forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBlasKernel.cpp
540 lines (502 loc) · 15.8 KB
/
BlasKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/native/CPUBlas.h>
#include <ATen/native/cpu/zmath.h>
#include <c10/util/irange.h>
#include <c10/util/Unroll.h>
#if defined(__aarch64__) && !defined(C10_MOBILE)
#include <arm_neon.h>
namespace at::native::blas_impl {
void fp16_gemv_notrans(
const int m,
const int n,
const float alpha,
const float16_t* a,
const int lda,
const float16_t* x,
const int incx,
const float beta,
float16_t* y,
const int incy);
void fp16_gemv_trans(
const int m,
const int n,
const float alpha,
const float16_t* a,
const int lda,
const float16_t* x,
const int incx,
const float beta,
float16_t* y,
const int incy);
float fp16_dot_with_fp32_arith(
const float16_t* x,
const float16_t* a,
int64_t len);
float bf16_dot_with_fp32_arith(
const at::BFloat16* x,
const at::BFloat16* a,
int64_t len);
}
#endif
namespace at::native {
namespace cpublas {
namespace {
template <typename scalar_t, typename opmath_t>
void scale_(int64_t m, int64_t n, opmath_t alpha, scalar_t *a, int64_t lda) {
if (alpha == opmath_t(1)) {
return; // identity
}
if (alpha == opmath_t(0)) {
for (const auto j : c10::irange(n)) {
for (const auto i : c10::irange(m)) {
a[j * lda + i] = scalar_t(0);
}
}
return;
}
for (const auto j : c10::irange(n)) {
for (const auto i : c10::irange(m)) {
a[j * lda + i] *= alpha;
}
}
}
template <typename Func>
auto sum(int64_t N, Func f) {
constexpr int ilp_factor = 4;
using acc_t = decltype(f(0));
// Calculate independent partial sums then add together at the end
std::array<acc_t, ilp_factor> partial_sums{};
int64_t i = 0;
for (; i + ilp_factor <= N; i += ilp_factor) {
c10::ForcedUnroll<ilp_factor>{}([&](int k) {
partial_sums[k] += f(i + k);
});
}
for (; i < N; ++i) {
partial_sums[0] += f(i);
}
for (int k = 1; k < ilp_factor; ++k) {
partial_sums[0] += partial_sums[k];
}
return partial_sums[0];
}
template <typename scalar_t, typename opmath_t>
std::enable_if_t<std::is_same_v<scalar_t, opmath_t>, void>
gemm_notrans_(
int64_t m,
int64_t n,
int64_t k,
opmath_t alpha,
const scalar_t* a,
int64_t lda,
const scalar_t* b,
int64_t ldb,
opmath_t beta,
scalar_t* c,
int64_t ldc) {
// c *= beta
scale_(m, n, beta, c, ldc);
// c += alpha * (a @ b)
for (const auto l : c10::irange(k)) {
for (const auto j : c10::irange(n)) {
opmath_t val = b[l + j * ldb] * alpha;
int64_t i_m = m / 4;
for (const auto i_i : c10::irange(i_m)) {
c[j * ldc + i_i * 4 + 0] += a[i_i * 4 + 0 + l * lda] * val;
c[j * ldc + i_i * 4 + 1] += a[i_i * 4 + 1 + l * lda] * val;
c[j * ldc + i_i * 4 + 2] += a[i_i * 4 + 2 + l * lda] * val;
c[j * ldc + i_i * 4 + 3] += a[i_i * 4 + 3 + l * lda] * val;
}
int64_t i = i_m * 4;
for (; i < m; i++)
c[j * ldc + i] += a[i + l * lda] * val;
}
}
}
// std::is_same<scalar_t, at::BFloat16> || std::is_same<scalar_t, at::Half>
template <typename scalar_t, typename opmath_t>
std::enable_if_t<!std::is_same_v<scalar_t, opmath_t>, void>
gemm_notrans_(
int64_t m,
int64_t n,
int64_t k,
opmath_t alpha,
const scalar_t* a,
int64_t lda,
const scalar_t* b,
int64_t ldb,
opmath_t beta,
scalar_t* c,
int64_t ldc) {
// c += alpha * (a @ b)
for (const auto i : c10::irange(m)) {
for (const auto j : c10::irange(n)) {
const auto dot = sum(k, [&](int64_t l) -> opmath_t {
return static_cast<opmath_t>(a[l * lda + i]) *
static_cast<opmath_t>(b[j * ldb + l]);
});
if (beta == opmath_t(0)) {
c[j * ldc + i] = alpha * dot;
} else {
c[j * ldc + i] = beta * c[j * ldc + i] + alpha * dot;
}
}
}
}
template <typename scalar_t, typename opmath_t>
void gemm_transa_(
TransposeType transa,
int64_t m, int64_t n, int64_t k,
opmath_t alpha,
const scalar_t *a, int64_t lda,
const scalar_t *b, int64_t ldb,
opmath_t beta,
scalar_t *c, int64_t ldc) {
// c = alpha * (a.T @ b) + beta * c
const scalar_t *a_ = a;
for (const auto i : c10::irange(m)) {
const scalar_t *b_ = b;
for (const auto j : c10::irange(n)) {
const auto dot = sum(k, [&](int64_t l) -> opmath_t {
return static_cast<opmath_t>(transa == TransposeType::ConjTranspose ? conj_impl(a_[l]) : a_[l]) * static_cast<opmath_t>(b_[l]);
});
b_ += ldb;
if (beta == opmath_t(0)) {
c[j*ldc+i] = alpha*dot;
} else {
c[j*ldc+i] = beta*c[j*ldc+i]+alpha*dot;
}
}
a_ += lda;
}
}
template <typename scalar_t, typename opmath_t>
void gemm_transb_impl(
TransposeType transb,
int64_t m,
int64_t n,
int64_t k,
opmath_t alpha,
const scalar_t* a,
int64_t lda,
const scalar_t* b,
int64_t ldb,
/* we expect pre-applied beta */
opmath_t* c,
int64_t ldc) {
// c += alpha * (a @ b.T)
for (const auto l : c10::irange(k)) {
for (const auto j : c10::irange(n)) {
opmath_t val = (transb == TransposeType::ConjTranspose ? conj_impl(b[j + l * ldb]) : b[j + l * ldb]) * alpha;
int64_t i_m = m / 4;
for (const auto i_i : c10::irange(i_m)) {
c[j * ldc + i_i * 4 + 0] += a[i_i * 4 + 0 + l * lda] * val;
c[j * ldc + i_i * 4 + 1] += a[i_i * 4 + 1 + l * lda] * val;
c[j * ldc + i_i * 4 + 2] += a[i_i * 4 + 2 + l * lda] * val;
c[j * ldc + i_i * 4 + 3] += a[i_i * 4 + 3 + l * lda] * val;
}
int64_t i = i_m * 4;
for (; i < m; i++)
c[j * ldc + i] += a[i + l * lda] * val;
}
}
}
template <typename scalar_t, typename opmath_t>
std::enable_if_t<std::is_same_v<scalar_t, opmath_t>, void>
gemm_transb_(
TransposeType transb,
int64_t m,
int64_t n,
int64_t k,
opmath_t alpha,
const scalar_t* a,
int64_t lda,
const scalar_t* b,
int64_t ldb,
opmath_t beta,
scalar_t* c,
int64_t ldc) {
// c *= beta
scale_(m, n, beta, c, ldc);
gemm_transb_impl(transb, m, n, k, alpha, a, lda, b, ldb, c, ldc);
}
// std::is_same<scalar_t, at::BFloat16> || std::is_same<scalar_t, at::Half>
template <typename scalar_t, typename opmath_t>
std::enable_if_t<!std::is_same_v<scalar_t, opmath_t>, void>
gemm_transb_(
TransposeType transb,
int64_t m,
int64_t n,
int64_t k,
opmath_t alpha,
const scalar_t* a,
int64_t lda,
const scalar_t* b,
int64_t ldb,
opmath_t beta,
scalar_t* c,
int64_t ldc) {
// We need to calculate full-precision dot products for correctness;
// users notice error accumulation with reduced-width types (e.g.,
// https://github.com/pytorch/pytorch/issues/95125 and
// https://github.com/pytorch/pytorch/issues/83863, which were filed
// when we used gemm_transb_impl naively, accumulating into
// float16/bfloat16). The straightforward way to do this is to use
// the vector dot column algorithm anyway, but this gives terrible
// performance because of the non-contiguous matrix
// access. Therefore, we instead elect to allocate temporary space
// to hold the output at higher-precision so that we can accumulate
// into it using the above cache-friendly "load one vector element,
// FMA it with an entire matrix row into the entire result vector"
// algorithm instead.
const auto c_size = m * n;
auto c_accum = std::make_unique<opmath_t[]>(c_size);
if (beta == 1) {
for (const auto j : c10::irange(n)) {
for (const auto i : c10::irange(m)) {
c_accum[j * m + i] = c[j * ldc + i];
}
}
} else if (beta == 0) {
for (const auto j : c10::irange(n)) {
for (const auto i : c10::irange(m)) {
c_accum[j * m + i] = 0;
}
}
} else {
for (const auto j : c10::irange(n)) {
for (const auto i : c10::irange(m)) {
c_accum[j * m + i] = beta * c[j * ldc + i];
}
}
}
gemm_transb_impl(transb, m, n, k, alpha, a, lda, b, ldb, c_accum.get(), m);
for (const auto j : c10::irange(n)) {
for (const auto i : c10::irange(m)) {
c[j * ldc + i] = c_accum[j * m + i];
}
}
}
template <typename scalar_t, typename opmath_t>
void gemm_transab_(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
opmath_t alpha,
const scalar_t *a, int64_t lda,
const scalar_t *b, int64_t ldb,
opmath_t beta,
scalar_t *c, int64_t ldc) {
// c = beta * c + alpha * (a.T @ b.T)
for (const auto i : c10::irange(m)) {
for (const auto j : c10::irange(n)) {
const auto dot = sum(k, [&](int64_t l) -> opmath_t {
return static_cast<opmath_t>(transa == TransposeType::ConjTranspose ? conj_impl(a[i * lda + l]) : a[i * lda + l]) *
static_cast<opmath_t>(transb == TransposeType::ConjTranspose ? conj_impl(b[l * ldb + j]) : b[l * ldb + j]);
});
if (beta == opmath_t(0)) {
c[j * ldc + i] = alpha * dot;
} else {
c[j * ldc + i] = beta * c[j * ldc + i] + alpha * dot;
}
}
}
}
#if defined(__aarch64__) && !defined(C10_MOBILE)
template <>
void gemm_notrans_(
int64_t m,
int64_t n,
int64_t k,
float alpha,
const at::Half* a,
int64_t lda,
const at::Half* b,
int64_t ldb,
float beta,
at::Half* c,
int64_t ldc) {
// c += alpha * (a @ b)
if (n == 1 && beta == 0.0 && alpha == 1.0) {
at::native::blas_impl::fp16_gemv_notrans(m, k, 1.0, reinterpret_cast<const float16_t*>(a), lda, reinterpret_cast<const float16_t*>(b), 1, 0.0, reinterpret_cast<float16_t*>(c), 1);
return;
}
for (const auto i : c10::irange(m)) {
for (const auto j : c10::irange(n)) {
const auto dot = sum(k, [&](int64_t l) -> float {
return float(c10::detail::fp16_from_bits(a[l * lda + i].x)) *
float(c10::detail::fp16_from_bits(b[j * ldb + l].x));
});
if (beta == 0) {
c[j * ldc + i] = alpha * dot;
} else {
c[j * ldc + i] = beta * c[j * ldc + i] + alpha * dot;
}
}
}
}
inline float32x4_t load_as_float32x4(const BFloat16* ptr) {
int32x4_t shift = vdupq_n_s32(16);
uint32x4_t as_int = vmovl_u16(vld1_u16(reinterpret_cast<const uint16_t *>(ptr)));
return vreinterpretq_f32_u32(vshlq_u32(as_int, shift));
}
static float compute_dot(const at::Half* a, const at::Half* b, int64_t len) {
return at::native::blas_impl::fp16_dot_with_fp32_arith(
reinterpret_cast<const float16_t*>(a),
reinterpret_cast<const float16_t*>(b),
len);
}
static float compute_dot(const at::BFloat16* a, const at::BFloat16* b, int64_t len) {
return at::native::blas_impl::bf16_dot_with_fp32_arith(a, b, len);
}
template <>
void gemm_transa_(
TransposeType transa,
int64_t m, int64_t n, int64_t k,
float alpha,
const at::Half *a, int64_t lda,
const at::Half *b, int64_t ldb,
float beta,
at::Half *c, int64_t ldc) {
// c = alpha * (a.T @ b) + beta * c
if (n == 1 && beta == 0.0 && alpha == 1.0) {
at::native::blas_impl::fp16_gemv_trans(k, m, 1.0, reinterpret_cast<const float16_t*>(a), lda, reinterpret_cast<const float16_t*>(b), 1, 0.0, reinterpret_cast<float16_t*>(c), 1);
return;
}
parallel_for(0, m, 1, [&](int64_t begin, int64_t end) {
const auto *a_ = a + begin * lda;
for (const auto i : c10::irange(begin, end)) {
const auto *b_ = b;
for (const auto j : c10::irange(n)) {
const auto dot = compute_dot(a_, b_, k);
b_ += ldb;
if (beta == 0) {
c[j*ldc+i] = alpha*dot;
} else {
c[j*ldc+i] = beta*c[j*ldc+i]+alpha*dot;
}
}
a_ += lda;
}
});
}
template <>
void gemm_transa_(
TransposeType transa,
int64_t m, int64_t n, int64_t k,
float alpha,
const at::BFloat16 *a, int64_t lda,
const at::BFloat16 *b, int64_t ldb,
float beta,
at::BFloat16 *c, int64_t ldc) {
// c = alpha * (a.T @ b) + beta * c
parallel_for(0, m, 1, [&](int64_t begin, int64_t end) {
const auto *a_ = a + begin * lda;
for (const auto i : c10::irange(begin, end)) {
const auto *b_ = b;
for (const auto j : c10::irange(n)) {
const auto dot = compute_dot(a_, b_, k);
b_ += ldb;
if (beta == 0) {
c[j*ldc+i] = alpha*dot;
} else {
c[j*ldc+i] = beta*c[j*ldc+i]+alpha*dot;
}
}
a_ += lda;
}
});
}
#endif
template <typename scalar_t, typename opmath_t>
void gemm_core_(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
opmath_t alpha,
const scalar_t *a, int64_t lda,
const scalar_t *b, int64_t ldb,
opmath_t beta,
scalar_t *c, int64_t ldc) {
if (transa == TransposeType::NoTranspose &&
transb == TransposeType::NoTranspose) {
return gemm_notrans_(m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
} else if (
transa != TransposeType::NoTranspose &&
transb == TransposeType::NoTranspose) {
gemm_transa_(transa, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
} else if (
transa == TransposeType::NoTranspose &&
transb != TransposeType::NoTranspose) {
gemm_transb_(transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
} else {
gemm_transab_(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
}
}
#if !defined(C10_MOBILE)
#define _AT_DISPATCH_GEMM_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND6( \
kHalf, kBFloat16, kFloat8_e5m2, kFloat8_e4m3fn, kFloat8_e5m2fnuz, kFloat8_e4m3fnuz, \
TYPE, NAME, __VA_ARGS__)
#else
#define _AT_DISPATCH_GEMM_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2( \
kHalf, kBFloat16, \
TYPE, NAME, __VA_ARGS__)
#endif
void cpublas_gemm_impl(
at::ScalarType type,
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
const Scalar& alpha,
const void *a, int64_t lda,
const void *b, int64_t ldb,
const Scalar& beta,
void *c, int64_t ldc) {
_AT_DISPATCH_GEMM_TYPES(type, "cpublas_gemm_impl", [&]{
using opmath_t = at::opmath_type<scalar_t>;
gemm_core_(
transa, transb, m, n, k,
alpha.to<opmath_t>(),
static_cast<const scalar_t *>(a), lda,
static_cast<const scalar_t *>(b), ldb,
beta.to<opmath_t>(),
static_cast<scalar_t *>(c), ldc);
});
}
void cpublas_axpy_impl(at::ScalarType type, int64_t n, const Scalar& _a, const void *_x, int64_t incx, void *_y, int64_t incy){
if (type == at::kBool) {
auto a = _a.to<bool>();
auto x = static_cast<const bool *>(_x);
auto y = static_cast<bool *>(_y);
int64_t i;
for(i = 0; i < n; i++)
y[i*incy] |= a & x[i*incx];
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(at::kHalf, at::kBFloat16, type, "cpublas_axpy_impl",
[&] {
using opmath_t = at::opmath_type<scalar_t>;
auto a = _a.to<opmath_t>();
auto x = static_cast<const scalar_t *>(_x);
auto y = static_cast<scalar_t *>(_y);
int64_t i;
for(i = 0; i < n; i++)
y[i*incy] += a*x[i*incx];
});
}
}
void cpublas_copy_impl(at::ScalarType type, int64_t n, const void *_x, int64_t incx, void *_y, int64_t incy){
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND4(at::kComplexHalf, at::kHalf, at::kBFloat16, at::kBool, type, "cpublas_copy_impl",
[&] {
auto x = static_cast<const scalar_t *>(_x);
auto y = static_cast<scalar_t *>(_y);
int64_t i;
for(i = 0; i < n; i++)
y[i*incy] = x[i*incx];
});
}
}} // namespace cpublas::(anonymous)
REGISTER_DISPATCH(cpublas::gemm_stub, &cpublas::cpublas_gemm_impl);
REGISTER_DISPATCH(cpublas::axpy_stub, &cpublas::cpublas_axpy_impl);
REGISTER_DISPATCH(cpublas::copy_stub, &cpublas::cpublas_copy_impl);
} // namespace at::native