-
Notifications
You must be signed in to change notification settings - Fork 0
/
0300__longest_increasing_subsequence.py
53 lines (36 loc) · 1.25 KB
/
0300__longest_increasing_subsequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
LeetCode: https://leetcode.com/problems/longest-increasing-subsequence/
Given an integer array nums, return the length of the longest strictly increasing
subsequence
## Example 1
Input: nums = [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
## Example 2
Input: nums = [0,1,0,3,2,3]
Output: 4
## Example 3
Input: nums = [7,7,7,7,7,7,7]
Output: 1
## Constraints
* 1 <= nums.length <= 2500
* -10^4 <= nums[i] <= 10^4
## Follow up
Can you come up with an algorithm that runs in O(n log(n)) time complexity?
"""
from typing import List
from unittest import TestCase
class Solution(TestCase):
def test_example_1(self):
self.assertEqual(4, self.lengthOfLIS([10, 9, 2, 5, 3, 7, 101, 18]))
def test_example_2(self):
self.assertEqual(4, self.lengthOfLIS([0, 1, 0, 3, 2, 3]))
def test_example_3(self):
self.assertEqual(1, self.lengthOfLIS([7] * 10))
def lengthOfLIS(self, nums: List[int]) -> int:
dp = [1] * len(nums)
for left in range(len(nums) - 1, -1, -1):
for right in range(left + 1, len(nums)):
if nums[left] < nums[right]:
dp[left] = max(dp[left], 1 + dp[right])
return max(dp)