forked from tstafylakis/Lipreading-ResNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.lua
221 lines (178 loc) · 7.72 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
--
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- The training loop and learning rate schedule
--
local optim = require 'optim'
local M = {}
local Trainer = torch.class('LSTM.Trainer', M)
function Trainer:__init(model, criterion, opt, optimState)
self.model = model
self.criterion = criterion
self.optimState = optimState or {
learningRate = opt.LR,
learningRateDecay = 0.0,
momentum = opt.momentum,
nesterov = true,
dampening = 0.0,
weightDecay = opt.weightDecay, --SOS use 0.0 in this experiment to leave fronetend and ResNet unaltered
}
self.opt = opt
self.params, self.gradParams = model:getParameters()
end
function Trainer:runningmean(xn,T)
table.remove(T,1)
table.insert(T,xn)
local m = torch.Tensor(T):mean()
return m,T
end
function Trainer:train(epoch, dataloader)
-- Trains the model for a single epoch
self.optimState.learningRate = self:learningRate(epoch)
local timer = torch.Timer()
local dataTimer = torch.Timer()
local function feval()
return self.criterion.output, self.gradParams
end
local trainSize = dataloader:size()
local top1Sum, top5Sum, lossSum = 0.0, 0.0, 0.0
local N = 0
print('=> Training epoch # ' .. epoch)
-- set the batch norm to training mode
self.model:training()
local nmean = 100
local Terr = torch.FloatTensor(nmean):fill(0):totable()
local Ttop1 = torch.FloatTensor(nmean):fill(0):totable()
local rerr = 0
local rtop1 = 0
local fake_examples = torch.IntTensor()
for n, sample in dataloader:run() do
local dataTime = dataTimer:time().real
local loss = 0.0
local top1 = 0.0
local top5 = 0.0
fake_examples = self:copyInputs(sample)
if fake_examples:sum() == 0 then
local output = self.model:forward(self.input):float()
local batchSize = output:size(1)
local loss = self.criterion:forward(self.model.output, self.target)
self.model:zeroGradParameters()
self.criterion:backward(self.model.output, self.target)
self.model:backward(self.input, self.criterion.gradInput)
optim.adam(feval, self.params, self.optimState) -- I use adam in my latest experiments
local top1, top5 = self:computeScore(output, sample.target, 1)
top1Sum = top1Sum + top1*batchSize
top5Sum = top5Sum + top5*batchSize
lossSum = lossSum + loss*batchSize
N = N + batchSize
rerr, Terr = self:runningmean(loss,Terr)
rtop1, Ttop1 = self:runningmean(top1,Ttop1)
print((' | Epoch: [%d][%d/%d] Time %.3f Data %.3f Err %1.4f (%1.4f) top1 %7.3f (%7.3f) top5 %7.3f'):format(
epoch, n, trainSize, timer:time().real, dataTime, loss, rerr, top1, rtop1, top5))
-- check that the storage didn't get changed do to an unfortunate getParameters call
assert(self.params:storage() == self.model:parameters()[1]:storage())
timer:reset()
dataTimer:reset()
end
end
return top1Sum / N, top5Sum / N, lossSum / N
end
function Trainer:test(epoch, dataloader)
-- Computes the top-1 and top-5 err on the validation set
local timer = torch.Timer()
local dataTimer = torch.Timer()
local size = dataloader:size()
local nCrops = self.opt.tenCrop and 10 or 1
local top1Sum, top5Sum, top10Sum = 0.0, 0.0, 0.0
local N = 0
self.model:evaluate()
local fake_examples = torch.IntTensor()
for n, sample in dataloader:run() do
local dataTime = dataTimer:time().real
-- Copy input and target to the GPU
fake_examples = self:copyInputs(sample)
local output = self.model:forward(self.input):float()
local batchSize = output:size(1)/nCrops - fake_examples:sum()
local loss = self.criterion:forward(self.model.output, self.target)
local top1, top5, top10 = self:computeScore(output[{{1,batchSize}}], sample.target[{{1,batchSize}}], nCrops)
top1Sum = top1Sum + top1*batchSize
top5Sum = top5Sum + top5*batchSize
top10Sum = top10Sum + top10*batchSize
N = N + batchSize
print((' | Test: [%d][%d/%d] Time %.3f Data %.3f top1 %7.3f (%7.3f) top5 %7.3f (%7.3f) top10 %7.3f (%7.3f)'):format(
epoch, n, size, timer:time().real, dataTime, top1, top1Sum / N, top5, top5Sum / N, top10, top10Sum / N))
timer:reset()
dataTimer:reset()
end
self.model:training()
print((' * Finished epoch # %d top1: %7.3f top5: %7.3f top10: %7.3f\n'):format(
epoch, top1Sum / N, top5Sum / N, top10Sum / N))
return top1Sum / N, top5Sum / N, top10Sum / N
end
function Trainer:computeScore(output, target, nCrops)
if output:dim() == 3 then
output = torch.sum(output,2):squeeze(2) -- sum over all outputs (for LSTM, that has one logsoftmax per frame)
end
if nCrops > 1 then
-- Sum over crops
output = output:view(output:size(1) / nCrops, nCrops, output:size(2))
--:exp()
:sum(2):squeeze(2)
end
-- Computes the top1 and top5 error rate
local batchSize = output:size(1)
local _ , predictions = output:float():sort(2, true) -- descending
-- Find which predictions match the target
local correct = predictions:eq(
target:long():view(batchSize, 1):expandAs(output))
-- Top-1 score
local top1 = 1.0 - (correct:narrow(2, 1, 1):sum() / batchSize)
-- Top-5 score, if there are at least 5 classes
local len = math.min(5, correct:size(2))
local top5 = 1.0 - (correct:narrow(2, 1, len):sum() / batchSize)
-- Top-10 score, if there are at least 10 classes
local len = math.min(10, correct:size(2))
local top10 = 1.0 - (correct:narrow(2, 1, len):sum() / batchSize)
return top1 * 100, top5 * 100, top10 * 100
end
function Trainer:copyInputs(sample)
-- To have a fixed number of examples per minibatch I add some fake examples in the last minibatch of each epoch, which are not used in training or in testing
self.input = self.input or (self.opt.nGPU == 1
and torch.CudaTensor()
or torch.CudaTensor())
self.target = self.target or (torch.CudaLongTensor and torch.CudaLongTensor() or torch.CudaTensor())
local fake_examples = torch.IntTensor(self.opt.batchSize):fill(0)
if sample.input:size(1)<self.opt.batchSize then
fake_examples[{{sample.input:size(1)+1,-1}}]:fill(1)
--video:
local P = torch.FloatTensor(self.opt.batchSize - sample.input:size(1),sample.input:size(2),sample.input:size(3),sample.input:size(4),sample.input:size(5)):normal(0,1)
sample.input = torch.cat(sample.input,P:typeAs(sample.input),1)
--target:
local O = torch.LongTensor(self.opt.batchSize - sample.target:size(1)):random(1,500)
sample.target = torch.cat(sample.target,O:typeAs(sample.target),1)
end
self.input:resize(sample.input:size()):copy(sample.input)
target_rep = torch.repeatTensor(sample.target,self.opt.Nw,1):transpose(1,2)
self.target:resize(target_rep:size()):copy(target_rep)
return fake_examples
end
function Trainer:learningRate(epoch)
-- Training schedule
local decay = 0
if self.opt.dataset == 'imagenet' then
decay = math.floor((epoch - 1) / 30)
elseif self.opt.dataset == 'BBCnet' then
decay = math.floor((epoch - 1) / 5) -- I drop it by half every 5 epochs
elseif self.opt.dataset == 'cifar10' then
decay = epoch >= 122 and 2 or epoch >= 81 and 1 or 0
elseif self.opt.dataset == 'cifar100' then
decay = epoch >= 122 and 2 or epoch >= 81 and 1 or 0
end
return self.opt.LR * math.pow(0.5, decay)
end
return M.Trainer