-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
155 lines (129 loc) · 6.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse
import math
import os
import random
import shutil
import time
import torch
from torch.utils.data import DataLoader
import numpy as np
from Recorder import Recorder
from data_utils import RegnetLoader
from logger import RegnetLogger
from criterion import RegnetLoss
from model import Regnet
# from test import test_checkpoint
from contextlib import redirect_stdout
from config import _C as config
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
def prepare_dataloaders():
# Get data, data loaders and collate function ready
trainset = RegnetLoader(config.training_files)
valset = RegnetLoader(config.test_files)
train_loader = DataLoader(trainset, num_workers=4, shuffle=True,
batch_size=config.batch_size, pin_memory=False,
drop_last=True)
test_loader = DataLoader(valset, num_workers=4, shuffle=False,
batch_size=config.batch_size, pin_memory=False)
return train_loader, test_loader
def test_model(model, criterion, test_loader, epoch, logger, visualization=False):
model.eval()
reduced_loss_ = []
with torch.no_grad():
for i, batch in enumerate(test_loader):
model.parse_batch(batch)
model.forward()
if visualization:
for j in range(len(model.fake_B)):
plt.figure(figsize=(8, 9))
plt.subplot(311)
plt.imshow(model.real_B[j].data.cpu().numpy(),
aspect='auto', origin='lower')
plt.title(model.video_name[j]+"_ground_truth")
plt.subplot(312)
plt.imshow(model.fake_B[j].data.cpu().numpy(),
aspect='auto', origin='lower')
plt.title(model.video_name[j]+"_predict")
plt.subplot(313)
plt.imshow(model.fake_B_postnet[j].data.cpu().numpy(),
aspect='auto', origin='lower')
plt.title(model.video_name[j]+"_postnet")
plt.tight_layout()
viz_dir = os.path.join(config.save_dir, "viz", f'epoch_{epoch:05d}')
os.makedirs(viz_dir, exist_ok=True)
plt.savefig(os.path.join(viz_dir, model.video_name[j]+".jpg"))
plt.close()
loss = criterion((model.fake_B, model.fake_B_postnet), model.real_B)
reduced_loss = loss.item()
reduced_loss_.append(reduced_loss)
if not math.isnan(reduced_loss):
print("Test loss epoch:{} iter:{} {:.6f} ".format(epoch, i, reduced_loss))
logger.log_testing(np.mean(reduced_loss_), epoch)
model.train()
def train():
torch.manual_seed(config.seed)
torch.cuda.manual_seed(config.seed)
model = Regnet()
criterion = RegnetLoss(config.loss_type)
logger = RegnetLogger(os.path.join(config.save_dir, 'logs'))
train_loader, test_loader = prepare_dataloaders()
# Load checkpoint if one exists
iteration = 0
epoch_offset = 0
if config.checkpoint_path != '':
model.load_checkpoint(config.checkpoint_path)
iteration = model.iteration
iteration += 1 # next iteration is iteration + 1
epoch_offset = max(0, int(iteration / len(train_loader)))
config.epoch_count = epoch_offset
model.setup()
model.train()
# ================ MAIN TRAINNIG LOOP! ===================
for epoch in range(epoch_offset, config.epochs):
print("Epoch: {}".format(epoch))
for i, batch in enumerate(train_loader):
start = time.perf_counter()
model.zero_grad()
model.parse_batch(batch)
model.optimize_parameters()
learning_rate = model.optimizers[0].param_groups[0]['lr']
loss = criterion((model.fake_B, model.fake_B_postnet), model.real_B)
reduced_loss = loss.item()
if not math.isnan(reduced_loss):
duration = time.perf_counter() - start
print("epoch:{} iter:{} loss:{:.6f} G:{:.6f} D:{:.6f} D_r-f:{:.6f} G_s:{:.6f} time:{:.2f}s/it".format(
epoch, i, reduced_loss, model.loss_G, model.loss_D, (model.pred_real - model.pred_fake).mean(), model.loss_G_silence, duration))
logger.log_training(model, reduced_loss, learning_rate, duration, iteration)
iteration += 1
if epoch % config.num_epoch_save != 0:
test_model(model, criterion, test_loader, epoch, logger)
if epoch % config.num_epoch_save == 0:
print("evaluation and save model")
test_model(model, criterion, test_loader, epoch, logger, visualization=True)
model.save_checkpoint(config.save_dir, iteration)
model.update_learning_rate()
model_path = model.save_checkpoint(config.save_dir, iteration)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config_file', type=str, default='',
help='file for configuration')
parser.add_argument("opts", default=None, nargs=argparse.REMAINDER)
args = parser.parse_args()
if args.config_file:
config.merge_from_file(args.config_file)
config.merge_from_list(args.opts)
# config.freeze()
os.makedirs(config.save_dir, exist_ok=True)
with open(os.path.join(config.save_dir, 'opts.yml'), 'w') as f:
with redirect_stdout(f):
print(config.dump())
f.close()
recorder = Recorder(config.save_dir, config.exclude_dirs)
torch.backends.cudnn.enabled = config.cudnn_enabled
torch.backends.cudnn.benchmark = config.cudnn_benchmark
print("Dynamic Loss Scaling:", config.dynamic_loss_scaling)
print("cuDNN Enabled:", config.cudnn_enabled)
print("cuDNN Benchmark:", config.cudnn_benchmark)
train()