forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_graph_iterator.cpp
203 lines (190 loc) · 5.84 KB
/
test_graph_iterator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#include <iostream>
#include <sstream>
#include <string>
#include <gtest/gtest.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/runtime/graph_iterator.h>
#include <torch/jit.h>
#include <torch/script.h>
#include <torch/torch.h>
namespace torch {
namespace jit {
/**
* Inverts an unordered map.
*/
template <typename K, typename V>
std::unordered_map<V, K> invert_map(std::unordered_map<K, V>& map) {
std::unordered_map<V, K> inverted;
std::for_each(map.begin(), map.end(), [&inverted](const std::pair<K, V>& p) {
inverted.insert(std::make_pair(p.second, p.first));
});
return inverted;
}
/**
* Traverses the graph using the DepthFirstGraphNodeIterator and
* returns an array containing the original names in the string
* graph.
*/
std::vector<std::string> traverse_depth_first(
std::string graph_string,
int max_count = 100) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
torch::jit::parseIR(graph_string, graph.get(), vmap);
auto get_name = invert_map(vmap);
std::vector<std::string> result;
DepthFirstGraphNodeIterator graph_it(graph);
Node* node = graph_it.next();
int count = 0;
while (node && count < max_count) {
std::stringstream buffer;
std::vector<const torch::jit::Node*> vec;
node->print(buffer, 0, &vec, false, true, true, false);
result.push_back(buffer.str());
node = graph_it.next();
++count;
}
return result;
}
/** Checks that the iteration order matches the expected/provided order. */
void assert_ordering(
std::vector<std::string> actual,
std::initializer_list<std::string> expected_list) {
auto expected = std::vector<std::string>(expected_list);
ASSERT_EQ(expected.size(), actual.size())
<< "Got " << actual.size() << " elements (" << actual << ")"
<< " expected " << expected.size() << " elements (" << expected << ")";
for (unsigned i = 0; i < expected.size(); i++) {
ASSERT_EQ(expected[i], actual[i])
<< "Difference at index " << i << " in " << actual << " (expected "
<< actual << ")";
}
}
TEST(GraphIteratorTest, ConstantReturnGraph) {
const auto graph_string = R"IR(
graph():
%1 : int = prim::Constant[value=0]()
return (%1))IR";
auto graph = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, graph.get());
DepthFirstGraphNodeIterator graph_it(graph);
ASSERT_EQ(graph_it.next()->kind(), prim::Constant);
ASSERT_EQ(graph_it.next(), nullptr);
}
TEST(GraphIteratorTest, GraphWithParameters) {
const auto graph_string = R"IR(
graph(%0 : Double(2)):
%1 : int = prim::Constant[value=0]()
return (%0))IR";
auto ordering = traverse_depth_first(graph_string);
assert_ordering(ordering, {"%1 : int = prim::Constant[value=0]()"});
}
TEST(GraphIteratorTest, GraphWithIf) {
const auto graph_string = R"IR(
graph(%a : Tensor):
%a : int = prim::Constant[value=30]()
%b : int = prim::Constant[value=10]()
%c : bool = aten::Bool(%a)
%d : int = prim::If(%c)
block0():
-> (%a)
block1():
-> (%b)
%e : int = prim::Constant[value=20]()
return (%d)
)IR";
auto ordering = traverse_depth_first(graph_string);
assert_ordering(
ordering,
{"%1 : int = prim::Constant[value=30]()",
"%2 : int = prim::Constant[value=10]()",
"%3 : bool = aten::Bool(%1)",
"%4 : int = prim::If(%3)",
"%5 : int = prim::Constant[value=20]()"});
}
TEST(GraphIteratorTest, GraphWithNestedIf) {
const auto graph_string = R"IR(
graph(%a.1 : Tensor,
%b.1 : Tensor):
%2 : int = prim::Constant[value=10]()
%3 : int = prim::Constant[value=20]()
%4 : int = prim::Constant[value=30]()
%5 : int = prim::Constant[value=40]()
%6 : bool = aten::Bool(%a.1)
%7 : int = prim::If(%6)
block0():
%8 : bool = aten::Bool(%b.1)
%9 : int = prim::If(%8)
block0():
-> (%2)
block1():
-> (%3)
-> (%9)
block1():
%10 : bool = aten::Bool(%b.1)
%11 : int = prim::If(%10)
block0():
-> (%4)
block1():
-> (%5)
-> (%11)
%8 : bool = aten::Bool(%b.1)
%9 : int = prim::If(%8)
block0():
-> (%2)
block1():
-> (%3)
%10 : bool = aten::Bool(%b.1)
%11 : int = prim::If(%10)
block0():
-> (%4)
block1():
-> (%5)
return (%7)
)IR";
auto ordering = traverse_depth_first(graph_string);
assert_ordering(
ordering,
{"%2 : int = prim::Constant[value=10]()",
"%3 : int = prim::Constant[value=20]()",
"%4 : int = prim::Constant[value=30]()",
"%5 : int = prim::Constant[value=40]()",
"%6 : bool = aten::Bool(%a.1)",
"%7 : int = prim::If(%6)",
"%8 : bool = aten::Bool(%b.1)",
"%9 : int = prim::If(%8)",
"%10 : bool = aten::Bool(%b.1)",
"%11 : int = prim::If(%10)",
"%12 : bool = aten::Bool(%b.1)",
"%13 : int = prim::If(%12)",
"%14 : bool = aten::Bool(%b.1)",
"%15 : int = prim::If(%14)"});
}
TEST(GraphIteratorTest, GraphWithLoop) {
const auto graph_string = R"IR(
graph(%a.1 : Tensor):
%1 : bool = prim::Constant[value=1]()
%2 : int = prim::Constant[value=10]()
%3 : int = prim::Constant[value=1]()
%4 : Tensor = prim::Loop(%2, %1, %a.1)
block0(%i : int, %b.9 : Tensor):
%5 : Tensor = aten::add_(%b.9, %3, %3)
-> (%1, %5)
%6 : Tensor = prim::Loop(%2, %1, %a.1)
block0(%i : int, %b.9 : Tensor):
-> (%1, %4)
return (%6)
)IR";
auto ordering = traverse_depth_first(graph_string);
assert_ordering(
ordering,
{"%1 : bool = prim::Constant[value=1]()",
"%2 : int = prim::Constant[value=10]()",
"%3 : int = prim::Constant[value=1]()",
"%4 : Tensor = prim::Loop(%2, %1, %a.1)",
"%7 : Tensor = aten::add_(%b.10, %3, %3)",
"%8 : Tensor = prim::Loop(%2, %1, %a.1)"});
}
} // namespace jit
} // namespace torch