-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch6.html
745 lines (624 loc) · 420 KB
/
ch6.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/><script type="text/javascript">(window.NREUM||(NREUM={})).loader_config={xpid:"XA4GVl5ACwAEV1JQAA==",licenseKey:"1beac94c95",applicationID:"3343327"};window.NREUM||(NREUM={}),__nr_require=function(t,n,e){function r(e){if(!n[e]){var o=n[e]={exports:{}};t[e][0].call(o.exports,function(n){var o=t[e][1][n];return r(o||n)},o,o.exports)}return n[e].exports}if("function"==typeof __nr_require)return __nr_require;for(var o=0;o<e.length;o++)r(e[o]);return r}({1:[function(t,n,e){function r(t){try{s.console&&console.log(t)}catch(n){}}var o,i=t("ee"),a=t(21),s={};try{o=localStorage.getItem("__nr_flags").split(","),console&&"function"==typeof console.log&&(s.console=!0,o.indexOf("dev")!==-1&&(s.dev=!0),o.indexOf("nr_dev")!==-1&&(s.nrDev=!0))}catch(c){}s.nrDev&&i.on("internal-error",function(t){r(t.stack)}),s.dev&&i.on("fn-err",function(t,n,e){r(e.stack)}),s.dev&&(r("NR AGENT IN DEVELOPMENT MODE"),r("flags: "+a(s,function(t,n){return t}).join(", ")))},{}],2:[function(t,n,e){function r(t,n,e,r,s){try{p?p-=1:o(s||new UncaughtException(t,n,e),!0)}catch(f){try{i("ierr",[f,c.now(),!0])}catch(d){}}return"function"==typeof u&&u.apply(this,a(arguments))}function UncaughtException(t,n,e){this.message=t||"Uncaught error with no additional information",this.sourceURL=n,this.line=e}function o(t,n){var e=n?null:c.now();i("err",[t,e])}var i=t("handle"),a=t(22),s=t("ee"),c=t("loader"),f=t("gos"),u=window.onerror,d=!1,l="nr@seenError",p=0;c.features.err=!0,t(1),window.onerror=r;try{throw new Error}catch(h){"stack"in h&&(t(9),t(8),"addEventListener"in window&&t(5),c.xhrWrappable&&t(10),d=!0)}s.on("fn-start",function(t,n,e){d&&(p+=1)}),s.on("fn-err",function(t,n,e){d&&!e[l]&&(f(e,l,function(){return!0}),this.thrown=!0,o(e))}),s.on("fn-end",function(){d&&!this.thrown&&p>0&&(p-=1)}),s.on("internal-error",function(t){i("ierr",[t,c.now(),!0])})},{}],3:[function(t,n,e){t("loader").features.ins=!0},{}],4:[function(t,n,e){function r(t){}if(window.performance&&window.performance.timing&&window.performance.getEntriesByType){var o=t("ee"),i=t("handle"),a=t(9),s=t(8),c="learResourceTimings",f="addEventListener",u="resourcetimingbufferfull",d="bstResource",l="resource",p="-start",h="-end",m="fn"+p,w="fn"+h,v="bstTimer",g="pushState",y=t("loader");y.features.stn=!0,t(7),"addEventListener"in window&&t(5);var x=NREUM.o.EV;o.on(m,function(t,n){var e=t[0];e instanceof x&&(this.bstStart=y.now())}),o.on(w,function(t,n){var e=t[0];e instanceof x&&i("bst",[e,n,this.bstStart,y.now()])}),a.on(m,function(t,n,e){this.bstStart=y.now(),this.bstType=e}),a.on(w,function(t,n){i(v,[n,this.bstStart,y.now(),this.bstType])}),s.on(m,function(){this.bstStart=y.now()}),s.on(w,function(t,n){i(v,[n,this.bstStart,y.now(),"requestAnimationFrame"])}),o.on(g+p,function(t){this.time=y.now(),this.startPath=location.pathname+location.hash}),o.on(g+h,function(t){i("bstHist",[location.pathname+location.hash,this.startPath,this.time])}),f in window.performance&&(window.performance["c"+c]?window.performance[f](u,function(t){i(d,[window.performance.getEntriesByType(l)]),window.performance["c"+c]()},!1):window.performance[f]("webkit"+u,function(t){i(d,[window.performance.getEntriesByType(l)]),window.performance["webkitC"+c]()},!1)),document[f]("scroll",r,{passive:!0}),document[f]("keypress",r,!1),document[f]("click",r,!1)}},{}],5:[function(t,n,e){function r(t){for(var n=t;n&&!n.hasOwnProperty(u);)n=Object.getPrototypeOf(n);n&&o(n)}function o(t){s.inPlace(t,[u,d],"-",i)}function i(t,n){return t[1]}var a=t("ee").get("events"),s=t("wrap-function")(a,!0),c=t("gos"),f=XMLHttpRequest,u="addEventListener",d="removeEventListener";n.exports=a,"getPrototypeOf"in Object?(r(document),r(window),r(f.prototype)):f.prototype.hasOwnProperty(u)&&(o(window),o(f.prototype)),a.on(u+"-start",function(t,n){var e=t[1],r=c(e,"nr@wrapped",function(){function t(){if("function"==typeof e.handleEvent)return e.handleEvent.apply(e,arguments)}var n={object:t,"function":e}[typeof e];return n?s(n,"fn-",null,n.name||"anonymous"):e});this.wrapped=t[1]=r}),a.on(d+"-start",function(t){t[1]=this.wrapped||t[1]})},{}],6:[function(t,n,e){function r(t,n,e){var r=t[n];"function"==typeof r&&(t[n]=function(){var t=i(arguments),n={};o.emit(e+"before-start",[t],n);var a;n[m]&&n[m].dt&&(a=n[m].dt);var s=r.apply(this,t);return o.emit(e+"start",[t,a],s),s.then(function(t){return o.emit(e+"end",[null,t],s),t},function(t){throw o.emit(e+"end",[t],s),t})})}var o=t("ee").get("fetch"),i=t(22),a=t(21);n.exports=o;var s=window,c="fetch-",f=c+"body-",u=["arrayBuffer","blob","json","text","formData"],d=s.Request,l=s.Response,p=s.fetch,h="prototype",m="nr@context";d&&l&&p&&(a(u,function(t,n){r(d[h],n,f),r(l[h],n,f)}),r(s,"fetch",c),o.on(c+"end",function(t,n){var e=this;if(n){var r=n.headers.get("content-length");null!==r&&(e.rxSize=r),o.emit(c+"done",[null,n],e)}else o.emit(c+"done",[t],e)}))},{}],7:[function(t,n,e){var r=t("ee").get("history"),o=t("wrap-function")(r);n.exports=r;var i=window.history&&window.history.constructor&&window.history.constructor.prototype,a=window.history;i&&i.pushState&&i.replaceState&&(a=i),o.inPlace(a,["pushState","replaceState"],"-")},{}],8:[function(t,n,e){var r=t("ee").get("raf"),o=t("wrap-function")(r),i="equestAnimationFrame";n.exports=r,o.inPlace(window,["r"+i,"mozR"+i,"webkitR"+i,"msR"+i],"raf-"),r.on("raf-start",function(t){t[0]=o(t[0],"fn-")})},{}],9:[function(t,n,e){function r(t,n,e){t[0]=a(t[0],"fn-",null,e)}function o(t,n,e){this.method=e,this.timerDuration=isNaN(t[1])?0:+t[1],t[0]=a(t[0],"fn-",this,e)}var i=t("ee").get("timer"),a=t("wrap-function")(i),s="setTimeout",c="setInterval",f="clearTimeout",u="-start",d="-";n.exports=i,a.inPlace(window,[s,"setImmediate"],s+d),a.inPlace(window,[c],c+d),a.inPlace(window,[f,"clearImmediate"],f+d),i.on(c+u,r),i.on(s+u,o)},{}],10:[function(t,n,e){function r(t,n){d.inPlace(n,["onreadystatechange"],"fn-",s)}function o(){var t=this,n=u.context(t);t.readyState>3&&!n.resolved&&(n.resolved=!0,u.emit("xhr-resolved",[],t)),d.inPlace(t,g,"fn-",s)}function i(t){y.push(t),h&&(b?b.then(a):w?w(a):(E=-E,O.data=E))}function a(){for(var t=0;t<y.length;t++)r([],y[t]);y.length&&(y=[])}function s(t,n){return n}function c(t,n){for(var e in t)n[e]=t[e];return n}t(5);var f=t("ee"),u=f.get("xhr"),d=t("wrap-function")(u),l=NREUM.o,p=l.XHR,h=l.MO,m=l.PR,w=l.SI,v="readystatechange",g=["onload","onerror","onabort","onloadstart","onloadend","onprogress","ontimeout"],y=[];n.exports=u;var x=window.XMLHttpRequest=function(t){var n=new p(t);try{u.emit("new-xhr",[n],n),n.addEventListener(v,o,!1)}catch(e){try{u.emit("internal-error",[e])}catch(r){}}return n};if(c(p,x),x.prototype=p.prototype,d.inPlace(x.prototype,["open","send"],"-xhr-",s),u.on("send-xhr-start",function(t,n){r(t,n),i(n)}),u.on("open-xhr-start",r),h){var b=m&&m.resolve();if(!w&&!m){var E=1,O=document.createTextNode(E);new h(a).observe(O,{characterData:!0})}}else f.on("fn-end",function(t){t[0]&&t[0].type===v||a()})},{}],11:[function(t,n,e){function r(t){if(!i(t))return null;var n=window.NREUM;if(!n.loader_config)return null;var e=(n.loader_config.accountID||"").toString()||null,r=(n.loader_config.agentID||"").toString()||null,s=(n.loader_config.trustKey||"").toString()||null;if(!e||!r)return null;var c=a.generateCatId(),f=a.generateCatId(),u=Date.now(),d=o(c,f,u,e,r,s);return{header:d,guid:c,traceId:f,timestamp:u}}function o(t,n,e,r,o,i){var a="btoa"in window&&"function"==typeof window.btoa;if(!a)return null;var s={v:[0,1],d:{ty:"Browser",ac:r,ap:o,id:t,tr:n,ti:e}};return i&&r!==i&&(s.d.tk=i),btoa(JSON.stringify(s))}function i(t){var n=!1,e=!1,r={};if("init"in NREUM&&"distributed_tracing"in NREUM.init&&(r=NREUM.init.distributed_tracing,e=!!r.enabled),e)if(t.sameOrigin)n=!0;else if(r.allowed_origins instanceof Array)for(var o=0;o<r.allowed_origins.length;o++){var i=s(r.allowed_origins[o]);if(t.hostname===i.hostname&&t.protocol===i.protocol&&t.port===i.port){n=!0;break}}return e&&n}var a=t(19),s=t(13);n.exports={generateTracePayload:r,shouldGenerateTrace:i}},{}],12:[function(t,n,e){function r(t){var n=this.params,e=this.metrics;if(!this.ended){this.ended=!0;for(var r=0;r<l;r++)t.removeEventListener(d[r],this.listener,!1);n.aborted||(e.duration=a.now()-this.startTime,this.loadCaptureCalled||4!==t.readyState?null==n.status&&(n.status=0):i(this,t),e.cbTime=this.cbTime,u.emit("xhr-done",[t],t),s("xhr",[n,e,this.startTime]))}}function o(t,n){var e=c(n),r=t.params;r.host=e.hostname+":"+e.port,r.pathname=e.pathname,t.parsedOrigin=c(n),t.sameOrigin=t.parsedOrigin.sameOrigin}function i(t,n){t.params.status=n.status;var e=w(n,t.lastSize);if(e&&(t.metrics.rxSize=e),t.sameOrigin){var r=n.getResponseHeader("X-NewRelic-App-Data");r&&(t.params.cat=r.split(", ").pop())}t.loadCaptureCalled=!0}var a=t("loader");if(a.xhrWrappable){var s=t("handle"),c=t(13),f=t(11).generateTracePayload,u=t("ee"),d=["load","error","abort","timeout"],l=d.length,p=t("id"),h=t(17),m=t(16),w=t(14),v=window.XMLHttpRequest;a.features.xhr=!0,t(10),t(6),u.on("new-xhr",function(t){var n=this;n.totalCbs=0,n.called=0,n.cbTime=0,n.end=r,n.ended=!1,n.xhrGuids={},n.lastSize=null,n.loadCaptureCalled=!1,t.addEventListener("load",function(e){i(n,t)},!1),h&&(h>34||h<10)||window.opera||t.addEventListener("progress",function(t){n.lastSize=t.loaded},!1)}),u.on("open-xhr-start",function(t){this.params={method:t[0]},o(this,t[1]),this.metrics={}}),u.on("open-xhr-end",function(t,n){"loader_config"in NREUM&&"xpid"in NREUM.loader_config&&this.sameOrigin&&n.setRequestHeader("X-NewRelic-ID",NREUM.loader_config.xpid);var e=f(this.parsedOrigin);e&&e.header&&(n.setRequestHeader("newrelic",e.header),this.dt=e)}),u.on("send-xhr-start",function(t,n){var e=this.metrics,r=t[0],o=this;if(e&&r){var i=m(r);i&&(e.txSize=i)}this.startTime=a.now(),this.listener=function(t){try{"abort"!==t.type||o.loadCaptureCalled||(o.params.aborted=!0),("load"!==t.type||o.called===o.totalCbs&&(o.onloadCalled||"function"!=typeof n.onload))&&o.end(n)}catch(e){try{u.emit("internal-error",[e])}catch(r){}}};for(var s=0;s<l;s++)n.addEventListener(d[s],this.listener,!1)}),u.on("xhr-cb-time",function(t,n,e){this.cbTime+=t,n?this.onloadCalled=!0:this.called+=1,this.called!==this.totalCbs||!this.onloadCalled&&"function"==typeof e.onload||this.end(e)}),u.on("xhr-load-added",function(t,n){var e=""+p(t)+!!n;this.xhrGuids&&!this.xhrGuids[e]&&(this.xhrGuids[e]=!0,this.totalCbs+=1)}),u.on("xhr-load-removed",function(t,n){var e=""+p(t)+!!n;this.xhrGuids&&this.xhrGuids[e]&&(delete this.xhrGuids[e],this.totalCbs-=1)}),u.on("addEventListener-end",function(t,n){n instanceof v&&"load"===t[0]&&u.emit("xhr-load-added",[t[1],t[2]],n)}),u.on("removeEventListener-end",function(t,n){n instanceof v&&"load"===t[0]&&u.emit("xhr-load-removed",[t[1],t[2]],n)}),u.on("fn-start",function(t,n,e){n instanceof v&&("onload"===e&&(this.onload=!0),("load"===(t[0]&&t[0].type)||this.onload)&&(this.xhrCbStart=a.now()))}),u.on("fn-end",function(t,n){this.xhrCbStart&&u.emit("xhr-cb-time",[a.now()-this.xhrCbStart,this.onload,n],n)}),u.on("fetch-before-start",function(t){var n,e=t[1]||{};"string"==typeof t[0]?n=t[0]:t[0]&&t[0].url&&(n=t[0].url),n&&(this.parsedOrigin=c(n),this.sameOrigin=this.parsedOrigin.sameOrigin);var r=f(this.parsedOrigin);if(r&&r.header){var o=r.header;if("string"==typeof t[0]){var i={};for(var a in e)i[a]=e[a];i.headers=new Headers(e.headers||{}),i.headers.set("newrelic",o),this.dt=r,t.length>1?t[1]=i:t.push(i)}else t[0]&&t[0].headers&&(t[0].headers.append("newrelic",o),this.dt=r)}})}},{}],13:[function(t,n,e){var r={};n.exports=function(t){if(t in r)return r[t];var n=document.createElement("a"),e=window.location,o={};n.href=t,o.port=n.port;var i=n.href.split("://");!o.port&&i[1]&&(o.port=i[1].split("/")[0].split("@").pop().split(":")[1]),o.port&&"0"!==o.port||(o.port="https"===i[0]?"443":"80"),o.hostname=n.hostname||e.hostname,o.pathname=n.pathname,o.protocol=i[0],"/"!==o.pathname.charAt(0)&&(o.pathname="/"+o.pathname);var a=!n.protocol||":"===n.protocol||n.protocol===e.protocol,s=n.hostname===document.domain&&n.port===e.port;return o.sameOrigin=a&&(!n.hostname||s),"/"===o.pathname&&(r[t]=o),o}},{}],14:[function(t,n,e){function r(t,n){var e=t.responseType;return"json"===e&&null!==n?n:"arraybuffer"===e||"blob"===e||"json"===e?o(t.response):"text"===e||"document"===e||""===e||void 0===e?o(t.responseText):void 0}var o=t(16);n.exports=r},{}],15:[function(t,n,e){function r(){}function o(t,n,e){return function(){return i(t,[f.now()].concat(s(arguments)),n?null:this,e),n?void 0:this}}var i=t("handle"),a=t(21),s=t(22),c=t("ee").get("tracer"),f=t("loader"),u=NREUM;"undefined"==typeof window.newrelic&&(newrelic=u);var d=["setPageViewName","setCustomAttribute","setErrorHandler","finished","addToTrace","inlineHit","addRelease"],l="api-",p=l+"ixn-";a(d,function(t,n){u[n]=o(l+n,!0,"api")}),u.addPageAction=o(l+"addPageAction",!0),u.setCurrentRouteName=o(l+"routeName",!0),n.exports=newrelic,u.interaction=function(){return(new r).get()};var h=r.prototype={createTracer:function(t,n){var e={},r=this,o="function"==typeof n;return i(p+"tracer",[f.now(),t,e],r),function(){if(c.emit((o?"":"no-")+"fn-start",[f.now(),r,o],e),o)try{return n.apply(this,arguments)}catch(t){throw c.emit("fn-err",[arguments,this,t],e),t}finally{c.emit("fn-end",[f.now()],e)}}}};a("actionText,setName,setAttribute,save,ignore,onEnd,getContext,end,get".split(","),function(t,n){h[n]=o(p+n)}),newrelic.noticeError=function(t,n){"string"==typeof t&&(t=new Error(t)),i("err",[t,f.now(),!1,n])}},{}],16:[function(t,n,e){n.exports=function(t){if("string"==typeof t&&t.length)return t.length;if("object"==typeof t){if("undefined"!=typeof ArrayBuffer&&t instanceof ArrayBuffer&&t.byteLength)return t.byteLength;if("undefined"!=typeof Blob&&t instanceof Blob&&t.size)return t.size;if(!("undefined"!=typeof FormData&&t instanceof FormData))try{return JSON.stringify(t).length}catch(n){return}}}},{}],17:[function(t,n,e){var r=0,o=navigator.userAgent.match(/Firefox[\/\s](\d+\.\d+)/);o&&(r=+o[1]),n.exports=r},{}],18:[function(t,n,e){function r(t,n){var e=t.getEntries();e.forEach(function(t){"first-paint"===t.name?c("timing",["fp",Math.floor(t.startTime)]):"first-contentful-paint"===t.name&&c("timing",["fcp",Math.floor(t.startTime)])})}function o(t,n){var e=t.getEntries();e.length>0&&c("lcp",[e[e.length-1]])}function i(t){if(t instanceof u&&!l){var n,e=Math.round(t.timeStamp);n=e>1e12?Date.now()-e:f.now()-e,l=!0,c("timing",["fi",e,{type:t.type,fid:n}])}}if(!("init"in NREUM&&"page_view_timing"in NREUM.init&&"enabled"in NREUM.init.page_view_timing&&NREUM.init.page_view_timing.enabled===!1)){var a,s,c=t("handle"),f=t("loader"),u=NREUM.o.EV;if("PerformanceObserver"in window&&"function"==typeof window.PerformanceObserver){a=new PerformanceObserver(r),s=new PerformanceObserver(o);try{a.observe({entryTypes:["paint"]}),s.observe({entryTypes:["largest-contentful-paint"]})}catch(d){}}if("addEventListener"in document){var l=!1,p=["click","keydown","mousedown","pointerdown","touchstart"];p.forEach(function(t){document.addEventListener(t,i,!1)})}}},{}],19:[function(t,n,e){function r(){function t(){return n?15&n[e++]:16*Math.random()|0}var n=null,e=0,r=window.crypto||window.msCrypto;r&&r.getRandomValues&&(n=r.getRandomValues(new Uint8Array(31)));for(var o,i="xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx",a="",s=0;s<i.length;s++)o=i[s],"x"===o?a+=t().toString(16):"y"===o?(o=3&t()|8,a+=o.toString(16)):a+=o;return a}function o(){function t(){return n?15&n[e++]:16*Math.random()|0}var n=null,e=0,r=window.crypto||window.msCrypto;r&&r.getRandomValues&&Uint8Array&&(n=r.getRandomValues(new Uint8Array(31)));for(var o=[],i=0;i<16;i++)o.push(t().toString(16));return o.join("")}n.exports={generateUuid:r,generateCatId:o}},{}],20:[function(t,n,e){function r(t,n){if(!o)return!1;if(t!==o)return!1;if(!n)return!0;if(!i)return!1;for(var e=i.split("."),r=n.split("."),a=0;a<r.length;a++)if(r[a]!==e[a])return!1;return!0}var o=null,i=null,a=/Version\/(\S+)\s+Safari/;if(navigator.userAgent){var s=navigator.userAgent,c=s.match(a);c&&s.indexOf("Chrome")===-1&&s.indexOf("Chromium")===-1&&(o="Safari",i=c[1])}n.exports={agent:o,version:i,match:r}},{}],21:[function(t,n,e){function r(t,n){var e=[],r="",i=0;for(r in t)o.call(t,r)&&(e[i]=n(r,t[r]),i+=1);return e}var o=Object.prototype.hasOwnProperty;n.exports=r},{}],22:[function(t,n,e){function r(t,n,e){n||(n=0),"undefined"==typeof e&&(e=t?t.length:0);for(var r=-1,o=e-n||0,i=Array(o<0?0:o);++r<o;)i[r]=t[n+r];return i}n.exports=r},{}],23:[function(t,n,e){n.exports={exists:"undefined"!=typeof window.performance&&window.performance.timing&&"undefined"!=typeof window.performance.timing.navigationStart}},{}],ee:[function(t,n,e){function r(){}function o(t){function n(t){return t&&t instanceof r?t:t?c(t,s,i):i()}function e(e,r,o,i){if(!l.aborted||i){t&&t(e,r,o);for(var a=n(o),s=m(e),c=s.length,f=0;f<c;f++)s[f].apply(a,r);var d=u[y[e]];return d&&d.push([x,e,r,a]),a}}function p(t,n){g[t]=m(t).concat(n)}function h(t,n){var e=g[t];if(e)for(var r=0;r<e.length;r++)e[r]===n&&e.splice(r,1)}function m(t){return g[t]||[]}function w(t){return d[t]=d[t]||o(e)}function v(t,n){f(t,function(t,e){n=n||"feature",y[e]=n,n in u||(u[n]=[])})}var g={},y={},x={on:p,addEventListener:p,removeEventListener:h,emit:e,get:w,listeners:m,context:n,buffer:v,abort:a,aborted:!1};return x}function i(){return new r}function a(){(u.api||u.feature)&&(l.aborted=!0,u=l.backlog={})}var s="nr@context",c=t("gos"),f=t(21),u={},d={},l=n.exports=o();l.backlog=u},{}],gos:[function(t,n,e){function r(t,n,e){if(o.call(t,n))return t[n];var r=e();if(Object.defineProperty&&Object.keys)try{return Object.defineProperty(t,n,{value:r,writable:!0,enumerable:!1}),r}catch(i){}return t[n]=r,r}var o=Object.prototype.hasOwnProperty;n.exports=r},{}],handle:[function(t,n,e){function r(t,n,e,r){o.buffer([t],r),o.emit(t,n,e)}var o=t("ee").get("handle");n.exports=r,r.ee=o},{}],id:[function(t,n,e){function r(t){var n=typeof t;return!t||"object"!==n&&"function"!==n?-1:t===window?0:a(t,i,function(){return o++})}var o=1,i="nr@id",a=t("gos");n.exports=r},{}],loader:[function(t,n,e){function r(){if(!E++){var t=b.info=NREUM.info,n=p.getElementsByTagName("script")[0];if(setTimeout(u.abort,3e4),!(t&&t.licenseKey&&t.applicationID&&n))return u.abort();f(y,function(n,e){t[n]||(t[n]=e)}),c("mark",["onload",a()+b.offset],null,"api");var e=p.createElement("script");e.src="https://"+t.agent,n.parentNode.insertBefore(e,n)}}function o(){"complete"===p.readyState&&i()}function i(){c("mark",["domContent",a()+b.offset],null,"api")}function a(){return O.exists&&performance.now?Math.round(performance.now()):(s=Math.max((new Date).getTime(),s))-b.offset}var s=(new Date).getTime(),c=t("handle"),f=t(21),u=t("ee"),d=t(20),l=window,p=l.document,h="addEventListener",m="attachEvent",w=l.XMLHttpRequest,v=w&&w.prototype;NREUM.o={ST:setTimeout,SI:l.setImmediate,CT:clearTimeout,XHR:w,REQ:l.Request,EV:l.Event,PR:l.Promise,MO:l.MutationObserver};var g=""+location,y={beacon:"bam.nr-data.net",errorBeacon:"bam.nr-data.net",agent:"js-agent.newrelic.com/nr-1167.min.js"},x=w&&v&&v[h]&&!/CriOS/.test(navigator.userAgent),b=n.exports={offset:s,now:a,origin:g,features:{},xhrWrappable:x,userAgent:d};t(15),t(18),p[h]?(p[h]("DOMContentLoaded",i,!1),l[h]("load",r,!1)):(p[m]("onreadystatechange",o),l[m]("onload",r)),c("mark",["firstbyte",s],null,"api");var E=0,O=t(23)},{}],"wrap-function":[function(t,n,e){function r(t){return!(t&&t instanceof Function&&t.apply&&!t[a])}var o=t("ee"),i=t(22),a="nr@original",s=Object.prototype.hasOwnProperty,c=!1;n.exports=function(t,n){function e(t,n,e,o){function nrWrapper(){var r,a,s,c;try{a=this,r=i(arguments),s="function"==typeof e?e(r,a):e||{}}catch(f){l([f,"",[r,a,o],s])}u(n+"start",[r,a,o],s);try{return c=t.apply(a,r)}catch(d){throw u(n+"err",[r,a,d],s),d}finally{u(n+"end",[r,a,c],s)}}return r(t)?t:(n||(n=""),nrWrapper[a]=t,d(t,nrWrapper),nrWrapper)}function f(t,n,o,i){o||(o="");var a,s,c,f="-"===o.charAt(0);for(c=0;c<n.length;c++)s=n[c],a=t[s],r(a)||(t[s]=e(a,f?s+o:o,i,s))}function u(e,r,o){if(!c||n){var i=c;c=!0;try{t.emit(e,r,o,n)}catch(a){l([a,e,r,o])}c=i}}function d(t,n){if(Object.defineProperty&&Object.keys)try{var e=Object.keys(t);return e.forEach(function(e){Object.defineProperty(n,e,{get:function(){return t[e]},set:function(n){return t[e]=n,n}})}),n}catch(r){l([r])}for(var o in t)s.call(t,o)&&(n[o]=t[o]);return n}function l(n){try{t.emit("internal-error",n)}catch(e){}}return t||(t=o),e.inPlace=f,e.flag=a,e}},{}]},{},["loader",2,12,4,3]);</script><script type="text/javascript">window.NREUM||(NREUM={});NREUM.info={"errorBeacon":"bam.nr-data.net","beacon":"bam.nr-data.net","atts":"GUMRFw5MQVNcWEMDWBYSAUdCUhEeX1lUDVMGQ15TVVsQVR8UVAlDEBIBal1TQQoRVVgTRBEESUMFDTBEUlhRCUQGLgpZXVkGG2BidjJlOlFUBQUcUmQBBgVWFE5DB1paQwZeR0VSFEAHE0pWVVQLVVJUWwMUWBUWQFEbQVNcWEMDWBYSAUdCUhEeUFlZElMMFTtBTUcGEgkUQwNOFk4MQVlbQRwRWUUBFFhDN0FVWQVfQVJ4CFoLDwEXGBUAX11CUghCEQQWQ1FFTVNcWEMDWBY+CFBaFVkEAw4DVQ9OQwdaWkMGXkdFUhRABxNKRVVDCxIJFFQOAEwJEFhYFU8SUFlZElMMFRdQRkEGQh1QRQlbPQIAWxYNBVFfRVIbSw==","applicationID":"3343327","agent":"","transactionName":"NQQGYUZWDUNSVUMPWQxOIkBaVBdZXFgYCUYHDwFRTBkAX0FTGQJcAw8DWlVHE0MdVVgIQgcPEEZRRRVVQRhaD1IGDQFCVUUGCmBCVhJfASILW0BSDURgU0UQUxA=","queueTime":1,"licenseKey":"1beac94c95","applicationTime":25}</script>
<title>Model Selection</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
</head>
<body>
<h1>Model Selection</h1>
<p>This is an R Markdown document. Markdown is a simple formatting syntax for authoring web pages,
and a very nice way of distributing an analysis. It has some very simple syntax rules.</p>
<pre><code class="r">library(ISLR)
summary(Hitters)
</code></pre>
<pre><code>## AtBat Hits HmRun Runs
## Min. : 16 Min. : 1 Min. : 0.0 Min. : 0.0
## 1st Qu.:255 1st Qu.: 64 1st Qu.: 4.0 1st Qu.: 30.2
## Median :380 Median : 96 Median : 8.0 Median : 48.0
## Mean :381 Mean :101 Mean :10.8 Mean : 50.9
## 3rd Qu.:512 3rd Qu.:137 3rd Qu.:16.0 3rd Qu.: 69.0
## Max. :687 Max. :238 Max. :40.0 Max. :130.0
##
## RBI Walks Years CAtBat
## Min. : 0.0 Min. : 0.0 Min. : 1.00 Min. : 19
## 1st Qu.: 28.0 1st Qu.: 22.0 1st Qu.: 4.00 1st Qu.: 817
## Median : 44.0 Median : 35.0 Median : 6.00 Median : 1928
## Mean : 48.0 Mean : 38.7 Mean : 7.44 Mean : 2649
## 3rd Qu.: 64.8 3rd Qu.: 53.0 3rd Qu.:11.00 3rd Qu.: 3924
## Max. :121.0 Max. :105.0 Max. :24.00 Max. :14053
##
## CHits CHmRun CRuns CRBI
## Min. : 4 Min. : 0.0 Min. : 1 Min. : 0.0
## 1st Qu.: 209 1st Qu.: 14.0 1st Qu.: 100 1st Qu.: 88.8
## Median : 508 Median : 37.5 Median : 247 Median : 220.5
## Mean : 718 Mean : 69.5 Mean : 359 Mean : 330.1
## 3rd Qu.:1059 3rd Qu.: 90.0 3rd Qu.: 526 3rd Qu.: 426.2
## Max. :4256 Max. :548.0 Max. :2165 Max. :1659.0
##
## CWalks League Division PutOuts Assists
## Min. : 0.0 A:175 E:157 Min. : 0 Min. : 0.0
## 1st Qu.: 67.2 N:147 W:165 1st Qu.: 109 1st Qu.: 7.0
## Median : 170.5 Median : 212 Median : 39.5
## Mean : 260.2 Mean : 289 Mean :106.9
## 3rd Qu.: 339.2 3rd Qu.: 325 3rd Qu.:166.0
## Max. :1566.0 Max. :1378 Max. :492.0
##
## Errors Salary NewLeague
## Min. : 0.00 Min. : 67.5 A:176
## 1st Qu.: 3.00 1st Qu.: 190.0 N:146
## Median : 6.00 Median : 425.0
## Mean : 8.04 Mean : 535.9
## 3rd Qu.:11.00 3rd Qu.: 750.0
## Max. :32.00 Max. :2460.0
## NA's :59
</code></pre>
<p>There are some missing values here, so before we proceed we will remove them:</p>
<pre><code class="r">Hitters = na.omit(Hitters)
with(Hitters, sum(is.na(Salary)))
</code></pre>
<pre><code>## [1] 0
</code></pre>
<h2>Best Subset regression</h2>
<p>We will now use the package <code>leaps</code> to evaluate all the best-subset models.</p>
<pre><code class="r">library(leaps)
regfit.full = regsubsets(Salary ~ ., data = Hitters)
summary(regfit.full)
</code></pre>
<pre><code>## Subset selection object
## Call: regsubsets.formula(Salary ~ ., data = Hitters)
## 19 Variables (and intercept)
## Forced in Forced out
## AtBat FALSE FALSE
## Hits FALSE FALSE
## HmRun FALSE FALSE
## Runs FALSE FALSE
## RBI FALSE FALSE
## Walks FALSE FALSE
## Years FALSE FALSE
## CAtBat FALSE FALSE
## CHits FALSE FALSE
## CHmRun FALSE FALSE
## CRuns FALSE FALSE
## CRBI FALSE FALSE
## CWalks FALSE FALSE
## LeagueN FALSE FALSE
## DivisionW FALSE FALSE
## PutOuts FALSE FALSE
## Assists FALSE FALSE
## Errors FALSE FALSE
## NewLeagueN FALSE FALSE
## 1 subsets of each size up to 8
## Selection Algorithm: exhaustive
## AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns
## 1 ( 1 ) " " " " " " " " " " " " " " " " " " " " " "
## 2 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " "
## 3 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " "
## 4 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " "
## 5 ( 1 ) "*" "*" " " " " " " " " " " " " " " " " " "
## 6 ( 1 ) "*" "*" " " " " " " "*" " " " " " " " " " "
## 7 ( 1 ) " " "*" " " " " " " "*" " " "*" "*" "*" " "
## 8 ( 1 ) "*" "*" " " " " " " "*" " " " " " " "*" "*"
## CRBI CWalks LeagueN DivisionW PutOuts Assists Errors NewLeagueN
## 1 ( 1 ) "*" " " " " " " " " " " " " " "
## 2 ( 1 ) "*" " " " " " " " " " " " " " "
## 3 ( 1 ) "*" " " " " " " "*" " " " " " "
## 4 ( 1 ) "*" " " " " "*" "*" " " " " " "
## 5 ( 1 ) "*" " " " " "*" "*" " " " " " "
## 6 ( 1 ) "*" " " " " "*" "*" " " " " " "
## 7 ( 1 ) " " " " " " "*" "*" " " " " " "
## 8 ( 1 ) " " "*" " " "*" "*" " " " " " "
</code></pre>
<p>It gives by default best-subsets up to size 8; lets increase that to 19, i.e. all the variables</p>
<pre><code class="r">regfit.full = regsubsets(Salary ~ ., data = Hitters, nvmax = 19)
reg.summary = summary(regfit.full)
names(reg.summary)
</code></pre>
<pre><code>## [1] "which" "rsq" "rss" "adjr2" "cp" "bic" "outmat" "obj"
</code></pre>
<pre><code class="r">plot(reg.summary$cp, xlab = "Number of Variables", ylab = "Cp")
which.min(reg.summary$cp)
</code></pre>
<pre><code>## [1] 10
</code></pre>
<pre><code class="r">points(10, reg.summary$cp[10], pch = 20, col = "red")
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-4"/> </p>
<p>There is a plot method for the <code>regsubsets</code> object</p>
<pre><code class="r">plot(regfit.full, scale = "Cp")
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-5"/> </p>
<pre><code class="r">coef(regfit.full, 10)
</code></pre>
<pre><code>## (Intercept) AtBat Hits Walks CAtBat CRuns
## 162.5354 -2.1687 6.9180 5.7732 -0.1301 1.4082
## CRBI CWalks DivisionW PutOuts Assists
## 0.7743 -0.8308 -112.3801 0.2974 0.2832
</code></pre>
<h2>Forward Stepwise Selection</h2>
<p>Here we use the <code>regsubsets</code> function but specify the method=“forward” option:</p>
<pre><code class="r">regfit.fwd = regsubsets(Salary ~ ., data = Hitters, nvmax = 19, method = "forward")
summary(regfit.fwd)
</code></pre>
<pre><code>## Subset selection object
## Call: regsubsets.formula(Salary ~ ., data = Hitters, nvmax = 19, method = "forward")
## 19 Variables (and intercept)
## Forced in Forced out
## AtBat FALSE FALSE
## Hits FALSE FALSE
## HmRun FALSE FALSE
## Runs FALSE FALSE
## RBI FALSE FALSE
## Walks FALSE FALSE
## Years FALSE FALSE
## CAtBat FALSE FALSE
## CHits FALSE FALSE
## CHmRun FALSE FALSE
## CRuns FALSE FALSE
## CRBI FALSE FALSE
## CWalks FALSE FALSE
## LeagueN FALSE FALSE
## DivisionW FALSE FALSE
## PutOuts FALSE FALSE
## Assists FALSE FALSE
## Errors FALSE FALSE
## NewLeagueN FALSE FALSE
## 1 subsets of each size up to 19
## Selection Algorithm: forward
## AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns
## 1 ( 1 ) " " " " " " " " " " " " " " " " " " " " " "
## 2 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " "
## 3 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " "
## 4 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " "
## 5 ( 1 ) "*" "*" " " " " " " " " " " " " " " " " " "
## 6 ( 1 ) "*" "*" " " " " " " "*" " " " " " " " " " "
## 7 ( 1 ) "*" "*" " " " " " " "*" " " " " " " " " " "
## 8 ( 1 ) "*" "*" " " " " " " "*" " " " " " " " " "*"
## 9 ( 1 ) "*" "*" " " " " " " "*" " " "*" " " " " "*"
## 10 ( 1 ) "*" "*" " " " " " " "*" " " "*" " " " " "*"
## 11 ( 1 ) "*" "*" " " " " " " "*" " " "*" " " " " "*"
## 12 ( 1 ) "*" "*" " " "*" " " "*" " " "*" " " " " "*"
## 13 ( 1 ) "*" "*" " " "*" " " "*" " " "*" " " " " "*"
## 14 ( 1 ) "*" "*" "*" "*" " " "*" " " "*" " " " " "*"
## 15 ( 1 ) "*" "*" "*" "*" " " "*" " " "*" "*" " " "*"
## 16 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" " " "*"
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" " " "*"
## 18 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" " " "*"
## 19 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## CRBI CWalks LeagueN DivisionW PutOuts Assists Errors NewLeagueN
## 1 ( 1 ) "*" " " " " " " " " " " " " " "
## 2 ( 1 ) "*" " " " " " " " " " " " " " "
## 3 ( 1 ) "*" " " " " " " "*" " " " " " "
## 4 ( 1 ) "*" " " " " "*" "*" " " " " " "
## 5 ( 1 ) "*" " " " " "*" "*" " " " " " "
## 6 ( 1 ) "*" " " " " "*" "*" " " " " " "
## 7 ( 1 ) "*" "*" " " "*" "*" " " " " " "
## 8 ( 1 ) "*" "*" " " "*" "*" " " " " " "
## 9 ( 1 ) "*" "*" " " "*" "*" " " " " " "
## 10 ( 1 ) "*" "*" " " "*" "*" "*" " " " "
## 11 ( 1 ) "*" "*" "*" "*" "*" "*" " " " "
## 12 ( 1 ) "*" "*" "*" "*" "*" "*" " " " "
## 13 ( 1 ) "*" "*" "*" "*" "*" "*" "*" " "
## 14 ( 1 ) "*" "*" "*" "*" "*" "*" "*" " "
## 15 ( 1 ) "*" "*" "*" "*" "*" "*" "*" " "
## 16 ( 1 ) "*" "*" "*" "*" "*" "*" "*" " "
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*"
## 18 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*"
## 19 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*"
</code></pre>
<pre><code class="r">plot(regfit.fwd, scale = "Cp")
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-6"/> </p>
<h2>Model Selection Using a Validation Set</h2>
<p>Lets make a training and validation set, so that we can choose a good subset model.
We will do it using a slightly different approach from what was done in the the book.</p>
<pre><code class="r">dim(Hitters)
</code></pre>
<pre><code>## [1] 263 20
</code></pre>
<pre><code class="r">set.seed(1)
train = sample(seq(263), 180, replace = FALSE)
train
</code></pre>
<pre><code>## [1] 70 98 150 237 53 232 243 170 161 16 259 45 173 97 192 124 178
## [18] 245 94 190 228 52 158 31 64 92 4 91 205 80 113 140 115 43
## [35] 244 153 181 25 163 93 184 144 174 122 117 251 6 104 241 149 102
## [52] 183 224 242 15 21 66 107 136 83 186 60 211 67 130 210 95 151
## [69] 17 256 207 162 200 239 236 168 249 73 222 177 234 199 203 59 235
## [86] 37 126 22 230 226 42 11 110 214 132 134 77 69 188 100 206 58
## [103] 44 159 101 34 208 75 185 201 261 112 54 65 23 2 106 254 257
## [120] 154 142 71 166 221 105 63 143 29 240 212 167 172 5 84 120 133
## [137] 72 191 248 138 182 74 179 135 87 196 157 119 13 99 263 125 247
## [154] 50 55 20 57 8 30 194 139 238 46 78 88 41 7 33 141 32
## [171] 180 164 213 36 215 79 225 229 198 76
</code></pre>
<pre><code class="r">regfit.fwd = regsubsets(Salary ~ ., data = Hitters[train, ], nvmax = 19, method = "forward")
</code></pre>
<p>Now we will make predictions on the observations not used for training. We know there are 19 models, so we set up some vectors to record the errors. We have to do a bit of work here, because there is no predict method for <code>regsubsets</code>.</p>
<pre><code class="r">val.errors = rep(NA, 19)
x.test = model.matrix(Salary ~ ., data = Hitters[-train, ]) # notice the -index!
for (i in 1:19) {
coefi = coef(regfit.fwd, id = i)
pred = x.test[, names(coefi)] %*% coefi
val.errors[i] = mean((Hitters$Salary[-train] - pred)^2)
}
plot(sqrt(val.errors), ylab = "Root MSE", ylim = c(300, 400), pch = 19, type = "b")
points(sqrt(regfit.fwd$rss[-1]/180), col = "blue", pch = 19, type = "b")
legend("topright", legend = c("Training", "Validation"), col = c("blue", "black"),
pch = 19)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-8"/> </p>
<p>As we expect, the training error goes down monotonically as the model gets bigger, but not so
for the validation error.</p>
<p>This was a little tedious - not having a predict method for <code>regsubsets</code>. So we will write one!</p>
<pre><code class="r">predict.regsubsets = function(object, newdata, id, ...) {
form = as.formula(object$call[[2]])
mat = model.matrix(form, newdata)
coefi = coef(object, id = id)
mat[, names(coefi)] %*% coefi
}
</code></pre>
<h2>Model Selection by Cross-Validation</h2>
<p>We will do 10-fold cross-validation. Its really easy!</p>
<pre><code class="r">set.seed(11)
folds = sample(rep(1:10, length = nrow(Hitters)))
folds
</code></pre>
<pre><code>## [1] 3 1 4 4 7 7 3 5 5 2 5 2 8 3 3 3 9 2 9 8 10 5 8
## [24] 5 5 5 5 10 10 4 4 7 6 7 7 7 3 4 8 3 6 8 10 4 3 9
## [47] 9 3 4 9 8 7 10 6 10 3 6 9 4 2 8 2 5 6 10 7 2 8 8
## [70] 1 3 6 2 5 8 1 1 2 8 1 10 1 2 3 6 6 5 8 8 10 4 2
## [93] 6 1 7 4 8 3 7 8 7 1 10 1 6 2 9 10 1 7 7 4 7 4 10
## [116] 3 6 10 6 6 9 8 10 6 7 9 6 7 1 10 2 2 5 9 9 6 1 1
## [139] 2 9 4 10 5 3 7 7 10 10 9 3 3 7 3 1 4 6 6 10 4 9 9
## [162] 1 3 6 8 10 8 5 4 5 6 2 9 10 3 7 7 6 6 2 3 2 4 4
## [185] 4 4 8 2 3 5 9 9 10 2 1 3 9 6 7 3 1 9 4 10 10 8 8
## [208] 8 2 5 9 8 10 5 8 2 4 1 4 4 5 5 2 1 9 5 2 9 9 5
## [231] 3 2 1 9 1 7 2 5 8 1 1 7 6 6 4 5 10 5 7 4 8 6 9
## [254] 1 2 5 7 1 3 1 3 1 2
</code></pre>
<pre><code class="r">table(folds)
</code></pre>
<pre><code>## folds
## 1 2 3 4 5 6 7 8 9 10
## 27 27 27 26 26 26 26 26 26 26
</code></pre>
<pre><code class="r">cv.errors = matrix(NA, 10, 19)
for (k in 1:10) {
best.fit = regsubsets(Salary ~ ., data = Hitters[folds != k, ], nvmax = 19,
method = "forward")
for (i in 1:19) {
pred = predict(best.fit, Hitters[folds == k, ], id = i)
cv.errors[k, i] = mean((Hitters$Salary[folds == k] - pred)^2)
}
}
rmse.cv = sqrt(apply(cv.errors, 2, mean))
plot(rmse.cv, pch = 19, type = "b")
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-10"/> </p>
<h2>Ridge Regression and the Lasso</h2>
<p>We will use the package <code>glmnet</code>, which does not use the model formula language, so we will set up an <code>x</code> and <code>y</code>.</p>
<pre><code class="r">library(glmnet)
</code></pre>
<pre><code>## Loading required package: Matrix Loading required package: lattice Loaded
## glmnet 1.9-5
</code></pre>
<pre><code class="r">x = model.matrix(Salary ~ . - 1, data = Hitters)
y = Hitters$Salary
</code></pre>
<p>First we will fit a ridge-regression model. This is achieved by calling <code>glmnet</code> with <code>alpha=0</code> (see the helpfile). There is also a <code>cv.glmnet</code> function which will do the cross-validation for us. </p>
<pre><code class="r">fit.ridge = glmnet(x, y, alpha = 0)
plot(fit.ridge, xvar = "lambda", label = TRUE)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-12"/> </p>
<pre><code class="r">cv.ridge = cv.glmnet(x, y, alpha = 0)
plot(cv.ridge)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-12"/> </p>
<p>Now we fit a lasso model; for this we use the default <code>alpha=1</code></p>
<pre><code class="r">fit.lasso = glmnet(x, y)
plot(fit.lasso, xvar = "lambda", label = TRUE)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-13"/> </p>
<pre><code class="r">cv.lasso = cv.glmnet(x, y)
plot(cv.lasso)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-13"/> </p>
<pre><code class="r">coef(cv.lasso)
</code></pre>
<pre><code>## 21 x 1 sparse Matrix of class "dgCMatrix"
## 1
## (Intercept) 127.95695
## AtBat .
## Hits 1.42343
## HmRun .
## Runs .
## RBI .
## Walks 1.58214
## Years .
## CAtBat .
## CHits .
## CHmRun .
## CRuns 0.16028
## CRBI 0.33668
## CWalks .
## LeagueA .
## LeagueN .
## DivisionW -8.06171
## PutOuts 0.08394
## Assists .
## Errors .
## NewLeagueN .
</code></pre>
<p>Suppose we want to use our earlier train/validation division to select the <code>lambda</code> for the lasso.
This is easy to do.</p>
<pre><code class="r">lasso.tr = glmnet(x[train, ], y[train])
lasso.tr
</code></pre>
<pre><code>##
## Call: glmnet(x = x[train, ], y = y[train])
##
## Df %Dev Lambda
## [1,] 0 0.0000 246.0000
## [2,] 1 0.0501 225.0000
## [3,] 1 0.0917 205.0000
## [4,] 2 0.1380 186.0000
## [5,] 2 0.1800 170.0000
## [6,] 3 0.2160 155.0000
## [7,] 3 0.2470 141.0000
## [8,] 3 0.2730 128.0000
## [9,] 4 0.3000 117.0000
## [10,] 4 0.3240 107.0000
## [11,] 4 0.3430 97.2000
## [12,] 4 0.3590 88.6000
## [13,] 5 0.3740 80.7000
## [14,] 5 0.3890 73.5000
## [15,] 5 0.4020 67.0000
## [16,] 5 0.4130 61.0000
## [17,] 5 0.4210 55.6000
## [18,] 5 0.4290 50.7000
## [19,] 5 0.4350 46.2000
## [20,] 5 0.4400 42.1000
## [21,] 5 0.4440 38.3000
## [22,] 5 0.4480 34.9000
## [23,] 6 0.4510 31.8000
## [24,] 7 0.4550 29.0000
## [25,] 7 0.4580 26.4000
## [26,] 7 0.4600 24.1000
## [27,] 8 0.4620 21.9000
## [28,] 8 0.4640 20.0000
## [29,] 8 0.4650 18.2000
## [30,] 8 0.4660 16.6000
## [31,] 8 0.4670 15.1000
## [32,] 8 0.4680 13.8000
## [33,] 9 0.4710 12.6000
## [34,] 9 0.4740 11.4000
## [35,] 9 0.4760 10.4000
## [36,] 10 0.4810 9.5000
## [37,] 9 0.4850 8.6500
## [38,] 10 0.4880 7.8800
## [39,] 10 0.4940 7.1800
## [40,] 11 0.4990 6.5400
## [41,] 12 0.5050 5.9600
## [42,] 12 0.5100 5.4300
## [43,] 13 0.5150 4.9500
## [44,] 13 0.5180 4.5100
## [45,] 13 0.5220 4.1100
## [46,] 14 0.5240 3.7500
## [47,] 14 0.5270 3.4100
## [48,] 15 0.5290 3.1100
## [49,] 15 0.5300 2.8300
## [50,] 15 0.5320 2.5800
## [51,] 16 0.5330 2.3500
## [52,] 17 0.5340 2.1400
## [53,] 18 0.5360 1.9500
## [54,] 18 0.5380 1.7800
## [55,] 18 0.5390 1.6200
## [56,] 18 0.5400 1.4800
## [57,] 18 0.5410 1.3500
## [58,] 18 0.5420 1.2300
## [59,] 18 0.5420 1.1200
## [60,] 18 0.5430 1.0200
## [61,] 18 0.5430 0.9280
## [62,] 18 0.5440 0.8450
## [63,] 18 0.5440 0.7700
## [64,] 19 0.5440 0.7020
## [65,] 19 0.5440 0.6390
## [66,] 19 0.5450 0.5830
## [67,] 19 0.5450 0.5310
## [68,] 19 0.5450 0.4840
## [69,] 20 0.5450 0.4410
## [70,] 20 0.5450 0.4020
## [71,] 20 0.5450 0.3660
## [72,] 20 0.5450 0.3330
## [73,] 20 0.5460 0.3040
## [74,] 20 0.5460 0.2770
## [75,] 20 0.5460 0.2520
## [76,] 20 0.5460 0.2300
## [77,] 20 0.5460 0.2090
## [78,] 20 0.5460 0.1910
## [79,] 20 0.5460 0.1740
## [80,] 20 0.5460 0.1580
## [81,] 20 0.5460 0.1440
## [82,] 20 0.5460 0.1320
## [83,] 20 0.5460 0.1200
## [84,] 19 0.5460 0.1090
## [85,] 19 0.5460 0.0995
## [86,] 19 0.5460 0.0906
## [87,] 19 0.5460 0.0826
## [88,] 20 0.5460 0.0752
## [89,] 20 0.5460 0.0686
</code></pre>
<pre><code class="r">pred = predict(lasso.tr, x[-train, ])
dim(pred)
</code></pre>
<pre><code>## [1] 83 89
</code></pre>
<pre><code class="r">rmse = sqrt(apply((y[-train] - pred)^2, 2, mean))
plot(log(lasso.tr$lambda), rmse, type = "b", xlab = "Log(lambda)")
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-14"/> </p>
<pre><code class="r">lam.best = lasso.tr$lambda[order(rmse)[1]]
lam.best
</code></pre>
<pre><code>## [1] 19.99
</code></pre>
<pre><code class="r">coef(lasso.tr, s = lam.best)
</code></pre>
<pre><code>## 21 x 1 sparse Matrix of class "dgCMatrix"
## 1
## (Intercept) 107.9417
## AtBat .
## Hits 0.1591
## HmRun .
## Runs .
## RBI 1.7340
## Walks 3.4657
## Years .
## CAtBat .
## CHits .
## CHmRun .
## CRuns 0.5387
## CRBI .
## CWalks .
## LeagueA -30.0493
## LeagueN .
## DivisionW -113.8317
## PutOuts 0.2915
## Assists .
## Errors .
## NewLeagueN 2.0368
</code></pre>
</body>
</html>