-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_Knn.py
75 lines (54 loc) · 2.43 KB
/
train_Knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import pandas as pd
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import preprocessing
from sklearn.decomposition import TruncatedSVD
from sklearn.model_selection import StratifiedKFold
from knn import KNNClassifier
from sklearn.metrics import accuracy_score, precision_score, f1_score, recall_score
pd.set_option('precision', 6)
# Read data #
train_data = pd.read_csv('dataSets/train_set.csv', encoding='utf-8', sep="\t")
# Drop useless columns #
train_data = train_data.drop(['RowNum', 'Id', 'Title'], axis=1)
# 10-fold #
kf = StratifiedKFold(n_splits=10, random_state=123)
y_train = train_data["Category"]
X_train = train_data["Content"]
# Add labels #
le = preprocessing.LabelEncoder()
X_train_le = le.fit_transform(y_train)
X_train_cat = le.inverse_transform(X_train_le)
# Create matrix of TF-IDF features #
tfidf_vectorizer = TfidfVectorizer(stop_words=ENGLISH_STOP_WORDS)
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)
# Use LSA for dimensionality reduction #
svd = TruncatedSVD(n_components=100, random_state=123)
# Perform dimensionality reduction #
X_train_reduced = svd.fit_transform(X_train_tfidf)
# Keep results #
prec, rec, f1, accu = ([] for i in range(4))
# Use 10-fold and find metrics #
for train, test in kf.split(X_train_reduced, X_train_le):
X_train = X_train_reduced[train]
y_train = X_train_le[train]
X_test = X_train_reduced[test]
y_test = X_train_le[test]
clf_KNN = KNNClassifier(100)
# Train model #
clf_KNN.fit(X_train, y_train)
# Predict categories #
y_pred = clf_KNN.predict(X_test)
# Save scores #
prec.append(precision_score(y_test, y_pred, average='macro'))
rec.append(recall_score(y_test, y_pred, average='macro'))
f1.append(f1_score(y_test, y_pred, average='macro'))
accu.append(accuracy_score(y_test, y_pred))
# Print results to csv #
Evaluation_metric_df = pd.read_csv('EvaluationMetric_10fold.csv', sep="\t")
Evaluation_metric_df['KNN'] = [round(sum(accu) / float(len(accu)), 6),
round(sum(prec) / float(len(prec)), 6),
round(sum(rec) / float(len(rec)), 6),
round(sum(f1) / float(len(f1)), 6)]
# Create csv #
Evaluation_metric_df.to_csv("EvaluationMetric_10fold.csv", encoding='utf-8', index=False, sep="\t")