forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsugared_value.h
861 lines (746 loc) · 27.2 KB
/
sugared_value.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
#pragma once
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include <ATen/core/symbol.h>
#include <caffe2/serialize/versions.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/error_report.h>
#include <torch/csrc/jit/frontend/schema_matching.h>
#include <torch/csrc/jit/frontend/versioned_symbols.h>
#include <torch/csrc/jit/ir/ir.h>
namespace torch::jit {
using SugaredValuePtr = std::shared_ptr<SugaredValue>;
// The AST can contain nodes like `self`, `self.b` or `python_fn` that
// are not first-class values in the graph representation, but instead
// will be desugared based on how they are used in the AST.
// SugaredValue is used to temporarily represent these values in a way
// that separates their behavior from the AST -> IR converter itself.
// This allows us to keep dependencies on python minimal.
struct TORCH_API SugaredValue
: public std::enable_shared_from_this<SugaredValue> {
// what is this node? for error reporting (e.g. Module, python function)
virtual std::string kind() const = 0;
// what can we do with this thing?
// use it as a value e.g. `this + 4`
virtual Value* asValue(const SourceRange& loc, GraphFunction& m) {
throw(ErrorReport(loc) << kind() << " cannot be used as a value");
}
// select an attribute on it, e.g. `this.field`
virtual std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) {
throw(ErrorReport(loc) << "attribute lookup is not defined on " << kind());
}
virtual bool hasAttr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) {
throw(ErrorReport(loc) << "attribute lookup is not defined on " << kind());
}
// assign an attribute on it, e.g. `this.field = newValue`
virtual void setAttr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field,
Value* newValue) {
throw(
ErrorReport(loc) << "attribute assignment is not defined on "
<< kind());
}
// use it as a vector of values, e.g. a tuple of values as return value from
// a method invocation
virtual std::vector<std::shared_ptr<SugaredValue>> asTuple(
const SourceRange& loc,
GraphFunction& m,
const std::optional<size_t>& size_hint = {}) {
throw(ErrorReport(loc) << kind() << " cannot be used as a tuple");
}
// TODO @wconstab refactor to use ModuleValue::asTuple instead of new API
virtual SugaredValuePtr asTupleValue(
const SourceRange& loc,
GraphFunction& m) {
throw(ErrorReport(loc) << kind() << " cannot be used as a tuplevalue");
}
virtual std::vector<std::shared_ptr<SugaredValue>> asType(
const SourceRange& loc,
Method& m) {
throw(ErrorReport(loc) << kind() << " cannot be used as a type");
}
// call it like a function, e.g. `outputs = this(inputs)`
virtual std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
GraphFunction& m,
// note: names for args will be 'argument 0', 'argument 1', etc..
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t n_binders) {
// n_binders is always set to the number of variables an expression is
// syntactically bound to:
// a = foo() # 1 binder (note in this case the single binder might be a
// tuple) a, * b = foo() # 1 binder a, b = foo() # 2 binders foo() # 0
// binders
//
// In subexpressions, like bar() in foo(bar()), n_binders is always set to
// 1. n_binders is used as a hint to subexpressions to determine how many
// values they should return when that number is ambiguous statically. In
// particular it is currently used to decide how many tensors a call to a
// python function will return. It is only a hint, functions do not have to
// check that n_binders match the number of things they are returning, the
// assignment logic will do that anyway.
throw(ErrorReport(loc) << "cannot call a " << kind());
}
// This function is called when to convert a SugaredValue to its iterator.
// For example, when iterating through a Dict we iterate over its keys
virtual std::shared_ptr<SugaredValue> iter(
const SourceRange& loc,
GraphFunction& m) {
throw(ErrorReport(loc) << kind() << " cannot be used as an iterable");
}
// If we are iterating over a Sugared Value and it returns a value from this
// function, then we emit an unrolled loop over the variable. This allows us
// to support containers of Heterogenous types, like Module Containers &
// Tuples
virtual std::optional<int64_t> staticLen() {
return std::nullopt;
}
// When iterating over this SugaredValue, should we emit the for loop as an
// unrolled loop.
bool shouldEmitUnrolled() {
return staticLen() != std::nullopt;
}
// return length of this thing, if not then it can't be iterated.
// If it does not have a statically-determinable length, then it cannot
// be iterated over with a modulelist. If it does it must return a constant
// Value *
virtual Value* len(const SourceRange& loc, GraphFunction& m) {
throw(
ErrorReport(loc) << "'" << kind() << "'"
<< " object is not iterable");
}
// expression for ith elemement for iterable value
virtual std::shared_ptr<SugaredValue> getitem(
const SourceRange& loc,
GraphFunction& m,
Value* idx,
TypePtr type_hint = nullptr) {
throw(
ErrorReport(loc) << "'" << kind() << "'"
<< " object is not subscriptable");
}
virtual ~SugaredValue() = default;
};
// most things in the environment are just simple value types
// and not special python syntax sugar types
struct TORCH_API SimpleValue : public SugaredValue {
SimpleValue(Value* value) : value_(value) {}
std::string kind() const override {
std::stringstream ss;
// NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
ss << "value of type '" << value_->type()->annotation_str() << "'";
return ss.str();
}
Value* asValue(const SourceRange& range, GraphFunction& m) override {
return value_;
}
std::vector<std::shared_ptr<SugaredValue>> asTuple(
const SourceRange& loc,
GraphFunction& m,
const std::optional<size_t>& size_hint = {}) override;
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) override;
bool hasAttr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) override;
void setAttr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field,
Value* newValue) override;
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
GraphFunction& m,
// note: names for args will be 'argument 0', 'argument 1', etc..
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t n_binders) override;
std::shared_ptr<SugaredValue> iter(const SourceRange& loc, GraphFunction& m)
override;
Value* getValue() const {
return value_;
}
Value* len(const SourceRange& loc, GraphFunction& m) override;
SugaredValuePtr getitem(
const SourceRange& loc,
GraphFunction& m,
Value* idx,
TypePtr type_hint = nullptr) override;
private:
Value* value_;
};
struct TORCH_API BuiltinFunction : public SugaredValue {
BuiltinFunction(Symbol symbol, std::optional<NamedValue> self)
: symbol(symbol), self(std::move(self)) {}
// The symbol of the function (e.g. `aten::relu`).
Symbol symbol;
// if this is method, then this is the self argument.
std::optional<NamedValue> self;
std::string kind() const override {
return "builtin";
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
GraphFunction& m,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t n_binders) override;
// try to create this builtin but if it doesn't exist or the self argument
// cannot possibly match, then return nullptr. Use in situations where it is
// not clear if it is a valid builtin
static std::shared_ptr<BuiltinFunction> tryCreate(
Symbol symbol,
std::optional<NamedValue> self);
};
struct TORCH_API SugaredTupleValue : public SugaredValue {
explicit SugaredTupleValue(std::vector<std::shared_ptr<SugaredValue>> tup)
: tup_(std::move(tup)){};
std::vector<std::shared_ptr<SugaredValue>> asTuple(
const SourceRange& loc,
GraphFunction& m,
const std::optional<size_t>& size_hint = {}) override {
return tup_;
};
Value* asValue(const SourceRange& loc, GraphFunction& m) override {
std::vector<Value*> vec;
vec.reserve(tup_.size());
for (const auto& sv : tup_) {
vec.push_back(sv->asValue(loc, m));
}
Graph& g = *m.graph();
return g.insertNode(g.createTuple(vec))->output();
}
std::string kind() const override {
return "Tuple";
}
SugaredValuePtr getitem(
const SourceRange& loc,
GraphFunction& m,
Value* idx,
TypePtr type_hint = nullptr) override {
if (!(idx->type()->cast<IntType>() && toIValue(idx))) {
throw(
ErrorReport(loc)
<< "Expected integer literal for index but got a variable or non-integer. "
<< "ModuleList/Sequential indexing is only supported with integer literals. "
<< "For example, 'i = 4; self.layers[i](x)' will fail because i is not a literal. "
<< "Enumeration is supported, e.g. 'for index, v in enumerate(self): out = v(inp)'");
}
auto index = toIValue(idx)->toInt();
int64_t adj_index =
(index < 0) ? index + static_cast<int64_t>(tup_.size()) : index;
if (!(adj_index >= 0 && adj_index < static_cast<int64_t>(tup_.size()))) {
throw(
ErrorReport(loc) << "Index " << index << " out of range of length "
<< tup_.size());
}
return tup_.at(adj_index);
}
// This function is called when a SugaredValue is used to convert a
// SugaredValue to its iterator. For example, when iterating through a Dict we
// iterate over its keys
std::shared_ptr<SugaredValue> iter(const SourceRange& loc, GraphFunction& m)
override {
return shared_from_this();
};
// Because this is used to contain SugaredValues of Heterogenous types,
// we define staticLen() so that when this is iterated over it is emitted
// as an unrolled loop.
std::optional<int64_t> staticLen() override {
return static_cast<int64_t>(tup_.size());
}
std::vector<std::shared_ptr<SugaredValue>> tup_;
};
struct TORCH_API BuiltinModule : public SugaredValue {
BuiltinModule(std::string name, std::optional<int64_t> version = std::nullopt)
: name(std::move(name)), version(version) {}
std::string kind() const override {
return "builtin module";
}
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) override {
if (field == "autograd") {
// When refering torch.autograd, it is also considered to be a
// BuiltinModule and we will dispatch to the aten operators for the
// methods under its module.
return std::make_shared<BuiltinModule>("aten", version);
}
auto sym = Symbol::fromQualString(name + "::" + field);
return std::make_shared<BuiltinFunction>(sym, std::nullopt);
}
private:
std::string name;
// when we add operator versioning, emit this op as it exising at 'version'
// if not set, use the latest version
std::optional<int64_t> version;
};
// Represents a class, analagous to `int` or `dict`. Instances of classes,
// like `1` or `{"foo": 5}`, are represented as SimpleValues
struct TORCH_API ClassValue : public SugaredValue {
explicit ClassValue(ClassTypePtr type) : type_(std::move(type)) {}
// Call the type's constructor, as in:
// n = Foo(constructor_arg)
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
GraphFunction& m,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t n_binders) override;
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) override;
std::string kind() const override {
return type_->str();
}
ClassTypePtr type_;
};
struct TORCH_API NamedTupleConstructor : public SugaredValue {
explicit NamedTupleConstructor(TupleTypePtr type) : type_(std::move(type)) {}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
GraphFunction& m,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t n_binders) override;
std::string kind() const override {
return type_->str();
}
TupleTypePtr type_;
};
struct FunctionValue : public SugaredValue {
FunctionValue(Function* callee) : callees_({callee}) {}
FunctionValue(const StrongFunctionPtr& p)
: callees_({p.function_}), cu_(p.cu_) {}
FunctionValue(const std::vector<StrongFunctionPtr>& callees) {
for (const StrongFunctionPtr& callee : callees) {
cu_ = cu_ ? cu_ : callee.cu_;
TORCH_INTERNAL_ASSERT(callee.cu_ == cu_);
callees_.push_back(callee.function_);
}
}
std::string kind() const override {
return "function";
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
GraphFunction& f,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t n_binders) override {
std::vector<const FunctionSchema*> schemas;
for (Function* callee : callees_) {
try {
callee->ensure_defined();
} catch (const RecursiveMethodCallError&) {
throw(
ErrorReport(loc)
<< " function '" << callee->name() << "' is called recursively. "
<< "Recursive calls are not supported");
}
schemas.push_back(&callee->getSchema());
}
auto match = matchSchemas(schemas, loc, *f.graph(), args, kwargs);
Value* output =
f.graph()->insertFunctionCall(callees_[match.first], match.second);
output->node()->setSourceRange(loc);
return std::make_shared<SimpleValue>(output);
}
const std::vector<Function*>& callees() {
return callees_;
}
private:
std::vector<Function*> callees_;
// TODO holding this thing is creepy
std::shared_ptr<CompilationUnit> cu_;
};
struct TORCH_API ClosureValue : public SugaredValue {
ClosureValue(Value* value) : value_(value) {
TORCH_INTERNAL_ASSERT(value_->node()->kind() == prim::Closure);
}
std::string kind() const override {
return "closure";
}
Value* asValue(const SourceRange& range, GraphFunction& m) override {
return value_;
}
Value* value_;
};
// defines how a method obtained from a module/class/interface behaves in script
struct MethodValue : public SugaredValue {
MethodValue(Value* self, std::vector<std::string> method_names)
: self_(self), method_names_(std::move(method_names)) {}
MethodValue(Value* self, std::string method_name)
: MethodValue(self, std::vector<std::string>({std::move(method_name)})) {}
std::string kind() const override {
return "method";
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
GraphFunction& f,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t n_binders) override {
std::vector<NamedValue> argsWithSelf = {self_};
argsWithSelf.insert(argsWithSelf.end(), args.begin(), args.end());
std::vector<const FunctionSchema*> schemas;
for (const std::string& method_name : method_names_) {
if (auto class_type = self_->type()->cast<ClassType>()) {
Function& method = class_type->getMethod(method_name);
try {
method.ensure_defined();
} catch (const RecursiveMethodCallError&) {
throw(
ErrorReport(loc)
<< " method '" << method.name() << "' is called recursively. "
<< "Recursive calls are not supported");
}
schemas.push_back(&method.getSchema());
} else if (auto interface_type = self_->type()->cast<InterfaceType>()) {
schemas.push_back(interface_type->getMethod(method_name));
} else {
TORCH_INTERNAL_ASSERT(
false, "method constructed that is not a class or interface");
}
}
auto match = matchSchemas(schemas, loc, *f.graph(), argsWithSelf, kwargs);
Value* output =
f.graph()->insertMethodCall(method_names_[match.first], match.second);
output->node()->setSourceRange(loc);
return std::make_shared<SimpleValue>(output);
}
private:
Value* self_;
std::vector<std::string> method_names_;
};
struct TORCH_API PrintValue : public SugaredValue {
std::string kind() const override {
return "print";
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
GraphFunction& m,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t n_binders) override;
};
// expressions like int(x)
// these are the same as call prim::Int or equivalent except it
// is a noop when the input is a subtype of 'type'
struct TORCH_API CastValue : public BuiltinFunction {
CastValue(TypePtr type, c10::Symbol method)
: BuiltinFunction(method, std::nullopt), type_(std::move(type)) {}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
GraphFunction& m,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t n_binders) override {
if (args.size() == 1 && kwargs.empty()) {
auto len_op = std::make_shared<BuiltinFunction>(aten::len, std::nullopt);
auto gt_op = std::make_shared<BuiltinFunction>(aten::gt, std::nullopt);
auto zero = m.graph()->insertConstant(0);
auto v = args[0].value(*m.graph());
if (v->type()->isSubtypeOf(*type_)) {
return std::make_shared<SimpleValue>(v);
} else if (
*type_ == *BoolType::get() &&
(v->type()->isSubtypeOf(*AnyListType::get()) ||
v->type()->isSubtypeOf(*StringType::get()) ||
v->type()->cast<DictType>())) {
auto len = len_op->call(loc, m, {v}, {}, 1);
return gt_op->call(loc, m, {len->asValue(loc, m), zero}, {}, 1);
}
}
return BuiltinFunction::call(loc, m, args, kwargs, n_binders);
}
private:
TypePtr type_;
};
struct TORCH_API TensorCastValue : public SugaredValue {
TensorCastValue(at::ScalarType type, NamedValue self)
: dtype_(type), self_(std::move(self)) {}
std::string kind() const override {
return "Cast";
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
GraphFunction& m,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t n_binders) override {
TORCH_INTERNAL_ASSERT(args.empty() && kwargs.empty());
Value* dtype_const = m.graph()->insertConstant(dtype_, loc);
std::vector<NamedValue> kwargs_{
self_, NamedValue(loc, "dtype", dtype_const)};
Value* casted_val = m.graph()->insert(
/*opname=*/Symbol::fromQualString("aten::to"),
/*args=*/args,
/*kwargs=*/kwargs_,
/*range=*/loc);
return std::make_shared<SimpleValue>(casted_val);
}
at::ScalarType dtype_;
NamedValue self_;
};
// builtins operators and functions that call a method if it exists
// on a class type, like 'len(x)' and 'x + y'
struct TORCH_API MagicMethod : public SugaredValue {
MagicMethod(std::string desugared_name, SugaredValuePtr base)
: base_value_(std::move(base)),
desugared_name_(std::move(desugared_name)) {}
std::string kind() const override {
return desugared_name_;
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
GraphFunction& m,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t n_binders) override;
private:
SugaredValuePtr base_value_;
std::string desugared_name_;
};
// things that look like function applications, but
// perform non-standard evaluation are represented
// with SpecialFormValues, e.g.
// isinstance(x, int)
// fork(fn)
// annotate(int, 3)
// The implementation of each value is handled by a case inside emitApplyExpr
struct TORCH_API SpecialFormValue : public SugaredValue {
SpecialFormValue(Symbol form) : form_(form) {}
std::string kind() const override {
return form_.toUnqualString();
}
Symbol form() const {
return form_;
}
static std::shared_ptr<SpecialFormValue> create(Symbol form) {
return std::make_shared<SpecialFormValue>(form);
}
private:
Symbol form_;
};
struct TORCH_API LegacyTensorConstructor : public SpecialFormValue {
LegacyTensorConstructor(Symbol form, at::ScalarType dtype, at::Device device)
: SpecialFormValue(form), device_(device), dtype_(dtype) {}
static std::shared_ptr<LegacyTensorConstructor> create(
Symbol form,
at::ScalarType dtype,
at::Device device) {
return std::make_shared<LegacyTensorConstructor>(form, dtype, device);
}
at::ScalarType dtype() const {
return dtype_;
}
private:
at::Device device_;
at::ScalarType dtype_;
};
// matched against for special handling of range expressions
struct TORCH_API RangeValue : SugaredValue {
RangeValue(
const SourceRange& loc,
GraphFunction& m,
std::vector<Value*> input,
std::optional<int64_t> static_len = std::nullopt);
std::string kind() const override {
return "range";
}
Value* len(const SourceRange& loc, GraphFunction& m) override;
SugaredValuePtr getitem(
const SourceRange& loc,
GraphFunction& m,
Value* idx,
TypePtr type_hint = nullptr) override;
std::shared_ptr<SugaredValue> iter(const SourceRange& loc, GraphFunction& m)
override;
// When Range is instantiated via enumerate(iterable_with_static_len),
// then it takes the static length of the iterable
std::optional<int64_t> staticLen() override {
return static_len_;
}
private:
Value* start_{};
Value* end_{};
Value* step_{};
// a flag to determine if it's a simple range() call with only end_ from
// arguments If true, we will not insert length calculation and index
// derivation nodes to simplify the graph and enable more possible
// optimizations
bool has_only_end_{};
std::optional<int64_t> static_len_;
};
// Specialized Tree structure to matched against for special handling
// of builtin functions iterables expressions like zip(), enumerate(), etc.
// zip and enumerate can be modeled as a tree of SimpleValue/RangeValue:
// zip(x, y) -> (x, y) with tuple assignment to each loop target
// enumerate(x) -> (range(0, math.inf, 1), x)
// So a complicated expression like zip(a, enumerate(b), range(0, 100)) will be:
// (a, (range(0, math.inf, 1), b), range(0, 100))
// We use those base iterables to fill in the loop information like
// max_trip_count and set the value table for loop targets
// Iterables can contain lists of SugaredValues like ModuleLists. If it
// does, then we emit it unrolled and require that all values it contains
// have a statically-determinable length.
struct TORCH_API IterableTree : SugaredValue {
IterableTree() = default;
IterableTree(
const SourceRange& range,
GraphFunction& m,
at::ArrayRef<SugaredValuePtr> children) {
for (const auto& child : children) {
addChild(range, m, child);
}
}
std::string kind() const override {
return "iterabletree";
}
std::shared_ptr<SugaredValue> iter(const SourceRange& loc, GraphFunction& m)
override {
return shared_from_this();
}
void addChild(
const SourceRange& range,
GraphFunction& m,
const SugaredValuePtr& iter_value);
std::vector<SugaredValuePtr> get_children() {
return children_;
}
// If this iterable contains a ModuleList or Tuple, then it will have a
// static length, and we will emit it as an unrolled for loop.
std::optional<int64_t> staticLen() override {
return unroll_length_;
}
// given a IterableTree node, get all the base iterables/leaves under the
// IterableTree node. This enables
// us to get all the basic SugaredValues that contains valid loop information
// with len() and getitem()
std::vector<SugaredValuePtr> get_base_iterables();
Value* len(const SourceRange& loc, GraphFunction& m) override;
SugaredValuePtr getitem(
const SourceRange& loc,
GraphFunction& m,
Value* idx,
TypePtr type_hint = nullptr) override;
private:
std::optional<int64_t> unroll_length_ = std::nullopt;
std::vector<SugaredValuePtr> children_;
};
static inline std::vector<Value*> toValues(
Graph& g,
at::ArrayRef<NamedValue> nvs) {
return fmap(nvs, [&](const NamedValue& v) { return v.value(g); });
}
struct SimpleSelf : public Self {
explicit SimpleSelf(ClassTypePtr classType)
: Self(), classType_(std::move(classType)) {}
std::shared_ptr<SugaredValue> makeSugared(Value* v) const override {
v->setType(classType_);
return std::make_shared<SimpleValue>(v);
}
ClassTypePtr getClassType() const override {
return classType_;
}
private:
ClassTypePtr classType_;
};
// This is not a SimpleValue so it can not pass through the code paths that
// expect a SimpleValue as a sugared value.
struct TORCH_API ExceptionMessageValue : public SugaredValue {
explicit ExceptionMessageValue(
Value* value,
Value* qualified_class_name = nullptr)
: value_(value), qualified_class_name_(qualified_class_name) {}
std::string kind() const override {
return "exception message";
}
Value* getValue() {
return value_;
}
// qualified python class name
Value* getQualifiedClassName() {
return qualified_class_name_;
}
private:
Value* value_;
Value* qualified_class_name_;
};
struct TORCH_API ExceptionValue : public SugaredValue {
explicit ExceptionValue(std::string message) : message_(std::move(message)) {}
std::string kind() const override {
return "exception";
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
GraphFunction& m,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> /*attributes*/,
size_t /*n_binders*/) override {
auto exception_message = insertConstant(*m.graph(), message_ + ": ", loc);
for (auto& input : args) {
auto input_str = input.value(*m.graph());
if (!input_str->type()->isSubtypeOf(*StringType::get())) {
input_str =
emitBuiltinCall(loc, *m.graph(), aten::str, {input_str}, {});
}
exception_message = emitBuiltinCall(
loc, *m.graph(), aten::add, {exception_message, input_str}, {});
}
return std::make_shared<ExceptionMessageValue>(exception_message);
}
std::string message_;
};
struct TORCH_API SugaredEnumClass : public SugaredValue {
explicit SugaredEnumClass(EnumTypePtr enum_type)
: enum_type_(std::move(enum_type)) {}
std::string kind() const override {
return "EnumClass";
}
SugaredValuePtr attr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) override;
SugaredValuePtr iter(const SourceRange& loc, GraphFunction& m) override;
private:
EnumTypePtr enum_type_;
};
struct TORCH_API SliceValue : public SugaredValue {
explicit SliceValue(Value* start, Value* stop, Value* step)
: start_(start), stop_(stop), step_(step) {}
std::string kind() const override {
return "Python slice value";
}
Value* start() {
return start_;
};
Value* stop() {
return stop_;
};
Value* step() {
return step_;
};
private:
Value* start_;
Value* stop_;
Value* step_;
};
} // namespace torch::jit