Skip to content

Commit d84cd1a

Browse files
authored
Update README.md
1 parent a7e5d80 commit d84cd1a

File tree

1 file changed

+27
-4
lines changed

1 file changed

+27
-4
lines changed

README.md

+27-4
Original file line numberDiff line numberDiff line change
@@ -220,13 +220,36 @@ You can read our paper explaining TabPFN [here](https://doi.org/10.1038/s41586-0
220220

221221
## ❓ FAQ
222222

223-
### Python Version Compatibility
223+
### **Usage & Compatibility**
224+
225+
**Q: What dataset sizes work best with TabPFN?**
226+
A: TabPFN is optimized for **datasets up to 10,000 rows**. For larger datasets, consider using **Random Forest preprocessing** or other extensions. See our [Colab notebook](https://colab.research.google.com/drive/154SoIzNW1LHBWyrxNwmBqtFAr1uZRZ6a#scrollTo=OwaXfEIWlhC8) for strategies.
224227

225228
**Q: Why can't I use TabPFN with Python 3.8?**
226-
A: TabPFN v2 requires Python 3.9 or newer as specified in our `pyproject.toml`. This is due to our use of newer Python features and type annotations. We recommend updating to Python 3.9+ to use TabPFN v2.
229+
A: TabPFN v2 requires **Python 3.9+** due to newer language features. Compatible versions: **3.9, 3.10, 3.11, 3.12**.
230+
231+
### **Installation & Setup**
232+
233+
**Q: How do I use TabPFN without an internet connection?**
234+
A: Manually download the model weights from [Hugging Face](https://huggingface.co/Prior-Labs/) and place them in your cache directory (see [Offline Usage](#offline-usage)).
235+
236+
**Q: I'm getting a `pickle` error when loading the model. What should I do?**
237+
A: Try the following:
238+
- Download the newest version of tabpfn `pip install tabpfn --upgrade`
239+
- Ensure model files downloaded correctly (re-download if needed)
240+
241+
### **Performance & Limitations**
242+
243+
**Q: Can TabPFN handle missing values?**
244+
A: **Yes!**
227245

228-
**Q: I'm getting pickle errors when loading the model. What could be wrong?**
229-
A: First check that you're using Python 3.9+ and PyTorch 2.1+. If you've manually downloaded the model files, ensure they weren't corrupted during download. Try using the download script in the [Offline Usage](#offline-usage) section above.
246+
**Q: How can I improve TabPFN’s performance?**
247+
A: Best practices:
248+
- Use **AutoTabPFNClassifier** from [TabPFN Extensions](https://github.com/priorlabs/tabpfn-extensions) for post-hoc ensembling
249+
- Feature engineering: Add domain-specific features to improve model performance
250+
Not effective:
251+
- Adapt feature scaling
252+
- Convert categorical features to numerical values (e.g., one-hot encoding)
230253

231254
## 🛠️ Development
232255

0 commit comments

Comments
 (0)