-
Notifications
You must be signed in to change notification settings - Fork 59
/
eval.py
398 lines (335 loc) · 16.8 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import cv2
import time
import math
import os
import numpy as np
import tensorflow as tf
import locality_aware_nms as nms_locality
import lanms
import Levenshtein
from bktree import BKTree, levenshtein, dict_words
# tf.app.flags.DEFINE_string('test_data_path', 'training_samples/', '')
# tf.app.flags.DEFINE_string('test_data_path', '/data2/data/15ICDAR/test/image/', '')
tf.app.flags.DEFINE_string('test_data_path', '/home/qz/data/ICDAR15/ch4_test_images/', '')
# tf.app.flags.DEFINE_string('test_data_path', '/home/qz/data/ICDAR15/ch4_training_images/', '')
tf.app.flags.DEFINE_string('gpu_list', '1', '')
tf.app.flags.DEFINE_string('checkpoint_path', 'checkpoints_pretrained_600k/', '')
# tf.app.flags.DEFINE_string('checkpoint_path', 'checkpoints_15only/', '')
# tf.app.flags.DEFINE_string('checkpoint_path', 'synth_pretrained_model/', '')
tf.app.flags.DEFINE_string('output_dir', 'outputs/', '')
tf.app.flags.DEFINE_bool('no_write_images', True, 'do not write images')
# tf.app.flags.DEFINE_bool('use_vacab', True, 'strong, normal or weak')
tf.app.flags.DEFINE_bool('use_vacab', True, 'strong, normal or weak')
from module import Backbone_branch, Recognition_branch, RoI_rotate
from icdar import restore_rectangle, ground_truth_to_word
FLAGS = tf.app.flags.FLAGS
detect_part = Backbone_branch.Backbone(is_training=False)
roi_rotate_part = RoI_rotate.RoIRotate()
recognize_part = Recognition_branch.Recognition(is_training=False)
font = cv2.FONT_HERSHEY_SIMPLEX
def get_images():
'''
find image files in test data path
:return: list of files found
'''
files = []
exts = ['jpg', 'png', 'jpeg', 'JPG']
for parent, dirnames, filenames in os.walk(FLAGS.test_data_path):
for filename in filenames:
for ext in exts:
if filename.endswith(ext):
files.append(os.path.join(parent, filename))
break
print('Find {} images'.format(len(files)))
return files
"""
# It seems do not need it
def resize_image(im, max_side_len=2400, input_size=512):
new_h, new_w, _ = im.shape
max_h_w_i = np.max([new_h, new_w, input_size])
im_padded = np.zeros((max_h_w_i, max_h_w_i, 3), dtype=np.uint8)
im_padded[:new_h, :new_w, :] = im.copy()
im = im_padded
# resize the image to input size
new_h, new_w, _ = im.shape
resize_h = input_size
resize_w = input_size
im = cv2.resize(im, dsize=(resize_w, resize_h))
resize_ratio_3_x = resize_w/float(new_w)
resize_ratio_3_y = resize_h/float(new_h)
return im, (resize_ratio_3_y, resize_ratio_3_x)
"""
def resize_image(im, max_side_len=2400):
'''
resize image to a size multiple of 32 which is required by the network
:param im: the resized image
:param max_side_len: limit of max image size to avoid out of memory in gpu
:return: the resized image and the resize ratio
'''
h, w, _ = im.shape
resize_w = w
resize_h = h
# limit the max side
if max(resize_h, resize_w) > max_side_len:
ratio = float(max_side_len) / resize_h if resize_h > resize_w else float(max_side_len) / resize_w
else:
ratio = 1.
resize_h = int(resize_h * ratio)
resize_w = int(resize_w * ratio)
resize_h = resize_h if resize_h % 32 == 0 else (resize_h // 32 - 1) * 32
resize_w = resize_w if resize_w % 32 == 0 else (resize_w // 32 - 1) * 32
resize_h = max(32, resize_h)
resize_w = max(32, resize_w)
im = cv2.resize(im, (int(resize_w), int(resize_h)))
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
return im, (ratio_h, ratio_w)
def detect(score_map, geo_map, timer, score_map_thresh=0.8, box_thresh=0.1, nms_thres=0.2):
'''
restore text boxes from score map and geo map
:param score_map:
:param geo_map:
:param timer:
:param score_map_thresh: threshhold for score map
:param box_thresh: threshhold for boxes
:param nms_thres: threshold for nms
:return:
'''
if len(score_map.shape) == 4:
score_map = score_map[0, :, :, 0]
geo_map = geo_map[0, :, :, ]
# filter the score map
xy_text = np.argwhere(score_map > score_map_thresh)
# sort the text boxes via the y axis
xy_text = xy_text[np.argsort(xy_text[:, 0])]
# restore
start = time.time()
text_box_restored = restore_rectangle(xy_text[:, ::-1]*4, geo_map[xy_text[:, 0], xy_text[:, 1], :]) # N*4*2
print('{} text boxes before nms'.format(text_box_restored.shape[0]))
boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
boxes[:, :8] = text_box_restored.reshape((-1, 8))
boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
timer['restore'] = time.time() - start
# nms part
start = time.time()
# boxes = nms_locality.nms_locality(boxes.astype(np.float64), nms_thres)
boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thres)
timer['nms'] = time.time() - start
if boxes.shape[0] == 0:
return None, timer
# here we filter some low score boxes by the average score map, this is different from the orginal paper
for i, box in enumerate(boxes):
mask = np.zeros_like(score_map, dtype=np.uint8)
cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32) // 4, 1)
boxes[i, 8] = cv2.mean(score_map, mask)[0]
boxes = boxes[boxes[:, 8] > box_thresh]
return boxes, timer
"""
def get_project_matrix_and_width(text_polyses, target_height=8.0):
project_matrixes = []
box_widths = []
filter_box_masks = []
# max_width = 0
max_width = 0
for i in range(text_polyses.shape[0]):
x1, y1, x2, y2, x3, y3, x4, y4 = text_polyses[i] / 4
rotated_rect = cv2.minAreaRect(np.array([[x1, y1], [x2, y2], [x3, y3], [x4, y4]]))
box_w, box_h = rotated_rect[1][0], rotated_rect[1][1]
if box_w <= box_h:
box_w, box_h = box_h, box_w
mapped_x1, mapped_y1 = (0, 0)
mapped_x4, mapped_y4 = (0, 8)
width_box = math.ceil(8 * box_w / box_h)
width_box = int(min(width_box, 128)) # not to exceed feature map's width
# width_box = int(min(width_box, 512)) # not to exceed feature map's width
if width_box > max_width:
max_width = width_box
mapped_x2, mapped_y2 = (width_box, 0)
mapped_x3, mapped_y3 = (width_box, 8)
src_pts = np.float32([(x1, y1), (x2, y2),(x3, y3), (x4, y4)])
dst_pts = np.float32([(mapped_x1, mapped_y1), (mapped_x2, mapped_y2), (mapped_x3, mapped_y3), (mapped_x4, mapped_y4)])
project_matrix = cv2.getPerspectiveTransform(dst_pts.astype(np.float32), src_pts.astype(np.float32))
project_matrix = project_matrix.flatten()[:8]
project_matrixes.append(project_matrix)
box_widths.append(width_box)
project_matrixes = np.array(project_matrixes)
box_widths = np.array(box_widths)
return project_matrixes, box_widths, max_width
"""
def get_project_matrix_and_width(text_polyses, target_height=8.0):
project_matrixes = []
box_widths = []
filter_box_masks = []
# max_width = 0
# max_width = 0
for i in range(text_polyses.shape[0]):
x1, y1, x2, y2, x3, y3, x4, y4 = text_polyses[i] / 4
rotated_rect = cv2.minAreaRect(np.array([[x1, y1], [x2, y2], [x3, y3], [x4, y4]]))
box_w, box_h = rotated_rect[1][0], rotated_rect[1][1]
if box_w <= box_h:
box_w, box_h = box_h, box_w
mapped_x1, mapped_y1 = (0, 0)
mapped_x4, mapped_y4 = (0, 8)
width_box = math.ceil(8 * box_w / box_h)
width_box = int(min(width_box, 128)) # not to exceed feature map's width
# width_box = int(min(width_box, 512)) # not to exceed feature map's width
"""
if width_box > max_width:
max_width = width_box
"""
mapped_x2, mapped_y2 = (width_box, 0)
# mapped_x3, mapped_y3 = (width_box, 8)
src_pts = np.float32([(x1, y1), (x2, y2), (x4, y4)])
dst_pts = np.float32([(mapped_x1, mapped_y1), (mapped_x2, mapped_y2), (mapped_x4, mapped_y4)])
affine_matrix = cv2.getAffineTransform(dst_pts.astype(np.float32), src_pts.astype(np.float32))
affine_matrix = affine_matrix.flatten()
# project_matrix = cv2.getPerspectiveTransform(dst_pts.astype(np.float32), src_pts.astype(np.float32))
# project_matrix = project_matrix.flatten()[:8]
project_matrixes.append(affine_matrix)
box_widths.append(width_box)
project_matrixes = np.array(project_matrixes)
box_widths = np.array(box_widths)
return project_matrixes, box_widths
def sort_poly(p):
min_axis = np.argmin(np.sum(p, axis=1))
p = p[[min_axis, (min_axis+1)%4, (min_axis+2)%4, (min_axis+3)%4]]
if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]):
return p
else:
return p[[0, 3, 2, 1]]
"""
def find_similar_word(input_str, word_set):
min_distance = 10000
best_word = input_str
for word in word_set:
dist = Levenshtein.distance(input_str, word)
if dist < min_distance:
min_distance = dist
best_word = word
return best_word
"""
def bktree_search(bktree, pred_word, dist=5):
return bktree.query(pred_word, dist)
def main(argv=None):
import os
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list
try:
os.makedirs(FLAGS.output_dir)
except OSError as e:
if e.errno != 17:
raise
if FLAGS.use_vacab and os.path.exists("./vocab.txt"):
bk_tree = BKTree(levenshtein, dict_words('./vocab.txt'))
with tf.get_default_graph().as_default():
input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_images')
input_transform_matrix = tf.placeholder(tf.float32, shape=[None, 6], name='input_transform_matrix')
# input_box_mask = tf.placeholder(tf.int32, shape=[None], name='input_box_mask')
input_box_mask = []
input_box_mask.append(tf.placeholder(tf.int32, shape=[None], name='input_box_masks_0'))
input_box_widths = tf.placeholder(tf.int32, shape=[None], name='input_box_widths')
# input_box_nums = tf.placeholder(tf.int32, name='input_box_nums')
# input_seq_len = tf.placeholder(tf.int32, shape=[None], name='input_seq_len')
input_seq_len = input_box_widths[tf.argmax(input_box_widths, 0)] * tf.ones_like(input_box_widths)
global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
shared_feature, f_score, f_geometry = detect_part.model(input_images)
pad_rois = roi_rotate_part.roi_rotate_tensor_pad(shared_feature, input_transform_matrix, input_box_mask, input_box_widths)
recognition_logits = recognize_part.build_graph(pad_rois, input_box_widths)
_, dense_decode = recognize_part.decode(recognition_logits, input_box_widths)
variable_averages = tf.train.ExponentialMovingAverage(0.997, global_step)
saver = tf.train.Saver(variable_averages.variables_to_restore())
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
ckpt_state = tf.train.get_checkpoint_state(FLAGS.checkpoint_path)
model_path = os.path.join(FLAGS.checkpoint_path, os.path.basename(ckpt_state.model_checkpoint_path))
print('Restore from {}'.format(model_path))
saver.restore(sess, model_path)
im_fn_list = get_images()
for im_fn in im_fn_list:
im = cv2.imread(im_fn)[:, :, ::-1]
start_time = time.time()
im_resized, (ratio_h, ratio_w) = resize_image(im)
# im_resized_d, (ratio_h_d, ratio_w_d) = resize_image_detection(im)
timer = {'net': 0, 'restore': 0, 'nms': 0}
start = time.time()
score, geometry = sess.run([f_score, f_geometry], feed_dict={input_images: [im_resized]})
boxes, timer = detect(score_map=score, geo_map=geometry, timer=timer)
"""
if boxes is not None:
boxes = boxes[:, :8].reshape((-1, 4, 2))
boxes[:, :, 0] /= ratio_w
boxes[:, :, 1] /= ratio_h
"""
# save to file
if boxes is not None and boxes.shape[0] != 0:
res_file = os.path.join(
FLAGS.output_dir,
'res_' + '{}.txt'.format(
os.path.basename(im_fn).split('.')[0]))
input_roi_boxes = boxes[:, :8].reshape(-1, 8)
# input_roi_boxes = boxes[:, :8].reshape((-1, 4, 2))
# input_roi_boxes = boxes.copy()
# input_roi_boxes[:, :, 0] *= ratio_w
# input_roi_boxes[:, :, 1] *= ratio_h
# input_roi_boxes = input_roi_boxes.reshape((-1, 8))
# boxes_masks = np.array([0] * input_roi_boxes.shape[0])
boxes_masks = [0] * input_roi_boxes.shape[0]
transform_matrixes, box_widths = get_project_matrix_and_width(input_roi_boxes)
# max_box_widths = max_width * np.ones(boxes_masks.shape[0]) # seq_len
# Run end to end
recog_decode = sess.run(dense_decode, feed_dict={input_images: [im_resized], input_transform_matrix: transform_matrixes, input_box_mask[0]: boxes_masks, input_box_widths: box_widths})
timer['net'] = time.time() - start
# Preparing for draw boxes
boxes = boxes[:, :8].reshape((-1, 4, 2))
boxes[:, :, 0] /= ratio_w
boxes[:, :, 1] /= ratio_h
# print "recognition result: "
# for pred in recog_decode:
# print ground_truth_to_word(pred)
if recog_decode.shape[0] != boxes.shape[0]:
print "detection and recognition result are not equal!"
exit(-1)
with open(res_file, 'w') as f:
for i, box in enumerate(boxes):
# to avoid submitting errors
box = sort_poly(box.astype(np.int32))
if np.linalg.norm(box[0] - box[1]) < 5 or np.linalg.norm(box[3]-box[0]) < 5:
continue
recognition_result = ground_truth_to_word(recog_decode[i])
if FLAGS.use_vacab:
fix_result = bktree_search(bk_tree, recognition_result.upper())
if len(fix_result) != 0:
recognition_result = fix_result[0][1]
f.write('{},{},{},{},{},{},{},{},{}\r\n'.format(
box[0, 0], box[0, 1], box[1, 0], box[1, 1], box[2, 0], box[2, 1], box[3, 0], box[3, 1], recognition_result
))
"""
f.write('{},{},{},{},{},{},{},{}\r\n'.format(
box[0, 0], box[0, 1], box[1, 0], box[1, 1], box[2, 0], box[2, 1], box[3, 0], box[3, 1]
))
"""
# Draw bounding box
cv2.polylines(im[:, :, ::-1], [box.astype(np.int32).reshape((-1, 1, 2))], True, color=(255, 255, 0), thickness=1)
# Draw recognition results area
text_area = box.copy()
text_area[2, 1] = text_area[1, 1]
text_area[3, 1] = text_area[0, 1]
text_area[0, 1] = text_area[0, 1] - 15
text_area[1, 1] = text_area[1, 1] - 15
cv2.fillPoly(im[:, :, ::-1], [text_area.astype(np.int32).reshape((-1, 1, 2))], color=(255, 255, 0))
im_txt = cv2.putText(im[:, :, ::-1], recognition_result, (box[0, 0], box[0, 1]), font, 0.5, (0, 0, 255), 1)
else:
timer['net'] = time.time() - start
res_file = os.path.join(FLAGS.output_dir, 'res_' + '{}.txt'.format(os.path.basename(im_fn).split('.')[0]))
f = open(res_file, "w")
im_txt = None
f.close()
print('{} : net {:.0f}ms, restore {:.0f}ms, nms {:.0f}ms'.format(
im_fn, timer['net']*1000, timer['restore']*1000, timer['nms']*1000))
duration = time.time() - start_time
print('[timing] {}'.format(duration))
if not FLAGS.no_write_images:
img_path = os.path.join(FLAGS.output_dir, os.path.basename(im_fn))
# cv2.imwrite(img_path, im[:, :, ::-1])
if im_txt is not None:
cv2.imwrite(img_path, im_txt)
if __name__ == '__main__':
tf.app.run()