-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloadingData.py
48 lines (38 loc) · 1.11 KB
/
loadingData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import cv2
import pickle
import os
import numpy as np
import matplotlib.pyplot as plt
import random
DATADIR = "/home/icefire/ML/Cats_vs_Dogs/Data_Set/PetImages"
CATEGORIES = ["Dog","Cat"]
training_data = []
IMG_SIZE = 60
def create_training_data():
for category in CATEGORIES:
path = os.path.join(DATADIR,category)
class_num = CATEGORIES.index(category)
for img in os.listdir(path):
try:
img_array = cv2.imread(os.path.join(path,img),cv2.IMREAD_GRAYSCALE)
newArray = cv2.resize(img_array,(IMG_SIZE,IMG_SIZE))
training_data.append([newArray,class_num])
except Exception as e:
pass
create_training_data()
print(len(training_data))
random.shuffle(training_data)
X = []
y = []
for features,labels in training_data:
X.append(features)
y.append(labels)
X = np.array(X).reshape(-1,IMG_SIZE,IMG_SIZE,1)
pickle_out = open("X.pickle","wb")
pickle.dump(X,pickle_out)
pickle_out.close()
pickle_out = open("y.pickle","wb")
pickle.dump(y,pickle_out)
pickle_out.close()
pickle_in = open("X.pickle","rb")
print(X[1])