You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: README.md
+27-4
Original file line number
Diff line number
Diff line change
@@ -220,13 +220,36 @@ You can read our paper explaining TabPFN [here](https://doi.org/10.1038/s41586-0
220
220
221
221
## ❓ FAQ
222
222
223
-
### Python Version Compatibility
223
+
### **Usage & Compatibility**
224
+
225
+
**Q: What dataset sizes work best with TabPFN?**
226
+
A: TabPFN is optimized for **datasets up to 10,000 rows**. For larger datasets, consider using **Random Forest preprocessing** or other extensions. See our [Colab notebook](https://colab.research.google.com/drive/154SoIzNW1LHBWyrxNwmBqtFAr1uZRZ6a#scrollTo=OwaXfEIWlhC8) for strategies.
224
227
225
228
**Q: Why can't I use TabPFN with Python 3.8?**
226
-
A: TabPFN v2 requires Python 3.9 or newer as specified in our `pyproject.toml`. This is due to our use of newer Python features and type annotations. We recommend updating to Python 3.9+ to use TabPFN v2.
229
+
A: TabPFN v2 requires **Python 3.9+** due to newer language features. Compatible versions: **3.9, 3.10, 3.11, 3.12**.
230
+
231
+
### **Installation & Setup**
232
+
233
+
**Q: How do I use TabPFN without an internet connection?**
234
+
A: Manually download the model weights from [Hugging Face](https://huggingface.co/Prior-Labs/) and place them in your cache directory (see [Offline Usage](#offline-usage)).
235
+
236
+
**Q: I'm getting a `pickle` error when loading the model. What should I do?**
237
+
A: Try the following:
238
+
- Download the newest version of tabpfn `pip install tabpfn --upgrade`
239
+
- Ensure model files downloaded correctly (re-download if needed)
240
+
241
+
### **Performance & Limitations**
242
+
243
+
**Q: Can TabPFN handle missing values?**
244
+
A: **Yes!**
227
245
228
-
**Q: I'm getting pickle errors when loading the model. What could be wrong?**
229
-
A: First check that you're using Python 3.9+ and PyTorch 2.1+. If you've manually downloaded the model files, ensure they weren't corrupted during download. Try using the download script in the [Offline Usage](#offline-usage) section above.
246
+
**Q: How can I improve TabPFN’s performance?**
247
+
A: Best practices:
248
+
- Use **AutoTabPFNClassifier** from [TabPFN Extensions](https://github.com/priorlabs/tabpfn-extensions) for post-hoc ensembling
249
+
- Feature engineering: Add domain-specific features to improve model performance
250
+
Not effective:
251
+
- Adapt feature scaling
252
+
- Convert categorical features to numerical values (e.g., one-hot encoding)
0 commit comments