Skip to content

Latest commit

Β 

History

History
86 lines (63 loc) Β· 2.58 KB

README.md

File metadata and controls

86 lines (63 loc) Β· 2.58 KB

Policy Gradients to land on the Moon

β€œThat's one small step for your gradient ascent, one giant leap for your ML career.”

-- Pau quoting Neil Armstrong

Table of Contents

Welcome πŸ€—

Today we will learn about Policy Gradient methods, and use them to land on the Moon.

Ready, set, go!

Lecture transcripts

πŸ“ 1. Policy gradients

Quick setup

Make sure you have Python >= 3.7. Otherwise, update it.

  1. Pull the code from GitHub and cd into the 04_lunar_lander folder:

    $ git clone https://github.com/Paulescu/hands-on-rl.git
    $ cd hands-on-rl/04_lunar_lander
    
  2. Make sure you have the virtualenv tool in your Python installation

    $ pip3 install virtualenv
    
  3. Create a virtual environment and activate it.

    $ virtualenv -p python3 venv
    $ source venv/bin/activate
    

    From this point onwards commands run inside the virtual environment.

  4. Install dependencies and code from src folder in editable mode, so you can experiment with the code.

    $ (venv) pip install -r requirements.txt
    $ (venv) export PYTHONPATH="."
    
  5. Open the notebooks, either with good old Jupyter or Jupyter lab

    $ (venv) jupyter notebook
    
    $ (venv) jupyter lab
    

    If both launch commands fail, try these:

    $ (venv) jupyter notebook --NotebookApp.use_redirect_file=False
    
    $ (venv) jupyter lab --NotebookApp.use_redirect_file=False
    
  6. Play and learn. And do the homework πŸ˜‰.

Notebooks

Let's connect!

Do you wanna become a PRO in Machine Learning?

πŸ‘‰πŸ½ Subscribe to the datamachines newsletter 🧠

πŸ‘‰πŸ½ Follow me on Twitter and LinkedIn πŸ’‘