Skip to content

Latest commit

 

History

History
executable file
·
191 lines (128 loc) · 4.78 KB

README.md

File metadata and controls

executable file
·
191 lines (128 loc) · 4.78 KB

NBAr

Version 2.1.2 update:

  • solving wrong conversions from double to int for per, pie, ast_tov, ast_ratio, _freq, frequency, pct, spd, dist, _rating columns (hope I havent missed anything)
  • printing error messages instead of returning NULLs
  • fix for get_schedule and get_playbyplay2 as they stopped returning data (api change)
  • built on R version 4.0.4

Version 2.1.1

  • Fixed problem with wide open shots in shooting dashboard
  • Added dont_run to examples as it took long time to check build :)
  • Built finally on version 4.0.2

Coming up next:

  • better try_catch messages for all functions, not just lazy Null returning
  • automated_test scripts

Version 2.0!

Hey, welcome back after long break! I decided to face the horror of reviewing my old code and make some large refresh of the package. List of changes:

  • NBA API now requires non-empty referrer header to provide data, so going from readr::read_lines to httr::GET was very much needed. This discovery was made by Pawel Kapuscinski
  • 95% of dependent functions is based on tidyverse packages
  • functions_and_argument_names_are_finally_in_snake_case !!!
  • Followed best practices about package dependencies (no requires!)
  • Added verbose argument to every function to print out the url
  • Provided proper data types changes to columns and arguments (no more dreary "2017")
  • game_id is now integer and doesn't require 00 before proper id
  • get_hustle is old get_hustle_boxscore (I find boxscores much easier to use)
  • playtypes and tracking are now working flawlessly due to referral trick

Overview

How to track NBA data in R

Download data from NBA.com API

General

If you are NBA, R and data analytics junkie, this is a package for you! Might be not the most useful tool nor the most exciting, but NBAr contains set of wrapper functions for downloading and simple processing of data from http://stats.nba.com API.

Make your NBA analysis faster and more automated by downloading data straight to your machine !

Installation

if (!require("devtools"))
  install.packages("devtools")
devtools::install_github("PatrickChodowski/NBAr")

Functions

Functions below allow you do easily download data about games, players, teams, statistics and advanced measures from NBA.com. You will find boxscores, play-by-play, shotchart, schedule, player Bios, Sport-VU tracking data, playtypes and much much more!

  • get_all_tracking
  • get_boxscore
  • get_defense
  • get_general
  • get_hustle
  • get_lineups
  • get_matchups
  • get_news
  • get_on_off
  • get_playbyplay
  • get_playbyplay2
  • get_player_movement
  • get_playerbio
  • get_players
  • get_playtype
  • get_rotowire_status
  • get_schedule
  • get_shooting
  • get_shooting_dashboard
  • get_shotchart
  • get_team_boxscore
  • get_tracking

You can read more about that package and my work on my website, Per48.co

Example


library(NBAr)
library(tidyverse)
#devtools::install_github("PatrickChodowski/NBAr")

season <- 2018
gamelist<- c(21800001:21800003)
game_id = 21800001

#########################
### Boxscores:
#########################

 traditional <- map(gamelist, ~get_boxscore(.,boxscore_type = 'traditional')) %>% compact() %>%  bind_rows()

#########################
### Matchups 
#########################

 matchup <- get_matchups(game_id)

#########################
### Play by play:
#########################

 pbp2 <- map(gamelist, ~get_playbyplay2(.)) %>% compact() %>%  bind_rows()

#########################
### Lineups:
#########################

 lineups <- get_lineups(season,5,'Base')
 bulls_lineups <- get_lineups(season,5,'Base', team_id = 1610612741)

#########################
### On/Off court:
#########################

 onoff_bulls <- get_on_off(season,1610612741)

#########################
### Players list
#########################

 players <- get_players(season)
 player_bio <- get_playerbio(season)

  

#########################
### Shotcharts
#########################

 shots_abrines <- get_shotchart(203518, season)

#########################
### Schedule
#########################

 schedule <- get_schedule(season)


#########################
### Tracking data
#########################

  tracking = get_tracking(season, 'Team', measure_type = 'Defense')


#########################
### Playtype data
#########################

  playtype <- get_playtype(season, 'T',  'Postup')


#########################
### Defense data
#########################

  defense <- get_defense(season, 'Team', 'Overall')

#########################
### General data
#########################

  general <- get_general(season, type = 'Team', 'Base')


#########################
### Hustle data
#########################

  hustle <- get_hustle(21800001)

#########################
### Shooting data
#########################

  shooting <- get_shooting(season, 'Team', "By+Zone", "Base")