forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDistributionTemplates.h
425 lines (379 loc) · 16.1 KB
/
DistributionTemplates.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#pragma once
#include <ATen/CPUApplyUtils.h>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/ExpandBase.h>
#include <ATen/core/DistributionsHelper.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cpu/Loops.h>
#include <mutex>
#ifdef CPU_CAPABILITY_AVX2
#include <ATen/native/cpu/avx_mathfun.h>
#include <c10/util/irange.h>
#endif
namespace at::native::templates::cpu {
namespace {
// ==================================================== Random ========================================================
template<typename RNG>
void random_from_to_kernel(TensorIteratorBase& iter, uint64_t range, int64_t base, RNG generator) {
AT_DISPATCH_V2(iter.dtype(), "random_from_to_kernel_cpu", AT_WRAP([&] {
std::lock_guard<std::mutex> lock(generator->mutex_);
cpu_serial_kernel(iter, [range, base, generator]() -> scalar_t {
uniform_int_from_to_distribution<scalar_t> random(range, base);
return random(generator);
});
}), kBool, kHalf, kBFloat16, AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES));
}
// This is the special kernel to handle single specific case:
// from(inclusive) = std::numeric_limits<int64_t>::lowest()
// to(exclusive) = None (= std::numeric_limits<int64_t>::max() + 1)
template<typename RNG>
void random_full_64_bits_range_kernel(TensorIteratorBase& iter, RNG generator) {
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::BFloat16, iter.dtype(), "random_full_64_bits_range_kernel_cpu", [&] {
if constexpr (std::is_same_v<scalar_t, int64_t> ||
std::is_same_v<scalar_t, double> ||
std::is_same_v<scalar_t, float> ||
std::is_same_v<scalar_t, at::BFloat16>) {
std::lock_guard<std::mutex> lock(generator->mutex_);
cpu_serial_kernel(iter, [generator]() -> scalar_t {
uniform_int_full_range_distribution<scalar_t> random;
return random(generator);
});
} else {
TORCH_CHECK(false, "random_full_64_bits_range_kernel_cpu handles only int64, double, float and bfloat16");
}
});
}
template<typename RNG>
struct RandomFromToKernel {
void operator()(TensorIteratorBase& iter, uint64_t range, int64_t base, std::optional<Generator> gen) {
random_from_to_kernel(iter, range, base, check_generator<RNG>(gen));
}
void operator()(TensorIteratorBase& iter, std::optional<Generator> gen) {
random_full_64_bits_range_kernel(iter, check_generator<RNG>(gen));
}
};
template<typename RNG>
void random_kernel(TensorIteratorBase& iter, RNG generator) {
std::lock_guard<std::mutex> lock(generator->mutex_);
AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Half, at::ScalarType::BFloat16, at::ScalarType::Bool, iter.dtype(), "random_kernel_cpu", [&] {
cpu_serial_kernel(iter, [generator]() -> scalar_t {
uniform_int_distribution<scalar_t> random;
return random(generator);
});
});
}
template<typename RNG>
struct RandomKernel {
void operator()(TensorIteratorBase& iter, std::optional<Generator> gen) {
random_kernel(iter, check_generator<RNG>(gen));
}
};
// ==================================================== Normal ========================================================
#ifdef CPU_CAPABILITY_AVX2
static void normal_fill_16_AVX2(float *data,
const __m256* two_pi,
const __m256* one,
const __m256* minus_two,
const __m256* mean,
const __m256* std_v) {
const __m256 u1 = _mm256_sub_ps(*one, _mm256_loadu_ps(data));
const __m256 u2 = _mm256_loadu_ps(data + 8);
// sincos256_ps and log256_ps are from avx_mathfun.h
const __m256 radius = _mm256_sqrt_ps(_mm256_mul_ps(*minus_two, log256_ps(u1)));
const __m256 theta = _mm256_mul_ps(*two_pi, u2);
__m256 sintheta, costheta;
sincos256_ps(theta, &sintheta, &costheta);
const __m256 n1 = _mm256_mul_ps(radius, costheta);
const __m256 n2 = _mm256_mul_ps(radius, sintheta);
_mm256_storeu_ps(data, _mm256_fmadd_ps(n1, *std_v, *mean));
_mm256_storeu_ps(data + 8, _mm256_fmadd_ps(n2, *std_v, *mean));
}
template<typename RNG>
void normal_fill_AVX2(const TensorBase &self, const float mean, const float std, RNG generator) {
float *data = self.data_ptr<float>();
auto size = self.numel();
std::lock_guard<std::mutex> lock(generator->mutex_);
for (const auto i : c10::irange(size)) {
at::uniform_real_distribution<float> uniform(0, 1);
data[i] = uniform(generator);
}
const __m256 two_pi = _mm256_set1_ps(2.0f * c10::pi<double>);
const __m256 one = _mm256_set1_ps(1.0f);
const __m256 minus_two = _mm256_set1_ps(-2.0f);
const __m256 mean_v = _mm256_set1_ps(mean);
const __m256 std_v = _mm256_set1_ps(std);
for (int64_t i = 0; i < size - 15; i += 16) {
normal_fill_16_AVX2(data + i, &two_pi, &one, &minus_two, &mean_v, &std_v);
}
if (size % 16 != 0) {
// Recompute the last 16 values.
data = data + size - 16;
for (const auto i : c10::irange(16)) {
at::uniform_real_distribution<float> uniform(0, 1);
data[i] = uniform(generator);
}
normal_fill_16_AVX2(data, &two_pi, &one, &minus_two, &mean_v, &std_v);
}
}
#endif
template <typename scalar_t>
static void normal_fill_16(scalar_t *data, const scalar_t mean, const scalar_t std) {
for (const auto j : c10::irange(8)) {
const scalar_t u1 = 1 - data[j]; // [0, 1) -> (0, 1] for log.
const scalar_t u2 = data[j + 8];
const scalar_t radius = std::sqrt(-2 * std::log(u1));
const scalar_t theta = 2.0f * c10::pi<double> * u2;
data[j] = radius * std::cos(theta) * std + mean;
data[j + 8] = radius * std::sin(theta) * std + mean;
}
}
#if defined(__VSX__) || defined(CPU_CAPABILITY_VSX)
static void normal_fill_16_VSX(float *data,const Vectorized<float> &two_pi,const Vectorized<float> &one,const Vectorized<float> &minus_two,const Vectorized<float> &mean,const Vectorized<float> &std) {
using Vec = Vectorized<float>;
Vec u1=one-Vec::loadu(data);
Vec u2=Vec::loadu(data+8);
Vec radius=(minus_two * u1.log());
radius=radius.sqrt();
Vec theta=two_pi * u2;
Vec output_vec=radius * theta.cos() * std + mean;
Vec output_vec2=radius * theta.sin() * std + mean;
output_vec.store(data);
output_vec2.store(data+8);
}
template <typename scalar_t, typename RNG>
void normal_fill_VSX(const TensorBase &self, const scalar_t mean, const scalar_t std, RNG generator) {
float *data = self.data_ptr<float>();
auto size = self.numel();
std::lock_guard<std::mutex> lock(generator->mutex_);
for (const auto i : c10::irange(size)) {
at::uniform_real_distribution<scalar_t> uniform(0, 1);
data[i] = uniform(generator);
}
using Vec = Vectorized<float>;
const Vec two_pi = Vec(2.0f * c10::pi<double>);
const Vec one = Vec(1.0f);
const Vec minus_two = Vec(-2.0f);
const Vec var_vec = Vec(std);
const Vec mean_vec = Vec(mean);
for (int64_t i = 0; i < size - 15; i += 16) {
if(Vec::size()==8) {
normal_fill_16_VSX(data + i, two_pi, one, minus_two, mean_vec, var_vec);
}
else{
normal_fill_16<scalar_t>(data + i, mean, std);
}
}
if (size % 16 != 0) {
// Recompute the last 16 values.
data = data + size - 16;
for (const auto i : c10::irange(16)) {
at::uniform_real_distribution<scalar_t> uniform(0, 1);
data[i] = uniform(generator);
}
if(Vec::size()==8){
normal_fill_16_VSX(data, two_pi, one, minus_two, mean_vec, var_vec);
}
else{
normal_fill_16<scalar_t>(data, mean, std);
}
}
}
#endif //VSX
template <typename scalar_t, typename RNG>
void normal_fill(const TensorBase &self, const scalar_t mean, const scalar_t std, RNG generator) {
scalar_t *data = self.data_ptr<scalar_t>();
auto size = self.numel();
std::lock_guard<std::mutex> lock(generator->mutex_);
for (const auto i : c10::irange(size)) {
at::uniform_real_distribution<scalar_t> uniform(0, 1);
data[i] = uniform(generator);
}
for (int64_t i = 0; i < size - 15; i += 16) {
normal_fill_16<scalar_t>(data + i, mean, std);
}
if (size % 16 != 0) {
// Recompute the last 16 values.
data = data + size - 16;
for (const auto i : c10::irange(16)) {
at::uniform_real_distribution<scalar_t> uniform(0, 1);
data[i] = uniform(generator);
}
normal_fill_16<scalar_t>(data, mean, std);
}
}
template<typename RNG>
void normal_kernel(const TensorBase &self, double mean, double std, RNG generator) {
auto size = self.numel();
if (self.scalar_type() == ScalarType::Float && size >= 16 && self.is_contiguous()) {
#ifdef CPU_CAPABILITY_AVX2
normal_fill_AVX2(self, static_cast<float>(mean), static_cast<float>(std), generator);
#elif defined(__VSX__) || defined(CPU_CAPABILITY_VSX)
normal_fill_VSX(self, static_cast<float>(mean), static_cast<float>(std), generator);
#else
normal_fill(self, static_cast<float>(mean), static_cast<float>(std), generator);
#endif
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, self.scalar_type(), "normal_kernel_cpu", [&] {
if (size >= 16 && self.is_contiguous()) {
normal_fill<scalar_t>(self, static_cast<scalar_t>(mean), static_cast<scalar_t>(std), generator);
} else {
auto iter = TensorIterator::borrowing_nullary_op(self);
std::lock_guard<std::mutex> lock(generator->mutex_);
cpu_serial_kernel(iter, [mean, std, generator]() -> scalar_t {
at::normal_distribution<double> normal(mean, std);
return static_cast<scalar_t>(normal(generator));
});
}
});
}
}
template<typename RNG>
struct NormalKernel {
void operator()(Tensor& self, double mean, double std, std::optional<Generator> gen) {
normal_kernel(self, mean, std, check_generator<RNG>(gen));
}
};
// ==================================================== Uniform =======================================================
template<typename RNG>
void uniform_kernel(TensorIteratorBase& iter, double from_, double to_, RNG generator) {
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, iter.dtype(), "uniform_kernel_cpu", [&]() {
std::lock_guard<std::mutex> lock(generator->mutex_);
auto from = static_cast<scalar_t>(from_);
auto to = static_cast<scalar_t>(to_);
at::uniform_real_distribution<scalar_t> uniform(from, to);
cpu_serial_kernel(iter, [&uniform, generator]() -> scalar_t {
return static_cast<scalar_t>(uniform(generator));
});
});
}
template<typename RNG>
struct UniformKernel {
void operator()(TensorIteratorBase& iter, double from, double to, std::optional<Generator> gen) {
uniform_kernel(iter, from, to, check_generator<RNG>(gen));
}
};
// ==================================================== Cauchy ========================================================
template<typename RNG>
void cauchy_kernel(TensorIteratorBase& iter, double median, double sigma, RNG generator) {
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, iter.dtype(), "cauchy_cpu", [&]() {
std::lock_guard<std::mutex> lock(generator->mutex_);
at::cauchy_distribution<double> cauchy(median, sigma);
cpu_serial_kernel(iter, [&cauchy, generator]() -> scalar_t {
return static_cast<scalar_t>(cauchy(generator));
});
});
}
template<typename RNG>
struct CauchyKernel {
void operator()(TensorIteratorBase& iter, double median, double sigma, std::optional<Generator> gen) {
cauchy_kernel(iter, median, sigma, check_generator<RNG>(gen));
}
};
// ================================================== LogNormal =======================================================
template<typename RNG>
void log_normal_kernel(TensorIteratorBase& iter, double mean, double std, RNG generator) {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "log_normal_cpu", [&]() {
std::lock_guard<std::mutex> lock(generator->mutex_);
at::lognormal_distribution<double> logNormal(mean, std);
cpu_serial_kernel(iter, [&logNormal, generator]() -> scalar_t {
return static_cast<scalar_t>(logNormal(generator));
});
});
}
template<typename RNG>
struct LogNormalKernel {
void operator()(TensorIteratorBase& iter, double mean, double std, std::optional<Generator> gen) {
log_normal_kernel(iter, mean, std, check_generator<RNG>(gen));
}
};
// =================================================== Geometric ======================================================
template<typename RNG>
void geometric_kernel(TensorIteratorBase& iter, double p, RNG generator) {
AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "geometric_cpu", [&]() {
std::lock_guard<std::mutex> lock(generator->mutex_);
at::geometric_distribution<double> geometric(p);
cpu_serial_kernel(iter, [&geometric, generator]() -> scalar_t {
return static_cast<scalar_t>(geometric(generator));
});
});
}
template<typename RNG>
struct GeometricKernel {
void operator()(TensorIteratorBase& iter, double p, std::optional<Generator> gen) {
geometric_kernel(iter, p, check_generator<RNG>(gen));
}
};
// ================================================== Exponential =====================================================
template<typename RNG>
void exponential_kernel(TensorIteratorBase& iter, double lambda, RNG generator) {
TORCH_CHECK(isFloatingType(iter.dtype()), "Exponential distribution is a continuous probability distribution. dtype must be a floating point but you specified ", iter.dtype());
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "exponential_cpu", [&]() {
std::lock_guard<std::mutex> lock(generator->mutex_);
at::exponential_distribution<double> exponential(lambda);
cpu_serial_kernel(iter, [&exponential, generator]() -> scalar_t {
return static_cast<scalar_t>(exponential(generator));
});
});
}
template<typename RNG>
struct ExponentialKernel {
void operator()(TensorIteratorBase& iter, double lambda, std::optional<Generator> gen) {
exponential_kernel(iter, lambda, check_generator<RNG>(gen));
}
};
// ================================================== Bernoulli =======================================================
template<typename RNG>
void bernoulli_kernel(const TensorBase &self, const TensorBase &p_, RNG generator) {
AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Bool, at::ScalarType::BFloat16, at::ScalarType::Half,
self.scalar_type(), "bernoulli_tensor_cpu_self_", [&] {
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(generator->mutex_);
using self_t = scalar_t;
auto p_cpu = p_.to(kCPU);
auto p = expand_inplace(self, p_cpu);
auto iter = TensorIteratorConfig()
.add_output(self)
.add_const_input(*p)
.check_all_same_dtype(false)
.build();
if (p->scalar_type() == kDouble) {
cpu_serial_kernel(iter, [&](const double p_val) -> self_t {
at::bernoulli_distribution<double> bernoulli(p_val);
return static_cast<self_t>(bernoulli(generator));
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::BFloat16, at::ScalarType::Half,
p->scalar_type(), "bernoulli_tensor_cpu_p_", [&] {
using p_t = scalar_t;
cpu_serial_kernel(iter, [&](const p_t p_val) -> self_t {
at::bernoulli_distribution<float> bernoulli(p_val);
return static_cast<self_t>(bernoulli(generator));
});
});
}
});
}
template<typename RNG>
void bernoulli_kernel(const TensorBase &self, double p, RNG generator) {
AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Bool, at::ScalarType::BFloat16, at::ScalarType::Half,
self.scalar_type(), "bernoulli_scalar_cpu_", [&] {
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(generator->mutex_);
auto iter = TensorIterator::borrowing_nullary_op(self);
cpu_serial_kernel(iter, [p, generator]() -> scalar_t {
at::bernoulli_distribution<double> bernoulli(p);
return static_cast<scalar_t>(bernoulli(generator));
});
});
}
template<typename RNG>
struct BernoulliKernel {
void operator()(const TensorBase &self, double p, std::optional<Generator> gen) {
bernoulli_kernel(self, p, check_generator<RNG>(gen));
}
void operator()(const TensorBase &self, const TensorBase &p_, std::optional<Generator> gen) {
bernoulli_kernel(self, p_, check_generator<RNG>(gen));
}
};
}}