data))
# find all rows of the data which relate to drugs, for which we have no kernel data
for drug in drugs_not_in_data:
keep_row = keep_row&(data.inchi_key!= drug)
data = data.loc[keep_row, :]
label = label.loc[keep_row]
cells_response = data.cosmic_id
drugs_response = data.inchi_key
# to filter out rows which are not queried
mask_indices = []
annotations_filtered =[]
counter=0
label = label.reset_index(drop=True)
for drug, cell in tqdm(zip(drugs_response, cells_response), total=len(drugs_response)):
is_experiment = (annotations.inchi_key==drug )& (annotations.cosmic_id == cell)
if (np.any(is_experiment)):
mask_indices.append(annotations[is_experiment].index[0])
annotations_filtered.append(annotations[is_experiment].loc[:,["cosmic_id", "drug_names", "inchi_key"]].values[0])
else:
label = label.drop(counter, axis=0)
counter = counter+1
smiles_atom_tokens = np.load(smiles_feature_path)[mask_indices,:]
selected_genes_20 = np.load(gene_feature_path)[mask_indices,:]
label = label.values.reshape(len(label) ,1) # DataFrame to reshaped numpy array
annotations_filtered = np.stack(annotations_filtered)
data_dict = {"selected_genes_20": selected_genes_20,
"smiles_atom_tokens": smiles_atom_tokens,
"label": label}
return data_dict, annotations_filtered
def get_ELWC_dict(feature_dict, annotations, cell_wise=True):
"""
function to create ELWC dict from a "linear"
feature dictionary with keys "selected_genes_20", "smiles_atom_tokens", "label"
Arguments:
feature_dict: dict
annotations: pandas DataFrame: GDSC data annotations, returned as second argument from get_features
cell_wise: Boolean: should the context be the cells or the drugs?
Returns:
dict, example list with context nested dictionary:
{"context_cell_genes": #array of the gene expression features of one cell-line,
"examples":{"smiles_tokens": #2D array: n_drugs x n_tokens
, "label": #array of label, "drug_name": #array of drug name}}
"""
seen_context = set([])
all_contexts = {}
if cell_wise:
for selec_g_20, smiles_a_t, label, annot in zip(feature_dict["selected_genes_20"],
feature_dict["smiles_atom_tokens"],
feature_dict["label"],
annotations):
if(annot[0] in seen_context):
all_contexts[annot[0]]["examples"]["smiles_tokens"].append(smiles_a_t)
all_contexts[annot[0]]["examples"]["label"].append(label)
all_contexts[annot[0]]["examples"]["drug_name"].append(annot[1])
else:
all_contexts[annot[0]] = {"context_cell_genes": selec_g_20,
"examples":{"smiles_tokens": [smiles_a_t], "label": [label], "drug_name": [annot[1]]}}
seen_context.add(annot[0])
else:
for selec_g_20, smiles_a_t, label, annot in zip(feature_dict["selected_genes_20"],
feature_dict["smiles_atom_tokens"],
feature_dict["label"],
annotations):
if(annot[2] in seen_context):
all_contexts[annot[2]]["examples"]["selected_genes_20"].append(selec_g_20)
all_contexts[annot[2]]["examples"]["label"].append(label)
all_contexts[annot[2]]["examples"]["cell_name"].append(annot[0])
else:
all_contexts[annot[2]] = {"context_drug": smiles_a_t,
"examples":{"selected_genes_20": [selec_g_20], "label": [label], "cell_name": [annot[0]]}}
seen_context.add(annot[2])
return all_contexts
# make sure gdsc data is in work_dir\\data
def create_ELWC_tfrecord(context_dict, filename, padding=-1, padding_rel=0, cell_wise=True):
"""
function to create EWLC (Example list with context) tfrecord file for tensorflow-ranking
from 2 or 3 features, depending on the presence of a label
# the relevance is max(ic50)- ic50 since high ic50 means low relevance
Arguments:
context_dict: example list with context dict as created by get_ELWC_dict()
keys either "selected_genes_20", "smiles_atom_tokens" or "selected_genes_20", "smiles_atom_tokens", "label"
filename: str, filename of the tfrecord which will be created
padding: int, if -1 no padding will be applied, else examples will be added until the list of examples has length padding
padding_rel: float, the relevance of the padded examples
Returns: None
"""
# helper functions for serialization
def _float_feature(value_list):
"""Returns a float_list from a float / double."""
if isinstance(value_list,list) or isinstance(value_list,np.ndarray):
return tf.train.Feature(float_list=tf.train.FloatList(value=value_list))
else:
return tf.train.Feature(float_list=tf.train.FloatList(value=[value_list]))
def _int64_feature(value_list):
"""Returns an int64_list from a bool / enum / int / uint."""
if isinstance(value_list,list) or isinstance(value_list,np.ndarray):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value_list))
else:
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value_list]))
CONTEXT = "context_cell_genes" if cell_wise else "context_drug"
EXAMPLE = "smiles_tokens" if cell_wise else "selected_genes_20"
with tf.io.TFRecordWriter(filename) as writer:
for context in context_dict:
if(len(context_dict[context]['examples']['label'])==0):
print("No drug experiments for cell id:")
print(context)
continue
context_specs = {}
context_specs["query_features"] = _float_feature(context_dict[context][CONTEXT]) if cell_wise else _int64_feature(context_dict[context][CONTEXT])
context_proto = tf.train.Example(features=tf.train.Features(feature=context_specs))
ELWC = input_pb2.ExampleListWithContext()
ELWC.context.CopyFrom(context_proto)
# invert ic50 so that the max value has relevance zero and the lowest ic50 has the highest relevance
# we do this since a high IC50 means low relevance/ineffective drug for the given cell context
max_ic50 = np.max(context_dict[context]['examples']['label'])
context_dict[context]['examples']['label'] = max_ic50 - context_dict[context]['examples']['label']
n_examples = 0
for doc, rel in zip(context_dict[context]['examples'][EXAMPLE], context_dict[context]['examples']['label']):
example_features = ELWC.examples.add()
example_specs = {}
example_specs["relevance"] = _float_feature(rel)
example_specs["document_features"] = _int64_feature(doc) if cell_wise else _float_feature(doc)
exampe_proto = tf.train.Example(features=tf.train.Features(feature=example_specs))
example_features.CopyFrom(exampe_proto)
n_examples +=1
# add meaningless examples as padding (the lists of items for each context have to be the same size)
if(padding != -1):
n_padding = padding - n_examples
#print('add ' + str(n_padding) + ' examples')
for _ in range(n_padding):
example_features = ELWC.examples.add()
example_specs = {}
example_specs["relevance"] = _float_feature([padding_rel])
example_specs["document_features"] = _int64_feature([1]*len(doc)) if cell_wise else _float_feature([-99]*len(doc))
exampe_proto = tf.train.Example(features=tf.train.Features(feature=example_specs))
example_features.CopyFrom(exampe_proto)
writer.write(ELWC.SerializeToString())
def cold_start_train_test_split(context_dict, eval_percentage=0.1, test_percentage=0.1, random_state=None):
"""
function to train, eval, eval split a dictionary of contexts, as created by get_ELWC_dict()
Arguments:
context_dict: example list with context dict as created by get_ELWC_dict()
eval_percentage: float , percentage of the data used for evaluation
test_percentage: float , percentage of the data used for testing
random_state, int or None: random state for train_test_split
Returns: (dict, dict, dict)
"""
contexts = list(context_dict.keys())
contexts_train, contexts_holdout = train_test_split(contexts, test_size=test_percentage+eval_percentage,
shuffle=True, random_state=random_state)
contexts_eval, contexts_test = train_test_split(contexts_holdout, test_size=test_percentage/(test_percentage+eval_percentage),
shuffle=False)
# create sub dictionaries with train/test/eval contexts
context_dict_train ={k:context_dict[k] for k in contexts_train}
context_dict_eval = {k:context_dict[k] for k in contexts_eval}
context_dict_test = {k:context_dict[k] for k in contexts_test}
# assert cold start: no context is part of more than one dict
assert context_dict_train.keys() & context_dict_eval.keys() == set([])
assert context_dict_eval.keys() & context_dict_test.keys() == set([])
assert context_dict_train.keys() & context_dict_test.keys() == set([])
return context_dict_train, context_dict_eval, context_dict_test