-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_model.py
299 lines (246 loc) · 9.58 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from models import proposed_model
from keras.optimizers import Adam
from keras.utils import np_utils
from callbacks import Step
import numpy as np
import random
import cv2
import os
import matplotlib
matplotlib.use('AGG')
import matplotlib.pyplot as plt
import glob
import math
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.45
set_session(tf.Session(config=config))
def plot_history(history, result_dir):
plt.plot(history.history['acc'], marker='.')
plt.plot(history.history['val_acc'], marker='.')
plt.title('model accuracy')
plt.xlabel('epoch')
plt.ylabel('accuracy')
plt.grid()
plt.legend(['acc', 'val_acc'], loc='lower right')
plt.savefig(os.path.join(result_dir, 'model_accuracy.png'))
plt.close()
plt.plot(history.history['loss'], marker='.')
plt.plot(history.history['val_loss'], marker='.')
plt.title('model loss')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.grid()
plt.legend(['loss', 'val_loss'], loc='upper right')
plt.savefig(os.path.join(result_dir, 'model_loss.png'))
plt.close()
def save_history(history, result_dir):
loss = history.history['loss']
acc = history.history['acc']
val_loss = history.history['val_loss']
val_acc = history.history['val_acc']
nb_epoch = len(acc)
with open(os.path.join(result_dir, 'result.txt'), 'w') as fp:
fp.write('epoch\tloss\tacc\tval_loss\tval_acc\n')
for i in range(nb_epoch):
fp.write('{}\t{}\t{}\t{}\t{}\n'.format(
i, loss[i], acc[i], val_loss[i], val_acc[i]))
fp.close()
def process_batch(lines,img_path,inputH,inputW,train=True):
imagew = 128
imageh = 128
num = len(lines)
batch = np.zeros((num, imagew, imageh, 3), dtype='float32')
labels = np.zeros(num, dtype='int')
for i in range(num):
path = lines[i].split(' ')[0]
label = lines[i].split(' ')[-1]
label = label.strip('\n')
label = int(label)
img = os.path.join(img_path, path)
if train:
crop_x = random.randint(0, np.max([0, imagew-inputW]))
crop_y = random.randint(0, np.max([0, imageh-inputH]))
is_flip = random.randint(0, 1)
image = cv2.imread(img)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = image[crop_y:crop_y + inputH, crop_x:crop_x + inputW, :]
image = cv2.resize(image, (imagew, imageh))
if is_flip == 1:
image = cv2.flip(image, 1)
#batch[i][:][:][:] = image[crop_y:crop_y + inputH,crop_x:crop_x + inputW, :]
batch[i] = image
labels[i] = label
else:
image = cv2.imread(img)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
Hshmean = int(np.round(np.max([0, np.round((imageh-inputH)/2)])))
Wshmean = int(np.round(np.max([0, np.round((imagew-inputW)/2)])))
image = image[Hshmean:Hshmean+inputH,Wshmean:Wshmean+inputW, :]
image = cv2.resize(image, (imagew, imageh))
batch[i] = image
labels[i] = label
return batch, labels
def generator_train_batch( train_txt, batch_size, num_classes, img_path, inputH, inputW ):
ff = open(train_txt, 'r')
lines = ff.readlines()
num = len(lines)
while True:
new_line = []
index = [n for n in range(num)]
random.shuffle(index)
for m in range(num):
new_line.append(lines[index[m]])
for i in range(int(num/batch_size)):
a = i*batch_size
b = (i+1)*batch_size
x_train, x_labels = process_batch(new_line[a:b], img_path, inputH, inputW, train=True)
y = np_utils.to_categorical(np.array(x_labels), num_classes)
yield x_train, y
def generator_val_batch(val_txt,batch_size,num_classes,img_path,inputH,inputW):
f = open(val_txt, 'r')
lines = f.readlines()
num = len(lines)
while True:
new_line = []
index = [n for n in range(num)]
random.shuffle(index)
for m in range(num):
new_line.append(lines[index[m]])
for i in range(int(num / batch_size)):
a = i * batch_size
b = (i + 1) * batch_size
y_test,y_labels = process_batch(new_line[a:b],img_path,inputH,inputW,train=False)
y = np_utils.to_categorical(np.array(y_labels), num_classes)
yield y_test, y
def generator_train_batch_proposed( new_lines, k, batch_size, num_classes, img_path, inputH, inputW ):
val_set = 0
while True:
if val_set >= k:
val_set = 0
else:
pass
new_line = []
for i in range(len(new_lines)):
if val_set != i:
new_line += new_lines[i]
num = len(new_line)
random.shuffle(new_line)
for i in range(int(num/batch_size)):
a = i*batch_size
b = (i+1)*batch_size
x_train, x_labels = process_batch(new_line[a:b], img_path, inputH, inputW, train=True)
y = np_utils.to_categorical(np.array(x_labels), num_classes)
yield x_train, y
val_set += 1
def generator_val_batch_proposed(new_lines, k, batch_size, num_classes, img_path, inputH, inputW):
val_set = 0
while True:
if val_set >= k:
val_set = 0
else:
pass
new_line = new_lines[val_set]
num = len(new_lines)
random.shuffle(new_line)
for i in range(int(num / batch_size)):
a = i * batch_size
b = (i + 1) * batch_size
y_test,y_labels = process_batch(new_line[a:b],img_path,inputH,inputW,train=False)
y = np_utils.to_categorical(np.array(y_labels), num_classes)
yield y_test, y
val_set += 1
def main():
proposed = True
if proposed:
outputdir = 'result/first_attempt/'
if os.path.isdir(outputdir):
print('save in :'+outputdir)
else:
os.makedirs(outputdir)
train_img_path = '/home/cc_lee/Dataset/MIT-BIH_AD/'
train_file = '/home/cc_lee/Documents/ECG-Arrhythmia-classification-in-2D-CNN/MIT-BIH_AD_train.txt'
num_classes = 8
k = 10
f1 = open(train_file, 'r')
lines = f1.readlines()
f1.close()
train_samples = len(lines)
val_samples = len(lines)//k
num = len(lines)
new_lines = []
index = [n for n in range(num)]
random.shuffle(index)
for m in range(num):
new_lines.append(lines[index[m]])
lines = new_lines
temp = []
new_lines = []
for i in range(num):
if i % val_samples == 0:
temp = []
new_lines.append(temp)
temp.append(lines[i])
batch_size = 1
epochs = 40
input_h = 96
input_w = 96
model = proposed_model()
lr = 0.0001
adam = Adam(lr=lr)
model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])
model.summary()
history = model.fit_generator(generator_train_batch_proposed(new_lines, k, batch_size, num_classes, train_img_path, input_h, input_w),
steps_per_epoch=train_samples // batch_size,
epochs=epochs,
callbacks=[Step()],
validation_data=generator_val_batch_proposed(new_lines, k, batch_size, num_classes, train_img_path, input_h, input_w),
validation_steps=val_samples // batch_size,
verbose=1)
plot_history(history, outputdir)
save_history(history, outputdir)
model.save_weights(outputdir+'proposed_model_{}.h5'.format(proposed))
else:
outputdir = 'result/first_attempt/'
if os.path.isdir(outputdir):
print('save in :' + outputdir)
else:
os.makedirs(outputdir)
train_img_path = '/home/cc_lee/Dataset/MIT-BIH_AD/'
test_img_path = '//home/cc_lee/Dataset/MIT-BIH_AD/'
train_file = '/home/cc_lee/Documents/ECG-Arrhythmia-classification-in-2D-CNN/MIT-BIH_AD_train.txt'
test_file = '/home/cc_lee/Documents/ECG-Arrhythmia-classification-in-2D-CNN/MIT-BIH_AD_val.txt'
num_classes = 8
f1 = open(train_file, 'r')
f2 = open(test_file, 'r')
lines = f1.readlines()
f1.close()
train_samples = len(lines)
lines = f2.readlines()
f2.close()
val_samples = len(lines)
batch_size = 1
epochs = 40
input_h = 96
input_w = 96
model = proposed_model()
lr = 0.0001
adam = Adam(lr=lr)
model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])
model.summary()
history = model.fit_generator(
generator_train_batch(train_file, batch_size, num_classes, train_img_path, input_h, input_w),
steps_per_epoch=train_samples // batch_size,
epochs=epochs,
callbacks=[Step()],
validation_data=generator_val_batch(test_file, batch_size, num_classes, test_img_path, input_h, input_w),
validation_steps=val_samples // batch_size,
verbose=1)
plot_history(history, outputdir)
save_history(history, outputdir)
model.save_weights(outputdir+'proposed_model_{}.h5'.format(proposed))
if __name__ == '__main__':
main()