-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path50startups.py
55 lines (41 loc) · 1.43 KB
/
50startups.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#importing the dataset
dataset = pd.read_csv('50_Startups.csv')
x=dataset.iloc[:,:-1].values
y=dataset.iloc[:,4].values
#handling categorical data
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
labelencoder=LabelEncoder()
x[:,3]=labelencoder.fit_transform(x[:,3])
onehotencoder=OneHotEncoder(categorical_features=[3])
x=onehotencoder.fit_transform(x).toarray()
#handling dummy variables
x=x[:,1:]
#splitting the dataset
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
#fitting training set to mlr
from sklearn.linear_model import LinearRegression
regressor=LinearRegression()
regressor.fit(x_train,y_train)
#predicting the regression results
y_pred=regressor.predict(x_test)
import statsmodels.api as sm
x=np.append(np.ones((50,1)).astype(int),values=x,axis=1)
x_opt=x[:,[0,1,2,3,4,5]]
regressor_ols=sm.OLS(endog=y,exog=x_opt).fit()
regressor_ols.summary()
x_opt=x[:,[0,1,3,4,5]]
regressor_ols=sm.OLS(endog=y,exog=x_opt).fit()
regressor_ols.summary()
x_opt=x[:,[0,3,4,5]]
regressor_ols=sm.OLS(endog=y,exog=x_opt).fit()
regressor_ols.summary()
x_opt=x[:,[0,3,5]]
regressor_ols=sm.OLS(endog=y,exog=x_opt).fit()
regressor_ols.summary()
x_opt=x[:,[0,3]]
regressor_ols=sm.OLS(endog=y,exog=x_opt).fit()
regressor_ols.summary()