-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_preprocess.py
114 lines (87 loc) · 2.68 KB
/
data_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import pandas as pd
import numpy as np
import re
import pickle
def load_services_pickle():
with open('Data/medical_services.pickle', 'rb') as f:
medical_services = pickle.load(f)
return medical_services
def get_matrix(value, split_by, bow, is_op = False):
matrix = np.zeros(len(bow))
try:
elements =[element.strip() for element in value.split(split_by) if element.strip() != '']
except:
elements = [value]
for i, word in enumerate(bow):
if word in elements:
matrix[i] = 1
return matrix
def get_opday_matrix(days : str):
day_dict = {
"Monday" : 0,
"Tuesday" : 1,
"Wednesday" : 2,
"Thursday" : 3,
"Friday" : 4,
"Saturday" : 5,
"Sunday" : 6
}
try:
days = [day.strip() for day in days.split(',')]
except:
days = [days.strip()]
Matrix = np.zeros(7)
for day in days:
index = day_dict.get(day, None)
if index is not None:
Matrix[index] = 1
return Matrix
def gen_matrix_op_time(op_time : str):
days_vector = np.zeros(7)
op_time = str(op_time)
try:
splitted = [value.strip().lower() for value in op_time.split(',') if value.strip() != '']
except:
splitted = [op_time.strip().lower()]
if len(splitted) < 7:
splitted = splitted + [0 for i in range(7 - len(splitted))]
print(splitted)
for i, value in enumerate(splitted):
if value == 0 or value.lower() in ['closed', 'unknown', 'n,/,a']:
continue
days_vector[i] = 1
return days_vector
def encode_care_system(care_system: str) -> int:
if care_system == "GOVT":
return 3
if care_system == "PFP":
return 2
if care_system == "PNFP":
return 1
else:
return 0
# Create Matrix Factorization
def generate_Factorized_Matrix(data, column, is_service = False):
bow = list()
for i, element in enumerate(data[column].values):
element = re.sub('\.', ',', str(element))
values = element.split(',')
for value in values:
if value == '':
continue
value = value.strip().lower()
bow.append(value)
bow = sorted(set(bow))
Matrix = np.zeros((len(data), len(bow)))
for i, element in enumerate(data[column].values):
element = str(element)
element = re.sub('\.', ',', element)
words = element.split(',')
for word in words:
try:
word = word.strip().lower()
index = list(bow).index(word)
Matrix[i, index] = 1
except:
continue
return Matrix, bow