forked from vt-vl-lab/video-data-aug
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rawframe_dataset.py
258 lines (216 loc) · 9.78 KB
/
rawframe_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import copy
import os.path as osp
import torch
from mmcv.utils import print_log
from ..core import mean_average_precision, mean_class_accuracy, top_k_accuracy
from .base import BaseDataset
from .registry import DATASETS
# custom imports
from ..core import confusion_matrix, plot_confusion_matrix
import numpy as np
@DATASETS.register_module()
class RawframeDataset(BaseDataset):
"""Rawframe dataset for action recognition.
The dataset loads raw frames and apply specified transforms to return a
dict containing the frame tensors and other information.
The ann_file is a text file with multiple lines, and each line indicates
the directory to frames of a video, total frames of the video and
the label of a video, which are split with a whitespace.
Example of a annotation file:
.. code-block:: txt
some/directory-1 163 1
some/directory-2 122 1
some/directory-3 258 2
some/directory-4 234 2
some/directory-5 295 3
some/directory-6 121 3
Example of a multi-class annotation file:
.. code-block:: txt
some/directory-1 163 1 3 5
some/directory-2 122 1 2
some/directory-3 258 2
some/directory-4 234 2 4 6 8
some/directory-5 295 3
some/directory-6 121 3
Example of a with_offset annotation file (clips from long videos), each
line indicates the directory to frames of a video, the index of the start
frame, total frames of the video clip and the label of a video clip, which
are split with a whitespace.
.. code-block:: txt
some/directory-1 12 163 3
some/directory-2 213 122 4
some/directory-3 100 258 5
some/directory-4 98 234 2
some/directory-5 0 295 3
some/directory-6 50 121 3
Args:
ann_file (str): Path to the annotation file.
pipeline (list[dict | callable]): A sequence of data transforms.
data_prefix (str): Path to a directory where videos are held.
Default: None.
test_mode (bool): Store True when building test or validation dataset.
Default: False.
filename_tmpl (str): Template for each filename.
Default: 'img_{:05}.jpg'.
with_offset (bool): Determines whether the offset information is in
ann_file. Default: False.
multi_class (bool): Determines whether it is a multi-class
recognition dataset. Default: False.
num_classes (int): Number of classes in the dataset. Default: None.
modality (str): Modality of data. Support 'RGB', 'Flow'.
Default: 'RGB'.
"""
def __init__(self,
ann_file,
pipeline,
data_prefix=None,
test_mode=False,
filename_tmpl='img_{:05}.jpg',
with_offset=False,
multi_class=False,
num_classes=None,
start_index=1,
modality='RGB'):
self.filename_tmpl = filename_tmpl
self.with_offset = with_offset
super().__init__(ann_file, pipeline, data_prefix, test_mode,
multi_class, num_classes, start_index, modality)
def load_annotations(self):
"""Load annotation file to get video information."""
if self.ann_file.endswith('.json'):
return self.load_json_annotations()
video_infos = []
with open(self.ann_file, 'r') as fin:
for line in fin:
line_split = line.strip().split()
video_info = {}
idx = 0
# idx for frame_dir
frame_dir = line_split[idx]
if self.data_prefix is not None:
frame_dir = osp.join(self.data_prefix, frame_dir)
video_info['frame_dir'] = frame_dir
idx += 1
if self.with_offset:
# idx for offset and total_frames
video_info['offset'] = int(line_split[idx])
video_info['total_frames'] = int(line_split[idx + 1])
idx += 2
else:
# idx for total_frames
video_info['total_frames'] = int(line_split[idx])
idx += 1
# idx for label[s]
label = [int(x) for x in line_split[idx:]]
assert len(label), f'missing label in line: {line}'
if self.multi_class:
assert self.num_classes is not None
onehot = torch.zeros(self.num_classes)
onehot[label] = 1.0
video_info['label'] = onehot
else:
assert len(label) == 1
video_info['label'] = label[0]
video_infos.append(video_info)
return video_infos
def prepare_train_frames(self, idx):
"""Prepare the frames for training given the index."""
results = copy.deepcopy(self.video_infos[idx])
results['filename_tmpl'] = self.filename_tmpl
results['modality'] = self.modality
results['start_index'] = self.start_index
return self.pipeline(results)
def prepare_test_frames(self, idx):
"""Prepare the frames for testing given the index."""
results = copy.deepcopy(self.video_infos[idx])
results['filename_tmpl'] = self.filename_tmpl
results['modality'] = self.modality
results['start_index'] = self.start_index
return self.pipeline(results)
def evaluate(self,
results,
metrics='top_k_accuracy',
topk=(1, 5),
logger=None):
"""Evaluation in rawframe dataset.
Args:
results (list): Output results.
metrics (str | sequence[str]): Metrics to be performed.
Defaults: 'top_k_accuracy'.
logger (obj): Training logger. Defaults: None.
topk (int | tuple[int]): K value for top_k_accuracy metric.
Defaults: (1, 5).
logger (logging.Logger | None): Logger for recording.
Default: None.
Returns:
dict: Evaluation results dict.
"""
if not isinstance(results, list):
raise TypeError(f'results must be a list, but got {type(results)}')
assert len(results) == len(self), (
f'The length of results is not equal to the dataset len: '
f'{len(results)} != {len(self)}')
if not isinstance(topk, (int, tuple)):
raise TypeError(
f'topk must be int or tuple of int, but got {type(topk)}')
if isinstance(topk, int):
topk = (topk, )
metrics = metrics if isinstance(metrics, (list, tuple)) else [metrics]
allowed_metrics = [
'top_k_accuracy', 'mean_class_accuracy', 'mean_average_precision', 'confusion_matrix'
]
for metric in metrics:
if metric not in allowed_metrics:
raise KeyError(f'metric {metric} is not supported')
eval_results = {}
gt_labels = [ann['label'] for ann in self.video_infos]
for metric in metrics:
msg = f'Evaluating {metric}...'
if logger is None:
msg = '\n' + msg
print_log(msg, logger=logger)
if metric == 'top_k_accuracy':
top_k_acc = top_k_accuracy(results, gt_labels, topk)
log_msg = []
for k, acc in zip(topk, top_k_acc):
eval_results[f'top{k}_acc'] = acc
log_msg.append(f'\ntop{k}_acc\t{acc:.4f}')
log_msg = ''.join(log_msg)
print_log(log_msg, logger=logger)
continue
if metric == 'mean_class_accuracy':
mean_acc = mean_class_accuracy(results, gt_labels)
eval_results['mean_class_accuracy'] = mean_acc
log_msg = f'\nmean_acc\t{mean_acc:.4f}'
print_log(log_msg, logger=logger)
continue
if metric == 'mean_average_precision':
gt_labels = [label.cpu().numpy() for label in gt_labels]
mAP = mean_average_precision(results, gt_labels)
eval_results['mean_average_precision'] = mAP
log_msg = f'\nmean_average_precision\t{mAP:.4f}'
print_log(log_msg, logger=logger)
continue
if metric == 'confusion_matrix':
print('')
y_preds = [entry.argmax() for entry in results]
class_names = self.get_class_names()
# conf_mat = confusion_matrix(y_preds, gt_labels)
# confmat_fig = plot_confusion_matrix(conf_mat, class_names, figsize=(50,50), normalize=False)
# eval_results['confusion_matrix'] = conf_mat
# eval_results['confusion_matrix_fig'] = confmat_fig
conf_mat_norm = confusion_matrix(y_preds, gt_labels, normalize="true")
confmat_norm_fig = plot_confusion_matrix(conf_mat_norm, class_names,figsize=(50,50), normalize=True)
eval_results['confusion_matrix_norm'] = conf_mat_norm
eval_results['confusion_matrix_norm_fig'] = confmat_norm_fig
continue
return eval_results
def get_class_names(self):
"""Parse class names (text) by parsing the 'frame_dirs' in self.video_infos[i]
Returns:
list: each entry is a string for a class name
"""
all_classes = [ entry['frame_dir'].split('/')[-2] for entry in self.video_infos ]
all_classes = np.unique(all_classes).tolist()
all_classes.sort()
return all_classes