forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransformationHelper.h
175 lines (157 loc) · 6.69 KB
/
TransformationHelper.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#include <ATen/NumericUtils.h>
#include <c10/macros/Macros.h>
#include <c10/util/Half.h>
#include <c10/util/BFloat16.h>
#include <c10/util/MathConstants.h>
#include <cmath>
#include <cstdint>
#include <cassert>
#include <limits>
#include <type_traits>
namespace at {
// Using DistAccumType in accumulate types for distributions.
// Note: Ideally we'd be using ATen/AccumulateType.h but looks
// like the there is some inconsistency in how accumulate types
// are mapped currently, e.g. for the cpu side, float is mapped
// to double.
template <typename T>
struct DistAccumType { };
#if defined(__CUDACC__) || defined(__HIPCC__)
template <> struct DistAccumType<half> { using type = float; };
#endif
template <> struct DistAccumType<BFloat16> { using type = float; };
template <> struct DistAccumType<Half> { using type = float; };
template <> struct DistAccumType<float> { using type = float; };
template <> struct DistAccumType<double> { using type = double; };
template <typename T>
using dist_acctype = typename DistAccumType<T>::type;
namespace transformation {
/**
* A transformation function for `torch.Tensor.random_()`, when both `from` and `to` are specified.
* `range` is `to - from`
* `base` is `from`
*/
template <typename T, typename V>
C10_HOST_DEVICE inline T uniform_int_from_to(V val, uint64_t range, int64_t base) {
return static_cast<T>(static_cast<int64_t>((val % range) + base));
}
/**
* A transformation function for `torch.Tensor.random_()`, when `from=min_value(int64_t)` and to=None
*/
template <typename T, typename V>
C10_HOST_DEVICE inline T uniform_int_full_range(V val) {
return static_cast<T>(static_cast<int64_t>(val));
}
/**
* A transformation function for `torch.Tensor.random_()`, when used without specifying `from` and `to`.
* In order to prevent compiler warnings reported in GitHub issue 46391, T can't be float or double
* in this overloaded version
*/
template <typename T, typename V>
C10_HOST_DEVICE inline std::enable_if_t<!(std::is_floating_point_v<T>), T>uniform_int(V val) {
if constexpr (std::is_same_v<T, bool>) {
return static_cast<bool>(val & 1);
} else if constexpr (std::is_same_v<T, int64_t>) {
return static_cast<T>(val % (static_cast<uint64_t>(std::numeric_limits<T>::max()) + 1));
} else if constexpr (std::is_same_v<T, at::Half> || std::is_same_v<T, at::BFloat16>) {
return static_cast<T>(val % static_cast<uint64_t>((1ULL << std::numeric_limits<T>::digits) + 1));
} else if constexpr (std::is_integral_v<T>) {
return static_cast<T>(val % (static_cast<uint64_t>(std::numeric_limits<T>::max()) + 1));
} else {
assert(false);
return 0;
}
}
/**
* An overloaded transformation function for `torch.Tensor.random_()`, when used without specifying `from` and `to`,
* added to fix compiler warnings reported in GitHub issue 46391. T is either float or double in this version.
*/
template<typename T, typename V>
C10_HOST_DEVICE inline std::enable_if_t<std::is_floating_point_v<T>, T>uniform_int(V val) {
return static_cast<T>(val % static_cast<uint64_t>((1ULL << std::numeric_limits<T>::digits) + 1));
}
template <typename T, typename V>
C10_HOST_DEVICE inline dist_acctype<T> uniform_real(V val, T from, T to) {
constexpr auto MASK = static_cast<V>((static_cast<uint64_t>(1) << std::numeric_limits<T>::digits) - 1);
constexpr auto DIVISOR = static_cast<dist_acctype<T>>(1) / (static_cast<uint64_t>(1) << std::numeric_limits<T>::digits);
dist_acctype<T> x = (val & MASK) * DIVISOR;
return (x * (to - from) + from);
}
/**
* Transforms normally distributed `val` with mean 0.0 and standard deviation 1.0 to
* normally distributed with `mean` and standard deviation `std`.
*/
template <typename T>
C10_HOST_DEVICE inline T normal(T val, T mean, T std) {
return val * std + mean;
}
/**
* Transforms uniformly distributed `val` between 0.0 and 1.0 to
* Cauchy distribution with location parameter `median` and scale parameter `sigma`.
*/
template <typename T>
C10_HOST_DEVICE inline T cauchy(T val, T median, T sigma) {
// https://en.wikipedia.org/wiki/Cauchy_distribution#Cumulative_distribution_function
// __tanf overflows and returns `inf/-inf` when (val > 1 - eps) or (val < 0 + eps),
// thus we clip those values.
constexpr T eps = std::numeric_limits<T>::epsilon();
constexpr T one_minus_eps = 1 - eps;
constexpr T zero_plus_eps = 0 + eps;
val = (val > one_minus_eps ? one_minus_eps : val);
val = (val < zero_plus_eps ? zero_plus_eps : val);
return median + sigma * at::tan(c10::pi<T> * (val - static_cast<T>(0.5)));
}
template <>
C10_HOST_DEVICE inline double cauchy(double val, double median, double sigma) {
// https://en.wikipedia.org/wiki/Cauchy_distribution#Cumulative_distribution_function
return median + sigma * at::tan(c10::pi<double> * (val - static_cast<double>(0.5)));
}
/**
* Transforms uniformly distributed `val` between 0.0 and 1.0 to
* exponentially distributed with `lambda` parameter of the distribution.
*/
template <typename T>
C10_HOST_DEVICE inline T exponential(T val, T lambda) {
// https://en.wikipedia.org/wiki/Exponential_distribution#Generating_exponential_variates
// Different implementations for CUDA and CPU to preserve original logic
// TODO: must be investigated and unified!!!
// https://github.com/pytorch/pytorch/issues/38662
#if defined(__CUDACC__) || defined(__HIPCC__)
// BEFORE TOUCHING THIS CODE READ: https://github.com/pytorch/pytorch/issues/16706
// curand_uniform has (0,1] bounds. log(1) is 0 and exponential excludes 0.
// we need log to be not 0, and not underflow when converted to half
// fast __logf approximation can underflow, so set log to -epsilon/2 for 1 or close to 1 args
auto log = val >= static_cast<T>(1.) - std::numeric_limits<T>::epsilon() / 2
? -std::numeric_limits<T>::epsilon() / 2
: at::log(val);
return static_cast<T>(-1.0) / lambda * log;
#else
return static_cast<T>(-1.0) / lambda * at::log1p(-val);
#endif
}
/**
* Transforms uniformly distributed `val` between 0.0 and 1.0 to
* geometrically distributed with success probability `p`.
*/
template <typename T>
C10_HOST_DEVICE inline T geometric(T val, T p) {
// https://en.wikipedia.org/wiki/Geometric_distribution#Related_distributions
return static_cast<T>(::ceil(at::log(val) / at::log1p(-p)));
}
/**
* Transforms normally distributed `val` to log-normally distributed.
*/
template <typename T>
C10_HOST_DEVICE inline T log_normal(T val) {
// https://en.wikipedia.org/wiki/Log-normal_distribution#Mode,_median,_quantiles
return at::exp(val);
}
/**
* Transforms uniformly distributed `val` between 0.0 and 1.0 to
* bernoulli distributed with success probability `p`.
*/
template <typename T>
C10_HOST_DEVICE inline T bernoulli(T val, T p) {
return val < p;
}
}} // namespace at::transformation