forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLogAddExp.h
61 lines (54 loc) · 2.39 KB
/
LogAddExp.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#pragma once
#include <c10/util/complex.h>
#include <ATen/NumericUtils.h>
namespace at::native {
inline namespace CPU_CAPABILITY {
// custom min and max to be used in logcumsumexp for complex arguments
template <typename scalar_t>
std::pair<c10::complex<scalar_t>, c10::complex<scalar_t>> _logcumsumexp_minmax(c10::complex<scalar_t> x, c10::complex<scalar_t> y) {
if (at::_isnan(y)) { // either real is nan or imag is nan
return std::make_pair(y, y);
} else if (at::_isnan(x)) { // either real is nan or imag is nan
return std::make_pair(x, x);
} else {
return (x.real() < y.real()) ? std::make_pair(x, y) : std::make_pair(y, x);
}
}
template <typename scalar_t>
scalar_t _log_add_exp_helper(scalar_t x, scalar_t y) {
// Reference : https://www.tensorflow.org/api_docs/python/tf/math/cumulative_logsumexp
scalar_t min = at::_isnan(y) ? y : std::min(x, y); // std::min returns first arg if one of the args is nan
scalar_t max = at::_isnan(y) ? y : std::max(x, y); // std::max returns first arg if one of the args is nan
if (min != max || std::isfinite(min)) {
// nan will be propagated here
return std::log1p(std::exp(min - max)) + max;
} else {
// special case to correctly handle infinite cases
return x;
}
}
template <typename scalar_t>
c10::complex<scalar_t> _log_add_exp_helper(const c10::complex<scalar_t>& x, const c10::complex<scalar_t>& y) {
auto [min, max] = _logcumsumexp_minmax<scalar_t>(x, y);
auto min_real = std::real(min);
auto max_real = std::real(max);
if (at::_isnan(min)) { // either real is nan or imag is nan
// handling the "infectious" NaNs
return {std::numeric_limits<scalar_t>::quiet_NaN(), std::numeric_limits<scalar_t>::quiet_NaN()};
} else if (!std::isfinite(min_real) && (min_real == max_real)) {
if (min_real < 0) {
// handle the -inf case, the imaginary part here does not really matter as the exp(value)
// will be around 0.0 and the angle (i.e. the imaginary part) cannot be determined.
// It does not matter if we're taking the exp of this value
return min;
} else {
// handle the +inf case, we don't need the special precision for log1p for small values
// and to avoid producing nan in case of real(max) == real(min) == +inf
return std::log(std::exp(min) + std::exp(max));
}
} else {
return std::log1p(std::exp(min - max)) + max;
}
}
} // end namespace
} //end at::native