diff --git a/_preview/32/.buildinfo b/_preview/32/.buildinfo new file mode 100644 index 0000000..fa778db --- /dev/null +++ b/_preview/32/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 3920a6628fccf8d72a9fad2f2bd83fae +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/_preview/32/README.html b/_preview/32/README.html new file mode 100644 index 0000000..413870a --- /dev/null +++ b/_preview/32/README.html @@ -0,0 +1,588 @@ + + + + + + + + ESGF Cookbook — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+ +
+ + + + + + + + + + + + + + + + +
+ + + +
+
+
+
+ +
+ + thumbnail +
+

ESGF Cookbook

+

nightly-build +Binder +DOI

+

This Project Pythia Cookbook covers how to access and analyze datasets that can be accessed from Earth System Grid Federation (ESGF) cyberinfrastructure.

+
+

Motivation

+

This cookbook focuses on highlighting analysis recipes, as well as data acccess methods, all accesible within the Python programming language. This cookbook also spans beyond the scope of a single Climate Model Intercomparison Project (ex. CMIP6), expanding to other experiments/datasets such as CMIP5 and obs4MIPs.

+
+ +
+

Structure

+
+

Searching

+

This content includes details on how to search for datasets hosted on ESGF cyberinfrastructure.

+
+
+

Workflows

+

Scientific workflows utilizing data accessed from ESGF.

+
+
+
+

Running the Notebooks

+

You can either run the notebook using the NIMBUS Binder or on your local machine.

+
+

Running on Binder

+

The simplest way to interact with a Jupyter Notebook is through +the NIMBUS Binder, which enables the execution of a +Jupyter Book in the cloud-like infrastructure. The details of how this works are not +important for now. All you need to know is how to launch a Pythia +Cookbooks chapter via Binder. Simply navigate your mouse to +the top right corner of the book chapter you are viewing and click +on the rocket ship icon, (see figure below), and be sure to select +“launch Binder”. After a moment you should be presented with a +notebook that you can interact with. I.e. you’ll be able to execute +and even change the example programs. You’ll see that the code cells +have no output at first, until you execute them by pressing +Shift+Enter. Complete details on how to interact with +a live Jupyter notebook are described in Getting Started with +Jupyter.

+
+
+

Running on Your Own Machine

+

If you are interested in running this material locally on your computer, you will need to follow this workflow:

+

(Replace “cookbook-example” with the title of your cookbooks)

+
    +
  1. Clone the https://github.com/esgf2-us/esgf-cookbook repository:

    +
     git clone https://github.com/esgf2-us/esgf-cookbook.git
    +
    +
    +
  2. +
  3. Move into the cookbook-example directory

    +
    cd esgf-cookbook
    +
    +
    +
  4. +
  5. Create and activate your conda environment from the environment.yml file

    +
    conda env create -f environment.yml
    +conda activate esgf-cookbook-dev
    +
    +
    +
  6. +
  7. Move into the notebooks directory and start up Jupyterlab

    +
    cd notebooks/
    +jupyter lab
    +
    +
    +
  8. +
+
+
+
+
+
+
+
+
+
+ + + + +
+ + +
+
+
+ +
+
+ + + + + + \ No newline at end of file diff --git a/_preview/32/_images/07e5628b1f849b4ce6334f603d7908dc1785a35235ab0aaacc8a587b26d16160.png b/_preview/32/_images/07e5628b1f849b4ce6334f603d7908dc1785a35235ab0aaacc8a587b26d16160.png new file mode 100644 index 0000000..b64ef34 Binary files /dev/null and b/_preview/32/_images/07e5628b1f849b4ce6334f603d7908dc1785a35235ab0aaacc8a587b26d16160.png differ diff --git a/_preview/32/_images/0ac36e4c6d9665808a3fe8583135b2221d7aa3d89457727227f89b098bfddd57.png b/_preview/32/_images/0ac36e4c6d9665808a3fe8583135b2221d7aa3d89457727227f89b098bfddd57.png new file mode 100644 index 0000000..3d2b259 Binary files /dev/null and b/_preview/32/_images/0ac36e4c6d9665808a3fe8583135b2221d7aa3d89457727227f89b098bfddd57.png differ diff --git a/_preview/32/_images/0bbaec25dc76ad4eb1a467a4ab5463e2e70204cd5accc49e8e8e1f2466318814.png b/_preview/32/_images/0bbaec25dc76ad4eb1a467a4ab5463e2e70204cd5accc49e8e8e1f2466318814.png new file mode 100644 index 0000000..57c6540 Binary files /dev/null and b/_preview/32/_images/0bbaec25dc76ad4eb1a467a4ab5463e2e70204cd5accc49e8e8e1f2466318814.png differ diff --git a/_preview/32/_images/275c8033c1fee9d0a2c06fd7382cf8dc948c78a910d7eb5e29728481eb5c5246.png b/_preview/32/_images/275c8033c1fee9d0a2c06fd7382cf8dc948c78a910d7eb5e29728481eb5c5246.png new file mode 100644 index 0000000..fa713db Binary files /dev/null and b/_preview/32/_images/275c8033c1fee9d0a2c06fd7382cf8dc948c78a910d7eb5e29728481eb5c5246.png differ diff --git a/_preview/32/_images/2e149a2c17716058377bfc85df8d24cfa61c74de1a332fa6b4ec4fcb6a9c92b1.png b/_preview/32/_images/2e149a2c17716058377bfc85df8d24cfa61c74de1a332fa6b4ec4fcb6a9c92b1.png new file mode 100644 index 0000000..cd7c904 Binary files /dev/null and b/_preview/32/_images/2e149a2c17716058377bfc85df8d24cfa61c74de1a332fa6b4ec4fcb6a9c92b1.png differ diff --git a/_preview/32/_images/469a332a36efa3a00c56941721e44082329d8f5ffe0350a97e5acc0fedb6e7fd.png b/_preview/32/_images/469a332a36efa3a00c56941721e44082329d8f5ffe0350a97e5acc0fedb6e7fd.png new file mode 100644 index 0000000..c8deb3d Binary files /dev/null and b/_preview/32/_images/469a332a36efa3a00c56941721e44082329d8f5ffe0350a97e5acc0fedb6e7fd.png differ diff --git a/_preview/32/_images/6ccd2a32855774feaeddfd75adef8b31d3d8f17b139ed45d2139ab8143d795a0.png b/_preview/32/_images/6ccd2a32855774feaeddfd75adef8b31d3d8f17b139ed45d2139ab8143d795a0.png new file mode 100644 index 0000000..3187106 Binary files /dev/null and b/_preview/32/_images/6ccd2a32855774feaeddfd75adef8b31d3d8f17b139ed45d2139ab8143d795a0.png differ diff --git a/_preview/32/_images/861a5a7c186719b305d5b20401dcafd868cd5218a418bc67567844bed06ea8a9.png b/_preview/32/_images/861a5a7c186719b305d5b20401dcafd868cd5218a418bc67567844bed06ea8a9.png new file mode 100644 index 0000000..404d07a Binary files /dev/null and b/_preview/32/_images/861a5a7c186719b305d5b20401dcafd868cd5218a418bc67567844bed06ea8a9.png differ diff --git a/_preview/32/_images/8799c609e4da1ad391f94a810ac1aa9384138b7a148feeccd930826122364187.png b/_preview/32/_images/8799c609e4da1ad391f94a810ac1aa9384138b7a148feeccd930826122364187.png new file mode 100644 index 0000000..ce0e5db Binary files /dev/null and b/_preview/32/_images/8799c609e4da1ad391f94a810ac1aa9384138b7a148feeccd930826122364187.png differ diff --git a/_preview/32/_images/8b8d536107f288ec359faed7f5e58a419e43b9719074e1d3402f1066b8ae768e.png b/_preview/32/_images/8b8d536107f288ec359faed7f5e58a419e43b9719074e1d3402f1066b8ae768e.png new file mode 100644 index 0000000..e6b7c18 Binary files /dev/null and b/_preview/32/_images/8b8d536107f288ec359faed7f5e58a419e43b9719074e1d3402f1066b8ae768e.png differ diff --git a/_preview/32/_images/92635cf380e70848349225b5168c8752f4ae9062534af6a0c5fc5dcfbb63abea.png b/_preview/32/_images/92635cf380e70848349225b5168c8752f4ae9062534af6a0c5fc5dcfbb63abea.png new file mode 100644 index 0000000..15748f8 Binary files /dev/null and b/_preview/32/_images/92635cf380e70848349225b5168c8752f4ae9062534af6a0c5fc5dcfbb63abea.png differ diff --git a/_preview/32/_images/9e52532f5f89c86a15cd48e1ae1faf66186b994e2d6a1ad67385f992e5094b2d.png b/_preview/32/_images/9e52532f5f89c86a15cd48e1ae1faf66186b994e2d6a1ad67385f992e5094b2d.png new file mode 100644 index 0000000..d0e0109 Binary files /dev/null and b/_preview/32/_images/9e52532f5f89c86a15cd48e1ae1faf66186b994e2d6a1ad67385f992e5094b2d.png differ diff --git a/_preview/32/_images/9faf2b8ae969e005d19e35d5ad7963e61f95fffb59ef26a7fb4a34446cecedc6.png b/_preview/32/_images/9faf2b8ae969e005d19e35d5ad7963e61f95fffb59ef26a7fb4a34446cecedc6.png new file mode 100644 index 0000000..c69ad89 Binary files /dev/null and b/_preview/32/_images/9faf2b8ae969e005d19e35d5ad7963e61f95fffb59ef26a7fb4a34446cecedc6.png differ diff --git a/_preview/32/_images/NCAR-contemp-logo-blue.svg b/_preview/32/_images/NCAR-contemp-logo-blue.svg new file mode 100644 index 0000000..3bcda63 --- /dev/null +++ b/_preview/32/_images/NCAR-contemp-logo-blue.svg @@ -0,0 +1 @@ +NCAR-contemp-logo-blue.a diff --git a/_preview/32/_images/ProjectPythia_Logo_Final-01-Blue.svg b/_preview/32/_images/ProjectPythia_Logo_Final-01-Blue.svg new file mode 100644 index 0000000..961efc2 --- /dev/null +++ b/_preview/32/_images/ProjectPythia_Logo_Final-01-Blue.svg @@ -0,0 +1 @@ + diff --git a/_preview/32/_images/UAlbany-A2-logo-purple-gold.svg b/_preview/32/_images/UAlbany-A2-logo-purple-gold.svg new file mode 100644 index 0000000..4fdfe3a --- /dev/null +++ b/_preview/32/_images/UAlbany-A2-logo-purple-gold.svg @@ -0,0 +1,1125 @@ + + + + + + image/svg+xml + + + + + + + + + + + diff --git a/_preview/32/_images/Unidata_logo_horizontal_1200x300.svg b/_preview/32/_images/Unidata_logo_horizontal_1200x300.svg new file mode 100644 index 0000000..0d9fd70 --- /dev/null +++ b/_preview/32/_images/Unidata_logo_horizontal_1200x300.svg @@ -0,0 +1,891 @@ + + + + + + image/svg+xml + + + + + + + + + + diff --git a/_preview/32/_images/alpha_example.png b/_preview/32/_images/alpha_example.png new file mode 100644 index 0000000..6e7d3db Binary files /dev/null and b/_preview/32/_images/alpha_example.png differ diff --git a/_preview/32/_images/alpha_output.png b/_preview/32/_images/alpha_output.png new file mode 100644 index 0000000..ebcc8aa Binary files /dev/null and b/_preview/32/_images/alpha_output.png differ diff --git a/_preview/32/_images/b1c6f3c7fc53102ee626212d18c7af834c8db98b9b0ed7091b874c3c43ccd786.png b/_preview/32/_images/b1c6f3c7fc53102ee626212d18c7af834c8db98b9b0ed7091b874c3c43ccd786.png new file mode 100644 index 0000000..92d7166 Binary files /dev/null and b/_preview/32/_images/b1c6f3c7fc53102ee626212d18c7af834c8db98b9b0ed7091b874c3c43ccd786.png differ diff --git a/_preview/32/_images/b1ec660386851ba6cb1bb26d6427f7505a5368fa9d8a52ca2737bd49547209d5.png b/_preview/32/_images/b1ec660386851ba6cb1bb26d6427f7505a5368fa9d8a52ca2737bd49547209d5.png new file mode 100644 index 0000000..6ab62ea Binary files /dev/null and b/_preview/32/_images/b1ec660386851ba6cb1bb26d6427f7505a5368fa9d8a52ca2737bd49547209d5.png differ diff --git a/_preview/32/_images/cartopy_logo.png b/_preview/32/_images/cartopy_logo.png new file mode 100644 index 0000000..66bf2d5 Binary files /dev/null and b/_preview/32/_images/cartopy_logo.png differ diff --git a/_preview/32/_images/ef60ae7d74ee5b9e0b3df66eef882321dab98a17a16284b70f9d8835445f8c2c.png b/_preview/32/_images/ef60ae7d74ee5b9e0b3df66eef882321dab98a17a16284b70f9d8835445f8c2c.png new file mode 100644 index 0000000..87aecf6 Binary files /dev/null and b/_preview/32/_images/ef60ae7d74ee5b9e0b3df66eef882321dab98a17a16284b70f9d8835445f8c2c.png differ diff --git a/_preview/32/_images/esgf.png b/_preview/32/_images/esgf.png new file mode 100644 index 0000000..c55455b Binary files /dev/null and b/_preview/32/_images/esgf.png differ diff --git a/_preview/32/_images/esgf2-us.png b/_preview/32/_images/esgf2-us.png new file mode 100644 index 0000000..fad229c Binary files /dev/null and b/_preview/32/_images/esgf2-us.png differ diff --git a/_preview/32/_images/globus-compute-esgf-demo.png b/_preview/32/_images/globus-compute-esgf-demo.png new file mode 100644 index 0000000..cb89d41 Binary files /dev/null and b/_preview/32/_images/globus-compute-esgf-demo.png differ diff --git a/_preview/32/_images/globus-logo.png b/_preview/32/_images/globus-logo.png new file mode 100644 index 0000000..2bdb508 Binary files /dev/null and b/_preview/32/_images/globus-logo.png differ diff --git a/_preview/32/_images/intake-rooki-demo.png b/_preview/32/_images/intake-rooki-demo.png new file mode 100644 index 0000000..a0a508b Binary files /dev/null and b/_preview/32/_images/intake-rooki-demo.png differ diff --git a/_preview/32/_images/rooki_logo.png b/_preview/32/_images/rooki_logo.png new file mode 100644 index 0000000..eb41e1f Binary files /dev/null and b/_preview/32/_images/rooki_logo.png differ diff --git a/_preview/32/_sources/README.md b/_preview/32/_sources/README.md new file mode 100644 index 0000000..b089ae3 --- /dev/null +++ b/_preview/32/_sources/README.md @@ -0,0 +1,81 @@ +thumbnail + +# ESGF Cookbook + +[![nightly-build](https://github.com/ProjectPythia/cookbook-template/actions/workflows/nightly-build.yaml/badge.svg)](https://github.com/ProjectPythia/cookbook-template/actions/workflows/nightly-build.yaml) +[![Binder](https://binder.projectpythia.org/badge_logo.svg)](https://binder-nimbus.llnl.gov/v2/gh/esgf2-us/esgf-cookbook/main?labpath=notebooks) +[![DOI](https://zenodo.org/badge/475509405.svg)](https://zenodo.org/badge/latestdoi/475509405) + +This Project Pythia Cookbook covers how to access and analyze datasets that can be accessed from Earth System Grid Federation (ESGF) cyberinfrastructure. + +## Motivation + +This cookbook focuses on highlighting analysis recipes, as well as data acccess methods, all accesible within the Python programming language. This cookbook also spans beyond the scope of a single Climate Model Intercomparison Project (ex. CMIP6), expanding to other experiments/datasets such as CMIP5 and obs4MIPs. + +## Authors + +[Max Grover](@mgrover1), [Nathan Collier](@nocollier), [Carsten Ehbrecht](@cehbrecht), [Jacqueline Nugent](@jacnugent), [Gerardo Rivera Tello](@griverat) + +### Contributors + + + + + +## Structure + +### Searching + +This content includes details on how to search for datasets hosted on ESGF cyberinfrastructure. + +### Workflows + +Scientific workflows utilizing data accessed from ESGF. + +## Running the Notebooks + +You can either run the notebook using [the NIMBUS Binder](https://binder-nimbus.llnl.gov/) or on your local machine. + +### Running on Binder + +The simplest way to interact with a Jupyter Notebook is through +[the NIMBUS Binder](https://binder-nimbus.llnl.gov/), which enables the execution of a +[Jupyter Book](https://jupyterbook.org) in the cloud-like infrastructure. The details of how this works are not +important for now. All you need to know is how to launch a Pythia +Cookbooks chapter via Binder. Simply navigate your mouse to +the top right corner of the book chapter you are viewing and click +on the rocket ship icon, (see figure below), and be sure to select +“launch Binder”. After a moment you should be presented with a +notebook that you can interact with. I.e. you’ll be able to execute +and even change the example programs. You’ll see that the code cells +have no output at first, until you execute them by pressing +{kbd}`Shift`\+{kbd}`Enter`. Complete details on how to interact with +a live Jupyter notebook are described in [Getting Started with +Jupyter](https://foundations.projectpythia.org/foundations/getting-started-jupyter.html). + +### Running on Your Own Machine + +If you are interested in running this material locally on your computer, you will need to follow this workflow: + +(Replace "cookbook-example" with the title of your cookbooks) + +1. Clone the `https://github.com/esgf2-us/esgf-cookbook` repository: + + ```bash + git clone https://github.com/esgf2-us/esgf-cookbook.git + ``` + +1. Move into the `cookbook-example` directory + ```bash + cd esgf-cookbook + ``` +1. Create and activate your conda environment from the `environment.yml` file + ```bash + conda env create -f environment.yml + conda activate esgf-cookbook-dev + ``` +1. Move into the `notebooks` directory and start up Jupyterlab + ```bash + cd notebooks/ + jupyter lab + ``` diff --git a/_preview/32/_sources/notebooks/complex-search.ipynb b/_preview/32/_sources/notebooks/complex-search.ipynb new file mode 100644 index 0000000..26bedf7 --- /dev/null +++ b/_preview/32/_sources/notebooks/complex-search.ipynb @@ -0,0 +1,1081 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"ESGF" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Complex Searching with `intake-esgf`\n", + "\n", + "## Overview\n", + "\n", + "In this tutorial we will present an interface under design to facilitate complex searching using [intake-esgf](https://github.com/esgf2-us/intake-esgf). `intake-esgf` is a small `intake` and `intake-esm` *inspired* package under development in ESGF2. Please note that there is a name collison with an existing package in PyPI and conda. You will need to install the package from [source](https://github.com/esgf2-us/intake-esgf).\n", + "\n", + "## Prerequisites\n", + "\n", + "| Concepts | Importance | Notes |\n", + "| --- | --- | --- |\n", + "| [Install Package](https://github.com/esgf2-us/intake-esgf) | Necessary | |\n", + "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n", + "| Familiar with [intake-esm](https://intake-esm.readthedocs.io/en/stable/) | Helpful | Similar interface |\n", + "| [Transient climate response](https://doi.org/10.1029/2008JD010405) | Background | |\n", + "- **Time to learn**: 30 minutes\n", + "\n", + "## Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from intake_esgf import ESGFCatalog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initializing the Catalog\n", + "\n", + "As with `intake-esm` we first instantiate the catalog. However, since we will populate the catalog with search results, the catalog starts empty. Internally, we query different ESGF index nodes for information about what datasets you wish to include in your analysis. As ESGF2 is actively working on an index redesign, our catlogs by default point to a Globus (ElasticSearch) based index at ALCF (Argonne Leadership Computing Facility)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Perform a search() to populate the catalog.\n", + "GlobusESGFIndex('anl-dev')\n" + ] + } + ], + "source": [ + "cat = ESGFCatalog()\n", + "print(cat)\n", + "for ind in cat.indices: # Which indices are included?\n", + " print(ind)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also provide support for connecting to the ESGF1 Solr-based indices. You may specify a server or list or just include `True` to choose all the federated index nodes." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "GlobusESGFIndex('anl-dev')\n", + "SolrESGFIndex('esgf.ceda.ac.uk')\n", + "SolrESGFIndex('esgf-data.dkrz.de')\n", + "SolrESGFIndex('esgf-node.ipsl.upmc.fr')\n", + "SolrESGFIndex('esg-dn1.nsc.liu.se')\n", + "SolrESGFIndex('esgf-node.llnl.gov')\n", + "SolrESGFIndex('esgf.nci.org.au')\n", + "SolrESGFIndex('esgf-node.ornl.gov')\n" + ] + } + ], + "source": [ + "cat = ESGFCatalog(esgf1_indices=\"esgf-node.llnl.gov\") # include LLNL\n", + "cat = ESGFCatalog(esgf1_indices=[\"esgf-node.ornl.gov\", \"esgf.ceda.ac.uk\"]) # ORNL & CEDA\n", + "cat = ESGFCatalog(esgf1_indices=True) # all federated indices\n", + "for ind in cat.indices:\n", + " print(ind)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Populate the catalog\n", + "\n", + "Many times, an analysis will require several variables across multiple experiments. For example, if one were to compute the transient climate response (TCRE), you would need tempererature (`tas`) and carbon emissions from land (`nbp`) and ocean (`fgco2`) for a 1% CO2 increase experiment (`1pctCO2`) as well as the control experiment (`piControl`). If TCRE is not in your particular science, that is ok for this notebook. It is a motivating example and the specifics are less important than the search concepts. First, we perform a search in a familiar syntax." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " Searching indices: 100%|███████████████████████████████|8/8 [ 1.36s/index]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Summary information for 399 results:\n", + "mip_era [CMIP6]\n", + "activity_id [CMIP]\n", + "institution_id [CNRM-CERFACS, IPSL, MOHC, MRI, MPI-M, NCAR, N...\n", + "source_id [CNRM-ESM2-1, CNRM-CM6-1, IPSL-CM6A-LR, CNRM-C...\n", + "experiment_id [piControl, 1pctCO2]\n", + "member_id [r1i1p1f2, r2i1p1f2, r3i1p1f2, r1i1p1f1, r4i1p...\n", + "table_id [Omon, Amon, Lmon]\n", + "variable_id [fgco2, tas, nbp]\n", + "grid_label [gn, gr, gr1]\n", + "dtype: object\n" + ] + } + ], + "source": [ + "cat.search(\n", + " experiment_id=[\"piControl\", \"1pctCO2\"],\n", + " variable_id=[\"tas\", \"fgco2\", \"nbp\"],\n", + " table_id=[\"Amon\", \"Omon\", \"Lmon\"],\n", + ")\n", + "print(cat)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Internally, this launches simultaneous searches that are combined locally to provide a global view of what datasets are available. While the Solr indices themselves can be searched in distributed fashion, they will not report if an index has failed to return a response. As index nodes go down from time to time, this can leave you with a false impression that you have found all the datasets of interest. By managing the searches locally, `intake-esgf` can report back to you that an index has failed and that your results may be incomplete.\n", + "\n", + "If you would like details about what `intake-esgf` is doing, look in the local cache directory (`${HOME}/.esgf/`) for a `esgf.log` file. This is a full history of everything that `intake-esgf` has searched, downloaded, or accessed. You can also look at just this session by calling `session_log()`. In this case you will see how long each index took to return a response and if any failed" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[36;20m2023-12-07 09:37:01 \u001b[0m\u001b[36;32msearch begin\u001b[0m experiment_id=['piControl', '1pctCO2'], variable_id=['tas', 'fgco2', 'nbp'], table_id=['Amon', 'Omon', 'Lmon']\n", + "\u001b[36;20m2023-12-07 09:37:02 \u001b[0m└─SolrESGFIndex('esgf-node.ipsl.upmc.fr') response_time=1.42 total_time=1.89\n", + "\u001b[36;20m2023-12-07 09:37:03 \u001b[0m└─GlobusESGFIndex('anl-dev') results=329 response_time=2.19 total_time=2.19\n", + "\u001b[36;20m2023-12-07 09:37:03 \u001b[0m└─SolrESGFIndex('esg-dn1.nsc.liu.se') response_time=1.90 total_time=2.47\n", + "\u001b[36;20m2023-12-07 09:37:06 \u001b[0m└─SolrESGFIndex('esgf.ceda.ac.uk') response_time=2.40 total_time=5.31\n", + "\u001b[36;20m2023-12-07 09:37:07 \u001b[0m└─SolrESGFIndex('esgf.nci.org.au') response_time=3.26 total_time=6.56\n", + "\u001b[36;20m2023-12-07 09:37:08 \u001b[0m└─SolrESGFIndex('esgf-node.ornl.gov') response_time=1.51 total_time=6.92\n", + "\u001b[36;20m2023-12-07 09:37:08 \u001b[0m└─SolrESGFIndex('esgf-data.dkrz.de') response_time=2.80 total_time=7.63\n", + "\u001b[36;20m2023-12-07 09:37:11 \u001b[0m└─SolrESGFIndex('esgf-node.llnl.gov') response_time=1.49 total_time=10.89\n", + "\u001b[36;20m2023-12-07 09:37:12 \u001b[0m\u001b[36;32msearch end\u001b[0m total_time=11.41\n", + "\n" + ] + } + ], + "source": [ + "print(cat.session_log())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this stage of the search you have a catalog full of possibly relevant datasets for your analysis, stored in a `pandas` dataframe. You are free to view and manipulate this dataframe to help hone these results down. It is available to you as the `df` member of the `ESGFCatalog`. You should be careful to only remove rows as internally we could use any column in the downloading of the data. Also note that we have removed the user-facing notion of *where* the data is hosted. The `id` column of this dataframe is a list of full `dataset_ids` which includes the location information. At the point when you are ready to download data, we will choose locations automatically that are fastest for you." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mip_eraactivity_idinstitution_idsource_idexperiment_idmember_idtable_idvariable_idgrid_labelversionid
0CMIP6CMIPCNRM-CERFACSCNRM-ESM2-1piControlr1i1p1f2Omonfgco2gnv20181115[CMIP6.CMIP.CNRM-CERFACS.CNRM-ESM2-1.piControl...
1CMIP6CMIPCNRM-CERFACSCNRM-CM6-1piControlr1i1p1f2Amontasgrv20180814[CMIP6.CMIP.CNRM-CERFACS.CNRM-CM6-1.piControl....
2CMIP6CMIPCNRM-CERFACSCNRM-ESM2-1piControlr1i1p1f2Amontasgrv20181115[CMIP6.CMIP.CNRM-CERFACS.CNRM-ESM2-1.piControl...
3CMIP6CMIPCNRM-CERFACSCNRM-ESM2-1piControlr1i1p1f2Lmonnbpgrv20181115[CMIP6.CMIP.CNRM-CERFACS.CNRM-ESM2-1.piControl...
4CMIP6CMIPCNRM-CERFACSCNRM-CM6-11pctCO2r1i1p1f2Amontasgrv20180626[CMIP6.CMIP.CNRM-CERFACS.CNRM-CM6-1.1pctCO2.r1...
....................................
1304CMIP6CMIPNASA-GISSGISS-E2-1-G1pctCO2r102i1p1f1Lmonnbpgnv20190815[CMIP6.CMIP.NASA-GISS.GISS-E2-1-G.1pctCO2.r102...
1309CMIP6CMIPMRIMRI-ESM2-01pctCO2r1i2p1f1Amontasgnv20191205[CMIP6.CMIP.MRI.MRI-ESM2-0.1pctCO2.r1i2p1f1.Am...
2048CMIP6CMIPMIROCMIROC-ES2HpiControlr1i1p4f2Omonfgco2gr1v20230904[CMIP6.CMIP.MIROC.MIROC-ES2H.piControl.r1i1p4f...
2050CMIP6CMIPE3SM-ProjectE3SM-2-0-NARRM1pctCO2r1i1p1f1Amontasgrv20230427[CMIP6.CMIP.E3SM-Project.E3SM-2-0-NARRM.1pctCO...
2051CMIP6CMIPE3SM-ProjectE3SM-2-0-NARRMpiControlr1i1p1f1Amontasgrv20230505[CMIP6.CMIP.E3SM-Project.E3SM-2-0-NARRM.piCont...
\n", + "

399 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " mip_era activity_id institution_id source_id experiment_id \\\n", + "0 CMIP6 CMIP CNRM-CERFACS CNRM-ESM2-1 piControl \n", + "1 CMIP6 CMIP CNRM-CERFACS CNRM-CM6-1 piControl \n", + "2 CMIP6 CMIP CNRM-CERFACS CNRM-ESM2-1 piControl \n", + "3 CMIP6 CMIP CNRM-CERFACS CNRM-ESM2-1 piControl \n", + "4 CMIP6 CMIP CNRM-CERFACS CNRM-CM6-1 1pctCO2 \n", + "... ... ... ... ... ... \n", + "1304 CMIP6 CMIP NASA-GISS GISS-E2-1-G 1pctCO2 \n", + "1309 CMIP6 CMIP MRI MRI-ESM2-0 1pctCO2 \n", + "2048 CMIP6 CMIP MIROC MIROC-ES2H piControl \n", + "2050 CMIP6 CMIP E3SM-Project E3SM-2-0-NARRM 1pctCO2 \n", + "2051 CMIP6 CMIP E3SM-Project E3SM-2-0-NARRM piControl \n", + "\n", + " member_id table_id variable_id grid_label version \\\n", + "0 r1i1p1f2 Omon fgco2 gn v20181115 \n", + "1 r1i1p1f2 Amon tas gr v20180814 \n", + "2 r1i1p1f2 Amon tas gr v20181115 \n", + "3 r1i1p1f2 Lmon nbp gr v20181115 \n", + "4 r1i1p1f2 Amon tas gr v20180626 \n", + "... ... ... ... ... ... \n", + "1304 r102i1p1f1 Lmon nbp gn v20190815 \n", + "1309 r1i2p1f1 Amon tas gn v20191205 \n", + "2048 r1i1p4f2 Omon fgco2 gr1 v20230904 \n", + "2050 r1i1p1f1 Amon tas gr v20230427 \n", + "2051 r1i1p1f1 Amon tas gr v20230505 \n", + "\n", + " id \n", + "0 [CMIP6.CMIP.CNRM-CERFACS.CNRM-ESM2-1.piControl... \n", + "1 [CMIP6.CMIP.CNRM-CERFACS.CNRM-CM6-1.piControl.... \n", + "2 [CMIP6.CMIP.CNRM-CERFACS.CNRM-ESM2-1.piControl... \n", + "3 [CMIP6.CMIP.CNRM-CERFACS.CNRM-ESM2-1.piControl... \n", + "4 [CMIP6.CMIP.CNRM-CERFACS.CNRM-CM6-1.1pctCO2.r1... \n", + "... ... \n", + "1304 [CMIP6.CMIP.NASA-GISS.GISS-E2-1-G.1pctCO2.r102... \n", + "1309 [CMIP6.CMIP.MRI.MRI-ESM2-0.1pctCO2.r1i2p1f1.Am... \n", + "2048 [CMIP6.CMIP.MIROC.MIROC-ES2H.piControl.r1i1p4f... \n", + "2050 [CMIP6.CMIP.E3SM-Project.E3SM-2-0-NARRM.1pctCO... \n", + "2051 [CMIP6.CMIP.E3SM-Project.E3SM-2-0-NARRM.piCont... \n", + "\n", + "[399 rows x 11 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cat.df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model Groups\n", + "\n", + "However, `intake-esgf` also provides you with some tools to help locate relevant data for your analysis. When conducting these kinds of analyses, we are seeking for unique combinations of a `source_id`, `member_id`, and `grid_label` that have all the variables that we need. We call these *model groups*. In an ESGF search, it is common to find a model that has, for example, a `tas` for `r1i1p1f1` but not a `fgco2`. Sorting this out is time consuming and labor intensive. So first, we provide you a function to print out all model groups with the following function." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
variable_id
source_idmember_idgrid_label
ACCESS-CM2r1i1p1f1gn2
ACCESS-ESM1-5r1i1p1f1gn6
AWI-CM-1-1-MRr1i1p1f1gn2
AWI-ESM-1-1-LRr1i1p1f1gn2
BCC-CSM2-MRr1i1p1f1gn3
............
UKESM1-0-LLr1i1p1f2gn6
r2i1p1f2gn3
r3i1p1f2gn3
r4i1p1f2gn3
UKESM1-1-LLr1i1p1f2gn6
\n", + "

148 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " variable_id\n", + "source_id member_id grid_label \n", + "ACCESS-CM2 r1i1p1f1 gn 2\n", + "ACCESS-ESM1-5 r1i1p1f1 gn 6\n", + "AWI-CM-1-1-MR r1i1p1f1 gn 2\n", + "AWI-ESM-1-1-LR r1i1p1f1 gn 2\n", + "BCC-CSM2-MR r1i1p1f1 gn 3\n", + "... ...\n", + "UKESM1-0-LL r1i1p1f2 gn 6\n", + " r2i1p1f2 gn 3\n", + " r3i1p1f2 gn 3\n", + " r4i1p1f2 gn 3\n", + "UKESM1-1-LL r1i1p1f2 gn 6\n", + "\n", + "[148 rows x 1 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cat.model_groups().to_frame()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The function `model_groups()` returns a pandas Series (converted to a dataframe here for printing) with all unique combinations of (`source_id`,`member_id`,`grid_label`) along with the dataset count for each. This helps illustrate why it can be so difficult to locate all the data relevant to a given analysis. At the time of this writing, there are 148 model groups but relatively few of them with all 6 (2 experiments and 3 variables) datasets that we need. Furthermore, you cannot rely on a model group using `r1i1p1f1` for its primary result. The results above show that UKESM does not even use `f1` at all, further complicating the process of finding results.\n", + "\n", + "In addition to this notion of *model groups*, `intake-esgf` provides you a method `remove_incomplete()` for determing which model groups you wish to keep in the current search. Internally, we will group the search results dataframe by model groups and apply a function of your design to the grouped portion of the dataframe. For example, for the current work, I could just check that there are 6 datasets in the sub-dataframe." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
variable_id
source_idmember_idgrid_label
ACCESS-ESM1-5r1i1p1f1gn6
CanESM5r1i1p1f1gn6
r1i1p2f1gn6
CanESM5-1r1i1p1f1gn6
r1i1p2f1gn6
CanESM5-CanOEr1i1p2f1gn6
CESM2r1i1p1f1gn6
CESM2-FV2r1i1p1f1gn6
CESM2-WACCMr1i1p1f1gn6
CESM2-WACCM-FV2r1i1p1f1gn6
CMCC-ESM2r1i1p1f1gn6
GISS-E2-1-Gr101i1p1f1gn6
r102i1p1f1gn6
INM-CM4-8r1i1p1f1gr16
INM-CM5-0r1i1p1f1gr16
MIROC-ES2Lr1i1p1f2gn6
MPI-ESM-1-2-HAMr1i1p1f1gn6
MPI-ESM1-2-LRr1i1p1f1gn6
MRI-ESM2-0r1i2p1f1gn6
NorCPM1r1i1p1f1gn6
NorESM2-LMr1i1p1f1gn6
r1i1p4f1gn6
NorESM2-MMr1i1p1f1gn6
UKESM1-0-LLr1i1p1f2gn6
UKESM1-1-LLr1i1p1f2gn6
\n", + "
" + ], + "text/plain": [ + " variable_id\n", + "source_id member_id grid_label \n", + "ACCESS-ESM1-5 r1i1p1f1 gn 6\n", + "CanESM5 r1i1p1f1 gn 6\n", + " r1i1p2f1 gn 6\n", + "CanESM5-1 r1i1p1f1 gn 6\n", + " r1i1p2f1 gn 6\n", + "CanESM5-CanOE r1i1p2f1 gn 6\n", + "CESM2 r1i1p1f1 gn 6\n", + "CESM2-FV2 r1i1p1f1 gn 6\n", + "CESM2-WACCM r1i1p1f1 gn 6\n", + "CESM2-WACCM-FV2 r1i1p1f1 gn 6\n", + "CMCC-ESM2 r1i1p1f1 gn 6\n", + "GISS-E2-1-G r101i1p1f1 gn 6\n", + " r102i1p1f1 gn 6\n", + "INM-CM4-8 r1i1p1f1 gr1 6\n", + "INM-CM5-0 r1i1p1f1 gr1 6\n", + "MIROC-ES2L r1i1p1f2 gn 6\n", + "MPI-ESM-1-2-HAM r1i1p1f1 gn 6\n", + "MPI-ESM1-2-LR r1i1p1f1 gn 6\n", + "MRI-ESM2-0 r1i2p1f1 gn 6\n", + "NorCPM1 r1i1p1f1 gn 6\n", + "NorESM2-LM r1i1p1f1 gn 6\n", + " r1i1p4f1 gn 6\n", + "NorESM2-MM r1i1p1f1 gn 6\n", + "UKESM1-0-LL r1i1p1f2 gn 6\n", + "UKESM1-1-LL r1i1p1f2 gn 6" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def shall_i_keep_it(sub_df):\n", + " if len(sub_df) == 6:\n", + " return True\n", + " return False\n", + "\n", + "\n", + "cat.remove_incomplete(shall_i_keep_it)\n", + "cat.model_groups().to_frame()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You could write a much more complex check--it depends on what is relevant to your analysis. The effect is that the list of possible models with consistent results is now much more manageable. This method has the added benefit of forcing the user to be concrete about which models were included in an analysis.\n", + "\n", + "## Removing Additional Variants\n", + "\n", + "It may also be that you wish to only include a single `member_id` in your analysis. The above search shows we have a few models with multiple variants that have all 6 required datasets. To be fair to those that only have 1, you may wish to only keep the *smallest* variant. We also provide this function as part of the `ESGFCatalog` object.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
variable_id
source_idmember_idgrid_label
ACCESS-ESM1-5r1i1p1f1gn6
CanESM5r1i1p1f1gn6
CanESM5-1r1i1p1f1gn6
CanESM5-CanOEr1i1p2f1gn6
CESM2r1i1p1f1gn6
CESM2-FV2r1i1p1f1gn6
CESM2-WACCMr1i1p1f1gn6
CESM2-WACCM-FV2r1i1p1f1gn6
CMCC-ESM2r1i1p1f1gn6
GISS-E2-1-Gr101i1p1f1gn6
INM-CM4-8r1i1p1f1gr16
INM-CM5-0r1i1p1f1gr16
MIROC-ES2Lr1i1p1f2gn6
MPI-ESM-1-2-HAMr1i1p1f1gn6
MPI-ESM1-2-LRr1i1p1f1gn6
MRI-ESM2-0r1i2p1f1gn6
NorCPM1r1i1p1f1gn6
NorESM2-LMr1i1p1f1gn6
NorESM2-MMr1i1p1f1gn6
UKESM1-0-LLr1i1p1f2gn6
UKESM1-1-LLr1i1p1f2gn6
\n", + "
" + ], + "text/plain": [ + " variable_id\n", + "source_id member_id grid_label \n", + "ACCESS-ESM1-5 r1i1p1f1 gn 6\n", + "CanESM5 r1i1p1f1 gn 6\n", + "CanESM5-1 r1i1p1f1 gn 6\n", + "CanESM5-CanOE r1i1p2f1 gn 6\n", + "CESM2 r1i1p1f1 gn 6\n", + "CESM2-FV2 r1i1p1f1 gn 6\n", + "CESM2-WACCM r1i1p1f1 gn 6\n", + "CESM2-WACCM-FV2 r1i1p1f1 gn 6\n", + "CMCC-ESM2 r1i1p1f1 gn 6\n", + "GISS-E2-1-G r101i1p1f1 gn 6\n", + "INM-CM4-8 r1i1p1f1 gr1 6\n", + "INM-CM5-0 r1i1p1f1 gr1 6\n", + "MIROC-ES2L r1i1p1f2 gn 6\n", + "MPI-ESM-1-2-HAM r1i1p1f1 gn 6\n", + "MPI-ESM1-2-LR r1i1p1f1 gn 6\n", + "MRI-ESM2-0 r1i2p1f1 gn 6\n", + "NorCPM1 r1i1p1f1 gn 6\n", + "NorESM2-LM r1i1p1f1 gn 6\n", + "NorESM2-MM r1i1p1f1 gn 6\n", + "UKESM1-0-LL r1i1p1f2 gn 6\n", + "UKESM1-1-LL r1i1p1f2 gn 6" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cat.remove_ensembles()\n", + "cat.model_groups().to_frame()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Summary\n", + "\n", + "At this point, you would be ready to use `to_dataset_dict()` to download and load all datasets into a dictionary for analysis. The point of this notebook however is to expose the search capabilities. It is our goal to make annoying and time-consuming tasks easier by providing you smart interfaces for common operations. Let us [know](https://github.com/esgf2-us/intake-esgf/issues) what else is painful for you in locating relevant data for your science." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_preview/32/_sources/notebooks/enso-globus-flow.ipynb b/_preview/32/_sources/notebooks/enso-globus-flow.ipynb new file mode 100644 index 0000000..8d45f0e --- /dev/null +++ b/_preview/32/_sources/notebooks/enso-globus-flow.ipynb @@ -0,0 +1,3246 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "48c69fff-ab3b-49c8-b85b-95fef1250249", + "metadata": {}, + "source": [ + "\"Globus\n", + "\"ESGF" + ] + }, + { + "cell_type": "markdown", + "id": "483dcdb6-e125-4a52-a21f-55cfe1000dea", + "metadata": {}, + "source": [ + "# ENSO Calculations using Globus Flows" + ] + }, + { + "cell_type": "markdown", + "id": "4a415308-0e9a-470c-bb68-da75b349c006", + "metadata": {}, + "source": [ + "## Overview\n", + "\n", + "In this workflow, we combine topics covered in previous Pythia Foundations and CMIP6 Cookbook content to compute the [Niño 3.4 Index](https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni) to multiple datasets, with the primary computations occuring on a remote machine. As a refresher of what the ENSO 3.4 index is, please see the following text, which is also included in the [ENSO Xarray](https://foundations.projectpythia.org/core/xarray/enso-xarray.html) content in the Pythia Foundations content.\n", + "\n", + "> Niño 3.4 (5N-5S, 170W-120W): The Niño 3.4 anomalies may be thought of as representing the average equatorial SSTs across the Pacific from about the dateline to the South American coast. The Niño 3.4 index typically uses a 5-month running mean, and El Niño or La Niña events are defined when the Niño 3.4 SSTs exceed +/- 0.4C for a period of six months or more.\n", + "\n", + "> Niño X Index computation: a) Compute area averaged total SST from Niño X region; b) Compute monthly climatology (e.g., 1950-1979) for area averaged total SST from Niño X region, and subtract climatology from area averaged total SST time series to obtain anomalies; c) Smooth the anomalies with a 5-month running mean; d) Normalize the smoothed values by its standard deviation over the climatological period.\n", + "\n", + "![](https://www.ncdc.noaa.gov/monitoring-content/teleconnections/nino-regions.gif)\n", + "\n", + "The previous cookbook, we ran this in a single notebook locally. In this example, we aim to execute the workflow on a remote machine, with only the visualizion of the dataset occuring locally.\n", + "\n", + "The overall goal of this tutorial is to introduce the idea of functions as a service with Globus, and how this can be used to calculate ENSO indices." + ] + }, + { + "cell_type": "markdown", + "id": "2d4c6aed-a9c5-4d29-bfa3-c8e8be230567", + "metadata": {}, + "source": [ + "## Prerequisites\n", + "\n", + "| Concepts | Importance | Notes |\n", + "| --- | --- | --- |\n", + "| [Intro to Xarray](https://foundations.projectpythia.org/core/xarray/xarray-intro.html) | Necessary | |\n", + "| [hvPlot Basics](https://hvplot.holoviz.org/getting_started/hvplot.html) | Necessary | Interactive Visualization with hvPlot |\n", + "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n", + "| [Calculating ENSO with Xarray](https://foundations.projectpythia.org/core/xarray/enso-xarray.html) | Neccessary | Understanding of Masking and Xarray Functions |\n", + "| Dask | Helpful | |\n", + "\n", + "- **Time to learn**: 30 minutes" + ] + }, + { + "cell_type": "markdown", + "id": "7ff38f37-8f14-443f-b0c7-188baf75d1be", + "metadata": {}, + "source": [ + "## Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "52bcfa1a-3907-446d-b384-29e97b5c8cb9", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.4.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " var reloading = false;\n", + " var Bokeh = root.Bokeh;\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", + " root._bokeh_is_loading = css_urls.length + 0;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.0.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/panel.min.js\"];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + "\ttry {\n", + " inline_js[i].call(root, root.Bokeh);\n", + "\t} catch(e) {\n", + "\t if (!reloading) {\n", + "\t throw e;\n", + "\t }\n", + "\t}\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.4.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.0.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ] + }, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p1004" + } + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "\n", + "\n", + "\n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import hvplot.xarray\n", + "import holoviews as hv\n", + "import numpy as np\n", + "import hvplot.xarray\n", + "import matplotlib.pyplot as plt\n", + "import cartopy.crs as ccrs\n", + "from intake_esgf import ESGFCatalog\n", + "import xarray as xr\n", + "import cf_xarray\n", + "import warnings\n", + "import json\n", + "import os\n", + "import time\n", + "import globus_sdk\n", + "from globus_compute_sdk import Client, Executor\n", + "from globus_automate_client import FlowsClient\n", + "\n", + "# Import Globus scopes\n", + "from globus_sdk.scopes import SearchScopes\n", + "from globus_sdk.scopes import TransferScopes\n", + "from globus_sdk.scopes import FlowsScopes\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "hv.extension(\"bokeh\")" + ] + }, + { + "cell_type": "markdown", + "id": "252748e9-c3a4-4018-8b9b-c26c40465faf", + "metadata": {}, + "source": [ + "## Accessing our Data and Computing the ENSO 3.4 Index\n", + "As mentioned in the introduction, we are utilizing functions from the previous ENSO notebooks. In order to run these with Globus Compute, we need to comply with the following requirements\n", + "- All libraries/packages used in the function need to be installed on the globus compute endpoint\n", + "- All functions/libraries/packages need to be imported and defined within the function to execute\n", + "- The output from the function needs to serializable (ex. xarray.Dataset, numpy.array)\n", + "\n", + "Using these constraints, we setup the following function, with the key parameter being which model (`source_id`) to compare. Two examples here include The National Center for Atmospheric Research (NCAR) Model CESM2 and the Model for Interdisciplinary Research on Climate (MIROC) Model MIROC6. Valid responses for this exercise include:\n", + "- `ACCESS-ESM1-5`\n", + "- `EC-Earth3-CC`\n", + "- `MPI-ESM1-2-LR`\n", + "- `CanESM5`\n", + "- `MIROC6`\n", + "- `EC-Earth3`\n", + "- `CESM2`\n", + "- `EC-Earth3-Veg`\n", + "- `NorCPM1`" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "id": "2b74d939-f87d-4a44-9e4a-6643b7d04fe7", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def run_plot_enso(source_id, return_path=False):\n", + " import numpy as np\n", + " import matplotlib.pyplot as plt\n", + " from intake_esgf import ESGFCatalog\n", + " import xarray as xr\n", + " import cf_xarray\n", + " import warnings\n", + " warnings.filterwarnings(\"ignore\")\n", + "\n", + " def search_esgf(source_id):\n", + "\n", + " # Search and load the ocean surface temperature (tos)\n", + " cat = ESGFCatalog(esgf1_indices=\"anl-dev\")\n", + " cat.search(\n", + " activity_id=\"CMIP\",\n", + " experiment_id=\"historical\",\n", + " variable_id=[\"tos\"],\n", + " source_id=source_id,\n", + " member_id='r1i1p1f1',\n", + " grid_label=\"gn\",\n", + " table_id=\"Omon\",\n", + " )\n", + " try:\n", + " tos_ds = cat.to_dataset_dict()[\"tos\"]\n", + " except ValueError:\n", + " print(f\"Issue with {institution_id} dataset\")\n", + "\n", + " return tos_ds\n", + "\n", + " def calculate_enso(ds):\n", + "\n", + " # Subset the El Nino 3.4 index region\n", + " dso = ds.where(\n", + " (ds.cf[\"latitude\"] < 5) & (ds.cf[\"latitude\"] > -5) & (ds.cf[\"longitude\"] > 190) & (ds.cf[\"longitude\"] < 240), drop=True\n", + " )\n", + "\n", + " # Calculate the monthly means\n", + " gb = dso.tos.groupby('time.month')\n", + "\n", + " # Subtract the monthly averages, returning the anomalies\n", + " tos_nino34_anom = gb - gb.mean(dim='time')\n", + "\n", + " # Determine the non-time dimensions and average using these\n", + " non_time_dims = set(tos_nino34_anom.dims)\n", + " non_time_dims.remove(ds.tos.cf[\"T\"].name)\n", + " weighted_average = tos_nino34_anom.weighted(ds[\"areacello\"].fillna(0)).mean(dim=list(non_time_dims))\n", + "\n", + " # Calculate the rolling average\n", + " rolling_average = weighted_average.rolling(time=5, center=True).mean()\n", + " std_dev = weighted_average.std()\n", + " return rolling_average / std_dev\n", + "\n", + " def add_enso_thresholds(da, threshold=0.4):\n", + "\n", + " # Conver the xr.DataArray into an xr.Dataset\n", + " ds = da.to_dataset()\n", + "\n", + " # Cleanup the time and use the thresholds\n", + " try:\n", + " ds[\"time\"]= ds.indexes[\"time\"].to_datetimeindex()\n", + " except:\n", + " pass\n", + " ds[\"tos_gt_04\"] = (\"time\", ds.tos.where(ds.tos >= threshold, threshold).data)\n", + " ds[\"tos_lt_04\"] = (\"time\", ds.tos.where(ds.tos <= -threshold, -threshold).data)\n", + "\n", + " # Add fields for the thresholds\n", + " ds[\"el_nino_threshold\"] = (\"time\", np.zeros_like(ds.tos) + threshold)\n", + " ds[\"la_nina_threshold\"] = (\"time\", np.zeros_like(ds.tos) - threshold)\n", + "\n", + " return ds\n", + " \n", + " ds = search_esgf(source_id)\n", + " enso_index = add_enso_thresholds(calculate_enso(ds).compute())\n", + " enso_index.attrs = ds.attrs\n", + " enso_index.attrs[\"model\"] = source_id\n", + "\n", + " return enso_index" + ] + }, + { + "cell_type": "markdown", + "id": "e5ad93de-5473-4579-8ee4-cadd0fbb90b2", + "metadata": {}, + "source": [ + "## Configure Globus Compute\n", + "\n", + "Now that we have our functions, we can move toward using [Globus Flows](https://www.globus.org/globus-flows-service) and [Globus Compute](https://www.globus.org/compute).\n", + "\n", + "Globus Flows is a reliable and secure platform for orchestrating and performing research data management and analysis tasks. A flow is often needed to manage data coming from instruments, e.g., image files can be moved from local storage attached to a microscope to a high-performance storage system where they may be accessed by all members of the research project.\n", + "\n", + "More examples of creating and running flows can be found on our [demo instance](https://jupyter.demo.globus.org/hub/)." + ] + }, + { + "cell_type": "markdown", + "id": "663dfed0-e099-43db-98ad-9eb5021ac69e", + "metadata": {}, + "source": [ + "### Setup a Globus Compute Endpoint\n", + "Globus Compute (GC) is a service that allows **python functions** to be sent to remote points, executed, with the output from that function returned to the user. While there are a collection of endpoints already installed, we highlight in this section the steps required to configure for yourself. This idea is also known as \"serverless\" computing, where users do not need to think about the underlying infrastructure executing the code, but rather submit functions to be run and returned.\n", + "\n", + "To start a GC endpoint at your system you need to login, [configure a conda environment](https://foundations.projectpythia.org/foundations/how-to-run-python.html#installing-and-managing-python-with-conda), and `pip install globus-compute-endpoint`.\n", + "\n", + "You can then run:\n", + "\n", + "```globus-compute-endpoint configure esgf-test```\n", + "\n", + "```globus-compute-endpoint start esgf-test```\n", + "\n", + "Note that by default your endpoint will execute tasks on the login node (if you are using a High Performance Compute System). Additional configuration is needed for the endpoint to provision compute nodes. For example, here is the documentation on configuring globus compute endpoints on the Argonne Leadership Computing Facility's Polaris system\n", + "- https://globus-compute.readthedocs.io/en/latest/endpoints.html#polaris-alcf" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "id": "fe8d9e8b-e38d-41a5-b5f6-df9916d69f83", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "endpoint_id = \"6836803d-9831-4dc5-b159-eb658250e4bc\"\n", + "personal_endpoint_id = \"92bb829c-9d88-11ed-b579-33287ee02ec7\"" + ] + }, + { + "cell_type": "markdown", + "id": "ef408588-1e81-4726-892b-a9b0ad2f38cc", + "metadata": {}, + "source": [ + "### Setup an Executor to Run our Functions\n", + "Once we have our compute endpoint ID, we need to pass this to our executor, which will be used to pass our functions from our local machine to the machine we would like to compute on." + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "id": "0aa43e9e-6840-4b46-9a0c-ceeef8ca7e1e", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Executor" + ] + }, + "execution_count": 107, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gce = Executor(endpoint_id=endpoint_id)\n", + "gce.amqp_port = 443\n", + "gce" + ] + }, + { + "cell_type": "markdown", + "id": "4afe4cec-fca9-40ed-b20a-39061ad1d45a", + "metadata": {}, + "source": [ + "### Test our Functions\n", + "Now that we have our functions prepared, and an executor to run on, we can test them out using our endpoint!\n", + "\n", + "We pass in our function name, and the additional arguments for our functions. For example, let's look at comparing at the NCAR and MIROC modeling center's CMIP6 simulations." + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "id": "664c9fd2-8822-4e34-9c2b-8558c489e487", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ncar_task = gce.submit(run_plot_enso, source_id='CESM2')\n", + "miroc_task = gce.submit(run_plot_enso, source_id='MIROC6')" + ] + }, + { + "cell_type": "markdown", + "id": "ccffe7fe-f11c-4b43-9b1a-b140eb1aa8a5", + "metadata": {}, + "source": [ + "The results are started as python objects, with the resultant datasets available using `.result()`" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "6c2f0f35-9847-43bb-8e4c-b42ba5060233", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 111kB\n",
+       "Dimensions:            (time: 1980)\n",
+       "Coordinates:\n",
+       "  * time               (time) datetime64[ns] 16kB 1850-01-15T13:00:00.000008 ...\n",
+       "    month              (time) int64 16kB 1 2 3 4 5 6 7 8 ... 5 6 7 8 9 10 11 12\n",
+       "Data variables:\n",
+       "    tos                (time) float64 16kB nan nan 0.9395 ... -0.5907 nan nan\n",
+       "    tos_gt_04          (time) float64 16kB 0.4 0.4 0.9395 1.01 ... 0.4 0.4 0.4\n",
+       "    tos_lt_04          (time) float64 16kB -0.4 -0.4 -0.4 ... -0.5907 -0.4 -0.4\n",
+       "    el_nino_threshold  (time) float64 16kB 0.4 0.4 0.4 0.4 ... 0.4 0.4 0.4 0.4\n",
+       "    la_nina_threshold  (time) float64 16kB -0.4 -0.4 -0.4 ... -0.4 -0.4 -0.4\n",
+       "Attributes: (12/46)\n",
+       "    Conventions:            CF-1.7 CMIP-6.2\n",
+       "    activity_id:            CMIP\n",
+       "    case_id:                15\n",
+       "    cesm_casename:          b.e21.BHIST.f09_g17.CMIP6-historical.001\n",
+       "    contact:                cesm_cmip6@ucar.edu\n",
+       "    creation_date:          2019-01-16T21:31:39Z\n",
+       "    ...                     ...\n",
+       "    sub_experiment_id:      none\n",
+       "    branch_time_in_parent:  219000.0\n",
+       "    branch_time_in_child:   674885.0\n",
+       "    branch_method:          standard\n",
+       "    further_info_url:       https://furtherinfo.es-doc.org/CMIP6.NCAR.CESM2.h...\n",
+       "    model:                  CESM2
" + ], + "text/plain": [ + " Size: 111kB\n", + "Dimensions: (time: 1980)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 16kB 1850-01-15T13:00:00.000008 ...\n", + " month (time) int64 16kB 1 2 3 4 5 6 7 8 ... 5 6 7 8 9 10 11 12\n", + "Data variables:\n", + " tos (time) float64 16kB nan nan 0.9395 ... -0.5907 nan nan\n", + " tos_gt_04 (time) float64 16kB 0.4 0.4 0.9395 1.01 ... 0.4 0.4 0.4\n", + " tos_lt_04 (time) float64 16kB -0.4 -0.4 -0.4 ... -0.5907 -0.4 -0.4\n", + " el_nino_threshold (time) float64 16kB 0.4 0.4 0.4 0.4 ... 0.4 0.4 0.4 0.4\n", + " la_nina_threshold (time) float64 16kB -0.4 -0.4 -0.4 ... -0.4 -0.4 -0.4\n", + "Attributes: (12/46)\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " activity_id: CMIP\n", + " case_id: 15\n", + " cesm_casename: b.e21.BHIST.f09_g17.CMIP6-historical.001\n", + " contact: cesm_cmip6@ucar.edu\n", + " creation_date: 2019-01-16T21:31:39Z\n", + " ... ...\n", + " sub_experiment_id: none\n", + " branch_time_in_parent: 219000.0\n", + " branch_time_in_child: 674885.0\n", + " branch_method: standard\n", + " further_info_url: https://furtherinfo.es-doc.org/CMIP6.NCAR.CESM2.h...\n", + " model: CESM2" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ncar_ds = ncar_task.result()\n", + "miroc_ds = miroc_task.result()\n", + "\n", + "ncar_ds" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "6a862fe8-aa31-48f8-874a-2134a3133b1c", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ncar_ds = ncar_task.result()" + ] + }, + { + "cell_type": "markdown", + "id": "f1257d1a-9712-427b-b9ce-4db644420839", + "metadata": {}, + "source": [ + "### Plot our Data\n", + "Now that we have pre-computed datasets, the last step is to visualize the output. In the other example, we stepped through how to utilize the `.hvplot` tool to create interactive displays of ENSO values. We will utilize that functionality here, wrapping into a function." + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "cac34be7-4faa-417c-b607-d8ee094be3e5", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def plot_enso(ds):\n", + " el_nino = ds.hvplot.area(x=\"time\", y2='tos_gt_04', y='el_nino_threshold', color='red', hover=False)\n", + " el_nino_label = hv.Text(ds.isel(time=40).time.values, 2, 'El Niño').opts(text_color='red',)\n", + "\n", + " # Create the La Niña area graphs\n", + " la_nina = ds.hvplot.area(x=\"time\", y2='tos_lt_04', y='la_nina_threshold', color='blue', hover=False)\n", + " la_nina_label = hv.Text(ds.isel(time=-40).time.values, -2, 'La Niña').opts(text_color='blue')\n", + "\n", + " # Plot a timeseries of the ENSO 3.4 index\n", + " enso = ds.tos.hvplot(x='time', line_width=0.5, color='k', xlabel='Year', ylabel='ENSO 3.4 Index')\n", + "\n", + " # Combine all the plots into a single plot\n", + " return (el_nino_label * la_nina_label * el_nino * la_nina * enso).opts(title=f'{ds.attrs[\"model\"]} {ds.attrs[\"source_id\"]} \\n Ensemble Member: {ds.attrs[\"variant_label\"]}')" + ] + }, + { + "cell_type": "markdown", + "id": "13492e2d-c32a-4bcc-b341-837d5ea91a1a", + "metadata": {}, + "source": [ + "Once we have the function, we apply to our two datasets and combine into a single column." + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "b6332c80-0ee9-4a4f-a277-95efc2cc8252", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": {}, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ], + "text/plain": [ + ":Layout\n", + " .Overlay.I :Overlay\n", + " .Text.I :Text [x,y]\n", + " .Text.II :Text [x,y]\n", + " .Area.I :Area [time] (el_nino_threshold,tos_gt_04)\n", + " .Area.II :Area [time] (la_nina_threshold,tos_lt_04)\n", + " .Curve.I :Curve [time] (tos)\n", + " .Overlay.II :Overlay\n", + " .Text.I :Text [x,y]\n", + " .Text.II :Text [x,y]\n", + " .Area.I :Area [time] (el_nino_threshold,tos_gt_04)\n", + " .Area.II :Area [time] (la_nina_threshold,tos_lt_04)\n", + " .Curve.I :Curve [time] (tos)" + ] + }, + "execution_count": 74, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p1558" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "(plot_enso(ncar_ds) + plot_enso(miroc_ds)).cols(1)" + ] + }, + { + "cell_type": "markdown", + "id": "332e67da-2268-47c1-8c16-27f54f4a27bc", + "metadata": {}, + "source": [ + "## Modify to Run in a Globus Flow\n", + "Next, let's modify our script to:\n", + "- Search and download ESGF data\n", + "- Calculate ENSO\n", + "- Visualize and save the output as an html file" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "id": "aa5d4f65-a8ef-4ed0-bd6e-f49efb4f23ab", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def run_plot_enso(source_id, return_path=False):\n", + " import numpy as np\n", + " import matplotlib.pyplot as plt\n", + " from intake_esgf import ESGFCatalog\n", + " import xarray as xr\n", + " import cf_xarray\n", + " import warnings\n", + " import holoviews as hv\n", + " import os\n", + " import hvplot\n", + " import hvplot.xarray\n", + " hv.extension('bokeh') \n", + " warnings.filterwarnings(\"ignore\")\n", + "\n", + " def search_esgf(source_id):\n", + "\n", + " # Search and load the ocean surface temperature (tos)\n", + " cat = ESGFCatalog(esgf1_indices=\"anl-dev\")\n", + " cat.search(\n", + " activity_id=\"CMIP\",\n", + " experiment_id=\"historical\",\n", + " variable_id=[\"tos\"],\n", + " source_id=source_id,\n", + " member_id='r1i1p1f1',\n", + " grid_label=\"gn\",\n", + " table_id=\"Omon\",\n", + " )\n", + " try:\n", + " tos_ds = cat.to_dataset_dict()[\"tos\"]\n", + " except ValueError:\n", + " print(f\"Issue with {institution_id} dataset\")\n", + "\n", + " return tos_ds\n", + "\n", + " def calculate_enso(ds):\n", + "\n", + " # Subset the El Nino 3.4 index region\n", + " dso = ds.where(\n", + " (ds.cf[\"latitude\"] < 5) & (ds.cf[\"latitude\"] > -5) & (ds.cf[\"longitude\"] > 190) & (ds.cf[\"longitude\"] < 240), drop=True\n", + " )\n", + "\n", + " # Calculate the monthly means\n", + " gb = dso.tos.groupby('time.month')\n", + "\n", + " # Subtract the monthly averages, returning the anomalies\n", + " tos_nino34_anom = gb - gb.mean(dim='time')\n", + "\n", + " # Determine the non-time dimensions and average using these\n", + " non_time_dims = set(tos_nino34_anom.dims)\n", + " non_time_dims.remove(ds.tos.cf[\"T\"].name)\n", + " weighted_average = tos_nino34_anom.weighted(ds[\"areacello\"].fillna(0)).mean(dim=list(non_time_dims))\n", + "\n", + " # Calculate the rolling average\n", + " rolling_average = weighted_average.rolling(time=5, center=True).mean()\n", + " std_dev = weighted_average.std()\n", + " return rolling_average / std_dev\n", + "\n", + " def add_enso_thresholds(da, threshold=0.4):\n", + "\n", + " # Conver the xr.DataArray into an xr.Dataset\n", + " ds = da.to_dataset()\n", + "\n", + " # Cleanup the time and use the thresholds\n", + " try:\n", + " ds[\"time\"]= ds.indexes[\"time\"].to_datetimeindex()\n", + " except:\n", + " pass\n", + " ds[\"tos_gt_04\"] = (\"time\", ds.tos.where(ds.tos >= threshold, threshold).data)\n", + " ds[\"tos_lt_04\"] = (\"time\", ds.tos.where(ds.tos <= -threshold, -threshold).data)\n", + "\n", + " # Add fields for the thresholds\n", + " ds[\"el_nino_threshold\"] = (\"time\", np.zeros_like(ds.tos) + threshold)\n", + " ds[\"la_nina_threshold\"] = (\"time\", np.zeros_like(ds.tos) - threshold)\n", + "\n", + " return ds\n", + "\n", + " def plot_enso(ds):\n", + " el_nino = ds.hvplot.area(x=\"time\", y2='tos_gt_04', y='el_nino_threshold', color='red', hover=False)\n", + " el_nino_label = hv.Text(ds.isel(time=40).time.values, 2, 'El Niño').opts(text_color='red',)\n", + "\n", + " # Create the La Niña area graphs\n", + " la_nina = ds.hvplot.area(x=\"time\", y2='tos_lt_04', y='la_nina_threshold', color='blue', hover=False)\n", + " la_nina_label = hv.Text(ds.isel(time=-40).time.values, -2, 'La Niña').opts(text_color='blue')\n", + "\n", + " # Plot a timeseries of the ENSO 3.4 index\n", + " enso = ds.tos.hvplot(x='time', line_width=0.5, color='k', xlabel='Year', ylabel='ENSO 3.4 Index')\n", + "\n", + " # Combine all the plots into a single plot\n", + " return (el_nino_label * la_nina_label * el_nino * la_nina * enso).opts(title=f'{ds.attrs[\"model\"]} {ds.attrs[\"source_id\"]} \\n Ensemble Member: {ds.attrs[\"variant_label\"]}')\n", + " \n", + " ds = search_esgf(source_id)\n", + " enso_index = add_enso_thresholds(calculate_enso(ds).compute())\n", + " enso_index.attrs = ds.attrs\n", + " enso_index.attrs[\"model\"] = source_id\n", + " \n", + " plot = plot_enso(enso_index)\n", + " \n", + " if return_path:\n", + " path = f\"{os.getcwd()}/plot.html\"\n", + " hvplot.save(plot, path)\n", + " \n", + " else:\n", + " path = plot\n", + "\n", + " return path" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "id": "6ef8039b-b894-42b3-af19-dff99a6cff11", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.4.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " var reloading = false;\n", + " var Bokeh = root.Bokeh;\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", + " root._bokeh_is_loading = css_urls.length + 0;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.0.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/panel.min.js\"];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + "\ttry {\n", + " inline_js[i].call(root, root.Bokeh);\n", + "\t} catch(e) {\n", + "\t if (!reloading) {\n", + "\t throw e;\n", + "\t }\n", + "\t}\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.4.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.0.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ] + }, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p1979" + } + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "\n", + "\n", + "\n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a31915135dd14b1787f49af48acc797d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " Searching indices: 0%| |0/3 [ ?index/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b21d8a25f63744f88189f2e22d71ab1f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Get file information: 0%| |0/3 [ ?index/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7b166961d6d24486bef89a97b40b39cd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Adding cell measures: 0%| |0/1 [ ?dataset/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "'/Users/mgrover/git_repos/esgf-cookbook/notebooks/plot.html'" + ] + }, + "execution_count": 114, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample = run_plot_enso(source_id=\"MPI-ESM1-2-LR\", return_path=True)\n", + "sample" + ] + }, + { + "cell_type": "markdown", + "id": "a6927dea-c744-4249-afde-01cd58a3d496", + "metadata": {}, + "source": [ + "### Deploy the Function as a Flow\n", + "Now, let's deploy this function within a Globus-Flow!" + ] + }, + { + "cell_type": "markdown", + "id": "39e19f20-fcda-4779-8169-8a242cc41f99", + "metadata": { + "tags": [] + }, + "source": [ + "#### Configure Authentication" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "a58e9f59-b6fe-460c-a40a-e9b9f400513d", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Login Here:\n", + "\n", + "https://auth.globus.org/v2/oauth2/authorize?client_id=16659080-53cd-45c7-8737-833d3e719f32&redirect_uri=https%3A%2F%2Fauth.globus.org%2Fv2%2Fweb%2Fauth-code&scope=https%3A%2F%2Fauth.globus.org%2Fscopes%2Feec9b274-0c81-4334-bdc2-54e90e689b9a%2Fmanage_flows+urn%3Aglobus%3Aauth%3Ascope%3Asearch.api.globus.org%3Aall+urn%3Aglobus%3Aauth%3Ascope%3Atransfer.api.globus.org%3Aall&state=_default&response_type=code&code_challenge=4-QLwrs2LCzfJS6ezxw0pa2tykJFHb7x9_bbRm-jy2c&code_challenge_method=S256&access_type=online\n" + ] + } + ], + "source": [ + "# Set Native App client\n", + "CLIENT_ID = '16659080-53cd-45c7-8737-833d3e719f32' # From \n", + "native_auth_client = globus_sdk.NativeAppAuthClient(CLIENT_ID)\n", + "\n", + "# Initialize Globus Auth flow with relevant scopes\n", + "auth_kwargs = {\"requested_scopes\": [FlowsScopes.manage_flows, SearchScopes.all, TransferScopes.all]}\n", + "native_auth_client.oauth2_start_flow(**auth_kwargs)\n", + "\n", + "# Explicitly start the flow\n", + "print(f\"Login Here:\\n\\n{native_auth_client.oauth2_get_authorize_url()}\")" + ] + }, + { + "cell_type": "markdown", + "id": "90ffaed3-6f77-45bf-a351-e0775ac893d8", + "metadata": {}, + "source": [ + "Once we have the authentication code, insert it in the cell below." + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "a04273cc-fc04-4c7d-9837-7835fc04af96", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Add the authorization code that you got from Globus\n", + "auth_code = \"CFnYvreOnCm0HXtBdat9RiiKdGO4kl\"\n", + "\n", + "# Exchange code for access tokens\n", + "response_token = native_auth_client.oauth2_exchange_code_for_tokens(auth_code)\n", + "\n", + "# Split tokens based on their resource server\n", + "# This is the token that allows to create a flow client\n", + "# but is before the flow gets authorized, after which \n", + "# you get another (more powerful) access token code\n", + "tokens = response_token.by_resource_server\n", + "\n", + "# Create a variable for storing flow scope tokens. Each newly deployed flow scope needs to be authorized separately,\n", + "# and will have its own set of tokens. Save each of these tokens by scope.\n", + "# Whatever is in this dictionary has passed the deployment authorization,\n", + "# meaning you do not need to authorize over and over each time you want to run the flow.\n", + "saved_flow_scopes = {}\n", + "\n", + "# Add a callback to the flows client for fetching scopes. It will draw scopes from `saved_flow_scopes`\n", + "def get_flow_authorizer(flow_url, flow_scope, client_id):\n", + " return globus_sdk.AccessTokenAuthorizer(access_token=saved_flow_scopes[flow_scope]['access_token'])\n", + "\n", + "# Setup the Flow client, using Globus Auth tokens to access the Globus Flows service, and\n", + "# set the `get_flow_authorizer` callback for any new flows we authorize.\n", + "flows_authorizer = globus_sdk.AccessTokenAuthorizer(access_token=tokens['flows.globus.org']['access_token'])\n", + "flows_client = FlowsClient.new_client(CLIENT_ID, get_flow_authorizer, flows_authorizer)" + ] + }, + { + "cell_type": "markdown", + "id": "5e503ba4-5139-405f-acf1-c4fc2acc5642", + "metadata": {}, + "source": [ + "#### Configure the Globus Compute Client and Register our Function\n", + "Now that we have a function to run our analysis, we need to register it!" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "71e4261d-bc78-4c9f-b4fb-407b2c09cd91", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Instantiating a Globus Compute client ...\n", + "Registering the Globus Compute function ...\n", + "Compute function ID: 72310e16-4dfb-43e5-884a-2c9d507ee711\n" + ] + } + ], + "source": [ + "print(\"Instantiating a Globus Compute client ...\")\n", + "gcc = Client()\n", + "\n", + "# Register the function within the Globus ecosystem\n", + "print(\"Registering the Globus Compute function ...\")\n", + "compute_function_id = gcc.register_function(run_plot_enso)\n", + "\n", + "print(f\"Compute function ID: {compute_function_id}\")" + ] + }, + { + "cell_type": "markdown", + "id": "ba9cfcd0-7b51-4aed-9480-052acf18da52", + "metadata": {}, + "source": [ + "#### Define our Flow\n", + "We need to define our flow - setting the expected parameters, and transferring the output html file at the end of the analysis. Notice we pass in the function ID we setup in the cell above." + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "62c26bcf-8789-44c0-af86-db67a32ef724", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "flow_definition = {\n", + " \"Comment\": \"Compute ENSO Index of a Given CMIP6 Model\",\n", + " \"StartAt\": \"RunPlotENSO\",\n", + " \"States\": {\n", + " \"RunPlotENSO\": {\n", + " \"Comment\": \"ESGF Search and Plot\",\n", + " \"Type\": \"Action\",\n", + " \"ActionUrl\": \"https://compute.actions.globus.org/\",\n", + " \"Parameters\": {\n", + " \"endpoint.$\": \"$.input.compute.id\",\n", + " \"function\": compute_function_id,\n", + " \"kwargs\": {\"source_id.$\":\"$.input.compute_input_data.source_id\",\n", + " \"return_path\": True\n", + " }\n", + " },\n", + " \"ResultPath\": \"$.ESGF_output\",\n", + " \"WaitTime\": 600,\n", + " \"Next\": \"TransferResult\"\n", + " },\n", + " \"TransferResult\": {\n", + " \"Comment\": \"Transfer files\",\n", + " \"Type\": \"Action\",\n", + " \"ActionUrl\": \"https://actions.automate.globus.org/transfer/transfer\",\n", + " \"Parameters\": {\n", + " \"source_endpoint_id.$\": \"$.input.destination.id\",\n", + " \"destination_endpoint_id.$\": \"$.input.destination.id\",\n", + " \"transfer_items\": [\n", + " {\n", + " \"source_path.$\": \"$.ESGF_output.details.result[0]\",\n", + " \"destination_path.$\": \"$.input.destination.path\",\n", + " \"recursive\": False\n", + " }\n", + " ]\n", + " },\n", + " \"ResultPath\": \"$.TransferFiles\",\n", + " \"WaitTime\": 300,\n", + " \"End\": True\n", + " }\n", + " }\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "5737e27a-363f-4297-a5cf-da79fef5fda0", + "metadata": {}, + "source": [ + "#### Configure the Schema\n", + "We also need to define the schema, or what is expected, for our flow." + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "id": "294c2a65-a08e-467c-a97f-6a633b6ae20f", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "input_schema = {\n", + " \"required\": [\n", + " \"input\"\n", + " ],\n", + " \"properties\": {\n", + " \"input\": {\n", + " \"type\": \"object\",\n", + " \"required\": [\n", + " \"compute\",\n", + " \"destination\",\n", + " \"compute_input_data\"\n", + " ],\n", + " \"properties\": {\n", + " \"compute\": {\n", + " \"type\": \"object\",\n", + " \"title\": \"Select source collection and path\",\n", + " \"description\": \"The source collection and path (path MUST end with a slash)\",\n", + " \"required\": [\n", + " \"id\",\n", + " ],\n", + " \"properties\": {\n", + " \"id\": {\n", + " \"type\": \"string\",\n", + " \"format\": \"uuid\",\n", + " \"default\": endpoint_id\n", + " },\n", + " },\n", + " \"additionalProperties\": False\n", + " },\n", + " \"destination\": {\n", + " \"type\": \"object\",\n", + " \"title\": \"Select destination collection and path\",\n", + " \"description\": \"The destination collection and path (path MUST end with a slash); default collection is 'Globus Tutorials on ALCF Eagle'\",\n", + " \"required\": [\n", + " \"id\",\n", + " \"path\"\n", + " ],\n", + " \"properties\": {\n", + " \"id\": {\n", + " \"type\": \"string\",\n", + " \"format\": \"uuid\",\n", + " \"default\": personal_endpoint_id\n", + " },\n", + " \"path\": {\n", + " \"type\": \"string\",\n", + " \"default\": f\"/plot.html\"\n", + " }\n", + " },\n", + " \"additionalProperties\": False\n", + " },\n", + " # Compute function input data\n", + " \"compute_input_data\": {\n", + " \"type\": \"object\",\n", + " \"title\": \"Input data required by compute function.\",\n", + " \"description\": \"Compute function input data.\",\n", + " \"required\": [\n", + " \"source_id\",\n", + " ],\n", + " \"properties\": {\n", + " \"source_id\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"Source Identifier for the model of interest\",\n", + " \"default\": \"CESM2\"\n", + " },\n", + " },\n", + " \"additionalProperties\": False\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "0f0078bc-f9e1-4e36-b6dc-bd872930284a", + "metadata": {}, + "source": [ + "#### Deploy the flow\n", + "We can deploy the flow as a test, passing in the default settings and schema." + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "id": "434ac563-07ab-460e-be85-da6fad2f8c31", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Deploy the flow\n", + "flow = flows_client.deploy_flow(\n", + " flow_definition, \n", + " title = \"ESGF ENSO Test\",\n", + " input_schema=input_schema,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "1ea8a065-6d67-4407-aa0e-865415d74e41", + "metadata": {}, + "source": [ + "We need a few parameters to actually **run** the deployed flow." + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "id": "ccca9c78-43ea-4b74-9270-80747916c6e8", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Store flow information\n", + "flow_id = flow['id']\n", + "flow_scope = flow['globus_auth_scope']\n", + "flow_name = flow['title']" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "id": "bff5546e-c73f-465a-aed3-895d7092b334", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Login Here:\n", + "\n", + "https://auth.globus.org/v2/oauth2/authorize?client_id=16659080-53cd-45c7-8737-833d3e719f32&redirect_uri=https%3A%2F%2Fauth.globus.org%2Fv2%2Fweb%2Fauth-code&scope=https%3A%2F%2Fauth.globus.org%2Fscopes%2Fc65bffa0-bbea-4295-ab38-645eca9cdd54%2Fflow_c65bffa0_bbea_4295_ab38_645eca9cdd54_user&state=_default&response_type=code&code_challenge=ZqlFzOoWi3n_p3KFNF4T-HMsAAiR8rIawhUk6dRWsRM&code_challenge_method=S256&access_type=online\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Authorization Code: 2R0jqwzNeIe8kl0FvQHAlp2RBQAFxQ\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\n", + " \"https://auth.globus.org/scopes/632e1f8b-7e3e-4ffb-a055-cd388659d87c/flow_632e1f8b_7e3e_4ffb_a055_cd388659d87c_user\": {\n", + " \"scope\": \"https://auth.globus.org/scopes/632e1f8b-7e3e-4ffb-a055-cd388659d87c/flow_632e1f8b_7e3e_4ffb_a055_cd388659d87c_user\",\n", + " \"access_token\": \"AgM8lx1V0P02x8dJj6dG2Qx6a8K5gWWvlky6vkP4Dq0okEWMxVtOC2qeJPzjxoMpaK4qeOE88DOqlKCa671p6HPJ2Wz\",\n", + " \"refresh_token\": null,\n", + " \"token_type\": \"Bearer\",\n", + " \"expires_at_seconds\": 1713467553,\n", + " \"resource_server\": \"632e1f8b-7e3e-4ffb-a055-cd388659d87c\"\n", + " },\n", + " \"https://auth.globus.org/scopes/c65bffa0-bbea-4295-ab38-645eca9cdd54/flow_c65bffa0_bbea_4295_ab38_645eca9cdd54_user\": {\n", + " \"scope\": \"https://auth.globus.org/scopes/c65bffa0-bbea-4295-ab38-645eca9cdd54/flow_c65bffa0_bbea_4295_ab38_645eca9cdd54_user\",\n", + " \"access_token\": \"AgwwJ8rKnOVDdbYrD3Y99VWpY6gKq7jkyOrBy8qvEaopOMQJoHlCvlNQBMa95jdlyKG1E2rl0rWYGs8vqb0NSNbm7b\",\n", + " \"refresh_token\": null,\n", + " \"token_type\": \"Bearer\",\n", + " \"expires_at_seconds\": 1713468049,\n", + " \"resource_server\": \"c65bffa0-bbea-4295-ab38-645eca9cdd54\"\n", + " }\n", + "}\n" + ] + } + ], + "source": [ + "# Once deployed, the flow needs to be authorized\n", + "# If the flow scope is already saved, we don't need a new one.\n", + "if flow_scope not in saved_flow_scopes:\n", + "#if True:\n", + " \n", + " # Do a native app authentication flow and get tokens that include the newly deployed flow scope\n", + " native_auth_client = globus_sdk.NativeAppAuthClient(CLIENT_ID)\n", + " native_auth_client.oauth2_start_flow(requested_scopes=flow_scope)\n", + " print(f\"Login Here:\\n\\n{native_auth_client.oauth2_get_authorize_url()}\")\n", + " \n", + " # Authenticate and come back with your authorization code; paste it into the prompt below.\n", + " auth_code = input('Authorization Code: ')\n", + " token_response = native_auth_client.oauth2_exchange_code_for_tokens(auth_code)\n", + " \n", + " # Save the new token in a place where the flows client can retrieve it.\n", + " saved_flow_scopes[flow_scope] = token_response.by_scopes[flow_scope]\n", + " \n", + " # These are the saved scopes for the flow\n", + " print(json.dumps(saved_flow_scopes, indent=2))" + ] + }, + { + "cell_type": "markdown", + "id": "42d480ae-8c29-491d-88c3-bec67599b349", + "metadata": {}, + "source": [ + "#### Run the Deployed Flow\n", + "Once we setup the authentication, we can pass in our parameters and run the flow!" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "id": "ee245f82-e647-4c50-bec7-09dfd5e18486", + "metadata": {}, + "outputs": [], + "source": [ + "flow_input = {\n", + " \"input\": {\n", + " \"compute\": {\n", + " \"id\": endpoint_id\n", + " },\n", + " \"destination\": {\n", + " \"id\": personal_endpoint_id,\n", + " \"path\": f\"/{os.getcwd()}/esgf_plot.html\"\n", + " },\n", + " \"compute_input_data\":{\n", + " \"source_id\": \"CESM2\"\n", + " }\n", + " }\n", + "}\n", + "\n", + "flow_action = flows_client.run_flow(\n", + " flow_id = flow_id,\n", + " flow_scope = flow_scope,\n", + " flow_input = flow_input,\n", + " label=\"Test local to local\",\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "id": "a763c530-db2f-4917-9493-70171c17ffa7", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flow can be monitored in the webapp below: \n", + "https://app.globus.org/runs/dc2b4f0c-1ec6-4f70-ae15-0c33bbbfcffb\n", + "Flow action started with ID: dc2b4f0c-1ec6-4f70-ae15-0c33bbbfcffb - Status: ACTIVE\n" + ] + } + ], + "source": [ + "# Get flow execution parameters\n", + "flow_action_id = flow_action['action_id']\n", + "flow_status = flow_action['status']\n", + "print(f\"Flow can be monitored in the webapp below: \\nhttps://app.globus.org/runs/{flow_action_id}\")\n", + "print(f\"Flow action started with ID: {flow_action_id} - Status: {flow_status}\")" + ] + }, + { + "cell_type": "markdown", + "id": "eaab23ce-9293-4e5e-9e25-92fac43fb8f1", + "metadata": {}, + "source": [ + "Here, we setup a check to ensure the flow is still running, and visualize the response when it finishes!" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "id": "27039bc1-53d2-4b7c-9f47-e87c9ed2e248", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flow status: ACTIVE\n", + "Flow status: ACTIVE\n", + "Flow status: ACTIVE\n", + "Flow status: ACTIVE\n", + "Flow status: ACTIVE\n", + "Flow status: ACTIVE\n", + "Flow status: ACTIVE\n", + "Flow status: ACTIVE\n", + "Flow status: SUCCEEDED\n", + "{\n", + " \"run_id\": \"dc2b4f0c-1ec6-4f70-ae15-0c33bbbfcffb\",\n", + " \"flow_id\": \"c65bffa0-bbea-4295-ab38-645eca9cdd54\",\n", + " \"flow_title\": \"ESGF ENSO Test\",\n", + " \"flow_last_updated\": \"2024-04-16T19:20:37.184469+00:00\",\n", + " \"start_time\": \"2024-04-16T19:20:55.580835+00:00\",\n", + " \"completion_time\": \"2024-04-16T19:21:48.188000+00:00\",\n", + " \"status\": \"SUCCEEDED\",\n", + " \"display_status\": \"SUCCEEDED\",\n", + " \"details\": {\n", + " \"code\": \"FlowSucceeded\",\n", + " \"output\": {\n", + " \"input\": {\n", + " \"compute\": {\n", + " \"id\": \"6836803d-9831-4dc5-b159-eb658250e4bc\"\n", + " },\n", + " \"destination\": {\n", + " \"id\": \"92bb829c-9d88-11ed-b579-33287ee02ec7\",\n", + " \"path\": \"//Users/mgrover/git_repos/esgf-cookbook/notebooks/esgf_plot.html\"\n", + " },\n", + " \"compute_input_data\": {\n", + " \"source_id\": \"CESM2\"\n", + " }\n", + " },\n", + " \"ESGF_output\": {\n", + " \"label\": null,\n", + " \"status\": \"SUCCEEDED\",\n", + " \"details\": {\n", + " \"result\": [\n", + " \"/Users/mgrover/plot.html\"\n", + " ],\n", + " \"results\": [\n", + " {\n", + " \"output\": \"/Users/mgrover/plot.html\",\n", + " \"task_id\": \"e7d42503-81c4-488b-a760-9846be264d6e\"\n", + " }\n", + " ]\n", + " },\n", + " \"action_id\": \"tg_e81f1357-c21e-4a34-af82-6a2aa910bf0e\",\n", + " \"manage_by\": [\n", + " \"urn:globus:auth:identity:97c1da09-1d6d-4189-a5be-6ae3f85ae21f\"\n", + " ],\n", + " \"creator_id\": \"urn:globus:auth:identity:97c1da09-1d6d-4189-a5be-6ae3f85ae21f\",\n", + " \"monitor_by\": [\n", + " \"urn:globus:auth:identity:97c1da09-1d6d-4189-a5be-6ae3f85ae21f\"\n", + " ],\n", + " \"start_time\": \"2024-04-16T19:21:00.341325+00:00\",\n", + " \"state_name\": \"RunPlotENSO\",\n", + " \"release_after\": null,\n", + " \"display_status\": \"All tasks completed\",\n", + " \"completion_time\": \"2024-04-16T19:21:21.806350+00:00\"\n", + " },\n", + " \"TransferFiles\": {\n", + " \"label\": null,\n", + " \"status\": \"SUCCEEDED\",\n", + " \"details\": {\n", + " \"type\": \"TRANSFER\",\n", + " \"files\": 1,\n", + " \"is_ok\": null,\n", + " \"label\": \"For Action id IwD1kgdTb0Dn\",\n", + " \"faults\": 0,\n", + " \"status\": \"SUCCEEDED\",\n", + " \"command\": \"API 0.10\",\n", + " \"task_id\": \"833f2aaa-fc26-11ee-b703-473d136f742f\",\n", + " \"deadline\": \"2024-04-17T19:21:24+00:00\",\n", + " \"owner_id\": \"97c1da09-1d6d-4189-a5be-6ae3f85ae21f\",\n", + " \"symlinks\": 0,\n", + " \"username\": \"u_s7a5uci5nvaytjn6nlr7qwxcd4\",\n", + " \"DATA_TYPE\": \"task\",\n", + " \"is_paused\": false,\n", + " \"event_list\": [\n", + " {\n", + " \"code\": \"SUCCEEDED\",\n", + " \"time\": \"2024-04-16T19:21:31+00:00\",\n", + " \"details\": {\n", + " \"files_succeeded\": 1\n", + " },\n", + " \"is_error\": false,\n", + " \"DATA_TYPE\": \"event\",\n", + " \"description\": \"succeeded\"\n", + " },\n", + " {\n", + " \"code\": \"PROGRESS\",\n", + " \"time\": \"2024-04-16T19:21:31+00:00\",\n", + " \"details\": {\n", + " \"mbps\": 0.46,\n", + " \"duration\": 4.08,\n", + " \"bytes_transferred\": 235449\n", + " },\n", + " \"is_error\": false,\n", + " \"DATA_TYPE\": \"event\",\n", + " \"description\": \"progress\"\n", + " },\n", + " {\n", + " \"code\": \"STARTED\",\n", + " \"time\": \"2024-04-16T19:21:27+00:00\",\n", + " \"details\": {\n", + " \"type\": \"GridFTP Transfer\",\n", + " \"protocol\": \"UDT\",\n", + " \"pipelining\": 20,\n", + " \"concurrency\": 2,\n", + " \"parallelism\": 2\n", + " },\n", + " \"is_error\": false,\n", + " \"DATA_TYPE\": \"event\",\n", + " \"description\": \"started\"\n", + " }\n", + " ],\n", + " \"sync_level\": null,\n", + " \"directories\": 0,\n", + " \"fatal_error\": null,\n", + " \"nice_status\": null,\n", + " \"encrypt_data\": false,\n", + " \"filter_rules\": null,\n", + " \"request_time\": \"2024-04-16T19:21:24+00:00\",\n", + " \"files_skipped\": 0,\n", + " \"subtasks_total\": 2,\n", + " \"completion_time\": \"2024-04-16T19:21:31+00:00\",\n", + " \"history_deleted\": false,\n", + " \"source_endpoint\": \"u_s7a5uci5nvaytjn6nlr7qwxcd4#92bb829c-9d88-11ed-b579-33287ee02ec7\",\n", + " \"subtasks_failed\": 0,\n", + " \"verify_checksum\": false,\n", + " \"source_base_path\": null,\n", + " \"subtasks_expired\": 0,\n", + " \"subtasks_pending\": 0,\n", + " \"bytes_checksummed\": 0,\n", + " \"bytes_transferred\": 235449,\n", + " \"canceled_by_admin\": null,\n", + " \"files_transferred\": 1,\n", + " \"source_local_user\": null,\n", + " \"subtasks_canceled\": 0,\n", + " \"subtasks_retrying\": 0,\n", + " \"preserve_timestamp\": false,\n", + " \"recursive_symlinks\": \"ignore\",\n", + " \"skip_source_errors\": false,\n", + " \"source_endpoint_id\": \"92bb829c-9d88-11ed-b579-33287ee02ec7\",\n", + " \"subtasks_succeeded\": 2,\n", + " \"nice_status_details\": null,\n", + " \"destination_endpoint\": \"u_s7a5uci5nvaytjn6nlr7qwxcd4#92bb829c-9d88-11ed-b579-33287ee02ec7\",\n", + " \"fail_on_quota_errors\": false,\n", + " \"destination_base_path\": null,\n", + " \"destination_local_user\": null,\n", + " \"nice_status_expires_in\": null,\n", + " \"destination_endpoint_id\": \"92bb829c-9d88-11ed-b579-33287ee02ec7\",\n", + " \"subtasks_skipped_errors\": 0,\n", + " \"delete_destination_extra\": false,\n", + " \"source_local_user_status\": null,\n", + " \"canceled_by_admin_message\": null,\n", + " \"effective_bytes_per_second\": 30545,\n", + " \"source_endpoint_display_name\": \"Work Laptop\",\n", + " \"destination_local_user_status\": null,\n", + " \"nice_status_short_description\": null,\n", + " \"destination_endpoint_display_name\": \"Work Laptop\"\n", + " },\n", + " \"action_id\": \"IwD1kgdTb0Dn\",\n", + " \"manage_by\": [],\n", + " \"creator_id\": \"urn:globus:auth:identity:97c1da09-1d6d-4189-a5be-6ae3f85ae21f\",\n", + " \"monitor_by\": [],\n", + " \"start_time\": \"2024-04-16T19:21:23.005698+00:00\",\n", + " \"state_name\": \"TransferResult\",\n", + " \"release_after\": \"P30D\",\n", + " \"display_status\": \"SUCCEEDED\",\n", + " \"completion_time\": \"2024-04-16T19:21:23.005728+00:00\"\n", + " }\n", + " },\n", + " \"description\": \"The Flow run reached a successful completion state\"\n", + " },\n", + " \"run_owner\": \"urn:globus:auth:identity:97c1da09-1d6d-4189-a5be-6ae3f85ae21f\",\n", + " \"run_managers\": [],\n", + " \"run_monitors\": [],\n", + " \"user_role\": \"run_owner\",\n", + " \"label\": \"Test local to local\",\n", + " \"tags\": [],\n", + " \"action_id\": \"dc2b4f0c-1ec6-4f70-ae15-0c33bbbfcffb\",\n", + " \"manage_by\": [],\n", + " \"monitor_by\": [],\n", + " \"created_by\": \"urn:globus:auth:identity:97c1da09-1d6d-4189-a5be-6ae3f85ae21f\"\n", + "}\n" + ] + } + ], + "source": [ + "# Poll the Flow service to check on the status of the flow\n", + "while flow_status == 'ACTIVE':\n", + " time.sleep(5)\n", + " flow_action = flows_client.flow_action_status(flow_id, flow_scope, flow_action_id)\n", + " flow_status = flow_action['status']\n", + " print(f'Flow status: {flow_status}')\n", + " \n", + "# Flow completed (hopefully successfully!)\n", + "print(json.dumps(flow_action.data, indent=2))" + ] + }, + { + "cell_type": "markdown", + "id": "b3bfceb9-124a-4d72-9d49-3ca255965e29", + "metadata": {}, + "source": [ + "## Summary\n", + "In this notebook, we applied the ENSO 3.4 index calculations to CMIP6 datasets remotely using Globus Compute and created interactive plots comparing where we see El Niño and La Niña.\n", + "\n", + "### What's next?\n", + "We will see some more advanced examples of using the CMIP6 and other data access methods as well as computations.\n", + "\n", + "## Resources and references\n", + "- [Intake-ESGF Documentation](https://github.com/nocollier/intake-esgf)\n", + "- [Globus Compute Documentation](https://www.globus.org/compute)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f5b2864f-6661-4aa4-8d65-8dc10c961b36", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_preview/32/_sources/notebooks/enso-globus.ipynb b/_preview/32/_sources/notebooks/enso-globus.ipynb new file mode 100644 index 0000000..b85d01a --- /dev/null +++ b/_preview/32/_sources/notebooks/enso-globus.ipynb @@ -0,0 +1,1621 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "48c69fff-ab3b-49c8-b85b-95fef1250249", + "metadata": {}, + "source": [ + "\"Globus\n", + "\"ESGF" + ] + }, + { + "cell_type": "markdown", + "id": "483dcdb6-e125-4a52-a21f-55cfe1000dea", + "metadata": {}, + "source": [ + "# ENSO Calculations using Globus Compute" + ] + }, + { + "cell_type": "markdown", + "id": "4a415308-0e9a-470c-bb68-da75b349c006", + "metadata": {}, + "source": [ + "## Overview\n", + "\n", + "In this workflow, we combine topics covered in previous Pythia Foundations and CMIP6 Cookbook content to compute the [Niño 3.4 Index](https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni) to multiple datasets, with the primary computations occuring on a remote machine. As a refresher of what the ENSO 3.4 index is, please see the following text, which is also included in the [ENSO Xarray](https://foundations.projectpythia.org/core/xarray/enso-xarray.html) content in the Pythia Foundations content.\n", + "\n", + "> Niño 3.4 (5N-5S, 170W-120W): The Niño 3.4 anomalies may be thought of as representing the average equatorial SSTs across the Pacific from about the dateline to the South American coast. The Niño 3.4 index typically uses a 5-month running mean, and El Niño or La Niña events are defined when the Niño 3.4 SSTs exceed +/- 0.4C for a period of six months or more.\n", + "\n", + "> Niño X Index computation: a) Compute area averaged total SST from Niño X region; b) Compute monthly climatology (e.g., 1950-1979) for area averaged total SST from Niño X region, and subtract climatology from area averaged total SST time series to obtain anomalies; c) Smooth the anomalies with a 5-month running mean; d) Normalize the smoothed values by its standard deviation over the climatological period.\n", + "\n", + "![](https://www.ncdc.noaa.gov/monitoring-content/teleconnections/nino-regions.gif)\n", + "\n", + "The previous cookbook, we ran this in a single notebook locally. In this example, we aim to execute the workflow on a remote machine, with only the visualizion of the dataset occuring locally.\n", + "\n", + "The overall goal of this tutorial is to introduce the idea of functions as a service with Globus, and how this can be used to calculate ENSO indices." + ] + }, + { + "cell_type": "markdown", + "id": "2d4c6aed-a9c5-4d29-bfa3-c8e8be230567", + "metadata": {}, + "source": [ + "## Prerequisites\n", + "\n", + "| Concepts | Importance | Notes |\n", + "| --- | --- | --- |\n", + "| [Intro to Xarray](https://foundations.projectpythia.org/core/xarray/xarray-intro.html) | Necessary | |\n", + "| [hvPlot Basics](https://hvplot.holoviz.org/getting_started/hvplot.html) | Necessary | Interactive Visualization with hvPlot |\n", + "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n", + "| [Calculating ENSO with Xarray](https://foundations.projectpythia.org/core/xarray/enso-xarray.html) | Neccessary | Understanding of Masking and Xarray Functions |\n", + "| Dask | Helpful | |\n", + "\n", + "- **Time to learn**: 30 minutes" + ] + }, + { + "cell_type": "markdown", + "id": "7ff38f37-8f14-443f-b0c7-188baf75d1be", + "metadata": {}, + "source": [ + "## Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "id": "52bcfa1a-3907-446d-b384-29e97b5c8cb9", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.1.1'.replace('rc', '-rc.');\n", + " var is_dev = py_version.indexOf(\"+\") !== -1 || py_version.indexOf(\"-\") !== -1;\n", + " var reloading = false;\n", + " var Bokeh = root.Bokeh;\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n", + " require([\"jspanel\"], function(jsPanel) {\n", + "\twindow.jsPanel = jsPanel\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-modal\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-tooltip\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-hint\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-layout\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-contextmenu\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-dock\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"gridstack\"], function(GridStack) {\n", + "\twindow.GridStack = GridStack\n", + "\ton_load()\n", + " })\n", + " require([\"notyf\"], function() {\n", + "\ton_load()\n", + " })\n", + " root._bokeh_is_loading = css_urls.length + 9;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.1.0/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.1.0/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.1.0/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.1.0/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.1.0/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.1.0/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.1.0/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.1.0/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.1.0/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.1.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.1.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.1.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.1.1.min.js\", \"https://cdn.holoviz.org/panel/1.1.0/dist/panel.min.js\"];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " Bokeh = root.Bokeh;\n", + " bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " if (!reloading && (!bokeh_loaded || is_dev)) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "\n", + "\n", + "\n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import hvplot.xarray\n", + "import holoviews as hv\n", + "import numpy as np\n", + "import hvplot.xarray\n", + "import matplotlib.pyplot as plt\n", + "import cartopy.crs as ccrs\n", + "from intake_esgf import ESGFCatalog\n", + "import xarray as xr\n", + "import cf_xarray\n", + "import warnings\n", + "import os\n", + "from globus_compute_sdk import Executor, Client\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "hv.extension(\"bokeh\")" + ] + }, + { + "cell_type": "markdown", + "id": "252748e9-c3a4-4018-8b9b-c26c40465faf", + "metadata": {}, + "source": [ + "## Accessing our Data and Computing the ENSO 3.4 Index\n", + "As mentioned in the introduction, we are utilizing functions from the previous ENSO notebooks. In order to run these with Globus Compute, we need to comply with the following requirements\n", + "- All libraries/packages used in the function need to be installed on the globus compute endpoint\n", + "- All functions/libraries/packages need to be imported and defined within the function to execute\n", + "- The output from the function needs to serializable (ex. xarray.Dataset, numpy.array)\n", + "\n", + "Using these constraints, we setup the following function, with the key parameter being which modeling center (model) to compare. Two examples here include The National Center for Atmospheric Research (NCAR) and the Model for Interdisciplinary Research on Climate (MIROC)." + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "id": "2b74d939-f87d-4a44-9e4a-6643b7d04fe7", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def run_plot_enso(model, return_path=False):\n", + " import numpy as np\n", + " import matplotlib.pyplot as plt\n", + " from intake_esgf import ESGFCatalog\n", + " import xarray as xr\n", + " import cf_xarray\n", + " import warnings\n", + " warnings.filterwarnings(\"ignore\")\n", + "\n", + " def search_esgf(institution_id, grid='gn'):\n", + "\n", + " # Search and load the ocean surface temperature (tos)\n", + " cat = ESGFCatalog()\n", + " cat.search(\n", + " activity_id=\"CMIP\",\n", + " experiment_id=\"historical\",\n", + " institution_id=institution_id,\n", + " variable_id=[\"tos\"],\n", + " member_id='r11i1p1f1',\n", + " table_id=\"Omon\",\n", + " )\n", + " try:\n", + " tos_ds = cat.to_datatree()[grid].to_dataset()\n", + " except ValueError:\n", + " tos_ds = cat.to_dataset_dict()[\"\"]\n", + "\n", + " # Search and load the ocean grid cell area\n", + " cat = ESGFCatalog()\n", + " cat.search(\n", + " activity_id=\"CMIP\",\n", + " experiment_id=\"historical\",\n", + " institution_id=institution_id,\n", + " variable_id=[\"areacello\"],\n", + " member_id='r11i1p1f1',\n", + " )\n", + " try:\n", + " area_ds = cat.to_datatree()[grid].to_dataset()\n", + " except ValueError:\n", + " area_ds = cat.to_dataset_dict()[\"\"]\n", + " return xr.merge([tos_ds, area_ds])\n", + "\n", + " def calculate_enso(ds):\n", + "\n", + " # Subset the El Nino 3.4 index region\n", + " dso = ds.where(\n", + " (ds.cf[\"latitude\"] < 5) & (ds.cf[\"latitude\"] > -5) & (ds.cf[\"longitude\"] > 190) & (ds.cf[\"longitude\"] < 240), drop=True\n", + " )\n", + "\n", + " # Calculate the monthly means\n", + " gb = dso.tos.groupby('time.month')\n", + "\n", + " # Subtract the monthly averages, returning the anomalies\n", + " tos_nino34_anom = gb - gb.mean(dim='time')\n", + "\n", + " # Determine the non-time dimensions and average using these\n", + " non_time_dims = set(tos_nino34_anom.dims)\n", + " non_time_dims.remove(ds.tos.cf[\"T\"].name)\n", + " weighted_average = tos_nino34_anom.weighted(ds[\"areacello\"]).mean(dim=list(non_time_dims))\n", + "\n", + " # Calculate the rolling average\n", + " rolling_average = weighted_average.rolling(time=5, center=True).mean()\n", + " std_dev = weighted_average.std()\n", + " return rolling_average / std_dev\n", + "\n", + " def add_enso_thresholds(da, threshold=0.4):\n", + "\n", + " # Conver the xr.DataArray into an xr.Dataset\n", + " ds = da.to_dataset()\n", + "\n", + " # Cleanup the time and use the thresholds\n", + " try:\n", + " ds[\"time\"]= ds.indexes[\"time\"].to_datetimeindex()\n", + " except:\n", + " pass\n", + " ds[\"tos_gt_04\"] = (\"time\", ds.tos.where(ds.tos >= threshold, threshold).data)\n", + " ds[\"tos_lt_04\"] = (\"time\", ds.tos.where(ds.tos <= -threshold, -threshold).data)\n", + "\n", + " # Add fields for the thresholds\n", + " ds[\"el_nino_threshold\"] = (\"time\", np.zeros_like(ds.tos) + threshold)\n", + " ds[\"la_nina_threshold\"] = (\"time\", np.zeros_like(ds.tos) - threshold)\n", + "\n", + " return ds\n", + " \n", + " ds = search_esgf(\"NCAR\")\n", + " enso_index = add_enso_thresholds(calculate_enso(ds).compute())\n", + " enso_index.attrs = ds.attrs\n", + " enso_index.attrs[\"model\"] = model\n", + "\n", + " return enso_index" + ] + }, + { + "cell_type": "markdown", + "id": "e5ad93de-5473-4579-8ee4-cadd0fbb90b2", + "metadata": {}, + "source": [ + "## Configure Globus Compute\n", + "\n", + "Now that we have our functions, we can move toward using [Globus Flows](https://www.globus.org/globus-flows-service) and [Globus Compute](https://www.globus.org/compute).\n", + "\n", + "Globus Flows is a reliable and secure platform for orchestrating and performing research data management and analysis tasks. A flow is often needed to manage data coming from instruments, e.g., image files can be moved from local storage attached to a microscope to a high-performance storage system where they may be accessed by all members of the research project.\n", + "\n", + "More examples of creating and running flows can be found on our [demo instance](https://jupyter.demo.globus.org/hub/)." + ] + }, + { + "cell_type": "markdown", + "id": "663dfed0-e099-43db-98ad-9eb5021ac69e", + "metadata": {}, + "source": [ + "### Setup a Globus Compute Endpoint\n", + "Globus Compute (GC) is a service that allows **python functions** to be sent to remote points, executed, with the output from that function returned to the user. While there are a collection of endpoints already installed, we highlight in this section the steps required to configure for yourself. This idea is also known as \"serverless\" computing, where users do not need to think about the underlying infrastructure executing the code, but rather submit functions to be run and returned.\n", + "\n", + "To start a GC endpoint at your system you need to login, [configure a conda environment](https://foundations.projectpythia.org/foundations/how-to-run-python.html#installing-and-managing-python-with-conda), and `pip install globus-compute-endpoint`.\n", + "\n", + "You can then run:\n", + "\n", + "```globus-compute-endpoint configure esgf-test```\n", + "\n", + "```globus-compute-endpoint start esgf-test```\n", + "\n", + "Note that by default your endpoint will execute tasks on the login node (if you are using a High Performance Compute System). Additional configuration is needed for the endpoint to provision compute nodes. For example, here is the documentation on configuring globus compute endpoints on the Argonne Leadership Computing Facility's Polaris system\n", + "- https://globus-compute.readthedocs.io/en/latest/endpoints.html#polaris-alcf" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "id": "fe8d9e8b-e38d-41a5-b5f6-df9916d69f83", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "endpoint_id = \"b3d1d669-d49b-412e-af81-95f3368e525c\"" + ] + }, + { + "cell_type": "markdown", + "id": "ef408588-1e81-4726-892b-a9b0ad2f38cc", + "metadata": {}, + "source": [ + "### Setup an Executor to Run our Functions\n", + "Once we have our compute endpoint ID, we need to pass this to our executor, which will be used to pass our functions from our local machine to the machine we would like to compute on." + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "id": "0aa43e9e-6840-4b46-9a0c-ceeef8ca7e1e", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Executor" + ] + }, + "execution_count": 135, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gce = Executor(endpoint_id=endpoint_id)\n", + "gce.amqp_port = 443\n", + "gce" + ] + }, + { + "cell_type": "markdown", + "id": "4afe4cec-fca9-40ed-b20a-39061ad1d45a", + "metadata": {}, + "source": [ + "### Test our Functions\n", + "Now that we have our functions prepared, and an executor to run on, we can test them out using our endpoint!\n", + "\n", + "We pass in our function name, and the additional arguments for our functions. For example, let's look at comparing at the NCAR and MIROC modeling center's CMIP6 simulations." + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "id": "664c9fd2-8822-4e34-9c2b-8558c489e487", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ncar_task = gce.submit(run_plot_enso, model='NCAR')\n", + "miroc_task = gce.submit(run_plot_enso, model='MIROC')" + ] + }, + { + "cell_type": "markdown", + "id": "ccffe7fe-f11c-4b43-9b1a-b140eb1aa8a5", + "metadata": {}, + "source": [ + "The results are started as python objects, with the resultant datasets available using `.result()`" + ] + }, + { + "cell_type": "code", + "execution_count": 137, + "id": "6c2f0f35-9847-43bb-8e4c-b42ba5060233", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:            (time: 1980)\n",
+       "Coordinates:\n",
+       "  * time               (time) datetime64[ns] 1850-01-15T13:00:00.000008 ... 2...\n",
+       "    month              (time) int64 1 2 3 4 5 6 7 8 9 ... 4 5 6 7 8 9 10 11 12\n",
+       "Data variables:\n",
+       "    tos                (time) float32 nan nan 0.06341 ... 0.7921 nan nan\n",
+       "    tos_gt_04          (time) float32 0.4 0.4 0.4 0.4 ... 0.6829 0.7921 0.4 0.4\n",
+       "    tos_lt_04          (time) float32 -0.4 -0.4 -0.4 -0.4 ... -0.4 -0.4 -0.4\n",
+       "    el_nino_threshold  (time) float32 0.4 0.4 0.4 0.4 0.4 ... 0.4 0.4 0.4 0.4\n",
+       "    la_nina_threshold  (time) float32 -0.4 -0.4 -0.4 -0.4 ... -0.4 -0.4 -0.4\n",
+       "Attributes: (12/46)\n",
+       "    Conventions:            CF-1.7 CMIP-6.2\n",
+       "    activity_id:            CMIP\n",
+       "    branch_method:          standard\n",
+       "    branch_time_in_child:   674885.0\n",
+       "    branch_time_in_parent:  219000.0\n",
+       "    case_id:                972\n",
+       "    ...                     ...\n",
+       "    table_id:               Omon\n",
+       "    tracking_id:            hdl:21.14100/b0ffb89d-095d-4533-a159-a2e1241ff138\n",
+       "    variable_id:            tos\n",
+       "    variant_info:           CMIP6 20th century experiments (1850-2014) with C...\n",
+       "    variant_label:          r11i1p1f1\n",
+       "    model:                  NCAR
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 1980)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 1850-01-15T13:00:00.000008 ... 2...\n", + " month (time) int64 1 2 3 4 5 6 7 8 9 ... 4 5 6 7 8 9 10 11 12\n", + "Data variables:\n", + " tos (time) float32 nan nan 0.06341 ... 0.7921 nan nan\n", + " tos_gt_04 (time) float32 0.4 0.4 0.4 0.4 ... 0.6829 0.7921 0.4 0.4\n", + " tos_lt_04 (time) float32 -0.4 -0.4 -0.4 -0.4 ... -0.4 -0.4 -0.4\n", + " el_nino_threshold (time) float32 0.4 0.4 0.4 0.4 0.4 ... 0.4 0.4 0.4 0.4\n", + " la_nina_threshold (time) float32 -0.4 -0.4 -0.4 -0.4 ... -0.4 -0.4 -0.4\n", + "Attributes: (12/46)\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " activity_id: CMIP\n", + " branch_method: standard\n", + " branch_time_in_child: 674885.0\n", + " branch_time_in_parent: 219000.0\n", + " case_id: 972\n", + " ... ...\n", + " table_id: Omon\n", + " tracking_id: hdl:21.14100/b0ffb89d-095d-4533-a159-a2e1241ff138\n", + " variable_id: tos\n", + " variant_info: CMIP6 20th century experiments (1850-2014) with C...\n", + " variant_label: r11i1p1f1\n", + " model: NCAR" + ] + }, + "execution_count": 137, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ncar_ds = ncar_task.result()\n", + "miroc_ds = miroc_task.result()\n", + "\n", + "ncar_ds" + ] + }, + { + "cell_type": "markdown", + "id": "f1257d1a-9712-427b-b9ce-4db644420839", + "metadata": {}, + "source": [ + "### Plot our Data\n", + "Now that we have pre-computed datasets, the last step is to visualize the output. In the other example, we stepped through how to utilize the `.hvplot` tool to create interactive displays of ENSO values. We will utilize that functionality here, wrapping into a function." + ] + }, + { + "cell_type": "code", + "execution_count": 138, + "id": "cac34be7-4faa-417c-b607-d8ee094be3e5", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def plot_enso(ds):\n", + " el_nino = ds.hvplot.area(x=\"time\", y2='tos_gt_04', y='el_nino_threshold', color='red', hover=False)\n", + " el_nino_label = hv.Text(ds.isel(time=40).time.values, 2, 'El Niño').opts(text_color='red',)\n", + "\n", + " # Create the La Niña area graphs\n", + " la_nina = ds.hvplot.area(x=\"time\", y2='tos_lt_04', y='la_nina_threshold', color='blue', hover=False)\n", + " la_nina_label = hv.Text(ds.isel(time=-40).time.values, -2, 'La Niña').opts(text_color='blue')\n", + "\n", + " # Plot a timeseries of the ENSO 3.4 index\n", + " enso = ds.tos.hvplot(x='time', line_width=0.5, color='k', xlabel='Year', ylabel='ENSO 3.4 Index')\n", + "\n", + " # Combine all the plots into a single plot\n", + " return (el_nino_label * la_nina_label * el_nino * la_nina * enso).opts(title=f'{ds.attrs[\"model\"]} {ds.attrs[\"source_id\"]} \\n Ensemble Member: {ds.attrs[\"variant_label\"]}')" + ] + }, + { + "cell_type": "markdown", + "id": "13492e2d-c32a-4bcc-b341-837d5ea91a1a", + "metadata": {}, + "source": [ + "Once we have the function, we apply to our two datasets and combine into a single column." + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "id": "b6332c80-0ee9-4a4f-a277-95efc2cc8252", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": {}, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ], + "text/plain": [ + ":Layout\n", + " .Overlay.I :Overlay\n", + " .Text.I :Text [x,y]\n", + " .Text.II :Text [x,y]\n", + " .Area.I :Area [time] (el_nino_threshold,tos_gt_04)\n", + " .Area.II :Area [time] (la_nina_threshold,tos_lt_04)\n", + " .Curve.I :Curve [time] (tos)\n", + " .Overlay.II :Overlay\n", + " .Text.I :Text [x,y]\n", + " .Text.II :Text [x,y]\n", + " .Area.I :Area [time] (el_nino_threshold,tos_gt_04)\n", + " .Area.II :Area [time] (la_nina_threshold,tos_lt_04)\n", + " .Curve.I :Curve [time] (tos)" + ] + }, + "execution_count": 139, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "59645fce-ca6a-4432-aa0e-77521837d618" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "(plot_enso(ncar_ds) + plot_enso(miroc_ds)).cols(1)" + ] + }, + { + "cell_type": "markdown", + "id": "b3bfceb9-124a-4d72-9d49-3ca255965e29", + "metadata": {}, + "source": [ + "## Summary\n", + "In this notebook, we applied the ENSO 3.4 index calculations to CMIP6 datasets remotely using Globus Compute and created interactive plots comparing where we see El Niño and La Niña.\n", + "\n", + "### What's next?\n", + "We will see some more advanced examples of using the CMIP6 and other data access methods as well as computations.\n", + "\n", + "## Resources and references\n", + "- [Intake-ESGF Documentation](https://github.com/nocollier/intake-esgf)\n", + "- [Globus Compute Documentation](https://www.globus.org/compute)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f5b2864f-6661-4aa4-8d65-8dc10c961b36", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_preview/32/_sources/notebooks/ex-regrid-plot.ipynb b/_preview/32/_sources/notebooks/ex-regrid-plot.ipynb new file mode 100644 index 0000000..17a03d0 --- /dev/null +++ b/_preview/32/_sources/notebooks/ex-regrid-plot.ipynb @@ -0,0 +1,1361 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "7ec06613-53cd-494c-ade6-8a3a156f77a0", + "metadata": { + "tags": [] + }, + "source": [ + "\"ESGF\n", + "\"Rooki\n", + "\"Cartopy" + ] + }, + { + "cell_type": "markdown", + "id": "50b5d7e7-df4e-4992-a29b-8804b081a320", + "metadata": { + "tags": [] + }, + "source": [ + "# Demo: Regridding and Plotting with Rooki and Cartopy \n" + ] + }, + { + "cell_type": "markdown", + "id": "abd4b497-cdbf-4c29-857c-3017abf9e927", + "metadata": { + "tags": [] + }, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "0f79862d-7181-4f04-966c-19b5e03a22a5", + "metadata": {}, + "source": [ + "## Overview\n", + "In this notebook, we demonstrate how to use Rooki to regrid CMIP model data and plot it in Cartopy for two examples:\n", + "\n", + "1. Regrid two CMIP models onto the same grid \n", + "1. Coarsen the output for one model" + ] + }, + { + "cell_type": "markdown", + "id": "4f1db315-fb2d-466d-bd6e-8a4ef18b6cf1", + "metadata": { + "tags": [] + }, + "source": [ + "## Prerequisites\n", + "\n", + "| Concepts | Importance | Notes |\n", + "| --- | --- | --- |\n", + "| [Intro to intake-esgf](https://projectpythia.org/esgf-cookbook/notebooks/intro-search.html) | Necessary | |\n", + "| [Intro to Cartopy](https://foundations.projectpythia.org/core/cartopy/cartopy.html) | Necessary | |\n", + "| [Using Rooki to access CMIP6 data](https://projectpythia.org/esgf-cookbook/notebooks/rooki.html) | Helpful | Familiarity with rooki |\n", + "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n", + "\n", + "- **Time to learn**: 15 minutes\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "7cbc5d91-db3f-4afd-9093-c3abc7dec82b", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "2582d535-9b99-4115-b0ee-7459acd76ec0", + "metadata": {}, + "source": [ + "## Imports\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "ad4562c9-f5eb-496e-9e17-6453f426e910", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "import rooki.operators as ops\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.colors as mcolors\n", + "import cartopy.crs as ccrs\n", + "import cartopy.feature as cfeature\n", + "\n", + "from intake_esgf import ESGFCatalog\n", + "from rooki import rooki\n", + "from matplotlib.gridspec import GridSpec\n", + "from mpl_toolkits.axes_grid1.inset_locator import inset_axes\n" + ] + }, + { + "cell_type": "markdown", + "id": "c2b47b1d-db2d-4074-8c92-bb71fa0459a7", + "metadata": { + "tags": [] + }, + "source": [ + "## Example 1: Regrid two CMIP6 models onto the same grid" + ] + }, + { + "cell_type": "markdown", + "id": "cc1d512a-68d3-43cf-aac7-6ca233d9ef73", + "metadata": {}, + "source": [ + "In this example, we want to compare the historical precipitation output between two CMIP models, CESM2 and CanESM5. Here will will look at the annual mean precipitation for 2010. " + ] + }, + { + "cell_type": "markdown", + "id": "46f5fba3-7410-465c-abdf-4e338855284c", + "metadata": {}, + "source": [ + "### Access the desired datasets using intake-esgf and rooki" + ] + }, + { + "cell_type": "markdown", + "id": "c5f4dc65-0dff-4023-880c-f511cbc58666", + "metadata": { + "tags": [] + }, + "source": [ + "The function and workflow to read in CMPI6 data using `intake-esgf` and `rooki` in the next few cells are adapted from [intake-esgf-with-rooki.ipynb](https://github.com/ProjectPythia/esgf-cookbook/blob/cf69015a464b68ee28cfdd4a27cee4e9d6ca2ca9/notebooks/use-intake-esgf-with-rooki.ipynb). Essentially, we use `intake-esgf` to find the dataset IDs we want and then subset and average them using `rooki`." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d053a676-2a27-4be0-93c0-eafb9671c0bc", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def separate_dataset_id(full_dataset):\n", + " return full_dataset[0].split(\"|\")[0]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "095db615-275a-4dbc-8467-833fd7992aed", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d94f8c4ed5c24cd8b123fac457ee6d00", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " Searching indices: 0%| |0/2 [ ?index/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "['CMIP6.CMIP.CCCma.CanESM5.historical.r1i1p1f1.Amon.pr.gn.v20190429',\n", + " 'CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amon.pr.gn.v20190401']" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cat = ESGFCatalog()\n", + "cat.search(\n", + " activity_id='CMIP',\n", + " experiment_id=[\"historical\",],\n", + " variable_id=[\"pr\"],\n", + " member_id='r1i1p1f1',\n", + " grid_label='gn',\n", + " table_id=\"Amon\",\n", + " source_id = [ \"CESM2\", \"CanESM5\"]\n", + " )\n", + "\n", + "dsets = [separate_dataset_id(dataset) for dataset in list(cat.df.id.values)]\n", + "dsets\n" + ] + }, + { + "cell_type": "markdown", + "id": "777f6bc4-f3a8-4110-bc2a-82cbf227ec4e", + "metadata": {}, + "source": [ + "Subset the data to get the precipitation variable for 2010 and then average by time:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "bf653879-96b5-48e0-be9b-0f0cc08152e2", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading to /tmp/metalink_6_iqo1_6/pr_Amon_CanESM5_historical_r1i1p1f1_gn_20100101-20100101_avg-year.nc.\n", + "Downloading to /tmp/metalink_d7uge4gt/pr_Amon_CESM2_historical_r1i1p1f1_gn_20100101-20100101_avg-year.nc.\n" + ] + } + ], + "source": [ + "dset_list = [[]]*len(dsets)\n", + "\n", + "for i, dset_id in enumerate(dsets):\n", + " wf = ops.AverageByTime(\n", + " ops.Subset(\n", + " ops.Input('pr', [dset_id]),\n", + " time='2010/2010'\n", + " )\n", + " )\n", + "\n", + " resp = wf.orchestrate()\n", + "\n", + " # if it worked, add the dataset to our list\n", + " if resp.ok:\n", + " dset_list[i] = resp.datasets()[0]\n", + " \n", + " # if it failed, tell us why\n", + " else:\n", + " print(resp.status)\n" + ] + }, + { + "cell_type": "markdown", + "id": "e040d078-3981-4246-a10b-c50cf104d8ed", + "metadata": {}, + "source": [ + "Print the dataset list to get an overview of the metadata structure:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b2ed096a-2cfc-4e51-9b2a-43b9ee4f103e", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ Size: 37kB\n", + "Dimensions: (lat: 64, time: 1, bnds: 2, lon: 128)\n", + "Coordinates:\n", + " * lat (lat) float64 512B -87.86 -85.1 -82.31 ... 82.31 85.1 87.86\n", + " * lon (lon) float64 1kB 0.0 2.812 5.625 8.438 ... 351.6 354.4 357.2\n", + " * time (time) object 8B 2010-01-01 00:00:00\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " lat_bnds (time, lat, bnds) float64 1kB ...\n", + " lon_bnds (time, lon, bnds) float64 2kB ...\n", + " pr (time, lat, lon) float32 33kB ...\n", + " time_bnds (time, bnds) object 16B ...\n", + "Attributes: (12/53)\n", + " CCCma_model_hash: 3dedf95315d603326fde4f5340dc0519d80d10c0\n", + " CCCma_parent_runid: rc3-pictrl\n", + " CCCma_pycmor_hash: 33c30511acc319a98240633965a04ca99c26427e\n", + " CCCma_runid: rc3.1-his01\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " YMDH_branch_time_in_child: 1850:01:01:00\n", + " ... ...\n", + " tracking_id: hdl:21.14100/363e1ebe-46e7-43dc-9feb-a7a4a0c...\n", + " variable_id: pr\n", + " variant_label: r1i1p1f1\n", + " version: v20190429\n", + " license: CMIP6 model data produced by The Government ...\n", + " cmor_version: 3.4.0, Size: 233kB\n", + "Dimensions: (time: 1, lat: 192, lon: 288, nbnd: 2)\n", + "Coordinates:\n", + " * lat (lat) float64 2kB -90.0 -89.06 -88.12 -87.17 ... 88.12 89.06 90.0\n", + " * lon (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8\n", + " * time (time) object 8B 2010-01-01 00:00:00\n", + "Dimensions without coordinates: nbnd\n", + "Data variables:\n", + " pr (time, lat, lon) float32 221kB ...\n", + " lat_bnds (time, lat, nbnd) float64 3kB ...\n", + " lon_bnds (time, lon, nbnd) float64 5kB ...\n", + " time_bnds (time, nbnd) object 16B ...\n", + "Attributes: (12/45)\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " activity_id: CMIP\n", + " branch_method: standard\n", + " branch_time_in_child: 674885.0\n", + " branch_time_in_parent: 219000.0\n", + " case_id: 15\n", + " ... ...\n", + " sub_experiment_id: none\n", + " table_id: Amon\n", + " tracking_id: hdl:21.14100/a2c2f719-6790-484b-9f66-392e62cd0eb8\n", + " variable_id: pr\n", + " variant_info: CMIP6 20th century experiments (1850-2014) with C...\n", + " variant_label: r1i1p1f1]\n" + ] + } + ], + "source": [ + "print(dset_list)\n" + ] + }, + { + "cell_type": "markdown", + "id": "776f84fd-e329-42e8-bab4-54253636aefc", + "metadata": {}, + "source": [ + "### Compare the precipitation data between models" + ] + }, + { + "cell_type": "markdown", + "id": "ee469ea1-e402-4e55-b709-0de01e7875b3", + "metadata": {}, + "source": [ + "First, let's quickly plot the 2010 annual mean precipitation for each model to see what we're working with. Since precipitation values vary greatly in magnitude, using a log-normalized colormap makes the data easier to visualize. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "e49b55e3-1970-4410-8557-9328f31853fb", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHFCAYAAAD8Jo2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC89UlEQVR4nOydeXxU1f3+n9knKwkEApFdcYm4FZDiBlhFKSqKrbtCXfmCtYgr1SpYFhW1uIBK+61orV93bX8uFVpxQagCSlVQ3FAQiJEle2a/vz/SzHnO5J5kZjIJCXzer9e8OHPn3LPdcy8n936e+zgsy7IgCIIgCIKwj+Pc0w0QBEEQBEHoCMiiSBAEQRAEAbIoEgRBEARBACCLIkEQBEEQBACyKBIEQRAEQQAgiyJBEARBEAQAsigSBEEQBEEAIIsiQRAEQRAEALIoEgRBEARBACCLIiHDrFy5EjNnzkRFRUWT30aNGoVRo0a1e5vagy+++ALXX389hgwZgoKCAnTt2hXHHnssnn/+edv85eXlmDRpEoqKipCdnY0RI0bgX//6V5N8r7zyCi655BIcdthh8Hg8cDgcxjaEw2HMmjUL/fv3h8/nw8EHH4wHH3wwpX60Rbua48EHH8TBBx8Mn8+HAQMGYNasWQiHw1qe77//HtOmTcPIkSNRUFAAh8OBJUuWpFTPN998gwkTJqCgoAC5ubk4+eST8eGHH9rmffrpp3HkkUfC7/ejpKQE06ZNQ01NzT5flyDsE1iCkEHmz59vAbA2bdrU5Lf169db69evb/9GtQMPPvigdfDBB1tz5syxli5dar322mvWxIkTLQDWrFmztLyBQMAaPHiw1bt3b+vJJ5+0li5dao0fP95yu93WW2+9peW99NJLrUGDBlnnnHOONWTIEKu5U/byyy+3fD6fdffdd1vLly+3br75ZsvhcFhz5sxJqg9t1S4Ts2fPthwOhzVjxgxr+fLl1t133215vV7riiuu0PItX77cKioqsk466STr/PPPtwBYjz32WNL1lJeXWyUlJdahhx5qvfDCC9arr75qHXfccVZeXp71+eefa3mffPJJC4B1+eWXW2+++ab1yCOPWF26dLFOPvnkfbouQdhXkEWRkFGaWxTtzfz4449WLBZrsn3cuHFWdna2FQgE4tsWLlxoAbBWrlwZ3xYOh63S0lLr6KOP1vaPRqPx9NSpU42Lj08//dRyOBzW3Llzte1XXHGFlZWVZe3cubPFPrRFu0zs2LHD8vv91pVXXqltnzNnjuVwOLTFM9e1evXqlBdFN9xwg+XxeKxvv/02vq2ystIqKiqyzjnnnPi2SCRi9erVyxozZoy2/1//+lcLgPXaa6/ts3UJwr6CLIqEjHH77bdbAJp8li9fblmWZY0cOdIaOXJkPP+mTZssANbdd99t3XnnnVa/fv0sv99vjRw50tq4caMVCoWsm266yerVq5eVn59vnXnmmdYPP/zQpN6nn37a+ulPf2plZ2dbOTk51pgxY6wPP/ywnXrdPLNmzbIAWNu2bYtvO+mkk6yDDjqoSd65c+daAKzvv//etqzmFh+zZ8+2AFjbt2/Xtq9cudICYP31r39tsa1t0S4TjXcuVq1apW3ftm2bBcB4dyudRdEBBxxgnXLKKU22X3nllVZWVpYVDocty7KsFStWWACs//u//9PyhUIhKzc3t8kdrH2pLkHYV5CYIiFjXH755fj1r38NAHjxxRexatUqrFq1Cj/5yU+a3W/hwoV47733sHDhQvzpT3/C559/jtNPPx2XXXYZfvzxR/z5z3/G3XffjX/+85+4/PLLtX3nzp2L888/H6WlpXj22Wfxl7/8BdXV1Tj++OOxYcOGFtsciUSS+liWldaYLF++HN27d0ePHj3i2z799FMcfvjhTfI2blu/fn3K9Xz66afo3r07evbsaVvmp59+mlQZmW5Xc3UBwGGHHaZt79WrF4qKipJqbzLU19fj66+/Nvarvr4e33zzjdamxLwejwcHH3xwkzY5HA4tRm5vqUsQ9mXce7oBwt5D79690bdvXwDAUUcdhf79+ye1X0FBAV5++WU4nQ1r9B07dmDatGk4+OCD8be//S2e7/PPP8eCBQtQVVWF/Px8bNmyBbfffjuuvvpqPPDAA/F8J598MgYNGoRZs2bhmWeeMdb77bffYsCAAUm1cfny5SkHif/pT3/CW2+9hfvvvx8ulyu+fefOnejatWuT/I3bdu7cmVI9zZWZk5MDr9ebVJlt0a7m6vL5fMjJybGtL1N17d69G5ZlJdWvxn9Neb/99lttm8vl0o7r3lKXIOzLyKJI2OP8/Oc/jy+IAOCQQw4BAIwbN07L17h98+bNGDx4MN544w1EIhFccskliEQi8Xx+vx8jR47E8uXLm623pKQEq1evTqqNBx10UFL5Gnn99dcxdepU/OIXv4jfPWOaU2ulq+RKpkzLshCNRrXf3G53k3yZahcfF6DhP/fGctpiDNIpL/E3U97E7Yl921vqEoR9GVkUCXucxL9gvV5vs9sDgQAA4IcffgAADBs2zLZcXmjZ4fV6ceSRRybVRv4rvSXeeOMNTJgwASeffDL++te/NvlPp1u3brZ3Qnbt2gXA/i/6lujWrRvWrVvXZHttbS1CoVC8zMcffxy/+tWvtDyNjwbbol0ej0f7/thjj2HSpEno1q0bAoEA6urqkJ2d3aS+IUOGpFyXHYWFhXA4HEn1q1u3bgAa7qwUFxc3ydtS//fWugRhX0IWRUKnpaioCADw/PPPo1+/finv3xaPz9544w2ceeaZGDlyJF544YX4Qo457LDD8MknnzTZ3rht8ODBSbUpscynn34aZWVlWlxRYpmnn3668e5YW7Qrsa7G8W6MJfrkk08wfPjw+O9lZWXYsWNHWnXZkZWVhQMOOMDYr6ysLAwcOLBJm0pLS+P5IpEIPv/8c5x//vn7ZF2CsC8hiyIho/h8PgANgaBtzSmnnAK3242vv/4aZ599dsr7Z/rx2dKlS3HmmWfiuOOOw8svvxwfi0TOOussTJkyBe+//358QRCJRPDkk09i+PDhKCkpSb4T/2X8+PG49dZb8fjjj+Omm26Kb1+yZAmysrJw6qmnAmi4a9B456A92jV06FDb7aeeeir8fj+WLFmiLYqWLFkCh8OBM888M+W6TJx11llYsGABtmzZgj59+gAAqqur8eKLL+KMM86IPz4cPnw4evXqhSVLluDcc8+N7//888+jpqYGEyZM2GfrEoR9hj0pfRP2PpYvX24BsK666ipr5cqV1urVq62qqirLssyS/Pnz59uW8dxzz2nbH3vsMQuAtXr16vi2uXPnWm6327rqqqusl156yXrrrbesZ555xrruuuus2267re06msC7775rZWVlWf3797fefPNNa9WqVdqnsrIynjcQCFiHHnqo1adPH+uvf/2rtWzZMuuss86yfUnit99+az333HPWc889Z5166qnxcXnuuee0cbAs9fLG+fPnW2+99Zb129/+NuWXN7ZFu0w0vrzxt7/9rfXWW29Z8+fPt3w+n61EvLHsu+66ywJgTZ06Nb6tJcrLy61evXpZhx12mPXSSy9Zr732mnXCCSdYeXl51meffabl/ctf/mIBsK688kpr+fLl1uLFi62CggLblxy6XC7rxBNP3OvqEoR9GVkUCRlnxowZVklJieV0OpN6T1FrFkWWZVkvv/yyNXr0aCs/P9/y+XxWv379rF/84hfWP//5zzbpnx2mdzQ1fhrHoJGysjLrkksusbp27Wr5/X7rpz/9qbVs2bIm5Tb22e4zceJELW8oFLJuv/12q2/fvpbX67UOPPBA64EHHkipH23Rrua4//77rQMPPNDyer1W3759rdtvv90KhUJN8jU3tsnw1VdfWWeeeaaVn59vZWdnWz/72c+stWvX2uZ96qmnrMMPP9zyer1Wz549rWuuucaqrq62bRPP572lLkHYl3FYVpovYBEEQRAEQdiLkJc3CoIgCIIgQBZFgiAIgiAIAGRRJAiCIAiCAEAWRYIgCIIgCABkUSQIgiAIggBAFkWCIAiCIAgA5I3WTYjFYti2bRvy8vLEKFEQBEFoFsuyUF1djZKSkhb9FtMlEAggFAplpCyv1wu/35+RsvZGZFGUwLZt2+KvzBcEQRCEZNiyZQt69+6d8XIDgQAG9MtFWXk0I+X17NkTmzZtkoWRAVkUJZCXlwcA2G/eLXD6/Q3vzG3E9JpL3u4wpBMx/eYwVGI5Ws6TTPnNFGsui+qjHZJpRlthGo6k+pMkxv4l0+90GpJMudr8MnQ8seHJDFaqg5jsseeiWjOebYXp3E21TYlDZio32f3ttqdzwtH+GTs32urET6KByU7TlJuYcn5VeSwQwNYZc+L/d2SaUCiEsvIoNq3th/y81t2JqqqOYcCQ7xAKhWRRZEAWRQk0PjJz+v1wZsmiqEl9siiSRREgi6JEZFHUejrpoiheZxuHW+TnOVu9KBJaRhZFgiAIgtDBiVoxRFu5Ho1ascw0Zi9GFkWCIAiC0MGJwUKslbdVW7v/voDcixMEQRAEQYDcKTKTFWn4aA/lDXnTWXwnEyOUTJxBcpUZCzAXZeqUYTxiart2hzbh2bvD9Jspdss0NIbYJq22dEIwYoYRSWI4uCHNxTtYSfwp4jDc5danSpIBI0nMW0fK459k1S7eyZyvpTYZw5+S/bMujeOUSpmJ5ehtpC/JtDfVuLHm4pmayWZXrN6OFK9LiXWb4G5ofY3Z5jGd1E6XXpnDMCamUB8riXluGa5R2nZHxH7nDBNDDK19+NX6EvZ+5E6RIAiCIHRwopaVkQ8ADBs2DKWlpVi4cOEe7lXHQ+4UCYIgCMI+xOrVq5Gfn7+nm9EhkUWRIAiCIHRwJNC6fZBFkSAIgiB0cGKwEJVFUZsjiyITjv9+OBpPi9izD550UFClKfCvOayYfWCfloeDjDlo1BS43BymuDuKYLVacx4lBGta2owzddBQFAdzc79N1ZmCppurmjtL+2sxoFqApn20rSlQumF/+8qTemeiIY+jmQOeTDCyMRab93XYz3lQwGuzAcdJ9M94/Hg8XaYJon/N2As+DQHHjmbOVeN5bJoXPJ4cmG0ZtnNdif1xGq47hnmrzdUobY867fM0M4CWoY16HvrCY8tB+VyO274/TeQjbsO48Txwxuw2w4oZTpKY4foq7LXIokgQBEEQOjjy+Kx9kEWRIAiCIHRwWD3WmjKE5pFFkSAIgiB0cGIwP31NpQyheTrNe4oikQhuvfVWDBgwAFlZWRg4cCDuuOMOxGLqMFuWhZkzZ6KkpARZWVkYNWoU1q9fvwdbLQiCIAhCZ6HTLIruuusuPPLII3jooYfw2Wef4e6778b8+fPx4IMPxvPcfffduO+++/DQQw9h9erV6NmzJ04++WRUV1fvwZYLgiAIQuuI/ld91tqP0Dyd5vHZqlWrMH78eIwbNw4A0L9/f/zf//0f1qxZA6DhLtGCBQtwyy23YMKECQCAxx9/HMXFxXjqqadw1VVXtboNmnKBVWZO+zyJr6FvFYZXzBvFcUkS0+w5DNIOoz+AYTO3L5qwMyla2A7EaK9h2G7sqqaQSlC+mZQxBoWOpnbj8ddUUTQPEvtqaBardyyTUsg+u9F5IdmZZrFCx/QnUapSLZNdCKArf0y2CiaFlHYsKVPUfp42mUMGuwzdWoLSdCw0hZTpAHhNksRE7NuuhXew0tHQP0155aZrkTuhbpPq1WQRQ93Qzldua4TbR6UkjHlzijy7/bU5SG4ZFh8k03mRcH2NsQqSxsTBY+VShbk8Udu0iRiNRyxCDXe2z0OpqNXwaW0ZQvN0mjtFxx13HP71r3/hiy++AAD85z//wYoVK/Dzn/8cALBp0yaUlZVhzJgx8X18Ph9GjhyJlStXGssNBoOoqqrSPoIgCIIg7Ht0mjtFN910EyorK3HwwQfD5XIhGo1izpw5OP/88wEAZWVlAIDi4mJtv+LiYnz33XfGcufNm4dZs2a1XcMFQRAEoZVIoHX70GnuFD3zzDN48skn8dRTT+HDDz/E448/jnvuuQePP/64ls+R8AzJsqwm25gZM2agsrIy/tmyZUubtF8QBEEQ0iUGB6Kt/MSSfYvwPkynuVN0ww034Oabb8Z5550HADjssMPw3XffYd68eZg4cSJ69uwJoOGOUa9eveL7lZeXN7l7xPh8Pvh8vrZtvCAIgiAIHZ5Oc6eorq4OTqfeXJfLFZfkDxgwAD179sSyZcviv4dCIbz99ts45phj2rWtgiAIgpBJYlZmPkLzdJo7RaeffjrmzJmDvn374tBDD8VHH32E++67D5deeimAhsdm06ZNw9y5czFo0CAMGjQIc+fORXZ2Ni644IKU63O6YnC6Y5pSxemyV585DcoTTWyToOJhBRP7l2mqNsqv1Udpj5sUFE5+Z5PaOxjWD3MkqhktqX3YTyxm8D4zqeA01YlBKQRdcWZSNmmbSVFiFEXx+JmUO4m/MSbFDKfZl4lVL7RdUywlPLzXmsL7mxRxvNmgCNKUV5FmboubPMCcnDYovbgO49iymi6xbnsPK86nnT7cDT4uWvvs2514jpk8vbRyDZU7TGIkPt7NKPNMSjut3zwPPNRYj31BDqfhBGgyhQyecYxhzJ0+1XEnHS/t2kdtisUSz2/VwVjEYbtdU7LVqwF1BUkZFrL3ZuNux7wJ6jP+HrM/x7Rh4zY57PunnTuc5utSJlXGzdD4CKy1ZQjN02kWRQ8++CB+97vfYcqUKSgvL0dJSQmuuuoq3HbbbfE8N954I+rr6zFlyhTs3r0bw4cPx9KlS5GXl7cHWy4IgiAIQmeg0yyK8vLysGDBAixYsMCYx+FwYObMmZg5c2a7tUsQBEEQ2ppM3ikaNmwYXC4Xpk6diqlTp2aieXsNnWZRJAiCIAj7KjHLgVgyL1NtoQwAWL16NfLz8zPRrL0OWRQJgiAIQgdHYorah06jPhMEQRAEQWhL5E6RAa8/DJffpSm93K4opcnjjKQc0Sbym/9uT1BpRKJKdWEZxAtug+LDZVAssaosRsqKaFRvk0nVxqKLGOwlH+z5Y/RK4y8JygwHq7gMt4I1zzFWz7BiT1P3GNb2zSmyDD5Jeju4DoNSjsfPba94achoKMvQRq1LrJ7x2Cvt2AfK6CMHvU+8P2+P8TEiVZQmWGpubBm3QcmjKeoM+2pzxZCHx7KJ152hHYTWDlOfTF1N1SOumfo0ry4ve3W1rE5MzOMkRapl8DbUPM74NKZ+REkBFuWD0dxrkaktmmKNrp38v06M+h2li4ODPRK5ai+lsxMmDinnXDyG7FnJ3XbyNZWu54brK19HXdSmaBK+aZkgCieirbyP0T4t7dzIokgQBEEQOjhWBmKKmnuNhNCAPD4TBEEQBEGA3CkSBEEQhA6PBFq3D7IoEgRBEIQOTtRyGmNWky8jQ43Zi5HHZ4IgCIIgCJA7RUay/WG4/E5NWcY4NMWGSnMgXDhiVpixOixm8DGK0P6sfGAlmqaUSPLOqOa1ZvD5YYVbjFVtXJBmRETbm/EC0vybwEqVlv+EibHaKkzr+QAbUnFlCWWymsmo8DGMp8Evy+Um1Yrb3nsOAGJhVu0ZfOW0HQz+XFwsq8c4nVimSY3Gqjb+80jz5KK0n1RNsJ+ziQownl/GIE/DdlZRaf5cLnv5EysjASAWpvOPxt9hUH1xX03KQ00lxvsmHEjLcGw0+Y/JVy5I55uLyjGooppcW+hvXRcro/g0cVEdJk879mmjAeHrgXbuAbDoVgQrxfjc0HDYj380i+aNj86xnHA8nZWl0gDg9UTiab5+uUlZxiqzKJ2HEVbrGs4XVh9z+dFY2C57xonBoR3b9MqQW0UtIYsiQRAEQejgSExR+yCPzwRBEARBECB3igRBEAShw5OZQGt5fNYSsigSBEEQhA5OQ0xRKw1h5fFZi8iiyIDPFYHb7dIDkQm26YhSIKaXgvGyPCoALzHINET7c6A1L+T1QO2WJ7MWgG0Kxk6og8s1BsVSYKvHb1+Hy2UfzMh9APTgxigFwnKwJwddc6CoP0ulYxQMGc2jv56ob4n2JiZrA2PQfMgQqOulgGO2RTAE9jZXN6MF22rBnoZAWHZi4SFoEmDONiEUYG4IEteCx132x1trdzPB1Dy3oxQIzUHRHFDt9apgWZ+XA2ftg9gDIXUJC3JkL6AFffMxAwcAc7A522Dw8TZYo2gx/YkB5oZyteBsPsYc+E9znsdft6gw21Lw+PB5YrqW6Q1XSZehHdEIBxknTGY+j2ke5eQEVZsMYpQoHSOfT107i/Jq4+lCX70qP6E/fE0NkVeN03BdDETU3KkN+agkexEMz0EPpSPO9jHPiGXA5kMCrVtGYooEQRAEQRAgd4oEQRAEocMjMUXtgyyKBEEQBKGDE4NT3lPUDsjjM0EQBEEQBMidIkEQBEHo8EQthybqSbcMoXlkUWQgZjkalAeGSRQmFRVbgbBCgZUOoQQlFKsuOM0qrhxfKJ52+FWaMSmCmETViaaYirG6wr4fvH8wrKaMpvag7RY9905UxrBkytIsDFQONyuhaDz4NfsOmrkhUn0FA0paFA3pY86KICergKh/sSAVXKPSTk00RMoiesO/g2wKnD5dkaIpmwyKIFObWLnGFgvcHzcpd5oooRz2x9VDqi+H4VppCkFgmxouP5Iwz8GWJqwGI2WTh9PUJj6usZjHtj43zw9SqwGAFaM5GWNVlNo/JycQT/vcav8gK5PqlDIpSvPD0Yyi0MnKrWxSobK9D9uNsAqUx4nPSZe9Ai8c1C/jVsjeXkibFyZ7IJ7nTtVWN42Nm5RhMY8+z1ntlkXXrDy/Up+5HfaWHzz+XX11al+32rc2qs7vimCWtj8rzti2g6+RmhqSrlNeqruLW/VPs/+w7FVpcLWP+iyaAfVZVB6ftYg8PhMEQRAEQYDcKRIEQRCEDk/MciLWSvVZTNRnLSKLIkEQBEHo4Mjjs/ZBHp8JgiAIgrBHqaurQ79+/XD99dfv0XbInSJBEARB6ODE0Hr1mH2Ie8dgzpw5GD58+J5uhiyKTOT7AnD79FuNrETI9dr76dRHlEomRAqWxDeRap46pCrxeZQKwktKHFYNcbmsgnNRO7I9SvnhSVBHhEk1FqD2MiH2JKK2s1KOlUasMnM3o8awnKrfuvqp5du6rHhi1RwrcViB5PIkXEBYWROzV3Sxaijqo2NGSiEH+z2xAomOUczSPd9cpEbzkQ+U12PvlcfHjOdKXUipb9j3iz3lEv3HNBc1+sL+fXwsvEmoaVxOUuhoijP9khKI2CuhWHGWy8okOhfqw2puWpbKn+1teZwAIJLD85yUhHyeeNV5wqooNs7ktsLgU5io3mMvvyipwRzkIeamORElrzWTUjEW5nnKqrsEBRj7lFHd2v+IlkFyZtnXF7LU+Hn86hzLSVDFampKKtdD/mC5dG3iY+F18rFUdVeGdZWZXTmArj5LnAt2202eaEwgqvrN85FPqmQUwJkgMy9v7JgPh7788kt8/vnnOP300/Hpp5/u0bZ0zBESBEEQBCFOo81Haz+p8s477+D0009HSUkJHA4HXn755SZ5Fi1ahAEDBsDv92PIkCF49913U6rj+uuvx7x581JuW1sgiyJBEARBEGypra3FEUccgYceesj292eeeQbTpk3DLbfcgo8++gjHH388xo4di82bN8fzDBkyBIMHD27y2bZtG/72t7/hwAMPxIEHHtheXWoWeXwmCIIgCB2cGBzaY910ywCAqqoqbbvP54PP57PbBWPHjsXYsWONZd5333247LLLcPnllwMAFixYgDfeeAMPP/xw/O7P2rVrjfv/+9//xtNPP43nnnsONTU1CIfDyM/Px2233ZZS3zJFp7pTtHXrVlx00UXo1q0bsrOzceSRR2qDbVkWZs6ciZKSEmRlZWHUqFFYv379HmyxIAiCILSeTD4+69OnD7p06RL/pPvoKhQKYe3atRgzZoy2fcyYMVi5cmVSZcybNw9btmzBt99+i3vuuQdXXHHFHlsQAZ3oTtHu3btx7LHHYvTo0Xj99dfRo0cPfP311ygoKIjnufvuu3HfffdhyZIlOPDAAzF79mycfPLJ2LhxI/Ly8vZc4wVBEAShg7Blyxbk5+fHv5vuErXEjh07EI1GUVxcrG0vLi5GWVlZq9q4p+g0i6K77roLffr0wWOPPRbf1r9//3jasiwsWLAAt9xyCyZMmAAAePzxx1FcXIynnnoKV111VUr1eZwxeJxRRCgwjdUO+R7lmRQijyX2TKonP7BgSFd5RSKkGnOzHxV5GpE6iNVnWay6CCs1EisruN0uSxdiskIkxxuEHaxmqiXFU8TRsuKMlTjRqFl1x5gUHE6DB5uHxoxVaUyiDxersmIGhQ8LcRyk6nHmxGzzMKxiQ0zvp4sUTJqnHWVjdQvPIyYasx8/nh+uZrzP9LTKw4ozk39fVFP/sfeZKoeVYYDeVz4erKzs6lc+V36X7l/WiJuUSTlu8tRyq/Mw26mrkYKWGs+doex4ui6i/gNgdVHEMI88NB4Bn8ofMyggAV2lyfncmqKUjoWffBLpuhGoUeeeRdeMGCva3IkTkr3TaN6SEI3nI19/LEOfTP557IUI6OpZ7iuXxWOuK85aVozx4yP2XgT0ucPX6mRUaTzPIwZfS1aH8vawx96XMtNk5uWNDfvn5+dri6LW4kiQX1qW1WRbMkyaNClDLUqfTvP47O9//zuGDh2KX/7yl+jRoweOOuoo/PGPf4z/vmnTJpSVlWm38Xw+H0aOHJn0bTxBEARB6Ig0mpS39pNJioqK4HK5mtwVKi8vb3L3qLPQaRZF33zzDR5++GEMGjQIb7zxBiZPnoxrrrkGTzzxBADED0qqt/GCwSCqqqq0jyAIgiAIzeP1ejFkyBAsW7ZM275s2TIcc8wxe6hVraPTPD6LxWIYOnQo5s6dCwA46qijsH79ejz88MO45JJL4vlSvY03b948zJo1q20aLQiCIAgZIJaBx2eNL28cNmwYXC4Xpk6diqlTpza7T01NDb766qv4902bNmHdunXo2rUr+vbti+nTp+Piiy/G0KFDMWLECCxevBibN2/G5MmTW9XWPUWnWRT16tULpaWl2rZDDjkEL7zwAgCgZ8+eABruGPXq1Suep6XbeDNmzMD06dPj36uqqtCnT59MNl0QBEEQWkXMcmpv+k63DABYvXp10jFFa9aswejRo+PfG/+/nDhxIpYsWYJzzz0XO3fuxB133IHt27dj8ODBeO2119CvX79WtXVP0WkWRcceeyw2btyobfviiy/iAz9gwAD07NkTy5Ytw1FHHQWgQS749ttv46677jKWa3o/Q23YA3fYqwUIRlxqQpoCNKuC/niagy05YBgAcrJV0B5bG3AAHwf/aa+nh30AJAfL8mv1E20bOKCX+8H7sP1HTUCNDwdOsz2Jg2YSl+NK6LfL8Gr9sMGmgoNzObhXsxuhoFMntUmzZwBQkFMfT/vdavzDFIjJY+Nz2wf9MtxW7iuPAQDUUUB8bZAC16l/PA/8CQHL8bZG7K09OMC1ILte24fbwn11GiLGTe9CSTyW8e0O++1AQgC9x347iwJ4PnLgLP9nUB+1t6aJOPXA2zCLDai+Qm+tahK1nfOztcT2WvWfB4snWGjgcepzRQ+mV/l4voSNgesU1ExWIBZZe7g0oUGinQ1dK7TzgYKgXfbHjOe8Jpiw7AOwE2NU3IYgfYavlxxozfuarq+c9iecn7w/B1czPKd43tXR9Y7PCy6T69baF23ZFqczM2rUKFiWQV3yX6ZMmYIpU6a0U4valk6zKLr22mtxzDHHYO7cuTjnnHPwwQcfYPHixVi8eDGAhsdm06ZNw9y5czFo0CAMGjQIc+fORXZ2Ni644II93HpBEARBSJ8oHIi28uWNrd1/X6DTLIqGDRuGl156CTNmzMAdd9yBAQMGYMGCBbjwwgvjeW688UbU19djypQp2L17N4YPH46lS5fKO4oEQRCETk0mH58JZjrNoggATjvtNJx22mnG3x0OB2bOnImZM2e2X6MEQRAEoY2JovV3ehof9KUSaL2v0akWRYIgCIIgtI5UAq33NWRRJAiCIAgdHHl81j7IoshAbcgHl9un2RGwKiRKk6smqNRZrIpq7i3nrP7g18e7SQ1jUgGxaoKVIKz2YNVELSmfACBECia3wd6B1VlRv/nV+nZ1s1otErHP39B2lXaTmoZVbVxutlcperJyVft8pCipDCjV0O5qZe0AADsqc+LpnGxlb+Jz21sNODVln6qDj31VQKkNWQ2TqMph9Q6PuZ6mMTDYKnizyXqE8vDxyk2wHWAlTpBUM05DHT6Dgkibm4ZxSlQcmX7TLGlI1cPbud3a/KL5XOVQ45/ttlfsAYCX1GFsbZPrUum6mCp3d0jNFc0yx2mvwkm0ZWFlmkm1x+e9SVnp89mrVE12LYB+XpkscLh93A6fwWaFVWl8DUg83nz8+Dzx0DxnBRgfs2QsOPgc8yYoPEMGZSXvo11PXOo88bu4HfbzUeubQTnYlrCha2vKEJpHRkgQBEEQBAFyp0gQBEEQOjwWHManB6mUITSP3CkSBEEQhA5O4+Oz1n6ABvVZaWkpFi5cuId71fGQO0WCIAiCsA8h6jMzsigSBEEQhA5OzHIYg9FTKUNoHlkUGXA6LLicFkKkBAmQwsSlqT9IYUNKkxzyGvI246PF3lQVpJ5iBQU/S2bFmaZCIVUIK8wSFWOsbvGQ8iriYg8w2p/TIZW2ovYnWIw939y6QsRF/k3ZWUr9UZxXHU+zOmVHvVIBVdUrpRGrgLr56+LpavKei4b1p8Mx8hkLkS9aMERecNVKOVdBdeQXqDrYW4yVRTzOrJQDgCJfIJ42qa3qSVWVRQoyTT1j8CtL9LdjNLUPee5xWV6D6khX39i3m3E7ze2IkDooYijL5JfFyjf2heM2eRP8x0IxNVcD5JdWFVFzZEco17a+PI86XoO6KIVaRUgpGqtCaq7wvAP0uRA2KDCjmt+f2s5zilViOV6eE2oMWFEI6Od+1GpZ+VboU/O5wKvSfM0xHe9IgscYK8A4zUqxXI8aTz6uPCfyDfNAm48J8TE8z50GPz5tTtB1LVHJ1khVWB1jVrbydbe9vM+icCLayoiX1u6/LyAjJAiCIAiCALlTJAiCIAgdHnl81j7IokgQBEEQOjgxOBFr5cOd1u6/LyAjJAiCIAgdnKjlyMgHEEl+c8idIkEQBEHYhxBJvhlZFBnokVMDT05IUwoxJp8lVvGw4mUXKRca8inFAitVWJFSH1bb/V5VrtugeGK9U4AUVYnqFyumnisHSU3GYg5WwERJtaV5OpGCS9eKqLb6PAmKIFJ8cLtqSMkT89gr7Tg/97u8TimIKmrVOMci+rHzZKm25PqVAiYQVmMV8rLXHWypDSmVGLePFWd55K8F6EqvCN2gZS8ih0Fx409CGab5Q7n0uWlSrPE+rPxJVBTZ5WFYQdScF5ZpO58LJq81fV/VDla7sbIosQ7OpynRQko1xmqmXLc6lvo5reqopTlbVaerz/icidI8jNE57far4+Sl85v9yvzkfab5EVKexDHv4lcKMp47+niQnx6NjUk9WBdRfWVVWa5bn+eF3jq0RBZ5jvGxrImq84qVhJyHVWWehPkR5rLC6nhwe/l6blJA8thwfh7/HFKHhqO60rStkJii9kEWRYIgCILQwbEsZ6td7i0xhG0RGSFBEARBEATInSJBEARB6PBE4UC0lYaurd1/X0AWRYIgCILQwYlZrY8JitmHFwqEPD4TBEEQBEGA3CkysrM+G26nDwXkC5TvVX5IrPioIX+cXUGlfmI/JPbZAQC/wReN1WBhUqpYSah4wkG1byyk9nW4dZWGk75HWX3Gaq0Q+TKRX5kmZKImaUotUqgFa7PBONmPjMZwu1t5nDnIU43TThJV7eqhlCouP3keUd1IGLNwjdrnR0qzPZQrm44LKX9q69Qxdrns/dt4TiR6Ke0MZNvmY9+7LFK36D5O5IHHajdSSOVQ2qQ2aw4nK7pI1aOpcuiAs4KL8/D2JvtTuSavNlYdmXzQtHZTXxP9rpx0+LnuOlI5sQIpSJ5h9aRIZFUa+4px37rl1Wp1a56JrG6k7cn8zR8Iqn2rXep6wtcMT8JcyyflI48PK+d47rBaMYvSPjoWrPTi8XA79LoLPOp6GbFUX+toXoQtVoOptMtwvF1Uh8kPMrG9LvJwq2YlmoP8CR2qrzwPeJx4LHkOsSdatJ0UXbEMBFo37j9s2DC4XC5MnToVU6dOzUTz9hpkUSQIgiAIHZwYHE0WgumUAch7ippDFkWCIAiC0MHhN1K3pgyheSSmSBAEQRAEAXKnSBAEQRA6PJmMKRLMyKLIQCTqghV1oZoC6jgYr4qCqNlawuNWQYGDuu2IpxODXyvIXoADsoP1KiDRTZYTmr0GvYbeTUG/jiwVFMh2GnX1KrAUAKIBw2EPkuVEmG6zkmUBsqg+svlw+1SaA5F93XTLiTyy1/BRMPGPNcqqo2qbetbt30oBwBTL6vla9SnqU+mwiteGO8GtIuqjdDZZXOSrtnt8qk1dslVg/a6oCpSOkU1KAVkqsLXHD7V5Wt1sEcD5TMHZuu0GWQ3QmOW5uRwOjtYvfCZrBN7uo334XSYeCnLlANkcsmqopyDaRCsQk1WHyU6C226yHtECqmmaJtqT8NiG+Nwlew4e2zDtz8erC1k6BNzq3PmxluZsgs0HnwN8vvq9qlwWJ/Cc8vnIYoSuJ2ztwQHfbo8+xnURPdg9Xrdh7jA7g6pPPM4cyM/B8K6E61pVhO01VBv5+scB0T5DOxjTHEykmuqujahrAgdOc5qPvckyR7OwcZGAhMY/ErGfy5kmhgzYfMh7ilpElo2CIAiCIAiQO0WCIAiC0OGxMqA+s+ROUYvIokgQBEEQOjgxKwOPz0R91iLy+EwQBEEQBAGyKBIEQRCEDk+j+qy1H6DhjdalpaVYuHDhHu5Vx6PTPj6bN28efvvb3+I3v/kNFixYAACwLAuzZs3C4sWLsXv3bgwfPhwLFy7EoYcemnL5Oyty4Az5YZHNhIvUYA7DXUifVykrdtYrxVKiKofVI6yCyMlVagy/RylVcrxK/VFN6pkeOTXxdDYpZipI0bYt2kWru343ybCoH2zn4aqjqRFUmSyy/4h5SRnWS7Uv26/Su3eTHAxA7WeFqu2rlZqj57dKWpbbX9VX352aqoYWdb2oed2o3fWqTa4EYUvUr+qLaio6lbZIBVRJiiK2UMnLV4ozD9lVsOKMjx0AdPEpJVuuRzWsKqSrlhphGwZWVeV5VDndvdW2+0YT/tZhu4UwzTWPk1VLpLKhdDBmb2uhKddI1eROuD3v0pQ8aqxYZcZ1hDSVmdnCoxEemybxFiSMYtVRkNJ8HoYNaiRWbfG5GmBLnpB+KQ1R3U6DLUyeXx3LSFT1w+2yt34xKRX5vE+ElWJs4cFjXkdKLVYFsv1HkVddZ/xOc30Mq/lqWPpJ8PzgFwvyca2IZtluT7ymltcr5VxFIAt2sF1SXUD120nnQhbZ+0TpGtctqy6e5mtwNLnhaDWZfHzWmd9o/fe//z3lfU4++WRkZdnPiUQ65aJo9erVWLx4MQ4//HBt+91334377rsPS5YswYEHHojZs2fj5JNPxsaNG5GXl2coTRAEQRCEzsCZZ56ZUn6Hw4Evv/wSAwcOTCp/p3t8VlNTgwsvvBB//OMfUVio7jpYloUFCxbglltuwYQJEzB48GA8/vjjqKurw1NPPbUHWywIgiAIraPR+6y1n72BsrIyxGKxpD7Z2dktF0gkdadowoQJKTf6kUceQY8ePVLeryWmTp2KcePG4aSTTsLs2bPj2zdt2oSysjKMGTMmvs3n82HkyJFYuXIlrrrqKtvygsEggkF6nFFVlfE2C4IgCEJrEPVZAxMnTkz6URgAXHTRRSk9KkxqUfTyyy/jnHPOSbohTz31FGpqajK+KHr66afx4YcfYvXq1U1+KysrAwAUFxdr24uLi/Hdd98Zy5w3bx5mzZqV0XYKgiAIQiaRRVEDjz32WEr5H3744ZTyJx1T9MADDyS9yHn++edTakQybNmyBb/5zW+wdOlS+P32walAw/NDxrKsJtuYGTNmYPr06fHvVVVV6NOnT+sbLAiCIAhCpyKpRdHy5cvRtWvXpAt9/fXXsd9++6XdKDvWrl2L8vJyDBkyJL4tGo3inXfewUMPPYSNGzcCaLhj1KuXkiaVl5c3uXvE+Hw++HxNlRHRejcsuFHYUyl8PKTMqA0q5QL7ndUHle9QxQ6lhkBMX5g5/aTYIVUbK0/4+W95tSqrvka1l9VdrJxykFdar+6Vet/Y06taPW9lZUaEvMysKtUnVnchR+Xp2cX+sWOlO+HuIrWxrodKlx2n+uHeT6k8uE+RMlVWjNRjhb1U3RYrjkK6B5SLytIclOjQ8LGMkOebP1uphtiHri6s5sF+eWqci/36eLDnGHuLsYdYFqV1ZZgi16WOXZTUN6zuSfxrkFVLXK5J7ROmcuuj7CGlxpPr8JI6i9VOgK5AqrfU/iFSgPE8T/QItMvDCjAtTzN/BWv+V2HVDh4D9gtkn7EKh5p33FdWKVkJdfP+DlZYGfzL+HqSn6WOcYFXpVmRyMciO8E/jFVmJt8wPsa9s3fH0728ag7zvqz+q4mSb2NU/wOVlWkmnzJWHlbR+cMeegz3dXudEszUh/X8fAxq6tX5ECavR74uxsI0j2jfIHkp7o6p69K3IZLC1tL8rVfHqC2RO0XJ8/XXX+OKK67Am2++mfK+SQVajxw5Em538kK14447znah0Rp+9rOf4ZNPPsG6devin6FDh+LCCy/EunXrMHDgQPTs2RPLli2L7xMKhfD222/jmGOOyWhbBEEQBKE9aVwUtfazL1BTU4O33347rX3TkuTHYjF89dVXKC8vRyym/0V7wgknpNWQlsjLy8PgwYO1bTk5OejWrVt8+7Rp0zB37lwMGjQIgwYNwty5c5GdnY0LLrigTdokCIIgCEL78sADDzT7+9atW9MuO+VF0b///W9ccMEF+O6772BZ+q1uh8OBaDRq2LPtufHGG1FfX48pU6bEX964dOlSeUeRIAiC0KmxYPOC0jTK2BuYNm0aevXqBa/Xa/t7KBSy3Z4MKS+KJk+ejKFDh+LVV19Fr169mg1ibmveeust7bvD4cDMmTMxc+bMPdIeQRAEQWgLJKZI0a9fP9x1110455xzbH9ft26dFn+cCikvir788ks8//zzOOCAA9KqUBAEQRAEIV2GDBmCtWvXGhdFDoejyZOsZEl5UTR8+HB89dVXe/2iyJUVgTM7gto6FTAeqlRpXxl5KWWTuqS7um3nIgWXI0FNFKlVt/2C9eTFROqIAN0aZGWFYycpjbz2vl8xryqntot+i9FFbQnV0G8BUov4SX3mI2+wAtW/XkVKYfVDlXpEGSQFXvcC5ZkEAPWH0osy+ypVj6acI7VOuEyp47y7Vf+sKlKw1BXE08UH/xhP/6T4e61uVlhVhZVqppJ84vj2NKsNWUXFXl/5XtWf3llKxZOoHuP62F+KVT2sEmOVGROIqbFl/yqTR1kinE8rlxQ+nK6L2CvOuK2RYJZtHkCft+wTxwoyN40V789p9vfi/JoXWVTvG3uc1QTVOcPzPxxRxzVEaVYqRqPmV4DYtRUAYuSZmJNtfyufFWc8ntke+/yJXl8mcsn0z0dqwPqYqi+bFGo9vRXxNCvDfgirF95VRdQY8HmUk6B8q434bPdhfzWeU3zMeAw1JSy1qTqgyq8P6Nc1bZ+QaqNFSjErwmaPdM2h0zXqo+uMWx0XBx1TB10HHd70H9WkQibvFA0bNgwulwtTp07F1KlTM9G8duWOO+5AXV2d8ffS0lJs2rQprbKTWhR9/PHH8fSvf/1rXHfddSgrK8Nhhx0Gj0eXRSb6kQmCIAiC0DrEEFZRWlra7O8ejwf9+vVLq+ykFkVHHnlkk9tRl156aTzd+NueDrQWBEEQBGHf484778TkyZNRUFDQqnKSWhSlextKEARBEITWI4HWzTN37lycc8457bMo4ttQ77zzDo455pgmL3OMRCJYuXJl2resBEEQBEGwx7IcTd6cnk4ZeyvpBlYnknKg9ejRo7F9+/YmPmiVlZUYPXr0XvP4LOfDLLh8fmT9aD/QwS4qHSiiiUbBjBaNruXUy/FV2gdNhrtwxB/Za4QoCJGC/7y1KqCQ3rCPELWv4nv6AsBbVB9Pu7PVThFuo8M2idhuFej4Q7maA55qCsKlMLPdB+rz4YCiHfE0h0FXblVtjGxXdeRto+BGKqryKAp0dKsx65GtArvZWgMAdoSUVUqBV43BftkVqm4KImXbDd63ggKL3VQH2ysk/kWWTFB0xGCLUE0Bq5UhVTcHoHI57oQgbw5srSVbhXDUvj4OiK4KUBA6BR+7XaoOn1sF80YTLDi0oGa2EjHUbdqX4Qs7l8mB0gAQojo4oNrtcthuj4TUcWGzEg6atsj6BfXmPjjzaX7SVGAbIK6ve6GyE+rqU3OT4fnldputJTR7DRpCJ30p9NTG0+UhFVvCti5sBcKB4CwUqAjrNj5V9J3nHR+LAG3n+cIWR7y9jux62LonmnC8oxRcjTqVdoTJ3qeOgqhdqk98fXXuUnnCOWQL4ldpZxU5NgTa5+0/MTha/Z6i1u6/L5DyoshksLpz507k5OTY7CEIgiAIgtB2bNiwISOeq0kviiZMmACgIah60qRJmrdZNBrFxx9/LB5jgiAIgtAGSExRU7Zs2QKHw4HevXujT58++OCDD/DUU0+htLQUV155ZVplJr0o6tKl4fGGZVnIy8tDVhY5R3u9+OlPf4orrrgirUYIgiAIgmBGYoqacsEFF+DKK6/ExRdfjLKyMpx88sk49NBD8eSTT6KsrAy33XZbymUmvSh67LHHYFkWLMvCgw8+KH5igiAIgiDsMT799FMcffTRAIBnn30WgwcPxnvvvYelS5di8uTJaS2KkntF6n+xLAtPPfUUysrKUq5IEARBEIT0aHx81trP3kQ4HI6H8vzzn//EGWecAQA4+OCDsX379rTKTCnQ2ul0YtCgQdi5cycGDRqUVoWdhR5rauF2R2G5Sa3AiixLqXIsF080UqqQGMJKCE73KIcMuEls0u1TlQ5T3DoJkBDqwmo3lSRRCKI+rk9f+4Z2qcJceSRZ411q1NRw0KvxPaSa81aq7B5643ptL5UOVOgWCetrVCCcN4cUOrmqHVFS3VUdpjrYraeq8JySL+LpbFKJeUii9nlNT63ukMGegPdxkQJvP1+FqpvUOrt9ynqkntrK6rGdIZUHACpINcbqMFavsTJkZ1Ad/PI6pXyrD5Mikfb1uu2VOw37kI0MpTmfh/bPJtsC3RLDXjXECq5wgiLIRSq1KCm3OM15vB6l+2K7l8o6mrN0jDRbkFhyF3weA97HonMpFiabiLBqqyNIY0vtQ4IQzSLFWoAUZ36vmucuvxrnMKutaJz9pOxj2xInKafYygPQxyRMDdvPp2xogga7GLadYa8CVqJpVh5h/fzmunmuskqQCURIlUnH2EnHmOdK0GRLBMARIrVckO08VNKrRH6I0XWbhzD/W7JByqPjTX3r/qG6gEeiAXyLtkcenzXl0EMPxSOPPIJx48Zh2bJl+P3vfw8A2LZtG7p165ZWmSndKQKAu+++GzfccAM+/fTTljMLgiAIgiC0AXfddRceffRRjBo1Cueffz6OOOIIAMDf//73+GO1VElZkn/RRRehrq4ORxxxBLxerxZwDQC7du1KqyGCIAiCINhjZeDx1952p2jUqFHYsWMHqqqqUFhYGN9+5ZVXIjs7u5k9zaS8KFqwYEFaFQmCIAiCkB4WgNa+tLl9XjPZvrhcLm1BBAD9+/dPu7yUF0UTJ05MuzJBEARBEISOSsqLIqDhZY0vv/wyPvvsMzgcDpSWluKMM86Ay9Xyq/sFQRAEQUiNGBxwiM1Hm5Pyouirr77Cz3/+c2zduhUHHXQQLMvCF198gT59+uDVV1/F/vvv3xbtbHdC+V7EPF4EuqkhqulNSheSZnA6VKCUCyxO8ZfrMe0kbIIrpDKyYs2/SymCLCf595DKIupV2+tI9RXJUe1gjx8AAHkBxXYoJYmPPH88NZSfduf2sRdZXbF9Hle1PsWiOWqnEOlbfLlKiYMspdDJz1IeTwd3LY+nq0iOVxNVfWCVWIFH95CqIdUMK3bYK4q37wgr1ZfJu4wVZ9/VdqXt+vFmRRH7SDGsRKsOq7Ymeno1kkMqsRyPSrM3G6CrtVjdFQzZt4kvnKwy41v3HJvAYQrhkH68w/yF6yBFV5jHlozzHDRvPT7V7hDNf4u9s7y6CovbGI2Q2o288sIBVbdVT2kaM/bOckZY1WSvcAIAi5SjHAdSWvRDPF3kVXP1o11KlclzJZeOax35ku0KqniJIr8qB9CVlblOla6j84TPGfY7Y18z9gHU/PpofgSi+vGuCalyWVnGnmX1daQgo3GL0TFy0PjzMXZWsKGk/h+8u5aOE11O2BPSQVPERwrgnDJShAZVOrtM7RzsSoq9bur6E9GnXZsh6rP2IWX12TXXXIP9998fW7ZswYcffoiPPvoImzdvxoABA3DNNde0RRsFQRAEYZ9G3lPUPqS8KHr77bdx9913o2tX9Vdxt27dcOedd+Ltt9/OaOMEQRAEQcgsw4YNQ2lpKRYuXLinm9Iqvv/+e9TU1DTZHg6H8c4776RVZsqPz3w+H6qrq5tsr6mpgdfrtdlDEARBEITWYFkZUJ/9d//Vq1cjPz+/9Y3aQ2zfvh3jx4/H2rVr4XA4cOGFF2LhwoXIzW0Iedi1axdGjx6NaDTaQklNSflO0WmnnYYrr7wS77//ftwL7d///jcmT54cf8W2IAiCIAiZozGmqLWfvYGbb74ZLpcL77//Pv7xj39gw4YNGDVqFHbvVm9tt9JcQaa8KHrggQew//77Y8SIEfD7/fD7/Tj22GNxwAEH4P7770+rEYIgCIIgCMnwz3/+E/fffz+GDh2Kk046CStWrEDv3r1x4oknxl8g7XCktwBM+fFZQUEB/va3v+HLL7/E559/DsuyUFpaigMOOCCtBnRUyod64PJ5ECokxYyHbsWxDxopUljBxTjC+vcsUpaxgoyVaNnLPomn68YcHk93X7lDtfPY7mpfJTSB/0dSqClBCABdjcHqDxZFsbKMfc2CBSodUFVrZXro6aqm1gEQ85BCJMfeuyvXT75kLrWdfZZYfZPtVpUXulVjwwkKML9L5SsP5sXTOW4lVdkZVIqzHj7VkSgd8O5e9Qx7JxvUEYkKs64+pYTT/LqoXFYdeUgF5MtS8hYu1+8iRRYphdivDAAKs2hMKF+YfLhCUfKFI1Ubt3V3RI15MEDKNZdeHxMjDzCPj+Z8vf2lRxN0sUqSPAjZ98sixV44qJfJ/mUOGhOL/M48fpIOUTpUq0IB+C/OGBmkeStU+ax2AgDvAep45/jUj4VedSwOydkWT7Pqa0Ol8uyrCat2eOlcYNVXotKxMqzUh+zNF/PSGJJpIisuWdXJc5DrqIuoNgUj+pjvrlV1R0g1yf5l7AsXC9ExouMaI485Zx2Ncz2pCBPGnK9BLiVahUcX58Xp+pnKFMkhlXFPlfb5yfOtFykmc9QYRIMx4F/2dWQSUZ8pKisrtRc2+nw+PP/88/jlL3+J0aNH48knn0y77LTeUwQAgwYN2utNYQVBEAShIxCzHHC0clGzt6jPBg4ciI8//lhbg7jdbjz33HP45S9/idNOOy3tslNeFEWjUSxZsgT/+te/UF5ejlhM/yvxzTffTLsxgiAIgiAIzTF27FgsXrwYZ599tra9cWF09tln4/vvv0+r7JQXRb/5zW+wZMkSjBs3DoMHD077uZ0gCIIgCMmRSfVZZ2fOnDmoq6uz/c3tduPFF19sv0XR008/jWeffRY///nP06pQEARBEITUaFgUtTamKEON2cO43e4mrxR47733MHToUPh8PrhcLvTr1y+tslNWn3m93r0uqFoQBEEQhM7L2LFjsXXr1laXk/Kdouuuuw73338/HnrooXZ9dDZv3jy8+OKL+Pzzz5GVlYVjjjkGd911Fw466KB4HsuyMGvWLCxevBi7d+/G8OHDsXDhQhx66KEp1xfNtmD5LU2F5asijyz1OgSQ4AnZP6od6rup/BHdjgquehWLlfOtkkcEeyg1k3XoAZSfVFil6m3iBV8rBUXUp5Qj9eRFlujLFFXZNI8z3y6V7vKNknbUd1cKlkAhK+UMddBS252g/AiSYs2fpQrwkPqsJqDkcr0LKuLp/bJVmhUzHDzInk6JCjBWmTmpwdXkicYqIPZ74u0/BPNtt/f0KzMl3hfQVUAmWB0XYNUQ9Y/90RgvtYPVeIlUkTdVFuVjFVGWh9pB292kfvKQz5iTlF3BmN5PvkTESPXlJCUae165vGq7l+pgz7b6oFL+REi95Ezw+GP1mrdA7c/qPFbRsRIKAVaWkVqtirzWyFovUKTX3SNb/VicpU4yPpbfBHrE04dlq1v9felEXLlbeUn+WK+uDVVBdRInBs/2za2g39hjTqXLAkq5UxGiCwLB6sZKqi9AKsloTK+b72SE6mku1LJnmUry3k5WnAXVL3was6osQXQHFx0Pk7ckn5bezWqcK04sUe3mGxAOVpypzXwNTf31gOkh6rPmSfe9RImkvChasWIFli9fjtdffx2HHnooPB79Ivjiiy9mpGGJvP3225g6dSqGDRuGSCSCW265BWPGjMGGDRuQk9MwW++++27cd999WLJkCQ488EDMnj0bJ598MjZu3Ii8vLwWahAEQRCEjomFJn/fplWG0DxpvaforLPOaou2NMs//vEP7ftjjz2GHj16YO3atTjhhBNgWRYWLFiAW265BRMmTAAAPP744yguLsZTTz2Fq666qt3bLAiCIAiZQO4UNc+jjz6K4uLiljO2QMqLosceeyypfBz01BZUVlYCQNyYdtOmTSgrK8OYMWPieXw+H0aOHImVK1caF0XBYBDBoHpZYFVVlW0+QRAEQRA6JhdccEFGykn75Y0tMXbsWKxbtw4DBw7MeNmWZWH69Ok47rjjMHjwYABAWVkZADRZKRYXF+O7774zljVv3jzMmjUr420UBEEQhIwhz8+aEAgE8OCDD2L58uW270388MMPUy6zzRZFmQp6suPqq6/Gxx9/jBUrVjT5LTH427KsZgPCZ8yYgenTp8e/V1VVoU+fPoj6GgKtnRSsyUF+gW4q7aOAv2glBcUG1Bjkf6cHv4byyG6hq4rC9ryxWmUarqw9goXqUPHr5rPK1V0uDhAM9ifPj9qEw0wBqQ6yC8gOUvBxH7I5oN1jdOOPHAEQKaao63oKWHXr88CVZx8EXFOnCg4HVIXbXapTHEzcK6synu7jV1Hv2eS38ENYl2zWUkC1j4NIyRbBT14pWRRJXuixt8rgYG6Pwz5IGwCCloq9y6WJVEMRm0E6FjVONf4eQ3B1oo1JI4GEoG7+XuRXke9s18Cw5UeU6vBRMHwWBT5zAHbQp/ebT73KOtVXt1v1KUY2N1Gy5ggFVbuL85XliptsRWoc9vMGALz56vj16armyI81ysol7GIrCrU/B/daXvUl2EvN32iOShd10RUFHMjPwfgsEPghoOIcq8IqoLrYZ3+3uhvZtXCwOPcHAHI9qt9sB1LmsI+rrDfYy4BOY7aj4YDt2nr9SUCwjuZeHV84VJKtfxwhQ0A1Xb40+w7ablH7AIBPE/6N0znl7F+k2ldFf7tzOXydZ9GNdkq210IjE4aue9njs0svvRTLli3DL37xCxx99NEZEX+12aKorfj1r3+Nv//973jnnXfQu3fv+PaePRv8gsrKytCrV6/49vLy8mafM/p8vjZ7xCcIgiAIQtvw6quv4rXXXsOxxx6bsTJTfk/RnsKyLFx99dV48cUX8eabb2LAgAHa7wMGDEDPnj2xbNmy+LZQKIS3334bxxxzTHs3VxAEQRAyRuMbrVv72ZvYb7/9Mq4s7zSLoqlTp+LJJ5/EU089hby8PJSVlaGsrAz19Q0vp3A4HJg2bRrmzp2Ll156CZ9++ikmTZqE7OzsjAVgCYIgCMKeoFF91trP3sS9996Lm266qdm44VRps8dnmX6x48MPPwwAGDVqlLb9sccew6RJkwAAN954I+rr6zFlypT4yxuXLl0q7ygSBEEQhL2MoUOHIhAIYODAgcjOzm7y3sRdu3YZ9jTTaQKtkynP4XBg5syZmDlzZkbrFgRBEIQ9iuVofaD0Xnan6Pzzz8fWrVsxd+5cFBcX75lA6/r6eliWhezsbADAd999h5deegmlpaXaO4Kqq6tNRXQKrC4RWFkRRGktFumrVB2sdIlmqUDtKEnRWDVR10NX+oTp5lXuFrWPY9KIeLpyf3WAWWgU7kUWHD2y4+kYKb38OaRASVCfZX+nvvOr8QNdVX0ReqU99yPQg2wYuqude+YpZUyOV0lEdtRSQQBCYVV3fQ2pwbJVJXldVLn5fqXUMinOurhU3awG6+1N+CuBDsHGOhWM7yQpiYv2Z6VQkVvN5zqS4IUtVqJxOQmKMYMXQD4dgLCTbGRIHZdFijquj9V0UVIHFXjooAKIkFqOVXFsK8J5aqjcCCmNCn31tttZ4aSplwB09at9euWqfbbXKGVglC7UrNryktqtLqwOXh7Nr66kyNpVr84FwPyiOr+HLUpUfTmF6hhXk9VMjk+Nf49sZdnBashuPvLLQVOLmUZ6+iptt1eEVdu/rVOSp0Ivz+2Y7fZEW5fNlQXxdCBEFj27lfrPEVLHwvLQnC9Q55ubxp9tePj/HbZ4AQBPFtnvkGVLpFYdP22PAF37SJXGh85dr77E7AWTDflYfUbXS1+l+sERVuntP1M2K6Ee9qpYB1vHUJssamus3myrk0kyERO0t8UUrVy5EqtWrcIRRxyRsTJTjikaP348nnjiCQBARUUFhg8fjnvvvRfjx4+PP+ISBEEQBEFoSw4++OB4XHGmSHlR9OGHH+L4448HADz//PPxlyM+8cQTeOCBBzLaOEEQBEEQoF7e2NrPXsSdd96J6667Dm+99RZ27tyJqqoq7ZMOKT8+q6uriwcuL126FBMmTIDT6cRPf/rTjEaAC4IgCILQgHifNeXUU08FAPzsZz/Ttje+tDkaNcQtNEPKi6IDDjgAL7/8Ms466yy88cYbuPbaawE0vCQxPz+/hb0FQRAEQUiLvexOTyNutztu2TV06FD86U9/Smq/5cuXZ74tqe5w22234YILLsC1116LE088ESNGNAQGL126FEcddVTGGygIgiAIwt5LQUEB1q1bl/J+I0eOzHhbUl4U/eIXv8Bxxx2H7du3axHfP/vZz3DWWWdltHF7kh7dK+HOCWjbYnTrMZSl1DpVpFAI9VbqBs3fKeG2JatTdvQjmxEqq6Cr8lOqJW+wkwZ8FU9/tp+yMNn5Xs94OlivVCeuOj10LErVBbqp+mLk8QQPSTm8lKb2ZWcpVc6ALjvj6f1IJbYzV1cE1ZGy6cPvyaali3r+y75OXUnxVB9V0hP25NoRUVI+9iXr4tYD8Fi9w35UeW5SM3nVmLtIJxMg77LKiPJKY0+zPj41BjlOMmkCUO1U+7CCjNPsL8WKMz/J//Icak5mG/Ikwv1mr7WdIeWZFXWpuotISVVPvmmsXGOVHo95ovrMTYZR+W7V9oPyfqD2qbJMijpuRxV51XlJIehNrNsZs033yFL942PPsO9dFqn0TOPMfnYAEKP5WU1j7neo9g7N3RRPV0bVeVIdo2NEMtWdIZWHx+C7ikKt7qod6rhmFahzwBFRbcreQp5vqihY5WrfQLY6LtG+asx6F1bE016XPuashKsK2asY+VjUUJ6agL3dUiii2hoJkeo3qJufBetImUlK3N1R8qOsVvOI/Rp7dFfXrCwv9SGgjgXP7Ryv2jdSG8T3ti3PLPL4rH1I643WPXv2RF5eHpYtWxaP/B42bBgOPvjgjDZOEARBEATssUDrd955B6effjpKSkrgcDjw8ssvN8mzaNEiDBgwAH6/H0OGDMG7776bUh1VVVUYMmQIjjvuOLz99tupNzKDpHynaOfOnTjnnHOwfPlyOBwOfPnllxg4cCAuv/xyFBQU4N57722LdgqCIAiC0M7U1tbiiCOOwK9+9SucffbZTX5/5plnMG3aNCxatAjHHnssHn30UYwdOxYbNmxA3759AQBDhgxBMNj0ruzSpUtRUlKCb7/9FiUlJfj0008xbtw4fPLJJ3ssRjnlRdG1114Lj8eDzZs345BDDolvP/fcc3HttdfKokgQBEEQMo4D2hsk0y4DTeTqPp8PPp/948uxY8di7NixxhLvu+8+XHbZZbj88ssBAAsWLMAbb7yBhx9+GPPmzQMArF27ttlWlZSUAAAGDx6M0tJSfPHFFxg6dGhyXcowKT8+W7p0Ke666y707t1b2z5o0CCR5AuCIAhCW5DBx2d9+vRBly5d4p/GxUuqhEIhrF27VnOzAIAxY8Zg5cqVSZWxe/fu+F2k77//Hhs2bMDAgQPTak8mSPlOUW1tbdzig9mxY4dxpSkIgiAIQsdgy5Yt2uOpdP/v3rFjB6LRKIqLi7XtxcXFKCsrS6qMzz77DFdddRWcTiccDgfuv/9+dO3aNal9jzrqKFu/M4fDAb/fjwMOOACTJk3C6NGjkyoPSGNRdMIJJ+CJJ57A73//+3jlsVgM8+fPT6nijs7Q7pvhy/Wgm0epkerIeGcHKXe+y1HqD1ZZ5JNHkzvBIygQUUMf6qqrKBrJ9SiFQ6yLOvDD8pRq5esq5ZPEfj8ev1K5ePbXn+XWkw+Ri1RmBaS2Y7Ucqy565CgVSpFfjQ0ri4LkhXVgjlIZAcDHVeoOY//uSq3FKrMePuVBFaZOsRcZK7W2BQri6d7kiVaXYJQUiCnlSS+vUpsUZav6dkWVVxsrw1jplefTlUaNRJu58eoj1ZLTUmPuschfipRJrHZzUXQk96mJv5oBVkIx3bzqWLKCLJuUVz6fvdqKy2TvuebGwO9QZXFfvaRQ435HDe1mOH/i8S6gdvHx43mQR95zLtiPZ8BS5XId7NPG/QGA6piSdPXz7oineXxYocht5X27utQ51tOrlFBbg+qaUxfRncHrA6qNXbLpvMxX+WoPUOeoN0+NjdOlxsDaqs6FEKUDeapNfI0CdD+9knx1jhV4VP/4vGJFI/vv1dMxYgUjw0pFQL8m8LFhdSNf11hV2N3L1xxSFkfUmHM5fE6GPGG8Z9vCDJOJN1L/d//8/PyMxuwkLkwaX56YDMcccww++eSTtOo99dRT8fDDD+Owww7D0UcfDcuysGbNGnz88ceYNGkSNmzYgJNOOgkvvvgixo8fn1SZKS+K5s+fj1GjRmHNmjUIhUK48cYbsX79euzatQvvvdcuU0MQBEEQ9i0sR+td7jMsyS8qKoLL5WpyV6i8vLzJ3aO2YMeOHbjuuuvwu9/9Tts+e/ZsfPfdd1i6dCluv/12/P73v096UZRyTFFpaSk+/vhjDBs2DCeffDJqa2sxYcIEfPTRR9h///1TLU4QBEEQhE6I1+vFkCFDsGzZMm37smXLcMwxx7R5/c8++yzOP//8JtvPO+88PPvsswCA888/Hxs3bky6zJTvFAEN7ym644470tlVEARBEIQUsayGT2vLABreK+hyuTB16lRMnTq12X1qamrw1VfqhcGbNm3CunXr0LVrV/Tt2xfTp0/HxRdfjKFDh2LEiBFYvHgxNm/ejMmTJ7eusUng9/uxcuVKHHDAAdr2lStXwu9vePQZi8VSiplKa1H07rvv4tFHH8U333yD5557Dvvttx/+8pe/YMCAATjuuOPSKVIQBEEQBBMZjClavXp10jFFa9as0eKFp0+fDgCYOHEilixZgnPPPRc7d+7EHXfcge3bt2Pw4MF47bXX0K9fv1Y2tmV+/etfY/LkyVi7di2GDRsGh8OBDz74AH/605/w29/+FgDwxhtvpGRB5rCs1NaeL7zwAi6++GJceOGF+Mtf/hKXzy1atAivvPIKXnvttdR61cGoqqpCly5dcN17p8GX69GDTilY1hSEy4GYlRGl0ku0+SjyqCBXtgHYHuwST7O1QUWQrA3o1fqhqGrH+u9K4umsXBXEWV+tygcAl08FhQ4sVkGgHDS5f67azoHTOWSLEKExKHSr4EvT2ADArogK2ORASbai0KwvaNw46J0DVrfWF8TTeR4VWNqDgicB4PCszVSH6tPOqAqa3xxUgetdqU/ZFBTLVg+7ImpftnrgoGJADwLlAGIOFGa6utT84EDkCrKD4H2DFJjqa8byg4N7ORiVx5wDuH3UD7b24HISg4xNcCCzh/rEY8Vjw+1g6wsOfI7S/OBjCuhziuvmucNjy2VxHTzmiedxI3kJNh9Oqs8USM55eGz5esAB2NwfDnTfEtaVOjvIGoTbxWM+PPvrePrF3UPi6bU7+8TTURKNbP+yezzd8wB1bXA49P8+2EaiOEedfwVeFdA+IFvtz9cHPsfqYj5Kq2PR3NxmeHx4bucaxiPxfG2EhRd8Pdfsb2rCePSEF1BZWdkmLxxs/D+p9wN3wJnlb3mHZojVB/D9Nbe1WVv3BH/961/x0EMPxR+RHXTQQfj1r3+NCy64AABQX18fV6MlQ8p3imbPno1HHnkEl1xyCZ5++un49mOOOUYeqQmCIAiC0G5ceOGFuPDCC5tsb1TAZWVl2exlJuVA640bN+KEE05osj0/Px8VFRWpFicIgiAIQgs4rMx89iZML52MRqPxO0WpkvKiqFevXlrQVSMrVqzYo2+hFARBEIS9lgy+0XrYsGEoLS3FwoUL27ULmWbBggVYvHixti0ajeK8887DunXr0ioz5cdnV111FX7zm9/gz3/+MxwOB7Zt24ZVq1bh+uuvx2233ZZWIwRBEARBaB9SCbTuyLz22ms46aSTUFBQgHPOOQfhcBjnnnsuPv/8cyxfvjytMlNeFN14442orKzE6NGjEQgEcMIJJ8Dn8+H666/H1VdfnVYjBEEQBEFohg748sY9zZAhQ/DSSy9h/Pjx8Pl8+N///V98/fXXWL58edovj0xpURSNRrFixQpcd911uOWWW7BhwwbEYjGUlpYiNze35QI6EbvC2fCGvZpKrMSjLCQK6PX7W8JKscQKBVYvJaomWO3AiohDsrbF05/VKzXZ/9sxOJ6u2KIUap5ual+Xl1RpQVK5ePTX5P980IZ4ml9vn+0ihRW1j9VWJqWdyfLAn9DvA3xKQfNdSClaomAVkVKL1ETsFQOsHBna5dt4mtU6ibB9wvchpdhhxdMBfmVLwsqrXaRQ2xRQ7Q6SmojVMx6nrsjKMajXuG5N5URPtp3Ujj5eZY3CsHVFbUx/Jwf3m8eN1U885pzHZQhC4DrCVjaldcsabpfJboHHg/OzAonnR11UbY9Z9vMGAOqjpFIzuIuztQTD9hN1EZrn1IcQ7etOsFxhuwufS80FtlNhJSfb5GiWJDS/8pwqD/e1u1tXWR6T/WU8vS6gZNFeOi95PCrC6vgVZ6vrHY9tTR815qw4212j+2AG68mehqyN2IqkrF6p43jcuvrUucsWHFr5MfN/WTyeDKtc2W4kl653NTSn+Fj8SHZO1XQt4naHwrrCts3IoCR/b2LUqFH4y1/+grPPPhuHHHII3n77bRQVFaVdXkqLIpfLhVNOOQWfffYZunbtiqFDh6ZdsSAIgiAIQipMmDDBdnv37t1RUFCAK6+8Mr7txRdfTLn8lB+fHXbYYfjmm28wYMCAlCsTBEEQBCEN5E4RAKBLly6220855ZSMlJ/yomjOnDm4/vrr8fvf/x5DhgxBTk6O9vveELwlCIIgCB2KDC6KUrH56Gg89thjbVp+youiU089FQBwxhlnwOFQz5wbX5QUjUZNuwqCIAiCsIfZW9RnbUHKi6J0ZW6CIAiCIKSJqM8AAD/5yU/wr3/9C4WFhUnlP+644/DMM89gv/32Syp/youikSNHprpLp2RXKBeeoBc7yG+rq1spM/yk5GC1CPs1sYqH04CuHmHPpjqHUrqw8qFXXlU8XZGltkeCqhx/jmpHXpZSVnTLVn0AgHy38iEq9lTG05ovE6tsqH0BUpGwhxR7b1VGlNopURHE6hGT4onzlPhU+zRPLoMHEnuRra8t0X7rRWWx4ua4/C/i6Z5ulefD+v62dewmhSErVZhE1V0FeyiF1P5dSC3X3/tjPM2qNPb9+jGi/rrT55eaj4mKMVYdscKNKQ+pcvm48DxgHy324fquvpttfkBX/lSE1LxgNRJ769WG1PwPR1Q72IcrElXpGKWdLl0B5nXb37WOxkjJRr6ATrfa3+EkpVyE3nFL3XO41Be3V68r26/Oxcrdaswt6gerRX2UP8dHaa9KH1yglJGsztrfX67VzfOF5xQrSpdWHRZP87EckKPUjV/XKAVPdaU6dtU/kNLYrR9vZ7U6Zj/6yBcwW12PWNVWV6+ON48546bjGqNj50zIzy6eXXPVefVjlWpHlI5lDrWJ66gn5S49DIHfq8avR476vyAStFe9ZZpMvJF6b3ij9bp16/Cf//wHXbt2bTnzf/MHUzhGKS+KPv74Y9vtjYZrffv2hc/ns80jCIIgCEIaSKB1nJ/97GdI1suew3ySIeVF0ZFHHtlsJR6PB+eeey4effTRpF1pM82iRYswf/58bN++HYceeigWLFiA448/fo+0RRAEQRCEzLBp06aU9+ndu3fSeVNeFL300ku46aabcMMNN+Doo4+GZVlYvXo17r33Xtx+++2IRCK4+eabceutt+Kee+5JtfhW88wzz2DatGlYtGgRjj32WDz66KMYO3YsNmzYgL59+7Z7ewRBEARByAz9+vVrOVMrSEuSf//992vvBDj88MPRu3dv/O53v8MHH3yAnJwcXHfddXtkUXTffffhsssuw+WXXw6gwTDujTfewMMPP2x01BUEQRCEjowDGYgp+u+/nVmS39akvCj65JNPbFdq/fr1wyeffAKg4RHb9u3bW9+6FAmFQli7di1uvvlmbfuYMWOwcuVK232CwaAWhFVVVWWbTxAEQRD2BkSSbyblRdHBBx+MO++8E4sXL4bX26AcCIfDuPPOO3HwwQcDALZu3Zq2GVtr2LFjB6LRaJO6i4uLUVZWZrvPvHnzMGvWrCbbA1E3olE3vg8o2V8uKY1YHRQjHyFWE7ESitVBANDHuyueLgurN3SyvxErTHLdSoUy4qCv4+nyelVHvlct7gKk6GFPIQDIdqmytocL4uk68orqQgo17lMlqZd2R5SiqipsHz9WH/Vo31mdxD5EteQ9FCV1isnriBV/20OqD6yQYrUZoPsbZdEYsPpmXUA9YmWF28E+5UkXIDXeNpof8FIyQW3I++dR238kVRqr3dhDb4BPKYjyXOq4uGCvdEysm33XfFHVJz6Wui8ZzW36y1RTTNJcYU+oQMLxZpVZdUiNfzCsxjAUVeUGQip/JEzKRZoT0bBqnxW09y4DgKCH1GgGZZPHr85LjtvUVGLkHej1qvyFOepY7KzWX2IbJVVcVq4a/1xSmXG/ue5cn8pfHyY1atDeM+zQ7K1a3awWHZdtr458v06de+zRuIvOaVaJcR/qSc2FqD6uMY/6zmMQCKk28RhYlGYFWJZHzVOLjz0dl9ognXDQrxvbd9Jbj2m7g/zYauvUfPTQMWZvN1acsb9jfZjnqa56bDNEkt8upLwoWrhwIc444wz07t0bhx9+OBwOBz7++GNEo1G88sorAIBvvvkGU6ZMyXhjkyUxELzxxZJ2zJgxA9OnT49/r6qqQp8+fdq0fYIgCIKQEqI+axdSXhQdc8wx+Pbbb/Hkk0/iiy++gGVZ+MUvfoELLrgAeXkNf8lcfPHFGW9oMhQVFcHlcjW5K1ReXm68c+Xz+eQVAoIgCILQSQmFQigvL0cspt+1S0dclfKiCAByc3MxefLkdHZtU7xeL4YMGYJly5bhrLPOim9ftmwZxo8fvwdbJgiCIAitQO4UNeHLL7/EpZde2iRmuDW2Y2ktiv7yl7/g0UcfxTfffINVq1ahX79++MMf/oCBAwfu8cXH9OnTcfHFF2Po0KEYMWIEFi9ejM2bN3fIRZwgCIIgJIO80bopkyZNgtvtxiuvvIJevXql/KJGO1JeFD388MO47bbbMG3aNMyePTu+EissLMSCBQv2+KLo3HPPxc6dO3HHHXdg+/btGDx4MF577bU2f7eBIAiCIAjtx7p167B27dq4yCsTpLwoevDBB/HHP/4RZ555Ju6888749qFDh+L666/PWMNaw5QpU1od6L29Jh+umA9el7r9VkMqG/b6qomq7T08StLPHlkmFRUA1MVajmmqiSilRUVA+RAVZSnlSK7b3t8lh5RWALA1WGCbL9el9mclWi4puorc1fE0K/BY+cGqlQHZSjmVCPvH7QgrRUtdTNXtc6o8rPLjPBFSRbEqjdsN6Mo0Vpb9QOq/HWGl8CnyqL6yZxgrw1i5xh52P0ZUOQDgd6h2dad29HQpD6Uj/JvjafZ5e79uf+qDUjyx9xz7WiXeImfvs55epcgrj6o2shqyKmqvJGRPNVaiHZilYvh4TgD6MQvQOcM+e3WkCkz0yrPD5J8XS1DWmLz1WGnHc95UB6sWWU2ZS+dVTYGuhKoKq3OU1Z5up2pHHfnCdfOpecB+elvrC+LpQTnK42xzQPk+Jc41nqthS+1THVNteuvHA+PpIwqUem1XWKnPttcoybbXo+ZQPfudJT6dyCL/OBpnD/nQFWYp5VuBV/U1m65fPDZ5HpUnj8amgsYY0K8VzM6guraEYqR0JIVuhFRtVQE1//nGQ2Wd/fZouJ1uv2Tw8dne8p6i0tJS7NixI6Nlprwo2rRpE4466qgm230+H2pra232EARBEAShVWRwUbS3vKforrvuwo033oi5c+fisMMOg8ejvxIknT6mvCgaMGAA1q1b1+Rx1Ouvv47S0tKUGyAIgiAIQvNITFFTTjrpJAANBrFMuwZa33DDDZg6dSoCgQAsy8IHH3yA//u//8O8efPwpz/9KeUGCIIgCIIgpMry5cszXmbKi6Jf/epXiEQiuPHGG1FXV4cLLrgA++23H+6//36cd955GW+gIAiCIOzzyButmzBy5MiMl5mWJP+KK67AFVdcgR07diAWi6FHjx6ZbtceZ3d5HpxZfuwsU88kNxSqF0AO7LYznu6Tszue9jlU8N8OCvBLJEiBptsDqg629uDXyg8tVEG4a3arF1L9UKuCLDmIkG0AOBgYAFxULlttdHGrNAcsc1B5ACpd7FFBuxzEXBlVY8BBtABQRcHqbCcRpYBcDpg0Bbzyvhy8+k19d5jgfAwHEBeS5cEnNb3j6aV16tGwZlXiVYHP5WTD4E2oi4+BFjxO/RjX9T+qXEedbR7NmoOOIwcx5ycEmHNAdlVMjb8pqJltQTjN9hFeh31QqyfRYoQCzPkY1xrEBRyAHaN2h6itbGPCAf4VUd1qg4O8o4YxrKagcg5urwi3LJLYEVL11YT1/vC5WBWy72u2O2y7/bs6FUS9/see8XR5vrqe/Fir0u9H9FCG3gUV8fTD20+Ip48b8E08netRx+WNLUq585Pi7+PpPJ+aR/UhNbfzS5SYJNur9yEaI2sQ+q07CULyPeqc4bnNwemBCAVBU54wjWtZvR5gzuclW6iUV6t8bC8Ti5I4JELWMTvV8XIG7RcRPxTSdaze3kol48h7imypqKjA//7v/+Kzzz6Dw+FAaWkpLr30UnTp0qXlnW1wtpzFTFFR0V65IBIEQRAEoWOzZs0a7L///vjDH/6AXbt2YceOHbjvvvuw//7748MPP0yrzKTuFB111FFJvxQp3YYIgiAIgmCPBFo35dprr8UZZ5yBP/7xj3C7G5YzkUgEl19+OaZNm4Z33nkn5TKTWhSdeeaZ8XQgEMCiRYtQWlqKESNGAAD+/e9/Y/369XvUBFYQBEEQ9lrk8VkT1qxZoy2IAMDtduPGG2/E0KFD0yozqUXR7bffHk9ffvnluOaaa/D73/++SZ4tW7ak1QhBEARBEIRUyM/Px+bNm5u80XrLli1xg/pUSTmm6LnnnsMll1zSZPtFF12EF154Ia1GCIIgCILQDJZ6hJbuh99oXVpaioULF+7RLrWWc889F5dddhmeeeYZbNmyBd9//z2efvppXH755Tj//PPTKjNl9VlWVhZWrFiBQYMGadtXrFgBv9/eHqAz4t7hgdPvgVcJLRD1KWXMp/sppcQ3hd3i6ZICpcjK9yrlDr9GHtBfXV/kVa/4Z/UZq15YGbNfNlk11Nor3NxOlT+WYL3gpjpYLcT52LqEVUNBsjlghRqrn8pJqRKJ6Qqn6oi9EqfQW0d5VN3ZXlWHSbnGai5WmCXWXUYqP1Ym8bEppjnMSpe6iOofj21FSM0DtoTZL0sdo4aySGVD/fiyUqnlttcfH08fkKfsUdhago8X25iwkoztRgDdEoWVaHlOtb+fbE9cUP3bSXYvHgdbrtgrwxLnWgXtwyo/Vo25DIEOXC7Pr7BD9Y/7FkroN9t+sJXLjyF1zvzAc4Ly8/FmJeHWalVOfZCUclG9306XGsNIWPUjWq/a6HCrPJ+6S1SeoMrv2qnq+DpcqMrMVft6K/W6P+utlHP+b9T4BPqqshb2ezmePq/+gnh6+Qb1F/eQQd+pclzqOFaT0s6Z8DymCynWeB+vwYJjR0Ap+CpD6ryoC6l2J9q3NBIM6cc7RMeDx5ADaRwuau8uVYcjoupwB1SapyY3w7ed6gqk/oLAtJA3WjfhnnvugcPhwCWXXIJIpGGOeTwe/M///I9mQ5YKKS+Kpk2bhv/5n//B2rVr8dOf/hRAQ0zRn//8Z9x2221pNUIQBEEQBCEVvF4v7r//fsybNw9ff/01LMvCAQccgOzs7JZ3NpDyoujmm2/GwIEDcf/99+Opp54CABxyyCFYsmQJzjnnnLQbIgiCIAiCAQm0NpKdnY3DDjssI2Wl9fLGc845RxZAgiAIgtBOiCS/gQkTJmDJkiXIz8/HhAkTms374osvplx+WosiQRAEQRCE9qZLly7x9ybm5+cn/Q7FZElqUdS1a1d88cUXKCoqSqrQvn374t1330W/fv1aziwIgiAIgpAEjz32WDy9ZMmSjJef1KKooqICr7/+etJeIjt37kQ02k4R+W2EpxpwhQC2eHKy+mAb+YH5VF97llTH0738Srq2qVYp1ABdUbGfvyKe3h5SY8zeabkupWTr6lE+QiW5JI8zlL8zpHtChUkh1IPkdTvCqr6aqL1KjNVPdU6l3qgnldL2etUH9iACdE8obiMrfGpIobYzmGObh8upCCrVit9tr3IBgB21qixWlvE+Jp8qhtVnrDjr7lPHfmOVbn9TE1bjMyh/RzzdL0/55n2wWf0RUVajFHxFOep4s1qqm09tZwVjolcXq/PY305TrEXsFWScp8it+scqNlarORPuz/MxZl8z9sRj5Rsr6thzz0d5uEz2MUukjubk9wGl3CoPqHleTcfbQ/OriuZUlJSDlbtVfVatap/l0f0FHfU0751qTFy1pBSjJKufvDSFWfFElwC4A2pnb4VWNSI51C6qY/UHB8bTt3rGxNMzBr4WT/+nl5qDL245Mp4uzFLzptCnvMt2BvTxZ8VZFanUst2qIdlQitKKoFJvuui8CpCyjG8EBAKk+IvoqjuLvMxA4++ksWIbSM2mjwbactMcpuPC+7KYzmqv/+okpqgJJ554Il588UUUFBRo26uqqnDmmWfizTffTLnMpB+fTZw4MeXCBUEQBEFoPRJT1JS33noLoVCoyfZAIIB33303rTKTWhTFYrGWMwmCIAiCILQxH3/8cTy9YcMGlJWVxb9Ho1H84x//wH777ZdW2RJoLQiCIAidgb3sTk+6HHnkkXA4HHA4HDjxxBOb/J6VlYUHH3wwrbJlUSQIgiAIHR2JKYqzadMmWJaFgQMH4oMPPkD37soZwOv1okePHnC5XM2UYEYWRYIgCIIgdBoale1tEdojiyIDlqPh46IYLrL60pQIoQqlcvlil1qxbvEWxNNdvEpVA+gKH1acse8X+3ix4obVRANzlZKpLECqL1JXuR3mibMzrFROFWGlBKkkTy9uByvACjxKkfJNjVLXsYdRKJLgT0RqNFYqVQSyYAcrfyz6K4cVKbw9RvlZUQUAEVKrWKwoIoVJVq6S+ORnqXQXv1Lc8Bjw2G6tK4indyWocsor1DiXV5M3HHlmRcMqvbNCKaTYB8pNardQPnlq0fyoCesehOzztn/Oj7Td3g/6u9quttt5HvjJP4+9y3JYIpVA2LJXHrJyMd+tzhOeX/Xkcaa1iSREPH8b6iB/NoPqkecgp3nu1NSo8bTIuwykOnKG9LnmiJFqKWzvpeUIkuKJd2e/Ld5Oc57FoZGEU6fgM1LnDVKFeXep7aufOCKe/mK8umb9fv+/qYL6qOS/fjwonmb15X45uvrVSedDV586fpqnY7Tl/3Y8bvIwpGtGjM6RWFAfcycr/viOCF8raMqzyswRNuWnPFF7JZplfxplnEwGWg8bNgwulwtTp07F1KlTW9+4PcyGDRuwefPmJkHXZ5xxRsplyaJIEARBEDo6YgjbhG+++QZnnXUWPvnkEzgcDlj//Qu58YWO6bwaKK017tdff41bb70V559/PsrLywEA//jHP7B+/fp0ihMEQRAEQUiJ3/zmNxgwYAB++OEHZGdnY/369XjnnXcwdOhQvPXWW2mVmfKi6O2338Zhhx2G999/Hy+++CJqahpeGvfxxx/j9ttvT6sRgiAIgiCYaXx81trP3sSqVatwxx13oHv37nA6nXA6nTjuuOMwb948XHPNNWmVmfKi6Oabb8bs2bOxbNkyeL3qOf/o0aOxatWqtBohCIIgCEIzWBn67EVEo1Hk5jbEXxYVFWHbtm0AGgKxN27cmFaZKccUffLJJ3jqqaeabO/evTt27tyZViM6IjE34PAAHN9JTgPwKFcF9FitAvB+7KKCaB0UpFdfSDskkOtRwal5bpU+LO/7eLo8pJ7/flVL8kND8OuBuT/E08WeSq2+jXW94untZBvBAagcmMoBqFVh9Zr9snrV1111KrA4SMHVwbA+xSJhVa5Fwahenwoej1LwsZsCLsO0b4zyxAJUR53K46nS1/zkQIBwPgVQ9lDBvYU5KqC6lgKcw3XKIiTPq47R92QT4aQrDgdKA9AuRhGXaldJgTo22hiG1DgHg6p/UbJL+L5KBdYHKHi1R5Y+17bWUj46NhyAzfYMHAzP5XLQe4SiS7Pcat5xOYAelGuyUCnwBWy3sx0NB01Xkw0Mz/lILCHwluYt759N7U20JWmke64aQ4vOizo6p6McdF2TcCnlgGpD4DQLN6JZZAVCAdgc9EtuKvAoxxWECvSqKT4dhRtUupqsKGv6UYD5CyXx9BU/uzievuig1fH0gFx1bd9J9kORhCjjOrL24H2qKfif9+nqV42ti6g5z9Y2O+ncc7jovHXrx87y0HdDKAkHS7OFCnhf+oFtnmKGPO32bmOR5Ddh8ODB+PjjjzFw4EAMHz4cd999N7xeLxYvXoyBAwemVWbKd4oKCgqwffv2Jts/+uijtN8gKQiCIAiCkAq33nprXJY/e/ZsfPfddzj++OPx2muv4f7770+rzJTvFF1wwQW46aab8Nxzz8HhcCAWi+G9997D9ddfj0suuSStRgiCIAiCYEa8z5pyyimnxNMDBw7Ehg0bsGvXLhQWFsYVaKmS8p2iOXPmoG/fvthvv/1QU1OD0tJSnHDCCTjmmGNw6623ptWIlvj2229x2WWXYcCAAcjKysL++++P22+/vck7CTZv3ozTTz8dOTk5KCoqwjXXXGNrFicIgiAInQqJKWrCpZdeiurqam1b165dUVdXh0svvTStMlNeFHk8Hvz1r3/FF198gWeffRZPPvkkPv/8c/zlL39J+7XaLfH5558jFovh0Ucfxfr16/GHP/wBjzzyCH7729/G80SjUYwbNw61tbVYsWIFnn76abzwwgu47rrr2qRNgiAIgiDsOR5//HHU19c32V5fX48nnngirTLTfnnj/vvvj/333z/d3VPi1FNPxamnnhr/PnDgQGzcuBEPP/ww7rnnHgDA0qVLsWHDBmzZsgUlJQ2Bg/feey8mTZqEOXPm7BUvqhIEQRD2USTQOk5VVRUsy4JlWaiurobfrwL5o9EoXnvtNfTo0SOtspNaFE2fPj3pAu+77760GpIqlZWV6NpV2RGsWrUKgwcPji+IgIbnjcFgEGvXrsXo0aNtywkGgwgGlZqoqqrhtfWWs+HDr9MnRwFtu69SyQ/c36uDE+uvVrBV9br1QpQUGPsXKJUGK252kAVH1HBTjxVjVaTwODBHKWwqo7rlxK6w+l5WR3WQuoiVSfWkhIpqiiDKE1R5wqSWSnwVP0i948lS0o5wSO3jIsUZK38idaoOVn84q0lxVqna59CFUNp9UXctPW/epHwSWELA6kGXSx3jymqVv2u+Us9U15MSzaVLUiIV6rcA9WPTj3Rs/PaSGYsUMzEaM76+fVtTFE//mKMr32pr1bzIzlZzvRspfNiuhI89zwkHBSSwbUNd2GubBgAXqc94HrlobFkBlkvqy0qy7aiLqHJ53gWiqkxWzSX2I99jth+xgxVq+VlKHef30HnlVu0LJZyeFltOOOhHtocw3Fgn1xPNZiJCh9VVT8pB5dwCAKhXUwExt8pXuFFVvnMwKTzrVR0F/08pvd4rUuqdo7t+F0/XkvovFNP/C2H1Ieeri9rbtBzaRZ1xH+3uHU/vrlfnBatR+bxy+PX/4WNumsOkDHQE7NV8pvgazdrDMsSlUB4t3YZITJGioKAADocDDocDBx54YJPfHQ4HZs2alVbZSS2KPvroI+372rVrEY1GcdBBDX44X3zxBVwuF4YMGZJWI1Ll66+/xoMPPoh77703vq2srAzFxcVavsLCQni9XpSVlRnLmjdvXtqDJwiCIAhC+7J8+XJYloUTTzwRL7zwgnaDxOv1ol+/ftoNklRIalG0fPnyePq+++5DXl4eHn/8cRQWFgIAdu/ejV/96lc4/vjjU6p85syZLS5IVq9ejaFDh8a/b9u2Daeeeip++ctf4vLLL9fy2kWbW5bVbBT6jBkztDthVVVV6NOnjzG/IAiCILQ78vgszsiRIwEAmzZtQt++fdNWmtmRckzRvffei6VLl8YXREDDHZnZs2djzJgxKQU2X3311TjvvPOazdO/f/94etu2bRg9ejRGjBiBxYsXa/l69uyJ999/X9u2e/duhMPhJneQGJ/PB5/P/qVygiAIgtARkMdnDXz88ccYPHgwnE4nKisr8cknnxjzHn744SmXn/KiqKqqCj/88AMOPfRQbXt5eXkTaVxLFBUVoaioqOWMALZu3YrRo0djyJAheOyxx+B06g/xR4wYgTlz5mD79u3o1avhjc1Lly6Fz+drt8d6giAIgiC0HUceeSTKysrQo0cPHHnkkXA4HLCspqs9h8OBaNTwavNmSHlRdNZZZ+FXv/oV7r33Xvz0pz8FAPz73//GDTfcgAkTJqTcgGTYtm0bRo0ahb59++Kee+7Bjz+qyMKePXsCAMaMGYPS0lJcfPHFmD9/Pnbt2oXrr78eV1xxhSjPBEEQhM6NPD4D0PDIrHv37vF0pkl5UfTII4/g+uuvx0UXXYRwuEGJ4Xa7cdlll2H+/PkZbyDQcMfnq6++wldffYXevXtrvzWuEF0uF1599VVMmTIFxx57LLKysnDBBRfEJfvpYrnt00xtsZKR9Py3Ul9s7m4e3kry8Qrlq/S31SpgrKze4EtGKpt6UvtEyUtsWfDgeJoVQACQ6wnRPvZ+ViHyyKojD7AQqcRYnRWNkJrFo1bnkYSTkL2LbBb3DfuEVP9cHmo7+Zq5AqSKChv8jBKGn9WDrEzz71DpimK1kzuXfLWoTbFKNR4/VKlHr45mPJCc1F5n0NDeapUn2kU1VrO/orqDftUmB41TbZ3+ONiidtXWqN88bvu/otjbLYvUVjwHWa3mJu+yWIJah+dqvl/l87pU3T38ymcs0UurEVaoaV58Bj+1xLaw+izfo9rhdpCqDfZxCezPtbVa+cjxeZWdr78rJZyl5lGEFJisxozROYMI+W3RYdF80Og4hrqqL86wPmZdvqHxGcD7k/+bskYE2Sdi56GkKK1Uff3Gr+7oh8gPrySrQqu7gpStHiq42F+lmkHHZXugi+32HJqDEVZAkkdcgBSvgK6OdNJ1JpZFakoafweNmyPE409jRkPb3PndLsiiCECD2atdOlOkvCjKzs7GokWLMH/+fHz99dewLAsHHHAAcnJyWt45TSZNmoRJkya1mK9v37545ZVX2qwdgiAIgrAncACGZXtqZQDAsGHD4HK5MHXqVEydOrWVpe5ZNm7ciAcffBCfffYZHA4HDj74YPz617+Oq+NTJe2XN+bk5KQVxCQIgiAIwp5j9erVe0VYyfPPP4/zzz8fQ4cOxYgRIwA0hPMMHjwYTz31FH75y1+mXGbKi6LRo0c3K3978803U26EIAiCIAjNII/PmnDjjTdixowZuOOOO7Ttt99+O2666ab2WRQdeeSR2vdwOIx169bh008/xcSJE1NugCAIgiAIzSOS/KaUlZXhkksuabL9oosuSjvGOeVF0R/+8Afb7TNnzkRNTY3tb4IgCIIgCJlk1KhRePfdd3HAAQdo21esWJHyy6QbSTumKJGLLroIRx99dKvVXh0Zy6BECCn7MOSSeZZ/G/mB7a8bcTndpI4g1UVJjr1K49sqpUqrDSrFjJu8gFzUqJ21KvC9MEepZwBdvcOKG1aLdMlWCp08HynRSO1WUau8n2L0SDUaUQoPK0GNZJHKxiJPI7dfqZwsUpuEdyt1kaY4Y+EUVcF+UlGv/mcRq0qcqjqwfZPvBzpm5F/lJHWKm/oQ85A/GimFIjkJUhWq21tJSheaFmR1hyhbK+VRY3k7ez2RksmR8Oegy0ttobFiBZjPrRpSF1FjUB1UvmleypNF3mBuUmElqs/CMfNcaKSGPLK6eWtt8/jJay1CZWa7lZIysW7T/i4aH9P+2jniIp+xAjUGu4Jq/vM4AUCIFJhhr2pvJFsdJ83Xj9SNUUpHaN54dpB3XJ0qJ1CszzUHnT/eCvqBrl8uGuZAAbWDVI/Vu5SSzNtL9TvPra4NwQTvM1YP9vbujqeLPOoP5h/CKpaF/e2Yrn6l5isgdWMNXX/C2bp5HF+b+BpZX6fSLr/qhytPjRurZ6Psm0bXAD6/+f8Cg2Ay88jjsyacccYZuOmmm7B27VrtFUHPPfccZs2ahb///e9a3mTI2KJo1apVmlOtIAiCIAgZZC9b1LSWKVOmAAAWLVqERYsW2f4GpPYix5QXRYkvaLQsC9u3b8eaNWvwu9/9LtXiBEEQBEEQUiYWy/zLo1JeFOXn52vqM6fTiYMOOgh33HEHxowZk9HGCYIgCIIggdbtRcqLoiVLlrRBMwRBEARBMCIxRQCABx54AFdeeSX8fj8eeOCBZvNec801KZef8qJo4MCBWL16Nbp166Ztr6iowE9+8hN88803KTdCEARBEAShJf7whz/gwgsvhN/vN6rhgYY4onZZFH377be2AUvBYBBbt25NuQEdlUh+DLGsmKbyYFxKEAGLLHiq+qohzS5T23f10n16kK3UMOyn1KuHUp+V+Cvi6RCpPH5w5sbT7EvGSh/2tXIlmPbsDChVieY35FHKjAD5G/ldEdv8XXPVnx01rPagtNOlK4JY5eEgtRt7FTmovdxyVno5aOY6WJzFhyvhr6JoFpXrY6WYysMqM8bBqjlqK6u5ouTL5AwnlEMdiWTDlqhP7e+uJAUSqcdyCpUqp2+hUvd8Xa68qdiTDgDyswKwg1VqtaTcySFvPFac1YfVHGb1WRUprzgPAGR7VVnsIcawt9UPASXByyW/sixSj3koHW5G+uOhecT5clyq3LCTxpnOn/qo6ofToFbj7ayQAoAAeQeGqNwa8moLUp6wh+p2qbpjpNCM7qfOF6uOToCIPtfqSlS/fbvU/i6yZ4sVqnSwG80XP103dqp2fF9bEE8PyleG3KEE9ZlbG3OXbdpP0s8evup4OofGNhjl8VPpHllKxVYV0oU9XegYVHl9lFb5QmFVVpDSWdmqblA6SuMfqFHniEW+abF6XVncVsjjswbYBHaPGsKytO2NN95Aly7qP/JoNIp//etf6N+/f0YbJwiCIAgC5PFZO5H0oujMM88E0HBLKvHN1R6PB/3798e9996b0cYJgiAIgiB3iuz4xS9+gaFDh+Lmm2/Wts+fPx8ffPABnnvuuZTLTPq1U7FYDLFYDH379kV5eXn8eywWQzAYxMaNG3Haaael3ABBEARBEIRUefvttzFu3Lgm20899VS88847aZWZckxRWzzDEwRBEAShGeTxWRNqamrg9XqbbPd4PKiqqrLZo2WSWhS1tQSuI2J1CcPKciFMr+WPhFTaGeQ0WVzwW+tpAnp36EMd7qUCEmsD6qB+Udk9nuagU369vWaxQIGNEUPQaS4FzgK6LQMHVIeiKhgyQFYPtRQc2oVev882ERy0S6+xQjiiv4o/6qLxjNi3NztLBcJyaG6YAh1jUbbKoPdmUaB0ouuDPjx0cLpSYCXnoGDWCAd5cx1uw1UmoW5nvX1fo361v2ZRkk1jS3YeHEDvpD706aaCrrNpfgD63OHgYA7MN1lkdPGq4NVuFCjN+etprmR59LrZyiKk2XPYz2G2ndkVzLbNU5ylgnPZsoODowEATvsAWLam4GBszs2B3Vwut89L5ccS6uZzg883Phf53OP+VVIAcXmlugbEYiQOoGD6WE1Cv2l+Bnuyj4zazpY5sWJ1vrlorkXzVZ6yKmXNwcc+36v2BYBct/q+PaDiTneFc9ASUYPNimbxQidxV1+ifZFqOwfE85jzuRCi8Y9SsD9fy/ia6KTjGAqpfWMu/fraZsiiqAmDBw/GM888g9tuu03b/vTTT6O0tDStMpNaFLW1BE4QBEEQBCEVfve73+Hss8/G119/jRNPPBEA8K9//Qv/93//l1Y8EZDkoqitJXCCIAiCIJiRQOumnHHGGXj55Zcxd+5cPP/888jKysLhhx+Of/7znxg5cmRaZabs73vHHXegrq7p+0bq6+txxx13pNUIQRAEQRCawcrQZy9j3LhxeO+991BbW4sdO3bgzTffTHtBBKSxKJo1axZqamqabK+rq8OsWbPSboggCIIgCEIqVFRU4E9/+hN++9vfYteuXQCADz/8MO2XSaesPrMsSzOEbeQ///kPunbtmlYjBEEQBEEw47AsOKzW3epp7f4djY8//hgnnXQSunTpgm+//RaXX345unbtipdeegnfffcdnnjiiZTLTHpRVFhYCIfDAYfDgQMPPFBbGEWjUdTU1GDy5MkpN6Cj0qN7Fdw5QU19wEqqIKkPQrVK0cAKNU3Qk/Aw1+VtapUC6JYJFQElZeO5zMqWLK9SZrAqja0TWOUCAH7S2bAKyEu2G1wHWxawNYGL1Bg+sgLxZau0M6HfrFTi1+yzEor7ykq0gIvUH/WqHItexc/2HYlo1wOy6nB7VF9zslV9NS41/tGAap8jn5RhVKST2mfFEm7CFpKiJaj67ahUac0+hFRtTo8ql8dct58I224HgCgpdgI0h3NJOaSrfdTxY+UUq914TvGxT4SVSnwuMVwfz8FcUhCx6qgypI6Lm/KzTUfid87nMgRWsCqNlUy8r6l8VkgltjdGaVas8T4BUq+xyo/P6Uq6HvBYRvP0OV+5Wym9LLoesTVOpItqR7fC2nialbDIozlF84CPaeK1ha87+aRcdDvUGMZM1izUDY+DridOno9cjt5vPn58jE31RcjChtvN5wJvz6Pzha9XEW8Q7RJpK+qzJkyfPh2TJk3C3Xffjbw8pdQcO3YsLrjggrTKTHpRtGDBAliWhUsvvRSzZs3SbD68Xi/69++PESNGpNUIQRAEQRCEVFi9ejUeffTRJtv3228/lJWV2ezRMkkvihqtPQYMGIBjjjkGHo+nhT0EQRAEQcgEoj5rit/vt31J48aNG9G9e3ebPVom5UDrkSNHxhdE9fX1qKqq0j6CIAiCIGQYUZ81Yfz48bjjjjsQDjc86nU4HNi8eTNuvvlmnH322WmVmfKiqK6uDldffTV69OiB3NxcFBYWah9BEARBEDJL452i1n46Ips2bcLo0aNRWlqKww47DLW1tS3vBOCee+7Bjz/+iB49eqC+vh4jR47EAQccgLy8PMyZMyettqSsPrvhhhuwfPlyLFq0CJdccgkWLlyIrVu34tFHH8Wdd96ZViMEQRAEQdg3mTRpEmbPno3jjz8eu3btgs/na3knAPn5+VixYgXefPNNfPjhh4jFYvjJT36Ck046Ke22pLwo+n//7//hiSeewKhRo3DppZfi+OOPxwEHHIB+/frhr3/9Ky688MK0G9OR8LvDcLud8JP6g5VNYT+pD3LqYYeL/In8CX5UPlI+sOKsJqAmg4vUTF2ylJIjh7x8nIb7oYn+VwwrijT/JkvFiZkUQSblCW9n5VokQYXFSiVW1gSprEBYtYOVIFxuLathqI4oKdGiCd5qrA7jt0qwp1RtHY0/qdK8PlL2kYIrRvWxz5fLrSuWfF7Vb1euOpY1flWfzZsu/rtdjUEBec+xwqk+bO/PBQCFPvv5GYrZq8H4mPE8YLUU18HHPrHuxOPfUn2mNnE7THkSqSOlo9tp7/OWR15dWeRhtTukFFy6Z5u9z1UoQYXldbGySdVXFyUfOjp3+RwLaao2Oj99NG/IjzAS1ce4oKv6K7uO1GThAKvr7M+rKKlZ66jcCKnduK9d/frc4jnC/nGaosvgs5flVPmjNI/qYxS/SmnO3xx+rR3s+6jKCoE8zqitmi+fS7UpC3w90P3f2oy9VH22fv16eDweHH/88QCQ9Kt9IpEI/H4/1q1bhxNPPDFu89FaUn58tmvXLgwYMABAwyqt8WVJxx13HN55552MNEoQBEEQBMWeenz2zjvv4PTTT0dJSQkcDgdefvnlJnkWLVqEAQMGwO/3Y8iQIXj33XeTLv/LL79Ebm4uzjjjDPzkJz/B3Llzk9rP7XajX79+iEbtX5mRLikvigYOHIhvv/0WAFBaWopnn30WQMMdpIKCgky2TRAEQRCEDJMokAoGzXe7amtrccQRR+Chhx6y/f2ZZ57BtGnTcMstt+Cjjz7C8ccfj7Fjx2Lz5s3xPEOGDMHgwYObfLZt24ZwOIx3330XCxcuxKpVq7Bs2TIsW7YsqX7ceuutmDFjRvzmTCZIeVH0q1/9Cv/5z38AADNmzMCiRYvg8/lw7bXX4oYbbshYw0wEg0EceeSRcDgcWLdunfbb5s2bcfrppyMnJwdFRUW45pprEArZ3+4WBEEQhE5DBtVnffr0QZcuXeKfefPmGasdO3YsZs+ejQkTJtj+ft999+Gyyy7D5ZdfjkMOOQQLFixAnz598PDDD8fzrF27Fp9++mmTT0lJCXr37o1hw4ahT58+8Pl8+PnPf97k/3YTDzzwAN59912UlJTgoIMOwk9+8hPtkw4pxxRde+218fTo0aPx+eefY82aNdh///1xxBFHpNWIVLjxxhtRUlISX5g1Eo1GMW7cOHTv3h0rVqzAzp07MXHiRFiWhQcffLDN2yUIgiAIbUmm1GNbtmxBfn5+/Huygc2JhEIhrF27FjfffLO2fcyYMVi5cmVSZQwbNgw//PADdu/ejS5duuCdd97BVVddldS+48ePt7Udaw0pL4oS6du3L/r27YstW7bg0ksvxZ///OdMtMuW119/HUuXLsULL7yA119/Xftt6dKl2LBhA7Zs2YKSkhIAwL333otJkyZhzpw52gQQBEEQhH2V/Pz8jPyfuGPHDkSjURQXF2vbi4uLk36jtNvtxty5c3HCCSfAsiyMGTMGp512WlL7zpw5M9Umt9yeTBW0a9cuPP744222KPrhhx9wxRVX4OWXX0Z2dnaT31etWoXBgwfHF0QAcMoppyAYDGLt2rUYPXp0SvXl+4Lw+CxNYaX541AYfzSmFB5RUlbwqj6coJipq1f7BNgDjJRNUVKtRL32Tzr9bnt1EKvKEolpvkyqjlx3yyqKEPkLscKNPYk0VYfB7yqxblbf5HlUOxLVTI10zVb+UFxHgBRHVoLKhceTy40a1GvcPt7u8ZAXk58VbeY/47gtrHbrXlATT7MXWUW98rmqC5FiyVAH9yfRi4znLSuNNEUXjWFtWNXH84s9qDzk3VfvUmNeFyHvLAAVEaWs1BRPBj8xhse/Jmw/BqbtTaDqeJ8al/oL2TSfdcUlKSPpGhBJ8Ndy0vnOSjQeH96HVW1Oh5Pys4JOzbV8UqIleoBVk5rVla324eOU41P1FedUx9Pba9R/lEFSa4bDqj87q5UyL7HuHtlqPnf1qHPUp6nxWOml6mDFmYvGllVmYRoz9jpLhI9NDl3X8mk7q9o09WvUXsnJSjRudzjcTiEalpVg4JhmGW1A4t0ak3G8ibFjx2Ls2LFJ56+rq8MNN9yAl19+GeFwGCeddBIeeOABFBUVJV2GiZRjivYElmVh0qRJmDx5MoYOHWqbp6ysrMlqtbCwEF6vt9kVazAYlLdyC4IgCB2ajvjyxqKiIrhcrib/x5aXlzf5/ziT3H777ViyZAnGjRuH8847D8uWLcP//M//ZKTsPboomjlzJhwOR7OfNWvW4MEHH0RVVRVmzJjRbHl2K9OWVqzz5s3TAs769OnT6n4JgiAIQkdl2LBhKC0txcKFC1tVjtfrxZAhQ5qoxZYtW4ZjjjmmVWU3x4svvoj//d//xeLFi/HAAw/g1Vdfxcsvv5wReX7GHp+lw9VXX43zzjuv2Tz9+/fH7Nmz8e9//7tJMNjQoUNx4YUX4vHHH0fPnj3x/vvva7/v3r0b4XC42RXrjBkzMH369Pj3qqoqWRgJgiAIHYsMvrxx9erVSccU1dTU4Kuvvop/37RpE9atW4euXbuib9++mD59Oi6++GIMHToUI0aMwOLFi7F582ZMnjy5lY01s2XLlvjLHgHg6KOPhtvtxrZt21r9/3fSiyKTHK+RioqKlCsvKipK6hngAw88gNmzZ8e/b9u2DaeccgqeeeYZDB8+HAAwYsQIzJkzB9u3b0evXr0ANARf+3w+DBkyxFi2z+dLO/JeEARBENoDR6zh09oyUmXNmjVaTG7jTYSJEydiyZIlOPfcc7Fz507ccccd2L59OwYPHozXXnsN/fr1a11jmyEajcLr1eMX3W43IhFzLG2yJL0o6tKlS4u/X3LJJa1ukB19+/bVvufm5gIA9t9/f/Tu3RtAgwSwtLQUF198MebPn49du3bh+uuvxxVXXJFWlL3bGYPbGUO2g6wNDK+nz6MAWQ6e5IDVcELAscdlf5vPTcGNHFjpYlsLQzt4OwdEJ1qB6EGkZFdCbTe96p4DDLkOthrgIO/E4G1uY0QL+LYPcGYSg1lVfao/+V5zsDjbJ3BgMdfH/dYCrQ3tixpsLJoL+uV9eB7w8S7IUvYJPXNVICyPQSCixp+tXxKDmLlcPpZ8nHZEVfBsHc1bnnc8j0xB/QEHWTIk1M3BrDwGbHnD41ZPQcY85hy0y4HjiUH9pmPJaEIKGlu/y/7iqlmaGOZyYlu0AG4+f+jcqwmrP8y47gKvCqjmoGveN/F451EQNgdde7PVdg6I5v2DEXthhGZhQ2NeF9KPdzlybcvN9XA/VF95DN2G4Hu34X/yUDOB1gxfs7gsrk+zH3LZB3ZzgDjXHTNclzLOHrL5GDVqFKwWArSnTJmCKVOmpNmo1GmMM+YbGoFAAJMnT0ZOjrqWvfjiiymXnfSi6LHHHku58PbE5XLh1VdfxZQpU3DsscciKysLF1xwAe6555493TRBEARBEDLExIkTm2y76KKLMlL2Ho0pSpf+/fvbrlz79u2LV155ZQ+0SBAEQRDajkyoxzKtPttTtOVNmk4hyRcEQRCEfZrG9xS19oPMqc/2RjrlnSJBEARBENIjFfXZvoYsigRBEAShgyOPz9oHWRQZ8LvC8LgcCJE6hRUfrKph3JbaziqSRPWLSQ2jqb4MdWj5DXIC3p5olaFZFVB9JrUO95vJdinFk8mOo0m72OrBEaXtrPJTT3VZMea0uK2kxnMm9xSYxzPXbf9q/oimNrFX45nGyZROLJeVSSbri3y2OqGyKkJKTWSyNPH6EtRnNFbZpAZkFRD3tVt2re2+mvopZq9+iiSo8bh/Lk3F2PIY8hzm/GyZo6uX9POFvzdnN9MIq/m4H6bz2GQBAejjU0PWHiZVG6vgeJxzPS1bSIRiZtWdl5R9bJ/TK6synt4dUmqdmlo1v6K76VUlPlItdlVlJr4Xl8f5x3oql8bAZO+jak4oE/ZK2uYUnroykI4rXy8Ndh6mOlhlqdkoNWOplFH2kPpsX0NiigRBEARBECB3igRBEAShwyOPz9oHuVMkCIIgCB0dUZ+1C3KnSBAEQRD2IUR9ZkYWRYIgCILQwZHHZ+2DLIoMRGIuOGIuozqI1Qom9Uwy6rHEfUzbWQ2jqTfIh4jVWaFm/Hg05ZbWdpOPV8w2T53m/2PvH8YeWYDuK5TltPcYqo/qRn+mshoJ0TCzP1Gil5KfvrPChJVhbpAXmZv6DT4W9kom0zgl1hFz2x9XVhFpx5vqZvVSbg6p/wzjn9iumrDS+LAiiL352KPMY/Cj8sJ+eyLcXlZoJaNWNJ0/pnMhEdOYuA1+bm6Dv6DJc4/zBBJ8uDRFHu1fE7ZXoiX6lzXCc0L3rTOPv0mV1dVXF08XeJS3Xi2pEPNylUdZZdjQ7xj5oCUcIx5PVgl6Yqw0VXmqQ6ruaqg0++G5k1AtJot27A2K0pBB3RhwqGPM5YSTOxVaj6jP2gVZFAmCIAhCB0fuFLUPEmgtCIIgCIIAWRQJgiAIQscnZmXmA1GfNYc8PhMEQRCEjk4GY4pEfWZG7hQJgiAIgiBA7hQZqQl74QnrKqhk1GSsVmAPo+aUEom+SbZ5DHVr6oio/eFMVKO4Ew2L/otJZcP5NRUPtTsCe0VQTZj8kwBUkXcXK+fcBkWc1r6YvWcYq6tYcZaoAAuxl1kSHkoBg8rM5JPEHkuJnnTaMabuaWqaiH2/Teob9pnSVIgJ/TF63VEbWUUUoXnESjTteBvaYfL2SsQ0500KPJN6jOtL7LdJvWmEdteOSxJKuSZ1J7EPn28mFZyW39CH5vrN4xwihdwPwbx4uobUZzwP3OSh53Kp7R632m4lnKskTNPawepGRxLRvvV07TT5OybCbefzQfNxjNgry0xKNBPOGJ33keRUxq3FgQwEWmekJXs3sigSBEEQhI4OvZG6VWUIzSKPzwRBEARBECB3igRBEAShwyPvKWofZFEkCIIgCB0deaN1uyCPzwRBEARBECB3iozUR9wIRzyausLkd5blVp5cJl+lZBQNieUm47lkUvFwOxJVK6wUS0Z1YVLJJEOTui17lZqpHSYPMKOvVRJKPiDB54okMyb1E+dPRinXHKyMYUy+Tto8oOE3+V8ljrlJEeZ32yu3NNUQjwcfu6i9Ai+QcEkxeQea8mhKO5e9Uo7bURFUakbuD5Dgu2Y4H7gszq8plgwqxOa83FiRx2Vp1xPDHOb6kvFbdCPBf8xwHrPvGtfBKtkcr/LTQ65Kenj+G+YvoI8Jq8y431HD9YTzO6kLJrVaovItSse12qCa9LDi1eB1x8eOMV4fDfkzjcOy4GhloHTj/sOGDYPL5cLUqVMxderUTDRvr0EWRYIgCILQ0Yn999PaMiAvb2wOWRQJgiAIQgcnk3eKBDMSUyQIgiAIggC5UyQIgiAIHR9Rn7ULsigyEI65YCUEWJoC7fiV9KZAw+YCraNJWBCYgg1jTvtAXw6kTLQN0OwakrQOsK3bEAysBUc3E4gccbTcb1MAtikwOBBLckqbY0Vt62BMAbLJBMkn1p1sAH683Jj9ODcXMJ9MsLoWuMtiAUP/TCTmMVltJHMskxmb5gQFHPRtmue8vxYcbTBEMB3jJlY6SdjymO1s7I8xBxbz9SDxGmAKIDaNba5HBVdnk2gkh7ZXh5QVSNRwHBsappImkQrvz9Y7pmtcVBsDtd3r1k9i0/VWuzZFUrveJRMkHwm300pD3mjdLsjjM0EQBEEQBMidIkEQBEHo8MgbrdsHWRQJgiAIQkdHHp+1C/L4TBAEQRAEAZ1sUfTqq69i+PDhyMrKQlFRESZMmKD9vnnzZpx++unIyclBUVERrrnmGoRCIUNpgiAIgtA5cMQy8wEa3mhdWlqKhQsX7tlOdUA6zeOzF154AVdccQXmzp2LE088EZZl4ZNPPon/Ho1GMW7cOHTv3h0rVqzAzp07MXHiRFiWhQcffDDl+urDXrhCXrgMr/JnRUQ0SmoMUn74SB3hSlCj+MhSgF89n4xahOsO0uvszaooXaVhUqwlU7cpf9SgcGqOKBWbjl1GI6b2NWdJYlKqmCxGTPWZ8iRaEPCYGK0NklBkJaNUTCRx7tmWm4T1ggnT3GyOKFuJJKH0Mtm3mNR0ifuYLCfCBsUZn/fJqOBM8wDQx9Y0zxPnix0uzZpGlRlOUMlyv10GJVp1VKnJNHWWwZ6Ey+G2hqJ6v2OulveJGVR0JrTxp2EKJ9hr8JMhB+WLJqEg4zpc2ryxL5+PaTSahJQ1E2Tw8Zm80dpMp1gURSIR/OY3v8H8+fNx2WWXxbcfdNBB8fTSpUuxYcMGbNmyBSUlJQCAe++9F5MmTcKcOXNkAgiCIAiC0Cyd4vHZhx9+iK1bt8LpdOKoo45Cr169MHbsWKxfvz6eZ9WqVRg8eHB8QQQAp5xyCoLBINauXWssOxgMoqqqSvsIgiAIQofCytBHaJZOsSj65ptvAAAzZ87ErbfeildeeQWFhYUYOXIkdu3aBQAoKytDcXGxtl9hYSG8Xi/KysqMZc+bNw9dunSJf/r06dN2HREEQRCENGj0PmvtR2iePboomjlzJhwOR7OfNWvWIBZreMZ7yy234Oyzz8aQIUPw2GOPweFw4LnnnouX53A0fS5vWZbt9kZmzJiBysrK+GfLli2Z76ggCIIgtIbGmKLWfoRm2aMxRVdffTXOO++8ZvP0798f1dXVAIDS0tL4dp/Ph4EDB2Lz5s0AgJ49e+L999/X9t29ezfC4XCTO0iMz+eDz+cz/i4IgiAIwr7BHl0UFRUVoaioqMV8Q4YMgc/nw8aNG3HccccBAMLhML799lv069cPADBixAjMmTMH27dvR69evQA0BF/7fD4MGTIk5bYFw264wm5tYW0ZVAxOTd2jbr4FwuY7VDWWWoiZVB4eUq95aLub1GqsNPG5laJN869KeJBs8gUyqWxYWcOKD1a+mVQdiX+YRA2eYCbFByvztPwGRVVzqiGTj1EwQb0Tr9tJ42zwA/PzmKeoWErE5KsViKhxZqWRSemVqHDitvDc4f4xXIdJocOqIVM5QPPqsEZMc0dTeBrGn+dBokLNpGzi7YnKLQWfF/b947YmlmPyKTPlScZPL0bnXnNqtSh5Crqsln3sokl4FZr8xxKJkBrNND+jprpj9nU7nawcVNtjzSj++Jrschr6TW0NUtqhza8klLfh9lKfAbC/7KVWhtAsnUJ9lp+fj8mTJ+P2229Hnz590K9fP8yfPx8A8Mtf/hIAMGbMGJSWluLiiy/G/PnzsWvXLlx//fW44oorRHkmCIIgdGoyERMkMUUt0ykWRQAwf/58uN1uXHzxxaivr8fw4cPx5ptvorCwEADgcrnw6quvYsqUKTj22GORlZWFCy64APfcc88ebrkgCIIgCJ2BTrMo8ng8uOeee5pd5PTt2xevvPJKO7ZKEARBENoBCxl4eWNGWrJX02kWRYIgCIKwzyKGsO1Cp3hPkSAIgiAIQlsjd4paQFeZ8SrbXgFj2jdRgaIpHNjzyqB2iMa4LFLGuOx9uCLNeCOFIi0fdk3lQQqiQMijyo2QEipiUJW5EhRBmpKElTU0zi77sbUMyhGt/GbGkr85DflY8acpy0i1pe1rmAeJ6jNNAWZQqZmUP25tDMx+eo005z/GY1gf9trmMakHTa/7ijqTq8+EWZWm0hFNHWS/b2K/k/mjmNVFPHdYT8TlOtLweUMSii5texJFOjUFnV4On5faPk77ucrXH1Z7cp6oQYEaTeibdk0wqSNjPL/sFXimuc0kzi2+JpjmrdNlf+6ZFZBqX5dB0WaloTRNixiQpK1k82WgwRDW5XJh6tSpmDp1amtbtlchiyJBEARB6OBkUn0mhrBmZFEkCIIgCB0diSlqFySmSBAEQRAEAXKnSBAEQRA6PnKnqF2QRZGBYL0HTodXt/mgYGCLA58NwdHJBsVxWVpQpn1cNxxusjbwqcBIbgcHLkdDeuBlLKAOu7OegrbJliTmpbKy7EM/HQFVrrvOvg/hLD1g0vJT0DAFVDvqVVnOENld0L1Mzm/xmBsCWRPjHy037e8hWxEPtYMCMau5Pq7OcOyb8R3Wr0WUdtKx5ABzk02IKVhcCxD3RMAYg9WpHxyMn/p1U+2bOAYmaxDGZCHR3HjGyzcEQTeUZZgXnE8LpKXNmuWK2p7OOHE/Ug0g5mPEwb1uQ6A0ADhJIMAiCRYFuF0cNGzfJg6oDlGag6mDYf2/kJhJAGEIaNesk6ivRjEIH9NmxCt8LmnbHfZjYGoT9zUUIlsjtiepa6eFhiyK2gV5fCYIgiAIggC5UyQIgiAIHZ8MSvIFM7IoEgRBEIQOjhjCtg/y+EwQBEEQBAFyp0gQBEEQOj4SaN0uyKLIQHSXD1a9D+TIAIvuqzlZkGVSjJlUaQm78GNiB6nGHFQHt0PLo22nqklwltgMZ9g+zf2LeUkVUkUKH6rDXafSnhoqh+oOdNNvRkZyqO2kduP93bX2ZUX9pI5TbiMajuY8EvgwuUhFRHVox4XHk8vl5/JamfblNGmGYVrw/ppTA6sKqd8xUs3V+VUDqzx64IDLywo3VqJRmwzt1VV39ioxTY2X2DkeT7aZYPsX01hx+wwWFSYFUcN3U7n2yjI+l0zqv2QsfQBdvca2FuGIOoC61Yx9udwHtjqJGFReDfuocr1k22FSnHHbQzTxAmHVVq5Ps8FIsPdh9ZlpXjha83yC1WMe/WQ3HW62/wiHVbqex5APNxdE11qE+QJJx7e+nQJ1Ypb54pFKGUKzyOMzQRAEQRAEyJ0iQRAEQej4yOOzdkEWRYIgCILQ4cnAogiyKGoJWRQJgiAIQkdH7hS1CxJTJAiCIAiCALlTZCR7qxMun1NTZ2lqGJP1Fqfph0RlhMMkWGBfLKrbYVI8mVRDrIRKWPryd6PCjdMmDzbKE6OZxHV7K/W6XQF7pZ4roNKeevv2gctK4g8ey5XwPYk/AbivDrIQc0ZJPcNtou5EPaTK8ZnrdvFxjdrn0RtlX27ER9uznLZ5AN3HLsrzQvOS4/r4wNhv1+YQ+bc1N8ZO8meL0t9jLrfBg8qgJ4qRCi5smZVv7AfHKi6Ps2VFlqYMo8nGdUSps+zfBui+YRGSW5k8thiTV5rXldxf+VFWh1EbQyH2bbOv2+S7FjN4lDVR3WlmhZSPM2keZXTsXaaLqn35oYh5sln0m6UpellNZr9dvwaQ91w9pYMqTzSYcKFpK2IWWv34S9RnLSJ3igRBEASho2PFMvMBMGzYMJSWlmLhwoV7uFMdD7lTJAiCIAj7EKtXr0Z+fv6ebkaHRBZFgiAIgtDRkUDrdkEWRYIgCILQ0ZGYonZBYooEQRAEQRAgd4qM+CoAlxdwhUgpQWokB6+4SS4S09Q9lE5YfsZcjhbzJaqnGuE2uUJquzNsr5BKLCfmtjdeMyniWFkWIf+xSBbloTpYvaGp9wC46+1/c0YMbddUUZQ2KAE1/6qw/leRNj4mdR1XYfiTwXLSsWOlEKtnyL8N0Mc8Sv5lXJamZGOVWZZ92uSD1qS9dPw0RV2QzfzIX41872Js9Ga4WrDSJ3EseXxiVJ9F9UXddFwMaiRWKTlpXyfbUSUolqIh9mqjPkVZScVeXbQzFcV1s1KOFWqsYgN0lZmzGQ/ERiJR+5M9DFaMqe2swEssnf3HuB3swWbC5F3GlVjNlmP4jb3PuE3sP8bzkVRfWprqdjbjc+jQJh5tN6WpDr7O8zXKRdcuvo5F6Rrcpsjjs3ZBFkWCIAiC0NGxkIFFUUZaslcjj88EQRAEQRAgd4oEQRAEoeMjj8/aBVkUCYIgCEJHJxaDFiCVdhlCc3Sax2dffPEFxo8fj6KiIuTn5+PYY4/F8uXLtTybN2/G6aefjpycHBQVFeGaa65BKNReUXCCIAiC0EY03ilq7Udolk5zp2jcuHE48MAD8eabbyIrKwsLFizAaaedhq+//ho9e/ZENBrFuHHj0L17d6xYsQI7d+7ExIkTYVkWHnzwwZTrc1gNH00NxmId9gwj5RSrFTR/qMQFOk1O3VvMsJ2zOO0VHpr/GKcT8psUXTGX/XYWcrCCS1OWaflZIZKgACNlhzHoj5trUIlpyhGqw6gQbKYO7h+PFY+nptIzKPtMx6XhN9qfVUSsnnLbp037an01eDcBgIOVcPyb6ZjR3xGWU3WQFW6aorG5P60Mx0zDoPoyFAOeUpoINJqws6FuVxJ/LGtzgtWXpJTj7YEEXzL2lYPJGovb0Vw/4j/Ytw+J6jbTNDSoN411G7Y7qL5EizLt2sLt4qRlUJBxHdr5ncSkSNhHU5DRfGbPMs3D0HCp4PaZvCgtvqYJnZ5Ocadox44d+Oqrr3DzzTfj8MMPx6BBg3DnnXeirq4O69evBwAsXboUGzZswJNPPomjjjoKJ510Eu6991788Y9/RFVV1R7ugSAIgiC0ArlT1C50ikVRt27dcMghh+CJJ55AbW0tIpEIHn30URQXF2PIkCEAgFWrVmHw4MEoKSmJ73fKKacgGAxi7dq1xrKDwSCqqqq0jyAIgiB0KGJWZj5Cs3SKx2cOhwPLli3D+PHjkZeXB6fTieLiYvzjH/9AQUEBAKCsrAzFxcXafoWFhfB6vSgrKzOWPW/ePMyaNastmy8IgiAIQidgj94pmjlzJhwOR7OfNWvWwLIsTJkyBT169MC7776LDz74AOPHj8dpp52G7du3x8tzOJo+e7Ysy3Z7IzNmzEBlZWX8s2XLljbpqyAIgiCki2XFMvIRmmeP3im6+uqrcd555zWbp3///njzzTfxyiuvYPfu3cjPzwcALFq0CMuWLcPjjz+Om2++GT179sT777+v7bt7926Ew+Emd5AYn88Hn8/XZLsjZjUJ1OXg0ojBnsEUsGcMMk3MR0GIiUGM9vkNdXDAdkI/XFoQo/3+vI+pXL0h1G4OTk/sQzMLVOM+jbuaAtK1AEvaHtHbyn3SgqLZcoUtJCL2fdIsWgyB6s1Zq2gB1ZrlB2xhaw4XB4dqAeL22xPRxpbT3F5D4LMe8MrjbK6P7RN4rmlCBU20YL/daZinyb6hl4+HZo9iOBb85yIHTWsCBg66djXTEG5vzBBMzNYZBisKLViZj1fCXGv2/Gss1xRcnUTdPCmaOJhw/0xCERZu8Hw2iCqMfYiZvzsN80hviH07TPPOaBfSjN1IRrEy8PhLYopaZI8uioqKilBUVNRivrq6OgCA06n/r+F0OhH773sXRowYgTlz5mD79u3o1asXgIbga5/PF487EgRBEARBMNEpAq1HjBiBwsJCTJw4Ef/5z3/wxRdf4IYbbsCmTZswbtw4AMCYMWNQWlqKiy++GB999BH+9a9/4frrr8cVV1wRv7skCIIgCJ0SUZ+1C51iUVRUVIR//OMfqKmpwYknnoihQ4dixYoV+Nvf/oYjjjgCAOByufDqq6/C7/fj2GOPxTnnnIMzzzwT99xzzx5uvSAIgiC0klgsMx+hWTqF+gwAhg4dijfeeKPZPH379sUrr7zSTi0SBEEQBGFvotMsigRBEARhn8WykLSyoNkyhOaQRZGBmNsBh9thtApw8OQyWCdoJG7nck1KC0MeUznpoKlytNnAyquWbQe0Mk0KJ5iVMUnVoY2H/fg7TOqZxN+SUMaY1F2mNCvMmqrPYPubSbGm24fYp5NVn+mWEC2Xywo8JDMeaAav4TxJZt4a6zaovhKDAbT9WXlov92IQf7kaK4/lr2iy4ij5YuIphgLU56Qw5hPb5Mhj+m8SOa8asZqI+XrVzrXUROmcg0KPhb/OfjcM6pzad8km9RarFgMVrIyZlMZIslvEVkUCYIgCEJHR+4UtQudItBaEARBEAShrZFFkSAIgiB0dPZS77ONGzfiyCOPjH+ysrLw8ssv77H2yOMzQRAEQejoWBZaHcHUAR+fHXTQQVi3bh0AoKamBv3798fJJ5+8x9ojd4oEQRAEQdjj/P3vf8fPfvYz5OTk7LE2yJ0iA1EvAB+aiWtr2eMn2Zi4tlGWJSvTaMUupvalUbWxCqMKJX0PtYb9U9yeTLnNeY4Z8pkUcVaKHmcmhVnib8mp1wz+e8ko0Zp43cEeVoM1o1a02655dYUzONlMpHF+6iouHixTHtqehLdbs6K5JOpIVRmWTDmp5Gspf7PKPlPdhmymfZIRHmrz3KAIjbWT95kVs2Al1ehmykjjTtE777yD+fPnY+3atdi+fTteeuklnHnmmVqeRYsWYf78+di+fTsOPfRQLFiwAMcff3zKdT377LO45JJLUt4vk8idIkEQBEHo6FixzHxSpLa2FkcccQQeeugh29+feeYZTJs2Dbfccgs++ugjHH/88Rg7diw2b94czzNkyBAMHjy4yWfbtm3xPFVVVXjvvffw85//PPWxySByp0gQBEEQ9iGqqqq07z6fDz6fzzbv2LFjMXbsWGNZ9913Hy677DJcfvnlAIAFCxbgjTfewMMPP4x58+YBANauXdtim/72t7/hlFNOgd/vT7YbbYLcKRIEQRCEDo4VszLyAYA+ffqgS5cu8U/j4iVVQqEQ1q5dizFjxmjbx4wZg5UrV6ZU1rPPPotzzz03rXZkErlTJAiCIAgdHSuG1qvPGvbfsmUL8vPz45tNd4laYseOHYhGoyguLta2FxcXo6ysLOlyKisr8cEHH+CFF15Iqx2ZRBZFCTQGokVDgaT36ZiB1mnQqQKtW7Fvc7RzoLVp/2TsRjIaaG2qL4lAa7RzoHW7086B1mirQOtM5dmXAq2TKKfx/4p0gphTIYJwq/9PiCAMAMjPz9cWRa3FkSB8sSyrybbm6NKlC3744YeMtac1yKIogerqagDA54/dsYdbIgiCIHQWqqur0aVLl4yX6/V60bNnT6woey0j5fXs2RNerzcjZRUVFcHlcjW5K1ReXt7k7lFnQRZFCZSUlGDDhg0oLS1tcotxb6Cqqgp9+vTZK/sG7N39k751TqRvnZNk+2ZZFqqrq1FSUtIm7fD7/di0aRNCoVBGyvN6vRkLZvZ6vRgyZAiWLVuGs846K7592bJlGD9+fEbqaG9kUZSA0+nEfvvtByDztxg7Entz34C9u3/St86J9K1zkkzf2uIOEeP3+/eYKqumpgZfffVV/PumTZuwbt06dO3aFX379sX06dNx8cUXY+jQoRgxYgQWL16MzZs3Y/LkyXukva1FFkWCIAiCINiyZs0ajB49Ov59+vTpAICJEydiyZIlOPfcc7Fz507ccccd2L59OwYPHozXXnsN/fr121NNbhWyKBIEQRAEwZZRo0a1GEQ+ZcoUTJkypZ1a1LbIe4ps8Pl8uP3229OWKXZk9ua+AXt3/6RvnRPpW+dkb+6bYMZhtbWOUBAEQRAEoRMgd4oEQRAEQRAgiyJBEARBEAQAsigSBEEQBEEAIIsiQRAEQRAEALIosmXRokUYMGAA/H4/hgwZgnfffXdPNyllZs6cCYfDoX169uwZ/92yLMycORMlJSXIysrCqFGjsH79+j3YYjPvvPMOTj/9dJSUlMDhcODll1/Wfk+mL8FgEL/+9a9RVFSEnJwcnHHGGfj+++/bsRf2tNS3SZMmNTmOP/3pT7U8HbFv8+bNw7Bhw5CXl4cePXrgzDPPxMaNG7U8nfm4JdO/znrsHn74YRx++OHxlxaOGDECr7/+evz3znzcWupbZz1mQuaQRVECzzzzDKZNm4ZbbrkFH330EY4//niMHTsWmzdv3tNNS5lDDz0U27dvj38++eST+G9333037rvvPjz00ENYvXo1evbsiZNPPjnu/daRqK2txRFHHIGHHnrI9vdk+jJt2jS89NJLePrpp7FixQrU1NTgtNNOQzQaba9u2NJS3wDg1FNP1Y7ja6/pHkgdsW9vv/02pk6din//+99YtmwZIpEIxowZg9ra2nieznzckukf0DmPXe/evXHnnXdizZo1WLNmDU488USMHz8+vvDpzMetpb4BnfOYCRnEEjSOPvpoa/Lkydq2gw8+2Lr55pv3UIvS4/bbb7eOOOII299isZjVs2dP684774xvCwQCVpcuXaxHHnmknVqYHgCsl156Kf49mb5UVFRYHo/Hevrpp+N5tm7dajmdTusf//hHu7W9JRL7ZlmWNXHiRGv8+PHGfTpL38rLyy0A1ttvv21Z1t513Cyraf8sa+85dpZlWYWFhdaf/vSnve64WZbqm2XtXcdMSA+5U0SEQiGsXbsWY8aM0baPGTMGK1eu3EOtSp8vv/wSJSUlGDBgAM477zx88803ABq8a8rKyrR++nw+jBw5stP1M5m+rF27FuFwWMtTUlKCwYMHd4r+vvXWW+jRowcOPPBAXHHFFSgvL4//1ln6VllZCQDo2rUrgL3vuCX2r5HOfuyi0Siefvpp1NbWYsSIEXvVcUvsWyOd/ZgJrUNsPogdO3YgGo2iuLhY215cXIyysrI91Kr0GD58OJ544gkceOCB+OGHHzB79mwcc8wxWL9+fbwvdv387rvv9kRz0yaZvpSVlcHr9aKwsLBJno5+XMeOHYtf/vKX6NevHzZt2oTf/e53OPHEE7F27Vr4fL5O0TfLsjB9+nQcd9xxGDx4MIC967jZ9Q/o3Mfuk08+wYgRIxAIBJCbm4uXXnoJpaWl8f/4O/NxM/UN6NzHTMgMsiiyweFwaN8ty2qyraMzduzYePqwww7DiBEjsP/+++Pxxx+PBw7uDf1sJJ2+dIb+nnvuufH04MGDMXToUPTr1w+vvvoqJkyYYNyvI/Xt6quvxscff4wVK1Y0+W1vOG6m/nXmY3fQQQdh3bp1qKiowAsvvICJEyfi7bffjv/emY+bqW+lpaWd+pgJmUEenxFFRUVwuVxNVvzl5eVN/jLqbOTk5OCwww7Dl19+GVeh7Q39TKYvPXv2RCgU+v/t3XtQlNUbB/DvCruwskIi6C63RUQkizBICAFvgJo3wC6OgwFdNDNRRlLzkmBjppaXdGxGGxN1mrBRyDQRwQB3RFERBRQQFAJpDWMIVhFQeH5/9OP9+cpyqR8K6POZ2T/2nPOec573IDy+73l3UV1d3Wab3kKlUkGtVqOoqAhAz48tIiICP//8M1JTU2FjYyOUPy3r1lZ8+vSmtZPJZHB0dMQrr7yCL774Aq6urvj666+finVrKzZ9etOasa7BSdFDZDIZ3N3dkZycLCpPTk7GqFGjumlWXaOhoQH5+flQqVQYPHgwlEqlKM7Gxkakp6f3ujg7E4u7uzukUqmojVarRV5eXq+Lt6qqCuXl5VCpVAB6bmxEhAULFiA+Ph6//vorBg8eLKrv7evWUXz69Ja104eI0NDQ0OvXTZ+W2PTpzWvG/qUnvrW7h4uLiyOpVEq7d++mq1evUmRkJJmYmFBpaWl3T+0fiYqKorS0NLpx4wadPXuWpk6dSv369RPiWL9+PZmZmVF8fDzl5ubSrFmzSKVSUW1tbTfPvDWdTkfZ2dmUnZ1NAGjz5s2UnZ1Nv/32GxF1LpZ58+aRjY0NpaSk0MWLF2n8+PHk6upKDx486K6wiKj92HQ6HUVFRVFGRgaVlJRQamoqeXl5kbW1dY+P7cMPPyQzMzNKS0sjrVYrvOrq6oQ2vXndOoqvN6/d8uXL6dSpU1RSUkI5OTm0YsUK6tOnD504cYKIeve6tRdbb14z1nU4KdJjx44dpFarSSaTkZubm+gx295i5syZpFKpSCqVkpWVFc2YMYOuXLki1Dc3N1N0dDQplUoyMjKi0aNHU25ubjfOuG2pqakEoNUrLCyMiDoXy71792jBggVkbm5Ocrmcpk6dSmVlZd0QjVh7sdXV1dGECRPI0tKSpFIp2dnZUVhYWKt598TY9MUEgPbs2SO06c3r1lF8vXnt3n33XeH3n6WlJfn5+QkJEVHvXrf2YuvNa8a6joSI6Mldl2KMMcYY65l4TxFjjDHGGDgpYowxxhgDwEkRY4wxxhgATooYY4wxxgBwUsQYY4wxBoCTIsYYY4wxAJwUMcYYY4wB4KSIsS5XWloKiUSCS5cuPZb+JRIJfvrpp399fFpaGiQSCSQSCYKCgtptO3bsWERGRv7rsVj7Wtbhueee6+6pMMbASRF7yoSHh3f4h/5xs7W1hVarxYsvvgjgf0nIX3/91a3zelRhYSFiY2O7exrPhLZ+LrVaLbZu3frE58MY04+TIsa6mIGBAZRKJQwNDbt7Ku0aOHBgj7hCcf/+/e6eQrdRKpUwMzPr7mkwxv6LkyL2TElPT4eHhweMjIygUqnwySef4MGDB0L92LFjsXDhQixduhTm5uZQKpWIiYkR9VFQUAAfHx8YGxtj+PDhSElJEd3Sevj2WWlpKcaNGwcA6N+/PyQSCcLDwwEA9vb2ra4SjBgxQjReUVERRo8eLYz18Ldzt6ioqMDMmTPRv39/DBgwAIGBgSgtLf3H5+bu3bsIDQ2FQqGASqXCpk2bWrVpbGzE0qVLYW1tDRMTE3h6eiItLU3U5ttvv4WtrS369u2L4OBgbN68WZR8xcTEYMSIEfjuu+/g4OAAIyMjEBFqamowd+5cDBw4EKamphg/fjwuX74s6vvIkSNwd3eHsbExHBwcsGbNGtH6xcTEwM7ODkZGRrCyssLChQs7FXtHcVVVVWHWrFmwsbFB37594eLigh9++EHUx8GDB+Hi4gK5XI4BAwbA398fd+/eRUxMDPbu3YvDhw8Lt8sePWeMsZ6hZ/9XlrEuVFFRgcmTJyM8PBz79u1DQUEB5syZA2NjY1EisnfvXixevBiZmZk4c+YMwsPD4e3tjYCAADQ3NyMoKAh2dnbIzMyETqdDVFRUm2Pa2tri0KFDeP3111FYWAhTU1PI5fJOzbe5uRkzZsyAhYUFzp49i9ra2lb7e+rq6jBu3Dj4+vri1KlTMDQ0xNq1azFp0iTk5ORAJpN1+vwsWbIEqampSEhIgFKpxIoVK5CVlYURI0YIbd555x2UlpYiLi4OVlZWSEhIwKRJk5Cbm4uhQ4fi9OnTmDdvHjZs2IDp06cjJSUFn376aauxiouL8eOPP+LQoUMwMDAAAEyZMgXm5uY4duwYzMzMsHPnTvj5+eHatWswNzdHUlISZs+ejW3btsHX1xfXr1/H3LlzAQDR0dE4ePAgtmzZgri4OLzwwgu4detWq6SqLR3FVV9fD3d3dyxbtgympqb45Zdf8Pbbb8PBwQGenp7QarWYNWsWNm7ciODgYOh0Omg0GhARPv74Y+Tn56O2thZ79uwBAJibm3d6XRhjT1D3fh8tY10rLCyMAgMD9datWLGChg0bRs3NzULZjh07SKFQUFNTExERjRkzhnx8fETHjRw5kpYtW0ZERImJiWRoaEharVaoT05OJgCUkJBAREQlJSUEgLKzs4mIKDU1lQBQdXW1qF+1Wk1btmwRlbm6ulJ0dDQRESUlJZGBgQGVl5cL9YmJiaKxdu/e3SqmhoYGksvllJSUpPc86JuPTqcjmUxGcXFxQllVVRXJ5XJatGgREREVFxeTRCKhiooKUX9+fn60fPlyIiKaOXMmTZkyRVQfEhJCZmZmwvvo6GiSSqVUWVkplJ08eZJMTU2pvr5edOyQIUNo586dRETk6+tL69atE9Xv37+fVCoVERFt2rSJnJycqLGxUW/cbelMXPpMnjyZoqKiiIgoKyuLAFBpaanetu39XO7Zs0d0fhhj3YevFLFnRn5+Pry8vCCRSIQyb29v3LlzBzdv3oSdnR0A4KWXXhIdp1KpUFlZCeDvzcm2trZQKpVCvYeHx2Obr52dHWxsbIQyLy8vUZusrCwUFxejX79+ovL6+npcv36902Ndv34djY2Nov7Nzc0xbNgw4f3FixdBRHBychId29DQgAEDBgD4+/wEBweL6j08PHD06FFRmVqthqWlpSiOO3fuCP20uHfvnhBHVlYWzp8/j88//1yob2pqQn19Perq6vDmm29i69atcHBwwKRJkzB58mRMmzatw71dnYmrqakJ69evx4EDB1BRUYGGhgY0NDTAxMQEAODq6go/Pz+4uLhg4sSJmDBhAt544w3079+/3bEZYz0LJ0XsmUFEooSopQyAqFwqlYraSCQSNDc3t9nHv9WnTx9h/BYPbzp+tO7ReQJ/32Jzd3fH999/36rtw0lHR/SN9ajm5mYYGBggKytLuOXVQqFQCP20dY4f1pJMPNy3SqXSu9emZT9Sc3Mz1qxZgxkzZrRqY2xsDFtbWxQWFiI5ORkpKSmYP38+vvzyS6Snp7da038a16ZNm7BlyxZs3boVLi4uMDExQWRkJBobGwH8vbk+OTkZGRkZOHHiBLZv346VK1ciMzMTgwcPbnNsxljPwkkRe2YMHz4chw4dEv3hzsjIQL9+/WBtbd2pPpydnVFWVoY//vgDgwYNAgCcP3++3WNa9vU0NTWJyi0tLaHVaoX3tbW1KCkpEc23rKwMv//+O6ysrAAAZ86cEfXh5uaGAwcOCJuT/y1HR0dIpVKcPXtWuGJWXV2Na9euYcyYMQCAl19+GU1NTaisrISvr6/efpydnXHu3DlR2YULFzoc383NDbdu3YKhoSHs7e3bbFNYWAhHR8c2+5HL5Zg+fTqmT5+Ojz76CM7OzsjNzYWbm1ubx3QmLo1Gg8DAQMyePRvA34lUUVERnn/+eaGNRCKBt7c3vL29sXr1aqjVaiQkJGDx4sWQyWSt1p8x1vPw02fsqVNTU4NLly6JXmVlZZg/fz7Ky8sRERGBgoICHD58GNHR0Vi8eDH69OncP4WAgAAMGTIEYWFhyMnJwenTp7Fy5UoAra/itFCr1ZBIJDh69Chu376NO3fuAADGjx+P/fv3Q6PRIC8vD2FhYaIrFf7+/hg2bBhCQ0Nx+fJlaDQaYawWISEhsLCwQGBgIDQaDUpKSpCeno5Fixbh5s2bnT5nCoUC7733HpYsWYKTJ08iLy8P4eHhovPi5OSEkJAQhIaGIj4+HiUlJTh//jw2bNiAY8eOAQAiIiJw7NgxbN68GUVFRdi5cycSExM7vLrm7+8PLy8vBAUFISkpCaWlpcjIyMCqVauEpGr16tXYt28fYmJicOXKFeTn5+PAgQNYtWoVACA2Nha7d+9GXl4ebty4gf3790Mul0OtVrc7dmficnR0FK4E5efn44MPPsCtW7eEPjIzM7Fu3TpcuHABZWVliI+Px+3bt4Wkyd7eHjk5OSgsLMSff/75TH8MAWM9WjftZWLssQgLCyMArV5hYWFERJSWlkYjR44kmUxGSqWSli1bRvfv3xeOHzNmjLCxuEVgYKBwPBFRfn4+eXt7k0wmI2dnZzpy5AgBoOPHjxNR643WRESfffYZKZVKkkgkQl81NTX01ltvkampKdna2lJsbKxoozURUWFhIfn4+JBMJiMnJyc6fvy4aKM1EZFWq6XQ0FCysLAgIyMjcnBwoDlz5lBNTY3ec9TWxm+dTkezZ8+mvn370qBBg2jjxo2tzkdjYyOtXr2a7O3tSSqVklKppODgYMrJyRHa7Nq1i6ytrUkul1NQUBCtXbuWlEqlUB8dHU2urq6t5lVbW0sRERFkZWVFUqmUbG1tKSQkhMrKyoQ2x48fp1GjRpFcLidTU1Py8PCgXbt2ERFRQkICeXp6kqmpKZmYmNCrr75KKSkpes/BozqKq6qqigIDA0mhUNDAgQNp1apVFBoaKmyevnr1Kk2cOJEsLS3JyMiInJycaPv27UL/lZWVFBAQQAqFggBQamqqUMcbrRnrOSREndhMwBhr0+nTp+Hj44Pi4mIMGTKku6fTobS0NIwbNw7V1dVP5MMb58yZg4KCAmg0msc+Vm8UGxuLyMjIHveJ54w9i3hPEWP/UEJCAhQKBYYOHYri4mIsWrQI3t7evSIhepiNjQ2mTZvW6kMI/19fffUVAgICYGJigsTEROzduxfffPNNl47xtFAoFHjw4AGMjY27eyqMMXBSxNg/ptPpsHTpUpSXl8PCwgL+/v56P/25p/L09ERRURGA/z1d1ZXOnTuHjRs3QqfTwcHBAdu2bcP777/f5eN0lkajwWuvvdZmfcser+7Q8qXBjz71xhjrHnz7jDH2VLt37x4qKirarG/vaTbG2LOFkyLGGGOMMfAj+YwxxhhjADgpYowxxhgDwEkRY4wxxhgATooYY4wxxgBwUsQYY4wxBoCTIsYYY4wxAJwUMcYYY4wB4KSIMcYYYwwA8B8FdSk8ts+BMQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHFCAYAAAD8Jo2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e7hlRXkm/lbVWmtfTp/TTXNtBBpNNAyXmAQQL3FAExBioqhRR2cU7zp2kofxkkTzi4oRMJL4aBw1OsmgRo1Go8aJZgQTMBMxEcnDExFNvICCNrZcmu5z2XutVVW/P+r2Ve21d59z+nTTQL3P033O3mutWrWup7633u/9mNZaIyMjIyMjIyPjQQ5+X3cgIyMjIyMjI+NQQB4UZWRkZGRkZGQgD4oyMjIyMjIyMgDkQVFGRkZGRkZGBoA8KMrIyMjIyMjIAJAHRRkZGRkZGRkZAPKgKCMjIyMjIyMDQB4UZWRkZGRkZGQAyIOijIyMjIyMjAwAeVCUscG47rrr8KY3vQm7d++eWHbOOefgnHPOOeh9Ohj4j//4D7zmNa/B6aefji1btmDr1q143OMeh09+8pOd6+/atQsveMELcMQRR2A4HOIxj3kM/v7v/35ivb/927/F85//fJx22mkoyxKMsal9aJoGl1xyCU488UT0ej2cdNJJeNe73rWm4zgQ/ZqFd73rXTjppJPQ6/Xw0Ic+FJdccgmaponWuf3223HxxRfj7LPPxpYtW8AYwwc+8IE17ed73/senv70p2PLli3YtGkTzj33XPzrv/5r57of+9jH8HM/93Po9/s49thjcfHFF2NxcfFBv6+MjAcFdEbGBuKKK67QAPQtt9wysewb3/iG/sY3vnHwO3UQ8K53vUufdNJJ+tJLL9VXXXWV/vznP68vuugiDUBfcskl0bqj0Uifeuqp+rjjjtMf/vCH9VVXXaWf+tSn6qIo9LXXXhut+6IXvUg//OEP18961rP06aefrmc9si95yUt0r9fTb3vb2/Q111yjf/d3f1czxvSll166qmM4UP2ahre85S2aMaZf97rX6WuuuUa/7W1v01VV6Ze+9KXRetdcc40+4ogj9C//8i/r5zznORqAvvLKK1e9n127duljjz1Wn3LKKfqv//qv9ec+9zn9i7/4i3p+fl5/61vfitb98Ic/rAHol7zkJfof/uEf9J/+6Z/qzZs363PPPfdBva+MjAcL8qAoY0Mxa1D0QMZPfvITrZSa+P7JT36yHg6HejQa+e/e/e53awD6uuuu8981TaNPPvlk/ahHPSraXkrpf9+xY8fUwcdNN92kGWP6sssui75/6UtfqgeDgb7rrrv2eQwHol/TcOedd+p+v69f9rKXRd9feumlmjEWDZ7pvq6//vo1D4pe+9rX6rIs9a233uq/u/fee/URRxyhn/WsZ/nv2rbV27Zt0+edd160/Uc+8hENQH/+859/0O4rI+PBgjwoytgwvPGNb9QAJv5dc801Wmutzz77bH322Wf79W+55RYNQL/tbW/Tb33rW/X27dt1v9/XZ599tv73f/93Xde1/p3f+R29bds2vbCwoC+88EL94x//eGK/H/vYx/SjH/1oPRwO9dzcnD7vvPP0v/7rvx6ko56NSy65RAPQP/rRj/x3v/zLv6x/5md+ZmLdyy67TAPQt99+e2dbswYfb3nLWzQAvXPnzuj76667TgPQH/nIR/bZ1wPRr2lwzMVXvvKV6Psf/ehHGsBUdms9g6Kf/umf1k960pMmvn/Zy16mB4OBbppGa631P/3TP2kA+i//8i+j9eq61ps2bZpgsB5M+8rIeLAga4oyNgwveclL8Ju/+ZsAgE996lP4yle+gq985Sv4hV/4hZnbvfvd78aXv/xlvPvd78af/dmf4Vvf+hZ+7dd+DS9+8Yvxk5/8BP/7f/9vvO1tb8MXv/hFvOQlL4m2veyyy/Cc5zwHJ598Mv7qr/4Kf/EXf4G9e/fi8Y9/PG6++eZ99rlt21X901qv65xcc801OPLII3HUUUf572666Sb87M/+7MS67rtvfOMba97PTTfdhCOPPBLHHHNMZ5s33XTTqtrY6H7N2hcAnHbaadH327ZtwxFHHLGq/q4GKysr+O53vzv1uFZWVvC9730v6lO6blmWOOmkkyb6xBiLNHIPlH1lZDyYUdzXHch44OC4447DCSecAAD4+Z//eZx44omr2m7Lli34zGc+A87NGP3OO+/ExRdfjJNOOgl/8zd/49f71re+hXe84x3Ys2cPFhYWcNttt+GNb3wjfuM3fgN/8id/4tc799xz8fCHPxyXXHIJPv7xj0/d76233oqHPvShq+rjNddcs2aR+J/92Z/h2muvxTvf+U4IIfz3d911F7Zu3TqxvvvurrvuWtN+ZrU5NzeHqqpW1eaB6NesffV6PczNzXXub6P2dc8990Brvarjcj+nrXvrrbdG3wkhouv6QNlXRsaDGXlQlHGf41d+5Vf8gAgA/tN/+k8AgCc/+cnReu77H/zgBzj11FPxhS98AW3b4vnPfz7atvXr9ft9nH322bjmmmtm7vfYY4/F9ddfv6o+/szP/Myq1nP4u7/7O+zYsQO//uu/7tkzilnZWuvN5FpNm1prSCmjZUVRTKy3Uf2i1wUwf9xdOwfiHKynvXTZtHXT79Nje6DsKyPjwYw8KMq4z5FGsFVVzfx+NBoBAH784x8DAM4888zOdulAqwtVVeHnfu7nVtVHGqXvC1/4whfw9Kc/Heeeey4+8pGPTPzROfzwwzuZkLvvvhtAd0S/Lxx++OG48cYbJ75fWlpCXde+zQ9+8IN44QtfGK3jpgYPRL/Ksow+X3nllXjBC16Aww8/HKPRCMvLyxgOhxP7O/3009e8ry4cdthhYIyt6rgOP/xwAIZZOfrooyfW3dfxP1D3lZHxYEIeFGXcb3HEEUcAAD75yU9i+/bta97+QEyffeELX8CFF16Is88+G3/913/tB3IUp512Gr7+9a9PfO++O/XUU1fVp7TNj33sY7jjjjsiXVHa5q/92q9NZccORL/Sfbnz7bREX//613HWWWf55XfccQfuvPPOde2rC4PBAD/90z899bgGgwEe9rCHTfTp5JNP9uu1bYtvfetbeM5znvOg3FdGxoMJeVCUsaHo9XoAjBD0QONJT3oSiqLAd7/7XTzjGc9Y8/YbPX121VVX4cILL8Qv/uIv4jOf+Yw/Fyme9rSn4ZWvfCX+5V/+xQ8I2rbFhz/8YZx11lk49thjV38QFk996lPx//1//x8++MEP4nd+53f89x/4wAcwGAxw/vnnAzCsgWMODka/zjjjjM7vzz//fPT7fXzgAx+IBkUf+MAHwBjDhRdeuOZ9TcPTnvY0vOMd78Btt92G448/HgCwd+9efOpTn8JTnvIUP3141llnYdu2bfjABz6AZz/72X77T37yk1hcXMTTn/70B+2+MjIeNLgvU98yHni45pprNAD98pe/XF933XX6+uuv13v27NFaT0/Jv+KKKzrb+MQnPhF9f+WVV2oA+vrrr/ffXXbZZbooCv3yl79cf/rTn9bXXnut/vjHP65f/epX6ze84Q0H7kAT/L//9//0YDDQJ554ov6Hf/gH/ZWvfCX6d++99/p1R6ORPuWUU/Txxx+vP/KRj+irr75aP+1pT+s0Sbz11lv1Jz7xCf2JT3xCn3/++f68fOITn4jOg9bBvPGKK67Q1157rX7961+/ZvPGA9GvaXDmja9//ev1tddeq6+44grd6/U6U8Rd23/4h3+oAegdO3b47/aFXbt26W3btunTTjtNf/rTn9af//zn9X/+z/9Zz8/P629+85vRun/xF3+hAeiXvexl+pprrtHvf//79ZYtWzpNDoUQ+olPfOIDbl8ZGQ9m5EFRxobjda97nT722GM153xVPkX7MyjSWuvPfOYz+glPeIJeWFjQvV5Pb9++Xf/6r/+6/uIXv3hAjq8L0zya3D93DhzuuOMO/fznP19v3bpV9/t9/ehHP1pfffXVE+26Y+76d9FFF0Xr1nWt3/jGN+oTTjhBV1WlH/GIR+g/+ZM/WdNxHIh+zcI73/lO/YhHPEJXVaVPOOEE/cY3vlHXdT2x3qxzuxp85zvf0RdeeKFeWFjQw+FQ/9Iv/ZK+4YYbOtf96Ec/qn/2Z39WV1WljznmGP1bv/Vbeu/evZ19ovfzA2VfGRkPZjCt12nAkpGRkZGRkZHxAEI2b8zIyMjIyMjIQB4UZWRkZGRkZGQAyIOijIyMjIyMjAwAeVCUkZGRkZGRkQEgD4oyMjIyMjIyMgDkQVFGRkZGRkZGBoDsaD0BpRR+9KMfYX5+PhdKzMjIyMiYCa019u7di2OPPXaf9RbXi9FohLquN6StqqrQ7/c3pK0HIvKgKMGPfvQjb5mfkZGRkZGxGtx222047rjjNrzd0WiEh27fhDt2yQ1p75hjjsEtt9ySB0ZTkAdFCebn5wEAJ7z7teCD7tpVGRkZGRkZAKBWxvjBjiv8346NRl3XuGOXxC03bMfC/P4xUXv2Kjz09O+jrus8KJqCPChK4KbMirkKfNgDY/eh4fdGz94dxEPRem2dP5R91dd6LKtr9BCZmr0v7+9DEBv5vO/P7Pt9+t7Bxt3zB+O5Zszs575SOyiubT8ObAcW5vl+D4oczjzzTAghsGPHDuzYsWND2nygIA+KMjIyMjIyDnFIrSD3c5AptQIAXH/99VhYWNiAXj3wkAdF08A1mI8ADly4c0BYiGk4qLta3Tlzx7+aIGu9Ued+n+NDhdVx2FA2w7R1wO/DdbZ/sBlE3fGQrJoASK7L/vV9g67Hwb539/Pe3Ne7dtq1WC9Js653e7ovfnBuUgUNtZ90//5u/2BATsnPyMjIyMjIyEBmiqaCMX2fz+sfKGz0cXUFadMC1JSRmOjLjK4Z7UC8/axofCb7caixP/vCKq/Zeq/tgbrX/TVYd79mNX4QruEq+n2g3xP7ZPEOxHmYcUxdxzvrOq36/OzjMA7V9/HB6peCgtqANjJmIw+KMjIyMjIyDnFIrSH3cz55f7d/MCAPilaJWdHa/kQKGxVlrCZW3N99zToH+2p5YtspG8zcxyq6v2ptzARDtfZo+2C9XxjDqvu3Ydqg1dwrq9nXAWRaDtTpP+Cs2dQVupd33mdr6CLd7z6Pza06q68dtJBO2qX70ZpFm0z0YcayWWdsI6/Tep6bPLx4YCIPijIyMjIyMg5xZKH1wUEeFE2B1sxED2thJ6ZmRuz/jbjaiMn93jXHz1fRD0UiJhqhTmh5ku1WHWl1dGF/2aE19wFYEzM0sw/rvbRr6erEyd6YdmfvdF+sxmob6n426P05S3c069lJ2Yg1YeY9t/8ncV0s4jrY0y5MsC0d2VET7we3zSqexa5jY8kFTq+p24YxPZFxSjNVafbfxHF0vOfC58k+reZ956A6jjscL30nxnm1/u/EQYCChsyDogOOnH2WkZGRkZGRkYHMFE0FZ9pEGpYsWs/c9v4wRPuKPuKoKV62lghptf1YTX9WFTF1rMKYnsE8rCUKW4M30rRz1HEMMzOg2GTkHLMgq+rSlL7sx7YdmMoOrBY0Yp5YNmvHM/oxgw2Yuk3n8tnHMsF6EmYkukap1OwAaQk7b+t1Ms37Op9d566rTXOsMbMTvp9kg6Z3aDrjN6EtYsm7bKLv8XuO+3ZWx46vFsL+TJ/XlCXqYtKZODgZXXn67OAgD4qmwD2QWrOJB5X+jLfZv33SB3L2tMHa2u2ihlcLerzRH4iuNmf0eZ8DptX+QVhjyn7ch+42o21WMcCdtBWY3afuzsw+H3pfI/HV7m8//njMGkhM7mdt/QwNxwNUI8rt+oO9vn67Nv2+OpbPHAil6ybTfrNEw9HXnYOg7umgmaLkjn2sZVAxC+n19gGR/Yz0fujAtPPR1cfpAzOzK6W436dOB68T+yXt2cETfXe5Y+8aVE3DQTXWXQVy9tnBQR4UZWRkZGRkHOJQ9t/+tpExG3lQNAWcA5xrdFETfEqEt1ZMRCIzGYc1TA0lSKfT1t9W2K6LRk6p5ninqxPFrjpleEpfZzJsUyPd2X2bJfichZmR5r4ExGuIUmeJTt0UxdR17U/3bZS+HZ0v+vv0CH/VmCGunpZCHjOp6TYpwzN9WqwrgWI1/e+a5p0mDPb9W4MlgRcek2vml5F1KfMh+PQ/c9Ome9yy6GfyfVf/Zt1HoeGY1THnehWsqNtWkX5Fu2B+nbQvgC3JRM4Z4wCz54YxeLE5ZxqcK7jirdyfz+lTfqGfDKKLZT5IZT4yDg7yoCgjIyMjI+MQh9yA7LP93f7BgDwomoKykBCFnDqP7SK1ruWrjZpnp5yG7/c1D073tz/6oY6WJ6Jz9zlNW6QaBGUFm1NT+meIsru0O1HAvz/Hl9IiXe12lBGJ2YDZu9jXlP1s0fZ0BnI9ejXfBomuJ7Qh7uc0vc1a99WBSePOfWjT/Hbh3E8wQ0BCZc0WTHf2Y8b30fHMYkiiZZ3N7xPTdFR0F5ywHkB4J0gVnsRp76JIG0SYGKUCizORLMCpJmfywCgz59r0v2v6nb3f6LPnb7oOtpD2J7qesfaMcbIdY1ZzNsloTYM7f4Y1it+xnDLiHY2l9wsv5L53uAGQ2vzb3zYyZiOn5GdkZGRkZGRkIDNFUyG42ud8PWAiicmU7Fgj0BWF7CsbIo1GUgZoWtq9SiI/GunETA7dV2dTE5iVAWT6b6OvRN9htA1pOzEj1MUQzcr+m9BArEIjMt38jfkGNLAPPQr2ix0IGXCuge4+7TMDaU37DOdogr1bx72wHuO//UV3qYsu+mgGmziV9U00POn1ncHUztQxkT6m1ztNlTc6mKAfSvelCCOkCNu3Wg1Q2l+lmGd1woaxrmnava0cCxTdV+R3xcLONfnnO5HonEh7vusak9c3alaDcfcS7biwpP9UM8SYhuDaM2+CawimJt7HgDnPvNOpMn3hH6yU/Cy0PhjIg6KMjIyMjIxDHAoMcj8t67umAzNi5EHRFBRMofDz+KvTS0gV33CMxYwTj5iiSWaI3rAq0ehwrE4vxJMokRF2wHXPZVBQtmutmGUQqeA0RYHxcXFu1zHMMn6cnuVi7PYDc5Se+0nhzOyst7CyIYMI4xaIpEiTw5ieLVucxV4RPYT/QRjGWVlj9CgmGLOO/Yb9J+tOyUyadQyd67JJ36J9afHWjI5ruFoGbZ9aE8KQzPTaUhurNphgDV0XmLaZrwFKuW1Y9JPqgkID8Tum00x0nxlh4aZ396PbJ+fa6r3s7jgjNxfs8xK/YyIdkVtVAUyy8GJSAEveoZpeFxHrilKW1R8vN+ePfhY0E20GC0bBmU6Y9n1vk3H/Rx4UZWRkZGRkHOJQGpEMYb1tZMxGHhRNgWN4XLRRsJg12pemx63DmfaMU7qe+weYuV6uMcEWAU6TM11j1NUXFUXU9piSsF/7SHDfGRYHEmmGDMW0Xqzp2aZ6kY4G9MS5CgwQc5ox1wb0RKemlvUgDJPfPyPbRFoHBE0J0xO6klnOxPtyImYk4qf6Leo3xNBxzTULGo4pGiv3WdN+JXqOuK9dQhfbX7UPxmviuLtZo32X/GATbfumunQspN21PhfhXJu2AgNJWQ+zUEu7jGlIFbZnSXuCaSjHMHI2cS9PPX5GDofL0A+/bfrZXRfCmtru0nO4T5aSJb8nLKlnXlONE9mUEFcdMM8Vs0Qe5xpcKJJhRpkiPZFtNtFd8p2g15x1azv1fmr+Vgu5AdNn+7v9gwE5+ywjIyMjIyMjA5kpWhUKFnRBBVcRM0M9LXwR2eSzZ4MiZoihTcekTIO5eXswP2TVmvnv3ed9YZbmZzUaKdWVSTMDJgtvlf1imMiS833r2Kazv5pFgWOIyGfphsIWGpNRade6VF/kP8/Qn0QsDmFawgqpDoL+bqPX5DNtN41wtd1HiGApbWDZCM/2WBZhipZlsmYY1YUhsCj7usyEBZnFDPl9dui1UlDH4uj7ruZtm9MYjO4+pe3qie+n3lsz6MzI44p6d5HzqTFbk5VmwEV6Ixbvnz4Vzlnar08YT/edn07R8X46D3MVjIi7htT3SmsW2CbFgveUZtAcPnkrelx0+pOZxmw70e3I3QEQTRHTKGyhViHC+1swwxqthun3x5Msm6YFO9DITNHBQR4UZWRkZGRkHOKgQfX+tJExG/ebQdGJJ56I73//+xPfv/KVr8S73/1uvOAFL8AHP/jBaNlZZ52Ff/7nf17X/pymiKO7Lo5jiAquIs0QT0JOBTbhfeHXTZgluqxVHIxkcCiwSGOUYtrN3qVHovxUlz+Q61vXHHr3Psxxu8QRjpCB1rUfxoK1yEQ2TUdG1DTNTierNMVbKm0jOi+ErUhbdv5Lvi+krzOze9ImuzK+orWYNxHRtlHqupsyRPSnttmJwOR5jzQyUzL14mOlnaP6I0xlEWZ55UTVyzvWj3QsChHLkLpKR5H5FPaws0+OIXHXkGusigEi+56KaeSJOw5yO2pG9D70snRkMa7aMV+HdbocphHIlej8SWCCteQ8vI+EUCiE0R0VQnmGBYBnWty7jr6bpOLQmvlM3EYJSMnRSu6Xy9b8rqWCaoXJKgOANjBK7l4IHcTkdSBskqZZeNpqryxTVAmJ0h5LyeWE/5zSDFKbPjGdOvNPvgMFj8/b/vqIrRaZKTo4uN9oiq6//nrs3LnT/7v66qsBAM985jP9Oueff360zuc///n7qrsZGRkZGRkZq8Ty8jK2b9+O17zmNfdpP+43TNGRRx4ZfX7rW9+Kn/qpn8LZZ5/tv+v1ejjmmGM2ZH8ceoL1Aaxn0JTIoGt9tw39CQTPIqoxitqiDBIss0KCqMl9x/tyoB5BKZhlqrqcu1NWqosxmuXqPW1d+ynqA/3Jp26T7HMf++NMT7ApaX8jFQ750MVsUB1HrPfoZtom4DUqLPoc1xwLDAljxOgX3GeKpdkzKSaqxZM+epaLMgR0W3oMzGlgXJ86DolmT7HuZQyT50hFzBxho5hzMJ88tn1msVENXPqTJT/TdnSykJ6fVL/ThQ7Wybebsjos3GhMhHuAZjXGTtcx+9l9HdxPy2i6h8iKdDyTRLL79ISnmobioU9KseBcjRZcSH/PFUx55iWFm+Jx+2mUQCMFainM51aEum2cg3FAtbZPnPsMPO9flLJF9npo0lewyXtM6/idVNpsu0HZoOLhWJRmaBVHrWz/pPCZfcr2mYK+V9zvekblg42EBIfcTx7j4FRpWx8uvfRSnHXWWfd1N+4/TBFFXdf48Ic/jBe96EVROvm1116Lo446Co94xCPw0pe+FLt27boPe5mRkZGRkbExcFP++/PvYFqtrAXf/va38a1vfQu/8iu/cl935f7DFFF85jOfwe7du/GCF7zAf3fBBRfgmc98JrZv345bbrkFv//7v48nPvGJuOGGG9Dr9aa2NR6PMR6P/ec9e/YAsPPkYJ794SQ64AjeQ4XVHfllLJ2v5oEFYoERahWPmSPEGp4urZFnopL7WmmiVUhufJZENu4791kk/Z3mck0jqxRdLBF1g02XK8WnzsOnfjOTWTn2GDqYLLofqSdFCPG6IQqlUWWXXijt6+y+dzNiri2dnIzVvKS0YnBmylaNYY+vu520zYn7oWsfmk2yOgydrM3EOUJ8n3VprCY8hfwjQdgoe2zRenSfEQtmGYMpLtOpI/h6/xh0+f7oQOFNrBt9t699Uo0TQ+RTRbGvLKd4/Q4fKuXuGkztn3a6HEslKMbR2MV1UZgMLqfRKVv0ComqaAEY5ih9x9D3B2WjFSfPmuu7NRjSXEN5syHj28TouWaAtuwQExrM9ocJ60tklxVCohDKZ5+VRFPUFy36ooneZyNZRuezsQyReYcF5sAx6+mxzsr0fSDgH//xH3HFFVfghhtuwM6dO/HpT38aF154YbTOe97zHlxxxRXYuXMnTjnlFLzjHe/A4x//+FXv4zWveQ2uuOIKXHfddRvc+7Xjfjko+vM//3NccMEFOPbYY/13z372s/3vp556Ks444wxs374dn/vc5/D0pz99aluXX345LrnkkgPa34yMjIyMjP3BfSW0XlpawiMf+Ui88IUvxDOe8YyJ5R//+Mdx8cUX4z3veQ8e97jH4X3vex8uuOAC3HzzzTjhhBMAAKeffnpEPjhcddVVuP766/GIRzwCj3jEI/KgaD34/ve/jy9+8Yv41Kc+NXO9bdu2Yfv27fj2t789c73Xve51eNWrXuU/79mzB8cffzxKLlHYeWiaJZZmjK0GXSxL2oapbxZHt3SfdFuamqmtxqm12RMuuunaPxCiHWBSAyU1h1QhS4SyLy7y69RZUZdeBA1P2CfgI/sk8p6VudGlnaHsk47OQ9AShL0h9KtjN7PqrU1zZE63SxkJPkNf4NiY8EXoaXReVrlv+rnrLKZHF2mGOtaZxvZ0IfXR6bqf3bJUg+W1TSBswYx+u/WidVy7hCEN/lF22WofU3J/uus5+74M1yy6t9L7ibTrmKA0ow4I30eeVUnts9UyXdSHCk4759ycAcDKZLTigR2y3YzYRqI5UtpofVQRmFZltwcAXcgO3ZhZV7r9kHdDyN5S0Czo9VTBoArLKLUcquVEWGe390xRYIYMS0S85IRCWUhUlh2qRIuKvMsplObJ5/jZFmR9N0swwRyyg6Qp0txnya2/DfPTzYg49Hq9qTMqF1xwAS644IKpbb797W/Hi1/8YrzkJS8BALzjHe/AF77wBbz3ve/F5ZdfDgC44YYbpm7/z//8z/jYxz6GT3ziE1hcXETTNFhYWMAb3vCGtRzahuF+pym68sorcdRRR+HJT37yzPXuuusu3Hbbbdi2bdvM9Xq9HhYWFqJ/GRkZGRkZD1Qcf/zx2Lx5s//nBi9rRV3XuOGGG3DeeedF35933nmrZn0uv/xy3Hbbbbj11lvxR3/0R3jpS196nw2IgPsZU6SUwpVXXomLLroIRRG6vri4iDe96U14xjOegW3btuHWW2/F61//ehxxxBF42tOetq59VUKiELKTGZnGFinN0Ooi8u9It6fLXFv0ZxccM9R2RAkKJgpztdkUY5jMmZgO54FE9+N+l4R5cdFRqjWiiPRJTIOOud12PkOGYC3OsP48cVM5nPrzaE0ifBpZJ2yO/3oKlTAzKk9Yj6g9orHpwgT7QDUvXRlXU9qgTJz7vUvJFPkwIdZOmW1Jn9h0/ypgkm2kPwWPmUytY82XSv2OyLaztFC0DxyYqH/FdFw9fkLbRm+BiEFBcFW239OssYn6dgmj4889B5QkfUrPEQv3duqf1c34TWfpInYV0aGE5Dp3L/D43HZnSCrDHFomRkqONINvoo9Om6Q0pGKEtZD+/QPAOPUn27p3AxMMEGFdug+pDAMFmCy11rFFpJ+MsEOMXhcE/6Be0WKuqjEoGwDAsGh8/zhTE1UGKKjnnPOJS9/R6buaT8nE22gYnev+8RjK3jm33XZbRADM0t3Owp133gkpJY4++ujo+6OPPhp33HHH+jt6H+J+NSj64he/iB/84Ad40YteFH0vhMDXv/51fOhDH8Lu3buxbds2POEJT8DHP/5xzM/P30e9zcjIyMjI2BhspKZoo2dF0qLiWuuJ71YDmjx1X+F+NSg677zzJrJ3AGAwGOALX/jChu6r5Aol8bNIQXU5KXtC9TdF4onh5rA5kjppM7Q6zkvDs0wdTMZEttgqBBXOidZFa5JkxMkkyuw6TrqvVFeiCHtlGJzZjADviJL3xZ5pPqlnmrW+811JdQ5ad9dRo4j8exKmxG83Y/9dtcy62Jdpx5LuczVO4F7z4gkjPZF1586J90VyHi06zrQBC3opwU3WInVdZmzSB8ohuo4Th6YnjokeMz0+pVjEglENGZhGqEA/sYup6MokizRjVNujGZQk+9TmeFikbelmD915V5HbdBdbBCgoz7R59ifJCuzaBxBr2pxDtVtu7vtEU+OYB6YSxmyyX6vRWRVcQWiFhhm+2ul86PuSnpNW8+j901imyDwvAtLpjex5c/ojxw65YxZcoypNNlyvbNErWiyURtg7X45QsMDmjFWBWsV/+rwHE0LW2jSk76VpLvoPBhxxxBEQQkywQrt27Zpgj+4vuF8Nig4mXPmOWYMV9/tkUVgr+GPKi7X9+nZQpHRcukNp3jnYoaCp/1RonZYAYSwewMwaMCjNvLha6+mDjMTrLTpmxjBRZJFFf7AQV2VIXiqupIo7ttQmYNpU5axjo+fEredSbWvpSg/YNtJ2ut797lBYeBm70ggiMtdLReaT5wmYPQiWRMRKtwXotQ8r0PWjgULSBwZMnHsKOjg09xU1BQX5Q60iAXVaDJgz7QcH+yosTNvpGgA4CDsd66bLOAAIDdExV+yv55RpQ614cP9kiAaOgP2DS/74+sKtbhDEwjJ3D7jPXUaorg8mmQK+LTdAmTUIdqCDqVS87gwhU5E4ZxqaAcLuVHDV0W53oKU1/FSWO5+xaWFsSuuOoVUh6DOdMlNnftCRnB+hQnJHhCI+D64vbtBHgyfBzUDGCasHRYO+aFFxM0iqeIue/d1h2qCoSxox673M2UE0b9wQobU5tjPPPBNCCOzYsQM7duxYd3tVVeH000/H1VdfHUlVrr76ajz1qU/dr77eV8iDooyMjIyMjEMczjtvf9sATNms1U6fLS4u4jvf+Y7/fMstt+DGG2/E1q1bccIJJ+BVr3oVnve85+GMM87AYx7zGLz//e/HD37wA7ziFa/Yr77eV8iDoikomIrEeRQ0jZOTKMhNiTlL+YLJiQhlbCOUFVmhVRyttZefmIIjoudWGQNIF4WlaaMpn55GXukUy6zI3U/RTXn2UoYIIMVzE6ZoGmjKLmCiLXeuSyGj9Nl0So6WRXHTioA5ZkrFp6D7E1xB63DzS0VS+S1rMG06SyMsKwuJXtFGBSLTMjDCR7bdxX/p1IH3UuBqkqnz68XTRq201glqkjnzUz9k+oMBCXsV2AraR8/+2TZEwppG02PQUxkowbrF+dHx0V9ZLMKl5VwYkz6l3E0/0und1DSysc+WlDy6xlJpf76U5Fb/4HYymXKdpsdHU4q0D6SgasqQmSliwL06VHTKXBmacGz0HKSlW9J2w2fDjjkuUzPDeHl2javomeVcoywCky0n2KiwbJYIvpahdIe7T+KkEFMiGjDvsmnT4iy5npxrlHbaizFTyLUkz5NPwbdlR/rCvGv7osWwqDEQNQCgZNKn1ksiYfC962CHupAa6x5s80a1AWU+1Ky55Cn42te+hic84Qn+s7Owueiii/CBD3wAz372s3HXXXfhzW9+M3bu3IlTTz0Vn//857F9+/b96ut9hTwoysjIyMjIyOjEOeec06nlpXjlK1+JV77ylQepRwcWeVA0BYYBUt6wK44GZLRe6TREXKIk7JDbxrFDS23P/14rETNOSXRFWZBW84myIPsSFtP+piUhqD5lGgQ1s5vSrhdXMhVpKaTiUfS/ryK1VFNUcYl+EbQABVP+vNSqwHJrLPlrKdAosU+zSYCyMYFNoWwaNZd0JnrR+SMsAwO8ELNXtBhUjddAOeFo0GgFHZPgCjphitJz6cTo3OS0e/1AKhJXlNlCYLdM//SE/omKtKkepUv75FgvIUyigTtWygRKNVv/Fgm0O5ZNq8E0YYqXMIquH0BcWsKt6+4T17Zwehlh7CXcdVEq/C4ln2BeGbq1K25buk8A5HprqCmCePd711lREyyfFS/5dmJLg7TNaBlliZkGU4EFUyoYJRqmVEFYs0TBNIopJITWiLQsXaWIInY6eRdIANKW7yi59OfIt9fxrCqwqDxIr2wxV9YRG1R4Rl6hR3RD7r3t2CEO5QXlrRKRDrTgEq0SnXYnKRMUZg40WUeBJbMBBwobqSnKmI48KMrIyMjIyDjEocA3zKcoYzryoGgKerxBJZiJoFh3Wj1gIgUXofR4i6Go/Tx4owUWZR8rtuBg05FhRttNy3nQdbr0KMBklpVbP84UiXUj07KjUouAqCSI/Z1mnKQRo9dAJdqeLtaA9k8wFRXYpREZZxoFnDFlWFbDsESOiXFMgGeKEl0VZWacHoFm3c3qLzU5FFx5HcagatATIUocywJ1W6C2fVIqRPGFvZfSFOWuLDpvhuiPJWY50kyvLh1M2n8KxwYxFjRD6XkwUbr2hTRpRmBZSGvuGZislPlJS8nQ610k+jOH1FCP3mNS80TPFt+PgisId59oFkXUTDNAcQh7LJoH5kMVk9lxXfYS7vy0EIHZwaTebCJdu4Mxct877Q/ncdadyyJzjaYZjE6DlO4DADRTE5mI7jPn8CahYZnrg/IFXgFEzxZjhoGk96DZyPwQ9L1ls8kcK+tYGXoPlny62aF7Phx7PCiMAeOWaoT5coQ5YdLse7z179k0Y1Xa92yjnV4zpPo3mqOxbBEAzxJNK8FU2BkD+n2aOaoOUpmPjcRGZZ89EJEHRRkZGRkZGYc4pGYTUoj1tAGsLfvswYY8KJqCHm9R8VBklYJmnJVMYiBMNDMvRujxxjNJI1WiUXwi28Fh1jw2/T3VnwAkUUknUa0NyVzkVAnZGXkD3dFrygxNM6lsVZjf1lpHjJWLKHlHlEwZA9dudFxEGwIVjic9J4U11/TsVBvfyikjRhkzxnRc0JKsVwgVGeBpzeKikJxqFWK2Qiqj/WpaQdoLUTHVThVpRiM5t4KZ7LOxdMcUjo1TTxpM10ABhi2bzIIKv3NOMiWJdsidr55oA4PH1AR74rVe0rB2neVi7HeO7XMvZecpUxCW0GUhusicenfVSvgsTAA2czMwkmMlonuKQwdti+ITpRiUtv1JPKHcuYwzNbnvO2fhOXB6rcAGqomCwHEZi7AvwXW0bitF53VKWSzHIjq2JmXpGNEjpYZb9JnQMPeJSDVbjhUhpVsc81l1MG1mG8IoJsfv+hcKBMcsttIMPXsP9kXr98GhUYkW88UIALClXMHWYgmbhPksoLCsTGmKZVWh0SLqk9OCAkCjmNdyjlUx8R5M360F0Yim9z0FZwqC6YOnKdqA7DOZp8/2iftdQdiMjIyMjIyMjAOBzBTtA5xpCASXaudN4tiCHmuwyUYzQ258MRaV0RCZqIRmbXAfXbdKRNGKi0jSCHtanzySKKZ0OhwWNDoUNMJPIybatou0XD9q21/HAkX2/HZbmoEiuOrOUHKsV8KIUUbA95UzAIEBSHVMKRukppkrIY5QldU8xJ4t9nyJwCAAVkciyXFpjZa5CFRAqHCcjRRo2hDxU5fdqpAouZzQFHXBs5B221JIjJrS98f0OdbqOGjN0NhMnxaInMUd4+jKIfSLFpUImZKp1oeyOAVTsZO7ZiZLzqIG9aaa1HPRzLCxLDCW1peKy3COuITiDAUL1zgF9e6SOnFDJroveiyz7nO3jLZDj9PoY7Q9RgGtNblHHPthd8+CdibVuSgwcBWYuYr4AynN0ErpmY64EO5kppZU3BRwhfWpsssmdF2Jv1Lqv0VZw25tm2m57+5H7jyDdJTtR5dV1i/I3Tcuizb1F3PLONNYqIxO6MjeXizYd2lpdZx9blj4zWIZ82KEPjOfl1QoYMqZAtfcv4eUZpCIdUIuQxi8RUnuZamZz0gDEGUal3yyIDi9N7j9u6DYdI3URsIwp/sptM7ZZ/tEHhRlZGRkZGQc4sjTZwcHeVA0BSXTKK2+oeQmGRJwzFGIQvu8QZ+1dhuJsSp91kOjBSQYGh3YFedg7TIefMSaZJG1irJKkw8C1WGkUXA6Dz4xZ+6ydMAiP6E0y61VHCOr1XGeQCnrAITIkbI4k7WUYi2MX84AKO71H2mGGz1+Vy+O9tc7RivutUJp/1IYZ1+a7RPrn5RmUSQeR+AKsJohqYwPkWN0ONMQQgW/IRKpS9s/pmNNVXqsblklpGf7Ki59llsjxUS0anoV2Cr3nWGTAkNWCdOO62/KItL2UqQRftRfaPRF260p6jg+evxdmZWtffEX5DlzLueOFuHFZD9pbcBID5dqAhE7T6fZR7T/tRKR15QU8brU/4jui7JGgPH9qsom0tykPkddDJFI2R5lmFmqKRPk3jVeSHZZcn5o+4VQEITJdPcEvYa+71xBMBXpwFrNwex5cSwjYHRBC+XI6yw5Uxirwr/3RrLEyGrlRrJAwRUWyhUAwDG9PTiq3GPaYQ0UGGod/kQtqR526yEAqyOyOiEF5jPOAPiBg7sWQ1ZD8slqAG4d814JurF0HcfOSExqkQR05D92f0HOPpuOPCjKyMjIyMg4xKEwacS7njaAnH02C3lQNAWVaNETzNhlWXZoGjwzJAWWVYVlWQEIEaciGh7H/rhoKXVJ7YrGU80DMJnlQSPqaT4wKVJGh0bXrq+uflTdFtA6dsOmWSQyibRTbov6/ND+0mUpqO+R+0zZKMoUCaYhiWaCk3ZTrYXgOqqxBWDCs8jpiNJtWynQ2mQTzg0zJcugRyitLiYcWzhGrVmox6XjyDVl2holvEdLwZR38q24nGBtAMKmkX0XMDWhepELMMl4UtxruHx1c5dJldQ64whsQJ3o4VJmhrKcdDsKqlVyzsROwxazNjELQxlSmmGUavC6tCD0u7T/054Dek7gkowIG1lyRZgaTGhTUh8w6sDunpnODDh7TqQy7Ch1ZU8z1cJ23X5VqU+VW5ezkDVWiTbqH1g4h7QeITDJchdc+eXDosZcMfZMkWHPC/+O5Iw490tzTx5eLQMAjij24phit99utxxirxwAAEba6DP9u1aJmVNJAsrrnHoRm9/aXcdaT2mv27IMVQecLsn3nTBK5ljMe1bO8F3aSGyMeWPOrdoX8qAoIyMjIyPjEMfGlPnIg6J9IQ+KpoC7cTnTtsrypGMqAM8KAYYxWpEV0RCZ+lwj62g9kkWUXdXl/dKVseW0NFR74JgMHy3zoBOaVYl64jhTPQfJLltpS7TEMVokEbSPXm2/u6p8u/6m/jzT2KFWce9NlLIVFLSvgNU9aIaQ+UT7GbRDbttprwZXGyzUiDJskPeFIVlrSgHjukBtNUbusIXNTioL6V2UHas1q04aZdM4dDg+TrRDHfcH9espuQwMk43gXRTvGBGq6WhVNxPTFy36oiHbKq8Lceum29LfK+I23KXpcexQxWXI7LSgzKqrk6U0Q581U72SaGane16mrevOje8LU/62GbXmGe3SI01m+tl7v6t2FwOgAEFuNKM/CllY7hlWE5oiHWWipU7tkfM4D+e3KxORskepn5UgNQsrYbK9WjZ5n7lrmLLY7hxWXGJTaTLINpcrWChGGNoK9T2bPTa2Gbn3Ek+fgilsKkc4rFgCYHzeXLaZ1BxjXWKkC799Q+6/lCWaeC4Y99mRSodajObebCOGcaRKSF36c+IqFCgYZpey5441MutqU1ftIGWfZRwc5EFRRkZGRkbGIQ4FNjFNvJ42MmYjD4qmwEVHfd5gyGsf8QAmarm3NXPdy6ryc9BKM6zIKopIWyV8ZF6rkBnUlelF4RgfYDJzi3qgpFG4m+vvcsv2x5b0YSo7RTNQLNPRlX1m+hgeOJHUTaP+PF1INVMu7moVn6qPSn1qUhdt6mHkWAPqUhw5SHOFiiu/rCbRII3ITcOkE9p6IxF/JMaCX1IrOaQtPd4WHIOyQc96BBVcGSdo6ylENS9phh71eaHHRFESV2BaRy7NtKqTiuDUI4hWHq+4RI+HzwBQsxBdc63AIfxnCqr18Z8JG5SyQ2ktwa7aWAUz/Sl5cMYeq8LXFaxV4VWkLThqKSLmKPVfovot9x0AbCprLLchQ4o+B455CfeyqalF793AljJopqGU07iZWnI+m0wRfV7Hs+GfPc2i2nem7VhTGNVMIzB9De8KmskmrCN8z9Y7c6y1u8/T9wfVkXm/K3LP9a2GyNUkc3XJ+qxFydooQ9cxMa0WGPAa28rdAIAjiz0o7dN/l9yEJdXzGWaOOXMMEdV4cma0aJQ9EgisrNQcy8ow+o0W1gMpuKabrDL3/iDXQnP0eMiqdKxRp//aQUCePjs4yGcoIyMjIyPjQYQzzzwTJ598Mt797nff11055JCZoikQMFW3e7zxbqoOd7dzuBcDsm7sNVQTZiiNsFJ9B41mKWiEypgG13F0mGoe3LrjtsAYIWrsYlpohgyV7FBWwdUW8wwM4gwpreG1U3R7wGSrCKIHSjNw0p+ujhUQ67U4NKBiT6YU0TkhjEoXMxTVMCOVu6ui9UyBAoNoNRqrC2olh1I8aLjI8eiEvZkFp+3wxw3jReQ0HKkOTOmQcUTPc8pwOP8Ymh2URvTUTdjtGwCGReOz2vqiwVwx9vdyY91zqY5I0uvC4N2waYalA60sTjVEgsVO6WNZRP0quUZhWYZNRY2edTAeihqcKc8cAEBJKqUrwgbc2w5w53gT9jR9AMByW2LcFv669Ys26E0YAzRCBhzTGBbhnhvJwtf+oro+ep7958hRXUcZXIWIn0Pjk2XX1JYFUOF+SrPLqKaIMe3DWc5iV/fUVZs+/4Kr8F5gJjNxmpdTResKah4x2U6rFhhJ6R2j03YkGEoA88J4EQ352Dv/N1qAM+V1RAIKe5W5ZnvVAIuyHyrda8MEOYYoYsuhoRjzLJP3eCJMkWtHag7JGYT3C5vOYAvrU+fu7VLIiRprRvd2cDRFG2PeaLbPKfnTkQdFGRkZGRkZhzimJeKstY2M2ciDoinwPjgw2Wd9ZqIbwTSWeeWzKwBgGXa+2rkgu+rhiZ8LEKJ1t4y6Nac+QVFfEn8Zr6VBHMEqzUztJxtRUQYiZRm6jpkyDtTHpJEizoJJXJWpzsFpiGj9o5S9oIwJQDQDVD9DNA5pO1onvjNMoyCRLz1/Wk/6PDFybL2kVpNgCoXz7+ECtRQRO0SZL00yitxnf1649ploaeae04xRhkxqej4DmxLrSXQUJQ+LBgVXvh2a3dhHC3DihWWdp3kRou3K6jsGokHJpI+oWy18xmEKx/5E9xOLWUwXgTtmiDJH5jqKcO6Z85NpfbYnAGwuVnxV9Dk+NllC1pl4q1jEUcUevy5FowX2qAF+0ppIeFezgB+NtuCeeujPUXr/hYw30wZ1E+9iccMH7j2FFGcTrM207TjT4M5FWjPzIPPQB0VYI6lY5NQOxSBdKUam/ZPI7PNSkIr1gjBFlKmc1jd3z9H3BmeG1fSsl322fX3FGWwLYNgJ6kzt7oWeZWFGNjNtifWwW84BAO6VAyzLKsr26spiBCwjpHnQNFqGh0JEv6fHPp19UZpH+iPDksYMlTpIPkUZBwd5UJSRkZGRkXGIQ23A9Fk2b9w38qBoH2i0came42P7TWszKMw8+LIM2WdjVUzUUaKgvjuOKYiyrjTzfkMAYR18dB2ixzTjxzs7J/vUOtRecyyNYyTSfpY8ZlqkirO70qwtWp+JZuU4lmhaVpskDIlz0aX7oUxReoxpm7T6OhB0LzQSdhEzZTZoLadNZe2j3VZzLLMSurF94AwV4LN00gw8ygw4r6Yos81l4NlIuyb1oig4Qsag1DzOniPZU5zpqLK802Q5hkhpFi2jrFyRRLTGC8lstwKgZkXkTC5Y0PfYb+w+MHEMnKkJzZb7Pl23JF4wA9F4jYlgCiNV+utkGNrgjFyKkNU0x8eodYGRruzyFvPMsEpbxAqOL+6FrH4MANgt+7hjsBk/ag4DAOyqF3BPa1ijFVliue1NrTOYOjdzpn0tNIn4mUhZRMpk1rYmncsAY+Q5d+fN6VykYmjsudZagzEWzLTtvl3TGszvhSP4agGA5BpCa7+vggVNURdbnNYVTJmh1DPMMyi0vqMSkHwyS4oyPu53AR1l9d4tN2G3NNdlrMrOAQDV0lHvOMGUf/elLBFnyrNDXRoiqhvqOj4KV2cNCFmyByujS1md3/62kTEb+QxlZGRkZGRkZCAzRVPRaAGuhfU+GfoIxWkbXLSzKHuRV0qbZJs5ZgCIHYN9BD/Dv0cQnQvQrbuZhmm6Ibq3VGcDxJ5IDakQbnQjSQO+HQbGWJQJluqIaPsKDFKmnJaB4AqI9BOTWqBwLKFdwzaFz4VQE95I1DepL1oMrfPzpnLko/UVWUb9LVVcUZ7qJxwrmLILtE+031qHKFNrjUEZouRWcbQtn9jObRtqunU4RDPts8io1sNpeyj7RxmA1D8oZYnSfbiMLerdEvo0mRlJkeo4Ss9shu3cc+W+k2AYWafhRooo++jHerPJBLL96LOWZDjVmONjzHPzeY7VeEhxDw4XiwCA3eXQs0Y/bjbjx+MF3NuYbFLFJsWs7ny5LCyfLccM8+MOVyLWlElyjlxWWFftPw6NQijPVgnOIBRhbDXz2jrng+UzH4FIU0ThnkH/TPP4/VPxOPtMJaynW+b8qyjTat5z7j5VxicKQEMcq007HA3C9aeeQMr+1zBbz0wLLMue+V3FjKog1QWAWDc0iwVyy8O67t4KTuj0OgloCEZ1leSdZp3Gl8nMAACM2+532UZDgkV9XW8bGbORB0VTMFYFoAqMUWCsCi8GdGLUPa1JHd3dDCNxKy1oWUsR2cQD4Q+UKy2QDhxSMaZDo4T/Y9mQgpC0WCRACq+Sl130skymfCik4uBC+/VoH4JI0/3hZtG0QcHCtJJU3AvAU7iXtCLrAoin3uz0D10PMH+U/B/05I+smb7rLh/ip2N80coGm8ox5gszJdrjraf/OQr0RYNhUU+049qKylCQ652KvGsZjDvd9aOlPOixjWURieU5mY5kTPuBjkhFrnZKZ9YgmfavSESo6eCHDozSc1wkaf/0/kwHPdP+QDXaBA1Na6a9llkZtdEjRoAC2gcfy7qKinU6bYSb3ltmEnuleSZL3kaDpK1iEVvEsu/jFrHs/7gOeR0ZCu5p+2g196V5UhPI9J6kKLnyA3NapgMw57kq2s4BY6sny/LQ6XChGSS5byQpO0On7NzvhQilO5xJIxAXbk3T9dPrSeEGV3QQ5PoNAEoJ366ygYI3PNQCJeDFyekgBFqYf4j/YHOmAU3sBJiylg12Ght6QmSfDnxoW/Q7CQ5oN/Vn0+07BPsSzO7HGk9yCc762GOL1Lq/AXWbp88eSMhnKCMjIyMj4xCHRGCL1v/PIJs3TkdmiqZgJAsoWRqqGKbQK+DoXxaV9nBo1aSIlk5XVEJG0y9dvhPTojWge7prGiImiUwrTZRkIOLPWfvWlsYPhpLw0ymMx1M6Y1lMbEsRp7THBWSdkNj9ToudpiyQgAZ3UxnCiVQnzxFliABgoRphvhh5wzmKgsvEhM8glNyIqfKu6ayuwqPKToG4Y6iERKu4P1eSpEALayZJp1ro9B29j1x07PrVksKotCir62t8TBzpfKiYsi4Qs0Fdqfpd6LJIUCR9GhreFoAzU4TZQYJBWhahUQUaLSYKcrp2G4Rp60YLNKzw645UiSXVw4JN7x+ycUicKPZAEAPBO5tN2N0M4ylwe26l4hGroxBP9wLhXjbMKTxr46bLU4bULWuSz1FJHwTmSCoOiMBqdD1bXVN07ljcvdHn7cR7iiJNs6cMwyxRshFdC8+se5NJUgLIIWUXKYyImk98R6fKIsYTsTlmyhbFx5KWBImn1/wym44fWMUxBFO4h83Zdsz90OjZlgSHIrJ543TkQVFGRkZGRsYhjjx9dnCQB0VTMFYFtCpQMoUW3anoDk5k6Ap3umjMRIfdYsYuY0eKVCdiGB2rMSG6IIF4vQlzRY0otVtFxUtdSQBpP7MopV8q7iPYVEtBozKX6hvS6tmEFX56bBQM2kfb1PSxYOF3dw4o85DqeZRmGLf2WmjuGaLKmjp6kSkpZWHa4v73kSyx3Fa+Xaff8YacUkTXM0p5J+v5baGiZTQCH6siXEce6yeKKefBGS4GTZE5RleERqlgalnxbg1L14vRmSxSzCqBkGIyDbqbBRDQANEmCWgMrBFqySQkOJYtK7ssKx+lS5hnKzBZKvJcUZoBzOnCJBRYYCssGmsgOOKlZ4ZK1mKrWIwYKlpolh6L4ApKMZ98kIIWh001O4yZVH7aVsSipSJn93t6/joE/9S0kPbXaaC6dHYp3LM17ZrzrvuDPD9un65QbygRItBjTWB/EYxHFeJ0dprunur0UjF/zDhNljJK0/nTArJOU+Rek9OYJaU5RihdByER3isll6jb2e/xjUQuCHtwkM9QRkZGRkZGRgYyUzQVjTbZZyqJnEouLUPh0konzQQpywDEmWXUJC4q++AyWyKresIw0SyyJKqkSPtDM1WcAaM3kGPaFHa1mgnGQmQmFTfZcyTdNE2HD585pGa+aKpKLAMmtA3kWASPlxUsZMgUXKGWwms6aAFTZ7jmljkGp3XMksKEwaHrU8XL6Fy1SkRMUK2ET7NPmaLIzM9eI3eda5tZ5ZanRTT7JF151BboFS1KLaN1aLtdbItjiRxDFEpjmG3HKrTnMqrSwr0Ok+aMkwgp0VR/Mp1NoG0DiHRo5hglelTLQqJ8CY5WC89OllxBOoNQKIBxcJD+TtFymP1xn/HUaIG9qu/T+5dV5Q0j5/gYQz72zJEzE6SMn7duKGpj7tmadhbrXpxRyLS32OjSmlF2iJp1progut00hrYl8azP+gSPMhWpvshtm1oBhHeMee5KwuK5TMQunZkCQ+Hfa0Sf4xhby8o1WkNyhh5c1piaeO/5/XWwO45VElbbQzVFjt1xbCLVm6XtURuFWaDbuHeMKzS8qPumuKx95xR2FmBfbW4UNCZNe9fTRsZs5EFRRkZGRkbGIY48fXZwkAdFU9AqAaaEn2B00Ze0fh0uWi4QsmeULlEwFUUlSjMf1bVq0nRxWumOLqNHb9jGmI+m5ZT5bL+uRuJjlGZ/Ma9DkpyBq8CYjJvCs0zOB0h1tMtt9pkk3inRMXZEJ86MTmtlMnSI1sKxQZVo0ap+dM6G1ltoIBrUqsCS9btxhTtd1LbYVFEpkYYUdV1kVaTposyQMcsLL45GiShCZkx7Bsq17Y/T+7k4PUXwVeqLNtKJ9Ys26m8atSvCOCqwxJBR++i9x1uUXIELc15WZBUygTTHWBWd5TcAw9pQBkgiZiXKjsKa9JhTBoPqfQKb1sVmkvOrhS9Z4ZgrX9A01YoQZihlFboyrYTdrftjMrbakGX0sGwZoZEw5SRcwectYhkLxQh313O+XXfu58sRCiax1BqDwYpLLLfB7FNqHumNtGao28DCUqTGom59wGiTprEpsCVrouwwsrhLP5RmLrq+FzwUeXVZnxXxAfKlOywD499r0FGx4B6PPb1izZqKsnUF0/56u/ukiwkTMP5KjgVyLFGXF5HTm6WGjLQffjut/fNFv3d6M+dN5LCsqqBxs4wR9YDjUaGVjAcC8qAoIyMjIyPjEEeXhct62siYjTwomgIa9RcsuMJ2MTPU4Rgg8/422q87slVchERZFZphRt1nnRapk3Gx1vMp+yM7vHYcI0SdpyOfoBaQ3DJQ0i1z+iOne7LHrALnoKUxBfOfbcaLa5aWJfD9tv4tbh+ViDO6ABPZOj2HOyfuXK/IErUqomiwsuUIHJz2w3kBOflSLQ1L5NihsQxZYDSLLuovzUCyjEULjlZyz2xNK/cR2lBQRPeQZvTEpTIUeOLf5M4Jjeg50+ixxi8vmcTYaWdk0D6YZaozSgbMPSygSTaOniggO/WcWIaHugL7TCjoKKvIOFqHNkqSnVkmbdDtHGLNR6LZSUo40IQixya4/bj+jVWJZVahLwJTdHR5L/ZU1q14VER/SDYVNQbWcVshdoFuFUctrK+SFFhuKowaksXGlX/WKpgiwb5/SZmaadoRrVlUEDjNTATg3zeuLIlD7IQuI3dzl33oj5WF91oouRHKryjNvdNzj2Q5tkpgrONrRP2wIiaSI3atRpyBSe8H9zNoOQNbD63Q6OBLJcHQqKK7eLVtN2wb7kuPqPQN989Tq0TyzBh2/2DpdCR4Z5HctbaRMRv5DGVkZGRkZDyIkB2tpyMzRVPQag6mOaCMK630UaYCiG6oVSzKTAJIBKtN9JhGcm5dWiMIiDPOAPjMqrToaEqBdhWCDJoi5jPIjB8K0LrN3WZOe8E4uMuYs1k1QfuTsEPE/0QDcaxk1/X1mSSLmBgw44INmHPbKySqghQ0pT4gpHZcLQXulkMAQa9TEGatldwzKJRhGslYU9TlKuy73sEEas285onuM7hcO+1F0DC5dWkGHP1Z8da6JZtHsCAMjjmeSb2HWU/abLMQQU/LfimZRClkxOgYOBaHet0kjAzRjLjP9P6mmWuOefGeQgm7w6GjTLCCSc/q0GNx7M1qxKD78r4yz5bTwkzq75yHEWcKsLWsAGCzWMZmsYzDyyUAwJLs4a6x0RfdWw8gNcMmyyrNiRq1LOLah2m/uGNEgxbP9YWT+y/1OHLnh+p4AADMnJ9Whecnhbs/W8kj5jXNlGo1938ARJKF2CpBtJEqcn9XYChZ67MbS06cyPn0bEd/TjzrKSPWLq1txomDtauLRllO73YO43TeuKK0Ngs0dq22mWrcskSuj/a5o+07bo+T97z73CMZpEu6N/M4NxobOX2WHa2nIw+KMjIyMjIyDnGYoed+OlrnyaF94n4zKHrTm96ESy65JPru6KOPxh133AEA0Frjkksuwfvf/37cc889OOuss/Dud78bp5xyyrr252sVWW+IkHEQz0UXXKLSLvuMTfjYQCCK+B1abRgkzzLYjBPqaUSzWtx3KRgzURXNnqKZYXUr0DY2krXL0kwYB8UVOBWyMAalHVMU11BjNBtOT7rmms/dO6J+SP2yxVw1DowKNGrpHMIFFpvKa4NGbem9kAqh0BMtBmXjz1+rOSpudTTUEVorjGUB5f1v0ura2nMmdVuAs+CjpDVDIWRUaZxez0rIcM2UYfRoppj7veKtjTqJIzHRbaTu00ozz5hRVsawCHH0n8JF7QOSxeUwTVPg/H+CpiRej97XwuqYUpdinmgx4vbNtsMkU4lCJro5qblnEUwfurV56TEC5uWf6v98fTijXvHHNeYy0pT0WIMjyr0A4LOmAOCu8RzuWFkgvkVj9EWDkQwu6u78jdoyYnfd88KJL5fTEElt9ETu/pQwmaBmO3OMgVmV3vE8HBfx1Ep8iaJsSHJv+u/seeDa3I8NOV7HDlWinchSNPuj+q9uttwxPu5zj7dxRhm5vlRP5lgiyuDI6N6I74WxKr32yfSx+z43PkMFYBkfqYVpu8t3TovoPvZZlwjrbgR7s1pIzaZmG6+ljYzZuF8NG0855RTs3LnT//v617/ul73tbW/D29/+dvzP//k/cf311+OYY47Bueeei717996HPc7IyMjIyMi4v+B+wxQBQFEUOOaYYya+11rjHe94B37v934PT3/60wEAH/zgB3H00Ufjox/9KF7+8pevfV9M+ewM83uI1GlkIJjGXFH7bWpS94cLDU5Sbei2BVRUcdsxJTSqc1GKtP5GTnOg9fTsFAfHqMiWQ7Wu6rP94cgAp+/xn+M2tApRkJIcWgW2aMIPhcFXqmdcGe8i7iIrL8kJ2WuJHsf3W3PcPTYaj1FbYtQWJFuOoW7MLVsWEroKmqy0zlNPtHHULrk/vrlBjYpLtNw5cIvo3Jpoyl6nRLMROQJbJqglUXLFJfpWH2U0RU4rJW32SoiYKbNCPxtXZ5KlhphBAgsPblfNppKySmlNMk0qtYNPbs/csZiPMon8gaBrcqB6IiCu15UySC76dwxZyg6571JMME9Ed5NCJRF1ON5wr8CyOxAmU8y1XzIJLjT6zLBB26rdGFoN0YA3uH1lC/bURkvSKu79pwCjeRtZVrOWApJkXXKuJ54Zn5Fn62dpslg612ShAB6ug1Rx/TxaT89pD6fprWgttvTctEoAXEaaHXfdJjK/LGvothVJm47NNPuUUzMMqX7I7TP0y/CdlClqCHMjWGBsFRgaJWIH65QRIXXxgJgRS7Mc6bNn9hnumwbCM47uWA+Wo3VOyT84uF8xRd/+9rdx7LHH4qEPfSj+y3/5L/je974HALjllltwxx134LzzzvPr9no9nH322bjuuutmtjkej7Fnz57oX0ZGRkZGxqEErbk1dV3/P50drfeJ+w1TdNZZZ+FDH/oQHvGIR+DHP/4x3vKWt+Cxj30svvGNb3hd0dFHHx1tc/TRR+P73//+zHYvv/zyCa0ShYmOJjN8vKM1iYoq3qImFbZHskzaCllk3qWYkWXEV4RGK4xpaOspBCSVpZORv8sS887TpDZTlAEG+Cwwx+gwonfQihmWqXEsEwMhLKAZC5Ih1y9LFjDOoETQQWjFIraKcQ1tj29R9yAVw6C0LtZF61mbpbrCaFxGSXKKuGYbTyGrnZICSnEIy+y0BYn2nJbIMTGKY9wW3r9IqqA/0SQq7AJn2jNDfdGiViLKEpxG4DmWyGWvpEwRjbzTmlOmbaptkJGrrmDK3xOUHXJan069BIJrsIPU3LtGh8yj0L80YyxUZQ/+Nb5tsow6EbuXs/eUSXRDUf+mfO/6nmqwvKMxYrbEnTsa4bvcRJMBFgSse6VEjzeR55FjNg6vFtFoDqU3Awg+WL5NJTBubQZUa7Idw7MH+9Ppz+KMNaViFsAdm9vesSLp/clZqKHGoU3mZ7pOyjTCXNdIwwgWnR+AE2bI6HnccgWGihkndcAwh652nOTGRd2dTw41wRQJci8AIfMtzQKLzq0WPmPQHQd1VqeasE4xMbmvG4go0zF91iVhfl0mm+tTQ7MwoW0Fg+n3acb9D/ebQdEFF1zgfz/ttNPwmMc8Bj/1Uz+FD37wg3j0ox8NAGDJ/I/WeuK7FK973evwqle9yn/es2cPjj/++A3seUZGRkZGxv5BgkWBx3rbyJiN+82gKMXc3BxOO+00fPvb38aFF14IALjjjjuwbds2v86uXbsm2KMUvV4Pvd6k30Q6f+t+H4gminwEVBRZrEB7lkdphpEsJiIRIGSK0PpbK7SOkuLe3TplqRhxQnaDPhdBttYZ1/vtsJBuxriOmQxtWRz3WXJfXkpJDrQcqBN3YKsb0oX2Gh2tEIRKADRnZl8uYKOBFDPr++y4FY5mVGCpsjWZqjbS8XCuUNfmNlUt95qmoiehFEdjd9tKAaWCk3eaQUY1Wc7xl2aNUd0SAAjLcjWtQFlIfy3axO+IZp+lNcE40z665kyhIk66EgzQcY0rX2PK621iLQxg2K4eb9FjwYcJiB2k0+9SpFljZl8cYMrXC3PaI8okUVdgd0wOtI/UX8b97iL5Jsno8fsm7XYdi+vFNB1RFyjb0BDtktTMe9G4fimrwbtHDzFWBTYXK37bvbLv1+3x1md4NVKgJi7RPdGiFSQDSsV+Ye47B7qM88BvcK7RK4NvF0D8rYo2csLudKwm7F5c7yx47BQ2I8xnn9mMRupwPXBaKtEY9sfpIZnGUDQY2EzCoRj7rMJGC4xV6Vkdx+hQL6q0nh69d+g1o3qzkSrj9ygLrGajRTc7ROCWNxqAjnV3aaZaYM+4/TvgsgIn3+O843gOFBRhAfenjYzZuN9OMI7HY3zzm9/Etm3b8NCHPhTHHHMMrr76ar+8rmt86UtfwmMf+9j7sJcZGRkZGRkZ9xfcb5ii17zmNfi1X/s1nHDCCdi1axfe8pa3YM+ePbjooovAGMPFF1+Myy67DA9/+MPx8Ic/HJdddhmGwyGe+9znrmt/Lqug4i0GosYmm2G2IFYwFOMoehjbqGhR9icqjbeKR8xR8JdpvLcOAIzbAo0UkWaA/i4J0wEAtY1snW7BszZJJMEIUwQGwxxRhqRlgeXR8L9rDbCW+RCdSWY2dXbYbWCCjMk3g3aaJKo3AgDCUGlmPrMi1i+1I8t0jUo4kZLoSRSlhLQ+S7rh0NKux4Ax1yiU9MdNs89c9p373dR5cyyQyY6jddx8X2CjRxUOBQju1zSLzd0jNJpXCLXuiiLJptHBtbpkbazBQfAiaiASrQ+tSN5GtabMcj7hCu1PfZT5FWf/pNk+NCssXYf61HS1nWpAZrFIZv3AqKTMED0Gz+R0ZMGlSDVZNNsszejzmiJbe8u5MEtlKrovSsMeH1YukzppBVZkhd1jwxwtNxUY09jSGwEwLupBf9IDwMl9pNG0YuL5BAwbWghFMtXURKaaZ40xyUa6Gon9oo3qmfn2E12S+67kEiUCa5hmQy4UI/+5ZcJr8nqixYDXXkfUZ4GBEtAY8ho9u6yxPkA0k63L88gcEw/O57Z2GX13KvDIhT1leDhiVo0yPn4fSRth32Fdmm2W+iMJaP8sNkBwxj4IcHq8/W0jYzbuN4Oi22+/Hc95znNw55134sgjj8SjH/1o/PM//zO2b98OAPjt3/5trKys4JWvfKU3b7zqqqswPz9/H/c8IyMjIyNj/+CMhPe3jYzZuN8Mij72sY/NXM4Yw5ve9Ca86U1v2pD9LRQrqEo5USl8c7GMsSpxZ7MJgIksXHaT0hytEp79cYwBrVsU9BhGs+HWaaxXztjWKYtqi1kWxLEflEVizOgPXCSpuYKJUG10yAHNXP0lq69pQ2YaJPPsC5PhgWEAUnKAtcz7DYGx4HekzAbaCVIcG+UiNhF+Z25b2z9WKMMkuawyFZirthaQZYjqtAwMlG44Gl1A2iwzxpXxhbLrtjIwQ1JyyFYEZkgwyxSR43UZeE4rZj8LoSB4iOIl8ZNJa6d5zQVhjgqi35krxj7aLriEVEVU28lpikouI/1Hq4Rvp6tyvWAq8nxxka3P+qIeQoRVcvs1fVUoERg9CRZF9PvSTajkZplgkbx2KXYipn4zqW+NBIMkGUc0sy51eae6Ehfh06yh1MmXZlZR0VurBBrN0TLTzx5vsUmM/f6XZIUl61MkLfPbF9ZVndFn39a0465dbmsOxllkDvSzUhzu6ktmWCKa52bczk2f+6JFn3hhpUwRPQ8A+aPYQbiVLNQdHPLan2vH1jiN0VDU4ND+GjjNFQD0eROzQUxG9x+995rkXnDV7d2yNKOQY9JnCbCsF5qJbETvyq7je7dkwaE+ZGa6rN+YjUl1RHQmQGkOwQJzdKCxkY7WZ555JoQQ2LFjB3bs2LER3XvA4H4zKDrYmC/H6JWm2szuZoixfcjHqsQPx1uwIisATmhnli21PZuibYXBMFNetKgjpbJbzb3Z26gt0LTCD3w0Gfg4uHR0KUOafVVJFCLY+wsGNAwo3IPLwrSbas30k7bp8brlRoftnmlJBkYMJn3eL2NmUOSqnDBi9sh0xCJrBmhBNmYI6rWeBK8klJsSkwyMDKCY0MFk0syR+UESnVIw71MOqZ2dAIOSGqjg15XuOJUVkJMpRmqUx3i4LkIoFETI6oqfuv5VImw4KGtUIi7cWnDlpzNo6Q435eX+6IQ/5vSPM/x2Pd56kbbgLXrCGUIqCKhoiokngxfXUteUl0gGRNMGPqX9AzStREiaYED/dtBl00D7nBYBpQOWcJxx6r5gCo0SYXqtY3/hj6SCAJsqMqWC+MZ5urgpEi2wrMxNtSLLyGZjUDbYVNaTf4xhBsyx2N8YjjpISWwzrIDWBzaaRUaqHKEdxkxpmXCPBfG+0swIpxPLjoIMxGla/VgW0f3ZE62fwpUIBWpLJrGJj6ISLVQ2wKH9VJovCjyFkXDTaW4das8AEENLOyiiqf0U9L4sSfFkd2zm3WDPH4sNd4Ew0JNWTC3pADqZLqN2Eu7+CPu5fyIXhJ2OPCjKyMjIyMg4xJE1RQcHeVC0DzRaYEWWPqK/bbQVi7LCcmsodBpdLza9SHhbcQlVxFNknu2xAuyVxkRbTSvQtALSMkVcTMYhikwxcStUHvQaLPRGPu22lgK1LFDbwqi1FBjXNj2WaSMqdsxLOiNifCoNtBFPUxY8Ih64DvpsYVL0tWNRCm1S9p3wWjMzRQaAVxJFJdG4PhQAL1Q0VegaljWgax7Y95YFJqvQ0KUGcwfB9IT5pCbTW7yYnP6hzJMzfSyERCUkEa6b6QvH1AhSdHOhHKMi5UQc3HSK0pwUkjVTCq7AqJvi8dNrUfkDw1AKez7T4qtALEYumfTCViCOolMWo9EFWS9miaghomOjaCkFb94IHZVGcKwQNTyk4Ez5aTNhbqyo71TMnTIMgYWLpw0bLaamYpdcGQbRMW32mCQLbIDbp2cB7H5bJczvtoutEn57pbmZBq3Gfl+1Ep49UpphxTK/K02BAZnWFlwFdTfi69Ja5leQ+5eaNlZFmO4ZFo1hJ8n2y23l909tPlrFI1aJslwuicSh4BIcYVsF7lmjPm8ilsgxO+47anbpWRkdpsEo+0dZocaK37vKc/jpsikMEZ1K9ewULR2T2KnQ+2Qcpf2H6276RE1SdVz01jNP7jmw37PJKe0DAYUNKPNxP2a3DhbysDEjIyMjIyMjA5kpmop7mz6qpsI99RDLbenn5ZeLBiNZeNO0ftGG0h2aRUVeh0WNYVH7KGR33ceiE2kqbopGynhc6rQu1MDQiYZ9wVWmUFh9wlxV46jBkmcnRrLEYlNhVJhLO4pKEZRgDJCuUKvgkWEjHSIz54pI2CAwHZFFLuhTlYLuKbDS6YIUilL6lHTGQikRbktziGFYVhaSmNtxb9Yowa2Wh5F92h4IbfRHVCdECtZqjaBTspYFlBkyBWtdH4Leo1+0KEgk7jQZLuIvuMKwsKnIokFBimg6y4VNVpCaanZSuwYAXsQ7FHWkpzAHEZfVAGJmxaFk0hcw7TJsDGJSMbGti7xd+YUyiXq7irMqMNS66BDKTuqjwnHHBnj0eOh6keakY9/UBDJFQdriYP5+VpqBgxFBrIrYH6WDxqS1UxSc0zvdtskUKhHMGxfrHpabCivCPGOCK4ws8+tK7XiTUptA4RhIAUUKMRvRf+E1ReH5dyylY4JdUVfHoLWa+zIzHDqy+XAaRmoQ6+7rPm8iDVF63d06bhlle0omMWRtpw2EMVwM16ZkMnJilpp7ttTpeabphibPP9H+JfeqJNqktMwJTbOPS5nYbZMSJu7cDsQ4MvFclhUgq4jN7PEWXLQ4GNAbkH2mM1O0T+RBUUZGRkZGxiGOtMrCetvImI08KJqC3c0QZV3h7tEAK03l0+4F0xA8MAcjGVJiTRYLx2JT+XYO7y35aEyBobH6opEuUQmJEbH9Z0yjLG3kRjJVRIeZm4skXRabS5f12hOfLSWjbUd1YI4Mu6LBnPaGkjIMhmmhZQk4QjaaJqzNQKG/eYR+ZbU0iqMsJHpF0OEMCqezMVkvi2PDmNWNKeTKSZTsSi5AMbCWB50TAFg2SgsNXspIRwQNyMZlnIWMKBeJu/NQVBJlIf05rkQo41GJFv2i9dEi1Wg4OI2GAvOZhoCJQiveel1CSdKjXWp00OxocJLuPS9GPgIdqzJiQnq88QZ501ii0i7vzMKi2iHEGWVp8VgKWmZBah5lm6WZaUBgiiir4I7d7y/RDaUsUqO6X0lOw5QyRKlhn9mHggLVAoXsTwBRppwzCKwTBsFnZYnW70PpAq0SQSMoBVrFvS4QMPczAF+c2DG/jWVpGLkWOnn2vWUE6aArx9F1PsI5CCwsZxoVC6wSzYB0Kfvhd+ktIkoe72dIss2c3mzO3qudLJ89x2OUXkcEhGwzmmofaYgSM8VZRosT9xu9xxIWViIU+aVp9o6tXY3guMdbbBYxU7QoK1K6R6PlAnWbBxoPJORBUUZGRkZGxiGOnH12cJAHRVOwc3Eehe5haVyhbopIfyK48ixIKwUaayB4WG8FBVMY2ahoT91DxSU2lybaKEgkboq6xoUitWaobCHIQdn4jCdmI0DvN4RQqJMWJAWMx03BJVptmRgZSkb0ClNEdZmUzcBI+EwbpoIhIzSMN5HrMrNZZm4x11BDG5EOGxwxv+T30yiBIfFvoRHoUlNh3BQYW93QeFRCq8SoMvFRCsY72pcSYUKDFxpcEGNKFfRRjFvNEeDNKYU1ghz0awyrxhfWHBSNZ39cUc3KGeIxwxTVJGvM6bccO+cwVgUE096EEUBkukeZI59hlmRiAcE40rE/Tu8DhMwvuo0xyzPLa0IqOMagphoP0LYmI/Q0+nZw+g/AZi6x1jMutcto05PZZ/uqyk01RECXPiUwVSljN81Hyf8k3jMU1ABPWU0O1YVRFOTcriD2JdPa9NcZNI6awj+jwjIvTqukNVAR9pcxHcxY4Xy47HFpPeFRRkGLwKZlZgpiwOg+93gwd6QFiun9yKHQ541nnZwJIwAM+Rh93njdmmOO3HleVj1fANYxQek5d9eV3lONFpEODAgZXq5PKUtGzTun5XxJcLRaYCzDnzfqB2ZYx24zTyCw7cY8knl2clH2sNz2Qnaf5lhuS7TLYxwM5Okzg89+9rNr3ubcc8/FYDBY1bp5UJSRkZGRkZFxv8CFF164pvUZY/j2t7+Nhz3sYataPw+KpmD30gBC99E0AkIocCe70SZDymf0KA1lNQXLosWwaFDYiHmlLbGnCZGFQlywlLHgjyOVAOeKZEE16Fs2quLSshXCf16oTLHGzeUKhiIYoCy2FZbbykeTNGOjKlpTRsQ56SoG3gYvIoBohhJoZtghbf2RdE9B9E3/er0m0j0NyxpHDRZ9VLrclj4jRmmG5brCeMVm6dQCqLlhrVwHvBbI7pwHHREjjtKR/shuy3jIPvMuwIWGKBQ2DUxEt9AbYaEaEy1YYBsKpjCwWWWA0Qktycr3vy8azBWmnU1ijB5vfSQ5VgXGqogYFYfgi2MzW3iNoRj77DROsmn6fISStZ7podsrq+0Jfi0KFZOd9v9O2+O0NYI1U8sEeNbILk4zv4xvkf29I0utJv5HqYYIRGPks5AQWBw5hSnqwiwPJopGC3//+X1hkjly+pI2YYrcs6Y0Q8ljTY5jZlymUtQPGZ47xwYDhrksRND0CK4w5pYtbQo0SkCTzCrfnu1zxem9oKPfqUt+XzQYiMDocKY9U6R0yMgzGWUhq3Eo6ki7VrLWZ5/1WIM5Po7KWdRaYFkZNnpJ9by7dQp3/buW0jIe/nj2kYHWmQ1p26HZZmNZTBQEBqxXnI6zuFKNkfNzkom/0VLbizKPFYwvVdvO7vNGIdc+C7jjjjtw1FFHrWrdtdY/zYOijIyMjIyMQxx5+szgoosuWvVUGAD8t//239ZU0iQPiqZASePhw7lGUUiv83Dus04PwLkGiG+Jc5EFzA04aguS8RHmyEdNGdU7clolzw6RmlqLTRU7ZZNlK7L0RSzNun2MZBFFlsvWq6i29dW8L5E27A+td+aYIAgN3Zp6Z35ZqYHKHsugxXBoGJPNwxVsrkbev2e+HKFgEvc25sblTGOldk6/ZezNpFmsXQLzWW261GA9GblRe28XrtDrtRP1pNx1cd5Ebv9lITFvnYg3lTX6oo0cfYP+yWpzrIZoLAuMZBl0HCL2PxEsZKcJF3mzuE0gROYuo2dejLBZLHuWyWiDTH/m+DjSEVEYnQ3RlHhdknuU2yj65kx5JrCe4gCdtt/1OWKnuqqJEkwUgyWgxV79d1N0RBzBj8fcIJOMEu1f6mJMmYKuorAAZY+CCzRtZ0/bx6ai9usMROMZRq2ZSc603W/axLdJcZ9R1itMBqbPBCP3zbKuUDfC64h6VYvK7tPp3bxuyGrKaMaZu49dwWHKSgqmPfuyoqpwbMw5oVu2lzeY56OIHXK/91ljas1ZNnCkSox0iSXLFNFss3D+QyYidOB/ZMIMAklWGYsZuzTjrOuPurv2zv9orAq01i3bbaOSe4HqgpRm/vluybLl1tS6c+/vkSxRkyoECgxLdQXZzH4eNgp5UGRw5ZVXrmn99773vWtaf1WDol/4hV9YU6OMMXz2s5/FQx7ykDVtl5GRkZGRkZFxX2FVg6Ibb7wRr371q7Fp06Z9rqu1xlvf+laMxwdHkX/AwE0trV5p2AhpPUWYMh4tITtE+7l2rZn1NJL+cy0LLNo1K1J93WWb0ei3EEGXU0uBsasfpEwGGWV/3Lx3oTlq4lqrwKLsFLrfpmgheBl7EQnA+1SXGnBMEdfQnMEJSTQ3GV/M+ShVLQ6bWwYAbBvuxVG9vT4b6+5mDneNN2HoImzR4h44rQ+LnH61NsGhrhw7pMBsllhv2ERMEED8l8oWW/orUR2yWgnssY7hjQqRN2MaPav3AoBN5dg4/RJGwqFVAiNdRtlmtQxOwCNZRtHWgNc+2uZao2Cxm2+oZ9aiz1pfo2yOj9FnTVQ3zEXbfVtLitYdkwk75LAvDY7TIFF06TLcftL14kyy4GdF2YpunUesIYra7diP27/UvDNTySHNwgsRf8zSxGyA8N+Zn2nmUXhmaiUiV+h76rmoTc6UZ4oKrrA0roK/EPHC4lxDyuC/VdoaZDQj07NciqElLFPTCsBanTkNE2WGoOGzI+dEjYVyZNeVE+cize7y/ku8RY+3GDqfLOtLNMfNZ5N9FphUww6ZTi2rKnI0p2yg07HRbRuIsC71V2IanGRDSs1B0kc7fbC6mA4FjkZxrEjTvxVpnl/6TqRoFY90QfRzo4TPIGwLHrmA11Jg1JZYqs1+6kagrguo5YPDvmSmaPX47ne/i5e+9KX4h3/4hzVvu+rps9e+9rWrFjb98R//8Zo7kpGRkZGRkdGNPChaPRYXF/GlL31pXduualB0yy234Mgjj1x1ozfffDOOPfbYdXXoUIHL6igLM5/vvEgKoTzbAcBrgoCQ7eTmnF09I7eutFW2zXYaTcsB/1lNaCscBFcmorHfOUddAGjbChxEb8QlFqoxdo/7AALLBADz1RitFBg3lgVpTW9Yz2ZplYGpUi0H48xnxDChwYQCtyxOWYQIT2mGuWKMeWEi1t3N0Hi/tIa1ObK317t8122BXtlCOq8koaG18lllRV+i17d6il5jdDqW6Rq1hWd/hNVYhahdYliEqLnV3LNpTucV/IVMFlZJzrfTI9Sq8OfZHRt1uK5Ei/nC7GNTUWNejDC00bXzayktc9RnbeQ1VDLpI/GSGe1PiRBRe58i6wHjYnzKnqRaGve708vEFccN0+M8ZGhle4fY9yVE59P8ZgDDBvTRhP6BxzXL9pHhQjPOnKN02vd9odGGfRgTRi/0z7hm04yjSOeUZB7VxNG6loZhbIjDNc1Mow7TpZAYjwufcVYkDutSMTAW3hNpBXulA3tKa63RTE4FFmeYMYW+kFiw9+Dh1WJUJb7RImJYSi79uaa+Wo4lchq3Ia8xL1b8/SmgfEbhSJcYqdJnm4102Vl7zvRBWNfy4As0VmXkY0RRMjmVuUzvh1aLxGMqZBOuqBIr9nl3GsC0BlpoJzBDUvGo0kArg6ZNa4bFcXhmWslN5rG93uPlErrlUCvTHJMyDhT+5E/+ZObyH/7wh+tue1WDou3bt6+p0eOPP35dncnIyMjIyMiYhMb+p9QfHEn4gcfFF1+Mbdu2oaqqzuV1XXd+vxqsK/ts9+7d+OpXv4pdu3ZBqXje9/nPf/66O3MooVe1EFWDSkhUhCloNTcu1iTS4DyOFBpfEVtDaYG+jfKkCtG/IPohty5jYc5fMBVlsTUyjlwdG7XcVIb1sEzRfG/ks6uAUI8NMFGw4ApDy8QwptGMwy3AGLxDtNuv6yIvTRaYsJlgnCsfTS+3JkpzEWqPt9hSrWDRMkU7Vzb7aFsqBs4ViiowJLoy9cgAYNNgjGFl+jdX1pELuOqZbD4HmpVTcYm5Ivj+AMCKjU7HskDBZcQMUf8WHrkAq6iSthIMFW/hKt8PRNAQDcXYeLvw4BNFs8jmxcjrfwTTVkdk2pHg2CsHXt8Veed0MCbu3KbZZy6rKmWIAJNt1ugCI22ZIrseZRLSyL1BiOhTlii4H8Mfg1vX/Zvsd1zrrFHFBDtENTAcCo114E7dqgUUlA7brciYsXDXXmnD+NHsI6CbOahVgVoJjO191WoOrZnXlUjF/TJh73nnNO8d5q3HVotwH2tt3O59/y1z4e7XPXUvqpnGufIZrpwT93rveUWY4GKEw6tFe750xLT0eTPBwgU9Dw91GG27jmVyGjeHka58dtmyqiIvIlqvzvWNPndgCo1dd6RKLMpeVMG+9Jl05lpTdjK6nuT9KHVcs6whJS8aywo7ZriWolNb6favCBMoFUctg46IXreaaYzrAsrqSVXLARYyYLX9fLCsfzZy+uzMM8+EEAI7duzAjh07NqJ7BxXbt2/HH/7hH+JZz3pW5/Ibb7wRp59++rraXvOg6P/8n/+D//pf/yuWlpYwPz/v6WHAZJ09UAZFGRkZGRkZD0Rcf/31a/LuOdRw+umn44Ybbpg6KGKMQev18WJrHhS9+tWvxote9CJcdtllGA6H69rp/QGFUBBCoZamKjbzDI42mWGkdtdgaJmNXu2dbIHgPeRH92SeuxISmiOarx63wutnwAFlMzEaKQzT0gbvHBdljsYlNEINtd1LA8wNxljoGc2BJh4dI8tg+RplQkAKZSIgAEqGMMh5A7llTBhX6J6tzbapV2OuNMfdL9ooyju+fzdGqsSPxpsBGKZo0WaFFZaJarhlA/o1ykJ6VqwqZFR7aKQKz3pVXGLYD9GsOU3aH9NQND4SLplEIc0+5wRDj7eeYXFut1EdMq39PgF4NqhkCj3Romej6DJhBWmW2JDXUAj1o2hNspK16LMaQ8sU3a02QYJ7LYtgGnDZhjrUl3LLnEeM1Mz/7hBliBEX3kYLjFQ5sX4XO2XaiSvWp2wAj9alzAufYJbcuXXtUE0J1YbQ6J8zhZLDZyAphMwfpRnAwj7HqohcqwEQdVZc34wzjVZz1LYWFp2CaBXHqC18nSznLeSYBM40Vix7tqk3xkpdYnebGMc5JqEWkK42n3tf2M91K7C37vmaiUt1zz+zTqfotpGSo7UW+q0yOkTHmM4VY8wV40jz5DAUtfXDUvYclUYXaflpiVArruRG40brmTVaeFaRaoiWVQ8jXYR7w3pJ0axNOl8gVWDwFmXPa33c+XTPmkk7VWgdO6n4VK1SmknYEB1Yq8z70ekWqZt/un2jRMT0t9Iw/04npDQz70GLljDpXCijGXP3ltAQlQRT9M47cMhC64A3v/nNWF5enrr85JNPxi233LKuttc8KPrhD3+I3/qt33pAD4gyMjIyMjIOJeRBUcDJJ588c3lZlmvWQjuseVD0pCc9CV/72tdWXVzt/oqVcQkhSijF0TRknrtQkC2HrG32VM2xLIPnTkncr03tIx18TEiEampzAa1lYprW1ORx89mcaV8Xrbb7X7C1uxrFMRpbvcxKaZypiUt0PSqw1DdR3sJw5DPklusSggc37lZyqJab+mMWLsIuei0Yh882E8KwRFuGKwCM066D8XkROKy/BAA4urwXUnOfhdVq4V21dy1ugtYMVRkqeZv9mj6N2lg/xZlGUwSGy7FG/cI4UruMsoobNmeTzcrps+DBMlYlSiZ9FMpRRRFpwSQKF/wxjQWMPFOUZns1ShAWyfjOOE0R9WYBJjUxlNEZsjH26D7GNjLnWkfZhyUklNMRgdYO4xM1maimZKSDj1KjDSMmEnlll7+MBPN6H9qm05w4/xkAUNBoyPaOJerKIpKam5pwOmYDKMvkGTsA0hlXwWhO6EvcuBSHfbYqZJ+5PjqkrsWtEhjJkKnm7rvltsSoLb1uyPmHuWeEMjjGXwsY1YH5kI0AXN0+DejKaYCMEz4n2anLTYU9Niu0tW75vu9kPW790QCgL1qjfxPOebqF0szXoaP1y9zxu+vd4zGrSs+1gHFXp3q4RhdeRzTSJZZV5c91mjFIkV73ZVV5dmhFVtH6BWSi7Yq1QSrZhyT3Sa0CG0kzyNpEf+WuGf08aoPeqGmF1306ZshlEGrFoJ0nHdcAYY00ZxElJkqrsSwoT5ZxX+Gtb30rXvGKV2DLli371c6qBkWf/exn/e9PfvKT8drXvhY333wzTjvtNJRlXOrvKU95yn51KCMjIyMjIyNGZopm47LLLsOznvWsgzMouvDCCye+e/Ob3zzxHWMMUj4wPBvGKyU4q4ympuVAYyOXhptK7s4tudDQlk1pmgKMAcxGbhVXkDrMvVPdl9QcbRtqdbWtgGw5WpKB4pgizhUGvQYDq+GR4x7qkY16VwqwhoX6ZRpQpfD6oaps0S9DPbWxrX8GALLlUJJDk2jIBunme8W8tqgsJeb7Yx+xVjxEfC7b4w6rIVps++jx1vsWzRcjz/AApip4ZZ2quf3pnYARsuWaVkQRn6hChfJNVlvhomKXPUajZqelEFxHTFEaWQOT+pppKJn2DJiwGg0XzZYsZocE05G2pdEFlq1VcZ3ofIw7M2XsiCsw+V6BR/XBal34rDJ3HLQCPQAgOU53Hmg7zuMm9fuJvLNcxK8FoEW0nybpO802GuvSa3aMFijxSiJMglSMuIDH2iB6TK7WVa0o40c8bMC8hsixCjXJRnPH6Vgi90y00jBMji0A4LOPWikMg2OfY+meHVsfkDcMUljGqZTG40wQd+5E9yl9/UQVZZ72itY/Z8OiwbAYY86yni4jy13vkM8a4O9rci8Ahjkqieauzxp/vyrNjR+RZfTGRBfkWCLvlZXsj95HI1Viqe15Bq+xLJ3P7gT3y7h9tik75LRSrgYZZYbodVM6+LZ1ZZlRR/tGCoysN9u4KdA2wl9fLRm04p4B0oqF7LJCARwQNqNQSQbGtd/WaI8EVNOtg9poaB0qAexPGw9UrFdYnWJVg6I07f7BALW7AsYVmGTgDQMf20EQKaYKALKv0Tpnx4EZ+LiXnXNK0ETw514s46YwFvFO4CeZfSAtVc8AJcwyUUi0hcS9IyPwXBmXkHZQJJY5oBicmz9TgK4ZpN3lYtGH3mReqHO9GvP9MRbH5g+z1gxKKijfPQbG42vthNbAZKQSSl8UWGor3DU2JRF2j/tYqMZ42KY7AQBHlIvY3Td9v7fuo2lFKJsiOQqhItGmGyhKxSA4vPh8oRrjyL5JRd5aLkVCStcf+sfZpxuLZUj70geAHsyUwZiIf9MpADrwMW2HPx4l6x74K81RcRmMFDXzf8QEJGotMFLmHHUVZ436wJSfcgKCoNwJ2tNB0DSBNAA/qHJ/vKhI17VDp6bM8QaBLoBoao1D2wKhod1UIEuL5popMytyJ+UX3H7cXyQODkCR8xLbQ5jBl1m2IitbksPstyAC+FZzk2ovwx9Ymnbdau5/H7cFRnURUuAlh1LxoMifRq3RsCDK9YJbuy4fcf9VLSpIydG3iQGFkNEfNanCVHkhJPpV65MNSkEKwDKNgWiiNHYARISviImqWdrYaS9vFOuNP1svrO6TARIQDBrptRF+exml3af3mALDsi+xUZnp0sRU00+RIQyCpYqLs5o0+jBwpcVZ03ePGfSKaB90WWsTZIDwrgWAtrYDIhWunVamfBNg410XS9i/jnLF/iI0NNNQVnytJYMCDpp5o0JImtmfNjJmY3XhMcGHPvShzrpmdV3jQx/60IZ0KiMjIyMjIyNjtbj55ptx4okn7nc7axZav/CFL8T5558/UQdt7969eOELX/iA8Smq7hYQfQFeA0wCziFflTbwdlmlmsGdxmYkUA8kxMBOMfVaPwUGmOmgeslG/2MBzeDLW7gpOc99CAXNQ4quUhyLSyYak6MCfNlG5pKBKYB5Ct9kduvaRr57K+x1osLNDFuGK+jZKatxXYJxHfqgAzXMhLEWcJGtsQwovGibk2mtRgksNj38eGkegLEFuLNsfYrsmYf/AMf1dwOAL7R670rfnxPGNJgILIQ/BXYKcWinDbdUK9hSGqG3mw5TfhrBGMEt2zT8I8q9OLLYC8AY091Wb43YlEaHdWmk6UwC/bQRicIBJxw213DIaxupBzaJQ0EiGAxKQmY1pIimY1e6SlsozaYuS0XSIzvNkR5D2h4QWJsudE2dgcMzAJyFdG7OtE+J79rWb0+OxaVSu9R4x+wUUODM9YFDgHkhuyTsgNuHYyCceFqRKTw3QVurAqM2TK01UhgTQyl8u5JM0bZS+LIzKWNLA2vGgKYRkGObZNFwsEKDu2evBTCyzwsvIBkwcueDF0jZfW37QMt6AElCgTCMDifn3q0DIErBd9NctJAwhw6mmywuJdRogWVb5DW1bqDTbqlYX0AbJtM+B4uyj8XWpsNbu4WU1XGbt7qYZHYI60SnxFoVpuXSKbJWdQv7AXO9a1LOqK4LtP6aCT/dab5w73DfWfi3sAawLMDH9l06kFCtgFixNiWtMbdVo3V5IK8ZWVM0idtuuw2MMRx33HE4/vjj8dWvfhUf/ehHcfLJJ+NlL3vZutpcM1OktY4MGx1uv/12bN68eV2dyMjIyMjIyJgON/26v/8eSHjuc5+La665BgBwxx134Nxzz8VXv/pVvP71r+/UPa8Gqx7i/vzP/zwYMwUOf+mXfglFQaIKKXHLLbfg/PPPX1cnDkWUew07xFvzz91L6U9eA6UVKhcrDKrg0PbcjI5owSoJbpkYWQvwu0x01b+LQSwDjTUVVRXQzmmononkWCMgliw7MdDYu6UALPvDlwRcJi2TzEY7tuPc9M1poAAOZae8lzBAr2wxKM3GjsVyhnNaw0fM0KZkgXQC1EZgGZUXpK6UJeYrM40qFccdi/O4+95N5vNIoBalj9QWqjEeufl2AMDDhkZnVHLDKu0Z9TFuC9R2XSEUSstkCaYxLGts7Rl2aKEIZTOWVRWlY/e4EcA6/dGRxV48pLgHAPCDZit+3Gz2628uViJ2o9Ei0idxFkonOIGpi7YbLXy5kJK1kUGjWx5+L7xpoVsWtEDMp8w7pCny0eckKnYR9LKMzwMVWguvQwr6I2q6x5maWjS1ZCYdvmVm+UDUUAgsFTXaC6UoAjvkfnflNlKjPX/KOIKZnz2nQUwd992Jdmk7bj+m/I4r6muYgqiUQ0s+S050axyyESaBAjBaEw1oF/jxYMYqG/NwORYWTEO3Qc8HBfDannsBtP2EEWm5Z2J5qbx+j3MNwbRnYZVmqCwTNBC1MRcl57bHW68H6vGGCJUnWTvHurlz6O7HmhX+HgQ6yr2kGjHyO2cKjQr3NmUfpbXnaOk916H5ASbZn9h+wejAaFo9BS3a7MqyOJ1io0zKvRPIax1YObQsZopUKGXk23PXaFmgWGJBR7qnQLEEWNcPqAKQFSAn1SQZBwk33XQTHvWoRwEA/uqv/gqnnnoqvvzlL+Oqq67CK17xCrzhDW9Yc5urHhS5DLQbb7wRT3rSk7Bp0ya/rKoqnHjiiXjGM56x5g5kZGRkZGRkzEaePptE0zTo9YwM4otf/KK3BDrppJOwc+fOdbW56kHRG9/4RkgpsX37djzpSU/Ctm3b1rXD+wvKZUC0RqMDBqTO/i7A5y3AbKTAWlimxkZCSyWYKrFytI0IW4b+nWZZ/05ANBrVXhvNCFiKh0RoLsOtYqg3Vz6i0RwhOtVW52SvpGYmrd4tVyV8ur6WDEujyusK5no1Rk0BXZAIzZoqjkdGb+QgawFo5o0sm1b4bJnlusTySg/ybqMrYIpB9xQau/3OxQUc2dsCANg+uAs/M/djbLbaoB+WW3DPeICRLVtSFa3XS1RCYlNZY740oRlnIWI+TCxjUfawuzHO6rUqwKGxyaYubxFLWLJ6ie+Oj8ZP6jCId4aLbj9jWfoMvILJ2ESRtxBElwFutEQAvPGdY39MdlfMGlHdDdUUUW1RChftU20Q1fO4NHcAWJZlVPyUsj1AXFSzUTGLkGb79EXjz28DAJpDET2KZ2WUmDDa49D+HCowH7WbLLAi2qf5PpiUIkkrl55JEBFTREt1jGRhmCKidQlsFEejQrZZLU16tmMOKIsgJTcMUOvM+2CKfnqdXTBG1S0HI6ys5gxMaJ+tBBayU1nDwMYcYnMwP+VC+QLMwpYRcueAE6bIFHRu/DJ3fcz5MwydsKVQoMI95HReVGfHtfbrNhAYaZcVxifuFcBkGbrr5M0aLfPnnovSLncMJTVo9NfJab+mFGV116tNMh7p8SrNoueDQ0fZU3HR3mDI2LYmQ5DqOT00zLvbPc7SXqs2ZJ85Fr5YBooVBP2oNMvc9VelnUk4SExRTsmfxCmnnII//dM/xZOf/GRcffXV+IM/+AMAwI9+9CMcfvjh62pzTZoiIQRe8YpXYDQa7XvljIyMjIyMjIwDhD/8wz/E+973Ppxzzjl4znOeg0c+8pEAjOG0m1ZbK9Ysmz/ttNPwve99Dw996EPXtcP7C3r3KhSlghhrNEOOdmhH2DbK8BGhDqwM0wCrARvkoVoEihWNuR+GbYsVGx02AJfaWMfDzE8DpF0FMBt6q4Kht4fB2ctIolVQJdAMAReMG189DSdlYRqgwVpbFxgVZuFcr/bGjoDR49Q22qrHpSlnYrUWuo4zqaAZ7l60LM1KCTUWEGOntYBhn+z6y3WJH4+MhmihHOGocg9OHv4IgCkee8vykbi3MVTcSBa+JAhgokPHgijO8dP9HwMAHtm/DbvlAF9bMffhj0aHRaaAu+Wc9wvaVc977Qzgiko2PrNqWZaeYXLRaWnDRQENCYbSF56tg/mj822hUTwCO1STTJuRdlliIWssZYNo/6hpoWAkQtaIfGCcX49DwWZ7mbiSLKa/JNsMGrUqPENh1uVwn7gqkiieGj+yCQ2U03yMpDnOooOV8P2x67p1XP8iDZFlH9y9MbJlOQqiw6EaIqlCpp0r8uqiZKWZ18qplnmvGnN+GZhQgQ6QHLD3NWMACHvKlGFtnQ5QjYXPUuWNYYbdfgb9GoyFgsg046xXSAiuiNZLE92NQMMkOAt951z5Yx2hjO7t1CyUs8AUmbbjsjXuXpZgxrDRnUMkWiBN1mXGgNGV8qDeU459nDVNQzPMJH05keLZ01git1wq7n2ImtZkmknL9slGQEsO5Zi4Iui3lGBgKpjdsoZBjBmcTypT8O8txxRVe91LGZBl0CDp2rzf2+bg+PjpDZg+e6AxReeccw7uvPNO7NmzB4cddpj//mUve9m667OuOfvs0ksvxWte8xr87d/+LXbu3Ik9e/ZE/zIyMjIyMjI2FhpWNL4//+7rgzgAEEJEAyIAOPHEEydsg1aLNTNFLsPsKU95SpSa71L1HyhlPhzGmzmaOQZLKng9j5dqKDMvDdjvFTG6LQCAoX+XnYtfCudGlQxgDNxGGaK2UYxtl9fKs0a6YChWAG29fFYO52gHZMTPSVacMH10QZYudYhuW+NYTR2je2XrowfBFQS3egRhCt/6ciZjDjQcurDsCAOYXVfvrsAJe+b3bXUb46bwHkat4vhJfxMeMWcYn+Oqu3Hs5t2eXfn++Ajc1RjXZ6UZBqLxGTQn9O7CYwffAwBsLwqMir04XNwEAPjXYju+MzraR1I/boI9hPtuYNmfRnHskvMTWVPTUDKJIREORKUvdFzotdHCO2dTZmhZVZHzs3OQdsupZsexQNRxWCJof8aqiHx/qGdUS7U+hIVxx2l8a2LdBm3HMQkVd1oS+P66LDFus/GUzz4L+3P7oRF/yhIZtor7dT3NKdpAmfpjCdokU7zVugnruOgn9SFqpfGwoRlmQHCaV5J5z6DI3RgAKy1L5Fyr65App/umHIcri8MUzLZ9y0LUHKIO2hTWBgaqEhK9ssWY2ww5KXzh6LlqjIKwJK3iWGx64XyBoSJFiI2uyCxzhXG7IMEASfRohOVyWjmn3xqr2NFa2cLDQNCluX1Cd2WnBWYrKgBLmDx3bLSAK12X+gW5dxLVjCniLyUJy9S0Am0jvPu+lhy6YdCWpZvwnZJEQySZ0WGS92dpY/vevRrVXoXBjy2LXDDIvoDs23tX2nfdQWKKMg4O1jwocp4AGRkZGRkZGQcHCgwsl/k44FjzoOjss88+EP045FDPc8iKQ/YBWcLzjrwGovJgOjAkXAJQ8HoeVQLtEGhtZFGMOOw0PIqRmY/mTqijDRPEfTjGwVvLypTMzGdXTn/EfDvmC/iJUC0sR2qzZyJZADNeKbzX2s1YFHEt1VWIphWDagLLAGbm313UzAY6eH/ARlxO18S1oZJGds6/LLBcmg5LtQl3j4a4Y8UwRz81fyceNvgJHt4zzNHx5V2eeSkhUTEZ+e44753vtRLzTGKrpem2l3dirxzg7tawTHe3cxPz766dPc0QreYYuAwfrTG2hY56vI30DCWTmOcjzw7RDJg0WpbgUSFNWlNtpMqovpjz3XGsjdQiuP5az6CxjgtnOhjn4jiSdhF5TTxinObC7WMik0kzjEhmGGWRAHivHL/cZ6Jpf97c99PYCt9n4k0zkkXEKjkfr1YJgNP+EY2S1ZA4BoExHbErEXNgfWr8vexYJc8U8bi2GXV1Z9ap2nnZMA1sssctlGEd7P3pL4lzj19ogT3hwdQMkSN2T7RRH1O4bM4i0dZEP8EtMdGtfKDu060SUIx5vRwwWV/PZZu5zETqPeV+D9mXYVuVMJJpjTL6mbNQ5HkkC8/ohbbcvUzucZfNlmSbjdtQU612mbCWJfKFraXVDLnPDYcilQNMhhlh+wjKPUDvXvM7bzTKRQlHKxZLLXitwO0zowqOdi4uunsgkbPPDg7W5U++e/du/Pmf/zm++c1vgjGGk08+GS960Yuyo3VGRkZGRsYBgNIsLkmyzjYyZmPNg6Kvfe1reNKTnoTBYIBHPepR0Frj7W9/Oy699FJcddVV+IVf+IUD0c+DDq/LUYbVccawYqwhxtp7WQAhG0wJw+Y4/VE7BGQPGFsNGFOxBwZvwk3OJCBGQGGDOqdHAoz+iCmzb8AwTHSfkaaIehgBRk/Ewu9Kch9Br4xLLKqej6AZ096byNQj09C2LV26lAzCbLkoS2hDIHlBFCYUfb46uOYYjwssjc1Junt5iO/PbcWdWwxzdMrgdpxQ3g0A2CqWIaB9Vtke1cON44cAAPaqPraKRRxTmLDOZXc5rKjKszIlU96FGrCMB2FbxqqIWBCa/cOZQp83IYIGw5JyNdO4rR7u3K6LCW8iWj28C5MV460HjKxiNsW7aLuK52ZdIVqToeej9qC7ab1eSZN2wrHVMvaJocyQ26ev6wbt9230RDyI6RQghPbns1ZFxByZjKSQcdQqHveJOGzH5yNmoCiDoq0uyTEfjRQYO58aKdBKjrYJ2zIWmE3V8uj+NNlm5nctuWEZKnue+xKidA8BIFvhPZigjTaFWR2R5izyLAKDZ1sVGPqi9WxQv2i851LBFQqufL0zeg4qLiNdTaM5OFjIgGTBHyqtUaYsp+WYV+p2nWY9uozGoDETGMvAVA5cWp1re0rdsbA8HAP1I2oV9/oeTa6lP2dJG/69YbMJnU6saQVae71NtlnQhmnJwBoOSnQ67zhdamiuoez7zGWbCVuzTozhGXreGlbeCY6ahR7aTcJ8B0D2GNo+g6xnn4uMA4fbb78dW7ZsicykAWPq+JWvfAX/+T//5zW3uear+T/+x//AU57yFNx666341Kc+hU9/+tO45ZZb8Ku/+qu4+OKL19yB1eLyyy/HmWeeifn5eRx11FG48MIL8e///u/ROi94wQt8KRL379GPfvQB61NGRkZGRsbBwH5nnmk/E3i/x86dO/GoRz0K27dvx5YtW3DRRRdhcXHRL7/77rvxhCc8YV1tr4sp+l//639Ftc+KosBv//Zv44wzzlhXJ1aDL33pS9ixYwfOPPNMtG2L3/u938N5552Hm2++GXNzc369888/H1deeaX/XFXdEfq+4Jxry2VtnExt1CFGGqJWUb0c5jKMjuImUvT6HvPPR0BEY6CqeJljdxwjpTmDEiGCYlKj7VnmY1l5zYOugoYJMOyTFjroHWhmTc0ByTDmZgNeKO9UDZiIuahCeMW4hqa6okIbzRIAKA5tQ1RdKrChNhE3XHYOifiFAidCLDqvXUuBvU0PtywdAQC4u57D1moJALC5WMZWsYR5YcxC98o+7pXBe2KkShIFJywNyewaiDqqAcWZijK4wGXEJCkdIvF5Por24zx6zD4FOBga0Grxob7Uiqp8tA2YSJ5mlEHzyGOmsM7OMskag4bPAnPV5VPdTZdHkNMUOXaiVRyKEb0HQo0tx1a4LKeKtxCExSl4qMbuP/usRcNUjWXP7kdELFWkMYHRmDgNVEHqeqWaJ5rJxJlGwRRqBMZOKR4qoUvh6+dJy4ZS3ZAGC5/pM2FZIqdH0TUH6yn0NxnKtlc1UM4Z2zIT4T4XiGpnjTga62DNR8ywEfZYFld6UHOL2FIZJ/dlXkFpw77USqDiEsPCfrZu3Q5jVXj3dcPYtUmtvjjt02UvFkwaxsd+HiMweKkOxp1rSc69c6WueGtZpPAMFFwGFpGFXG/nJUSvZau41xEx4lrdaKMDi+4N5/1lNWK0nplSzLtWS8nR1ja7TJoMQXd9WcvAaU06bTyjAMMUqVL7LFrFzTInu+IyvIOhAdnjGG81f0NUydAOOFqbGCh7DFpYzedBQNYUBfzu7/4uhBD4l3/5F+zevRuve93rcM455+Dqq6/26fl6nSPANQ+KFhYW8IMf/AAnnXRS9P1tt92G+fn5dXViNfi///f/Rp+vvPJKHHXUUbjhhhsiiqzX6+GYY445YP3IyMjIyMjIuO/wxS9+EZ/+9Kc9EfP4xz8ez372s/HEJz4Rf//3fw8AkWXQWrDmQdGzn/1svPjFL8Yf/dEf4bGPfSwYY/inf/onvPa1r8VznvOcdXViPbj3XqMl2bp1a/T9tddei6OOOgpbtmzB2WefjUsvvXSmidN4PMZ4HLIzUgNKH4S5xIae8arwA26SFcYbqwWy24ixyVbz4PDOqdCELYKR/mgONPPM789LdBqA66BX2P0IjnKv6w9sJGQ/c5MJZskV00/HXDFm9D91ZdfVsKIDs5wLND0b0ZUSTGiwQtnPCloyCPtZqxC1iGGLopI+UlOSQ5TSawfSW7MqWx8RCq4xKBofGd/bDLxT7p1iE+4pl3BYaZijRhXYI43zdcEkGiE8iyS10ZdQLcOcFWjNi5GtS2aWDUSDkjBXPRa8kBotMBRjHFnstZdMR+zUkI+xrIiHDPEecj5ELjKXmsX1pUjGjovUqReM9x5SIsoEK4k4olUCPcviAIBk2kf0/vzywAyloOenYCowNkyh4DLyFOKk5pvo8DcKbIVCq0pS/yos49CR3xAAy0jJaL9xH4MOx+tpWOwnpTTDuCl8NlLdFKGeWSug6WnXliXy3WUhO1MzwzJYRpRVCsOFFcz1at+HkWU5lOTWGVmEdkB8uYrQP7lgdUouo7ARGLUFCut+vbW3hGVHObSGLZqzup2Kt9hjHd5TYaxj7LoYH+c7FDF6TPrniTqlT/OWotcw8r5SbJKdJNfDu5EnGYyubZZcO8C6UrcieATp4Cckfbah3cayRt6nqBXQzpeoZUbfRVyqKSHLiEE5G9trVnhqC3wc3q3U401VzLLwQUNEPesc5PoIiTUjM0UB9957b2TY2Ov18MlPfhLPfOYz8YQnPAEf/vCH1932mgdFf/RHfwTGGJ7//Oejba2hWFniv//3/463vvWt6+7IWqC1xqte9Sr84i/+Ik499VT//QUXXIBnPvOZ2L59O2655Rb8/u//Pp74xCfihhtu8JV0U1x++eW45JJLDkq/MzIyMjIy1oMHcvZZURT+b/kZZ5yBP/uzP5u5/sMe9jD827/9Gx7+8IdHbXziE5/AM5/5TPzqr/7q+vuy1g2qqsI73/lOXH755fjud78LrTV++qd/et11RtaD3/iN38C//du/4Z/+6Z+i75/97Gf730899VScccYZ2L59Oz73uc/h6U9/emdbr3vd6/CqV73Kf96zZw+OP/54404tYf2D4GuftT0TdRRGGmAiCxs4irHZpnAsTW2WeTdsAR856tIwRR6NWc9FNGIMz/aUKxrFcnC4XjxeoB2ETZkifahhvZNsVFeEZUwbrZKTBfE26ZMANLNR8UBADRTYwImcAID5TDVeKBSFrWZftRBcYVSbiLQQLQa9xmtZSiGjSLEnWp9pA5iq4E7LQjOtODQWZS/K3HJZVgPRoM+DD5ACg2AqZOUI7VmkIa8x0gUW275vhyOsu7lYQY+kE/ZZg6Gl+PZKs41bPi9GuFsaDZuLzNMq5dTrJY6aVZQhl0bULoqneg13Htw5UZpHWUZKsyg7qeASQ/JU0z4UkcFW3IcuV2/qsi3BAMJOCMRZT5L0gzI/ynoxuX27zDP3mbNQ8yutm0U9oVplqq+7SHfcFBg1pc9G0oBnigAbVTufmjS7SajwQTPohoFZdqAa1qjK0P+6KdCQLDbXtofQUI51oHXRCg2MuWczVMPRKIGeve+PqBaxZJmhXZjHSIYMyBLAJstyOpbQubEXXGKsiogddOevFDUKch1bJew9GRhDt11NMsvMTxU7oyvha+q1mkcMogKDkqW/znQ7l01YEy+igikoHhgomTCY7r7X2vgwuXMsZdAUAVZn5Oqb1Tywe61lAZ2mSLHInw2MZM9q+8+xSkJDjMM7UvYAvWQ3kxpaMNRzlikaAG0f3o+NSYCPMZFpm7F2bNmyBTfeeOOq17/gggvw/ve/H894xjOi793A6BnPeAZuv/32dfVlXT5FADAcDnHaaaetd/N14zd/8zfx2c9+Fv/4j/+I4447bua627Ztw/bt2/Htb3976jq9Xm8qi5SRkZGRkXEoYCOyxx4o2WeXXnoplpeXO5cVRYFPfepTB29QtLS0hLe+9a34+7//e+zatQtKxdHn9773vXV1ZF/QWuM3f/M38elPfxrXXnstHvrQh+5zm7vuugu33XYbtm3btu79yopBVSZCAEyUwBur5YFhZsSK9r+3PQbRhDtPiTC/rSr40k6yROR4qzlQ1KbeDgD0disUK7YO1V0jiMURVk7YDADgjcD4cLPeYKdxki5cdW5bPsr1j0sAlpThdYiIAOJn5JJyyvA7RhxymUMOLOtR2iwdq4nQTHuGRAoOwRWGfauJEBL9svFR8UI1jiLNIvFeGYgmYhdoFfcVYt1t3KYDK2PqQDGyPLA9tF5ZnzfgqofG1p1aVhU40yGjhzBMc3YbWm18yMfYIswDWCcu1q6fgM0+I9XFDUsifX8U494F2tPYTp6iGfgUh4xYc6OsU3H83JXEM8g10xcs1uV09DtimQgzJDqYI8o40Kw5k3EUlqXsWMXhWQfKErnPqVaJ6lq8v402GhNfxb3DJ8dpU5S2GUkyMBCMweuIjNbHaUoYmNDgPatxsuznqDH3Xd3GLtqyCc7jrk6ac+SmbKhWzFzvkWU+hMDiOARfW4uQVTlWBQpeeYd15xkEAHNi7P2wAPNsrMjSPyMFlxOaLPfMLLU9KDCvVTKHa9tJsgIBjlaFrEfqdF4whTa5N2fVC2wV99dbaZPh6HVumkdMEWPBGV3qwAylGiKtGZRkJlsWRgPGqIO1Y4BgftLPWiBce8XAa+a1nWLMQC2YNAMayww1c4aB8hUK3ClR4afLUj4YMIOi/dUUrX2bf/zHf8QVV1yBG264ATt37sSnP/1pXHjhhdE673nPe3DFFVdg586dOOWUU/COd7wDj3/841e9jz179uD000/HYDDApZdeus/KGUVRYGFhIfruy1/+Ms444wz0ej0IIbB9+/ZV7z9qe60bvOQlL8GXvvQlPO95z8O2bdvWrfBeK3bs2IGPfvSj+Ju/+RvMz8/jjjvuAABs3rwZg8EAi4uLeNOb3oRnPOMZ2LZtG2699Va8/vWvxxFHHIGnPe1pB6WPGRkZGRkZDyQsLS3hkY98JF74whdOTFcBwMc//nFcfPHFeM973oPHPe5xeN/73ocLLrgAN998M0444QQAwOmnnx4lNDlcddVVOPbYY3Hrrbfi2GOPxU033YQnP/nJ+PrXvz4x6NkXLrjgAtx444142MMetr4DtVjzoOjv/u7v8LnPfQ6Pe9zj9mvHa8V73/teAMA555wTfX/llVfiBS94AYQQ+PrXv44PfehD2L17N7Zt24YnPOEJ+PjHP74uqwBVAszVPNPwPha6NXqiYmQZnXuVz1Zo5jhEo732RwmgnTPu1YBhmYJ/ECDcnDSAcgno36NQLtlsn7FGuceEMPw7twHDAVTPqO2Hu4DxEY6dYij2GP8kh9HhxCOI1GqTpY2abZTkyQbngbMSvmuGNuvNVf1WAmBA27c6gwUOPbCeOZVEv2wxLE1/B2WDTUXtI/6+aLC5NCIsx8hQxodCQAcWRHNUovX6mcOrRSxajU+jeMQMAcAWsYyaT97Svo6ZS9FT1YTgsLInhUOh0YU/J33eRN5Ce9Ug2k5p7tmLRguUTII7B1wddDilkOBQ3m/ItU+ZozQzzfWRuhQLpiGTWmim35OZQLBMXUu0IZPMUOzkTfVcabYXPWbqaeP74NbX8XeK9pfHLtauX66flPlzOiIAniXy54QptIz7yu9KMq8pUq31raFRcUQlAMEgzPpzER0R1bLQyFzZjEvuMjI5IArp+8DIcTajwrhdS3ct4T12AGBrsYjdNqtxS7kMBYbD7Ivinnbo38ybxBhjXWKZsD+OhQGMt5XLnOzxFgqcOI9r1LLAEowmb74YeUbRZQS6e67VHKO2INeCB0aPTQp004xCeq/USmCltV5o9j4qSJ8oo8aZju4j5wnl3Kzd+VeSmevqtEAtB1yle3tpmXcah2dxgJBNBlgdUBO+q+61x2fPt6qAkZXH6sK8Kx2TxFriYYSQqbYPc+8Nw0Zmn6VZ1rNkJBdccAEuuOCCqW2+/e1vx4tf/GK85CUvAQC84x3vwBe+8AW8973vxeWXXw4AuOGGG2b269hjjwVgtMAnn3wy/uM//mPNvofr9SVKseZB0WGHHTaRBn8wsK8DHgwG+MIXvnCQepORkZGRkXHwkA7r19sGABx//PHR92984xvxpje9ac3t1XWNG264Ab/7u78bfX/eeefhuuuuW1Ub99xzD4bDIXq9Hm6//XbcfPPN+8327A/WPCj6gz/4A7zhDW/ABz/4wYOacXawISsA1gOIqRAtVHcpVHtVEoXYiEVqiFGonbN8pPUzIneylQ2AN0C5DJRLjvHR4K0Gt3qk6q4RcOO3TLubF6COPMw7XDPpdwnNgXJR+/7I0kQ9rr9iTObCYaId756trKOr/Vwuashe2IcsgWq33ZADsg/oObujoUQ1Z5mhfo1hWWNQmoOruERfBO+hgQhsS4+36PEWfcvyLMsKy6qKalxR9+mSKwxsJti2cjdGhfUwaubRZ413j+ZMY46PI1bH1SiTMP5AlHFZkVVgrThHbVNKeqzxfQPg65o5LRHNHpNg6JG6aD3QTD3DipU8RMgCyjtju9+jWlXJG6/LtZgzjQKB/UmZNrpuldQOS9kfqu1yLJFjGQoufXbdZH8UlHXvdvsrufQRP2exDw6HRmVZq8p9l2RJAYGtcAxFJSTalmiVSP8ZAwpBMqKoSzXT0Iz5On5240AOcaJYZYAoA9sjuGEynCxAK9KOMiyRW7eqWvTKcK8ypj0b1IwLgGsoy6bySkbrGmfq8ExU5J7/qf4uw1bC3G8j1YY6flyiJm7TSnNssg+7YeAkekXIVGuV8Nfw3maAPbVhWheqEeaLsdeJLbe9yJk68pLiyrihU2YIccaZ034psCjzrNUcQnGvc6OaMqlNLTt3rpUKPkUciDLIjKaI+4xCBvhsP01dxRF0Po7BYQo+M61YNhpPX8uyNvtx+2qHIStY9sx7Vbm6aNT7DaFtOSkzPCDYSKbotttui6an1ptsdOedd0JKiaOPPjr6/uijj/YSl33hm9/8Jl7+8peDcw7GGN75zneui3h53/veN9GP9WDNg6I//uM/xne/+10cffTROPHEE1GWZbT8X//1X/e7U4cC2gGgezbFfhkolu2LcNFMl7kCg0yFkhrlkoIWDNoOXkSj0TCG1o4dxQrQ2xumx3ijwWv3WaG8ZwX6O9837QoBKe0f+CO3Qg1L9O62hnJlD8Pb7MvsWI2FH2g01jJg+RgGVYRpMNYiMibjMqSUKlsM0Y0BVMm8qFDUpg3nU9hsApoFBb3ZUvWbxpizwuphVWOurLHJTp/NlyNUvMW91oCOQ0cU/7wYYZN9w2wSIyzKvk99pwJeDoWhqP00mWAKR4q9fvm8GPntGm3S80s7DabA/YDGLV+2b7tWi8jgLjLAY6aMAt3WDKrMiRFQfiBTMhlN4ZnCrALKveQZB4fy25Vc+ukyc0FCIVIO5reTtnBnmi7t9smZJiUWlE/T9/0g6fstBBlQIZrKKBOBLoXSLHLdjKfSwmDInTMOTUqQcNCz4s5N2jcA0VRQqzjuHg39NOxRg0UfCLgit7Q/gikvVJek0KgZxKhQ9oHraIDEeBgTiUJBCIXSCqyFHWhJNwMpVGjXinXdYGy+P0a/aKIitSNbQqfuFagBcLtur9eiV4TBjwLz99jmYhmCKTNtBjO19rDeLgDAbjnET9p5YvPAsYQKy3Z6alNR+4GNN/8EmV7j0r/k54tRZHewpVz2g+o9zQAFV9hUmvn8kSwjA07wYAbq7s2u6VW3jvD3BqLvKUo7KG95KAnjBlRucOmn2tzIxevCtR9oQdpFvoyL+eHfgZJ5E13emHe6tylRiT0KGSCBAVpob38i+86mJR6YqPhP4P0CCwsLa9bszEKqLdZar1pv/NjHPhZf//rX97sPz33uc/e7DWAdg6JUdZ6RkZGRkZFxgLGR82cbhCOOOAJCiAlWaNeuXRvC2uwLo9EI73rXu3DNNdd0ZsOvh6RZ86DojW9846rW+8u//Es85SlPiYq13p/QzJvIQIwN1Vrb8huyKlAtkvTyFe1T52Wfo+0zKFsgkLeWmXEp0vco9O+y1PbeGrxuwVYs+/ODHwL9HpiwKafjMYojDzcbrozAByWWjzUj+3qe+chGC2Dn4xiOtNd+vFVDjFgUvdCUUqWCaNxt7yIhpsLUmrbTZY3VqLebJDAnUQ5M//tV46fL5qsx+kWLoSurUYxQMokfj0x/aTq+Y4lc6rszO3RTCcuqitKtSyajKTHHBG0Vi6iYhLRR5l7Vx7KqMCQBqYtW0/RtDoUeKUSqkuUCKjAxUNH2fd5EEXKfNRAkxXysyiC21UFYXnJzHFRgrBjzzFEDEdLhtZ7K0qTnpMcYJLiP+EsmPavQkvR2IJTUcKwdTfU268fzANOmuThT5gZxAn1m2nTrjlUouSFYNxtFpwopy7A46vk07IUq3KjaHotblzGNQpCkhkJCWiNHyeKpGAcXuHKhyDScRllICCfYtscsyLSnK2bsGKJ+Ya0meiP0RevZDXquD9ukgU3wrJebNnLTXkuqhz4zz89mYQoff1eZckS3jo/E1sI4CPZZgz5roGj6Phv4qa2+aPyUp9TMCPG9JQSLy9nwFg8Z3AvAMLQcGj+pNwEAbtuzBZv7KzhusBsAcHczjNP+NUPNCt8uhSkQG85Xq/kEM0RLezgIblg4dy8XTJEyHwxSiWS6SIO5W1RoPyWmmSnt4YpV89rQPbTItpMT8Nq8D6Uv6mpyIaSzXOHEQHdk3rOuJIiGe5cS1lExqINl/rMB02cpy7W/qKoKp59+Oq6++uooy/vqq6/GU5/61A3dVxde9KIX4eqrr8av//qv41GPetSGZMOv27xxX3j5y1+Os8466z4VTGVkZGRkZGTEOPPMMyGEwI4dO7Bjx46Z6y4uLuI73/mO/3zLLbfgxhtvxNatW3HCCSfgVa96FZ73vOfhjDPOwGMe8xi8//3vxw9+8AO84hWvONCHgc997nP4/Oc/v6HZ8AdsULRR6XH3FdRAAX0FNQDaOQbehHRP3nBUNqOxfxdDZXVCqmIRUyR7hoVxor6VI7nN8wd6BQOvS1T3LgIA+OZ5tD+5C66SpZif98IHtWUe9eFDjDebdut55nVAxRJDO6+wfJS1vJdAO6fBbeHDektgqnhtWCIXLGiiPXLbkvqb0BxQlY2S+gqikqgqqw0qZDA/hLbCUaeRWMEmMcItS0cAAHbXA2wpTbpxo4WPft1n851pd5MYYWypLccg+dId0Kjs74Irr/8BgJEuDUtj1SxScy9qbrSYSN8vmYwYoFDU1egWvBaIKYAwPkM+9uJuBaMZ8owU2Z9dwZ+jHm9sUdVQYJWKtpWN8s2BSnCSLk0jfqelCTYDEkNWo7T31YqqfJFUV3ojlPmQKIk+iRMWR2mGgnw2wvDwDEuwCRNJlZQsUYSh8NtpNsHE0XRuWk6iVgL9Mlyn5bb0LAwt8UH36fwmKgDasqfjugQXiBg8pbjXDXGuPGtUCYmqaGmzaKXwJWoYYY1cwVJnSurMLt26SjNwW05irqyxUI08S1ork+4+tqaIPxwfhhN6dwEwmqw5voSH9O4BAHxvdBS+uWJSlH9+eCuAYEzqNGVD69Z6dH+vv1cVOKRmEaPHoXzpDKU5CvvcbRIj7KoXsNgYiqQqWhw1WMSKvbd3rWzy1+iI/jLmy5E3gU2vp9LB9BEACgQxuukXi9g0z/Zpw565+7FVHKWtTl0IgVaKwPYxbawQ3C2g4UsOMcagEcTcLTPvuqIl94tz+RCG7WnnLaupmdFOWjZdM/iSIKxlYC0pGSIm/6ZprqEPknvjRjpaX3/99avWFH3ta1/DE57wBP/ZlcW66KKL8IEPfADPfvazcdddd+HNb34zdu7ciVNPPRWf//zn122euBY85CEPWZflziwcsEFRRkZGRkZGxsZgI7PP1oJzzjlnnyTHK1/5Srzyla9cb7fWjT/+4z/G7/zO7+BP//RPN2wQlgdFU6AKDZRW29FXwWCMaWgO1IfZjI8BR7FiDfqWDNvioo52iKh0Ri2A0VabnTGuMPyxxjyOBABUt+xC8ZBt0HsNc8TmhpDHGaZl+dghVo4QqO3AXvZC9oRjoRa324yivRyypyNDMbFiOuDYLZ+qKmOmKDIxK1xUZaOmUqHstT7a1hoY2QwYxjT6Reu1KpvECFvFEg6rDDu0c2UBd9dBWzbktU9759ARgyIJ+1AmehRBOlsyCcEU+j79vEXDhNfs7FUhxZQzZbK/CONE23MZXAAw1iUqHeuY+qzxDNU8X8FeNrB9Zb4fAFDKOWOIZ3VODQtaqZJJSDCfMCNsSvZIh0fQ6S04DFvlmCTKlpnUdx6xTENe+yynsSpIpppCKZTXuvjjTjLBAKNpohoiZyfgUsHlhN6IE9M9gRUZGIRG8yjNvotZcH2qpYhYhrmq9p/3jPtIQbVAnGmUjs0SAGfufiSlPcLZjbalxYpLLqP08p5o/fKKh+0cc5UW1vWaOQZf6HhYjH2qPADsafsYkZI1e9o+bmch7fjossWRhXlAx1WJH4zDMspqbi5WgD6wxwoBDyuW/L0wUqW5dxxjYgvC0ixGd5yLso+SSRw3NOzU5molYgqPGez118iVH/EGjOR8AYb9KUhpm9TYsVUcLQtZaRzhXJttAsNYW5ZTawbBVdCmCQXNg0GnVixIe5h5P2l74IxrwwZZAZIYsWCgy0ymmepbBo/HgwRdBVsCZ1zrs3fZpAfowTRvzJjEGWecgdFohIc97GEYDocT2fB33333mtvMg6KMjIyMjIxDHdRQaX/aeADhOc95Dn74wx/isssuw9FHH31oC63v79A9ZYqfaoCV2qckcKHAhIaszKkbofD6HTFmJlvNyiJkZdgWV8qDZhSp0hQc3HuCYTQGw20QtYJYsTb8cwVGW80+xgsco8ODv1CzCZBDG7XVzLA5Nnpp5hXY5hpqj/XVGQX9E1OGAXL908xmW5ACh9ISOu0c0G5SwNBqeCoTMbsMH6WYz8aZqzT6osGczT4rmcQcH+PIyngK3VMPfdbN3fVcVE6iz4yxo9MRjVQZsSDgQKkdwxMidOG3txon1mCvDiU4KPvj4ArElqxFo4sJI0a3/yGvo+2EZZpCl5zPj8Icq70+yv3kcpJqVpohtTOR4Bgysy+BUPrCM0Q6sENOU0J1Rq5vzqMJcP5MQZtkzBPdOYkZIqoDEjCsKDUUVAjnjxo5OqbHaaCkZmhI6RSFoGuplYjKephlxJCRaRROE8NsxpgOyxx75rQ8NCsMQMh6ikww2QRTRDPKBFcYWINDx+wEo8KQCQUAPdF6RmxYFKhlKIXhmQ5SzsaxKhVvMRB1dM5XeEWK3XIstebZ34ktAICjS5MZdmx5j+/3He0WLKvKPx8lkzihdxf2loFF41aH6BhF5921R/ejosScaZ+luCIrSKLvcSyRu7/cs+y+U0RTJpiOWCWatehKsURFfVnMBvp+2/uvIboxB5NdGDNyWjNwJ9cjRo7m8Jkp0AuY+4cDqrKf9xRoG8fsa8g5BQzNddeDoBUFTMkXXyC7cWJM1ykN3XKgJuKlUgFt3M8DhY3UFK1FaH0o47rrrsNXvvIVPPKRj9ywNg/YoGj79u0TVFZGRkZGRkbGfYu1CK0PZZx00klYWVnZ0DbXPCi67bbbwBjDcccdBwD46le/io9+9KM4+eST8bKXvcyvd9NNN21cL+8DsEKDFSZq5aVE1TORhbAeJ2NbFLKGhhzZzIqao22I5bwtSuhKZ/AGkMOQ2WBKcDj/oxKDuyXao6wj7gJHa4PBesHMg8uejcznFcQWE8nJ5RJamiwJANBzbRQhl3uDm6sSRoNEEjoglgKzoUTwN5J9sz5stCZseQNXKLMslPcp2tIbYb4YeZ2QgCk0us3WCPlJNY+7rKaIa469bR8/HB8GABha3QUtquoYioJJ9NH4DDPjnBwcooHgW7QgRtjZHOZdq4HA/nBYfyEbDm4tFnGvHPosMkncr41+g/k+COtT5Jgply3n98GYZ1e2sBWgiEuD+HINEFZPEdgF2m6kn1JmeWkv1JAYS41tUVen33Lbu8i8YBKSO0+YIsoio87YDsHHRnmfG7OuKRnhomSpNVxxWzBTiDRoiGKfnrRQaFReJIl0+6L1zFWtCiyi8mLQRgvP7lSixbBovNbHZX7RjDiaMUYzCzkMS0S3HRaB0QECMzIQTXSfKXCvq2q0QC0Kzxy5AraOVRqImujqxhiK2h9byXro8TZ4SKngNN5ogb2q78sDzfMVbC2MttAxl0cWe/1nADi6MKzSvXLor28Dgc1iOWp3qe1NFPMFgEVZYSRL/9kwW02kMwv6sjZyTDffkUxFTUp+cMd2cn+c4IGJo4xe6mnkrpPpJ4Mk7ZWFjETCLdNBXyQZtGLQth0tGRhX5v0NQM6RLMu+Ap9vUNr3OQNQlS1ay4ALkjXXtCK6XR1zKW3pGdVwq22a7gy/oUj0TOtu4wGEt771rXj1q1+NSy+9FKeddtoEEbOegd+aB0XPfe5z8bKXvQzPe97zcMcdd+Dcc8/FKaecgg9/+MO444478IY3vGHNncjIyMjIyMiYjvsq++xQxvnnnw8A+KVf+qXoe1dmxJfKWgPWPCi66aab8KhHPQoA8Fd/9Vc49dRT8eUvfxlXXXUVXvGKVzxgBkWMKzChwAuF4aDGoLIsCFfQmvksrJGQGPesb03Lo8KUuuYkZQHGZZV4XSz1Bcp7bZRUA+PDhNfByQHQbLIeQQWgegqwEc/c5hUcs2CEQqO2xA9/uBV82brN9gG9XPh5cVkBgrI/ZdAQFYs2W85n1pHjVwBvGKSdV1eSQQv4497Uq7G1b1I6FsoVDETjdS9GK8C9NuL2aqtnilolMJYFFrnRU7jsGOog3bPanKGosUmMvMZHEM+VWhexXw9royhXIGgDUidpYfchbUZMiZDdJZjymWYAPNPjNpdEZzPSpfEist4qC3yMeT5GI4wb8R418P4ownrG0LYl4iyycP4UxkRbRR2/DdsTaxjGqiTnQfpou8fbKKPMMVhN4i+Uni8g+Cs11jZ/kWTzlUyigYA7OFcMtrL9apWAcve8mmSOaPaWYyjMcZjrNPI11ELfC65QMIW+XbcnWu+k7dptS3NcW6rKszgOBTlvgmkMeGiHQ2GTZeNK3kb+TFSvNVYFxjpEoo4xojosx5YOeR1dpz4zLJFjXMaq9OxoWoNOMA0BZ8ccNHqA0TT+pF3AXvX/s/fu8ZYU5bnwU1XdvdZe+zIzMAMIygDiJYgeFIjBK3gD4wnekki8RORiFPgUUTEkKoIoKkSIJgiK95PjMTFojIeoGEmUqEflEnOCEi8gKIPADHPZe+21uruqvj+q3qq3eq292XuzGQZOP7/fwFqru6urqy+736ee93mdfm6H6aLv7ZmnlWNr6RrtyRK1UoHpcvela7Y0GWaryCL1MjfWE565zdl45Y1su6ZzNmcfog+XZ9Pg/ZHIFVya5F6sPfNJn0PtNGlQaYXaL9NCptmRWSziW2uJulIwZDfliwFLz+a7bDTfr47zWpvo+PNUlO5a8v0rNdPnWQFtZJK1aK0IdfjmhzlqraBF6oF2v+IhxvTcV1x99dWr3uayX4qqqgoVdb/xjW/g2GOPBeDm9jZt2rS6vWvRokWLFi1atBiDZz7zmave5rJfih73uMfh0ksvxQte8AJcddVVePe73w0AuP3227H77ruvegcfKExMlVA9gUxpTOQ1JnwNo0Jp1EYi8860mYwVtmutkoweqvRM4BkVmdIYrskx3N1FnnZ7DhgBSdogZUPNHUxoyFxjcspFiwfsthn7TTo33F/Nr8OmYg3gPVDyTQXqaRMZp0kT5vd14eqi0TJTAMOC1TvLYk2getLCTGrIrmcolKsRtWbC1WBaUwwwU7jPM9kAa7L5yLbAoLSKZXvpoLvo1zm6qkqice7mnAsddEZrVD/1NGKRt4EErPMCIpDbL/WBdlGIOjA1gK96Dzm2pprymXE66FoydGWFwi/n7I6xEgPk6Hsr5cJqdEWNaTkI7UZ2JvO6pngMA8Y6SJjAXCmYJOuO99MwTyfXrvNmytkYNZ2oY1+s01yNSZZpao1I7xQic2lAG0oYSGtDhpnLcGL6HhUrx9dWYa6OOq9MGBRsfzmrxZZJ5xlU+GtZwo5kPNF2PVWhI6pwrfCMQdJ9VQ1vJa4zIp0WeWTRmNE1S1qtkmUpVlZhaPLElbx5DU37GmUSJrKMrD1qq2xkPyqYcI3Rd8CdP6eyi35cu2ez2O4zzIYmxz3GsbDTyvU/F5FpA4C+cOM/r/OQfUZO4kELRLpC/30yG4ZsSW1torMiax8NFcYhZGxRe0HHZlHIGhnzyuLXmrECtYr6I8pAK7XCQGaoVOr6zqd/wjnSCrUyITPWwjveN+rZAU4/lEsTnud7TMxhTT4fzumOuou+v14zYRK2kdoa+Gf/XFFgvsyhMcTOwGpOnz1Uss/uDyz7pej9738/XvziF+OCCy7Aq1/96pAK9+UvfzlMq7Vo0aJFixYtVhGrKLR+qGSf3R9Y9kvRkUceibvvvhvbt2/HunXrwu+vfe1r0ev1VrVzDyQ2TO1ANlkikwZdn/kCOA2Em4930cScKIKT7kA0NBMd55jLQfoBJQ0GnRyb4aK8SlkIr1cCXDv0Ocs1ukWFvaZdBsqjpu/CHrnTFM3pDianhtixzfXHZiI4sQaQ6e9QOK8jkjj5IKyepO8WesLrmGZqFL0SmWfBukWNibzCGs8O7dbpYyZzn6fUEBI2ZLKQpoEiX4qeAYQ6VwTSE5GOaE02jzXKaZV6cphocICo41DC1Q4jtqWymdPT+Gh2Wg1CJC5hMCmHia+Oa2M084szO4DLIJPWIBfk7BzZBu1rnw08UzSwtWeKovdQXLdCjuh+TUzMwGt2iCUCnKu2tDb0hWunImvhNWSwyFl2mmo8NXNEhs0w/QY/BtefeOwAzxojbUuZMBs5NFSjFhSxOpyxq61KPG3yhiZKsirpLhtJYdIfT0fWiZO3azf6U/XkMLCIXREzpwYmd1ljXDsFO+LsTTAQics5Z/P4taGthFEiXKtu/XiepDBB+0P9UCMMXGQg49jHa9rts45+VJAYWMlqh0nXD8Zg9JhztoLBpNe0KRi3D09A1Vah8uzjmtylMW+vOr7vNmmztirqucI4UZZY1GYBgBEm2DqH42Vu8SMZj0nNPRnYKwMRdFZ1JlHqLHleGCvC99rIUBctUwaljlolIUZ9qTrMj6pQGjO5eyY9rLsN02oQrp2+7mC7T/vlWj76XhuFec9kdlWNfpajtjuHKWqxc7Aig3JrLa699lpcdtll2LHD/aEuiuIh9VLUokWLFi1a7DoQq/SvxWJYNlP0y1/+EscccwxuvfVWDIdDPPe5z8X09DQ+8IEPYDAY4NJLL70/+rnTsWGij3yiRldV6MhY12tClRiaDHcKV5m3NLGSczernL+Mj5gLFbU0BPJKkbDYKiyqnq/OPiGCey9fD3BRz3RngP2nnI7ogO6dYdn6Yhb7rr0H/zV00UtdKuejMetOrdROOwR4h3fBavlIAassjPc/srkFOl670Csx0S1DPyaLEtPFMNERUaZKMxIEfETr37nXZztC1lAmCkww92sFg1xqTHk2aa3qB01OLuqRdgk84gYco8M1GZOsmr32+iFaPkCBXGh0yU2aZdI4p+tURwIT3aqpPep70icIlFCYhFt3mulciNEqfbuF0MF5NxwHnX4zymYQY0OsUdDk2Kh1AtIK5pwhov4Rs0LH1jTfDposYaCESZy0eY0tCKYf8d5dFFX31DA4jVdWYUZF7RRnygCX7RW1aKTvia7VnC3jY5ILl+lF56V57jnoGgm6MRiUgWmT4ZwQnEaqkckIhGuoy/bV1Gxx5FIn7Iu7Dv0yqwPzoq0Y8coyImprKpv5bD839jwDUiP6ZE2pAXKhMS3c/aNUyoR2ZYWBImbV+STt3pkNfb9jMBPO/4RMPYv6rG4bZTXy8SIQM0SMUdbMVPPb83GljL7KSMiMrj+3DbEytVWojMKsdwEvtQpu5AOdoZdjxMMqMF2NrMUJWWEmc0zZunwOu6m5cG30VQdblGfvjctwpfGrrMK2egJSRDfxQmpUVeqAf7+h9SnaKVj2S9Eb3/hGHHbYYfj3f//3RFj94he/GCeddNKqdq5FixYtWrRo0WIcnvjEJ46tdyaEQLfbxYEHHojjjz8eRx111JLbXPZL0TXXXIN/+7d/Q1EUye8bN27Er3/96+U2t8tit2IORSd1qAVSd2EgjZIyqVHqjLkLm2ROnWdeSGGCSy/gsrL6VRE9Zph3BgDs09uGjROOKdpdzWKHcdHKtBpgn9423DU9BQCYL3P054vgPG0GMmSbZbMSJrehQrTNHVNkcz8X39HIvNNrt1Ohk2n0fJbGdDHEVD7EpGeHMpY11JXOo4giZWOdWzMxNWvVHDb4iHSgc3RkHaNiqdGTZWCHOiKNUBdD4jxsUyfTgckj02SzhLnqihJdVcZaY1DQje2JyZCwqGwWfGG6rNaZkmaELaqshPY3aQGDHjEzhtgs+HYNCsFYCGjkVNUbBpXVgcHgNcioWF3MTpJe2+SZRZFWfFcwgWXIgaS+2cBmqEz6COA6q46skoxCYop6MktqyxHrQOe/I6sRtoZrsfh+JExgFeiYiM3KRZ0cJ19HwibsnWLXDK8D58aEvHeIoYh13LSVGNg83LN6jKIg9EvUvk9pdt/I/vzvimltDFtvpH3vSyQZKxYzJzWUsOFeksIm7F5PltjNa4gm5RCTcojdlWNBJm3pnzkmLOd94FqaXOiE9ZpQZXjmGQjc3F8fd5q5MazGHI+ECL5ddGwSBpnkLF+aVUnra5k6vFdWJf5llVVBx6ghQj3Foc8GI/ZZCpv4VGVCBy+snnTP9DWZ0y1OywHWqrlwvW43sX5iJVXCVpLGKPbfuH5UO8mnqGWKRnDMMcfgIx/5CB7/+Mfjt3/7t2GtxQ9/+EP86Ec/wvHHH48bb7wRz3nOc3DFFVfghS984ZLaXPZLkTFmrEvkr371K0xPTy+3uRYtWrRo0aLFvcGK+17l/iGWkn/33XfjzW9+M97xjnckv5933nn45S9/ia9//es4++yz8e53v/v+eyl67nOfi4svvhgf/ehHATiaanZ2FmeffTZ+93d/d7nN7bLYo9iObhFdhcO8vHdOXpe7SCN1G3ZVqMm/panp4L91ZI15Hdm2QuqEGeqqOqncvb6Yxd75VgDAtJoPUe9W3cNMPsCGnmNitqoJ1FpiwJyoKQCspwyssoDPGrI9DQhA+QyzrNDoFD5jrDtELy8xU7gIaiafR4e5Dzfde52jdNM5OfPLh0EztCafx9q8n2hLmsxQrBeGRIvQzPRxEbPXWljn6kznwrEn0e2a9uXaMeiyek5cp6Eb21C2D0XquaoxKTxrKMoRhkIh+lRpIZj/TQVpY3Tt2AoDyZyoC8TMxDk2JBpMkyGAnLErvF6ZG7vozyNhoYRBj/mo8KysnpWofNlxrmmh/jR9laIGRiZ6r2ZWUpcxRcQCNJkYzgDROoElaHwfBxrXZk0uDt7HXJgwvhylUFDWJGxPaVXSX+rzwGYj+qPmsTWZLYK2aTYcP2eOLTMJCxaOXfprW8SMSc725KLGjL+3emKIHJHx2U1W0JgPba2VfbZ/lylH/byrnkZH1ljnGZRcxrGbrbupR5gVmDd5YIrndRH8hYx1teDoOZH5rEFat6fKoFMDxuiwmHN708ndZZdSbTUV7knKXqN9ECvHdU+k8+zJEj05DL5WXVmhKyv0PJsICRhFrvlOz0XnN3hNKXq+u74M853oaL1KeKik5P/t3/4trr322pHfjzvuOBx66KH42Mc+hj/6oz/CBz/4wSW3ueyXoosuughHHXUUDjroIAwGA7z85S/HT3/6U6xfvx6f+9znlttcixYtWrRo0eJeYK37d1/beCih2+3iO9/5Dg488MDk9+985zvodp3ExBgTqnAsBct+Kdp7771xww034HOf+xyuu+46GGNw4okn4hWveAUmJibuvYEHCdZlc5jIMgxsjqYzrkLMSFiX9ZOK5QOTrl9bFaJ8Y0Uyt91XFWTloo85dHzGhHe8FtFbIxMa02qAtd6/J4fGHNxJrqzCbF0ElklJgyKvYXpunyV8LTQ4x2pM6MAUqUJDKROyVIq8Do7V6zrzmMqHmPZz+BOqCvPxgIskKQsnF3VgFgDSy0RPGSUMHl5sCcfdkVWoZj80eTJPz6uSU8QXl0V9DAWYks330zaEwNAJ8uGJER9nA3jUabz3UBEYp9S12LkL+2xDWaNgkTn1rfT/1zYyRblnpxQiU1RCIW9E4AHSeRu5dmSSqcShpA3ZSwTS2lAmF2eVNGTCXHKvHM7E0fZ8LDWiviNl7Sp3vpnrMl0bvNr8OHAmqgl+3IneBpEhWlDPAxv9uYRxHjdMsxWz9YRn7Rr7ZqwY/80xh+PZqSY71Bx77nCtwfRowrmz07EZxPNp/PmidgpUSVa1ZL5KhdCJr9fQCnRFZJwBoOuXl5DoigqbtdMi/sauwR7F9sBG31VPY0jsqNSYyaLvV20UJphrOYDgAl16V3/Kcutl7pkhwzjE6096TQ7XGAW9nmfEAqMjqhFWtuk2HTIKG/cDv6a7XicXmf/Su4nTGJVEPmPOdLBVZ6Hdpn6Q+qzFKAN5v6DVFI3g//v//j+87nWvw7XXXovDDz8cQgh8//vfx+WXX44/+7M/AwB87WtfwxOf+MQlt7nslyIAmJiYwAknnIATTjhhJZs/qKBgoXwxR8A9cCVkMBhcl82FG5mmLvqmk3wnSNgg1M6FRtdULA3XxIe5Bz34FRqlHaCwTTtPqDuGa7CtmgjW85U3ebNeaG2NALyQGrmF6moUvhhikdcolMZk4ctqdAZYW3iRZjYcob3dNBk9wOrkYZaLOjxYaBl/iO2ZbQMAbMh2QMJgi38Y79BdJ/gc88dTwgLcar8xBQFwwa77w0bGeu7FldLCs2RdAj3sRv6YsakNnsYNwJf8oBRdia6sY7FYVuKlCTqX/CWosKm41SCaTeZCs2kkm6zH/1AbiMT4Udv4x4O/vNN2/A/uaFtyZLqMG13G6UgkY0Ji2iK8JMd9khXByDRjeLlRyVTYuD92bkysf7mRybrJOLDjyqGDqN29BIlou9A4fifCF+x7fIEprRp5iWy+FPFpRW4Q2ZVVuDaosGwYB5u+EDZNHhdD06oiFklWrk3f7ICsQvz6a6VG7vvXtxpKDnGXdlMoHVlhT7UttNkVFXqZey4YK9CRFbbV7plD01X0/1zq8OJVaoWBzsJ9YODKeGRs+oqLuwGwwEEn106HGa4uZs8RxqFhHjvuBZ9eVPkL/LQcJM8yZX35EF90mp9D/mKbC2e5YHeW988qaooeKnj729+O/fffH3/1V3+Fz372swCAxzzmMfjYxz6Gl7/85QCA173udXj961+/5DZX9FL02c9+Fpdddhl+8Ytf4Lvf/S42btyIiy66CAcccMCSxUwtWrRo0aJFixb3Ba94xSvwile8YuR3ay2EEMuewVr2S9FHPvIRvPOd78Tpp5+O8847L2SirVu3DhdffPFD5qVoaHMIm/mij3USaXRllVj9c8paQ6Jr3LIdegID3wbgohWeRgxEceDuxSwqE631XfFJYjgs+rqDO6o1AFyE8p/9fQAAt8+vRWlUiNSsFai1gvbFaG0t4zTCRI1eb4h1k47lmsxLTGUlprzl/e5FPwiiKTLnZRXGsUN0/E1RblM4yiPAQkTjOunHM4irjUxYBQU+RRLZgMpH8CTadGU80jILIRIVFiVL723S4JwJaLJezakp6nPcVjBGz0A1ArFxxpYLgY8Rn05RzMrBWAEtIktSQUFaO7YNPqUFOJYrmYpLpmlEYM6S4xR8GkKH38dNh4VxsgBd5aW3Q+C0vYRZkMZvtsunzSqrknOnvQh+LJi55KDBCPJtmuwhjQ8Jqt10eCxDoa1ccGqm+XulFWOYZWIKOWr8yVivxnpp0VkNJfKEWaXj2Sp66Pm0fIDYMh1MQRUM1kjHYitbYkctsbl2jO3uahbTah531Y452jPfljAv9EwD3JS3thJrvAFiXxehlIsUBgOdozbRfBJAMLHtqQod4608VB0E1IBjp3hhZn4fNqdZ02fEqLidT3Nz5pGeazRmcZo8skvErE3KIbbqxas0aLvINbjKENb9u69tPJRw/vnn46yzzhr5XWuNV77ylSvSOS/7bH74wx/Gxz72Mfz5n/85siw+RA877DD8x3/8x7I70KJFixYtWrS4F9hV+vcQAs+EJ2itcdxxx+GGG25YUZvLZopuvvnmsaKlTqeDubm5FXViV0RlJZRVgNDIEUsHSFjsns2GiOauegYDHyn05BA56pA+OxD5iE6IR/zSl1IAnABSSxGis9zG4qaVVZg3BW7s7w3AFYHd1HcRnYFAIaNhn5LGZSmQhlNZwOuLZGYw2SmToq5r836wF1ij5hvpsinzkydi2sgU3Vv5Aw5tXRTe82ntJGqk4+YFOcnqf5yhXhO50JiW84Fp6IqyESkWob9UHDQyJmmEOSPnw7EMbIY502EMVYbKC3a5yDpubxN2iOtlkhRhQdoGEns32SqdtBGuG19KJMCOaniiAV49KuQWnKWRoXCnsWosazIOY8XGIgpoB+yccVFtPJ5023ECZRoHtQRmZVz/KqOSc6YtO98NS4GF2nDbqsCgETu5WGkPrgPUEDEBoDGWIyL2hj4qrMfT8xvbjdt2Wg0w7c0bO8JZIxBTtkEOw/WmrcWdeipovtaKOVQ2Q88/52bkPLi5aVeUMRnBM7RkGrlN9gLjLYXFvM7D8dZWOiNFf730dR7ZaM/sjmOfSfsTnjENKbwSJvltIYaR+s/HiOsSndYsh7ajNhA5dMJiD5ADFuEZOTTO9HMx64gW9y+uvPJKPOc5z8HatWvxh3/4h6iqCi972cvwk5/8BFdfffWK2lw2U7T//vuPfQP7p3/6Jxx00EEr6kSLFi1atGjRYhGQ0Pq+/oMzbzzooIPw13/91w/wQd03HHroofjiF7+Ik08+Gf/wD/+Al770pbjppptw9dVXY6+99lpRm8tmit761rfi1FNPxWAwgLUW3//+9/G5z30O559/Pi6//PIVdWJXRGUyKOOKdKYpnBV6Yhi0QZsxFTKpQqoyZX3ICtrECNrNkacFPHPFGQGTRNgGTiA2W3Vw53Aadw9cocJtg4kQqa/vzYX5e8AxRXmmUWYuerFWQOU+82OixHRnEIq67lbMYU02jzU+snSmkHEOv2mW2NQ6hDRhrzWKzBGxD6TpyGME7efzeTRcWpXqPWiRTdOwDYvwuqKCkiZkAU7KIabFIES+XLvl8qZs2Kcr6xB1I64ordsHRcjBiFDUGIgilFZwqdVeJyJEyMiidjiaLIIbRxuWLWY82GScFlyvUWCV6yUqZAAaZSmsjLYGWJgNakI32J8Rpsam2o4R6wCm2UjT59N2clFH7ReLwHkBV+pP0j/IqEvjxXz9MTpND9+mCNs1WZzmeeHlTMZlx43TrhBTFbOw0sw+gF8LZmTd0Bdm58G3o+9DkyVsXEdOJrYfXVlhfbYDALB3th0Po/7BYoueSjRPW+sJrPXsT1fUIR1+YDIoacL3bbqXPBPXqH5ivzGru6H0hhQmMamlsaHxBHgWmkkyWLkuiOs23Zib5PpoMnhgGYVNts/107VbWtfOAL54NH+WCpPsl9h9sPGudIHK7CSmaBVT8h8q5o0AcOSRR+Kzn/0sXvrSl+K3fuu38K//+q9Yv379vW+4AJb9UvSa17wGdV3jzDPPRL/fx8tf/nLss88++Mu//Escd9xxK+5IixYtWrRo0aLFYnjJS14y9vcNGzZg7dq1eO1rXxt+u+KKK5bd/rJeiuq6xt/8zd/g937v93DyySfj7rvvhjEGe+yxx7J3vKtj3hQwJse0SIt+dmWFrqicPw2AtarP9AcZhlYkJmKG6Rd45N+VFXKrk+hSWxkioyEzLZTCYrbq4K45x0j152PktbY7jyLTSSRZKI2hZ4qEAHoTTiew98x2rC3msUfHRY7r81lMqUFgVXj0x31+AF+OgUXxQJy31z67iOb4cz9m1ZjLS8FigGiWOLBFMsdvIFCRaZxnn2KEHbOPurLCWtUPy9bKvjOqs7EcC2lvSK+z3RfRpf2FqNSzTIQuM6bcqr0rKmNiCE6rEqPJQjh2pwjjIkZYhyZ7FEqCLMI4peuJUHA3jlnKdERGLPNZdwub3smmJmaMGSL1j2cjNTU6yTGO01jY6Evk1ommhnE7C2MlfMGFUGaB1uOZVk22hmeFGW+USGNPLAIVv+XFWSurEoPVxWAYSxj6zMavshJ1YKfECAPlmIaYiRqLndqkwG7z2IasyDS1Q6WEDNOqSWGRCYPCP5s6qsZ0Ngjj0Dc5Zq0b3S3aXRtkCLtN90auBSqLUgk37rysD/dgUzyr1g+PtjENeiYfML+ruA9jJUqbIbd0H8Z7PXpgjTfrVEIkTGBTN8R1bxUrzzKOseOlPMZlJtKzaofpojIZ04kJ9E2BodlZPkVozRsBrFmzZuzvRx999Kq0v6yXoizL8PrXvx4//vGPAeA+UVQtWrRo0aJFiyWifSkCAHzyk5+8X9tf9vTZk5/8ZFx//fXYuHHj/dGfXQZDkwEmQy5y9GQWIoiByVFJFVxPuyL682zRU40sG4OO5K7VMZtGwiTRorYCStoQlUDG6KgnSxRKw/iIpJzPkXVcNLh90AW6jEnwc+JF7kuEdA32nHLM0Ew+xF7d7dij2A4AmJYD7y8UyzfEiG7UOwUietXQnD/g9B4VstCOsgYDm43VrlTeLXhgHdtFOg0O7prdlRXTdGSQTNu1m5zFpNc5KFh0hUYeSo0AOyxl+uXg7lCU1ULs0Iwcoud9nowF8oaDdGkV00ws/FSRwvryHXzcmtoXMbINgMBwNX93xy1HMmbCMu8IHaPfWI6j8mdrXJkatyZn/Swk9HiWB4BEFnQXsPDZZv4YG+7S1dhMtoazteXLFtY1RX2Qi9AT9qfJxDRYVx7R8/IxLossanJqo0JB09AWK3DaZGmkSMeN0HRyvjcEvYzSC+rHHNssgm6w9oVOw36sgPWfhbDIpAmeZd2shrYiFHnVEPhV7da9U0/BgBVQZkxQEwoWlc3CdbNnvg07dJdlOWqUwv8paRxGLjTW5XOhZAgHZefxc8xZ0oJVEnDrs3PO9mMg06LOjMWkYyOtIZUA4boz3rdmIVmu9eL6Lep/aTKU9c7xKWqxc7Dsl6JTTjkFb37zm/GrX/0Khx56KCYnJ5PlT3jCE1atcy1atGjRokULtGU+PJ70pCfhn//5n7Fu3bolrf+0pz0Nn//857HPPvssaf1lvxS97GUvAwC84Q1vCL8JIYKlNjlcP9hRBqbIedHwyG/OdIKZAa+TpCEApiEiZqiZ0QWM6kZy6Yt3+iwoYwSM9zuaygZ4+MQ9+HXh5lJ3SIuicPsotcJc2QnRjLVOR9T1TFEvL9HLXAS4rpjDuqwfskic71D0QeHRVWkBMBdoV9yU6UpELORI21E0VplR9odgIJ3vT6IlSR2suRdSM1uJe/AAwFrGDA0tZ1BGGRpebHJSlJgOxSYN1sgYkVbWoAoZRTFrCqxvvD/ce8qM0RG5/buIM7AD0MiFCfqjccQCZ5wWqn2mGCvEv/M+NxGYuEV8XoBR5+pQYwuj7E7KKjK9h79mmt4+Tb1P+Mw0T5ztIUanCgyOr+Nm47bklUO/c6+cUmeBDcpYPb3apMxAaVTy2wgbxXVBsBCM4bGsHRHuGzmy3cj3yl1HVNS5yRo1mSFtZWCEjRVpxpSMhaRrK9FTJdZ4pmir6eGn3rG6J4foySF2aKf9WcxrZ2DzJEO0K8pQRBrACPPCxywXGj1Zxuu0sdxYGdlxIHi8FUJjIPIFHcN5BiS1yfvAa5QNbBb0ZEOTQUMm9duMTfVfTZaPsuWA1CeKdF3lTso+ax2tHW644Qb8+7//O3bbbbclrz8cDu99RY8VmTe2aNGiRYsWLXYiWk1RwLOf/WxYu7SDEWJ57NiyX4oeDFqiSy65BBdccAE2bdqExz3ucbj44ovx9Kc/fVltzOsMWudQsJjV3cAydEQFmE5Yr2AZWrlnNpoOrQtVem5mp3BnYl4vrCtq7NPZiodNOS3Qltke1vScHkYbCW2ipkMJg1xprO0476FMGkxl7i15KiuTSuNc80OgiJEyMohNkDAYmOiWXFoVsq6o7lnTM4d7yvDIjfsCKZhkWdOxVzM/IeoH9W9g8+gmLgykACofUZeQwcm3tE53o5geaVqWyP156QmBruAZcBZ9E3VW3PPIOW7H88kdo8tx45lEugIlZQ0JAaAOfZICyAM7BQwa2gaKtEuW8QNEV22u2Ahj1NAbNdkgV5+OHLcNxmXe0EOUa2ccoxOvudJmrh5Wor2hTDWX9bWQ3mdoshC1GyuSTLDSZCi9301pVGBxAMfw2MZUAPf8amq5KuaqDDSd5W1yfDVjYrQZ9VyidelZS20JYQPT2/zjQ95C1G6z73zbTJiEgeLg+iH3gwD9bdBWJuNiPMNN1+BPh3uFa3mt6mNzHR2tJ73DfGCGITDnl83ZYuRZ5ero+WOwWWi3j2Jk7PumSNzuCcQYyvCckDCCWGeX0brQtSvZc2Ng80Sb1NedRDfGlxHbSNcc6cnGOa/T8iZz1Mz222k+RS0ArIyYefjDH77kdZf9UvTlL3957O9CCHS7XRx44IHYf//9l9vsquHzn/88Tj/9dFxyySV46lOfissuuwzPf/7zceONN2Lfffd9wPrVokWLFi1a7Ao4/PDDoZTCqaeeilNPPfWB7s6ycH8TM8t+KXrRi14UNEQcXFf0tKc9DV/60peWLIRaTXzwgx/EiSeeiJNOOgmAKxj3ta99DR/5yEdw/vnnL7kd46OHockwq7uh3o0UFoWow3z2WjWX1GdK3K9lha4ok3YXqtnk3FxjtkXfFCGKy4UGrEK/dt/X9Oax16TLKLtnMOHcY32QnCmDmc4g6Ce6skYuI9ujrUTfFP5YMu9cOwz95fonIHWSVcKOZIMAxBqNeouEaFlIAGn1a2KgqPo5dyzmkbmGDNGrYdGhgUTfdrDVs3ZKOuZsQNXNmU9NU28jhcXAqsDcdYUK0aoZoxlqMkXcj6kJ7kquEJkYBe2z9+J9U0Ihp8xEGChBbQCVtdCBDQDAPKvGZUCFsYfFAMS8yNT51/rxDZqdPHW75llk1mtzmAfXnB/rvilcxmFge/JEK+K8pvwym2Oo47koTYbKsz70fVBHNqg2MmyrjQxV1mstUWsFrWUYEmtFYEwEABn0eI7LCcyLcswLZ3aCRqfhMWO9foceb+N0QtSOtelyKaMLuZQGQqQsUrM9Dn5OM2lG2Kckw0yYoEGzY/RHmrJU6wyFrLGpXBuW79+9C4DLot2me6FOWhOcXdmhJxK2lvadZJDSdeI1OwTSlHW8y3Zu68R53FgZMkMVTMjq5XUWx2Fo80SvxbPIDOh7liynz7VVQQ9Etdli9mHK9jb1XPy+y6RBDTmSuXh/QWAVNEX+/w8lR+vVxrLP5lVXXYXDDz8cV111FbZt24Zt27bhqquuwm//9m/jK1/5Cr71rW9h8+bNeMtb3nJ/9HdRlGWJa6+9Fs973vOS35/3vOfhO9/5zththsMhtm/fnvxr0aJFixYtWvy/h2UzRW984xvx0Y9+FE95ylPCb89+9rPR7Xbx2te+Fv/5n/+Jiy++GCeccMKqdnQpuPvuu6G1xp577pn8vueee+KOO+4Yu83555+Pc845Z+R3KUyYX66MRF+7KDkX2tVD874yvLI0aW54pWc39x6zsxaqlk3VomMUlYV9TqsBKqtClDJRVFhbuIySfu0qNZOeYjr3KnsWkBLzMjSZ99Lx0ZikY/HZclYHVoQcu7keijvD0vHROhIGzUwRrrcKdZ4a1a2pr7x+lBbMKdlG9sbVLKOozbli7xBd3xeLnqwSHRFnuVw064/FypFaSnEfGpW1QZuUC4O1aj7REdBxNv1/3PFFJ2ApLLqhbhvQhUYpYnQ7si07aR3BvIcEgieQhoBiPkrO66V5TfnjRD3i8utcrtM6UBwxk1ImWrDKqsBckn6IMnooKm/qNgCgtgrzOsdAu237dY5Sq8AGlXUW2KCqVtBGwBjGBnnWQ2vpPhODYwQgmLZGAELauAyAt+TBUFjH4viMKeVZHD5WBNp/IDkb48O1PkKkbJExMXNJelbBLMAUceaK+hHXYe34bYjtVdKEbFIA2FF2oCWlwhrwOLcyEhOqCudl385mTHtG9a56Gp2GR1ku6vCsGKAI9/qc6bhnjIjPvMqmNeb4Z87EdGSd6HToWUbt8muwshmkjZl9jrmOtSIrxk5yB3PA3f+xAoDT/QVNEVR45lRQkJbVFVwC88KzAiXsTmOGRtCm5O8ULPvs/vznPx9Lu83MzOAXv/gFAOBRj3oU7r777vveuxWiqTanab1xOOusswLjtW3bNtx22207o4stWrRo0aLF0mFX6V+LRbFspujQQw/FW9/6VnzmM5/Bhg0bAAB33XUXzjzzTBx++OEAgJ/+9KfLUnuvFtavXw+l1AgrdOedd46wR4ROp4NOpzPyO1W7zyRFR2ll51D3q+lYzDIoAO3rY42+kBGTwd2utZVBt8HnxJUo0NcFuip6E5GehaLGzH/PpAl6DaBRJ8lnNCnWncTXRkQ9jITEpBzGumjQMILrUUZraHH2hetTDATTXdkk64kywzRrB5whgcScGWU0OqKCFCboGraaNOrn/lC51agQmQ5lDXJh0PVs38Bq9MNn6zNv3Nh3RY0CBgOvNegKHXVL/hibmTHkqm2sCFTDGunqNWlLmWEWFXtA5QLIGy/uUY8kor4IFgrR72hgDYYwCXMU3LGF63+4dpF6yvB6ZqVVwRkYbL2oxWj4wJioI6EMspKYI5bpVZoM/ToPerhBnYeMScBdy7Vnioxx+g0aBQEAMjKM/vDd/7yeiNghriniWiMAUDJmmrnvJtEHKcnqkIl0Xf4bbUf3GtUdW0gnJATTGHmGwY7Rp4jGvpv+R3xZV9UJU1Q29TCGsWDWYkoN0VNR10jnbGBzrJX9hlt3vJYrG33HRurMIc0+bGYtDnUWHeCZrs61G7VnuXDMNHe0Jr0jebRNq9gOeC1GIVP2R1hIS6ysTDIRhybD0B8LjGs7Dw72AkZIZIjntDYLs7m81lwmDTJhYBfxeGqxc1CWJe68806YRibgSpKrls0UffzjH8fNN9+Mhz/84TjwwAPxqEc9Cg9/+MNxyy234PLLLwcAzM7O4h3veMeyO3NfURQFDj30UFx11VXJ71dddVUy3deiRYsWLVo8qNAyRSP46U9/iqc//emYmJjAxo0bsf/++2P//ffHfvvtt+Is+GUzRY95zGPw4x//GF/72tfwX//1X7DW4rGPfSye+9znQvq57Re96EUr6sxq4IwzzsCrXvUqHHbYYTjiiCPw0Y9+FLfeeite97rXLaudgcmhde4ye6QN1a+HJkcly9RlmbE9iR8LRj1Okn3YtOZO33aS7SmaGZgcs7oTahrNFMPAYE1lQ/SyMjAHtZWQOo+ZLMKEdQEXcZLzb1dW3tnWRZJcF0QsFkV5jgXS0YumwTZxrQ25N4cq9Y2MDm0lwFy0S6vGeiaF9v2xVDZ6OTUrqgMF+qZmx9JgjaCDlmZgc+RGh5BgoHXsq5Uug8ufm7VyHgNEZk4KJFoLrldwTJsIuqYZlnnYExk6IsPQZ+FVMFANZqgK7KP1XWPXAv8sJHKQP5PbbmjJP8qAEqo0NIwFSopkjdckyVizjuqZKUjApplqTstEbN8omj5KSS21kEmlIUUWdU5SI5c6sBtFphN3Zr5tc19cd0Ofx9Uho99JC7JYu4C7RwoVdWBZI/LnmpiF6p6N9HeMt01TT7gUuGypuF2zb4XUqD2DLIVFpVVgo5RybOm6bC4sD0xMo3ZchQzNCvJNN2+u50m+s2dhLjRmsvnAzEivf+PaofiMic7/gGNpqX9900mq1/dk6X3BvNZRmhF9I7VHvlm5f85VVjEWydUvq1j2WcmYTWOZl5jPPEt8iTw7FCCx87LPbOto3cTxxx+PLMvwla98BQ972MOWbdQ4Dst+KQKcZueYY47BkUceiU6nsyodWS287GUvw+bNm3Huuedi06ZNOPjgg3HllVc+KEwnW7Ro0aJFixZLww033IBrr70Wj33sY1etzWW/FBlj8J73vAeXXnopfvOb3+C//uu/cMABB+Ad73gH9ttvP5x44omr1rmV4pRTTsEpp5xyn9rYPOghUx0M8hw9VaJjUudq0tr05DBxduYZWE13VGNTd2Ygsg47TBcDWwRNB9UlA4BZU2BeF6xdGxicyWyI2qqwbmUlCqmTqu4TXuMyoUr0ZKyFNC0HmJTDsC7XBHVFiS6LzGi/CQMTGLKGt491XjmxbliaLaWhkqiTHGndctnQWTE2QqSuyxquHhthq+mFSLcr6zBGuTDQNq0A37dFUtOImKE500HR2G9Pluy7DplVFZw+IrIraUZMKSSmQfXhLAxsZIeCAzlptBp+M0DIlnPgrIxA7h246f9VyIbUMKEemnF+RyAnb4OerUL/B9x7yHacvov1Q1uRRN+JpkiqkH3m+ivCtTuvY5alux5r9DKqUj7qHFxzDRzTS3E/IfouA2NnF2RqpLDIpV5wOWdOHcsZHdZDG1i4DhnfT7O+HJ1/4yu1a8ZANGvA8Taplltox29XG4XS1+eifVKNvbitz7LSCsM6rjtZlBjaPHHKp3PEswmp34oxhS4TNmWCIhM8Cs6CSWEx4VnSnhp6lkeHNhars0btDEyOPorAuk7LAdaoPrrBL86AnogGMtxP8XgiM2esSGqdzes86N9KozDQWeKUTs+F6FmVelU1tWB1f+l1te4TVmP66yHGFB100EGrntS17Jei8847D5/+9KfxgQ98ACeffHL4/fGPfzwuuuiiXeKlaDVw2z1roYZd9LolJvIKawqXyjrsZJBdE8wcUSMxPyyY6RgXrgKNgoYkUqUiqjpLKGYpeNkMEQoXAimFvjafT5Z1Gn90OrJuTJeVmPT9nVbz6IoqSZ0n5GL00ddM/W4+3IK4FgqlVeGFj5sA0ktEQt2zAo4JJR6mzeIf42DyaFyKMD0kK6swYH+gdsNsMDEk0IsstcdfhPr+5aDZv4EtMC3nw7aF0Nhuusn2QcANg4HgU6J9FKrv19HQXiQNuCmwyhoY/xKiYTGwJCoVI9NnpaVpTIFcSMhE5C7RESReVUHM3YFFhfiS1BMWQ2tQ0gsUakz645qzQwy4IZ4/Z/GPaLRjoNRordJpLzqHfVWk7TCRNr0s8JeOMHXhXyIS+4NQWFWEzxz85XXcdm58TPIC45b7z174H4XBdiSYGWddQOsmfWE2Bc6iANDgQnXZeHkwYV1KggCioWD8nC4zVqAiGwOjgvnloMxR1SqxMbitvy5Mn61R/Vi02SrM6m7oA5nOUrmPNM0+vY+a48N/I8uSZrvTcj60xV+8knHWcZ9UuLXvg0GTSV9gmwKdOnmm8Jc8MnIMbdk8BJVzukCpsyD8L43CUGdhPJ3w378gaeXsEZhFhAAr9mskjBYw/cHIeNwvaF+KRvD+978fZ555Jt773vfi8Y9/PPI8T5avxKBy2S9Fn/nMZ/DRj34Uz372sxOdzhOe8AT85Cc/WXYHWrRo0aJFixaLo9UUjeI5z3kOAOeVyEE2PFqP4zUXx7Jfin7961/jwAMPHPndGIOqqsZs8eDE4M5JyIku5rtdqIkas1OOSRjotLhlX3UCW7FG9bFW9aPpo0/H59EuF2jzAqskMIxlFVQSoeZSJ+LVCZ9mO60GyEWeFD+UIhqZ5UKjp3yxR9jIcMFT1QKBfWkaK5ZWMQNBk6Sf85T7QuiQ0k3L3JRYZH8GwYJ/VJTYZI0IVHw1lj5Jzd44xU+MQ4hqM6BHUa8XQ9NYd0WNgc1Cn7bpHrbqntuH7iRTOLl04u1gTSB0TFVu2P43sUNNhHVn5ADTssS0n7rpwrE9qjEt5sbLYlqqwPDwqTUNi8qaMLWmIJBBQYnRcXVjGPchrZu+ywMDaYPNQ89qDGxakmZgM1QypnDHSNxd1wnz6adBAaDDzhMX39N646aV3ToilH4gRAPVLLBOcTuRCP5Hp3nSZIhY7qbB8DDRsREGsCrslwuS+XUBAMPmdxNTyue1YydqNoXTPC76XltXzmTgi9/2qwJlHZkgaxFsC2qdFsI1WsB4ZsNUCrYSEJW3Wcg6+Ik02Ku7DQCQd3TCzvR1EcYE0l3b4VkwMi3ImUm3vFlUF3AC6MpmCVM0KYfhGTmJONVEJX9iar+AFJNheW0VtleOla2sSp5d/N4f2Dxhhir/vKEps7m6gx21e37PVh306xwDYopqN+U4rLxpaS1hSfivBawWiDVVABgBS4/EWgK1gJnfdTS1/6/h6quvXvU2l/1S9LjHPQ7f/va3R4TLf/d3f4cnPvGJq9axFi1atGjRooVH62g9gmc+85mr3uayX4rOPvtsvOpVr8Kvf/1rGGNwxRVX4KabbsJnPvMZfOUrX1n1Dj5QKO5WUF0FkynoyQxb591Qzc/k2DHsYvuki2Cm8iGmMxf97FbM4eHFFpY27lJiFWNfKCpSYlRw2LStpyhUCYtC1ugqJpj2TFEU+voUbVkGi3xCKFArqsTUEEiZmcqqUGJD+fT8IMa0qTYIiKn2fevYJmKBBiZPmKNBEsW5KLIZzfPINGp0nL6DGwjqRIyasc8kNo2lJ6bVwB9/HYr10thXNgvGjyUrqTKrR9movuwkGpRYgsGGtF/qLxd4btMT2KHcdTKtBugKpueSA0yKCht8KnhHyIRD61udsEg0OgpOn0QCbWmFi9opDbuRCaqtTX6TECGdnwv2FSy6QkN74kMJQFuNIZV9sFWwLRiYDBVSJrO0WSgX0xUV05PJRIyeCNM9FhLdA8wSQBgnpmXtAOMLLI/VAAkZBnHcNnXoQxQwN/ugmXEfENlJYiQGrJzJQGeYr1wxXMDpT3j5Dg5tJLSWGAzdtnWpYKnwra9VIrT//0BCDgWk/11qAIU/h7WArAC69U0BbLMz+K+ZPQAAu+dz6DDjx8qqhBl2Ym+iQWTynJBIvxeijs8nyTSCAgDKmDovbHLdN60y+PWghA2WGkZJVHUsFzNXdzDMo4BfChMKwFZWoa+Lhpi6SM4FpdnPVzn6VYH50pesqTLUQwVTqTDeovbHUgvwS1V4poiGQfjlZrCTyn6soqbo8MMPh1IKp556Kk499dT72rMHFFu3bsXHP/5x/PjHP4YQAgcddBBOOOEErFmzZkXtLfts/t7v/R4+//nP48orr4QQAu985zvx4x//GP/4j/+I5z73uSvqRIsWLVq0aNFi5+AHP/gBbrzxxgf9C9EPf/hDPPKRj8RFF12ELVu24O6778YHP/hBPPKRj8R11123ojZX5FN09NFH4+ijj17RDh8syHcAqgRMBxBGQvs56OFQ4a7JHLMDxzJMdkrMdB0jsWOig1xo7OazPXJRu0KULBuNIkWFlHXgKfiAK8mQ9EdozGRuPzPZfPh9u57AhIxaEMqmIUbFWBmMy3KhkSNmx2lIgLMtkBhY2l+9oAaCrx8+WxEy6XipCOoD7w/GRPI8+yekc0NA2TQbiEervN2mFmVgM+zwWWKka2hqSbhRXEhx9saTQe/hGZGQCWeYUZ00mMIgtDsco3nhhYRzWaPrI2inP5vDdrMDALCH6qPny1HssAqwwO4+TXyHARCOE8iFRd44lqgbimyRxCjrwX/nKf+5EIBFUgImFzEDsIcalWeCKlFiYFVIlyZ9GTGHSZagz2Cja6Fps+Ay0SgDLwVnfKisTDiHwqCyeXJsvCAtZxSJcVyI8amtYgyRDBleoY9M+1Ob9PwOWOYSzwTTxjE/lWcgTC1htQzMT3DY9BClgPRaIGE8AwRAGMdGeNITauCYICIohXbrADErnRJeTQ7orsJvZqdd/9alVhgcxkpoIcLzIEft2LUwhibJUqWsMlpGLKKBRFdUCVPkTBdpXZvcs1Tole+H2udjXwG4u5oKTBIQM3eHOsOsLtCvo+6zX+eY989sbWTIKCu1wqDMUZf+PFUStpIQpWegKhFYOVnBMUNEnlkAJoqV3dgDeidl5LdC61G86U1vwrHHHouPfexjyDJ3Tuu6xkknnYTTTz8d3/rWt5bd5opeilq0aNGiRYsWOxFtSv4IfvjDHyYvRACQZRnOPPNMHHbYYStqc0kvRevWrVuya/WWLVtW1JFdDfRWLjSQzQNq6KPreYV6XqI/543qpirMTTrGoTIK+0xsw8BGrw8A6LGgjEdoEjbRGOXQidcG6VWmMEAlYgHOnipD25lITQkNBCqW1ZYLHebeu6KCESwDzhpoqGDaqBALwu7QMXMKiJb8nG3h+gjOBlS+yCuhqfFwpov3fncaK6FYlokbP8pqangY+aKkFdOyEDIf1fIsPOoztRE8TXwxyyqwAwrSZInhH0Fa6z1SiHmRyRhyE8NMuj6QZ9QO3cXdchp3KeejsSXfhg1qu+tX8D+KISj3iHKmmpFZ41CwYVku6DdijlLNkbY2yTHSsEFTVAiRZK4BCOyUEUDH1uhRQU4rfOZY1PkMqDgsFHJRJ5mICqMmps1jAJzhJbEKrohwhGlsTwyf278rgtw0Q+Rmftz8sLlubSIjxAuEkp8NlSXRVkAbidKzQdpI6JoylyRMqQDPQEALQAuEOqWMgYDxDAV9Z4yAMI6x8MmPkNr9o3WlRtC4WJYoRd+zWYHNm9w1lu+rw9jumW/DrcPdg1GhlI6hHdpoCsqzvRJTWlivlYy/EaOooBNmV1sBCRnKyaTZrVmSpdp8hgxNFrL3JmUNxcqU1CYWzJ7TBWarDmYrz/xWBUqtUPqMsrJW8bzU0mXpkVarkpB1ZIdEzca2bGiKtD83MSHXfR+1eWuxkzAzM4Nbb711xNH6tttuw/T09IraXNJL0cUXXxw+b968Geeddx6OPvpoHHHEEQCA7373u/ja1772gBSBbdGiRYsWLR7yWIXps4caU/Syl70MJ554Ii688EI85SlPgRAC11xzDd761rfij/7oj1bU5pJeil796leHzy996Utx7rnn4rTTTgu/veENb8Bf/dVf4Rvf+Abe9KY3ragjuxqsd46XFYAqzte76EBAa4oWcwz8lbot05itC8wor6cQJjglA2nJAG0lml4gShgom/5G6+ZSY42MWiJiNrqySrx8nLZGjDAlANCRFabFIMzXRxv/6KPEdUGcKRoid+UQwlw/i8IhMTR51AoY0pNQCQuJERfbBtPBdUS0vfKZZ7wAZdieij36dSlrjPs1zfvskyYTkAmDyWw4ok9y20nkYOfK/48chisrQ1RcG6c14hqZjqxDJpMbm5glZphGg8piaDhflh2mi+0ZebJkyEWNPTLHHO2m+iGaJg+ovKHAIbZPCovCxs98jHNhoew4pyjqUwQ5aI9bVwLoCgGQf5JwpV2CHxdMKF6sITBndGQKhHcvN7SfWPjYFayVQU+Xg+migu6IxtPdP8QfNQsvS8pWgztn/BqoWQFQ13Zkg0qjXKkH8gWyMngEVV6bwj2DdC2DT5A15GsDQDsPGxAjUQv3B40YCXb6wmPBxu+BjaD1IrkLI512DEjZIVlbWCVC9pmwblG9xV073/jNY/DHj/geAGA3NYu+6WBLPenHSCXPHp4xSvoh6c83ZZKlY+0POzA9WbIssL0yLSg7MHl45lAhV8B5KFWsfNFkNoSEwfba+YkZiHB/z1YdbBt2g/fQoM5QViqep1LB1JGxs7WE4OdFs4wyQ4Max5W/SPBzQy8pO02n006fjeDCCy+EEAJ//Md/jLr2BYbzHK9//evxvve9b0VtLjv77Gtf+xqOOeaYkd+PPvpofOMb31hRJ1q0aNGiRYsWLZaDoijwl3/5l7jnnntwww034Prrr8eWLVtw0UUXodPp3HsDY7BsofXuu++OL37xi3jrW9+a/P6lL30Ju++++4o6scvDALIxjwzpI9iOCB4XwzLHtmoCG4pZ991k3onasyTQic+G01tEPc8O3R1xCQYcY9KRFXPK5gVgFXJZJR4dtYn+HtxBuCsrbMh2BIaqgovU5hAvnuEYnQ1A2XFirGeQsS7DiLM0VM+JQJqcjkwn4EmDw+tfSa5faBQFpeExPuOG64J41tG8zrG9mnDr1M4NmdoppMZs3Qk15KQwgQmS3hOq452etRUJA0XeJwCwe2c2ORZjXfTKGUE6Xoq2ud8RwFg1IbFFTwHw2q+Gn820dOlHm/WkO2+I9da4zquARumLxMI23IatQS5M4k0UxxkNWJTWJtloBAWRZK4pWIAzR4gaEwmBGTkMLERgH/15lDZ6VuWqhjImZi8KphMSMslcrJAWhc2hAxMnrXWak0aGFZ3jUU2RDD42pVbeRZp8rxSG3l3a+Bpklf+ua+myyiiTzIiQVWa1cFlhC0XmIjIOVgCpYIqRFdJnOdF34c4VNWtsPHd0THTbCuO2zXe433991zrs2NvdE9NygMd0N+HGwd4A3H3P9Y5Dk4XrRgvpzpfvr4KBFjJmmIEXca79s4GYdOZ9BF8vzO+ntApDm4eixNvqXniOzeoOaqMwoaKuaWvVw5yvYVayygIDnaEyCiUxerWCMey8AKPngUyqlfUMDFvXePY6ExCCsXWNe0Ho0U3vV7RM0YLo9Xp4/OMfvyptLful6JxzzsGJJ56If/mXfwmaou9973v46le/issvv3xVOtWiRYsWLVq0iGhT8h1e8pKX4FOf+hRmZmbwkpe8ZNF1r7jiimW3v+yXouOPPx6/9Vu/hQ996EO44oorYK3FQQcdhH/7t3/Dk5/85GV3YFcHRVthvh9OZ0TRmO4K1N5fRGuJjDlV58L5EAX2RTDmBS4ThOIgY51WhDNJxPA4/YRNvD4qf+rmTZEwGbVRmDeRzdBWBG3FtnoCW7Me1vrK7XOmg1ndjesyPQ+1SXoPYqd4tXOKBoc+8ytW8na+LyEyhwisTC510Di5dmSyrcvSMuFzymaYoJXKfPZLYJisSKqQ1yxypOUho8gK1Db643A2qrbuHGaeGiykRldVgSHiHjZDk2F3MYfcpxRRRW9eEyoXkSHjWYKklaLfjK/s7Rpw18dW7fQeu6l+1GpAYc50Ej+XQtRMQ6aTLCyAuX1DorI29K+AHtFOEdz1ZlGNeYhG5246L6PraMbESGHRRer8XYJq87FadzDoigoDGXVtXG9iEP23clknIijD2CsJAdPIlh3nJA0gsERD7y9UGeUyzOh6YBoiYwSsFZGBIIqAaYIsHy8RaRzro3zhV7aS1dAygJUWREVYyf54jWEpuOxFIj6LpPBSO5I1FU5/RLebubuDH83uAwBYs6aPA4q7MFc4lub2ai36uhMZZ5uj8lqpCeWYS8pGq7TLTKNrkHSNAAJ7RIg6s8gccXZ3YHPc43VNpCMC4jOFajzuqLsY6gyldwgvjQrs3rCmrEB/zRmn+SSt1yhLZON4SuHYIvpuEHRfYT1BmWr+Ucq0RiKV9rXYCVizZk3Ihp+ZmVlyZvxSsSKfoic/+cn4m7/5m1XtSIsWLVq0aNGixWL45Cc/GT5/6lOfWvX2l/RStH37dszMzCy50R07dqzYI2BXgdCMIRJIMkNkCWSObIHuCGh/qELY4EdDMKxCPFV9BwBIQIk6RkY+IubVpamdPlzmGFVqJz2Ja8ZlhA1ZdpL7nVFboS8i+HwAwKzujmiBQqV7/1sHUROj4ZgpwGXiECszNBnmdMFYGxnYmNBPxttKRLai6RKcSRNYpel8gExENqMyGSpLEamEFDawUbO6QGmycNylifWOaiOdliHxoolsUCZN6ENtJOZZ1p0SBjPFMBxbyRiorqqBDhLGScEkWqxQ280zf4E1NKlmy0AGz5hcFkkVcA0ZMn7mTAcD5kPVFZXzsJLRrbnpXTTi7uwpikrIJIrmbKTzCLJJW7ydiulGCquT81s1tDzNfUDUgVHgOhZyxC6CVsVA0fm2fjx4ihzTuVRQIOoldTTy1wLToDjH8viZdESAY0Hc9UJMkQr6Neu3IzbIWnfPWxFpm8AEAbAQ4TvgdEZhCIUNOiErBGOL/MbEVpCOhIZJei0Sc69myXvJswr+Oz2Oinskvnvb/gCAx03dji26h8cVtwMA1qo53FJuwC2D9QCAvs5RGsogS6+nXGins6Q6dCbWRWt6knVlNaLFCVogm6NvijD2BpLpvlzGLbHGQ5OhNBkGmurMZaGuXFlnzltKRxbbsGr21vJxdzqtkDjpRVk2DFo8Z1bQdjb0W2jEazBz7dmdxRa1mqIRPOtZz8IVV1yBtWvXJr9v374dL3rRi/DNb35z2W0uKfts3bp1uPPOO5fc6D777INf/OIXy+5MixYtWrRo0WIUwVD4Pv57KOFf/uVfUJblyO+DwQDf/va3V9Tmkpgiay0uv/xyTE1NLanRqmpW7noQwr+Vy9r/PzjRkgbAfZUlQlSnlMvu4VHTwOTMj4jCvFhrKPrjuCinw5iiZl2nMIcvKhhfDIn8bhLtCmyYi5fCYs7XBHL6nXyEreA6oWa9M/LcCVXtGRtEjMC8zlHq6D5LkXjCFLFoi2dEjdTlMjbJCiukTjLWatJ6wGXYkdanXxeojUzaLVlNKm1S1krKyFaVWoWok9gAqpWkfPRO2UgGAqXXn2zPasfw+dM7NFlSm2lWd8LxzdWdkNFGqIyM5126OnlujJ3ugjRKd1fTwY3bOQnHenCuzpRG11b+exmuBWJceEYjz1Yb8cniDtKwC0aVzr06C67UhdDIRR1YJVpO4Mt4xphbZhKGEYwhc8dB4+nGQovomm2shGEZmaHWnl9G+pjaqEQLxpmi0jhtF/kSOZdqAeOvF64RsuE/DkJaWCMghI3reg0RcQ8hi6whQ4IV4boR0rNNgb1grFEQCPmv3uJJMq0RSZwk3KMoLLNI2AU1BOZvd/qdf93waGzYawf29l5Yj803Y3c5F66ZmwcbsL2eCONVW4UBe4wBCHy1YdpIiDRztbJqRHPEM245EznUWThnADAhqyTDlT9TKq3CfVhqhapWwTsuaL7G+Aw5jZCNvk+BGfJsIPvs3iIaGWw29Slq8cDgRz/6Ufh844034o477gjftdb46le/in322WdFbS/ppWjffffFxz72sSU3utdeeyHP83tfsUWLFi1atGixNLQvYgCAQw45BEIICCHwrGc9a2T5xMQEPvzhD6+o7SW9FN1yyy0ravzBDKvcPw0XeYU5aAvUE0CQ5rBshE5RQwqT6HZqG510JWKWkxbRPwiIVcBzGx2jgx4FFkOTB9aislmsUG5l4n/TQY2eLNHzTNGUGmAT1gJwjM76bAd+Ve4GAEkk7dptaICshPYHXvlq8bQNRY+A02xwbVCzyjj9Fj4zRofaou+ZNGG8+nWBWmqUkuq8pTXe+nURNAbzVY7aysAIlTp6zQBO+5EHsykLJSNDMdRZiDqtdWNKmhJlLSrTDZEut+MxVqAyElLGjBnnVeTO/7ZqIuyjl5WYsJFFyll2IeCYoq7P7ul7fdbQunaUsGHcO7JOzvdQ5OjIKlxzueii5/VHxOBwKGGDD1SBOrJGgXGhmmWphkhbGTQ/4TvTj3RZNpKETfRbpY319aQ1vo7Z6NM9FzWklYwcideMRg3Nsvn8jgLboplbOAAMkYXxDcwlq2c2jjUCGCO4kPmM4OSBZxKI1REIF4eFcEXmuReRQFLvjG4JawSEsWFqwwrBSA6bGuFop4nhpA2NpFGuO6bBkATNkXC6IgD4z9sehkPW7okNninaXc4hFxqHd28B4HyMrp3bz42lyVAZx2wDjuHJVfRfk8Ik1eyJkQZcxm1ls3BNukP3z0PhGM+QmQYRrvMJVToNnr+XmsyzgQj3qDaO2eVXlKvl1sgioyGRTDcEf67C8yjqi4QRjrEzxP65/yTVDXYmWk1RwM033wxrLQ444AB8//vfx4YNG8Kyoiiwxx57QKmF6ysuhhVln7Vo0aJFixYtWjwQ2LhxIwDAmNV/M21fihaAyQGRAyJDlDXAMwUK0N4EupqyQNeFYlOdIXJhQjbF0OZOgyNIa4OQJdaTJSqTJd41QIzOBzZPNBrayoSBIr3JrO6gI2tMec3JtBokNcp4FttQZFij+oE54g7Q4bht7GsNJHP8QGSTlLAxa6QRXVP0HTLMTGSOKBLntaoMRKjObqyAkVHvMRBx/4WMWU4DnWFYZ+hXVDXb1aUit2Ee6UthkSkDm3mtTThWlpUlYyZNXUfGqfYsYaa8hievMVm4C2JtMfBj4vY5r3PsMN0Q0fbrPGTADXSGqVyF/k+qEjP5INST6rKK5I6la45rzPQDUqfsjsydbw8oS9Ct2xUVlIjT2OQ1RfvqijL4yOSonSu0vx6cLxBjahhzSS7pgVWy3juJ2hJ1YI2ImeJsKdeSuGWRKeBQMCHCL6BdxqYfL2MEcujg/dX0LeqoOlyrpapTlqHhWRXGnCG4OVuRMI7jPG8EGTVZpsMSPhmOaYwgGOkjGdNAvxvWDhg7YS0s+P0SHinOh6iO7TRK4rl9kBM1y5oFJvAP049H75HuubEh24FcaDyqcNqMvbJteFixDQBwdzWVZKaGbNAx7vZ0/Ly+WZdp6Yx/lgGecWLPp46sUUvSkxmvTYrsHuDc6QGXcRaeP0Y6/6gmu0fnVAgIYvNMZIvcIhvPVdiEnlX+OzF6yp8XYvQ8E7izHK1X07zx8MMPh1IKp556Kk499dT73rkHGDfeeCNuvfXWEdH1scceu+y22peiFi1atGjRYlfHKk6f/eAHP1iWzc6uil/84hd48YtfjP/4j/+AEALWkszBB996+X4J7UvRAghMUYOdEwqABZQvWF9PIFxolF1EjE5tlJ9v99qVBusytHnQd+TejydUibadxN2Va0F6qkyidoPowdMVOtGq9E0RvIU6skbfdIInUuUzdNSY8IMcqZtOwMF5ujEwzXpS/P9NjGszMEiQqEzan6Y2CACGlWOKiBmqawWjJVihbwjlmYtcM82AQ1fVwadIChsYp9LXtqJMFq0lslwHpkgKi4k8sjqVVeH8by172F52QrvGCsz7yt2l1CiNQi9z20o4TyvScw1NhnU+jKfzM+fpyKY7OG0LuHNK/wAELRng9BxJFA/vhm4dO1BJXnsvT/RHlN0VdW1RA1VaBWPzhA1oIrq66+Cl5H63QVdE7S6UHSdhIYn6aFxKwQlbxvNQsaxPJUx0pfZ18YIfVuNyl8KG60MI6wWc8eEas8sig8C/E1gCWbzemMaIJEiAYyZsYIMsuJbFUQ+N7DPGegBI/Zqy2KYUbKw8sUEyLGsBSgpUA2DHLWvwxfwQAMDv73s9enKIWyqnzXhssQlPmrgFAPBztQc2VWsDOx3803SsmcgZNzf2qT8XnW/Nrinnmi8Dc1lZlfxF0mb0z1N4ThgR/KNIW9Q8T4KNWRhN6di8+JxwmjDRZIcApxWzIh17YWHJpVy6sbepbK/FTsQb3/hG7L///vjGN74R9EWbN2/Gm9/8Zlx44YUrarN9KWrRokWLFi12cbS1z0bx3e9+F9/85jexYcMGSCkhpcTTnvY0nH/++XjDG96A66+/ftltruil6Nvf/jYuu+wy/PznP8cXvvAF7LPPPvjsZz+L/fffH0972tNW0uQuB1aQGyZDw0MEIRrL5gXMDjeMO4ZdbK0mQmVnit4pG2le54ElqUMtsVhfqFlBfl6TyzVpNcZTgdqKML/eR+FZJxcK9XUnRMyZ9xAhT56hyTDQab01zgCVrCZZk92pmSs1z+ah/i6YvYOUGQrH4KN4bcTIvgjkIQS4SthVrWC8R5SpWa0j+Ijff1XKIFMGncyN79ruPLpZHfQJs2UHc0N3joZVhrrMoMtYaR6WZQNZkbBOmdShHtP2soN+VcTzJXU4zkGdozIqiagNRNh2oDPchnUAgD0ndmDPYjvm6jUAfB03f35dxo6F9CKsgdSJl1NlFXPG1kl9NdJvhEr1Js3aMohZdk3kog43RGWz1BcoOKLHx4kOzGWFgcgDG8A9atzxmJCZ5rYzwSsn8TOCTtkiOURls5CtSbXkXBsSQxEz64wV0FaEe2Kg88AalUahNql3Ug0bMu2E0DCCX5sxO86aVEYEIGUcBNMCOXFQYHqEBSwxGzL1yoGJ61FNtCQbTUQvHmG8l5rf2iCSSUIjyXgTLJFNVoAaCNy5aS0A4BP9I/Dc/W7C2rwfzs9++d0AgEcWzrj3N8JNt1QmS53IWe1FWHeNRp2Q89FKzo1nw8l9vcOYIrouhjZ3THXD+4wjZAqaxlUrPO/Gs89GWD1ilRAYoDCIMjZkLdtWhV/dtsqxfztLU9Rmn41Cax38E9evX4/bb78dj3nMY7Bx40bcdNNNK2pz2S9Ff//3f49XvepVeMUrXoHrr78ew6Gj4nfs2IH3vve9uPLKK1fUkV0WXlgd0rCJgWf/V/Puy+Ztk7hzYioIcNfk86isDHb5pc7CtMe8ziFhw7KBzjGZlaFYKv3xA9zLlSt46qdQdEznp+m5QElrhY6sMe3NHRUTXe/b2YxZ3Q0vYm5KIU6RGaNG0t75g6j5YOJGiePM8calOtfWiSI1E7rylyhtuSg7naKwVrCij9LT4DJpvznrALiinp0c6PqpK2NFeIEBgG39LoYDbw5YSaCWEHNurK20qHUsGVCKjPVPYL7KwwOWXnAIVFzUHZeAMjKMb7/OnRDbL+9XBfql+2NRKI2Hd+9JxrmQ8cVh3EsjndO5uhPEqpnUieC9I+vEXLISKnlJab7MSmFDaRklYjHg5nQZTbXFsiTRBNQIiY6swvku2MsKgabtyEIgCHphkkQE/ofYibBjuRA+1aetwKQchjRwJQw6ssasn+6Z13mYjhzoPCkumiuNipl5aiOhbRThW6uDsaM27jq2rBBpvPxiORCAvSDRj4q9QBnLXozc1iEtXPu08PBWJICa/WGGAD8dycSbBaCdFADwRrP0t78Giq0iLBwog6/f8hg8Ya9NAIBfDdbiqWt+BgDYM9uWmC7e4wsV85JANJ6Z1OiI0eLHdM1WNkumcyVzwu3JMpQwGuocQ5MlAnkax7AtTX9Lfx7424lgU5V82jL8Z8yAwQnYw9hbuBIgYXkqtIb1gvcl1YVYBbQvRSM4+OCD8aMf/QgHHHAAnvzkJ+MDH/gAiqLARz/6URxwwAEranPZp/O8887DpZdeio997GOJQeNTnvIUXHfddSvqRIsWLVq0aNGixXLw9re/PaTln3feefjlL3+Jpz/96bjyyivxl3/5lytqc9lM0U033YRnPOMZI7/PzMxg69atK+rELgkvWLTSs6/s9dGydFphfAQGoLqri029GWRrIosDIJSiAJBMDaQmh9JR/CADRBEi6ik1xNBm2FF1AThB94SnnDWcoR1NtRkrk2m2XOiQrr9W9XFnNZMWZxU2Kchah6k09zs3vGuChI4LMUMLTYM11+VshhA2RN6UZqvZ99A+fQ/bIXGyCym4cMyam0JxxzJbZhjUWWSvdJyGQy2BUoZ25FDC6tgHUZhE4DnUWUjnF8KOiNZp2WBYQEsLMgQQwias2HyVBwZie9nBrO6GNly5kyj0JlYDcIJ3J2R1+62sREWCWJNeh7VRGMpYiiSXOjFv5FYOlHZP/c9tzZggOVIiZGAzVGOEsVKYEWaJs0UGIgjLCTq0rZLI1jRYAylM7AeL+JUApC9/Arh7oCdLbNOubMW2eiLcL5nUoWAs4Av+ynjcnO2z0rgpNC+6t9aZBlJJGM4aaS1dKjhjdBz/wygLf40KCFg2ZQYZp9JI+JtwSJIzImyaiArFyviVzwyZLE61Ae655bPuIesO9KNqXPvLRwAA9t6wNTy3fnvNLejIKkx7zeoO5nUepmw5w9hhdgxu/DLMWhmmyHKh0WHsZJrqbxJrirswFc5LJrUrFk1FnFUUc1t/PkJpFowmZ3AGDzI+Y9w0G0KKfjp1SWwRE8vDOh2C/8XYlKm7P9FqikZx9NFHh88HHHAAbrzxRmzZsgXr1q0LGWjLxbKZooc97GH42c9+NvL7Nddcs2K6qkWLFi1atGixCOwq/XsI4YQTTsCOHTuS33bbbTf0+32ccMIJK2pz2UzRn/zJn+CNb3wjPvGJT0AIgdtvvx3f/e538Za3vAXvfOc7V9SJXRE2c5GV0O5fiAZsLBILAKpGeLXM7pDYPjWJbRNOz9PLKhfZ+0izULHIq0GchyfURkEpxnCQ1sfvgCK30mShGmMmNCqoEPnWRiGTGrnx2iTYYOynYNDXRVKck6PJ3pRGhb4vhqYxo7PglyNp8LSOtQsXhM2lYaUWAEd2MOaI9qmli/CCmBLBII++N8Mi0rXMVzmqWgVNgq4UbOVP4kBCDiUSTXstoObIKA4Y5sTKCShpkJMppHKp+7z4LOkRqtoVpa0ynSwjUXRVK2TKLZstO/j1/JpwvntZGewenOasCIxebSWktVCsw3RduZg9Mo7uujCY94aOE6pKmK2OqJJrQjGWx5mJ+vHyFhDN1GrOCJGmhIq8EkiUOy5poPKPI7XEWE3b6FyomAlk6EOwu6ixRvUDW9GRFe6pnC5mXheYZdtIYR0jEVhem6aTN4xIlTDIFBl9RtZISOsYSmIkrE8DD3qUyFY47XaqIwrXMRWdDduJwGITrH9mWCEgDBvuDI4u4sVkOclkIuMtK6D6zQTk0K1wh5rBltkeAGCv7nbs170bA88UbasmUOoMpb8mJ1SFQqZ2DkQWUYo+P9/R2NPZMXAjV9KBSWEwocr0meQLRANO+8XvMyDU5fYsXXwWjJg6ggmt4ccz1HESrHivbyMwc05VHYr1KqcRs+oh9qbxIMKnTIwLxQAAlwtJREFUP/1pvO9978P09HTy+/z8PD7zmc/gE5/4xLLbXPZL0Zlnnolt27bhqKOOwmAwwDOe8Qx0Oh285S1vwWmnnbbsDrRo0aJFixYt7gWt0Dpg+/btsNbCWosdO3ag241yA601rrzySuyxxx4rantFKfnvec978Od//ue48cYbYYzBQQcdFNLiHjIQ8R/XEFEKZiAkNKKRmgCyOwvcPePGYk0xwEwxCNF3qVWIdILOI6SxpUUPXUkL0jVIr/Fw7bgiqO4i6KoKUpjAKsxWncAqAL6ciI/g50wnieZjBltkjkJRVyMTlqgZlY0DMVsUTdsx24ym1UYpBeAiuMIzJpWRsExH0tQKOLNGEbYDX84fINImDAil8+f+6je1AIbeXHBeQpYCJG2wPqVZT/jtbdQfDXsKQhmUhe9vUUOIqCOS0qKsorkk7RsAZn2xV8Oy8AilNvj13Brk/lrpZWU0NBQWE6oMRqD9uoPZOkPX20A4jZFbt7YyST/vqhpdVSVmojnLYhyKmB1JUMJdZ0M1CEyLgk0if2NlkhnGy5I42wnF2Elv1uiHkxe3BSit37M/wjbKwchgYKqEHdE1ScZO8Ww0A2dLMCmoUG7MpNpWOzaEs0UwCKVmeqJKCh3XhpWAsRJCyFB6pFAaleGskUp1d4w5sjoelzXwzxquZYkqmCTv26eXM4I0fo7yRNdO4w+gFQCvmytov/CMuAV6m9wPc1kP/d3c+b5zOI1Hdu/EZs+u3dGfhhQ2GJG6Xbqd9QHkIj6rOrJGTwyDHiwXUZumhLNfIGPPysYyOMpaV/ZDxexNAOh5PQ/PSivrDEJYSBPvkapW0X5AWlCJLKfWWiAzMPwQWSP37GfflXVMHuC0RlLstOyzVlMUsXbtWm+sKvDoRz96ZLkQAuecc86K2l6xeWOv18Nhhx220s1btGjRokWLFi2WjauvvhrWWjzrWc/C3//932O33XYLy4qiwMaNG7H33nuvqO0lvRS95CUvWXKDV1xxxYo6sqvBCh9ZjRGw8wiLo5wBOluAuTnHAuxY08FMMQgZE7wwaiZTTU3pyxAQk9TN6hD9b616ybq1kZj1pTuMFUm5iNIo7KiiCZ9RIphJ3l27eVeKqANLAIp0a5SIWTh8n+MMGsPnBidrvA8RRXcSNrBITQt+6bM/YsHQCOkN2GJ5hegRYhvCQdPQMFkjYzkGI1B3JUwW+2+MCPoPWymI0p+XOQFZRm8XAfdZVizDJzAQgOmI6FNTSwhlkeXuHHJ9kVROK6Vrr8MZuOhW5V6vUkvUJemW3DH3fOHZUkdvpDW5qy+TM3ZlUGeBzehlZWSNABSyRu2vlYGOjBLgtGk1ywKTsIFlpHNGvlnaCnRk7vetRxgerj8C2HUjnGeR9jdS7ouAKnbtcc2OgQgmkMYXsHGfSb9Ej6yaTGXCieKZaMbK5HuqW0lZLiDeE/O6wDxiNlzNGNqu1y8RgzrQbty5lo6KDVdaodQmXmNWQCsZyscYJaCpeLH2DAYjOYNARljPWNDF7IubEuPEtnM0QLxHwr1CN1VTi8RuNlkDRgGdbW4jPSEwN+1WLmSNrowM4z3zPXSyOoxLJmMpo0LqJKsRmS8H4i8Nxwb5c28tCpatNrR5yLqkUknUjobTIRb++pxC1CVKWKDOEzYVQBh7Y0V4rjjvM4uYokf+UWFUkiK+1o95GD9G2pHRo91JTFE7fRbxzGc+EwBw8803Y999911xptk4LOmlaM2aNeGztRZf/OIXsWbNmsAUXXvttdi6deuyXp5atGjRokWLFktDO33m8KMf/QgHH3wwpJTYtm0b/uM//mPBdZ/whCcsu/0lvRR98pOfDJ/f9ra34Q//8A9x6aWXQtF8r9Y45ZRTHhJVdwOkjX4Wvggs/QwBeKNfSKYpUgNAlQAGnrWpM5QmS1iVMBeus8RJtzYycdItjYIsvBYJ3l3YR/lSWGyvOqG9DDoyLcJioDP0Mh8BmwzrvHX/3dVUwvZ0pGOjuO9NEn2h4Q1kxdiMMnKpDq7U3t8oMFtMN0Qu1dQOFVql8dWMGRopB2KRskZAzOABvP6Ih8mk35CY63dClhhlnVVe72MNkM96zcN2oJ4EqNalKSxkDQjPFPFME1EL2FzA1tydW4dyIzXrp/BFR0lLYvw1Yn2ZCmtE8FbSWkIbkbiL0+e5OtWMkX8LMUWJJ5YvAYLMM04mS871QOehXa5Dov1JEctd0PEBAJTPLmuEyKTT4dtoKxMmkbKROiIyViYwb8IXDEX4LtkyIF6XBhKwBtrvSyFmorn9RA+jrtcm8cKzPf+xVAPvwB3vHylMKKNSetd3WpZJHe7Drs7Qr/MwZvzeyqVGrhTKmpyxRcjKBDxT6a/HulbQtXLatuQoWSYa3T8SgGHskGXLiNnmQTO/XUXMorXCZZwFwiQHoCymb/Ns2EwR9Ee1UUlmosukjExNJkz4SyKFRY6ohyQndPI44sxgLrR36ncb81ItlVHhXACAgoCxjNWWddyn/21QU/kaA6PiObVaBK8h+GxWKrEipPDeRDRcIg6adxkPiWkWjcHFCPvW4v7HIYccgjvuuAN77LEHDjnkEAjhy7E0IISA1uNLYy2GZWuKPvGJT+Caa64JL0QAoJTCGWecgac85Sm44IILlt2JFi1atGjRosUiaKfPALgpsw0bNoTPq41lvxTVdY0f//jHeMxjHpP8/uMf/zjYbT8UYGmuWCGNzADAsmw0EylJWQPZHCC9p82gzrC97CTZXYOKHFrdPDzpE0qdoazji2be1Ul0XFuJac8QdFTd8BSSwSfEKIHaSGyvnHvvTD4fIinSfMT+aExmQxjvlM0zOjJpor8JRr2IkqwgK5LsNJehI0ZYHcBnerD1rRXIlEmPhzlY15rVNBIIDsFCNByOQ0ogC6GZ3sTUMmR+5ZlGnuvAFMGK4PRLhYBtZsO2VgGaFYwM556yEmldzywGbxohYgRqBYwWgUUSOg0vVW4gyBlbWihpQwHbkTp4EKzIr0FX1ahlZCvqEcfr+CR0BYCjNo1IHXISjjXL3PjFayIWuu3YOon4HStjQ00rZaPbcKx5FTOMClbfjC/TLGMMiGwBEJ3gDadMBILmiPed6qGpwHoa5DLNcCMWadrrR4jlknX6V0OKDHWjHiChUHVgZgHHKkXNoHNfpjGqjEozJ9k9UBuJYZWF65GzRrZSjnJMnj9RYySYzo6GJdwu3BcJ7Lp1g5I4wJvM7SObq/26RWA1t1ddDG0e6jQqZVwGJz27jELmn/21UNCyRuH7VxmJTMWCsJIVhx2a3Bco9gW1dTctmMz8zKTPRgvebYzlJD84Yp8DY8TYq6Av8sdM14a1Aobdp2BjZt3GSXZx6n8mVmdOa6loX4oAABs3bhz7ebWwbInYa17zGpxwwgm48MILcc011+Caa67BhRdeiJNOOgmvec1rVr2DAHDLLbfgxBNPxP7774+JiQk88pGPxNlnn42yLJP1KEWP/7v00kvvlz61aNGiRYsWOwtilf491HDTTTfhtNNOw7Of/Ww85znPwWmnnYabbrppxe0tmym68MILsddee+Giiy7Cpk2uovLDHvYwnHnmmXjzm9+84o4shp/85CcwxuCyyy7DgQceiP/7f/8vTj75ZMzNzeHCCy9M1v3kJz+JY445JnznIvFlwV9BVlofmbmfrXLSBUYcRKbIZy1lc+7Sm+t3MFlEV9ZcMWdfbYOfDUFJG2psSWEDw1OzeXYAmFAxw6g0LjOpy9reUvdC9JoJEzI5lK/NlTXchGvf1pwuIP2yLlwE26e6VBRRjmF/nPYnVjHXRsB4tqi5btNPyBjn9MzZDNrOGJl6E/GoVzhGhfu9JLY1ifmR2y9Fi52sxmSnDM7OZWGSda3CyNMjlOeyiLWQJJInjZDW6YKIialU0g3uaGyVhahlcNK2QsMXt/eWNTZkInK34I6snaeQj9qHxnkLkXcS6V7oM2c2JByrwRnIZh082bg2uPN4zER0WWLER5FvEQ2RFiKwP+R0TZoS+i16HsWx15AJY0j7pWVKmESfpH19NmqHPo+rzeYqbLltlTAhy3JSDp2PEblf59pn1zlR2bwuMBSUDSdQGRXrA8KikHU4P1yzRSxH17O7A5ZB2BxPawWGWYahN86aH+bQXhNYKwtTyaBbE54YEqQ/EowZkvCiPd9uaiaeXNMkCSMZls0AWMDk/h7OAeH1czP5AL+p1mCu9hlhwsKYyHKPnjN2HgVQWxVdrBvPvB26i+2+Jt1sXYTfO7L2GYT0cB3VhsyzsewxNjWTBvN1Ho5NSwP6U1drfxWER4qFkCyDVMtwL5GeSBChbAFhGKskVoe8abFyfOELX8Af/dEf4bDDDsMRRxwBAPje976Hgw8+GP/zf/5P/MEf/MGy21z2S5GUEmeeeSbOPPNMbN++HQDud4H1Mccck7zoHHDAAbjpppvwkY98ZOSlaO3atdhrr73u1/60aNGiRYsWOxXt9NkIzjzzTJx11lk499xzk9/PPvtsvO1tb9s5L0UcD2S22bZt2xLDJsJpp52Gk046Cfvvvz9OPPFEvPa1r4WUC88SDodDDIfD8J1e9KyKjIGwFlb56Mv4Zb5J7mgtNDBY73RFADA/VJgri+DQDMTI220mMJm7KcCpvMRAZyH7rKtq9HzW0GzdGel3jIqcRxFFyYV0285WLuqqrcSc376jamTeYwZwEbOCy9QAkGhVODsBuBpQgzpPMsOC+6yvV0ZCf2KJFqpazdkJ63YctQLcl8ikEahg1a2jm7Vfl6I7Oe6ut84/SFG0akM2GADITKNaE4VCiVRJWdgMqaEw34cRge2RhU6YIi5rsto5fFuK8GmdirQOFpl3xi7yGrk0ge3r6xhBGyswnUeX9I6sEw2R85OS4RuvYA4gyVQDED5nQiYsEbFInJmpPfsz1BkmpERPuutTijT6BxAjfOFuGGIR+7qDSmSBSXKsTKNulgd3za6sQmVVcu36I/Tb2eSBbyBRWWrHtU+6JK6HMpDoyWFot2srdEWFnuqG/gZWzuYY6gwVu0CSzFKjwrJmXcNeJgOrG/rI7qUJW2G+cmxaJ6vRLz2LqTLUmQr+VqZSsEJGtqIGBH3RPquscQsIfioYyyEMYvZZYQED6K7XCa2JG+7Z3YG+LrC9dGOijdMBkuO6TvzXXOYZHxfOTHdk5XyL4FiiocmwpXRO2TXLVKyVQiFr9Jiv1kJwDLpOrkO+/7LOUOReKyWcm32T8aZngZAGwp9Dy2vQ+TEDu79HZIz3M9qU/FHccccd+OM//uOR31/5yleuOOlr2S9F+++//6JGSb/4xS9W1JHl4Oc//zk+/OEP4y/+4i+S39/97nfj2c9+NiYmJvDP//zPePOb34y7774bb3/72xds6/zzz1+xHXiLFi1atGjR4oHBkUceiW9/+9s48MADk9+vueYaPP3pT19Rm8t+KTr99NOT71VV4frrr8dXv/pVvPWtb11WW+9617vu9YXkBz/4QVJO5Pbbb8cxxxyDP/iDP8BJJ52UrMtffg455BAAwLnnnrvoS9FZZ52FM844I3zfvn07HvGIR8AKCystBARMxvxRKLIgdqgRJMsKKBzZhLlSYX6Yw5e5ghAqsEa5cq6vlEExlQ8xlQ9DhFmoGhs6s2GfHVWHPszrImZpwPkXUTaFEjroGGhbinQ7qg5uxG5dA0ggt55lsik7lAvDdCROT0HfFZvDz6VOtCtOLxEjZe5ETW3RtgIpi9Rcl9tPJPWimlSyhdN+UVQskQi/slxHTyQA81WOoc8EtFbAkifUWgNZMQ1ZZlMvGCPSzDGNECQYlUFNxDEUykKSc7mQMLVhAgU0/h+jUuonsYZbBjK6omdOfzWZRXYzkxpUDrH2db8A0nakNe4K72sEIKltV1sJGF6TT7mon+nauJZm3hToKV/R3LfBM8w4EsbHKPRtZL54qgdnjFz/RRLx87ZJNxR0bEIyl+zokQMAsJnTKyHNTqN1FQQMc7/OVbxHeO3AvinQlx2mlxIJE2eUDLXPXO01psOyEkOjmeaI+3hJ1FqGbEMlTdAfzqscwzpD6a/VWhlopWC9+7mVIrCPEpJKo7lDaT6jbJTmkN6ITpXJLWQlMdjda5eYdm5Clpg3RbjHC6WhpU30ctzfzNWls+F3YwUUEaNWBQ1RZSS2193EO4vugcqolGHyPkl0jjuiClrJeZ0HFhMAkJXuOvfr7hCdkClH1zONp0XKSAsR5YhWYETHaNlyyjZtSKruP7TTZyM49thj8ba3vQ3XXnstfud3fgeA0xT93d/9Hc455xx8+ctfTtZdCpb9UvTGN75x7O9//dd/jR/+8IfLauu0007Dcccdt+g6++23X/h8++2346ijjsIRRxyBj370o/fa/u/8zu9g+/bt+M1vfoM999xz7DqdTgedzuj0VIsWLVq0aLFL4SH2UnNfccoppwAALrnkElxyySVjlwFYlpHjfdIUcTz/+c/HWWedlbhf3xvWr1+P9evXL2ndX//61zjqqKNw6KGH4pOf/OSiOiHC9ddfj263i7Vr1y65TwEs+0xAIAYiPqPHv0d5ssUtEc7vw5fvgZxTqCaywKF0iiowGYWqUSgdmKNC6pBZBDiWZkoN3Mpd5wtELNK8zoNzcSY1JlUZoipXvXqYVDuXjQi6Cdq2I1OPG0gddE21lWP1EICbj59QdXBazlSOocww9G6+zgGXqJd03+QuHeb2AVDFasEpGvjEGtIpBR8k0gIIWDP+iSGk9VlZzKumVqhLHy0y7YDNLIwAbO4zzDLjmCGKJpVNIkPBmCPbV9CZgQyMVHTOlcpASKcdAhyr0AwxgyeP0iiyOtHzEEgDFDU7PqvQj/0EbGAGXVV3lfg5JTohNZo5RHAeWvHxQLXRCJnUmJDuJphWAxjEelUVu4Y6skYua5aZJiGZA7uGgIyDn3ZCwKfsRcaBNEfapp5BGhLKEkNkfO02ykYTzvGaxgDRP0ixjDXXB/e/SelYsNzWGNqYOadgE18lcuEO4+KZQGIuOHPktDbkaZSF8aVMNDq3UsQadKpjkCkT2cMqQyUtasoKlCroHY1094EkpqgUdEMlxwY4TzWYyBTZwkLOCsyv923lwJrdnDiSridiXtZOzCc135oZZYkOzSgoZSHJZ8rGmohDk3k9pA3t540sMxo/KRVyaNDTVgrnWxT3Y9gzMIOROnkGzoWqdBmc8ZNvv1aORWTsb/ALszLRBYKkXPQDSRpV+6byQOH+8EZctZeiL3zhC2OFz6uB22+/HUceeST23XdfXHjhhbjrrrvCMso0+8d//EfccccdOOKIIzAxMYGrr74af/7nf47Xvva1LRPUokWLFi0e1HgoC61vvvlmnHDCCfjNb34DpRS+973vYXJy8gHpy7Jfip74xCcmQmtrLe644w7cddddI/TVauHrX/86fvazn+FnP/sZHv7whyfLqOZJnue45JJLcMYZZ8AYgwMOOADnnnsuTj311BXt0yrr6lwZH2qFeWZXt8vKOAYZdzyVLgMNANS8RNXPUPsoT0oVIr5MGufEiqjLmcyGIfrpyipk9wAuA2neR6y1j1ABF3F2bRUcZAHHMimWtcErqhtycAVCCl3QfMiow6iMs/SmyI3XXQOQZDDR76Rl6mUVykJhzmfAzZVFcJMmryDqAjnRBqdsw9yuHUcX9mGtCHe1CPQc/c/4OkbUcHyCCM8yEEunlEGvKEOfTC1g/EkUlYTtmFDjTGSOGRJDxqhQdJ0bpysofWc8oyTI2skAuozmQzIzULk//4UOVdIJVJstU66KPDFb3NG6UL4Keagsrxq1xQwmlLtu5nWBTJmkNpcUdiQzioPX+XJ1v0YzrQxcXTauFcqFDgwRZ1aInMzZda3Z9Ts0OSr/GKJ1iAXLEbPLYInxIa2KSfyIKqtCzTVlXfZTAco2k3DsQHzcFd6unVijLtz1XcEzB37MlK/lBQBdUUFJk9Tq4vopbWXU68H4ivDCr+vGnu5FIwygONMhURIDZWRgXzJp0M1i3TElDAYijm9lRbgZrBOFQVOmbCYgh8J568B7EtGlYhA9uQCgMOjeqVD6hGI9YXHgbpsBAFurHiobdW09USVZjLwuY+YZGroG3TGnGi16rtVGoaPqcN3kTMNGGWxBH+ezCfm13mQ5aYwmVOV0mDKydHQPhHuB2fVLY6FFrElHjvRSGVghAwNtyc9IxIxXsTOZooewpuj444/Heeedh6c//enYsmXLokTGhz70Ibz2ta9Ft9vFhz70oUXbfcMb3rDsviz7peiFL3xh8lIkpcSGDRtw5JFH4rGPfeyyO7AUHH/88Tj++OMXXafpZdSiRYsWLVq02LXxn//5n8jzPGSL3duM00UXXYRXvOIV6Ha7uOiiixZcTwixc16K3vWudy17Jw9KKOv+CUeo2FDPygJCxNpYEME1VtZOJqI7Ue8hagntaxrVysL6DK9KK5RSoVu4CGtCVliTzQen366oQ5bMwLsB86wiQm2c/wkxTKHKNzsU7nDchPOjidlolYmsVmUVipASlW4/YJdOU/tSSO19lvyxZRXmfT2i+TJPaloRdMgAkYH9M/CZYWNrqAEQNuqPlAVsZPASvyKRbqukQZEBEx3PxFmgJq1Pptx5C1ol6zLGKHrULlPHrSwcTUiO2JV0fkR+cVboEHWa2mmIBGnGcld/jda1Voy4ffPxpPGayoYoZB3Ot9ESPGeLZ0N1ZO0ifL/MQCCTOnFgJm0aMJrtVTBNRs28aGoj0a+LwCJKYTGlYjYcEGvjVVCQ1ga9D/UjridDzF5pFTQ+gGOfmh5IhrFIxBbF/suwT2UtKhG9kAxEYHz4urmoG/5H1lF8IvaPoPz+SJvXEQa51UnWXWSOZLo/4bJAmw7jgM8ezOLvA50FttR4LZwU3gFcGp8hFc9TNfRn2PoWyXtIuecRXU6qFCDyWVjHHIVLTVpkA2DY89sWBjO584y+aziF2shEk+eyXokZHmJCUe08x+bRddSTJXJZRw0cEK6bTGoUTKsmhUlYbfrNnQcBDRXGlLOnOTQgAcky/SAQ3flVhV4WGT16FtFxlFoFZk4bCa0jswqpU/d+I2AqMqlzGZuh9uH9jAdq+uxb3/oWLrjgAlx77bXYtGkTvvjFL+JFL3pRss4ll1yCCy64AJs2bcLjHvc4XHzxxUtOif/pT3+KqakpHHvssfjVr36F3//938ef/dmfLbg+LwK7SxSEVUph06ZN2GOPPZLfN2/ejD322GPJCu9dHoX7Y2eNnxIhCtXbvAcDPyFR+wddNoC7GUv/x2ONv4FVTE8lVEah5CJDTx1XXtS4Jp8PD9hZ3YFBLGnQVVVIY5VQSdr9hPKpq+yByyn9jqyjuNS6NGZtR6dIcmhf/iCm2rrio3EajdPn/A8qiXJJmDmTD8ML0qwq0K+KmCIrXGkTI2jqgJU/8GLqkJafTJ8Z92bELjcLwUzYGi9dtYxFKWEhpUbHT1fVuQ7rm9wkVv+uMQvb8YLweQlZRfrcauGm0YAoamVCTBmoddN4wXMmkioz4Tu3DAAQ/ghx88+OqjGlotlgJTU0RCjWWRvFBKYGOYA4kSqdlQKVu1Bx+pan8gPxj1FGdgNChGsug0FpFHZU3bD+uPIxHPHF3rUXpmVllRaEZX3g01EEw1+a2O+avWwY615bSMBtrEQl4otPV1Qh4BhXEoS/aGkbhdTaJxs0xylnn6WlArCZeyFkqelSWEg7+ldJCn9vsQLANNb8HqNxM5lIXqbDC1yloKWMU8hWuikfbzehJULQYEsgi7plQAB1N8yoQ64t0femr/cMJmAggvi7q2qX4OGTMApZh5fiXOixY0oY2CwWC/YCc55cQtNu1E4TfMoslA4R/nkUXkhNkpgyocrRqbZwXlwpnjDO0oZpbK1lWpAa3n6DXr6EcUkaavyxrjoeoOmzubk5/Lf/9t/wmte8Bi996UtHln/+85/H6aefjksuuQRPfepTcdlll+H5z38+brzxRuy7774AgEMPPTQxSSZ8/etfR1VV+Pa3v40bbrgBe+yxB4455hgcfvjheO5zn7v8zq4Clv1SZMfc1IBzhi6KYuyyFi1atGjRosXKsZpMEVVuICxmTfP85z8fz3/+8xds84Mf/CBOPPHE4Bt48cUX42tf+xo+8pGP4PzzzwcAXHvttQtu//CHPxyHH344HvGIRwAAfvd3fxc33HDDkl6Kfv/3fx+HHXYY/vRP/zT5/YILLsD3v/99/N3f/d29ttHEkl+KSNAkhMDll1+OqampsExrjW9961v3m6bogYDIDERuXNRF/wAnumMiayNNCK9qCEheLLYWMF0TojopTWQyiBanSN04UzOKtvumwN3VNACXuppLk0aLFL1IeFMzz3RYgVzE4pjcZFEKm1DZ0dTPp/saHnunKfwGImGDClkjE2nEzCPotLSERtagvSld38ALq/0ckFGsPAhPJwZGnghS2tBDa8RIFETSN+MFkUHsXfj2aZpLxekpLQ1sxsTeRsDm2k1/AdAigxio2B2LpDgnjIAhAXVHI/MsTw3lZmUYg1VrGSwJCqWhJImp3dQjMQddxbke308fRTvmLxWf8nR9YosAzhj54xY6MFmVHS1DwYvL0vnnywiVUZiti2Tqg64pI+TItJyGDAJsSDb9yhhMOpYhS9PnBW6lYPnkSEXY9F2TySIsJC9/wggIJSrXH7+f5nSdEjG130Ak02f8em9+V8IJuGnaMCQ40NQWK6ljrHQmn57tkyraRzQLyQIudZ2me4nVAIBSWAgpw7VqAJdSTmJ5Fad+rXAME031C2lQrnUCawDYfe0s7px32T9bBxOYyCtMZOkVFBhHZlPQkTV6cjAyjsTkUfFgwLHauTRhHJrPqo4okza4/QG3ZyDGiJ6dxovPyaYCOgtmpwbO+kD6cVDaQEmD0j+PtIn7UHkNpWSYAnfFZGVI2ZeQbsag2klM0SqCXkAIZ5999oqkMWVZ4tprrx15KXne856H73znO0tq4/DDD8dvfvMb3HPPPVizZg2+9a1v4U/+5E+WtO2//uu/4uyzzx75/Zhjjhmpi7pULPmliARN1lpceumlUCo+kIqiwH777YdLL710RZ1o0aJFixYtWiyCVZw+u+2225LapSu1rbn77ruhtR4xR95zzz1xxx13LKmNLMvw3ve+F894xjNgrcXznvc8/Pf//t+XtO3s7OzYGao8z0fYsKViyS9FJGg66qijcMUVV2DdunUr2uGDBVmhIb1Q1moBQ6nk1kV7cRbRBkM+qyQsGabBMx2siGkTxkYtyNBk0BCY8ZHf3dU0tlbODj8XBpVBou+h+X0ZtEU2rCuFCULcEU2GlVD+tzxEVlFrQ2vzsgi0LJM60a6ENiFQCJOYpY2Lbl1DNabyNLW/FmnETai1dEwDiZUNM3n0YlPlRY5GC9ffIPWKTw8q+UF90t54jpe5UME2wX0nVgkKMEbGc2xFSNc32hs30vlW1guzIxtIbJWSBkbwIroW3GuyKZ4FmBCXaS0Ad94o7b0jKkAAPd/diqfQw4mOaT9KWGjG2jjWjqr4ApD1KPtBuhxhghWBsS4lPwr40wKg1DZHuA5FGvFzobXrY4y6NWRavsGmxUVzoZOU+FzE/iSsJbz+iDOiRJ5YM3KPpP2uE32MtjKc7wqxnMc4SGHQCcapNjlvCjZsxwvJAr4wqo3naFBnscSKt7AgYbAyInmKV3DOEPzYw5kYSoR6G7DQQkB3/fWYWdTTJmjnZroD7BhGzZhtsH21UZj3Iv3KSuQmMtNdWY2MaZOddn0TaPKXgaXxTFvUG3kNHRUlNnlgc5tlZZrIpA5aLyf8BPq1+0OaCYPa6qBxGzKRu2NydbhWMuUKXZeCWCXrrCLynaSjXcWXopmZmVUt6N6sh2qtXbRGahP3NkW3EA4++GB8/vOfxzvf+c7k9//1v/4XDjrooGW3B6xAU3T11VevaEctWrRo0aJFi4cO1q9fD6XUCCt05513LlhaazXxjne8Ay996Uvx85//HM961rMAAP/8z/+Mz33ucyvSEwFLfCk644wz8O53vxuTk5NJ8dRx+OAHP7iijuxqUJmGylw6ps0RmCJdS2erbxgdRMyBsrAF00tkFrKjoXwkYYyM5S48QmFXYTClhiEqvafusRTjNNOG29sXsnYmaP63jqqRCR3ayaVOMnqcoRxFrz6CYyUPKOpSMKgRIzApXOFMnk2Tlv2QgXWQzOwyLGc/ZMKEdO+Yzl+PrCuEhTE2GD5CSFg+fc/YFakQ0t3dqiyksu47sXvzVQ5rEbRLQlgUnnkjjRNpNdw6JkQ9ttAwjClyWqbYX2fZQGNmE02RhEUzT4H6UJsY/Vsr0gKsLFU5kxp9UyQ6opydb7JSCMsQI12nGZIwDf0Z4JggBRFYRDovxGAYR/GEcc9YwU1qI0T1MpZcUEhLNyjhNXiNDEj6XBmVpLgTI0msSi6YjkTGrDYAwYCPji1o8MIxedYLNmaJWeU0QoLYUuMKzXKWlI4L2u3DD72BQGp+wcuvmOS7kpVjPgyxvfxes8ggUAcmK4Oh8iZWAlks3ltbVxA4mDuqmIFp1JjIXCCcbyvg2CLXAYeQOWlhJjSEt5eYysvAFE0WLntrvopjXWYqXJ9dVYW+EyZ87r/yJp90DjrM9JPsR2iMNNN9BcYI8RwqmDi+Mq5TQY3o3SSY7lLELEbSZtK1O9A5SqPC90LpkIlWaZUWwbYWRoqg/dNGoNYKMk+P/f7CruhoXRQFDj30UFx11VV48YtfHH6/6qqr8MIXvnB1dzYGxx57LL70pS/hve99L77whS9gYmICT3jCE/CNb3wDz3zmM1fU5pJeiq6//npUlbuAr7vuumXRYi1atGjRokWL+4hVnD47/PDDoZTCqaeeeq9VH2ZnZ/Gzn/0sfL/55ptxww03YLfddsO+++6LM844A6961atw2GGHhWLtt956K173utfdx84uDS94wQvwghe8YNXaW9JLEZ8y+5d/+ZdV2/mujCLXUHkdvGWM15xo5b1KqAioieyFzQSsMcmFm3dq5PmoeaK1wpscRt+fyirMaid4m6s7MYMsZNy47XnGkbZp1o1bP0a60tokEgcQvJBy5c3xGCNB6xofQQcNgF8n0Q0FH5iGB4hwc+18eTMzjRvB1ayEgBRVYH+GyFAiXqRCRDt+MjvkxSiNiLwTaS84yAdIem3NOHSzGmWtQmRurEj0P3leQyvmY1PHbB/XyfixqhSK3Gu7smjkSP2nYwJSLQ0fJwKdh54sMas7CVMERPZQWhsYHccKWihL2qTIGjXblRDIoKO+LLAjvi+s8rH05nyBnZQ1mgjMFfOucsekEvNO7pPldCRgmo5UawMglPKorDPyozEykMlnAOE+HMKzFZJp6Qzrp0RqtMg1RI0BI38jWiZhQpZbE1y/F/bLmiOWEFJD2shASGGClipraHlMLXy2aTiAMfuN953KTNC16TgksLUvUeGzsEwtIbsanYn4PCqyyD4DTm8DAGWdYaizwKiYXATmt7YSlZXoSKfZ6cgaEyotWdTUCRH4OJKeKGQxekaRs3ZdzzTBpGyRY0A1cvIeY5lqEjro76gvmS9MS/0Px6Vq1FaGZ4E2jr1VJj6DtNLQdZol92DAD37wgyVrin74wx/iqKOOCt9ptujVr341PvWpT+FlL3sZNm/ejHPPPRebNm3CwQcfjCuvvBIbN268X/rexNatW/GFL3wBv/jFL/CWt7wFu+22G6677jrsueee2GeffZbd3niF6yI44YQTsGPHjpHf5+bmcMIJJyy7Ay1atGjRokWLxSGsXZV/y8WRRx4Ja+3Iv0996lNhnVNOOQW33HILhsMhrr32WjzjGc9YxSNfGD/60Y/w6Ec/Gu9///txwQUXYOvWrQCAL37xizjrrLNW1Oayhdaf/vSn8b73vQ/T09PJ7/Pz8/jMZz6DT3ziEyvqyK6GblYjy5VzWEZ0IiY32ZqYBO7AbJ1XDmcBup0Kk76chJImRMG9vPTOte4U7Ki6mGM6HQPBTo7xRS2j5oBnc/BsG21FiKYBjPq8sMizrzvosfIMCtHtmG8D8KKyvm0ZWQXTYLLoc4i4rBxhkwiZNCisDvoE+g1w2iNV5yFSE1pG76FQdsVvozSEiGUzhMDIZ4rElTBQCtA8Q41liWUqZkdZa5BnOjAz1kZ9x7DMvc+P1wIZCQjrPGfgzj9lsXWLOrhXu3aEz26J2Wi51x/lSvvsrpjRE1yfIZEzdiwwJgtMaTe1FgVjOpLSC8I5mEsqH+KzqiSL5iUrM9ORdcIacl8gaS2GnmOSvjgrMUeUUZahoTMag46qIRfIMCI2iK65oZZA4zdCZTNUQqHjdWtayBAODqzLYur6MhpapC7vpiGO4/eHgkl0Rc2j4A7dTebDsUbuuTD07teBjWTZfOOcmDNjguM1z6AMYE9158jst83Y8eTuHlJdf74rid7MIGjpSp2W4imYl1fz/8Zr4GgQ+laillTaqHneRNT3sGxBN55R32isc9Pn12hl0z9XtH0o5uqPjcqtRB8lk2QQKmEgVTwPQ5MFZq4yKimgbKyE8SVYSqMw0FkYc2vd34a6ajqA3U9YxemzhwrOOOMMHH/88fjABz6QvJM8//nPx8tf/vIVtbnkl6Lt27eHN8QdO3ag243pmlprXHnllSOlP1q0aNGiRYsWLe4P/OAHP8Bll1028vs+++yzZJ+kJpb8UrR27VoIISCEwKMf/eiR5UIInHPOOSvqxK6IyWKIrHDzyMF1GS56sFbAUH0cy9yPGTMBkCOwiQyA1DAyznsPNOOCrECh6pjdhcgakYF21OUYVrCyESkaFfbn1pTROdcIlxkEVgCWFcOUwsR5er+boM+QTocR/YVUjOqIKULUj1Qso6O0MtEXSVZ/SwoLqWwjOvPt5eTJ4rUMQkV/m1AXLUbSSprA6CQ6DF8/jTRFxNgpRiWr4FJr0c2qGAVnItEnJcVaC+dnFHROPtQXcrQPtZbo5nWSYSaYE7li7uZ03fTUqFZhru4EjYcba4kqklXBMdztJN3WFeoc9RQiyETjEbVmAJCrEpmNOisODZH4VtG+YrsmZbeMhA43SWSKJHNGjtt6phKpp5a2Isk848uA0WPk9QEZ6eqWCeeHBbiMKGWjJm8cw7nQ+AEY8SzimXSUiQXAOctblvVpFIbC+/4YGXQNFRRyYaC89jATBplRyPyxZMJgoOMzQwoFZdi9JRSSq4iSZo27rjtdz5AVEusm50OG2Y6qk7rSC4NeQc+GYcI4S9iELS5kHa5RykKksa+tct5acHqjXNaJpjGnTDSR6hDHjS0hl3XQFYX+WBHYHwPmD+avDdI4dWTtmDpLteaijq22CprpIQsrUUiNOqOMUacxqvOdoynaFbPPHmh0u92xJo033XQTNmzYsKI2l/xSdPXVV8Nai2c961n4+7//e+y2225hWVEU2LhxI/bee+8VdaJFixYtWrRosQgeoOyzXRkvfOELce655+Jv//ZvAThy5tZbb8Wf/umfji1euxQs+aWIcv5vvvlmPOIRj4CU8l62eHBjMq+Q5yIwF1xbUJuokSEmCYgskmBsRS51rHbONBihajZbl++HR6PEJpCGgyL+ZLtGVNUJ2hAR9B0APGtE8+eenfCb8mwQRa7YlMkEBch4wbh6R5Tlk+5bwh13RW7bImUdDKvs7SJJiczvqGZZRBIWvayK2hqZoWKZIJZluNH6welXproMa0XIPlLSwEgR+tccbwCJtw4Qs8S0lc4bxiNTJuiG7BhWIVwL0rtJk+cJ6yfg6p3FunIaU/kQE54dCAxH6GuqKVKwMBSZJ1qd1EuK18Nz4xW9cmLmDml4vB8OY686Xo9E0XTT1Zwzkpw1dJE7VYB3+reK9StoQ5AyhbzSOW1Lx0C/N7Pw4jEwnR3V3WLMINdgVUKxPojk/qIxDmMKO1L7bCEGg/t+ueOKrGIudGDIQlYasX1SRYbWAJDx/GRKI5cKmSbdXRbrpMkMudHhHnHMaay3WAkFKtNnrbsmp7pDv67FTGcQmKL5Mg/Mqvb166gPXVUhY4xjadQIU1gwR31e30zz55GJ1wfg2TPBnPiFTp5r3AU8GWdYGGGSZ0EFBW5qxj2L3O9R69VTZczMlYrpi6T3jPLnDCL4wgGUqaZQZTtHU7SaTNFyss92ZVx44YX43d/9Xeyxxx6Yn5/HM5/5TNxxxx044ogj8J73vGdFbS5baE1pdv1+H7feeivKMqUOn/CEJ6yoIy1atGjRokWLFkvFzMwMrrnmGnzzm9/EddddB2MMnvSkJ+E5z3nOittc9kvRXXfdhde85jX4p3/6p7HLtd5JdWDuZ/SyEnmGEQYGiNEugMTHoskouXphJsmmWojhoUiSkHEPI193bFw9s6DxsSnroQIrgITt4Q68lVUhWnPLMzc/D+5OHGtjcRdrpSzgNVHNOIlHV3TcRowyQe64GyyTsImHEeAyXwDHoJQ+m2Xoq4eHrECban+aY2ATxsQmzBBfRttzj6NkfYOgC6PxIL0MaZdoPBO9k3B+McQM5VKHSJ6OUQZG0P02p53XS78uwrXQVdWI51Ntow5iQsW6U1wPwcd66B3CuTaJL6dj49cZP2cUrdNxNj2ftBVpRC+iM3YOci52y4cmS/cDGeq3Ge95E9DUmBgxol2i7XhNssgS+PVYhmZuHVPJOuC1LfzYuQ+VGekHH5fm9RxqdnkfnXDcNku8mlz/o35KM+dmaW1gC13dOe2zHt05JP+gQmqXHUUspDZJ/b1MGQxDDT/nnTVZuKB2Mi9RqOj7ND/sBI8t2bEh2w3wuiYV79ER/RbTmOVK++sw3jPEtGk4h3/KDDOIXk0d4TPGmJ6SWDwaa36+c6HT71YnLN1C9dHIUT0+Kwy01f44FXJpwvVYWYXEBd5rJ8sx2r/7BW32WYK6rtHtdnHDDTfgWc96VijzcV+x7Dmw008/Hffccw++973vYWJiAl/96lfx6U9/Go961KPw5S9/eVU61aJFixYtWrSIoOmz+/rvoYIsy7Bx48ZVJ2KWzRR985vfxD/8wz/g8MMPh5QSGzduxHOf+1zMzMzg/PPPX1W77QcSU2qIIrOJVoKQJ3oDGbw4SuOqWY/zFhkHF2FFB+n4W4x2AaCjSmRSJ5lVTa8PzlDxWmek7/ErAUgriw9tHjQIUljkVI+pUbNIShsiI9eKhZakqxJJNorTsnDtiwwaA5jMe7ukDE8yVmz4iCUDPFPk90+fuYvtOE1PGNNGNlqTkRqpndRYn8C3IZ8SOr+1le435lvFI2TOPilpkLM+8AwexzwWwecJAGTmtiWdUWRBHJtCrufzGkk1+4pdR5R5RtH2UGeJdoZjSg1hINH3ldCb17SxMl7XImWLXB28VL8UMoEaTIqxwDyK0D+KxnlbwCgrpYR1DtwJM7vw+eeMEmmOABf9d0QdrusKro4gZaOlHmANV2WhUy8doWEa9zrdP8q6Y+M6tqaeaxwyod1x+WHj2VEEYvzcdWsg/Tkj53G6/yujwvWmrcBEXmFNx1WNn8qHrm2vjyvLjGXVuv7VrD5g7TOxaIwiy6mTa5lqIkZG3LPMcO7SSZ05AwzI30qY5DlALFx4orDzQmjWnSMYIQJbriHd/mxk5/jzkrtfh/EndheONeL7nZAVyp2kKWoxire//e0466yz8D/+x/9Ikr/uC5b9UjQ3Nxf8iHbbbTfcddddePSjH43HP/7xuO6661alUy1atGjRokULhjb7bAQf+tCH8LOf/Qx77703Nm7ciMnJyWT5St5Jlv1S9JjHPAY33XQT9ttvPxxyyCG47LLLsN9+++HSSy/Fwx72sGV3YFdFLyvRyezIfDSxDBSVZBAwngXJjEZtVHCpJtYoqRE2JlML4C6xaU0wwOkuXAQ2GtUTo8OZA67R4K66pIEhbVJlXYZGcOS1SJgNLdK2OOuUI1ZmV8ImEVSzxpYSOmESaptGW0k9tYYOJolCRc1YI+WzXiRrUywYdY/zllmIAeLrS1gY0dBEsKw2DqrFFbOnZIi2AadT4v2YysuEDeIPPO5UXCgds7msSLLKmo7LANKsMKbLURCuFp5MM8Hoc5M1mq0LzHtdk7EiMhJN13PP7ukwRibJCuPaJj6OoY/+GDLPKCykVUr1Uc7LRrHzFFlXmRzLuHuLMDTZSKV7bWTw68oRmVcDr/uj7CSvwUsquTfqeQVWyWoMbBbGjmcUNuurjaslGDROkphZjIyRFAaZEEk9Ralt0MDVVodzaKzAVF5ibTEPAJjJBthaTYSx4qxmVStUWqHrGRGuoQQca0v3pYQdo1WLGrMkS03F51cT9Mxt1nXU4dpIr3E6fj4WXGNEzvFNbVGzLqRjjmK/OSuvYZEpHVjPkFEnd56OdrWmvx4q2WcvfOELV71A/bJfik4//XRs2rQJAHD22Wfj6KOPxt/8zd+gKIqkFkqLFi1atGjRosX9hXe9612r3uayX4pe8YpXhM9PfOITccstt+AnP/kJ9t13X6xfv35VO/dAwulpJCDcXHLwYPFRb6wujliHSVWohQlRU2kylDpbsJo8AJZd4SPoJJKOtc6kNiHi68iaRdMy0f40NQ1SmOCc66IkmfijUJ2gZv+MTWuoKeE8jThLQFFlBxUyJWMGnKZMGTmybq5MonMJDtcsyluIVUiYDem2MZJl70Gwemv3zhothVUau25jsxG9TYiKZThnzfUyaRbVMdH2tB1nDcGq0o+wNJDQwb3X+kyq2C+DGLVLRJauI2vkQmPeOGZoe93FXcPphA3oME0J13oZK8j1BYDTrhgWbdcNdhRAYMUy7+YMILhcN88/R3ovRdd0rp1x7ctkKwgkzslhiZXoa5XUEtSMGXQ+OynzyvtFTtVh3abWj+2zizphULnb9b1BsnOai1jrTjUuRqXqeP8Jk1x/mTVBb5ZJg5l8HhuKWQBAT5UYmixhiKyJ7M58mSfO/HNGBY2RzG3wx8qkdjocds9yj6umBxSQOporxu5UiM+z5jb82RJc7lmdueY2zfp6TRd+OUabaeBmCQw5ZQtXwy+wS+TfNIbpul9gbSybcF/aeAig3+/jrW99K770pS+hqio85znPwYc+9KFVeQe5zw6MvV4PT3rSkx5SL0QtWrRo0aLFroQ2+yzi7LPPxqc+9Sm84AUvwHHHHYerrroKr3/961el7SUxRWecccaSG/zgBz+44s7sqpAwzgk1INViEBQsIDWkjVqbTJgQKdesAnNse1RbQe1y5mDE1dhncFDkL9l2TSYLlEFmx2RsCBMyMyDGZRlRtk9zVFg0LLxWhRpSAHSW+BfxSDdjPjX12CiZIr1xPkZxmbQWhrvWQrDacqNZgOP0N83jHGWn7Mh6zWy5JhMY3IdFZIMMxAgz1Px/04toe+WKLg90FjOKiJ0jHZvUvg7d+ONyDNR4vyHezp75dvTkELcOdwcA/HK4GwZ19NLpqmrkWq25Yzl41J36eDU1Ys3jTnR0Jq3O3sxSDNeN33eaJSbCmPDxcDqgtH8j2YW0vpWO5QoJUVEXRtc31wBpG5meAfKEKco9++bWSzUyTQfmlIlsennFay7q9TxLY21jXRkZPKRu/EnVe1ljSpVYl88BAHqyxGY5hdzXdBSC6YoEUNYKc6VjEWe6LmMt6PmMDNmRjnFM/dg6so5jxyohUB2ycSAtJD1DmtofOr7mNvS7RJpVlvoQyeRa5hmFAFAZ8l9TyJH6HaV/B1o8ULjiiivw8Y9/HMcddxwA4JWvfCWe+tSnQmsNpe6deV0MS3opuv7665fU2GoLnh5IGMg4LTZG4BzW4zRu4w+fS+e0yMkcUZiQUj7upar5ApA1aOBo4JY+WHKh48MjCHLHv7Q1haD+AF3/rAovP81pAm0lIAwWshdw+yLxuQYUIJkJH4diafe8LAXgXpJIPKutwCjVHpfxfbrDiC8oaPzRGffywrHYlE2yD9kUJ4+m7vMyAAu9ZFK7XNBNL0UbilmXDl8Xvj2J0lP4mciC2BoAClGjI+tYyqJxfprmhlLGIrSZ0FiT9QEAu2Wz2FJP4a5yGgBCseKCFRcOgm2aUgzVRWUibM0RDT2lkGEqjY/l4jYV7DN9FaMifAPBxOkSdVwA0/hjK4VhY+Re4lOYsB/31T9YZfQ4GPdSbSBj2Q/EKeRKaCiTxcSEMfddtDRwZScWS81vmh/mNAwm9pmmnGhKjVLyMW78hZv+7PpprUk5dN8z932HtNC1T8nXAio3MH46TRuJQtUhVX+gM3T99SJzJ7TWjZe6XJIYPb5cO7uT8S8Z9PIS79ml/6FrPquCQJ7GgD8ngGSq1RUvJvuQ+GIEuJdh95LZEMbf9wmXpcGiNW/0uO222/D0pz89fP/t3/5tZFmG22+/HY94xCPuU9tLeim6+uqr79NOWrRo0aJFixYrhzAjFkwragN48Kfka61RFEXyW5ZlqOt6gS2WjmULrf9fA0WB4f/CUfbVuIvTymQKiqaxKI6gYo4AiVHTyHCh06mETaKbykpAk+GdTdJGTTO1mk+lNabWCDn7zEWfUtjwXduUxldjWKOEBYFBR0aBNx8TDj4l4rZLmYIm2xMgAIxh8JiudCxbxn9Ppywa03BjprqoD5ILjMWocLSmkiY2Fk3lJo+8XW5HoJL9xDYzaUIEX3hxa5WUXdDBUDSTekHGgaYyppWb/tgz34Y1yjFFW+op3NTfE3cNp0LfMx5tWxmsJqhcTbMYK/VBCxtOTe0F2c1zzAXs3LiUX2OOfULYvysRE4+lGfWG8yrsyFjzaTklmqaPo2wfLwkSmTEJzb4TxiUqVPAFdT0j1REVcqlH+hX279kiACElnPbJr4XFWE7AX1PEvvpLZJzQ3YmaLabVfOhf0r4F4D/TjFHty8NoI2HZjTbUGWY9q9mrO6MFqxkLlgvLhOlUHDjeI+FaaKbiL8AoEZpC6uaxEkg8Hb5Tv4LVSHxeBNG3oCQYmxSa3WkMEWEVmaIHe0q+tRbHH388Op1O+G0wGOB1r3td4lV0xRVXLLvt9qWoRYsWLVq0aPGgwatf/eqR3175yleuStvtS9ECyIRGNkZU5wSDGpkaZRsqqyDZnHPT/F0Ki8LP4TeN6iqjkCHVwRC0j54zEkwjbjevc2fm5yO9XGpIrrsQZqT8QVP0GftnEtaIR2e1VaihQqQhmUgyseoHpcfLhrEc7YsJwOGj3KR7qRh8Ie2JOz/NKLkhJF8oemQFHZtoGgaOQ9OYkBsISmECY1JZmbBGHNKzGZwpomMlw0RihdZKHUoqUETbLKtBafjSxgK1vCQG4MZsWg2wf+cuAMBe2VbcUa8FAPx0sBd+M5hBv3ZXQCF1oidy+/GaKUhkwHh9Grx+xh9u5tmyprCcC9C5MWUTil030oowXokJIEYF8OMZFRHGhZ9DwxIVmutWUIH1WkgUrBbYb2ILIfOk+CkvWBzbYWJfonlsg+VsMEeOXXOfg9UC05tJ2KAF4/dGR9aYUfOYloOkv8QGQQCKRNfSOkcDfyylVsiUDppHIIquBzpHLjUmJD39jDtXKnwN4v5wDEz7E49TpBYgXmOUjEUy1inDTbqiJqhUSyxX5FmsWJEIHcasJzYgjX5S0V69k1LyVyN77KGSffbJT37yfmu7fSlq0aJFixYtdnW0PkU7Be1L0QJwll3jU0aVMNF2H5FRya32Zl++3IWPFENBSYjAzihhk0imkDVKk4UIZrEsqGaK9VBnSSTGo1BelqDJulQYTUdtlvXgEX2qDYrFRHNp7iVDL2WMUt2Iduway2zSjE1YKCWf2pKNKK35HYiMmG4wQ+PGOFuAKFooWzDNljJe3+XZQIjAFFVMX0R95xoTzjBRXydV6fYDEVhCflShH0wDZbydKODOpYEMepGpbICH51uwQW0HANxVz+CGuX0BAJsGMyi1QtezU8WY0gULZY7RcXNTyFj6woQCoOHYrABRSeOuDWLVpBU++4vt3zdFOqXFsgbH9X3k90WyNandqB3xx9nYV6IFazBhhMpIaCFigeVmluACRoPOciNqciQMuJbFscTEDKqR8cyYRQjXE05lJdbnO9CTQwDAFj2F7XU30apRaQwpDYyRsTCslhhWGaxnkhQrkVNb6VjvcJzu2tTeUkIzLRJd/+F4GXMuw3MyLuNskSsdkmbhhrG2CgoGzSLbhHH6JNIZSWtDSn7OyuFwcI2RsSLZd4sHP9qXohYtWrRo0WIXRzt9tnPQvhQtgGbZheb8f5ol5aNZgcRMrYIz1QsaI1Y0tWlil8Fb4CceHlET0vQbCt+9rkazfToWa+FInH/nZQokLKiERC50yspYC2lt9GExMbquDCB5FCys00IsYHTmmCw+thbaxgibxeXQYtScjo9fE+NYIcmjTb7uQuzBIpksTc0S30+zhIEEoCjattJl27D1eTkEvl8prGdJaJ9jWEN/nJWVvkBs1LGRP1SnweDlQqMQGlu0yzD72XBP/GboMlAGOsdUXoY+jDO/jP0czbij4w/HRtqnRiZf1JD5bLlGG0nmn0jPN89GS9pDqtmi7LbEzJH3c8yYL4Zwjm1k4dI+3LsOjdYbWu/nI2xgHNx9kxoNxueNTO4ld3+kbFEooQONCqNZrYGBFLEE0e75DuyVbcWM1xTdXq3D9moCVT3qB2T89URmjtpIX+zYszmsZA1p0uh8FN7MkcZtXudh3Y6tkzIqzTJCI+xZohOSI3qrxFSTjw/Ga+PGISm5Ql604/oBuKesGC3Pc7+h9SnaKWjtOVu0aNGiRYv/h3D44YfjoIMOwl//9V8/0F3Z5dAyRQuAMkeaUcC4bChegDBHHeakI2vkIyEZ9UaUARP9j2zCCFVj9AELIZM6zYhqRFEjc+qBuUqzVXKhg2stsT5BmxTcgM3YY6E+u3VcphxFaM3styZcJhZjB0K7NsnmAxD0Rk0s5uQc9rHELJGFGCQHpvuxIrmBmm7bhjlyd3wWC7EOdG3xfkZWRCceN+PKr3D36GYWXYh2jdN7Vb6Zvu7gDrEGs9qVD7ljuCZE9F1VoWBZQaXJRjK8Rr1jaL/KeeNQohVbx7mtx2tZhog/HHVYVwk7thQNX97sj2EsCdf6jFt3HCs07r4aZSYjKzuapSZHtGrA6PU3CpMUXJZgZXIamZx6TOyaaPhE1ONxpnrEIV9q9KTTqa1R89hdzaHr9WYaEqVWiQ5XNMaGvhML1yxrA7gstH4d2SBkAGSdFK6tdSyE25E1cstLo3C95MIu1or5OlEfeBkWrvNZrt4sYfrBnmvetys8C8dkxN2fWM3pswe7T9H9ifalqEWLFi1atNjV0Waf7RS0L0ULYKG54qYzMc/eCtEhq51jeD04AxBrpBt6m1xol+0mYxZEM+Jbiv5hHJpFTpuoxzi8jptYdVoHhP7xbSqrRpxiI9t0730MNdcgA8OUNRgS7n3UPKZ7q1nm9pH6C437fVwW3ULjRv1r1sgLLsyi6dXkMu0AjC3gyjOpErfrRQq+AibRSrkMIx0+a2uhfcS7XU9gaLLoUg6RsEPGysAclbpRgFgwd3HrjjZu576SkzLPgIvHtHBEHZf5DLxG9lXSj0bRWa7BS8/jwg9/rjcax9g1mbl4DO44FevDQhjHHiXLrYpMoG+zmXnFkWYXsmOBGWGNImOZZnrmQgePoGnpPIpSplKAHldS2Jh95rcX7P/WxntIGxmeZ1K5rEDyLaLriK4zxbL35nWO2qhwnedCo2OjpjEZL8/+cEf9hbCcbDDyWOPbEDPXdPF3B8+Z4lZ98lBE+1LUokWLFi1a7OJos892Dh40L0X77bcffvnLXya/ve1tb8P73ve+8P3WW2/Fqaeeim9+85uYmJjAy1/+clx44YUjheOWgoU0RU1IYUYjR4ogZO2jde9jJHX43MyIIBaGGJgki22RufXlzpeHzDAgZocFHxMRfxsTbDWz8Siay4XGwOSY1R2/qUzW53XSmpF/M9oayRRJ1tchIh05bpEySYvBuXGPRt3U96ZjMLBI9ClGs2D4fngGnm5cT6PMFfeTiToxwzJeeHaY6++o1ojGRo1k7gloUSS/cR2Ui/B5HSrGcsHC6JjNNVJbTEtkwm1bS534KnHndj3Geyrux1V5zxdgAZq6IF5TbZz+pMm8BEa0cUtLG71+crqfmebJJEyciMsaHkn39qxoXrPh3Bl3jkPl+zHX00J1tpIstAZrJAUShjEXGl3vNL17Nou1ssKcH5O+KVBbGTyHrHW1GgFACPedWCQlDawViW8R/SkRwqKXRS//suG7ViSaIYEaChmxkyLD0OsxJ1SVaC7dkY2y9PHz8pib5B5o3Ntcm8TXJW3cTss2a6LNPtspeNC8FAHAueeei5NPPjl8n5qaCp+11njBC16ADRs24JprrsHmzZvx6le/GtZafPjDH34gutuiRYsWLVqsClqmaOfgQfVSND09jb322mvssq9//eu48cYbcdttt2HvvfcGAPzFX/wFjj/+eLznPe9ZttKeNEXNSFQ2nKiNlaEGVDMCVrBQzO+nMlnUeyyolYiRFGU/5NAjkaJuRKfx++ixjM6/pwzROD+hcRkvsIbtT6Ljo87AXozxTgFSz6Pg7k1jFdx4R/fHNUyhLdJkjXUyTpmkcfoL3jdipZaiR1oICibRQzUzBpN9NFijtE+s3lUjcs2lCT5OQOrrpI0YWT+tAcbPiatDRbWwaqsSB/WRyvFMW8OXGyOQNZzQAaBk1eLJuXjxTL6mdsdVSTciZcUCBEYYM97fJjM04rzdqJbOP9Moket80NoIt0bsI9NLLeKQvpTrJ/GWclSn31bc67gtBU4rFe9Zpyly92xXVJAABt43qa87MFYgU94/SkWvpHFMERBrodG+6DcDEZzRm47hpRkdm5KydWFREdtolfc44sxxvJZrGV2zc6Eb3k6LQzec6Jv3P2eI+DPEWPhrcNT1vMVDBw8qpdj73/9+7L777jjkkEPwnve8B2VZhmXf/e53cfDBB4cXIgA4+uijMRwOce211y7Y5nA4xPbt25N/LVq0aNGixS4FY1fnX4tF8aBhit74xjfiSU96EtatW4fvf//7OOuss3DzzTfj8ssvBwDccccd2HPPPZNt1q1bh6IocMcddyzY7vnnn49zzjln5PekwjVD0z9Ii5h5wf2KxoH7WiykseHrhn1CjeoMxrAOrr2YvTUOjgHw2XI0D8/aXqieUGifMVTkx2SEHNE9KZiRDBK3XaNNrzdZKMpbMIuIO9vSPllNOs0cmcexXvzYOBvVXHe5mSxKjB9D97tNMv1Gtg8aLGI6mMP1iHaIPriK8QtlO/Eq3/Q9OPLaWGdsQddskr3YcVXoU9ZmPEPV0GsIC67TabqsGwime0j7rUf0PCZZ3nQsT5ax/hkrFly3iVRflDK5oa0xGOtx1hi/tI6eCEyhYhqnhTIoF6s1mLqk26j9azAvptF/XjNRCCBXqf6HZ6FxP6FxLG90Eycn8sjeNcchMJDs3FdGuetvgdNUaYXcPwOJNeLHttDzZDzDnN6zPNOvMin7rW2WnANX828ncQutpmin4AFlit71rndBCLHovx/+8IcAgDe96U145jOfiSc84Qk46aSTcOmll+LjH/84Nm/eHNoTYvQBZa0d+zvhrLPOwrZt28K/2267bfUPtEWLFi1atGixy+MBZYpOO+00HHfccYuus99++439/Xd+53cAAD/72c+w++67Y6+99sL/+T//J1nnnnvuQVVVIwwSR6fTQafTGfm9sgrSqrHaAM6KSNjke9NLo8l0LMQMhe2D59HCGgju5dPUqgA+yyZE1I1q0aIZuafOsAtlUjXBI1tieqgae7PPxiqgMWbjjqsJbVPOa6maAcC7czeqWTcxVvdxL8e/kPttsmxMG7EenP8O4TNqUo+jsD5nsjCqreLtKmFDRMsrodNyKdKIP2R3MY+i2ih/LhoMHB2u4Lq3NNuSswBxnwtF6iLZNsns4oyB72u8VlLmyWl/Ug1UUreNZSo1WSs+JiMZYZ6N4v49C7lTayw9E2nEcV3Ye/UyGukX+78UUbO1GGtkrEi80mj7gc0xZyPD2JUVelmFbTJq1RbyAiOmJPPaogxmZF2+v6bOMfi6jTjAp8wgz4Ac50dGdeSMNdBSLFhLrrndYswO1xE1M1mJLQu/CwljgXqJz8z7CoFVEFr7/x9++OFQSuHUU0/Fqaeeel+79pDCA/pStH79eqxfv35F215//fUAgIc97GEAgCOOOALvec97sGnTpvDb17/+dXQ6HRx66KGr0+EWLVq0aNHigcAqOlq3ZT4WxoNCU/Td734X3/ve93DUUUdhzZo1+MEPfoA3velNOPbYY7HvvvsCAJ73vOfhoIMOwqte9SpccMEF2LJlC97ylrfg5JNPXtHJpyj+3nRpxo5GFHzOOW9UQk/XS517m6xSslyIOHdvzaLRjutPZHFixtio1oFnbYzLyljMMZr7ywCjUSKfv2/qbBYbk4W2W45HyKh/zyhbtBpZI+PGa6E+5lIHHyoDgcrGjL1mphz3S2o67iaaEeLS/ObajjISnElwLtv++mTZhLWPzCkbrbbpeecM1LjjG2FEmzqmBmJ2VWQym+CeQMQacdaT35vOLyxmn41lI5vO2YiMzajGxLMiC9RMo/Y42zOOUVrM9Tr05l70Tc1MtMRPSpjAGoV1bTxPGjJec1ai8uzKnOmgb/Jwr61Rfawt+theONa8XxXJ/sae88AY8uvReh1RvM65azUEYk09X7MxMJf+GuRtLQUawtVI9Ix5ZRts9Arv84UyAJsO+IsxdS0efHhQvBR1Oh18/vOfxznnnIPhcIiNGzfi5JNPxplnnhnWUUrhf//v/41TTjkFT33qUxPzxhYtWrRo0eLBjNanaOfgQfFS9KQnPQnf+9737nW9fffdF1/5yldWdd/k9Mtxb5FdzT5XrIK9ZAyJi/zTzCmXfREz2ZIo08o044p7DFmTMA28vhDNe9P+DdSCUdRiFcPHMS3j1gl9Z1qrJttjoIJWpemlspgrrWbHvRxXWWKfFvImWaj2Udg+8akZzdbRdjxTNtL/pns3dxdHZIv4uQPgtUgy9GWkDxjVKiXtsHUldMxkEwgsQi40jJXB+4V0OdHHaGEvpHFoMiSL+e5ELdYow9fMTOPrpuspGKZ14q7Y5GHEGSNSv41jOzjjsyjTs0jG2/j1x4/BOH3TYnX7HLgmK70+g94I1t/z7juvT7hDT2CznMS0GAAANmTbsf/E5sDibBn2sKNyrFHlq9pTxpkQKRuUseyyTBpkYvR+idmGC2fGAinDk8k0o8xYObYGoIJ1LFjYbXqvj6t5uFAdxKWAt8F1gfc72uyznYIHlU9RixYtWrRo0aLF/YUHBVP0QEBbEVgiw7QDzchnHHh0qY0IkWcmdXhTV8Immo6AZv003m5w2WUsE7EIDcZhscg8YXxEZEkWm3tfbNlYhmnRiH9hl9imx8pC2WDjNU5qQTZoXNshmwb3otFagDniXj0rgWN4FvYJGudSPtJPS9mKKXMYPt/LPtPrxCCn/QQWIGWOVoqFsjCVsMERXnutTOI2PVLzjbFczPMm9RWTMCLqiojRSf1waAyAjqwX1UstjsUyv8Y7vBOabMVC7IZje+TYZeP237y/K2JlbWRvt+keclFDK9fu/9/euYdZUZz5/1vd58yF24BCuAiCksS7qKgR1KhRQXw0EHeNuonAEy8PCiJiNsafGhU1Go1EN14SXReTbHyUZ5Ws2cQLriKrRoMsPqKyXlYEkh0kGgS5zMw53e/vj+6qrqqu7nNmGGbmTN7P88Cc7q6uS1f3OVXfft+3GrwS9mtoRn8/Uo4+3DkEf9o5EADwWWsDPEGoi+MWyeuuvM8MpchcF096kGXFKdJjT+kehDK+Ur3mIdkaFhAYnr7ZdmwhuVU+24vPJs+7NCsvPZbR7kQQQeyiofWunv+3AA+KMmgJCgiDYuq1kfxxyJNcdYNPaPI1QmvABF8FG5SvBozlL3IGXsp1P34FohbcrBC8sb1LEXSErABpQDQgSl87X/tiDFKG31lfTK6Aa3nycLWGm5UwBibaoC3vema1QR/MZBn16wE57QGc/erPqIdjQGkPqgLtR0L/UZE/OMpt2jHYtAcsWa9f7TABgHso6cGD7yevfsth8kqs0qKr5oA33W598di88+2Ao1nL67jKTZNnYJ7toOGsn52XChhLRj72sil62hL5qkqeCPHXoJ8yvO7v70SDV8KI4maVVi4H0+CXUA6TCYerv7PCNWS98tIJtIGubgwfwgwKqwfOdfW3fv8GEGoA5RM507ioJuBzAPMat4VdZGgdIm8MXn0eTC48KGIYhmGYHg4rRV0DD4oyKMfBG21xIbBm1G7k7B+G2lMC1OsJxMbFciZaomixU+P1T5WvK3z7dVpu2kQtqGYJi7zXSvZrN6dyg7Q6ZKtVRggBTWqvpn5KwraWX8lDBjw09nVwChXCTykzeQbdufXSX4HZ5djG1xq6WmRcM0daPa88A9FcZUdIBcB9zYzlK+AZKlNefTwR1ciTpXnJzL6aZyHPKBqAYXytn2PfD3bIA/t1lI1+b+v5VFR+hNsgPki91jT7ynYD11+vRiEXzFdESf6J6hItAOup61si31DJiiLAkLptAKLXiyXykzAAFZRyQF+yJrCefc/4bPeZbQxfCtpjyJ6tBtn7dHOIjirmUgWt/HvA1BI8KGIYhmGYng57n3UJPCjKQBpaS+zZQDW2OdKIUF9uQM2aUwtamvZAea7pQPaSF3nBFqV9TnsXOVXtsZQFexFYfTabpQzZpA0fE3faatQcWQfbID6rHEALHaAZwAdwBxCshB4sL4zz6AzbpSz1IVV+lj0RkFINZf8ZypamfFRylzbLMZcOyU4X3RVZs2l7qQx9odQioGyKshRae8kIF5EikdTXXgZFD3CpQhzo6NfIUo6ynBr0/GS79G2ZV/RXpFQ723W8GiVTOiZI5UiqRr5DuSwhsi+S3zMtVEBRBOqZCCDQ4EWBC0JfYEeYBHMsh5ENYJ5apNfftnvSMftUVzkjxwnVtpwgmi7FSTfCdn0n6HZxWUbZrrx1G0dpX7orDgjtohMjWjPZsO7HMAzDMAwDVooyqfSu2O0KLI9Ff10zSH1RRduWQV9ktbKa0/7xbDU2N9W6pLpc7LM8mXT05RMyj2dMZlxLLshyXEs1ZKG7dUc7tBlpzozRxhOhGSxP3RPx8YylOXLrlLFPKlnS7ixr2Q+zftZ+SpYNUceVHZRVdifdX0kd9IB+ppebPpM366x5YIpoO/O+0hQRl1KnLxkCa/YfucO726Rfo5TSBuTa8KXCS2joXoSp0BOW3ZK+5Es15ShVCmGuXVkJSTBHPyxABiOVyMCd0l4v7/nK8qqTeeS5x2st0Y8aR+QCwEnfhqZXW4bNUFZZ9kLEWUvNRGm17wfN0xdIv1HYnQjqvIjWvCBsNjwoYhiGYZieDi8I2yXwoCiDsB3Kg040U0tibWTZOshFDBUqoF5Svp6njr3UQ2dSKSZQ5nFtJilte3JtiWQsJ8vmwg4SmL3YrkMNyHi3n23jI22BtPOs5UBSZ5C+wK4fLzEQH7PitwTwDfWoWg83PWioPFeVLwSKXmheP3LbPFTjVZOpMtleVw6kmuRasDSrHGkz5PYQyrFNAim1qBKuxZWN/AWMGDYFL0iUMQpTHoV5XoN5cbRsKqm/WTZ5UZ0t7zPdy82y+8uzK7QDp3rqGfDTHlpavKiSppy7nrNsDzP5XCcL+WZhxljyU2l12x8fQi1R48VLJNm2adV6Ltp1z1Kjs+pczlGZmNqDB0UMwzAM08MRYWYUjHblweTDg6IMKPYqqDYcPKBHdTXtFdzvvmXofvcSG9JOBUgWdlTYNgdWrI2sGakr+nEerhmyYUsFux7V2ffY4fhtZcg105Toi+1Wuyhp2r6g+vg8gMM2TNkMEcr6OeTFsXB0+5lEtdE93HSPJ5W2CjuekDy0BslsVqpGiXql17OjS1dAnZev3tieb3EdhStqeXV5AhlxZrRlQXSqteewvZz0axJFzpbXKrJNcim2mXm7nhPHc5alONnXw+W5ad9H0iYvz24oVb6Vr7kMiRnjR3+GXUu85HmT2Yv4GlD2/Wgu72KqfcnnRD3VVSMASjmSeQVa/dtDlqdx1r1A7H3Wq2DvM4ZhGIZhGLBSlEk59CHCPI+E5LNSCgRiFcGeaWjpNA+YVu39dcpuyFivR6gZbHSuGTHYro/9fj2LPNsDwPSQSXlvWPYPzjWXHNjv+aUy5Jpduj2y0rPbbJL+y1OfbJwqoNZP+jpPcrFRALHCYPapr2JUmflJhSlrEdA8Am1B01IYqxvGrDqJjG3bn9lqRXts03IjYOvecNBi5Tji70RtTkcfdqlIlZSaaq+ZbmcUajHC1LOi2W+F2n2lK7au8rLjcXkp79JKVBPbK6UqIYm67yor/WwmSpCRX0odybftaw+6KhXFrXLbBXqglFqkEOY+D6TslKR6nLcYtH0fpco2FHD394/9PSUpBV30TorAwRu7AB4UMQzDMEwPh9c+6xp4UJRBmTwIObvJGV6HmheZVA5cMyD5yVCNAGOG5msqhG6r4gmCT6TNYPPX9nFF7I1LV+pBdE62ouSyf8iLWG1Hk7bjgLjOk+myZmeJ91WGjYLTyyX5m2vbAFiKT36sH08k94K+ErgnvESBiPtft3EIHaqR2XZt22HXkYU6FufhUjd8a+ZdrVdSZpk5aoHuadde9CjKZp06plSk1w1L24TYsWcStSE0PBB960ekFSLVj/aq6VE+BFDStsqqpkmWHYyuHqfPSXtg6XnZ9UzZzlSwG7I9P2X6UpisO2g/xykVWPMqS62v1w5PPqe9Z3tuP+tUl9JdDv3UNXHVr9xVa5+xTVGXwDZFDMMwDMMwYKUok3LoQYSmvYPEnlUkMx9CQWSrL4YNiStCMkzFoujFayNJxUG9l8+JwQIgDAvGLEyuDl7wAhQRJGt0xTFusla3N/J3rHRve6ro9kJ27I+0d535Dt+e1bqPVfJaStKWtTKzovHKOhS8MLvP4j7R+1jOlAtxa1XMIJDaByC2MTNtVUwvQbNMfS25vAi8OkpRpPS96ooAXm2cGFf6vDrJ6N7ZeedHOJf5Z8XKqZSPy+PTtl3JUp70617NWmpGuUhHONbR1ZVKalE1doBBTkyc6H5KRw4vWSvTu3A9s3p9dRXbpXJLtaQtrOInRXr2OdpiXwPTrtJUkso5Np+ZHm4qn/R+m7L1vZUV7X93xYxLYXZvx/NgcuFBEcMwDMP0cNimqGvgQVEGulJUMVZJfJ8VRIhQmMqRmc6cpRlxOKz37J4ghIFpq5R4n2XbOYWarQkQqUNZaoEds8iOPZRnN2TP6u24IFGkV09t6/kory2jbLdaVbWNQawG5UUC1/Mi0utr9pmhjsReS0n0XEKdH2j5pSPgupAqoeElZp+X8gxyK286kcebOWOWdQ0tBSkpN1utStkxUXXpshSMavovy/7MhX7NXNGHjXwz8sqLhVWm7K9E3QbNKCfDds24r5TimF1fXZ3Ks2NM1UuqKRDwHDYw1UR2tu8vW2kueAH6+CUAQL0oIYCH7eV6AMDOoIgd5ToAQFvooxx6xvNU0BRST2R7mEk7LPUZMBVQ2yYvJ5+8+64cpp+J6u5Tt31RlylFTJfAgyKGYRiG6ekQOsHQulNq0qvhQVEGAQnlfZZlkwJYNheWPZFtI5R3fsGLFSLLk03lQ8IZj8Oeecp3/4XYHqkoAtR7ZfXZXgk7KjPKrwRfxUCSdhYuWx+5bXufhJaKpHukGDO5uD2VKGvXPyk3Y7am2fVE18XsF332Wg49CEEg41pnqHtwKEnSpsgLjFlw0QuMa6/b9Ljy9QVZalxSXpl8Z0Rew7tJO8e4D4RM6xvXRF0nrSq6nYg9wzbKrWI9qGqiP1dDNZ5mtkqUro9rVXaHt6JtD5dTdpbXVDUxsJLn2b0GmIyObh9zry6fbVeVFauo0rn2+boNVL1XxqDiDtR7kVJUCgv4S1t/bGrtDwDYVqpDSxD9lASxCiO07zX7e9Eos8KvdNrGKNue0n42nGnacY+66qY/I3qstS6Bvc+6BPY+YxiGYRiGAStFmZRDDwgTtYMyZgOhMatzzyyytj2R2KoktjbSsymEHLPq6/wA8SxOi32kz/AKIkBRhKj3y9p2rFxoypPE1+Iq+SJES1iMDlDk3WHbEOmzI+n9USYP5dA3lJ1KM25beXF5OaWVC+GY4cuYIh5IU6s8kDFblWkAoC0oICQBP95fFAHqYnVHz1ti20TIz3VeoNSh6FiUTl7volfZ1kj2WxTpWfZPpObo6oU9w5VtkddPX4XcVo+qiXfkWwqSrJOsX0h+rk2HfV4emR5Q7Zhxh1pUbycZ0YftOtgejrmo5ptqT1bMID1NtOZXZZvCZFveO+nV4rPK1GNpVUMqir6lgvbzWwEAg4rb0SDK+DxoAABsbBuA5p1N2NoW2RSVNC+w1D0SP6PVeNbl1VFd6zDjezinD7I8X9tbNhB7G1r5umyUdgshUvGVOpQHkwsPihiGYRimh8PeZ10DD4oyCKw4RVlr5wTabDWw7jcPZChJgGP2IbO1vC7KlERKjv66PW08EUbKUGw3VPAiGyJdHZJ13BHUGTFZgMTOSFKOj7eGBbSFBTULlGqQ6918SJHNjlSKymE6voeymYpVoaxZXDVqkDwWhJ6yYWgLfJSDZLvgB6gvRNegoViKbDZkLJWyj4A8VaeCCJVSVPCieDtlbc23ttCcreuqkh6npjWoQ0hCs+cK1Wcg7cGVR0EECNS6W9lxnlwzcy2VsS8/RlHas0vuT8p0TzOd9kXWfZIZ/6pCNOCKsakcU+f2xLOqFJvJ3m6vp1E1tojynjPI8brKIkttspUOVxpfEOq8svoeaSrsRJO/U6XZXO6Lja0DAACftvbDjnJRPWvR+cm9QSTUcypVQ/kU6LZ8QLbaKOsp9Lpn9INLxbe/n/Q0wvIw1VVlPZ1e5zy6TClim6IugQdFVeAK9a7vsx9KoQ94rGOk3KXNoIAFL4xfWTkCNAoYC8162kBGDoh0w2rd1T4gTw2EdgZ12BbUqQBr5dBXr3wk5isxT9VHbuukpG3H4AWIvlyM1z1h9g95SEINxOSgR32xhp56puUXbxDL6WHoIQg8Ja8LUUBrIboOrXW+cqMH0gaSrUHyGBT9wBi0lUPPeD1Q9sspg1uZtiUook0bOOa9JpTXvaB+uEIVZNPeDgXBI3NAkhVc0HY3l2Xr+Wa/vkoPvrKWVTHPs5+P/FdXdr7tCbuQt13pWNVlGgPB5BV3NXlkDlYdoQ6SBWrNV+eV2mGXpz9/hlE9ma/59AWpXUsR+SDDKUN+b+wIGrGprT+2lBoBRG73QPSsyHKz7ht7QAJUHmTo5+v1JKKqBsHOQZJlBiFfnYs4RIDeFzqeIIQZgx75TGeZVvRkjjrqKPi+j9mzZ2P27NndXZ0eBQ+KGIZhGKan04lK0YoVKzBgwIBOqFTvgwdFHUBXEgwpWCoE8bbL4DTUZpJE5us1qRbZFOLXMAXj9UaU986giBJ5KIbJUh66K3hIngrzv71cj23leuwoR8bUO8tF50xO5m8oMdIgN66v74Vqpuhb7twBRQqPfo3yZHAigZJUpAIPpXKsVgU+wkAgDKJjFFrGwCKZdVIoouMyLQFlPzrW6hfhFUP4sXLkeyE8j9RsMQg9tAWJ+7rvJYUEYaRcye+ibaIen/uRwWmfYptSloDoFV5bUEApzivQrq2IZ5Uyb98LUfQCdQ3rvECpWXVeEAXdzAgWGF235HM6OGe+quTHr1Z1VanS6y47xIKLvFei1dBuQ+sO5tOuchxGwtmvAs1XxnnnGCpiHBy0GgPgdEgGK1iso2ryHH0JGhkioDEOyNjHL6FelNTSQrrCvCOIAjM2xGlD7TU5AEMdDSyVkGIVyX59pbfBrqfE00JWCEGGqYLrvGoUG1WGFjrALierTmSlCUkAIv9e7FT49VmXwC75DMMwDMMwYKUokxBpN2ggMaxVMzUkMwg5Kwr09NrMQwhSNkYkCPBCSFFCGifbBpgyjzpRNox25WytLfSxo1SX2P5YNklRIMDEGLmlXERrOer21lIhssORsyHS22K12yN4HqEYGy8XCwHKgZxtRWkC7TroMy5dcXLZAoUk1JImYdlTyhACASp7EEFSPy0SAeARpIeuIAChUC6nQnPdJZ9QLhCCWCmCT/AKIUR88T2PTDswwDC8pDBRqwBAxP2ypdCAgm/aZAWhUAaoFArjegpN2RJeNEMt+KG6nkopKpRR1JQjPSRAlh2LvFfqvMTmKTovzAzeZ9hyZQQxdNnQuILl2QbyrjKyaE+aSqEeqtnfWcbSefkEoZf5/QEkNoWyfnpQ0DzDalvJs936bfu8TFslFYpB3iuRg4ZvqNGJTVJRBAi9OO9CpEa2BEWVl/zeCUkYBtjk6LcsJd2+ngGy2VXBI7FZir4yqlHppJG4aSje/vupw7BLfpfAgyKGYRiG6eGwS37XwIOiDLKCjpXJU4oQAOtzlEYqJ74XzfBd3haeMJfbkLM8OcsKIVCKffylitSnENsGiFCpPy1BEdtKddgWB1LbWSqa6o/epjBWsspxGWUPYdlLPORCYczAhACUlCUIwieU/OiW8fwQXqxyCKRNoXwtcKF+jcLYQ4w0ZQiUbItAQMk/AeAFAuryhSKZKQkCCaGutayArhDJEykUEGUB8pXrDQKfVNuEZ9li6J+lOkXpfMse0CoslUlT2/R6pRBRuUqt8kN4fmJvVPBDeJ60gaKU8qarNEKQshsq+gEaCpHtR50fxPZJZuBPnawZspz96wqNywvTea7ljeSyy8hTk7K8sFz2e/o5uq2K7mbteo7tvF02Onn1z8yrkteVul+F8kSFHeRTVO+GD6S9P7OuZ7Q/CbWgp2sNC9jqNZhtiY+XycfOoGj1qRkywL5mplpk1lfaOCrVzCF/uBSm9pJS6SHd75NjvhdG39NItnX0fozeHph1tJUjpvbhQRHDMAzD9HTY0LpL4EFRBsr2xZqxSHsYObvRZ+0AjNgzQDRDkdu2B5YdYwRIZlGlwE9sU9qAbX59siyFZlsUkIeWUhEtpcROqFzylfJCJJRaEX0WgDwWCIgQahsECOlhIc+RSpEXfZYeXVLpkMdsScRQXyj2HAOi8jWlSIQAQqHshkSoqT2h3EYKpRLlTtKE+p8EIMpSKYpUJpWXpzXYladuy+RQjNQu+6+WxgUJIIyvYRjbSMlz9OtnKAwwvfCk/ZbsC78YoqDZfRX80LBNK/iJF6PvhZbHW3qWLGPS2AE5jXY41J8s5MzbpbRKKqk60XnmfiGSWT6JyKtTt9EJLDu37HxFKq0dbDBLxanU/mgZmgjbA9OIWWbFDtPrZwd5bY/Hmi3plqmg4pLJ+uvxuXT0OGV1nhnLS/c+k+2U/WN7o+m4bIb0OGT6344gPXuFIIj4effiuutximxVMSu4ZGo5IhFdr2riLnUKIeV+n1SdB5MLe58xDMMwDMOAlaJMWspF+CUZxyfZT9ZM116g0PMIZbl8hB/CFyFateOaQKHeZ+t568tWtMbqTznwEqUFMOLzyPMM762yp+xyIjVI2uiIWH1J1CChe2wZiohVYWEF5xaRVxcQKy2+OQNJTfCUXVB00NPL1JQPQxkKhVknpCdKqXIyJpakK0DC2qacdtplGvUR6fp4Sb5GGTYCsV2UVielFJnBo8kuRI/XRFE5si+CAqFUiD7vjBUkZatUDFAsBKgvRlGL6/wArbFSVO+XUecHhgpSpiR+k77Yro1L/VHNtLyf0mnTCov+vFVSX/T6KjsWL1ReRUBlNcWMHm8qMCGZdiQepWPZyPbqS754glL2J1mKgvQe1Jea0SOdR/XQbHhylltx2X4lx4WxaLN9LEsVkTZiunpkR32XMYRkfDIVNT7MtrmxVULXmx0yjmffC/a1FYLge8ln2RbpAarbn4XaQx+EnoozZtfHj2Ob6Z6ptrfdboVfn3UJPChiGIZhmB5PJwyK2mHA/7cKD4oy2La9Hh41IAw8UKjNUqx33jrStkPIGYoXGsqQK/aP8j6KZy+kzVik+hOUfFDgqalvKrIzoGY60kZHpjW8twIBEWhKkVRlNNUhU4lxTIbC2JuLigTyRaJ0OMi0E4ptnoReh1D7rCkztmpkVhQpeyBb2dI3clUcO1/9zNR1d5zjqoND0SIhElVJt2vKO9fKRzoUqWtfJqBgKniBVPTkPaHZWujoa7zZqk+lmDwuxUfissFJlIRsL6U8pAeRvK08MiOR2wpVVkR1e58dM6gadI8zw1tP91wS2ddPqjCyzIIXKjUost8JlXdhEuU8sRNLyoxiI8l+TKlBEGZa7XghtrUx1k6L29UWFLCjXERZWDGsDG80U/HRbYKyFB6pIlXjYWZ//6bt/qyo+UjMZ/SvLlk3Za9pef2WQ0/FXwvC2FNWfreKKFZbKi7Zzo7bPbULVoq6hJqwKVq2bBmEEM5/K1asUOlcx3/2s591Y80ZhmEYhqkVakIpmjhxIpqbm4191113HZ577jkceeSRxv5FixbhtNNOU9tNTU0dKrNtWx28oC7yigo0uxvNHseG5IxdDjUtryFnvBulFMQKk3L70myZpHdW7K6Rit1jKS2gpJ4gQDmrpVSaHPUltmtRE9wgrbxIu6AQAggJIo54q5xdNDsivb4ihFsZsralimW3TeVt2/pUUlTsY3kTPDvvjlCpPrr9ktASZaRVn73E5kjZExWEmR7Sa41UBG7hR2qkjCZeKvtq9k9txdjWIim3Gs8miW57l4r66/Auc6kDusKg6m9hxADzybkWX7TGnOl1p9vI2DZONnqEcPO8tH1PVh7lWImx1wfT45CVVSfGa43FtiwtQUGVH617GBp1l2shZtUvsTmy5rzGMxIC8AzFSdYbAMqhj5Yg+nnYUS6ipHmYuRQl21vMZbOkPmvR7Y107XnO7OddQ8BtyxbhIQyz618OEqXIXnsxFYMMkWof7mxHvXeFME8qb08eTB41MSiqq6vDsGHD1HapVMKTTz6JOXPmKFdLycCBA420DMMwDFPzUJi8A9+VPJhcamJQZPPkk0/ik08+wcyZM1PH5syZgwsvvBD77LMPLrjgAlx88cXwvOy3hK2trWhtTfzDtm7dCgDwtvvwQj/tHeVSKAxEthJhKx0wbXakCmAkkIlCU0HR4/rYaktkV6SltVUkTcFJ1UWzcRHaZVNeVXrbpLNPCdE6ZXa7tSbkqT+mx5lVX+2vYV8k84GVNo+sSamt5mUccuHq/mozIJEoPk57KK0vZDrhxWYBYbIdGgFoNDslAZDWiQEJhGUviS8FTQmM7SXkMSFIzbjVtrTfyVCQ7PXtgHiG7lJVNTuNpDIw9gnLTkSf/Xte7LFViDzp7LXiXOqKrork2QxlRvlWEpz7h8UVW0ja5ZRjpUX3/lLrFcYxgKSK1BoU0FJOrp+tqOheqwWRKGTSa82IYG7YHJnKlctrzGVbE3lyJRH4ZYR13TtN7+9IeYnKl3WX6pCelsK0Z6+O2fdS+UyOCS2dfn9KDzFfu5d1iAQC3Q5MW68wiCPuA0BQ9hGUvCh0PQCU47cGxvepAHbmrdLG1Bo1OSh66KGHMHnyZIwaNcrYf9NNN+Hkk09GY2Mj/vM//xNXXnklPvnkE1x77bWZed1666248cYbd3eVGYZhGKbjsKF1l9Ctg6Ibbrih4oBkxYoVht3Qn/70JzzzzDNYvHhxKq0++DnssMMAAAsWLMgdFF199dWYP3++2t66dStGjRoFv8WDl2eHrk9wM5QjpWyQI52VNkqgHXJ4q7jscJTKYisx1nYWlsag1B+lYkiFwrYpsuxadKWDhKWoacqQXlfVJtvGyGFDJNPadkop+yho5+Y1Wk+6K84jtrrjyN84btkZ6ecoB5v4useLlKdsrhAmCg/5UeycxKYjUQZECFBZgIrxsUIIeKZZgbrNPELoh4lS5MHwnhTa+muu5hG0mb5WnzCMGpb1XRxFJU/UH+GlFQCZzhOkrQeXHfVZRhrWKes3LPLXFqsmoraeVilQSCtQiUdZHDnckU859I2V5ttCX8WHCkIv8iaTSkYoUA6S+FGR/VSiiPhajCOXQiKVq1IQlWHYz2ix0GzlJbpnYpXLYZdiKEWa8kIEhFo0dF0dothr0bhkSgmKzYZ0T0mheQlq96bvhfA80iL+h854QvJzEAqlkIWhQKnsI5AeZ1IdAiKFqCSAeNsrR967tn1p2NJF/kpsU9QldOugaM6cOTj33HNz04wZM8bYXrRoEfbcc098/etfr5j/Mcccg61bt+Ljjz/G0KFDnWnq6+tRX19fdZ0ZhmEYhumddOugaPDgwRg8eHDV6YkIixYtwvTp01EsFiumX7VqFRoaGjBw4MB2102UAM93HXBVzPxrKxZOLyy537afkcXkDehthcTlzeWww3Hlazh/aMoQeTAWJ5ITRZey4bQhyrkG+ilmAVXU3TpmKkWUrcq5MCQybXc77ILM8+Q015GXw2ZI9+6LYgrFB0MYEp5S3uJdgjQbI9l+lbdQS6hREOffJpWiyO4rKZNUmVQIAfI026UQwvfg+dLFUIC0BugxtQCp7LsaLtPDSGse0+2WEnWo4IdKGbKF00Da4JTTX2Gu9bMqRU6265mlSPiaLY207ZG2NgXd4w1u76dq14dL6kPWyu2R6uJpjZC2XELE6zXGdmQy9pnL9gdA5LnnJ9c31YcxRAJBIFJrlbmuqbzWtmpo9InqF6SFD/0+h9AOk6F8RflT3P4ofnko1+kTXup+0++FcpAoV2HgISh7CKU6FMTqUJQRPGlHBMArQ3nPAtozWU5dst0Dvz7rEmrKpuj555/H2rVrccEFF6SO/fa3v8XGjRsxYcIENDY24oUXXsA111yDiy++mJUghmEYpraJ3lHveh5MLjU1KHrooYcwceJEHHDAAaljxWIR9913H+bPn48wDLHvvvtiwYIFmD17dscKk0pEe28iW9nQvcZcdjbWsUx7Gi1vo06hma89i7HzSZ0Pa1KvKxcONchpN1ONkpKlppG7/q5j0XnkPq+a/so6JsxrYMwyc9qW8pKTNgwZahoJkSgx+nW26+coU028/fifl2yHBVL2R9BiXTnrLmCssaauX8kDtBkvwQcJggzRIuoDeAVNtbHsfYR+g+qfXPZE2jYRQCp2T1QnaddUdkR8T86LVAS5JmAYiiSfQET79fX/dK8h/eII7Vroh2TbPEBJbx7B80N1HTyfUPADFPxkrcNCBZsnV/wm+/rocXOCUJg2OSmVzVS1dC8xIaJ6SIXHLjvQ4ybFkZsDza7IiEqtXzrLo9CpGCobonQaoV1zw8NVe54plGXG/Vt22O0Y6pNxVQy7ReMepGg7Ua7jtHr8OfVdJIzvb6WyJiLYLi9az/Q8ampQ9Mgjj2QeO+2004ygjQzDMAzTa+DXZ11CTQ2KuhWHwmEfU8cp/Rkw7WWcCglpE9Y81cguw66f67iRr7nTSJOyr7F26IpRlopUAadipq4DZdtdIaO9AEBktiPv2XfUVwYBtT3E9P5I78w45rAjIg+RhYScQcd1tye48q822Y62pe2PD4RFICzGalABIJ9AhUTNSGIfyam0MDaTa6/NqEPhuK80BWBn4lcVSjVKHnbF1tLalFJe9HMpUXtc6N5x6ejw2qYeS0x+ttut1UmqP3rd5LGU46emKoTkJeqURwg8HyVfKkehEUdJ94CycUX9NmL5WAqY/sgKARWl3Fw/0TO8sCL7LNMw0o46ritQYZj0MWl1sG20kgun5UnWefo9Zj0fyX3tsBMiLWGYlCPL0CP1w/psxmqzv8jgptJ3lkhU2eh5JXWSCONsq/ze22VCy3W3w3kwefCgKAPd/dsZDDHjlZjaF29n/lAnCrKxr90/7Oam9shq20Z97F/i/DKVcN6eCUY7XqdlDuqMY0nhWXXVDa6rqVc0SNGzonT+gPaei9S2cyDjQusMkYyHImIPcfUaTDNitwNlqm1oedjXQRlcC4jQuis0o1f9x8Qw0LcWGU4NRu3s9JFDPLBwhZGAlVT/QZQ77F0dsXsQ1oYx2IlfgemDRbVos1FwBeKBVhJ8MNopDZvlgtAyYz3cgL2ESiprgnr9FwUulmXEN4LepYKUEwh5yQCJPEJIlARdlKc42qdeP2r3hv4K0h7opK6Dda7q2FBE10ULCwF7gKJ1uDH4txD2/WfnoS9ALYOaxvWhMKNb7S/MrONIBteGo4w++JLHOnC/dghWirqEmlgQlmEYhmGY3se7776Lww47TP1rbGzEb37zm26rDytFGURLaUAFRxTaoqpegArKhpZRRwfm9kxGn21b+/XXMAJutUgdEyJdJyPWvlVslapSJYUrczKe9yqvwrVzrbbgCnhoLKUh9+UpPI4pPXnpd2rqVZvW//rrN1P9EaaBdBycMRUAE0i1W7rvy7LtV3y2u3+qkUb4BoHU/aq1KX1vpNMK++LFKpHaa9VHDymQ5OmosK0auD5rRuTpV8OJLCe0k5SylZKk3NXILNtxrvlGiRJlUKTTVlQn1F/LMFirgxCIA3DGapBHEPEyRhS/mrSXx8hcSsMqR39lZqg/ZKVN1VsY331Cfy1r3XMmcf6uBbSt16yp15w2uqJDMJUjva6pz47XxrqSGiTbXhy40b6XBbvk7xL77bcf3njjDQDAtm3bMGbMGJx66qndVh8eFDEMwzBMT+dvIKL1k08+iZNPPhl9+/bttjrwoCgDrwR4HpQ9kbIvCuIJjGMB04x1Is37WLcT0Y5ZNrFGWnu/PlNJve4XhnhhKkbxAXvC6rQFIeOPMs42DD71mZk9e6qk+FQzY8lTcxArLRlpqNKLYavNthu9sz+y6qTNZm2lKPST2bCuHLmVHai0KYNtYyZu2k+YRqeUtE0/T7bNI5gKgDwWG6rbhq3yOhDc4RLijCuZ5dj3ivMetv7ailjKlslGPUsOZSJLJbQUCFWmqw7y+sm0HiJVRikd2o0j4ucq68LoLuoOhdlopaZIkUeR8iIVxlCAQjJOci3vkWxYGev7dXUI9j0mrD7MUH9cqpcm0rnUZaXCQ1h9k2xHy3xU6Hv7mlbzFSOfHe07XIU1CYRpTyqfAcuetMuCN3YTy5cvxx133IGVK1eiubkZS5YswbRp04w09913H+644w40NzfjoIMOwl133YXjjz++3WUtXrwY06dP76Sadwy2KWIYhmGYHg5R2Cn/2sv27dsxbtw43HPPPc7jjz32GObNm4drrrkGq1atwvHHH48pU6Zg/fr1Ks348eNx8MEHp/793//9n0qzdetWvPzyyzj99NPbf3E6EVaKMtAXWjWUIXsGok+YPKRVkjiNJEt5kCqOM61DDTK2Yc7E9JmZlWX6/KzZlDXJVWqSoQAlchJBu0ayLZpcpQkS7kbo9c1Saaz67ZKSnFIgzO2qsnb1i4CyP7K9y/S/So3QRB1VaGzLJr1n/QAI4yeVClLFkYpOtACs8KOTQ99UKwwPHWu6brSRYkUhTPpUaIt3mp/jDlfPhEgtPJzndZlpp2bvRzvJKD9XnYNUdOLPMmip7CcvUYJk8D7NdCl5brPyz7iJKyqp9v2pFn21ziFtp1QutC+VlF2Nwx7Mia0M6XZBVviGjpK2NUsrjsLxKUmf8VmeUYWSJdVR58LSdmBcAlxLNVXrvLjLEO3666/4hti6dauxO28N0ClTpmDKlCmZWS5cuBAXXHABLrzwQgDAXXfdhWeeeQb3338/br31VgDAypUrK1bt3//93zF58mQ0NDRU1ZTdBStFDMMwDPM3xKhRo9DU1KT+ycFLe2lra8PKlSsxadIkY/+kSZPwyiuvtCuvxYsX45xzzulQPToTVoqqJHm3DdN5xrK70P8C6VlEbkyOjEmcysK2hUAy21Jp7Hg92jGn7YI98SDnx3QdKVGPZOQeI8iZpeTkqj/2NVInOdJWODeXPFuVKsvUVYVUXrrCAFMpsr3GUm2soFyp6xcvFqvsMISAh2RxVo80VapAgCfaEaiQUt5ISbm6UgBzdg1SSyJAFqHZaOjSm7SHctmjOWNWwdxXFXo/52zLzylbL0Gmsqc+Ewy7Ii9Jr9LqKh0qmMG0p32p7xa7UVnPdwU7nJTcqf2VsYbiPjJUXj1Qoqsdeep4lTjVqDyV21J/9P22umOck6X2UEYd7DK7UinaZXkuOn/Dhg0YMGCA2t3R9UE/+eQTBEGAoUOHGvuHDh2KjRs3Vp3Pli1b8Mc//hGPP/54h+rRmfCgiGEYhmF6OqFmBd5RYpuiAQMGGIOiXUXYjitEqX15NDU14eOPP+60+uwKPChqL/Y7feGcHClyVQjKSFcN5oQ0rcpkqUGu/VVOPuy2JEqWpRhJlaga26Vqy5PFVqm8yTqaaUXOseryMGLT2OqPtYhuSkWyFQpH3pnbuvKiU4ahxIAI8JMTdaVDxJ9VuZTTLbGxhErrpVMae7I8f2wDLXnMUiHUuZYnUEpx0vLJDVtjP3d6W1x9ZnmVQV80VyptMg6QHVdHqkK5N7ktEdrPpdZnLkFAv17GfitNnvqUkafKN/UdYtoqZXqbOuuVYw3Uroe4CuR3TcZ3oPP7z3VMPw4k3+1CS9tVqlCNMHjwYPi+n1KFNm3alFKPagW2KWIYhmGYno4M3rir/wAcddRROPDAA3HvvffuUpXq6uowfvx4LF261Ni/dOlSTJw4cZfy7i5YKcpCmxXY3lx23Bg1CSRrVpQzq1D2OZXeV7envkYByX7dW0YvU+3PyidvAqflm0yCs0/oiIdGJaWoqhhCGfsrKUO58aKyFB9rou6Kd+NSK1L55qlK1nnSI0bPKLE3kvkKa9vRNl1J0dPqiomeVrOfET4lqklUCc2mJvqctTAqAGMNLbK2DYVFUy9SakoltSHPlkqvuy29anWvpGe44wFZ+6pVh6z25D4/LndU46+lCGnHUmqVfa5Mk6dAubCNCDvaNq3MvHrkKj728by2uNTZrGtGSPfpboTCELSLr8+kS/6KFSuqfn22bds2fPDBB2p77dq1eOONN7DHHntg7733xvz583H++efjyCOPxIQJE/DAAw9g/fr1mDVr1i7VtbvgQRHDMAzD9HQ60dC6Pbz++us46aST1Pb8+fMBADNmzMDDDz+Mc845B59++ikWLFiA5uZmHHzwwfj973+P0aNH71pduwkeFGWRdf/FSotTZRHue841w6ScYx3CUoZyZ1+G7NWOY650VdatUnbVmhWk8rEnyRkKj7MMV5kdUZXsc20FKN7nVIMs2xZ1TpZS5KijyLS/FO42a+Uk3nEisqvRvK6ER8lq7bpnlSdMT8RQmJ5tDtstsryyqlWVRKWZcd7Dpe/KUlMqHSf9mEgdi/6mK+H87WnHQ5D5/Npl6t9TmpKm8sjIx+WhZSZI9tn3o0uVMS6BoTaTeU5emY597Yl3lTpWjapUSc13XMPMOFu9lBNPPBFUYTB16aWX4tJLL+2iGu1eeFDEMAzDMD2dMG8kWCU9cEHYngYPijqT9txvluKUmaba7HTpKWPmlpoMuvZ39zPTHnWnI0qQTNvOeuQqSMK9bX+2lSLjHP2U2LZGV+3UR20GX229surnUgBIjzWkrbElQlc+Qm0LT5OOjHbKygvzXLvBerMy+s3p4dsJxmqZq7870layXVFeYlnHM+tU5f68+rhU6grn53mo5Xu6dbycvHyrLTM3WrVKpO23BCr7+7JqRaojCmBnQQTTgLCjeTB5sPcZwzAMw/wN0VneZ70RVooyID/6Z0erTqWr4v1ytUrMriijpH+wZ9S7MjmoxjapO6miDlXHIHKlrbBdrZLlUpHaExupYppKeQKpSOMCyedov0iy1e18VN6WCmKUJaq3x2pHf+Q9FLsa3iav2N1NxWc9q3EVlKrKSlY76lHpAnfku6waNUtP10H7HcOu0lbNdRs9+X2ZpwblqEgAjCj2uxMKKbHN62ge8Q9We7zP/tbgQRHDMAzD9HQoXqF8l/Ng8uBBUQZhERBF97FO8TboxFe7Ha3Prs60a8nrot1tzbNH6qgdWHvz7ED/VLR/yLLXyTwunB/z6MxrnXews5SiynWokt3wPLRHcal4ToXzqq1/j3nuK9TDaa+XsSNPzc8sJj4Q8jijV8GDIoZhGIbp4XTm6zMmGx4UZUA+QBlXh28rplapbMvSCWXsehYMU5kO3Gidqi7KPMudn6e7IH591hXwoMhCjqTD1pZurgnDMAzT05G/FbtbhSmjtMuTljJKACLvM9/3MXv2bMyePbsTatd7EMR6msGHH36IsWPHdnc1GIZhmBpiw4YNGDlyZKfn29LSgn322Se1En1HGTZsGNauXYuGhoZOya+3wYMii88++wyDBg3C+vXr0dTU1N3V6XS2bt2KUaNGYcOGDb3OJZPbVptw22oTblsEEeHzzz/HiBEj4Hm7xz+/paUFbW1tnZJXXV0dD4hy4NdnFvKmbmpq6nUPus6AAQN6bfu4bbUJt6024bZht0+gGxoaeCDTRXBEa4ZhGIZhGPCgiGEYhmEYBgAPilLU19fj+uuvR319fXdXZbfQm9vHbatNuG21CbeN6Y2woTXDMAzDMAxYKWIYhmEYhgHAgyKGYRiGYRgAPChiGIZhGIYBwIMihmEYhmEYADwoSnHfffdhn332QUNDA8aPH4//+q//6u4qtZsbbrgBQgjj37Bhw9RxIsINN9yAESNGoLGxESeeeCLefvvtbqxxNsuXL8eZZ56JESNGQAiB3/zmN8bxatrS2tqKyy67DIMHD0bfvn3x9a9/HX/605+6sBVuKrVt5syZqX485phjjDQ9tW233norjjrqKPTv3x9f+MIXMG3aNLz77rtGmlrtu2raVqt9d//99+PQQw9VQQsnTJiAp556Sh2v1T4DKretVvuM6Vx4UKTx2GOPYd68ebjmmmuwatUqHH/88ZgyZQrWr1/f3VVrNwcddBCam5vVv9WrV6tjt99+OxYuXIh77rkHK1aswLBhw3Dqqafi888/78Yau9m+fTvGjRuHe+65x3m8mrbMmzcPS5YswaOPPoqXXnoJ27ZtwxlnnIEgCLqqGU4qtQ0ATjvtNKMff//73xvHe2rbXnzxRcyePRuvvvoqli5dinK5jEmTJmH79u0qTa32XTVtA2qz70aOHInbbrsNr7/+Ol5//XV87Wtfw9SpU9XAp1b7DKjcNqA2+4zpZIhRHH300TRr1ixj3/7770/f//73u6lGHeP666+ncePGOY+FYUjDhg2j2267Te1raWmhpqYm+tnPftZFNewYAGjJkiVqu5q2fPbZZ1QsFunRRx9Vaf785z+T53n09NNPd1ndK2G3jYhoxowZNHXq1MxzaqVtRESbNm0iAPTiiy8SUe/qO7ttRL2r7wYNGkT//M//3Kv6TCLbRtS7+ozpOKwUxbS1tWHlypWYNGmSsX/SpEl45ZVXuqlWHef999/HiBEjsM8+++Dcc8/Fhx9+CABYu3YtNm7caLSzvr4eJ5xwQs21s5q2rFy5EqVSyUgzYsQIHHzwwTXR3mXLluELX/gCvvzlL+Oiiy7Cpk2b1LFaatuWLVsAAHvssQeA3tV3dtsktd53QRDg0Ucfxfbt2zFhwoRe1Wd22yS13mfMrsMLwsZ88sknCIIAQ4cONfYPHToUGzdu7KZadYyvfOUr+OUvf4kvf/nL+Pjjj3HzzTdj4sSJePvtt1VbXO1ct25dd1S3w1TTlo0bN6Kurg6DBg1Kpenp/TplyhScffbZGD16NNauXYvrrrsOX/va17By5UrU19fXTNuICPPnz8dxxx2Hgw8+GEDv6TtX24Da7rvVq1djwoQJaGlpQb9+/bBkyRIceOCB6oe/lvssq21AbfcZ03nwoMhCCGFsE1FqX09nypQp6vMhhxyCCRMmYOzYsfjFL36hDAd7QzslHWlLLbT3nHPOUZ8PPvhgHHnkkRg9ejR+97vf4ayzzso8r6e1bc6cOXjzzTfx0ksvpY7Vet9lta2W+26//fbDG2+8gc8++wyPP/44ZsyYgRdffFEdr+U+y2rbgQceWNN9xnQe/PosZvDgwfB9PzXi37RpU2pmVGv07dsXhxxyCN5//33lhdYb2llNW4YNG4a2tjZs3rw5M02tMHz4cIwePRrvv/8+gNpo22WXXYYnn3wSL7zwAkaOHKn294a+y2qbi1rqu7q6Onzxi1/EkUceiVtvvRXjxo3D3Xff3Sv6LKttLmqpz5jOgwdFMXV1dRg/fjyWLl1q7F+6dCkmTpzYTbXqHFpbW7FmzRoMHz4c++yzD4YNG2a0s62tDS+++GLNtbOatowfPx7FYtFI09zcjLfeeqvm2vvpp59iw4YNGD58OICe3TYiwpw5c/DEE0/g+eefxz777GMcr+W+q9Q2F7XUdzZEhNbW1prusyxk21zUcp8xu0CXm3b3YB599FEqFov00EMP0TvvvEPz5s2jvn370kcffdTdVWsXV155JS1btow+/PBDevXVV+mMM86g/v37q3bcdttt1NTURE888QStXr2azjvvPBo+fDht3bq1m2ue5vPPP6dVq1bRqlWrCAAtXLiQVq1aRevWrSOi6toya9YsGjlyJD333HP03//93/S1r32Nxo0bR+VyubuaRUT5bfv888/pyiuvpFdeeYXWrl1LL7zwAk2YMIH22muvmmjbJZdcQk1NTbRs2TJqbm5W/3bs2KHS1GrfVWpbLffd1VdfTcuXL6e1a9fSm2++Sf/v//0/8jyPnn32WSKq3T4jym9bLfcZ07nwoMji3nvvpdGjR1NdXR0dccQRhpttrXDOOefQ8OHDqVgs0ogRI+iss86it99+Wx0Pw5Cuv/56GjZsGNXX19NXv/pVWr16dTfWOJsXXniBAKT+zZgxg4iqa8vOnTtpzpw5tMcee1BjYyOdccYZtH79+m5ojUle23bs2EGTJk2iIUOGULFYpL333ptmzJiRqndPbZurXQBo0aJFKk2t9l2lttVy333nO99R339Dhgyhk08+WQ2IiGq3z4jy21bLfcZ0LoKIqOt0KYZhGIZhmJ4J2xQxDMMwDMOAB0UMwzAMwzAAeFDEMAzDMAwDgAdFDMMwDMMwAHhQxDAMwzAMA4AHRQzDMAzDMAB4UMQwDMMwDAOAB0VML+TEE0/EvHnzelW5M2fOxLRp03YpjzFjxkAIASEEPvvss8x0Dz/8MAYOHLhLZTHZzJw5U/XDb37zm+6uDsMwGjwoYphO4oknnsBNN92ktseMGYO77rqr+yrkYMGCBWhubkZTU1N3V6XXs2zZMucA9O6770Zzc3P3VIphmFwK3V0Bhukt7LHHHt1dhYr0799frXbe3ZRKJRSLxe6uRpfT1NTEg1KG6aGwUsT0ejZv3ozp06dj0KBB6NOnD6ZMmYL3339fHZevi5555hkccMAB6NevH0477TRjNl8ulzF37lwMHDgQe+65J6666irMmDHDeKWlvz478cQTsW7dOlxxxRXqVQkA3HDDDTjssMOM+t11110YM2aM2g6CAPPnz1dlfe9734O9Gg8R4fbbb8e+++6LxsZGjBs3Dv/2b//Woevz8MMPY++990afPn3wjW98A59++mkqzW9/+1uMHz8eDQ0N2HfffXHjjTeiXC6r4//zP/+D4447Dg0NDTjwwAPx3HPPGa+HPvroIwghsHjxYpx44oloaGjAv/7rvwIAFi1ahAMOOAANDQ3Yf//9cd999xll//nPf8Y555yDQYMGYc8998TUqVPx0UcfqePLli3D0Ucfjb59+2LgwIE49thjsW7duqraXqldCxcuxCGHHIK+ffti1KhRuPTSS7Ft2zZ1fN26dTjzzDMxaNAg9O3bFwcddBB+//vf46OPPsJJJ50EABg0aBCEEJg5c2ZVdWIYpvvgQRHT65k5cyZef/11PPnkk/jDH/4AIsLpp5+OUqmk0uzYsQM//vGP8atf/QrLly/H+vXr8d3vflcd/9GPfoRf//rXWLRoEV5++WVs3bo11x7kiSeewMiRI9Xrqva8LrnzzjvxL//yL3jooYfw0ksv4a9//SuWLFlipLn22muxaNEi3H///Xj77bdxxRVX4Nvf/jZefPHF6i8MgNdeew3f+c53cOmll+KNN97ASSedhJtvvtlI88wzz+Db3/425s6di3feeQc///nP8fDDD+OWW24BAIRhiGnTpqFPnz547bXX8MADD+Caa65xlnfVVVdh7ty5WLNmDSZPnowHH3wQ11xzDW655RasWbMGP/zhD3HdddfhF7/4BYCoX0466ST069cPy5cvx0svvaQGrW1tbSiXy5g2bRpOOOEEvPnmm/jDH/6Aiy++WA1C86jULgDwPA//9E//hLfeegu/+MUv8Pzzz+N73/ueOj579my0trZi+fLlWL16NX70ox+hX79+GDVqFB5//HEAwLvvvovm5mbcfffd7eobhmG6gW5djpZhdgMnnHACXX755URE9N577xEAevnll9XxTz75hBobG2nx4sVERLRo0SICQB988IFKc++999LQoUPV9tChQ+mOO+5Q2+Vymfbee2+aOnWqs1wiotGjR9NPfvITo27XX389jRs3ztj3k5/8hEaPHq22hw8fTrfddpvaLpVKNHLkSFXWtm3bqKGhgV555RUjnwsuuIDOO++8zOviqs95551Hp512mrHvnHPOoaamJrV9/PHH0w9/+EMjza9+9SsaPnw4ERE99dRTVCgUqLm5WR1funQpAaAlS5YQEdHatWsJAN11111GPqNGjaJHHnnE2HfTTTfRhAkTiIjooYceov3224/CMFTHW1tbqbGxkZ555hn69NNPCQAtW7Yss91ZVGqXi8WLF9Oee+6ptg855BC64YYbnGlfeOEFAkCbN292HtevD8MwPQO2KWJ6NWvWrEGhUMBXvvIVtW/PPffEfvvthzVr1qh9ffr0wdixY9X28OHDsWnTJgDAli1b8PHHH+Poo49Wx33fx/jx4xGGYafWd8uWLWhubsaECRPUvkKhgCOPPFK9QnvnnXfQ0tKCU0891Ti3ra0Nhx9+eLvKW7NmDb7xjW8Y+yZMmICnn35aba9cuRIrVqwwFJQgCNDS0oIdO3bg3XffxahRowxbJf1a6Rx55JHq81/+8hds2LABF1xwAS666CK1v1wuK5ublStX4oMPPkD//v2NfFpaWvC///u/mDRpEmbOnInJkyfj1FNPxSmnnIJvfvObGD58eMW2V2pXnz598MILL+CHP/wh3nnnHWzduhXlchktLS3Yvn07+vbti7lz5+KSSy7Bs88+i1NOOQV/93d/h0MPPbRi2QzD9Ex4UMT0asiyxdH3669YbINfIUTqXPuVTFbeeXielzpPf41XDXIg9rvf/Q577bWXcay+vr5deVXThjAMceONN+Kss85KHWtoaEhdyzz69u1r5AsADz74oDFoBaJBp0wzfvx4/PrXv07lNWTIEACRTdLcuXPx9NNP47HHHsO1116LpUuX4phjjtmldq1btw6nn346Zs2ahZtuugl77LEHXnrpJVxwwQWqzy688EJMnjwZv/vd7/Dss8/i1ltvxZ133onLLrusquvBMEzPggdFTK/mwAMPRLlcxmuvvYaJEycCAD799FO89957OOCAA6rKo6mpCUOHDsUf//hHHH/88QAiRWHVqlUpo2mduro6BEFg7BsyZAg2btxoDCTeeOMNo6zhw4fj1VdfxVe/+lUAkXKycuVKHHHEEapN9fX1WL9+PU444YSq2pDFgQceiFdffdXYZ28fccQRePfdd/HFL37Rmcf++++P9evX4+OPP8bQoUMBACtWrKhY9tChQ7HXXnvhww8/xLe+9S1nmiOOOAKPPfYYvvCFL2DAgAGZeR1++OE4/PDDcfXVV2PChAl45JFHKg6KKrXr9ddfR7lcxp133gnPi8wvFy9enEo3atQozJo1C7NmzcLVV1+NBx98EJdddhnq6uoAIHUPMAzTc+FBEdOr+dKXvoSpU6fioosuws9//nP0798f3//+97HXXnth6tSpVedz2WWX4dZbb8UXv/hF7L///vjpT3+KzZs35yokY8aMwfLly3Huueeivr4egwcPxoknnoi//OUvuP322/H3f//3ePrpp/HUU08ZP/iXX345brvtNnzpS1/CAQccgIULFxqxbvr374/vfve7uOKKKxCGIY477jhs3boVr7zyCvr164cZM2ZU3a65c+di4sSJuP322zFt2jQ8++yzxqszAPjBD36AM844A6NGjcLZZ58Nz/Pw5ptvYvXq1bj55ptx6qmnYuzYsZgxYwZuv/12fP7558rQupKCdMMNN2Du3LkYMGAApkyZgtbWVrz++uvYvHkz5s+fj29961u44447MHXqVCxYsAAjR47E+vXr8cQTT+Af//EfUSqV8MADD+DrX/86RowYgXfffRfvvfcepk+fXrHtldo1duxYlMtl/PSnP8WZZ56Jl19+GT/72c+MPObNm4cpU6bgy1/+MjZv3oznn39eDbZHjx4NIQT+4z/+A6effjoaGxvRr1+/qvuGYZhuoNusmRhmN2EbPP/1r3+l888/n5qamqixsZEmT55M7733njq+aNEiw7CYiGjJkiWkPx6lUonmzJlDAwYMoEGDBtFVV11FZ599Np177rmZ5f7hD3+gQw89lOrr64287r//fho1ahT17duXpk+fTrfccothaF0qlejyyy+nAQMG0MCBA2n+/Pk0ffp0w6g7DEO6++67ab/99qNisUhDhgyhyZMn04svvph5XVyG1kSRMfPIkSOpsbGRzjzzTPrxj3+cuh5PP/00TZw4kRobG2nAgAF09NFH0wMPPKCOr1mzho499liqq6uj/fffn377298SAHr66aeJKDG0XrVqVar8X//613TYYYdRXV0dDRo0iL761a/SE088oY43NzfT9OnTafDgwVRfX0/77rsvXXTRRbRlyxbauHEjTZs2jYYPH051dXU0evRo+sEPfkBBEGReh/a0a+HChTR8+HB13/zyl780jKfnzJlDY8eOpfr6ehoyZAidf/759Mknn6jzFyxYQMOGDSMhBM2YMcMoG2xozTA9DkHUAcMIhvkbJwxDHHDAAfjmN79pRLHuyYwZMwbz5s3rkiVQXn75ZRx33HH44IMPDAN2JkEIgSVLluzy8i0Mw3QeHKeIYapg3bp1ePDBB/Hee+9h9erVuOSSS7B27Vr8wz/8Q3dXrV1cddVV6NevH7Zs2dKp+S5ZsgRLly7FRx99hOeeew4XX3wxjj32WB4QOZg1axa/RmOYHgorRQxTBRs2bMC5556Lt956C0SEgw8+GLfddpsyhq4F1q1bp7ym9t13X2U83Bn88pe/xE033YQNGzZg8ODBOOWUU3DnnXdizz337LQy2stBBx2UGdn65z//eaZx9+5m06ZN2Lp1K4Ao9IPukccwTPfCgyKGYXol+iDQZujQoanYRwzDMDwoYhiGYRiGAdsUMQzDMAzDAOBBEcMwDMMwDAAeFDEMwzAMwwDgQRHDMAzDMAwAHhQxDMMwDMMA4EERwzAMwzAMAB4UMQzDMAzDAOBBEcMwDMMwDADg/wPIx7c7SeFQeAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for dset in dset_list:\n", + " dset.pr.plot(norm=mcolors.LogNorm())\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6cb2aca3-16b4-4bc3-986b-3b1c3e3b4c51", + "metadata": { + "jp-MarkdownHeadingCollapsed": true, + "tags": [] + }, + "source": [ + "Uncomment and run the following cell. If we try to take the difference outright, it fails! " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "4276c97e-d798-42b7-846b-98f6460ce897", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# pr_diff = dset_list[0].pr - dset_list[1].pr" + ] + }, + { + "cell_type": "markdown", + "id": "5c7745fe-2ddd-4232-ad1c-c76601909db7", + "metadata": { + "tags": [] + }, + "source": [ + "The models have different grids so we can't directly subtract the data. We can use the `grid` attribute to get information on which grid each uses." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "11beadd3-beef-4337-a6cf-1fdd1d657ddf", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T63L49 native atmosphere, T63 Linear Gaussian Grid; 128 x 64 longitude/latitude; 49 levels; top level 1 hPa\n", + "native 0.9x1.25 finite volume grid (192x288 latxlon)\n" + ] + } + ], + "source": [ + "print(dset_list[0].grid)\n", + "print(dset_list[1].grid)" + ] + }, + { + "cell_type": "markdown", + "id": "4947c0a2-e796-4a57-aaaf-d4ba07fb26a6", + "metadata": {}, + "source": [ + "### Regrid the models onto the same grid with Rooki" + ] + }, + { + "cell_type": "markdown", + "id": "4823272f-614b-437c-8331-95c24c267b47", + "metadata": { + "tags": [] + }, + "source": [ + "Look at the documentation on the `regrid` operator to see the available grid types and regrid methods:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "423e4302-6aa6-42e7-9686-d99c1b8cd3af", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mSignature:\u001b[0m \u001b[0mrooki\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mregrid\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcollection\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'nearest_s2d'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrid\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'auto'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m\n", + "Run regridding operator on climate model data using daops (xarray).\n", + "\n", + "Parameters\n", + "----------\n", + "collection : string\n", + " A dataset identifier or list of comma separated identifiers. Example: c3s-cmip5.output1.ICHEC.EC-EARTH.historical.day.atmos.day.r1i1p1.tas.latest\n", + "method : {'nearest_s2d', 'bilinear', 'conservative', 'patch'}string\n", + " Please specify regridding method like consevative or bilinear. Default: nearest_s2d\n", + "grid : {'auto', '0pt25deg', '0pt25deg_era5', '0pt5deg_lsm', '0pt625x0pt5deg', '0pt75deg', '1deg', '1pt25deg', '2pt5deg'}string\n", + " Please specify output grid resolution for regridding. Default: auto\n", + "\n", + "Returns\n", + "-------\n", + "output : ComplexData:mimetype:`application/metalink+xml; version=4.0`\n", + " Metalink v4 document with references to NetCDF files.\n", + "prov : ComplexData:mimetype:`application/json`\n", + " Provenance document using W3C standard.\n", + "prov_plot : ComplexData:mimetype:`image/png`\n", + " Provenance document as diagram.\n", + "\u001b[0;31mFile:\u001b[0m ~/esgf-cookbook/notebooks/\n", + "\u001b[0;31mType:\u001b[0m method" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "rooki.regrid?" + ] + }, + { + "cell_type": "markdown", + "id": "8f6d5022-7973-4133-b321-5b4804f5eb9b", + "metadata": { + "tags": [] + }, + "source": [ + "Here we'll do the same process as before to read in and subset the datasets with rooki, but now we **regrid using `ops.Regrid` before averaging over time**. In this example, we use `method=nearest_s2d` to regrid each model onto the target grid using a nearest neighbors method. The target grid is a 1.25° grid, specified by `grid='1pt25deg'`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "4993b311-f18b-4d79-8902-a6040aff3271", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading to /tmp/metalink_omjq1m4c/pr_Amon_CanESM5_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.\n", + "Downloading to /tmp/metalink_02o10_9k/pr_Amon_CESM2_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.\n" + ] + } + ], + "source": [ + "rg_list = [[]]*len(dsets)\n", + "\n", + "for i, dset_id in enumerate(dsets):\n", + " wf = ops.AverageByTime(\n", + " ops.Regrid(\n", + " ops.Subset(\n", + " ops.Input('pr', [dset_id]),\n", + " time='2010/2010'\n", + " ),\n", + " method='nearest_s2d',\n", + " grid='1pt25deg'\n", + " )\n", + " )\n", + "\n", + "\n", + " resp = wf.orchestrate()\n", + " \n", + " # if it worked, add the regridded dataset to our list\n", + " if resp.ok:\n", + " rg_list[i] = resp.datasets()[0]\n", + " \n", + " # if it failed, tell us why\n", + " else:\n", + " print(resp.status)\n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "dfb8efaf-a4ab-4709-b1eb-a38c6f4bade2", + "metadata": {}, + "source": [ + "Print the list of regridded datasets to get an overview of the metadata structure. Note how `lat` and `lon` are now the same and each dataset has additional attributes, including `grid_original` and `regrid_operation`, which all keep track of the regridding operations we just completed." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e38e4a39-0465-4ed8-8a5c-6bdcd61d77c1", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ Size: 177kB\n", + "Dimensions: (lat: 145, lon: 288, bnds: 2, time: 1)\n", + "Coordinates:\n", + " * lat (lat) float64 1kB -90.0 -88.75 -87.5 -86.25 ... 87.5 88.75 90.0\n", + " * lon (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8\n", + " lat_bnds (lat, bnds) float64 2kB ...\n", + " lon_bnds (lon, bnds) float64 5kB ...\n", + " * time (time) object 8B 2010-01-01 00:00:00\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " pr (time, lat, lon) float32 167kB ...\n", + " time_bnds (time, bnds) object 16B ...\n", + "Attributes: (12/58)\n", + " CCCma_model_hash: 3dedf95315d603326fde4f5340dc0519d80d10c0\n", + " CCCma_parent_runid: rc3-pictrl\n", + " CCCma_pycmor_hash: 33c30511acc319a98240633965a04ca99c26427e\n", + " CCCma_runid: rc3.1-his01\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " YMDH_branch_time_in_child: 1850:01:01:00\n", + " ... ...\n", + " grid_original: T63L49 native atmosphere, T63 Linear Gaussi...\n", + " grid_label_original: gn\n", + " nominal_resolution_original: 500 km\n", + " regrid_operation: nearest_s2d_64x128_145x288_peri\n", + " regrid_tool: xESMF_v0.8.2\n", + " regrid_weights_uid: 549cab49a80314b5a85515237d530e30_f3646e1560..., Size: 177kB\n", + "Dimensions: (lat: 145, lon: 288, bnds: 2, time: 1, nbnd: 2)\n", + "Coordinates:\n", + " * lat (lat) float64 1kB -90.0 -88.75 -87.5 -86.25 ... 87.5 88.75 90.0\n", + " * lon (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8\n", + " lat_bnds (lat, bnds) float64 2kB ...\n", + " lon_bnds (lon, bnds) float64 5kB ...\n", + " * time (time) object 8B 2010-01-01 00:00:00\n", + "Dimensions without coordinates: bnds, nbnd\n", + "Data variables:\n", + " pr (time, lat, lon) float32 167kB ...\n", + " time_bnds (time, nbnd) object 16B ...\n", + "Attributes: (12/50)\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " activity_id: CMIP\n", + " branch_method: standard\n", + " branch_time_in_child: 674885.0\n", + " branch_time_in_parent: 219000.0\n", + " case_id: 15\n", + " ... ...\n", + " grid_original: native 0.9x1.25 finite volume grid (192x288...\n", + " grid_label_original: gn\n", + " nominal_resolution_original: 100 km\n", + " regrid_operation: nearest_s2d_192x288_145x288_peri\n", + " regrid_tool: xESMF_v0.8.2\n", + " regrid_weights_uid: 79e1100d95467f7177a261a94d1333ad_f3646e1560...]\n" + ] + } + ], + "source": [ + "print(rg_list)" + ] + }, + { + "cell_type": "markdown", + "id": "d048801f-fb36-46b2-84af-f1b61768727c", + "metadata": {}, + "source": [ + "Now they are on the same grid!" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "59b6fefa-90e7-49c7-b816-27351a0f51f4", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Global 1.25 degree grid with one cell centered at 0E,0N. As used by ERA-40.\n", + "Global 1.25 degree grid with one cell centered at 0E,0N. As used by ERA-40.\n" + ] + } + ], + "source": [ + "print(rg_list[0].grid)\n", + "print(rg_list[1].grid)" + ] + }, + { + "cell_type": "markdown", + "id": "168c41e8-7ae2-4ee6-9020-94f9de00500d", + "metadata": {}, + "source": [ + "### Quick plot the before and after for each model\n", + "The plots largely look the same, as they should - with the nearest neighbors method, we are just shifting the precipitation data onto a different grid without averaging between grid cells." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a9d5213f-65a1-415f-b3fe-6860d70fd14d", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CanESM5\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHFCAYAAAD8Jo2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC89UlEQVR4nOydeXxU1f3+n9knKwkEApFdcYm4FZDiBlhFKSqKrbtCXfmCtYgr1SpYFhW1uIBK+61orV93bX8uFVpxQagCSlVQ3FAQiJEle2a/vz/SzHnO5J5kZjIJCXzer9e8OHPn3LPdcy8n936e+zgsy7IgCIIgCIKwj+Pc0w0QBEEQBEHoCMiiSBAEQRAEAbIoEgRBEARBACCLIkEQBEEQBACyKBIEQRAEQQAgiyJBEARBEAQAsigSBEEQBEEAIIsiQRAEQRAEALIoEgRBEARBACCLIiHDrFy5EjNnzkRFRUWT30aNGoVRo0a1e5vagy+++ALXX389hgwZgoKCAnTt2hXHHnssnn/+edv85eXlmDRpEoqKipCdnY0RI0bgX//6V5N8r7zyCi655BIcdthh8Hg8cDgcxjaEw2HMmjUL/fv3h8/nw8EHH4wHH3wwpX60Rbua48EHH8TBBx8Mn8+HAQMGYNasWQiHw1qe77//HtOmTcPIkSNRUFAAh8OBJUuWpFTPN998gwkTJqCgoAC5ubk4+eST8eGHH9rmffrpp3HkkUfC7/ejpKQE06ZNQ01NzT5flyDsE1iCkEHmz59vAbA2bdrU5Lf169db69evb/9GtQMPPvigdfDBB1tz5syxli5dar322mvWxIkTLQDWrFmztLyBQMAaPHiw1bt3b+vJJ5+0li5dao0fP95yu93WW2+9peW99NJLrUGDBlnnnHOONWTIEKu5U/byyy+3fD6fdffdd1vLly+3br75ZsvhcFhz5sxJqg9t1S4Ts2fPthwOhzVjxgxr+fLl1t133215vV7riiuu0PItX77cKioqsk466STr/PPPtwBYjz32WNL1lJeXWyUlJdahhx5qvfDCC9arr75qHXfccVZeXp71+eefa3mffPJJC4B1+eWXW2+++ab1yCOPWF26dLFOPvnkfbouQdhXkEWRkFGaWxTtzfz4449WLBZrsn3cuHFWdna2FQgE4tsWLlxoAbBWrlwZ3xYOh63S0lLr6KOP1vaPRqPx9NSpU42Lj08//dRyOBzW3Llzte1XXHGFlZWVZe3cubPFPrRFu0zs2LHD8vv91pVXXqltnzNnjuVwOLTFM9e1evXqlBdFN9xwg+XxeKxvv/02vq2ystIqKiqyzjnnnPi2SCRi9erVyxozZoy2/1//+lcLgPXaa6/ts3UJwr6CLIqEjHH77bdbAJp8li9fblmWZY0cOdIaOXJkPP+mTZssANbdd99t3XnnnVa/fv0sv99vjRw50tq4caMVCoWsm266yerVq5eVn59vnXnmmdYPP/zQpN6nn37a+ulPf2plZ2dbOTk51pgxY6wPP/ywnXrdPLNmzbIAWNu2bYtvO+mkk6yDDjqoSd65c+daAKzvv//etqzmFh+zZ8+2AFjbt2/Xtq9cudICYP31r39tsa1t0S4TjXcuVq1apW3ftm2bBcB4dyudRdEBBxxgnXLKKU22X3nllVZWVpYVDocty7KsFStWWACs//u//9PyhUIhKzc3t8kdrH2pLkHYV5CYIiFjXH755fj1r38NAHjxxRexatUqrFq1Cj/5yU+a3W/hwoV47733sHDhQvzpT3/C559/jtNPPx2XXXYZfvzxR/z5z3/G3XffjX/+85+4/PLLtX3nzp2L888/H6WlpXj22Wfxl7/8BdXV1Tj++OOxYcOGFtsciUSS+liWldaYLF++HN27d0ePHj3i2z799FMcfvjhTfI2blu/fn3K9Xz66afo3r07evbsaVvmp59+mlQZmW5Xc3UBwGGHHaZt79WrF4qKipJqbzLU19fj66+/Nvarvr4e33zzjdamxLwejwcHH3xwkzY5HA4tRm5vqUsQ9mXce7oBwt5D79690bdvXwDAUUcdhf79+ye1X0FBAV5++WU4nQ1r9B07dmDatGk4+OCD8be//S2e7/PPP8eCBQtQVVWF/Px8bNmyBbfffjuuvvpqPPDAA/F8J598MgYNGoRZs2bhmWeeMdb77bffYsCAAUm1cfny5SkHif/pT3/CW2+9hfvvvx8ulyu+fefOnejatWuT/I3bdu7cmVI9zZWZk5MDr9ebVJlt0a7m6vL5fMjJybGtL1N17d69G5ZlJdWvxn9Neb/99lttm8vl0o7r3lKXIOzLyKJI2OP8/Oc/jy+IAOCQQw4BAIwbN07L17h98+bNGDx4MN544w1EIhFccskliEQi8Xx+vx8jR47E8uXLm623pKQEq1evTqqNBx10UFL5Gnn99dcxdepU/OIXv4jfPWOaU2ulq+RKpkzLshCNRrXf3G53k3yZahcfF6DhP/fGctpiDNIpL/E3U97E7Yl921vqEoR9GVkUCXucxL9gvV5vs9sDgQAA4IcffgAADBs2zLZcXmjZ4fV6ceSRRybVRv4rvSXeeOMNTJgwASeffDL++te/NvlPp1u3brZ3Qnbt2gXA/i/6lujWrRvWrVvXZHttbS1CoVC8zMcffxy/+tWvtDyNjwbbol0ej0f7/thjj2HSpEno1q0bAoEA6urqkJ2d3aS+IUOGpFyXHYWFhXA4HEn1q1u3bgAa7qwUFxc3ydtS//fWugRhX0IWRUKnpaioCADw/PPPo1+/finv3xaPz9544w2ceeaZGDlyJF544YX4Qo457LDD8MknnzTZ3rht8ODBSbUpscynn34aZWVlWlxRYpmnn3668e5YW7Qrsa7G8W6MJfrkk08wfPjw+O9lZWXYsWNHWnXZkZWVhQMOOMDYr6ysLAwcOLBJm0pLS+P5IpEIPv/8c5x//vn7ZF2CsC8hiyIho/h8PgANgaBtzSmnnAK3242vv/4aZ599dsr7Z/rx2dKlS3HmmWfiuOOOw8svvxwfi0TOOussTJkyBe+//358QRCJRPDkk09i+PDhKCkpSb4T/2X8+PG49dZb8fjjj+Omm26Kb1+yZAmysrJw6qmnAmi4a9B456A92jV06FDb7aeeeir8fj+WLFmiLYqWLFkCh8OBM888M+W6TJx11llYsGABtmzZgj59+gAAqqur8eKLL+KMM86IPz4cPnw4evXqhSVLluDcc8+N7//888+jpqYGEyZM2GfrEoR9hj0pfRP2PpYvX24BsK666ipr5cqV1urVq62qqirLssyS/Pnz59uW8dxzz2nbH3vsMQuAtXr16vi2uXPnWm6327rqqqusl156yXrrrbesZ555xrruuuus2267re06msC7775rZWVlWf3797fefPNNa9WqVdqnsrIynjcQCFiHHnqo1adPH+uvf/2rtWzZMuuss86yfUnit99+az333HPWc889Z5166qnxcXnuuee0cbAs9fLG+fPnW2+99Zb129/+NuWXN7ZFu0w0vrzxt7/9rfXWW29Z8+fPt3w+n61EvLHsu+66ywJgTZ06Nb6tJcrLy61evXpZhx12mPXSSy9Zr732mnXCCSdYeXl51meffabl/ctf/mIBsK688kpr+fLl1uLFi62CggLblxy6XC7rxBNP3OvqEoR9GVkUCRlnxowZVklJieV0OpN6T1FrFkWWZVkvv/yyNXr0aCs/P9/y+XxWv379rF/84hfWP//5zzbpnx2mdzQ1fhrHoJGysjLrkksusbp27Wr5/X7rpz/9qbVs2bIm5Tb22e4zceJELW8oFLJuv/12q2/fvpbX67UOPPBA64EHHkipH23Rrua4//77rQMPPNDyer1W3759rdtvv90KhUJN8jU3tsnw1VdfWWeeeaaVn59vZWdnWz/72c+stWvX2uZ96qmnrMMPP9zyer1Wz549rWuuucaqrq62bRPP572lLkHYl3FYVpovYBEEQRAEQdiLkJc3CoIgCIIgQBZFgiAIgiAIAGRRJAiCIAiCAEAWRYIgCIIgCABkUSQIgiAIggBAFkWCIAiCIAgA5I3WTYjFYti2bRvy8vLEKFEQBEFoFsuyUF1djZKSkhb9FtMlEAggFAplpCyv1wu/35+RsvZGZFGUwLZt2+KvzBcEQRCEZNiyZQt69+6d8XIDgQAG9MtFWXk0I+X17NkTmzZtkoWRAVkUJZCXlwcA2G/eLXD6/Q3vzG3E9JpL3u4wpBMx/eYwVGI5Ws6TTPnNFGsui+qjHZJpRlthGo6k+pMkxv4l0+90GpJMudr8MnQ8seHJDFaqg5jsseeiWjOebYXp3E21TYlDZio32f3ttqdzwtH+GTs32urET6KByU7TlJuYcn5VeSwQwNYZc+L/d2SaUCiEsvIoNq3th/y81t2JqqqOYcCQ7xAKhWRRZEAWRQk0PjJz+v1wZsmiqEl9siiSRREgi6JEZFHUejrpoiheZxuHW+TnOVu9KBJaRhZFgiAIgtDBiVoxRFu5Ho1ascw0Zi9GFkWCIAiC0MGJwUKslbdVW7v/voDcixMEQRAEQYDcKTKTFWn4aA/lDXnTWXwnEyOUTJxBcpUZCzAXZeqUYTxiart2hzbh2bvD9Jspdss0NIbYJq22dEIwYoYRSWI4uCHNxTtYSfwp4jDc5danSpIBI0nMW0fK459k1S7eyZyvpTYZw5+S/bMujeOUSpmJ5ehtpC/JtDfVuLHm4pmayWZXrN6OFK9LiXWb4G5ofY3Z5jGd1E6XXpnDMCamUB8riXluGa5R2nZHxH7nDBNDDK19+NX6EvZ+5E6RIAiCIHRwopaVkQ8ADBs2DKWlpVi4cOEe7lXHQ+4UCYIgCMI+xOrVq5Gfn7+nm9EhkUWRIAiCIHRwJNC6fZBFkSAIgiB0cGKwEJVFUZsjiyITjv9+OBpPi9izD550UFClKfCvOayYfWCfloeDjDlo1BS43BymuDuKYLVacx4lBGta2owzddBQFAdzc79N1ZmCppurmjtL+2sxoFqApn20rSlQumF/+8qTemeiIY+jmQOeTDCyMRab93XYz3lQwGuzAcdJ9M94/Hg8XaYJon/N2As+DQHHjmbOVeN5bJoXPJ4cmG0ZtnNdif1xGq47hnmrzdUobY867fM0M4CWoY16HvrCY8tB+VyO274/TeQjbsO48Txwxuw2w4oZTpKY4foq7LXIokgQBEEQOjjy+Kx9kEWRIAiCIHRwWD3WmjKE5pFFkSAIgiB0cGIwP31NpQyheTrNe4oikQhuvfVWDBgwAFlZWRg4cCDuuOMOxGLqMFuWhZkzZ6KkpARZWVkYNWoU1q9fvwdbLQiCIAhCZ6HTLIruuusuPPLII3jooYfw2Wef4e6778b8+fPx4IMPxvPcfffduO+++/DQQw9h9erV6NmzJ04++WRUV1fvwZYLgiAIQuuI/ld91tqP0Dyd5vHZqlWrMH78eIwbNw4A0L9/f/zf//0f1qxZA6DhLtGCBQtwyy23YMKECQCAxx9/HMXFxXjqqadw1VVXtboNmnKBVWZO+zyJr6FvFYZXzBvFcUkS0+w5DNIOoz+AYTO3L5qwMyla2A7EaK9h2G7sqqaQSlC+mZQxBoWOpnbj8ddUUTQPEvtqaBardyyTUsg+u9F5IdmZZrFCx/QnUapSLZNdCKArf0y2CiaFlHYsKVPUfp42mUMGuwzdWoLSdCw0hZTpAHhNksRE7NuuhXew0tHQP0155aZrkTuhbpPq1WQRQ93Qzldua4TbR6UkjHlzijy7/bU5SG4ZFh8k03mRcH2NsQqSxsTBY+VShbk8Udu0iRiNRyxCDXe2z0OpqNXwaW0ZQvN0mjtFxx13HP71r3/hiy++AAD85z//wYoVK/Dzn/8cALBp0yaUlZVhzJgx8X18Ph9GjhyJlStXGssNBoOoqqrSPoIgCIIg7Ht0mjtFN910EyorK3HwwQfD5XIhGo1izpw5OP/88wEAZWVlAIDi4mJtv+LiYnz33XfGcufNm4dZs2a1XcMFQRAEoZVIoHX70GnuFD3zzDN48skn8dRTT+HDDz/E448/jnvuuQePP/64ls+R8AzJsqwm25gZM2agsrIy/tmyZUubtF8QBEEQ0iUGB6Kt/MSSfYvwPkynuVN0ww034Oabb8Z5550HADjssMPw3XffYd68eZg4cSJ69uwJoOGOUa9eveL7lZeXN7l7xPh8Pvh8vrZtvCAIgiAIHZ5Oc6eorq4OTqfeXJfLFZfkDxgwAD179sSyZcviv4dCIbz99ts45phj2rWtgiAIgpBJYlZmPkLzdJo7RaeffjrmzJmDvn374tBDD8VHH32E++67D5deeimAhsdm06ZNw9y5czFo0CAMGjQIc+fORXZ2Ni644IKU63O6YnC6Y5pSxemyV585DcoTTWyToOJhBRP7l2mqNsqv1Udpj5sUFE5+Z5PaOxjWD3MkqhktqX3YTyxm8D4zqeA01YlBKQRdcWZSNmmbSVFiFEXx+JmUO4m/MSbFDKfZl4lVL7RdUywlPLzXmsL7mxRxvNmgCNKUV5FmboubPMCcnDYovbgO49iymi6xbnsPK86nnT7cDT4uWvvs2514jpk8vbRyDZU7TGIkPt7NKPNMSjut3zwPPNRYj31BDqfhBGgyhQyecYxhzJ0+1XEnHS/t2kdtisUSz2/VwVjEYbtdU7LVqwF1BUkZFrL3ZuNux7wJ6jP+HrM/x7Rh4zY57PunnTuc5utSJlXGzdD4CKy1ZQjN02kWRQ8++CB+97vfYcqUKSgvL0dJSQmuuuoq3HbbbfE8N954I+rr6zFlyhTs3r0bw4cPx9KlS5GXl7cHWy4IgiAIQmeg0yyK8vLysGDBAixYsMCYx+FwYObMmZg5c2a7tUsQBEEQ2ppM3ikaNmwYXC4Xpk6diqlTp2aieXsNnWZRJAiCIAj7KjHLgVgyL1NtoQwAWL16NfLz8zPRrL0OWRQJgiAIQgdHYorah06jPhMEQRAEQWhL5E6RAa8/DJffpSm93K4opcnjjKQc0Sbym/9uT1BpRKJKdWEZxAtug+LDZVAssaosRsqKaFRvk0nVxqKLGOwlH+z5Y/RK4y8JygwHq7gMt4I1zzFWz7BiT1P3GNb2zSmyDD5Jeju4DoNSjsfPba94achoKMvQRq1LrJ7x2Cvt2AfK6CMHvU+8P2+P8TEiVZQmWGpubBm3QcmjKeoM+2pzxZCHx7KJ152hHYTWDlOfTF1N1SOumfo0ry4ve3W1rE5MzOMkRapl8DbUPM74NKZ+REkBFuWD0dxrkaktmmKNrp38v06M+h2li4ODPRK5ai+lsxMmDinnXDyG7FnJ3XbyNZWu54brK19HXdSmaBK+aZkgCieirbyP0T4t7dzIokgQBEEQOjhWBmKKmnuNhNCAPD4TBEEQBEGA3CkSBEEQhA6PBFq3D7IoEgRBEIQOTtRyGmNWky8jQ43Zi5HHZ4IgCIIgCJA7RUay/WG4/E5NWcY4NMWGSnMgXDhiVpixOixm8DGK0P6sfGAlmqaUSPLOqOa1ZvD5YYVbjFVtXJBmRETbm/EC0vybwEqVlv+EibHaKkzr+QAbUnFlCWWymsmo8DGMp8Evy+Um1Yrb3nsOAGJhVu0ZfOW0HQz+XFwsq8c4nVimSY3Gqjb+80jz5KK0n1RNsJ+ziQownl/GIE/DdlZRaf5cLnv5EysjASAWpvOPxt9hUH1xX03KQ00lxvsmHEjLcGw0+Y/JVy5I55uLyjGooppcW+hvXRcro/g0cVEdJk879mmjAeHrgXbuAbDoVgQrxfjc0HDYj380i+aNj86xnHA8nZWl0gDg9UTiab5+uUlZxiqzKJ2HEVbrGs4XVh9z+dFY2C57xonBoR3b9MqQW0UtIYsiQRAEQejgSExR+yCPzwRBEARBECB3igRBEAShw5OZQGt5fNYSsigSBEEQhA5OQ0xRKw1h5fFZi8iiyIDPFYHb7dIDkQm26YhSIKaXgvGyPCoALzHINET7c6A1L+T1QO2WJ7MWgG0Kxk6og8s1BsVSYKvHb1+Hy2UfzMh9APTgxigFwnKwJwddc6CoP0ulYxQMGc2jv56ob4n2JiZrA2PQfMgQqOulgGO2RTAE9jZXN6MF22rBnoZAWHZi4SFoEmDONiEUYG4IEteCx132x1trdzPB1Dy3oxQIzUHRHFDt9apgWZ+XA2ftg9gDIXUJC3JkL6AFffMxAwcAc7A522Dw8TZYo2gx/YkB5oZyteBsPsYc+E9znsdft6gw21Lw+PB5YrqW6Q1XSZehHdEIBxknTGY+j2ke5eQEVZsMYpQoHSOfT107i/Jq4+lCX70qP6E/fE0NkVeN03BdDETU3KkN+agkexEMz0EPpSPO9jHPiGXA5kMCrVtGYooEQRAEQRAgd4oEQRAEocMjMUXtgyyKBEEQBKGDE4NT3lPUDsjjM0EQBEEQBMidIkEQBEHo8EQthybqSbcMoXlkUWQgZjkalAeGSRQmFRVbgbBCgZUOoQQlFKsuOM0qrhxfKJ52+FWaMSmCmETViaaYirG6wr4fvH8wrKaMpvag7RY9905UxrBkytIsDFQONyuhaDz4NfsOmrkhUn0FA0paFA3pY86KICergKh/sSAVXKPSTk00RMoiesO/g2wKnD5dkaIpmwyKIFObWLnGFgvcHzcpd5oooRz2x9VDqi+H4VppCkFgmxouP5Iwz8GWJqwGI2WTh9PUJj6usZjHtj43zw9SqwGAFaM5GWNVlNo/JycQT/vcav8gK5PqlDIpSvPD0Yyi0MnKrWxSobK9D9uNsAqUx4nPSZe9Ai8c1C/jVsjeXkibFyZ7IJ7nTtVWN42Nm5RhMY8+z1ntlkXXrDy/Up+5HfaWHzz+XX11al+32rc2qs7vimCWtj8rzti2g6+RmhqSrlNeqruLW/VPs/+w7FVpcLWP+iyaAfVZVB6ftYg8PhMEQRAEQYDcKRIEQRCEDk/MciLWSvVZTNRnLSKLIkEQBEHo4Mjjs/ZBHp8JgiAIgrBHqaurQ79+/XD99dfv0XbInSJBEARB6ODE0Hr1mH2Ie8dgzpw5GD58+J5uhiyKTOT7AnD79FuNrETI9dr76dRHlEomRAqWxDeRap46pCrxeZQKwktKHFYNcbmsgnNRO7I9SvnhSVBHhEk1FqD2MiH2JKK2s1KOlUasMnM3o8awnKrfuvqp5du6rHhi1RwrcViB5PIkXEBYWROzV3Sxaijqo2NGSiEH+z2xAomOUczSPd9cpEbzkQ+U12PvlcfHjOdKXUipb9j3iz3lEv3HNBc1+sL+fXwsvEmoaVxOUuhoijP9khKI2CuhWHGWy8okOhfqw2puWpbKn+1teZwAIJLD85yUhHyeeNV5wqooNs7ktsLgU5io3mMvvyipwRzkIeamORElrzWTUjEW5nnKqrsEBRj7lFHd2v+IlkFyZtnXF7LU+Hn86hzLSVDFampKKtdD/mC5dG3iY+F18rFUdVeGdZWZXTmArj5LnAt2202eaEwgqvrN85FPqmQUwJkgMy9v7JgPh7788kt8/vnnOP300/Hpp5/u0bZ0zBESBEEQBCFOo81Haz+p8s477+D0009HSUkJHA4HXn755SZ5Fi1ahAEDBsDv92PIkCF49913U6rj+uuvx7x581JuW1sgiyJBEARBEGypra3FEUccgYceesj292eeeQbTpk3DLbfcgo8++gjHH388xo4di82bN8fzDBkyBIMHD27y2bZtG/72t7/hwAMPxIEHHtheXWoWeXwmCIIgCB2cGBzaY910ywCAqqoqbbvP54PP57PbBWPHjsXYsWONZd5333247LLLcPnllwMAFixYgDfeeAMPP/xw/O7P2rVrjfv/+9//xtNPP43nnnsONTU1CIfDyM/Px2233ZZS3zJFp7pTtHXrVlx00UXo1q0bsrOzceSRR2qDbVkWZs6ciZKSEmRlZWHUqFFYv379HmyxIAiCILSeTD4+69OnD7p06RL/pPvoKhQKYe3atRgzZoy2fcyYMVi5cmVSZcybNw9btmzBt99+i3vuuQdXXHHFHlsQAZ3oTtHu3btx7LHHYvTo0Xj99dfRo0cPfP311ygoKIjnufvuu3HfffdhyZIlOPDAAzF79mycfPLJ2LhxI/Ly8vZc4wVBEAShg7Blyxbk5+fHv5vuErXEjh07EI1GUVxcrG0vLi5GWVlZq9q4p+g0i6K77roLffr0wWOPPRbf1r9//3jasiwsWLAAt9xyCyZMmAAAePzxx1FcXIynnnoKV111VUr1eZwxeJxRRCgwjdUO+R7lmRQijyX2TKonP7BgSFd5RSKkGnOzHxV5GpE6iNVnWay6CCs1EisruN0uSxdiskIkxxuEHaxmqiXFU8TRsuKMlTjRqFl1x5gUHE6DB5uHxoxVaUyiDxersmIGhQ8LcRyk6nHmxGzzMKxiQ0zvp4sUTJqnHWVjdQvPIyYasx8/nh+uZrzP9LTKw4ozk39fVFP/sfeZKoeVYYDeVz4erKzs6lc+V36X7l/WiJuUSTlu8tRyq/Mw26mrkYKWGs+doex4ui6i/gNgdVHEMI88NB4Bn8ofMyggAV2lyfncmqKUjoWffBLpuhGoUeeeRdeMGCva3IkTkr3TaN6SEI3nI19/LEOfTP557IUI6OpZ7iuXxWOuK85aVozx4yP2XgT0ucPX6mRUaTzPIwZfS1aH8vawx96XMtNk5uWNDfvn5+dri6LW4kiQX1qW1WRbMkyaNClDLUqfTvP47O9//zuGDh2KX/7yl+jRoweOOuoo/PGPf4z/vmnTJpSVlWm38Xw+H0aOHJn0bTxBEARB6Ig0mpS39pNJioqK4HK5mtwVKi8vb3L3qLPQaRZF33zzDR5++GEMGjQIb7zxBiZPnoxrrrkGTzzxBADED0qqt/GCwSCqqqq0jyAIgiAIzeP1ejFkyBAsW7ZM275s2TIcc8wxe6hVraPTPD6LxWIYOnQo5s6dCwA46qijsH79ejz88MO45JJL4vlSvY03b948zJo1q20aLQiCIAgZIJaBx2eNL28cNmwYXC4Xpk6diqlTpza7T01NDb766qv4902bNmHdunXo2rUr+vbti+nTp+Piiy/G0KFDMWLECCxevBibN2/G5MmTW9XWPUWnWRT16tULpaWl2rZDDjkEL7zwAgCgZ8+eABruGPXq1Suep6XbeDNmzMD06dPj36uqqtCnT59MNl0QBEEQWkXMcmpv+k63DABYvXp10jFFa9aswejRo+PfG/+/nDhxIpYsWYJzzz0XO3fuxB133IHt27dj8ODBeO2119CvX79WtXVP0WkWRcceeyw2btyobfviiy/iAz9gwAD07NkTy5Ytw1FHHQWgQS749ttv46677jKWa3o/Q23YA3fYqwUIRlxqQpoCNKuC/niagy05YBgAcrJV0B5bG3AAHwf/aa+nh30AJAfL8mv1E20bOKCX+8H7sP1HTUCNDwdOsz2Jg2YSl+NK6LfL8Gr9sMGmgoNzObhXsxuhoFMntUmzZwBQkFMfT/vdavzDFIjJY+Nz2wf9MtxW7iuPAQDUUUB8bZAC16l/PA/8CQHL8bZG7K09OMC1ILte24fbwn11GiLGTe9CSTyW8e0O++1AQgC9x347iwJ4PnLgLP9nUB+1t6aJOPXA2zCLDai+Qm+tahK1nfOztcT2WvWfB4snWGjgcepzRQ+mV/l4voSNgesU1ExWIBZZe7g0oUGinQ1dK7TzgYKgXfbHjOe8Jpiw7AOwE2NU3IYgfYavlxxozfuarq+c9iecn7w/B1czPKd43tXR9Y7PCy6T69baF23ZFqczM2rUKFiWQV3yX6ZMmYIpU6a0U4valk6zKLr22mtxzDHHYO7cuTjnnHPwwQcfYPHixVi8eDGAhsdm06ZNw9y5czFo0CAMGjQIc+fORXZ2Ni644II93HpBEARBSJ8oHIi28uWNrd1/X6DTLIqGDRuGl156CTNmzMAdd9yBAQMGYMGCBbjwwgvjeW688UbU19djypQp2L17N4YPH46lS5fKO4oEQRCETk0mH58JZjrNoggATjvtNJx22mnG3x0OB2bOnImZM2e2X6MEQRAEoY2JovV3ehof9KUSaL2v0akWRYIgCIIgtI5UAq33NWRRJAiCIAgdHHl81j7IoshAbcgHl9un2RGwKiRKk6smqNRZrIpq7i3nrP7g18e7SQ1jUgGxaoKVIKz2YNVELSmfACBECia3wd6B1VlRv/nV+nZ1s1otErHP39B2lXaTmoZVbVxutlcperJyVft8pCipDCjV0O5qZe0AADsqc+LpnGxlb+Jz21sNODVln6qDj31VQKkNWQ2TqMph9Q6PuZ6mMTDYKnizyXqE8vDxyk2wHWAlTpBUM05DHT6Dgkibm4ZxSlQcmX7TLGlI1cPbud3a/KL5XOVQ45/ttlfsAYCX1GFsbZPrUum6mCp3d0jNFc0yx2mvwkm0ZWFlmkm1x+e9SVnp89mrVE12LYB+XpkscLh93A6fwWaFVWl8DUg83nz8+Dzx0DxnBRgfs2QsOPgc8yYoPEMGZSXvo11PXOo88bu4HfbzUeubQTnYlrCha2vKEJpHRkgQBEEQBAFyp0gQBEEQOjwWHManB6mUITSP3CkSBEEQhA5O4+Oz1n6ABvVZaWkpFi5cuId71fGQO0WCIAiCsA8h6jMzsigSBEEQhA5OzHIYg9FTKUNoHlkUGXA6LLicFkKkBAmQwsSlqT9IYUNKkxzyGvI246PF3lQVpJ5iBQU/S2bFmaZCIVUIK8wSFWOsbvGQ8iriYg8w2p/TIZW2ovYnWIw939y6QsRF/k3ZWUr9UZxXHU+zOmVHvVIBVdUrpRGrgLr56+LpavKei4b1p8Mx8hkLkS9aMERecNVKOVdBdeQXqDrYW4yVRTzOrJQDgCJfIJ42qa3qSVWVRQoyTT1j8CtL9LdjNLUPee5xWV6D6khX39i3m3E7ze2IkDooYijL5JfFyjf2heM2eRP8x0IxNVcD5JdWFVFzZEco17a+PI86XoO6KIVaRUgpGqtCaq7wvAP0uRA2KDCjmt+f2s5zilViOV6eE2oMWFEI6Od+1GpZ+VboU/O5wKvSfM0xHe9IgscYK8A4zUqxXI8aTz6uPCfyDfNAm48J8TE8z50GPz5tTtB1LVHJ1khVWB1jVrbydbe9vM+icCLayoiX1u6/LyAjJAiCIAiCALlTJAiCIAgdHnl81j7IokgQBEEQOjgxOBFr5cOd1u6/LyAjJAiCIAgdnKjlyMgHEEl+c8idIkEQBEHYhxBJvhlZFBnokVMDT05IUwoxJp8lVvGw4mUXKRca8inFAitVWJFSH1bb/V5VrtugeGK9U4AUVYnqFyumnisHSU3GYg5WwERJtaV5OpGCS9eKqLb6PAmKIFJ8cLtqSMkT89gr7Tg/97u8TimIKmrVOMci+rHzZKm25PqVAiYQVmMV8rLXHWypDSmVGLePFWd55K8F6EqvCN2gZS8ih0Fx409CGab5Q7n0uWlSrPE+rPxJVBTZ5WFYQdScF5ZpO58LJq81fV/VDla7sbIosQ7OpynRQko1xmqmXLc6lvo5reqopTlbVaerz/icidI8jNE57far4+Sl85v9yvzkfab5EVKexDHv4lcKMp47+niQnx6NjUk9WBdRfWVVWa5bn+eF3jq0RBZ5jvGxrImq84qVhJyHVWWehPkR5rLC6nhwe/l6blJA8thwfh7/HFKHhqO60rStkJii9kEWRYIgCILQwbEsZ6td7i0xhG0RGSFBEARBEATInSJBEARB6PBE4UC0lYaurd1/X0AWRYIgCILQwYlZrY8JitmHFwqEPD4TBEEQBEGA3CkysrM+G26nDwXkC5TvVX5IrPioIX+cXUGlfmI/JPbZAQC/wReN1WBhUqpYSah4wkG1byyk9nW4dZWGk75HWX3Gaq0Q+TKRX5kmZKImaUotUqgFa7PBONmPjMZwu1t5nDnIU43TThJV7eqhlCouP3keUd1IGLNwjdrnR0qzPZQrm44LKX9q69Qxdrns/dt4TiR6Ke0MZNvmY9+7LFK36D5O5IHHajdSSOVQ2qQ2aw4nK7pI1aOpcuiAs4KL8/D2JvtTuSavNlYdmXzQtHZTXxP9rpx0+LnuOlI5sQIpSJ5h9aRIZFUa+4px37rl1Wp1a56JrG6k7cn8zR8Iqn2rXep6wtcMT8JcyyflI48PK+d47rBaMYvSPjoWrPTi8XA79LoLPOp6GbFUX+toXoQtVoOptMtwvF1Uh8kPMrG9LvJwq2YlmoP8CR2qrzwPeJx4LHkOsSdatJ0UXbEMBFo37j9s2DC4XC5MnToVU6dOzUTz9hpkUSQIgiAIHZwYHE0WgumUAch7ippDFkWCIAiC0MHhN1K3pgyheSSmSBAEQRAEAXKnSBAEQRA6PJmMKRLMyKLIQCTqghV1oZoC6jgYr4qCqNlawuNWQYGDuu2IpxODXyvIXoADsoP1KiDRTZYTmr0GvYbeTUG/jiwVFMh2GnX1KrAUAKIBw2EPkuVEmG6zkmUBsqg+svlw+1SaA5F93XTLiTyy1/BRMPGPNcqqo2qbetbt30oBwBTL6vla9SnqU+mwiteGO8GtIuqjdDZZXOSrtnt8qk1dslVg/a6oCpSOkU1KAVkqsLXHD7V5Wt1sEcD5TMHZuu0GWQ3QmOW5uRwOjtYvfCZrBN7uo334XSYeCnLlANkcsmqopyDaRCsQk1WHyU6C226yHtECqmmaJtqT8NiG+Nwlew4e2zDtz8erC1k6BNzq3PmxluZsgs0HnwN8vvq9qlwWJ/Cc8vnIYoSuJ2ztwQHfbo8+xnURPdg9Xrdh7jA7g6pPPM4cyM/B8K6E61pVhO01VBv5+scB0T5DOxjTHEykmuqujahrAgdOc5qPvckyR7OwcZGAhMY/ErGfy5kmhgzYfMh7ilpElo2CIAiCIAiQO0WCIAiC0OGxMqA+s+ROUYvIokgQBEEQOjgxKwOPz0R91iLy+EwQBEEQBAGyKBIEQRCEDk+j+qy1H6DhjdalpaVYuHDhHu5Vx6PTPj6bN28efvvb3+I3v/kNFixYAACwLAuzZs3C4sWLsXv3bgwfPhwLFy7EoYcemnL5Oyty4Az5YZHNhIvUYA7DXUifVykrdtYrxVKiKofVI6yCyMlVagy/RylVcrxK/VFN6pkeOTXxdDYpZipI0bYt2kWru343ybCoH2zn4aqjqRFUmSyy/4h5SRnWS7Uv26/Su3eTHAxA7WeFqu2rlZqj57dKWpbbX9VX352aqoYWdb2oed2o3fWqTa4EYUvUr+qLaio6lbZIBVRJiiK2UMnLV4ozD9lVsOKMjx0AdPEpJVuuRzWsKqSrlhphGwZWVeV5VDndvdW2+0YT/tZhu4UwzTWPk1VLpLKhdDBmb2uhKddI1eROuD3v0pQ8aqxYZcZ1hDSVmdnCoxEemybxFiSMYtVRkNJ8HoYNaiRWbfG5GmBLnpB+KQ1R3U6DLUyeXx3LSFT1w+2yt34xKRX5vE+ElWJs4cFjXkdKLVYFsv1HkVddZ/xOc30Mq/lqWPpJ8PzgFwvyca2IZtluT7ymltcr5VxFIAt2sF1SXUD120nnQhbZ+0TpGtctqy6e5mtwNLnhaDWZfHzWmd9o/fe//z3lfU4++WRkZdnPiUQ65aJo9erVWLx4MQ4//HBt+91334377rsPS5YswYEHHojZs2fj5JNPxsaNG5GXl2coTRAEQRCEzsCZZ56ZUn6Hw4Evv/wSAwcOTCp/p3t8VlNTgwsvvBB//OMfUVio7jpYloUFCxbglltuwYQJEzB48GA8/vjjqKurw1NPPbUHWywIgiAIraPR+6y1n72BsrIyxGKxpD7Z2dktF0gkdadowoQJKTf6kUceQY8ePVLeryWmTp2KcePG4aSTTsLs2bPj2zdt2oSysjKMGTMmvs3n82HkyJFYuXIlrrrqKtvygsEggkF6nFFVlfE2C4IgCEJrEPVZAxMnTkz6URgAXHTRRSk9KkxqUfTyyy/jnHPOSbohTz31FGpqajK+KHr66afx4YcfYvXq1U1+KysrAwAUFxdr24uLi/Hdd98Zy5w3bx5mzZqV0XYKgiAIQiaRRVEDjz32WEr5H3744ZTyJx1T9MADDyS9yHn++edTakQybNmyBb/5zW+wdOlS+P32walAw/NDxrKsJtuYGTNmYPr06fHvVVVV6NOnT+sbLAiCIAhCpyKpRdHy5cvRtWvXpAt9/fXXsd9++6XdKDvWrl2L8vJyDBkyJL4tGo3inXfewUMPPYSNGzcCaLhj1KuXkiaVl5c3uXvE+Hw++HxNlRHRejcsuFHYUyl8PKTMqA0q5QL7ndUHle9QxQ6lhkBMX5g5/aTYIVUbK0/4+W95tSqrvka1l9VdrJxykFdar+6Vet/Y06taPW9lZUaEvMysKtUnVnchR+Xp2cX+sWOlO+HuIrWxrodKlx2n+uHeT6k8uE+RMlVWjNRjhb1U3RYrjkK6B5SLytIclOjQ8LGMkOebP1uphtiHri6s5sF+eWqci/36eLDnGHuLsYdYFqV1ZZgi16WOXZTUN6zuSfxrkFVLXK5J7ROmcuuj7CGlxpPr8JI6i9VOgK5AqrfU/iFSgPE8T/QItMvDCjAtTzN/BWv+V2HVDh4D9gtkn7EKh5p33FdWKVkJdfP+DlZYGfzL+HqSn6WOcYFXpVmRyMciO8E/jFVmJt8wPsa9s3fH0728ag7zvqz+q4mSb2NU/wOVlWkmnzJWHlbR+cMeegz3dXudEszUh/X8fAxq6tX5ECavR74uxsI0j2jfIHkp7o6p69K3IZLC1tL8rVfHqC2RO0XJ8/XXX+OKK67Am2++mfK+SQVajxw5Em538kK14447znah0Rp+9rOf4ZNPPsG6devin6FDh+LCCy/EunXrMHDgQPTs2RPLli2L7xMKhfD222/jmGOOyWhbBEEQBKE9aVwUtfazL1BTU4O33347rX3TkuTHYjF89dVXKC8vRyym/0V7wgknpNWQlsjLy8PgwYO1bTk5OejWrVt8+7Rp0zB37lwMGjQIgwYNwty5c5GdnY0LLrigTdokCIIgCEL78sADDzT7+9atW9MuO+VF0b///W9ccMEF+O6772BZ+q1uh8OBaDRq2LPtufHGG1FfX48pU6bEX964dOlSeUeRIAiC0KmxYPOC0jTK2BuYNm0aevXqBa/Xa/t7KBSy3Z4MKS+KJk+ejKFDh+LVV19Fr169mg1ibmveeust7bvD4cDMmTMxc+bMPdIeQRAEQWgLJKZI0a9fP9x1110455xzbH9ft26dFn+cCikvir788ks8//zzOOCAA9KqUBAEQRAEIV2GDBmCtWvXGhdFDoejyZOsZEl5UTR8+HB89dVXe/2iyJUVgTM7gto6FTAeqlRpXxl5KWWTuqS7um3nIgWXI0FNFKlVt/2C9eTFROqIAN0aZGWFYycpjbz2vl8xryqntot+i9FFbQnV0G8BUov4SX3mI2+wAtW/XkVKYfVDlXpEGSQFXvcC5ZkEAPWH0osy+ypVj6acI7VOuEyp47y7Vf+sKlKw1BXE08UH/xhP/6T4e61uVlhVhZVqppJ84vj2NKsNWUXFXl/5XtWf3llKxZOoHuP62F+KVT2sEmOVGROIqbFl/yqTR1kinE8rlxQ+nK6L2CvOuK2RYJZtHkCft+wTxwoyN40V789p9vfi/JoXWVTvG3uc1QTVOcPzPxxRxzVEaVYqRqPmV4DYtRUAYuSZmJNtfyufFWc8ntke+/yJXl8mcsn0z0dqwPqYqi+bFGo9vRXxNCvDfgirF95VRdQY8HmUk6B8q434bPdhfzWeU3zMeAw1JSy1qTqgyq8P6Nc1bZ+QaqNFSjErwmaPdM2h0zXqo+uMWx0XBx1TB10HHd70H9WkQibvFA0bNgwulwtTp07F1KlTM9G8duWOO+5AXV2d8ffS0lJs2rQprbKTWhR9/PHH8fSvf/1rXHfddSgrK8Nhhx0Gj0eXRSb6kQmCIAiC0DrEEFZRWlra7O8ejwf9+vVLq+ykFkVHHnlkk9tRl156aTzd+NueDrQWBEEQBGHf484778TkyZNRUFDQqnKSWhSlextKEARBEITWI4HWzTN37lycc8457bMo4ttQ77zzDo455pgmL3OMRCJYuXJl2resBEEQBEGwx7IcTd6cnk4ZeyvpBlYnknKg9ejRo7F9+/YmPmiVlZUYPXr0XvP4LOfDLLh8fmT9aD/QwS4qHSiiiUbBjBaNruXUy/FV2gdNhrtwxB/Za4QoCJGC/7y1KqCQ3rCPELWv4nv6AsBbVB9Pu7PVThFuo8M2idhuFej4Q7maA55qCsKlMLPdB+rz4YCiHfE0h0FXblVtjGxXdeRto+BGKqryKAp0dKsx65GtArvZWgMAdoSUVUqBV43BftkVqm4KImXbDd63ggKL3VQH2ysk/kWWTFB0xGCLUE0Bq5UhVTcHoHI57oQgbw5srSVbhXDUvj4OiK4KUBA6BR+7XaoOn1sF80YTLDi0oGa2EjHUbdqX4Qs7l8mB0gAQojo4oNrtcthuj4TUcWGzEg6atsj6BfXmPjjzaX7SVGAbIK6ve6GyE+rqU3OT4fnldputJTR7DRpCJ30p9NTG0+UhFVvCti5sBcKB4CwUqAjrNj5V9J3nHR+LAG3n+cIWR7y9jux62LonmnC8oxRcjTqVdoTJ3qeOgqhdqk98fXXuUnnCOWQL4ldpZxU5NgTa5+0/MTha/Z6i1u6/L5DyoshksLpz507k5OTY7CEIgiAIgtB2bNiwISOeq0kviiZMmACgIah60qRJmrdZNBrFxx9/LB5jgiAIgtAGSExRU7Zs2QKHw4HevXujT58++OCDD/DUU0+htLQUV155ZVplJr0o6tKl4fGGZVnIy8tDVhY5R3u9+OlPf4orrrgirUYIgiAIgmBGYoqacsEFF+DKK6/ExRdfjLKyMpx88sk49NBD8eSTT6KsrAy33XZbymUmvSh67LHHYFkWLMvCgw8+KH5igiAIgiDsMT799FMcffTRAIBnn30WgwcPxnvvvYelS5di8uTJaS2KkntF6n+xLAtPPfUUysrKUq5IEARBEIT0aHx81trP3kQ4HI6H8vzzn//EGWecAQA4+OCDsX379rTKTCnQ2ul0YtCgQdi5cycGDRqUVoWdhR5rauF2R2G5Sa3AiixLqXIsF080UqqQGMJKCE73KIcMuEls0u1TlQ5T3DoJkBDqwmo3lSRRCKI+rk9f+4Z2qcJceSRZ411q1NRw0KvxPaSa81aq7B5643ptL5UOVOgWCetrVCCcN4cUOrmqHVFS3VUdpjrYraeq8JySL+LpbFKJeUii9nlNT63ukMGegPdxkQJvP1+FqpvUOrt9ynqkntrK6rGdIZUHACpINcbqMFavsTJkZ1Ad/PI6pXyrD5Mikfb1uu2VOw37kI0MpTmfh/bPJtsC3RLDXjXECq5wgiLIRSq1KCm3OM15vB6l+2K7l8o6mrN0jDRbkFhyF3weA97HonMpFiabiLBqqyNIY0vtQ4IQzSLFWoAUZ36vmucuvxrnMKutaJz9pOxj2xInKafYygPQxyRMDdvPp2xogga7GLadYa8CVqJpVh5h/fzmunmuskqQCURIlUnH2EnHmOdK0GRLBMARIrVckO08VNKrRH6I0XWbhzD/W7JByqPjTX3r/qG6gEeiAXyLtkcenzXl0EMPxSOPPIJx48Zh2bJl+P3vfw8A2LZtG7p165ZWmSndKQKAu+++GzfccAM+/fTTljMLgiAIgiC0AXfddRceffRRjBo1Cueffz6OOOIIAMDf//73+GO1VElZkn/RRRehrq4ORxxxBLxerxZwDQC7du1KqyGCIAiCINhjZeDx1952p2jUqFHYsWMHqqqqUFhYGN9+5ZVXIjs7u5k9zaS8KFqwYEFaFQmCIAiCkB4WgNa+tLl9XjPZvrhcLm1BBAD9+/dPu7yUF0UTJ05MuzJBEARBEISOSsqLIqDhZY0vv/wyPvvsMzgcDpSWluKMM86Ay9Xyq/sFQRAEQUiNGBxwiM1Hm5Pyouirr77Cz3/+c2zduhUHHXQQLMvCF198gT59+uDVV1/F/vvv3xbtbHdC+V7EPF4EuqkhqulNSheSZnA6VKCUCyxO8ZfrMe0kbIIrpDKyYs2/SymCLCf595DKIupV2+tI9RXJUe1gjx8AAHkBxXYoJYmPPH88NZSfduf2sRdZXbF9Hle1PsWiOWqnEOlbfLlKiYMspdDJz1IeTwd3LY+nq0iOVxNVfWCVWIFH95CqIdUMK3bYK4q37wgr1ZfJu4wVZ9/VdqXt+vFmRRH7SDGsRKsOq7Ymeno1kkMqsRyPSrM3G6CrtVjdFQzZt4kvnKwy41v3HJvAYQrhkH68w/yF6yBFV5jHlozzHDRvPT7V7hDNf4u9s7y6CovbGI2Q2o288sIBVbdVT2kaM/bOckZY1WSvcAIAi5SjHAdSWvRDPF3kVXP1o11KlclzJZeOax35ku0KqniJIr8qB9CVlblOla6j84TPGfY7Y18z9gHU/PpofgSi+vGuCalyWVnGnmX1daQgo3GL0TFy0PjzMXZWsKGk/h+8u5aOE11O2BPSQVPERwrgnDJShAZVOrtM7RzsSoq9bur6E9GnXZsh6rP2IWX12TXXXIP9998fW7ZswYcffoiPPvoImzdvxoABA3DNNde0RRsFQRAEYZ9G3lPUPqS8KHr77bdx9913o2tX9Vdxt27dcOedd+Ltt9/OaOMEQRAEQcgsw4YNQ2lpKRYuXLinm9Iqvv/+e9TU1DTZHg6H8c4776RVZsqPz3w+H6qrq5tsr6mpgdfrtdlDEARBEITWYFkZUJ/9d//Vq1cjPz+/9Y3aQ2zfvh3jx4/H2rVr4XA4cOGFF2LhwoXIzW0Iedi1axdGjx6NaDTaQklNSflO0WmnnYYrr7wS77//ftwL7d///jcmT54cf8W2IAiCIAiZozGmqLWfvYGbb74ZLpcL77//Pv7xj39gw4YNGDVqFHbvVm9tt9JcQaa8KHrggQew//77Y8SIEfD7/fD7/Tj22GNxwAEH4P7770+rEYIgCIIgCMnwz3/+E/fffz+GDh2Kk046CStWrEDv3r1x4oknxl8g7XCktwBM+fFZQUEB/va3v+HLL7/E559/DsuyUFpaigMOOCCtBnRUyod64PJ5ECokxYyHbsWxDxopUljBxTjC+vcsUpaxgoyVaNnLPomn68YcHk93X7lDtfPY7mpfJTSB/0dSqClBCABdjcHqDxZFsbKMfc2CBSodUFVrZXro6aqm1gEQ85BCJMfeuyvXT75kLrWdfZZYfZPtVpUXulVjwwkKML9L5SsP5sXTOW4lVdkZVIqzHj7VkSgd8O5e9Qx7JxvUEYkKs64+pYTT/LqoXFYdeUgF5MtS8hYu1+8iRRYphdivDAAKs2hMKF+YfLhCUfKFI1Ubt3V3RI15MEDKNZdeHxMjDzCPj+Z8vf2lRxN0sUqSPAjZ98sixV44qJfJ/mUOGhOL/M48fpIOUTpUq0IB+C/OGBmkeStU+ax2AgDvAep45/jUj4VedSwOydkWT7Pqa0Ol8uyrCat2eOlcYNVXotKxMqzUh+zNF/PSGJJpIisuWdXJc5DrqIuoNgUj+pjvrlV1R0g1yf5l7AsXC9ExouMaI485Zx2Ncz2pCBPGnK9BLiVahUcX58Xp+pnKFMkhlXFPlfb5yfOtFykmc9QYRIMx4F/2dWQSUZ8pKisrtRc2+nw+PP/88/jlL3+J0aNH48knn0y77LTeUwQAgwYN2utNYQVBEAShIxCzHHC0clGzt6jPBg4ciI8//lhbg7jdbjz33HP45S9/idNOOy3tslNeFEWjUSxZsgT/+te/UF5ejlhM/yvxzTffTLsxgiAIgiAIzTF27FgsXrwYZ599tra9cWF09tln4/vvv0+r7JQXRb/5zW+wZMkSjBs3DoMHD077uZ0gCIIgCMmRSfVZZ2fOnDmoq6uz/c3tduPFF19sv0XR008/jWeffRY///nP06pQEARBEITUaFgUtTamKEON2cO43e4mrxR47733MHToUPh8PrhcLvTr1y+tslNWn3m93r0uqFoQBEEQhM7L2LFjsXXr1laXk/Kdouuuuw73338/HnrooXZ9dDZv3jy8+OKL+Pzzz5GVlYVjjjkGd911Fw466KB4HsuyMGvWLCxevBi7d+/G8OHDsXDhQhx66KEp1xfNtmD5LU2F5asijyz1OgSQ4AnZP6od6rup/BHdjgquehWLlfOtkkcEeyg1k3XoAZSfVFil6m3iBV8rBUXUp5Qj9eRFlujLFFXZNI8z3y6V7vKNknbUd1cKlkAhK+UMddBS252g/AiSYs2fpQrwkPqsJqDkcr0LKuLp/bJVmhUzHDzInk6JCjBWmTmpwdXkicYqIPZ74u0/BPNtt/f0KzMl3hfQVUAmWB0XYNUQ9Y/90RgvtYPVeIlUkTdVFuVjFVGWh9pB292kfvKQz5iTlF3BmN5PvkTESPXlJCUae165vGq7l+pgz7b6oFL+REi95Ezw+GP1mrdA7c/qPFbRsRIKAVaWkVqtirzWyFovUKTX3SNb/VicpU4yPpbfBHrE04dlq1v9felEXLlbeUn+WK+uDVVBdRInBs/2za2g39hjTqXLAkq5UxGiCwLB6sZKqi9AKsloTK+b72SE6mku1LJnmUry3k5WnAXVL3was6osQXQHFx0Pk7ckn5bezWqcK04sUe3mGxAOVpypzXwNTf31gOkh6rPmSfe9RImkvChasWIFli9fjtdffx2HHnooPB79Ivjiiy9mpGGJvP3225g6dSqGDRuGSCSCW265BWPGjMGGDRuQk9MwW++++27cd999WLJkCQ488EDMnj0bJ598MjZu3Ii8vLwWahAEQRCEjomFJn/fplWG0DxpvaforLPOaou2NMs//vEP7ftjjz2GHj16YO3atTjhhBNgWRYWLFiAW265BRMmTAAAPP744yguLsZTTz2Fq666qt3bLAiCIAiZQO4UNc+jjz6K4uLiljO2QMqLosceeyypfBz01BZUVlYCQNyYdtOmTSgrK8OYMWPieXw+H0aOHImVK1caF0XBYBDBoHpZYFVVlW0+QRAEQRA6JhdccEFGykn75Y0tMXbsWKxbtw4DBw7MeNmWZWH69Ok47rjjMHjwYABAWVkZADRZKRYXF+O7774zljVv3jzMmjUr420UBEEQhIwhz8+aEAgE8OCDD2L58uW270388MMPUy6zzRZFmQp6suPqq6/Gxx9/jBUrVjT5LTH427KsZgPCZ8yYgenTp8e/V1VVoU+fPoj6GgKtnRSsyUF+gW4q7aOAv2glBcUG1Bjkf6cHv4byyG6hq4rC9ryxWmUarqw9goXqUPHr5rPK1V0uDhAM9ifPj9qEw0wBqQ6yC8gOUvBxH7I5oN1jdOOPHAEQKaao63oKWHXr88CVZx8EXFOnCg4HVIXbXapTHEzcK6synu7jV1Hv2eS38ENYl2zWUkC1j4NIyRbBT14pWRRJXuixt8rgYG6Pwz5IGwCCloq9y6WJVEMRm0E6FjVONf4eQ3B1oo1JI4GEoG7+XuRXke9s18Cw5UeU6vBRMHwWBT5zAHbQp/ebT73KOtVXt1v1KUY2N1Gy5ggFVbuL85XliptsRWoc9vMGALz56vj16armyI81ysol7GIrCrU/B/daXvUl2EvN32iOShd10RUFHMjPwfgsEPghoOIcq8IqoLrYZ3+3uhvZtXCwOPcHAHI9qt9sB1LmsI+rrDfYy4BOY7aj4YDt2nr9SUCwjuZeHV84VJKtfxwhQ0A1Xb40+w7ablH7AIBPE/6N0znl7F+k2ldFf7tzOXydZ9GNdkq210IjE4aue9njs0svvRTLli3DL37xCxx99NEZEX+12aKorfj1r3+Nv//973jnnXfQu3fv+PaePRv8gsrKytCrV6/49vLy8mafM/p8vjZ7xCcIgiAIQtvw6quv4rXXXsOxxx6bsTJTfk/RnsKyLFx99dV48cUX8eabb2LAgAHa7wMGDEDPnj2xbNmy+LZQKIS3334bxxxzTHs3VxAEQRAyRuMbrVv72ZvYb7/9Mq4s7zSLoqlTp+LJJ5/EU089hby8PJSVlaGsrAz19Q0vp3A4HJg2bRrmzp2Ll156CZ9++ikmTZqE7OzsjAVgCYIgCMKeoFF91trP3sS9996Lm266qdm44VRps8dnmX6x48MPPwwAGDVqlLb9sccew6RJkwAAN954I+rr6zFlypT4yxuXLl0q7ygSBEEQhL2MoUOHIhAIYODAgcjOzm7y3sRdu3YZ9jTTaQKtkynP4XBg5syZmDlzZkbrFgRBEIQ9iuVofaD0Xnan6Pzzz8fWrVsxd+5cFBcX75lA6/r6eliWhezsbADAd999h5deegmlpaXaO4Kqq6tNRXQKrC4RWFkRRGktFumrVB2sdIlmqUDtKEnRWDVR10NX+oTp5lXuFrWPY9KIeLpyf3WAWWgU7kUWHD2y4+kYKb38OaRASVCfZX+nvvOr8QNdVX0ReqU99yPQg2wYuqude+YpZUyOV0lEdtRSQQBCYVV3fQ2pwbJVJXldVLn5fqXUMinOurhU3awG6+1N+CuBDsHGOhWM7yQpiYv2Z6VQkVvN5zqS4IUtVqJxOQmKMYMXQD4dgLCTbGRIHZdFijquj9V0UVIHFXjooAKIkFqOVXFsK8J5aqjcCCmNCn31tttZ4aSplwB09at9euWqfbbXKGVglC7UrNryktqtLqwOXh7Nr66kyNpVr84FwPyiOr+HLUpUfTmF6hhXk9VMjk+Nf49sZdnBashuPvLLQVOLmUZ6+iptt1eEVdu/rVOSp0Ivz+2Y7fZEW5fNlQXxdCBEFj27lfrPEVLHwvLQnC9Q55ubxp9tePj/HbZ4AQBPFtnvkGVLpFYdP22PAF37SJXGh85dr77E7AWTDflYfUbXS1+l+sERVuntP1M2K6Ee9qpYB1vHUJssamus3myrk0kyERO0t8UUrVy5EqtWrcIRRxyRsTJTjikaP348nnjiCQBARUUFhg8fjnvvvRfjx4+PP+ISBEEQBEFoSw4++OB4XHGmSHlR9OGHH+L4448HADz//PPxlyM+8cQTeOCBBzLaOEEQBEEQoF7e2NrPXsSdd96J6667Dm+99RZ27tyJqqoq7ZMOKT8+q6uriwcuL126FBMmTIDT6cRPf/rTjEaAC4IgCILQgHifNeXUU08FAPzsZz/Ttje+tDkaNcQtNEPKi6IDDjgAL7/8Ms466yy88cYbuPbaawE0vCQxPz+/hb0FQRAEQUiLvexOTyNutztu2TV06FD86U9/Smq/5cuXZ74tqe5w22234YILLsC1116LE088ESNGNAQGL126FEcddVTGGygIgiAIwt5LQUEB1q1bl/J+I0eOzHhbUl4U/eIXv8Bxxx2H7du3axHfP/vZz3DWWWdltHF7kh7dK+HOCWjbYnTrMZSl1DpVpFAI9VbqBs3fKeG2JatTdvQjmxEqq6Cr8lOqJW+wkwZ8FU9/tp+yMNn5Xs94OlivVCeuOj10LErVBbqp+mLk8QQPSTm8lKb2ZWcpVc6ALjvj6f1IJbYzV1cE1ZGy6cPvyaali3r+y75OXUnxVB9V0hP25NoRUVI+9iXr4tYD8Fi9w35UeW5SM3nVmLtIJxMg77LKiPJKY0+zPj41BjlOMmkCUO1U+7CCjNPsL8WKMz/J//Icak5mG/Ikwv1mr7WdIeWZFXWpuotISVVPvmmsXGOVHo95ovrMTYZR+W7V9oPyfqD2qbJMijpuRxV51XlJIehNrNsZs033yFL942PPsO9dFqn0TOPMfnYAEKP5WU1j7neo9g7N3RRPV0bVeVIdo2NEMtWdIZWHx+C7ikKt7qod6rhmFahzwBFRbcreQp5vqihY5WrfQLY6LtG+asx6F1bE016XPuashKsK2asY+VjUUJ6agL3dUiii2hoJkeo3qJufBetImUlK3N1R8qOsVvOI/Rp7dFfXrCwv9SGgjgXP7Ryv2jdSG8T3ti3PLPL4rH1I643WPXv2RF5eHpYtWxaP/B42bBgOPvjgjDZOEARBEATssUDrd955B6effjpKSkrgcDjw8ssvN8mzaNEiDBgwAH6/H0OGDMG7776bUh1VVVUYMmQIjjvuOLz99tupNzKDpHynaOfOnTjnnHOwfPlyOBwOfPnllxg4cCAuv/xyFBQU4N57722LdgqCIAiC0M7U1tbiiCOOwK9+9SucffbZTX5/5plnMG3aNCxatAjHHnssHn30UYwdOxYbNmxA3759AQBDhgxBMNj0ruzSpUtRUlKCb7/9FiUlJfj0008xbtw4fPLJJ3ssRjnlRdG1114Lj8eDzZs345BDDolvP/fcc3HttdfKokgQBEEQMo4D2hsk0y4DTeTqPp8PPp/948uxY8di7NixxhLvu+8+XHbZZbj88ssBAAsWLMAbb7yBhx9+GPPmzQMArF27ttlWlZSUAAAGDx6M0tJSfPHFFxg6dGhyXcowKT8+W7p0Ke666y707t1b2z5o0CCR5AuCIAhCW5DBx2d9+vRBly5d4p/GxUuqhEIhrF27VnOzAIAxY8Zg5cqVSZWxe/fu+F2k77//Hhs2bMDAgQPTak8mSPlOUW1tbdzig9mxY4dxpSkIgiAIQsdgy5Yt2uOpdP/v3rFjB6LRKIqLi7XtxcXFKCsrS6qMzz77DFdddRWcTiccDgfuv/9+dO3aNal9jzrqKFu/M4fDAb/fjwMOOACTJk3C6NGjkyoPSGNRdMIJJ+CJJ57A73//+3jlsVgM8+fPT6nijs7Q7pvhy/Wgm0epkerIeGcHKXe+y1HqD1ZZ5JNHkzvBIygQUUMf6qqrKBrJ9SiFQ6yLOvDD8pRq5esq5ZPEfj8ev1K5ePbXn+XWkw+Ri1RmBaS2Y7Ucqy565CgVSpFfjQ0ri4LkhXVgjlIZAcDHVeoOY//uSq3FKrMePuVBFaZOsRcZK7W2BQri6d7kiVaXYJQUiCnlSS+vUpsUZav6dkWVVxsrw1jplefTlUaNRJu58eoj1ZLTUmPuschfipRJrHZzUXQk96mJv5oBVkIx3bzqWLKCLJuUVz6fvdqKy2TvuebGwO9QZXFfvaRQ435HDe1mOH/i8S6gdvHx43mQR95zLtiPZ8BS5XId7NPG/QGA6piSdPXz7oineXxYocht5X27utQ51tOrlFBbg+qaUxfRncHrA6qNXbLpvMxX+WoPUOeoN0+NjdOlxsDaqs6FEKUDeapNfI0CdD+9knx1jhV4VP/4vGJFI/vv1dMxYgUjw0pFQL8m8LFhdSNf11hV2N3L1xxSFkfUmHM5fE6GPGG8Z9vCDJOJN1L/d//8/PyMxuwkLkwaX56YDMcccww++eSTtOo99dRT8fDDD+Owww7D0UcfDcuysGbNGnz88ceYNGkSNmzYgJNOOgkvvvgixo8fn1SZKS+K5s+fj1GjRmHNmjUIhUK48cYbsX79euzatQvvvdcuU0MQBEEQ9i0sR+td7jMsyS8qKoLL5WpyV6i8vLzJ3aO2YMeOHbjuuuvwu9/9Tts+e/ZsfPfdd1i6dCluv/12/P73v096UZRyTFFpaSk+/vhjDBs2DCeffDJqa2sxYcIEfPTRR9h///1TLU4QBEEQhE6I1+vFkCFDsGzZMm37smXLcMwxx7R5/c8++yzOP//8JtvPO+88PPvsswCA888/Hxs3bky6zJTvFAEN7ym644470tlVEARBEIQUsayGT2vLABreK+hyuTB16lRMnTq12X1qamrw1VfqhcGbNm3CunXr0LVrV/Tt2xfTp0/HxRdfjKFDh2LEiBFYvHgxNm/ejMmTJ7eusUng9/uxcuVKHHDAAdr2lStXwu9vePQZi8VSiplKa1H07rvv4tFHH8U333yD5557Dvvttx/+8pe/YMCAATjuuOPSKVIQBEEQBBMZjClavXp10jFFa9as0eKFp0+fDgCYOHEilixZgnPPPRc7d+7EHXfcge3bt2Pw4MF47bXX0K9fv1Y2tmV+/etfY/LkyVi7di2GDRsGh8OBDz74AH/605/w29/+FgDwxhtvpGRB5rCs1NaeL7zwAi6++GJceOGF+Mtf/hKXzy1atAivvPIKXnvttdR61cGoqqpCly5dcN17p8GX69GDTilY1hSEy4GYlRGl0ku0+SjyqCBXtgHYHuwST7O1QUWQrA3o1fqhqGrH+u9K4umsXBXEWV+tygcAl08FhQ4sVkGgHDS5f67azoHTOWSLEKExKHSr4EvT2ADArogK2ORASbai0KwvaNw46J0DVrfWF8TTeR4VWNqDgicB4PCszVSH6tPOqAqa3xxUgetdqU/ZFBTLVg+7ImpftnrgoGJADwLlAGIOFGa6utT84EDkCrKD4H2DFJjqa8byg4N7ORiVx5wDuH3UD7b24HISg4xNcCCzh/rEY8Vjw+1g6wsOfI7S/OBjCuhziuvmucNjy2VxHTzmiedxI3kJNh9Oqs8USM55eGz5esAB2NwfDnTfEtaVOjvIGoTbxWM+PPvrePrF3UPi6bU7+8TTURKNbP+yezzd8wB1bXA49P8+2EaiOEedfwVeFdA+IFvtz9cHPsfqYj5Kq2PR3NxmeHx4bucaxiPxfG2EhRd8Pdfsb2rCePSEF1BZWdkmLxxs/D+p9wN3wJnlb3mHZojVB/D9Nbe1WVv3BH/961/x0EMPxR+RHXTQQfj1r3+NCy64AABQX18fV6MlQ8p3imbPno1HHnkEl1xyCZ5++un49mOOOUYeqQmCIAiC0G5ceOGFuPDCC5tsb1TAZWVl2exlJuVA640bN+KEE05osj0/Px8VFRWpFicIgiAIQgs4rMx89iZML52MRqPxO0WpkvKiqFevXlrQVSMrVqzYo2+hFARBEIS9lgy+0XrYsGEoLS3FwoUL27ULmWbBggVYvHixti0ajeK8887DunXr0ioz5cdnV111FX7zm9/gz3/+MxwOB7Zt24ZVq1bh+uuvx2233ZZWIwRBEARBaB9SCbTuyLz22ms46aSTUFBQgHPOOQfhcBjnnnsuPv/8cyxfvjytMlNeFN14442orKzE6NGjEQgEcMIJJ8Dn8+H666/H1VdfnVYjBEEQBEFohg748sY9zZAhQ/DSSy9h/Pjx8Pl8+N///V98/fXXWL58edovj0xpURSNRrFixQpcd911uOWWW7BhwwbEYjGUlpYiNze35QI6EbvC2fCGvZpKrMSjLCQK6PX7W8JKscQKBVYvJaomWO3AiohDsrbF05/VKzXZ/9sxOJ6u2KIUap5ual+Xl1RpQVK5ePTX5P980IZ4ml9vn+0ihRW1j9VWJqWdyfLAn9DvA3xKQfNdSClaomAVkVKL1ETsFQOsHBna5dt4mtU6ibB9wvchpdhhxdMBfmVLwsqrXaRQ2xRQ7Q6SmojVMx6nrsjKMajXuG5N5URPtp3Ujj5eZY3CsHVFbUx/Jwf3m8eN1U885pzHZQhC4DrCVjaldcsabpfJboHHg/OzAonnR11UbY9Z9vMGAOqjpFIzuIuztQTD9hN1EZrn1IcQ7etOsFxhuwufS80FtlNhJSfb5GiWJDS/8pwqD/e1u1tXWR6T/WU8vS6gZNFeOi95PCrC6vgVZ6vrHY9tTR815qw4212j+2AG68mehqyN2IqkrF6p43jcuvrUucsWHFr5MfN/WTyeDKtc2W4kl653NTSn+Fj8SHZO1XQt4naHwrrCts3IoCR/b2LUqFH4y1/+grPPPhuHHHII3n77bRQVFaVdXkqLIpfLhVNOOQWfffYZunbtiqFDh6ZdsSAIgiAIQipMmDDBdnv37t1RUFCAK6+8Mr7txRdfTLn8lB+fHXbYYfjmm28wYMCAlCsTBEEQBCEN5E4RAKBLly6220855ZSMlJ/yomjOnDm4/vrr8fvf/x5DhgxBTk6O9vveELwlCIIgCB2KDC6KUrH56Gg89thjbVp+youiU089FQBwxhlnwOFQz5wbX5QUjUZNuwqCIAiCsIfZW9RnbUHKi6J0ZW6CIAiCIKSJqM8AAD/5yU/wr3/9C4WFhUnlP+644/DMM89gv/32Syp/youikSNHprpLp2RXKBeeoBc7yG+rq1spM/yk5GC1CPs1sYqH04CuHmHPpjqHUrqw8qFXXlU8XZGltkeCqhx/jmpHXpZSVnTLVn0AgHy38iEq9lTG05ovE6tsqH0BUpGwhxR7b1VGlNopURHE6hGT4onzlPhU+zRPLoMHEnuRra8t0X7rRWWx4ua4/C/i6Z5ulefD+v62dewmhSErVZhE1V0FeyiF1P5dSC3X3/tjPM2qNPb9+jGi/rrT55eaj4mKMVYdscKNKQ+pcvm48DxgHy324fquvpttfkBX/lSE1LxgNRJ769WG1PwPR1Q72IcrElXpGKWdLl0B5nXb37WOxkjJRr6ATrfa3+EkpVyE3nFL3XO41Be3V68r26/Oxcrdaswt6gerRX2UP8dHaa9KH1yglJGsztrfX67VzfOF5xQrSpdWHRZP87EckKPUjV/XKAVPdaU6dtU/kNLYrR9vZ7U6Zj/6yBcwW12PWNVWV6+ON48546bjGqNj50zIzy6eXXPVefVjlWpHlI5lDrWJ66gn5S49DIHfq8avR476vyAStFe9ZZpMvJF6b3ij9bp16/Cf//wHXbt2bTnzf/MHUzhGKS+KPv74Y9vtjYZrffv2hc/ns80jCIIgCEIaSKB1nJ/97GdI1suew3ySIeVF0ZFHHtlsJR6PB+eeey4effTRpF1pM82iRYswf/58bN++HYceeigWLFiA448/fo+0RRAEQRCEzLBp06aU9+ndu3fSeVNeFL300ku46aabcMMNN+Doo4+GZVlYvXo17r33Xtx+++2IRCK4+eabceutt+Kee+5JtfhW88wzz2DatGlYtGgRjj32WDz66KMYO3YsNmzYgL59+7Z7ewRBEARByAz9+vVrOVMrSEuSf//992vvBDj88MPRu3dv/O53v8MHH3yAnJwcXHfddXtkUXTffffhsssuw+WXXw6gwTDujTfewMMPP2x01BUEQRCEjowDGYgp+u+/nVmS39akvCj65JNPbFdq/fr1wyeffAKg4RHb9u3bW9+6FAmFQli7di1uvvlmbfuYMWOwcuVK232CwaAWhFVVVWWbTxAEQRD2BkSSbyblRdHBBx+MO++8E4sXL4bX26AcCIfDuPPOO3HwwQcDALZu3Zq2GVtr2LFjB6LRaJO6i4uLUVZWZrvPvHnzMGvWrCbbA1E3olE3vg8o2V8uKY1YHRQjHyFWE7ESitVBANDHuyueLgurN3SyvxErTHLdSoUy4qCv4+nyelVHvlct7gKk6GFPIQDIdqmytocL4uk68orqQgo17lMlqZd2R5SiqipsHz9WH/Vo31mdxD5EteQ9FCV1isnriBV/20OqD6yQYrUZoPsbZdEYsPpmXUA9YmWF28E+5UkXIDXeNpof8FIyQW3I++dR238kVRqr3dhDb4BPKYjyXOq4uGCvdEysm33XfFHVJz6Wui8ZzW36y1RTTNJcYU+oQMLxZpVZdUiNfzCsxjAUVeUGQip/JEzKRZoT0bBqnxW09y4DgKCH1GgGZZPHr85LjtvUVGLkHej1qvyFOepY7KzWX2IbJVVcVq4a/1xSmXG/ue5cn8pfHyY1atDeM+zQ7K1a3awWHZdtr458v06de+zRuIvOaVaJcR/qSc2FqD6uMY/6zmMQCKk28RhYlGYFWJZHzVOLjz0dl9ognXDQrxvbd9Jbj2m7g/zYauvUfPTQMWZvN1acsb9jfZjnqa56bDNEkt8upLwoWrhwIc444wz07t0bhx9+OBwOBz7++GNEo1G88sorAIBvvvkGU6ZMyXhjkyUxELzxxZJ2zJgxA9OnT49/r6qqQp8+fdq0fYIgCIKQEqI+axdSXhQdc8wx+Pbbb/Hkk0/iiy++gGVZ+MUvfoELLrgAeXkNf8lcfPHFGW9oMhQVFcHlcjW5K1ReXm68c+Xz+eQVAoIgCILQSQmFQigvL0cspt+1S0dclfKiCAByc3MxefLkdHZtU7xeL4YMGYJly5bhrLPOim9ftmwZxo8fvwdbJgiCIAitQO4UNeHLL7/EpZde2iRmuDW2Y2ktiv7yl7/g0UcfxTfffINVq1ahX79++MMf/oCBAwfu8cXH9OnTcfHFF2Po0KEYMWIEFi9ejM2bN3fIRZwgCIIgJIO80bopkyZNgtvtxiuvvIJevXql/KJGO1JeFD388MO47bbbMG3aNMyePTu+EissLMSCBQv2+KLo3HPPxc6dO3HHHXdg+/btGDx4MF577bU2f7eBIAiCIAjtx7p167B27dq4yCsTpLwoevDBB/HHP/4RZ555Ju6888749qFDh+L666/PWMNaw5QpU1od6L29Jh+umA9el7r9VkMqG/b6qomq7T08StLPHlkmFRUA1MVajmmqiSilRUVA+RAVZSnlSK7b3t8lh5RWALA1WGCbL9el9mclWi4puorc1fE0K/BY+cGqlQHZSjmVCPvH7QgrRUtdTNXtc6o8rPLjPBFSRbEqjdsN6Mo0Vpb9QOq/HWGl8CnyqL6yZxgrw1i5xh52P0ZUOQDgd6h2dad29HQpD6Uj/JvjafZ5e79uf+qDUjyx9xz7WiXeImfvs55epcgrj6o2shqyKmqvJGRPNVaiHZilYvh4TgD6MQvQOcM+e3WkCkz0yrPD5J8XS1DWmLz1WGnHc95UB6sWWU2ZS+dVTYGuhKoKq3OU1Z5up2pHHfnCdfOpecB+elvrC+LpQTnK42xzQPk+Jc41nqthS+1THVNteuvHA+PpIwqUem1XWKnPttcoybbXo+ZQPfudJT6dyCL/OBpnD/nQFWYp5VuBV/U1m65fPDZ5HpUnj8amgsYY0K8VzM6guraEYqR0JIVuhFRtVQE1//nGQ2Wd/fZouJ1uv2Tw8dne8p6i0tJS7NixI6Nlprwo2rRpE4466qgm230+H2pra232EARBEAShVWRwUbS3vKforrvuwo033oi5c+fisMMOg8ejvxIknT6mvCgaMGAA1q1b1+Rx1Ouvv47S0tKUGyAIgiAIQvNITFFTTjrpJAANBrFMuwZa33DDDZg6dSoCgQAsy8IHH3yA//u//8O8efPwpz/9KeUGCIIgCIIgpMry5cszXmbKi6Jf/epXiEQiuPHGG1FXV4cLLrgA++23H+6//36cd955GW+gIAiCIOzzyButmzBy5MiMl5mWJP+KK67AFVdcgR07diAWi6FHjx6ZbtceZ3d5HpxZfuwsU88kNxSqF0AO7LYznu6Tszue9jlU8N8OCvBLJEiBptsDqg629uDXyg8tVEG4a3arF1L9UKuCLDmIkG0AOBgYAFxULlttdHGrNAcsc1B5ACpd7FFBuxzEXBlVY8BBtABQRcHqbCcRpYBcDpg0Bbzyvhy8+k19d5jgfAwHEBeS5cEnNb3j6aV16tGwZlXiVYHP5WTD4E2oi4+BFjxO/RjX9T+qXEedbR7NmoOOIwcx5ycEmHNAdlVMjb8pqJltQTjN9hFeh31QqyfRYoQCzPkY1xrEBRyAHaN2h6itbGPCAf4VUd1qg4O8o4YxrKagcg5urwi3LJLYEVL11YT1/vC5WBWy72u2O2y7/bs6FUS9/see8XR5vrqe/Fir0u9H9FCG3gUV8fTD20+Ip48b8E08netRx+WNLUq585Pi7+PpPJ+aR/UhNbfzS5SYJNur9yEaI2sQ+q07CULyPeqc4bnNwemBCAVBU54wjWtZvR5gzuclW6iUV6t8bC8Ti5I4JELWMTvV8XIG7RcRPxTSdaze3kol48h7imypqKjA//7v/+Kzzz6Dw+FAaWkpLr30UnTp0qXlnW1wtpzFTFFR0V65IBIEQRAEoWOzZs0a7L///vjDH/6AXbt2YceOHbjvvvuw//7748MPP0yrzKTuFB111FFJvxQp3YYIgiAIgmCPBFo35dprr8UZZ5yBP/7xj3C7G5YzkUgEl19+OaZNm4Z33nkn5TKTWhSdeeaZ8XQgEMCiRYtQWlqKESNGAAD+/e9/Y/369XvUBFYQBEEQ9lrk8VkT1qxZoy2IAMDtduPGG2/E0KFD0yozqUXR7bffHk9ffvnluOaaa/D73/++SZ4tW7ak1QhBEARBEIRUyM/Px+bNm5u80XrLli1xg/pUSTmm6LnnnsMll1zSZPtFF12EF154Ia1GCIIgCILQDJZ6hJbuh99oXVpaioULF+7RLrWWc889F5dddhmeeeYZbNmyBd9//z2efvppXH755Tj//PPTKjNl9VlWVhZWrFiBQYMGadtXrFgBv9/eHqAz4t7hgdPvgVcJLRD1KWXMp/sppcQ3hd3i6ZICpcjK9yrlDr9GHtBfXV/kVa/4Z/UZq15YGbNfNlk11Nor3NxOlT+WYL3gpjpYLcT52LqEVUNBsjlghRqrn8pJqRKJ6Qqn6oi9EqfQW0d5VN3ZXlWHSbnGai5WmCXWXUYqP1Ym8bEppjnMSpe6iOofj21FSM0DtoTZL0sdo4aySGVD/fiyUqnlttcfH08fkKfsUdhago8X25iwkoztRgDdEoWVaHlOtb+fbE9cUP3bSXYvHgdbrtgrwxLnWgXtwyo/Vo25DIEOXC7Pr7BD9Y/7FkroN9t+sJXLjyF1zvzAc4Ly8/FmJeHWalVOfZCUclG9306XGsNIWPUjWq/a6HCrPJ+6S1SeoMrv2qnq+DpcqMrMVft6K/W6P+utlHP+b9T4BPqqshb2ezmePq/+gnh6+Qb1F/eQQd+pclzqOFaT0s6Z8DymCynWeB+vwYJjR0Ap+CpD6ryoC6l2J9q3NBIM6cc7RMeDx5ADaRwuau8uVYcjoupwB1SapyY3w7ed6gqk/oLAtJA3WjfhnnvugcPhwCWXXIJIpGGOeTwe/M///I9mQ5YKKS+Kpk2bhv/5n//B2rVr8dOf/hRAQ0zRn//8Z9x2221pNUIQBEEQBCEVvF4v7r//fsybNw9ff/01LMvCAQccgOzs7JZ3NpDyoujmm2/GwIEDcf/99+Opp54CABxyyCFYsmQJzjnnnLQbIgiCIAiCAQm0NpKdnY3DDjssI2Wl9fLGc845RxZAgiAIgtBOiCS/gQkTJmDJkiXIz8/HhAkTms374osvplx+WosiQRAEQRCE9qZLly7x9ybm5+cn/Q7FZElqUdS1a1d88cUXKCoqSqrQvn374t1330W/fv1aziwIgiAIgpAEjz32WDy9ZMmSjJef1KKooqICr7/+etJeIjt37kQ02k4R+W2EpxpwhQC2eHKy+mAb+YH5VF97llTH0738Srq2qVYp1ABdUbGfvyKe3h5SY8zeabkupWTr6lE+QiW5JI8zlL8zpHtChUkh1IPkdTvCqr6aqL1KjNVPdU6l3qgnldL2etUH9iACdE8obiMrfGpIobYzmGObh8upCCrVit9tr3IBgB21qixWlvE+Jp8qhtVnrDjr7lPHfmOVbn9TE1bjMyh/RzzdL0/55n2wWf0RUVajFHxFOep4s1qqm09tZwVjolcXq/PY305TrEXsFWScp8it+scqNlarORPuz/MxZl8z9sRj5Rsr6thzz0d5uEz2MUukjubk9wGl3CoPqHleTcfbQ/OriuZUlJSDlbtVfVatap/l0f0FHfU0751qTFy1pBSjJKufvDSFWfFElwC4A2pnb4VWNSI51C6qY/UHB8bTt3rGxNMzBr4WT/+nl5qDL245Mp4uzFLzptCnvMt2BvTxZ8VZFanUst2qIdlQitKKoFJvuui8CpCyjG8EBAKk+IvoqjuLvMxA4++ksWIbSM2mjwbactMcpuPC+7KYzmqv/+okpqgJJ554Il588UUUFBRo26uqqnDmmWfizTffTLnMpB+fTZw4MeXCBUEQBEFoPRJT1JS33noLoVCoyfZAIIB33303rTKTWhTFYrGWMwmCIAiCILQxH3/8cTy9YcMGlJWVxb9Ho1H84x//wH777ZdW2RJoLQiCIAidgb3sTk+6HHnkkXA4HHA4HDjxxBOb/J6VlYUHH3wwrbJlUSQIgiAIHR2JKYqzadMmWJaFgQMH4oMPPkD37soZwOv1okePHnC5XM2UYEYWRYIgCIIgdBoale1tEdojiyIDlqPh46IYLrL60pQIoQqlcvlil1qxbvEWxNNdvEpVA+gKH1acse8X+3ix4obVRANzlZKpLECqL1JXuR3mibMzrFROFWGlBKkkTy9uByvACjxKkfJNjVLXsYdRKJLgT0RqNFYqVQSyYAcrfyz6K4cVKbw9RvlZUQUAEVKrWKwoIoVJVq6S+ORnqXQXv1Lc8Bjw2G6tK4indyWocsor1DiXV5M3HHlmRcMqvbNCKaTYB8pNardQPnlq0fyoCesehOzztn/Oj7Td3g/6u9quttt5HvjJP4+9y3JYIpVA2LJXHrJyMd+tzhOeX/Xkcaa1iSREPH8b6iB/NoPqkecgp3nu1NSo8bTIuwykOnKG9LnmiJFqKWzvpeUIkuKJd2e/Ld5Oc57FoZGEU6fgM1LnDVKFeXep7aufOCKe/mK8umb9fv+/qYL6qOS/fjwonmb15X45uvrVSedDV586fpqnY7Tl/3Y8bvIwpGtGjM6RWFAfcycr/viOCF8raMqzyswRNuWnPFF7JZplfxplnEwGWg8bNgwulwtTp07F1KlTW9+4PcyGDRuwefPmJkHXZ5xxRsplyaJIEARBEDo6YgjbhG+++QZnnXUWPvnkEzgcDlj//Qu58YWO6bwaKK017tdff41bb70V559/PsrLywEA//jHP7B+/fp0ihMEQRAEQUiJ3/zmNxgwYAB++OEHZGdnY/369XjnnXcwdOhQvPXWW2mVmfKi6O2338Zhhx2G999/Hy+++CJqahpeGvfxxx/j9ttvT6sRgiAIgiCYaXx81trP3sSqVatwxx13oHv37nA6nXA6nTjuuOMwb948XHPNNWmVmfKi6Oabb8bs2bOxbNkyeL3qOf/o0aOxatWqtBohCIIgCEIzWBn67EVEo1Hk5jbEXxYVFWHbtm0AGgKxN27cmFaZKccUffLJJ3jqqaeabO/evTt27tyZViM6IjE34PAAHN9JTgPwKFcF9FitAvB+7KKCaB0UpFdfSDskkOtRwal5bpU+LO/7eLo8pJ7/flVL8kND8OuBuT/E08WeSq2+jXW94untZBvBAagcmMoBqFVh9Zr9snrV1111KrA4SMHVwbA+xSJhVa5Fwahenwoej1LwsZsCLsO0b4zyxAJUR53K46nS1/zkQIBwPgVQ9lDBvYU5KqC6lgKcw3XKIiTPq47R92QT4aQrDgdKA9AuRhGXaldJgTo22hiG1DgHg6p/UbJL+L5KBdYHKHi1R5Y+17bWUj46NhyAzfYMHAzP5XLQe4SiS7Pcat5xOYAelGuyUCnwBWy3sx0NB01Xkw0Mz/lILCHwluYt759N7U20JWmke64aQ4vOizo6p6McdF2TcCnlgGpD4DQLN6JZZAVCAdgc9EtuKvAoxxWECvSqKT4dhRtUupqsKGv6UYD5CyXx9BU/uzievuig1fH0gFx1bd9J9kORhCjjOrL24H2qKfif9+nqV42ti6g5z9Y2O+ncc7jovHXrx87y0HdDKAkHS7OFCnhf+oFtnmKGPO32bmOR5Ddh8ODB+PjjjzFw4EAMHz4cd999N7xeLxYvXoyBAwemVWbKd4oKCgqwffv2Jts/+uijtN8gKQiCIAiCkAq33nprXJY/e/ZsfPfddzj++OPx2muv4f7770+rzJTvFF1wwQW46aab8Nxzz8HhcCAWi+G9997D9ddfj0suuSStRgiCIAiCYEa8z5pyyimnxNMDBw7Ehg0bsGvXLhQWFsYVaKmS8p2iOXPmoG/fvthvv/1QU1OD0tJSnHDCCTjmmGNw6623ptWIlvj2229x2WWXYcCAAcjKysL++++P22+/vck7CTZv3ozTTz8dOTk5KCoqwjXXXGNrFicIgiAInQqJKWrCpZdeiurqam1b165dUVdXh0svvTStMlNeFHk8Hvz1r3/FF198gWeffRZPPvkkPv/8c/zlL39J+7XaLfH5558jFovh0Ucfxfr16/GHP/wBjzzyCH7729/G80SjUYwbNw61tbVYsWIFnn76abzwwgu47rrr2qRNgiAIgiDsOR5//HHU19c32V5fX48nnngirTLTfnnj/vvvj/333z/d3VPi1FNPxamnnhr/PnDgQGzcuBEPP/ww7rnnHgDA0qVLsWHDBmzZsgUlJQ2Bg/feey8mTZqEOXPm7BUvqhIEQRD2USTQOk5VVRUsy4JlWaiurobfrwL5o9EoXnvtNfTo0SOtspNaFE2fPj3pAu+77760GpIqlZWV6NpV2RGsWrUKgwcPji+IgIbnjcFgEGvXrsXo0aNtywkGgwgGlZqoqqrhtfWWs+HDr9MnRwFtu69SyQ/c36uDE+uvVrBV9br1QpQUGPsXKJUGK252kAVH1HBTjxVjVaTwODBHKWwqo7rlxK6w+l5WR3WQuoiVSfWkhIpqiiDKE1R5wqSWSnwVP0i948lS0o5wSO3jIsUZK38idaoOVn84q0lxVqna59CFUNp9UXctPW/epHwSWELA6kGXSx3jymqVv2u+Us9U15MSzaVLUiIV6rcA9WPTj3Rs/PaSGYsUMzEaM76+fVtTFE//mKMr32pr1bzIzlZzvRspfNiuhI89zwkHBSSwbUNd2GubBgAXqc94HrlobFkBlkvqy0qy7aiLqHJ53gWiqkxWzSX2I99jth+xgxVq+VlKHef30HnlVu0LJZyeFltOOOhHtocw3Fgn1xPNZiJCh9VVT8pB5dwCAKhXUwExt8pXuFFVvnMwKTzrVR0F/08pvd4rUuqdo7t+F0/XkvovFNP/C2H1Ieeri9rbtBzaRZ1xH+3uHU/vrlfnBatR+bxy+PX/4WNumsOkDHQE7NV8pvgazdrDMsSlUB4t3YZITJGioKAADocDDocDBx54YJPfHQ4HZs2alVbZSS2KPvroI+372rVrEY1GcdBBDX44X3zxBVwuF4YMGZJWI1Ll66+/xoMPPoh77703vq2srAzFxcVavsLCQni9XpSVlRnLmjdvXtqDJwiCIAhC+7J8+XJYloUTTzwRL7zwgnaDxOv1ol+/ftoNklRIalG0fPnyePq+++5DXl4eHn/8cRQWFgIAdu/ejV/96lc4/vjjU6p85syZLS5IVq9ejaFDh8a/b9u2Daeeeip++ctf4vLLL9fy2kWbW5bVbBT6jBkztDthVVVV6NOnjzG/IAiCILQ78vgszsiRIwEAmzZtQt++fdNWmtmRckzRvffei6VLl8YXREDDHZnZs2djzJgxKQU2X3311TjvvPOazdO/f/94etu2bRg9ejRGjBiBxYsXa/l69uyJ999/X9u2e/duhMPhJneQGJ/PB5/P/qVygiAIgtARkMdnDXz88ccYPHgwnE4nKisr8cknnxjzHn744SmXn/KiqKqqCj/88AMOPfRQbXt5eXkTaVxLFBUVoaioqOWMALZu3YrRo0djyJAheOyxx+B06g/xR4wYgTlz5mD79u3o1avhjc1Lly6Fz+drt8d6giAIgiC0HUceeSTKysrQo0cPHHnkkXA4HLCspqs9h8OBaNTwavNmSHlRdNZZZ+FXv/oV7r33Xvz0pz8FAPz73//GDTfcgAkTJqTcgGTYtm0bRo0ahb59++Kee+7Bjz+qyMKePXsCAMaMGYPS0lJcfPHFmD9/Pnbt2oXrr78eV1xxhSjPBEEQhM6NPD4D0PDIrHv37vF0pkl5UfTII4/g+uuvx0UXXYRwuEGJ4Xa7cdlll2H+/PkZbyDQcMfnq6++wldffYXevXtrvzWuEF0uF1599VVMmTIFxx57LLKysnDBBRfEJfvpYrnt00xtsZKR9Py3Ul9s7m4e3kry8Qrlq/S31SpgrKze4EtGKpt6UvtEyUtsWfDgeJoVQACQ6wnRPvZ+ViHyyKojD7AQqcRYnRWNkJrFo1bnkYSTkL2LbBb3DfuEVP9cHmo7+Zq5AqSKChv8jBKGn9WDrEzz71DpimK1kzuXfLWoTbFKNR4/VKlHr45mPJCc1F5n0NDeapUn2kU1VrO/orqDftUmB41TbZ3+ONiidtXWqN88bvu/otjbLYvUVjwHWa3mJu+yWIJah+dqvl/l87pU3T38ymcs0UurEVaoaV58Bj+1xLaw+izfo9rhdpCqDfZxCezPtbVa+cjxeZWdr78rJZyl5lGEFJisxozROYMI+W3RYdF80Og4hrqqL86wPmZdvqHxGcD7k/+bskYE2Sdi56GkKK1Uff3Gr+7oh8gPrySrQqu7gpStHiq42F+lmkHHZXugi+32HJqDEVZAkkdcgBSvgK6OdNJ1JpZFakoafweNmyPE409jRkPb3PndLsiiCECD2atdOlOkvCjKzs7GokWLMH/+fHz99dewLAsHHHAAcnJyWt45TSZNmoRJkya1mK9v37545ZVX2qwdgiAIgrAncACGZXtqZQDAsGHD4HK5MHXqVEydOrWVpe5ZNm7ciAcffBCfffYZHA4HDj74YPz617+Oq+NTJe2XN+bk5KQVxCQIgiAIwp5j9erVe0VYyfPPP4/zzz8fQ4cOxYgRIwA0hPMMHjwYTz31FH75y1+mXGbKi6LRo0c3K3978803U26EIAiCIAjNII/PmnDjjTdixowZuOOOO7Ttt99+O2666ab2WRQdeeSR2vdwOIx169bh008/xcSJE1NugCAIgiAIzSOS/KaUlZXhkksuabL9oosuSjvGOeVF0R/+8Afb7TNnzkRNTY3tb4IgCIIgCJlk1KhRePfdd3HAAQdo21esWJHyy6QbSTumKJGLLroIRx99dKvVXh0Zy6BECCn7MOSSeZZ/G/mB7a8bcTndpI4g1UVJjr1K49sqpUqrDSrFjJu8gFzUqJ21KvC9MEepZwBdvcOKG1aLdMlWCp08HynRSO1WUau8n2L0SDUaUQoPK0GNZJHKxiJPI7dfqZwsUpuEdyt1kaY4Y+EUVcF+UlGv/mcRq0qcqjqwfZPvBzpm5F/lJHWKm/oQ85A/GimFIjkJUhWq21tJSheaFmR1hyhbK+VRY3k7ez2RksmR8Oegy0ttobFiBZjPrRpSF1FjUB1UvmleypNF3mBuUmElqs/CMfNcaKSGPLK6eWtt8/jJay1CZWa7lZIysW7T/i4aH9P+2jniIp+xAjUGu4Jq/vM4AUCIFJhhr2pvJFsdJ83Xj9SNUUpHaN54dpB3XJ0qJ1CszzUHnT/eCvqBrl8uGuZAAbWDVI/Vu5SSzNtL9TvPra4NwQTvM1YP9vbujqeLPOoP5h/CKpaF/e2Yrn6l5isgdWMNXX/C2bp5HF+b+BpZX6fSLr/qhytPjRurZ6Psm0bXAD6/+f8Cg2Ay88jjsyacccYZuOmmm7B27VrtFUHPPfccZs2ahb///e9a3mTI2KJo1apVmlOtIAiCIAgZZC9b1LSWKVOmAAAWLVqERYsW2f4GpPYix5QXRYkvaLQsC9u3b8eaNWvwu9/9LtXiBEEQBEEQUiYWy/zLo1JeFOXn52vqM6fTiYMOOgh33HEHxowZk9HGCYIgCIIggdbtRcqLoiVLlrRBMwRBEARBMCIxRQCABx54AFdeeSX8fj8eeOCBZvNec801KZef8qJo4MCBWL16Nbp166Ztr6iowE9+8hN88803KTdCEARBEAShJf7whz/gwgsvhN/vN6rhgYY4onZZFH377be2AUvBYBBbt25NuQEdlUh+DLGsmKbyYFxKEAGLLHiq+qohzS5T23f10n16kK3UMOyn1KuHUp+V+Cvi6RCpPH5w5sbT7EvGSh/2tXIlmPbsDChVieY35FHKjAD5G/ldEdv8XXPVnx01rPagtNOlK4JY5eEgtRt7FTmovdxyVno5aOY6WJzFhyvhr6JoFpXrY6WYysMqM8bBqjlqK6u5ouTL5AwnlEMdiWTDlqhP7e+uJAUSqcdyCpUqp2+hUvd8Xa68qdiTDgDyswKwg1VqtaTcySFvPFac1YfVHGb1WRUprzgPAGR7VVnsIcawt9UPASXByyW/sixSj3koHW5G+uOhecT5clyq3LCTxpnOn/qo6ofToFbj7ayQAoAAeQeGqNwa8moLUp6wh+p2qbpjpNCM7qfOF6uOToCIPtfqSlS/fbvU/i6yZ4sVqnSwG80XP103dqp2fF9bEE8PyleG3KEE9ZlbG3OXbdpP0s8evup4OofGNhjl8VPpHllKxVYV0oU9XegYVHl9lFb5QmFVVpDSWdmqblA6SuMfqFHniEW+abF6XVncVsjjswbYBHaPGsKytO2NN95Aly7qP/JoNIp//etf6N+/f0YbJwiCIAgC5PFZO5H0oujMM88E0HBLKvHN1R6PB/3798e9996b0cYJgiAIgiB3iuz4xS9+gaFDh+Lmm2/Wts+fPx8ffPABnnvuuZTLTPq1U7FYDLFYDH379kV5eXn8eywWQzAYxMaNG3Haaael3ABBEARBEIRUefvttzFu3Lgm20899VS88847aZWZckxRWzzDEwRBEAShGeTxWRNqamrg9XqbbPd4PKiqqrLZo2WSWhS1tQSuI2J1CcPKciFMr+WPhFTaGeQ0WVzwW+tpAnp36EMd7qUCEmsD6qB+Udk9nuagU369vWaxQIGNEUPQaS4FzgK6LQMHVIeiKhgyQFYPtRQc2oVev882ERy0S6+xQjiiv4o/6qLxjNi3NztLBcJyaG6YAh1jUbbKoPdmUaB0ouuDPjx0cLpSYCXnoGDWCAd5cx1uw1UmoW5nvX1fo361v2ZRkk1jS3YeHEDvpD706aaCrrNpfgD63OHgYA7MN1lkdPGq4NVuFCjN+etprmR59LrZyiKk2XPYz2G2ndkVzLbNU5ylgnPZsoODowEATvsAWLam4GBszs2B3Vwut89L5ccS6uZzg883Phf53OP+VVIAcXmlugbEYiQOoGD6WE1Cv2l+Bnuyj4zazpY5sWJ1vrlorkXzVZ6yKmXNwcc+36v2BYBct/q+PaDiTneFc9ASUYPNimbxQidxV1+ifZFqOwfE85jzuRCi8Y9SsD9fy/ia6KTjGAqpfWMu/fraZsiiqAmDBw/GM888g9tuu03b/vTTT6O0tDStMpNaFLW1BE4QBEEQBCEVfve73+Hss8/G119/jRNPPBEA8K9//Qv/93//l1Y8EZDkoqitJXCCIAiCIJiRQOumnHHGGXj55Zcxd+5cPP/888jKysLhhx+Of/7znxg5cmRaZabs73vHHXegrq7p+0bq6+txxx13pNUIQRAEQRCawcrQZy9j3LhxeO+991BbW4sdO3bgzTffTHtBBKSxKJo1axZqamqabK+rq8OsWbPSboggCIIgCEIqVFRU4E9/+hN++9vfYteuXQCADz/8MO2XSaesPrMsSzOEbeQ///kPunbtmlYjBEEQBEEw47AsOKzW3epp7f4djY8//hgnnXQSunTpgm+//RaXX345unbtipdeegnfffcdnnjiiZTLTHpRVFhYCIfDAYfDgQMPPFBbGEWjUdTU1GDy5MkpN6Cj0qN7Fdw5QU19wEqqIKkPQrVK0cAKNU3Qk/Aw1+VtapUC6JYJFQElZeO5zMqWLK9SZrAqja0TWOUCAH7S2bAKyEu2G1wHWxawNYGL1Bg+sgLxZau0M6HfrFTi1+yzEor7ykq0gIvUH/WqHItexc/2HYlo1wOy6nB7VF9zslV9NS41/tGAap8jn5RhVKST2mfFEm7CFpKiJaj67ahUac0+hFRtTo8ql8dct58I224HgCgpdgI0h3NJOaSrfdTxY+UUq914TvGxT4SVSnwuMVwfz8FcUhCx6qgypI6Lm/KzTUfid87nMgRWsCqNlUy8r6l8VkgltjdGaVas8T4BUq+xyo/P6Uq6HvBYRvP0OV+5Wym9LLoesTVOpItqR7fC2nialbDIozlF84CPaeK1ha87+aRcdDvUGMZM1izUDY+DridOno9cjt5vPn58jE31RcjChtvN5wJvz6Pzha9XEW8Q7RJpK+qzJkyfPh2TJk3C3Xffjbw8pdQcO3YsLrjggrTKTHpRtGDBAliWhUsvvRSzZs3SbD68Xi/69++PESNGpNUIQRAEQRCEVFi9ejUeffTRJtv3228/lJWV2ezRMkkvihqtPQYMGIBjjjkGHo+nhT0EQRAEQcgEoj5rit/vt31J48aNG9G9e3ebPVom5UDrkSNHxhdE9fX1qKqq0j6CIAiCIGQYUZ81Yfz48bjjjjsQDjc86nU4HNi8eTNuvvlmnH322WmVmfKiqK6uDldffTV69OiB3NxcFBYWah9BEARBEDJL452i1n46Ips2bcLo0aNRWlqKww47DLW1tS3vBOCee+7Bjz/+iB49eqC+vh4jR47EAQccgLy8PMyZMyettqSsPrvhhhuwfPlyLFq0CJdccgkWLlyIrVu34tFHH8Wdd96ZViMEQRAEQdg3mTRpEmbPno3jjz8eu3btgs/na3knAPn5+VixYgXefPNNfPjhh4jFYvjJT36Ck046Ke22pLwo+n//7//hiSeewKhRo3DppZfi+OOPxwEHHIB+/frhr3/9Ky688MK0G9OR8LvDcLud8JP6g5VNYT+pD3LqYYeL/In8CX5UPlI+sOKsJqAmg4vUTF2ylJIjh7x8nIb7oYn+VwwrijT/JkvFiZkUQSblCW9n5VokQYXFSiVW1gSprEBYtYOVIFxuLathqI4oKdGiCd5qrA7jt0qwp1RtHY0/qdK8PlL2kYIrRvWxz5fLrSuWfF7Vb1euOpY1flWfzZsu/rtdjUEBec+xwqk+bO/PBQCFPvv5GYrZq8H4mPE8YLUU18HHPrHuxOPfUn2mNnE7THkSqSOlo9tp7/OWR15dWeRhtTukFFy6Z5u9z1UoQYXldbGySdVXFyUfOjp3+RwLaao2Oj99NG/IjzAS1ce4oKv6K7uO1GThAKvr7M+rKKlZ66jcCKnduK9d/frc4jnC/nGaosvgs5flVPmjNI/qYxS/SmnO3xx+rR3s+6jKCoE8zqitmi+fS7UpC3w90P3f2oy9VH22fv16eDweHH/88QCQ9Kt9IpEI/H4/1q1bhxNPPDFu89FaUn58tmvXLgwYMABAwyqt8WVJxx13HN55552MNEoQBEEQBMWeenz2zjvv4PTTT0dJSQkcDgdefvnlJnkWLVqEAQMGwO/3Y8iQIXj33XeTLv/LL79Ebm4uzjjjDPzkJz/B3Llzk9rP7XajX79+iEbtX5mRLikvigYOHIhvv/0WAFBaWopnn30WQMMdpIKCgky2TRAEQRCEDJMokAoGzXe7amtrccQRR+Chhx6y/f2ZZ57BtGnTcMstt+Cjjz7C8ccfj7Fjx2Lz5s3xPEOGDMHgwYObfLZt24ZwOIx3330XCxcuxKpVq7Bs2TIsW7YsqX7ceuutmDFjRvzmTCZIeVH0q1/9Cv/5z38AADNmzMCiRYvg8/lw7bXX4oYbbshYw0wEg0EceeSRcDgcWLdunfbb5s2bcfrppyMnJwdFRUW45pprEArZ3+4WBEEQhE5DBtVnffr0QZcuXeKfefPmGasdO3YsZs+ejQkTJtj+ft999+Gyyy7D5ZdfjkMOOQQLFixAnz598PDDD8fzrF27Fp9++mmTT0lJCXr37o1hw4ahT58+8Pl8+PnPf97k/3YTDzzwAN59912UlJTgoIMOwk9+8hPtkw4pxxRde+218fTo0aPx+eefY82aNdh///1xxBFHpNWIVLjxxhtRUlISX5g1Eo1GMW7cOHTv3h0rVqzAzp07MXHiRFiWhQcffLDN2yUIgiAIbUmm1GNbtmxBfn5+/Huygc2JhEIhrF27FjfffLO2fcyYMVi5cmVSZQwbNgw//PADdu/ejS5duuCdd97BVVddldS+48ePt7Udaw0pL4oS6du3L/r27YstW7bg0ksvxZ///OdMtMuW119/HUuXLsULL7yA119/Xftt6dKl2LBhA7Zs2YKSkhIAwL333otJkyZhzpw52gQQBEEQhH2V/Pz8jPyfuGPHDkSjURQXF2vbi4uLk36jtNvtxty5c3HCCSfAsiyMGTMGp512WlL7zpw5M9Umt9yeTBW0a9cuPP744222KPrhhx9wxRVX4OWXX0Z2dnaT31etWoXBgwfHF0QAcMoppyAYDGLt2rUYPXp0SvXl+4Lw+CxNYaX541AYfzSmFB5RUlbwqj6coJipq1f7BNgDjJRNUVKtRL32Tzr9bnt1EKvKEolpvkyqjlx3yyqKEPkLscKNPYk0VYfB7yqxblbf5HlUOxLVTI10zVb+UFxHgBRHVoLKhceTy40a1GvcPt7u8ZAXk58VbeY/47gtrHbrXlATT7MXWUW98rmqC5FiyVAH9yfRi4znLSuNNEUXjWFtWNXH84s9qDzk3VfvUmNeFyHvLAAVEaWs1BRPBj8xhse/Jmw/BqbtTaDqeJ8al/oL2TSfdcUlKSPpGhBJ8Ndy0vnOSjQeH96HVW1Oh5Pys4JOzbV8UqIleoBVk5rVla324eOU41P1FedUx9Pba9R/lEFSa4bDqj87q5UyL7HuHtlqPnf1qHPUp6nxWOml6mDFmYvGllVmYRoz9jpLhI9NDl3X8mk7q9o09WvUXsnJSjRudzjcTiEalpVg4JhmGW1A4t0ak3G8ibFjx2Ls2LFJ56+rq8MNN9yAl19+GeFwGCeddBIeeOABFBUVJV2GiZRjivYElmVh0qRJmDx5MoYOHWqbp6ysrMlqtbCwEF6vt9kVazAYlLdyC4IgCB2ajvjyxqKiIrhcrib/x5aXlzf5/ziT3H777ViyZAnGjRuH8847D8uWLcP//M//ZKTsPboomjlzJhwOR7OfNWvW4MEHH0RVVRVmzJjRbHl2K9OWVqzz5s3TAs769OnT6n4JgiAIQkdl2LBhKC0txcKFC1tVjtfrxZAhQ5qoxZYtW4ZjjjmmVWU3x4svvoj//d//xeLFi/HAAw/g1Vdfxcsvv5wReX7GHp+lw9VXX43zzjuv2Tz9+/fH7Nmz8e9//7tJMNjQoUNx4YUX4vHHH0fPnj3x/vvva7/v3r0b4XC42RXrjBkzMH369Pj3qqoqWRgJgiAIHYsMvrxx9erVSccU1dTU4Kuvvop/37RpE9atW4euXbuib9++mD59Oi6++GIMHToUI0aMwOLFi7F582ZMnjy5lY01s2XLlvjLHgHg6KOPhtvtxrZt21r9/3fSiyKTHK+RioqKlCsvKipK6hngAw88gNmzZ8e/b9u2DaeccgqeeeYZDB8+HAAwYsQIzJkzB9u3b0evXr0ANARf+3w+DBkyxFi2z+dLO/JeEARBENoDR6zh09oyUmXNmjVaTG7jTYSJEydiyZIlOPfcc7Fz507ccccd2L59OwYPHozXXnsN/fr1a11jmyEajcLr1eMX3W43IhFzLG2yJL0o6tKlS4u/X3LJJa1ukB19+/bVvufm5gIA9t9/f/Tu3RtAgwSwtLQUF198MebPn49du3bh+uuvxxVXXJFWlL3bGYPbGUO2g6wNDK+nz6MAWQ6e5IDVcELAscdlf5vPTcGNHFjpYlsLQzt4OwdEJ1qB6EGkZFdCbTe96p4DDLkOthrgIO/E4G1uY0QL+LYPcGYSg1lVfao/+V5zsDjbJ3BgMdfH/dYCrQ3tixpsLJoL+uV9eB7w8S7IUvYJPXNVICyPQSCixp+tXxKDmLlcPpZ8nHZEVfBsHc1bnnc8j0xB/QEHWTIk1M3BrDwGbHnD41ZPQcY85hy0y4HjiUH9pmPJaEIKGlu/y/7iqlmaGOZyYlu0AG4+f+jcqwmrP8y47gKvCqjmoGveN/F451EQNgdde7PVdg6I5v2DEXthhGZhQ2NeF9KPdzlybcvN9XA/VF95DN2G4Hu34X/yUDOB1gxfs7gsrk+zH3LZB3ZzgDjXHTNclzLOHrL5GDVqFKwWArSnTJmCKVOmpNmo1GmMM+YbGoFAAJMnT0ZOjrqWvfjiiymXnfSi6LHHHku58PbE5XLh1VdfxZQpU3DsscciKysLF1xwAe6555493TRBEARBEDLExIkTm2y76KKLMlL2Ho0pSpf+/fvbrlz79u2LV155ZQ+0SBAEQRDajkyoxzKtPttTtOVNmk4hyRcEQRCEfZrG9xS19oPMqc/2RjrlnSJBEARBENIjFfXZvoYsigRBEAShgyOPz9oHWRQZ8LvC8LgcCJE6hRUfrKph3JbaziqSRPWLSQ2jqb4MdWj5DXIC3p5olaFZFVB9JrUO95vJdinFk8mOo0m72OrBEaXtrPJTT3VZMea0uK2kxnMm9xSYxzPXbf9q/oimNrFX45nGyZROLJeVSSbri3y2OqGyKkJKTWSyNPH6EtRnNFbZpAZkFRD3tVt2re2+mvopZq9+iiSo8bh/Lk3F2PIY8hzm/GyZo6uX9POFvzdnN9MIq/m4H6bz2GQBAejjU0PWHiZVG6vgeJxzPS1bSIRiZtWdl5R9bJ/TK6synt4dUmqdmlo1v6K76VUlPlItdlVlJr4Xl8f5x3oql8bAZO+jak4oE/ZK2uYUnroykI4rXy8Ndh6mOlhlqdkoNWOplFH2kPpsX0NiigRBEARBECB3igRBEAShwyOPz9oHuVMkCIIgCB0dUZ+1C3KnSBAEQRD2IUR9ZkYWRYIgCILQwZHHZ+2DLIoMRGIuOGIuozqI1Qom9Uwy6rHEfUzbWQ2jqTfIh4jVWaFm/Hg05ZbWdpOPV8w2T53m/2PvH8YeWYDuK5TltPcYqo/qRn+mshoJ0TCzP1Gil5KfvrPChJVhbpAXmZv6DT4W9kom0zgl1hFz2x9XVhFpx5vqZvVSbg6p/wzjn9iumrDS+LAiiL352KPMY/Cj8sJ+eyLcXlZoJaNWNJ0/pnMhEdOYuA1+bm6Dv6DJc4/zBBJ8uDRFHu1fE7ZXoiX6lzXCc0L3rTOPv0mV1dVXF08XeJS3Xi2pEPNylUdZZdjQ7xj5oCUcIx5PVgl6Yqw0VXmqQ6ruaqg0++G5k1AtJot27A2K0pBB3RhwqGPM5YSTOxVaj6jP2gVZFAmCIAhCB0fuFLUPEmgtCIIgCIIAWRQJgiAIQscnZmXmA1GfNYc8PhMEQRCEjk4GY4pEfWZG7hQJgiAIgiBA7hQZqQl74QnrKqhk1GSsVmAPo+aUEom+SbZ5DHVr6oio/eFMVKO4Ew2L/otJZcP5NRUPtTsCe0VQTZj8kwBUkXcXK+fcBkWc1r6YvWcYq6tYcZaoAAuxl1kSHkoBg8rM5JPEHkuJnnTaMabuaWqaiH2/Teob9pnSVIgJ/TF63VEbWUUUoXnESjTteBvaYfL2SsQ0500KPJN6jOtL7LdJvWmEdteOSxJKuSZ1J7EPn28mFZyW39CH5vrN4xwihdwPwbx4uobUZzwP3OSh53Kp7R632m4lnKskTNPawepGRxLRvvV07TT5OybCbefzQfNxjNgry0xKNBPOGJ33keRUxq3FgQwEWmekJXs3sigSBEEQhI4OvZG6VWUIzSKPzwRBEARBECB3igRBEAShwyPvKWofZFEkCIIgCB0deaN1uyCPzwRBEARBECB3iozUR9wIRzyausLkd5blVp5cJl+lZBQNieUm47lkUvFwOxJVK6wUS0Z1YVLJJEOTui17lZqpHSYPMKOvVRJKPiDB54okMyb1E+dPRinXHKyMYUy+Tto8oOE3+V8ljrlJEeZ32yu3NNUQjwcfu6i9Ai+QcEkxeQea8mhKO5e9Uo7bURFUakbuD5Dgu2Y4H7gszq8plgwqxOa83FiRx2Vp1xPDHOb6kvFbdCPBf8xwHrPvGtfBKtkcr/LTQ65Kenj+G+YvoI8Jq8y431HD9YTzO6kLJrVaovItSse12qCa9LDi1eB1x8eOMV4fDfkzjcOy4GhloHTj/sOGDYPL5cLUqVMxderUTDRvr0EWRYIgCILQ0Yn999PaMiAvb2wOWRQJgiAIQgcnk3eKBDMSUyQIgiAIggC5UyQIgiAIHR9Rn7ULsigyEI65YCUEWJoC7fiV9KZAw+YCraNJWBCYgg1jTvtAXw6kTLQN0OwakrQOsK3bEAysBUc3E4gccbTcb1MAtikwOBBLckqbY0Vt62BMAbLJBMkn1p1sAH683Jj9ODcXMJ9MsLoWuMtiAUP/TCTmMVltJHMskxmb5gQFHPRtmue8vxYcbTBEMB3jJlY6SdjymO1s7I8xBxbz9SDxGmAKIDaNba5HBVdnk2gkh7ZXh5QVSNRwHBsappImkQrvz9Y7pmtcVBsDtd3r1k9i0/VWuzZFUrveJRMkHwm300pD3mjdLsjjM0EQBEEQBMidIkEQBEHo8MgbrdsHWRQJgiAIQkdHHp+1C/L4TBAEQRAEAZ1sUfTqq69i+PDhyMrKQlFRESZMmKD9vnnzZpx++unIyclBUVERrrnmGoRCIUNpgiAIgtA5cMQy8wEa3mhdWlqKhQsX7tlOdUA6zeOzF154AVdccQXmzp2LE088EZZl4ZNPPon/Ho1GMW7cOHTv3h0rVqzAzp07MXHiRFiWhQcffDDl+urDXrhCXrgMr/JnRUQ0SmoMUn74SB3hSlCj+MhSgF89n4xahOsO0uvszaooXaVhUqwlU7cpf9SgcGqOKBWbjl1GI6b2NWdJYlKqmCxGTPWZ8iRaEPCYGK0NklBkJaNUTCRx7tmWm4T1ggnT3GyOKFuJJKH0Mtm3mNR0ifuYLCfCBsUZn/fJqOBM8wDQx9Y0zxPnix0uzZpGlRlOUMlyv10GJVp1VKnJNHWWwZ6Ey+G2hqJ6v2OulveJGVR0JrTxp2EKJ9hr8JMhB+WLJqEg4zpc2ryxL5+PaTSahJQ1E2Tw8Zm80dpMp1gURSIR/OY3v8H8+fNx2WWXxbcfdNBB8fTSpUuxYcMGbNmyBSUlJQCAe++9F5MmTcKcOXNkAgiCIAiC0Cyd4vHZhx9+iK1bt8LpdOKoo45Cr169MHbsWKxfvz6eZ9WqVRg8eHB8QQQAp5xyCoLBINauXWssOxgMoqqqSvsIgiAIQofCytBHaJZOsSj65ptvAAAzZ87ErbfeildeeQWFhYUYOXIkdu3aBQAoKytDcXGxtl9hYSG8Xi/KysqMZc+bNw9dunSJf/r06dN2HREEQRCENGj0PmvtR2iePboomjlzJhwOR7OfNWvWIBZreMZ7yy234Oyzz8aQIUPw2GOPweFw4LnnnouX53A0fS5vWZbt9kZmzJiBysrK+GfLli2Z76ggCIIgtIbGmKLWfoRm2aMxRVdffTXOO++8ZvP0798f1dXVAIDS0tL4dp/Ph4EDB2Lz5s0AgJ49e+L999/X9t29ezfC4XCTO0iMz+eDz+cz/i4IgiAIwr7BHl0UFRUVoaioqMV8Q4YMgc/nw8aNG3HccccBAMLhML799lv069cPADBixAjMmTMH27dvR69evQA0BF/7fD4MGTIk5bYFw264wm5tYW0ZVAxOTd2jbr4FwuY7VDWWWoiZVB4eUq95aLub1GqsNPG5laJN869KeJBs8gUyqWxYWcOKD1a+mVQdiX+YRA2eYCbFByvztPwGRVVzqiGTj1EwQb0Tr9tJ42zwA/PzmKeoWErE5KsViKhxZqWRSemVqHDitvDc4f4xXIdJocOqIVM5QPPqsEZMc0dTeBrGn+dBokLNpGzi7YnKLQWfF/b947YmlmPyKTPlScZPL0bnXnNqtSh5Crqsln3sokl4FZr8xxKJkBrNND+jprpj9nU7nawcVNtjzSj++Jrschr6TW0NUtqhza8klLfh9lKfAbC/7KVWhtAsnUJ9lp+fj8mTJ+P2229Hnz590K9fP8yfPx8A8Mtf/hIAMGbMGJSWluLiiy/G/PnzsWvXLlx//fW44oorRHkmCIIgdGoyERMkMUUt0ykWRQAwf/58uN1uXHzxxaivr8fw4cPx5ptvorCwEADgcrnw6quvYsqUKTj22GORlZWFCy64APfcc88ebrkgCIIgCJ2BTrMo8ng8uOeee5pd5PTt2xevvPJKO7ZKEARBENoBCxl4eWNGWrJX02kWRYIgCIKwzyKGsO1Cp3hPkSAIgiAIQlsjd4paQFeZ8SrbXgFj2jdRgaIpHNjzyqB2iMa4LFLGuOx9uCLNeCOFIi0fdk3lQQqiQMijyo2QEipiUJW5EhRBmpKElTU0zi77sbUMyhGt/GbGkr85DflY8acpy0i1pe1rmAeJ6jNNAWZQqZmUP25tDMx+eo005z/GY1gf9trmMakHTa/7ijqTq8+EWZWm0hFNHWS/b2K/k/mjmNVFPHdYT8TlOtLweUMSii5texJFOjUFnV4On5faPk77ucrXH1Z7cp6oQYEaTeibdk0wqSNjPL/sFXimuc0kzi2+JpjmrdNlf+6ZFZBqX5dB0WaloTRNixiQpK1k82WgwRDW5XJh6tSpmDp1amtbtlchiyJBEARB6OBkUn0mhrBmZFEkCIIgCB0diSlqFySmSBAEQRAEAXKnSBAEQRA6PnKnqF2QRZGBYL0HTodXt/mgYGCLA58NwdHJBsVxWVpQpn1cNxxusjbwqcBIbgcHLkdDeuBlLKAOu7OegrbJliTmpbKy7EM/HQFVrrvOvg/hLD1g0vJT0DAFVDvqVVnOENld0L1Mzm/xmBsCWRPjHy037e8hWxEPtYMCMau5Pq7OcOyb8R3Wr0WUdtKx5ABzk02IKVhcCxD3RMAYg9WpHxyMn/p1U+2bOAYmaxDGZCHR3HjGyzcEQTeUZZgXnE8LpKXNmuWK2p7OOHE/Ug0g5mPEwb1uQ6A0ADhJIMAiCRYFuF0cNGzfJg6oDlGag6mDYf2/kJhJAGEIaNesk6ivRjEIH9NmxCt8LmnbHfZjYGoT9zUUIlsjtiepa6eFhiyK2gV5fCYIgiAIggC5UyQIgiAIHZ8MSvIFM7IoEgRBEIQOjhjCtg/y+EwQBEEQBAFyp0gQBEEQOj4SaN0uyKLIQHSXD1a9D+TIAIvuqzlZkGVSjJlUaQm78GNiB6nGHFQHt0PLo22nqklwltgMZ9g+zf2LeUkVUkUKH6rDXafSnhoqh+oOdNNvRkZyqO2kduP93bX2ZUX9pI5TbiMajuY8EvgwuUhFRHVox4XHk8vl5/JamfblNGmGYVrw/ppTA6sKqd8xUs3V+VUDqzx64IDLywo3VqJRmwzt1VV39ioxTY2X2DkeT7aZYPsX01hx+wwWFSYFUcN3U7n2yjI+l0zqv2QsfQBdvca2FuGIOoC61Yx9udwHtjqJGFReDfuocr1k22FSnHHbQzTxAmHVVq5Ps8FIsPdh9ZlpXjha83yC1WMe/WQ3HW62/wiHVbqex5APNxdE11qE+QJJx7e+nQJ1Ypb54pFKGUKzyOMzQRAEQRAEyJ0iQRAEQej4yOOzdkEWRYIgCILQ4cnAogiyKGoJWRQJgiAIQkdH7hS1CxJTJAiCIAiCALlTZCR7qxMun1NTZ2lqGJP1Fqfph0RlhMMkWGBfLKrbYVI8mVRDrIRKWPryd6PCjdMmDzbKE6OZxHV7K/W6XQF7pZ4roNKeevv2gctK4g8ey5XwPYk/AbivDrIQc0ZJPcNtou5EPaTK8ZnrdvFxjdrn0RtlX27ER9uznLZ5AN3HLsrzQvOS4/r4wNhv1+YQ+bc1N8ZO8meL0t9jLrfBg8qgJ4qRCi5smZVv7AfHKi6Ps2VFlqYMo8nGdUSps+zfBui+YRGSW5k8thiTV5rXldxf+VFWh1EbQyH2bbOv2+S7FjN4lDVR3WlmhZSPM2keZXTsXaaLqn35oYh5sln0m6UpellNZr9dvwaQ91w9pYMqTzSYcKFpK2IWWv34S9RnLSJ3igRBEASho2PFMvMBMGzYMJSWlmLhwoV7uFMdD7lTJAiCIAj7EKtXr0Z+fv6ebkaHRBZFgiAIgtDRkUDrdkEWRYIgCILQ0ZGYonZBYooEQRAEQRAgd4qM+CoAlxdwhUgpQWokB6+4SS4S09Q9lE5YfsZcjhbzJaqnGuE2uUJquzNsr5BKLCfmtjdeMyniWFkWIf+xSBbloTpYvaGp9wC46+1/c0YMbddUUZQ2KAE1/6qw/leRNj4mdR1XYfiTwXLSsWOlEKtnyL8N0Mc8Sv5lXJamZGOVWZZ92uSD1qS9dPw0RV2QzfzIX41872Js9Ga4WrDSJ3EseXxiVJ9F9UXddFwMaiRWKTlpXyfbUSUolqIh9mqjPkVZScVeXbQzFcV1s1KOFWqsYgN0lZmzGQ/ERiJR+5M9DFaMqe2swEssnf3HuB3swWbC5F3GlVjNlmP4jb3PuE3sP8bzkVRfWprqdjbjc+jQJh5tN6WpDr7O8zXKRdcuvo5F6Rrcpsjjs3ZBFkWCIAiC0NGxkIFFUUZaslcjj88EQRAEQRAgd4oEQRAEoeMjj8/aBVkUCYIgCEJHJxaDFiCVdhlCc3Sax2dffPEFxo8fj6KiIuTn5+PYY4/F8uXLtTybN2/G6aefjpycHBQVFeGaa65BKNReUXCCIAiC0EY03ilq7Udolk5zp2jcuHE48MAD8eabbyIrKwsLFizAaaedhq+//ho9e/ZENBrFuHHj0L17d6xYsQI7d+7ExIkTYVkWHnzwwZTrc1gNH00NxmId9gwj5RSrFTR/qMQFOk1O3VvMsJ2zOO0VHpr/GKcT8psUXTGX/XYWcrCCS1OWaflZIZKgACNlhzHoj5trUIlpyhGqw6gQbKYO7h+PFY+nptIzKPtMx6XhN9qfVUSsnnLbp037an01eDcBgIOVcPyb6ZjR3xGWU3WQFW6aorG5P60Mx0zDoPoyFAOeUpoINJqws6FuVxJ/LGtzgtWXpJTj7YEEXzL2lYPJGovb0Vw/4j/Ytw+J6jbTNDSoN411G7Y7qL5EizLt2sLt4qRlUJBxHdr5ncSkSNhHU5DRfGbPMs3D0HCp4PaZvCgtvqYJnZ5Ocadox44d+Oqrr3DzzTfj8MMPx6BBg3DnnXeirq4O69evBwAsXboUGzZswJNPPomjjjoKJ510Eu6991788Y9/RFVV1R7ugSAIgiC0ArlT1C50ikVRt27dcMghh+CJJ55AbW0tIpEIHn30URQXF2PIkCEAgFWrVmHw4MEoKSmJ73fKKacgGAxi7dq1xrKDwSCqqqq0jyAIgiB0KGJWZj5Cs3SKx2cOhwPLli3D+PHjkZeXB6fTieLiYvzjH/9AQUEBAKCsrAzFxcXafoWFhfB6vSgrKzOWPW/ePMyaNastmy8IgiAIQidgj94pmjlzJhwOR7OfNWvWwLIsTJkyBT169MC7776LDz74AOPHj8dpp52G7du3x8tzOJo+e7Ysy3Z7IzNmzEBlZWX8s2XLljbpqyAIgiCki2XFMvIRmmeP3im6+uqrcd555zWbp3///njzzTfxyiuvYPfu3cjPzwcALFq0CMuWLcPjjz+Om2++GT179sT777+v7bt7926Ew+Emd5AYn88Hn8/XZLsjZjUJ1OXg0ojBnsEUsGcMMk3MR0GIiUGM9vkNdXDAdkI/XFoQo/3+vI+pXL0h1G4OTk/sQzMLVOM+jbuaAtK1AEvaHtHbyn3SgqLZcoUtJCL2fdIsWgyB6s1Zq2gB1ZrlB2xhaw4XB4dqAeL22xPRxpbT3F5D4LMe8MrjbK6P7RN4rmlCBU20YL/daZinyb6hl4+HZo9iOBb85yIHTWsCBg66djXTEG5vzBBMzNYZBisKLViZj1fCXGv2/Gss1xRcnUTdPCmaOJhw/0xCERZu8Hw2iCqMfYiZvzsN80hviH07TPPOaBfSjN1IRrEy8PhLYopaZI8uioqKilBUVNRivrq6OgCA06n/r+F0OhH773sXRowYgTlz5mD79u3o1asXgIbga5/PF487EgRBEARBMNEpAq1HjBiBwsJCTJw4Ef/5z3/wxRdf4IYbbsCmTZswbtw4AMCYMWNQWlqKiy++GB999BH+9a9/4frrr8cVV1wRv7skCIIgCJ0SUZ+1C51iUVRUVIR//OMfqKmpwYknnoihQ4dixYoV+Nvf/oYjjjgCAOByufDqq6/C7/fj2GOPxTnnnIMzzzwT99xzzx5uvSAIgiC0klgsMx+hWTqF+gwAhg4dijfeeKPZPH379sUrr7zSTi0SBEEQBGFvotMsigRBEARhn8WykLSyoNkyhOaQRZGBmNsBh9thtApw8OQyWCdoJG7nck1KC0MeUznpoKlytNnAyquWbQe0Mk0KJ5iVMUnVoY2H/fg7TOqZxN+SUMaY1F2mNCvMmqrPYPubSbGm24fYp5NVn+mWEC2Xywo8JDMeaAav4TxJZt4a6zaovhKDAbT9WXlov92IQf7kaK4/lr2iy4ij5YuIphgLU56Qw5hPb5Mhj+m8SOa8asZqI+XrVzrXUROmcg0KPhb/OfjcM6pzad8km9RarFgMVrIyZlMZIslvEVkUCYIgCEJHR+4UtQudItBaEARBEAShrZFFkSAIgiB0dPZS77ONGzfiyCOPjH+ysrLw8ssv77H2yOMzQRAEQejoWBZaHcHUAR+fHXTQQVi3bh0AoKamBv3798fJJ5+8x9ojd4oEQRAEQdjj/P3vf8fPfvYz5OTk7LE2yJ0iA1EvAB+aiWtr2eMn2Zi4tlGWJSvTaMUupvalUbWxCqMKJX0PtYb9U9yeTLnNeY4Z8pkUcVaKHmcmhVnib8mp1wz+e8ko0Zp43cEeVoM1o1a02655dYUzONlMpHF+6iouHixTHtqehLdbs6K5JOpIVRmWTDmp5Gspf7PKPlPdhmymfZIRHmrz3KAIjbWT95kVs2Al1ehmykjjTtE777yD+fPnY+3atdi+fTteeuklnHnmmVqeRYsWYf78+di+fTsOPfRQLFiwAMcff3zKdT377LO45JJLUt4vk8idIkEQBEHo6FixzHxSpLa2FkcccQQeeugh29+feeYZTJs2Dbfccgs++ugjHH/88Rg7diw2b94czzNkyBAMHjy4yWfbtm3xPFVVVXjvvffw85//PPWxySByp0gQBEEQ9iGqqqq07z6fDz6fzzbv2LFjMXbsWGNZ9913Hy677DJcfvnlAIAFCxbgjTfewMMPP4x58+YBANauXdtim/72t7/hlFNOgd/vT7YbbYLcKRIEQRCEDo4VszLyAYA+ffqgS5cu8U/j4iVVQqEQ1q5dizFjxmjbx4wZg5UrV6ZU1rPPPotzzz03rXZkErlTJAiCIAgdHSuG1qvPGvbfsmUL8vPz45tNd4laYseOHYhGoyguLta2FxcXo6ysLOlyKisr8cEHH+CFF15Iqx2ZRBZFCTQGokVDgaT36ZiB1mnQqQKtW7Fvc7RzoLVp/2TsRjIaaG2qL4lAa7RzoHW7086B1mirQOtM5dmXAq2TKKfx/4p0gphTIYJwq/9PiCAMAMjPz9cWRa3FkSB8sSyrybbm6NKlC3744YeMtac1yKIogerqagDA54/dsYdbIgiCIHQWqqur0aVLl4yX6/V60bNnT6woey0j5fXs2RNerzcjZRUVFcHlcjW5K1ReXt7k7lFnQRZFCZSUlGDDhg0oLS1tcotxb6Cqqgp9+vTZK/sG7N39k751TqRvnZNk+2ZZFqqrq1FSUtIm7fD7/di0aRNCoVBGyvN6vRkLZvZ6vRgyZAiWLVuGs846K7592bJlGD9+fEbqaG9kUZSA0+nEfvvtByDztxg7Entz34C9u3/St86J9K1zkkzf2uIOEeP3+/eYKqumpgZfffVV/PumTZuwbt06dO3aFX379sX06dNx8cUXY+jQoRgxYgQWL16MzZs3Y/LkyXukva1FFkWCIAiCINiyZs0ajB49Ov59+vTpAICJEydiyZIlOPfcc7Fz507ccccd2L59OwYPHozXXnsN/fr121NNbhWyKBIEQRAEwZZRo0a1GEQ+ZcoUTJkypZ1a1LbIe4ps8Pl8uP3229OWKXZk9ua+AXt3/6RvnRPpW+dkb+6bYMZhtbWOUBAEQRAEoRMgd4oEQRAEQRAgiyJBEARBEAQAsigSBEEQBEEAIIsiQRAEQRAEALIosmXRokUYMGAA/H4/hgwZgnfffXdPNyllZs6cCYfDoX169uwZ/92yLMycORMlJSXIysrCqFGjsH79+j3YYjPvvPMOTj/9dJSUlMDhcODll1/Wfk+mL8FgEL/+9a9RVFSEnJwcnHHGGfj+++/bsRf2tNS3SZMmNTmOP/3pT7U8HbFv8+bNw7Bhw5CXl4cePXrgzDPPxMaNG7U8nfm4JdO/znrsHn74YRx++OHxlxaOGDECr7/+evz3znzcWupbZz1mQuaQRVECzzzzDKZNm4ZbbrkFH330EY4//niMHTsWmzdv3tNNS5lDDz0U27dvj38++eST+G9333037rvvPjz00ENYvXo1evbsiZNPPjnu/daRqK2txRFHHIGHHnrI9vdk+jJt2jS89NJLePrpp7FixQrU1NTgtNNOQzQaba9u2NJS3wDg1FNP1Y7ja6/pHkgdsW9vv/02pk6din//+99YtmwZIpEIxowZg9ra2nieznzckukf0DmPXe/evXHnnXdizZo1WLNmDU488USMHz8+vvDpzMetpb4BnfOYCRnEEjSOPvpoa/Lkydq2gw8+2Lr55pv3UIvS4/bbb7eOOOII299isZjVs2dP684774xvCwQCVpcuXaxHHnmknVqYHgCsl156Kf49mb5UVFRYHo/Hevrpp+N5tm7dajmdTusf//hHu7W9JRL7ZlmWNXHiRGv8+PHGfTpL38rLyy0A1ttvv21Z1t513Cyraf8sa+85dpZlWYWFhdaf/vSnve64WZbqm2XtXcdMSA+5U0SEQiGsXbsWY8aM0baPGTMGK1eu3EOtSp8vv/wSJSUlGDBgAM477zx88803ABq8a8rKyrR++nw+jBw5stP1M5m+rF27FuFwWMtTUlKCwYMHd4r+vvXWW+jRowcOPPBAXHHFFSgvL4//1ln6VllZCQDo2rUrgL3vuCX2r5HOfuyi0Siefvpp1NbWYsSIEXvVcUvsWyOd/ZgJrUNsPogdO3YgGo2iuLhY215cXIyysrI91Kr0GD58OJ544gkceOCB+OGHHzB79mwcc8wxWL9+fbwvdv387rvv9kRz0yaZvpSVlcHr9aKwsLBJno5+XMeOHYtf/vKX6NevHzZt2oTf/e53OPHEE7F27Vr4fL5O0TfLsjB9+nQcd9xxGDx4MIC967jZ9Q/o3Mfuk08+wYgRIxAIBJCbm4uXXnoJpaWl8f/4O/NxM/UN6NzHTMgMsiiyweFwaN8ty2qyraMzduzYePqwww7DiBEjsP/+++Pxxx+PBw7uDf1sJJ2+dIb+nnvuufH04MGDMXToUPTr1w+vvvoqJkyYYNyvI/Xt6quvxscff4wVK1Y0+W1vOG6m/nXmY3fQQQdh3bp1qKiowAsvvICJEyfi7bffjv/emY+bqW+lpaWd+pgJmUEenxFFRUVwuVxNVvzl5eVN/jLqbOTk5OCwww7Dl19+GVeh7Q39TKYvPXv2RCgU+v/t3XtQlNUbB/DvCruwskIi6C63RUQkizBICAFvgJo3wC6OgwFdNDNRRlLzkmBjppaXdGxGGxN1mrBRyDQRwQB3RFERBRQQFAJpDWMIVhFQeH5/9OP9+cpyqR8K6POZ2T/2nPOec573IDy+73l3UV1d3Wab3kKlUkGtVqOoqAhAz48tIiICP//8M1JTU2FjYyOUPy3r1lZ8+vSmtZPJZHB0dMQrr7yCL774Aq6urvj666+finVrKzZ9etOasa7BSdFDZDIZ3N3dkZycLCpPTk7GqFGjumlWXaOhoQH5+flQqVQYPHgwlEqlKM7Gxkakp6f3ujg7E4u7uzukUqmojVarRV5eXq+Lt6qqCuXl5VCpVAB6bmxEhAULFiA+Ph6//vorBg8eLKrv7evWUXz69Ja104eI0NDQ0OvXTZ+W2PTpzWvG/qUnvrW7h4uLiyOpVEq7d++mq1evUmRkJJmYmFBpaWl3T+0fiYqKorS0NLpx4wadPXuWpk6dSv369RPiWL9+PZmZmVF8fDzl5ubSrFmzSKVSUW1tbTfPvDWdTkfZ2dmUnZ1NAGjz5s2UnZ1Nv/32GxF1LpZ58+aRjY0NpaSk0MWLF2n8+PHk6upKDx486K6wiKj92HQ6HUVFRVFGRgaVlJRQamoqeXl5kbW1dY+P7cMPPyQzMzNKS0sjrVYrvOrq6oQ2vXndOoqvN6/d8uXL6dSpU1RSUkI5OTm0YsUK6tOnD504cYKIeve6tRdbb14z1nU4KdJjx44dpFarSSaTkZubm+gx295i5syZpFKpSCqVkpWVFc2YMYOuXLki1Dc3N1N0dDQplUoyMjKi0aNHU25ubjfOuG2pqakEoNUrLCyMiDoXy71792jBggVkbm5Ocrmcpk6dSmVlZd0QjVh7sdXV1dGECRPI0tKSpFIp2dnZUVhYWKt598TY9MUEgPbs2SO06c3r1lF8vXnt3n33XeH3n6WlJfn5+QkJEVHvXrf2YuvNa8a6joSI6Mldl2KMMcYY65l4TxFjjDHGGDgpYowxxhgDwEkRY4wxxhgATooYY4wxxgBwUsQYY4wxBoCTIsYYY4wxAJwUMcYYY4wB4KSIsS5XWloKiUSCS5cuPZb+JRIJfvrpp399fFpaGiQSCSQSCYKCgtptO3bsWERGRv7rsVj7Wtbhueee6+6pMMbASRF7yoSHh3f4h/5xs7W1hVarxYsvvgjgf0nIX3/91a3zelRhYSFiY2O7exrPhLZ+LrVaLbZu3frE58MY04+TIsa6mIGBAZRKJQwNDbt7Ku0aOHBgj7hCcf/+/e6eQrdRKpUwMzPr7mkwxv6LkyL2TElPT4eHhweMjIygUqnwySef4MGDB0L92LFjsXDhQixduhTm5uZQKpWIiYkR9VFQUAAfHx8YGxtj+PDhSElJEd3Sevj2WWlpKcaNGwcA6N+/PyQSCcLDwwEA9vb2ra4SjBgxQjReUVERRo8eLYz18Ldzt6ioqMDMmTPRv39/DBgwAIGBgSgtLf3H5+bu3bsIDQ2FQqGASqXCpk2bWrVpbGzE0qVLYW1tDRMTE3h6eiItLU3U5ttvv4WtrS369u2L4OBgbN68WZR8xcTEYMSIEfjuu+/g4OAAIyMjEBFqamowd+5cDBw4EKamphg/fjwuX74s6vvIkSNwd3eHsbExHBwcsGbNGtH6xcTEwM7ODkZGRrCyssLChQs7FXtHcVVVVWHWrFmwsbFB37594eLigh9++EHUx8GDB+Hi4gK5XI4BAwbA398fd+/eRUxMDPbu3YvDhw8Lt8sePWeMsZ6hZ/9XlrEuVFFRgcmTJyM8PBz79u1DQUEB5syZA2NjY1EisnfvXixevBiZmZk4c+YMwsPD4e3tjYCAADQ3NyMoKAh2dnbIzMyETqdDVFRUm2Pa2tri0KFDeP3111FYWAhTU1PI5fJOzbe5uRkzZsyAhYUFzp49i9ra2lb7e+rq6jBu3Dj4+vri1KlTMDQ0xNq1azFp0iTk5ORAJpN1+vwsWbIEqampSEhIgFKpxIoVK5CVlYURI0YIbd555x2UlpYiLi4OVlZWSEhIwKRJk5Cbm4uhQ4fi9OnTmDdvHjZs2IDp06cjJSUFn376aauxiouL8eOPP+LQoUMwMDAAAEyZMgXm5uY4duwYzMzMsHPnTvj5+eHatWswNzdHUlISZs+ejW3btsHX1xfXr1/H3LlzAQDR0dE4ePAgtmzZgri4OLzwwgu4detWq6SqLR3FVV9fD3d3dyxbtgympqb45Zdf8Pbbb8PBwQGenp7QarWYNWsWNm7ciODgYOh0Omg0GhARPv74Y+Tn56O2thZ79uwBAJibm3d6XRhjT1D3fh8tY10rLCyMAgMD9datWLGChg0bRs3NzULZjh07SKFQUFNTExERjRkzhnx8fETHjRw5kpYtW0ZERImJiWRoaEharVaoT05OJgCUkJBAREQlJSUEgLKzs4mIKDU1lQBQdXW1qF+1Wk1btmwRlbm6ulJ0dDQRESUlJZGBgQGVl5cL9YmJiaKxdu/e3SqmhoYGksvllJSUpPc86JuPTqcjmUxGcXFxQllVVRXJ5XJatGgREREVFxeTRCKhiooKUX9+fn60fPlyIiKaOXMmTZkyRVQfEhJCZmZmwvvo6GiSSqVUWVkplJ08eZJMTU2pvr5edOyQIUNo586dRETk6+tL69atE9Xv37+fVCoVERFt2rSJnJycqLGxUW/cbelMXPpMnjyZoqKiiIgoKyuLAFBpaanetu39XO7Zs0d0fhhj3YevFLFnRn5+Pry8vCCRSIQyb29v3LlzBzdv3oSdnR0A4KWXXhIdp1KpUFlZCeDvzcm2trZQKpVCvYeHx2Obr52dHWxsbIQyLy8vUZusrCwUFxejX79+ovL6+npcv36902Ndv34djY2Nov7Nzc0xbNgw4f3FixdBRHBychId29DQgAEDBgD4+/wEBweL6j08PHD06FFRmVqthqWlpSiOO3fuCP20uHfvnhBHVlYWzp8/j88//1yob2pqQn19Perq6vDmm29i69atcHBwwKRJkzB58mRMmzatw71dnYmrqakJ69evx4EDB1BRUYGGhgY0NDTAxMQEAODq6go/Pz+4uLhg4sSJmDBhAt544w3079+/3bEZYz0LJ0XsmUFEooSopQyAqFwqlYraSCQSNDc3t9nHv9WnTx9h/BYPbzp+tO7ReQJ/32Jzd3fH999/36rtw0lHR/SN9ajm5mYYGBggKytLuOXVQqFQCP20dY4f1pJMPNy3SqXSu9emZT9Sc3Mz1qxZgxkzZrRqY2xsDFtbWxQWFiI5ORkpKSmYP38+vvzyS6Snp7da038a16ZNm7BlyxZs3boVLi4uMDExQWRkJBobGwH8vbk+OTkZGRkZOHHiBLZv346VK1ciMzMTgwcPbnNsxljPwkkRe2YMHz4chw4dEv3hzsjIQL9+/WBtbd2pPpydnVFWVoY//vgDgwYNAgCcP3++3WNa9vU0NTWJyi0tLaHVaoX3tbW1KCkpEc23rKwMv//+O6ysrAAAZ86cEfXh5uaGAwcOCJuT/y1HR0dIpVKcPXtWuGJWXV2Na9euYcyYMQCAl19+GU1NTaisrISvr6/efpydnXHu3DlR2YULFzoc383NDbdu3YKhoSHs7e3bbFNYWAhHR8c2+5HL5Zg+fTqmT5+Ojz76CM7OzsjNzYWbm1ubx3QmLo1Gg8DAQMyePRvA34lUUVERnn/+eaGNRCKBt7c3vL29sXr1aqjVaiQkJGDx4sWQyWSt1p8x1vPw02fsqVNTU4NLly6JXmVlZZg/fz7Ky8sRERGBgoICHD58GNHR0Vi8eDH69OncP4WAgAAMGTIEYWFhyMnJwenTp7Fy5UoAra/itFCr1ZBIJDh69Chu376NO3fuAADGjx+P/fv3Q6PRIC8vD2FhYaIrFf7+/hg2bBhCQ0Nx+fJlaDQaYawWISEhsLCwQGBgIDQaDUpKSpCeno5Fixbh5s2bnT5nCoUC7733HpYsWYKTJ08iLy8P4eHhovPi5OSEkJAQhIaGIj4+HiUlJTh//jw2bNiAY8eOAQAiIiJw7NgxbN68GUVFRdi5cycSExM7vLrm7+8PLy8vBAUFISkpCaWlpcjIyMCqVauEpGr16tXYt28fYmJicOXKFeTn5+PAgQNYtWoVACA2Nha7d+9GXl4ebty4gf3790Mul0OtVrc7dmficnR0FK4E5efn44MPPsCtW7eEPjIzM7Fu3TpcuHABZWVliI+Px+3bt4Wkyd7eHjk5OSgsLMSff/75TH8MAWM9WjftZWLssQgLCyMArV5hYWFERJSWlkYjR44kmUxGSqWSli1bRvfv3xeOHzNmjLCxuEVgYKBwPBFRfn4+eXt7k0wmI2dnZzpy5AgBoOPHjxNR643WRESfffYZKZVKkkgkQl81NTX01ltvkampKdna2lJsbKxoozURUWFhIfn4+JBMJiMnJyc6fvy4aKM1EZFWq6XQ0FCysLAgIyMjcnBwoDlz5lBNTY3ec9TWxm+dTkezZ8+mvn370qBBg2jjxo2tzkdjYyOtXr2a7O3tSSqVklKppODgYMrJyRHa7Nq1i6ytrUkul1NQUBCtXbuWlEqlUB8dHU2urq6t5lVbW0sRERFkZWVFUqmUbG1tKSQkhMrKyoQ2x48fp1GjRpFcLidTU1Py8PCgXbt2ERFRQkICeXp6kqmpKZmYmNCrr75KKSkpes/BozqKq6qqigIDA0mhUNDAgQNp1apVFBoaKmyevnr1Kk2cOJEsLS3JyMiInJycaPv27UL/lZWVFBAQQAqFggBQamqqUMcbrRnrOSREndhMwBhr0+nTp+Hj44Pi4mIMGTKku6fTobS0NIwbNw7V1dVP5MMb58yZg4KCAmg0msc+Vm8UGxuLyMjIHveJ54w9i3hPEWP/UEJCAhQKBYYOHYri4mIsWrQI3t7evSIhepiNjQ2mTZvW6kMI/19fffUVAgICYGJigsTEROzduxfffPNNl47xtFAoFHjw4AGMjY27eyqMMXBSxNg/ptPpsHTpUpSXl8PCwgL+/v56P/25p/L09ERRURGA/z1d1ZXOnTuHjRs3QqfTwcHBAdu2bcP777/f5eN0lkajwWuvvdZmfcser+7Q8qXBjz71xhjrHnz7jDH2VLt37x4qKirarG/vaTbG2LOFkyLGGGOMMfAj+YwxxhhjADgpYowxxhgDwEkRY4wxxhgATooYY4wxxgBwUsQYY4wxBoCTIsYYY4wxAJwUMcYYY4wB4KSIMcYYYwwA8B8FdSk8ts+BMQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHFCAYAAAD8Jo2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9jklEQVR4nOydeZgU1fX3v9V7zw4My4zAAK5BcANUXAKoIMS4J3FJFFxjwCQEl4RsIFExalzjGn1RExO3oDEJCWIENzQiws8FJS4gIAwwA7NPb9X1/tFVfc+9VdXT3dMzzMD5PM881FTd/d4q7lR9zzmaYRgGGIZhGIZh9nE8e7oBDMMwDMMwPQHeFDEMwzAMw4A3RQzDMAzDMAB4U8QwDMMwDAOAN0UMwzAMwzAAeFPEMAzDMAwDgDdFDMMwDMMwAHhTxDAMwzAMA4A3RQzDMAzDMAB4U8QUmJUrV2L+/PloaGiwXZs4cSImTpzY7W3qDv73v//h2muvxZgxY1BRUYG+ffvi+OOPx3PPPeeYfseOHZgxYwYqKytRVFSE8ePH4z//+Y8t3T/+8Q9cfPHFGD16NPx+PzRNc21DPB7HDTfcgGHDhiEYDOKQQw7Bvffem1M/uqJdmbj33ntxyCGHIBgMYvjw4bjhhhsQj8elNFu2bMHs2bMxYcIEVFRUQNM0PPbYYznV88UXX+Ccc85BRUUFSkpKMHnyZLz33nuOaZ966ikcccQRCIVCqK6uxuzZs9HS0rLP18Uw+wQGwxSQ2267zQBgbNiwwXbto48+Mj766KPub1Q3cO+99xqHHHKIcdNNNxkvvfSSsWTJEmP69OkGAOOGG26Q0kYiEWPUqFHG4MGDjT/96U/GSy+9ZJx55pmGz+czVqxYIaW99NJLjQMPPND4zne+Y4wZM8bIdMtefvnlRjAYNG699VZj+fLlxs9+9jND0zTjpptuyqoPXdUuN2688UZD0zRj7ty5xvLly41bb73VCAQCxhVXXCGlW758uVFZWWmccsopxgUXXGAAMBYtWpR1PTt27DCqq6uNQw891PjrX/9q/POf/zROOOEEo7S01Pjkk0+ktH/6058MAMbll19uvPLKK8aDDz5olJeXG5MnT96n62KYfQXeFDEFJdOmaG9m586dRjKZtJ0/7bTTjKKiIiMSiaTP3XfffQYAY+XKlelz8XjcGDlypHH00UdL+XVdTx/PmjXLdfPx4YcfGpqmGTfffLN0/oorrjDC4bBRX1/fYR+6ol1u1NXVGaFQyLjyyiul8zfddJOhaZq0eaZ1rVq1KudN0XXXXWf4/X5j48aN6XONjY1GZWWl8Z3vfCd9LpFIGFVVVcaUKVOk/E8++aQBwFiyZMk+WxfD7CvwpogpGPPmzTMA2H6WL19uGIZhTJgwwZgwYUI6/YYNGwwAxq233mrccsstRk1NjREKhYwJEyYY69evN2KxmPHTn/7UqKqqMsrKyoyzzjrL2L59u63ep556yjj22GONoqIio7i42JgyZYrx3nvvdVOvM3PDDTcYAIytW7emz51yyinGwQcfbEt78803GwCMLVu2OJaVafNx4403GgCMbdu2SedXrlxpADCefPLJDtvaFe1yw3pz8dZbb0nnt27dagBwfbuVz6bogAMOME499VTb+SuvvNIIh8NGPB43DMMw3njjDQOA8Ze//EVKF4vFjJKSEtsbrH2pLobZV2BNEVMwLr/8cvzwhz8EACxevBhvvfUW3nrrLRx11FEZ891333148803cd999+GRRx7BJ598gtNPPx2XXXYZdu7cif/3//4fbr31Vrz88su4/PLLpbw333wzLrjgAowcORLPPPMM/vjHP6K5uRknnngi1q1b12GbE4lEVj+GYeQ1JsuXL0f//v0xYMCA9LkPP/wQhx12mC2tde6jjz7KuZ4PP/wQ/fv3x6BBgxzL/PDDD7Mqo9DtylQXAIwePVo6X1VVhcrKyqzamw3t7e34/PPPXfvV3t6OL774QmqTmtbv9+OQQw6xtUnTNEkjt7fUxTD7Mr493QBm72Hw4MEYOnQoAODII4/EsGHDsspXUVGBF154AR5Pao9eV1eH2bNn45BDDsHf/va3dLpPPvkEd911F5qamlBWVobNmzdj3rx5uPrqq3HPPfek002ePBkHHnggbrjhBjz99NOu9W7cuBHDhw/Pqo3Lly/PWST+yCOPYMWKFbj77rvh9XrT5+vr69G3b19beutcfX19TvVkKrO4uBiBQCCrMruiXZnqCgaDKC4udqyvUHXt3r0bhmFk1S/rX7e0GzdulM55vV5pXveWuhhmX4Y3Rcwe5xvf+EZ6QwQAX/va1wAAp512mpTOOr9p0yaMGjUKS5cuRSKRwMUXX4xEIpFOFwqFMGHCBCxfvjxjvdXV1Vi1alVWbTz44IOzSmfxr3/9C7NmzcK3vvWt9NszSiZrrXwtubIp0zAM6LouXfP5fLZ0hWoXnRcg9Z+7VU5XjEE+5anX3NKq59W+7S11Mcy+DG+KmD2O+hdsIBDIeD4SiQAAtm/fDgAYN26cY7l0o+VEIBDAEUcckVUb6V/pHbF06VKcc845mDx5Mp588knbfzr9+vVzfBOya9cuAM5/0XdEv379sHbtWtv51tZWxGKxdJmPP/44LrnkEimN9WmwK9rl9/ul3xctWoQZM2agX79+iEQiaGtrQ1FRka2+MWPG5FyXE3369IGmaVn1q1+/fgBSb1YGDhxoS9tR//fWuhhmX4I3RUyvpbKyEgDw3HPPoaamJuf8XfH5bOnSpTjrrLMwYcIE/PWvf01v5CijR4/GBx98YDtvnRs1alRWbVLLfOqpp1BbWyvpitQyTz/9dNe3Y13RLrUua7wtLdEHH3yAY445Jn29trYWdXV1edXlRDgcxgEHHODar3A4jBEjRtjaNHLkyHS6RCKBTz75BBdccME+WRfD7EvwpogpKMFgEEBKCNrVnHrqqfD5fPj8889x7rnn5py/0J/PXnrpJZx11lk44YQT8MILL6THQuXss8/GzJkz8d///je9IUgkEvjTn/6EY445BtXV1dl3wuTMM8/EL3/5Szz++OP46U9/mj7/2GOPIRwOY+rUqQBSbw2sNwfd0a6xY8c6np86dSpCoRAee+wxaVP02GOPQdM0nHXWWTnX5cbZZ5+Nu+66C5s3b8aQIUMAAM3NzVi8eDHOOOOM9OfDY445BlVVVXjsscdw3nnnpfM/99xzaGlpwTnnnLPP1sUw+wx70vSN2ftYvny5AcD4/ve/b6xcudJYtWqV0dTUZBiGu0n+bbfd5ljGs88+K51ftGiRAcBYtWpV+tzNN99s+Hw+4/vf/77x/PPPGytWrDCefvpp45prrjF+/etfd11HFV5//XUjHA4bw4YNM1555RXjrbfekn4aGxvTaSORiHHooYcaQ4YMMZ588klj2bJlxtlnn+3oJHHjxo3Gs88+azz77LPG1KlT0+Py7LPPSuNgGMJ542233WasWLHC+PnPf56z88auaJcblvPGn//858aKFSuM2267zQgGg44m4lbZv/3tbw0AxqxZs9LnOmLHjh1GVVWVMXr0aOP55583lixZYnz96183SktLjY8//lhK+8c//tEAYFx55ZXG8uXLjYcfftioqKhwdHLo9XqNk046aa+ri2H2ZXhTxBScuXPnGtXV1YbH48nKT1FnNkWGYRgvvPCCMWnSJKOsrMwIBoNGTU2N8a1vfct4+eWXu6R/Trj5aLJ+rDGwqK2tNS6++GKjb9++RigUMo499lhj2bJltnKtPjv9TJ8+XUobi8WMefPmGUOHDjUCgYBx0EEHGffcc09O/eiKdmXi7rvvNg466CAjEAgYQ4cONebNm2fEYjFbukxjmw2fffaZcdZZZxllZWVGUVGRcfLJJxurV692TPvnP//ZOOyww4xAIGAMGjTI+NGPfmQ0Nzc7tomu572lLobZl9EMI08HLAzDMAzDMHsR7LyRYRiGYRgGvCliGIZhGIYBwJsihmEYhmEYALwpYhiGYRiGAcCbIoZhGIZhGAC8KWIYhmEYhgHAHq1tJJNJbN26FaWlpRwokWEYhsmIYRhobm5GdXV1h/EW8yUSiSAWixWkrEAggFAoVJCy9kZ4U6SwdevWtMt8hmEYhsmGzZs3Y/DgwQUvNxKJYHhNCWp36AUpb9CgQdiwYQNvjFzgTZFCaWkpAGC/m34BDy8ahmEYJgPJSARf/eKm9P8dhSYWi6F2h44Nq2tQVtq5N1FNzUkMH/MlYrEYb4pc4E2RgvXJzBMKwRPmRcMwDMN0TFfLLcpKPZ3eFDEdw5siNzzmjxUExS0YinpecznOdC59zaUSQ8suXTZ1ZCjWuSxSF8nQURO6GqspLs3rNK79y6bf+TQk2/G0is7Ucbdr1nmn9mW65kRH7VWL6cx4diVW/ZrDuWzJlDereyyLa/nccGbeQt4XqXK7aNI6aKharVvynJuXc3ql4m7ap+hGEnonh143koVpzF4Mb4oYhmEYpoeThIFkJ/+K6Gz+fQF+F8cwDMMwDAN+U8QwDMMwPZ4kkujsx6/Ol7D3w2+KGIZhGKaHoxtGQX4AYNy4cRg5ciTuu+++Pdyrnge/KXIjnEj9pNWKLuk6K9JzUwVmI77MvlLHzJmLcWqX5n45Ka6ltXxUmK3+gWK4lOV2rLbEzE+Hz9affLSpSYdRyVSOJKxPJcykFzWy+DPENlb2KuSKM1aY3bl0uVmPf+bqDa+awb0st/qc6pDOZfsnXQaxcqdEyA5CZpsY2ENO5NpeWmCmStyE3ob9sopr/zOplZ3y5GooAMBmrEUXvqb861CJxyt+1xweBJmMwYws17nh8Jyyn0u4F9BDWbVqFcrKyvZ0M3okvCliGIZhmB4OC627B94UMQzDMEwPJwkDOm+KuhzWFDEMwzAMw4DfFDEMwzBMj4c/n3UPvCliGIZhmB4OtR7rTBlMZnhTxDAMwzA9nKT509kymMzwpsgNzfyxdtaai92rosrSPA5motmGk0razT8d01FTd8sM3M3EPROZ7hDT3rlTf1gQM1nDttLc4rxlKI6a/Vv9dq4uhZN5fQd1GFaHSV7JUljNK427ZkuvorkMaNYhx5zClmXoULZm646W+zSv2nF6zWt3RZBtnCpKxvmzxtSbaYE415drWLfMjSKXrPZRNwHqmqPZ3daFOkfUjN9wOKcg9Yums847Tq7DWtXJmtflRknpHAbSyNA+OR0tVMlD3ThY5fncfW5I977PYcyc7hVP0nbJSGa4SZLkGeZ88+XhIoXpyfCmiGEYhmF6OHoBrM86m39fgDdFDMMwDNPD0Y3UT2fLYDLDJvkMwzAMwzDgN0UMwzAM0+NhoXX3wJuiLLEEeqljIqa2Ca1FOk8mUWguqKJVIvhz1IFnSdIUhdrEobROt3KzEIIbRLgJRbhpUPGymyDa7bxbs2xiYCKSdBKCZojhJIm6MwlpiRBT0+0FZhJmG06iWKcmZRAwA9nr6g1LjJrp/XBHQc0cC7ZnVfsjXXNLp3aEZvKYCekYqyHA6Nw4xA9zvEesc9JaoW3K0JFA0n7OtQJIbZf09sqa0pz6SE/55P/aJJGxUzBAx+aZF0lR8v0qt8lIUBG2+a9kjJBBBU1r1ckv6jokIcQMa7Iy3Rfk+Zokx9Y613z2LYDmTRXo9YuG0ONMJM0xSSY85Fz3fWxJQoPeSVV3klXhHcKfzxiGYRiGYcBvihiGYRimx5M0pBfTeZfBZIY3RQzDMAzTw9EL8Pmss/n3BfjzGcMwDMMwDPhNkSsebxIeXzItzvR4nYXWngwiS+uKJIxWRZUkvyTgpmkUkbCH/O73pUSCXiLwVj2vRuNimhOSMND0Wu3QB8vLq+EikFXrkL1x20Wxhqp5dBHxSqcVobqjBpiOnyp0pppTBxG0o5DbUP4FZE+7qnieXEsLdKl4VS2f5nfzAqyedhLA0r4lMvz15+TZ2eFPobTo20PnkeTNMLZWJRm9FRMxME2XSZwtzU+6fQ5ttn6nnt6dPDU7zXe6AXYhsSN0vh3WsF1YT9tL0tF14FduDr+9QOkZoNbrMBcAOvBYb0/uCYqOe3xyR6Tnn9mmJDVGULxCJxPO1yTBdrtXyuONimvemN3jttrtZMBwPE5/I3K4v6wypDZp9r6JE+TQ0n6TufNoScDbPTZdhXxTNG7cOHi9XsyaNQuzZs0qRPP2GnhTxDAMwzA9nKShIZlXrBq5DABYtWoVysrKCtGsvQ7eFDEMwzBMD4c1Rd1Dr9EUDRs2DJqm2X6sV38zZsywXTv22GP3cKsZhmEYhukt9Jo3RatWrYKui2/eH374ISZPnoxvf/vb6XNTp07FokWL0r8HAoFubSPDMAzDdAU6PNA7+R4jOzeV+za9ZlPUv39/6fdbbrkF+++/PyZMmJA+FwwGMWjQoO5uGsMwDMN0KUYBNEVOxgGMTK/ZFFFisRj+9Kc/Yc6cOdCI7/4VK1ZgwIABqKiowIQJE3DTTTdhwIABGcuKRqOIRqPp35uamgAAgVAc3pA3benl84o9to9YG3gUUyHdwbRHJ1YaCV22uDBcDJB8DtYeFl4HqwpqVZZULEF0cs3Jqs3JgC5pma6Qm4i6t7eFuzAcfiFWGprcbVfrMym8hmrUQcMKpK3EMvzl5GaVZbbL8LkMPhTrpQwPEmoBlQ63IFkKqRlIWS7ts3WJhqDwm3NGLftUKz2X8ChWnxzDkZjXknSeiFWULQJHJos3QLI2S2Ugh5I1XYYyaFucpkqdF7dQHZnm2WqLW38ydTNtzpfdfzRSv6l1ltI+LUDufadQQerQUmsonxhQI0MYn3RID2psSPqhx+Q8Op0MJ2MrpZ2StRp5dtL/cZJKv3XykNDMZ5ZBq1Ve/CeLSLnEcs5rjh8NuZQu1+o2WSvUctfjZhEK8Rz1kjZpmgE9GXfNw/Q+eo2miPLCCy+goaEBM2bMSJ+bNm0annzySbzyyiv43e9+h1WrVuGkk06SNjxOLFy4EOXl5emfIUOGdHHrGYZhGCY3LKF1Z3+YzPTKN0WPPvoopk2bhurq6vS58847L308atQojB07FjU1NfjnP/+Jc845x7WsuXPnYs6cOenfm5qaeGPEMAzD9Ch0w+P4JSK3MgrUmL2YXrcp+vLLL/Hyyy9j8eLFGdNVVVWhpqYGn376acZ0wWAQwWCwkE1kGIZhGKYX0us2RYsWLcKAAQNw2mmnZUxXX1+PzZs3o6qqqptaxjAMwzBdQxIakp1UvCQdxXkMpVdtipLJJBYtWoTp06fD5xNNb2lpwfz583HuueeiqqoKGzduxM9//nNUVlbi7LPPzquuolAc3pDHJqQGhFgPsAulqXVAPOG1pVFF0JI1AUmXSAg1n67LeajwOi0MzPJTsRRWRHPPa4m5k1TATRPYfO7TzA5jZhMwkj44iUkdSFJxcdxsV4TGXVArJSeoaNcSYjrW6zAmVKiqit59RKRpHlPBajIuz50UXsCt26owltZpXSJjoQqnpSY6ia6dwh9YzZLCT5DjkKyINuCwbj0Oa8tK4iZGziBSpqJhqzpPhpAK1BAgGRcTbq0VJ3F4WuRM+ppJZE9F0WlhPZlIQ50LN1F5phAqUdIPrxnuIoMAWHq+kP80vX6zQtXIAYDhTaWj95R0/yj/92pkUNLPBHLvGcp3GSqK9vhc5ky18CBzoIdNY4ggub+KZUFzOCx+D/gT6WPr2eVzEFpbomqd3IcJcqy7GCkAwtjGq6zz7hJas/PG7qFXbYpefvllbNq0CZdeeql03uv14oMPPsATTzyBhoYGVFVVYdKkSXj66adRWlq6h1rLMAzDMExvoldtiqZMmQLD4c/rcDiMpUuX7oEWMQzDMEzXUxihNX8+64hetSliGIZhmH2RlKaokwFh+fNZh/CmiGEYhmF6OMkChPlgoXXH9ErnjQzDMAzDMIWG3xQxDMMwTA+HNUXdA2+KXAh6E/D5vDbTYkCOX6YrJrsBEucn7E+ZalJz5JgS+4ya5NP1Gicm+dkE8ZPM9JU203g+tA6rXKc+puskJtD+kHsdXpLOMnulfdDVeGzEZJqaBVPz/LRJsUkoLH5PmqazeikpV+kGdWUgmUpb8Y8chtUan2TMbtINAFpAMU2n8aLMPtH0qom22yd9ySzbZhbsYDZNrI3V56QhuSKgcdNMVwQOJtKW2bTkYsDrPt9S68xrkisCZc3q1FyeHFOz+0AgIeUJBqiZtd3dQSQmP76ikh04MZu25kyJnQWIe4PGB5PmWxkqKeacdY7WpZjO03I1GuuLznFArkQj696aA7pW1Zhe8v1N5iDpfn87QupQ7z26FvRE6lgyX1fWOTXDLy4WoZacXJakiyD3VjCYenZWlramz/UJtst1kH7R52rMDODntGatc5GEWDutMeq8191lirUG/R75WZfwyuu2q0jCw36KugH+fMYwDMMwDAN+U8QwDMMwPR7d0GxfJvIpg8kMb4oYhmEYpoejF8D6TOfPZx3Cn88YhmEYhmHAb4pcSRpaSmTn8LoxTkTDamw0LxHhWaK+GBH8quJC+jsVKxcHY+ljLRSDG5kEsOn8mrMQ0xJKeh3iKln9oHmjcbFcVMF4jFwzTOWvRypXFocaXiJAJVtzHxFoepU4Vz4iYtd8Vr2iHdGIrKTVY0QwS9risQSvDmOXjJoFt4j+eCR9rCKkJWGPNDN2kyco2mkoomlJeKs5tMmhXVSsbcWdov3xKeJvzSUGWVoo6pPTp9LZTrnHZoMcw8+qI0Fj9CnCeoO2iYh4/fRYaRed22TSL9UFAD51fRBhtpEk69Ecc2mMTYqLIwCAoE/kjVIRbltQSq9HxbW06JqMnUcVKBeJBULj3iVJHDbVkMJJuE3vBTV9nLTJoAYC1jJ3ipvmFDORrnOPPH8+Mj4+UwSd9NsNHyzC5JlVGhJCa5+qXCfQOegbbEvl9Ym8rbp8fzdEw+ljS1wNiFhmTs9GSzhNrbgCpN5ynxzHTIqLZuZJSs9Qj82ooKtIGh4kO2l9lmTrsw7hTRHDMAzD9HD481n3wJ/PGIZhGIbZo7S1taGmpgbXXnvtHm0HvyliGIZhmB5OEp23HnP/eLnnuemmm3DMMcfs6WbwmyKGYRiG6elYzhs7+9MT+fTTT/HJJ5/gG9/4xp5uSg8dIYZhGIZh0lhhPjr7kyuvvfYaTj/9dFRXV0PTNLzwwgu2NPfffz+GDx+OUCiEMWPG4PXXX8+pjmuvvRYLFy7MuW1dAX8+c6EsGIEvKERp1AqhJOAe/qA94U8fx0wrFroQVUsFalUS9AsriACxxPEqbv1jxDrGsoTzknYU+WVrNT+x2ooTq7EIaatKzLSKo22nlnKSpRFkSzNqJWZheOR+U0ujbMMQUIsny3KOWuL4lDARXr9DeAwIS5mkbn9AWNZDepBcI5ZCmhqCg4Y3MOcpaRCLwqA8FkES8iDgt4eEAeT5SpUn6miLpSxwaIgLNYQKHRPaWsvCLKFYDgJiPgIOc+eE1yPaK9aCaFNEsbKkRi/U4qyEWiYp1mTtcbE+DSOVpyiQ3Tgliuk6T7XLyRqpKJC6V6hVVJKMml+xJoNDWB5quZdUwl3oxBpMI6EyfGRd6HFl/mjIEWutkjQev2p1R6zAaDgOq26nbybpfhgO5+T6ACBmiLn1h1L3WTGxMFPvYWqV6/eQ+SbPJnU+AiSdZWXVGA/DDVoWtT7LZA1mXfNkCItEieii3+n1SIovDkaQSESxN9Pa2orDDz8cl1xyCc4991zb9aeffhqzZ8/G/fffj+OPPx4PPfQQpk2bhnXr1mHo0KEAgDFjxiAatY/TSy+9hFWrVuGggw7CQQcdhJUrV3Z5fzqCN0UMwzAM08NJQpM27PmWAQBNTU3S+WAwiGAw6JQF06ZNw7Rp01zLvOOOO3DZZZfh8ssvBwDcddddWLp0KR544IH025/Vq1e75n/77bfx1FNP4dlnn0VLSwvi8TjKysrw61//Oqe+FQr+fMYwDMMwPZxCfj4bMmQIysvL0z/5frqKxWJYvXo1pkyZIp2fMmVK1m99Fi5ciM2bN2Pjxo24/fbbccUVV+yxDRHAb4oYhmEYZp9i8+bNKCsrS//u9paoI+rq6qDrOgYOHCidHzhwIGprazvVxj0Fb4oYhmEYpodTGOeNqfxlZWXSpqizaIpLfMMwbOeyYcaMGQVqUf7wpsgFvycJv0dHwnzdSEV9Zf5I+jiWlIeQhghoN0NfRGNCMJpIyIvaS8Ja+H1iEVFBtCq0DlMhdTwlvJVEpoqFgdcQ+akgsjjgLhC0xLutMeFaP0HicXiU0AFSCA6zKbruLjCnuAkdPUq/adv95rglk+4PCSoGp+JjS2ithuBInTTrIuJVT3HSdt2JtHCblOtVhLpS+BZSPRUV0zWkoju0WV0fXpcwH9ax07PKElg7halJ1SuPsy6F+Uj9S0XQtJ+APBfUiKBvqC19HPLKQnmKzxThFvtI+AhfREpT5BHXooYYz/pYEQCgLWH/a9gS0iZc1pFfGdtIUMxN0kHsr4bxoeEvfJLxBJmXkLyoaMicSEvq/jPIcyMZk+vQpPAlNESI2Xa7rj69LunzRxJ4q6FHHMLF0LA/1EgEkPtKy6LCZSqsBpyfEfScqqehoYbo2rGe1VR8nakOus7VdUAF45YxBD3n0Qwxzl1MOvRUJ8soJJWVlfB6vba3Qjt27LC9PeotsKaIYRiGYZicCQQCGDNmDJYtWyadX7ZsGY477rg91KrOwW+KGIZhGKaHkyzA5zPLeeO4cePg9Xoxa9YszJo1K2OelpYWfPbZZ+nfN2zYgLVr16Jv374YOnQo5syZg4suughjx47F+PHj8fDDD2PTpk246qqrOtXWPQVvihiGYRimh5M0PGn/TZ0pAwBWrVqVtabo3XffxaRJk9K/z5kzBwAwffp0PPbYYzjvvPNQX1+PBQsWYNu2bRg1ahSWLFmCmpqaTrV1T8GbIoZhGIZhHJk4cSIMI7OD3ZkzZ2LmzJnd1KKuhTdFDMMwDNPD0aFB76Tzxs7m3xfgTRHDMAzD9HAK+fmMcYc3RS60xv3wxQNpc9KEVywmalaqmnA2RUPpY8s8l5qWFxfFpfQ03pNq6mmhmlF6yG7fMpWlMav8iqkrvUZNv61+qOkBERetJSLMmKmJvVeJU6WRlWSVR827vWpsJPJ7POlsOq/GV6Nm4NbYJoh5skdpE41bVVHcnj4O+eJmvXaTXWt8gj5383AKba/VXzqebfGAlL41SlwckP7RdRAKyGuEErfi6ZGxUM2hK4pEX2lbrP56MvgVcAsjoJr9S9c0+zWbmwW/8zXqPoLeV4BsZm09zNt193h9CY+Yzzgp11p7fQKttjx+s+00PY23ta1V1l20EzN0yy2F3yPaqboioKbskum+FMfP45rHip1nkHhn1IwekM3+afwy637w++1rWY0zB8hrXnXboBt2c336XPIp68PNzQZ9Xqom+bQMJ1cJ6rM2RNpL8zqZ4qfzmGuKrrs2EgNSvTdouVb9dJ0mDQ2JeHaxGzuLjs6/6bFGPBeh9b4Gb4oYhmEYZh8iF6H1vgZvihiGYRimh8Ofz7oH3hQxDMMwTA+HBnTtTBlMZniEGIZhGIZhwG+KXGmNBeH1BdNxmqj4ke62W6JyPCUa+8gpxpQqcLTi6QCAjwhW3QSvgCwStESPVNioih5bidg3RuJq+RziXVlYYmQ9JNpBYw2p0PotcXYi4Z6eur3wEeEoFXCrYs2igBCxhktS7QsSMW5jJCyl391clD6uayxOHxcXpWK+BX12gXnSYTwDpA71L62miBDWW8JPKkDVFZE8jREnH7uL0un8BIp0W/usubKgcfqo6DRqCkSdRLBWHUGX2Gc+RUxN+2ilo+nVOtwMB6h4VjUooG238reQtdykhaT0RT5ngXrAFEI7xfor8abOtSVFubtjYq3Y4gh67GNHY9WpMQHdBOr0vleF1vQZEgym0tH1oSljS58z9L7KFBfQaidtRzBD7DkqwraeA5mMQeh94ifrnIrn1fnqKC5ZSDF+oEJtaa2YYmk1PS2vyCvukZBXtEP9vCTFXjOP6Xy1xgLQZW19l2FAy/j/QrZlMJnhN0UMwzAM08OxPp919gdIWZ+NHDkS99133x7uVc+D3xQxDMMwzD4EW5+5w5sihmEYhunhJA3N8RNjrmUwmeFNEcMwDMP0cHR4oHdS8dLZ/PsCvClywaMZ8HoMxEzRY4SIKakQVhU9St6rTU+ygQzekanH4QYiFKaeVVVxHfWMa9WvERE0FVMDskCaijj9ptA44XXy7JwqI0Y8+MZi4tjQ3f/iSFqevImQ2euXBadFYaFOHFjanD6mQsy69mIpT1O7ENZagtd+obb0ueaoLLzV40TES7xHx0xP19GY3TtypDklEm8ggtmyClEH9RadagfxpGuOMxWEVwYjUno3YXE7ERCH/bJykwpGnbxRU4/lKpKw1fSm7lyGfY3KIlN3AaqFz8EzukWCCGGpeNlJsO2EJfSm3r7VNgWIZ+lYUqzViOkFuykhrw8AqIuV2M6V+sWcHVgui7MbYkK83xRLrRW67lRjhLiLsYEueXGXr9E1ZQmii8maUoX1UeJhmd77uuHuhdwSWPcJivVcERDH6jPHab7pnKpepOnvVBBd4hfjqYr36booc1gLahtoG+k69zh4WBftSo1PhDzXVM/alKa4MKSxDDkkj+MeA0aGdcv0PnhTxDAMwzA9HP581j3wpohhGIZhejhJeJDs5OevzubfF+g1IzR//nxomib9DBo0KH3dMAzMnz8f1dXVCIfDmDhxIj766KM92GKGYRiGKQy6oRXkB2CT/Ez0qjdFhx56KF5++eX0716ihbn11ltxxx134LHHHsNBBx2EG2+8EZMnT8b69etRWlq6J5rLMAzDMD0ONsl3p1dtinw+n/R2yMIwDNx11134xS9+gXPOOQcA8Pjjj2PgwIH485//jO9///vd3VSGYRiGKRisKeoeetWm6NNPP0V1dTWCwSCOOeYY3HzzzRgxYgQ2bNiA2tpaTJkyJZ02GAxiwoQJWLlyZcZNUTQaRTQqLCKampoAAAOKW+AvjknWQhZu4QQA2YrHsnrZRazKVEshaq1CLVLa4+J8KCBbBvkcLJ6ovVJEsaqiFjBGUtwUUcuazOE+sSxgdGK1RUMYeP1yP2T7i1R7g35iDRSXlxptU0tMWHgk/aIxhnID0zxWv3e0CeuhhlY5zEcyQUINhEVbSkKp+Y7E7dZnsYAV1sV2CUDKrT+FttGyOisl4SRUS68E+WJNQyGoVoyUUAeWYarVFg1b4GRp5mTlZVn+JJLO1lJquAuKZUWUKewDhV6j94PaLtU6KZVXtEO1dqMWZ7QOK511P1KaYinLMWrJVOITd5NqlRchll6t5rptahPWZ/R+AQCdrMEkuad9ITFHAeX+puE5QmaYD2pxpoYFoeNWHhIWZNa6cbYUTI0ttbzKZD3YlhD3qGVZVuIT67xPoM2Wx4kwCa+hWg+26OLesiwJaRrVqsxPfo/T0EvxkNROivU8d7OAVEMk0ee/NQfFxDrU50kiju6J82EYnk5HuTc4IGyH9JoROuaYY/DEE09g6dKl+MMf/oDa2locd9xxqK+vR21tLQBg4MCBUp6BAwemr7mxcOFClJeXp3+GDBnSZX1gGIZhGKbn0mveFE2bNi19PHr0aIwfPx77778/Hn/8cRx77LEAAE1T/fkYtnMqc+fOxZw5c9K/NzU18caIYRiG6VHo0KB3MqBrZ/PvC/SaN0UqxcXFGD16ND799NO0zkh9K7Rjxw7b2yOVYDCIsrIy6YdhGIZhehJJQ+iK8v/Z073o+fTaTVE0GsXHH3+MqqoqDB8+HIMGDcKyZcvS12OxGF599VUcd9xxe7CVDMMwDMP0FnrNpujaa6/Fq6++ig0bNuC///0vvvWtb6GpqQnTp0+HpmmYPXs2br75Zjz//PP48MMPMWPGDBQVFeHCCy/c001nGIZhmE6RNIXWnf0B2E9RJnqNpmjLli244IILUFdXh/79++PYY4/F22+/jZqaGgDA9ddfj/b2dsycORO7d+/GMcccg5deeol9FDEMwzC9niQ0W0y6fMoA2E9RJnrNpuipp57KeF3TNMyfPx/z588vSH317UXweYKoMAMmlgVEkEhqAttCAgYCwK6oMAu3AkXS4IMhv2x+S4PFRknA1Tgx31VN0ymWOWk8SsyRY7IpquYjASbJsW7Vl3B4YRhLnTNoIFf6PVppkqRnN033o60ieKYnrtRBxnCbTwR+1UigWU0JOushnhB2DUiZ73pDJBCkR/lgTsYt3iLMfXeax07xMr1FZhDfoKistU3MsdfrHtjWWhfUzLk+UiSlp2uHBgMOE5Nr1QTfydS9iJiNF/tkk2AnM/yO8Jh/QVIzeMlUWZlwat5upXM6l85PynULYEsDugKZA8QC9n5Sk20Pqd6qu02X3SkAwjQ7SgKpthNXDep/QjTgqtXHfqWt5Lp871G3D/Ratv+1RaKp/M1eYfavBpim66jMwR0EdSNgYa0f6r4hTI6DylxQ83drTHyaqLfCLwdKThiir21kXcTJedX9g9dhvr2kDnW+6dzQ9nrNwLbNcXsA4JhmBm3WRF+peb46VnQ8rXVEg8Q2tIeRaO+e/0apR+rOlMFkptd8PmMYhmEYhulKes2bIoZhGIbZV0kWwHljZ/PvC/CmiGEYhmF6OEkUIMwH+ynqEN42MgzDMAzDgN8UuZLQvTB0L5pNUR0V4zVFhYBPjbfl9wlh4IH96gDIAsGGmCz+ayZlRduFINEXIAJDRUDsJfF5fKbwVwsLQaAaZ6ytXQhM9YjDlEfte2Mtbv5FQWM5hUW9mhL7zBcUv1ti5GA/IWYsDUWl9EEiJt7ZIuKXNW0VFhGhr+R2+YSeFf7PU33Sg6Jv8WLI6YmOUyd6eL0oNZ6JMrvg1x9Mtau8SAjrd+lCLJ1Myn9pVZBYU1bMs+2twuIxpMTJk+KiEWEpFWerccak+EvmuJX6aDmy+NstXpQ/HaPMrjAPmnmox1s/EblSgSwAFJMYVu2mkJa22yluWfqaS4wt9dU+Lc8S5UptV/7opcJdOrYxs5ymmGwUkcqTuhYneemclftlEXvEJ+6fna2pdUtjn6lCfHqvhgKiXGqYoK6pYJDEXjOfJzTeGRV7A4CPGEO0Jezx3Zxi59H1Y1EfFfehukaomN8SxHvJc60pIT/XaBw6+vyjguigQxtUMq1BSjOpvzWReiY4Ccytc/SeyhRHkK5jj9c0ICHjH9e90HX3dhUSowDWZwa/KeoQ3hQxDMMwTA/H8krd2TKYzPDnM4ZhGIZhGPCmiGEYhmF6POzRunvgz2cMwzAM08Mp5Oez3uzR+sUXX8w5z+TJkxEOhztOCN4UuVLfUAxPLATD9KrsJcJnLcO6DAaEkLC+PSXQpYJRVSRJBX/FJUJ4GPILUWZxQBZ7NhPB6IDiFgBAERGHNkRl0eNWvTx93L6biE3Nfkheq028bWY7o6KzRoyIEwOKCLpKtLEolDrevVson1s/7iOlH7BKCBoHbRQK6pJhor72/nKbNKIXbasym9dPtN3bLrfJS3ScekjUp5uCcc2h34Ypem0k4lnqLby0TPbc6yfemS2BNZ278mBESl/iF41qitk97gKyt2pAFhCX+lPl9Q80O+YFAJ28AKaehePmWvN7nETQpggb4lo0affebEGFuJZo3kfSqN6JqfdjKqimdcQUD8dU9OokDlc9IksiVFK9Ja6NOghvrfsx7iK8VUXK9H6NmB7h48QTfUxxyuwhwmvq/bw0JNZFQhHq+rx2T+duonxAvvcpliCaeqq2sMa9LSEMFagAPqTkqQy0iGse5/ooVLjeotsF7oB9jVBvy9bcNuhh27n072Qd7WgXIvGGiPt/flZ0gLaI6LeH3A/hoNw3nTzn+oXbAMjP390NxUi28X+j3clZZ52VU3pN0/Dpp59ixIgRWaXn2WQYhmGYHk4hY5/1dmprazFgwICs0uYa/5Q3RQzDMAzTw2HrsxTTp0/P+lMYAHzve9/L6VMhb4oYhmEYpofDm6IUixYtyin9Aw88kFP6rDZFRx11VE6FapqGF198Efvtt19O+RiGYRiGYfYUWW2K1q5di2uuuQYlJSUdpjUMA7fccgui0Y69lfZk9HYfDPjQZ1BK0OonIsTWqBDpUQ/WANAeFR5lG+rM8SIeaz0hWbhJPVdTgSX99rujWR739hYi9DPFzAapQ1M8YFf1bxT9op6am1NCcMPhr4eE6aHaaBL9kYTMxXK/B5U32cpo9JFXnIrX3rYB4vfaE4Qg27dfW/rYUPIkakV5SVMs3adK1GsoItdIjLSdlJWWazr80WTNZ4J48g4VCYGs6l28LS7Wwn6lqXEeGBJt8isCYeoxmnqFDpNjZyF0ihJvav50IjJVhaxuHnqtcnWn+TZFrHFSbrsu+hbRZU/JtI6AKUYOEG/FcUUU226I/DEieKbrnHo+VrHSUaGzLY3LX8GW0DoSt3t7tsaCeoGn3qMbNPk1fYAIry1RLr1/dKV9Ghl/N6/U9HkCAGVhcY9WBFLHVHyvzkUR8QxNRdWWN2gnT9DWPA8u2p0+VxUQzwnqSRqQhe4tespAoFkXhgKq+NrN+zQV2TfF5X636/b5oX3d1iZrQ9rJfNI5aGlP3Q9xB+/91rMxGSfzRPJGg3KbdifFs2ljzLT8aBXlGiEdyfbu+eDCb4qy5/PPP8cVV1yBV155Jee8Wc/mddddl7Ww6Xe/+13ODWEYhmEYxhneFGVPS0sLXn311bzyZrUp2rBhA/r3799xQpN169ahuro6rwYxDMMwDMO4cc8992S8/tVXX+VddlabopqampwKHTJkSF6NYRiGYRjGjoHOm9S7f6DuXcyePRtVVVUIBAKO12OxmOP5bMjrY2hDQwPeeecd7NixA8mkrH+4+OKL824MwzAMwzB2+POZoKamBr/97W/xne98x/H62rVrMWbMmLzKznlT9Pe//x3f/e530draitLSUmjEvbOmabwpYhiGYRimyxgzZgxWr17tuinSNA2GanmTJTlviq655hpceumluPnmm1FUVJRXpb0BbzgBT1ECrW0pS4ZYo7DwCdaKYYsWKa7q+4vXdl7Tgksj1kSJVvl1X5RYLsSIZVOEvBZUrcO0etGWZCBVNrUMSwbkNrWWi7K8pC2xFvN8xMFSJGRanwVFeqNC9K2qUrY2294kLEOipgVe/woRGqD9UNkasWmosOqRLOeItU68Vl5fgd2ij0ZT6riprSJ9buAhO6X0Rw3ckj6mIQKa4imrmcaoPcyG9XqaWhtSS6qgEvahLCD6NTi828wrxsyqy4KGUqAWPdRKzLIwcyKSTI0tDY9BjwH3vwbVdFK5ppUPtfZpS4hje5gP0d5ENGxLo65ZGg6FWpD5yFipddDfrVAWNL1qiRYhVm00pEdLNHW/eB2s+uKJ1NzGEmKOqaWirjuHYnFrZ1KX+1Bc5Pwan1qceZRwF0V+ex4a0iITJSS2TdC0BmxP2j8xFJlWaoMCDelz1DJse1x2dteUEONg3UvFxOqtNRF0TU9DidA1FdHd1621fmi/myNyHe0R52dkIpZqn9FqX+9GwoptRJ45ZFnoQXmcDZ+YG82cW61CtkbVID8TuopCvikaN24cvF4vZs2ahVmzZhWied3KggUL0NbW5np95MiR2LBhQ15l57wp+uqrr/CjH/1or94QMQzDMExPggPCCkaOHJnxut/vz1kLbZHdnx+EU089Fe+++25elTEMwzAMwxSaW265BQ0NDZ0uJ6s3RS+++GL6+LTTTsN1112HdevWYfTo0fD7ZYdbZ5xxRqcbxTAMwzCMgIXWmbn55pvxne98BxUVFZ0qJ6tN0VlnnWU7t2DBAts5TdOg67rtPMMwDMMw+WMYmmP0gVzL2FvJV1itktWmSDW7ZxiGYRim+0hC67Sfos7m3xfIWVP0xBNPOMY1i8VieOKJJwrSKIZhGIZhmGxZt24dhg0b1ulycrY+u+SSSzB16lRbHLTm5mZccskle42fouL3wvAGQwjvtL+Si5aL40ilsvMm5q+GOboGMbUPNrrvQ+Pl1DaUBDONyXVQM9FAa8r8lMZjjJVLydGwRZwIVLanj31FqUwJj8NrR036BwCQ3C1MYrfvkOff30wCe5pN332Q+JR6QGWdlH4LOW78SrQvsU3UUbpVcUVAvsw2Hpkyi9V8YswGFLVI6Wkw1rqYCKpbEUiNwX5FDVCxzI1pgFaatyEqBwj1kTqsYJz0u71qBk9/p+kSLgE0AaCZmDc3xsJmeuKCQXklTs3WqQl0qxmAM66710VN55siot6kEpzX5xV1BH0pk2Qa8FQ1f6duDTLVT3Eyoaev/9Wgs9SsPkbqsMzufV77X8nWtURMzAs1sFZN7A0SKBjt9n54ymRzeuLGTQoWTevr36dZytM32A4VGujV53N32SAFYjWHzwP7OPbxtwIAdsSEBRINABxXXABQtwGWW4mGuLgXmuLyfUHXHZ2LCDmvBs+lAbGta20kqDMN8AwAOplvPUb63ZY61uL2+fa2pco1vKI/9Pnq2SW3KV4s0iVDqWNPk3hGFX+lQY92z9sX1hTZ2bx5MzRNw+DBgzFkyBC88847+POf/4yRI0fiyiuvzKvMnN8UGYYhOWy02LJlC8rLyx1yMAzDMAzTGSxNUWd/9iYuvPBCLF++HABQW1uLyZMn45133sHPf/5zR91zNmT9pujII4+EpmnQNA0nn3wyfD6RVdd1bNiwAVOnTs2rEQzDMAzDMLnw4Ycf4uijjwYAPPPMMxg1ahTefPNNvPTSS7jqqqvw61//Oucys94UWRZoa9euxamnnoqSEvFJIRAIYNiwYTj33HNzbgDDMAzDMJnhz2d24vE4gsHU58yXX3457RLokEMOwbZt2/IqM+tN0bx586DrOmpqanDqqaeiqqoqrwoZhmEYhskNNsm3c+ihh+LBBx/EaaedhmXLluE3v/kNAGDr1q3o169fXmXmJLT2er246qqr8PHHH+dVWW9iwLut8Pl0GD5TmEfWkmYIAaphE2+S+D2m9s8gGiy/HDIMPqKp7PehOI4Xi+OEEn4pVk7qtMSURISsB9U2CelYbJcozFsaV5ssaEktDS1B2k5E4oFGObmfhKFpNffLkQZR10ct+0npA8VCkKqVCBGpTgTmTaNlgWi/QaLS71T/DwBQRATRfk32kfVJy6D0cYyIcq2YTWp6APCaovP9gg2iXlOUCgC7g3J4m3bSXkssXR8TaRpiijCbiIepSJuaytZHi6U8O9rEW9n2eKo+L8kb8Mn9oALW9jiJrWceqwJXAPCbZRQFSOw+0tZ4QhG5kjIssXKcxg/zynOnE4EyPabpAn45hhSNg9fYFjLbRISvaqy0ZOYHfixuf9xZeQzS3GRc9MOIy2OlRcnvVvuIxtdQhNkRIq4OBcQ694bEOMeV+aAi5ZApYqex3Dxe2TDCinEGyGMSNxu2X3A3VKIOMfRoLD6/kp4Kr604ZzSunzoX1joF7IJ4i0hCMUJoE+V5zHmmayXaosRwIzEbtZhI57GEzw72IwFT054kz20yfCjbKK/bWCmZG7OP/d8TD/FkwItEIoJ19qqYbuC3v/0tzj77bNx2222YPn06Dj/8cAAph9PWZ7Vcydn6bPTo0fjiiy8wfPjwvCpkGIZhGCY3jAJ8Ptvb3hRNnDgRdXV1aGpqQp8+fdLnr7zyyrzjs+ZsfXbTTTfh2muvxT/+8Q9s27YNTU1N0g/DMAzDMIXFAGAYnfzZ053oArxer7QhAoBhw4bZ3AZlS85viiwLszPOOEMyzbdM9TnMB8MwDMMwvZGcN0WWTwCGYRiGYbqHJDRoHOajy8l5UzRhwoSuaEePI1YWQNIfQKRfaohaBovFlCQqxKSiSIxVCKGepcMM7RBfKYl+FwDgjYkXmtQZbWiXeONmeOSF7CWiQj2QutZGjAETxbJYkHpvBfHymqxLCSaDuxyEt5ZzaJKVtk/VKLcNtKfzNhNfVsVyhhiRcgZLiBfgsBCjloVlz72H9N2RPm4y1ectuvAuSwXRAFDhFyr2loRIZwlT4w5epK1rdXEhbqZiVNVDNfVE/WVrX/OcGM82RaBMPQNTqOi6OR6UrlFPzRbFRBBd7Je9KFOv21SYbAmZozFVRivaRR+aVEytxlqk2gTrME68NMehQPqdJOLlOB1bj9wujaxbfzDV9hhZ+4bqETkgFLO0fXoilc7rs3t2jkdS9Rvtoh3UA73qFdlDDA/SHaf3iKyRlzQgIyu3p48rA2KtrtklGyHQNVNizm0b8Ta9KyprJSpDoizLiAAASjxRM6+8ngBx31Av1j5irZFQxNGSJ3ZzjUSI+LslJtdBRdTUE3V7GxFLK2sqmRDzqZlzQOfY06D8d0XG1tdKhNPm7eCxLUJAM5dIkCg9imuJ8UNUXiNFtaKQaF9TnN6PGNp4NCTi3RMblK3PuoecN0UA0NDQgEcffRQff/wxNE3DyJEjcemll7JHa4ZhGIbpApKGBo39FHU5OQut3333Xey///648847sWvXLtTV1eGOO+7A/vvvj/fee68r2sgwDMMwTIEYN24cRo4cifvuu29PN6VTbNmyBS0tLbbz8Xgcr732Wl5l5rwp+slPfoIzzjgDGzduxOLFi/H8889jw4YN+OY3v4nZs2fn1YhsWLhwIcaNG4fS0lIMGDAAZ511FtavXy+lmTFjRjoUifVz7LHHdlmbGIZhGKY76LTlmSE+g69atQrr1q3DrFmz9myn8mTbtm04+uijUVNTg4qKCkyfPl3aHO3atQuTJk3Kq+y83hT99Kc/lWKf+Xw+XH/99Xj33XfzakQ2vPrqq5g1axbefvttLFu2DIlEAlOmTEFrq6wjmTp1KrZt25b+WbJkSZe1iWEYhmG6Aw4IK/jZz34Gr9eL//73v/j3v/+NdevWYeLEidi9WzgqNVQhZJbkrCkqKyvDpk2bcMghh0jnN2/ejNLS0rwakQ3//ve/pd8XLVqEAQMGYPXq1fj617+ePh8MBjFo0CA1O8MwDMMwewEvv/wynn/+eYwdOxYAcOKJJ+K8887DSSedhP/85z8AILkMyoWcN0XnnXceLrvsMtx+++047rjjoGka3njjDVx33XW44IIL8mpEPjQ2pkI+9O3bVzq/YsUKDBgwABUVFZgwYQJuuummjE6cotEoolFhsWE5oNwx1g9v0I9YH9Mqx0+sp2jIj4Q88E6WXBqxggjvUkIyBER+aolWtOyD9HHblMOkPP1X1qWPdxzfP5VXdAGhnXIbqPGJZJFhVudkEGVZl9HwHdEKcRzpL6en5fpNV/rUUifpV6x4ip3DVJSEREf8XnmsaFgBywKnyCcq7uNrk9LT0AQhr0i3I5ravBf7ZKstAKiPpqzOBgSb0+d0MuH9A/L36/q4Ym4E2cKsb7BdukaFjtTSi1oc+T1yv4NhYVVllR3yinMxxVKIhufoExZjYoVbiAfsZjkxPXWNWrXRtu5OyBZP0Yhor8drt75JKuEu/EHRJ73d+bGj/hFrUEtJM9wODXFhaHK98SixkCKhOjRzPAyHMCD+kDmOITKercJCSv1rM0nigQQaUnV4yDIKHCDPd3FQXOwTEHPxteKt6WOfMt/rGsUfdS3xVFsC5F6gVl+AbO3YGBeWh1YImmTA/kzymPGBaIiQJhJPSF2DskVlqk1RYmG2u1UOZ5MgFpM0VAcNg5KMyeuWWhsmzXAqnjaRxtMu94NE+JGeP17TaFUxRpXo+7GwbE0UEyu6QfLYBkMkvElV6jheLNZH0g/oUR142b2uQsHWZ4LGxkbJYWMwGMRzzz2Hb3/725g0aRL+9Kc/5V12zpui22+/HZqm4eKLL0Yikbqh/H4/fvCDH+CWW27JuyG5YBgG5syZgxNOOAGjRo1Kn582bRq+/e1vo6amBhs2bMCvfvUrnHTSSVi9enU6kq7KwoULccMNN3RLuxmGYRgmH9j6TDBixAi8//77OPDAA9PnfD4fnn32WXz729/GN7/5zbzLzllTFAgEcPfdd2P37t1Yu3Yt1qxZg127duHOO+903XgUmquvvhrvv/8+/vKXv0jnzzvvPJx22mkYNWoUTj/9dPzrX//C//73P/zzn/90LWvu3LlobGxM/2zevLmrm88wDMMwTJ5MmzYNDz/8sO28tTE64ogj8i47Lz9FAFBUVITRo0fnXXG+/PCHP8SLL76I1157DYMHD86YtqqqCjU1Nfj0009d0wSDwW7bzDEMwzBMPlDrsc6UsTdw0003oa2tzfGaz+fD4sWLsWXLlrzKznlT1NrailtuuQX/+c9/sGPHDiST8nf9L774Iq+GdIRhGPjhD3+I559/HitWrMDw4cM7zFNfX4/Nmzejqqqqw7QMwzAM01NJbYo6qykqUGP2MD6fD2VlZdK5N998E2PHjkUwGITX60VNTU1+Zeea4fLLL8err76Kiy66CFVVVXkrvHNl1qxZ+POf/4y//e1vKC0tRW1tLQCgvLwc4XAYLS0tmD9/Ps4991xUVVVh48aN+PnPf47KykqcffbZ3dJGhmEYhmG6n2nTpmHt2rUYMWJEp8rJeVP0r3/9C//85z9x/PHHd6riXHnggQcAABMnTpTOL1q0CDNmzIDX68UHH3yAJ554Ag0NDaiqqsKkSZPw9NNPd6mrAIZhGIbpatj6LDP5+iVSyXlT1KdPH5sZfHfQUYfD4TCWLl1asPr0IgNGyEibpgebhGloUPiHgmIFjqKdwpS1vV8qT4JYq3rb5c+NxRuF3Wh0gDDvNg49gORRTNNHivGv+DxlWqoHhTlt+0DIkKHTRbJ00NfgLtgo/yJl79reX5heR/pQ9wHudVjyfR8xiY0qJvyhsCjAT0zyWyJC3zW4okHKs1+R+N0yJabWFC1K4EtqGk/N7z1mY5sTdi2ZZR5NA2BSk+nt0TLH9AAwKNRky2uZRXcEdRkQUfLQPvo0u/l7QDGfpm4KKE1m0M6ww3XLvDrsJ+0gJtc+xT2CnwRf9Zgm71ESHVl9gZwk5vAeYp5Pg4B6A3IdAVKHFcy2PSrMoROKSbdkrk/M+QMVqbzUVYGF5VpAMg+PEDPwmOJaoEm012da30cqRb0DimST/IFh4cKBzuMXEeEmZHSRrH0YSm7Ilbv3BwDsbBfPhqZoSEpPyx1a0kDOmybkSbs9TW0kZc7cEAvZrgGyywcAaCR1Rkz3ETqZU/U/21g7WcOt5L8Z8pxQ/3v2REnw12jqKnUX4pXjQ4N4CYCXDLsVdJu6OLGwbs3AJjHGDSdVi3aXKRk0ErzYnAL6DNVDBpLe7vkmZcAWQzevMpjM5Gx99pvf/Aa//vWvXUVODMMwDMMUFvZonZmHHnoIAweqbwRyJ+c3Rb/73e/w+eefY+DAgRg2bBj8fvmvWg4KyzAMwzBMd3LhhRcWpJycN0VnnXVWQSpmGIZhGCZL+PuZjUgkgnvvvRfLly93tIbP5yVNzpuiefPmZZXuL3/5C8444wwUF9vDIDAMwzAMkwOF+Py1l30+u/TSS7Fs2TJ861vfwtFHH10Qa/i8nTd2xPe//30cc8wxnTaP21PowZTQ2mMKNqnIL9JPHAcVVZbeSESxkdS2vOxLIV6Nlcri0HhfocL2L10lLhwj4p1F+8jTZMXgAYDwjlSsMCoQjA6LQs5A8hNRoGbGUCqK2v98aB6SErQaJGuS6JITij4zMZAor9vNPvpEud5SZ/EvALS0iYLjEVHhNq+seqSC4qpwKvbdkJBQvRd5ZPX39rjI30pE1UFTRErjRFmEzCByYaIk7+O3xw+zoGJuv2YXaUcN+fNyCVlILUSxGSXxrFo8ASmP30FcTeO6qVChNj2uDKWU71bsKiesGGgAoJM6gj5ZBB32CyGuJcKOBkUf1GdTY5voq88n+pMksf/0uDy2saho+8CyZrMukbdFk4XydO0EysT8DembWiM7W0qgEvem6tTJ+FNxrxGQ741olVjHenHquLJcWBR4lD/FqRCfxhnbHhEWsU3x/aU8A4NNtnb2IzHsVME47VeJX/TbipFWq7lb37a7xdyTp0KK02cJt1vbxfhH2xSDgjb64BCHNB6ipojYJVG1+QiTYpopjzWDtJHeItZ5Q+kDABTvsII6ivY1kf+i1FuNPustoxuaRg8ZSO4tzn96If/85z+xZMmSglrDd9mmqFDmcQzDMAyzr8Mere3st99+BXe5k7P1GcMwDMMw3Qtbn9n53e9+h5/+9Kf48ssvC1Zml70pYhiGYRiG6SrGjh2LSCSCESNGoKioyGYNv2uXgxO+DuBNEcMwDMP0dAyt80LpvexN0QUXXICvvvoKN998MwYOHNizhda9HaM8ASOcgG5+g00MFQJGKujUw7LYUyfKa0sk2DZACFvjyufPks0ivTZjfPq4cX/iLVb5yBmvEm1pH1AEAEgSUXOoWBYcR4jQuuhLcWx5gY30tS+kRLHcBwCIDBBCzEB/2XPvoFIhBC0OpBSRda3C8jAWl5daewsRPheJSkrLRbllIdmFrSWuBoTAutwr6qWiZwAYHCB/JRBt8fq2KjO9XcDsNcugothKX3P6uC2piHuJmtMqzyspMW1VpCkjbnjjHuIxXfEmHCYCcqs+KhzXFd/AFX5RboIIwy0BOPWeraZrIeUmiCfkPsF2Jb24Zgl6qVC3b0hOX1Ui0m9rEQJ4nTykVZFygIi72+KpCSwNCLVt37DsQHZXe1H62OkzQcifsJ3zeFJ1FvcRc9xMvKoXB+V7aUCR8FBtCf/7BcU5dQ1SBgUbHc83xIuk3ze2CXVvn0CbWW7Sds6CejDf1FiRPo7EUn81R3bbvVZrsdR8GH7R3mCFuN98irCeep23/t/xEMG3PyyPbZJ4J0+0iptPuuMi8oNNIyJsa/p87eJc0t0+AD4qtDaLDTba728tnjq37WThUTw2wN0IRKPeqs2mGFQs7jNgBOzrqitgTZGdlStX4q233sLhhx9esDK7TFNUU1Nje5XFMAzDMAxTCA455BC0t7d3nDAHct4Ubd68GVu2iFg977zzDmbPno2HH35YSvfhhx9iyJAhnW8hwzAMw+zrGAX62Yu45ZZbcM0112DFihWor69HU1OT9JMPOX8+u/DCC3HllVfioosuQm1tLSZPnoxDDz0Uf/rTn1BbW4tf//rXeTWEYRiGYRhnCmE9trdZn02dOhUAcPLJJ0vnDcOApmnQ9Qz6BRdy3hR9+OGHOProowEAzzzzDEaNGoU333wTL730Eq666ireFDEMwzBMV7CXvemx8Pl8GDVqFICURdkjjzySVb7ly5cXvi25ZojH4wgGU0LEl19+GWeccQaA1Le9bdu2FbZ1e5AB/RvhKxbCwyTZYcfCQrza5JVXaWywEPdZnntpXlWIWVdDhLukrIq+wktua5ss7j1l+Gfp44/3S0UFrn9zUPpctF3WcnnbxFdSnRQV6ZeqLxlwuNP8Zj8CRKxI2lcUlgWow8vr08f7mYLo+hIhIG1LyH14b8vg9PGgcvGak3rr7auIe9t1obS0vC3XJYRyXfU2Xe4T+alQ1fIyXOpTXOQC6BtIjbuXSEIjxCt1Y0L2gk09Vg8Jpsag2CPKbfbI6akwmx5Tj8FhxTN3iKjdS7XUmqTeu+l1Fdpvy4N2fczu2Vn3puqvJKLhduINm3rpBoQgHRDjToXWPk3+C63MJ+6lg0u3k/aJclqVNUIF5FZbmogX8oBHFrhSj+c+T9J2PCDcAhWnNUC9mYcVUbrTWFMv5UnFKqKZeC0PaaK9Y0s2pI8bdVlo3ZwUeepNy4z6mEjTpHhi/7Khj7hWJ+Y2XJFa/1rCrpIo2mx68iZFGTtE3kiR/EzQh4qxG9ynAQAQ8IrxpmJvAGiKOQv26by0xOT5bonIvwNALCHukURMXoN6lBgRtInjVtPoZLdufyvia06tI+qBf0B/IYAPB5R+RMRcWOu7OEC8hif8SLRGsdlWE5MLFRUVWLt2bc75JkyYUPC25KwpOvTQQ/Hggw/i9ddfx7Jly9Kvr7Zu3Yp+/fp1kJthGIZhmFxh543dQ86bot/+9rd46KGHMHHiRFxwwQVpU7gXX3wx/VmNYRiGYZgCsoeE1q+99hpOP/10VFdXQ9M0vPDCC7Y0999/P4YPH45QKIQxY8bg9ddfz6mOpqYmjBkzBieccAJeffXV3BtZQHL+fDZx4kTU1dWhqakJffqI17ZXXnklioqKMuRkGIZhGKY30draisMPPxyXXHIJzj33XNv1p59+GrNnz8b999+P448/Hg899BCmTZuGdevWYejQoQCAMWPGIBq1f6p+6aWXUF1djY0bN6K6uhoffvghTjvtNHzwwQcoKyuzpe8O8nLeaBgGVq9ejc8//xwXXnghSktLEQgEeFPEMAzDMF2CBqCzn79S+VVz9WAwmNYKq0ybNg3Tpk1zLfGOO+7AZZddhssvvxwAcNddd2Hp0qV44IEHsHDhQgDA6tWrM7aquroaADBq1CiMHDkS//vf/zB27NjsulRgcv589uWXX2L06NE488wzMWvWLOzcuRMAcOutt+Laa68teAMZhmEYZp+ngJ/PhgwZgvLy8vSPtXnJlVgshtWrV2PKlCnS+SlTpmDlypVZlbF79+70W6QtW7Zg3bp1GDFiRF7tKQQ5vyn68Y9/jLFjx+L//u//JGH12Wefnd4pMgzDMAzTM9m8ebP0ecrtLVFH1NXVQdd1DBw4UDo/cOBA1NbWZlXGxx9/jO9///vweDzQNA133303+vbtm1XeI4880jHemaZpCIVCOOCAAzBjxgxMmjQpq/KAPDZFb7zxBt58800EAnIgmpqaGnz11Ve5FscwDMMwTEcUwiO1mb+srKygmh11Y2I5T8yG4447Dh988EFe9U6dOhUPPPAARo8ejaOPPhqGYeDdd9/F+++/jxkzZmDdunU45ZRTsHjxYpx55plZlZnzpiiZTDp6idyyZQtKS0sdcvROxvbfhGCJH/38Kb81bSQaYR3x8/JlcR8pH/XJUWYGr6S+OSIJechjfWXfOhYlfuELI1kuL65xpcLHyedNqbd11D2KPyT7b/HvLwRu7SQ4o9f0RVRRLAdeBYRvJep7ZkCx8FVSGWqV0lM/NFEzQOhBxcIfzftNg6X0w/oLv0bUH9GAoAjMGVd8vtAgrZZfn62RivS5wWaQWAs6Z5Gk8LlTFUj5JaksaobKLr3YrFvMC/UJVBq0j5WF7vA1Oqj4tfEYJIimIcbWT3zYUL9IAOAlT0KrT16HYLZOqH5zAKBfwO6vx/I1VER89ASD7v6PaLlWUF6n/luENFEW7WuA+DNS+607tJ2ipqfzXUECBVvzR9eARakZlNcL5/GMGPIff7QOK4At7U9zUvYhVBOoSx/T8aG+rGhb1TL6elP32aCA8JfzVVR+5rQlRL/aI6J95UWptRots/e79YDUPRooFfPt8YoxML4qltLHyO+R0lSb6DNKDTJcXSZ8/1T4Rf/ofaX6vqLBi9vNuVL9XUl9IH6tqJ8va16cgvNazzXqf6p/gD5z5OdxU0KMu1UevR89WhLRljgyK2YKhKF1Psp9gU3yKysr4fV6bW+FduzYYXt71BXU1dXhmmuuwa9+9Svp/I033ogvv/wSL730EubNm4ff/OY3WW+KctYUTZ48GXfddVf6d03T0NLSgnnz5uEb3/hGrsUxDMMwDNMLCQQCGDNmDJYtWyadX7ZsGY477rgur/+ZZ57BBRdcYDt//vnn45lnngEAXHDBBVi/fn3WZeb8pujOO+/EpEmTMHLkSEQiEVx44YX49NNPUVlZib/85S+5FscwDMMwTAcYRuqns2UAwLhx4+D1ejFr1izMmjUrY56WlhZ89pmIorBhwwasXbsWffv2xdChQzFnzhxcdNFFGDt2LMaPH4+HH34YmzZtwlVXXdW5xmZBKBTCypUrccABB0jnV65ciVAo9ZYvmUzmpJnKeVNUXV2NtWvX4i9/+Qvee+89JJNJXHbZZfjud7+LcDjccQEMwzAMw+RGATVFq1atylpT9O6770pC5Tlz5gAApk+fjsceewznnXce6uvrsWDBAmzbtg2jRo3CkiVLUFNT08nGdswPf/hDXHXVVVi9ejXGjRsHTdPwzjvv4JFHHsHPf/5zAMDSpUtx5JFHZl1mXn6KwuEwLr30Ulx66aX5ZGcYhmEYJhf2kKZo4sSJMDp4RTVz5kzMnDkz31blzS9/+UsMHz4cv//97/HHP/4RAHDwwQfjD3/4Ay688EIAwFVXXYUf/OAHWZeZ16boj3/8Ix566CF88cUXeOutt1BTU4M777wTI0aMyFrM1NMp8UYR9CbTgtZKvxDjlfuEcHB0yRYpHxViNiZSzixpQNhKvyxypQEjt0XL08c0GGdDVH4D9++6UeljKxBjdLgQboY9smi0tVHk9waFKNQSO1PBpMX+JSmBqCWaBoBiEjwzoQgS+/iE8NoSK1JBYk3RLil9ZUCkp0FLVaEjpcQr6rdEs3ScamPyXz4DiIDy6OLPSR2pPtXr9sCodWYAzr6kP3T+AsrY7kqIMqzAoB7S74Ami96lQLMQbaci3IG+RikPFSM3mMFDqcg4qgiIVXG3RV9fi619Fuk5I3MRJOJoryJapUJhv9JHJ2i//aQ/VICtCqtpW6wgqVT4rCsPeGteAXlNWXX7vfZ2WmNLy6J1NCjBWpMO/6mUEoFyqafddl20jwSSJve9Orb0mWCJsK25A4Ahfvle2i8oDAwOrxAWwKXmevQPsYuVjylK3Q+Ld49Jn1tdPyR9rJfI4u9tn/YX10xjkh1tYu1vN2Qjm5Zice81EZH48CIhPKf3GAAUkTXVlgya/4q5cFvXKpYRgNOzxLpH3dagimV4AYjnOX3mlHij8HuzaxfTNXz3u9/Fd7/7Xdt5ywIu1y9YOQutH3jgAcyZMwfTpk3D7t2705Zoffr0kQTYDMMwDMMUBs0ozM/ehJvTSV3X02+KciXnTdG9996LP/zhD/jFL34Bn0/8ZTZ27Ni8fQ0wDMMwDJOBAnq0HjduHEaOHIn77ruvW7tQaO666y48/PDD0jld13H++edj7dq1eZWZ8+ezDRs2OIqWgsEgWltbHXIwDMMwDNNTyEVo3ZNZsmQJTjnlFFRUVOA73/kO4vE4zjvvPHzyySdYvnx5XmXmvCkaPnw41q5da1OW/+tf/8LIkSPzagTDMAzDMBnogc4b9zRjxozB888/jzPPPBPBYBCPPvooPv/8cyxfvjxv55E5b4quu+46zJo1C5FIBIZh4J133sFf/vIXLFy4EI888khejeiJ7IoXIRAPpIXR1X4hZqzwijdim+P9pHyWGA8QQkIqEFRFfZbwDwC+Ft6aPv64vTp9/HcirAaAhs1CkO3vl8rvDQjhYCwqC289fnHtGweuSx9bnlyLiIBZbWeItJ16dqYCSEAW71rCW5r3gKAsUP4yRoSbxBstFUe2EG+yKpZQcmz5xvQ51TMwhXoJ3hJLxdVx8ph8QCjlhZuKjHcRQfaGSH8pfZQIni2hqJ943qaCZEAeE1o/FfQmla/aHtKWIYF6qKiemluTwicH7bc1Zh4H783WuFMBqioAdqsjbhRJZTi1iXoXpmJlOh5qnjZSh7VG2nTixdgmtCYekXUiyM4QWZx6UbagnpbbEso6J/2ImXl9RNStenYOEnF3nNRFjRaoN3hAvs8sQX2pR6RRBcT9fULUfFzRp+njtZHUH66q2B8QY9IQF+tuYJEQc6tj2zJEjLtmjsHuFpE32q54YScGCdTjdm27EGT7FK/sfYPi/g07iJdVD9gUOp4W1OO1heVdmxpttJA1pc7FThK9oNl8HtF2R5M+xOJ2Q5UuoYAm+XsTEydOxB//+Eece+65+NrXvoZXX30VlZWVeZeX86bokksuQSKRwPXXX4+2tjZceOGF2G+//XD33Xfj/PPPz7shDMMwDMMwmTjnnHMcz/fv3x8VFRW48sor0+cWL16cc/k5bYoSiQSefPJJnH766bjiiitQV1eHZDKJAQMG5FwxwzAMwzBZwm+KAADl5eWO50899dSClJ/Tpsjn8+EHP/gBPv74YwDo1CsqhmEYhmGypICbolzCfPQ0Fi1a1KXl5/z57JhjjsGaNWu6xYU3wzAMwzCFZW+xPusKct4UzZw5E9dccw22bNmCMWPGoLi4WLp+2GGHFaxxe5JdsRL4owHU+VNiaepRNkSEi1QUCcheeC3RKhWvqiJJ6oW3TROiTirwqyptkvI0hMW1RDRVXqhYtKM0LIsO+xUJYXiZT3jcHehPeU6m3pEtLEFpjLQvknD2wAzIXpUbEylxL+2rKpKk1+j40HTVQdmzs+Rt2cG7LfUuDQAftQqxehUpyxKXnlD2P1sZg0xv0u+1D7NdA4DdCdnDsSrMBGTxcIMu3x+NMZG/nAjDhwV2po9VAbjlzRkAdiZSDzI6ZqpHaSqQpiJb1TszZYfpDZzOCxUVl3rlflKP0V+297OlV0WuDTEh+KbCW+oxvTUmi5rjCdEWy4tyQhdjk9QVQTrxLB3w2b0460m74LqtOTW2Hp/Iq3mIKDyhiPHJX+qaN/WLjxg5FIXk50HjbjHmRlKURQ0jgkqe4qD4vTiQOj6kYnv6nCpC3j+0I31M14q1ppw8Nr/UNBqAPI/Di4WI//MW+StAM/GK37zdvM98YjA8zfJzbWeQeHovEs8jKuBua5fnm467hY/MaVKZPw9JT6NQ9DW9ce9ssnus1835LCZtonW0K0YqGqkyFEiN44Bi8X9BiS+GeKy7hNZsfQYARx11FP7zn/+gT58+WaU/4YQT8PTTT2O//fbLKn3Om6LzzjsPAPCjH/0ofU7TtLRLbcvDNcMwDMMwhaEQHqn3Bo/Wa9euxf/93/+hb9++WaePRu3WiW7k5byRYRiGYZhuhIXWaU4++eQOg9RaaFpub8dy3hT1Bi3R/fffj9tuuw3btm3DoYceirvuugsnnnjinm4WwzAMwzCdIJ8XM4MHD846bc6bohdffNHxvKZpCIVCOOCAAzB8+PBciy0YTz/9NGbPno37778fxx9/PB566CFMmzYN69atw9ChQ/dYuxiGYRiG6Rxd/WIm503RWWedldYQUaiu6IQTTsALL7yQtRCqkNxxxx247LLLcPnllwNIBYxbunQpHnjgAdeIugzDMAzTk9FQAE2R+W9vNsnvauxxDjpg2bJlGDduHJYtW4bGxkY0NjZi2bJlOProo/GPf/wDr732Gurr63Httdd2RXszEovFsHr1akyZMkU6P2XKFKxcudIxTzQaRVNTk/TDMAzDMHsrq1atwrp163hD5EDOb4p+/OMf4+GHH8Zxxx2XPnfyyScjFArhyiuvxEcffYS77roLl156aUEbmg11dXXQdd0WCG7gwIGora11zLNw4ULccMMN3dE8hmEYhskPNsnvFnLeFH3++eeOTp/KysrwxRdfAAAOPPBA1NXVdb51eaKqza3Pek7MnTsXc+bMSf/e1NSEIUOGIKL7oOs+bImkPgGWEH801I9MUgk2SX3PWH5zqB+ZIYFdUvrauHBZToM+Ul8kJT7ZD8b4gz9PH+9oT9VRFhAmhxFdnlYaaLHIK8raFq8AALTpsr8QACg3/RnR/jQSPze7E7L/naa4PXhruy58fniU975WYEYAaCUBGXVy02YKAGn5h9oWq0ifU33pUN9ENOhj2BwDj2YPjLo2ktKdUT9IhwRFoN6IIbdpa4R8IjaHMUB8CNG8AFBK/FrtJD6MqF+kRsUX0vCg8GFU6k3Nixd2f1jpZpDfaUDaoJ7qU6ODvyJrfpJ0bZMps/nXImvGCpQZIfNNfREBQHNMjH80LsYwppMgsjE5TyJO6jTXhR4X7TOi9mCu6Tr8ZG4d/N9Y+EOpe5OqASR/Qn5lbAPiXu5TnJqL+mYxj7riOylcIsa/hPgjov1WjWhKgiJPezw1zjuj7oFUDy36SpRL1udpRXYfWhb/bUvdf1bQagDYRe5pNSAs7Ue75f9HJ/6c/HIn6DhEYqJNdAwMxT8T9RcU9qfWqkHaoSflsW2NkqC/JN22evOZ6rAB0MxAta1tYj36yRxrynPK8k0EiKDX7XGxTn1aEnHd/hzpEtj6rFvIeVM0ZswYXHfddXjiiSfQv38qYvjOnTtx/fXXY9y4cQCATz/9NCe1d6GorKyE1+u1vRXasWOH7e2RRTAYRDBoj6bMMAzDMEzPJxaLYceOHUgm5Q1qPsZVOWuKHn30UWzYsAGDBw/GAQccgAMPPBCDBw/Gxo0b8cgjjwAAWlpa8Ktf/SrnxnSWQCCAMWPGYNmyZdL5ZcuWSZ/7GIZhGKZXYRToZy/i008/xYknnohwOIyamhoMHz4cw4cPx7Bhw/K2gs/5TdHBBx+Mjz/+GEuXLsX//vc/GIaBQw45BJMnT4bHk9pjnXXWWXk1phDMmTMHF110EcaOHYvx48fj4YcfxqZNm3DVVVftsTYxDMMwTGdgj9Z2ZsyYAZ/Ph3/84x+oqqrK2VGjEzlvioCUZmfq1KmYOHEigsFgQRpSKM477zzU19djwYIF2LZtG0aNGoUlS5b0CqeTDMMwDMNkx9q1a7F69WoccsghBSsz501RMpnETTfdhAcffBDbt2/H//73P4wYMQK/+tWvMGzYMFx22WUFa1y+zJw5EzNnzuxUGdtayuBNBhHwpkR4LQkhJKbBT1t0WWA8wC9M+q3goZkEw23JjvVMLQlZCN0QEcEZK8MpoWSJzz22SzERV38VrbBdL/Ha81ri6xIiXq70NaeP1aClVOhoiTSHF+2EGzSobl1cBG5sS4q+Bj1yoFMqarfSJYgAWA3OS9tORdiWiHo7EbmLtqQErZV+0VcaSFUVQVOxthXcd2dCiGJDmtym/qQdg7wisOThoU3pY68ipP1v2/6kHylxLw3Iawv4Sf4apAFhBwVSwvMdeilULAOAJt0umE+1Sf4TkwqvDwqnNHyZDBAi5J6hAYjbiABeFXM7Qe8lNT0VBzsFHFbF/oDz2qd1UIE+IBsPlJj3VUuFWLNN8bCUnho2+DxC0NtGAub2C7ZIeWiQ4a/aKwAABxaLoK+bInLMJ7re6FqNG6k8zUm5TQCwYudBAIDDK4RIe1dcCK23tcjGNAG/WEftViBYqkEPy2uWCpb9JDhvn7AwsKgIyELwIvIMs8an1E/uYSX4cgMZa/VZAQD1UXtA2FgytS6oMUqCCLibIvL6p3/vN7aFbOeaoiHobdnH1eoUBRRa7y1+ikaOHFlwo66cNUU33ngjHnvsMdx6660IBMTDYPTo0WlNEcMwDMMwBaSAmqK9xU/Rb3/7W1x//fVYsWIF6uvrC+JzMOc3RU888QQefvhhnHzyyZJO57DDDsMnn3ySVyMYhmEYhnGHNUV2TjnlFAApX4kUyw2PrutO2TKS86boq6++wgEHHGA7n0wmEY/HHXIwDMMwDMMUluXLlxe8zJw3RYceeihef/11m3D52WefxZFHHlmwhjEMwzAMY8IerW1MmDCh4GXmvCmaN28eLrroInz11VdIJpNYvHgx1q9fjyeeeAL/+Mc/Ct7APcXuHaXwhEOor00JDtf1Ec4fR/SrTx8PKd4t5QtqQvxX5yD0ixqy195tESFopF6sPURRN7bPJinPu7uFQ6rtrSmRpSUgBOweb6kY2EvKtbxKl/vaoGKJlqmoPAJxPNDfKKWnQuZGPTUGVETblJAFjNRzsk5EuVQwqQrUqejVyk/Fq1+097f1w4Kms1DFwwDQx/Tw+0GLcD76UtvI9LHNM3egPX28w/Q6HCB1qV6zaf/oGJzW9/9EmZo8HzSd5Y2arg8qYgaAMjIXVJDdlEzNQSZBM/WATY9jiidvKuC2oJ61ixWBOZ3jVhfjgohybyRJ22Nmm6m3bl15wDcQD+FU6G0JwJ08eTebwnIqbm+Ii3SZjCTqYqn6WuKiP/Q+BICmmHNfi3zub9W/bBNC6o92DgIA7CgTz5KdrfJz5b8J8Qfq4IqG9PED274OADhh+Be2Okr8qflZullY7Rw1cEv6uDQoi5rbY0LMXVad0moUEW/PelLxgE2u9Q8Lr9llfnG/JBVjDSpSjyRS454gaeLK2Na2izbR+9LyFr6j2W5QYHlTT+rEMCRBvKTXy/Plido3Edv7iGeZ5gGS7e6ewwsKe7R2pKGhAY8++ig+/vhjaJqGkSNH4tJLL0V5ud2QJhtyFlqffvrpePrpp7FkyRJomoZf//rX+Pjjj/H3v/8dkydPzqsRDMMwDMMwufDuu+9i//33x5133oldu3ahrq4Od9xxB/bff3+89957eZWZl5+iU089FaeeempeFTIMwzAMkxsstLbzk5/8BGeccQb+8Ic/wOcz3y4mErj88ssxe/ZsvPbaazmXmdemiGEYhmGYboQ/n9l49913pQ0RAPh8Plx//fUYO3ZsXmVmtSnq06dP1l6rd+3a1XEihmEYhmGYTlBWVoZNmzbZPFpv3rwZpaV2TVk2ZLUpuuuuu9LH9fX1uPHGG3Hqqadi/PjxAIC33noLS5cu3SNBYLsKX50fnpAfAdP/kx4UItAP9xOCwC/69JPyVVcIAXJZICVUpR5TqYdWAKgMCG+2VGhNBZ6qh+P9ikQdO1rtYm6fR05PBY0+UocljFUFj4Dw1E0FslHizVf1Hk3FvjtMUWaCCCObE+6eu/sE2kg6IWIsCsh1ULG21WYqXFbF1LT+WiJot0S4dF4sBoZMMTLJ25YQfVPHtiEm1oLl/Xy/sJifuFIH7cOnjUIYvq39xPTxAaWyJ3DqRdmaM+qtWxVOx4komnoIt0TXpR67MDRkevn2QvSvXhd5/ZrqXdwugqbrqEFJT0XtVCDtJHZXywXE+oprzn1LpRfXqHdry3P5zpj9Xtlurguans53QFlTXzUL8WZ7NJUuqYt+e7zy+kjERR/0dtE+zSfSfeirlvLoUZHHW5+q4/N4H1FmiVxHoFHU//FgIRIPfZEan8hQWcAOAPfVvAAAOL/9wvS55evEfyxjDvxSSh/yivlsNoXlVOxfrgizafqAg7dpAKiLFEu/N8bEvdEWS7U9mcFaKhoT4xmLij6mx89hbWle89wusXa0hKjDF5Hro0VYTQluE3UlA0AykrsvnLwowOezvc2j9XnnnYfLLrsMt99+O4477jhomoY33ngD1113HS644IK8ysxqUzR9+vT08bnnnosFCxbg6quvTp/70Y9+hN///vd4+eWX8ZOf/CSvhjAMwzAM40IBP5+tWrUKZWVlmdP2Am6//XZomoaLL74YiURq8+33+/GDH/wAt9xyS15l5mx9tnTpUkydOtV2/tRTT8XLL7+cVyMYhmEYhmFyIRAI4O6778bu3buxdu1arFmzBrt27cKdd96JYLDjuKJO5Lwp6tevH55//nnb+RdeeAH9+vVzyMEwDMMwTKcoYOyzvY2ioiKMHj0ahx12GIqK7P7IciFn67MbbrgBl112GVasWJHWFL399tv497//zQFhGYZhGKYLYJP8FOeccw4ee+wxlJWV4ZxzzsmYdvHixTmXn/OmaMaMGfja176Ge+65B4sXL4ZhGBg5ciTefPNNHHPMMTk3oKfibwa8McDSi3qI/i64lXh5Dsoiu0HVzenjqlBKpb2hVbxBU4WD+4Ua0sfbYkLESb1hl3ijNAv6+oWH2OoSeyRgtY76mBA0xokYdoCpIq+L2wWo1Hu0BfVY3OaRRa7tRJS7rT3VD8uzLGD39EvbSMWsLUSQXR+VhZg0nVVeQ1SIM0M+Z0EnANS1kjEw8zqld/NAbKEKrS1xNQD0D6bmfn3TgPS5lrg8TgeW1aWPa0qFN/R3NgmvxLUtstVEZbGYb0sY3C8ozlGxPiCL9KkQ3fJc7uTROp6wi6Vpukpfs5Seesq2xNnUq7C6Bqm3aurp3BJ4A7J4PNUPkSdopqPlOnmoFnWIcd8SSYmUd0Ts67zZnG8/WVtNZE3pilC+cbeo02hNtc/wizWhtStj6xFj4m0lZZFDKvQFgABZllZ36SPAF5HbFGgQx4liMWbWVK565yCo/NI/BQAwd8SS9Ln/qxJrcPHmI6T0fcLCGKJPMOWVuj5CRN1e+V5qIl6+i3yivUUQxhMN0bCUx0vurYgpoqZGz5GI4vGceqImHqphzoEnYv8QYtmsaPSxTdaU4VN2DWRurLxUN+6LALr8eGa6mPLy8rQ1fFlZWdaW8dmSl5+iY445Bk8++WRBG8IwDMMwDJOJRYsWpY8fe+yxgpeflaaoqcn+NiITzc3NHSdiGIZhGCY7WFNk46STTkJDQ4PtfFNTE0466aS8ysxqU9SnTx/s2LEj60L3228/fPGFPQghwzAMwzC5Y2mKOvuzN7FixQrEYjHb+Ugkgtdffz2vMrP6fGYYBh555BGUlNi/yTsRj7tHgGYYhmEYhsmX999/P328bt061NbWpn/XdR3//ve/sd9+++VVdlaboqFDh+IPf/hD1oUOGjQIfr/diyrDMAzDMHmyl73pyZcjjjgCmqZB0zTHz2ThcBj33ntvXmVntSnauHFjXoUzDMMwDFMAOCBsmg0bNsAwDIwYMQLvvPMO+vcXIZMCgQAGDBgAr9duZZsNeVmfMQzDMAzD7AlqalLuI5LJZAcpc4c3RS4YWurHa2q4aPxTGp811iD7ofnfLrFj3RyoAACUB4T/FTX4KvVNRIOh0uCmqs8X6ntmREnK701tRJSj+gTyac4Lpz6e8ofTEA/brjWagU5pO6ifoAp/m5T+ixbhi8kK7BhLkICNutwm6tOmIWKvH7D7iDHIXzmWawp6Lqmkt3zvAECC+jQx0zUm7P4twiUppyNlYeF8pDzUnj5WA4TSsf2qrQIAsIv4b9nRIPsc2tEsfk+QQKJ6XBzXN8jaPSs4JgD4TL9IsTISaFRZHy1xEjiXBPTdv3inec7dvuLL1r6O59VguyESWNgK6lrsdXfYQn0e0fVM/VuV+WQ/RXSNtSvBXwHAp8ltouuY3mfW/eAUXNRah3Q90nXT0hKS0hskqCvM6j0xkV5LKgFF48TPDV2/UeIbR/2DlgYhta6RYlUXYgly+1R8TPw4HZgqKLDL3u9VTxwOAPjfmeJ59Zv9/yYSDJHT/2fnweljy1fXfsXCKtmjPGP6BsXcSYGu9ez+y/H7UoObIM+NZFxet0kSONdD/UNZ4+fgvsZaFtQfkUYlsJqanqQzfSHRrhq65OaoSymk88a9JSCsxbp167Bp0yab6PqMM87IuSzeFDEMwzBMT4cDwtr44osvcPbZZ+ODDz6ApmkwzL+SLYeOuq5nyu5IzrHPGIZhGIZh9jQ//vGPMXz4cGzfvh1FRUX46KOP8Nprr2Hs2LFYsWJFXmXymyKGYRiG6eFw7DM7b731Fl555RX0798fHo8HHo8HJ5xwAhYuXIgf/ehHWLNmTc5l5vWm6PXXX8f3vvc9jB8/Hl999RUA4I9//CPeeOONfIpjGIZhGCYT7NHahq7raf+JlZWV2Lp1K4CUEHv9+vV5lZnzm6K//vWvuOiii/Dd734Xa9asQTSaElc2Nzfj5ptvxpIlSzoooXeQ9AGaH7D0nSRuJfwk/uaAVbLKbme5ENJqpkivvY8csJNS4hfi1FKfOB5duiV9vCMmf/v9rJWYH5oCWCp8Pahku5R+oL8xfby+rSp9vM0MLuokQLXEqVSA2hQXvqdq22UB8a42IS6OmgLraFwsr0RcVpMaRJAaCArhuE7Exz6f/D04TspImumSEbKE2+Q6/E0kaCkJ4hgvM787D5CFvQDQpzglqm4l4uZ4mwgmWxqQxcRbSABZj/nEkYTSanxJr2hTdYWYF2n8YrKPr2hU9FE3g2tuaRLC+ogiXh0QFuvtq1aSzpyXpIMC1QroSQXxtFxV9J4gQuawLy6VAdgD57oF2q0I2ufAggYvtoTTzSRgMF3zAJAgBgZycNpU3iKf3amsx+FP5/4lYvwM5d5oI8Jb3RJdt5DxV4qjxVNBNTXc0MNyJi8RYaenigynX4miFKsg14j9Q591qX+ba2CjpcYUmP+1On3uipMvSh9/7+BVUvrhJfXp43ozWDVdA23xoGv6ZiL8p3n6hmRjjbaEWPdWEOR6cu9pXnmcNCKWNvzkWgYZiSWWlqaV5lXmWyPPjaSVjqYxgGTuspX8YJN8G6NGjcL777+PESNG4JhjjsGtt96KQCCAhx9+GCNGjMirzJzfFN1444148MEH8Yc//EFy0Hjcccfhvffey6sRDMMwDMMwufDLX/4ybZZ/44034ssvv8SJJ56IJUuW4O67786rzJzfFK1fvx5f//rXbefLysocA7MxDMMwDNM5WFNk59RTT00fjxgxAuvWrcOuXbvQp0+ftAVaruT8pqiqqgqfffaZ7fwbb7yR9+sqhmEYhmEywJoiG5deeimam+XvyX379kVbWxsuvfTSvMrMeVP0/e9/Hz/+8Y/x3//+F5qmYevWrXjyySdx7bXXYubMmXk1gmEYhmEYJhcef/xxtLe32863t7fjiSeeyKvMnD+fXX/99WhsbMSkSZMQiUTw9a9/HcFgENdeey2uvvrqvBrREzE8qR/Leyx1nks9ygYbZUGpbwvxJjwsNVlN7eKcrni03r9CCBKpsLQuLoTMeoa9qyWSbiJixoOKZUFpoy5EvLvi4ri2LVWHKqIFhBi3nYh+dUn4Kr+abI+KdHFTGEw9zsIj/4niDwsFYzwmlqGXiKtVkWuijQiQzWueZlGHv1HuBxVJ0iH0tZrlbrB70t5m5SXt9XrFHDc2y3n6lgmxaHN7amF4SPpEgyxAjZA+bNgp5gIhd7WmoYtxSJrjRkdzY0ullH5nsRB6t7aKdVFUlBKJ9zNFrBTLMzcVYdN1oSnv3amX4rZ4QPoXALyK0JquIy8ZWyp0LvHJIvZG4qG6LZEqm667iC4L0qlInPajzO/uadsJKsguC8tC8JBfXGv0pdoXI2vLaFfcU2vkIvWEnCEsE3HynfaonCDafW+7fF+EdorjdrIUkr5Uuj7r7R7t60el2uVrF+Nf8Xchan6zUn7rf3TfL9PHrabYPZYU9y0V2dM0ANCm272RA8Ch5duk39fsHpw+3t2eujeo4QW9rwBACxExvU9cS5oCeC3i8PnEPOX2GclQnlOak7tqksbwaDByfrWQJyy0TtPU1ATDMGAYBpqbmxEKkf9jdR1LlizBgAED8io7Lz9FN910E37xi19g3bp1SCaTGDlyZNosjmEYhmGYwsKaIkFFRQU0TYOmaTjooINs1zVNww033JBX2Xk7bywqKsLYsWPzzc4wDMMwDJMzy5cvh2EYOOmkk/DXv/4VffuKmI2BQAA1NTWorq7OUII7WW2KzjnnnKwLXLx4cV4NYRiGYRjGBf58lmbChAkAgA0bNmDo0KF5W5o5kdWmqLxcOIAzDAPPP/88ysvL02+KVq9ejYaGhpw2TwzDMAzDZAd/Pkvx/vvvY9SoUfB4PGhsbMQHH3zgmvawww7LufysNkWLFi1KH//0pz/Fd77zHTz44IPwelNqQV3XMXPmzL0i6q6K4ZP/VWkdKCsmB70tBIeb+tszNSqenWNl4veNzeIVYG27GEtV1EwFpe2muFUnHqKXRQ+R0lPRa4lfuNK1hLQJB6VgzPR+3EY8O8eIIFpTBIl6gnii9utmueK66o3WcLk5EzHRN69fEYgSj9XeSKo+LS76bdNEkuGnQnlLgB2qs9ffMDCVyVciBLW0TclGWTS6vUkISjW7nhWeiDy2nqhLe5tFOr1cFl3TZFb90ZBok6aMU2ubaJNBLrW2pM77fe6ibuqxO0xExeoa9JHO+kyv1DQNXaMAUBYSguWAV9Q/ICS8RzutQwtLkC15WHfxkq22xRJal/nt3rN9mingdvDyDdi9Ln/VLP5AtO6rojJh/RIPy/d8ghgbUMODJLlfkFC8KJPpSXu3JvMY6yvPtycuyir/gozPcCuvfVyLTKf3HlJX/aGiHe2N5VL6L0JCwR0zPZ1XhxvS5xqIAQcA+EnBA0NN6WM6L9sich30WrG5DhNU7K94/o4Q4w5qCOAxnzXJsH1OdXMONDJmWkyk03QlDxk6p/ub6X6OOOII1NbWYsCAATjiiCOgaRoMh/9QNE2DrufubjxnTdH/+3//D2+88UZ6QwQAXq8Xc+bMwXHHHYfbbrst50YwDMMwDJMB/nwGIPXJrH///unjQpPzpiiRSODjjz/GwQcfLJ3/+OOP0+62GYZhGIYpILwpApAK9up0XChy9rBwySWX4NJLL8Xtt9+ON954A2+88QZuv/12XH755bjkkksK3kAA2LhxIy677DIMHz4c4XAY+++/P+bNm4dYLCals0z06M+DDz7YJW1iGIZhmO5CK9APAIwbNw4jR47Efffd151d6BLWr1+Pq6++GieffDJOOeUUXH311Vi/fn3e5eX8puj222/HoEGDcOedd2LbtpTzraqqKlx//fW45ppr8m5IJj755BMkk0k89NBDOOCAA/Dhhx/iiiuuQGtrK26//XYp7aJFizB16tT071QkzjAMwzD7OqtWrdorNMDPPfccLrjgAowdOxbjx48HALz99tsYNWoU/vznP+Pb3/52zmXmvCnyeDy4/vrrcf3116OpKSWg6+rBnTp1qrTRGTFiBNavX48HHnjAtimqqKjAoEGDurQ9DMMwDNOt8OczG9dffz3mzp2LBQsWSOfnzZuHn/70p3ltijrloLysrGyP7TYbGxslh00WV199NSorKzFu3Dg8+OCDHeqcotEompqapB+GYRiG6UlYJvmd/dmbqK2txcUXX2w7/73vfQ+1tbV5lZnzm6Lhw4dndJT0xRdf5NWQXPj8889x77334ne/+510/je/+Q1OPvlkhMNh/Oc//8E111yDuro6/PKXv3Qta+HChXm7A2cYhmEYZs8wceJEvP766zjggAOk82+88QZOPPHEvMrMeVM0e/Zs6fd4PI41a9bg3//+N6677rqcypo/f36HG5JVq1ZJ4US2bt2KqVOn4tvf/jYuv/xyKS3d/BxxxBEAgAULFmTcFM2dOxdz5sxJ/97U1IQhQ4bY0hku/ipipXK6EhLjMLQ15Ucjvr/wXeTxyVt16pujutjZn8fGJvmNWGtU+MrxmUESvaRR9a3FUvo+xcLXCvXzYvlmoT5FLMqLUj5dSoNiidCAnw2tcmDUJNko64mUuwYa0NVQfLEYJNCjLyT84RjEL0l8t+yHxkt8/qR9uZBi1SCbesAg6UVCj1ld0mH1B7ebc0YCe3qIHxOf0o+knwSONX3KJIrJAlH8ngQaiU8UEkOTxP+Frvw15yklAX7Nax4aADMhv/ClPlu8AdIWs2rqJ8gi6Es1pi0hfL80R0WQxYBPDvgZJkFTfaa/Hrpm40l5MtTgvhYtJHBov4A9UK1FyAxAmyDlFvlkQwvVl5Ka1+vwZ7JVBs0r3SNeJfhqhRiHXdHUPUDHKeaXxzYeEO1NFIl5ouNB/WABgE5+T5jrx19HAuq2yfMdGSjmWCP3T6DB6hBseM2hjlSQdhD/WM27ZL9DgSrR71Jf6tkQJTeQ6mNqcGB3+rjSL3xRbY+LLws04K9K31DK91NFUPiWaonLPsLiRWKc6LPJej62t9kD0XpDqX54S8WYUR9rerv8UNDIc8C6v7stAKwKfz6zccYZZ+CnP/0pVq9ejWOPPRZASlP07LPP4oYbbsCLL74opc2GnDdFP/7xjx3P33fffXj33XdzKuvqq6/G+eefnzHNsGHD0sdbt27FpEmTMH78eDz88MMdln/ssceiqakJ27dvx8CBAx3TBINBBIPuTuAYhmEYpkewl21qOsvMmTMBAPfffz/uv/9+x2tAbo4c8w4IqzJt2jTMnTtX8n7dEZWVlaisrOw4IYCvvvoKkyZNwpgxY7Bo0SJ4PB1v19esWYNQKISKioqs28QwDMMwTM+nK3wjFmxT9NxzzzkKnwvB1q1bMXHiRAwdOhS33347du7cmb5mWZr9/e9/R21tLcaPH49wOIzly5fjF7/4Ba688kp+E8QwDMP0ajj2WfeQ86boyCOPlITWhmGgtrYWO3futL2+KhQvvfQSPvvsM3z22WcYPHiwdM2KeeL3+3H//fdjzpw5SCaTGDFiBBYsWIBZs2Z1SZsYhmEYpttgTREA4J577sGVV16JUCiEe+65J2PaH/3oRzmXrxlOkdQyMH/+fGlT5PF40L9/f0ycOBGHHHJIhpy9g6amJpSXl2Pob2+EJxxKixq9RNPppXElldELNItjS/u860ghUvQWxaX0FRVCBD12wOb0cXWoIX38QdN+Up7tbSXpYytgq5tQFADKQyJgpU5UglYeGgTUwgroGfKKtlMRrhUU0qKFiL/bzWMjScXX7p87fQHxrZfmUYXWWpQIrc0u0oCwmW74ZJCIrq06HNJbomq9SLyWpcJWQw1sSzWyZrE0oCeUt7vemLMYWJfaJ19L9BdrprhPai6H9hFC1s93yJ+gabDesrBDEFSv/ZWzFdy0mAQMbiXi1fa4X0rfNyzWrSVypWmKArIIuk+wHU6oa5VS4ifBaU2xtIdMWjyD4tVPBtFKV+azj0XcnEAq4G7XRT8ytS9ipqMi40hCvi9ipNwWEsA2StLFE7LQuj0i6k+aBgn0vjDalL9lqfifpAvuMp9dDkNvDU+0n+gfXWfeenm+R4wRz6YDy1Jv6mNEaK0K6wcGhdEIFVq3JcWa2q0EkW3VyfiYzxdah08xCGmKCYG7U6DgJiKAt4jFU+VF46LcTAGSdWIQEmkxn2skmKynzYtkewSbfvpLNDY2domLGuv/pFFX3AxvwN6nXNBjEXz4h593WVu7g+HDh+Pdd99Fv379MHz4cNd0mqblZQ2f85ui+fPn51wJwzAMwzD5w5/PUtAgsF0REDZn40Kv14sdO3bYztfX18Pr9TrkYBiGYRimUxgF+mEykvOmyO1rWzQaRSBg9wvBMAzDMEznYI/Wdr71rW/hlltusZ2/7bbb8grxAeTw+cwSNGmahkceeQQlJULXous6Xnvttb1CU8QwDMMwTM/n1Vdfxbx582znp06daouLmi1Zb4ruvPNOAKk3RQ8++KD0qSwQCGDYsGF48MEH82pET8Qoj8MIexE3vdAmYkRcF6XHsnBWp05azV15oI4IEqtkkWtrRLxd+19j//Tx9ohwcax6cpW8CZuKSdWjLKWEiGct78MAELHEjLr9s2fEFFW3EnEoFWyrXpGpF2VLh08FpLpXbl/CRXhdFBbi2jblWrxFjEPS9PSrEZGpRxExUwfH8vCYbe0ri4EBwOoVFbMmiNdqTa3D5/CnF0niaXefFz0k8lLBtl6kjC3xXm2JQqngeEi/3VL6IrI+6NqxxKiqKBZw9gZdHhDC5H4heTZo+nZzrYT9xDO5Ul5M8kRtX7+A8LBusStaZEs3MCwsGVQP1VQgDY/sgRuQPTBbWIJsmtoSddvKVNoYMOtIkjTqfUHvN3ofRoihgk9R1jcSAfGOxtRzIEkE1AmP3O9kC2kjWZ/RQWav4va5tbzDJweK+81L1pleJq/b2iYhyrXmvowYaJT4ZGONbZHy9PGuuOxh3w3dwVgkROZCfcb1DVJP/aLtlpdyOt4W1v1ADUV04gVcU9YUfTZ6zLmMxeizwQcjIBvPdBlsfWajpaXF8QuV3+/PO45p1psiS9A0adIkLF68GH369MmrQoZhGIZhcoQ3RTZGjRqFp59+Gr/+9a+l80899RRGjhyZV5k5W58tX748r4oYhmEYhmEKxa9+9Suce+65+Pzzz3HSSScBAP7zn//gL3/5C5599tm8ysxqUzRnzhz85je/QXFxsRQ81Yk77rgjr4YwDMMwDOMMm+TbOeOMM/DCCy/g5ptvxnPPPYdwOIzDDjsML7/8MiZMmJBXmVltitasWYN4PPXd9L333pOcNzIMwzAM08Xw5zNHTjvtNJx22mkFKy+rTRH9ZLZixYqCVd6TGdC/Cb7iaFpoR0XDUSK0i7XKIi8qyE7rBsn23Btw955KPbA2RIRiW/WCQMWcYVPkR8XXiaQsSKSizhCRlFqC14DH3iarDuqhl3rh9XpkcWiQeL4OFqWOqZfZ9oQsWKUeZanwl/aViq4BIEI8McfaU+UZxONsMui+WZfG0PRK7fPb+11clKqzxSvGX4+I9mlligiaHHvM9hl0/Psows2o6LfWKI4lT9mKeNvjJ961zXGnY0uFy+o1XfK2nOpHiYMHcyFsFfNIRcIe5WlK1xSdewtVuO0k5lfrU9dhiU8IZS2RbWNMzIvq4Zh6pabHVjpVmE2hImwq2lXrcKovkxg4SX4PEPE3zRNRxNxU1G7d143keaCOpV4qxrpxtxA1G+azSHN4yifKU23p16c1fY4afaBUWVNkLVhzS9eA+swpIyJ9H3HxnsxgEEJvJr+Wal/QQ9ejPBd0jdH5s+Y5U10JnyiXtl31YE6vWZ7/6fNKT3qQaI1iM5g9RUNDA5577jl88cUXuPbaa9G3b1+89957GDhwIPbbb7+OC1DI2U/RpZdeiubmZtv51tZWXHrppTk3gGEYhmGYzGiGUZCfvYn3338fBx10EH7729/itttuQ0NDAwDg+eefx9y5c/MqM+dN0eOPP472dnswnfb2djzxxBN5NYJhGIZhmAywR2sbc+bMwYwZM/Dpp58iFBJfWqZNm4bXXnstrzKztj5ramqCYRgwDAPNzc1SA3Rdx5IlSzBgwIC8GsEwDMMwDJMLq1atwkMPPWQ7v99++6G2tjavMrPeFFVUVEDTNGiahoMOOsh2XdM03HDDDXk1gmEYhmEYd9j6zE4oFHJ00rh+/Xr079/fIUfHZL0pWr58OQzDwEknnYS//vWv6Nu3b/paIBBATU0Nqqur82oEwzAMwzAZYOszG2eeeSYWLFiAZ555BkDq5cymTZvws5/9DOeee25eZWa9KbJs/jds2IAhQ4bA48lZjsQwDMMwTB7szW+KNmzYgEsvvRTbt2+H1+vF22+/jeLijsPD3H777fjGN76BAQMGoL29HRMmTEBtbS3Gjx+Pm266Ka+25OzRuqamBgDQ1taGTZs2IRaT48scdthheTWEYRiGYZh9jxkzZuDGG2/EiSeeiF27diEYDHacCUBZWRneeOMNvPLKK3jvvfeQTCZx1FFH4ZRTTsm7LTlvinbu3IlLLrkE//rXvxyv67q7X4/eRMgXh8/nQcj0E0J94MRDxB9Ksd0Sz8JrBm4MET8yQZ/s04X6JmqJiIXgJT55ysMRKU8xCXSo+o8B7H5rKNT3TDqgpeG3pbP8x1DfMdQvCPVRol6zfBxRHx+qLxvqVylKyorERVtUnyHUP1Or2Y8kqUPX5beXOgk66yHjafkepUE20+W2pebAS3wYBYLED01C9hGTJHVaQVC9PpE3GJD77S0Rc9kSEvOdyR8qDVJZYQblpf5w2uPuQUv7BO3rM+YQENaCzhn1IUT96qh1WHNPz6l+a7KpL1O7rLZkSkNpI36xfB6v1E5KqRnINOwV99TumPgLVa2vyGcPMkqDiwaUdZ4ga6xNJ8F5yX2r+meidVr9TgbJuonJ/2EkyBqs6Cv8DrWZfofiEftj3rq36D2lk8Cmbcq9lCC+kaz+9iUBotX1QYPq0vs44TAH6TwekUc311J7kqztpN81vRNqm1JtST0HqG+oGEjQV+WZIwUs9qbaFAYJGBz3I5HheVtQ9tLPZx999BH8fj9OPPFEAJCkOZlIJBIIhUJYu3YtTjrppHSYj86S8zew2bNnY/fu3Xj77bcRDofx73//G48//jgOPPBAvPjiiwVpFMMwDMMwAuvzWWd/cuW1117D6aefjurqamiahhdeeMGW5v7778fw4cMRCoUwZswYvP7661mX/+mnn6KkpARnnHEGjjrqKNx8881Z5fP5fKipqSn4i5ic3xS98sor+Nvf/oZx48bB4/GgpqYGkydPRllZGRYuXFhQd9sMwzAMwxQW1WIrGAy6frJqbW3F4YcfjksuucRRvPz0009j9uzZuP/++3H88cfjoYcewrRp07Bu3ToMHToUADBmzBhEo3ZP+i+99BLi8Thef/11rF27FgMGDMDUqVMxbtw4TJ48ucN+/PKXv8TcuXPxpz/9Kes3TB2R86aotbU17Y+ob9++2LlzJw466CCMHj0a7733XkEaxTAMwzAMoYCfz4YMGSKdnjdvHubPn++YZdq0aZg2bZprkXfccQcuu+wyXH755QCAu+66C0uXLsUDDzyAhQsXAgBWr17tmn/w4MEYN25cuk3f+MY3sHbt2qw2Rffccw8+++wzVFdXo6amxibOzmdPkvOm6OCDD8b69esxbNgwHHHEEXjooYcwbNgwPPjgg6iqqsq5AQzDMAzDdEyhrMc2b96MsrKy9O/ZCptVYrEYVq9ejZ/97GfS+SlTpmDlypVZlTFu3Dhs374du3fvRnl5OV577TV8//vfzyrvmWeeWfAA9TlvimbPno1t27YBSO0uTz31VDz55JMIBAJ47LHHCtq4PUlZMAp/0EgLiqWggWS7riflgLA6ERJaC5gGEGxrl9NHaGDUBA00KMrRA+7Sr5Ap3KaiQhp4UoUGSbSEpyU++2tNJ2Ik6KIq5qbBGi0Ro1sQUFp3qr0ib6lftCUJ98Xet6jNVkdECTprkDroeFrl6g5iYEusTdtHBdx+vzy2vhAVcNufWIYiLKXi7v4VLeljGqS1oT0s5WmLEYGuQx3qOFFRO123lqg25BDA1RrH1rioK0SMAoLKmvKTwMbt3tS4tyVE3oZESEpP2+0UgNgJOgctZrtoOS1x+V5yGhsAgO6cHgBavKn/DOh69rkYFwCyQNd6DlDRu0cRZlPhNR0fmkcVb3s0D8njN9sk1llZUDa8oG1sJoYb3qJUHmt+KMXBVJ0Di0Ucy20t4j/JqFcO+ByPi37VNxfb6h1Q1CKl7+sXQW3l9UhFzXIdOlnHXnNsqZg6rgR4pUFgKda8FDs818rMa1TALRl66O5GC5bomrY74NERT9jF9z2dsrIyaVOUL3V1ddB1HQMHDpTODxw4MGuP0j6fDzfffDO+/vWvwzAMTJkyBd/85jezyuv2dqsz5Lwp+u53v5s+PvLII7Fx40Z88sknGDp0KCorKwvaOIZhGIZhABhG6qezZXQB6tsawzByeoPT0Sc6lba2Nlx33XV44YUXEI/Hccopp+Cee+4pyB6k0x4Yi4qKcNRRR/GGiGEYhmG6iD1lfZaJyspKeL1e21uhHTt22N4eFZJ58+bhsccew2mnnYbzzz8fy5Ytww9+8IOClJ3Vm6I5c+ZkXeAdd9yRd2MYhmEYhulaxo0bB6/Xi1mzZmHWrFl5lxMIBDBmzBgsW7YMZ599dvr8smXLcOaZZxaiqY4sXrwYjz76KM4//3wAwPe+9z0cf/zx0HUdXm92vszcyGpTtGbNmqwKK7TgiWEYhmEYFNT6bNWqVVlrilpaWvDZZ5+lf9+wYQPWrl2Lvn37YujQoZgzZw4uuugijB07FuPHj8fDDz+MTZs24aqrrupkY93ZvHlz2tkjABx99NHw+XzYunWrzbIuV7LaFC1fvrxTlfRGfJ4kfJ4kijTTo7WLJ9bSgCzmowJKS7QaJ2Jgv9ddZOoj4kYqrPR6ZEGiU1vouZgiQKTCcFlE6rW1OZ3HfM9KPbpSgaFaB/Wqawm9qYBbbXNCEnzbxd9OOLWTinbLAu6Cceol2BIVO9Vl9VsSWmdon5NY21Xwq6Sna4HOd0VY9kI9qESIYa0xiCTE+FMP54A8JrRcay6dhPh1eko820bEyHTdqZ7TnYT9EY16kZbXLBWz0jGgHt7VcWsnwnlr3KloN6DcS1R0T8vKtKbShhRkjp2E6E5lWcc0r2pcIAm46f1jiHQtcdnyh9ZfEUiJqqmHbpoXUAwViAjbEl0HimRhNiCE0TRvNOH+FzY1GPCa494WE23agRLXNpX4Rf1tCdFXdV58DgJ8nyLGpqjPIBVVyE3Lo3XRNRVWvGBTcbclEqf1+jxJGB73NhYSLZn66WwZufLuu+9i0qRJ6d+tL0fTp0/HY489hvPOOw/19fVYsGABtm3bhlGjRmHJkiXpkGBdga7rCARkwwmfz4dEwv3ezZachdYMwzAMw3QzeyjMx8SJE2F0INCeOXMmZs6cmWejcscwDMyYMUNyJRCJRHDVVVdJvooWL16cc9m8KWIYhmEYptcwffp027nvfe97BSmbN0UMwzAM08MphPVYoa3P9hSLFi3qsrI7bZLPMAzDMEwXY/kp6uwPUtZnI0eOxH333beHO9Xz4DdFLoS8cfi9GmKmEJOKG1URKcVniGuWYNJJnOkEFYdmqkPK4/CRWD1HvbJKHnnN+hy9JJvtVEWdFkVeWdybyfu0Ux0BTSfXhLiRiq5jindgD/mubYkok57s9vV0PEt87h5oLdGs5MFcMxyPU+21zy09p4rD3cTAkmDcLwvGaXkNsZR4lnrvVr1mB4JEaE2UlUWm8J2KXdPtNPvbr6jVMW+b4i2czo3VdrcxAwCvJNh3FkGr9wZdx1Ye6h3eLtR1NlTI5FndggrXaT9U0bXUXnPNSwJqZc22EC/WbgLuiC4/hulYl/g79pYcS7qsKVPEXuq3GyBUhRsBALtjQn/R0iq8Yeu7lTUSJF6c+6bKpcbG6hjvbCflkjFw82QPALIPdLNc8l+U+lxzM2gQAnj7f28JqwzyHKTPrkx1WAYF1FDBBw1eRZzdG8jF+mxfgzdFDMMwDNPD4c9n3QNvihiGYRimp7OHrM/2NVhTxDAMwzAMA35TxDAMwzA9Hv581j3wpsiFRNILLelNC+2oKJAK81SxJ/09G7G0m/BaEusqXpMlsaLpXZaKkGMOnp8tqJdXIQzONr1I16Z4k6VtssaMej1WPcWGPeJ36jW2XZe9lFJCDoLGGBnihCJypV5rQ+TYElM6ecj2IZXO5yP9Bp0Ld9FuWvxNveAqdSR9zvNKxbK2+Sb1W2LdkmIhwLUJlDW7IB0AWuIpKSsVvlpYXtep52m/g4dhiwDcr9F2WlAxckei/HQeh/uHjk0mowWn9ehUnrUW6LVMQnmnOiLkXlDFwzR/S9xZdK3moVjrgo5fpvRO4uO+wTbbuQp/ymt6KxHdl5YIz9ON8Qz9Tqb6ncnjORXE+5PUqEKka47JYu5miN8tT+c+F4E+kHn+3bDm2c14QhXK0zoimk8qw2pfpmdCQSHWY50qA4WLfbY3wpsihmEYhtmHYOszd3hTxDAMwzA9HP581j30GqH1sGHDoGma9POzn/1MSrNp0yacfvrpKC4uRmVlJX70ox8hFuvYzwfDMAzD9GiMAv0wGelVb4oWLFiAK664Iv17SYmIzKzrOk477TT0798fb7zxBurr6zF9+nQYhoF77713TzSXYRiGYQoCvynqHnrVpqi0tBSDBg1yvPbSSy9h3bp12Lx5M6qrqwEAv/vd7zBjxgzcdNNN/P2UYRiGYZiM9JrPZwDw29/+Fv369cMRRxyBm266Sfo09tZbb2HUqFHpDREAnHrqqYhGo1i9erVrmdFoFE1NTdIPwzAMw/QokkZhfsCxzzLRa94U/fjHP8ZRRx2FPn364J133sHcuXOxYcMGPPLIIwCA2tpaDBw4UMrTp08fBAIB1NbWupa7cOFC3HDDDV3adoZhGIbpFAX0aM3WZ+7s0U3R/PnzO9yQrFq1CmPHjsVPfvKT9LnDDjsMffr0wbe+9a302yMA0DS73wrDMBzPW8ydOxdz5sxJ/97U1IQhQ4agJR6An/gVyTZAK/VrYQV2zORPg/rhcE2Toe60rxTdfSqlQLMOY5HJFwtNL5cjtykBu/+YlrjwO9IUk8M9Wv6V1LIyjVXCIfAl9cPjU/y3yMFlSbBSuAfCtYi4+B5RfexQ/yxWAEp6zja/JLsUGDWR3Rqx8tAAnHQs1XIdAwA7PFktnzMJso6ozyLbfFPfLmZb3AKeqritedVHjFOAWXovqPW5BZpV/T45QoZEKicLn0q5pgfke06dj478M2Wsn/pJM8c5lrQ/G7ZHSwEALcRPEfU75AvKa8rrFdf8vtQ1Gog4qXSbtiNO1qqWpail3Xx2Oq1VJ2jbrfvB6VkSS3ht1zIFfHbCkyTpYSDe++LBMhnYo5uiq6++Gueff37GNMOGDXM8f+yxxwIAPvvsM/Tr1w+DBg3Cf//7XynN7t27EY/HbW+QKMFgEMGgPWo4wzAMw/QUNBRAaF2Qluzd7NFNUWVlJSorK/PKu2bNGgBAVVUVAGD8+PG46aabsG3btvS5l156CcFgEGPGjClMgxmGYRhmT1BAj9aMO71CU/TWW2/h7bffxqRJk1BeXo5Vq1bhJz/5Cc444wwMHToUADBlyhSMHDkSF110EW677Tbs2rUL1157La644gr+dsowDMMwTIf0ik1RMBjE008/jRtuuAHRaBQ1NTW44oorcP3116fTeL1e/POf/8TMmTNx/PHHIxwO48ILL8Ttt9++B1vOMAzDMJ2H/RR1D71iU3TUUUfh7bff7jDd0KFD8Y9//KMgdbYnfIgn/GkxoVsQ2LBPVtn5HIIkZiPeU8vNJhAl4CxaVYWaVKRJBdFCrOzevkyC0I6Q6lUDo2YhdMwUGNXKn0n87YY1PklVHQoh9qV1qwEgpTblGJRSFUVbuIllAWXszGSZgoLStjuJn0M++zmrfkkgS4PUqvOnk/kzGxUhjxN1Tbm1N9P8ebyyoFVtR0NUFu/TftF+W/PnJFa2yqPp6Rio4m+K1V66LqkAXi1LEia7rH+1TmvcMgWh9sE9aCogB6JV67CMQQCgOEC8/5fI6f30HnBYw+rcUUE17bee4XlC83gM+zkVqVwyt82mgYDT88Bvtt0tALA6fxSnsU0aGhKJ7J47naaA1meMO73KTxHDMAzDMExXwZsihmEYhunhaIZRkB+AnTdmold8PmMYhmGYfZqk+dPZMsDOGzPBmyKGYRiG6eHQNz2dKYPJDG+KXIgnvTAcPCirtBOhIiCL+7QshMx6Ft52M4kNkx53sXC6TS5C4Wy95DrWm0EMbJWb0Tu11nG/1TY4CbJpHREHz72OuGuUXeu2UPvkJJDOJJKndWcrwKdYY+vk7dnpd5rOEus6zYt1TjIUyCD+diLpIiTO1N5MdXQ0PpkMCqjoO9M6t8qgAttMXqmdjCEksXgW3ufVYxXJQME8pqJi9XlAnwFOAmKnuqw2l/iFuLqIGI0Uk/MA0BwTDm6tZ5Y0P0oVkqgczoLomDIvTs85ml79/zzgEzeT5rCmnO7DRMJ+LtM6cxLK03NeT1LytM/0fnhTxDAMwzA9HbY+6xZ4U8QwDMMwPR32aN0tsPUZwzAMwzAM+E0RwzAMw/R42KN198CbIhfa4wF4YwF4HbzWUvGfrssv2zxE6Bg0hYBeek7xMOwn3mHdhJiqEJDWHzW9t2ZKnzRIHQ7C7EzC22wFx7qDoDcTOik2V6/QlEwiSTcP3JkE8GmRpos4V83jlM5NZKq2yUkc6lRH0sVzbzZ4HYS/TuNteRp2a18mrPZm2zades3OUtTs5J1YHVu39FY/DId+x02BNS3Lq2X2EK2SSchNPTi7rXOndqnQeUwq9VHP47TfVh6nepv1lHBaMpCgYnMlD63fam+MPPuS3o7Tq+Vms74yibnjpL30q5BmptMd+u0klqZ1eG2euWleq1x5/PV4N+00+PNZt8CfzxiGYRiGYcCbIoZhGIbp8WjJwvwA7NE6E/z5jGEYhmF6OgX8fMYerd3hN0UMwzAMwzDgN0UMwzAM0/Nh543dAm+KGIZhGKaHw7HPugfeFDEMwzBMT4dN8rsF3hS5EI374I370mvIcAgMCMh+icwz6aNI3O4no8UISr+rwQUt/CTYoV+pw0d8G1l+SYI+4f9IDUpJfc9IwUIdAlqqUB8s1C+I5R/JwskXCb3/VN8eFK/kU0acpz6cbHkc/O+oPkbcgo1abY1mCOTo95AxdgmSCgAhOu5m/fkEenUKNGoRSYixtnzSZPIJ5OaDxVo3tG8q1OdNJt9X1MeMU3mZfAhR3HzYAIo/MI99bNU14OSbyK3NFnHHNUCD17qPldVeWobqc8jNF0+mfjut26TuXgdFJ4GWvYb7erTKlfyLZSo3Q2BWAEgo/trc1if1HaSmSSYdAtd6RGVqvaq/JpEn1W+vJ0O/derrTRyr85WpDAs9nkWEaabXwJsihmEYhunpGADsfwvmXgaTEd4UMQzDMEwPhzVF3QOb5DMMwzAMw4DfFDEMwzBMz8dAAYTWBWnJXg1vijrAEjV6JMGdu9jTKS8V79mEfDQQqIOoDwD0pCreJEJQrz2AqRqgkgpBY4nspty696hgNhLzizITskBVT9hfOnq9RPiq9E0SmupE0Ot1H1uaRw3EC9jHVhJp0vNWQFiH8bYE7pKAmgi+VdGqx2EtZAru6nMJNppJ5OqTgmvagwyruIlcrfFrjwdc88qCdHFec28edE/moLiZyNRvWr8l5KXtyCTMzvb/DktIS9cOlc2qYymlyyYArkv/MuXtSLarrqk4NYZI2IXjTuvcWj/0+UMNG9T1pTsYXEiBfdXngUv/qJhaXSNuRiduuD0PrLl3WrMer/0ezSz2F8deBwF3Z4JZ5wxbn3UL/PmMYRiGYRgGvCliGIZhmJ5PskA/4ICwmeDPZwzDMAzTwymk9RkHhHWHN0UMwzAM09NhTVG3wJsiF6Ltfni0gPBoTcTABhELqgJiiSw0eLQsSZTprOtOFesT6j9fULe1gwqXAUCPES/FETHlnnbTo7WD5+1kIFVeMuws+9QisrDS12bvRzxMBMIhRTRNBNVauyjLEyOenZWPuzSPYfU3g9CR6lENH8nrT7VF8zt4PTaFmM20LlqOKnon4+4k7LQ9g8jvHjKPVGCeySO24ZCGej8HgJBfiMS9kkjb8mJsb6glxs/vmZnKS/ufyQM2JZM4OpO4GwA8GUTQTkJvxzaYw+MlRcnexeXksvfqzO1L1SmOsxEPp8qlXp81My/xTK6UIxlrEAMBy0jC42By5PNaomHnNlHv9QAQI79boupoXDxLkg6GDxbyPeI+R/TecjQIUefUxYDFupec5ttalz5qBJKhTVRAHov5zHYqnrjbO+tRkelJ8KaIYRiGYXo6/KaoW+BNEcMwDMP0dHhT1C2w9RnDMAzDMAz4TRHDMAzD9HySyEqn2mEZTEZ4U+SCvisIoz0IywGxQd6peaiuVRX/Sa6T7a8qbVpBekwE0hqpQ1MWspQuaU/vUZza0mZ44vZjw+F9YTKQqsNoEhdpHb42Ob2/RRwbZv2RfsTLdrEiUCbibprX12ovx0IPEc+zftjQMrkCpjpwr9exfEDMjzSetFz1oSKVK5fh2AyXt9e0LTanxFRE77f+FefaQnLHm/yikd4AFXOnjp3eoHckElfFpU7ic0nYqq5z0gfq6TzjQ54WZ+anwmAqllXrdxRpO0yMJaSm91gmobuTMDmTR2TqwTmeEItW8nqeQYBt9SNBhMyJTKJmUm7A9FCtjhMg+kHbHiMLLxKXbzBap9VH6sVeFVpLxih0XjrzbUL1Du8X695pup283sfjqXPt9BotVi2IGq2YeUENFRIaku3d80mKA8J2D/z5jGEYhmEYBvymiGEYhmF6Piy07hZ4U8QwDMMwPZ2k4f79PZcymIzw5zOGYRiGYRjwmyKGYRiG6fnw57NugTdFDMMwDNPjKcCmyCHkCyPDmyKGYRiG6enwm6JuoVdsilasWIFJkyY5XnvnnXcwbtw4AIDm4JzkgQcewFVXXZVznUVfeeANeoRfH+ozhfpoUaukv5sXJV9EmZxnufgTsuVxiSGbPqf4uaF+iOix5YvHqU1p/0cugWnVPEmykqz6A43inDfi7s/JGxHH/nZ7+9KQ8rL5g4eOg5MvJies/moiriY8OvGzoraJdEv3m/5bgu71eum86u7p5DpIgFCz7ESQnAvLmWn9VmBfALBietLAurb66YTTdaQIPKV1ZAa2zdQHDwlaqxMpo9fnHJgTAAwH7zNJ4i8prix+zSVIrjV8fo/dkZVTYFTJh5Cy0GgdutlhGtRWDaSaII55OgpYq7aXtivgMGdO6DSYrNm+WMzukMupfqdAtBbU/5Llg0jyz2SL3kzS0/NS4FbFz5Q304PVXkdMrdPKap43dHsZaR9vxE+a5PdNDUqcENe87WZw3qi47okBepSluXsTvWJTdNxxx2Hbtm3SuV/96ld4+eWXMXbsWOn8okWLMHXq1PTv5eXl3dJGhmEYhukykgY6/fmLrc86pFdsigKBAAYNGpT+PR6P48UXX8TVV19teztUUVEhpWUYhmGYXo+RTP10tgwA48aNg9frxaxZszBr1qwCNG7voVdsilRefPFF1NXVYcaMGbZrV199NS6//HIMHz4cl112Ga688kp4PO6vN6PRKKJR8T60qampK5rMMAzDMD2CVatWoaysbE83o0fSKzdFjz76KE499VQMGTJEOv+b3/wGJ598MsLhMP7zn//gmmuuQV1dHX75y1+6lrVw4ULccMMNXd1khmEYhskfFlp3C3t0UzR//vwONySrVq2SdENbtmzB0qVL8cwzz9jS0s3PEUccAQBYsGBBxk3R3LlzMWfOnPTvTU1NGDJkCIINgDcAeGOpReQhwluNfpdVPt8lqbjXErZ66HU5vZsY2ClYqYXVptRx6l9P3F0MTMtK+kj9VvDTDG9kqYA6QQKyJsJKOlKHJVakYnFfu5xeCkybcG67TbgridjlugB7P+iYSOPjJCJXcBMNGx5l/qgo1hKKkqC20ngD0EmcTaksKtgmQmlAHmvrmAbEpcFhbe0l82eJxz1OwlAz4KoVCBgAkjT6bYYnhSVszWSAkCR1GiQ4rO4j85JBeGuJcj0kr/oCmIqB9RipzzyfdBDeWoFupa8SJJkqBqbCcEuQTQOuqmJxj0NQaJWE7n6zx021O/2/LKkG5yXHNDCr1ZZk0t5vJ2heQ83jEABYJrsoyHR81CCyoOvSEjgToTOUeh1082Z1ZrpMBiQ0JjGpgz7nAfk55TWfYfRZ5okDesy5HQWHNUXdwh7dFF199dU4//zzM6YZNmyY9PuiRYvQr18/nHHGGR2Wf+yxx6KpqQnbt2/HwIEDHdMEg0EEg0HHawzDMAzD7Dvs0U1RZWUlKisrs05vGAYWLVqEiy++GH6/v8P0a9asQSgUQkVFRSdayTAMwzB7GP581i30Kk3RK6+8gg0bNuCyyy6zXfv73/+O2tpajB8/HuFwGMuXL8cvfvELXHnllfwmiGEYhundGCjApqggLdmr6VWbokcffRTHHXccvva1r9mu+f1+3H///ZgzZw6SySRGjBiBBQsWsLkhwzAMwzBZ0as2RX/+859dr02dOlVy2thZNCP1YwluqfCWCvy0hCKsJMI8K48kAFZ2+rLHaMP5vIIq9gUUj9LKrNL0koDY0iM66TzNa1QwKwuXndOn8qR+oZ6gVQGj618stGuKUNJJVK1lqENzExU69C3dLHOs6HjSNmUSsTvNiyrYpn2gellaX9I2f/b8kvBfERBL40RE3+kxd+q3NWdENGp4ROdUMbdkCOAkSlc9A7uJ+V0Ezm7F6XT81DroODisFW+WLl7oulDvpQQRhlvXIkQQbvMW7qahlp4J8iV1PlMnndsHIC2SV9NlPGco/6r1ZmiTZtYnjZO6Bmib6CHJZBNK0zrS93cWiwLy+rLuDY+DANryRi3dxxmetbSN1jNPEmkbmZ/VBYU/n3ULvWpTxDAMwzD7JMkkHE3qci6DyQRvihiGYRimp8NviroFjmTHMAzDMAwDflPEMAzDMD0fflPULfCmyAUtaUhCXSosTbh4Ik4ldCoryzqJCNFJBOycx6EOVcxN+kHFppbY0Kl9Vp5M5coZ7GJuqQ9adh3K1G8nUbossFT6TT1l07m05s/rJIy2PJg7i9NtHsmpw13Lg7mbB3EogmrJu7WtKaLtRFTttYSfmUSuLmOYbqvTdavNLsJnu+CVjK0qoofsJTiVXxxLhgqS0YJShkMeLYNA2Q1rPpIOrs2s+ZCuSZ7lFYG5ZNBgOKaRK6DHdiFx6lh1/w17OipWVsXbbl7xs7iXpHl1qjddmJQbgKylVr1Nu4mPJcMNVWitCJjV9CqaS3stobVqFCE3xLkdah6pjU7esA3D3aCj0LBH626BP58xDMMwDMOA3xQxDMMwTI/HMJIwjM5Zj3U2/74Ab4oYhmEYpqdjGJ3//MWaog7hz2cMwzAMwzDgN0WuJH0aNJ+W1rWp4ro06sa7I4+yqqdYWpRLuoweUzux8U8LUB1XQaoxTl6ayWXnch0EvaoYWPaGm2Ud0pgY9nOqB2wXIWZGb+EdtN3WD8krtTlmktBaSU+veZ3Pq0Jax/qzFFpLa8rBO7tahuHmHVmZC6lN9uKAgHLWcDnOhEP9tH02gbODt/bUsSmIdvoTsCN3xBmUvumsUt/cRdMdF5Q+kTGJFleuxzTHdKJNGap0uy8yeCR3En9nEma7DrF6nv6erWfuTOVmGAvpPqQGBeq9R0XYTkJrXUNSFcp3FUYBhNb8pqhDeFPEMAzDMD2dZDJ7U2Y3WFPUIfz5jGEYhmEYBvymiGEYhmF6Pvz5rFvgTRHDMAzD9HCMZBJGJz+fsUl+x/CmiGEYhmF6OvymqFtgTRHDMAzDMAx4U8QwDMMwPZ+kUZifHsb69etxxBFHpH/C4TBeeOGFPdYe/nzmgh4AEITL28oO/IJYZLH+svbhkRM5+s3Ix81GpvYVyG1HxqC4WQSYdc2fsdw8y3TJaxsm6hPFxUeMoQaydPJJ5OaLCJADmnaQ137NJSixmseh3IzppbzE11DWecx/aABT1V9PV5Dj/W27n6UJcEmXwSdQVnW4tMnRj5KSLtvnj2N7M/kiysIvVaY8GdvulD5DMqc8HbmncirY8m0k+bvyAZnizhYUw0B2jq86KqNncfDBB2Pt2rUAgJaWFgwbNgyTJ0/eY+3hN0UMwzAMw+xxXnzxRZx88skoLi7eY23gTRHDMAzD9HCMpFGQn1x57bXXcPrpp6O6uhqapjl+2rr//vsxfPhwhEIhjBkzBq+//npefXzmmWdw3nnn5ZW3UPCmiGEYhmF6OkayMD850traisMPPxy///3vHa8//fTTmD17Nn7xi19gzZo1OPHEEzFt2jRs2rQpnWbMmDEYNWqU7Wfr1q3pNE1NTXjzzTfxjW98I/exKSCsKWIYhmGYfYimpibp92AwiGAw6Jh22rRpmDZtmmtZd9xxBy677DJcfvnlAIC77roLS5cuxQMPPICFCxcCAFavXt1hm/72t7/h1FNPRSgUyrYbXQJvilzw6IAnsQcb0E0xBvOmG9rXaRF7wVrCFBaeGWbvwWYY0VX1JA0YWSvEXcowhdZDhgyRzs+bNw/z58/PubxYLIbVq1fjZz/7mXR+ypQpWLlyZU5lPfPMM7jyyitzbkOh4U0RwzAMw/R0jCQ6b32Wyr9582aUlZWlT7u9JeqIuro66LqOgQMHSucHDhyI2trarMtpbGzEO++8g7/+9a95taOQ8KZIwdpJ67HIHm4JwzAM09Ox/q8wutjcPYF4px1aJxAHAJSVlUmbos6iKS5SDMOwnctEeXk5tm/fXrD2dAbeFCnU19cDANY9sWAPt4RhGIbpLTQ3N6O8vLzg5QYCAQwaNAhv1C4pSHmDBg1CIBAoSFmVlZXwer22t0I7duywvT3qLfCmSKFv374AgE2bNnXJAt/TNDU1YciQIbbXp3sD3LfeCfetd8J9S2EYBpqbm1FdXd0lbQmFQtiwYQNisVhBygsEAgUTMwcCAYwZMwbLli3D2WefnT6/bNkynHnmmQWpo7vhTZGCx5PyUlBeXr7X3eiUQr8+7Ulw33on3LfeCfcNXf4HdCgU2mNWWS0tLfjss8/Sv2/YsAFr165F3759MXToUMyZMwcXXXQRxo4di/Hjx+Phhx/Gpk2bcNVVV+2R9nYW3hQxDMMwDOPIu+++i0mTJqV/nzNnDgBg+vTpeOyxx3Deeeehvr4eCxYswLZt2zBq1CgsWbIENTU1e6rJnYI3RQzDMAzDODJx4sQOReQzZ87EzJkzu6lFXQt7tFYIBoOYN29e3iaKPZ29uX/ct94J9613wn1j9kY0o6vtCBmGYRiGYXoB/KaIYRiGYRgGvCliGIZhGIYBwJsihmEYhmEYALwpYhiGYRiGAcCbIhv3338/hg8fjlAohDFjxuD111/f003Kmfnz50PTNOln0KBB6euGYWD+/Pmorq5GOBzGxIkT8dFHH+3BFrvz2muv4fTTT0d1dTU0TcMLL7wgXc+mL9FoFD/84Q9RWVmJ4uJinHHGGdiyZUs39sKZjvo2Y8YM2zwee+yxUpqe2reFCxdi3LhxKC0txYABA3DWWWdh/fr1UpreOnfZ9K23zt0DDzyAww47LO20cPz48fjXv/6Vvt5b5wzouG+9dc6YwsKbIsLTTz+N2bNn4xe/+AXWrFmDE088EdOmTcOmTZv2dNNy5tBDD8W2bdvSPx988EH62q233oo77rgDv//977Fq1SoMGjQIkydPRnNz8x5ssTOtra04/PDD8fvf/97xejZ9mT17Np5//nk89dRTeOONN9DS0oJvfvOb0HW9u7rhSEd9A4CpU6dK87hkiRz/qKf27dVXX8WsWbPw9ttvY9myZUgkEpgyZQpaW1vTaXrr3GXTN6B3zt3gwYNxyy234N1338W7776Lk046CWeeeWZ649Nb5wzouG9A75wzpsAYTJqjjz7auOqqq6RzhxxyiPGzn/1sD7UoP+bNm2ccfvjhjteSyaQxaNAg45Zbbkmfi0QiRnl5ufHggw92UwvzA4Dx/PPPp3/Ppi8NDQ2G3+83nnrqqXSar776yvB4PMa///3vbmt7R6h9MwzDmD59unHmmWe65uktfTMMw9ixY4cBwHj11VcNw9i75k7tm2HsXXPXp08f45FHHtmr5szC6pth7F1zxuQPvykyicViWL16NaZMmSKdnzJlClauXLmHWpU/n376KaqrqzF8+HCcf/75+OKLLwCk4tbU1tZK/QwGg5gwYUKv62c2fVm9ejXi8biUprq6GqNGjeoV/V2xYgUGDBiAgw46CFdccQV27NiRvtab+tbY2AhABFzem+ZO7ZtFb587Xdfx1FNPobW1FePHj9+r5kztm0VvnzOm83CYD5O6ujrouo6BAwdK5wcOHIja2to91Kr8OOaYY/DEE0/goIMOwvbt23HjjTfiuOOOw0cffZTui1M/v/zyyz3R3LzJpi+1tbUIBALo06ePLU1Pn9dp06bh29/+NmpqarBhwwb86le/wkknnYTVq1cjGAz2mr4ZhoE5c+bghBNOwKhRowDsPXPn1Degd8/dBx98gPHjxyMSiaCkpATPP/88Ro4cmf6PvzfPmVvfgN49Z0zh4E2RgqZp0u+GYdjO9XSmTZuWPh49ejTGjx+P/fffH48//nhaOLg39NMin770hv6ed9556eNRo0Zh7NixqKmpwT//+U+cc845rvl6Wt+uvvpqvP/++3jjjTds13r73Ln1rTfP3cEHH4y1a9eioaEBf/3rXzF9+nS8+uqr6eu9ec7c+jZy5MhePWdM4eDPZyaVlZXwer22Hf+OHTtsfxn1NoqLizF69Gh8+umnaSu0vaGf2fRl0KBBiMVi2L17t2ua3kJVVRVqamrw6aefAugdffvhD3+IF198EcuXL8fgwYPT5/eGuXPrmxO9ae4CgQAOOOAAjB07FgsXLsThhx+Ou+++e6+YM7e+OdGb5owpHLwpMgkEAhgzZgyWLVsmnV+2bBmOO+64PdSqwhCNRvHxxx+jqqoKw4cPx6BBg6R+xmIxvPrqq72un9n0ZcyYMfD7/VKabdu24cMPP+x1/a2vr8fmzZtRVVUFoGf3zTAMXH311Vi8eDFeeeUVDB8+XLrem+euo7450ZvmTsUwDESj0V49Z25YfXOiN88Z0wm6Xdrdg3nqqacMv99vPProo8a6deuM2bNnG8XFxcbGjRv3dNNy4pprrjFWrFhhfPHFF8bbb79tfPOb3zRKS0vT/bjllluM8vJyY/HixcYHH3xgXHDBBUZVVZXR1NS0h1tup7m52VizZo2xZs0aA4Bxxx13GGvWrDG+/PJLwzCy68tVV11lDB482Hj55ZeN9957zzjppJOMww8/3EgkEnuqW4ZhZO5bc3Ozcc011xgrV640NmzYYCxfvtwYP368sd9++/WKvv3gBz8wysvLjRUrVhjbtm1L/7S1taXT9Na566hvvXnu5s6da7z22mvGhg0bjPfff9/4+c9/bng8HuOll14yDKP3zplhZO5bb54zprDwpkjhvvvuM2pqaoxAIGAcddT/b+/eY5o63ziAf8uAtlAuBTqsUiCg4+K8oXFDUTATEaID3RScCkSmQYf1EiczOkURRRSEmc0BcfUyTCQbLHNOFOOFgOiUaETtYG5SzIJ3BnMObenz+8Ps/DgCgr+5gfyeT2LiOe/b932fc1Afz/u0DRC9zfZlER0dTWq1mqysrKh///40ffp0unLlitBuNptp3bp11K9fP5JKpTR+/Hiqrq7uwRV37sSJEwSg3a+4uDgi6l4sf/75JyUlJZGTkxPJ5XKaMmUK1dfX90A0Ys+K7eHDhzRp0iRSqVRkZWVF7u7uFBcX127dvTW2juICQDqdTujzst67rmJ7me/dvHnzhL//VCoVvfXWW0JCRPTy3jOiZ8f2Mt8z9mJJiIj+vedSjDHGGGO9E9cUMcYYY4yBkyLGGGOMMQCcFDHGGGOMAeCkiDHGGGMMACdFjDHGGGMAOClijDHGGAPASRFjjDHGGABOilgfFBISgqVLl/apeePj4xEVFfW3xvD09IREIoFEIsFvv/3Wab/du3fD0dHxb83FOhcfHy/ch2+++aanl8MYa4OTIsZekKKiIqSmpgrHnp6eyM7O7rkFdWDDhg1oaGiAg4NDTy+lzzt58mSHCWhOTg4aGhp6ZlGMsWey7OkFMNZXODk59fQSumRnZyd823lPMxqNsLKy6ull/OscHBw4KWWsl+InRazPa2xsRGxsLJRKJWxsbBAeHo6ffvpJaP9ru+jIkSPw8/ODQqHA5MmTRf+bN5lM0Gq1cHR0hLOzM5KTkxEXFyfa0mq7fRYSEgKDwYBly5YJWyUAkJKSguHDh4vWl52dDU9PT+G4tbUVy5cvF+ZauXIlnv42HiJCRkYGvLy8IJfLMWzYMHz11Vf/0/XZvXs33N3dYWNjg2nTpuHevXvt+hw8eBAjR46ETCaDl5cX1q9fD5PJJLT/+OOPCAoKgkwmg7+/P44dOybaHqqrq4NEIkFhYSFCQkIgk8nw5ZdfAgB0Oh38/Pwgk8ng6+uLzz77TDT3r7/+iujoaCiVSjg7OyMyMhJ1dXVC+8mTJzF69GjY2trC0dERY8eOhcFg6FbsXcWVlZWFIUOGwNbWFhqNBosWLcKDBw+EdoPBgKlTp0KpVMLW1haDBw/G999/j7q6OkyYMAEAoFQqIZFIEB8f3601McZ6DidFrM+Lj4/H+fPn8e2336KyshJEhIiICBiNRqHPw4cPsW3bNuzbtw9lZWWor6/HihUrhPYtW7agoKAAOp0OFRUVaG5ufmY9SFFREdzc3ITtqufZLsnMzMQXX3yBXbt2oby8HPfv30dxcbGoz5o1a6DT6bBz505cuXIFy5Ytw5w5c3Dq1KnuXxgAZ8+exbx587Bo0SJcvHgREyZMwMaNG0V9jhw5gjlz5kCr1eLq1avIzc3F7t27kZaWBgAwm82IioqCjY0Nzp49i7y8PKxevbrD+ZKTk6HVaqHX6xEWFob8/HysXr0aaWlp0Ov12LRpEz7++GPs2bMHwJP7MmHCBCgUCpSVlaG8vFxIWh8/fgyTyYSoqCgEBwfj0qVLqKysxIIFC4Qk9Fm6igsALCws8Mknn+Dy5cvYs2cPjh8/jpUrVwrtH3zwAR49eoSysjJUV1djy5YtUCgU0Gg0+PrrrwEANTU1aGhoQE5OznPdG8ZYD+jRr6Nl7B8QHBxMS5YsISKi2tpaAkAVFRVC+927d0kul1NhYSEREel0OgJA165dE/p8+umn5OrqKhy7urrS1q1bhWOTyUTu7u4UGRnZ4bxERB4eHrR9+3bR2tatW0fDhg0Tndu+fTt5eHgIx2q1mtLT04Vjo9FIbm5uwlwPHjwgmUxGp0+fFo2TkJBAs2bN6vS6dLSeWbNm0eTJk0XnoqOjycHBQTgeN24cbdq0SdRn3759pFariYjo8OHDZGlpSQ0NDUJ7aWkpAaDi4mIiIrp+/ToBoOzsbNE4Go2G9u/fLzqXmppKgYGBRES0a9cu8vHxIbPZLLQ/evSI5HI5HTlyhO7du0cA6OTJk53G3Zmu4upIYWEhOTs7C8dDhgyhlJSUDvueOHGCAFBjY2OH7W2vD2Osd+CaItan6fV6WFpa4o033hDOOTs7w8fHB3q9XjhnY2MDb29v4VitVuP27dsAgKamJty6dQujR48W2l955RWMHDkSZrP5ha63qakJDQ0NCAwMFM5ZWlpi1KhRwhba1atX0dLSgtDQUNFrHz9+jBEjRjzXfHq9HtOmTROdCwwMRElJiXBcVVWFc+fOiZ6gtLa2oqWlBQ8fPkRNTQ00Go2oVqnttWpr1KhRwu/v3LmDGzduICEhAfPnzxfOm0wmoeamqqoK165dg52dnWiclpYW/Pzzz5g0aRLi4+MRFhaG0NBQTJw4ETNnzoRare4y9q7isrGxwYkTJ7Bp0yZcvXoVzc3NMJlMaGlpwR9//AFbW1totVosXLgQR48excSJE/HOO+9g6NChXc7NGOudOClifRo9VYvT9nzbLZanC34lEkm71z69JdPZ2M9iYWHR7nVtt/G6469E7NChQxgwYICoTSqVPtdY3YnBbDZj/fr1mD59ers2mUzW7lo+i62trWhcAMjPzxclrcCTpPOvPiNHjkRBQUG7sVQqFYAnNUlarRYlJSU4cOAA1qxZg9LSUrz55pt/Ky6DwYCIiAgkJiYiNTUVTk5OKC8vR0JCgnDP3n//fYSFheHQoUM4evQoNm/ejMzMTCxevLhb14Mx1rtwUsT6NH9/f5hMJpw9exZjxowBANy7dw+1tbXw8/Pr1hgODg5wdXXFDz/8gHHjxgF48kThwoUL7Yqm27K2tkZra6vonEqlws2bN0WJxMWLF0VzqdVqnDlzBuPHjwfw5MlJVVUVAgIChJikUinq6+sRHBzcrRg64+/vjzNnzojOPX0cEBCAmpoaDBw4sMMxfH19UV9fj1u3bsHV1RUAcO7cuS7ndnV1xYABA/DLL79g9uzZHfYJCAjAgQMH8Oqrr8Le3r7TsUaMGIERI0Zg1apVCAwMxP79+7tMirqK6/z58zCZTMjMzISFxZPyy8LCwnb9NBoNEhMTkZiYiFWrViE/Px+LFy+GtbU1ALT7GWCM9V6cFLE+bdCgQYiMjMT8+fORm5sLOzs7fPTRRxgwYAAiIyO7Pc7ixYuxefNmDBw4EL6+vtixYwcaGxuf+YTE09MTZWVliImJgVQqhYuLC0JCQnDnzh1kZGTg3XffRUlJCQ4fPiz6B3/JkiVIT0/HoEGD4Ofnh6ysLNFn3djZ2WHFihVYtmwZzGYzgoKC0NzcjNOnT0OhUCAuLq7bcWm1WowZMwYZGRmIiorC0aNHRVtnALB27VpMmTIFGo0GM2bMgIWFBS5duoTq6mps3LgRoaGh8Pb2RlxcHDIyMvD7778LhdZdPUFKSUmBVquFvb09wsPD8ejRI5w/fx6NjY1Yvnw5Zs+eja1btyIyMhIbNmyAm5sb6uvrUVRUhA8//BBGoxF5eXl4++230b9/f9TU1KC2thaxsbFdxt5VXN7e3jCZTNixYwemTp2KiooKfP7556Ixli5divDwcLz22mtobGzE8ePHhWTbw8MDEokE3333HSIiIiCXy6FQKLp9bxhjPaDHqpkY+4c8XfB8//59mjt3Ljk4OJBcLqewsDCqra0V2nU6naiwmIiouLiY2v7xMBqNlJSURPb29qRUKik5OZlmzJhBMTExnc5bWVlJQ4cOJalUKhpr586dpNFoyNbWlmJjYyktLU1UaG00GmnJkiVkb29Pjo6OtHz5coqNjRUVdZvNZsrJySEfHx+ysrIilUpFYWFhdOrUqU6vS0eF1kRPipnd3NxILpfT1KlTadu2be2uR0lJCY0ZM4bkcjnZ29vT6NGjKS8vT2jX6/U0duxYsra2Jl9fXzp48CABoJKSEiL6b6H1hQsX2s1fUFBAw4cPJ2tra1IqlTR+/HgqKioS2hsaGig2NpZcXFxIKpWSl5cXzZ8/n5qamujmzZsUFRVFarWarK2tycPDg9auXUutra2dXofniSsrK4vUarXwc7N3715R8XRSUhJ5e3uTVCollUpFc+fOpbt37wqv37BhA/Xr148kEgnFxcWJ5gYXWjPW60iI/ofCCMb+z5nNZvj5+WHmzJmiT7HuzTw9PbF06dJ/5StQKioqEBQUhGvXrokK2Nl/SSQSFBcX/+2vb2GMvTj8OUWMdYPBYEB+fj5qa2tRXV2NhQsX4vr163jvvfd6emnPJTk5GQqFAk1NTS903OLiYpSWlqKurg7Hjh3DggULMHbsWE6IOpCYmMjbaIz1UvykiLFuuHHjBmJiYnD58mUQEV5//XWkp6cLxdAvA4PBILxrysvLSygefhH27t2L1NRU3LhxAy4uLpg4cSIyMzPh7Oz8wuZ4XoMHD+70k61zc3M7Le7+p92+fRvNzc0Annz0Q9t35DHGehYnRYyxPqltEvg0V1fXdp99xBhjnBQxxhhjjIFrihhjjDHGAHBSxBhjjDEGgJMixhhjjDEAnBQxxhhjjAHgpIgxxhhjDAAnRYwxxhhjADgpYowxxhgDwEkRY4wxxhgA4D//ZoRUHoKNWgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(dset_list[0].source_id)\n", + "for ds in [dset_list[0], rg_list[0]]:\n", + " ds.pr.plot(norm=mcolors.LogNorm())\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "0fabcf8b-c9e2-40c4-b7e1-ce7de3809d29", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CESM2\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHFCAYAAAD8Jo2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e7hlRXkm/lbVWmtfTp/TTXNtBBpNNAyXmAQQL3FAExBioqhRR2cU7zp2kofxkkTzi4oRMJL4aBw1OsmgRo1Go8aJZgQTMBMxEcnDExFNvICCNrZcmu5z2XutVVW/P+r2Ve21d59z+nTTQL3P033O3mutWrWup7633u/9mNZaIyMjIyMjIyPjQQ5+X3cgIyMjIyMjI+NQQB4UZWRkZGRkZGQgD4oyMjIyMjIyMgDkQVFGRkZGRkZGBoA8KMrIyMjIyMjIAJAHRRkZGRkZGRkZAPKgKCMjIyMjIyMDQB4UZWRkZGRkZGQAyIOijIyMjIyMjAwAeVCUscG47rrr8KY3vQm7d++eWHbOOefgnHPOOeh9Ohj4j//4D7zmNa/B6aefji1btmDr1q143OMeh09+8pOd6+/atQsveMELcMQRR2A4HOIxj3kM/v7v/35ivb/927/F85//fJx22mkoyxKMsal9aJoGl1xyCU488UT0ej2cdNJJeNe73rWm4zgQ/ZqFd73rXTjppJPQ6/Xw0Ic+FJdccgmaponWuf3223HxxRfj7LPPxpYtW8AYwwc+8IE17ed73/senv70p2PLli3YtGkTzj33XPzrv/5r57of+9jH8HM/93Po9/s49thjcfHFF2NxcfFBv6+MjAcFdEbGBuKKK67QAPQtt9wysewb3/iG/sY3vnHwO3UQ8K53vUufdNJJ+tJLL9VXXXWV/vznP68vuugiDUBfcskl0bqj0Uifeuqp+rjjjtMf/vCH9VVXXaWf+tSn6qIo9LXXXhut+6IXvUg//OEP18961rP06aefrmc9si95yUt0r9fTb3vb2/Q111yjf/d3f1czxvSll166qmM4UP2ahre85S2aMaZf97rX6WuuuUa/7W1v01VV6Ze+9KXRetdcc40+4ogj9C//8i/r5zznORqAvvLKK1e9n127duljjz1Wn3LKKfqv//qv9ec+9zn9i7/4i3p+fl5/61vfitb98Ic/rAHol7zkJfof/uEf9J/+6Z/qzZs363PPPfdBva+MjAcL8qAoY0Mxa1D0QMZPfvITrZSa+P7JT36yHg6HejQa+e/e/e53awD6uuuu8981TaNPPvlk/ahHPSraXkrpf9+xY8fUwcdNN92kGWP6sssui75/6UtfqgeDgb7rrrv2eQwHol/TcOedd+p+v69f9rKXRd9feumlmjEWDZ7pvq6//vo1D4pe+9rX6rIs9a233uq/u/fee/URRxyhn/WsZ/nv2rbV27Zt0+edd160/Uc+8hENQH/+859/0O4rI+PBgjwoytgwvPGNb9QAJv5dc801Wmutzz77bH322Wf79W+55RYNQL/tbW/Tb33rW/X27dt1v9/XZ599tv73f/93Xde1/p3f+R29bds2vbCwoC+88EL94x//eGK/H/vYx/SjH/1oPRwO9dzcnD7vvPP0v/7rvx6ko56NSy65RAPQP/rRj/x3v/zLv6x/5md+ZmLdyy67TAPQt99+e2dbswYfb3nLWzQAvXPnzuj76667TgPQH/nIR/bZ1wPRr2lwzMVXvvKV6Psf/ehHGsBUdms9g6Kf/umf1k960pMmvn/Zy16mB4OBbppGa631P/3TP2kA+i//8i+j9eq61ps2bZpgsB5M+8rIeLAga4oyNgwveclL8Ju/+ZsAgE996lP4yle+gq985Sv4hV/4hZnbvfvd78aXv/xlvPvd78af/dmf4Vvf+hZ+7dd+DS9+8Yvxk5/8BP/7f/9vvO1tb8MXv/hFvOQlL4m2veyyy/Cc5zwHJ598Mv7qr/4Kf/EXf4G9e/fi8Y9/PG6++eZ99rlt21X901qv65xcc801OPLII3HUUUf572666Sb87M/+7MS67rtvfOMba97PTTfdhCOPPBLHHHNMZ5s33XTTqtrY6H7N2hcAnHbaadH327ZtwxFHHLGq/q4GKysr+O53vzv1uFZWVvC9730v6lO6blmWOOmkkyb6xBiLNHIPlH1lZDyYUdzXHch44OC4447DCSecAAD4+Z//eZx44omr2m7Lli34zGc+A87NGP3OO+/ExRdfjJNOOgl/8zd/49f71re+hXe84x3Ys2cPFhYWcNttt+GNb3wjfuM3fgN/8id/4tc799xz8fCHPxyXXHIJPv7xj0/d76233oqHPvShq+rjNddcs2aR+J/92Z/h2muvxTvf+U4IIfz3d911F7Zu3TqxvvvurrvuWtN+ZrU5NzeHqqpW1eaB6NesffV6PczNzXXub6P2dc8990Brvarjcj+nrXvrrbdG3wkhouv6QNlXRsaDGXlQlHGf41d+5Vf8gAgA/tN/+k8AgCc/+cnReu77H/zgBzj11FPxhS98AW3b4vnPfz7atvXr9ft9nH322bjmmmtm7vfYY4/F9ddfv6o+/szP/Myq1nP4u7/7O+zYsQO//uu/7tkzilnZWuvN5FpNm1prSCmjZUVRTKy3Uf2i1wUwf9xdOwfiHKynvXTZtHXT79Nje6DsKyPjwYw8KMq4z5FGsFVVzfx+NBoBAH784x8DAM4888zOdulAqwtVVeHnfu7nVtVHGqXvC1/4whfw9Kc/Heeeey4+8pGPTPzROfzwwzuZkLvvvhtAd0S/Lxx++OG48cYbJ75fWlpCXde+zQ9+8IN44QtfGK3jpgYPRL/Ksow+X3nllXjBC16Aww8/HKPRCMvLyxgOhxP7O/3009e8ry4cdthhYIyt6rgOP/xwAIZZOfrooyfW3dfxP1D3lZHxYEIeFGXcb3HEEUcAAD75yU9i+/bta97+QEyffeELX8CFF16Is88+G3/913/tB3IUp512Gr7+9a9PfO++O/XUU1fVp7TNj33sY7jjjjsiXVHa5q/92q9NZccORL/Sfbnz7bREX//613HWWWf55XfccQfuvPPOde2rC4PBAD/90z899bgGgwEe9rCHTfTp5JNP9uu1bYtvfetbeM5znvOg3FdGxoMJeVCUsaHo9XoAjBD0QONJT3oSiqLAd7/7XTzjGc9Y8/YbPX121VVX4cILL8Qv/uIv4jOf+Yw/Fyme9rSn4ZWvfCX+5V/+xQ8I2rbFhz/8YZx11lk49thjV38QFk996lPx//1//x8++MEP4nd+53f89x/4wAcwGAxw/vnnAzCsgWMODka/zjjjjM7vzz//fPT7fXzgAx+IBkUf+MAHwBjDhRdeuOZ9TcPTnvY0vOMd78Btt92G448/HgCwd+9efOpTn8JTnvIUP3141llnYdu2bfjABz6AZz/72X77T37yk1hcXMTTn/70B+2+MjIeNLgvU98yHni45pprNAD98pe/XF933XX6+uuv13v27NFaT0/Jv+KKKzrb+MQnPhF9f+WVV2oA+vrrr/ffXXbZZbooCv3yl79cf/rTn9bXXnut/vjHP65f/epX6ze84Q0H7kAT/L//9//0YDDQJ554ov6Hf/gH/ZWvfCX6d++99/p1R6ORPuWUU/Txxx+vP/KRj+irr75aP+1pT+s0Sbz11lv1Jz7xCf2JT3xCn3/++f68fOITn4jOg9bBvPGKK67Q1157rX7961+/ZvPGA9GvaXDmja9//ev1tddeq6+44grd6/U6U8Rd23/4h3+oAegdO3b47/aFXbt26W3btunTTjtNf/rTn9af//zn9X/+z/9Zz8/P629+85vRun/xF3+hAeiXvexl+pprrtHvf//79ZYtWzpNDoUQ+olPfOIDbl8ZGQ9m5EFRxobjda97nT722GM153xVPkX7MyjSWuvPfOYz+glPeIJeWFjQvV5Pb9++Xf/6r/+6/uIXv3hAjq8L0zya3D93DhzuuOMO/fznP19v3bpV9/t9/ehHP1pfffXVE+26Y+76d9FFF0Xr1nWt3/jGN+oTTjhBV1WlH/GIR+g/+ZM/WdNxHIh+zcI73/lO/YhHPEJXVaVPOOEE/cY3vlHXdT2x3qxzuxp85zvf0RdeeKFeWFjQw+FQ/9Iv/ZK+4YYbOtf96Ec/qn/2Z39WV1WljznmGP1bv/Vbeu/evZ19ovfzA2VfGRkPZjCt12nAkpGRkZGRkZHxAEI2b8zIyMjIyMjIQB4UZWRkZGRkZGQAyIOijIyMjIyMjAwAeVCUkZGRkZGRkQEgD4oyMjIyMjIyMgDkQVFGRkZGRkZGBoDsaD0BpRR+9KMfYX5+PhdKzMjIyMiYCa019u7di2OPPXaf9RbXi9FohLquN6StqqrQ7/c3pK0HIvKgKMGPfvQjb5mfkZGRkZGxGtx222047rjjNrzd0WiEh27fhDt2yQ1p75hjjsEtt9ySB0ZTkAdFCebn5wEAJ7z7teCD7tpVGRkZGRkZAKBWxvjBjiv8346NRl3XuGOXxC03bMfC/P4xUXv2Kjz09O+jrus8KJqCPChK4KbMirkKfNgDY/eh4fdGz94dxEPRem2dP5R91dd6LKtr9BCZmr0v7+9DEBv5vO/P7Pt9+t7Bxt3zB+O5Zszs575SOyiubT8ObAcW5vl+D4oczjzzTAghsGPHDuzYsWND2nygIA+KMjIyMjIyDnFIrSD3c5AptQIAXH/99VhYWNiAXj3wkAdF08A1mI8ADly4c0BYiGk4qLta3Tlzx7+aIGu9Ued+n+NDhdVx2FA2w7R1wO/DdbZ/sBlE3fGQrJoASK7L/vV9g67Hwb539/Pe3Ne7dtq1WC9Js653e7ovfnBuUgUNtZ90//5u/2BATsnPyMjIyMjIyEBmiqaCMX2fz+sfKGz0cXUFadMC1JSRmOjLjK4Z7UC8/axofCb7caixP/vCKq/Zeq/tgbrX/TVYd79mNX4QruEq+n2g3xP7ZPEOxHmYcUxdxzvrOq36/OzjMA7V9/HB6peCgtqANjJmIw+KMjIyMjIyDnFIrSH3cz55f7d/MCAPilaJWdHa/kQKGxVlrCZW3N99zToH+2p5YtspG8zcxyq6v2ptzARDtfZo+2C9XxjDqvu3Ydqg1dwrq9nXAWRaDtTpP+Cs2dQVupd33mdr6CLd7z6Pza06q68dtJBO2qX70ZpFm0z0YcayWWdsI6/Tep6bPLx4YCIPijIyMjIyMg5xZKH1wUEeFE2B1sxED2thJ6ZmRuz/jbjaiMn93jXHz1fRD0UiJhqhTmh5ku1WHWl1dGF/2aE19wFYEzM0sw/rvbRr6erEyd6YdmfvdF+sxmob6n426P05S3c069lJ2Yg1YeY9t/8ncV0s4jrY0y5MsC0d2VET7we3zSqexa5jY8kFTq+p24YxPZFxSjNVafbfxHF0vOfC58k+reZ956A6jjscL30nxnm1/u/EQYCChsyDogOOnH2WkZGRkZGRkYHMFE0FZ9pEGpYsWs/c9v4wRPuKPuKoKV62lghptf1YTX9WFTF1rMKYnsE8rCUKW4M30rRz1HEMMzOg2GTkHLMgq+rSlL7sx7YdmMoOrBY0Yp5YNmvHM/oxgw2Yuk3n8tnHMsF6EmYkukap1OwAaQk7b+t1Ms37Op9d566rTXOsMbMTvp9kg6Z3aDrjN6EtYsm7bKLv8XuO+3ZWx46vFsL+TJ/XlCXqYtKZODgZXXn67OAgD4qmwD2QWrOJB5X+jLfZv33SB3L2tMHa2u2ihlcLerzRH4iuNmf0eZ8DptX+QVhjyn7ch+42o21WMcCdtBWY3afuzsw+H3pfI/HV7m8//njMGkhM7mdt/QwNxwNUI8rt+oO9vn67Nv2+OpbPHAil6ybTfrNEw9HXnYOg7umgmaLkjn2sZVAxC+n19gGR/Yz0fujAtPPR1cfpAzOzK6W436dOB68T+yXt2cETfXe5Y+8aVE3DQTXWXQVy9tnBQR4UZWRkZGRkHOJQ9t/+tpExG3lQNAWcA5xrdFETfEqEt1ZMRCIzGYc1TA0lSKfT1t9W2K6LRk6p5ninqxPFrjpleEpfZzJsUyPd2X2bJfichZmR5r4ExGuIUmeJTt0UxdR17U/3bZS+HZ0v+vv0CH/VmCGunpZCHjOp6TYpwzN9WqwrgWI1/e+a5p0mDPb9W4MlgRcek2vml5F1KfMh+PQ/c9Ome9yy6GfyfVf/Zt1HoeGY1THnehWsqNtWkX5Fu2B+nbQvgC3JRM4Z4wCz54YxeLE5ZxqcK7jirdyfz+lTfqGfDKKLZT5IZT4yDg7yoCgjIyMjI+MQh9yA7LP93f7BgDwomoKykBCFnDqP7SK1ruWrjZpnp5yG7/c1D073tz/6oY6WJ6Jz9zlNW6QaBGUFm1NT+meIsru0O1HAvz/Hl9IiXe12lBGJ2YDZu9jXlP1s0fZ0BnI9ejXfBomuJ7Qh7uc0vc1a99WBSePOfWjT/Hbh3E8wQ0BCZc0WTHf2Y8b30fHMYkiiZZ3N7xPTdFR0F5ywHkB4J0gVnsRp76JIG0SYGKUCizORLMCpJmfywCgz59r0v2v6nb3f6LPnb7oOtpD2J7qesfaMcbIdY1ZzNsloTYM7f4Y1it+xnDLiHY2l9wsv5L53uAGQ2vzb3zYyZiOn5GdkZGRkZGRkIDNFUyG42ud8PWAiicmU7Fgj0BWF7CsbIo1GUgZoWtq9SiI/GunETA7dV2dTE5iVAWT6b6OvRN9htA1pOzEj1MUQzcr+m9BArEIjMt38jfkGNLAPPQr2ix0IGXCuge4+7TMDaU37DOdogr1bx72wHuO//UV3qYsu+mgGmziV9U00POn1ncHUztQxkT6m1ztNlTc6mKAfSvelCCOkCNu3Wg1Q2l+lmGd1woaxrmnava0cCxTdV+R3xcLONfnnO5HonEh7vusak9c3alaDcfcS7biwpP9UM8SYhuDaM2+CawimJt7HgDnPvNOpMn3hH6yU/Cy0PhjIg6KMjIyMjIxDHAoMcj8t67umAzNi5EHRFBRMofDz+KvTS0gV33CMxYwTj5iiSWaI3rAq0ehwrE4vxJMokRF2wHXPZVBQtmutmGUQqeA0RYHxcXFu1zHMMn6cnuVi7PYDc5Se+0nhzOyst7CyIYMI4xaIpEiTw5ieLVucxV4RPYT/QRjGWVlj9CgmGLOO/Yb9J+tOyUyadQyd67JJ36J9afHWjI5ruFoGbZ9aE8KQzPTaUhurNphgDV0XmLaZrwFKuW1Y9JPqgkID8Tum00x0nxlh4aZ396PbJ+fa6r3s7jgjNxfs8xK/YyIdkVtVAUyy8GJSAEveoZpeFxHrilKW1R8vN+ePfhY0E20GC0bBmU6Y9n1vk3H/Rx4UZWRkZGRkHOJQGpEMYb1tZMxGHhRNgWN4XLRRsJg12pemx63DmfaMU7qe+weYuV6uMcEWAU6TM11j1NUXFUXU9piSsF/7SHDfGRYHEmmGDMW0Xqzp2aZ6kY4G9MS5CgwQc5ox1wb0RKemlvUgDJPfPyPbRFoHBE0J0xO6klnOxPtyImYk4qf6Leo3xNBxzTULGo4pGiv3WdN+JXqOuK9dQhfbX7UPxmviuLtZo32X/GATbfumunQspN21PhfhXJu2AgNJWQ+zUEu7jGlIFbZnSXuCaSjHMHI2cS9PPX5GDofL0A+/bfrZXRfCmtru0nO4T5aSJb8nLKlnXlONE9mUEFcdMM8Vs0Qe5xpcKJJhRpkiPZFtNtFd8p2g15x1azv1fmr+Vgu5AdNn+7v9gwE5+ywjIyMjIyMjA5kpWhUKFnRBBVcRM0M9LXwR2eSzZ4MiZoihTcekTIO5eXswP2TVmvnv3ed9YZbmZzUaKdWVSTMDJgtvlf1imMiS833r2Kazv5pFgWOIyGfphsIWGpNRade6VF/kP8/Qn0QsDmFawgqpDoL+bqPX5DNtN41wtd1HiGApbWDZCM/2WBZhipZlsmYY1YUhsCj7usyEBZnFDPl9dui1UlDH4uj7ruZtm9MYjO4+pe3qie+n3lsz6MzI44p6d5HzqTFbk5VmwEV6Ixbvnz4Vzlnar08YT/edn07R8X46D3MVjIi7htT3SmsW2CbFgveUZtAcPnkrelx0+pOZxmw70e3I3QEQTRHTKGyhViHC+1swwxqthun3x5Msm6YFO9DITNHBQR4UZWRkZGRkHOKgQfX+tJExG/ebQdGJJ56I73//+xPfv/KVr8S73/1uvOAFL8AHP/jBaNlZZ52Ff/7nf17X/pymiKO7Lo5jiAquIs0QT0JOBTbhfeHXTZgluqxVHIxkcCiwSGOUYtrN3qVHovxUlz+Q61vXHHr3Psxxu8QRjpCB1rUfxoK1yEQ2TUdG1DTNTierNMVbKm0jOi+ErUhbdv5Lvi+krzOze9ImuzK+orWYNxHRtlHqupsyRPSnttmJwOR5jzQyUzL14mOlnaP6I0xlEWZ55UTVyzvWj3QsChHLkLpKR5H5FPaws0+OIXHXkGusigEi+56KaeSJOw5yO2pG9D70snRkMa7aMV+HdbocphHIlej8SWCCteQ8vI+EUCiE0R0VQnmGBYBnWty7jr6bpOLQmvlM3EYJSMnRSu6Xy9b8rqWCaoXJKgOANjBK7l4IHcTkdSBskqZZeNpqryxTVAmJ0h5LyeWE/5zSDFKbPjGdOvNPvgMFj8/b/vqIrRaZKTo4uN9oiq6//nrs3LnT/7v66qsBAM985jP9Oueff360zuc///n7qrsZGRkZGRkZq8Ty8jK2b9+O17zmNfdpP+43TNGRRx4ZfX7rW9+Kn/qpn8LZZ5/tv+v1ejjmmGM2ZH8ceoL1Aaxn0JTIoGt9tw39CQTPIqoxitqiDBIss0KCqMl9x/tyoB5BKZhlqrqcu1NWqosxmuXqPW1d+ynqA/3Jp26T7HMf++NMT7ApaX8jFQ750MVsUB1HrPfoZtom4DUqLPoc1xwLDAljxOgX3GeKpdkzKSaqxZM+epaLMgR0W3oMzGlgXJ86DolmT7HuZQyT50hFzBxho5hzMJ88tn1msVENXPqTJT/TdnSykJ6fVL/ThQ7Wybebsjos3GhMhHuAZjXGTtcx+9l9HdxPy2i6h8iKdDyTRLL79ISnmobioU9KseBcjRZcSH/PFUx55iWFm+Jx+2mUQCMFainM51aEum2cg3FAtbZPnPsMPO9flLJF9npo0lewyXtM6/idVNpsu0HZoOLhWJRmaBVHrWz/pPCZfcr2mYK+V9zvekblg42EBIfcTx7j4FRpWx8uvfRSnHXWWfd1N+4/TBFFXdf48Ic/jBe96EVROvm1116Lo446Co94xCPw0pe+FLt27boPe5mRkZGRkbExcFP++/PvYFqtrAXf/va38a1vfQu/8iu/cl935f7DFFF85jOfwe7du/GCF7zAf3fBBRfgmc98JrZv345bbrkFv//7v48nPvGJuOGGG9Dr9aa2NR6PMR6P/ec9e/YAsPPkYJ794SQ64AjeQ4XVHfllLJ2v5oEFYoERahWPmSPEGp4urZFnopL7WmmiVUhufJZENu4791kk/Z3mck0jqxRdLBF1g02XK8WnzsOnfjOTWTn2GDqYLLofqSdFCPG6IQqlUWWXXijt6+y+dzNiri2dnIzVvKS0YnBmylaNYY+vu520zYn7oWsfmk2yOgydrM3EOUJ8n3VprCY8hfwjQdgoe2zRenSfEQtmGYMpLtOpI/h6/xh0+f7oQOFNrBt9t699Uo0TQ+RTRbGvLKd4/Q4fKuXuGkztn3a6HEslKMbR2MV1UZgMLqfRKVv0ComqaAEY5ih9x9D3B2WjFSfPmuu7NRjSXEN5syHj28TouWaAtuwQExrM9ocJ60tklxVCohDKZ5+VRFPUFy36ooneZyNZRuezsQyReYcF5sAx6+mxzsr0fSDgH//xH3HFFVfghhtuwM6dO/HpT38aF154YbTOe97zHlxxxRXYuXMnTjnlFLzjHe/A4x//+FXv4zWveQ2uuOIKXHfddRvc+7Xjfjko+vM//3NccMEFOPbYY/13z372s/3vp556Ks444wxs374dn/vc5/D0pz99aluXX345LrnkkgPa34yMjIyMjP3BfSW0XlpawiMf+Ui88IUvxDOe8YyJ5R//+Mdx8cUX4z3veQ8e97jH4X3vex8uuOAC3HzzzTjhhBMAAKeffnpEPjhcddVVuP766/GIRzwCj3jEI/KgaD34/ve/jy9+8Yv41Kc+NXO9bdu2Yfv27fj2t789c73Xve51eNWrXuU/79mzB8cffzxKLlHYeWiaJZZmjK0GXSxL2oapbxZHt3SfdFuamqmtxqm12RMuuunaPxCiHWBSAyU1h1QhS4SyLy7y69RZUZdeBA1P2CfgI/sk8p6VudGlnaHsk47OQ9AShL0h9KtjN7PqrU1zZE63SxkJPkNf4NiY8EXoaXReVrlv+rnrLKZHF2mGOtaZxvZ0IfXR6bqf3bJUg+W1TSBswYx+u/WidVy7hCEN/lF22WofU3J/uus5+74M1yy6t9L7ibTrmKA0ow4I30eeVUnts9UyXdSHCk4759ycAcDKZLTigR2y3YzYRqI5UtpofVQRmFZltwcAXcgO3ZhZV7r9kHdDyN5S0Czo9VTBoArLKLUcquVEWGe390xRYIYMS0S85IRCWUhUlh2qRIuKvMsplObJ5/jZFmR9N0swwRyyg6Qp0txnya2/DfPTzYg49Hq9qTMqF1xwAS644IKpbb797W/Hi1/8YrzkJS8BALzjHe/AF77wBbz3ve/F5ZdfDgC44YYbpm7/z//8z/jYxz6GT3ziE1hcXETTNFhYWMAb3vCGtRzahuF+pym68sorcdRRR+HJT37yzPXuuusu3Hbbbdi2bdvM9Xq9HhYWFqJ/GRkZGRkZD1Qcf/zx2Lx5s//nBi9rRV3XuOGGG3DeeedF35933nmrZn0uv/xy3Hbbbbj11lvxR3/0R3jpS196nw2IgPsZU6SUwpVXXomLLroIRRG6vri4iDe96U14xjOegW3btuHWW2/F61//ehxxxBF42tOetq59VUKiELKTGZnGFinN0Ooi8u9It6fLXFv0ZxccM9R2RAkKJgpztdkUY5jMmZgO54FE9+N+l4R5cdFRqjWiiPRJTIOOud12PkOGYC3OsP48cVM5nPrzaE0ifBpZJ2yO/3oKlTAzKk9Yj6g9orHpwgT7QDUvXRlXU9qgTJz7vUvJFPkwIdZOmW1Jn9h0/ypgkm2kPwWPmUytY82XSv2OyLaztFC0DxyYqH/FdFw9fkLbRm+BiEFBcFW239OssYn6dgmj4889B5QkfUrPEQv3duqf1c34TWfpInYV0aGE5Dp3L/D43HZnSCrDHFomRkqONINvoo9Om6Q0pGKEtZD+/QPAOPUn27p3AxMMEGFdug+pDAMFmCy11rFFpJ+MsEOMXhcE/6Be0WKuqjEoGwDAsGh8/zhTE1UGKKjnnPOJS9/R6buaT8nE22gYnev+8RjK3jm33XZbRADM0t3Owp133gkpJY4++ujo+6OPPhp33HHH+jt6H+J+NSj64he/iB/84Ad40YteFH0vhMDXv/51fOhDH8Lu3buxbds2POEJT8DHP/5xzM/P30e9zcjIyMjI2BhspKZoo2dF0qLiWuuJ71YDmjx1X+F+NSg677zzJrJ3AGAwGOALX/jChu6r5Aol8bNIQXU5KXtC9TdF4onh5rA5kjppM7Q6zkvDs0wdTMZEttgqBBXOidZFa5JkxMkkyuw6TrqvVFeiCHtlGJzZjADviJL3xZ5pPqlnmrW+811JdQ5ad9dRo4j8exKmxG83Y/9dtcy62Jdpx5LuczVO4F7z4gkjPZF1586J90VyHi06zrQBC3opwU3WInVdZmzSB8ohuo4Th6YnjokeMz0+pVjEglENGZhGqEA/sYup6MokizRjVNujGZQk+9TmeFikbelmD915V5HbdBdbBCgoz7R59ifJCuzaBxBr2pxDtVtu7vtEU+OYB6YSxmyyX6vRWRVcQWiFhhm+2ul86PuSnpNW8+j901imyDwvAtLpjex5c/ojxw65YxZcoypNNlyvbNErWiyURtg7X45QsMDmjFWBWsV/+rwHE0LW2jSk76VpLvoPBhxxxBEQQkywQrt27Zpgj+4vuF8Nig4mXPmOWYMV9/tkUVgr+GPKi7X9+nZQpHRcukNp3jnYoaCp/1RonZYAYSwewMwaMCjNvLha6+mDjMTrLTpmxjBRZJFFf7AQV2VIXiqupIo7ttQmYNpU5axjo+fEredSbWvpSg/YNtJ2ut797lBYeBm70ggiMtdLReaT5wmYPQiWRMRKtwXotQ8r0PWjgULSBwZMnHsKOjg09xU1BQX5Q60iAXVaDJgz7QcH+yosTNvpGgA4CDsd66bLOAAIDdExV+yv55RpQ614cP9kiAaOgP2DS/74+sKtbhDEwjJ3D7jPXUaorg8mmQK+LTdAmTUIdqCDqVS87gwhU5E4ZxqaAcLuVHDV0W53oKU1/FSWO5+xaWFsSuuOoVUh6DOdMlNnftCRnB+hQnJHhCI+D64vbtBHgyfBzUDGCasHRYO+aFFxM0iqeIue/d1h2qCoSxox673M2UE0b9wQobU5tjPPPBNCCOzYsQM7duxYd3tVVeH000/H1VdfHUlVrr76ajz1qU/dr77eV8iDooyMjIyMjEMczjtvf9sATNms1U6fLS4u4jvf+Y7/fMstt+DGG2/E1q1bccIJJ+BVr3oVnve85+GMM87AYx7zGLz//e/HD37wA7ziFa/Yr77eV8iDoikomIrEeRQ0jZOTKMhNiTlL+YLJiQhlbCOUFVmhVRyttZefmIIjoudWGQNIF4WlaaMpn55GXukUy6zI3U/RTXn2UoYIIMVzE6ZoGmjKLmCiLXeuSyGj9Nl0So6WRXHTioA5ZkrFp6D7E1xB63DzS0VS+S1rMG06SyMsKwuJXtFGBSLTMjDCR7bdxX/p1IH3UuBqkqnz68XTRq201glqkjnzUz9k+oMBCXsV2AraR8/+2TZEwppG02PQUxkowbrF+dHx0V9ZLMKl5VwYkz6l3E0/0und1DSysc+WlDy6xlJpf76U5Fb/4HYymXKdpsdHU4q0D6SgasqQmSliwL06VHTKXBmacGz0HKSlW9J2w2fDjjkuUzPDeHl2javomeVcoywCky0n2KiwbJYIvpahdIe7T+KkEFMiGjDvsmnT4iy5npxrlHbaizFTyLUkz5NPwbdlR/rCvGv7osWwqDEQNQCgZNKn1ksiYfC962CHupAa6x5s80a1AWU+1Ky55Cn42te+hic84Qn+s7Owueiii/CBD3wAz372s3HXXXfhzW9+M3bu3IlTTz0Vn//857F9+/b96ut9hTwoysjIyMjIyOjEOeec06nlpXjlK1+JV77ylQepRwcWeVA0BYYBUt6wK44GZLRe6TREXKIk7JDbxrFDS23P/14rETNOSXRFWZBW84myIPsSFtP+piUhqD5lGgQ1s5vSrhdXMhVpKaTiUfS/ryK1VFNUcYl+EbQABVP+vNSqwHJrLPlrKdAosU+zSYCyMYFNoWwaNZd0JnrR+SMsAwO8ELNXtBhUjddAOeFo0GgFHZPgCjphitJz6cTo3OS0e/1AKhJXlNlCYLdM//SE/omKtKkepUv75FgvIUyigTtWygRKNVv/Fgm0O5ZNq8E0YYqXMIquH0BcWsKt6+4T17Zwehlh7CXcdVEq/C4ln2BeGbq1K25buk8A5HprqCmCePd711lREyyfFS/5dmJLg7TNaBlliZkGU4EFUyoYJRqmVEFYs0TBNIopJITWiLQsXaWIInY6eRdIANKW7yi59OfIt9fxrCqwqDxIr2wxV9YRG1R4Rl6hR3RD7r3t2CEO5QXlrRKRDrTgEq0SnXYnKRMUZg40WUeBJbMBBwobqSnKmI48KMrIyMjIyDjEocA3zKcoYzryoGgKerxBJZiJoFh3Wj1gIgUXofR4i6Go/Tx4owUWZR8rtuBg05FhRttNy3nQdbr0KMBklpVbP84UiXUj07KjUouAqCSI/Z1mnKQRo9dAJdqeLtaA9k8wFRXYpREZZxoFnDFlWFbDsESOiXFMgGeKEl0VZWacHoFm3c3qLzU5FFx5HcagatATIUocywJ1W6C2fVIqRPGFvZfSFOWuLDpvhuiPJWY50kyvLh1M2n8KxwYxFjRD6XkwUbr2hTRpRmBZSGvuGZislPlJS8nQ610k+jOH1FCP3mNS80TPFt+PgisId59oFkXUTDNAcQh7LJoH5kMVk9lxXfYS7vy0EIHZwaTebCJdu4Mxct877Q/ncdadyyJzjaYZjE6DlO4DADRTE5mI7jPn8CahYZnrg/IFXgFEzxZjhoGk96DZyPwQ9L1ls8kcK+tYGXoPlny62aF7Phx7PCiMAeOWaoT5coQ5YdLse7z179k0Y1Xa92yjnV4zpPo3mqOxbBEAzxJNK8FU2BkD+n2aOaoOUpmPjcRGZZ89EJEHRRkZGRkZGYc4pGYTUoj1tAGsLfvswYY8KJqCHm9R8VBklYJmnJVMYiBMNDMvRujxxjNJI1WiUXwi28Fh1jw2/T3VnwAkUUknUa0NyVzkVAnZGXkD3dFrygxNM6lsVZjf1lpHjJWLKHlHlEwZA9dudFxEGwIVjic9J4U11/TsVBvfyikjRhkzxnRc0JKsVwgVGeBpzeKikJxqFWK2Qiqj/WpaQdoLUTHVThVpRiM5t4KZ7LOxdMcUjo1TTxpM10ABhi2bzIIKv3NOMiWJdsidr55oA4PH1AR74rVe0rB2neVi7HeO7XMvZecpUxCW0GUhusicenfVSvgsTAA2czMwkmMlonuKQwdti+ITpRiUtv1JPKHcuYwzNbnvO2fhOXB6rcAGqomCwHEZi7AvwXW0bitF53VKWSzHIjq2JmXpGNEjpYZb9JnQMPeJSDVbjhUhpVsc81l1MG1mG8IoJsfv+hcKBMcsttIMPXsP9kXr98GhUYkW88UIALClXMHWYgmbhPksoLCsTGmKZVWh0SLqk9OCAkCjmNdyjlUx8R5M360F0Yim9z0FZwqC6YOnKdqA7DOZp8/2iftdQdiMjIyMjIyMjAOBzBTtA5xpCASXaudN4tiCHmuwyUYzQ258MRaV0RCZqIRmbXAfXbdKRNGKi0jSCHtanzySKKZ0OhwWNDoUNMJPIybatou0XD9q21/HAkX2/HZbmoEiuOrOUHKsV8KIUUbA95UzAIEBSHVMKRukppkrIY5QldU8xJ4t9nyJwCAAVkciyXFpjZa5CFRAqHCcjRRo2hDxU5fdqpAouZzQFHXBs5B221JIjJrS98f0OdbqOGjN0NhMnxaInMUd4+jKIfSLFpUImZKp1oeyOAVTsZO7ZiZLzqIG9aaa1HPRzLCxLDCW1peKy3COuITiDAUL1zgF9e6SOnFDJroveiyz7nO3jLZDj9PoY7Q9RgGtNblHHPthd8+CdibVuSgwcBWYuYr4AynN0ErpmY64EO5kppZU3BRwhfWpsssmdF2Jv1Lqv0VZw25tm2m57+5H7jyDdJTtR5dV1i/I3Tcuizb1F3PLONNYqIxO6MjeXizYd2lpdZx9blj4zWIZ82KEPjOfl1QoYMqZAtfcv4eUZpCIdUIuQxi8RUnuZamZz0gDEGUal3yyIDi9N7j9u6DYdI3URsIwp/sptM7ZZ/tEHhRlZGRkZGQc4sjTZwcHeVA0BSXTKK2+oeQmGRJwzFGIQvu8QZ+1dhuJsSp91kOjBSQYGh3YFedg7TIefMSaZJG1irJKkw8C1WGkUXA6Dz4xZ+6ydMAiP6E0y61VHCOr1XGeQCnrAITIkbI4k7WUYi2MX84AKO71H2mGGz1+Vy+O9tc7RivutUJp/1IYZ1+a7RPrn5RmUSQeR+AKsJohqYwPkWN0ONMQQgW/IRKpS9s/pmNNVXqsblklpGf7Ki59llsjxUS0anoV2Cr3nWGTAkNWCdOO62/KItL2UqQRftRfaPRF260p6jg+evxdmZWtffEX5DlzLueOFuHFZD9pbcBID5dqAhE7T6fZR7T/tRKR15QU8brU/4jui7JGgPH9qsom0tykPkddDJFI2R5lmFmqKRPk3jVeSHZZcn5o+4VQEITJdPcEvYa+71xBMBXpwFrNwex5cSwjYHRBC+XI6yw5Uxirwr/3RrLEyGrlRrJAwRUWyhUAwDG9PTiq3GPaYQ0UGGod/kQtqR526yEAqyOyOiEF5jPOAPiBg7sWQ1ZD8slqAG4d814JurF0HcfOSExqkQR05D92f0HOPpuOPCjKyMjIyMg4xKEwacS7njaAnH02C3lQNAWVaNETzNhlWXZoGjwzJAWWVYVlWQEIEaciGh7H/rhoKXVJ7YrGU80DMJnlQSPqaT4wKVJGh0bXrq+uflTdFtA6dsOmWSQyibRTbov6/ND+0mUpqO+R+0zZKMoUCaYhiWaCk3ZTrYXgOqqxBWDCs8jpiNJtWynQ2mQTzg0zJcugRyitLiYcWzhGrVmox6XjyDVl2holvEdLwZR38q24nGBtAMKmkX0XMDWhepELMMl4UtxruHx1c5dJldQ64whsQJ3o4VJmhrKcdDsKqlVyzsROwxazNjELQxlSmmGUavC6tCD0u7T/054Dek7gkowIG1lyRZgaTGhTUh8w6sDunpnODDh7TqQy7Ch1ZU8z1cJ23X5VqU+VW5ezkDVWiTbqH1g4h7QeITDJchdc+eXDosZcMfZMkWHPC/+O5Iw490tzTx5eLQMAjij24phit99utxxirxwAAEba6DP9u1aJmVNJAsrrnHoRm9/aXcdaT2mv27IMVQecLsn3nTBK5ljMe1bO8F3aSGyMeWPOrdoX8qAoIyMjIyPjEMfGlPnIg6J9IQ+KpoC7cTnTtsrypGMqAM8KAYYxWpEV0RCZ+lwj62g9kkWUXdXl/dKVseW0NFR74JgMHy3zoBOaVYl64jhTPQfJLltpS7TEMVokEbSPXm2/u6p8u/6m/jzT2KFWce9NlLIVFLSvgNU9aIaQ+UT7GbRDbttprwZXGyzUiDJskPeFIVlrSgHjukBtNUbusIXNTioL6V2UHas1q04aZdM4dDg+TrRDHfcH9espuQwMk43gXRTvGBGq6WhVNxPTFy36oiHbKq8Lceum29LfK+I23KXpcexQxWXI7LSgzKqrk6U0Q581U72SaGane16mrevOje8LU/62GbXmGe3SI01m+tl7v6t2FwOgAEFuNKM/CllY7hlWE5oiHWWipU7tkfM4D+e3KxORskepn5UgNQsrYbK9WjZ5n7lrmLLY7hxWXGJTaTLINpcrWChGGNoK9T2bPTa2Gbn3Ek+fgilsKkc4rFgCYHzeXLaZ1BxjXWKkC799Q+6/lCWaeC4Y99mRSodajObebCOGcaRKSF36c+IqFCgYZpey5441MutqU1ftIGWfZRwc5EFRRkZGRkbGIQ4FNjFNvJ42MmYjD4qmwEVHfd5gyGsf8QAmarm3NXPdy6ryc9BKM6zIKopIWyV8ZF6rkBnUlelF4RgfYDJzi3qgpFG4m+vvcsv2x5b0YSo7RTNQLNPRlX1m+hgeOJHUTaP+PF1INVMu7moVn6qPSn1qUhdt6mHkWAPqUhw5SHOFiiu/rCbRII3ITcOkE9p6IxF/JMaCX1IrOaQtPd4WHIOyQc96BBVcGSdo6ylENS9phh71eaHHRFESV2BaRy7NtKqTiuDUI4hWHq+4RI+HzwBQsxBdc63AIfxnCqr18Z8JG5SyQ2ktwa7aWAUz/Sl5cMYeq8LXFaxV4VWkLThqKSLmKPVfovot9x0AbCprLLchQ4o+B455CfeyqalF793AljJopqGU07iZWnI+m0wRfV7Hs+GfPc2i2nem7VhTGNVMIzB9De8KmskmrCN8z9Y7c6y1u8/T9wfVkXm/K3LP9a2GyNUkc3XJ+qxFydooQ9cxMa0WGPAa28rdAIAjiz0o7dN/l9yEJdXzGWaOOXMMEdV4cma0aJQ9EgisrNQcy8ow+o0W1gMpuKabrDL3/iDXQnP0eMiqdKxRp//aQUCePjs4yGcoIyMjIyPjQYQzzzwTJ598Mt797nff11055JCZoikQMFW3e7zxbqoOd7dzuBcDsm7sNVQTZiiNsFJ9B41mKWiEypgG13F0mGoe3LrjtsAYIWrsYlpohgyV7FBWwdUW8wwM4gwpreG1U3R7wGSrCKIHSjNw0p+ujhUQ67U4NKBiT6YU0TkhjEoXMxTVMCOVu6ui9UyBAoNoNRqrC2olh1I8aLjI8eiEvZkFp+3wxw3jReQ0HKkOTOmQcUTPc8pwOP8Ymh2URvTUTdjtGwCGReOz2vqiwVwx9vdyY91zqY5I0uvC4N2waYalA60sTjVEgsVO6WNZRP0quUZhWYZNRY2edTAeihqcKc8cAEBJKqUrwgbc2w5w53gT9jR9AMByW2LcFv669Ys26E0YAzRCBhzTGBbhnhvJwtf+oro+ep7958hRXUcZXIWIn0Pjk2XX1JYFUOF+SrPLqKaIMe3DWc5iV/fUVZs+/4Kr8F5gJjNxmpdTResKah4x2U6rFhhJ6R2j03YkGEoA88J4EQ352Dv/N1qAM+V1RAIKe5W5ZnvVAIuyHyrda8MEOYYoYsuhoRjzLJP3eCJMkWtHag7JGYT3C5vOYAvrU+fu7VLIiRprRvd2cDRFG2PeaLbPKfnTkQdFGRkZGRkZhzimJeKstY2M2ciDoinwPjgw2Wd9ZqIbwTSWeeWzKwBgGXa+2rkgu+rhiZ8LEKJ1t4y6Nac+QVFfEn8Zr6VBHMEqzUztJxtRUQYiZRm6jpkyDtTHpJEizoJJXJWpzsFpiGj9o5S9oIwJQDQDVD9DNA5pO1onvjNMoyCRLz1/Wk/6PDFybL2kVpNgCoXz7+ECtRQRO0SZL00yitxnf1649ploaeae04xRhkxqej4DmxLrSXQUJQ+LBgVXvh2a3dhHC3DihWWdp3kRou3K6jsGokHJpI+oWy18xmEKx/5E9xOLWUwXgTtmiDJH5jqKcO6Z85NpfbYnAGwuVnxV9Dk+NllC1pl4q1jEUcUevy5FowX2qAF+0ppIeFezgB+NtuCeeujPUXr/hYw30wZ1E+9iccMH7j2FFGcTrM207TjT4M5FWjPzIPPQB0VYI6lY5NQOxSBdKUam/ZPI7PNSkIr1gjBFlKmc1jd3z9H3BmeG1fSsl322fX3FGWwLYNgJ6kzt7oWeZWFGNjNtifWwW84BAO6VAyzLKsr26spiBCwjpHnQNFqGh0JEv6fHPp19UZpH+iPDksYMlTpIPkUZBwd5UJSRkZGRkXGIQ23A9Fk2b9w38qBoH2i0came42P7TWszKMw8+LIM2WdjVUzUUaKgvjuOKYiyrjTzfkMAYR18dB2ixzTjxzs7J/vUOtRecyyNYyTSfpY8ZlqkirO70qwtWp+JZuU4lmhaVpskDIlz0aX7oUxReoxpm7T6OhB0LzQSdhEzZTZoLadNZe2j3VZzLLMSurF94AwV4LN00gw8ygw4r6Yos81l4NlIuyb1oig4Qsag1DzOniPZU5zpqLK802Q5hkhpFi2jrFyRRLTGC8lstwKgZkXkTC5Y0PfYb+w+MHEMnKkJzZb7Pl23JF4wA9F4jYlgCiNV+utkGNrgjFyKkNU0x8eodYGRruzyFvPMsEpbxAqOL+6FrH4MANgt+7hjsBk/ag4DAOyqF3BPa1ijFVliue1NrTOYOjdzpn0tNIn4mUhZRMpk1rYmncsAY+Q5d+fN6VykYmjsudZagzEWzLTtvl3TGszvhSP4agGA5BpCa7+vggVNURdbnNYVTJmh1DPMMyi0vqMSkHwyS4oyPu53AR1l9d4tN2G3NNdlrMrOAQDV0lHvOMGUf/elLBFnyrNDXRoiqhvqOj4KV2cNCFmyByujS1md3/62kTEb+QxlZGRkZGRkZCAzRVPRaAGuhfU+GfoIxWkbXLSzKHuRV0qbZJs5ZgCIHYN9BD/Dv0cQnQvQrbuZhmm6Ibq3VGcDxJ5IDakQbnQjSQO+HQbGWJQJluqIaPsKDFKmnJaB4AqI9BOTWqBwLKFdwzaFz4VQE95I1DepL1oMrfPzpnLko/UVWUb9LVVcUZ7qJxwrmLILtE+031qHKFNrjUEZouRWcbQtn9jObRtqunU4RDPts8io1sNpeyj7RxmA1D8oZYnSfbiMLerdEvo0mRlJkeo4Ss9shu3cc+W+k2AYWafhRooo++jHerPJBLL96LOWZDjVmONjzHPzeY7VeEhxDw4XiwCA3eXQs0Y/bjbjx+MF3NuYbFLFJsWs7ny5LCyfLccM8+MOVyLWlElyjlxWWFftPw6NQijPVgnOIBRhbDXz2jrng+UzH4FIU0ThnkH/TPP4/VPxOPtMJaynW+b8qyjTat5z7j5VxicKQEMcq007HA3C9aeeQMr+1zBbz0wLLMue+V3FjKog1QWAWDc0iwVyy8O67t4KTuj0OgloCEZ1leSdZp3Gl8nMAACM2+532UZDgkV9XW8bGbORB0VTMFYFoAqMUWCsCi8GdGLUPa1JHd3dDCNxKy1oWUsR2cQD4Q+UKy2QDhxSMaZDo4T/Y9mQgpC0WCRACq+Sl130skymfCik4uBC+/VoH4JI0/3hZtG0QcHCtJJU3AvAU7iXtCLrAoin3uz0D10PMH+U/B/05I+smb7rLh/ip2N80coGm8ox5gszJdrjraf/OQr0RYNhUU+049qKylCQ652KvGsZjDvd9aOlPOixjWURieU5mY5kTPuBjkhFrnZKZ9YgmfavSESo6eCHDozSc1wkaf/0/kwHPdP+QDXaBA1Na6a9llkZtdEjRoAC2gcfy7qKinU6bYSb3ltmEnuleSZL3kaDpK1iEVvEsu/jFrHs/7gOeR0ZCu5p+2g196V5UhPI9J6kKLnyA3NapgMw57kq2s4BY6sny/LQ6XChGSS5byQpO0On7NzvhQilO5xJIxAXbk3T9dPrSeEGV3QQ5PoNAEoJ366ygYI3PNQCJeDFyekgBFqYf4j/YHOmAU3sBJiylg12Ght6QmSfDnxoW/Q7CQ5oN/Vn0+07BPsSzO7HGk9yCc762GOL1Lq/AXWbp88eSMhnKCMjIyMj4xCHRGCL1v/PIJs3TkdmiqZgJAsoWRqqGKbQK+DoXxaV9nBo1aSIlk5XVEJG0y9dvhPTojWge7prGiImiUwrTZRkIOLPWfvWlsYPhpLw0ymMx1M6Y1lMbEsRp7THBWSdkNj9ToudpiyQgAZ3UxnCiVQnzxFliABgoRphvhh5wzmKgsvEhM8glNyIqfKu6ayuwqPKToG4Y6iERKu4P1eSpEALayZJp1ro9B29j1x07PrVksKotCir62t8TBzpfKiYsi4Qs0Fdqfpd6LJIUCR9GhreFoAzU4TZQYJBWhahUQUaLSYKcrp2G4Rp60YLNKzw645UiSXVw4JN7x+ycUicKPZAEAPBO5tN2N0M4ylwe26l4hGroxBP9wLhXjbMKTxr46bLU4bULWuSz1FJHwTmSCoOiMBqdD1bXVN07ljcvdHn7cR7iiJNs6cMwyxRshFdC8+se5NJUgLIIWUXKYyImk98R6fKIsYTsTlmyhbFx5KWBImn1/wym44fWMUxBFO4h83Zdsz90OjZlgSHIrJ543TkQVFGRkZGRsYhjjx9dnCQB0VTMFYFtCpQMoUW3anoDk5k6Ap3umjMRIfdYsYuY0eKVCdiGB2rMSG6IIF4vQlzRY0otVtFxUtdSQBpP7MopV8q7iPYVEtBozKX6hvS6tmEFX56bBQM2kfb1PSxYOF3dw4o85DqeZRmGLf2WmjuGaLKmjp6kSkpZWHa4v73kSyx3Fa+Xaff8YacUkTXM0p5J+v5baGiZTQCH6siXEce6yeKKefBGS4GTZE5RleERqlgalnxbg1L14vRmSxSzCqBkGIyDbqbBRDQANEmCWgMrBFqySQkOJYtK7ssKx+lS5hnKzBZKvJcUZoBzOnCJBRYYCssGmsgOOKlZ4ZK1mKrWIwYKlpolh6L4ApKMZ98kIIWh001O4yZVH7aVsSipSJn93t6/joE/9S0kPbXaaC6dHYp3LM17ZrzrvuDPD9un65QbygRItBjTWB/EYxHFeJ0dprunur0UjF/zDhNljJK0/nTArJOU+Rek9OYJaU5RihdByER3isll6jb2e/xjUQuCHtwkM9QRkZGRkZGRgYyUzQVjTbZZyqJnEouLUPh0konzQQpywDEmWXUJC4q++AyWyKresIw0SyyJKqkSPtDM1WcAaM3kGPaFHa1mgnGQmQmFTfZcyTdNE2HD585pGa+aKpKLAMmtA3kWASPlxUsZMgUXKGWwms6aAFTZ7jmljkGp3XMksKEwaHrU8XL6Fy1SkRMUK2ET7NPmaLIzM9eI3eda5tZ5ZanRTT7JF151BboFS1KLaN1aLtdbItjiRxDFEpjmG3HKrTnMqrSwr0Ok+aMkwgp0VR/Mp1NoG0DiHRo5hglelTLQqJ8CY5WC89OllxBOoNQKIBxcJD+TtFymP1xn/HUaIG9qu/T+5dV5Q0j5/gYQz72zJEzE6SMn7duKGpj7tmadhbrXpxRyLS32OjSmlF2iJp1progut00hrYl8azP+gSPMhWpvshtm1oBhHeMee5KwuK5TMQunZkCQ+Hfa0Sf4xhby8o1WkNyhh5c1piaeO/5/XWwO45VElbbQzVFjt1xbCLVm6XtURuFWaDbuHeMKzS8qPumuKx95xR2FmBfbW4UNCZNe9fTRsZs5EFRRkZGRkbGIY48fXZwkAdFU9AqAaaEn2B00Ze0fh0uWi4QsmeULlEwFUUlSjMf1bVq0nRxWumOLqNHb9jGmI+m5ZT5bL+uRuJjlGZ/Ma9DkpyBq8CYjJvCs0zOB0h1tMtt9pkk3inRMXZEJ86MTmtlMnSI1sKxQZVo0ap+dM6G1ltoIBrUqsCS9btxhTtd1LbYVFEpkYYUdV1kVaTposyQMcsLL45GiShCZkx7Bsq17Y/T+7k4PUXwVeqLNtKJ9Ys26m8atSvCOCqwxJBR++i9x1uUXIELc15WZBUygTTHWBWd5TcAw9pQBkgiZiXKjsKa9JhTBoPqfQKb1sVmkvOrhS9Z4ZgrX9A01YoQZihlFboyrYTdrftjMrbakGX0sGwZoZEw5SRcwectYhkLxQh313O+XXfu58sRCiax1BqDwYpLLLfB7FNqHumNtGao28DCUqTGom59wGiTprEpsCVrouwwsrhLP5RmLrq+FzwUeXVZnxXxAfKlOywD499r0FGx4B6PPb1izZqKsnUF0/56u/ukiwkTMP5KjgVyLFGXF5HTm6WGjLQffjut/fNFv3d6M+dN5LCsqqBxs4wR9YDjUaGVjAcC8qAoIyMjIyPjEEeXhct62siYjTwomgIa9RcsuMJ2MTPU4Rgg8/422q87slVchERZFZphRt1nnRapk3Gx1vMp+yM7vHYcI0SdpyOfoBaQ3DJQ0i1z+iOne7LHrALnoKUxBfOfbcaLa5aWJfD9tv4tbh+ViDO6ABPZOj2HOyfuXK/IErUqomiwsuUIHJz2w3kBOflSLQ1L5NihsQxZYDSLLuovzUCyjEULjlZyz2xNK/cR2lBQRPeQZvTEpTIUeOLf5M4Jjeg50+ixxi8vmcTYaWdk0D6YZaozSgbMPSygSTaOniggO/WcWIaHugL7TCjoKKvIOFqHNkqSnVkmbdDtHGLNR6LZSUo40IQixya4/bj+jVWJZVahLwJTdHR5L/ZU1q14VER/SDYVNQbWcVshdoFuFUctrK+SFFhuKowaksXGlX/WKpgiwb5/SZmaadoRrVlUEDjNTATg3zeuLIlD7IQuI3dzl33oj5WF91oouRHKryjNvdNzj2Q5tkpgrONrRP2wIiaSI3atRpyBSe8H9zNoOQNbD63Q6OBLJcHQqKK7eLVtN2wb7kuPqPQN989Tq0TyzBh2/2DpdCR4Z5HctbaRMRv5DGVkZGRkZDyIkB2tpyMzRVPQag6mOaCMK630UaYCiG6oVSzKTAJIBKtN9JhGcm5dWiMIiDPOAPjMqrToaEqBdhWCDJoi5jPIjB8K0LrN3WZOe8E4uMuYs1k1QfuTsEPE/0QDcaxk1/X1mSSLmBgw44INmHPbKySqghQ0pT4gpHZcLQXulkMAQa9TEGatldwzKJRhGslYU9TlKuy73sEEas285onuM7hcO+1F0DC5dWkGHP1Z8da6JZtHsCAMjjmeSb2HWU/abLMQQU/LfimZRClkxOgYOBaHet0kjAzRjLjP9P6mmWuOefGeQgm7w6GjTLCCSc/q0GNx7M1qxKD78r4yz5bTwkzq75yHEWcKsLWsAGCzWMZmsYzDyyUAwJLs4a6x0RfdWw8gNcMmyyrNiRq1LOLah2m/uGNEgxbP9YWT+y/1OHLnh+p4AADMnJ9Whecnhbs/W8kj5jXNlGo1938ARJKF2CpBtJEqcn9XYChZ67MbS06cyPn0bEd/TjzrKSPWLq1txomDtauLRllO73YO43TeuKK0Ngs0dq22mWrcskSuj/a5o+07bo+T97z73CMZpEu6N/M4NxobOX2WHa2nIw+KMjIyMjIyDnGYoed+OlrnyaF94n4zKHrTm96ESy65JPru6KOPxh133AEA0Frjkksuwfvf/37cc889OOuss/Dud78bp5xyyrr252sVWW+IkHEQz0UXXKLSLvuMTfjYQCCK+B1abRgkzzLYjBPqaUSzWtx3KRgzURXNnqKZYXUr0DY2krXL0kwYB8UVOBWyMAalHVMU11BjNBtOT7rmms/dO6J+SP2yxVw1DowKNGrpHMIFFpvKa4NGbem9kAqh0BMtBmXjz1+rOSpudTTUEVorjGUB5f1v0ura2nMmdVuAs+CjpDVDIWRUaZxez0rIcM2UYfRoppj7veKtjTqJIzHRbaTu00ozz5hRVsawCHH0n8JF7QOSxeUwTVPg/H+CpiRej97XwuqYUpdinmgx4vbNtsMkU4lCJro5qblnEUwfurV56TEC5uWf6v98fTijXvHHNeYy0pT0WIMjyr0A4LOmAOCu8RzuWFkgvkVj9EWDkQwu6u78jdoyYnfd88KJL5fTEElt9ETu/pQwmaBmO3OMgVmV3vE8HBfx1Ep8iaJsSHJv+u/seeDa3I8NOV7HDlWinchSNPuj+q9uttwxPu5zj7dxRhm5vlRP5lgiyuDI6N6I74WxKr32yfSx+z43PkMFYBkfqYVpu8t3TovoPvZZlwjrbgR7s1pIzaZmG6+ljYzZuF8NG0855RTs3LnT//v617/ul73tbW/D29/+dvzP//k/cf311+OYY47Bueeei717996HPc7IyMjIyMi4v+B+wxQBQFEUOOaYYya+11rjHe94B37v934PT3/60wEAH/zgB3H00Ufjox/9KF7+8pevfV9M+ewM83uI1GlkIJjGXFH7bWpS94cLDU5Sbei2BVRUcdsxJTSqc1GKtP5GTnOg9fTsFAfHqMiWQ7Wu6rP94cgAp+/xn+M2tApRkJIcWgW2aMIPhcFXqmdcGe8i7iIrL8kJ2WuJHsf3W3PcPTYaj1FbYtQWJFuOoW7MLVsWEroKmqy0zlNPtHHULrk/vrlBjYpLtNw5cIvo3Jpoyl6nRLMROQJbJqglUXLFJfpWH2U0RU4rJW32SoiYKbNCPxtXZ5KlhphBAgsPblfNppKySmlNMk0qtYNPbs/csZiPMon8gaBrcqB6IiCu15UySC76dwxZyg6571JMME9Ed5NCJRF1ON5wr8CyOxAmU8y1XzIJLjT6zLBB26rdGFoN0YA3uH1lC/bURkvSKu79pwCjeRtZVrOWApJkXXKuJ54Zn5Fn62dpslg612ShAB6ug1Rx/TxaT89pD6fprWgttvTctEoAXEaaHXfdJjK/LGvothVJm47NNPuUUzMMqX7I7TP0y/CdlClqCHMjWGBsFRgaJWIH65QRIXXxgJgRS7Mc6bNn9hnumwbCM47uWA+Wo3VOyT84uF8xRd/+9rdx7LHH4qEPfSj+y3/5L/je974HALjllltwxx134LzzzvPr9no9nH322bjuuutmtjkej7Fnz57oX0ZGRkZGxqEErbk1dV3/P50drfeJ+w1TdNZZZ+FDH/oQHvGIR+DHP/4x3vKWt+Cxj30svvGNb3hd0dFHHx1tc/TRR+P73//+zHYvv/zyCa0ShYmOJjN8vKM1iYoq3qImFbZHskzaCllk3qWYkWXEV4RGK4xpaOspBCSVpZORv8sS887TpDZTlAEG+Cwwx+gwonfQihmWqXEsEwMhLKAZC5Ih1y9LFjDOoETQQWjFIraKcQ1tj29R9yAVw6C0LtZF61mbpbrCaFxGSXKKuGYbTyGrnZICSnEIy+y0BYn2nJbIMTGKY9wW3r9IqqA/0SQq7AJn2jNDfdGiViLKEpxG4DmWyGWvpEwRjbzTmlOmbaptkJGrrmDK3xOUHXJan069BIJrsIPU3LtGh8yj0L80YyxUZQ/+Nb5tsow6EbuXs/eUSXRDUf+mfO/6nmqwvKMxYrbEnTsa4bvcRJMBFgSse6VEjzeR55FjNg6vFtFoDqU3Awg+WL5NJTBubQZUa7Idw7MH+9Ppz+KMNaViFsAdm9vesSLp/clZqKHGoU3mZ7pOyjTCXNdIwwgWnR+AE2bI6HnccgWGihkndcAwh652nOTGRd2dTw41wRQJci8AIfMtzQKLzq0WPmPQHQd1VqeasE4xMbmvG4go0zF91iVhfl0mm+tTQ7MwoW0Fg+n3acb9D/ebQdEFF1zgfz/ttNPwmMc8Bj/1Uz+FD37wg3j0ox8NAGDJ/I/WeuK7FK973evwqle9yn/es2cPjj/++A3seUZGRkZGxv5BgkWBx3rbyJiN+82gKMXc3BxOO+00fPvb38aFF14IALjjjjuwbds2v86uXbsm2KMUvV4Pvd6k30Q6f+t+H4gminwEVBRZrEB7lkdphpEsJiIRIGSK0PpbK7SOkuLe3TplqRhxQnaDPhdBttYZ1/vtsJBuxriOmQxtWRz3WXJfXkpJDrQcqBN3YKsb0oX2Gh2tEIRKADRnZl8uYKOBFDPr++y4FY5mVGCpsjWZqjbS8XCuUNfmNlUt95qmoiehFEdjd9tKAaWCk3eaQUY1Wc7xl2aNUd0SAAjLcjWtQFlIfy3axO+IZp+lNcE40z665kyhIk66EgzQcY0rX2PK621iLQxg2K4eb9FjwYcJiB2k0+9SpFljZl8cYMrXC3PaI8okUVdgd0wOtI/UX8b97iL5Jsno8fsm7XYdi+vFNB1RFyjb0BDtktTMe9G4fimrwbtHDzFWBTYXK37bvbLv1+3x1md4NVKgJi7RPdGiFSQDSsV+Ye47B7qM88BvcK7RK4NvF0D8rYo2csLudKwm7F5c7yx47BQ2I8xnn9mMRupwPXBaKtEY9sfpIZnGUDQY2EzCoRj7rMJGC4xV6Vkdx+hQL6q0nh69d+g1o3qzkSrj9ygLrGajRTc7ROCWNxqAjnV3aaZaYM+4/TvgsgIn3+O843gOFBRhAfenjYzZuN9OMI7HY3zzm9/Etm3b8NCHPhTHHHMMrr76ar+8rmt86UtfwmMf+9j7sJcZGRkZGRkZ9xfcb5ii17zmNfi1X/s1nHDCCdi1axfe8pa3YM+ePbjooovAGMPFF1+Myy67DA9/+MPx8Ic/HJdddhmGwyGe+9znrmt/Lqug4i0GosYmm2G2IFYwFOMoehjbqGhR9icqjbeKR8xR8JdpvLcOAIzbAo0UkWaA/i4J0wEAtY1snW7BszZJJMEIUwQGwxxRhqRlgeXR8L9rDbCW+RCdSWY2dXbYbWCCjMk3g3aaJKo3AgDCUGlmPrMi1i+1I8t0jUo4kZLoSRSlhLQ+S7rh0NKux4Ax1yiU9MdNs89c9p373dR5cyyQyY6jddx8X2CjRxUOBQju1zSLzd0jNJpXCLXuiiLJptHBtbpkbazBQfAiaiASrQ+tSN5GtabMcj7hCu1PfZT5FWf/pNk+NCssXYf61HS1nWpAZrFIZv3AqKTMED0Gz+R0ZMGlSDVZNNsszejzmiJbe8u5MEtlKrovSsMeH1YukzppBVZkhd1jwxwtNxUY09jSGwEwLupBf9IDwMl9pNG0YuL5BAwbWghFMtXURKaaZ40xyUa6Gon9oo3qmfn2E12S+67kEiUCa5hmQy4UI/+5ZcJr8nqixYDXXkfUZ4GBEtAY8ho9u6yxPkA0k63L88gcEw/O57Z2GX13KvDIhT1leDhiVo0yPn4fSRth32Fdmm2W+iMJaP8sNkBwxj4IcHq8/W0jYzbuN4Oi22+/Hc95znNw55134sgjj8SjH/1o/PM//zO2b98OAPjt3/5trKys4JWvfKU3b7zqqqswPz9/H/c8IyMjIyNj/+CMhPe3jYzZuN8Mij72sY/NXM4Yw5ve9Ca86U1v2pD9LRQrqEo5USl8c7GMsSpxZ7MJgIksXHaT0hytEp79cYwBrVsU9BhGs+HWaaxXztjWKYtqi1kWxLEflEVizOgPXCSpuYKJUG10yAHNXP0lq69pQ2YaJPPsC5PhgWEAUnKAtcz7DYGx4HekzAbaCVIcG+UiNhF+Z25b2z9WKMMkuawyFZirthaQZYjqtAwMlG44Gl1A2iwzxpXxhbLrtjIwQ1JyyFYEZkgwyxSR43UZeE4rZj8LoSB4iOIl8ZNJa6d5zQVhjgqi35krxj7aLriEVEVU28lpikouI/1Hq4Rvp6tyvWAq8nxxka3P+qIeQoRVcvs1fVUoERg9CRZF9PvSTajkZplgkbx2KXYipn4zqW+NBIMkGUc0sy51eae6Ehfh06yh1MmXZlZR0VurBBrN0TLTzx5vsUmM/f6XZIUl61MkLfPbF9ZVndFn39a0465dbmsOxllkDvSzUhzu6ktmWCKa52bczk2f+6JFn3hhpUwRPQ8A+aPYQbiVLNQdHPLan2vH1jiN0VDU4ND+GjjNFQD0eROzQUxG9x+995rkXnDV7d2yNKOQY9JnCbCsF5qJbETvyq7je7dkwaE+ZGa6rN+YjUl1RHQmQGkOwQJzdKCxkY7WZ555JoQQ2LFjB3bs2LER3XvA4H4zKDrYmC/H6JWm2szuZoixfcjHqsQPx1uwIisATmhnli21PZuibYXBMFNetKgjpbJbzb3Z26gt0LTCD3w0Gfg4uHR0KUOafVVJFCLY+wsGNAwo3IPLwrSbas30k7bp8brlRoftnmlJBkYMJn3eL2NmUOSqnDBi9sh0xCJrBmhBNmYI6rWeBK8klJsSkwyMDKCY0MFk0syR+UESnVIw71MOqZ2dAIOSGqjg15XuOJUVkJMpRmqUx3i4LkIoFETI6oqfuv5VImw4KGtUIi7cWnDlpzNo6Q435eX+6IQ/5vSPM/x2Pd56kbbgLXrCGUIqCKhoiokngxfXUteUl0gGRNMGPqX9AzStREiaYED/dtBl00D7nBYBpQOWcJxx6r5gCo0SYXqtY3/hj6SCAJsqMqWC+MZ5urgpEi2wrMxNtSLLyGZjUDbYVNaTf4xhBsyx2N8YjjpISWwzrIDWBzaaRUaqHKEdxkxpmXCPBfG+0swIpxPLjoIMxGla/VgW0f3ZE62fwpUIBWpLJrGJj6ISLVQ2wKH9VJovCjyFkXDTaW4das8AEENLOyiiqf0U9L4sSfFkd2zm3WDPH4sNd4Ew0JNWTC3pADqZLqN2Eu7+CPu5fyIXhJ2OPCjKyMjIyMg4xJE1RQcHeVC0DzRaYEWWPqK/bbQVi7LCcmsodBpdLza9SHhbcQlVxFNknu2xAuyVxkRbTSvQtALSMkVcTMYhikwxcStUHvQaLPRGPu22lgK1LFDbwqi1FBjXNj2WaSMqdsxLOiNifCoNtBFPUxY8Ih64DvpsYVL0tWNRCm1S9p3wWjMzRQaAVxJFJdG4PhQAL1Q0VegaljWgax7Y95YFJqvQ0KUGcwfB9IT5pCbTW7yYnP6hzJMzfSyERCUkEa6b6QvH1AhSdHOhHKMi5UQc3HSK0pwUkjVTCq7AqJvi8dNrUfkDw1AKez7T4qtALEYumfTCViCOolMWo9EFWS9miaghomOjaCkFb94IHZVGcKwQNTyk4Ez5aTNhbqyo71TMnTIMgYWLpw0bLaamYpdcGQbRMW32mCQLbIDbp2cB7H5bJczvtoutEn57pbmZBq3Gfl+1Ep49UpphxTK/K02BAZnWFlwFdTfi69Ja5leQ+5eaNlZFmO4ZFo1hJ8n2y23l909tPlrFI1aJslwuicSh4BIcYVsF7lmjPm8ilsgxO+47anbpWRkdpsEo+0dZocaK37vKc/jpsikMEZ1K9ewULR2T2KnQ+2Qcpf2H6276RE1SdVz01jNP7jmw37PJKe0DAYUNKPNxP2a3DhbysDEjIyMjIyMjA5kpmop7mz6qpsI99RDLbenn5ZeLBiNZeNO0ftGG0h2aRUVeh0WNYVH7KGR33ceiE2kqbopGynhc6rQu1MDQiYZ9wVWmUFh9wlxV46jBkmcnRrLEYlNhVJhLO4pKEZRgDJCuUKvgkWEjHSIz54pI2CAwHZFFLuhTlYLuKbDS6YIUilL6lHTGQikRbktziGFYVhaSmNtxb9Yowa2Wh5F92h4IbfRHVCdECtZqjaBTspYFlBkyBWtdH4Leo1+0KEgk7jQZLuIvuMKwsKnIokFBimg6y4VNVpCaanZSuwYAXsQ7FHWkpzAHEZfVAGJmxaFk0hcw7TJsDGJSMbGti7xd+YUyiXq7irMqMNS66BDKTuqjwnHHBnj0eOh6keakY9/UBDJFQdriYP5+VpqBgxFBrIrYH6WDxqS1UxSc0zvdtskUKhHMGxfrHpabCivCPGOCK4ws8+tK7XiTUptA4RhIAUUKMRvRf+E1ReH5dyylY4JdUVfHoLWa+zIzHDqy+XAaRmoQ6+7rPm8iDVF63d06bhlle0omMWRtpw2EMVwM16ZkMnJilpp7ttTpeabphibPP9H+JfeqJNqktMwJTbOPS5nYbZMSJu7cDsQ4MvFclhUgq4jN7PEWXLQ4GNAbkH2mM1O0T+RBUUZGRkZGxiGOtMrCetvImI08KJqC3c0QZV3h7tEAK03l0+4F0xA8MAcjGVJiTRYLx2JT+XYO7y35aEyBobH6opEuUQmJEbH9Z0yjLG3kRjJVRIeZm4skXRabS5f12hOfLSWjbUd1YI4Mu6LBnPaGkjIMhmmhZQk4QjaaJqzNQKG/eYR+ZbU0iqMsJHpF0OEMCqezMVkvi2PDmNWNKeTKSZTsSi5AMbCWB50TAFg2SgsNXspIRwQNyMZlnIWMKBeJu/NQVBJlIf05rkQo41GJFv2i9dEi1Wg4OI2GAvOZhoCJQiveel1CSdKjXWp00OxocJLuPS9GPgIdqzJiQnq88QZ501ii0i7vzMKi2iHEGWVp8VgKWmZBah5lm6WZaUBgiiir4I7d7y/RDaUsUqO6X0lOw5QyRKlhn9mHggLVAoXsTwBRppwzCKwTBsFnZYnW70PpAq0SQSMoBVrFvS4QMPczAF+c2DG/jWVpGLkWOnn2vWUE6aArx9F1PsI5CCwsZxoVC6wSzYB0Kfvhd+ktIkoe72dIss2c3mzO3qudLJ89x2OUXkcEhGwzmmofaYgSM8VZRosT9xu9xxIWViIU+aVp9o6tXY3guMdbbBYxU7QoK1K6R6PlAnWbBxoPJORBUUZGRkZGxiGOnH12cJAHRVOwc3Eehe5haVyhbopIfyK48ixIKwUaayB4WG8FBVMY2ahoT91DxSU2lybaKEgkboq6xoUitWaobCHIQdn4jCdmI0DvN4RQqJMWJAWMx03BJVptmRgZSkb0ClNEdZmUzcBI+EwbpoIhIzSMN5HrMrNZZm4x11BDG5EOGxwxv+T30yiBIfFvoRHoUlNh3BQYW93QeFRCq8SoMvFRCsY72pcSYUKDFxpcEGNKFfRRjFvNEeDNKYU1ghz0awyrxhfWHBSNZ39cUc3KGeIxwxTVJGvM6bccO+cwVgUE096EEUBkukeZI59hlmRiAcE40rE/Tu8DhMwvuo0xyzPLa0IqOMagphoP0LYmI/Q0+nZw+g/AZi6x1jMutcto05PZZ/uqyk01RECXPiUwVSljN81Hyf8k3jMU1ABPWU0O1YVRFOTcriD2JdPa9NcZNI6awj+jwjIvTqukNVAR9pcxHcxY4Xy47HFpPeFRRkGLwKZlZgpiwOg+93gwd6QFiun9yKHQ541nnZwJIwAM+Rh93njdmmOO3HleVj1fANYxQek5d9eV3lONFpEODAgZXq5PKUtGzTun5XxJcLRaYCzDnzfqB2ZYx24zTyCw7cY8knl2clH2sNz2Qnaf5lhuS7TLYxwM5Okzg89+9rNr3ubcc8/FYDBY1bp5UJSRkZGRkZFxv8CFF164pvUZY/j2t7+Nhz3sYataPw+KpmD30gBC99E0AkIocCe70SZDymf0KA1lNQXLosWwaFDYiHmlLbGnCZGFQlywlLHgjyOVAOeKZEE16Fs2quLSshXCf16oTLHGzeUKhiIYoCy2FZbbykeTNGOjKlpTRsQ56SoG3gYvIoBohhJoZtghbf2RdE9B9E3/er0m0j0NyxpHDRZ9VLrclj4jRmmG5brCeMVm6dQCqLlhrVwHvBbI7pwHHREjjtKR/shuy3jIPvMuwIWGKBQ2DUxEt9AbYaEaEy1YYBsKpjCwWWWA0Qktycr3vy8azBWmnU1ijB5vfSQ5VgXGqogYFYfgi2MzW3iNoRj77DROsmn6fISStZ7podsrq+0Jfi0KFZOd9v9O2+O0NYI1U8sEeNbILk4zv4xvkf29I0utJv5HqYYIRGPks5AQWBw5hSnqwiwPJopGC3//+X1hkjly+pI2YYrcs6Y0Q8ljTY5jZlymUtQPGZ47xwYDhrksRND0CK4w5pYtbQo0SkCTzCrfnu1zxem9oKPfqUt+XzQYiMDocKY9U6R0yMgzGWUhq3Eo6ki7VrLWZ5/1WIM5Po7KWdRaYFkZNnpJ9by7dQp3/buW0jIe/nj2kYHWmQ1p26HZZmNZTBQEBqxXnI6zuFKNkfNzkom/0VLbizKPFYwvVdvO7vNGIdc+C7jjjjtw1FFHrWrdtdY/zYOijIyMjIyMQxx5+szgoosuWvVUGAD8t//239ZU0iQPiqZASePhw7lGUUiv83Dus04PwLkGiG+Jc5EFzA04aguS8RHmyEdNGdU7clolzw6RmlqLTRU7ZZNlK7L0RSzNun2MZBFFlsvWq6i29dW8L5E27A+td+aYIAgN3Zp6Z35ZqYHKHsugxXBoGJPNwxVsrkbev2e+HKFgEvc25sblTGOldk6/ZezNpFmsXQLzWW261GA9GblRe28XrtDrtRP1pNx1cd5Ebv9lITFvnYg3lTX6oo0cfYP+yWpzrIZoLAuMZBl0HCL2PxEsZKcJF3mzuE0gROYuo2dejLBZLHuWyWiDTH/m+DjSEVEYnQ3RlHhdknuU2yj65kx5JrCe4gCdtt/1OWKnuqqJEkwUgyWgxV79d1N0RBzBj8fcIJOMEu1f6mJMmYKuorAAZY+CCzRtZ0/bx6ai9usMROMZRq2ZSc603W/axLdJcZ9R1itMBqbPBCP3zbKuUDfC64h6VYvK7tPp3bxuyGrKaMaZu49dwWHKSgqmPfuyoqpwbMw5oVu2lzeY56OIHXK/91ljas1ZNnCkSox0iSXLFNFss3D+QyYidOB/ZMIMAklWGYsZuzTjrOuPurv2zv9orAq01i3bbaOSe4HqgpRm/vluybLl1tS6c+/vkSxRkyoECgxLdQXZzH4eNgp5UGRw5ZVXrmn99773vWtaf1WDol/4hV9YU6OMMXz2s5/FQx7ykDVtl5GRkZGRkZFxX2FVg6Ibb7wRr371q7Fp06Z9rqu1xlvf+laMxwdHkX/AwE0trV5p2AhpPUWYMh4tITtE+7l2rZn1NJL+cy0LLNo1K1J93WWb0ei3EEGXU0uBsasfpEwGGWV/3Lx3oTlq4lqrwKLsFLrfpmgheBl7EQnA+1SXGnBMEdfQnMEJSTQ3GV/M+ShVLQ6bWwYAbBvuxVG9vT4b6+5mDneNN2HoImzR4h44rQ+LnH61NsGhrhw7pMBsllhv2ERMEED8l8oWW/orUR2yWgnssY7hjQqRN2MaPav3AoBN5dg4/RJGwqFVAiNdRtlmtQxOwCNZRtHWgNc+2uZao2Cxm2+oZ9aiz1pfo2yOj9FnTVQ3zEXbfVtLitYdkwk75LAvDY7TIFF06TLcftL14kyy4GdF2YpunUesIYra7diP27/UvDNTySHNwgsRf8zSxGyA8N+Zn2nmUXhmaiUiV+h76rmoTc6UZ4oKrrA0roK/EPHC4lxDyuC/VdoaZDQj07NciqElLFPTCsBanTkNE2WGoOGzI+dEjYVyZNeVE+cize7y/ku8RY+3GDqfLOtLNMfNZ5N9FphUww6ZTi2rKnI0p2yg07HRbRuIsC71V2IanGRDSs1B0kc7fbC6mA4FjkZxrEjTvxVpnl/6TqRoFY90QfRzo4TPIGwLHrmA11Jg1JZYqs1+6kagrguo5YPDvmSmaPX47ne/i5e+9KX4h3/4hzVvu+rps9e+9rWrFjb98R//8Zo7kpGRkZGRkdGNPChaPRYXF/GlL31pXduualB0yy234Mgjj1x1ozfffDOOPfbYdXXoUIHL6igLM5/vvEgKoTzbAcBrgoCQ7eTmnF09I7eutFW2zXYaTcsB/1lNaCscBFcmorHfOUddAGjbChxEb8QlFqoxdo/7AALLBADz1RitFBg3lgVpTW9Yz2ZplYGpUi0H48xnxDChwYQCtyxOWYQIT2mGuWKMeWEi1t3N0Hi/tIa1ObK317t8122BXtlCOq8koaG18lllRV+i17d6il5jdDqW6Rq1hWd/hNVYhahdYliEqLnV3LNpTucV/IVMFlZJzrfTI9Sq8OfZHRt1uK5Ei/nC7GNTUWNejDC00bXzayktc9RnbeQ1VDLpI/GSGe1PiRBRe58i6wHjYnzKnqRaGve708vEFccN0+M8ZGhle4fY9yVE59P8ZgDDBvTRhP6BxzXL9pHhQjPOnKN02vd9odGGfRgTRi/0z7hm04yjSOeUZB7VxNG6loZhbIjDNc1Mow7TpZAYjwufcVYkDutSMTAW3hNpBXulA3tKa63RTE4FFmeYMYW+kFiw9+Dh1WJUJb7RImJYSi79uaa+Wo4lchq3Ia8xL1b8/SmgfEbhSJcYqdJnm4102Vl7zvRBWNfy4As0VmXkY0RRMjmVuUzvh1aLxGMqZBOuqBIr9nl3GsC0BlpoJzBDUvGo0kArg6ZNa4bFcXhmWslN5rG93uPlErrlUCvTHJMyDhT+5E/+ZObyH/7wh+tue1WDou3bt6+p0eOPP35dncnIyMjIyMiYhMb+p9QfHEn4gcfFF1+Mbdu2oaqqzuV1XXd+vxqsK/ts9+7d+OpXv4pdu3ZBqXje9/nPf/66O3MooVe1EFWDSkhUhCloNTcu1iTS4DyOFBpfEVtDaYG+jfKkCtG/IPohty5jYc5fMBVlsTUyjlwdG7XcVIb1sEzRfG/ks6uAUI8NMFGw4ApDy8QwptGMwy3AGLxDtNuv6yIvTRaYsJlgnCsfTS+3JkpzEWqPt9hSrWDRMkU7Vzb7aFsqBs4ViiowJLoy9cgAYNNgjGFl+jdX1pELuOqZbD4HmpVTcYm5Ivj+AMCKjU7HskDBZcQMUf8WHrkAq6iSthIMFW/hKt8PRNAQDcXYeLvw4BNFs8jmxcjrfwTTVkdk2pHg2CsHXt8Veed0MCbu3KbZZy6rKmWIAJNt1ugCI22ZIrseZRLSyL1BiOhTlii4H8Mfg1vX/Zvsd1zrrFHFBDtENTAcCo114E7dqgUUlA7brciYsXDXXmnD+NHsI6CbOahVgVoJjO191WoOrZnXlUjF/TJh73nnNO8d5q3HVotwH2tt3O59/y1z4e7XPXUvqpnGufIZrpwT93rveUWY4GKEw6tFe750xLT0eTPBwgU9Dw91GG27jmVyGjeHka58dtmyqiIvIlqvzvWNPndgCo1dd6RKLMpeVMG+9Jl05lpTdjK6nuT9KHVcs6whJS8aywo7ZriWolNb6favCBMoFUctg46IXreaaYzrAsrqSVXLARYyYLX9fLCsfzZy+uzMM8+EEAI7duzAjh07NqJ7BxXbt2/HH/7hH+JZz3pW5/Ibb7wRp59++rraXvOg6P/8n/+D//pf/yuWlpYwPz/v6WHAZJ09UAZFGRkZGRkZD0Rcf/31a/LuOdRw+umn44Ybbpg6KGKMQev18WJrHhS9+tWvxote9CJcdtllGA6H69rp/QGFUBBCoZamKjbzDI42mWGkdtdgaJmNXu2dbIHgPeRH92SeuxISmiOarx63wutnwAFlMzEaKQzT0gbvHBdljsYlNEINtd1LA8wNxljoGc2BJh4dI8tg+RplQkAKZSIgAEqGMMh5A7llTBhX6J6tzbapV2OuNMfdL9ooyju+fzdGqsSPxpsBGKZo0WaFFZaJarhlA/o1ykJ6VqwqZFR7aKQKz3pVXGLYD9GsOU3aH9NQND4SLplEIc0+5wRDj7eeYXFut1EdMq39PgF4NqhkCj3Romej6DJhBWmW2JDXUAj1o2hNspK16LMaQ8sU3a02QYJ7LYtgGnDZhjrUl3LLnEeM1Mz/7hBliBEX3kYLjFQ5sX4XO2XaiSvWp2wAj9alzAufYJbcuXXtUE0J1YbQ6J8zhZLDZyAphMwfpRnAwj7HqohcqwEQdVZc34wzjVZz1LYWFp2CaBXHqC18nSznLeSYBM40Vix7tqk3xkpdYnebGMc5JqEWkK42n3tf2M91K7C37vmaiUt1zz+zTqfotpGSo7UW+q0yOkTHmM4VY8wV40jz5DAUtfXDUvYclUYXaflpiVArruRG40brmTVaeFaRaoiWVQ8jXYR7w3pJ0axNOl8gVWDwFmXPa33c+XTPmkk7VWgdO6n4VK1SmknYEB1Yq8z70ekWqZt/un2jRMT0t9Iw/04npDQz70GLljDpXCijGXP3ltAQlQRT9M47cMhC64A3v/nNWF5enrr85JNPxi233LKuttc8KPrhD3+I3/qt33pAD4gyMjIyMjIOJeRBUcDJJ588c3lZlmvWQjuseVD0pCc9CV/72tdWXVzt/oqVcQkhSijF0TRknrtQkC2HrG32VM2xLIPnTkncr03tIx18TEiEampzAa1lYprW1ORx89mcaV8Xrbb7X7C1uxrFMRpbvcxKaZypiUt0PSqw1DdR3sJw5DPklusSggc37lZyqJab+mMWLsIuei0Yh882E8KwRFuGKwCM066D8XkROKy/BAA4urwXUnOfhdVq4V21dy1ugtYMVRkqeZv9mj6N2lg/xZlGUwSGy7FG/cI4UruMsoobNmeTzcrps+DBMlYlSiZ9FMpRRRFpwSQKF/wxjQWMPFOUZns1ShAWyfjOOE0R9WYBJjUxlNEZsjH26D7GNjLnWkfZhyUklNMRgdYO4xM1maimZKSDj1KjDSMmEnlll7+MBPN6H9qm05w4/xkAUNBoyPaOJerKIpKam5pwOmYDKMvkGTsA0hlXwWhO6EvcuBSHfbYqZJ+5PjqkrsWtEhjJkKnm7rvltsSoLb1uyPmHuWeEMjjGXwsY1YH5kI0AXN0+DejKaYCMEz4n2anLTYU9Niu0tW75vu9kPW790QCgL1qjfxPOebqF0szXoaP1y9zxu+vd4zGrSs+1gHFXp3q4RhdeRzTSJZZV5c91mjFIkV73ZVV5dmhFVtH6BWSi7Yq1QSrZhyT3Sa0CG0kzyNpEf+WuGf08aoPeqGmF1306ZshlEGrFoJ0nHdcAYY00ZxElJkqrsSwoT5ZxX+Gtb30rXvGKV2DLli371c6qBkWf/exn/e9PfvKT8drXvhY333wzTjvtNJRlXOrvKU95yn51KCMjIyMjIyNGZopm47LLLsOznvWsgzMouvDCCye+e/Ob3zzxHWMMUj4wPBvGKyU4q4ympuVAYyOXhptK7s4tudDQlk1pmgKMAcxGbhVXkDrMvVPdl9QcbRtqdbWtgGw5WpKB4pgizhUGvQYDq+GR4x7qkY16VwqwhoX6ZRpQpfD6oaps0S9DPbWxrX8GALLlUJJDk2jIBunme8W8tqgsJeb7Yx+xVjxEfC7b4w6rIVps++jx1vsWzRcjz/AApip4ZZ2quf3pnYARsuWaVkQRn6hChfJNVlvhomKXPUajZqelEFxHTFEaWQOT+pppKJn2DJiwGg0XzZYsZocE05G2pdEFlq1VcZ3ofIw7M2XsiCsw+V6BR/XBal34rDJ3HLQCPQAgOU53Hmg7zuMm9fuJvLNcxK8FoEW0nybpO802GuvSa3aMFijxSiJMglSMuIDH2iB6TK7WVa0o40c8bMC8hsixCjXJRnPH6Vgi90y00jBMji0A4LOPWikMg2OfY+meHVsfkDcMUljGqZTG40wQd+5E9yl9/UQVZZ72itY/Z8OiwbAYY86yni4jy13vkM8a4O9rci8Ahjkqieauzxp/vyrNjR+RZfTGRBfkWCLvlZXsj95HI1Viqe15Bq+xLJ3P7gT3y7h9tik75LRSrgYZZYbodVM6+LZ1ZZlRR/tGCoysN9u4KdA2wl9fLRm04p4B0oqF7LJCARwQNqNQSQbGtd/WaI8EVNOtg9poaB0qAexPGw9UrFdYnWJVg6I07f7BALW7AsYVmGTgDQMf20EQKaYKALKv0Tpnx4EZ+LiXnXNK0ETw514s46YwFvFO4CeZfSAtVc8AJcwyUUi0hcS9IyPwXBmXkHZQJJY5oBicmz9TgK4ZpN3lYtGH3mReqHO9GvP9MRbH5g+z1gxKKijfPQbG42vthNbAZKQSSl8UWGor3DU2JRF2j/tYqMZ42KY7AQBHlIvY3Td9v7fuo2lFKJsiOQqhItGmGyhKxSA4vPh8oRrjyL5JRd5aLkVCStcf+sfZpxuLZUj70geAHsyUwZiIf9MpADrwMW2HPx4l6x74K81RcRmMFDXzf8QEJGotMFLmHHUVZ436wJSfcgKCoNwJ2tNB0DSBNAA/qHJ/vKhI17VDp6bM8QaBLoBoao1D2wKhod1UIEuL5popMytyJ+UX3H7cXyQODkCR8xLbQ5jBl1m2IitbksPstyAC+FZzk2ovwx9Ymnbdau5/H7cFRnURUuAlh1LxoMifRq3RsCDK9YJbuy4fcf9VLSpIydG3iQGFkNEfNanCVHkhJPpV65MNSkEKwDKNgWiiNHYARISviImqWdrYaS9vFOuNP1svrO6TARIQDBrptRF+exml3af3mALDsi+xUZnp0sRU00+RIQyCpYqLs5o0+jBwpcVZ03ePGfSKaB90WWsTZIDwrgWAtrYDIhWunVamfBNg410XS9i/jnLF/iI0NNNQVnytJYMCDpp5o0JImtmfNjJmY3XhMcGHPvShzrpmdV3jQx/60IZ0KiMjIyMjIyNjtbj55ptx4okn7nc7axZav/CFL8T5558/UQdt7969eOELX/iA8Smq7hYQfQFeA0wCziFflTbwdlmlmsGdxmYkUA8kxMBOMfVaPwUGmOmgeslG/2MBzeDLW7gpOc99CAXNQ4quUhyLSyYak6MCfNlG5pKBKYB5Ct9kduvaRr57K+x1osLNDFuGK+jZKatxXYJxHfqgAzXMhLEWcJGtsQwovGibk2mtRgksNj38eGkegLEFuLNsfYrsmYf/AMf1dwOAL7R670rfnxPGNJgILIQ/BXYKcWinDbdUK9hSGqG3mw5TfhrBGMEt2zT8I8q9OLLYC8AY091Wb43YlEaHdWmk6UwC/bQRicIBJxw213DIaxupBzaJQ0EiGAxKQmY1pIimY1e6SlsozaYuS0XSIzvNkR5D2h4QWJsudE2dgcMzAJyFdG7OtE+J79rWb0+OxaVSu9R4x+wUUODM9YFDgHkhuyTsgNuHYyCceFqRKTw3QVurAqM2TK01UhgTQyl8u5JM0bZS+LIzKWNLA2vGgKYRkGObZNFwsEKDu2evBTCyzwsvIBkwcueDF0jZfW37QMt6AElCgTCMDifn3q0DIErBd9NctJAwhw6mmywuJdRogWVb5DW1bqDTbqlYX0AbJtM+B4uyj8XWpsNbu4WU1XGbt7qYZHYI60SnxFoVpuXSKbJWdQv7AXO9a1LOqK4LtP6aCT/dab5w73DfWfi3sAawLMDH9l06kFCtgFixNiWtMbdVo3V5IK8ZWVM0idtuuw2MMRx33HE4/vjj8dWvfhUf/ehHcfLJJ+NlL3vZutpcM1OktY4MGx1uv/12bN68eV2dyMjIyMjIyJgON/26v/8eSHjuc5+La665BgBwxx134Nxzz8VXv/pVvP71r+/UPa8Gqx7i/vzP/zwYMwUOf+mXfglFQaIKKXHLLbfg/PPPX1cnDkWUew07xFvzz91L6U9eA6UVKhcrDKrg0PbcjI5owSoJbpkYWQvwu0x01b+LQSwDjTUVVRXQzmmononkWCMgliw7MdDYu6UALPvDlwRcJi2TzEY7tuPc9M1poAAOZae8lzBAr2wxKM3GjsVyhnNaw0fM0KZkgXQC1EZgGZUXpK6UJeYrM40qFccdi/O4+95N5vNIoBalj9QWqjEeufl2AMDDhkZnVHLDKu0Z9TFuC9R2XSEUSstkCaYxLGts7Rl2aKEIZTOWVRWlY/e4EcA6/dGRxV48pLgHAPCDZit+3Gz2628uViJ2o9Ei0idxFkonOIGpi7YbLXy5kJK1kUGjWx5+L7xpoVsWtEDMp8w7pCny0eckKnYR9LKMzwMVWguvQwr6I2q6x5maWjS1ZCYdvmVm+UDUUAgsFTXaC6UoAjvkfnflNlKjPX/KOIKZnz2nQUwd992Jdmk7bj+m/I4r6muYgqiUQ0s+S050axyyESaBAjBaEw1oF/jxYMYqG/NwORYWTEO3Qc8HBfDannsBtP2EEWm5Z2J5qbx+j3MNwbRnYZVmqCwTNBC1MRcl57bHW68H6vGGCJUnWTvHurlz6O7HmhX+HgQ6yr2kGjHyO2cKjQr3NmUfpbXnaOk916H5ASbZn9h+wejAaFo9BS3a7MqyOJ1io0zKvRPIax1YObQsZopUKGXk23PXaFmgWGJBR7qnQLEEWNcPqAKQFSAn1SQZBwk33XQTHvWoRwEA/uqv/gqnnnoqvvzlL+Oqq67CK17xCrzhDW9Yc5urHhS5DLQbb7wRT3rSk7Bp0ya/rKoqnHjiiXjGM56x5g5kZGRkZGRkzEaePptE0zTo9YwM4otf/KK3BDrppJOwc+fOdbW56kHRG9/4RkgpsX37djzpSU/Ctm3b1rXD+wvKZUC0RqMDBqTO/i7A5y3AbKTAWlimxkZCSyWYKrFytI0IW4b+nWZZ/05ANBrVXhvNCFiKh0RoLsOtYqg3Vz6i0RwhOtVW52SvpGYmrd4tVyV8ur6WDEujyusK5no1Rk0BXZAIzZoqjkdGb+QgawFo5o0sm1b4bJnlusTySg/ybqMrYIpB9xQau/3OxQUc2dsCANg+uAs/M/djbLbaoB+WW3DPeICRLVtSFa3XS1RCYlNZY740oRlnIWI+TCxjUfawuzHO6rUqwKGxyaYubxFLWLJ6ie+Oj8ZP6jCId4aLbj9jWfoMvILJ2ESRtxBElwFutEQAvPGdY39MdlfMGlHdDdUUUW1RChftU20Q1fO4NHcAWJZlVPyUsj1AXFSzUTGLkGb79EXjz28DAJpDET2KZ2WUmDDa49D+HCowH7WbLLAi2qf5PpiUIkkrl55JEBFTREt1jGRhmCKidQlsFEejQrZZLU16tmMOKIsgJTcMUOvM+2CKfnqdXTBG1S0HI6ys5gxMaJ+tBBayU1nDwMYcYnMwP+VC+QLMwpYRcueAE6bIFHRu/DJ3fcz5MwydsKVQoMI95HReVGfHtfbrNhAYaZcVxifuFcBkGbrr5M0aLfPnnovSLncMJTVo9NfJab+mFGV116tNMh7p8SrNoueDQ0fZU3HR3mDI2LYmQ5DqOT00zLvbPc7SXqs2ZJ85Fr5YBooVBP2oNMvc9VelnUk4SExRTsmfxCmnnII//dM/xZOf/GRcffXV+IM/+AMAwI9+9CMcfvjh62pzTZoiIQRe8YpXYDQa7XvljIyMjIyMjIwDhD/8wz/E+973Ppxzzjl4znOeg0c+8pEAjOG0m1ZbK9Ysmz/ttNPwve99Dw996EPXtcP7C3r3KhSlghhrNEOOdmhH2DbK8BGhDqwM0wCrARvkoVoEihWNuR+GbYsVGx02AJfaWMfDzE8DpF0FMBt6q4Kht4fB2ctIolVQJdAMAReMG189DSdlYRqgwVpbFxgVZuFcr/bGjoDR49Q22qrHpSlnYrUWuo4zqaAZ7l60LM1KCTUWEGOntYBhn+z6y3WJH4+MhmihHOGocg9OHv4IgCkee8vykbi3MVTcSBa+JAhgokPHgijO8dP9HwMAHtm/DbvlAF9bMffhj0aHRaaAu+Wc9wvaVc977Qzgiko2PrNqWZaeYXLRaWnDRQENCYbSF56tg/mj822hUTwCO1STTJuRdlliIWssZYNo/6hpoWAkQtaIfGCcX49DwWZ7mbiSLKa/JNsMGrUqPENh1uVwn7gqkiieGj+yCQ2U03yMpDnOooOV8P2x67p1XP8iDZFlH9y9MbJlOQqiw6EaIqlCpp0r8uqiZKWZ18qplnmvGnN+GZhQgQ6QHLD3NWMACHvKlGFtnQ5QjYXPUuWNYYbdfgb9GoyFgsg046xXSAiuiNZLE92NQMMkOAt951z5Yx2hjO7t1CyUs8AUmbbjsjXuXpZgxrDRnUMkWiBN1mXGgNGV8qDeU459nDVNQzPMJH05keLZ01git1wq7n2ImtZkmknL9slGQEsO5Zi4Iui3lGBgKpjdsoZBjBmcTypT8O8txxRVe91LGZBl0CDp2rzf2+bg+PjpDZg+e6AxReeccw7uvPNO7NmzB4cddpj//mUve9m667OuOfvs0ksvxWte8xr87d/+LXbu3Ik9e/ZE/zIyMjIyMjI2FhpWNL4//+7rgzgAEEJEAyIAOPHEEydsg1aLNTNFLsPsKU95SpSa71L1HyhlPhzGmzmaOQZLKng9j5dqKDMvDdjvFTG6LQCAoX+XnYtfCudGlQxgDNxGGaK2UYxtl9fKs0a6YChWAG29fFYO52gHZMTPSVacMH10QZYudYhuW+NYTR2je2XrowfBFQS3egRhCt/6ciZjDjQcurDsCAOYXVfvrsAJe+b3bXUb46bwHkat4vhJfxMeMWcYn+Oqu3Hs5t2eXfn++Ajc1RjXZ6UZBqLxGTQn9O7CYwffAwBsLwqMir04XNwEAPjXYju+MzraR1I/boI9hPtuYNmfRnHskvMTWVPTUDKJIREORKUvdFzotdHCO2dTZmhZVZHzs3OQdsupZsexQNRxWCJof8aqiHx/qGdUS7U+hIVxx2l8a2LdBm3HMQkVd1oS+P66LDFus/GUzz4L+3P7oRF/yhIZtor7dT3NKdpAmfpjCdokU7zVugnruOgn9SFqpfGwoRlmQHCaV5J5z6DI3RgAKy1L5Fyr65App/umHIcri8MUzLZ9y0LUHKIO2hTWBgaqEhK9ssWY2ww5KXzh6LlqjIKwJK3iWGx64XyBoSJFiI2uyCxzhXG7IMEASfRohOVyWjmn3xqr2NFa2cLDQNCluX1Cd2WnBWYrKgBLmDx3bLSAK12X+gW5dxLVjCniLyUJy9S0Am0jvPu+lhy6YdCWpZvwnZJEQySZ0WGS92dpY/vevRrVXoXBjy2LXDDIvoDs23tX2nfdQWKKMg4O1jwocp4AGRkZGRkZGQcHCgwsl/k44FjzoOjss88+EP045FDPc8iKQ/YBWcLzjrwGovJgOjAkXAJQ8HoeVQLtEGhtZFGMOOw0PIqRmY/mTqijDRPEfTjGwVvLypTMzGdXTn/EfDvmC/iJUC0sR2qzZyJZADNeKbzX2s1YFHEt1VWIphWDagLLAGbm313UzAY6eH/ARlxO18S1oZJGds6/LLBcmg5LtQl3j4a4Y8UwRz81fyceNvgJHt4zzNHx5V2eeSkhUTEZ+e44753vtRLzTGKrpem2l3dirxzg7tawTHe3cxPz766dPc0QreYYuAwfrTG2hY56vI30DCWTmOcjzw7RDJg0WpbgUSFNWlNtpMqovpjz3XGsjdQiuP5az6CxjgtnOhjn4jiSdhF5TTxinObC7WMik0kzjEhmGGWRAHivHL/cZ6Jpf97c99PYCt9n4k0zkkXEKjkfr1YJgNP+EY2S1ZA4BoExHbErEXNgfWr8vexYJc8U8bi2GXV1Z9ap2nnZMA1sssctlGEd7P3pL4lzj19ogT3hwdQMkSN2T7RRH1O4bM4i0dZEP8EtMdGtfKDu060SUIx5vRwwWV/PZZu5zETqPeV+D9mXYVuVMJJpjTL6mbNQ5HkkC8/ohbbcvUzucZfNlmSbjdtQU612mbCWJfKFraXVDLnPDYcilQNMhhlh+wjKPUDvXvM7bzTKRQlHKxZLLXitwO0zowqOdi4uunsgkbPPDg7W5U++e/du/Pmf/zm++c1vgjGGk08+GS960Yuyo3VGRkZGRsYBgNIsLkmyzjYyZmPNg6Kvfe1reNKTnoTBYIBHPepR0Frj7W9/Oy699FJcddVV+IVf+IUD0c+DDq/LUYbVccawYqwhxtp7WQAhG0wJw+Y4/VE7BGQPGFsNGFOxBwZvwk3OJCBGQGGDOqdHAoz+iCmzb8AwTHSfkaaIehgBRk/Ewu9Kch9Br4xLLKqej6AZ096byNQj09C2LV26lAzCbLkoS2hDIHlBFCYUfb46uOYYjwssjc1Junt5iO/PbcWdWwxzdMrgdpxQ3g0A2CqWIaB9Vtke1cON44cAAPaqPraKRRxTmLDOZXc5rKjKszIlU96FGrCMB2FbxqqIWBCa/cOZQp83IYIGw5JyNdO4rR7u3K6LCW8iWj28C5MV460HjKxiNsW7aLuK52ZdIVqToeej9qC7ab1eSZN2wrHVMvaJocyQ26ev6wbt9230RDyI6RQghPbns1ZFxByZjKSQcdQqHveJOGzH5yNmoCiDoq0uyTEfjRQYO58aKdBKjrYJ2zIWmE3V8uj+NNlm5nctuWEZKnue+xKidA8BIFvhPZigjTaFWR2R5izyLAKDZ1sVGPqi9WxQv2i851LBFQqufL0zeg4qLiNdTaM5OFjIgGTBHyqtUaYsp+WYV+p2nWY9uozGoDETGMvAVA5cWp1re0rdsbA8HAP1I2oV9/oeTa6lP2dJG/69YbMJnU6saQVae71NtlnQhmnJwBoOSnQ67zhdamiuoez7zGWbCVuzTozhGXreGlbeCY6ahR7aTcJ8B0D2GNo+g6xnn4uMA4fbb78dW7ZsicykAWPq+JWvfAX/+T//5zW3uear+T/+x//AU57yFNx666341Kc+hU9/+tO45ZZb8Ku/+qu4+OKL19yB1eLyyy/HmWeeifn5eRx11FG48MIL8e///u/ROi94wQt8KRL379GPfvQB61NGRkZGRsbBwH5nnmk/E3i/x86dO/GoRz0K27dvx5YtW3DRRRdhcXHRL7/77rvxhCc8YV1tr4sp+l//639Ftc+KosBv//Zv44wzzlhXJ1aDL33pS9ixYwfOPPNMtG2L3/u938N5552Hm2++GXNzc369888/H1deeaX/XFXdEfq+4Jxry2VtnExt1CFGGqJWUb0c5jKMjuImUvT6HvPPR0BEY6CqeJljdxwjpTmDEiGCYlKj7VnmY1l5zYOugoYJMOyTFjroHWhmTc0ByTDmZgNeKO9UDZiIuahCeMW4hqa6okIbzRIAKA5tQ1RdKrChNhE3XHYOifiFAidCLDqvXUuBvU0PtywdAQC4u57D1moJALC5WMZWsYR5YcxC98o+7pXBe2KkShIFJywNyewaiDqqAcWZijK4wGXEJCkdIvF5Por24zx6zD4FOBga0Grxob7Uiqp8tA2YSJ5mlEHzyGOmsM7OMskag4bPAnPV5VPdTZdHkNMUOXaiVRyKEb0HQo0tx1a4LKeKtxCExSl4qMbuP/usRcNUjWXP7kdELFWkMYHRmDgNVEHqeqWaJ5rJxJlGwRRqBMZOKR4qoUvh6+dJy4ZS3ZAGC5/pM2FZIqdH0TUH6yn0NxnKtlc1UM4Z2zIT4T4XiGpnjTga62DNR8ywEfZYFld6UHOL2FIZJ/dlXkFpw77USqDiEsPCfrZu3Q5jVXj3dcPYtUmtvjjt02UvFkwaxsd+HiMweKkOxp1rSc69c6WueGtZpPAMFFwGFpGFXG/nJUSvZau41xEx4lrdaKMDi+4N5/1lNWK0nplSzLtWS8nR1ja7TJoMQXd9WcvAaU06bTyjAMMUqVL7LFrFzTInu+IyvIOhAdnjGG81f0NUydAOOFqbGCh7DFpYzedBQNYUBfzu7/4uhBD4l3/5F+zevRuve93rcM455+Dqq6/26fl6nSPANQ+KFhYW8IMf/AAnnXRS9P1tt92G+fn5dXViNfi///f/Rp+vvPJKHHXUUbjhhhsiiqzX6+GYY445YP3IyMjIyMjIuO/wxS9+EZ/+9Kc9EfP4xz8ez372s/HEJz4Rf//3fw8AkWXQWrDmQdGzn/1svPjFL8Yf/dEf4bGPfSwYY/inf/onvPa1r8VznvOcdXViPbj3XqMl2bp1a/T9tddei6OOOgpbtmzB2WefjUsvvXSmidN4PMZ4HLIzUgNKH4S5xIae8arwA26SFcYbqwWy24ixyVbz4PDOqdCELYKR/mgONPPM789LdBqA66BX2P0IjnKv6w9sJGQ/c5MJZskV00/HXDFm9D91ZdfVsKIDs5wLND0b0ZUSTGiwQtnPCloyCPtZqxC1iGGLopI+UlOSQ5TSawfSW7MqWx8RCq4xKBofGd/bDLxT7p1iE+4pl3BYaZijRhXYI43zdcEkGiE8iyS10ZdQLcOcFWjNi5GtS2aWDUSDkjBXPRa8kBotMBRjHFnstZdMR+zUkI+xrIiHDPEecj5ELjKXmsX1pUjGjovUqReM9x5SIsoEK4k4olUCPcviAIBk2kf0/vzywAyloOenYCowNkyh4DLyFOKk5pvo8DcKbIVCq0pS/yos49CR3xAAy0jJaL9xH4MOx+tpWOwnpTTDuCl8NlLdFKGeWSug6WnXliXy3WUhO1MzwzJYRpRVCsOFFcz1at+HkWU5lOTWGVmEdkB8uYrQP7lgdUouo7ARGLUFCut+vbW3hGVHObSGLZqzup2Kt9hjHd5TYaxj7LoYH+c7FDF6TPrniTqlT/OWotcw8r5SbJKdJNfDu5EnGYyubZZcO8C6UrcieATp4Cckfbah3cayRt6nqBXQzpeoZUbfRVyqKSHLiEE5G9trVnhqC3wc3q3U401VzLLwQUNEPesc5PoIiTUjM0UB9957b2TY2Ov18MlPfhLPfOYz8YQnPAEf/vCH1932mgdFf/RHfwTGGJ7//Oejba2hWFniv//3/463vvWt6+7IWqC1xqte9Sr84i/+Ik499VT//QUXXIBnPvOZ2L59O2655Rb8/u//Pp74xCfihhtu8JV0U1x++eW45JJLDkq/MzIyMjIy1oMHcvZZURT+b/kZZ5yBP/uzP5u5/sMe9jD827/9Gx7+8IdHbXziE5/AM5/5TPzqr/7q+vuy1g2qqsI73/lOXH755fjud78LrTV++qd/et11RtaD3/iN38C//du/4Z/+6Z+i75/97Gf730899VScccYZ2L59Oz73uc/h6U9/emdbr3vd6/CqV73Kf96zZw+OP/54404tYf2D4GuftT0TdRRGGmAiCxs4irHZpnAsTW2WeTdsAR856tIwRR6NWc9FNGIMz/aUKxrFcnC4XjxeoB2ETZkifahhvZNsVFeEZUwbrZKTBfE26ZMANLNR8UBADRTYwImcAID5TDVeKBSFrWZftRBcYVSbiLQQLQa9xmtZSiGjSLEnWp9pA5iq4E7LQjOtODQWZS/K3HJZVgPRoM+DD5ACg2AqZOUI7VmkIa8x0gUW275vhyOsu7lYQY+kE/ZZg6Gl+PZKs41bPi9GuFsaDZuLzNMq5dTrJY6aVZQhl0bULoqneg13Htw5UZpHWUZKsyg7qeASQ/JU0z4UkcFW3IcuV2/qsi3BAMJOCMRZT5L0gzI/ynoxuX27zDP3mbNQ8yutm0U9oVplqq+7SHfcFBg1pc9G0oBnigAbVTufmjS7SajwQTPohoFZdqAa1qjK0P+6KdCQLDbXtofQUI51oHXRCg2MuWczVMPRKIGeve+PqBaxZJmhXZjHSIYMyBLAJstyOpbQubEXXGKsiogddOevFDUKch1bJew9GRhDt11NMsvMTxU7oyvha+q1mkcMogKDkqW/znQ7l01YEy+igikoHhgomTCY7r7X2vgwuXMsZdAUAVZn5Oqb1Tywe61lAZ2mSLHInw2MZM9q+8+xSkJDjMM7UvYAvWQ3kxpaMNRzlikaAG0f3o+NSYCPMZFpm7F2bNmyBTfeeOOq17/gggvw/ve/H894xjOi793A6BnPeAZuv/32dfVlXT5FADAcDnHaaaetd/N14zd/8zfx2c9+Fv/4j/+I4447bua627Ztw/bt2/Htb3976jq9Xm8qi5SRkZGRkXEoYCOyxx4o2WeXXnoplpeXO5cVRYFPfepTB29QtLS0hLe+9a34+7//e+zatQtKxdHn9773vXV1ZF/QWuM3f/M38elPfxrXXnstHvrQh+5zm7vuugu33XYbtm3btu79yopBVSZCAEyUwBur5YFhZsSK9r+3PQbRhDtPiTC/rSr40k6yROR4qzlQ1KbeDgD0disUK7YO1V0jiMURVk7YDADgjcD4cLPeYKdxki5cdW5bPsr1j0sAlpThdYiIAOJn5JJyyvA7RhxymUMOLOtR2iwdq4nQTHuGRAoOwRWGfauJEBL9svFR8UI1jiLNIvFeGYgmYhdoFfcVYt1t3KYDK2PqQDGyPLA9tF5ZnzfgqofG1p1aVhU40yGjhzBMc3YbWm18yMfYIswDWCcu1q6fgM0+I9XFDUsifX8U494F2tPYTp6iGfgUh4xYc6OsU3H83JXEM8g10xcs1uV09DtimQgzJDqYI8o40Kw5k3EUlqXsWMXhWQfKErnPqVaJ6lq8v402GhNfxb3DJ8dpU5S2GUkyMBCMweuIjNbHaUoYmNDgPatxsuznqDH3Xd3GLtqyCc7jrk6ac+SmbKhWzFzvkWU+hMDiOARfW4uQVTlWBQpeeYd15xkEAHNi7P2wAPNsrMjSPyMFlxOaLPfMLLU9KDCvVTKHa9tJsgIBjlaFrEfqdF4whTa5N2fVC2wV99dbaZPh6HVumkdMEWPBGV3qwAylGiKtGZRkJlsWRgPGqIO1Y4BgftLPWiBce8XAa+a1nWLMQC2YNAMayww1c4aB8hUK3ClR4afLUj4YMIOi/dUUrX2bf/zHf8QVV1yBG264ATt37sSnP/1pXHjhhdE673nPe3DFFVdg586dOOWUU/COd7wDj3/841e9jz179uD000/HYDDApZdeus/KGUVRYGFhIfruy1/+Ms444wz0ej0IIbB9+/ZV7z9qe60bvOQlL8GXvvQlPO95z8O2bdvWrfBeK3bs2IGPfvSj+Ju/+RvMz8/jjjvuAABs3rwZg8EAi4uLeNOb3oRnPOMZ2LZtG2699Va8/vWvxxFHHIGnPe1pB6WPGRkZGRkZDyQsLS3hkY98JF74whdOTFcBwMc//nFcfPHFeM973oPHPe5xeN/73ocLLrgAN998M0444QQAwOmnnx4lNDlcddVVOPbYY3Hrrbfi2GOPxU033YQnP/nJ+PrXvz4x6NkXLrjgAtx444142MMetr4DtVjzoOjv/u7v8LnPfQ6Pe9zj9mvHa8V73/teAMA555wTfX/llVfiBS94AYQQ+PrXv44PfehD2L17N7Zt24YnPOEJ+PjHP74uqwBVAszVPNPwPha6NXqiYmQZnXuVz1Zo5jhEo732RwmgnTPu1YBhmYJ/ECDcnDSAcgno36NQLtlsn7FGuceEMPw7twHDAVTPqO2Hu4DxEY6dYij2GP8kh9HhxCOI1GqTpY2abZTkyQbngbMSvmuGNuvNVf1WAmBA27c6gwUOPbCeOZVEv2wxLE1/B2WDTUXtI/6+aLC5NCIsx8hQxodCQAcWRHNUovX6mcOrRSxajU+jeMQMAcAWsYyaT97Svo6ZS9FT1YTgsLInhUOh0YU/J33eRN5Ce9Ug2k5p7tmLRguUTII7B1wddDilkOBQ3m/ItU+ZozQzzfWRuhQLpiGTWmim35OZQLBMXUu0IZPMUOzkTfVcabYXPWbqaeP74NbX8XeK9pfHLtauX66flPlzOiIAniXy54QptIz7yu9KMq8pUq31raFRcUQlAMEgzPpzER0R1bLQyFzZjEvuMjI5IArp+8DIcTajwrhdS3ct4T12AGBrsYjdNqtxS7kMBYbD7Ivinnbo38ybxBhjXWKZsD+OhQGMt5XLnOzxFgqcOI9r1LLAEowmb74YeUbRZQS6e67VHKO2INeCB0aPTQp004xCeq/USmCltV5o9j4qSJ8oo8aZju4j5wnl3Kzd+VeSmevqtEAtB1yle3tpmXcah2dxgJBNBlgdUBO+q+61x2fPt6qAkZXH6sK8Kx2TxFriYYSQqbYPc+8Nw0Zmn6VZ1rNkJBdccAEuuOCCqW2+/e1vx4tf/GK85CUvAQC84x3vwBe+8AW8973vxeWXXw4AuOGGG2b269hjjwVgtMAnn3wy/uM//mPNvofr9SVKseZB0WGHHTaRBn8wsK8DHgwG+MIXvnCQepORkZGRkXHwkA7r19sGABx//PHR92984xvxpje9ac3t1XWNG264Ab/7u78bfX/eeefhuuuuW1Ub99xzD4bDIXq9Hm6//XbcfPPN+8327A/WPCj6gz/4A7zhDW/ABz/4wYOacXawISsA1gOIqRAtVHcpVHtVEoXYiEVqiFGonbN8pPUzIneylQ2AN0C5DJRLjvHR4K0Gt3qk6q4RcOO3TLubF6COPMw7XDPpdwnNgXJR+/7I0kQ9rr9iTObCYaId756trKOr/Vwuashe2IcsgWq33ZADsg/oObujoUQ1Z5mhfo1hWWNQmoOruERfBO+hgQhsS4+36PEWfcvyLMsKy6qKalxR9+mSKwxsJti2cjdGhfUwaubRZ413j+ZMY46PI1bH1SiTMP5AlHFZkVVgrThHbVNKeqzxfQPg65o5LRHNHpNg6JG6aD3QTD3DipU8RMgCyjtju9+jWlXJG6/LtZgzjQKB/UmZNrpuldQOS9kfqu1yLJFjGQoufXbdZH8UlHXvdvsrufQRP2exDw6HRmVZq8p9l2RJAYGtcAxFJSTalmiVSP8ZAwpBMqKoSzXT0Iz5On5240AOcaJYZYAoA9sjuGEynCxAK9KOMiyRW7eqWvTKcK8ypj0b1IwLgGsoy6bySkbrGmfq8ExU5J7/qf4uw1bC3G8j1YY6flyiJm7TSnNssg+7YeAkekXIVGuV8Nfw3maAPbVhWheqEeaLsdeJLbe9yJk68pLiyrihU2YIccaZ034psCjzrNUcQnGvc6OaMqlNLTt3rpUKPkUciDLIjKaI+4xCBvhsP01dxRF0Po7BYQo+M61YNhpPX8uyNvtx+2qHIStY9sx7Vbm6aNT7DaFtOSkzPCDYSKbotttui6an1ptsdOedd0JKiaOPPjr6/uijj/YSl33hm9/8Jl7+8peDcw7GGN75zneui3h53/veN9GP9WDNg6I//uM/xne/+10cffTROPHEE1GWZbT8X//1X/e7U4cC2gGgezbFfhkolu2LcNFMl7kCg0yFkhrlkoIWDNoOXkSj0TCG1o4dxQrQ2xumx3ijwWv3WaG8ZwX6O9837QoBKe0f+CO3Qg1L9O62hnJlD8Pb7MvsWI2FH2g01jJg+RgGVYRpMNYiMibjMqSUKlsM0Y0BVMm8qFDUpg3nU9hsApoFBb3ZUvWbxpizwuphVWOurLHJTp/NlyNUvMW91oCOQ0cU/7wYYZN9w2wSIyzKvk99pwJeDoWhqP00mWAKR4q9fvm8GPntGm3S80s7DabA/YDGLV+2b7tWi8jgLjLAY6aMAt3WDKrMiRFQfiBTMhlN4ZnCrALKveQZB4fy25Vc+ukyc0FCIVIO5reTtnBnmi7t9smZJiUWlE/T9/0g6fstBBlQIZrKKBOBLoXSLHLdjKfSwmDInTMOTUqQcNCz4s5N2jcA0VRQqzjuHg39NOxRg0UfCLgit7Q/gikvVJek0KgZxKhQ9oHraIDEeBgTiUJBCIXSCqyFHWhJNwMpVGjXinXdYGy+P0a/aKIitSNbQqfuFagBcLtur9eiV4TBjwLz99jmYhmCKTNtBjO19rDeLgDAbjnET9p5YvPAsYQKy3Z6alNR+4GNN/8EmV7j0r/k54tRZHewpVz2g+o9zQAFV9hUmvn8kSwjA07wYAbq7s2u6VW3jvD3BqLvKUo7KG95KAnjBlRucOmn2tzIxevCtR9oQdpFvoyL+eHfgZJ5E13emHe6tylRiT0KGSCBAVpob38i+86mJR6YqPhP4P0CCwsLa9bszEKqLdZar1pv/NjHPhZf//rX97sPz33uc/e7DWAdg6JUdZ6RkZGRkZFxgLGR82cbhCOOOAJCiAlWaNeuXRvC2uwLo9EI73rXu3DNNdd0ZsOvh6RZ86DojW9846rW+8u//Es85SlPiYq13p/QzJvIQIwN1Vrb8huyKlAtkvTyFe1T52Wfo+0zKFsgkLeWmXEp0vco9O+y1PbeGrxuwVYs+/ODHwL9HpiwKafjMYojDzcbrozAByWWjzUj+3qe+chGC2Dn4xiOtNd+vFVDjFgUvdCUUqWCaNxt7yIhpsLUmrbTZY3VqLebJDAnUQ5M//tV46fL5qsx+kWLoSurUYxQMokfj0x/aTq+Y4lc6rszO3RTCcuqitKtSyajKTHHBG0Vi6iYhLRR5l7Vx7KqMCQBqYtW0/RtDoUeKUSqkuUCKjAxUNH2fd5EEXKfNRAkxXysyiC21UFYXnJzHFRgrBjzzFEDEdLhtZ7K0qTnpMcYJLiP+EsmPavQkvR2IJTUcKwdTfU268fzANOmuThT5gZxAn1m2nTrjlUouSFYNxtFpwopy7A46vk07IUq3KjaHotblzGNQpCkhkJCWiNHyeKpGAcXuHKhyDScRllICCfYtscsyLSnK2bsGKJ+Ya0meiP0RevZDXquD9ukgU3wrJebNnLTXkuqhz4zz89mYQoff1eZckS3jo/E1sI4CPZZgz5roGj6Phv4qa2+aPyUp9TMCPG9JQSLy9nwFg8Z3AvAMLQcGj+pNwEAbtuzBZv7KzhusBsAcHczjNP+NUPNCt8uhSkQG85Xq/kEM0RLezgIblg4dy8XTJEyHwxSiWS6SIO5W1RoPyWmmSnt4YpV89rQPbTItpMT8Nq8D6Uv6mpyIaSzXOHEQHdk3rOuJIiGe5cS1lExqINl/rMB02cpy7W/qKoKp59+Oq6++uooy/vqq6/GU5/61A3dVxde9KIX4eqrr8av//qv41GPetSGZMOv27xxX3j5y1+Os8466z4VTGVkZGRkZGTEOPPMMyGEwI4dO7Bjx46Z6y4uLuI73/mO/3zLLbfgxhtvxNatW3HCCSfgVa96FZ73vOfhjDPOwGMe8xi8//3vxw9+8AO84hWvONCHgc997nP4/Oc/v6HZ8AdsULRR6XH3FdRAAX0FNQDaOQbehHRP3nBUNqOxfxdDZXVCqmIRUyR7hoVxor6VI7nN8wd6BQOvS1T3LgIA+OZ5tD+5C66SpZif98IHtWUe9eFDjDebdut55nVAxRJDO6+wfJS1vJdAO6fBbeHDektgqnhtWCIXLGiiPXLbkvqb0BxQlY2S+gqikqgqqw0qZDA/hLbCUaeRWMEmMcItS0cAAHbXA2wpTbpxo4WPft1n851pd5MYYWypLccg+dId0Kjs74Irr/8BgJEuDUtj1SxScy9qbrSYSN8vmYwYoFDU1egWvBaIKYAwPkM+9uJuBaMZ8owU2Z9dwZ+jHm9sUdVQYJWKtpWN8s2BSnCSLk0jfqelCTYDEkNWo7T31YqqfJFUV3ojlPmQKIk+iRMWR2mGgnw2wvDwDEuwCRNJlZQsUYSh8NtpNsHE0XRuWk6iVgL9Mlyn5bb0LAwt8UH36fwmKgDasqfjugQXiBg8pbjXDXGuPGtUCYmqaGmzaKXwJWoYYY1cwVJnSurMLt26SjNwW05irqyxUI08S1ork+4+tqaIPxwfhhN6dwEwmqw5voSH9O4BAHxvdBS+uWJSlH9+eCuAYEzqNGVD69Z6dH+vv1cVOKRmEaPHoXzpDKU5CvvcbRIj7KoXsNgYiqQqWhw1WMSKvbd3rWzy1+iI/jLmy5E3gU2vp9LB9BEACgQxuukXi9g0z/Zpw565+7FVHKWtTl0IgVaKwPYxbawQ3C2g4UsOMcagEcTcLTPvuqIl94tz+RCG7WnnLaupmdFOWjZdM/iSIKxlYC0pGSIm/6ZprqEPknvjRjpaX3/99avWFH3ta1/DE57wBP/ZlcW66KKL8IEPfADPfvazcdddd+HNb34zdu7ciVNPPRWf//zn122euBY85CEPWZflziwcsEFRRkZGRkZGxsZgI7PP1oJzzjlnnyTHK1/5Srzyla9cb7fWjT/+4z/G7/zO7+BP//RPN2wQlgdFU6AKDZRW29FXwWCMaWgO1IfZjI8BR7FiDfqWDNvioo52iKh0Ri2A0VabnTGuMPyxxjyOBABUt+xC8ZBt0HsNc8TmhpDHGaZl+dghVo4QqO3AXvZC9oRjoRa324yivRyypyNDMbFiOuDYLZ+qKmOmKDIxK1xUZaOmUqHstT7a1hoY2QwYxjT6Reu1KpvECFvFEg6rDDu0c2UBd9dBWzbktU9759ARgyIJ+1AmehRBOlsyCcEU+j79vEXDhNfs7FUhxZQzZbK/CONE23MZXAAw1iUqHeuY+qzxDNU8X8FeNrB9Zb4fAFDKOWOIZ3VODQtaqZJJSDCfMCNsSvZIh0fQ6S04DFvlmCTKlpnUdx6xTENe+yynsSpIpppCKZTXuvjjTjLBAKNpohoiZyfgUsHlhN6IE9M9gRUZGIRG8yjNvotZcH2qpYhYhrmq9p/3jPtIQbVAnGmUjs0SAGfufiSlPcLZjbalxYpLLqP08p5o/fKKh+0cc5UW1vWaOQZf6HhYjH2qPADsafsYkZI1e9o+bmch7fjossWRhXlAx1WJH4zDMspqbi5WgD6wxwoBDyuW/L0wUqW5dxxjYgvC0ixGd5yLso+SSRw3NOzU5molYgqPGez118iVH/EGjOR8AYb9KUhpm9TYsVUcLQtZaRzhXJttAsNYW5ZTawbBVdCmCQXNg0GnVixIe5h5P2l74IxrwwZZAZIYsWCgy0ymmepbBo/HgwRdBVsCZ1zrs3fZpAfowTRvzJjEGWecgdFohIc97GEYDocT2fB33333mtvMg6KMjIyMjIxDHdRQaX/aeADhOc95Dn74wx/isssuw9FHH31oC63v79A9ZYqfaoCV2qckcKHAhIaszKkbofD6HTFmJlvNyiJkZdgWV8qDZhSp0hQc3HuCYTQGw20QtYJYsTb8cwVGW80+xgsco8ODv1CzCZBDG7XVzLA5Nnpp5hXY5hpqj/XVGQX9E1OGAXL908xmW5ACh9ISOu0c0G5SwNBqeCoTMbsMH6WYz8aZqzT6osGczT4rmcQcH+PIyngK3VMPfdbN3fVcVE6iz4yxo9MRjVQZsSDgQKkdwxMidOG3txon1mCvDiU4KPvj4ArElqxFo4sJI0a3/yGvo+2EZZpCl5zPj8Icq70+yv3kcpJqVpohtTOR4Bgysy+BUPrCM0Q6sENOU0J1Rq5vzqMJcP5MQZtkzBPdOYkZIqoDEjCsKDUUVAjnjxo5OqbHaaCkZmhI6RSFoGuplYjKephlxJCRaRROE8NsxpgOyxx75rQ8NCsMQMh6ikww2QRTRDPKBFcYWINDx+wEo8KQCQUAPdF6RmxYFKhlKIXhmQ5SzsaxKhVvMRB1dM5XeEWK3XIstebZ34ktAICjS5MZdmx5j+/3He0WLKvKPx8lkzihdxf2loFF41aH6BhF5921R/ejosScaZ+luCIrSKLvcSyRu7/cs+y+U0RTJpiOWCWatehKsURFfVnMBvp+2/uvIboxB5NdGDNyWjNwJ9cjRo7m8Jkp0AuY+4cDqrKf9xRoG8fsa8g5BQzNddeDoBUFTMkXXyC7cWJM1ykN3XKgJuKlUgFt3M8DhY3UFK1FaH0o47rrrsNXvvIVPPKRj9ywNg/YoGj79u0TVFZGRkZGRkbGfYu1CK0PZZx00klYWVnZ0DbXPCi67bbbwBjDcccdBwD46le/io9+9KM4+eST8bKXvcyvd9NNN21cL+8DsEKDFSZq5aVE1TORhbAeJ2NbFLKGhhzZzIqao22I5bwtSuhKZ/AGkMOQ2WBKcDj/oxKDuyXao6wj7gJHa4PBesHMg8uejcznFcQWE8nJ5RJamiwJANBzbRQhl3uDm6sSRoNEEjoglgKzoUTwN5J9sz5stCZseQNXKLMslPcp2tIbYb4YeZ2QgCk0us3WCPlJNY+7rKaIa469bR8/HB8GABha3QUtquoYioJJ9NH4DDPjnBwcooHgW7QgRtjZHOZdq4HA/nBYfyEbDm4tFnGvHPosMkncr41+g/k+COtT5Jgply3n98GYZ1e2sBWgiEuD+HINEFZPEdgF2m6kn1JmeWkv1JAYS41tUVen33Lbu8i8YBKSO0+YIsoio87YDsHHRnmfG7OuKRnhomSpNVxxWzBTiDRoiGKfnrRQaFReJIl0+6L1zFWtCiyi8mLQRgvP7lSixbBovNbHZX7RjDiaMUYzCzkMS0S3HRaB0QECMzIQTXSfKXCvq2q0QC0Kzxy5AraOVRqImujqxhiK2h9byXro8TZ4SKngNN5ogb2q78sDzfMVbC2MttAxl0cWe/1nADi6MKzSvXLor28Dgc1iOWp3qe1NFPMFgEVZYSRL/9kwW02kMwv6sjZyTDffkUxFTUp+cMd2cn+c4IGJo4xe6mnkrpPpJ4Mk7ZWFjETCLdNBXyQZtGLQth0tGRhX5v0NQM6RLMu+Ap9vUNr3OQNQlS1ay4ALkjXXtCK6XR1zKW3pGdVwq22a7gy/oUj0TOtu4wGEt771rXj1q1+NSy+9FKeddtoEEbOegd+aB0XPfe5z8bKXvQzPe97zcMcdd+Dcc8/FKaecgg9/+MO444478IY3vGHNncjIyMjIyMiYjvsq++xQxvnnnw8A+KVf+qXoe1dmxJfKWgPWPCi66aab8KhHPQoA8Fd/9Vc49dRT8eUvfxlXXXUVXvGKVzxgBkWMKzChwAuF4aDGoLIsCFfQmvksrJGQGPesb03Lo8KUuuYkZQHGZZV4XSz1Bcp7bZRUA+PDhNfByQHQbLIeQQWgegqwEc/c5hUcs2CEQqO2xA9/uBV82brN9gG9XPh5cVkBgrI/ZdAQFYs2W85n1pHjVwBvGKSdV1eSQQv4497Uq7G1b1I6FsoVDETjdS9GK8C9NuL2aqtnilolMJYFFrnRU7jsGOog3bPanKGosUmMvMZHEM+VWhexXw9royhXIGgDUidpYfchbUZMiZDdJZjymWYAPNPjNpdEZzPSpfEist4qC3yMeT5GI4wb8R418P4ownrG0LYl4iyycP4UxkRbRR2/DdsTaxjGqiTnQfpou8fbKKPMMVhN4i+Uni8g+Cs11jZ/kWTzlUyigYA7OFcMtrL9apWAcve8mmSOaPaWYyjMcZjrNPI11ELfC65QMIW+XbcnWu+k7dptS3NcW6rKszgOBTlvgmkMeGiHQ2GTZeNK3kb+TFSvNVYFxjpEoo4xojosx5YOeR1dpz4zLJFjXMaq9OxoWoNOMA0BZ8ccNHqA0TT+pF3AXvX/s/fu8ZYU5bnwU1XdvdZe+zIzMAMIygDiJYgeFIjBK3gD4wnekki8RORiFPgUUTEkKoIoKkSIJgiK95PjMTFojIeoGEmUqEflEnOCEi8gKIPADHPZe+21uruqvj+q3qq3eq292XuzGQZOP7/fwFqru6urqy+736ee93mdfm6H6aLv7ZmnlWNr6RrtyRK1UoHpcvela7Y0GWaryCL1MjfWE565zdl45Y1su6ZzNmcfog+XZ9Pg/ZHIFVya5F6sPfNJn0PtNGlQaYXaL9NCptmRWSziW2uJulIwZDfliwFLz+a7bDTfr47zWpvo+PNUlO5a8v0rNdPnWQFtZJK1aK0IdfjmhzlqraBF6oF2v+IhxvTcV1x99dWr3uayX4qqqgoVdb/xjW/g2GOPBeDm9jZt2rS6vWvRokWLFi1atBiDZz7zmave5rJfih73uMfh0ksvxQte8AJcddVVePe73w0AuP3227H77ruvegcfKExMlVA9gUxpTOQ1JnwNo0Jp1EYi8860mYwVtmutkoweqvRM4BkVmdIYrskx3N1FnnZ7DhgBSdogZUPNHUxoyFxjcspFiwfsthn7TTo33F/Nr8OmYg3gPVDyTQXqaRMZp0kT5vd14eqi0TJTAMOC1TvLYk2getLCTGrIrmcolKsRtWbC1WBaUwwwU7jPM9kAa7L5yLbAoLSKZXvpoLvo1zm6qkqice7mnAsddEZrVD/1NGKRt4EErPMCIpDbL/WBdlGIOjA1gK96Dzm2pprymXE66FoydGWFwi/n7I6xEgPk6Hsr5cJqdEWNaTkI7UZ2JvO6pngMA8Y6SJjAXCmYJOuO99MwTyfXrvNmytkYNZ2oY1+s01yNSZZpao1I7xQic2lAG0oYSGtDhpnLcGL6HhUrx9dWYa6OOq9MGBRsfzmrxZZJ5xlU+GtZwo5kPNF2PVWhI6pwrfCMQdJ9VQ1vJa4zIp0WeWTRmNE1S1qtkmUpVlZhaPLElbx5DU37GmUSJrKMrD1qq2xkPyqYcI3Rd8CdP6eyi35cu2ez2O4zzIYmxz3GsbDTyvU/F5FpA4C+cOM/r/OQfUZO4kELRLpC/30yG4ZsSW1torMiax8NFcYhZGxRe0HHZlHIGhnzyuLXmrECtYr6I8pAK7XCQGaoVOr6zqd/wjnSCrUyITPWwjveN+rZAU4/lEsTnud7TMxhTT4fzumOuou+v14zYRK2kdoa+Gf/XFFgvsyhMcTOwGpOnz1Uss/uDyz7pej9738/XvziF+OCCy7Aq1/96pAK9+UvfzlMq7Vo0aJFixYtVhGrKLR+qGSf3R9Y9kvRkUceibvvvhvbt2/HunXrwu+vfe1r0ev1VrVzDyQ2TO1ANlkikwZdn/kCOA2Em4930cScKIKT7kA0NBMd55jLQfoBJQ0GnRyb4aK8SlkIr1cCXDv0Ocs1ukWFvaZdBsqjpu/CHrnTFM3pDianhtixzfXHZiI4sQaQ6e9QOK8jkjj5IKyepO8WesLrmGZqFL0SmWfBukWNibzCGs8O7dbpYyZzn6fUEBI2ZLKQpoEiX4qeAYQ6VwTSE5GOaE02jzXKaZV6cphocICo41DC1Q4jtqWymdPT+Gh2Wg1CJC5hMCmHia+Oa2M084szO4DLIJPWIBfk7BzZBu1rnw08UzSwtWeKovdQXLdCjuh+TUzMwGt2iCUCnKu2tDb0hWunImvhNWSwyFl2mmo8NXNEhs0w/QY/BtefeOwAzxojbUuZMBs5NFSjFhSxOpyxq61KPG3yhiZKsirpLhtJYdIfT0fWiZO3azf6U/XkMLCIXREzpwYmd1ljXDsFO+LsTTAQics5Z/P4taGthFEiXKtu/XiepDBB+0P9UCMMXGQg49jHa9rts45+VJAYWMlqh0nXD8Zg9JhztoLBpNe0KRi3D09A1Vah8uzjmtylMW+vOr7vNmmztirqucI4UZZY1GYBgBEm2DqH42Vu8SMZj0nNPRnYKwMRdFZ1JlHqLHleGCvC99rIUBctUwaljlolIUZ9qTrMj6pQGjO5eyY9rLsN02oQrp2+7mC7T/vlWj76XhuFec9kdlWNfpajtjuHKWqxc7Aig3JrLa699lpcdtll2LHD/aEuiuIh9VLUokWLFi1a7DoQq/SvxWJYNlP0y1/+EscccwxuvfVWDIdDPPe5z8X09DQ+8IEPYDAY4NJLL70/+rnTsWGij3yiRldV6MhY12tClRiaDHcKV5m3NLGSczernL+Mj5gLFbU0BPJKkbDYKiyqnq/OPiGCey9fD3BRz3RngP2nnI7ogO6dYdn6Yhb7rr0H/zV00UtdKuejMetOrdROOwR4h3fBavlIAassjPc/srkFOl670Csx0S1DPyaLEtPFMNERUaZKMxIEfETr37nXZztC1lAmCkww92sFg1xqTHk2aa3qB01OLuqRdgk84gYco8M1GZOsmr32+iFaPkCBXGh0yU2aZdI4p+tURwIT3aqpPep70icIlFCYhFt3mulciNEqfbuF0MF5NxwHnX4zymYQY0OsUdDk2Kh1AtIK5pwhov4Rs0LH1jTfDposYaCESZy0eY0tCKYf8d5dFFX31DA4jVdWYUZF7RRnygCX7RW1aKTvia7VnC3jY5ILl+lF56V57jnoGgm6MRiUgWmT4ZwQnEaqkckIhGuoy/bV1Gxx5FIn7Iu7Dv0yqwPzoq0Y8coyImprKpv5bD839jwDUiP6ZE2pAXKhMS3c/aNUyoR2ZYWBImbV+STt3pkNfb9jMBPO/4RMPYv6rG4bZTXy8SIQM0SMUdbMVPPb83GljL7KSMiMrj+3DbEytVWojMKsdwEvtQpu5AOdoZdjxMMqMF2NrMUJWWEmc0zZunwOu6m5cG30VQdblGfvjctwpfGrrMK2egJSRDfxQmpUVeqAf7+h9SnaKVj2S9Eb3/hGHHbYYfj3f//3RFj94he/GCeddNKqdq5FixYtWrRo0WIcnvjEJ46tdyaEQLfbxYEHHojjjz8eRx111JLbXPZL0TXXXIN/+7d/Q1EUye8bN27Er3/96+U2t8tit2IORSd1qAVSd2EgjZIyqVHqjLkLm2ROnWdeSGGCSy/gsrL6VRE9Zph3BgDs09uGjROOKdpdzWKHcdHKtBpgn9423DU9BQCYL3P054vgPG0GMmSbZbMSJrehQrTNHVNkcz8X39HIvNNrt1Ohk2n0fJbGdDHEVD7EpGeHMpY11JXOo4giZWOdWzMxNWvVHDb4iHSgc3RkHaNiqdGTZWCHOiKNUBdD4jxsUyfTgckj02SzhLnqihJdVcZaY1DQje2JyZCwqGwWfGG6rNaZkmaELaqshPY3aQGDHjEzhtgs+HYNCsFYCGjkVNUbBpXVgcHgNcioWF3MTpJe2+SZRZFWfFcwgWXIgaS+2cBmqEz6COA6q46skoxCYop6MktqyxHrQOe/I6sRtoZrsfh+JExgFeiYiM3KRZ0cJ19HwibsnWLXDK8D58aEvHeIoYh13LSVGNg83LN6jKIg9EvUvk9pdt/I/vzvimltDFtvpH3vSyQZKxYzJzWUsOFeksIm7F5PltjNa4gm5RCTcojdlWNBJm3pnzkmLOd94FqaXOiE9ZpQZXjmGQjc3F8fd5q5MazGHI+ECL5ddGwSBpnkLF+aVUnra5k6vFdWJf5llVVBx6ghQj3Foc8GI/ZZCpv4VGVCBy+snnTP9DWZ0y1OywHWqrlwvW43sX5iJVXCVpLGKPbfuH5UO8mnqGWKRnDMMcfgIx/5CB7/+Mfjt3/7t2GtxQ9/+EP86Ec/wvHHH48bb7wRz3nOc3DFFVfghS984ZLaXPZLkTFmrEvkr371K0xPTy+3uRYtWrRo0aLFvcGK+17l/iGWkn/33XfjzW9+M97xjnckv5933nn45S9/ia9//es4++yz8e53v/v+eyl67nOfi4svvhgf/ehHATiaanZ2FmeffTZ+93d/d7nN7bLYo9iObhFdhcO8vHdOXpe7SCN1G3ZVqMm/panp4L91ZI15Hdm2QuqEGeqqOqncvb6Yxd75VgDAtJoPUe9W3cNMPsCGnmNitqoJ1FpiwJyoKQCspwyssoDPGrI9DQhA+QyzrNDoFD5jrDtELy8xU7gIaiafR4e5Dzfde52jdNM5OfPLh0EztCafx9q8n2hLmsxQrBeGRIvQzPRxEbPXWljn6kznwrEn0e2a9uXaMeiyek5cp6Eb21C2D0XquaoxKTxrKMoRhkIh+lRpIZj/TQVpY3Tt2AoDyZyoC8TMxDk2JBpMkyGAnLErvF6ZG7vozyNhoYRBj/mo8KysnpWofNlxrmmh/jR9laIGRiZ6r2ZWUpcxRcQCNJkYzgDROoElaHwfBxrXZk0uDt7HXJgwvhylUFDWJGxPaVXSX+rzwGYj+qPmsTWZLYK2aTYcP2eOLTMJCxaOXfprW8SMSc725KLGjL+3emKIHJHx2U1W0JgPba2VfbZ/lylH/byrnkZH1ljnGZRcxrGbrbupR5gVmDd5YIrndRH8hYx1teDoOZH5rEFat6fKoFMDxuiwmHN708ndZZdSbTUV7knKXqN9ECvHdU+k8+zJEj05DL5WXVmhKyv0PJsICRhFrvlOz0XnN3hNKXq+u74M853oaL1KeKik5P/t3/4trr322pHfjzvuOBx66KH42Mc+hj/6oz/CBz/4wSW3ueyXoosuughHHXUUDjroIAwGA7z85S/HT3/6U6xfvx6f+9znlttcixYtWrRo0eJeYK37d1/beCih2+3iO9/5Dg488MDk9+985zvodp3ExBgTqnAsBct+Kdp7771xww034HOf+xyuu+46GGNw4okn4hWveAUmJibuvYEHCdZlc5jIMgxsjqYzrkLMSFiX9ZOK5QOTrl9bFaJ8Y0Uyt91XFWTloo85dHzGhHe8FtFbIxMa02qAtd6/J4fGHNxJrqzCbF0ElklJgyKvYXpunyV8LTQ4x2pM6MAUqUJDKROyVIq8Do7V6zrzmMqHmPZz+BOqCvPxgIskKQsnF3VgFgDSy0RPGSUMHl5sCcfdkVWoZj80eTJPz6uSU8QXl0V9DAWYks330zaEwNAJ8uGJER9nA3jUabz3UBEYp9S12LkL+2xDWaNgkTn1rfT/1zYyRblnpxQiU1RCIW9E4AHSeRu5dmSSqcShpA3ZSwTS2lAmF2eVNGTCXHKvHM7E0fZ8LDWiviNl7Sp3vpnrMl0bvNr8OHAmqgl+3IneBpEhWlDPAxv9uYRxHjdMsxWz9YRn7Rr7ZqwY/80xh+PZqSY71Bx77nCtwfRowrmz07EZxPNp/PmidgpUSVa1ZL5KhdCJr9fQCnRFZJwBoOuXl5DoigqbtdMi/sauwR7F9sBG31VPY0jsqNSYyaLvV20UJphrOYDgAl16V3/Kcutl7pkhwzjE6096TQ7XGAW9nmfEAqMjqhFWtuk2HTIKG/cDv6a7XicXmf/Su4nTGJVEPmPOdLBVZ6Hdpn6Q+qzFKAN5v6DVFI3g//v//j+87nWvw7XXXovDDz8cQgh8//vfx+WXX44/+7M/AwB87WtfwxOf+MQlt7nslyIAmJiYwAknnIATTjhhJZs/qKBgoXwxR8A9cCVkMBhcl82FG5mmLvqmk3wnSNgg1M6FRtdULA3XxIe5Bz34FRqlHaCwTTtPqDuGa7CtmgjW85U3ebNeaG2NALyQGrmF6moUvhhikdcolMZk4ctqdAZYW3iRZjYcob3dNBk9wOrkYZaLOjxYaBl/iO2ZbQMAbMh2QMJgi38Y79BdJ/gc88dTwgLcar8xBQFwwa77w0bGeu7FldLCs2RdAj3sRv6YsakNnsYNwJf8oBRdia6sY7FYVuKlCTqX/CWosKm41SCaTeZCs2kkm6zH/1AbiMT4Udv4x4O/vNN2/A/uaFtyZLqMG13G6UgkY0Ji2iK8JMd9khXByDRjeLlRyVTYuD92bkysf7mRybrJOLDjyqGDqN29BIlou9A4fifCF+x7fIEprRp5iWy+FPFpRW4Q2ZVVuDaosGwYB5u+EDZNHhdD06oiFklWrk3f7ICsQvz6a6VG7vvXtxpKDnGXdlMoHVlhT7UttNkVFXqZey4YK9CRFbbV7plD01X0/1zq8OJVaoWBzsJ9YODKeGRs+oqLuwGwwEEn106HGa4uZs8RxqFhHjvuBZ9eVPkL/LQcJM8yZX35EF90mp9D/mKbC2e5YHeW988qaooeKnj729+O/fffH3/1V3+Fz372swCAxzzmMfjYxz6Gl7/85QCA173udXj961+/5DZX9FL02c9+Fpdddhl+8Ytf4Lvf/S42btyIiy66CAcccMCSxUwtWrRo0aJFixb3Ba94xSvwile8YuR3ay2EEMuewVr2S9FHPvIRvPOd78Tpp5+O8847L2SirVu3DhdffPFD5qVoaHMIm/mij3USaXRllVj9c8paQ6Jr3LIdegID3wbgohWeRgxEceDuxSwqE631XfFJYjgs+rqDO6o1AFyE8p/9fQAAt8+vRWlUiNSsFai1gvbFaG0t4zTCRI1eb4h1k47lmsxLTGUlprzl/e5FPwiiKTLnZRXGsUN0/E1RblM4yiPAQkTjOunHM4irjUxYBQU+RRLZgMpH8CTadGU80jILIRIVFiVL723S4JwJaLJezakp6nPcVjBGz0A1ArFxxpYLgY8Rn05RzMrBWAEtIktSQUFaO7YNPqUFOJYrmYpLpmlEYM6S4xR8GkKH38dNh4VxsgBd5aW3Q+C0vYRZkMZvtsunzSqrknOnvQh+LJi55KDBCPJtmuwhjQ8Jqt10eCxDoa1ccGqm+XulFWOYZWIKOWr8yVivxnpp0VkNJfKEWaXj2Sp66Pm0fIDYMh1MQRUM1kjHYitbYkctsbl2jO3uahbTah531Y452jPfljAv9EwD3JS3thJrvAFiXxehlIsUBgOdozbRfBJAMLHtqQod4608VB0E1IBjp3hhZn4fNqdZ02fEqLidT3Nz5pGeazRmcZo8skvErE3KIbbqxas0aLvINbjKENb9u69tPJRw/vnn46yzzhr5XWuNV77ylSvSOS/7bH74wx/Gxz72Mfz5n/85siw+RA877DD8x3/8x7I70KJFixYtWrS4F9hV+vcQAs+EJ2itcdxxx+GGG25YUZvLZopuvvnmsaKlTqeDubm5FXViV0RlJZRVgNDIEUsHSFjsns2GiOauegYDHyn05BA56pA+OxD5iE6IR/zSl1IAnABSSxGis9zG4qaVVZg3BW7s7w3AFYHd1HcRnYFAIaNhn5LGZSmQhlNZwOuLZGYw2SmToq5r836wF1ij5hvpsinzkydi2sgU3Vv5Aw5tXRTe82ntJGqk4+YFOcnqf5yhXhO50JiW84Fp6IqyESkWob9UHDQyJmmEOSPnw7EMbIY502EMVYbKC3a5yDpubxN2iOtlkhRhQdoGEns32SqdtBGuG19KJMCOaniiAV49KuQWnKWRoXCnsWosazIOY8XGIgpoB+yccVFtPJ5023ECZRoHtQRmZVz/KqOSc6YtO98NS4GF2nDbqsCgETu5WGkPrgPUEDEBoDGWIyL2hj4qrMfT8xvbjdt2Wg0w7c0bO8JZIxBTtkEOw/WmrcWdeipovtaKOVQ2Q88/52bkPLi5aVeUMRnBM7RkGrlN9gLjLYXFvM7D8dZWOiNFf730dR7ZaM/sjmOfSfsTnjENKbwSJvltIYaR+s/HiOsSndYsh7ajNhA5dMJiD5ADFuEZOTTO9HMx64gW9y+uvPJKPOc5z8HatWvxh3/4h6iqCi972cvwk5/8BFdfffWK2lw2U7T//vuPfQP7p3/6Jxx00EEr6kSLFi1atGjRYhGQ0Pq+/oMzbzzooIPw13/91w/wQd03HHroofjiF7+Ik08+Gf/wD/+Al770pbjppptw9dVXY6+99lpRm8tmit761rfi1FNPxWAwgLUW3//+9/G5z30O559/Pi6//PIVdWJXRGUyKOOKdKYpnBV6Yhi0QZsxFTKpQqoyZX3ICtrECNrNkacFPHPFGQGTRNgGTiA2W3Vw53Aadw9cocJtg4kQqa/vzYX5e8AxRXmmUWYuerFWQOU+82OixHRnEIq67lbMYU02jzU+snSmkHEOv2mW2NQ6hDRhrzWKzBGxD6TpyGME7efzeTRcWpXqPWiRTdOwDYvwuqKCkiZkAU7KIabFIES+XLvl8qZs2Kcr6xB1I64ordsHRcjBiFDUGIgilFZwqdVeJyJEyMiidjiaLIIbRxuWLWY82GScFlyvUWCV6yUqZAAaZSmsjLYGWJgNakI32J8Rpsam2o4R6wCm2UjT59N2clFH7ReLwHkBV+pP0j/IqEvjxXz9MTpND9+mCNs1WZzmeeHlTMZlx43TrhBTFbOw0sw+gF8LZmTd0Bdm58G3o+9DkyVsXEdOJrYfXVlhfbYDALB3th0Po/7BYoueSjRPW+sJrPXsT1fUIR1+YDIoacL3bbqXPBPXqH5ivzGru6H0hhQmMamlsaHxBHgWmkkyWLkuiOs23Zib5PpoMnhgGYVNts/107VbWtfOAL54NH+WCpPsl9h9sPGudIHK7CSmaBVT8h8q5o0AcOSRR+Kzn/0sXvrSl+K3fuu38K//+q9Yv379vW+4AJb9UvSa17wGdV3jzDPPRL/fx8tf/nLss88++Mu//Escd9xxK+5IixYtWrRo0aLFYnjJS14y9vcNGzZg7dq1eO1rXxt+u+KKK5bd/rJeiuq6xt/8zd/g937v93DyySfj7rvvhjEGe+yxx7J3vKtj3hQwJse0SIt+dmWFrqicPw2AtarP9AcZhlYkJmKG6Rd45N+VFXKrk+hSWxkioyEzLZTCYrbq4K45x0j152PktbY7jyLTSSRZKI2hZ4qEAHoTTiew98x2rC3msUfHRY7r81lMqUFgVXj0x31+AF+OgUXxQJy31z67iOb4cz9m1ZjLS8FigGiWOLBFMsdvIFCRaZxnn2KEHbOPurLCWtUPy9bKvjOqs7EcC2lvSK+z3RfRpf2FqNSzTIQuM6bcqr0rKmNiCE6rEqPJQjh2pwjjIkZYhyZ7FEqCLMI4peuJUHA3jlnKdERGLPNZdwub3smmJmaMGSL1j2cjNTU6yTGO01jY6Evk1ommhnE7C2MlfMGFUGaB1uOZVk22hmeFGW+USGNPLAIVv+XFWSurEoPVxWAYSxj6zMavshJ1YKfECAPlmIaYiRqLndqkwG7z2IasyDS1Q6WEDNOqSWGRCYPCP5s6qsZ0Ngjj0Dc5Zq0b3S3aXRtkCLtN90auBSqLUgk37rysD/dgUzyr1g+PtjENeiYfML+ruA9jJUqbIbd0H8Z7PXpgjTfrVEIkTGBTN8R1bxUrzzKOseOlPMZlJtKzaofpojIZ04kJ9E2BodlZPkVozRsBrFmzZuzvRx999Kq0v6yXoizL8PrXvx4//vGPAeA+UVQtWrRo0aJFiyWifSkCAHzyk5+8X9tf9vTZk5/8ZFx//fXYuHHj/dGfXQZDkwEmQy5y9GQWIoiByVFJFVxPuyL682zRU40sG4OO5K7VMZtGwiTRorYCStoQlUDG6KgnSxRKw/iIpJzPkXVcNLh90AW6jEnwc+JF7kuEdA32nHLM0Ew+xF7d7dij2A4AmJYD7y8UyzfEiG7UOwUietXQnD/g9B4VstCOsgYDm43VrlTeLXhgHdtFOg0O7prdlRXTdGSQTNu1m5zFpNc5KFh0hUYeSo0AOyxl+uXg7lCU1ULs0Iwcoud9nowF8oaDdGkV00ws/FSRwvryHXzcmtoXMbINgMBwNX93xy1HMmbCMu8IHaPfWI6j8mdrXJkatyZn/Swk9HiWB4BEFnQXsPDZZv4YG+7S1dhMtoazteXLFtY1RX2Qi9AT9qfJxDRYVx7R8/IxLossanJqo0JB09AWK3DaZGmkSMeN0HRyvjcEvYzSC+rHHNssgm6w9oVOw36sgPWfhbDIpAmeZd2shrYiFHnVEPhV7da9U0/BgBVQZkxQEwoWlc3CdbNnvg07dJdlOWqUwv8paRxGLjTW5XOhZAgHZefxc8xZ0oJVEnDrs3PO9mMg06LOjMWkYyOtIZUA4boz3rdmIVmu9eL6Lep/aTKU9c7xKWqxc7Dsl6JTTjkFb37zm/GrX/0Khx56KCYnJ5PlT3jCE1atcy1atGjRokULtGU+PJ70pCfhn//5n7Fu3bolrf+0pz0Nn//857HPPvssaf1lvxS97GUvAwC84Q1vCL8JIYKlNjlcP9hRBqbIedHwyG/OdIKZAa+TpCEApiEiZqiZ0QWM6kZy6Yt3+iwoYwSM9zuaygZ4+MQ9+HXh5lJ3SIuicPsotcJc2QnRjLVOR9T1TFEvL9HLXAS4rpjDuqwfskic71D0QeHRVWkBMBdoV9yU6UpELORI21E0VplR9odgIJ3vT6IlSR2suRdSM1uJe/AAwFrGDA0tZ1BGGRpebHJSlJgOxSYN1sgYkVbWoAoZRTFrCqxvvD/ce8qM0RG5/buIM7AD0MiFCfqjccQCZ5wWqn2mGCvEv/M+NxGYuEV8XoBR5+pQYwuj7E7KKjK9h79mmt4+Tb1P+Mw0T5ztIUanCgyOr+Nm47bklUO/c6+cUmeBDcpYPb3apMxAaVTy2wgbxXVBsBCM4bGsHRHuGzmy3cj3yl1HVNS5yRo1mSFtZWCEjRVpxpSMhaRrK9FTJdZ4pmir6eGn3rG6J4foySF2aKf9WcxrZ2DzJEO0K8pQRBrACPPCxywXGj1Zxuu0sdxYGdlxIHi8FUJjIPIFHcN5BiS1yfvAa5QNbBb0ZEOTQUMm9duMTfVfTZaPsuWA1CeKdF3lTso+ax2tHW644Qb8+7//O3bbbbclrz8cDu99RY8VmTe2aNGiRYsWLXYiWk1RwLOf/WxYu7SDEWJ57NiyX4oeDFqiSy65BBdccAE2bdqExz3ucbj44ovx9Kc/fVltzOsMWudQsJjV3cAydEQFmE5Yr2AZWrlnNpoOrQtVem5mp3BnYl4vrCtq7NPZiodNOS3Qltke1vScHkYbCW2ipkMJg1xprO0476FMGkxl7i15KiuTSuNc80OgiJEyMohNkDAYmOiWXFoVsq6o7lnTM4d7yvDIjfsCKZhkWdOxVzM/IeoH9W9g8+gmLgykACofUZeQwcm3tE53o5geaVqWyP156QmBruAZcBZ9E3VW3PPIOW7H88kdo8tx45lEugIlZQ0JAaAOfZICyAM7BQwa2gaKtEuW8QNEV22u2Ahj1NAbNdkgV5+OHLcNxmXe0EOUa2ccoxOvudJmrh5Wor2hTDWX9bWQ3mdoshC1GyuSTLDSZCi9301pVGBxAMfw2MZUAPf8amq5KuaqDDSd5W1yfDVjYrQZ9VyidelZS20JYQPT2/zjQ95C1G6z73zbTJiEgeLg+iH3gwD9bdBWJuNiPMNN1+BPh3uFa3mt6mNzHR2tJ73DfGCGITDnl83ZYuRZ5ero+WOwWWi3j2Jk7PumSNzuCcQYyvCckDCCWGeX0brQtSvZc2Ng80Sb1NedRDfGlxHbSNcc6cnGOa/T8iZz1Mz222k+RS0ArIyYefjDH77kdZf9UvTlL3957O9CCHS7XRx44IHYf//9l9vsquHzn/88Tj/9dFxyySV46lOfissuuwzPf/7zceONN2Lfffd9wPrVokWLFi1a7Ao4/PDDoZTCqaeeilNPPfWB7s6ycH8TM8t+KXrRi14UNEQcXFf0tKc9DV/60peWLIRaTXzwgx/EiSeeiJNOOgmAKxj3ta99DR/5yEdw/vnnL7kd46OHockwq7uh3o0UFoWow3z2WjWX1GdK3K9lha4ok3YXqtnk3FxjtkXfFCGKy4UGrEK/dt/X9Oax16TLKLtnMOHcY32QnCmDmc4g6Ce6skYuI9ujrUTfFP5YMu9cOwz95fonIHWSVcKOZIMAxBqNeouEaFlIAGn1a2KgqPo5dyzmkbmGDNGrYdGhgUTfdrDVs3ZKOuZsQNXNmU9NU28jhcXAqsDcdYUK0aoZoxlqMkXcj6kJ7kquEJkYBe2z9+J9U0Ihp8xEGChBbQCVtdCBDQDAPKvGZUCFsYfFAMS8yNT51/rxDZqdPHW75llk1mtzmAfXnB/rvilcxmFge/JEK+K8pvwym2Oo47koTYbKsz70fVBHNqg2MmyrjQxV1mstUWsFrWUYEmtFYEwEABn0eI7LCcyLcswLZ3aCRqfhMWO9foceb+N0QtSOtelyKaMLuZQGQqQsUrM9Dn5OM2lG2Kckw0yYoEGzY/RHmrJU6wyFrLGpXBuW79+9C4DLot2me6FOWhOcXdmhJxK2lvadZJDSdeI1OwTSlHW8y3Zu68R53FgZMkMVTMjq5XUWx2Fo80SvxbPIDOh7liynz7VVQQ9Etdli9mHK9jb1XPy+y6RBDTmSuXh/QWAVNEX+/w8lR+vVxrLP5lVXXYXDDz8cV111FbZt24Zt27bhqquuwm//9m/jK1/5Cr71rW9h8+bNeMtb3nJ/9HdRlGWJa6+9Fs973vOS35/3vOfhO9/5zththsMhtm/fnvxr0aJFixYtWvy/h2UzRW984xvx0Y9+FE95ylPCb89+9rPR7Xbx2te+Fv/5n/+Jiy++GCeccMKqdnQpuPvuu6G1xp577pn8vueee+KOO+4Yu83555+Pc845Z+R3KUyYX66MRF+7KDkX2tVD874yvLI0aW54pWc39x6zsxaqlk3VomMUlYV9TqsBKqtClDJRVFhbuIySfu0qNZOeYjr3KnsWkBLzMjSZ99Lx0ZikY/HZclYHVoQcu7keijvD0vHROhIGzUwRrrcKdZ4a1a2pr7x+lBbMKdlG9sbVLKOozbli7xBd3xeLnqwSHRFnuVw064/FypFaSnEfGpW1QZuUC4O1aj7REdBxNv1/3PFFJ2ApLLqhbhvQhUYpYnQ7si07aR3BvIcEgieQhoBiPkrO66V5TfnjRD3i8utcrtM6UBwxk1ImWrDKqsBckn6IMnooKm/qNgCgtgrzOsdAu237dY5Sq8AGlXUW2KCqVtBGwBjGBnnWQ2vpPhODYwQgmLZGAELauAyAt+TBUFjH4viMKeVZHD5WBNp/IDkb48O1PkKkbJExMXNJelbBLMAUceaK+hHXYe34bYjtVdKEbFIA2FF2oCWlwhrwOLcyEhOqCudl385mTHtG9a56Gp2GR1ku6vCsGKAI9/qc6bhnjIjPvMqmNeb4Z87EdGSd6HToWUbt8muwshmkjZl9jrmOtSIrxk5yB3PA3f+xAoDT/QVNEVR45lRQkJbVFVwC88KzAiXsTmOGRtCm5O8ULPvs/vznPx9Lu83MzOAXv/gFAOBRj3oU7r777vveuxWiqTanab1xOOusswLjtW3bNtx22207o4stWrRo0aLF0mFX6V+LRbFspujQQw/FW9/6VnzmM5/Bhg0bAAB33XUXzjzzTBx++OEAgJ/+9KfLUnuvFtavXw+l1AgrdOedd46wR4ROp4NOpzPyO1W7zyRFR2ll51D3q+lYzDIoAO3rY42+kBGTwd2utZVBt8HnxJUo0NcFuip6E5GehaLGzH/PpAl6DaBRJ8lnNCnWncTXRkQ9jITEpBzGumjQMILrUUZraHH2hetTDATTXdkk64kywzRrB5whgcScGWU0OqKCFCboGraaNOrn/lC51agQmQ5lDXJh0PVs38Bq9MNn6zNv3Nh3RY0CBgOvNegKHXVL/hibmTHkqm2sCFTDGunqNWlLmWEWFXtA5QLIGy/uUY8kor4IFgrR72hgDYYwCXMU3LGF63+4dpF6yvB6ZqVVwRkYbL2oxWj4wJioI6EMspKYI5bpVZoM/ToPerhBnYeMScBdy7Vnioxx+g0aBQEAMjKM/vDd/7yeiNghriniWiMAUDJmmrnvJtEHKcnqkIl0Xf4bbUf3GtUdW0gnJATTGHmGwY7Rp4jGvpv+R3xZV9UJU1Q29TCGsWDWYkoN0VNR10jnbGBzrJX9hlt3vJYrG33HRurMIc0+bGYtDnUWHeCZrs61G7VnuXDMNHe0Jr0jebRNq9gOeC1GIVP2R1hIS6ysTDIRhybD0B8LjGs7Dw72AkZIZIjntDYLs7m81lwmDTJhYBfxeGqxc1CWJe68806YRibgSpKrls0UffzjH8fNN9+Mhz/84TjwwAPxqEc9Cg9/+MNxyy234PLLLwcAzM7O4h3veMeyO3NfURQFDj30UFx11VXJ71dddVUy3deiRYsWLVo8qNAyRSP46U9/iqc//emYmJjAxo0bsf/++2P//ffHfvvtt+Is+GUzRY95zGPw4x//GF/72tfwX//1X7DW4rGPfSye+9znQvq57Re96EUr6sxq4IwzzsCrXvUqHHbYYTjiiCPw0Y9+FLfeeite97rXLaudgcmhde4ye6QN1a+HJkcly9RlmbE9iR8LRj1Okn3YtOZO33aS7SmaGZgcs7oTahrNFMPAYE1lQ/SyMjAHtZWQOo+ZLMKEdQEXcZLzb1dW3tnWRZJcF0QsFkV5jgXS0YumwTZxrQ25N4cq9Y2MDm0lwFy0S6vGeiaF9v2xVDZ6OTUrqgMF+qZmx9JgjaCDlmZgc+RGh5BgoHXsq5Uug8ufm7VyHgNEZk4KJFoLrldwTJsIuqYZlnnYExk6IsPQZ+FVMFANZqgK7KP1XWPXAv8sJHKQP5PbbmjJP8qAEqo0NIwFSopkjdckyVizjuqZKUjApplqTstEbN8omj5KSS21kEmlIUUWdU5SI5c6sBtFphN3Zr5tc19cd0Ofx9Uho99JC7JYu4C7RwoVdWBZI/LnmpiF6p6N9HeMt01TT7gUuGypuF2zb4XUqD2DLIVFpVVgo5RybOm6bC4sD0xMo3ZchQzNCvJNN2+u50m+s2dhLjRmsvnAzEivf+PaofiMic7/gGNpqX9900mq1/dk6X3BvNZRmhF9I7VHvlm5f85VVjEWydUvq1j2WcmYTWOZl5jPPEt8iTw7FCCx87LPbOto3cTxxx+PLMvwla98BQ972MOWbdQ4Dst+KQKcZueYY47BkUceiU6nsyodWS287GUvw+bNm3Huuedi06ZNOPjgg3HllVc+KEwnW7Ro0aJFixZLww033IBrr70Wj33sY1etzWW/FBlj8J73vAeXXnopfvOb3+C//uu/cMABB+Ad73gH9ttvP5x44omr1rmV4pRTTsEpp5xyn9rYPOghUx0M8hw9VaJjUudq0tr05DBxduYZWE13VGNTd2Ygsg47TBcDWwRNB9UlA4BZU2BeF6xdGxicyWyI2qqwbmUlCqmTqu4TXuMyoUr0ZKyFNC0HmJTDsC7XBHVFiS6LzGi/CQMTGLKGt491XjmxbliaLaWhkqiTHGndctnQWTE2QqSuyxquHhthq+mFSLcr6zBGuTDQNq0A37dFUtOImKE500HR2G9Pluy7DplVFZw+IrIraUZMKSSmQfXhLAxsZIeCAzlptBp+M0DIlnPgrIxA7h246f9VyIbUMKEemnF+RyAnb4OerUL/B9x7yHacvov1Q1uRRN+JpkiqkH3m+ivCtTuvY5alux5r9DKqUj7qHFxzDRzTS3E/IfouA2NnF2RqpLDIpV5wOWdOHcsZHdZDG1i4DhnfT7O+HJ1/4yu1a8ZANGvA8Taplltox29XG4XS1+eifVKNvbitz7LSCsM6rjtZlBjaPHHKp3PEswmp34oxhS4TNmWCIhM8Cs6CSWEx4VnSnhp6lkeHNhars0btDEyOPorAuk7LAdaoPrrBL86AnogGMtxP8XgiM2esSGqdzes86N9KozDQWeKUTs+F6FmVelU1tWB1f+l1te4TVmP66yHGFB100EGrntS17Jei8847D5/+9KfxgQ98ACeffHL4/fGPfzwuuuiiXeKlaDVw2z1roYZd9LolJvIKawqXyjrsZJBdE8wcUSMxPyyY6RgXrgKNgoYkUqUiqjpLKGYpeNkMEQoXAimFvjafT5Z1Gn90OrJuTJeVmPT9nVbz6IoqSZ0n5GL00ddM/W4+3IK4FgqlVeGFj5sA0ktEQt2zAo4JJR6mzeIf42DyaFyKMD0kK6swYH+gdsNsMDEk0IsstcdfhPr+5aDZv4EtMC3nw7aF0Nhuusn2QcANg4HgU6J9FKrv19HQXiQNuCmwyhoY/xKiYTGwJCoVI9NnpaVpTIFcSMhE5C7RESReVUHM3YFFhfiS1BMWQ2tQ0gsUakz645qzQwy4IZ4/Z/GPaLRjoNRordJpLzqHfVWk7TCRNr0s8JeOMHXhXyIS+4NQWFWEzxz85XXcdm58TPIC45b7z174H4XBdiSYGWddQOsmfWE2Bc6iANDgQnXZeHkwYV1KggCioWD8nC4zVqAiGwOjgvnloMxR1SqxMbitvy5Mn61R/Vi02SrM6m7oA5nOUrmPNM0+vY+a48N/I8uSZrvTcj60xV+8knHWcZ9UuLXvg0GTSV9gmwKdOnmm8Jc8MnIMbdk8BJVzukCpsyD8L43CUGdhPJ3w378gaeXsEZhFhAAr9mskjBYw/cHIeNwvaF+KRvD+978fZ555Jt773vfi8Y9/PPI8T5avxKBy2S9Fn/nMZ/DRj34Uz372sxOdzhOe8AT85Cc/WXYHWrRo0aJFixaLo9UUjeI5z3kOAOeVyEE2PFqP4zUXx7Jfin7961/jwAMPHPndGIOqqsZs8eDE4M5JyIku5rtdqIkas1OOSRjotLhlX3UCW7FG9bFW9aPpo0/H59EuF2jzAqskMIxlFVQSoeZSJ+LVCZ9mO60GyEWeFD+UIhqZ5UKjp3yxR9jIcMFT1QKBfWkaK5ZWMQNBk6Sf85T7QuiQ0k3L3JRYZH8GwYJ/VJTYZI0IVHw1lj5Jzd44xU+MQ4hqM6BHUa8XQ9NYd0WNgc1Cn7bpHrbqntuH7iRTOLl04u1gTSB0TFVu2P43sUNNhHVn5ADTssS0n7rpwrE9qjEt5sbLYlqqwPDwqTUNi8qaMLWmIJBBQYnRcXVjGPchrZu+ywMDaYPNQ89qDGxakmZgM1QypnDHSNxd1wnz6adBAaDDzhMX39N646aV3ToilH4gRAPVLLBOcTuRCP5Hp3nSZIhY7qbB8DDRsREGsCrslwuS+XUBAMPmdxNTyue1YydqNoXTPC76XltXzmTgi9/2qwJlHZkgaxFsC2qdFsI1WsB4ZsNUCrYSEJW3Wcg6+Ik02Ku7DQCQd3TCzvR1EcYE0l3b4VkwMi3ImUm3vFlUF3AC6MpmCVM0KYfhGTmJONVEJX9iar+AFJNheW0VtleOla2sSp5d/N4f2Dxhhir/vKEps7m6gx21e37PVh306xwDYopqN+U4rLxpaS1hSfivBawWiDVVABgBS4/EWgK1gJnfdTS1/6/h6quvXvU2l/1S9LjHPQ7f/va3R4TLf/d3f4cnPvGJq9axFi1atGjRooVH62g9gmc+85mr3uayX4rOPvtsvOpVr8Kvf/1rGGNwxRVX4KabbsJnPvMZfOUrX1n1Dj5QKO5WUF0FkynoyQxb591Qzc/k2DHsYvuki2Cm8iGmMxf97FbM4eHFFpY27lJiFWNfKCpSYlRw2LStpyhUCYtC1ugqJpj2TFEU+voUbVkGi3xCKFArqsTUEEiZmcqqUGJD+fT8IMa0qTYIiKn2fevYJmKBBiZPmKNBEsW5KLIZzfPINGp0nL6DGwjqRIyasc8kNo2lJ6bVwB9/HYr10thXNgvGjyUrqTKrR9movuwkGpRYgsGGtF/qLxd4btMT2KHcdTKtBugKpueSA0yKCht8KnhHyIRD61udsEg0OgpOn0QCbWmFi9opDbuRCaqtTX6TECGdnwv2FSy6QkN74kMJQFuNIZV9sFWwLRiYDBVSJrO0WSgX0xUV05PJRIyeCNM9FhLdA8wSQBgnpmXtAOMLLI/VAAkZBnHcNnXoQxQwN/ugmXEfENlJYiQGrJzJQGeYr1wxXMDpT3j5Dg5tJLSWGAzdtnWpYKnwra9VIrT//0BCDgWk/11qAIU/h7WArAC69U0BbLMz+K+ZPQAAu+dz6DDjx8qqhBl2Ym+iQWTynJBIvxeijs8nyTSCAgDKmDovbHLdN60y+PWghA2WGkZJVHUsFzNXdzDMo4BfChMKwFZWoa+Lhpi6SM4FpdnPVzn6VYH50pesqTLUQwVTqTDeovbHUgvwS1V4poiGQfjlZrCTyn6soqbo8MMPh1IKp556Kk499dT72rMHFFu3bsXHP/5x/PjHP4YQAgcddBBOOOEErFmzZkXtLfts/t7v/R4+//nP48orr4QQAu985zvx4x//GP/4j/+I5z73uSvqRIsWLVq0aNFi5+AHP/gBbrzxxgf9C9EPf/hDPPKRj8RFF12ELVu24O6778YHP/hBPPKRj8R11123ojZX5FN09NFH4+ijj17RDh8syHcAqgRMBxBGQvs56OFQ4a7JHLMDxzJMdkrMdB0jsWOig1xo7OazPXJRu0KULBuNIkWFlHXgKfiAK8mQ9EdozGRuPzPZfPh9u57AhIxaEMqmIUbFWBmMy3KhkSNmx2lIgLMtkBhY2l+9oAaCrx8+WxEy6XipCOoD7w/GRPI8+yekc0NA2TQbiEervN2mFmVgM+zwWWKka2hqSbhRXEhx9saTQe/hGZGQCWeYUZ00mMIgtDsco3nhhYRzWaPrI2inP5vDdrMDALCH6qPny1HssAqwwO4+TXyHARCOE8iFRd44lqgbimyRxCjrwX/nKf+5EIBFUgImFzEDsIcalWeCKlFiYFVIlyZ9GTGHSZagz2Cja6Fps+Ay0SgDLwVnfKisTDiHwqCyeXJsvCAtZxSJcVyI8amtYgyRDBleoY9M+1Ob9PwOWOYSzwTTxjE/lWcgTC1htQzMT3DY9BClgPRaIGE8AwRAGMdGeNITauCYICIohXbrADErnRJeTQ7orsJvZqdd/9alVhgcxkpoIcLzIEft2LUwhibJUqWsMlpGLKKBRFdUCVPkTBdpXZvcs1Tole+H2udjXwG4u5oKTBIQM3eHOsOsLtCvo+6zX+eY989sbWTIKCu1wqDMUZf+PFUStpIQpWegKhFYOVnBMUNEnlkAJoqV3dgDeidl5LdC61G86U1vwrHHHouPfexjyDJ3Tuu6xkknnYTTTz8d3/rWt5bd5opeilq0aNGiRYsWOxFtSv4IfvjDHyYvRACQZRnOPPNMHHbYYStqc0kvRevWrVuya/WWLVtW1JFdDfRWLjSQzQNq6KPreYV6XqI/543qpirMTTrGoTIK+0xsw8BGrw8A6LGgjEdoEjbRGOXQidcG6VWmMEAlYgHOnipD25lITQkNBCqW1ZYLHebeu6KCESwDzhpoqGDaqBALwu7QMXMKiJb8nG3h+gjOBlS+yCuhqfFwpov3fncaK6FYlokbP8pqangY+aKkFdOyEDIf1fIsPOoztRE8TXwxyyqwAwrSZInhH0Fa6z1SiHmRyRhyE8NMuj6QZ9QO3cXdchp3KeejsSXfhg1qu+tX8D+KISj3iHKmmpFZ41CwYVku6DdijlLNkbY2yTHSsEFTVAiRZK4BCOyUEUDH1uhRQU4rfOZY1PkMqDgsFHJRJ5mICqMmps1jAJzhJbEKrohwhGlsTwyf278rgtw0Q+Rmftz8sLlubSIjxAuEkp8NlSXRVkAbidKzQdpI6JoylyRMqQDPQEALQAuEOqWMgYDxDAV9Z4yAMI6x8MmPkNr9o3WlRtC4WJYoRd+zWYHNm9w1lu+rw9jumW/DrcPdg1GhlI6hHdpoCsqzvRJTWlivlYy/EaOooBNmV1sBCRnKyaTZrVmSpdp8hgxNFrL3JmUNxcqU1CYWzJ7TBWarDmYrz/xWBUqtUPqMsrJW8bzU0mXpkVarkpB1ZIdEzca2bGiKtD83MSHXfR+1eWuxkzAzM4Nbb711xNH6tttuw/T09IraXNJL0cUXXxw+b968Geeddx6OPvpoHHHEEQCA7373u/ja1772gBSBbdGiRYsWLR7yWIXps4caU/Syl70MJ554Ii688EI85SlPgRAC11xzDd761rfij/7oj1bU5pJeil796leHzy996Utx7rnn4rTTTgu/veENb8Bf/dVf4Rvf+Abe9KY3ragjuxqsd46XFYAqzte76EBAa4oWcwz8lbot05itC8wor6cQJjglA2nJAG0lml4gShgom/5G6+ZSY42MWiJiNrqySrx8nLZGjDAlANCRFabFIMzXRxv/6KPEdUGcKRoid+UQwlw/i8IhMTR51AoY0pNQCQuJERfbBtPBdUS0vfKZZ7wAZdieij36dSlrjPs1zfvskyYTkAmDyWw4ok9y20nkYOfK/48chisrQ1RcG6c14hqZjqxDJpMbm5glZphGg8piaDhflh2mi+0ZebJkyEWNPTLHHO2m+iGaJg+ovKHAIbZPCovCxs98jHNhoew4pyjqUwQ5aI9bVwLoCgGQf5JwpV2CHxdMKF6sITBndGQKhHcvN7SfWPjYFayVQU+Xg+migu6IxtPdP8QfNQsvS8pWgztn/BqoWQFQ13Zkg0qjXKkH8gWyMngEVV6bwj2DdC2DT5A15GsDQDsPGxAjUQv3B40YCXb6wmPBxu+BjaD1IrkLI512DEjZIVlbWCVC9pmwblG9xV073/jNY/DHj/geAGA3NYu+6WBLPenHSCXPHp4xSvoh6c83ZZKlY+0POzA9WbIssL0yLSg7MHl45lAhV8B5KFWsfNFkNoSEwfba+YkZiHB/z1YdbBt2g/fQoM5QViqep1LB1JGxs7WE4OdFs4wyQ4Max5W/SPBzQy8pO02n006fjeDCCy+EEAJ//Md/jLr2BYbzHK9//evxvve9b0VtLjv77Gtf+xqOOeaYkd+PPvpofOMb31hRJ1q0aNGiRYsWLZaDoijwl3/5l7jnnntwww034Prrr8eWLVtw0UUXodPp3HsDY7BsofXuu++OL37xi3jrW9+a/P6lL30Ju++++4o6scvDALIxjwzpI9iOCB4XwzLHtmoCG4pZ991k3onasyTQic+G01tEPc8O3R1xCQYcY9KRFXPK5gVgFXJZJR4dtYn+HtxBuCsrbMh2BIaqgovU5hAvnuEYnQ1A2XFirGeQsS7DiLM0VM+JQJqcjkwn4EmDw+tfSa5faBQFpeExPuOG64J41tG8zrG9mnDr1M4NmdoppMZs3Qk15KQwgQmS3hOq452etRUJA0XeJwCwe2c2ORZjXfTKGUE6Xoq2ud8RwFg1IbFFTwHw2q+Gn820dOlHm/WkO2+I9da4zquARumLxMI23IatQS5M4k0UxxkNWJTWJtloBAWRZK4pWIAzR4gaEwmBGTkMLERgH/15lDZ6VuWqhjImZi8KphMSMslcrJAWhc2hAxMnrXWak0aGFZ3jUU2RDD42pVbeRZp8rxSG3l3a+Bpklf+ua+myyiiTzIiQVWa1cFlhC0XmIjIOVgCpYIqRFdJnOdF34c4VNWtsPHd0THTbCuO2zXe433991zrs2NvdE9NygMd0N+HGwd4A3H3P9Y5Dk4XrRgvpzpfvr4KBFjJmmIEXca79s4GYdOZ9BF8vzO+ntApDm4eixNvqXniOzeoOaqMwoaKuaWvVw5yvYVayygIDnaEyCiUxerWCMey8AKPngUyqlfUMDFvXePY6ExCCsXWNe0Ho0U3vV7RM0YLo9Xp4/OMfvyptLful6JxzzsGJJ56If/mXfwmaou9973v46le/issvv3xVOtWiRYsWLVq0iGhT8h1e8pKX4FOf+hRmZmbwkpe8ZNF1r7jiimW3v+yXouOPPx6/9Vu/hQ996EO44oorYK3FQQcdhH/7t3/Dk5/85GV3YFcHRVthvh9OZ0TRmO4K1N5fRGuJjDlV58L5EAX2RTDmBS4ThOIgY51WhDNJxPA4/YRNvD4qf+rmTZEwGbVRmDeRzdBWBG3FtnoCW7Me1vrK7XOmg1ndjesyPQ+1SXoPYqd4tXOKBoc+8ytW8na+LyEyhwisTC510Di5dmSyrcvSMuFzymaYoJXKfPZLYJisSKqQ1yxypOUho8gK1Db643A2qrbuHGaeGiykRldVgSHiHjZDk2F3MYfcpxRRRW9eEyoXkSHjWYKklaLfjK/s7Rpw18dW7fQeu6l+1GpAYc50Ej+XQtRMQ6aTLCyAuX1DorI29K+AHtFOEdz1ZlGNeYhG5246L6PraMbESGHRRer8XYJq87FadzDoigoDGXVtXG9iEP23clknIijD2CsJAdPIlh3nJA0gsERD7y9UGeUyzOh6YBoiYwSsFZGBIIqAaYIsHy8RaRzro3zhV7aS1dAygJUWREVYyf54jWEpuOxFIj6LpPBSO5I1FU5/RLebubuDH83uAwBYs6aPA4q7MFc4lub2ai36uhMZZ5uj8lqpCeWYS8pGq7TLTKNrkHSNAAJ7RIg6s8gccXZ3YHPc43VNpCMC4jOFajzuqLsY6gyldwgvjQrs3rCmrEB/zRmn+SSt1yhLZON4SuHYIvpuEHRfYT1BmWr+Ucq0RiKV9rXYCVizZk3Ihp+ZmVlyZvxSsSKfoic/+cn4m7/5m1XtSIsWLVq0aNGixWL45Cc/GT5/6lOfWvX2l/RStH37dszMzCy50R07dqzYI2BXgdCMIRJIMkNkCWSObIHuCGh/qELY4EdDMKxCPFV9BwBIQIk6RkY+IubVpamdPlzmGFVqJz2Ja8ZlhA1ZdpL7nVFboS8i+HwAwKzujmiBQqV7/1sHUROj4ZgpwGXiECszNBnmdMFYGxnYmNBPxttKRLai6RKcSRNYpel8gExENqMyGSpLEamEFDawUbO6QGmycNylifWOaiOdliHxoolsUCZN6ENtJOZZ1p0SBjPFMBxbyRiorqqBDhLGScEkWqxQ280zf4E1NKlmy0AGz5hcFkkVcA0ZMn7mTAcD5kPVFZXzsJLRrbnpXTTi7uwpikrIJIrmbKTzCLJJW7ydiulGCquT81s1tDzNfUDUgVHgOhZyxC6CVsVA0fm2fjx4ihzTuVRQIOoldTTy1wLToDjH8viZdESAY0Hc9UJMkQr6Neu3IzbIWnfPWxFpm8AEAbAQ4TvgdEZhCIUNOiErBGOL/MbEVpCOhIZJei0Sc69myXvJswr+Oz2Oinskvnvb/gCAx03dji26h8cVtwMA1qo53FJuwC2D9QCAvs5RGsogS6+nXGins6Q6dCbWRWt6knVlNaLFCVogm6NvijD2BpLpvlzGLbHGQ5OhNBkGmurMZaGuXFlnzltKRxbbsGr21vJxdzqtkDjpRVk2DFo8Z1bQdjb0W2jEazBz7dmdxRa1mqIRPOtZz8IVV1yBtWvXJr9v374dL3rRi/DNb35z2W0uKfts3bp1uPPOO5fc6D777INf/OIXy+5MixYtWrRo0WIUwVD4Pv57KOFf/uVfUJblyO+DwQDf/va3V9Tmkpgiay0uv/xyTE1NLanRqmpW7noQwr+Vy9r/PzjRkgbAfZUlQlSnlMvu4VHTwOTMj4jCvFhrKPrjuCinw5iiZl2nMIcvKhhfDIn8bhLtCmyYi5fCYs7XBHL6nXyEreA6oWa9M/LcCVXtGRtEjMC8zlHq6D5LkXjCFLFoi2dEjdTlMjbJCiukTjLWatJ6wGXYkdanXxeojUzaLVlNKm1S1krKyFaVWoWok9gAqpWkfPRO2UgGAqXXn2zPasfw+dM7NFlSm2lWd8LxzdWdkNFGqIyM5126OnlujJ3ugjRKd1fTwY3bOQnHenCuzpRG11b+exmuBWJceEYjz1Yb8cniDtKwC0aVzr06C67UhdDIRR1YJVpO4Mt4xphbZhKGEYwhc8dB4+nGQovomm2shGEZmaHWnl9G+pjaqEQLxpmi0jhtF/kSOZdqAeOvF64RsuE/DkJaWCMghI3reg0RcQ8hi6whQ4IV4boR0rNNgb1grFEQCPmv3uJJMq0RSZwk3KMoLLNI2AU1BOZvd/qdf93waGzYawf29l5Yj803Y3c5F66ZmwcbsL2eCONVW4UBe4wBCHy1YdpIiDRztbJqRHPEM245EznUWThnADAhqyTDlT9TKq3CfVhqhapWwTsuaL7G+Aw5jZCNvk+BGfJsIPvs3iIaGWw29Slq8cDgRz/6Ufh844034o477gjftdb46le/in322WdFbS/ppWjffffFxz72sSU3utdeeyHP83tfsUWLFi1atGixNLQvYgCAQw45BEIICCHwrGc9a2T5xMQEPvzhD6+o7SW9FN1yyy0ravzBDKvcPw0XeYU5aAvUE0CQ5rBshE5RQwqT6HZqG510JWKWkxbRPwiIVcBzGx2jgx4FFkOTB9aislmsUG5l4n/TQY2eLNHzTNGUGmAT1gJwjM76bAd+Ve4GAEkk7dptaICshPYHXvlq8bQNRY+A02xwbVCzyjj9Fj4zRofaou+ZNGG8+nWBWmqUkuq8pTXe+nURNAbzVY7aysAIlTp6zQBO+5EHsykLJSNDMdRZiDqtdWNKmhJlLSrTDZEut+MxVqAyElLGjBnnVeTO/7ZqIuyjl5WYsJFFyll2IeCYoq7P7ul7fdbQunaUsGHcO7JOzvdQ5OjIKlxzueii5/VHxOBwKGGDD1SBOrJGgXGhmmWphkhbGTQ/4TvTj3RZNpKETfRbpY319aQ1vo7Z6NM9FzWklYwcideMRg3Nsvn8jgLboplbOAAMkYXxDcwlq2c2jjUCGCO4kPmM4OSBZxKI1REIF4eFcEXmuReRQFLvjG4JawSEsWFqwwrBSA6bGuFop4nhpA2NpFGuO6bBkATNkXC6IgD4z9sehkPW7okNninaXc4hFxqHd28B4HyMrp3bz42lyVAZx2wDjuHJVfRfk8Ik1eyJkQZcxm1ls3BNukP3z0PhGM+QmQYRrvMJVToNnr+XmsyzgQj3qDaO2eVXlKvl1sgioyGRTDcEf67C8yjqi4QRjrEzxP65/yTVDXYmWk1RwM033wxrLQ444AB8//vfx4YNG8Kyoiiwxx57QKmF6ysuhhVln7Vo0aJFixYtWjwQ2LhxIwDAmNV/M21fihaAyQGRAyJDlDXAMwUK0N4EupqyQNeFYlOdIXJhQjbF0OZOgyNIa4OQJdaTJSqTJd41QIzOBzZPNBrayoSBIr3JrO6gI2tMec3JtBokNcp4FttQZFij+oE54g7Q4bht7GsNJHP8QGSTlLAxa6QRXVP0HTLMTGSOKBLntaoMRKjObqyAkVHvMRBx/4WMWU4DnWFYZ+hXVDXb1aUit2Ee6UthkSkDm3mtTThWlpUlYyZNXUfGqfYsYaa8hievMVm4C2JtMfBj4vY5r3PsMN0Q0fbrPGTADXSGqVyF/k+qEjP5INST6rKK5I6la45rzPQDUqfsjsydbw8oS9Ct2xUVlIjT2OQ1RfvqijL4yOSonSu0vx6cLxBjahhzSS7pgVWy3juJ2hJ1YI2ImeJsKdeSuGWRKeBQMCHCL6BdxqYfL2MEcujg/dX0LeqoOlyrpapTlqHhWRXGnCG4OVuRMI7jPG8EGTVZpsMSPhmOaYwgGOkjGdNAvxvWDhg7YS0s+P0SHinOh6iO7TRK4rl9kBM1y5oFJvAP049H75HuubEh24FcaDyqcNqMvbJteFixDQBwdzWVZKaGbNAx7vZ0/Ly+WZdp6Yx/lgGecWLPp46sUUvSkxmvTYrsHuDc6QGXcRaeP0Y6/6gmu0fnVAgIYvNMZIvcIhvPVdiEnlX+OzF6yp8XYvQ8E7izHK1X07zx8MMPh1IKp556Kk499dT73rkHGDfeeCNuvfXWEdH1scceu+y22peiFi1atGjRYlfHKk6f/eAHP1iWzc6uil/84hd48YtfjP/4j/+AEALWkszBB996+X4J7UvRAghMUYOdEwqABZQvWF9PIFxolF1EjE5tlJ9v99qVBusytHnQd+TejydUibadxN2Va0F6qkyidoPowdMVOtGq9E0RvIU6skbfdIInUuUzdNSY8IMcqZtOwMF5ujEwzXpS/P9NjGszMEiQqEzan6Y2CACGlWOKiBmqawWjJVihbwjlmYtcM82AQ1fVwadIChsYp9LXtqJMFq0lslwHpkgKi4k8sjqVVeH8by172F52QrvGCsz7yt2l1CiNQi9z20o4TyvScw1NhnU+jKfzM+fpyKY7OG0LuHNK/wAELRng9BxJFA/vhm4dO1BJXnsvT/RHlN0VdW1RA1VaBWPzhA1oIrq66+Cl5H63QVdE7S6UHSdhIYn6aFxKwQlbxvNQsaxPJUx0pfZ18YIfVuNyl8KG60MI6wWc8eEas8sig8C/E1gCWbzemMaIJEiAYyZsYIMsuJbFUQ+N7DPGegBI/Zqy2KYUbKw8sUEyLGsBSgpUA2DHLWvwxfwQAMDv73s9enKIWyqnzXhssQlPmrgFAPBztQc2VWsDOx3803SsmcgZNzf2qT8XnW/Nrinnmi8Dc1lZlfxF0mb0z1N4ThgR/KNIW9Q8T4KNWRhN6di8+JxwmjDRZIcApxWzIh17YWHJpVy6sbepbK/FTsQb3/hG7L///vjGN74R9EWbN2/Gm9/8Zlx44YUrarN9KWrRokWLFi12cbS1z0bx3e9+F9/85jexYcMGSCkhpcTTnvY0nH/++XjDG96A66+/ftltruil6Nvf/jYuu+wy/PznP8cXvvAF7LPPPvjsZz+L/fffH0972tNW0uQuB1aQGyZDw0MEIRrL5gXMDjeMO4ZdbK0mQmVnit4pG2le54ElqUMtsVhfqFlBfl6TyzVpNcZTgdqKML/eR+FZJxcK9XUnRMyZ9xAhT56hyTDQab01zgCVrCZZk92pmSs1z+ah/i6YvYOUGQrH4KN4bcTIvgjkIQS4SthVrWC8R5SpWa0j+Ijff1XKIFMGncyN79ruPLpZHfQJs2UHc0N3joZVhrrMoMtYaR6WZQNZkbBOmdShHtP2soN+VcTzJXU4zkGdozIqiagNRNh2oDPchnUAgD0ndmDPYjvm6jUAfB03f35dxo6F9CKsgdSJl1NlFXPG1kl9NdJvhEr1Js3aMohZdk3kog43RGWz1BcoOKLHx4kOzGWFgcgDG8A9atzxmJCZ5rYzwSsn8TOCTtkiOURls5CtSbXkXBsSQxEz64wV0FaEe2Kg88AalUahNql3Ug0bMu2E0DCCX5sxO86aVEYEIGUcBNMCOXFQYHqEBSwxGzL1yoGJ61FNtCQbTUQvHmG8l5rf2iCSSUIjyXgTLJFNVoAaCNy5aS0A4BP9I/Dc/W7C2rwfzs9++d0AgEcWzrj3N8JNt1QmS53IWe1FWHeNRp2Q89FKzo1nw8l9vcOYIrouhjZ3THXD+4wjZAqaxlUrPO/Gs89GWD1ilRAYoDCIMjZkLdtWhV/dtsqxfztLU9Rmn41Cax38E9evX4/bb78dj3nMY7Bx40bcdNNNK2pz2S9Ff//3f49XvepVeMUrXoHrr78ew6Gj4nfs2IH3vve9uPLKK1fUkV0WXlgd0rCJgWf/V/Puy+Ztk7hzYioIcNfk86isDHb5pc7CtMe8ziFhw7KBzjGZlaFYKv3xA9zLlSt46qdQdEznp+m5QElrhY6sMe3NHRUTXe/b2YxZ3Q0vYm5KIU6RGaNG0t75g6j5YOJGiePM8calOtfWiSI1E7rylyhtuSg7naKwVrCij9LT4DJpvznrALiinp0c6PqpK2NFeIEBgG39LoYDbw5YSaCWEHNurK20qHUsGVCKjPVPYL7KwwOWXnAIVFzUHZeAMjKMb7/OnRDbL+9XBfql+2NRKI2Hd+9JxrmQ8cVh3EsjndO5uhPEqpnUieC9I+vEXLISKnlJab7MSmFDaRklYjHg5nQZTbXFsiTRBNQIiY6swvku2MsKgabtyEIgCHphkkQE/ofYibBjuRA+1aetwKQchjRwJQw6ssasn+6Z13mYjhzoPCkumiuNipl5aiOhbRThW6uDsaM27jq2rBBpvPxiORCAvSDRj4q9QBnLXozc1iEtXPu08PBWJICa/WGGAD8dycSbBaCdFADwRrP0t78Giq0iLBwog6/f8hg8Ya9NAIBfDdbiqWt+BgDYM9uWmC7e4wsV85JANJ6Z1OiI0eLHdM1WNkumcyVzwu3JMpQwGuocQ5MlAnkax7AtTX9Lfx7424lgU5V82jL8Z8yAwQnYw9hbuBIgYXkqtIb1gvcl1YVYBbQvRSM4+OCD8aMf/QgHHHAAnvzkJ+MDH/gAiqLARz/6URxwwAEranPZp/O8887DpZdeio997GOJQeNTnvIUXHfddSvqRIsWLVq0aNGixXLw9re/PaTln3feefjlL3+Jpz/96bjyyivxl3/5lytqc9lM0U033YRnPOMZI7/PzMxg69atK+rELgkvWLTSs6/s9dGydFphfAQGoLqri029GWRrIosDIJSiAJBMDaQmh9JR/CADRBEi6ik1xNBm2FF1AThB94SnnDWcoR1NtRkrk2m2XOiQrr9W9XFnNZMWZxU2Kchah6k09zs3vGuChI4LMUMLTYM11+VshhA2RN6UZqvZ99A+fQ/bIXGyCym4cMyam0JxxzJbZhjUWWSvdJyGQy2BUoZ25FDC6tgHUZhE4DnUWUjnF8KOiNZp2WBYQEsLMgQQwias2HyVBwZie9nBrO6GNly5kyj0JlYDcIJ3J2R1+62sREWCWJNeh7VRGMpYiiSXOjFv5FYOlHZP/c9tzZggOVIiZGAzVGOEsVKYEWaJs0UGIgjLCTq0rZLI1jRYAylM7AeL+JUApC9/Arh7oCdLbNOubMW2eiLcL5nUoWAs4Av+ynjcnO2z0rgpNC+6t9aZBlJJGM4aaS1dKjhjdBz/wygLf40KCFg2ZQYZp9JI+JtwSJIzImyaiArFyviVzwyZLE61Ae655bPuIesO9KNqXPvLRwAA9t6wNTy3fnvNLejIKkx7zeoO5nUepmw5w9hhdgxu/DLMWhmmyHKh0WHsZJrqbxJrirswFc5LJrUrFk1FnFUUc1t/PkJpFowmZ3AGDzI+Y9w0G0KKfjp1SWwRE8vDOh2C/8XYlKm7P9FqikZx9NFHh88HHHAAbrzxRmzZsgXr1q0LGWjLxbKZooc97GH42c9+NvL7Nddcs2K6qkWLFi1atGixCOwq/XsI4YQTTsCOHTuS33bbbTf0+32ccMIJK2pz2UzRn/zJn+CNb3wjPvGJT0AIgdtvvx3f/e538Za3vAXvfOc7V9SJXRE2c5GV0O5fiAZsLBILAKpGeLXM7pDYPjWJbRNOz9PLKhfZ+0izULHIq0GchyfURkEpxnCQ1sfvgCK30mShGmMmNCqoEPnWRiGTGrnx2iTYYOynYNDXRVKck6PJ3pRGhb4vhqYxo7PglyNp8LSOtQsXhM2lYaUWAEd2MOaI9qmli/CCmBLBII++N8Mi0rXMVzmqWgVNgq4UbOVP4kBCDiUSTXstoObIKA4Y5sTKCShpkJMppHKp+7z4LOkRqtoVpa0ynSwjUXRVK2TKLZstO/j1/JpwvntZGewenOasCIxebSWktVCsw3RduZg9Mo7uujCY94aOE6pKmK2OqJJrQjGWx5mJ+vHyFhDN1GrOCJGmhIq8EkiUOy5poPKPI7XEWE3b6FyomAlk6EOwu6ixRvUDW9GRFe6pnC5mXheYZdtIYR0jEVhem6aTN4xIlTDIFBl9RtZISOsYSmIkrE8DD3qUyFY47XaqIwrXMRWdDduJwGITrH9mWCEgDBvuDI4u4sVkOclkIuMtK6D6zQTk0K1wh5rBltkeAGCv7nbs170bA88UbasmUOoMpb8mJ1SFQqZ2DkQWUYo+P9/R2NPZMXAjV9KBSWEwocr0meQLRANO+8XvMyDU5fYsXXwWjJg6ggmt4ccz1HESrHivbyMwc05VHYr1KqcRs+oh9qbxIMKnTIwLxQAAlwtJREFUP/1pvO9978P09HTy+/z8PD7zmc/gE5/4xLLbXPZL0Zlnnolt27bhqKOOwmAwwDOe8Qx0Oh285S1vwWmnnbbsDrRo0aJFixYt7gWt0Dpg+/btsNbCWosdO3ag241yA601rrzySuyxxx4rantFKfnvec978Od//ue48cYbYYzBQQcdFNLiHjIQ8R/XEFEKZiAkNKKRmgCyOwvcPePGYk0xwEwxCNF3qVWIdILOI6SxpUUPXUkL0jVIr/Fw7bgiqO4i6KoKUpjAKsxWncAqAL6ciI/g50wnieZjBltkjkJRVyMTlqgZlY0DMVsUTdsx24ym1UYpBeAiuMIzJpWRsExH0tQKOLNGEbYDX84fINImDAil8+f+6je1AIbeXHBeQpYCJG2wPqVZT/jtbdQfDXsKQhmUhe9vUUOIqCOS0qKsorkk7RsAZn2xV8Oy8AilNvj13Brk/lrpZWU0NBQWE6oMRqD9uoPZOkPX20A4jZFbt7YyST/vqhpdVSVmojnLYhyKmB1JUMJdZ0M1CEyLgk0if2NlkhnGy5I42wnF2Elv1uiHkxe3BSit37M/wjbKwchgYKqEHdE1ScZO8Ww0A2dLMCmoUG7MpNpWOzaEs0UwCKVmeqJKCh3XhpWAsRJCyFB6pFAaleGskUp1d4w5sjoelzXwzxquZYkqmCTv26eXM4I0fo7yRNdO4w+gFQCvmytov/CMuAV6m9wPc1kP/d3c+b5zOI1Hdu/EZs+u3dGfhhQ2GJG6Xbqd9QHkIj6rOrJGTwyDHiwXUZumhLNfIGPPysYyOMpaV/ZDxexNAOh5PQ/PSivrDEJYSBPvkapW0X5AWlCJLKfWWiAzMPwQWSP37GfflXVMHuC0RlLstOyzVlMUsXbtWm+sKvDoRz96ZLkQAuecc86K2l6xeWOv18Nhhx220s1btGjRokWLFi2WjauvvhrWWjzrWc/C3//932O33XYLy4qiwMaNG7H33nuvqO0lvRS95CUvWXKDV1xxxYo6sqvBCh9ZjRGw8wiLo5wBOluAuTnHAuxY08FMMQgZE7wwaiZTTU3pyxAQk9TN6hD9b616ybq1kZj1pTuMFUm5iNIo7KiiCZ9RIphJ3l27eVeKqANLAIp0a5SIWTh8n+MMGsPnBidrvA8RRXcSNrBITQt+6bM/YsHQCOkN2GJ5hegRYhvCQdPQMFkjYzkGI1B3JUwW+2+MCPoPWymI0p+XOQFZRm8XAfdZVizDJzAQgOmI6FNTSwhlkeXuHHJ9kVROK6Vrr8MZuOhW5V6vUkvUJemW3DH3fOHZUkdvpDW5qy+TM3ZlUGeBzehlZWSNABSyRu2vlYGOjBLgtGk1ywKTsIFlpHNGvlnaCnRk7vetRxgerj8C2HUjnGeR9jdS7ouAKnbtcc2OgQgmkMYXsHGfSb9Ej6yaTGXCieKZaMbK5HuqW0lZLiDeE/O6wDxiNlzNGNqu1y8RgzrQbty5lo6KDVdaodQmXmNWQCsZyscYJaCpeLH2DAYjOYNARljPWNDF7IubEuPEtnM0QLxHwr1CN1VTi8RuNlkDRgGdbW4jPSEwN+1WLmSNrowM4z3zPXSyOoxLJmMpo0LqJKsRmS8H4i8Nxwb5c28tCpatNrR5yLqkUknUjobTIRb++pxC1CVKWKDOEzYVQBh7Y0V4rjjvM4uYokf+UWFUkiK+1o95GD9G2pHRo91JTFE7fRbxzGc+EwBw8803Y999911xptk4LOmlaM2aNeGztRZf/OIXsWbNmsAUXXvttdi6deuyXp5atGjRokWLFktDO33m8KMf/QgHH3wwpJTYtm0b/uM//mPBdZ/whCcsu/0lvRR98pOfDJ/f9ra34Q//8A9x6aWXQtF8r9Y45ZRTHhJVdwOkjX4Wvggs/QwBeKNfSKYpUgNAlQAGnrWpM5QmS1iVMBeus8RJtzYycdItjYIsvBYJ3l3YR/lSWGyvOqG9DDoyLcJioDP0Mh8BmwzrvHX/3dVUwvZ0pGOjuO9NEn2h4Q1kxdiMMnKpDq7U3t8oMFtMN0Qu1dQOFVql8dWMGRopB2KRskZAzOABvP6Ih8mk35CY63dClhhlnVVe72MNkM96zcN2oJ4EqNalKSxkDQjPFPFME1EL2FzA1tydW4dyIzXrp/BFR0lLYvw1Yn2ZCmtE8FbSWkIbkbiL0+e5OtWMkX8LMUWJJ5YvAYLMM04mS871QOehXa5Dov1JEctd0PEBAJTPLmuEyKTT4dtoKxMmkbKROiIyViYwb8IXDEX4LtkyIF6XBhKwBtrvSyFmorn9RA+jrtcm8cKzPf+xVAPvwB3vHylMKKNSetd3WpZJHe7Drs7Qr/MwZvzeyqVGrhTKmpyxRcjKBDxT6a/HulbQtXLatuQoWSYa3T8SgGHskGXLiNnmQTO/XUXMorXCZZwFwiQHoCymb/Ns2EwR9Ee1UUlmosukjExNJkz4SyKFRY6ohyQndPI44sxgLrR36ncb81ItlVHhXACAgoCxjNWWddyn/21QU/kaA6PiObVaBK8h+GxWKrEipPDeRDRcIg6adxkPiWkWjcHFCPvW4v7HIYccgjvuuAN77LEHDjnkEAjhy7E0IISA1uNLYy2GZWuKPvGJT+Caa64JL0QAoJTCGWecgac85Sm44IILlt2JFi1atGjRosUiaKfPALgpsw0bNoTPq41lvxTVdY0f//jHeMxjHpP8/uMf/zjYbT8UYGmuWCGNzADAsmw0EylJWQPZHCC9p82gzrC97CTZXYOKHFrdPDzpE0qdoazji2be1Ul0XFuJac8QdFTd8BSSwSfEKIHaSGyvnHvvTD4fIinSfMT+aExmQxjvlM0zOjJpor8JRr2IkqwgK5LsNJehI0ZYHcBnerD1rRXIlEmPhzlY15rVNBIIDsFCNByOQ0ogC6GZ3sTUMmR+5ZlGnuvAFMGK4PRLhYBtZsO2VgGaFYwM556yEmldzywGbxohYgRqBYwWgUUSOg0vVW4gyBlbWihpQwHbkTp4EKzIr0FX1ahlZCvqEcfr+CR0BYCjNo1IHXISjjXL3PjFayIWuu3YOon4HStjQ00rZaPbcKx5FTOMClbfjC/TLGMMiGwBEJ3gDadMBILmiPed6qGpwHoa5DLNcCMWadrrR4jlknX6V0OKDHWjHiChUHVgZgHHKkXNoHNfpjGqjEozJ9k9UBuJYZWF65GzRrZSjnJMnj9RYySYzo6GJdwu3BcJ7Lp1g5I4wJvM7SObq/26RWA1t1ddDG0e6jQqZVwGJz27jELmn/21UNCyRuH7VxmJTMWCsJIVhx2a3Bco9gW1dTctmMz8zKTPRgvebYzlJD84Yp8DY8TYq6Av8sdM14a1Aobdp2BjZt3GSXZx6n8mVmdOa6loX4oAABs3bhz7ebWwbInYa17zGpxwwgm48MILcc011+Caa67BhRdeiJNOOgmvec1rVr2DAHDLLbfgxBNPxP7774+JiQk88pGPxNlnn42yLJP1KEWP/7v00kvvlz61aNGiRYsWOwtilf491HDTTTfhtNNOw7Of/Ww85znPwWmnnYabbrppxe0tmym68MILsddee+Giiy7Cpk2uovLDHvYwnHnmmXjzm9+84o4shp/85CcwxuCyyy7DgQceiP/7f/8vTj75ZMzNzeHCCy9M1v3kJz+JY445JnznIvFlwV9BVlofmbmfrXLSBUYcRKbIZy1lc+7Sm+t3MFlEV9ZcMWdfbYOfDUFJG2psSWEDw1OzeXYAmFAxw6g0LjOpy9reUvdC9JoJEzI5lK/NlTXchGvf1pwuIP2yLlwE26e6VBRRjmF/nPYnVjHXRsB4tqi5btNPyBjn9MzZDNrOGJl6E/GoVzhGhfu9JLY1ifmR2y9Fi52sxmSnDM7OZWGSda3CyNMjlOeyiLWQJJInjZDW6YKIialU0g3uaGyVhahlcNK2QsMXt/eWNTZkInK34I6snaeQj9qHxnkLkXcS6V7oM2c2JByrwRnIZh082bg2uPN4zER0WWLER5FvEQ2RFiKwP+R0TZoS+i16HsWx15AJY0j7pWVKmESfpH19NmqHPo+rzeYqbLltlTAhy3JSDp2PEblf59pn1zlR2bwuMBSUDSdQGRXrA8KikHU4P1yzRSxH17O7A5ZB2BxPawWGWYahN86aH+bQXhNYKwtTyaBbE54YEqQ/EowZkvCiPd9uaiaeXNMkCSMZls0AWMDk/h7OAeH1czP5AL+p1mCu9hlhwsKYyHKPnjN2HgVQWxVdrBvPvB26i+2+Jt1sXYTfO7L2GYT0cB3VhsyzsewxNjWTBvN1Ho5NSwP6U1drfxWER4qFkCyDVMtwL5GeSBChbAFhGKskVoe8abFyfOELX8Af/dEf4bDDDsMRRxwBAPje976Hgw8+GP/zf/5P/MEf/MGy21z2S5GUEmeeeSbOPPNMbN++HQDud4H1Mccck7zoHHDAAbjpppvwkY98ZOSlaO3atdhrr73u1/60aNGiRYsWOxXt9NkIzjzzTJx11lk499xzk9/PPvtsvO1tb9s5L0UcD2S22bZt2xLDJsJpp52Gk046Cfvvvz9OPPFEvPa1r4WUC88SDodDDIfD8J1e9KyKjIGwFlb56Mv4Zb5J7mgtNDBY73RFADA/VJgri+DQDMTI220mMJm7KcCpvMRAZyH7rKtq9HzW0GzdGel3jIqcRxFFyYV0285WLuqqrcSc376jamTeYwZwEbOCy9QAkGhVODsBuBpQgzpPMsOC+6yvV0ZCf2KJFqpazdkJ63YctQLcl8ikEahg1a2jm7Vfl6I7Oe6ut84/SFG0akM2GADITKNaE4VCiVRJWdgMqaEw34cRge2RhU6YIi5rsto5fFuK8GmdirQOFpl3xi7yGrk0ge3r6xhBGyswnUeX9I6sEw2R85OS4RuvYA4gyVQDED5nQiYsEbFInJmpPfsz1BkmpERPuutTijT6BxAjfOFuGGIR+7qDSmSBSXKsTKNulgd3za6sQmVVcu36I/Tb2eSBbyBRWWrHtU+6JK6HMpDoyWFot2srdEWFnuqG/gZWzuYY6gwVu0CSzFKjwrJmXcNeJgOrG/rI7qUJW2G+cmxaJ6vRLz2LqTLUmQr+VqZSsEJGtqIGBH3RPquscQsIfioYyyEMYvZZYQED6K7XCa2JG+7Z3YG+LrC9dGOijdMBkuO6TvzXXOYZHxfOTHdk5XyL4FiiocmwpXRO2TXLVKyVQiFr9Jiv1kJwDLpOrkO+/7LOUOReKyWcm32T8aZngZAGwp9Dy2vQ+TEDu79HZIz3M9qU/FHccccd+OM//uOR31/5yleuOOlr2S9F+++//6JGSb/4xS9W1JHl4Oc//zk+/OEP4y/+4i+S39/97nfj2c9+NiYmJvDP//zPePOb34y7774bb3/72xds6/zzz1+xHXiLFi1atGjR4oHBkUceiW9/+9s48MADk9+vueYaPP3pT19Rm8t+KTr99NOT71VV4frrr8dXv/pVvPWtb11WW+9617vu9YXkBz/4QVJO5Pbbb8cxxxyDP/iDP8BJJ52UrMtffg455BAAwLnnnrvoS9FZZ52FM844I3zfvn07HvGIR8AKCystBARMxvxRKLIgdqgRJMsKKBzZhLlSYX6Yw5e5ghAqsEa5cq6vlEExlQ8xlQ9DhFmoGhs6s2GfHVWHPszrImZpwPkXUTaFEjroGGhbinQ7qg5uxG5dA0ggt55lsik7lAvDdCROT0HfFZvDz6VOtCtOLxEjZe5ETW3RtgIpi9Rcl9tPJPWimlSyhdN+UVQskQi/slxHTyQA81WOoc8EtFbAkifUWgNZMQ1ZZlMvGCPSzDGNECQYlUFNxDEUykKSc7mQMLVhAgU0/h+jUuonsYZbBjK6omdOfzWZRXYzkxpUDrH2db8A0nakNe4K72sEIKltV1sJGF6TT7mon+nauJZm3hToKV/R3LfBM8w4EsbHKPRtZL54qgdnjFz/RRLx87ZJNxR0bEIyl+zokQMAsJnTKyHNTqN1FQQMc7/OVbxHeO3AvinQlx2mlxIJE2eUDLXPXO01psOyEkOjmeaI+3hJ1FqGbEMlTdAfzqscwzpD6a/VWhlopWC9+7mVIrCPEpJKo7lDaT6jbJTmkN6ITpXJLWQlMdjda5eYdm5Clpg3RbjHC6WhpU30ctzfzNWls+F3YwUUEaNWBQ1RZSS2193EO4vugcqolGHyPkl0jjuiClrJeZ0HFhMAkJXuOvfr7hCdkClH1zONp0XKSAsR5YhWYETHaNlyyjZtSKruP7TTZyM49thj8ba3vQ3XXnstfud3fgeA0xT93d/9Hc455xx8+ctfTtZdCpb9UvTGN75x7O9//dd/jR/+8IfLauu0007Dcccdt+g6++23X/h8++2346ijjsIRRxyBj370o/fa/u/8zu9g+/bt+M1vfoM999xz7DqdTgedzuj0VIsWLVq0aLFL4SH2UnNfccoppwAALrnkElxyySVjlwFYlpHjfdIUcTz/+c/HWWedlbhf3xvWr1+P9evXL2ndX//61zjqqKNw6KGH4pOf/OSiOiHC9ddfj263i7Vr1y65TwEs+0xAIAYiPqPHv0d5ssUtEc7vw5fvgZxTqCaywKF0iiowGYWqUSgdmKNC6pBZBDiWZkoN3Mpd5wtELNK8zoNzcSY1JlUZoipXvXqYVDuXjQi6Cdq2I1OPG0gddE21lWP1EICbj59QdXBazlSOocww9G6+zgGXqJd03+QuHeb2AVDFasEpGvjEGtIpBR8k0gIIWDP+iSGk9VlZzKumVqhLHy0y7YDNLIwAbO4zzDLjmCGKJpVNIkPBmCPbV9CZgQyMVHTOlcpASKcdAhyr0AwxgyeP0iiyOtHzEEgDFDU7PqvQj/0EbGAGXVV3lfg5JTohNZo5RHAeWvHxQLXRCJnUmJDuJphWAxjEelUVu4Y6skYua5aZJiGZA7uGgIyDn3ZCwKfsRcaBNEfapp5BGhLKEkNkfO02ykYTzvGaxgDRP0ixjDXXB/e/SelYsNzWGNqYOadgE18lcuEO4+KZQGIuOHPktDbkaZSF8aVMNDq3UsQadKpjkCkT2cMqQyUtasoKlCroHY1094EkpqgUdEMlxwY4TzWYyBTZwkLOCsyv923lwJrdnDiSridiXtZOzCc135oZZYkOzSgoZSHJZ8rGmohDk3k9pA3t540sMxo/KRVyaNDTVgrnWxT3Y9gzMIOROnkGzoWqdBmc8ZNvv1aORWTsb/ALszLRBYKkXPQDSRpV+6byQOH+8EZctZeiL3zhC2OFz6uB22+/HUceeST23XdfXHjhhbjrrrvCMso0+8d//EfccccdOOKIIzAxMYGrr74af/7nf47Xvva1LRPUokWLFi0e1HgoC61vvvlmnHDCCfjNb34DpRS+973vYXJy8gHpy7Jfip74xCcmQmtrLe644w7cddddI/TVauHrX/86fvazn+FnP/sZHv7whyfLqOZJnue45JJLcMYZZ8AYgwMOOADnnnsuTj311BXt0yrr6lwZH2qFeWZXt8vKOAYZdzyVLgMNANS8RNXPUPsoT0oVIr5MGufEiqjLmcyGIfrpyipk9wAuA2neR6y1j1ABF3F2bRUcZAHHMimWtcErqhtycAVCCl3QfMiow6iMs/SmyI3XXQOQZDDR76Rl6mUVykJhzmfAzZVFcJMmryDqAjnRBqdsw9yuHUcX9mGtCHe1CPQc/c/4OkbUcHyCCM8yEEunlEGvKEOfTC1g/EkUlYTtmFDjTGSOGRJDxqhQdJ0bpysofWc8oyTI2skAuozmQzIzULk//4UOVdIJVJstU66KPDFb3NG6UL4Keagsrxq1xQwmlLtu5nWBTJmkNpcUdiQzioPX+XJ1v0YzrQxcXTauFcqFDgwRZ1aInMzZda3Z9Ts0OSr/GKJ1iAXLEbPLYInxIa2KSfyIKqtCzTVlXfZTAco2k3DsQHzcFd6unVijLtz1XcEzB37MlK/lBQBdUUFJk9Tq4vopbWXU68H4ivDCr+vGnu5FIwygONMhURIDZWRgXzJp0M1i3TElDAYijm9lRbgZrBOFQVOmbCYgh8J568B7EtGlYhA9uQCgMOjeqVD6hGI9YXHgbpsBAFurHiobdW09USVZjLwuY+YZGroG3TGnGi16rtVGoaPqcN3kTMNGGWxBH+ezCfm13mQ5aYwmVOV0mDKydHQPhHuB2fVLY6FFrElHjvRSGVghAwNtyc9IxIxXsTOZooewpuj444/Heeedh6c//enYsmXLokTGhz70Ibz2ta9Ft9vFhz70oUXbfcMb3rDsviz7peiFL3xh8lIkpcSGDRtw5JFH4rGPfeyyO7AUHH/88Tj++OMXXafpZdSiRYsWLVq02LXxn//5n8jzPGSL3duM00UXXYRXvOIV6Ha7uOiiixZcTwixc16K3vWudy17Jw9KKOv+CUeo2FDPygJCxNpYEME1VtZOJqI7Ue8hagntaxrVysL6DK9KK5RSoVu4CGtCVliTzQen366oQ5bMwLsB86wiQm2c/wkxTKHKNzsU7nDchPOjidlolYmsVmUVipASlW4/YJdOU/tSSO19lvyxZRXmfT2i+TJPaloRdMgAkYH9M/CZYWNrqAEQNuqPlAVsZPASvyKRbqukQZEBEx3PxFmgJq1Pptx5C1ol6zLGKHrULlPHrSwcTUiO2JV0fkR+cVboEHWa2mmIBGnGcld/jda1Voy4ffPxpPGayoYoZB3Ot9ESPGeLZ0N1ZO0ifL/MQCCTOnFgJm0aMJrtVTBNRs28aGoj0a+LwCJKYTGlYjYcEGvjVVCQ1ga9D/UjridDzF5pFTQ+gGOfmh5IhrFIxBbF/suwT2UtKhG9kAxEYHz4urmoG/5H1lF8IvaPoPz+SJvXEQa51UnWXWSOZLo/4bJAmw7jgM8ezOLvA50FttR4LZwU3gFcGp8hFc9TNfRn2PoWyXtIuecRXU6qFCDyWVjHHIVLTVpkA2DY89sWBjO584y+aziF2shEk+eyXokZHmJCUe08x+bRddSTJXJZRw0cEK6bTGoUTKsmhUlYbfrNnQcBDRXGlLOnOTQgAcky/SAQ3flVhV4WGT16FtFxlFoFZk4bCa0jswqpU/d+I2AqMqlzGZuh9uH9jAdq+uxb3/oWLrjgAlx77bXYtGkTvvjFL+JFL3pRss4ll1yCCy64AJs2bcLjHvc4XHzxxUtOif/pT3+KqakpHHvssfjVr36F3//938ef/dmfLbg+LwK7SxSEVUph06ZN2GOPPZLfN2/ejD322GPJCu9dHoX7Y2eNnxIhCtXbvAcDPyFR+wddNoC7GUv/x2ONv4FVTE8lVEah5CJDTx1XXtS4Jp8PD9hZ3YFBLGnQVVVIY5VQSdr9hPKpq+yByyn9jqyjuNS6NGZtR6dIcmhf/iCm2rrio3EajdPn/A8qiXJJmDmTD8ML0qwq0K+KmCIrXGkTI2jqgJU/8GLqkJafTJ8Z92bELjcLwUzYGi9dtYxFKWEhpUbHT1fVuQ7rm9wkVv+uMQvb8YLweQlZRfrcauGm0YAoamVCTBmoddN4wXMmkioz4Tu3DAAQ/ghx88+OqjGlotlgJTU0RCjWWRvFBKYGOYA4kSqdlQKVu1Bx+pan8gPxj1FGdgNChGsug0FpFHZU3bD+uPIxHPHF3rUXpmVllRaEZX3g01EEw1+a2O+avWwY615bSMBtrEQl4otPV1Qh4BhXEoS/aGkbhdTaJxs0xylnn6WlArCZeyFkqelSWEg7+ldJCn9vsQLANNb8HqNxM5lIXqbDC1yloKWMU8hWuikfbzehJULQYEsgi7plQAB1N8yoQ64t0femr/cMJmAggvi7q2qX4OGTMApZh5fiXOixY0oY2CwWC/YCc55cQtNu1E4TfMoslA4R/nkUXkhNkpgyocrRqbZwXlwpnjDO0oZpbK1lWpAa3n6DXr6EcUkaavyxrjoeoOmzubk5/Lf/9t/wmte8Bi996UtHln/+85/H6aefjksuuQRPfepTcdlll+H5z38+brzxRuy7774AgEMPPTQxSSZ8/etfR1VV+Pa3v40bbrgBe+yxB4455hgcfvjheO5zn7v8zq4Clv1SZMfc1IBzhi6KYuyyFi1atGjRosXKsZpMEVVuICxmTfP85z8fz3/+8xds84Mf/CBOPPHE4Bt48cUX42tf+xo+8pGP4PzzzwcAXHvttQtu//CHPxyHH344HvGIRwAAfvd3fxc33HDDkl6Kfv/3fx+HHXYY/vRP/zT5/YILLsD3v/99/N3f/d29ttHEkl+KSNAkhMDll1+OqampsExrjW9961v3m6bogYDIDERuXNRF/wAnumMiayNNCK9qCEheLLYWMF0TojopTWQyiBanSN04UzOKtvumwN3VNACXuppLk0aLFL1IeFMzz3RYgVzE4pjcZFEKm1DZ0dTPp/saHnunKfwGImGDClkjE2nEzCPotLSERtagvSld38ALq/0ckFGsPAhPJwZGnghS2tBDa8RIFETSN+MFkUHsXfj2aZpLxekpLQ1sxsTeRsDm2k1/AdAigxio2B2LpDgnjIAhAXVHI/MsTw3lZmUYg1VrGSwJCqWhJImp3dQjMQddxbke308fRTvmLxWf8nR9YosAzhj54xY6MFmVHS1DwYvL0vnnywiVUZiti2Tqg64pI+TItJyGDAJsSDb9yhhMOpYhS9PnBW6lYPnkSEXY9F2TySIsJC9/wggIJSrXH7+f5nSdEjG130Ak02f8em9+V8IJuGnaMCQ40NQWK6ljrHQmn57tkyraRzQLyQIudZ2me4nVAIBSWAgpw7VqAJdSTmJ5Fad+rXAME031C2lQrnUCawDYfe0s7px32T9bBxOYyCtMZOkVFBhHZlPQkTV6cjAyjsTkUfFgwLHauTRhHJrPqo4okza4/QG3ZyDGiJ6dxovPyaYCOgtmpwbO+kD6cVDaQEmD0j+PtIn7UHkNpWSYAnfFZGVI2ZeQbsag2klM0SqCXkAIZ5999oqkMWVZ4tprrx15KXne856H73znO0tq4/DDD8dvfvMb3HPPPVizZg2+9a1v4U/+5E+WtO2//uu/4uyzzx75/Zhjjhmpi7pULPmliARN1lpceumlUCo+kIqiwH777YdLL710RZ1o0aJFixYtWiyCVZw+u+2225LapSu1rbn77ruhtR4xR95zzz1xxx13LKmNLMvw3ve+F894xjNgrcXznvc8/Pf//t+XtO3s7OzYGao8z0fYsKViyS9FJGg66qijcMUVV2DdunUr2uGDBVmhIb1Q1moBQ6nk1kV7cRbRBkM+qyQsGabBMx2siGkTxkYtyNBk0BCY8ZHf3dU0tlbODj8XBpVBou+h+X0ZtEU2rCuFCULcEU2GlVD+tzxEVlFrQ2vzsgi0LJM60a6ENiFQCJOYpY2Lbl1DNabyNLW/FmnETai1dEwDiZUNM3n0YlPlRY5GC9ffIPWKTw8q+UF90t54jpe5UME2wX0nVgkKMEbGc2xFSNc32hs30vlW1guzIxtIbJWSBkbwIroW3GuyKZ4FmBCXaS0Ad94o7b0jKkAAPd/diqfQw4mOaT9KWGjG2jjWjqr4ApD1KPtBuhxhghWBsS4lPwr40wKg1DZHuA5FGvFzobXrY4y6NWRavsGmxUVzoZOU+FzE/iSsJbz+iDOiRJ5YM3KPpP2uE32MtjKc7wqxnMc4SGHQCcapNjlvCjZsxwvJAr4wqo3naFBnscSKt7AgYbAyInmKV3DOEPzYw5kYSoR6G7DQQkB3/fWYWdTTJmjnZroD7BhGzZhtsH21UZj3Iv3KSuQmMtNdWY2MaZOddn0TaPKXgaXxTFvUG3kNHRUlNnlgc5tlZZrIpA5aLyf8BPq1+0OaCYPa6qBxGzKRu2NydbhWMuUKXZeCWCXrrCLynaSjXcWXopmZmVUt6N6sh2qtXbRGahP3NkW3EA4++GB8/vOfxzvf+c7k9//1v/4XDjrooGW3B6xAU3T11VevaEctWrRo0aJFi4cO1q9fD6XUCCt05513LlhaazXxjne8Ay996Uvx85//HM961rMAAP/8z/+Mz33ucyvSEwFLfCk644wz8O53vxuTk5NJ8dRx+OAHP7iijuxqUJmGylw6ps0RmCJdS2erbxgdRMyBsrAF00tkFrKjoXwkYYyM5S48QmFXYTClhiEqvafusRTjNNOG29sXsnYmaP63jqqRCR3ayaVOMnqcoRxFrz6CYyUPKOpSMKgRIzApXOFMnk2Tlv2QgXWQzOwyLGc/ZMKEdO+Yzl+PrCuEhTE2GD5CSFg+fc/YFakQ0t3dqiyksu47sXvzVQ5rEbRLQlgUnnkjjRNpNdw6JkQ9ttAwjClyWqbYX2fZQGNmE02RhEUzT4H6UJsY/Vsr0gKsLFU5kxp9UyQ6opydb7JSCMsQI12nGZIwDf0Z4JggBRFYRDovxGAYR/GEcc9YwU1qI0T1MpZcUEhLNyjhNXiNDEj6XBmVpLgTI0msSi6YjkTGrDYAwYCPji1o8MIxedYLNmaJWeU0QoLYUuMKzXKWlI4L2u3DD72BQGp+wcuvmOS7kpVjPgyxvfxes8ggUAcmK4Oh8iZWAlks3ltbVxA4mDuqmIFp1JjIXCCcbyvg2CLXAYeQOWlhJjSEt5eYysvAFE0WLntrvopjXWYqXJ9dVYW+EyZ87r/yJp90DjrM9JPsR2iMNNN9BcYI8RwqmDi+Mq5TQY3o3SSY7lLELEbSZtK1O9A5SqPC90LpkIlWaZUWwbYWRoqg/dNGoNYKMk+P/f7CruhoXRQFDj30UFx11VV48YtfHH6/6qqr8MIXvnB1dzYGxx57LL70pS/hve99L77whS9gYmICT3jCE/CNb3wDz3zmM1fU5pJeiq6//npUlbuAr7vuumXRYi1atGjRokWL+4hVnD47/PDDoZTCqaeeeq9VH2ZnZ/Gzn/0sfL/55ptxww03YLfddsO+++6LM844A6961atw2GGHhWLtt956K173utfdx84uDS94wQvwghe8YNXaW9JLEZ8y+5d/+ZdV2/mujCLXUHkdvGWM15xo5b1KqAioieyFzQSsMcmFm3dq5PmoeaK1wpscRt+fyirMaid4m6s7MYMsZNy47XnGkbZp1o1bP0a60tokEgcQvJBy5c3xGCNB6xofQQcNgF8n0Q0FH5iGB4hwc+18eTMzjRvB1ayEgBRVYH+GyFAiXqRCRDt+MjvkxSiNiLwTaS84yAdIem3NOHSzGmWtQmRurEj0P3leQyvmY1PHbB/XyfixqhSK3Gu7smjkSP2nYwJSLQ0fJwKdh54sMas7CVMERPZQWhsYHccKWihL2qTIGjXblRDIoKO+LLAjvi+s8rH05nyBnZQ1mgjMFfOucsekEvNO7pPldCRgmo5UawMglPKorDPyozEykMlnAOE+HMKzFZJp6Qzrp0RqtMg1RI0BI38jWiZhQpZbE1y/F/bLmiOWEFJD2shASGGClipraHlMLXy2aTiAMfuN953KTNC16TgksLUvUeGzsEwtIbsanYn4PCqyyD4DTm8DAGWdYaizwKiYXATmt7YSlZXoSKfZ6cgaEyotWdTUCRH4OJKeKGQxekaRs3ZdzzTBpGyRY0A1cvIeY5lqEjro76gvmS9MS/0Px6Vq1FaGZ4E2jr1VJj6DtNLQdZol92DAD37wgyVrin74wx/iqKOOCt9ptujVr341PvWpT+FlL3sZNm/ejHPPPRebNm3CwQcfjCuvvBIbN268X/rexNatW/GFL3wBv/jFL/CWt7wFu+22G6677jrsueee2GeffZbd3niF6yI44YQTsGPHjpHf5+bmcMIJJyy7Ay1atGjRokWLxSGsXZV/y8WRRx4Ja+3Iv0996lNhnVNOOQW33HILhsMhrr32WjzjGc9YxSNfGD/60Y/w6Ec/Gu9///txwQUXYOvWrQCAL37xizjrrLNW1Oayhdaf/vSn8b73vQ/T09PJ7/Pz8/jMZz6DT3ziEyvqyK6GblYjy5VzWEZ0IiY32ZqYBO7AbJ1XDmcBup0Kk76chJImRMG9vPTOte4U7Ki6mGM6HQPBTo7xRS2j5oBnc/BsG21FiKYBjPq8sMizrzvosfIMCtHtmG8D8KKyvm0ZWQXTYLLoc4i4rBxhkwiZNCisDvoE+g1w2iNV5yFSE1pG76FQdsVvozSEiGUzhMDIZ4rElTBQCtA8Q41liWUqZkdZa5BnOjAz1kZ9x7DMvc+P1wIZCQjrPGfgzj9lsXWLOrhXu3aEz26J2Wi51x/lSvvsrpjRE1yfIZEzdiwwJgtMaTe1FgVjOpLSC8I5mEsqH+KzqiSL5iUrM9ORdcIacl8gaS2GnmOSvjgrMUeUUZahoTMag46qIRfIMCI2iK65oZZA4zdCZTNUQqHjdWtayBAODqzLYur6MhpapC7vpiGO4/eHgkl0Rc2j4A7dTebDsUbuuTD07teBjWTZfOOcmDNjguM1z6AMYE9158jst83Y8eTuHlJdf74rid7MIGjpSp2W4imYl1fz/8Zr4GgQ+laillTaqHneRNT3sGxBN55R32isc9Pn12hl0z9XtH0o5uqPjcqtRB8lk2QQKmEgVTwPQ5MFZq4yKimgbKyE8SVYSqMw0FkYc2vd34a6ajqA3U9YxemzhwrOOOMMHH/88fjABz6QvJM8//nPx8tf/vIVtbnkl6Lt27eHN8QdO3ag243pmlprXHnllSOlP1q0aNGiRYsWLe4P/OAHP8Bll1028vs+++yzZJ+kJpb8UrR27VoIISCEwKMf/eiR5UIInHPOOSvqxK6IyWKIrHDzyMF1GS56sFbAUH0cy9yPGTMBkCOwiQyA1DAyznsPNOOCrECh6pjdhcgakYF21OUYVrCyESkaFfbn1pTROdcIlxkEVgCWFcOUwsR5er+boM+QTocR/YVUjOqIKULUj1Qso6O0MtEXSVZ/SwoLqWwjOvPt5eTJ4rUMQkV/m1AXLUbSSprA6CQ6DF8/jTRFxNgpRiWr4FJr0c2qGAVnItEnJcVaC+dnFHROPtQXcrQPtZbo5nWSYSaYE7li7uZ03fTUqFZhru4EjYcba4kqklXBMdztJN3WFeoc9RQiyETjEbVmAJCrEpmNOisODZH4VtG+YrsmZbeMhA43SWSKJHNGjtt6phKpp5a2Isk848uA0WPk9QEZ6eqWCeeHBbiMKGWjJm8cw7nQ+AEY8SzimXSUiQXAOctblvVpFIbC+/4YGXQNFRRyYaC89jATBplRyPyxZMJgoOMzQwoFZdi9JRSSq4iSZo27rjtdz5AVEusm50OG2Y6qk7rSC4NeQc+GYcI4S9iELS5kHa5RykKksa+tct5acHqjXNaJpjGnTDSR6hDHjS0hl3XQFYX+WBHYHwPmD+avDdI4dWTtmDpLteaijq22CprpIQsrUUiNOqOMUacxqvOdoynaFbPPHmh0u92xJo033XQTNmzYsKI2l/xSdPXVV8Nai2c961n4+7//e+y2225hWVEU2LhxI/bee+8VdaJFixYtWrRosQgeoOyzXRkvfOELce655+Jv//ZvAThy5tZbb8Wf/umfji1euxQs+aWIcv5vvvlmPOIRj4CU8l62eHBjMq+Q5yIwF1xbUJuokSEmCYgskmBsRS51rHbONBihajZbl++HR6PEJpCGgyL+ZLtGVNUJ2hAR9B0APGtE8+eenfCb8mwQRa7YlMkEBch4wbh6R5Tlk+5bwh13RW7bImUdDKvs7SJJiczvqGZZRBIWvayK2hqZoWKZIJZluNH6welXproMa0XIPlLSwEgR+tccbwCJtw4Qs8S0lc4bxiNTJuiG7BhWIVwL0rtJk+cJ6yfg6p3FunIaU/kQE54dCAxH6GuqKVKwMBSZJ1qd1EuK18Nz4xW9cmLmDml4vB8OY686Xo9E0XTT1Zwzkpw1dJE7VYB3+reK9StoQ5AyhbzSOW1Lx0C/N7Pw4jEwnR3V3WLMINdgVUKxPojk/qIxDmMKO1L7bCEGg/t+ueOKrGIudGDIQlYasX1SRYbWAJDx/GRKI5cKmSbdXRbrpMkMudHhHnHMaay3WAkFKtNnrbsmp7pDv67FTGcQmKL5Mg/Mqvb166gPXVUhY4xjadQIU1gwR31e30zz55GJ1wfg2TPBnPiFTp5r3AU8GWdYGGGSZ0EFBW5qxj2L3O9R69VTZczMlYrpi6T3jPLnDCL4wgGUqaZQZTtHU7SaTNFyss92ZVx44YX43d/9Xeyxxx6Yn5/HM5/5TNxxxx044ogj8J73vGdFbS5baE1pdv1+H7feeivKMqUOn/CEJ6yoIy1atGjRokWLFkvFzMwMrrnmGnzzm9/EddddB2MMnvSkJ+E5z3nOittc9kvRXXfdhde85jX4p3/6p7HLtd5JdWDuZ/SyEnmGEQYGiNEugMTHoskouXphJsmmWojhoUiSkHEPI193bFw9s6DxsSnroQIrgITt4Q68lVUhWnPLMzc/D+5OHGtjcRdrpSzgNVHNOIlHV3TcRowyQe64GyyTsImHEeAyXwDHoJQ+m2Xoq4eHrECban+aY2ATxsQmzBBfRttzj6NkfYOgC6PxIL0MaZdoPBO9k3B+McQM5VKHSJ6OUQZG0P02p53XS78uwrXQVdWI51Ntow5iQsW6U1wPwcd66B3CuTaJL6dj49cZP2cUrdNxNj2ftBVpRC+iM3YOci52y4cmS/cDGeq3Ge95E9DUmBgxol2i7XhNssgS+PVYhmZuHVPJOuC1LfzYuQ+VGekHH5fm9RxqdnkfnXDcNku8mlz/o35KM+dmaW1gC13dOe2zHt05JP+gQmqXHUUspDZJ/b1MGQxDDT/nnTVZuKB2Mi9RqOj7ND/sBI8t2bEh2w3wuiYV79ER/RbTmOVK++sw3jPEtGk4h3/KDDOIXk0d4TPGmJ6SWDwaa36+c6HT71YnLN1C9dHIUT0+Kwy01f44FXJpwvVYWYXEBd5rJ8sx2r/7BW32WYK6rtHtdnHDDTfgWc96VijzcV+x7Dmw008/Hffccw++973vYWJiAl/96lfx6U9/Go961KPw5S9/eVU61aJFixYtWrSIoOmz+/rvoYIsy7Bx48ZVJ2KWzRR985vfxD/8wz/g8MMPh5QSGzduxHOf+1zMzMzg/PPPX1W77QcSU2qIIrOJVoKQJ3oDGbw4SuOqWY/zFhkHF2FFB+n4W4x2AaCjSmRSJ5lVTa8PzlDxWmek7/ErAUgriw9tHjQIUljkVI+pUbNIShsiI9eKhZakqxJJNorTsnDtiwwaA5jMe7ukDE8yVmz4iCUDPFPk90+fuYvtOE1PGNNGNlqTkRqpndRYn8C3IZ8SOr+1le435lvFI2TOPilpkLM+8AwexzwWwecJAGTmtiWdUWRBHJtCrufzGkk1+4pdR5R5RtH2UGeJdoZjSg1hINH3ldCb17SxMl7XImWLXB28VL8UMoEaTIqxwDyK0D+KxnlbwCgrpYR1DtwJM7vw+eeMEmmOABf9d0QdrusKro4gZaOlHmANV2WhUy8doWEa9zrdP8q6Y+M6tqaeaxwyod1x+WHj2VEEYvzcdWsg/Tkj53G6/yujwvWmrcBEXmFNx1WNn8qHrm2vjyvLjGXVuv7VrD5g7TOxaIwiy6mTa5lqIkZG3LPMcO7SSZ05AwzI30qY5DlALFx4orDzQmjWnSMYIQJbriHd/mxk5/jzkrtfh/EndheONeL7nZAVyp2kKWoxire//e0466yz8D/+x/9Ikr/uC5b9UjQ3Nxf8iHbbbTfcddddePSjH43HP/7xuO6661alUy1atGjRokULhjb7bAQf+tCH8LOf/Qx77703Nm7ciMnJyWT5St5Jlv1S9JjHPAY33XQT9ttvPxxyyCG47LLLsN9+++HSSy/Fwx72sGV3YFdFLyvRyezIfDSxDBSVZBAwngXJjEZtVHCpJtYoqRE2JlML4C6xaU0wwOkuXAQ2GtUTo8OZA67R4K66pIEhbVJlXYZGcOS1SJgNLdK2OOuUI1ZmV8ImEVSzxpYSOmESaptGW0k9tYYOJolCRc1YI+WzXiRrUywYdY/zllmIAeLrS1gY0dBEsKw2DqrFFbOnZIi2AadT4v2YysuEDeIPPO5UXCgds7msSLLKmo7LANKsMKbLURCuFp5MM8Hoc5M1mq0LzHtdk7EiMhJN13PP7ukwRibJCuPaJj6OoY/+GDLPKCykVUr1Uc7LRrHzFFlXmRzLuHuLMDTZSKV7bWTw68oRmVcDr/uj7CSvwUsquTfqeQVWyWoMbBbGjmcUNuurjaslGDROkphZjIyRFAaZEEk9Ralt0MDVVodzaKzAVF5ibTEPAJjJBthaTYSx4qxmVStUWqHrGRGuoQQca0v3pYQdo1WLGrMkS03F51cT9Mxt1nXU4dpIr3E6fj4WXGNEzvFNbVGzLqRjjmK/OSuvYZEpHVjPkFEnd56OdrWmvx4q2WcvfOELV71A/bJfik4//XRs2rQJAHD22Wfj6KOPxt/8zd+gKIqkFkqLFi1atGjRosX9hXe9612r3uayX4pe8YpXhM9PfOITccstt+AnP/kJ9t13X6xfv35VO/dAwulpJCDcXHLwYPFRb6wujliHSVWohQlRU2kylDpbsJo8AJZd4SPoJJKOtc6kNiHi68iaRdMy0f40NQ1SmOCc66IkmfijUJ2gZv+MTWuoKeE8jThLQFFlBxUyJWMGnKZMGTmybq5MonMJDtcsyluIVUiYDem2MZJl70Gwemv3zhothVUau25jsxG9TYiKZThnzfUyaRbVMdH2tB1nDcGq0o+wNJDQwb3X+kyq2C+DGLVLRJauI2vkQmPeOGZoe93FXcPphA3oME0J13oZK8j1BYDTrhgWbdcNdhRAYMUy7+YMILhcN88/R3ovRdd0rp1x7ctkKwgkzslhiZXoa5XUEtSMGXQ+OynzyvtFTtVh3abWj+2zizphULnb9b1BsnOai1jrTjUuRqXqeP8Jk1x/mTVBb5ZJg5l8HhuKWQBAT5UYmixhiKyJ7M58mSfO/HNGBY2RzG3wx8qkdjocds9yj6umBxSQOporxu5UiM+z5jb82RJc7lmdueY2zfp6TRd+OUabaeBmCQw5ZQtXwy+wS+TfNIbpul9gbSybcF/aeAig3+/jrW99K770pS+hqio85znPwYc+9KFVeQe5zw6MvV4PT3rSkx5SL0QtWrRo0aLFroQ2+yzi7LPPxqc+9Sm84AUvwHHHHYerrroKr3/961el7SUxRWecccaSG/zgBz+44s7sqpAwzgk1INViEBQsIDWkjVqbTJgQKdesAnNse1RbQe1y5mDE1dhncFDkL9l2TSYLlEFmx2RsCBMyMyDGZRlRtk9zVFg0LLxWhRpSAHSW+BfxSDdjPjX12CiZIr1xPkZxmbQWhrvWQrDacqNZgOP0N83jHGWn7Mh6zWy5JhMY3IdFZIMMxAgz1Px/04toe+WKLg90FjOKiJ0jHZvUvg7d+ONyDNR4vyHezp75dvTkELcOdwcA/HK4GwZ19NLpqmrkWq25Yzl41J36eDU1Ys3jTnR0Jq3O3sxSDNeN33eaJSbCmPDxcDqgtH8j2YW0vpWO5QoJUVEXRtc31wBpG5meAfKEKco9++bWSzUyTQfmlIlsennFay7q9TxLY21jXRkZPKRu/EnVe1ljSpVYl88BAHqyxGY5hdzXdBSC6YoEUNYKc6VjEWe6LmMt6PmMDNmRjnFM/dg6so5jxyohUB2ycSAtJD1DmtofOr7mNvS7RJpVlvoQyeRa5hmFAFAZ8l9TyJH6HaV/B1o8ULjiiivw8Y9/HMcddxwA4JWvfCWe+tSnQmsNpe6deV0MS3opuv7665fU2GoLnh5IGMg4LTZG4BzW4zRu4w+fS+e0yMkcUZiQUj7upar5ApA1aOBo4JY+WHKh48MjCHLHv7Q1haD+AF3/rAovP81pAm0lIAwWshdw+yLxuQYUIJkJH4diafe8LAXgXpJIPKutwCjVHpfxfbrDiC8oaPzRGffywrHYlE2yD9kUJ4+m7vMyAAu9ZFK7XNBNL0UbilmXDl8Xvj2J0lP4mciC2BoAClGjI+tYyqJxfprmhlLGIrSZ0FiT9QEAu2Wz2FJP4a5yGgBCseKCFRcOgm2aUgzVRWUibM0RDT2lkGEqjY/l4jYV7DN9FaMifAPBxOkSdVwA0/hjK4VhY+Re4lOYsB/31T9YZfQ4GPdSbSBj2Q/EKeRKaCiTxcSEMfddtDRwZScWS81vmh/mNAwm9pmmnGhKjVLyMW78hZv+7PpprUk5dN8z932HtNC1T8nXAio3MH46TRuJQtUhVX+gM3T99SJzJ7TWjZe6XJIYPb5cO7uT8S8Z9PIS79ml/6FrPquCQJ7GgD8ngGSq1RUvJvuQ+GIEuJdh95LZEMbf9wmXpcGiNW/0uO222/D0pz89fP/t3/5tZFmG22+/HY94xCPuU9tLeim6+uqr79NOWrRo0aJFixYrhzAjFkwragN48Kfka61RFEXyW5ZlqOt6gS2WjmULrf9fA0WB4f/CUfbVuIvTymQKiqaxKI6gYo4AiVHTyHCh06mETaKbykpAk+GdTdJGTTO1mk+lNabWCDn7zEWfUtjwXduUxldjWKOEBYFBR0aBNx8TDj4l4rZLmYIm2xMgAIxh8JiudCxbxn9Ppywa03BjprqoD5ILjMWocLSmkiY2Fk3lJo+8XW5HoJL9xDYzaUIEX3hxa5WUXdDBUDSTekHGgaYyppWb/tgz34Y1yjFFW+op3NTfE3cNp0LfMx5tWxmsJqhcTbMYK/VBCxtOTe0F2c1zzAXs3LiUX2OOfULYvysRE4+lGfWG8yrsyFjzaTklmqaPo2wfLwkSmTEJzb4TxiUqVPAFdT0j1REVcqlH+hX279kiACElnPbJr4XFWE7AX1PEvvpLZJzQ3YmaLabVfOhf0r4F4D/TjFHty8NoI2HZjTbUGWY9q9mrO6MFqxkLlgvLhOlUHDjeI+FaaKbiL8AoEZpC6uaxEkg8Hb5Tv4LVSHxeBNG3oCQYmxSa3WkMEWEVmaIHe0q+tRbHH388Op1O+G0wGOB1r3td4lV0xRVXLLvt9qWoRYsWLVq0aPGgwatf/eqR3175yleuStvtS9ECyIRGNkZU5wSDGpkaZRsqqyDZnHPT/F0Ki8LP4TeN6iqjkCHVwRC0j54zEkwjbjevc2fm5yO9XGpIrrsQZqT8QVP0GftnEtaIR2e1VaihQqQhmUgyseoHpcfLhrEc7YsJwOGj3KR7qRh8Ie2JOz/NKLkhJF8oemQFHZtoGgaOQ9OYkBsISmECY1JZmbBGHNKzGZwpomMlw0RihdZKHUoqUETbLKtBafjSxgK1vCQG4MZsWg2wf+cuAMBe2VbcUa8FAPx0sBd+M5hBv3ZXQCF1oidy+/GaKUhkwHh9Grx+xh9u5tmyprCcC9C5MWUTil030oowXokJIEYF8OMZFRHGhZ9DwxIVmutWUIH1WkgUrBbYb2ILIfOk+CkvWBzbYWJfonlsg+VsMEeOXXOfg9UC05tJ2KAF4/dGR9aYUfOYloOkv8QGQQCKRNfSOkcDfyylVsiUDppHIIquBzpHLjUmJD39jDtXKnwN4v5wDEz7E49TpBYgXmOUjEUy1inDTbqiJqhUSyxX5FmsWJEIHcasJzYgjX5S0V69k1LyVyN77KGSffbJT37yfmu7fSlq0aJFixYtdnW0PkU7Be1L0QJwll3jU0aVMNF2H5FRya32Zl++3IWPFENBSYjAzihhk0imkDVKk4UIZrEsqGaK9VBnSSTGo1BelqDJulQYTUdtlvXgEX2qDYrFRHNp7iVDL2WMUt2Iduway2zSjE1YKCWf2pKNKK35HYiMmG4wQ+PGOFuAKFooWzDNljJe3+XZQIjAFFVMX0R95xoTzjBRXydV6fYDEVhCflShH0wDZbydKODOpYEMepGpbICH51uwQW0HANxVz+CGuX0BAJsGMyi1QtezU8WY0gULZY7RcXNTyFj6woQCoOHYrABRSeOuDWLVpBU++4vt3zdFOqXFsgbH9X3k90WyNandqB3xx9nYV6IFazBhhMpIaCFigeVmluACRoPOciNqciQMuJbFscTEDKqR8cyYRQjXE05lJdbnO9CTQwDAFj2F7XU30apRaQwpDYyRsTCslhhWGaxnkhQrkVNb6VjvcJzu2tTeUkIzLRJd/+F4GXMuw3MyLuNskSsdkmbhhrG2CgoGzSLbhHH6JNIZSWtDSn7OyuFwcI2RsSLZd4sHP9qXohYtWrRo0WIXRzt9tnPQvhQtgGbZheb8f5ol5aNZgcRMrYIz1QsaI1Y0tWlil8Fb4CceHlET0vQbCt+9rkazfToWa+FInH/nZQokLKiERC50yspYC2lt9GExMbquDCB5FCys00IsYHTmmCw+thbaxgibxeXQYtScjo9fE+NYIcmjTb7uQuzBIpksTc0S30+zhIEEoCjattJl27D1eTkEvl8prGdJaJ9jWEN/nJWVvkBs1LGRP1SnweDlQqMQGlu0yzD72XBP/GboMlAGOsdUXoY+jDO/jP0czbij4w/HRtqnRiZf1JD5bLlGG0nmn0jPN89GS9pDqtmi7LbEzJH3c8yYL4Zwjm1k4dI+3LsOjdYbWu/nI2xgHNx9kxoNxueNTO4ld3+kbFEooQONCqNZrYGBFLEE0e75DuyVbcWM1xTdXq3D9moCVT3qB2T89URmjtpIX+zYszmsZA1p0uh8FN7MkcZtXudh3Y6tkzIqzTJCI+xZohOSI3qrxFSTjw/Ga+PGISm5Ql604/oBuKesGC3Pc7+h9SnaKWjtOVu0aNGiRYv/h3D44YfjoIMOwl//9V8/0F3Z5dAyRQuAMkeaUcC4bChegDBHHeakI2vkIyEZ9UaUARP9j2zCCFVj9AELIZM6zYhqRFEjc+qBuUqzVXKhg2stsT5BmxTcgM3YY6E+u3VcphxFaM3styZcJhZjB0K7NsnmAxD0Rk0s5uQc9rHELJGFGCQHpvuxIrmBmm7bhjlyd3wWC7EOdG3xfkZWRCceN+PKr3D36GYWXYh2jdN7Vb6Zvu7gDrEGs9qVD7ljuCZE9F1VoWBZQaXJRjK8Rr1jaL/KeeNQohVbx7mtx2tZhog/HHVYVwk7thQNX97sj2EsCdf6jFt3HCs07r4aZSYjKzuapSZHtGrA6PU3CpMUXJZgZXIamZx6TOyaaPhE1ONxpnrEIV9q9KTTqa1R89hdzaHr9WYaEqVWiQ5XNMaGvhML1yxrA7gstH4d2SBkAGSdFK6tdSyE25E1cstLo3C95MIu1or5OlEfeBkWrvNZrt4sYfrBnmvetys8C8dkxN2fWM3pswe7T9H9ifalqEWLFi1atNjV0Waf7RS0L0ULYKG54qYzMc/eCtEhq51jeD04AxBrpBt6m1xol+0mYxZEM+Jbiv5hHJpFTpuoxzi8jptYdVoHhP7xbSqrRpxiI9t0730MNdcgA8OUNRgS7n3UPKZ7q1nm9pH6C437fVwW3ULjRv1r1sgLLsyi6dXkMu0AjC3gyjOpErfrRQq+AibRSrkMIx0+a2uhfcS7XU9gaLLoUg6RsEPGysAclbpRgFgwd3HrjjZu576SkzLPgIvHtHBEHZf5DLxG9lXSj0bRWa7BS8/jwg9/rjcax9g1mbl4DO44FevDQhjHHiXLrYpMoG+zmXnFkWYXsmOBGWGNImOZZnrmQgePoGnpPIpSplKAHldS2Jh95rcX7P/WxntIGxmeZ1K5rEDyLaLriK4zxbL35nWO2qhwnedCo2OjpjEZL8/+cEf9hbCcbDDyWOPbEDPXdPF3B8+Z4lZ98lBE+1LUokWLFi1a7OJos892Dh40L0X77bcffvnLXya/ve1tb8P73ve+8P3WW2/Fqaeeim9+85uYmJjAy1/+clx44YUjheOWgoU0RU1IYUYjR4ogZO2jde9jJHX43MyIIBaGGJgki22RufXlzpeHzDAgZocFHxMRfxsTbDWz8Siay4XGwOSY1R2/qUzW53XSmpF/M9oayRRJ1tchIh05bpEySYvBuXGPRt3U96ZjMLBI9ClGs2D4fngGnm5cT6PMFfeTiToxwzJeeHaY6++o1ojGRo1k7gloUSS/cR2Ui/B5HSrGcsHC6JjNNVJbTEtkwm1bS534KnHndj3Geyrux1V5zxdgAZq6IF5TbZz+pMm8BEa0cUtLG71+crqfmebJJEyciMsaHkn39qxoXrPh3Bl3jkPl+zHX00J1tpIstAZrJAUShjEXGl3vNL17Nou1ssKcH5O+KVBbGTyHrHW1GgFACPedWCQlDawViW8R/SkRwqKXRS//suG7ViSaIYEaChmxkyLD0OsxJ1SVaC7dkY2y9PHz8pib5B5o3Ntcm8TXJW3cTss2a6LNPtspeNC8FAHAueeei5NPPjl8n5qaCp+11njBC16ADRs24JprrsHmzZvx6le/GtZafPjDH34gutuiRYsWLVqsClqmaOfgQfVSND09jb322mvssq9//eu48cYbcdttt2HvvfcGAPzFX/wFjj/+eLznPe9ZttKeNEXNSFQ2nKiNlaEGVDMCVrBQzO+nMlnUeyyolYiRFGU/5NAjkaJuRKfx++ixjM6/pwzROD+hcRkvsIbtT6Ljo87AXozxTgFSz6Pg7k1jFdx4R/fHNUyhLdJkjXUyTpmkcfoL3jdipZaiR1oICibRQzUzBpN9NFijtE+s3lUjcs2lCT5OQOrrpI0YWT+tAcbPiatDRbWwaqsSB/WRyvFMW8OXGyOQNZzQAaBk1eLJuXjxTL6mdsdVSTciZcUCBEYYM97fJjM04rzdqJbOP9Moket80NoIt0bsI9NLLeKQvpTrJ/GWclSn31bc67gtBU4rFe9Zpyly92xXVJAABt43qa87MFYgU94/SkWvpHFMERBrodG+6DcDEZzRm47hpRkdm5KydWFREdtolfc44sxxvJZrGV2zc6Eb3k6LQzec6Jv3P2eI+DPEWPhrcNT1vMVDBw8qpdj73/9+7L777jjkkEPwnve8B2VZhmXf/e53cfDBB4cXIgA4+uijMRwOce211y7Y5nA4xPbt25N/LVq0aNGixS4FY1fnX4tF8aBhit74xjfiSU96EtatW4fvf//7OOuss3DzzTfj8ssvBwDccccd2HPPPZNt1q1bh6IocMcddyzY7vnnn49zzjln5PekwjVD0z9Ii5h5wf2KxoH7WiykseHrhn1CjeoMxrAOrr2YvTUOjgHw2XI0D8/aXqieUGifMVTkx2SEHNE9KZiRDBK3XaNNrzdZKMpbMIuIO9vSPllNOs0cmcexXvzYOBvVXHe5mSxKjB9D97tNMv1Gtg8aLGI6mMP1iHaIPriK8QtlO/Eq3/Q9OPLaWGdsQddskr3YcVXoU9ZmPEPV0GsIC67TabqsGwime0j7rUf0PCZZ3nQsT5ax/hkrFly3iVRflDK5oa0xGOtx1hi/tI6eCEyhYhqnhTIoF6s1mLqk26j9azAvptF/XjNRCCBXqf6HZ6FxP6FxLG90Eycn8sjeNcchMJDs3FdGuetvgdNUaYXcPwOJNeLHttDzZDzDnN6zPNOvMin7rW2WnANX828ncQutpmin4AFlit71rndBCLHovx/+8IcAgDe96U145jOfiSc84Qk46aSTcOmll+LjH/84Nm/eHNoTYvQBZa0d+zvhrLPOwrZt28K/2267bfUPtEWLFi1atGixy+MBZYpOO+00HHfccYuus99++439/Xd+53cAAD/72c+w++67Y6+99sL/+T//J1nnnnvuQVVVIwwSR6fTQafTGfm9sgrSqrHaAM6KSNjke9NLo8l0LMQMhe2D59HCGgju5dPUqgA+yyZE1I1q0aIZuafOsAtlUjXBI1tieqgae7PPxiqgMWbjjqsJbVPOa6maAcC7czeqWTcxVvdxL8e/kPttsmxMG7EenP8O4TNqUo+jsD5nsjCqreLtKmFDRMsrodNyKdKIP2R3MY+i2ih/LhoMHB2u4Lq3NNuSswBxnwtF6iLZNsns4oyB72u8VlLmyWl/Ug1UUreNZSo1WSs+JiMZYZ6N4v49C7lTayw9E2nEcV3Ye/UyGukX+78UUbO1GGtkrEi80mj7gc0xZyPD2JUVelmFbTJq1RbyAiOmJPPaogxmZF2+v6bOMfi6jTjAp8wgz4Ac50dGdeSMNdBSLFhLrrndYswO1xE1M1mJLQu/CwljgXqJz8z7CoFVEFr7/x9++OFQSuHUU0/Fqaeeel+79pDCA/pStH79eqxfv35F215//fUAgIc97GEAgCOOOALvec97sGnTpvDb17/+dXQ6HRx66KGr0+EWLVq0aNHigcAqOlq3ZT4WxoNCU/Td734X3/ve93DUUUdhzZo1+MEPfoA3velNOPbYY7HvvvsCAJ73vOfhoIMOwqte9SpccMEF2LJlC97ylrfg5JNPXtHJpyj+3nRpxo5GFHzOOW9UQk/XS517m6xSslyIOHdvzaLRjutPZHFixtio1oFnbYzLyljMMZr7ywCjUSKfv2/qbBYbk4W2W45HyKh/zyhbtBpZI+PGa6E+5lIHHyoDgcrGjL1mphz3S2o67iaaEeLS/ObajjISnElwLtv++mTZhLWPzCkbrbbpeecM1LjjG2FEmzqmBmJ2VWQym+CeQMQacdaT35vOLyxmn41lI5vO2YiMzajGxLMiC9RMo/Y42zOOUVrM9Tr05l70Tc1MtMRPSpjAGoV1bTxPGjJec1ai8uzKnOmgb/Jwr61Rfawt+theONa8XxXJ/sae88AY8uvReh1RvM65azUEYk09X7MxMJf+GuRtLQUawtVI9Ix5ZRts9Arv84UyAJsO+IsxdS0efHhQvBR1Oh18/vOfxznnnIPhcIiNGzfi5JNPxplnnhnWUUrhf//v/41TTjkFT33qUxPzxhYtWrRo0eLBjNanaOfgQfFS9KQnPQnf+9737nW9fffdF1/5yldWdd/k9Mtxb5FdzT5XrIK9ZAyJi/zTzCmXfREz2ZIo08o044p7DFmTMA28vhDNe9P+DdSCUdRiFcPHMS3j1gl9Z1qrJttjoIJWpemlspgrrWbHvRxXWWKfFvImWaj2Udg+8akZzdbRdjxTNtL/pns3dxdHZIv4uQPgtUgy9GWkDxjVKiXtsHUldMxkEwgsQi40jJXB+4V0OdHHaGEvpHFoMiSL+e5ELdYow9fMTOPrpuspGKZ14q7Y5GHEGSNSv41jOzjjsyjTs0jG2/j1x4/BOH3TYnX7HLgmK70+g94I1t/z7juvT7hDT2CznMS0GAAANmTbsf/E5sDibBn2sKNyrFHlq9pTxpkQKRuUseyyTBpkYvR+idmGC2fGAinDk8k0o8xYObYGoIJ1LFjYbXqvj6t5uFAdxKWAt8F1gfc72uyznYIHlU9RixYtWrRo0aLF/YUHBVP0QEBbEVgiw7QDzchnHHh0qY0IkWcmdXhTV8Immo6AZv003m5w2WUsE7EIDcZhscg8YXxEZEkWm3tfbNlYhmnRiH9hl9imx8pC2WDjNU5qQTZoXNshmwb3otFagDniXj0rgWN4FvYJGudSPtJPS9mKKXMYPt/LPtPrxCCn/QQWIGWOVoqFsjCVsMERXnutTOI2PVLzjbFczPMm9RWTMCLqiojRSf1waAyAjqwX1UstjsUyv8Y7vBOabMVC7IZje+TYZeP237y/K2JlbWRvt+keclFDK9fu/9/euYdZUZz5/1vd58yF24BCuAiCksS7qKgR1KhRQXw0EHeNuonAEy8PCiJiNsafGhU1Go1EN14SXReTbHyUZ5Ws2cQLriKrRoMsPqKyXlYEkh0kGgS5zMw53e/vj+6qrqqu7nNmGGbmTN7P88Cc7q6uS1f3OVXfft+3GrwS9mtoRn8/Uo4+3DkEf9o5EADwWWsDPEGoi+MWyeuuvM8MpchcF096kGXFKdJjT+kehDK+Ur3mIdkaFhAYnr7ZdmwhuVU+24vPJs+7NCsvPZbR7kQQQeyiofWunv+3AA+KMmgJCgiDYuq1kfxxyJNcdYNPaPI1QmvABF8FG5SvBozlL3IGXsp1P34FohbcrBC8sb1LEXSErABpQDQgSl87X/tiDFKG31lfTK6Aa3nycLWGm5UwBibaoC3vema1QR/MZBn16wE57QGc/erPqIdjQGkPqgLtR0L/UZE/OMpt2jHYtAcsWa9f7TABgHso6cGD7yevfsth8kqs0qKr5oA33W598di88+2Ao1nL67jKTZNnYJ7toOGsn52XChhLRj72sil62hL5qkqeCPHXoJ8yvO7v70SDV8KI4maVVi4H0+CXUA6TCYerv7PCNWS98tIJtIGubgwfwgwKqwfOdfW3fv8GEGoA5RM507ioJuBzAPMat4VdZGgdIm8MXn0eTC48KGIYhmGYHg4rRV0DD4oyKMfBG21xIbBm1G7k7B+G2lMC1OsJxMbFciZaomixU+P1T5WvK3z7dVpu2kQtqGYJi7zXSvZrN6dyg7Q6ZKtVRggBTWqvpn5KwraWX8lDBjw09nVwChXCTykzeQbdufXSX4HZ5djG1xq6WmRcM0daPa88A9FcZUdIBcB9zYzlK+AZKlNefTwR1ciTpXnJzL6aZyHPKBqAYXytn2PfD3bIA/t1lI1+b+v5VFR+hNsgPki91jT7ynYD11+vRiEXzFdESf6J6hItAOup61si31DJiiLAkLptAKLXiyXykzAAFZRyQF+yJrCefc/4bPeZbQxfCtpjyJ6tBtn7dHOIjirmUgWt/HvA1BI8KGIYhmGYng57n3UJPCjKQBpaS+zZQDW2OdKIUF9uQM2aUwtamvZAea7pQPaSF3nBFqV9TnsXOVXtsZQFexFYfTabpQzZpA0fE3faatQcWQfbID6rHEALHaAZwAdwBxCshB4sL4zz6AzbpSz1IVV+lj0RkFINZf8ZypamfFRylzbLMZcOyU4X3RVZs2l7qQx9odQioGyKshRae8kIF5EikdTXXgZFD3CpQhzo6NfIUo6ynBr0/GS79G2ZV/RXpFQ723W8GiVTOiZI5UiqRr5DuSwhsi+S3zMtVEBRBOqZCCDQ4EWBC0JfYEeYBHMsh5ENYJ5apNfftnvSMftUVzkjxwnVtpwgmi7FSTfCdn0n6HZxWUbZrrx1G0dpX7orDgjtohMjWjPZsO7HMAzDMAwDVooyqfSu2O0KLI9Ff10zSH1RRduWQV9ktbKa0/7xbDU2N9W6pLpc7LM8mXT05RMyj2dMZlxLLshyXEs1ZKG7dUc7tBlpzozRxhOhGSxP3RPx8YylOXLrlLFPKlnS7ixr2Q+zftZ+SpYNUceVHZRVdifdX0kd9IB+ppebPpM366x5YIpoO/O+0hQRl1KnLxkCa/YfucO726Rfo5TSBuTa8KXCS2joXoSp0BOW3ZK+5Es15ShVCmGuXVkJSTBHPyxABiOVyMCd0l4v7/nK8qqTeeS5x2st0Y8aR+QCwEnfhqZXW4bNUFZZ9kLEWUvNRGm17wfN0xdIv1HYnQjqvIjWvCBsNjwoYhiGYZieDi8I2yXwoCiDsB3Kg040U0tibWTZOshFDBUqoF5Svp6njr3UQ2dSKSZQ5nFtJilte3JtiWQsJ8vmwg4SmL3YrkMNyHi3n23jI22BtPOs5UBSZ5C+wK4fLzEQH7PitwTwDfWoWg83PWioPFeVLwSKXmheP3LbPFTjVZOpMtleVw6kmuRasDSrHGkz5PYQyrFNAim1qBKuxZWN/AWMGDYFL0iUMQpTHoV5XoN5cbRsKqm/WTZ5UZ0t7zPdy82y+8uzK7QDp3rqGfDTHlpavKiSppy7nrNsDzP5XCcL+WZhxljyU2l12x8fQi1R48VLJNm2adV6Ltp1z1Kjs+pczlGZmNqDB0UMwzAM08MRYWYUjHblweTDg6IMKPYqqDYcPKBHdTXtFdzvvmXofvcSG9JOBUgWdlTYNgdWrI2sGakr+nEerhmyYUsFux7V2ffY4fhtZcg105Toi+1Wuyhp2r6g+vg8gMM2TNkMEcr6OeTFsXB0+5lEtdE93HSPJ5W2CjuekDy0BslsVqpGiXql17OjS1dAnZev3tieb3EdhStqeXV5AhlxZrRlQXSqteewvZz0axJFzpbXKrJNcim2mXm7nhPHc5alONnXw+W5ad9H0iYvz24oVb6Vr7kMiRnjR3+GXUu85HmT2Yv4GlD2/Wgu72KqfcnnRD3VVSMASjmSeQVa/dtDlqdx1r1A7H3Wq2DvM4ZhGIZhGLBSlEk59CHCPI+E5LNSCgRiFcGeaWjpNA+YVu39dcpuyFivR6gZbHSuGTHYro/9fj2LPNsDwPSQSXlvWPYPzjWXHNjv+aUy5Jpduj2y0rPbbJL+y1OfbJwqoNZP+jpPcrFRALHCYPapr2JUmflJhSlrEdA8Am1B01IYqxvGrDqJjG3bn9lqRXts03IjYOvecNBi5Tji70RtTkcfdqlIlZSaaq+ZbmcUajHC1LOi2W+F2n2lK7au8rLjcXkp79JKVBPbK6UqIYm67yor/WwmSpCRX0odybftaw+6KhXFrXLbBXqglFqkEOY+D6TslKR6nLcYtH0fpco2FHD394/9PSUpBV30TorAwRu7AB4UMQzDMEwPh9c+6xp4UJRBmTwIObvJGV6HmheZVA5cMyD5yVCNAGOG5msqhG6r4gmCT6TNYPPX9nFF7I1LV+pBdE62ouSyf8iLWG1Hk7bjgLjOk+myZmeJ91WGjYLTyyX5m2vbAFiKT36sH08k94K+ErgnvESBiPtft3EIHaqR2XZt22HXkYU6FufhUjd8a+ZdrVdSZpk5aoHuadde9CjKZp06plSk1w1L24TYsWcStSE0PBB960ekFSLVj/aq6VE+BFDStsqqpkmWHYyuHqfPSXtg6XnZ9UzZzlSwG7I9P2X6UpisO2g/xykVWPMqS62v1w5PPqe9Z3tuP+tUl9JdDv3UNXHVr9xVa5+xTVGXwDZFDMMwDMMwYKUok3LoQYSmvYPEnlUkMx9CQWSrL4YNiStCMkzFoujFayNJxUG9l8+JwQIgDAvGLEyuDl7wAhQRJGt0xTFusla3N/J3rHRve6ro9kJ27I+0d535Dt+e1bqPVfJaStKWtTKzovHKOhS8MLvP4j7R+1jOlAtxa1XMIJDaByC2MTNtVUwvQbNMfS25vAi8OkpRpPS96ooAXm2cGFf6vDrJ6N7ZeedHOJf5Z8XKqZSPy+PTtl3JUp70617NWmpGuUhHONbR1ZVKalE1doBBTkyc6H5KRw4vWSvTu3A9s3p9dRXbpXJLtaQtrOInRXr2OdpiXwPTrtJUkso5Np+ZHm4qn/R+m7L1vZUV7X93xYxLYXZvx/NgcuFBEcMwDMP0cNimqGvgQVEGulJUMVZJfJ8VRIhQmMqRmc6cpRlxOKz37J4ghIFpq5R4n2XbOYWarQkQqUNZaoEds8iOPZRnN2TP6u24IFGkV09t6/kory2jbLdaVbWNQawG5UUC1/Mi0utr9pmhjsReS0n0XEKdH2j5pSPgupAqoeElZp+X8gxyK286kcebOWOWdQ0tBSkpN1utStkxUXXpshSMavovy/7MhX7NXNGHjXwz8sqLhVWm7K9E3QbNKCfDds24r5TimF1fXZ3Ks2NM1UuqKRDwHDYw1UR2tu8vW2kueAH6+CUAQL0oIYCH7eV6AMDOoIgd5ToAQFvooxx6xvNU0BRST2R7mEk7LPUZMBVQ2yYvJ5+8+64cpp+J6u5Tt31RlylFTJfAgyKGYRiG6ekQOsHQulNq0qvhQVEGAQnlfZZlkwJYNheWPZFtI5R3fsGLFSLLk03lQ8IZj8Oeecp3/4XYHqkoAtR7ZfXZXgk7KjPKrwRfxUCSdhYuWx+5bXufhJaKpHukGDO5uD2VKGvXPyk3Y7am2fVE18XsF332Wg49CEEg41pnqHtwKEnSpsgLjFlw0QuMa6/b9Ljy9QVZalxSXpl8Z0Rew7tJO8e4D4RM6xvXRF0nrSq6nYg9wzbKrWI9qGqiP1dDNZ5mtkqUro9rVXaHt6JtD5dTdpbXVDUxsJLn2b0GmIyObh9zry6fbVeVFauo0rn2+boNVL1XxqDiDtR7kVJUCgv4S1t/bGrtDwDYVqpDSxD9lASxCiO07zX7e9Eos8KvdNrGKNue0n42nGnacY+66qY/I3qstS6Bvc+6BPY+YxiGYRiGAStFmZRDDwgTtYMyZgOhMatzzyyytj2R2KoktjbSsymEHLPq6/wA8SxOi32kz/AKIkBRhKj3y9p2rFxoypPE1+Iq+SJES1iMDlDk3WHbEOmzI+n9USYP5dA3lJ1KM25beXF5OaWVC+GY4cuYIh5IU6s8kDFblWkAoC0oICQBP95fFAHqYnVHz1ti20TIz3VeoNSh6FiUTl7volfZ1kj2WxTpWfZPpObo6oU9w5VtkddPX4XcVo+qiXfkWwqSrJOsX0h+rk2HfV4emR5Q7Zhxh1pUbycZ0YftOtgejrmo5ptqT1bMID1NtOZXZZvCZFveO+nV4rPK1GNpVUMqir6lgvbzWwEAg4rb0SDK+DxoAABsbBuA5p1N2NoW2RSVNC+w1D0SP6PVeNbl1VFd6zDjezinD7I8X9tbNhB7G1r5umyUdgshUvGVOpQHkwsPihiGYRimh8PeZ10DD4oyCKw4RVlr5wTabDWw7jcPZChJgGP2IbO1vC7KlERKjv66PW08EUbKUGw3VPAiGyJdHZJ13BHUGTFZgMTOSFKOj7eGBbSFBTULlGqQ6918SJHNjlSKymE6voeymYpVoaxZXDVqkDwWhJ6yYWgLfJSDZLvgB6gvRNegoViKbDZkLJWyj4A8VaeCCJVSVPCieDtlbc23ttCcreuqkh6npjWoQ0hCs+cK1Wcg7cGVR0EECNS6W9lxnlwzcy2VsS8/RlHas0vuT8p0TzOd9kXWfZIZ/6pCNOCKsakcU+f2xLOqFJvJ3m6vp1E1tojynjPI8brKIkttspUOVxpfEOq8svoeaSrsRJO/U6XZXO6Lja0DAACftvbDjnJRPWvR+cm9QSTUcypVQ/kU6LZ8QLbaKOsp9Lpn9INLxbe/n/Q0wvIw1VVlPZ1e5zy6TClim6IugQdFVeAK9a7vsx9KoQ94rGOk3KXNoIAFL4xfWTkCNAoYC8162kBGDoh0w2rd1T4gTw2EdgZ12BbUqQBr5dBXr3wk5isxT9VHbuukpG3H4AWIvlyM1z1h9g95SEINxOSgR32xhp56puUXbxDL6WHoIQg8Ja8LUUBrIboOrXW+cqMH0gaSrUHyGBT9wBi0lUPPeD1Q9sspg1uZtiUook0bOOa9JpTXvaB+uEIVZNPeDgXBI3NAkhVc0HY3l2Xr+Wa/vkoPvrKWVTHPs5+P/FdXdr7tCbuQt13pWNVlGgPB5BV3NXlkDlYdoQ6SBWrNV+eV2mGXpz9/hlE9ma/59AWpXUsR+SDDKUN+b+wIGrGprT+2lBoBRG73QPSsyHKz7ht7QAJUHmTo5+v1JKKqBsHOQZJlBiFfnYs4RIDeFzqeIIQZgx75TGeZVvRkjjrqKPi+j9mzZ2P27NndXZ0eBQ+KGIZhGKan04lK0YoVKzBgwIBOqFTvgwdFHUBXEgwpWCoE8bbL4DTUZpJE5us1qRbZFOLXMAXj9UaU986giBJ5KIbJUh66K3hIngrzv71cj23leuwoR8bUO8tF50xO5m8oMdIgN66v74Vqpuhb7twBRQqPfo3yZHAigZJUpAIPpXKsVgU+wkAgDKJjFFrGwCKZdVIoouMyLQFlPzrW6hfhFUP4sXLkeyE8j9RsMQg9tAWJ+7rvJYUEYaRcye+ibaIen/uRwWmfYptSloDoFV5bUEApzivQrq2IZ5Uyb98LUfQCdQ3rvECpWXVeEAXdzAgWGF235HM6OGe+quTHr1Z1VanS6y47xIKLvFei1dBuQ+sO5tOuchxGwtmvAs1XxnnnGCpiHBy0GgPgdEgGK1iso2ryHH0JGhkioDEOyNjHL6FelNTSQrrCvCOIAjM2xGlD7TU5AEMdDSyVkGIVyX59pbfBrqfE00JWCEGGqYLrvGoUG1WGFjrALierTmSlCUkAIv9e7FT49VmXwC75DMMwDMMwYKUokxBpN2ggMaxVMzUkMwg5Kwr09NrMQwhSNkYkCPBCSFFCGifbBpgyjzpRNox25WytLfSxo1SX2P5YNklRIMDEGLmlXERrOer21lIhssORsyHS22K12yN4HqEYGy8XCwHKgZxtRWkC7TroMy5dcXLZAoUk1JImYdlTyhACASp7EEFSPy0SAeARpIeuIAChUC6nQnPdJZ9QLhCCWCmCT/AKIUR88T2PTDswwDC8pDBRqwBAxP2ypdCAgm/aZAWhUAaoFArjegpN2RJeNEMt+KG6nkopKpRR1JQjPSRAlh2LvFfqvMTmKTovzAzeZ9hyZQQxdNnQuILl2QbyrjKyaE+aSqEeqtnfWcbSefkEoZf5/QEkNoWyfnpQ0DzDalvJs936bfu8TFslFYpB3iuRg4ZvqNGJTVJRBAi9OO9CpEa2BEWVl/zeCUkYBtjk6LcsJd2+ngGy2VXBI7FZir4yqlHppJG4aSje/vupw7BLfpfAgyKGYRiG6eGwS37XwIOiDLKCjpXJU4oQAOtzlEYqJ74XzfBd3haeMJfbkLM8OcsKIVCKffylitSnENsGiFCpPy1BEdtKddgWB1LbWSqa6o/epjBWsspxGWUPYdlLPORCYczAhACUlCUIwieU/OiW8fwQXqxyCKRNoXwtcKF+jcLYQ4w0ZQiUbItAQMk/AeAFAuryhSKZKQkCCaGutayArhDJEykUEGUB8pXrDQKfVNuEZ9li6J+lOkXpfMse0CoslUlT2/R6pRBRuUqt8kN4fmJvVPBDeJ60gaKU8qarNEKQshsq+gEaCpHtR50fxPZJZuBPnawZspz96wqNywvTea7ljeSyy8hTk7K8sFz2e/o5uq2K7mbteo7tvF02Onn1z8yrkteVul+F8kSFHeRTVO+GD6S9P7OuZ7Q/CbWgp2sNC9jqNZhtiY+XycfOoGj1qRkywL5mplpk1lfaOCrVzCF/uBSm9pJS6SHd75NjvhdG39NItnX0fozeHph1tJUjpvbhQRHDMAzD9HTY0LpL4EFRBsr2xZqxSHsYObvRZ+0AjNgzQDRDkdu2B5YdYwRIZlGlwE9sU9qAbX59siyFZlsUkIeWUhEtpcROqFzylfJCJJRaEX0WgDwWCIgQahsECOlhIc+RSpEXfZYeXVLpkMdsScRQXyj2HAOi8jWlSIQAQqHshkSoqT2h3EYKpRLlTtKE+p8EIMpSKYpUJpWXpzXYladuy+RQjNQu+6+WxgUJIIyvYRjbSMlz9OtnKAwwvfCk/ZbsC78YoqDZfRX80LBNK/iJF6PvhZbHW3qWLGPS2AE5jXY41J8s5MzbpbRKKqk60XnmfiGSWT6JyKtTt9EJLDu37HxFKq0dbDBLxanU/mgZmgjbA9OIWWbFDtPrZwd5bY/Hmi3plqmg4pLJ+uvxuXT0OGV1nhnLS/c+k+2U/WN7o+m4bIb0OGT6344gPXuFIIj4effiuutximxVMSu4ZGo5IhFdr2riLnUKIeV+n1SdB5MLe58xDMMwDMOAlaJMWspF+CUZxyfZT9ZM116g0PMIZbl8hB/CFyFateOaQKHeZ+t568tWtMbqTznwEqUFMOLzyPMM762yp+xyIjVI2uiIWH1J1CChe2wZiohVYWEF5xaRVxcQKy2+OQNJTfCUXVB00NPL1JQPQxkKhVknpCdKqXIyJpakK0DC2qacdtplGvUR6fp4Sb5GGTYCsV2UVielFJnBo8kuRI/XRFE5si+CAqFUiD7vjBUkZatUDFAsBKgvRlGL6/wArbFSVO+XUecHhgpSpiR+k77Yro1L/VHNtLyf0mnTCov+vFVSX/T6KjsWL1ReRUBlNcWMHm8qMCGZdiQepWPZyPbqS754glL2J1mKgvQe1Jea0SOdR/XQbHhylltx2X4lx4WxaLN9LEsVkTZiunpkR32XMYRkfDIVNT7MtrmxVULXmx0yjmffC/a1FYLge8ln2RbpAarbn4XaQx+EnoozZtfHj2Ob6Z6ptrfdboVfn3UJPChiGIZhmB5PJwyK2mHA/7cKD4oy2La9Hh41IAw8UKjNUqx33jrStkPIGYoXGsqQK/aP8j6KZy+kzVik+hOUfFDgqalvKrIzoGY60kZHpjW8twIBEWhKkVRlNNUhU4lxTIbC2JuLigTyRaJ0OMi0E4ptnoReh1D7rCkztmpkVhQpeyBb2dI3clUcO1/9zNR1d5zjqoND0SIhElVJt2vKO9fKRzoUqWtfJqBgKniBVPTkPaHZWujoa7zZqk+lmDwuxUfissFJlIRsL6U8pAeRvK08MiOR2wpVVkR1e58dM6gadI8zw1tP91wS2ddPqjCyzIIXKjUost8JlXdhEuU8sRNLyoxiI8l+TKlBEGZa7XghtrUx1k6L29UWFLCjXERZWDGsDG80U/HRbYKyFB6pIlXjYWZ//6bt/qyo+UjMZ/SvLlk3Za9pef2WQ0/FXwvC2FNWfreKKFZbKi7Zzo7bPbULVoq6hJqwKVq2bBmEEM5/K1asUOlcx3/2s591Y80ZhmEYhqkVakIpmjhxIpqbm4191113HZ577jkceeSRxv5FixbhtNNOU9tNTU0dKrNtWx28oC7yigo0uxvNHseG5IxdDjUtryFnvBulFMQKk3L70myZpHdW7K6Rit1jKS2gpJ4gQDmrpVSaHPUltmtRE9wgrbxIu6AQAggJIo54q5xdNDsivb4ihFsZsralimW3TeVt2/pUUlTsY3kTPDvvjlCpPrr9ktASZaRVn73E5kjZExWEmR7Sa41UBG7hR2qkjCZeKvtq9k9txdjWIim3Gs8miW57l4r66/Auc6kDusKg6m9hxADzybkWX7TGnOl1p9vI2DZONnqEcPO8tH1PVh7lWImx1wfT45CVVSfGa43FtiwtQUGVH617GBp1l2shZtUvsTmy5rzGMxIC8AzFSdYbAMqhj5Yg+nnYUS6ipHmYuRQl21vMZbOkPmvR7Y107XnO7OddQ8BtyxbhIQyz618OEqXIXnsxFYMMkWof7mxHvXeFME8qb08eTB41MSiqq6vDsGHD1HapVMKTTz6JOXPmKFdLycCBA420DMMwDFPzUJi8A9+VPJhcamJQZPPkk0/ik08+wcyZM1PH5syZgwsvvBD77LMPLrjgAlx88cXwvOy3hK2trWhtTfzDtm7dCgDwtvvwQj/tHeVSKAxEthJhKx0wbXakCmAkkIlCU0HR4/rYaktkV6SltVUkTcFJ1UWzcRHaZVNeVXrbpLNPCdE6ZXa7tSbkqT+mx5lVX+2vYV8k84GVNo+sSamt5mUccuHq/mozIJEoPk57KK0vZDrhxWYBYbIdGgFoNDslAZDWiQEJhGUviS8FTQmM7SXkMSFIzbjVtrTfyVCQ7PXtgHiG7lJVNTuNpDIw9gnLTkSf/Xte7LFViDzp7LXiXOqKrork2QxlRvlWEpz7h8UVW0ja5ZRjpUX3/lLrFcYxgKSK1BoU0FJOrp+tqOheqwWRKGTSa82IYG7YHJnKlctrzGVbE3lyJRH4ZYR13TtN7+9IeYnKl3WX6pCelsK0Z6+O2fdS+UyOCS2dfn9KDzFfu5d1iAQC3Q5MW68wiCPuA0BQ9hGUvCh0PQCU47cGxvepAHbmrdLG1Bo1OSh66KGHMHnyZIwaNcrYf9NNN+Hkk09GY2Mj/vM//xNXXnklPvnkE1x77bWZed1666248cYbd3eVGYZhGKbjsKF1l9Ctg6Ibbrih4oBkxYoVht3Qn/70JzzzzDNYvHhxKq0++DnssMMAAAsWLMgdFF199dWYP3++2t66dStGjRoFv8WDl2eHrk9wM5QjpWyQI52VNkqgHXJ4q7jscJTKYisx1nYWlsag1B+lYkiFwrYpsuxadKWDhKWoacqQXlfVJtvGyGFDJNPadkop+yho5+Y1Wk+6K84jtrrjyN84btkZ6ecoB5v4useLlKdsrhAmCg/5UeycxKYjUQZECFBZgIrxsUIIeKZZgbrNPELoh4lS5MHwnhTa+muu5hG0mb5WnzCMGpb1XRxFJU/UH+GlFQCZzhOkrQeXHfVZRhrWKes3LPLXFqsmoraeVilQSCtQiUdZHDnckU859I2V5ttCX8WHCkIv8iaTSkYoUA6S+FGR/VSiiPhajCOXQiKVq1IQlWHYz2ix0GzlJbpnYpXLYZdiKEWa8kIEhFo0dF0dothr0bhkSgmKzYZ0T0mheQlq96bvhfA80iL+h854QvJzEAqlkIWhQKnsI5AeZ1IdAiKFqCSAeNsrR967tn1p2NJF/kpsU9QldOugaM6cOTj33HNz04wZM8bYXrRoEfbcc098/etfr5j/Mcccg61bt+Ljjz/G0KFDnWnq6+tRX19fdZ0ZhmEYhumddOugaPDgwRg8eHDV6YkIixYtwvTp01EsFiumX7VqFRoaGjBw4MB2102UAM93HXBVzPxrKxZOLyy537afkcXkDehthcTlzeWww3Hlazh/aMoQeTAWJ5ITRZey4bQhyrkG+ilmAVXU3TpmKkWUrcq5MCQybXc77ILM8+Q015GXw2ZI9+6LYgrFB0MYEp5S3uJdgjQbI9l+lbdQS6hREOffJpWiyO4rKZNUmVQIAfI026UQwvfg+dLFUIC0BugxtQCp7LsaLtPDSGse0+2WEnWo4IdKGbKF00Da4JTTX2Gu9bMqRU6265mlSPiaLY207ZG2NgXd4w1u76dq14dL6kPWyu2R6uJpjZC2XELE6zXGdmQy9pnL9gdA5LnnJ9c31YcxRAJBIFJrlbmuqbzWtmpo9InqF6SFD/0+h9AOk6F8RflT3P4ofnko1+kTXup+0++FcpAoV2HgISh7CKU6FMTqUJQRPGlHBMArQ3nPAtozWU5dst0Dvz7rEmrKpuj555/H2rVrccEFF6SO/fa3v8XGjRsxYcIENDY24oUXXsA111yDiy++mJUghmEYpraJ3lHveh5MLjU1KHrooYcwceJEHHDAAaljxWIR9913H+bPn48wDLHvvvtiwYIFmD17dscKk0pEe28iW9nQvcZcdjbWsUx7Gi1vo06hma89i7HzSZ0Pa1KvKxcONchpN1ONkpKlppG7/q5j0XnkPq+a/so6JsxrYMwyc9qW8pKTNgwZahoJkSgx+nW26+coU028/fifl2yHBVL2R9BiXTnrLmCssaauX8kDtBkvwQcJggzRIuoDeAVNtbHsfYR+g+qfXPZE2jYRQCp2T1QnaddUdkR8T86LVAS5JmAYiiSfQET79fX/dK8h/eII7Vroh2TbPEBJbx7B80N1HTyfUPADFPxkrcNCBZsnV/wm+/rocXOCUJg2OSmVzVS1dC8xIaJ6SIXHLjvQ4ybFkZsDza7IiEqtXzrLo9CpGCobonQaoV1zw8NVe54plGXG/Vt22O0Y6pNxVQy7ReMepGg7Ua7jtHr8OfVdJIzvb6WyJiLYLi9az/Q8ampQ9Mgjj2QeO+2004ygjQzDMAzTa+DXZ11CTQ2KuhWHwmEfU8cp/Rkw7WWcCglpE9Y81cguw66f67iRr7nTSJOyr7F26IpRlopUAadipq4DZdtdIaO9AEBktiPv2XfUVwYBtT3E9P5I78w45rAjIg+RhYScQcd1tye48q822Y62pe2PD4RFICzGalABIJ9AhUTNSGIfyam0MDaTa6/NqEPhuK80BWBn4lcVSjVKHnbF1tLalFJe9HMpUXtc6N5x6ejw2qYeS0x+ttut1UmqP3rd5LGU46emKoTkJeqURwg8HyVfKkehEUdJ94CycUX9NmL5WAqY/sgKARWl3Fw/0TO8sCL7LNMw0o46ritQYZj0MWl1sG20kgun5UnWefo9Zj0fyX3tsBMiLWGYlCPL0CP1w/psxmqzv8jgptJ3lkhU2eh5JXWSCONsq/ze22VCy3W3w3kwefCgKAPd/dsZDDHjlZjaF29n/lAnCrKxr90/7Oam9shq20Z97F/i/DKVcN6eCUY7XqdlDuqMY0nhWXXVDa6rqVc0SNGzonT+gPaei9S2cyDjQusMkYyHImIPcfUaTDNitwNlqm1oedjXQRlcC4jQuis0o1f9x8Qw0LcWGU4NRu3s9JFDPLBwhZGAlVT/QZQ77F0dsXsQ1oYx2IlfgemDRbVos1FwBeKBVhJ8MNopDZvlgtAyYz3cgL2ESiprgnr9FwUulmXEN4LepYKUEwh5yQCJPEJIlARdlKc42qdeP2r3hv4K0h7opK6Dda7q2FBE10ULCwF7gKJ1uDH4txD2/WfnoS9ALYOaxvWhMKNb7S/MrONIBteGo4w++JLHOnC/dghWirqEmlgQlmEYhmGY3se7776Lww47TP1rbGzEb37zm26rDytFGURLaUAFRxTaoqpegArKhpZRRwfm9kxGn21b+/XXMAJutUgdEyJdJyPWvlVslapSJYUrczKe9yqvwrVzrbbgCnhoLKUh9+UpPI4pPXnpd2rqVZvW//rrN1P9EaaBdBycMRUAE0i1W7rvy7LtV3y2u3+qkUb4BoHU/aq1KX1vpNMK++LFKpHaa9VHDymQ5OmosK0auD5rRuTpV8OJLCe0k5SylZKk3NXILNtxrvlGiRJlUKTTVlQn1F/LMFirgxCIA3DGapBHEPEyRhS/mrSXx8hcSsMqR39lZqg/ZKVN1VsY331Cfy1r3XMmcf6uBbSt16yp15w2uqJDMJUjva6pz47XxrqSGiTbXhy40b6XBbvk7xL77bcf3njjDQDAtm3bMGbMGJx66qndVh8eFDEMwzBMT+dvIKL1k08+iZNPPhl9+/bttjrwoCgDrwR4HpQ9kbIvCuIJjGMB04x1Is37WLcT0Y5ZNrFGWnu/PlNJve4XhnhhKkbxAXvC6rQFIeOPMs42DD71mZk9e6qk+FQzY8lTcxArLRlpqNKLYavNthu9sz+y6qTNZm2lKPST2bCuHLmVHai0KYNtYyZu2k+YRqeUtE0/T7bNI5gKgDwWG6rbhq3yOhDc4RLijCuZ5dj3ivMetv7ailjKlslGPUsOZSJLJbQUCFWmqw7y+sm0HiJVRikd2o0j4ucq68LoLuoOhdlopaZIkUeR8iIVxlCAQjJOci3vkWxYGev7dXUI9j0mrD7MUH9cqpcm0rnUZaXCQ1h9k2xHy3xU6Hv7mlbzFSOfHe07XIU1CYRpTyqfAcuetMuCN3YTy5cvxx133IGVK1eiubkZS5YswbRp04w09913H+644w40NzfjoIMOwl133YXjjz++3WUtXrwY06dP76Sadwy2KWIYhmGYHg5R2Cn/2sv27dsxbtw43HPPPc7jjz32GObNm4drrrkGq1atwvHHH48pU6Zg/fr1Ks348eNx8MEHp/793//9n0qzdetWvPzyyzj99NPbf3E6EVaKMtAXWjWUIXsGok+YPKRVkjiNJEt5kCqOM61DDTK2Yc7E9JmZlWX6/KzZlDXJVWqSoQAlchJBu0ayLZpcpQkS7kbo9c1Saaz67ZKSnFIgzO2qsnb1i4CyP7K9y/S/So3QRB1VaGzLJr1n/QAI4yeVClLFkYpOtACs8KOTQ99UKwwPHWu6brSRYkUhTPpUaIt3mp/jDlfPhEgtPJzndZlpp2bvRzvJKD9XnYNUdOLPMmip7CcvUYJk8D7NdCl5brPyz7iJKyqp9v2pFn21ziFtp1QutC+VlF2Nwx7Mia0M6XZBVviGjpK2NUsrjsLxKUmf8VmeUYWSJdVR58LSdmBcAlxLNVXrvLjLEO3666/4hti6dauxO28N0ClTpmDKlCmZWS5cuBAXXHABLrzwQgDAXXfdhWeeeQb3338/br31VgDAypUrK1bt3//93zF58mQ0NDRU1ZTdBStFDMMwDPM3xKhRo9DU1KT+ycFLe2lra8PKlSsxadIkY/+kSZPwyiuvtCuvxYsX45xzzulQPToTVoqqJHm3DdN5xrK70P8C6VlEbkyOjEmcysK2hUAy21Jp7Hg92jGn7YI98SDnx3QdKVGPZOQeI8iZpeTkqj/2NVInOdJWODeXPFuVKsvUVYVUXrrCAFMpsr3GUm2soFyp6xcvFqvsMISAh2RxVo80VapAgCfaEaiQUt5ISbm6UgBzdg1SSyJAFqHZaOjSm7SHctmjOWNWwdxXFXo/52zLzylbL0Gmsqc+Ewy7Ii9Jr9LqKh0qmMG0p32p7xa7UVnPdwU7nJTcqf2VsYbiPjJUXj1Qoqsdeep4lTjVqDyV21J/9P22umOck6X2UEYd7DK7UinaZXkuOn/Dhg0YMGCA2t3R9UE/+eQTBEGAoUOHGvuHDh2KjRs3Vp3Pli1b8Mc//hGPP/54h+rRmfCgiGEYhmF6OqFmBd5RYpuiAQMGGIOiXUXYjitEqX15NDU14eOPP+60+uwKPChqL/Y7feGcHClyVQjKSFcN5oQ0rcpkqUGu/VVOPuy2JEqWpRhJlaga26Vqy5PFVqm8yTqaaUXOseryMGLT2OqPtYhuSkWyFQpH3pnbuvKiU4ahxIAI8JMTdaVDxJ9VuZTTLbGxhErrpVMae7I8f2wDLXnMUiHUuZYnUEpx0vLJDVtjP3d6W1x9ZnmVQV80VyptMg6QHVdHqkK5N7ktEdrPpdZnLkFAv17GfitNnvqUkafKN/UdYtoqZXqbOuuVYw3Uroe4CuR3TcZ3oPP7z3VMPw4k3+1CS9tVqlCNMHjwYPi+n1KFNm3alFKPagW2KWIYhmGYno4M3rir/wAcddRROPDAA3HvvffuUpXq6uowfvx4LF261Ni/dOlSTJw4cZfy7i5YKcpCmxXY3lx23Bg1CSRrVpQzq1D2OZXeV7envkYByX7dW0YvU+3PyidvAqflm0yCs0/oiIdGJaWoqhhCGfsrKUO58aKyFB9rou6Kd+NSK1L55qlK1nnSI0bPKLE3kvkKa9vRNl1J0dPqiomeVrOfET4lqklUCc2mJvqctTAqAGMNLbK2DYVFUy9SakoltSHPlkqvuy29anWvpGe44wFZ+6pVh6z25D4/LndU46+lCGnHUmqVfa5Mk6dAubCNCDvaNq3MvHrkKj728by2uNTZrGtGSPfpboTCELSLr8+kS/6KFSuqfn22bds2fPDBB2p77dq1eOONN7DHHntg7733xvz583H++efjyCOPxIQJE/DAAw9g/fr1mDVr1i7VtbvgQRHDMAzD9HQ60dC6Pbz++us46aST1Pb8+fMBADNmzMDDDz+Mc845B59++ikWLFiA5uZmHHzwwfj973+P0aNH71pduwkeFGWRdf/FSotTZRHue841w6ScYx3CUoZyZ1+G7NWOY650VdatUnbVmhWk8rEnyRkKj7MMV5kdUZXsc20FKN7nVIMs2xZ1TpZS5KijyLS/FO42a+Uk3nEisqvRvK6ER8lq7bpnlSdMT8RQmJ5tDtstsryyqlWVRKWZcd7Dpe/KUlMqHSf9mEgdi/6mK+H87WnHQ5D5/Npl6t9TmpKm8sjIx+WhZSZI9tn3o0uVMS6BoTaTeU5emY597Yl3lTpWjapUSc13XMPMOFu9lBNPPBFUYTB16aWX4tJLL+2iGu1eeFDEMAzDMD2dMG8kWCU9cEHYngYPijqT9txvluKUmaba7HTpKWPmlpoMuvZ39zPTHnWnI0qQTNvOeuQqSMK9bX+2lSLjHP2U2LZGV+3UR20GX229surnUgBIjzWkrbElQlc+Qm0LT5OOjHbKygvzXLvBerMy+s3p4dsJxmqZq7870layXVFeYlnHM+tU5f68+rhU6grn53mo5Xu6dbycvHyrLTM3WrVKpO23BCr7+7JqRaojCmBnQQTTgLCjeTB5sPcZwzAMw/wN0VneZ70RVooyID/6Z0erTqWr4v1ytUrMriijpH+wZ9S7MjmoxjapO6miDlXHIHKlrbBdrZLlUpHaExupYppKeQKpSOMCyedov0iy1e18VN6WCmKUJaq3x2pHf+Q9FLsa3iav2N1NxWc9q3EVlKrKSlY76lHpAnfku6waNUtP10H7HcOu0lbNdRs9+X2ZpwblqEgAjCj2uxMKKbHN62ge8Q9We7zP/tbgQRHDMAzD9HQoXqF8l/Ng8uBBUQZhERBF97FO8TboxFe7Ha3Prs60a8nrot1tzbNH6qgdWHvz7ED/VLR/yLLXyTwunB/z6MxrnXews5SiynWokt3wPLRHcal4ToXzqq1/j3nuK9TDaa+XsSNPzc8sJj4Q8jijV8GDIoZhGIbp4XTm6zMmGx4UZUA+QBlXh28rplapbMvSCWXsehYMU5kO3Gidqi7KPMudn6e7IH591hXwoMhCjqTD1pZurgnDMAzT05G/FbtbhSmjtMuTljJKACLvM9/3MXv2bMyePbsTatd7EMR6msGHH36IsWPHdnc1GIZhmBpiw4YNGDlyZKfn29LSgn322Se1En1HGTZsGNauXYuGhoZOya+3wYMii88++wyDBg3C+vXr0dTU1N3V6XS2bt2KUaNGYcOGDb3OJZPbVptw22oTblsEEeHzzz/HiBEj4Hm7xz+/paUFbW1tnZJXXV0dD4hy4NdnFvKmbmpq6nUPus6AAQN6bfu4bbUJt6024bZht0+gGxoaeCDTRXBEa4ZhGIZhGPCgiGEYhmEYBgAPilLU19fj+uuvR319fXdXZbfQm9vHbatNuG21CbeN6Y2woTXDMAzDMAxYKWIYhmEYhgHAgyKGYRiGYRgAPChiGIZhGIYBwIMihmEYhmEYADwoSnHfffdhn332QUNDA8aPH4//+q//6u4qtZsbbrgBQgjj37Bhw9RxIsINN9yAESNGoLGxESeeeCLefvvtbqxxNsuXL8eZZ56JESNGQAiB3/zmN8bxatrS2tqKyy67DIMHD0bfvn3x9a9/HX/605+6sBVuKrVt5syZqX485phjjDQ9tW233norjjrqKPTv3x9f+MIXMG3aNLz77rtGmlrtu2raVqt9d//99+PQQw9VQQsnTJiAp556Sh2v1T4DKretVvuM6Vx4UKTx2GOPYd68ebjmmmuwatUqHH/88ZgyZQrWr1/f3VVrNwcddBCam5vVv9WrV6tjt99+OxYuXIh77rkHK1aswLBhw3Dqqafi888/78Yau9m+fTvGjRuHe+65x3m8mrbMmzcPS5YswaOPPoqXXnoJ27ZtwxlnnIEgCLqqGU4qtQ0ATjvtNKMff//73xvHe2rbXnzxRcyePRuvvvoqli5dinK5jEmTJmH79u0qTa32XTVtA2qz70aOHInbbrsNr7/+Ol5//XV87Wtfw9SpU9XAp1b7DKjcNqA2+4zpZIhRHH300TRr1ixj3/7770/f//73u6lGHeP666+ncePGOY+FYUjDhg2j2267Te1raWmhpqYm+tnPftZFNewYAGjJkiVqu5q2fPbZZ1QsFunRRx9Vaf785z+T53n09NNPd1ndK2G3jYhoxowZNHXq1MxzaqVtRESbNm0iAPTiiy8SUe/qO7ttRL2r7wYNGkT//M//3Kv6TCLbRtS7+ozpOKwUxbS1tWHlypWYNGmSsX/SpEl45ZVXuqlWHef999/HiBEjsM8+++Dcc8/Fhx9+CABYu3YtNm7caLSzvr4eJ5xwQs21s5q2rFy5EqVSyUgzYsQIHHzwwTXR3mXLluELX/gCvvzlL+Oiiy7Cpk2b1LFaatuWLVsAAHvssQeA3tV3dtsktd53QRDg0Ucfxfbt2zFhwoRe1Wd22yS13mfMrsMLwsZ88sknCIIAQ4cONfYPHToUGzdu7KZadYyvfOUr+OUvf4kvf/nL+Pjjj3HzzTdj4sSJePvtt1VbXO1ct25dd1S3w1TTlo0bN6Kurg6DBg1Kpenp/TplyhScffbZGD16NNauXYvrrrsOX/va17By5UrU19fXTNuICPPnz8dxxx2Hgw8+GEDv6TtX24Da7rvVq1djwoQJaGlpQb9+/bBkyRIceOCB6oe/lvssq21AbfcZ03nwoMhCCGFsE1FqX09nypQp6vMhhxyCCRMmYOzYsfjFL36hDAd7QzslHWlLLbT3nHPOUZ8PPvhgHHnkkRg9ejR+97vf4ayzzso8r6e1bc6cOXjzzTfx0ksvpY7Vet9lta2W+26//fbDG2+8gc8++wyPP/44ZsyYgRdffFEdr+U+y2rbgQceWNN9xnQe/PosZvDgwfB9PzXi37RpU2pmVGv07dsXhxxyCN5//33lhdYb2llNW4YNG4a2tjZs3rw5M02tMHz4cIwePRrvv/8+gNpo22WXXYYnn3wSL7zwAkaOHKn294a+y2qbi1rqu7q6Onzxi1/EkUceiVtvvRXjxo3D3Xff3Sv6LKttLmqpz5jOgwdFMXV1dRg/fjyWLl1q7F+6dCkmTpzYTbXqHFpbW7FmzRoMHz4c++yzD4YNG2a0s62tDS+++GLNtbOatowfPx7FYtFI09zcjLfeeqvm2vvpp59iw4YNGD58OICe3TYiwpw5c/DEE0/g+eefxz777GMcr+W+q9Q2F7XUdzZEhNbW1prusyxk21zUcp8xu0CXm3b3YB599FEqFov00EMP0TvvvEPz5s2jvn370kcffdTdVWsXV155JS1btow+/PBDevXVV+mMM86g/v37q3bcdttt1NTURE888QStXr2azjvvPBo+fDht3bq1m2ue5vPPP6dVq1bRqlWrCAAtXLiQVq1aRevWrSOi6toya9YsGjlyJD333HP03//93/S1r32Nxo0bR+VyubuaRUT5bfv888/pyiuvpFdeeYXWrl1LL7zwAk2YMIH22muvmmjbJZdcQk1NTbRs2TJqbm5W/3bs2KHS1GrfVWpbLffd1VdfTcuXL6e1a9fSm2++Sf/v//0/8jyPnn32WSKq3T4jym9bLfcZ07nwoMji3nvvpdGjR1NdXR0dccQRhpttrXDOOefQ8OHDqVgs0ogRI+iss86it99+Wx0Pw5Cuv/56GjZsGNXX19NXv/pVWr16dTfWOJsXXniBAKT+zZgxg4iqa8vOnTtpzpw5tMcee1BjYyOdccYZtH79+m5ojUle23bs2EGTJk2iIUOGULFYpL333ptmzJiRqndPbZurXQBo0aJFKk2t9l2lttVy333nO99R339Dhgyhk08+WQ2IiGq3z4jy21bLfcZ0LoKIqOt0KYZhGIZhmJ4J2xQxDMMwDMOAB0UMwzAMwzAAeFDEMAzDMAwDgAdFDMMwDMMwAHhQxDAMwzAMA4AHRQzDMAzDMAB4UMQwDMMwDAOAB0VML+TEE0/EvHnzelW5M2fOxLRp03YpjzFjxkAIASEEPvvss8x0Dz/8MAYOHLhLZTHZzJw5U/XDb37zm+6uDsMwGjwoYphO4oknnsBNN92ktseMGYO77rqr+yrkYMGCBWhubkZTU1N3V6XXs2zZMucA9O6770Zzc3P3VIphmFwK3V0Bhukt7LHHHt1dhYr0799frXbe3ZRKJRSLxe6uRpfT1NTEg1KG6aGwUsT0ejZv3ozp06dj0KBB6NOnD6ZMmYL3339fHZevi5555hkccMAB6NevH0477TRjNl8ulzF37lwMHDgQe+65J6666irMmDHDeKWlvz478cQTsW7dOlxxxRXqVQkA3HDDDTjssMOM+t11110YM2aM2g6CAPPnz1dlfe9734O9Gg8R4fbbb8e+++6LxsZGjBs3Dv/2b//Woevz8MMPY++990afPn3wjW98A59++mkqzW9/+1uMHz8eDQ0N2HfffXHjjTeiXC6r4//zP/+D4447Dg0NDTjwwAPx3HPPGa+HPvroIwghsHjxYpx44oloaGjAv/7rvwIAFi1ahAMOOAANDQ3Yf//9cd999xll//nPf8Y555yDQYMGYc8998TUqVPx0UcfqePLli3D0Ucfjb59+2LgwIE49thjsW7duqraXqldCxcuxCGHHIK+ffti1KhRuPTSS7Ft2zZ1fN26dTjzzDMxaNAg9O3bFwcddBB+//vf46OPPsJJJ50EABg0aBCEEJg5c2ZVdWIYpvvgQRHT65k5cyZef/11PPnkk/jDH/4AIsLpp5+OUqmk0uzYsQM//vGP8atf/QrLly/H+vXr8d3vflcd/9GPfoRf//rXWLRoEV5++WVs3bo11x7kiSeewMiRI9Xrqva8LrnzzjvxL//yL3jooYfw0ksv4a9//SuWLFlipLn22muxaNEi3H///Xj77bdxxRVX4Nvf/jZefPHF6i8MgNdeew3f+c53cOmll+KNN97ASSedhJtvvtlI88wzz+Db3/425s6di3feeQc///nP8fDDD+OWW24BAIRhiGnTpqFPnz547bXX8MADD+Caa65xlnfVVVdh7ty5WLNmDSZPnowHH3wQ11xzDW655RasWbMGP/zhD3HdddfhF7/4BYCoX0466ST069cPy5cvx0svvaQGrW1tbSiXy5g2bRpOOOEEvPnmm/jDH/6Aiy++WA1C86jULgDwPA//9E//hLfeegu/+MUv8Pzzz+N73/ueOj579my0trZi+fLlWL16NX70ox+hX79+GDVqFB5//HEAwLvvvovm5mbcfffd7eobhmG6gW5djpZhdgMnnHACXX755URE9N577xEAevnll9XxTz75hBobG2nx4sVERLRo0SICQB988IFKc++999LQoUPV9tChQ+mOO+5Q2+Vymfbee2+aOnWqs1wiotGjR9NPfvITo27XX389jRs3ztj3k5/8hEaPHq22hw8fTrfddpvaLpVKNHLkSFXWtm3bqKGhgV555RUjnwsuuIDOO++8zOviqs95551Hp512mrHvnHPOoaamJrV9/PHH0w9/+EMjza9+9SsaPnw4ERE99dRTVCgUqLm5WR1funQpAaAlS5YQEdHatWsJAN11111GPqNGjaJHHnnE2HfTTTfRhAkTiIjooYceov3224/CMFTHW1tbqbGxkZ555hn69NNPCQAtW7Yss91ZVGqXi8WLF9Oee+6ptg855BC64YYbnGlfeOEFAkCbN292HtevD8MwPQO2KWJ6NWvWrEGhUMBXvvIVtW/PPffEfvvthzVr1qh9ffr0wdixY9X28OHDsWnTJgDAli1b8PHHH+Poo49Wx33fx/jx4xGGYafWd8uWLWhubsaECRPUvkKhgCOPPFK9QnvnnXfQ0tKCU0891Ti3ra0Nhx9+eLvKW7NmDb7xjW8Y+yZMmICnn35aba9cuRIrVqwwFJQgCNDS0oIdO3bg3XffxahRowxbJf1a6Rx55JHq81/+8hds2LABF1xwAS666CK1v1wuK5ublStX4oMPPkD//v2NfFpaWvC///u/mDRpEmbOnInJkyfj1FNPxSmnnIJvfvObGD58eMW2V2pXnz598MILL+CHP/wh3nnnHWzduhXlchktLS3Yvn07+vbti7lz5+KSSy7Bs88+i1NOOQV/93d/h0MPPbRi2QzD9Ex4UMT0asiyxdH3669YbINfIUTqXPuVTFbeeXielzpPf41XDXIg9rvf/Q577bWXcay+vr5deVXThjAMceONN+Kss85KHWtoaEhdyzz69u1r5AsADz74oDFoBaJBp0wzfvx4/PrXv07lNWTIEACRTdLcuXPx9NNP47HHHsO1116LpUuX4phjjtmldq1btw6nn346Zs2ahZtuugl77LEHXnrpJVxwwQWqzy688EJMnjwZv/vd7/Dss8/i1ltvxZ133onLLrusquvBMEzPggdFTK/mwAMPRLlcxmuvvYaJEycCAD799FO89957OOCAA6rKo6mpCUOHDsUf//hHHH/88QAiRWHVqlUpo2mduro6BEFg7BsyZAg2btxoDCTeeOMNo6zhw4fj1VdfxVe/+lUAkXKycuVKHHHEEapN9fX1WL9+PU444YSq2pDFgQceiFdffdXYZ28fccQRePfdd/HFL37Rmcf++++P9evX4+OPP8bQoUMBACtWrKhY9tChQ7HXXnvhww8/xLe+9S1nmiOOOAKPPfYYvvCFL2DAgAGZeR1++OE4/PDDcfXVV2PChAl45JFHKg6KKrXr9ddfR7lcxp133gnPi8wvFy9enEo3atQozJo1C7NmzcLVV1+NBx98EJdddhnq6uoAIHUPMAzTc+FBEdOr+dKXvoSpU6fioosuws9//nP0798f3//+97HXXnth6tSpVedz2WWX4dZbb8UXv/hF7L///vjpT3+KzZs35yokY8aMwfLly3Huueeivr4egwcPxoknnoi//OUvuP322/H3f//3ePrpp/HUU08ZP/iXX345brvtNnzpS1/CAQccgIULFxqxbvr374/vfve7uOKKKxCGIY477jhs3boVr7zyCvr164cZM2ZU3a65c+di4sSJuP322zFt2jQ8++yzxqszAPjBD36AM844A6NGjcLZZ58Nz/Pw5ptvYvXq1bj55ptx6qmnYuzYsZgxYwZuv/12fP7558rQupKCdMMNN2Du3LkYMGAApkyZgtbWVrz++uvYvHkz5s+fj29961u44447MHXqVCxYsAAjR47E+vXr8cQTT+Af//EfUSqV8MADD+DrX/86RowYgXfffRfvvfcepk+fXrHtldo1duxYlMtl/PSnP8WZZ56Jl19+GT/72c+MPObNm4cpU6bgy1/+MjZv3oznn39eDbZHjx4NIQT+4z/+A6effjoaGxvRr1+/qvuGYZhuoNusmRhmN2EbPP/1r3+l888/n5qamqixsZEmT55M7733njq+aNEiw7CYiGjJkiWkPx6lUonmzJlDAwYMoEGDBtFVV11FZ599Np177rmZ5f7hD3+gQw89lOrr64287r//fho1ahT17duXpk+fTrfccothaF0qlejyyy+nAQMG0MCBA2n+/Pk0ffp0w6g7DEO6++67ab/99qNisUhDhgyhyZMn04svvph5XVyG1kSRMfPIkSOpsbGRzjzzTPrxj3+cuh5PP/00TZw4kRobG2nAgAF09NFH0wMPPKCOr1mzho499liqq6uj/fffn377298SAHr66aeJKDG0XrVqVar8X//613TYYYdRXV0dDRo0iL761a/SE088oY43NzfT9OnTafDgwVRfX0/77rsvXXTRRbRlyxbauHEjTZs2jYYPH051dXU0evRo+sEPfkBBEGReh/a0a+HChTR8+HB13/zyl780jKfnzJlDY8eOpfr6ehoyZAidf/759Mknn6jzFyxYQMOGDSMhBM2YMcMoG2xozTA9DkHUAcMIhvkbJwxDHHDAAfjmN79pRLHuyYwZMwbz5s3rkiVQXn75ZRx33HH44IMPDAN2JkEIgSVLluzy8i0Mw3QeHKeIYapg3bp1ePDBB/Hee+9h9erVuOSSS7B27Vr8wz/8Q3dXrV1cddVV6NevH7Zs2dKp+S5ZsgRLly7FRx99hOeeew4XX3wxjj32WB4QOZg1axa/RmOYHgorRQxTBRs2bMC5556Lt956C0SEgw8+GLfddpsyhq4F1q1bp7ym9t13X2U83Bn88pe/xE033YQNGzZg8ODBOOWUU3DnnXdizz337LQy2stBBx2UGdn65z//eaZx9+5m06ZN2Lp1K4Ao9IPukccwTPfCgyKGYXol+iDQZujQoanYRwzDMDwoYhiGYRiGAdsUMQzDMAzDAOBBEcMwDMMwDAAeFDEMwzAMwwDgQRHDMAzDMAwAHhQxDMMwDMMA4EERwzAMwzAMAB4UMQzDMAzDAOBBEcMwDMMwDADg/wPIx7c7SeFQeAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHFCAYAAAD8Jo2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9ebglVX3t2kNVnXPu0E13M3QLNOBEEGIMIE4JYAQhPhUlStCnOKASOubxUGM0iYgKOESjMTjn4TxHjS+SAMbGRNGI+PECQRJkEJBum256uPeee05V7b3fH3uuc87te2/fbrqbvb7vfn1ODbt2Ve06Xfu31m/9iFJKISEhISEhISHhEQ76cHcgISEhISEhIWFvQHopSkhISEhISEhAeilKSEhISEhISACQXooSEhISEhISEgCkl6KEhISEhISEBADppSghISEhISEhAUB6KUpISEhISEhIAJBeihISEhISEhISAKSXooSEhISEhIQEAOmlKGGJccMNN+Dtb387tm3bNrDulFNOwSmnnLLH+7Qn8N///d944xvfiOOPPx7Lly/HihUr8PSnPx1f//rXh26/adMmvOIVr8CqVavQ6XTw1Kc+Ff/yL/8ysN0//uM/4uUvfzmOO+44ZFkGQsjIPlRVhUsvvRRHHHEEiqLA0UcfjQ9/+MMLOo/d0a+58OEPfxhHH300iqLAkUceiUsvvRRVVUXb3H///bjoootw8sknY/ny5SCE4NOf/vSCjnPXXXfhhS98IZYvX47x8XGcdtpp+NnPfjZ02y9/+cv4rd/6LbRaLaxZswYXXXQRpqenH/HHSkh4REAlJCwh3ve+9ykA6u677x5Y95//+Z/qP//zP/d8p/YAPvzhD6ujjz5aXXbZZeraa69VV199tTrvvPMUAHXppZdG2/Z6PXXssceqQw89VH3+859X1157rXr+85+vOOfq+uuvj7Z91atepR772MeqF7/4xer4449Xcz2y559/viqKQr33ve9V69evV3/2Z3+mCCHqsssum9c57K5+jcK73vUuRQhRb3nLW9T69evVe9/7XpXnuXrNa14Tbbd+/Xq1atUq9axnPUude+65CoC66qqr5n2cTZs2qTVr1qgnPOEJ6u///u/Vd77zHfWMZzxDTUxMqNtvvz3a9vOf/7wCoM4//3z1ve99T33sYx9Ty5YtU6eddtoj+lgJCY8UpJeihCXFXC9F+zMefPBBJaUcWP6c5zxHdTod1ev13LIrr7xSAVA33HCDW1ZVlTrmmGPUk5/85Gh/IYT7vG7dupEvH7feeqsihKjLL788Wv6a17xGtdtttWXLlp2ew+7o1yhs3rxZtVot9drXvjZaftlllylCSPTyHB7rxhtvXPBL0Zve9CaVZZm655573LLt27erVatWqRe/+MVuWV3XavXq1er000+P9v/CF76gAKirr776EXushIRHCtJLUcKS4ZJLLlEABv7Wr1+vlFLq5JNPVieffLLb/u6771YA1Hvf+1717ne/W61du1a1Wi118sknq//6r/9SZVmqN7/5zWr16tVqcnJSnXXWWerXv/71wHG//OUvq6c85Smq0+mosbExdfrpp6uf/exne+is58all16qAKgHHnjALXvWs56lHv/4xw9se/nllysA6v777x/a1lwvH+9617sUALVhw4Zo+Q033KAAqC984Qs77evu6Nco2MjFj370o2j5Aw88oACMjG4t5qXoMY95jHr2s589sPy1r32tarfbqqoqpZRSP/jBDxQA9aUvfSnarixLNT4+PhDBeiQdKyHhkYKkKUpYMpx//vl4/etfDwD4xje+gR/96Ef40Y9+hN/+7d+ec78rr7wSP/zhD3HllVfiU5/6FG6//XY897nPxatf/Wo8+OCD+D//5//gve99L7773e/i/PPPj/a9/PLLce655+KYY47BV7/6VXzuc5/D1NQUfud3fge33XbbTvtc1/W8/pRSi7om69evx4EHHoiDDjrILbv11lvxm7/5mwPb2mX/+Z//ueDj3HrrrTjwwANxyCGHDG3z1ltvnVcbS92vuY4FAMcdd1y0fPXq1Vi1atW8+jsfzM7O4s477xx5XrOzs7jrrruiPjW3zbIMRx999ECfCCGRRm5/OVZCwiMZ/OHuQML+g0MPPRSHH344AOBJT3oSjjjiiHntt3z5cnzrW98CpfodffPmzbjoootw9NFH4x/+4R/cdrfffjs++MEPYseOHZicnMR9992HSy65BH/8x3+Mv/mbv3HbnXbaaXjsYx+LSy+9FF/5yldGHveee+7BkUceOa8+rl+/fsEi8U996lO4/vrr8aEPfQiMMbd8y5YtWLFixcD2dtmWLVsWdJy52hwbG0Oe5/Nqc3f0a65jFUWBsbGxocdbqmNt3boVSql5nZf9d9S299xzT7SMMRbd1/3lWAkJj2Skl6KEhx2///u/716IAOA3fuM3AADPec5zou3s8nvvvRfHHnssrrnmGtR1jZe//OWo69pt12q1cPLJJ2P9+vVzHnfNmjW48cYb59XHxz/+8fPazuKf/umfsG7dOvzBH/yBi56FmCtba7GZXPNpUykFIUS0jnM+sN1S9Su8L4D+z922szuuwWLaa64btW1zefPc9pdjJSQ8kpFeihIedjRnsHmez7m81+sBAH79618DAE488cSh7YYvWsOQ5zl+67d+a159DGfpO8M111yDF77whTjttNPwhS98YeA/nZUrVw6NhDz00EMAhs/od4aVK1fi5ptvHlg+MzODsixdm5/5zGfwyle+MtrGUoO7o19ZlkXfr7rqKrziFa/AypUr0ev10O120el0Bo53/PHHL/hYw3DAAQeAEDKv81q5ciUAHVk5+OCDB7bd2fnvr8dKSHgkIb0UJeyzWLVqFQDg61//OtauXbvg/XcHfXbNNdfgrLPOwsknn4y///u/dy9yIY477jjccsstA8vtsmOPPXZefWq2+eUvfxkbN26MdEXNNp/73OeOjI7tjn41j2Wvt9US3XLLLTjppJPc+o0bN2Lz5s2LOtYwtNttPOYxjxl5Xu12G0cdddRAn4455hi3XV3XuP3223Huuec+Io+VkPBIQnopSlhSFEUBQAtBdzee/exng3OOO++8E2efffaC919q+uzaa6/FWWedhWc84xn41re+5a5FEy94wQtw4YUX4t///d/dC0Fd1/j85z+Pk046CWvWrJn/SRg8//nPx1/8xV/gM5/5DN785je75Z/+9KfRbrdxxhlnANBRAxs52BP9OuGEE4YuP+OMM9BqtfDpT386ein69Kc/DUIIzjrrrAUfaxRe8IIX4IMf/CDuu+8+HHbYYQCAqakpfOMb38Dznvc8Rx+edNJJWL16NT796U/jnHPOcft//etfx/T0NF74whc+Yo+VkPCIwcOZ+paw/2H9+vUKgHrd616nbrjhBnXjjTeqHTt2KKVGp+S/733vG9rG1772tWj5VVddpQCoG2+80S27/PLLFedcve51r1Pf/OY31fXXX6++8pWvqDe84Q3qbW972+470Qb+7d/+TbXbbXXEEUeo733ve+pHP/pR9Ld9+3a3ba/XU094whPUYYcdpr7whS+o6667Tr3gBS8YapJ4zz33qK997Wvqa1/7mjrjjDPcdfna174WXQelvHnj+973PnX99dert771rQs2b9wd/RoFa9741re+VV1//fXqfe97nyqKYmiKuG37Pe95jwKg1q1b55btDJs2bVKrV69Wxx13nPrmN7+prr76avW7v/u7amJiQv385z+Ptv3c5z6nAKjXvva1av369eoTn/iEWr58+VCTQ8aYeuYzn7nfHSsh4ZGM9FKUsOR4y1veotasWaMopfPyKdqVlyKllPrWt76lTj31VDU5OamKolBr165Vf/AHf6C++93v7pbzG4ZRHk32z14Di40bN6qXv/zlasWKFarVaqmnPOUp6rrrrhto157zsL/zzjsv2rYsS3XJJZeoww8/XOV5rh73uMepv/mbv1nQeeyOfs2FD33oQ+pxj3ucyvNcHX744eqSSy5RZVkObDfXtZ0PfvGLX6izzjpLTU5Oqk6no37v935P3XTTTUO3/eIXv6h+8zd/U+V5rg455BD1J3/yJ2pqampon8LxvL8cKyHhkQyi1CINWBISEhISEhIS9iMk88aEhISEhISEBKSXooSEhISEhIQEAOmlKCEhISEhISEBQHopSkhISEhISEgAkF6KEhISEhISEhIApJeihISEhISEhAQAydF6AFJKPPDAA5iYmEiFEhMSEhIS5oRSClNTU1izZs1O6y0uFr1eD2VZLklbeZ6j1WotSVv7I9JLUQMPPPCAs8xPSEhISEiYD+677z4ceuihS95ur9fDkWvHsXGTWJL2DjnkENx9993pxWgE0ktRAxMTEwCAtR95I2h7eO2qhISEhIQEAJCzffzywr9y/3csNcqyxMZNAnfftBaTE7sWidoxJXHk8b9EWZbppWgE0ktRA5Yyo+0CtJMGTUJCQkLCzrG75RaTE3SXX4oSdo70UjQChCro0l3NFXu+L3s9dqFQjFIP/wXdXYVu9oZz21UQkqoALcX/dbt8HXf3UFrC27w3j/vdMZ7VsP8ndgOEkhC7eCih5NJ0Zj9GeilKSEhISEjYyyGhIHfx7XVX938kIL0UjQAdFSnaRSy2xblmX7sy+1mSOd0CGmn2lJgl85pdNnaea5+5oj9780x2Z1jIvX64kid3JfK2ZPdmZ+0s6JnZ9Wu+2PPa2bXcabuj1i9oHA1u2zzPcJuhY3Sepz/f8b03PcF7KlKUsGeQXooSEhISEhL2ckhI7Cr5test7P9IL0UJCQkJCQl7OYRSELsogNzV/R8JSC9F88B8h9F8QrqLDfvOO6y8k+0WS7XNTVXNfVbDjjhynyEbz4d62GWaYSF4GOm3BZE+0vRzkfd8rrGykOu5MMovpGEWT8XtbLedPyeLO+4oLHp8Dlm+02syr2tG5vwxCs9/WN/UwPUjZr94uWtHYXA9GbIsXhW0s3t+14CFjeV9mXpPmB/SS1FCQkJCQsJejiS03jNIL0UjIBUBWeCswA63UbOWXZ1jjGx31OwMAB1YN/dDYWdC0vyrghleOEtqzph2OnldQGRop/ssAuF5L6jdRYq554PFRCNc9GdBOw3fZ2fHH3WdFnreKhj5A8ecQ6Cr1Nx9nKsfO4ty7TS6ueiMiCUWVO/KGBsQQ4dfFnoTydzf7eLmd9W8FyTaOPpdIX5bheG/l81IYoiF/tb5PsYNyeh3bu7tFZbUzWBOSCiI9FK025GcoBISEhISEhISkCJFCQkJCQkJez0SfbZnkF6KRoBRCUYH0xdtSHZYWL8Zvl0I5ALD7js71ii6aL7UESVKU4jR5nNxXXPQTJgjlD2X2BNNOmUOr6addC/c34Xo53O75rjOC7ljC6YCm/TkqMs3Bx2l14+mGxYipI6Ov4fEpjvrb3P9XHRftG4uemQeXlgD123IYYfSfnPcG0qGLx81yKL7OmIdIWpOKr0JqUh0Pey5K6WfxPgaztHQkHOJmLugf02MPKYkjd+x+BoToiLhNgFAze83If7chx17YFzNM6nE/mYTtmdeNFL22Z5BeilKSEhISEjYyyHN3662kTA30kvRCHCmwNjwITQ4Y13423dzBsp2MeV0MY7XO01zXcCMSTVmICNn5nMe0Rx31PJhM8v57Gj64/Z3O80/3Xm+oujR+y9wjDTH2M42HxqtUJF4dT7tuGQBxML6sDvNc5zP5HO+4zO8T4Ptxm0Miv8bx2skC6C5PurgnN2PuhBdF6LCizanmHlBaeWNqEcz+kOj78PbtYJyG9EYJiAOIzPATgJA84hg6eseJ2wMXus5Ino2kUD5tkYfVLnFhAbXwX3XkllKFYhxnaZEVypoXr+BqNOI/kXPkj2PIYxCwr6L9FKUkJCQkJCwl0MsQfbZru7/SEB6KUpISEhISNjLIZT+29U2EuZGeikaAcbkSPpsLsxXxzafIouhMDISZTbe9iXCsPhSimDVHALwoD9DQ/Eq8DoaLaicVy8WSL8NQ0TRIA7LDxOX+gVDaIVRNMhCrv3Q+784UfToY5huzef6Ne7hgg4zDy8hT4kNoyxjqnWkYBpoXDcSt9ukywZ2XsByfwj/MRDzRpvMw/9nQfcvoDwtdRYmeNDge+i5NOgtFovMIypLAVISKOldWSLxMokLYg9L3HAUnKQRRalkfJymN9HAZzJsnRF9Ny+boxURG8qo4fdmFOz5WCrNfd/JgJCNgyhFQBbx/0TC3ov0UpSQkJCQkLCXIwmt9wzSS9EItHgFnvmpyKh01jCSImTshUmJilL7KYIZSaO9piBRggQzPzKwfiHC6+YMMjxGc9smRp33ztK5pSIDEaRw3TD34lGYj72Aaiwbuk/jGOHsO9yvmcKtBma3droKt/9Oz2WYaJjEM3MLShcvkNbHHz4zH5jhB9GVoW3OO+ppP9iG5+jtziImRA3d3/UldPQmiNyy55smDgUnvAVM/+eRJj4UijRU6HNEuRrtExIsC8TTlEq3zi4T5rylJKgVhRTU9G2wf3PZhoT3vumOPuo6DL8m8Xd7LKUQj12FOOJDiPufWUkCIgggzM4S7vrZoJw7NaoACiiT/q6o8pfdbmyvJzVJMsE1tFF/LbSWYNSfJyNqIGXfn2f8O8oGfkQUCNkzrxoSBGIX6yI0I10Jg0iO1gkJCQkJCQkJSJGihISEhISEvR5S6b9dbSNhbqSXohGwtJcNqzLiw6/hv000hcmcSvAh4VVLj4XbSwynh4Z5fYwKmQ+D66uNUpt9bShYDeEd9mSYNaQA5nteo3xVhgvY4/MfOI5q7hc7+5J406HLMWS5ipsc3CcQsxLivVQcGzXCmRjw93QYNRq5AjeoQahm/9TA/r4hMvTzMJ+i5nktqBhneA5D6KBhiPyB3MKdHSw8ZnPx8J3ndx7zeFYIiWhazf0ESmPlmUEpWTQWmn1g1D+dCkPoUjLkc6OdJqXcpFbDz1LSwfuvBtuI2h04/2DnUQ+OIp4Sa/TdNeNZueBBiZ8fxqSm0IxsgVE14G49l7A6+m0nPmFkGK1CiILaQz5FYgnos13d/5GARJ8lJCQkJCQkJCBFiuYFRiQ49ZGiMPITziqaUaRhYmo766glHZgJ0WBWAkmdUyppONPOB3PNcLM5ZjZNcfd8oZSPLjVrKIXOw1bY2Ewjnqvvw2a4ts2GfnZORBPohhvyyD7Y7dxxEQlr5xLmklApOuScSChIbXRlWBp2eDz3byPCJo0dgl1GmsceEjlyfW2cgxWdA/G1JQOdXVhMfjAF334eHfXw7tyNxkaInJvp3IPuyKP7NjDe5vkYjEoIAKAdwqPvPvrrlo8SqjfGwkCdr/C4TbsJSVwEJTw3Gy1xz5/ZZ1gEvHlN5rocLnIVRKCk9M+PFARK+tNVMqivSJQTzgeLTDumcRtOI4Mbhc8SoxLciKs5ky7Sz0wEaS5BdYhhv08ucrTAcb+rSJGiPYMUKUpISEhISNjLYSfVu/q3t6Lb7WLt2rV44xvf+LD2I0WKEhISEhIS9nLs75Giyy67DCeddNLD3Y1956XoiCOOwC9/+cuB5RdeeCGuvPJKvOIVr8BnPvOZaN1JJ52EH//4x4s6HidaIE0CD4sQdlkopB62nVRkqGjZ0nFhscZwO0llvC4QWzfbiws9jl7XXGZD6HMJwUe1G7ajTN+p5UGoHEK/hZST/84abc7ljRO69w7rS9MBPPYhigXIQhItIEVDT6wICBRI0y13FBqnaN28/frhlIrdLuzTKIqEBmJOQsi8w/ahK3KIaO8mbRZ+iDSxO78GwyiWJr0jJY3FwQ2KK7xPwzx9BkXeg+NByRGC/cZ9tscfFF57yqm535yeVI3P2geoQZE1ipiGx3C05Aiq1W0bNDMsAWPAh0oEfbXrGh5FroiqFStzCc70jhkXKLhAzmv9nQrkZl0TzYhEJRlqwVAK/aRXNUNtPJaEoBCCQtbmORQUqiaufyTwLXLXxX6lauDZcu7cVETPU84E2lkJAOjwCjkTUaJCLSlKqftXCuauaSXZ0HGUuWfRuGGPuBYJ88cdd9yB22+/Hc997nNx6623Pqx92WfosxtvvBEbNmxwf9dddx0A4EUvepHb5owzzoi2ufrqqx+u7iYkJCQkJCwZBOiS/C0U//qv/4rnPve5WLNmDQgh+Na3vjWwzUc+8hEceeSRaLVaOP744/Fv//ZvCzrGG9/4RlxxxRUL7tvuwD4TKTrwwAOj7+9+97vx6Ec/GieffLJbVhQFDjnkkD3dtYSEhISEhN2KhSa/jGpjoZiZmcETn/hEvPKVr8TZZ589sP4rX/kKLrroInzkIx/B05/+dHz84x/HmWeeidtuuw2HH344AOD4449Hv98f2Pfaa6/FjTfeiMc97nF43OMehxtuuGHhJ7XE2GdeikKUZYnPf/7zuPjii0GCePb111+Pgw46CMuXL8fJJ5+Myy67DAcddNCcbfX7/ehm7dixY+h2YUYZJcrRX5zIYJ0ckXFm3s6Jp5xqRaMBTk0mkKXGwnaaD8KAt0awWjQenGFFZV1/4b08Bo5l6CjZoDKGZY2NyiCjQ9aH4f2w3Xhf/zm+nmGRWd+ePpfGcQJ6oEm9DKNw5LCSBxikTyJYOiKiVxoL0FwX7L4zFsz2F0RnI0KXgJAgaGYoNa/HKDTpLL+/pia9p9Xo7Dy7d5MiC0tTxPc8Pn5UGiO8djtJDwszlQZ8dSKaZci4WqJEoYiCal4fFY+pmK/D6HFEDGUaeOlEq3dGlzauYTjelQoyP9Gk1hrdl55ykhVFTQ2lxCVmmXJ0Wp4JtHjt6DQ25HevWZLIZn8JSkDdvVMAfCaYJArS8taSQAniSoLYYWNrBxGu3PWiXIEyCcpshplExj3Fx5n/3OI1Wqxyv6ESBD2RRX23VB8h+vexKTcIfz/Df/clNP+fK4oCRVEM3fbMM8/EmWeeObKtD3zgA3j1q1+N888/HwDwwQ9+ENdccw0++tGPuujPTTfdNHL/H//4x/jyl7+Mr33ta5ienkZVVZicnMTb3va2hZ7WkmCfoc9CfOtb38K2bdvwile8wi0788wz8YUvfAHf+9738P73vx833ngjnvnMZw59Ow1xxRVXYNmyZe7vsMMO2829T0hISEhIWBis0HpX/wDgsMMOi/7fWyx1VZYlbrrpJpx++unR8tNPP33eUZ8rrrgC9913H+655x781V/9FV7zmtc8bC9EwD4aKfq7v/s7nHnmmVizZo1bds4557jPxx57LE444QSsXbsW3/nOd/DCF75wZFtvectbcPHFF7vvO3bswGGHHYaMCTczoo3ZwUL9KSixourBArPDokXNbShTkXixGaWhQYQpjNBYNGeadmbTXC4kRW36KCSNwrV2hjmqyORcDtiUKIQevIPixdH7Dfbd9NVENmxbtmBm5Obs+jes02H/B/szyj+ouS8a246Q1Q5F7MkThlNGRweaAu1h/Q/R9M4Jxw5prA8LkQJ+3DYxELmc4z4Bemz48ROLv4f1fZjfjwu8BO2EYtrolhAg8j9qYOj1CiKDhA6PDg4VeztBdXhWwUrbLh1s10UjzXUPx1H4GxNFNbGTyBEJhOomPOW3Vy6zgTAderGeQarx/ADQkRqzTjIFyczvj6SQ0o+lnNcDkW3/XNIoiST03AKTOnGAmuNw6QrditoIsJ3NtzkPEymiXOpzgHawptQXfbWRoZzr3++C1cip+S1vPJHNsTzwe0yUSwaxBb0HomJ7ytFaUQi1a3EMYbp+3333YXJy0i0fFSXaGTZv3gwhBA4++OBo+cEHH4yNGzcuup8PJ/a5l6Jf/vKX+O53v4tvfOMbc263evVqrF27Fnfcccec280VNkxISEhISNjfMDk5Gb0U7SpIY2arlBpYNh+E7M/DhX3upeiqq67CQQcdhOc85zlzbrdlyxbcd999WL169R7qWUJCQkJCwu6BBIHcRcWLXGL906pVq8AYG4gKbdq0aSB6tK9gn3opklLiqquuwnnnnQfOfdenp6fx9re/HWeffTZWr16Ne+65B29961uxatUqvOAFL1jUscayClk22hPGiewCUalUseuOFmQLL+oLtq0l0+vZ3B5HgH4Yakl1aRAMirQlXFTZhHznIc6EDpVXQVuWMtOfByklLdwcbIcQIAuolmYJjbDsxyiajTVE4Ladufo+n3bD7e05SRPSD0WnA34vczVGhn4cLhpvrAvFyGTEuc5FKTUpnGGFdN24aVKK9rPdF4Ay4XjSGDcEerzagrWMSvc5pxIsoBHstbT3ILzWShH9Mx7QU4vBgLcUAAR+RNGYGyKAdidl+zBCLK2UFvi669CgvEIfJbve0jiUSTA+mkrRXjqejo6o3kCYrWmixs7NUwrOe7AEjN7GjjEnZJY0osMJ8WNEBn1rXpcmdS4VgZAUItgmM/QUN8LkyoiVbSJHSNmH40Y0fn+sh1EpmPE00u1IQ+W5Aso0Pm/OJAoj/G7nFcayEsvzWQDABO+DU+8lVEqOvuCmD9RdKwBosXrQPK2B5m91lVVz77BE2BvNG/M8x/HHH4/rrrsu+r/2uuuuw/Of//wlPdaewj71UvTd734X9957L171qldFyxljuOWWW/DZz34W27Ztw+rVq3HqqafiK1/5CiYmJh6m3iYkJCQkJOx9OPHEE8EYw7p167Bu3bo5t52ensYvfvEL9/3uu+/GzTffjBUrVuDwww/HxRdfjJe97GU44YQT8NSnPhWf+MQncO+99+KCCy7Y3aexW7BPvRSdfvrpJo0zRrvdxjXXXLOkx7KO1nNFcOznuCis34cT6WZQFnZ2JamIBIhR6v4IhGLvUHStGu1Ql78a97dZ2BGIo0NzRV5o47o30+abRRZDUW9YAJYNicEwKqMZZdMmYC57glG+Hc1roszsFtCz0Fr4WWkoyrbfR6E5M2c0dM5WLqI2uJ+5TmR42nW4j2hEAoEhxYUD4XozAtDsP52HENRGywJJrhEr6yVCUhDixaphhLQptNfXxfRTudbmBRvBCL/bNo3xgusvmAIbMqu35+EiMTIWXYcRGy2Ob4ztIDpEmYwiUITARYaaAulQ7Ns8Dyn1UaTzqQhU4w3oosPhCSF2oA7E1ArEZq3rqBVRblcb6XO/G1SCNaNeVuTcGDNCBgVrlZVsw7VDg2daSApJbQQ8iDxCR7AZDX4TG2MxjIDPBdtPGymKfnNN8VcrrG7zCq1AXF3QGgWro/ZspMi1EUSqh9mqjELoNr+7sTRCa31uN95447w1RT/96U9x6qmnuu82Mem8887Dpz/9aZxzzjnYsmUL3vGOd2DDhg049thjcfXVV2Pt2rW71NeHC/vUS1FCQkJCQsIjEVpTtGv012L2P+WUU4YGI0JceOGFuPDCCxfbrb0K6aUoISEhISFhL4dcZJmOuI2lFVrvj0gvRSPAqXDivLnCqZSoSHRNiXSiY04FCtoI20p9yWdFhlpx1KYQ4QAtFBRkrQ09Yj2EmscXA6Hv+MGJCrfOEQoGApHmiJnBMLdpS3+FHiCSEKdXbFKMoY+JbtPTSjkT3lOkEcpuejVZATqgr9Ew2mkYGJEQhIC5gpwyFi43BNBNIbalBmyhzJDuGzgv6oX00fWBpx7sv45uhIzSWYeJ1qXbj0T0WVSL1qrvnW9NLHRufm66UlMq3TViJPYwivyOyBBaNKJSMYBRM9bmNQqpXUplRJeFYy7yv4Ev9AkAtaCGJtbrhKTOD0dKElHNpOHVBIymH63Yl7jnwH9uPmuUKj3btkJxFgrD5/AhUqEQG67tqB+2GUk0tRasUEpBOiqLxFQaVSBBgkT4uxFe52FFeC2NBejrWxn3a1tcOrq/kgLmGtaSjk5eIcrWrtVjiiqQzP8WMBKMx4ByZ0QiZ0KLpKHF0h3eR5tpAbROdrH9GkJN78x7LhCY277Y/cJ/E/YP7JOO1gkJCQkJCY8kWE3Rrv4BWmh9zDHH4Morr3yYz2rvQ4oUjUCHlci5ngVwKtxMWGCwtpiNBhW0RoeWyMz3SnJMiwLTQptDlpKjMpEhm1bvXYNj59dwpmujRGHkKIoeDJl1h8Llpgh7VG20cMZjBcVNAWIUqWnMnOz3SrKdihMRzLYYlb42EdO1iQAjdqfCCdBLydCtcwBAT3DM1plL2RVSp/c2na0thonMh6Epnm62RYO+tvMKbe7Tcfs1R6/OXO0kEdTqyqgAoz5y1OxL6EROqI4iVEE0yKUmy8Hr2hTQDqwP7k8Y2RhWr8xGBTjT52kFqmE0zG5rIwsSgxFITuLzDMcRb0QVLcJxav8N07Uj9+3G9WtGiUJ39lBk79YH7Q67XsPuv1QEQvgx5qJ7dr30UaVhQnoZHIsA7hlQuioZ4pX+cyie9g1i+PYqtmII0zys8zMAUEqgmK4RBugIbZH3498f4aPYSsH9dgFKjxMbQYHfVhAf+bTnHUbxOBMDySfh8+WiP1SiRRTGshIAsDyfxQTvY4zrsk0FrZEZ4T8jciDCKBRFpXz/7ee+5C5aH24/7DfR/vYPRIYaY69kJfYEJOiS+RQtRGj9SEOKFCUkJCQkJCQkIEWKEhISEhIS9nqIIMK5K20kzI30UjQCORXIDQ3WFJFSotwyTgU6VIdPx3kPLeKF1RU4KjWaSqrloMmKCwOTQdrDwrrG2nVh/6ipSmrD0KEvSEhH2O/N82rSZQPO3cT2nXr6xIiRm+JhCzKEshtVlFbThsyeTEQXSeVFmpxqDyhP4QwesyleHeWjFApJeUAx2HXhfpoC8+LjkFKsFUUlKara31frW2P7ENKaoyg6Zu4vM14qveAxtX4tFrQh9gX89ZfGa2bU+GNUufFhvWRsO5xIZIHonQ+hzyy9W0oWUbpR6rC7xmYsm/bDdnlwTUK6IvTusscIr3U4BquAQ9KicAVuxLU16FAfLQCoBIs8hew1iCgzt5OlYGPaOBRaN+mzyDWd+rES9ocQQAg6lMJp3jtG5YA7uz0r22c7fq0DfeT7ZP6VkkIQgKtYRG6praioqxnPljYG4v9cGVGueLalTW2WhaWmXN+GUKA8oM7DJIuc1pjIegCAA3gXB2QzmKA9c0yJGallCV2Zo2pQYoz438gamaPMSskhFR30YQt/X4NEGe1VN1xoz8zvGGkk0+wuiCXIPhNJFL5TJPosISEhISEhIQEpUrRTMKjYpRp2hqBnDwWtMcH07KVDtQhwSrYA6BlMONMTQVp9LVk0W7EzEjkk7b6JYbOt8Dslys12hqW113MIZJuiQttHZwtgxb9qMA08Suml3gm4KXqWQ/pt2yqD6NkwAbkTdzfSaO3sOawJFSIUFUuphbdupk99jS87U7ZZGiIQnOrj+Bk+lwxcBjNSU68pjAbY2XVmBKYZG27zEMKuc/tSgV6dxecfRCkG7q+5IRVYlAZut7c1oorMO/1aAbTrA1QUxeHBzBvQlgvNc7BjgzZOLYwcCcFQCqBv2s2ocOeZUwEJEozdwRl6OB6bYuqsEX0Kx/CocW6jp6Grcjhea+WjUSV0rTgbKZQqbiu0MCA2ihBEjISi7nrm3EcXlNK1wsLoS5z0gGBbLXi2lg01AgE3UVBBTj6hsUA7FGw3x42N9JIhoucii58NJ7QP3JXtOpsab++hTRBpWmnYzwAwmenfzQNbU5jk+rc0IwKMSBRUJzIsY7NYzrrITCS+a6JEgP6NlkQGzyw1Eb6gf0aUDQpw4pM3JCNRYoi1VdH7DEaJwqoD9v8FuYccraWiO616sPM29L1cSJmPRxrSS1FCQkJCQsJejqWkz1L22Wgk+iwhISEhISEhASlSNBITvIfCeHgwDBaGtQ7MBa1ciLWnMnRFga7UXjp9qYXWocjP+uxYLxsbTpeE6CMFYWZPtQ0WTXT7GRG2o1yMULW5fti+dn24PKQVunWGWUPblDWP2hpG24S0Q1NsHbpfh7AO0sME4KFbNQB3PWx7nEpH/+jjUQjp2w3dhUNkXCCDiOgVJ7yVDFKSqFhsiFpw9Ep9TWZIgTyrHR1FCNDK6ki4HV6jWlFI4ek/e+zm9SKG/rTtTuR9LCt67toMoyDsNaoC+jHnmrKz7bRYHd37WlJHVzbHWN7wkgHgHN5LyaNtuaEJ7bmGbTVpObdPQ8xqtw3PDeYK6f6YtowwuMOriELdaQHdIc9BuK4eQUvUAUXXq7XPmPfgIQOibF/A1hdKtiCkdvvWgnm/IzUosiYNsX84TkJRNiGxmD9E0yMohC2i2s40PVWwGpQod9+UIu43rs1FNB48JeaTOez68ayPZdksOs5rTKAvvXP/tMixo2rrz1WO8azEkWObAQBHtDbjUdlWAECLlNgiJvBgPWH2a2G7aDtBdZjA0vRes8sKohNgWrRyNJyj0QwszWZpqa7M0ZNZtK42HkdCDfoZMaLAWIU9AYldzx7bM0Tfvo30UpSQkJCQkLCXY2nMGxM5tDOkl6KEhISEhIS9HGGZjl1pI2FupJeinYBB++EMs5EHgK7wWRCVYpgVmbOUryVDpSh6Qodje8KXgABiugoY9BEKl6sgxE+JgjD0DoUu+BjSZfrYcVmDURhZRFNR9GuOKihZ0Sx/EbYb+uEMy4gLizcO2yZs01I6nMTXp1lmJDzHjAlNXVC7TAUUQ3wsS3sMy26jREERRBlGNlsN0EU3bXsSBL0yQ1nx6Djc0BkZF2DG5cZSYiy4TyLIbArpHW58dkJPHlugd1ifQ/+ejApXeoSbQpne+0VnN/as/5HwNJhUJKJBWlyXW3FeXURF1BwFG6Azw895kGXXLOmhKTWbcVaDNe6PcPfY+8lIotAinqq268Miya64ssk2az6zEeUXjENOheMVeoKjlGwgC7N5jvaYCCiz8N5QpQayuaBIVP7CXk/rxRWOKzHi2ZLS+v7odeEzOWycA963KOw/MdSPvQ45ExEdGV6rUSV+XCYdFRg3GWTLsllM8p7zbmsZ2spSUoVou3Y5kZjIejggmwEATNBZdEjfXYOe9L+l4Wfbh5A6DQXIDDpTUpoMPRF6WEG6PlnMyAJ999vq19tSIcwMDkE8lQZAx22IgiCDVHPCvov0UpSQkJCQkLCXIzJF3YU2EuZGeikaAQYJBqmLvLI+WkTPHihR6Moc2+sOAGBW5uibmbcAwazIIqfqOogUlSKYgTaEyk0hdbMgrN0H8EVUw2VuP+gZcrO9EKOKvIaoZez6aouZehfoWMgczl6tG7ddn1ExVGw77FzDdmtCB6JpYf9Cnxo7A4/cp4P+NQWx4dVhRDqxqp4Fh75E8TVTLHbKVpKgDkSvhCjvslwz1JmOtGScop1VrngwJxKlZKjgj9UsnhpG/cJZuj2nEFngChx6C4W+K1JpYXXoBRV6BOl9fQRHF92MvYtcHyh89GqIyDWOHMX3sBkdaroju2MGx+ZUREVAJSj6gmPWRCD6grtc2tqcY+jHFUZ8OJUuimCX2/MepwLdOnfRtNDjyEUnQrG6iCkNd3+IAoGCEnZc6iQD+9yGPllNmYd2og6TFkhUTLYpxA6dsUNYB3UWjKtwjOWsRov78UiJcvd0oOipZAPXwUUVWY22ERvbe5S5ItkVWqRCQfV9ymiNwvyWVjlDh5VYk20DABzEd7hI8oP1cu1UrXz0L7y+WuRso88mMtcQQfvxSl3yS0UYeirz0R8jsrbRJAYVjTsW+B9JEFRS7nJa/GKxlPRZ8ikajfRSlJCQkJCQ8AhC8ikajfRSlJCQkJCQsJdjacwbk9B6Z0gvRSOg6QOCDuvjQD6FFWzarXuwnoxEfxZdkelQrdCh2l7NIwpKKuKKVFo/llB4HdIOoejaUkhNoaP9HIqwlSImZD5a0DxK5ByGxJ0415aMMP4sYRFVm96p6TzlKChbziIUfzdD26HQtZQM/Zq741hosbGIClGG502IcnTKXGUzZCBwDftgSxMU3JclsPfE9qOsOSpJI9+iZmHRUDwbgkXlQ+RQ4XhIp/iCqkZMb9rtNwTNIX3a4RU4lVFxVkuPWSotfMhbrEKHaxEshXI+T21agVPhqN++5KgVi8oK2LHMqQCHwKiSA5QElE2jTA6DggCJKOacWaqlNuJffV+W8S6WsVndb1KhUsz9qC9nXRzIdiAfInItFcOUbOHBWs+Ef10tw8ZyElv64+4ahWiWbujwEi3Tp1IyR6UBgBLEFUVWRI97Yvx6tC9QXKrDfmUNGpjxGrltU8VlPpoFX6UiTozd9AMLKTFCBp/DnIuIMrPPM2uUQrFtR89pQyDvaFkzlnnwW2HvWVM0LxVFBebkBy1WuaKuQPyfdE/l2FTrEkkbqgMizyAg9otjRAbPvk4gsNRQRuuoSHYotLa/25a2tuNxGCiRYPC/MQIEGRHuOJZao3QP+RSNSMRZaBsJcyO9NiYkJCQkJCQkIEWKRkIZpX+lGGZk4Yq95kQgIzVatjAhCie0LiV3bq8hXMSHxI7RoYDWLhvmNu2cftXw2aJtGzCFOhuzPx+B0Ovs3LqZiZBRMdC/UMgcianhZ4V2FuzS7s0stCkODtst4R29w+OE/W2mGIdtWojGfqQRibHXhjPpztdGWmwEapyXbtZbS4YuMn/PmJ5pt5xrdaOI5pDUaTvjtxG0sB0bGWxGtghR/lyMCHeYqJ1CIYvS7FXkTC0VidbZSI29DiFoM81expFNXRQ2cDI229qZNY0EqXHqPW1EKsOZe0a8y3aHluiw0u3Tl5mf8ROB3DxnGamRkdpFhjq0jwrMRRJapMKYeUZXsC4Ox3aIfBMAYJsssLFeho31cgDAhnI5tlU2USLDTJ27cyuDyIS9nl6Mrce5vYdapDsiJT+IEgFakG3F1u562TFgr5EK3c2tQFuCKh/hwJDfFruEQltIEBtVono8ZoEdRphk0UQzSuSenyFRzrAN7QhuIjCSoiDER99Mk2FkvVLc7C9dBAkAttTjrph2LxgHIVwEPBjXVhwdfQ/3aW7bbLMRLRq2TQgv+tbnpPZQRpdcAvosmTfuHOmlKCEhISEhYS+HVL4cya60kTA30hVKSEhISEhISECKFI1EJRmoCalvB5yvRYf20VfeXXVaFJFXSh36eTSE1JJ4esyGp+fy72m6VLtikooO0GchBAapJ4dgN9HwQWoK+SrJUJv+WwfcpmDZtqNI7J3UpPssrJOzXVY1RK+Myqjg5qjCsnZ92Idw24wJR0u4fU1YPGPak6djnJ8nsp5bNyuyyKm5Vpqu8QVM44KqTafkEE1X4FDwLQ0lZ49bK4rZ2lOVdUiZBVRLsxCvXW+FwZbq0Mtl7Ndi6FNPochIGNukf0IwKMDSckoOiJMjEfEQ+oE2qLthAvm+zPRz52gZ6ugxQWLq4MF6Aj2VuX4U1At4x2gfHdrHpPneoSUOy7biQDYFAHhUthW/qg4AAGyqJrGxP4ntpkipdYweBkv9hvQuo9KPQxkUblUUpHEdssDRPKQyCdGCfLsvoxJM+rGglHdYr2pdSFYNoVabUIZS9m7n/vfGJlWEdNqwhAhAi6M5iennSCZA4CQE1gHdQoAAikdeWcJdI0O5md+YSnHvJ2QKvtrfXetLFIqrw+KuFIPjLqJ3EdO57jcVdGAs+32avx8E/WBM2kLfNklkd0OAjBSFL6QNIPkUzYX0UpSQkJCQkLCXYynps+RTNBrppWgE+ioDVIa+yNCTGfpmdpARgUoxbK/1zHJb1UYp/WUMZ1s2tdvNuoMUWEoUOLyz7rB0y3AWXQlfa6oWPhqlU+MHZ/h2ZtmMLIg50jrtzDJEGK0IZ6R2BguYCEQgDK4Eix2kA0dh6xBs19nISSjSpkYA3RSUC0WhlD+vJtiIqJu9PjYFv8MrjGd9THAdSSho7SJ/VHJ0eIlxPnz2HTscU2etACA6R0Dff5vObe+fvRfWtdlu2695FCGzUQggdu/16dD+u525j0LYP05FFB1qRoSisdSI7tiZMyMKgqhoJt3cdpRFQi0ZBIiLDsyKPNhHO8iPG8E0JdKJcruyiFK0rauyjQBkNMc00SJd66Js62+t5NNYTrugZtvltIss1xGNMdrXwm8T4dhRt1BL5l3oFYvclEXD6T0cnzo9X39uGgVkVCIPIoMhhKKDkbngedARU5+KrmvmDXc2J0S52ns5E2BUunEf1razUeooitiwBLGoJQNlKooM2eV2XxshatYhk4pqh2ibsBFZlFBU8Onx4X/4erzTSFgdpto3I0XAYDQoXM6C8SkUBYg5lpLagR+DkIpGx8lJjSm03W//lLEPKOs9o0IRwBJEihJ2hqQpSkhISEhISEhAihQlJCQkJCTs9UjZZ3sG6aVoBLZXLeRV7pxapRpz6yiRzpdDKorSUCRWfBj6CxWsjvxy7OewwOIwNAu1EqKgpBdiEjU8hO9F2XaZp3dCyku3GVMzOQ+co0FQC+addRFTWSF9lZlCl86BWfCB7UM0qS8dwvc02limaQ9OYl+iYY7fjsow9jI9I3oUijraIGcCFMr5Ek1mPYzxvmvXujcD+h526zxyE+dEOnpqWFHfsKhoKLTnVGLcUDg1015MocB2usqd0Dx02G4Zl+pQ3B0K9HPmHbjtPrOu6LB/pLWQdpBSDAuw2svnnKeD7QYF3WFxWDTWNSiLxnfn3RRQKfa7LSaaEQGpiBPbdmUeUSRWfGuPJxVxNIiQ1NEwlWLoosB209+HxBg6tHQ+RhN0Fi3jQryGb8WBfAe2Ffr5fqBajl/1D8BDpf4u62JASB8K+sNxLyRx3jqEKO1iHrixC0khh7hLA4MJB1Fx4IC6zrmn0SxC4fewZ8R+r4MitDkRcZFc4/Mz0u0ejaQQEouW7XisFcNMXTgRsqUm7X3MmkLswDVdKBoJ1UMw4y5tx2BGRCzChhzYfr7FU0OnbHs+9hyb16BD+xhnehxtqzqYETkqObev0VJhKQvCJoxGukIJCQkJCQkJCUiRopHoSw4lOARtuD67OjuD6eaAT9MGBlPqwxT9cAZnv4fC4rBWkp39hXWyLFSjH0133WF1lGw7xEWj7EzXz0iFpCgFczW/LHyUhzjHXqUISJASL+XoqJL9HtaEkiCBiNeLQTmV6NXcRWk6rELLRBVspMCK3O11dbNZCRcZcinEQh80p16sC+jokHc01rXDbHSgGSkK75uN/NljlpIP2A9YcCqdCzoA9ARHzuK6bmFkKJzxh7BRIhcFM+JTG9HsU/9IW/FwPaROn70uoWP1MITCVrffiGhCLOC2QnIaRaYyKkHhr0M4y5dKO8hb0XtGhBeJm+1Y+LiR4XM60RD3SkXRlblLlpihhYsadWgfY7SPFtERPeuwHArXrXXDOClNJFG3M1UWEJIGAn8KyDjVPrpmQXSINNzEQzQTGkIMi9W5cabiyK+LZA6JTvl1YYp+7RIA9LHiBIJwDEhFkbmoTpzoIUAgzHNZ6zgMpLmulWKDoufmedi2ov5qwbN3pvYCaNteqfzYD20/AF9jrRlRakbkw88MEgIU00ILqrej7c4B0JFhKtSA9cLuggqi/rvSRsLcSC9FCQkJCQkJezkSfbZnkK5QQkJCQkJCQgJSpGgkhDJFSk201dIMErrgp6MKqEBufUxEFhUttaHZ2rx7NgvAArGbdEg5hbQMhYp8QiQhUIG40/bLbttsv9luXNTUh78FISDEC4qr2tNnlGr6TjaOCxh/FqIGqDZ/DOqOaftivVSU8p8BQzMZd+ac1rrYae1phjGuaY42rdCXHDNCuW1l4AM0XeWOArNFPN065JHQPaTLQtdpwHsuhdcvpLxCNL2mQmFri9WgxDtBt1jtBOC23ZDK0G35Ptnx5wXRej8rYh0j3pE7FMD2JR8o1BoWaW1SIqEPiqYrhvhBWYo1pBqIcpRZLHwVEA2aK7pGiqE2AmlqKJHQ7TqkWoZRRk06xEIoCmraqRQDFHOz5K7M0TcUao9mAPe02TLWxTI+64TWIcU4wfvgVGCmLgBoIXu39sWDhaSOErPPXVnb4qcqol6HOZM7ClzSxjMaPms6qSG8LiGlOMzt3Imrqadrc1pHiR+anpKOctUeUf5cwswnatyt7bjKWSyejn7jiB4nfZMJQVVMw1qKyp1LMIYyIpww21Jnw7yIwqLQFpXicZFXFbi4B8e07VVB4kz4THRljq7Q93vWJADYcc4QJ1rsbgzzsltMG0BytJ4L6aUoISEhISFhL4dAXOpmsW0AydF6LqSXohEoJYeSHDUUOrx0s2NOBDjxfg+VYj4lPxDnAjraUga1nMKUVltHqZneO2xbLQT2NZdiEbOOtoTOtKG4WimCykRa7LGaURv7vSQc1DhhS0kid1xp2nF9CK6VbEzWpSKA0m0AgBQ02oFQQBpH4VYukVGJlhGz5lQ4d9w2q5zTrm33wd54dK3tzNeKlMczI6DlJbq1ntn1RDzMe8YywKbvNwWvTSuBUJyeUR/dqZU+r1CwDSCK/jixt5uVG/sDIzC3YyeO2OgUZ0r9vpkTYQstrDbrClq79HJAz6htOnQFhjar3NilQ0Sm4TGjcwaNtm8KpikkCmrTrIVzHNZtDamPZ5b1JQcL0rkzIgJhsIz2D1O0m/20P+7hjD8cJwI0inTYcwD0M2zXVYqhpzIsZ10AOl3/ca2NLlr1y9mV2GKiRtsriomsh+WZ3rbNSmwtx1Ca8VNL6sZaLSlmq9wnVkjini17zcIIaS1olM7fjD7YxASiCLIgPb7F6qieWXi+PcGjdPmc+WeLN655ZlLybXSlktxHKkGckN/eHx64gBfU247UiqFr7CH0fYmFzALMjccMFTIqUBjhfbO22bBIprVdYEpF4yUU6AvzfVgdt4wItGjl94WOjroxB4LM+D4zKFSSu+dJKOLOGQCqhqN9wv6B9FKUkJCQkJCwl2Mp6bOE0UgvRQkJCQkJCXs5JCjkLtJnu7r/IwH7zEvR29/+dlx66aXRsoMPPhgbN24EACilcOmll+ITn/gEtm7dipNOOglXXnklnvCEJyzqeBQ+hC0ViSgRDU+nWKGhLRbapMBCnxCLWlJwJlFTL8Jurg8FnLb9gX4SBRCgCoqJhuLqsuKoTcFCK85GQ4zp2qKBCJsYHyNr+6MIlKHU7HoLpTDg/tr87qg6avxaTDsFFxjL+wHNpJz3UK0opqsC05WmwUrBXSHRjIlI4FlCF+7MpfcrckVTpURfcVQmRJ41vHm4EY4CQFnzSARrqbPCHIuH/lHGJdvRM4JERV8pUZ66oGY7c12ccF8Rt37AByYQV9vtLaVgKYhhQmN7/I7x3pmLJrOwYl2nWVBxu2FygabO6sgnxtIdAIBAUO7b1+11WDn0+Pac9bH8eA9ppGHy9lFFQDWtEffBPiMVgmerSb0wihatsIpP6W1bnlrdUo5hQ3fS+xZlPbRY5SmzwBunV2fueIBxpFe+UDPgn2thxP0iSFRgzJ8XIcrRp5kp8hrR6w1PrdClXAbeNrWk4Eb0bp21rT8XYwpQFHXorWXub0EkOA3GuS2U2pAD2HMBYn8rLZg3zzup3Lj24ulBHyQ7zkNaKxxTulys709PZu4ehv1pQkJ7YWXue9y2UNTp+SvEv7ks+E2wx5Uge8z7RygSu9Evso2EubFPvTY+4QlPwIYNG9zfLbfc4ta9973vxQc+8AH87d/+LW688UYccsghOO200zA1NfUw9jghISEhISFhX8E+EykCAM45DjnkkIHlSil88IMfxJ//+Z/jhS98IQDgM5/5DA4++GB88YtfxOte97o93dWEhISEhIQlQ9IU7RnsUy9Fd9xxB9asWYOiKHDSSSfh8ssvx1FHHYW7774bGzduxOmnn+62LYoCJ598Mm644YY5X4r6/T76fV8cdMeOHQA0vcGpMH5BIqIvQv8LCoUx5guYav8b7+0ThvVDS3lOZVygkcV0SpiZVitqMsq8H0dY2LVZfFUpOM8gISiko88shWU2tBktQUg/osVkkMUmTZkMNbidOz8u3XkTqoJsGwlly6U0ypI0vZtqRfFQX9vpz9YZ+hX34X9BXSZdxgU6ORnwKHG0HKtjKkMEXkedEjkVjrqsBIuuLRRxVE2YERi2bz9zIp0PlQRBToXzWbKlEwBN2VWSRf5CYVtRBo9k8PlkMa0gQEz5iuG0EYCY1mr6VpH4mg3sb2kzQiMKKizhEWaM2f6FhVuFYkOpENeHwA9JDnHpHUYTN5c1i3iGEA3thQjoDr2ehPUyUAUeRvbcbEbfQdkOFOZzm5W4f/YA7Ki0b02tKFqscv0oBUOvztznsACzLb4cno99HmtBHe3t1ptxzpkAo94XTEgaXfuwyLD1RBsol+EKFsvoPth+ADoDM6PC018BhdwsBWPHoHDeP9HquHArleBB8daMeh+qMNPM7hceIyoWC4JKxv9d2eswLNtsIHXdjGtPE8fjLxxfthyMaxee5gRYRItS7MEyH4FX1K60kTA39pkrdNJJJ+Gzn/0srrnmGnzyk5/Exo0b8bSnPQ1btmxxuqKDDz442ifUHI3CFVdcgWXLlrm/ww47bLedQ0JCQkJCQsLei30mUnTmmWe6z8cddxye+tSn4tGPfjQ+85nP4ClPeQoAgJB4yqKUGljWxFve8hZcfPHF7vuOHTtw2GGHOQdXqeBm+4COQPDAdReIvVNmRYYdtS4guKNqO6+QJjiRaPEgmiE4ZqvMzVjCQpOcSPSDYqNKISjGagSV5nstKGrBUJvIiFJhZMgXYg3bseJpKQmUjSoJ87k0OwsjEmbG44gpF2FSkgCSuMk3YQqgykeTmhMpqiAr45zdzbAVY+CFmT1mtfNv0S7ZDGVpfEIq6mbXVSGglPd+0R5K/hDtohrwbrLYNDNuzt9eaxJ8NpERKt02GfeREc58hKLFq8gZ24mzA3dxV0hWZMhpjbYpaOsE08x32vkLNWZztWLuGnIi0OEV2lRHJ5vRoCzwLBrm+6MdsYU7x3AbXUgVA+dg0fQTCmf24Qw2jBTYz6EvUBgdko2oa/gvi6JLxvWaDPbHnlvoDi8akZdKMScqliCQJI4ezRIdHdgh2tjKxjDOem5fGzkYZ30c3nkI93cPAABs7nXQ4SxKqGgWcHX9l1rwHBdztv/qcWy/M6qQZ9a7R0Uu9JlxpQ7P1UYqrdA6PO8Wq12B5TAxgRtxfB14dMVieuU8eTq0RF9lbnwyKLRZ6UTz46znHMEFdPHdyo1lNtR/aBgqxaIofDhO+pJH0Z8s8JqyhYTngoT3aqvgveMYkQM+ZfY4tt1QWF3DR5ko0QkYhMaO3rsLAiS6PottI2Fu7DORoibGxsZw3HHH4Y477nA6o2ZUaNOmTQPRoyaKosDk5GT0l5CQkJCQsDdBKq8rWvzfw30Wez/22Zeifr+Pn//851i9ejWOPPJIHHLIIbjuuuvc+rIs8f3vfx9Pe9rTHsZeJiQkJCQkJOwr2Gfosze+8Y147nOfi8MPPxybNm3Cu971LuzYsQPnnXceCCG46KKLcPnll+Oxj30sHvvYx+Lyyy9Hp9PBS17ykkUdj5rwck4F2qzCONNi7GV8Fh1aRkK9ngmvT4vC0W4WtaRO5Bv6rtCsQi2p8xjp1RxVQMWEwktbtiMUyMqgIGtYPqBZuoMQAuU+G78UG8JXmpKCCS1DwVNdigA10bQZAFKb41XmX6bcbkQCRBAo248B5WXQPwJNrfFQ8ElQzRpabDZzPkq8qMG5NH0EZMmgTH9qAvQZjwrLhnRaWJy2FgxCeCKIURnRiOG1VMp6MflisoD3zilLFnnNNAv3SkVcaQfKlLsUvqimXpBREY0TarxgAKAS1PnSAPG4KWiNglQxtQQyIFq1YFD6BgXrnBA7FLaS2AfGju9RHjICZIAGiQpwBvs1qTUQGYmrm3RZeKzKlVig0TbD4GgPR394kW4tWYOW9HQcg/JUjKDoi3Fsp1rsvyqbdv2z9Pi2UtPjs1UOShSWc021dXjl7u9MqcXYYWmdJsXrzt8UWw6/N33R7HpHdQeUrafHdBmPgaKwAx5rvnRMxvw1bwr/l/FZ970SzI2bgtbosNIJ0MPCwUJpuk0STSlZSsyOB+tNZBEJh4k0SQRe/O78o4yAvFnKxK6LrpUh8kMazB+PAISCoikeD35bA2F1WJjZXSd7TcAGpQG7Ec3/WxbbRsLc2Gdeiu6//36ce+652Lx5Mw488EA85SlPwY9//GOsXbsWAPCnf/qnmJ2dxYUXXujMG6+99lpMTEw8zD1PSEhISEjYNYRGnLvSBgCceOKJYIxh3bp1WLdu3VJ0b7/BPvNS9OUvf3nO9YQQvP3tb8fb3/72JTneJJ9Fnoloxg4Ay1gXPZVhc6VftkKRn/5MnbjWRgzs7I4qP+NzUQUj8qskQyWY26cpplaKuOiHlD7qQQAUeeWjF9QIzN11UaDB5EBKolPrAShBAUF8FrYgLmUeRAGSRDMhUhNnhq1q/3ASpXcjNuBEYtNsyYg+edNfEJ+OTDKp19loTSB6rsocdaZcH5QgTjSuaopyNkM9YAOgZ4C18LPyutaRIntugkpQpuJzC/oXOlpbkbX9MSHER/AGi6gau4WgeKsvvKkwxvs+HZlK9AWNhM5W9JoROVB40jka08FICYWaM1KUNbcfFm1RNBJpN9F0zm62KUARx2GC7QlcBKB5ZArloj/Dogj9yFHYi8pdQkIQWWhGBHw0d/A/ExHew2CVfn4ZuGl3irYwYUTXDBIzdYFpEwWqjKVGy4jna8Jc5LfPjCjZRVAIBPGp38MiRnbcSwlX+FQofX14oAWWikQFYe3xuYk2hvYJohHp8NeIugiiRUaEG19tWrprbX/fbJJAh5b6mTDtTotWFIUM72OGeKxkJBzX8X8/MogM2UhR+KzpqN7g2GWQyKgfR9RG/gJ7iYHzNM+LRPwsD46jhl1EZCdBosoHuxtL6Wh94403Jv3sCKRYWkJCQkJCQkIC9qFIUUJCQkJCwiMVSVO0Z5BeikZggvdRcAkJigf745g1Yuq+5JgRBWZqXaQ0FCdOG6dbV4iUSnAlg9AsBUx4vasylIKjVxs/j5qhsjQPNJ3TFEzWtReDMq7Dv5Njs5hs9ZwjdikY+oKjNO2WgqFvfH7qmkFWFKoysXhDgbmArCQgVkgNQ5VZmktYeg2uf/b5UhRQXEFxa6ZjPltKz+uWQTOBrKhR9fzQozwOiTvPoD6DqiiI8U4iAiDWYZsryIxAcUPLcAmWCdQmVK4UgbDnaXxeIudu5U+cEIXcXE/GJHImIkEnoxItUwQ0LDQ7mfWR03qAmrE0g1DE0V7asdpTDl2hw/QhtTDGtZjfClftuFneKL4KxBRYRoTziWmOmZBuEKAj/VwyUkf0RPN4QtEBX6CQ6hjm2xX2QToxrBbTMlq5701RtqUnRCAgD9vXx2DoyWyoBxiFROZNvwECUOULDUd+PEZobT14rB+YMAr5WeGP0ZccpeQYz70Dfk4FSlMQVoJgxhQvnu4XaPEarcxTkk1ay6IWFIQArOEcbffJee0KEnd4pcdnQNn0RGauiabVQrd4K77W62PBcPjveOCh5a6D4e/HeQ+rsik3Nnoqgy0KCwAtUkUi53CcWZG1vac92XLHqCQf6UTddFtvFtUOqdSscX7Dxnh4jL7i6MPeM7OPHNyXQaFgNag5777pb9gnSgTkEEp7d8AWHN/VNhLmRnptTEhISEhISEhAihSNxPaqjbzKsbXsoFtnLjoww3P0ROYElS1We9dik8Jpt+3wEh1eOgHttrLlRJpCUpSCRanjgI+SFIHbtU0np4HTMzeRjbG8xEHtaSe27IkM01WBHte3draOJbGEKNQmYiIZ1cJmYUMm8NGTykSFrGs1GuppBVidpMwlVCFBTKSIMAmeCzCb7hukwDMqtVt3pzT90WJmKzyVkrrIliCNGR/RTtq6IaWds4mPRilJoYw7mVIExKUxG7F7MEliVLr0fUoUMnM9C14jC2biEkQLXYPoX8dEjVqsiupF2dnzmLFvCGfT9nvTUdZGhzq0jOpQ6Y77NHQ7G86IiFLhdaTF1+pqij5Z4CYNNThTdLX3SG0E27E7b1xDzH+uFItmzXPVnWrWOrP9tucTbhe6GjcjG5EQt+FC3BThCig35ROKgKlAEEv8dbIibJuuXxtxL1VxZMJ+zmntxsJUWaCrcnTNM8apdLXPrM2DvS42cmvbUwqRtQPgRfQ2OgkAGRMoAldqTqVxJVeuv84CgqjI5oMSZRI6TOKH9E7OLSpQ0NrZQDTrmwFwYv/M1C6z91ULskvkZqyEY06CROMkIyKifUILEy2G92LqUbXsLBhkJKbOgmSEcGwM1NIL0uyrIY7jel/fPzs2O7zCJJt1x5wSLUDE47JgNRgbnaCwlFBLkH2mUqRop0gvRQkJCQkJCXs57KR7V9tImBuJPktISEhISEhIQIoUjcS2qoOszPFQv41ulTuaixn3WRve7rEaLSOCpEQXAJ02YksAWJnPgGfGEyNwO+6pDDkTEIGbckiLWToHAGpKI9dqQDsi231qydDOu3p54IsDmHC7+bwDLfT6GVgWUDolc/49RMHRUYpo/xYSuj1TIGAgPJXVFmhP9tEqdBhZSl1EtcVNUUsq0TaUk1QEfcEx3dc0Yr/iEII6qk0q4sTmkESLrEMdYyDmJlxqCs32TwK1EVcrSZw/lO4sHH3Gc4GMC3eNMyrBjVC9MPczvH7N2ZUXrupzsagVRU5jiigUbIfOvpRo+s564IyzntuvR7lzcgaAFq2ce/CAXxARaNEqoqFCES8bQkmEgunQTZo22paIC7fazwIUDHKA7rDXKaRa9Pa+P02PpCa1JhD76lhUkmuaawhtZo8ZLhMK7nyEc68220S+PZo6KWX8UxjSe+4eShLRVWXNIRTBbOUp6n7F3bYli0XPhKjInyikcqxvGWCKPIeCYqIGaJNwTIYiZEqUS7rgRCJntbvHoW9WRgU4FZGQPbyGHVajY2hgZui6DumZbWuwAbrSjF1Djdl1leIQIJEov3ke4Thqek0NE1v79TG1K6L7Gh8zLOoq5ilYLkiFZbzrvk+JFmZE4cYgJRICBOUg87hbkLLP9gzSS1FCQkJCQsJejkSfaXz7299e8D6nnXYa2u32vLZNL0UjcNumg8A6LVQVA2UqitxQopBnOlowi8wJJpe1ZtHhFXomerBltoNezTGeldG+gBZaU6Lcvv2KgxBgrNCzs8lWz0Wgcia0gNK85edUYDLTs7bl2SzazLc/jQKl5K4PAFyUBiYbdmpaf5B9DnSZy5xvGrMSQRBOrqO0+0KCtkyacKfEgePTLnrGqcRBrWnX326dO/HnVF1gy/QYZrs6miZLBpTU11QDvCDa/htEh1xnCUC5isTfeiZunae9MF0pgHOJiXbPXdvJvO/E6eEMlBOJNitdxK1SFDN14dKeW6zC8kzXhBrjfbRo5WaOlWKYFbmPjCifF06JQkF8an2HlejQ0kUkGLxAe4Vx3A1Fz816TuHyjAgnJC0VQ4vEM3i7b4tUA/s34UTjQ7ZzztMQA87EEgSl+TlpRgPClGwgnq1WjeW25qD93oxUhfcqI17g2nQ/loq4NPtQ5Kv7F0eKSslcMoSNyITRFytirxVDToWLxCilI3HMfJ/p56hMpJIbJ3Q77hmRaOe+Zh2n0kUZe5VO3CAuahdGjfS/9rcg7COgI0xhpLrFKvd7QImKXKqFIu48rfM1t+ORllFEMrR5aNEKY7QfRRIrxTAjdbS3Kwv0VNPj3PTPWDDYdqmSLgpagSFr1CBruk8Pc7C210AG46ySLErn19YKce073W+KsAahb2vwZaFuJBM8WI5jW9lx91QqbcFQz/QH9k3YfTjrrLMWtD0hBHfccQeOOuqoeW2fXooSEhISEhL2cixl7bN9HRs3bsRBBx00r20XWv80vRQlJCQkJCTs5Uj0mcZ55503byoMAP7n//yfC6rzll6KRkAICggtcM64cNRQLShAEAmvIfW66bJwLrKAfivvCe58TawQEgB6FddeOiF1wwSKzFNmFtNVDkqUE0nm1Is/Z2XmilgCwPayjV7Nna8JAOej0qsyVDVzvkRKmUKoxtlaUXiqiiqommgXaxgtdiaBzIT4OxU6bR2mP2Csi2VFDx2uv0/wPjgV2F613Xlbp9/ZMvNCakA7ZtckFnQb8bTKJGghIjG1daWmVKFVVLEgXVB3XwjxFAgxPkTjhprs8AotVkXXyNFYZp/Q4bgr8oYPT6MgZOCVxKlwDxWLaDktZO0YamOc9bCcdV14PixSOUb7Wsw6hDoQiAWlzPgURcLmUGgN6WjISvGBgpJhwVJgkDYbNrNkZEi/wj4NEeCGCJ29d7achfztEIF4WNAzPJYW13r6ZNR/Bo5ygxdEh9vuqFu6oDH0NWqz0tFVEtrPyI65pudYSOnlTKHNvfMzJ16EPaNy9CvuRNitvEZukhTamR6nYWHhUIBMiXTj2BYc9iJtBRoI4iuZubHLoYXENmGjRSuMs15EmbVI6T6HY6wnM8zIAl1Dn1WKDYxVu60df8IVzaYx/ddMBFAxTdxc3/Qg0m3qex8+s7VkkfdQeJ9lUCTX+lJZSqwOtu3WOWZF5q59T2QoBXO/p0JR/XtW7ZmCsOmlSOOqq65a0PYf/ehHF7T9vF6Kfvu3f3tBjRJC8O1vfxuPetSjFrRfQkJCQkJCQsLDhXm9FN188814wxvegPHx8Z1uq5TCu9/9bvT7+7j4zLg7F1mNPKshzEyCyFjQC3ixtFQE3SpHJX0Kfi9wlA6jP0JS42qrv1OiwJmfbZXCp5FWkiGjAnnm97fC31pRUPBo9lUrGomm7XFbWYVexZ2WkRAARkANACpTPipDFRQjQBApIkyB5LqtPK+xcmwGALB6bAcOKqZc7aSHyjFs6Y+jY9ya9UxbR42EMnP8cHLFlI8OcQVqjlF0KleTzMJG1jIusKLdjeqQlZJhh3EMr6S/fpToGkbWiXo860cp0OFstJIMs6YuHaBnlqXwTsA9kUXXusNKJ8RlREYp41kj5bkwglVAz9JbtIrS93OzbYuUoFBR3TF7zDDyA2jRc9NFOIR2DG5Gf0KhcbDtwHaj26XwtdCGRZPmEnQP9MdGdMx5Nl254+P6VPUwDTt0RtZtEhcVCUW2o45vIwVadO2TGraWHSD3bVoxM6CtHKZ6hW9HUndvGNURJGulwZmIIryUKPebIiRFVQei4Vq5Y3Ljph5GhgDqbCHGeB+T3KbKC3ctbH+LwPV5FpmzhChojYwKdKiPXI7RPiborGsrD8T0peIuMtRTGXoyC+qb0aFWEe585HC36dCdGrDjyBZUHG35EJ6jXa6THPRv4qzIUUofKWxGR+rgfktFou99wd1ve821CN/2r5QMs3WGbqlvTr/iKEsO2d0zae4pUjR/3HnnnXjNa16D733vewved9702Zve9KZ5C5ve//73L7gjCQkJCQkJCcORXormj+npaXz/+99f1L7zeim6++67ceCBB8670dtuuw1r1qxZVIcSEhISEhISEkbhb/7mb+Zc/6tf/WrRbc/rpWjt2rULavSwww5bVGf2JrSLCqyg6OQVClY72kYoiioo5BqKKa0fyPZZ7QNkxb42TN4P6LMiqyEkcaFaSpXxDfHOzpb2ypnQxWOd70/mxH6zVQ4hiaPeJosexrPSO2cL7kLDBasx2e65bbt5jqoMhgBRzlm6LhkkmPMFYoUA49KtL/La0SbTVYFDWjtcyLzNSlSKYrrS16FWFO1MUw7dKke78O40FVOAIuC5DtWPt/sYy3VIfywr3fWw1yT0X+pwL5bu8D4O4T2g409nVpgwt+TawZfEVJylFqhxBQe0cB0S4EY0LhXBAXntPITarHJ0WYeW6NC+oyB6SlMK9jpM0FknZGaQ6NC+E7JKEMzIouEurT+XttJuSIEaKqMptLY0Quin4pdxVIo5l2FLMc1VeNNRtsaJOISlXjJSG+rPjDGZuWM10RRPV4rpZ8gJb0m0n/XWGdYvSpRztelLjq7M3X2zx7KYFflAkc9QXGtRCh49T/Z5ts/sVFlgI9UpvZxKVIKhMCJoQhTKkqPq6fvFMunGsVQEdc08JW5YNkv37igLzBgaRilEyRycSU/hKIoWfOHWnNaY5D2szDR13RS9h9egkjwq3FtQ75NlqbNlTDs2r+DTmDTUGaDH4DYxBgBGVJ2jUt6HKhwb2vFaRt+tcL8vM0yJlksEEYq4Ptgivk4IrpjbDtCeRhbaXZ0E49PT47WhzqykwEoP6iHUr422WJpbSIqyZt4PK3DUnyIFev3M3QtRU1fYGgBEjwEUkL09Y2mtsOsp9fbJP/HEE8EYw7p167Bu3bpd7tuexkUXXYTVq1cjz/Oh68uyHLp8PlhU9tm2bdvwk5/8BJs2bYKU8UP58pe/fNGdSUhISEhISBjEUtJnN95444LS1Pc2rF27Fu95z3vw4he/eOj6m2++Gccff/yi2l7wS9H//b//Fy996UsxMzODiYkJkODVmRCSXooSEhISEhISdhuOP/543HTTTSNfigghUGp0RHwuLPil6A1veANe9apX4fLLL0en09n5DvsocibADG1VCp+BwKhCKRhm+yZU28/QMn49Ey1NsYQh1jC8rTPOjE8IleDU+8PUQheazLkO3XLEmWhCUfRqbr5zV4Ry1oR37e3fNtPGeKuPyZbOSJHKU3RdwXWWmwnTZ1xACApR62MqQR1NaIvGShNKpkxTZ0VuMriKPsZM+ZIWq7UvCNUh6cNaD6EvM/yqvxwAsGF2GaZMVlhmKMGKmaKKVCLPfOmEnNfOO0Uqgp7kUbkTm0FmYUPvGZED9EBY3qCgdRR6ryUL9hVgJvvN0gI2u0dnjdWOasuIiCkv4rPExkiccZkT4WiF3JRNsNlnW8S4oyMswowaBumoNwrpKDVLI4T7yAadJgIKzFJ6ERpeMBbDirP6/iiwqOgsdfsL6G2b24ft9A2FV0lN59gMuJASsaVQbH8H/I6U98ppetHo8woykhpFaGvJXNHXcLZdK4qe4C7bUMjYtwbwGY8TeR/dKsfWWW8cpxRchqZQDMSMOXsES4mVNcc0zdFSehxNl4Xro6XL7HFqQd2zVJtyQJZGHmclJnlvaIHVDtM+Ra6cCeLfH4nA3wjKFRO217qncjd2eipHV2pqYkYW6AceR7b8imubSOdDZI9r7/e0aKErfAYug3LPGpQECEUlvUdWWGA5xLBMQns/a8miQtz23g0rNFtJpgv5Sv9dBP5mQlKowDOt7jMvceAShHpqk3AJmkkQ4bP0dieS0NrjHe94B7rd7sj1xxxzDO6+++5Ftb3gl6Jf/epX+JM/+ZP9+oUoISEhISFhb0J6KfI45phj5lyfZdmCtdAWC34pevazn42f/vSn8y6utq+iW+ZgPIeUBGXJfQSFS4iaou7rS6dKim7tB1rGQ0dZCUL8QKSIByUlCn3jT1LVDFJSJ/IjgW9Rv9LHmjQFTWtBXaSqP2siRYGbbr+XYbqlIzPLOj03W52tMjAq3ayoqhlETXVRVgNha68WAoT6mS5lCkVe4YC2FmNa4TSgZ6CVoljBtfhzTbYNlWKuCGQtvQvsr6cnoBScc7cXsBN3rrXw/SFEuahSxoSLGrVYjZzVzhvJRnMmWM98r7wAWmbIaO0KUXZlHrlN6+iSEX8yCcp7bgY94JwMAhbsxyCdeDoskmrXhxEREB9BGaN9TMm2E0FnpAaC2XZOBARssVgSeM9QNN2rQ9+hnswi8bUVGVswSBehahZptSLo8Hx95C0ovgrtgxUeJ3SQpkRGUYWezJzbsI3SRa7gNmIHgVoxX3i0URw0FA3bKJFtF4gdxEXDtbiWzIn0w2N26wy9OnNRWOsfZsegUj7yqxSBkAS90kc+ZE2hTKSVKEDl5hrQGpxJ51ME6KSI7T3j1yWJ8zfT2/vPjEq0zPPVYjWoiYICOlki7D8j0t0jBqXHl7nfHdZvRBGJG3+USEywWTd2AV1M2HkRySxyrNau4D65JETT96krfJRpVmTxeircsy7AAAUME0/LxjgUiqCU3IurpU88CT2Hwn/deUsfgSoFQ1Uz5wtlI0M2Iq4kXKSIUBX9rkIBKogg0kyCZwIi2zNC64S58e53vxsXXHABli9fvkvtzOul6Nvf/rb7/JznPAdvetObcNttt+G4445DlsXVkZ/3vOftUocSEhISEhISYqRI0dy4/PLL8eIXv3jPvBSdddZZA8ve8Y53DCwjhECI9NackJCQkJCwlFCBPnRX2thfsVhhdRPzeilqpt0/EtDdMAbaboHUBLQiIH1T7kIClAC5uf6iUKgP0J/LQl9OJ/DjiLxmCFGOjulVGfold3SZrHUYt2+LmFJfcoNxiU7Lew/N9jN0t5piqzMMRBBQyzgIQNEMs2PGo2cyw/iEppTGilIXZzWhbUKUpgZC3xrzzEhBEdiEoMhqjBelE0qHxVSnqxwt1sK/bzsSAHBN/zcwmffx6PHNAIAjOw+6MHi/5nhwehy12Z1RqT1aSEgzGAGlKa/BOrojy3gPB7emAAAr8pmB0gKRqFRRdIyoeRWf0sV5DVW1yhTV7Ckj/g2oHwvvpSJde4CmIFqkdusY8eJfCooWqRydJUEdpUZBMSVb2CY7rr1QMB2KrjUdGT+a9twqxbyPUdD3UQJpAG4MWoFsKM4NqYtwufbMEo7W6cvM0SaMyMj3p1IsKm+ir5OnNCrFHM3VpFP0NTQUJSGolPcpKmg9IMi2fZwVGUojtgZMIV5zjWpFUQqOUnqxsi3fodvSXmOAplN6QZFiKQmkJBFNYtHvc3BDnwP6PxhZU5DSCKZnKETPeIlNMPBOhXZL01MlNBXn/IcERc8cgzOJVl65ZIOC1Y6eHs/6WJXPoG0KCWuvJgpq6d7AI0iAQCjuaGJXRsPSabSMysyEiQAzskBfZW5shV5ElEhAUUehNsdYZTyj7H3pS+7ud0ip2utr75kuI+NpudBbSCoaFWdtRkmkIu7+NqMfShH0BXe/l2XF0Td+bHXJNFVmxdQKukC2FU9LX5CaFkL/NloheE1BuYS00glBUBMFOYs9Agmyyz5Fu7r/IwELLtry2c9+dmhds7Is8dnPfnZJOpWQkJCQkJCQMF/cdtttOOKII3a5nQULrV/5ylfijDPOGKiDNjU1hVe+8pX7jU9RvoWBtRhoqaMvVmcqM62H9dmoBPYyVn2Kqi3B2iaFvKiiIq/9iqPs6uiE6utZDOG2IehZi3mTV0w5kbMUevY6PaOjQ3UvA+2a/QXRRWqN2JtWgOQANbNXOZVjh53ZLidY1plFyzjy9ksOEAVq+qAU8emoTAHEiw6rmqFXcy+8Jr6gaiUYpqsCv57Rzr9bZ9oostqlyD55xS9xaGurPqbQxWt39FquXSoVbKgrjBgxKsGZdKn/K4oZLM90GmZGRCTMpEQBEuiaSpqr+BQO5Dqq1KF9PFAd4IXBpkClnd0OK3pK7X0LIkSAEQ6b+90hpRNbA1oczYIIilAEQnnNXaU4SuvkjFjYHCKMsgxbF87UbQRnWPRnWHvDXKcBROJnwAjCGdw1Cl2mJQhEUBC0ViyKegH+PgqlIwO19ALpUnLn0MwBl+pfKwaqlHOMDu0HbP+iNGzJokhCbc6zFFyn2UsfDaokc+JpIX2h26rW7vR1ZYTVwjwD5nRIFEUlqCoGYZ5dVVMQrkArEw2piA04QDCGmgI2iECpiqiLMGrEqIyK4MYJBRV4UEjWjjV7P1qRAF5HXcJCwoxIJ65mkNF9LBVDFYipe8FYbUZOQ7G+jRz1XNp9gWlRuPsiA1G2bovAzr9rORjtiCwS7DgxRVq9a3Xcn1KwASrIibKltjcpTcS5X3JUNrpTaWF8dFsVXKQIDWE9utz/lrYl5DQHmzXCekG0UHwPOVonTdEg7rvvPhBCcOihh+Kwww7DT37yE3zxi1/EMcccg9e+9rWLanPBkSKlVGTYaHH//fdj2bJli+pEQkJCQkJCwmhYTdGu/u1PeMlLXoL169cDADZu3IjTTjsNP/nJT/DWt751qO55Pph3pOhJT3oSCCEghOD3fu/3wLnfVQiBu+++G2ecccaiOpGQkJCQkJCQsBDceuutePKTnwwA+OpXv4pjjz0WP/zhD3HttdfiggsuwNve9rYFtznvlyKbgXbzzTfj2c9+NsbHx926PM9xxBFH4Oyzz15wB/ZWZFMAKwFa6z8XvSXQAWzzwk0rIDMUE59lkBmDNC+Ms6sYSCYdPSX6DPQhTUe0NhOwLlCZ8jOiAERHQRbGEbcmIDOG9mhL7FiWQZkwPZtmsJY4RBAQb02i+0kA2g9EiYZymEIbeeZFnJxJIK+dyFQpAlF5vw5eCCcqrWuKbi93/h6zPMN4obVltaLYMD2JLdvG3XmWLPP+SnkfT5y8HwDw6LEHAQAbmabatvfa6Ae+IYpJJzhlVKGdlVhRaMpskvccjTAr88j9tmA1ajBkRoB6IJ/CGq4pu/vqldhQLXfh/mW8i0pyT6Eo5mgJ61DtfVKMGBi2aCX13j1EgEJ6oavyVKrelkeUREiXCTQpr9hPpilmbdIZtp2uzCOvHsBTEDQQZ+s2SORbFBbCrRSNqEtOBITIkFmvoIB165tCo3Zf2097jUI/HL3toPuwFJamraPCn5yKiBIL+14Hgu7aCHEt7RT61pSCoZTMialrRVHWvjBy3XAwrisGYb26lKZE3KWnvm/KCLBVZbk16M92Ewkw+9xRiroVJwKImmpRLwCWexE7o8r8BcWgqS2uXEUUrQBFi1bIAod1e/2FEcuHlGzkqA+KGUOXMchoDDZp1VE0q95XReL5aBxDF1v1gmkyMHZHUWIxjabF8XaZkDSiMqvAkd4W8LVFfGtJHS0KmAiLue6qpk5qYDrsqTN3oQwl32XgMwSOcdxOwbuAsUKD5FpOIQYltrsFiT4bRFVVKAo9pr/73e86S6Cjjz4aGzZsWFSb834puuSSSyCEwNq1a/HsZz8bq1evXtQBExISEhISEhaGlJI/iCc84Qn42Mc+huc85zm47rrr8M53vhMA8MADD2DlypWLanNBQmvGGC644AL8/Oc/X9TB9iWMb5DgmQTrK1RjFLMr/WAiAlGkyM4kiNKfmRHm4c4cfFYhnMhzM8ugpQQVCpKZGYxJ3yfWTVUCULphxQiqTuYMj+sWcUJBkQN1BxBatwzFAUWVV4sJAnCbk02wbUcHVUdPbcZb/egh4UygNM6+W7aPaYG3iRzJkqHOpBOOslxgKtMHLXscosfBthtLAgrIloS9DL94aKWboTx2fBOeOHkfnrpci6enRQt3za7C9kqLyHsicwJtTiUmsz5azItJH9faCAD4rda92Cbb+GlXO6v/qr8clWIYt9M46AgRAPxox2OiaIpUBOOs72a4M3WBMa6viVA+5RxAFBUCtGi7KXK16fM9G+EwFz90l+4bYbKd1Vcm2jJs5mZrgzlnZ8R1nMKUZ5uabsGJnHM2KBGkRDe241QE15pBSIKS+GhAGAkKIwCh67CFPUZPZJAgLl2+GSWg0tcVtOJre27NyFApuHNGt+7UPIiuhJEhIYNokEntthHRsmaoTYq2FNoNXtnogSQgmXQ2FapiQN88TAQAVZFMWDEF2TZ9qHRiBgCwLoHMGNSY3rrT7gNtuD5QKp2gt8VrbU1hzn8y77vaezZaFjmjw0cKp1VrIKoTOpxLRZwbdhjBqxQDDdywrfN4GJlr1sZzztlEoicz7Kj18x/aLEjjPB1GippwqfImmmcjQJSogehPCKW8SFsp4qw7nK1C7e1NZM1AubEt4NLZmyiqldTWRoFWBKzno0H6d1d/LrYCfBbIp4NoW06iqDzrK9TVI8+yZm/Be97zHrzgBS/A+973Ppx33nl44hOfCEAbTltabaFYcPbZcccdh7vuugtHHnnkog6YkJCQkJCQsDCoJaDP9rdI0SmnnILNmzdjx44dOOCAA9zy1772tYuuz7rg7LPLLrsMb3zjG/GP//iP2LBhA3bs2BH9JSQkJCQkJCwtFKyVwy78PdwnsRvAGIteiADgiCOOGLANmi8WHCmyGWbPe97zotR8m6q/v5T5UMbktL+MohojELlZQQ1d5nyKAGvuTGrjiGpeNSUDFCFobzZUzGzguMwAEAJuQ68EkMzTYrSUPkzLCfgsILm+3rMrmaPL7L72mIqZ75YNyD2VpmoKSlUkMm1llZt9cCIhrA8RVcbV2nhy9ClQUSgrGocvYim35aAyCCtbnw8jWOyXGTYaD6NaUjzYGsfjxn4NADg0ewirs62Ogrq3XIktpRFsg6DDKhSmaOXhxRY8vX2X/swL9FUXK+mtAICbs8Pwi97BjlbYWHt7CEtZWVfgSjE8WE4MCIRHgUE5J2Cg6dlDIYPdK8WcoLtS3B2jKwonQrXbNX2WrNC576ghS1codwyhCPqBk7P91yJ2AaaRmFW7H6vApZv5QrdKe2FZ+iKntfG8Ee44MhBo00af7PH0ehkV0OUkphdC/xntLzX8Z8h63gBw1Jmlz+y+oVeWu7ZC+ybVzqXaC6wB49Zu+q5EIJQGQHJDnVkheEnd/yQql6ZIqKW4jSjbJEfIgjpPG6J0soT1+cqZQCur0Ksycz7MCavH8j449bRnLSmm68L1SSrqKDArRK/gPaKqIe7bdj9Bg+KxSrqMjMy4Wdt7Zov2hp5WloazNK49ZqUY6iZlF9CiYTTD0abw59ak1lz0Irif9t9QXC2UF1MLSd39LiuuC1s7+oxB1QTSFgAW+r7p9gAI4zEEc4+ol0AoCmRmbl9sV8imJTob9bMvOYFoMYi2SWSolf4dT/TZfoUFvxRZT4CEhISEhISEPQMJApLKfOx2LPil6OSTT94d/djrUE1QyJyibumJrJ2wkH6UpasRRI2IAIwJMGRmRdCmxtEshTATXdYHslkFWvuZkKIEtLLfqVsncu2UK3Mzs2LwkSul/1ykiGtnZ8WHRD+IgqgpWoURHSozq5Y2vZsGaaww6fm+HVIRwGxL2zWk9A8YqQlsSS5FlQ4lGeffKufolvrEfy0n8FCvg42z2ovgMeObcVT7QTym0ALqI/IHndizRWpQyGjGSs0h765LTFCJFWbCeli2BdtEB1vrMQDA1npswC3azop31DlqydA2omJJpBP3FrQ2wlxb56vGBJt1YmBGpGu3+QMjFEVPZVGas23HprGHQtZQvCwVYFwWUCmqa1zZGlbBPXAiZ/hIS1j/KqwHVrrUfBX9Gwqke7X/CbBtWVixb7g+7I+NHLEgAjYKYSQhTLWmRLmIY60oIBFFryzsfmFfouhKUM+smZLtIhK2hpXw0R8tngaIcTAnRGlxtU27pwowQmrGhWnDPCO2e6U5zmQNTPlIlm7Pfy5Y7Z41KzYOYdPww/NyInZ7v22UaERwM7RcqBSFkDqpIFyvO6ZD2uFYFaAuAmSdyAEd+aMk5l7C9HCpaHDPqHG09v3X1g8mIhXUJHNtwUbXQuZBj3EaHFNI6sarMPcYAOqaaXG1ud8QREeCbLSvIpDM/oDr41gj8EYQE9kOoNiuP9NKIZsWsGFFPlODVkEEnxHIIo6M7U6k7LM9gwW/FAHAtm3b8Hd/93f4+c9/DkIIjjnmGLzqVa9KjtYJCQkJCQm7AVKR6MVxsW0kzI0FC61/+tOf4tGPfjT++q//Gg899BA2b96MD3zgA3j0ox+Nn/3sZ7ujjwkJCQkJCQkJEe6//35MT08PLK+qCv/6r/+6qDYXHCn63//7f+N5z3sePvnJT7pSH3Vd4/zzz8dFF1206I7sDFdccQW+8Y1v4Pbbb0e73cbTnvY0vOc978HjH/94t80rXvEKfOYzn4n2O+mkk/DjH/940cfNp5QWUxsmgfUUWKVcSJUoQOSGfjqIQuaAse9APaadqlXgE2S0viA1QGsCZfggWgO8C2Qz5sDKr1NUi/rs93xKQmbGjblj6DqrVaxJTJ2ZQqkAQCoKMZNh2tAIs1mGus9dWJxyCZ7rED4hAMukL36ZKahMOb8PWTPA0HuqJSHHa19YVlDDLZhrFHiyCEXQ6xWY6mkh6YapSdzSWo3VY0cAAJZls1hpLsIyPosVfBrLmHa03i46+PdZn2bZoSUO4dv0dVAcXZl7/xZRuFnRJO9FhTN53Y7FyopBqtp9BoAO0ZTDBJs17RvfHRV6ucRzCutD1DdC667IG/5I1ImnLR0RrrfrasXQb9Ba1sOmTSuwwM+Fk9jbRyqC6Vpzq5amsA7huSksGgp6LXImwIlEbgqRtlkV0XIZkZHwGwC4o09qVJRhxoiDe4F3EoVyxT3tMaXy4uucCl8ctsFlSBULslusRtc4hFuhrRUuh67otWDaY8vQKa7Ap2leVp6+0QWZlafW+gwkU2gv1/c9z2pHOZQVR1UxONa4ZEBJnecNKoZquRGj94l2pzfPz45uCwd2pnHQ5EMAgG6du3MrJUOL1Rg3Xlmhz09Oa02nKi92ziCQDXD4+t7TgAq2juWzhs+flbkTZQ84pBv/KktlVZI5ujKnAhkVkaA+o8JRrTTILmm6LktF0K0zNxYt7Qlo6r5W1F1fGnBl1msqdKkWkkT3uDbXVtaGTrQ3pqSgPep/95QvmC3N75hom98uokAFkD+gj5N1Ad4z51UBdYdBFubcOEHdprAaeFEQSA7vhr6bofx/O7vUxv6ADRs24PnPfz5uuukmEELw0pe+FFdeeaWrtPHQQw/h1FNPXVTi16IiRW9+85uj2mecc/zpn/4pfvrTny64A/PF97//faxbtw4//vGPcd1116Gua5x++umYmZmJtjvjjDOwYcMG93f11Vfvtj4lJCQkJCTsCaSCsB5/9md/BsYY/v3f/x3//M//jNtuuw2nnHIKtm7d6rZRi3wDXHCkaHJyEvfeey+OPvroaPl9992HiYmJRXViPvjnf/7n6PtVV12Fgw46CDfddBN+93d/1y0vigKHHHLIbutHQkJCQkJCwsOH7373u/jmN7+JE044AQDwO7/zOzjnnHPwzGc+E//yL/8CAJFl0EKw4Jeic845B69+9avxV3/1V3ja054GQgh+8IMf4E1vehPOPffcRXViMdi+XacIrFixIlp+/fXX46CDDsLy5ctx8skn47LLLpvTxKnf76Pf99kZTQNKa/tuX7BFQSBaxHvxUEBm1vMCAPOeF7TUfzZ+rygQsDiQGVzpDiX153LC8mA+M0L7HxG37dbHU2RTpo1C98+2Kwp9fGpDyYQgipQzBdnX4fSaKU27WVqBAmVh6LNMgjJl6AWAZgJSUE+RWY8WAKxTg+e1oyCEUOCZL2caeo0AQMFrR2kwKtHOKkdlba/amDWpdQ/SCazIx7CC62hgpRi217ocSEYEKs4wQTXNof2C4iKrNutmGZ+NCmV2aKm9hsymBa2Dkh0MHVpiFdcXmBGJbcJTdmO0j65NLzQI6bTQp0iCRuU5ABll7OglhjpAUJzVFLsMqSt/LO1ZQ12LdKAgrM1iqof410QeMlQGvkSaxgopLJd1ZD5b2kwoAhb4KgGGsgrOzVMrKvIlAmBoOptpJYbQZj77zF0/FZc6kSDoVRl6ptRDVTNXQkMI6sYiYEp5BN+hAJfWpMwM3JSzIZnC2LJZdPLSbd4tc9duOJaVsTRyzxfz60QhoYjPWq1rip7g7lxXFjOYMTQn6hylYBhr6fFaqBrby7a7luG/GalBiRpKg1nfofA6cSrQNSmvIT021Fsq9LiCL+NSK6XpyEZWIA3umz2vupHBqLeLv0eZiDWPSnvYz0JSlOGYknHRV1ExTZsBukRL4JNGyth7Ct6eCaxPIOAlDURpqtP9DlPjIQeA5AT6UTb9bRFUY8RlF9vTlHvIpmh/zj7jnOPYY48FAJxwwgn41Kc+Nef227dvjwwbi6LA17/+dbzoRS/Cqaeeis9//vOL78tCd/irv/orEELw8pe/HHVtKjVnGf7oj/4I7373uxfdkYVAKYWLL74Yz3jGM9yFBIAzzzwTL3rRi7B27Vrcfffd+Mu//Es885nPxE033eQq6TZxxRVX4NJLL90j/U5ISEhISFgM9ufss+XLl+Pmm2+e9/ZHHXUU/uM//gOPfexj3TLOOb72ta/hRS96Ef7H//gfi+7Lgl+K8jzHhz70IVxxxRW48847oZTCYx7zmEXXGVkM/viP/xj/8R//gR/84AfR8nPOOcd9PvbYY3HCCSdg7dq1+M53voMXvvCFQ9t6y1vegosvvth937FjBw477DA903B+FEDdMbOFQs8ubGFXRf1MkZZ6RmL0kmCVXicKv62F4t7PSDcMiMzPLFkfsLVNs1kFPqtAjIXw9KENR+tgIsb6AJR3xpbMR6N0HwiMJQtoHa/TMyTjU9KRqNsStFWbQxAt/jbeH5QrMFNwMcsEOBPoGS+ijAp0WqWPBjARzRYLVqPFvAfOeNZ30Y0wIkGJxExdYFZ47xcblemwCoWsg0KZNCpwyajEuLlJBa0ACRfB0W0rFx0aZz20iA/hdWjpBNbbTZTIrp+gPTxUj7v+ycDTqCczSEUirxfWmCWHDtRNJ207Ew9FrPY44Ww69KIRIJHQlROJDvdRjnD2HRbcdG2HYtkGKFFRH8PohAy2t940TvxNRbCOgBLqxLW11JEMG1loFgGtg+tplwFwYm373UaJvK9WYxat4H1rmv8RMO+5o6SOEtkEgnysRJH5SGav4k7cq6NEcdRJcQVkxuMoishKkD5zz4uotOO2daY+MJ9Cl+sfgI29SXTr3F8/CIxneuzaKKF1Y8+oRF/wKDpo712bCmSBt1QldRQxdJ+2bulOCO/ug47ueedpL7SuFY2ieXYMuqSBYD9KJKgikadUGBmUikQRTKV81IoQYnM3dOFiQaOisEJQ1EYkL0oKVdkIvfGdCp3Gw1tOoJ39AUCZ31hhPd8UWM9HikShE150Ozq5pTRFfeuOXm9/RmgNVwA4Yc/izDPPxCc+8QmcffbZ0XL7YnT22Wfj/vvvX1TbCxZaW3Q6HRx33HH4zd/8zT36QvT6178e3/72t7F+/Xoceuihc267evVqrF27FnfcccfIbYqiwOTkZPSXkJCQkJCwN2GX654tMnvtX//1X/Hc5z4Xa9asASEE3/rWtwa2+chHPoIjjzwSrVYLxx9/PP7t3/5tQcfYsWMHjj/+eDzjGc/A97///Z1uf9lll+FrX/va0HWcc3zjG9/AXXfdtaA+uP0XusPMzAze/e5341/+5V+wadMmyAahutiO7AxKKbz+9a/HN7/5TVx//fU48sgjd7rPli1bcN9992H16tW7pU8JCQkJCQl7AkrtuiZoMS9FMzMzeOITn4hXvvKVA5EZAPjKV76Ciy66CB/5yEfw9Kc/HR//+Mdx5pln4rbbbsPhhx8OADj++OMj7a7FtddeizVr1uCee+7BmjVrcOutt+I5z3kObrnlljkDFJzzgfU//OEPccIJJ6AoCjDGsHbt2oWfLBbxUnT++efj+9//Pl72spdh9erVi1Z4LxTr1q3DF7/4RfzDP/wDJiYmsHGjLguxbNkytNttTE9P4+1vfzvOPvtsrF69Gvfccw/e+ta3YtWqVXjBC16w4OPJDCCZtnJX1NNMBACf9V4WxXbpaLFqjEIyBDbwQDlJUGzT3+uO9zCSTAuoHUXWBVoPSWQzJpxdKuTbdWyW/fyXIGMdzPy2joyN/wrYeozebuIuCt4DWN+P9tmVvuRGVvqCtSLXJUtshN3VNbWa7ECQWHUoQClErhtygtG2+XdCQLRNAxMlJlp9rOjouHOHVxjPSkd1tFiF5Zmmo2zI3a6zNEDmwvgyKoURYmU2g2nDRVaKYYL1olIeB/MdqNigZwgLaDUATqztSndAoWPi4C1amXIcpuwHqTDBe45meKgej6gmAeJouVmZO98gIC6i2mYVOIGjTywK448kGmUTbNv62gReG8QLuqN2gnY5Yt8f63lTGwG3RSSkhgKnwnsQERFTZ8HxdPFYHpU5EcYjRx8/ANH9KAPvHFuY1h43psj8cUrJHNVSShYVfQU0nRX+/NgffFlRKEEddQVAFwRl4f8Ifh1tCWSF0UdygVpQ9EpfTsILaglExUBtSZBxAcalK+yq+2C8h/ocssvBZg3lSIGtMx3AmP4/urXJUbMFrfFQOYZHmR+KrfUYMqHbXJ51USnvAbWlbLlrCehxNWbK1dgxYOnmHXULPZG5cTCR9SJaNizHUQqOnuDBWPGUZ04FyiEFYHlw3uG46gmOWeMfRYhCi9eOHm/6GHEmIy+ikA4VkqA2/kZKEl301XgToaTOe8gW5iWW1lQm6cXeE+aF1bQkmi4zm7a2mGfOXFJRANOHGmqNE+0nZ5h1Wuu/sHjsvopmQlFRFCN1t2eeeSbOPPPMkW194AMfwKtf/Wqcf/75AIAPfvCDuOaaa/DRj34UV1xxBQDgpptumrM/a9asAaBlL8cccwz++7//22WWzRdnnnkmbr75Zhx11FEL2q+JBb8U/dM//RO+853v4OlPf/ouHXih+OhHPwoAOOWUU6LlV111FV7xileAMYZbbrkFn/3sZ7Ft2zasXr0ap556Kr7yla/sVquAhISEhISE3Y2lzD477LDDouWXXHIJ3v72ty+4vbIscdNNN+HP/uzPouWnn346brjhhnm1sXXrVnQ6HRRFgfvvvx+33Xbbol5sFutL1MSCX4oOOOCAgTT4PYGdnXC73cY111yzZMeTGUCMEJpII2AGkO+QyKeki5zo2YKZsQiFrAdXyLV7ENPr7bYEztGalkA2C2TTZgZTK7BSuYKwxeYecPPtut1lk5CrlkMyexx3SCjq27D9Vsz3l5aBmNqk7rvUVWndsvX3bFpBFMStEzmQbzP7Uh0lUjaVeUwgH9Mn02mVaPEKHa6nVDkTaLHKzTrbrHIRIpv+XpjpV1cUkdOu3cYiIwIdc9HW5FtdVGZzPYGCVugZh2MGiQnWQwu6XaEIurIwn3VkJYzwzIrMRWAEiC9CiyoSXWdUgkGip/RgCIu8ArpobUWMm7TZrzZidU6FF35DDoicw8KuIIOFJVkktjZRLaIASHe9mun4fhuAsVpHVpRvo5lG3Uy5t5GujEgnJG/2RUervECWEYWMSHcujMTux5QoV1w2hykSGrQXRrJ6gkcRilCUS0h8PTiT7kdeUwtBOJfAiaf1MuX2J1S5/QhRYJkEM9EfRqVeZovU1kRHmWAEmJlwzstFXiPjwrVLoZxzc1VybX9hnJNJLpBnflzr6KX+rp8Hv+6o1qbI5qErvTN6JiVK6MiOvWZj5mFnJjNk0iQYZFSPE3sPt1Vt7Kh0qHoy62GC95wIe6bOQYOxwqmMCtQ2bRVCZ/Sw4GtTSC2sm7lNRkHgaC0VFNF/TegoYCBoV4AKrBWIuyGAgvJRIpiItwqi+wrOdZx3ibYssRUK+vp32Z5aPeaLbVtxNp8152nZH3soZZ6DRVUQXTgUopyaRbcBaF/BkH4aFSXaGTZv3gwhBA4++OBo+cEHH+zYnJ3h5z//OV73uteBUgpCCD70oQ89LO8YFgu+ne985zvxtre9DZ/5zGf2qMA6ISEhISHhkYqljBQtdVJRU0ajlJq3tOZpT3sabrnlll3uw8c//vGBl7PFYMEvRe9///tx55134uCDD8YRRxyBLMui9akobEJCQkJCwv6PVatWgTE2EBXatGnTkrygLAQveclLlqSdBb8UnXXWWUty4L0ddQdQhRbs8S7Au8bHZFoLq5WrMqmc4C6bkVqYbWguVipUYwS1Cajxrt4f0EJtWinQ0oTt+xJ8Ww+44x4AAGHMF7M7cAVkJ0PxkKaRRFGgc78pQvsohYn7lPNRmjlEi6wdRSYQubUS6UWFVCASJcqMuNAxK/W+hoFCNQ5UkxJqmaaIWuMlxto6njyWl5jI+xjPTBFV3kdBa2yrjKCZSEcPtGiFcdbDBNUh/gnaQ1cWTvwcCnop0QJo6ydEoXCgcZqmRGGCzjqKTIujWSRKZqETtGSuUKum0gLKMaDDMlKDQUb+QkIRRwfFTtMiotoYybVztqEPKGKPoLBvmmqiyGApPAVBLOWkKT1LWdHAPVoLoCU4o26d9Y3RC+rI96cCC/ognKBa93+0Fa8AGakklQFtps9TXxMeHNfZhcMK6BHtY69nKBquFcVDvQ46mR7nB7WnHSXX6xvBv6XA7DUxXllKEUdraYpXeqqFKkeBue/WD4xrOiwz7VCqReC19eOiCtQKiqk2p+fGc2e8KNHJyogu6tV6jJUFRwk4UXarqNDitXsOhKJuPCxjs6C5wtZ6DABwAJ/BUfkmAMA20cFDYjx6LmZEjq45jk5oMMWh3YPuNjWFY43QGr3AT0hheTbraLntZRucSvcM90QWuZKDIqLImp5XoVgegBOf214Pc1cvWI0KLLqn9r+kWlAo5e+3Utql3P3s0pBOJYZCM1+VEVK730Di5QRGPuCoNQmorOEZZ0H1WLK/36Sl22yyfTJbGi3LTrGU/NkSIc9zHH/88bjuuuuihKbrrrsOz3/+85f2YEPQ6/Xw4Q9/GOvXrx+aDb+YIM2CX4ouueSSeW33pS99Cc973vMwNja24E4lJCQkJCQkBFiKgq5m/xNPPBGMMaxbtw7r1q2bc5fp6Wn84he/cN/vvvtu3HzzzVixYgUOP/xwXHzxxXjZy16GE044AU996lPxiU98Avfeey8uuOCCXevrPPCqV70K1113Hf7gD/4AT37yk5ckG363ScRe97rX4aSTTtrl9LiHC70DJWhbC6pJRdCt7BSFg9ZAvl1/bW1RyKdM6vMYRd0irhaadT8NJvGBqFmAlhL5L7foBd0u6ge36IJKANjEBPiBKwEAsshQj2WYOtzMQie8YyvrEWz4HYWxe83Me5kWCLK+F0zbLGZWAnwGPsXYRJSsO7YK0k0l19Gy8gAz+19Wg7VrtNp6Fj/R6qNtZvQdI7JeZtLu1xTbMcF6+HFf3/vpXoG2SRtexrs4kE+5mmXbxBh6KsNBuU4RlYqiZ9LhpaIoqBc+Z6RGx6gdW7QChcSk8TTYWC3DNtFxESgJ4tL1BahLuQeAcUaR0TpKfbez7Epx5LTvRLAMEjOqQG4uzKMyL/YuFUNOBCZMH6ZEC11ZuBl2GLlq0SoSLlvrgcrM1CvFIM0DzZiKUvQBgMLOvHXUzc74O7RERmsXBeuK3NkWWBGtTcnOqAAnYmiESCD+MWGIRdlxNE1CEF+rjVOBDqtc9KcvOahNjCA+KgToz2ENrtA5uVtnqATDlGyZdqUXLktdB0sFETvGa/c9o14s3S85lCLuO6DT6bkVUzMvMOdUopUFBQkBVIKh4LU/jol62AhJYdzYO7xCTkVUE6w0yQar2jOYzHvu2mt7AYYdxpPjv3uH4PBCP/trsq1oFRU2Vjpf/87eQdhc6YzZJ3buxZRsu1p8QlFso20sL/Tz86jWttjtHNSJ8ClReqzYa0QEjmjrY67KpvHrahIPzC4HAPx6dhyHjW/DmElq2Nwbc/utas1gZTaLGRNGbiYEhPXWOJUDafcycLiuhL/3GRXImEBhnjWpCDIThZstMyiVubpihCjQTILkpvaiEV4D0PYLNYHk5picgJYUzAqka594QqT+XS5XGEf4nOrfSBMpUoH7tf7JIC6y7iJCjf935VKHX/YAbrzxxnlrin7605/i1FNPdd9tBYjzzjsPn/70p3HOOedgy5YteMc73oENGzbg2GOPxdVXX71on6CF4Dvf+Q6uvvrqJc2G320vRUuVHpeQkJCQkPBIx2IdqZttLBSnnHLKTv8/v/DCC3HhhRcusleLx6Me9aglt9zZh+2nEhISEhISHhmw2We7+rc/4f3vfz/e/OY345e//OWStbmHHBb2PahM6T8AaEsIr+mDogrlclMssUPBu/pzNmPEySYhrxrTn60jajkO9FaY0HaZY2yjwgTRFFl+lwB/1GqoqWl9mLEOxKGrAADdR3Uwu5Khb9xwZeEpMVpp4d/MWiPgnqKQhQSof99lXf0g5NsNpWytcYQXZAPGr8P03foduZAxl8iMLwugQ91WVEqJQod7r5UJ1sMKPo0D8hkAwIbZZXio9NqyDi0dJWbF0NZjRQbv6cOKlFpYQbSlqjIiUCnm2psS3i7CegQ5z6DAPVuvVxDwRV1bpEQW/Ha0aIVM6X0naQ87oCmQFqjrhz2OAHVUVEifZURAKgpGfOHbjAj0HZcJR58JKHAS0l8iouE07WbGnPFCsr46PZk5gTYnulBvSNnF/wazP8kicbf1WPJ+OfH1Dz2WasnQRSi29f3TBV4H6RbnpBy4VgPAWN53tOeOfgtNOE8g44ztBNQsXtf01In2hXJUWsFqZExEnjsF8w7MeVDMuFtnKAWLnJxte/qaSbQMTTzGS+cfBBh36WCfHXULv8IB+ksBHEK24UCuKeSqYLinf6DbNie18+NaxrtAC46GOyCbcRRsX3IIKDfVtQVhWXBd7DifEi1kROCwzlbdbjYbFfI9pD3lromlvl0RXyoRF+2V4AGFGNKjgHGqDgTYJLjWTbF2ZehSCQJKJSi1gncCSgWEcbwmIJDWm4gAxP5W6xsCyQVAzI/kLIGp7wxFNVUmW8YryfrIWXVEprwYuSTR76WiyrlnWyimvHdbwh7HCSecgF6vh6OOOgqdTmcgG/6hhx5acJvppSghISEhIWFvR+gyuSttYGFC670Z5557Ln71q1/h8ssvx8EHH7x3C633eRQSKKROC+UKxMwOCdOzU5Hp7z1koMYtlfUIaOldq2VuUkftFJHCzzo4UI0TTB2mRbHt9mqwUoLN6tlaPcbRW2FmgJMUvVU+lb4eVxDWKbciWhhoJq/1hASZrCCnjNPzLEWmNZpaUJj5/imiI052gkiEdnQFtMi6mpDAmI7+8KLWM0QzO+srBm6sB8ZzhRarMG5mxlYQfWCuo15byzEntHyoHAMjykVXWkZIbWfCfZnFdb0oggiPn5G5/U3EqUUrJ9C160WDHbYibBsBiet5mUiRylAp7pyxASCD8NElSPc5R40OKTFmRNwdov/Nie5HWJdNgAbF5uwxiROOa0dpM3s1/RLKR5msLYFtN64dRhtWBkZYDS2gps5VO0ixNtfTWw1oe/PQeTyOtvjogIC2ALAREgmCWZG59VIRFxkoJY9qnYXrbF9s5EVKLWS2UVlClLc3IAo5q922Ttg7JJqojNA3jEKQQDDNiUTbiKtzKozjtnVvjuvGRaJ2xtETmU9rbwhsORVOqFzQGm1WuXFKicJsIO6XijhB/IZyOQDgEL4NAHBwtt2N3Y3VMnRl4e4vJRJri82Y4m13XBslzGiNjAhMm8yJ7aoNqYh3OCfKpeDb+2Wjms2ahGPcR7ms5UNmttGRtmpgPQBUikJSH3mTIKhJEA0MHkkb0bNi+vB5CaN5FqHtghDUOfwrCW0t4v43UwBROmIOQFEOWhnX9LaCGJMgHf27plp2jJvEFCZdRFFWgSU2jBN6TYHS9LMmQKaAes9EipZSU7QQofXejBtuuAE/+tGP8MQnPnHJ2txtmqK1a9cOhLISEhISEhISEpYCRx99NGZnZ5e0zQW/FN133324//773fef/OQnuOiii/CJT3wi2u7WW28dKDqXkJCQkJCQsAioJfrbj/Dud78bb3jDG3D99ddjy5Yt2LFjR/S3GCyYPnvJS16C1772tXjZy16GjRs34rTTTsMTnvAEfP7zn8fGjRvxtre9bVEd2dtA8xq0qEGYQqddYqzQYXFmfDhsyLe3LEOvpyNitSlY6IpUVjQS8UHFRSpnpziy7Ub4eHimfTHMtqIFVOPGzTVTkLkExnT4emJ5F4dM6hs+W2e4/1crQXboW6kma6ged4ekfeIcWMtJTZ/VJirNp4GsC/+gEDhBosgBIr2YkRD9Z8PX40UfK1tdAMCBrWksz2axjOudLd11wtjdAHR4/b+nDzafKR7sj6NvqihyKsCIcj48oSC6w/qYoD3nA2S9gwBNR7GAylrJpvDrahlmjMM1Jcp5PjXpp0fxrZiRBbqBja09JoUuhOpC+QQISa+uylEZH6WeIhCUgpnjLGc9jNFfY4vQHOSUbLlCssLQGKH/UaV4JPDuElt0lqOnuBPQtmjl+lcppinHgN7rSU/phNtKRdx1ctcEsWt4MUx0HVwPu62meiz9pIw43QutQeBE5JVk4JbPNZSRF3e7ZgAAHV6ibSinvuTo1gV6wvpUxY7gORVOyFzQGpwKJ+5nRDl/nhlROF8jCzvOAE3NtAOaixIVjDGhqUzzUPQU99SqzKICvDYpoLA+WlS4QseWqrUQoFEx4V5AE1vK60FoOmMFn8aabKvbbjnrOpo1JzU21svd9+2i48bxOOthTbYNU7Tl2t1et91xWCBAf6gcw46q5b5rr7G+E1Xr6+CTGEJIUFBId/594S30eTgmzD2VhLhi0fZeWtSKoqRelF8bp/ZKaLF+aYsrm+K/YVHgstL3oqwZRE0ha0NNCgrKpPutVblAf5kRehcCnaJCuzCC+LxEEdCypfCO9BJa+M0CylYqgtlK/973ygxVzSC68b3eXVjK2mf7C8444wwAwO/93u9Fy23tNVcVYgFY8EvRrbfeiic/+ckAgK9+9as49thj8cMf/hDXXnstLrjggv3mpSghISEhIWGvwn4W6dlVrF+/fsnbXPBLUVVVKAo9G//ud7+L5z3veQA0t7dhw4al7d3DiM54CdbRrrjtrHL1mHImUEvqIh0ZlS5NXQgKQpR7Gy9rFrVJgKDGkkS5jKO3Qs/yyqkMkACtTZSJmvRQAGgL0ExgfFzPSI484CEcNb4ZAHB/9wA8kC0HTHo835BrgbSZUdXjEsQKZHMF1iPOYVsWQL8Ia5/5Wmf1mIIYE2At4+zL9Hkub+lo0LKih8nM1C/jPUyy2SjlvVIck8a1OqPCCTm7dY4Wq6J0e6GIq42VEYGOEWwvY7MYo32fvo9wH2rckm2dMRWnxxOJ0gzvLEhpt8cTikTLfOq8bkMGEZwW8a7aYaqxAEVPZphBYfaVGCMVJoMoATPKxlIxtEiF3FxsAQqmlHPHbtHKO/0qAUg4d9+wnxRxv/syAyPSuVTP5URNiUTXiHubYA3BsgQBhXLLMyJcFNPWYrORGUkIKHwttTatoiiSdUIGtIBZi5ttu74uXmbOI6fe6iES91LhIjhtVqKgtRsroWO5FdFXMv55CwXSNnLoIoSmP2O0HwmoO4Egf5xRdGXu+mCjShYZEc6pPRSxh7BRxqbQnxLfpzCyxkytPS/0V1jBpjFFtNC6pzJXNxAMaJEycvIGtMs5AHRl7iJdtaIog2gaFVYIr+/pGO+7unySUBNBtZE2G4m0fY9T9MPrSYlEToN0fjI4Pm10qJbMifB7NUcpGTIaJEMgdsp2AnImUTEGwfW+Cjqy1Ix+AkArq8CZjOrrLctm3djdVrXd9eJEDtpJgKBX62s4k+foVjkE+tjXsL9kn5188slL3uaCX4qe8IQn4GMf+xie85zn4LrrrsM73/lOAMADDzyAlStXLnkHExISEhISHulYSvpsf8k+2x1YsND6Pe95Dz7+8Y/jlFNOwbnnnutS4b797W87Wi0hISEhISFhCZGE1nsEC44UnXLKKdi8eTN27NiBAw44wC1/7Wtfi06nM8ee+xYOHJ8CHyuNS22NDjf0GRUoJcN0pWmIKRRO/Nc3Rhm5oT3GCoCzWOiVOT8UiW6Vw/ptllyCUuV8JAjxnhKcS7SKCqsntLj68RO/dgVUZ+oC4xM97NihQ76KE7A+gRpiYsX6BDLzLtaKAVCAqUMJxbz/ESYqFGOV63+7qNDOKiwrNDW0opjBJNefx1kfjEhHmYSUll7v6STrV+T6ZETWlkJZxrtYzrSAu0PLSFwNeHErhRZDd2HoR8W1s7M5uQnaQxkITDUtErtmO7rPiKtDWOqjUhwMMqK9XF8UBSPSeSz1ZIUWqzFhqBxKFJj03kMZ8fSPdo+WbloiFHGfezLDBPNpphTKUT9lQL/oY0h0Qnqt6dtDhKMUBaihNuN7AGhxdEg3MEPZ2C07rHQu1bpdTQGHyJwPkD9mpVjklBwKePVxFHhwHyrFMMb1cQrju2P3y2jtrl9BK4zRvhM5j1FPYfRUDqGIo6rs+dhx2aQKhbmP9ji2LwDcGLJYzujANvaa50SgRTyNV6rBn1c79spAdC3ceKxdO6XzqiIQxjvLolIs8vRxYnPoJIWxwPsqvNeVYqiNy7Mt3ryjbJltYxfwWjLnf2SV8aHrN+CLFFPi1fOuVyHVOsTPyV0PRRylp/22dAsdxlBKHv1ehIVla+m9ujImnFgb0L5NTV8qW+A3pwI5E5gMileP857r48o8d3RkLeOxW0uGSlHMcv2b0+I12lmFWu179FnCaCzKp0gphZtuugkf//jHMTWlnQHzPN+vXooSEhISEhL2HpAl+kuYCwuOFP3yl7/EGWecgXvvvRf9fh+nnXYaJiYm8N73vhe9Xg8f+9jHdkc/ExISEhISHrlYCvor0Wc7xYJfiv7X//pfOOGEE/D//t//i4TVL3jBC3D++ecvaeceThw9+SDy8QwF02FXSwHZLJcNpeacNva8WI0TiVJyF2bmpoSApZHCzAtGFPqC46COLoXRrTPMVLkvL8DrqITBozrb8ZjOJgDAY4qNmJI6xFt1GOgaiZvzQ3U7ZYbubA7RNW7iPYaKm/7MUCiuUHcMtSEJwBSUKVlCC4GsMHRZq0Qnr9A2WRqTeR/jWR8TljLjJSYNxWO9cey5WU+WrtIU42OLX2NT21+n5VnXUW822yykzCwFkRERF4gNssIsnM+PyhrZZLXL5ikVA4V0GWQA0OF95Gb7nuLOT6hUDJXijr6QoKhU29EXuiyJ7l+LlVGmkgRFT3GMmeMsp6X73FMMPcUd7ZERiQwCLUfLEQilr0mXFq4fAKIspoJUugxJIxtuoKQI4Cg/S+NQCBzAZxylMlBSBUGJECLQIt7ziBEZUXdhJmBPZVHWW4tUzkcnvDbRceCfgyYNZc8tJ3VUSiS81jkRJlNw9K98SOeywHsopIoECHoqc9dPDplJ2+Pq7MGY/tNeUIP3QG9fR+sq+OuWkTqi8yIKDwIZCWkjGlC08T1rkQrLC52J2qF9TNIe1nDzmyKnsJJNu9+KHaIV3YcH64mIjvz5zBq3boz3nXeTUBR3z/rf+nFWDpR9sWAmS9COmwK1odCCLD06mFUJ6HHlCjzTGpXkrhQKJQq1Yu5ZqCVztJv915YmYVC63IjpH6cCHeO/1KYlWrTCMvN7M8F6WM66LmtwSrbxYD0BQD83oRdaqTi6Msf2WjMiO+oWpKIoA8+whD2LJz3pSUPrnRFC0Gq18JjHPAaveMUrcOqpp867zQXTZz/4wQ/wF3/xF8jzPFq+du1a/OpXv1pocwkJCQkJCQk7wxIKrU888UQcc8wxuPLKK/foKSw1zjjjDNx1110YGxvDqaeeilNOOQXj4+O48847ceKJJ2LDhg141rOehX/4h3+Yd5sLjhRJKYe6RN5///2YmJhYaHN7LQ4qtqNVxK6zgJ5RMUgcwPVMo869GM9Gf6xYMCyCaWGXFbQGJ742XE5FFBlq8Rq5EVByInFgPoVDcy3LHqN959HxUD2OSd7DyvaM3pa1UAsKYYoZWpdXQHsWKaoAbp6MQgBQYCZSxHOBVq5nPZPtHtq8wvJczxaX5bPIae1mXAWpkJn+FbSKojB+ZsVcf22x2GXZLA7IulEEoDnb914uvOHI7K8PgxVCG2dx4+rsnZg5AC9cBYDKyIZbpEIGH4USoG4GKt3s3fRJSRMB0vcqU7W7h2O0jyzwMrHiaTtzZsqLTFumD4L4+6FdoU10BMq59wIARRZsRyOBNyNVLJ4OZuGlYpEYHYg9fOy1sv230YpKsWhGz4hEQaqoCG+hbHSKoun7FG7XIqUT+9rtwkhMs5CqHS/e/8f7FjV9YoZ5zwAY2E4E40oLtGMvJ0GI2y88TqkYKrChkaOeyvQYanRh1Lk1Pa2EogP3xmLg+THNjNE+ejJz95/SOFoaeiPp8Vg7/6ADmYDArLsOE3Q2etY6tO/G+4P1BApW4wA+49q1qBSL7q8Awawo3O/TrMicg7UE0QV3mY32ysh5vGMiNRbhM12gikTsFeHuN8aKyO3Y6KkMfemjZwCidpti9NAlv0P9+NQeZKW7/oJQLGPMtMGjdlqkAihQMZvAofvez/dQpEgRV+V+l9rA/pOSv3nzZrzhDW/AX/7lX0bL3/Wud+GXv/wlrr32WlxyySV45zvfiec///nzanPBkaLTTjsNH/zgB913Qgimp6dxySWX4Pd///cX2lxCQkJCQkJCwoLx1a9+Feeee+7A8j/8wz/EV7/6VQDAueeei//6r/+ad5sLjhT99V//NU499VQcc8wx6PV6eMlLXoI77rgDq1atwpe+9KWFNpeQkJCQkJCwEyjlbVp2pY39Ca1WCzfccAMe85jHRMtvuOEGtFrabkJK6apwzAcLfilas2YNbr75ZnzpS1/Cz372M0gp8epXvxovfelL0W63F9rcXovlvIs25yPEqMqFdZdnXRe2pUSiz7LIz0WAog48RyyV0WElujR3dMBMXYASb03Pg/IHnAqM854Lk2dEoGcGd6UYpkXhvJE4kcgzAdE2ImMAqmuKxQJAS4BwQyPkApQp50WUZ76MxwGtWYzzPiZMKY8Oq5xI0fbBFr9skcrRLQBc4VNHxUA66s+Gr6eFHrA9mSEjdUCzEAj48HVIiWUQA6UTbFi/GuIJ4+6BadPSDgwyKhFSBULrwcKtFGFJWEaUo+NapNbUi/UQMv22VEwPLKJsWkSgUl7sW0UkWUANSR2abxm6KqRz9OpB8blwHjIhxSijYrt2u4zF3k+6zxRNj6OorAqouRZw18MLo2XkEaUF5HYseJovajvqp/duClGpIYHsJnU1QuQMwBlyOarWUqTBcew9ax7bCdhdUQsNTdMOD7A3x2Z4TULxPqDpX0/R6uth+6lpNn9eAjSgFONjhkJgLdD29G1PSYyRGpkRFQP6Xun+6N+ih4QWDW+sl+GgbAdWm0K0m+tJ9JxAX2GC9xxFVikalXIBfCmRUmgatsf0yO7wPgpVu3OV8MJ0BgWpPBUbJkdob64KHUtdBYWOdR/YwD23v9MCdKhkQZ9/hYzU/hk27drnNCzR01UFtolOUFC34QEGfY8FGZST7Bak7LMBvP71r8cFF1yAm266CSeeeCIIIfjJT36CT33qU3jrW98KALjmmmvwpCc9ad5tLvilCADa7TZe9apX4VWvetVidk9ISEhISEhYCJZQU7S/4C/+4i9w5JFH4m//9m/xuc99DgDw+Mc/Hp/85Cfxkpe8BABwwQUX4I/+6I/m3eaiXoo+97nP4eMf/zjuuusu/OhHP8LatWvx13/91zjqqKPmLWba21HKDFRyUCKxjPajmW6LVFie+9lX6Locps9OiRa6sohmOEUgBixohXGTml5JbgSNNl2eoW/aoZDoywy/rrUNQEEq/L/uWgDAfd0DosKOfcEhBEVthNaqZFDMFE4crzA21sfKMS2mHMtKjGeliwatyGacIJoR7fIcpuxmRLg077DIakZqFy2y0HEZ5do6In8QAHAEHkQGgW1Sz1CnZBstUrpIT09lLrLRohWEIlFxVjtrqxSDAHURCZsCPhm4Z9v7IhQ16b6xa7EVXpdBijkj+rhOCEviyEyLeJdt7VLto3u5imeMtCFO1fsL/70hJGY2JkFNW0GR3BDa8sBHuZpRDpd6DulmxCFCu4Ew0qJn8Q3LA2shAOEcgpvrvFA6TtPX/WPDt1WDs24rRm6OI4umQHtYf8P9qBrc3h4nbHdYH5yAX+XROUiQOZ2x3fFthCwQsouGQD3qWzAO4uQC5Z45YLC4cU8Rl3K/BeMYo/1I5J5BYMxEp9ewGgdQHaGdViV+LSrcVi/X67KtmKSz2FRr8e3a/EF3baWimJEFNptUdZvUYO9HV+ZomwSM7VUbPZGhZwpm9wRHTgX6Uj+XNJeB6LlnBPBx1AaAWe4jyDmp42SDIeMijADGiQB+v+bzYJ8R215OFDpcGxJvExVmZIGK2N8JHrEGGRE6kjcsSpmwx/DSl74UL33pSweWK6VACFkwg7Xgu/nRj34UF198Mc4880xs3brVZaIdcMABkQA7ISEhISEhYWlA1NL87U+44oorhi4XQrhI0UKx4JeiD3/4w/jkJz+JP//zPwfnPtB0wgkn4JZbbllUJxISEhISEhLmwBL6FO0v+OAHP4hPfOIT0TIhBP7wD/8QN99886LaXDB9dvfddw8VLRVFgZmZmUV1Ym+EsIJARQHifUQyUmM567qQ9qZ6EkJ535ecCgjpfYpCp2fAh311iFxBWi8Vpj1DLJ2REYHM0DE9maErcvxn91EAtCh7w6wOc0tFkDPhwu+MakpGCRNKZsoVgKVMYrzVj4q6Ls9mnefSMt4d6jcE6BB1RrxgMhQrZqSOxLWApmZCL5aQgpKgUQFPez0AgCrpjqEF0dT5roSgREEo38eWKRAaeoo0Rb4hDdEMe4dFOTuk786lpzJ0VeFEtIL4/TJaDwg6m55LoYhYBCLTHDLyyxEgrq0cIipR1Gy3Ur5ALEgdibVDwXneoFr0ehbTXdY12/U3Fle78wgKqgKN+6n0vXZ0SyD8tstsu3a/Yc4ugyL6uamzUdDu0TzqQ6V41D7byZQ5LAjcpGxlcB00xTxETK4QPc/NZI3wfup7H4zFBg1HG6L0ppt0uO8462HCiIXtM9EzBUsPZNuQmaLVUCU2inHn8bOcdVEq7p7L5azr+lgqhhatHCVqPaBWGOfsbaLjBNIMCrMsi5yn68BdelbknqKHjIo+W5dyfd5xsoalAsPr0CwWPYy+BKDHAvxzFlO0FKXy9DaDr0BgC/xa+sy6klsX+h74PkudnXjiiWCMYd26dVi3bt3D3Z1F4+qrr8aznvUsLF++HC9+8YtRVRXOOecc3H777Vi/fv2i2lzwS9GRRx6Jm2++GWvXro2W/9M//ROOOeaYRXUiISEhISEhYQ4k88YBHH/88fjmN7+J5z//+SiKAn/3d3+HO++8E+vXr8fBBx+8qDYX/FL0pje9CevWrUOv14NSCj/5yU/wpS99CVdccQU+9alPLaoTeyP6koPIDAWtUCnmhLx29mUjCVvIBLaZtFZGFJjyM8cWqSAJCaIQIhISgmoX1xAymN3aGjt9ybGpP4HNvTEAwNbZjvObWDU2g1r62QonEhkXKLNgdmk+d9p9TBY9TBph9cq8i0k2i2UmUjRBe5ErLIOfpTITCfCCZD9TyyCQExFEjqyY2Aqk42EmArEqoGfRdiYpQQErwiWx+284E8+NuHulma22SIkJ2nOz2TBqJUCjSEelGErFBwTU9howEguUeyqLbALszDEUQwPm3hEfBdCzerNSKQgQ5E5Aa/qmgn0NhkWcomsH4kXcyi+318qelxVUNwXfIrzW80QYaWlGS/Qxgqigih249bHsPRwUONu2wqgLEEetrKh6VN+FIi5KVip/r9y+Q/qkjz0o1m6eWxjtkUOEtU1Rtd92biG4hb0/NpoUjgXnut6Ictnv/aDWIiUKBa0j24+CVjjQCIcfxXdAMuPCrCS2iPFARE6wTY67GoShQLunOCDhokjbRTv6LQujSjRXmBaFq0dGicKsCGOZCCJvHEAZR5wDYTWFt79oOoA3BdNNJ/fQPdy6lPtj6oi0PQ6A4DkKXLARR1rd758Lwit0FUM9JGlgtyCl5A/FKaecgs997nM4++yz8Ru/8Rv4/ve////Ze/d4O6r6bPxZa83svc85SU4ScuMaQESLCGhINSjKpXKpCta2L7RVQVCLgIpRUYqWi1KsUMQboJWCvh9baRV4aUtFFBCoUiCEn1QQQYJBSYAQkpNz2XvPrLV+f6z7zOx99jk5OcmJ6/l8Dtl7z8yaNWvNDDPf5/k+XyxYsGDS7U34oei9730v8jzHueeei9HRUfzlX/4ldt99d3zpS1/CySefPOmORERERERERER0wzvf+c7K3xcuXIi5c+fiAx/4gP3txhtvnHD7E3ooyvMc3/nOd/D2t78d73//+7FhwwYIIbBo0aIJ7zgiIiIiIiKiR8RIEQBgcHCw8vdjjz12Stqf0ENRkiT44Ac/iMceewwAtipEtaNjUz6Aep5iFmuikWRBuJ7B0RtLkk02FL4+HyyFxVPC0a+pGeVa6+infrRLhT0N/dMUKYT23Mkkw2/5PKzfonxChjb1I6mrsC4hwGBjzIbQM8FQYxyyT4W6k1kCSwZU+HxOrYnd+zZjUToEQIkyfUGyHyr2RY6mfzXCbf9NeBtQfj9NkYJrTmgA7RJN4/vhNGWKUaFs1/2wt1luw9NQQkdTRFUI5+zboBl2T17CADFu4lI5K2NMjy8wKlRDQ7IGCOdLZPyNDB0wm7Yx4PkHpZD2yF/gjYI3SW6Py7ghW58VwksC2nbgQySdp1DBQ6dToVNAOQg7oSi1v9nxQigsdY7GNYxWidQ9/yjbNyLgS4G5pKAefaBctUMaJPA7Es6FuSiKVuuMv6wKbVscmAU0qznGTgJlAWKd5Y3DsZnHXDC7fVskyLQYOOiTVyA4pLPCoq+USFdM1vMLKxaorYL1t2K8q5BcSGIp8lz3x9+PT58lVKCmC1Q3WI7B2hhafWreXllbh8cydU95gc9GU6SWWtsi+qxEwKDh0eBNmdrl+9ZewBbRsONdJxk4LdKl6ntCOHatbS75VQFqTpsyhbnYBmhZAO9cwFnoS+WtZnylMps0QAO6UcD5TrVlos8Fd14ZsbkZ9+A88ihQn6pUyyhaIkG7FRZc3maID0UAgOuuu26btj9h6fzrXvc6rF69elv0JSIiIiIiIiJiu2HCmqIzzzwTH/vYx/Db3/4Wy5Ytw8DAQLD8oIMOmrLObU+0eQLwBAlJtcjUPT+O6DpZgIt8APqtlaAkFvTTTF2KaV4Q9al0dyMA5JLaN7OMMezR/xJ+O6zChkMESNNc95NhuF2H9N4cKZHo08v70jb6ExVNmVcbxbxkxLZbIzkYcY6yYUp0ggyhhYBfH0t49ZjM2PguxkX3WfPdjJdN1SbSCauhxLa+8JLp1HtACSjNm6RZZ5CasVXuvm5ewnpWwnMTbkCJUedqIWkKibnU1HkiaMHVKDNvquOlcKsxMoJcZ8nghPMETU+onhKBGgRSY3FQ8QqXecfjR6tMSjQAQAvIq1KDixEhs44/vrbNwvZGcG8jURA2YgeJUnTP718b1W/aPqpSys1nF2F00Z6WTJEJGoiRRVAjjNhageZ3Py28LRIbDUo8J/G8EAlqC4ZcuN+KETA/UkSIDCJ8VfW2jD1HMcJU/M6oQEJFsK3frh8Z4oLaY5H6u99OTde2yyVFf9LGoBZPbxJ9+FVbZeQM0BbmsKZNEilaNzCvhlqm59fMU4NmgSg+kwm22AhmaD2QEo5+2gruDaIQLTLtjIi6PVfahAVu16IQ/fHPKVOPrhgNchGe0AnfrxbQ4klgh6HGuFhTzU/196wx9LnZFtMltI5lPgDgta99LX784x9j3rx5Pa3/xje+ETfccAN23333ntaf8EPRSSedBAD48Ic/bH8jhFhLbeNwHRERERERETE1mApH6p3B0frhhx/G//f//X+YP39+z+u3Wq3xV9SYlHljRERERERExDQiaoosjj76aEjZ28EQMrHo2IQfioqmjTsirrrqKlx22WVYt24dXvWqV+HKK6/E4YcfPqE2xkQCLlJQLrCFNmwh14bM0BTCqrF8l9WU5EEBxzrJAj+fTkUoDZRXjqLmGBE2bN9PW9i9/hJ2m6WejDcO92OwXwkmTfjchJYZkUgYx7y6EhwnVGCW9iWaxVqgxFFZbVmefmpD4gxc0sC3qC0ZYMLQJEGDOPdtVuHsa32BkHiCSf9YnedK0fnYwPef8dHWwsqWPu7Z2h8osyF/gqZHtVCP8BmgbQyQ3FJQA5Sij2gKFBKZFGhLI4gXwRik4JaOKjpGZ5JCBGLqsM9CEmT2ksuVU7qh0yDBPO+izHO/BnwvG6r9j0zR1yoXbT2HSDTlWOG4DATtBCJwIKDn1H59+k55/giPMml6IuwiPWLOJbu8QIu1uBHIEuSC2fO+xRO0td9NWzC0uRNE+xSXQY25uQjpEBLQYGbcTF8oJIjv5SSppaS4oOAi3I+5x5qxM9tSIoPPRQg4qqvYdyqkLbgbOHlXUGn+79yj1rgkyHzqT1KIuvO0eqK1xJ7Lc8koNno+RRQCDBRUJy5kMsGotpIf0UkRPhrEJZ9wiMAt3i++DACjoh4UwjafjDO3SYBQXmKm7ykYkWgGgmoS0lemaK+mx1xR6QQtkQa+ZLm5b2kK1pxXmXXcDsfVIPfE8wY+nZpQXqIMZwJmsqP1ZAIze+yxR8/rTvih6JZbbqn8nRCCRqOB/fbbD/vss89Em50y3HDDDTjnnHNw1VVX4Q1veAO+/vWv4/jjj8ejjz6Kvfbaa7v1KyIiIiIiYkfATHa03taBmQk/FL3jHe+wGiIfvq7ojW98I26++eaehVBTiSuuuAKnn3463ve+9wFQBeNuu+02XH311R0r6kZEREREROzIIJgCTdGU9GTnxoQfim6//Xacf/75uOSSS/CHf/iHAID7778fn/70p/GZz3wGg4OD+Ou//mt8/OMfx7XXXjvlHe6GdruNVatW4VOf+lTw+zHHHIOf/vSnldu0Wq1AhDU0NBQuFwleyvtdSF8ov45+r3DibKqoKhU2ljZE3SBtVaTUlrtISxSGyQTqJy3UCMeQ6AOgiiwO8wYA5SeUSYZmrqZr18Eh7De4AQDwu9FBjGWOuphdU/0yId+EuIytTDIM5w2MEhUOTwlHg2aYpf2QZtMx2/dihhKDQNsrjgmUM7IMJUHBIUACamm2oQYqCjlm0ivY6GcU6bIOHLler45M0w8ZYXgeLjtsLhvDHNLGiBdCTzUN0ZQp2l4h1EwytIlAXVOfdTBbmDeTHJkUNvjfIDmWsKGA3rOFMj3fIzsm4Ha/DBL9NlsP4MhtRpnz2dHbUSC1xYCNF5YePwJwVCcwZJKAE0ehpERY2rBIq3FoTylT2FP4pKKC9R7SZTH8rB3j59KUqaI9CsuKFAWg6IcxnqKpSz2M5imaPLE0UosnaOnzOufa70jTVVIS+1kIAimotXeSgiiqytTFJQDR55g02VgevUWp+gMAxkSJ+rJjpPdvsjn95YRIEFIom+Kt669PCCwdBsDu2/TflzkY2s1ltYXUHKMCifESY9xmkwLAULtux1LKkKLLOcXcdAxrW7sAAPaqv4j5TJXFeSbbBQyOGjY0vzkfRmQNL3KVWbxF9IFLl22qMmTd+ZDJxH4eFTW0RGLLfDgPL7Wf+WzY0lyjoqYL7iZ27E2GY4NmaOh7IqCpQY+G9wv1GjrXL+qaEm77lEtmaTnjO2UzEyW1RWurYLJ5AXV/8zNKhaZ7czHz6LOIzpjwQ9FHPvIRfOMb38Bhhx1mfzv66KPRaDTwgQ98AL/4xS9w5ZVX4rTTTpvSjvaCDRs2gHNeKgS3ePFirF+/vnKbSy+9FBdddNF0dC8iIiIiImJyiCn504IJPxT9+te/ruQi58yZg6eeegoA8PKXvxwbNmzY+t5NEkW1uaH1qnDeeedh5cqV9vvQ0BD23HNP9VYAad/6jTA0o6Fvjf+mbXxMrFiQ0EoxM4DA8wdQkRkOYp2e/TdzSgRGeR2NRHsTCYbERJj0W6N5k0yoQJu7Nxdf1Gq8O6gXdSgW4bQiWaLcpBvGQZpkgfu071itRNayVLTRCCgBF7VItcDZFw6r7cx+BWDf2oSOVpTHMCU8cADfxFUEwBXfFbbvghAtzNbCTKRIJUemx6wFjlGh1m1K5WY9otdtEI6USDSNRwsR9rMQ6u3VFxEzKpAGhUwVZlMKCmIjUlwKNKUTVzMQpMR7W5XCLqNeO+rYfP8iiRHpHLg5iD1nzbhb92Y9BvbN3BO4m4KvWcFB2rkEO0foTCS24CngxNImOpBJVzC2LRhG8xqGM5VA0NJRIhPNaHMGzo2omUB4njsqwqM/UwlAuKiMBFCI2lAvMlOMxPigVATLU8rBaBg5qor+UB21MRFHKQlEweMm2I8X/QHCKE6xXQDo5H/kr9NgOfoT56DcFk7EnnEGLqhdV4BgIGnZArEMws5nS6QYZKN225RwHZnV7QbnSTmKknkFlYsC9pZI3DERGdzn1HYuQaNBs8C13Nz/bGSWGod6CSCMMPuRXxXB1QkFhCKVXkFnz6cIUOeZuUYEERCE2P8RCkls1Kg0ryT0jEqIQEI5JJ0mG5qYfTYtmPBD0bJly/CJT3wC3/72t7Fw4UIAwAsvvIBzzz0Xy5cvBwA88cQTE1J7TxUWLFgAxlgpKvT888+XokcG9Xod9Xo5uyIiIiIiIiJix0e73cbzzz8PUTDSnExy1YTLfFx77bVYs2YN9thjD+y33354+ctfjj322ANPP/00vvnNbwIAhoeH8ZnPfGbCndla1Go1LFu2DLfffnvw++233x7QfRERERERETMKcor+diI88cQTOPzww9HX14elS5din332wT777IO999570lnwE44UveIVr8Bjjz2G2267Db/61a8gpcQrX/lKvOUtbwHVse53vOMdk+rMVGDlypV497vfjUMPPRQrVqzAN77xDaxduxZnnHHGhNoZEyk4T0GJAJUi8MTopyywnDdUWkrygOoRkkKQ6udOIyJ23j5E2dx7oWojUmyJFMO8jpouYzCnBhv+nZW00M9cOF2AgJLUhuITypF64V1fXFmnGfppOxBbmlB3qkuUGEqMEokB0rZhbSGJFblSXb7EUGRcF25k0pUB8Kk1DhJcnKrYaOhj48MfI2pFzGX/nBFRw4ClCmQQ/q4RbsuzNGWCVCaWk2p685tJBkokmpoKmsua4JKgZgr5eu2OyBoyyew8peC6eKZqdzbN7VtHP0lQJykyaQqscvQTgBEjMJeOWoNUv0tTpoNYIpKCIAW124EA/VIgs+MhrceS0JSsFXfTHEJQV8iXOIpWQACEIjPC74K3Ea/wYvEF5pQIR5N41HBCiC1UCgBCqvPRlhxJck8orKgJX6BsICUp0UqMioCeIgFl4++z2oPGICHCehwZ7xkfAUVXKAbbCVXeNr0UiS23QwMRcELCsalRjlyX9aCQyIijNWtM0VPzk2G7vu855F9nmRYjm3sZg/MMYrqUjL23ibDIqn/tNmiGOUnTUqnMeBEFCRphAWpTmLkpUoxK1T8lwnb3hQHaQkpye69S92RTmkcgQ+KKF0umKHLznTjq3NBfpnRHLinaXqFXIQnaIly3WHDXngNMjcV0Ca2jo3UZp556KpIkwX/8x39g1113nbBRYxUm/FAEKM3OcccdhyOOOAL1en1KOjJVOOmkk/Diiy/i4osvxrp163DggQfi1ltvnRGmkxERERERERG94eGHH8aqVavwyle+csranPBDkRACl1xyCa655ho899xz+NWvfoV9990Xn/nMZ7D33nvj9NNPn7LOTRZnnnkmzjzzzK1qY2OrH0lSR5On6E/attgkoNNFbcHMllcAVr2ZdXKuLoqGuSRoagfrLUKiKVIrHDYu0QAwnPdhjLu0e5UaqpYNJC3kgtnvuWSo0dy+8VFI9OlIUh/L0M9cgcjZrIl+2vKKlHru3OBokMymxDKEERpGfPF0eLxUi7DNW14QJZIqDdwkFXMQVSDWc5/1I2/FlHGDti4664/1JtHv+qvdxc2xACpCZDAi6siI+960qfw1VazXe/sdoG3vrZrbdYtvyoxI9QaqV80kQYMaYbUE9/pqIj0Upngs0JJaGG7dlhWElHYUOCQalKGuHbgpKPoIkJltiYQxFGgaewEj0pUtDJDMviU3ZYIRUnPjIVkQpeGgSIV7+7bRNJIE380YmOjAqKjZt+tMMtRZjv7EFE0uR238N+0gBVpHGQxUNCpMj64CJQKpH7kqwD9fTZv+uR9Eo4oO64VCx50cp1UBZeISE2zUoXw+m4KkoiJa2uIJqCdcN2PiRzbsWAtl22FE4n1phlFeQ5p6omNpbBUSpMLdUzihqji0vlY4iC2a6idUALC/V40LBwEjwkavZ7EmGiSz48tIGN3rhJaOGrWo7i9LMZeNogEnGoctSJ0GLuAuVd/ZfJhzsyUSjPGajQa1RYLRPHUFggUNElOkDCN8Va7l+VjvdbW2ClFoXcIBBxww5UldE9YUfe5zn8P111+PL3zhC6jVXLX4V7/61VZTFBERERERETGFiJqiEv7+7/8e5557Lu666y68+OKLGBoaCv4mgwlHir797W/jG9/4Bo4++uhAp3PQQQfhl7/85aQ6EREREREREdEZUVNUxh/90R8BUF6JPowND+cTt0uY8EPR7373O+y3336l34UQyLKsYouZiccf3wO0rwE0OJK+DHNmKdfnXfpHsKRvC3bv2wQAGExm29DwXDZqqSlA02WeL4kSV7tQbEumoFpMu4n3A4AXFnf0kwANQusNlqGPqbFekmwOih9aZ2NqHKm59SlJSW69QQBVaHbAo88opA1DM0gI7U2tlqmQvXU8BrUutW0tPjbh6kwq51kTqlcFQ1VU0T9+A58i8ykZ0x/zm6F4DFLCbR8MNvJZAJRzrhFwGjG08S2i2t9ok+i3Y2/Gf5g3lADeE4MqB3NTwFZYcXKRvitiLhvFwkS9rcymLcwhTQzqQ20QpmhGzzMqs7SXwCBJLf2jitR6LspSoqUJSAqKOkmRkvKlnOiis46OE+BS2v0ItJFJLXKVQ8odOxDfUo9WTO1nQwP7c8lBPVfjesm53aeVOlFSykWbhKJcT7yfiQS+OLjKP6dqnwACiox1oNXUeu78N/s1155/XlR9b4rUUkujPMUYTy01WBRa+87IuWBoC4amLow7ktXQNi7fuiCt8W/K8tCnXHAKYXye2hQypyCZFq4ziR+2azhyd9WH3esv2etFSIrnskHnOE0z9NOWdZRmRAT+Qf79xxS+9ufRtJsyjoy2A0re3GdUuzJoJ9Xu9wDwIp+Nzfo6bIoULZHg2dYgAGBW0sbutZcwm43Zdv3kl6Z0XkSZdtQ2czGc17AlV9UBhrM6RvMUY7la1s4TtHKGVltf0954SqHG1w04AYRyUwcAkhMgoxBjTURsH9x5551T3uaEH4pe9apX4Z577ikJl//t3/4Nr3nNa6asYxEREREREREaU+hovXz5cjDGcNZZZ+Gss86ags5tH7z5zW+e8jYn/FB0wQUX4N3vfjd+97vfQQiBG2+8EY8//ji+/e1v4z/+4z+mvIPbC7UXGFiDQaQMvD/BxkH9Bji7hi0DDQxlui5Z2sLsREeR0hHsXn8JNeJSZIvCaxMVUXLjapEmoJ2mibDr1mmOjKlt+1hmIxdC6hRrG9lQ0ZU6dREUU7OoQTPt0u1FJ2RiRc/Uc4Vlun8u+iO1o7XrY9t7o/fT6tVbm4sktGQavHUWBaq+uBZQIks7Bp4Lr//Wrvbpj53bN6De4pv6rZJB2NpO5rsf2WiKFKNCC955w9bwAoCEcIzSmp0rk55sPocCXWGjHQCwmfdji1DnySAbRY1w9BP1xjyHNtFPMyzUwmYTOTIYlnkQa+Fm/yBogYOaiCCcsBpQkSPTjiicXxQ0cAwXnliZQkC9AHsRKeRoGgsB2bY11TIdBfTnX4BYkXuDZoFrtg8B42DuYNYVIGiKtFSzDQAgGUTQdyc0BsLISzFKpbYX1mHdiG7DPrgIaLHfQfTWmyPjFt7W7fk13pq5EvC2uavrpYS7ZhyIPae4pMg5RbOla3W1GUSux5brbXR0go5R0DZRUQoANAdQ1wkFGQHNAX1rgKgBL2EOfjV7EQBgwS7DaLDM7tO3kzDjZs9zCHsfU/0Nz3U/EYRClBIiUi9Bo5+2bCTJj6xZt3VzPel13ZwM2GtxOK+hmSYA77PLbcKDSGzNNcCIqb254Kl1+R/NU4xlNYzqyFArS5C1EohMLZcZAeF6jnPvswYRBGYYSK4+i+aEpbmTwxQKrR944IHKyhQzEZs2bcK1116Lxx57DIQQHHDAATjttNMwODg4qfYmPJtvf/vbccMNN+DWW28FIQR/+7d/i8ceewz//u//jre85S2T6kRERERERERExETw4IMP4mUvexm++MUvYuPGjdiwYQOuuOIKvOxlL8NDDz00qTYn5VN07LHH4thjj53UDiMiIiIiIiImhii0LuOjH/0oTjjhBPzjP/4jkkTr8PIc73vf+3DOOefg7rvvnnCbk3oo+n1AugVgbUDUASIochOKbVE8N5ZiS1M5rw7U2xhsKJpmS18DKeWYl4yoNghXrs46AlukEnwqpkbyMOxfOHkTyjGHKJpuTuKEfZvzvsDRmml/FisOBXF+QpIjpaEwOaBAZArfMdrvT43wYF21figit3SUDD1puCcU5yCKxrCmsDI4XkqEo+xEGoTsARTC/Y5OyyQLnLJbIrWizZTk6KftksDWuPuOihoyHXoXklhPGQDIQJFLZimfotB7Fms592eRBrTIqGSWlnuODFrRKaA8ouayUWxhSoi9kDUxoE+PLYKCQVpR9hYJwKNtGhBgZowgIKQL+TJCLH1m1vFpOUaI9UgSUtp1QCgEJLgn6E4JRWpE2kSiLTO9zxxN6fyOzNg3tFdSWzJLVXFJ0ZSpd67w4Lziklhas+h/U5pfX9gsqXXqNstzK7QNExOMF1EnGiwXjhbmkgTf1fq6oK7nfGx+b/LEUjOZYGhlrojqWCtFu63Pq5xCcgpoOkZy4v4PJQlIRkAz3bYgYIaiEQDhBExf8qyl6DFjuk04LMUjKZQWWA+jaAG8wbB+ZLbq33wWUJVVY+3fHXzav+jllJLc0qWUOIq7tEzTcOa77/pv6PjQGd15VKlxNP1keCkbCPzifLpshNcxkmvHep4GYmouKDI9R23O0GylyOy8EIg2A2lrWUNGQIyQOlNj6982CHfTpuYG4NNkUxR9isp48MEHgwciAEiSBOeeey4OPfTQSbXZ00PRvHnzenat3rhx46Q6EhERERERERHRK+bMmYO1a9eWHK2feeYZzJ49e1Jt9vRQdOWVV9rPL774Ij73uc/h2GOPxYoVKwAAP/vZz3DbbbdtlyKw2wqSqj/WVH81qt8yawnyRoJmn4oyjMwS2DBHRWpemDMLg+mYfaOiRGBU1Fw6d0Fg6kcuKCTqtOVSekXdttPP2qCQ6Gc6rRUSW7gWeutIhYlgjPKaddM1MO0sSBE4WJvIjnmL86M9I6JuBc/mWFLCvTpknvuuJEE0oOj0LEBcfTBdj8tGiArRm0y41FpKBLhMKlOibV04va4RSHMvzXlM9z8TLBiPhHLMYu2gxpXvwJwSbvfZEglaXuVlFTUK32Z9kWmdZEEdNZOSnVCuIkVMvc1uzGfht55QOyUci9PNQR8W6ijSIjaMEWtvkOj13Rsz8wTTNXDPsVna5WobiZS4CBLv8trIoOqtpcSJstPgxUhaF+22zJCBQHjNtb0aeSMyDewZ2jJxY+TdggSoTQkHtA1EYawNWiIFJdK248+9iQS5lPc0OAdyGUaShCS2vlibM1UPi7tz2EQZcq7cjjl36fF+CrfgREWAAIBTICfqDyriQAVspCg4HAnQ3BPwCtg3esLVdxMgITmCiIGKFKnPrC0hGIEJBkumxMCbyC4AgLtqL8d79rwPALBv/Xk80VqMl7IBPfZEhRuNENyrX2esL4Se/7p2ug/qEOrzUeh6jtxGiVXKhrHkaHj1EzOZBC7+fsLD5rwfI3ndztMutWFQIvFCe5bdj3H5H87r2NRqoKkjQ2NZiixnyPW85O0EXNsUQM8RyfX3XEflzLz4kaCcwAtM2ciQnTvhzcl0YAros50tUnTSSSfh9NNPx+WXX47DDjsMhBDce++9+MQnPoG/+Iu/mFSbPT0UnXLKKfbzn/7pn+Liiy/G2WefbX/78Ic/jK9+9av40Y9+hI9+9KOT6khEREREREREB0T6rITLL78chBC85z3vQZ6rp9M0TfHBD34Qn//85yfV5oSzz2677TYcd9xxpd+PPfZY/OhHP5pUJyIiIiIiIiIiJoJarYYvfelLeOmll/Dwww9j9erV2LhxI774xS+iXq9Pqs0JC6132WUX3HTTTfjEJz4R/H7zzTdjl112mVQndmRIokKm1GMkEglIpkP1mRLqAUCzlWJz1odFtS0AlPBWUU6uwKkP3yeEEo7RgmMzt0JZ43ck7XaGRlJtCHBNFbVkikxQ57vieQDVaY4FyZDtBwdV/h6+t49HcwSiYnCEwmrP6RckcNXOJEOrIEpN9QDWCw7URgDLPbrF9LeKqnOFeB29BSj6xBfYjokUm9vK06TJE12cU/WnRjmGacPSZ5RIS3NRIlCj3Ao6hXFSNj5IXmHeXerDwbFwSTAqa4Frb52pdhKi6DPf78iMlRnDjfmAPUYuKVjiOJYBPW6bZIKm/gOc63fDSGRJtWs4ADApkRJhzyNKPBqzAA4JDk+IjfANSiCk31JIY6UDDoKa1HNHCGaTNpjm1pooFxO1BYBlDgoRnI+GTjPnSOB2TYQ7x4gTlDMmkQmKlgxvb4YiCwqqgiAX1BUI5Syk2rgqsgoAQqgCoW3tIcRzCpE7+gySWEpFijLVIQlgGUgC+Gx6YM7tL9OfzdgSAhBXc1iJ7K0+WyUa2LakEmSnW9QKz2yYhy27K9p9thzDK+rr8JjcHYCirvzruylckVVBqJp80yeqqE5TPNbnj1KdMOIXsOXeOHBZL9Fn1iNMNDDK1f/IhnkdmaS2mDUAbMr6MJKr5W2R2Pls8gSZYI7y5DSgNSthJocCUhKneYd3nImEACky/GET0xl5iZGijujv78erX/3qKWlrwg9FF110EU4//XTcddddVlN033334Qc/+EEsCBsREREREbENEFPyFd75znfi+uuvx5w5c/DOd76z67o33njjhNuf8EPRqaeeij/4gz/Al7/8Zdx4442QUuKAAw7Af//3f+N1r3vdhDuwo8KcgDZKpN8WGAdYBhhTXN4gEFpMKQRBQpxTdarf+Juem7NBaoSK+iTloCraYtOppX2LF1qQayI8lAgr/hzlNSX+NG9fgmKM1+x+hJemPsT7bJo6oMTcqk6VE6j6ImEuqY1kZUgCQTf33rZbMkWLJ7Ydk9KcCRetSmwtNlESOLe8SExKORLi1vUFtn5atRo/aY+bS6JrNJl0fmbf/s045MJFHXJBQXW9sKAOlaRIiECiI1s1ytFgmY0Q5d5xt0WCejpix8i88VpBPXEpxg2aBcdi6nj5rsZNYnKp1fqmHttcOmbPhbZkGBF1F10huZpfHS3wxfxFwX0GVafO1qWCKEWKXBRJpex3E2Nn3rnqQ0gX5TSi+kYhmuBHJK2zO1HH7awdavazIARtT3Rv08N1MIBK6dLqIcEL2bKiQ/TMRIlMNCgTDDln4MKdR0ZYbWqQmdpXUhQiERJhGQYCOy+SShBBIJmLUJjwj7oNSG9dUhLzBiBWFwxKlKAaUGJsmrtIkUhVd8zlxjc08MjwHgCA+YPDeFn9BYzWVORlfT6IYd6w490STgzfT9vqeqcuwmPqKAII7k01ElouQIYi+UwmYU1EkWJjrsTTo6JmbRVaun6ZqfE4lDXQEol1D297kaFmnug508JqTiEEgTDz5J+eBMG8gOqxh/tuB9c4vJvvEmG4VDqRe8T0YXBw0GbDz5kzp+fM+F4xKZ+i173udfjOd74zpR2JiIiIiIiIiOiG6667zn6+/vrrp7z9noTWQ0NDE2p0y5Ytk+pMRERERERERAXkFP3tRDjqqKOwadOm0u9DQ0M46qijJtVmz+aN69atw6JFi3pqdPfdd8fDDz+Mfffdd1Kd2hFAcoAwRZUBLkxqfCy03g+1zQTNfvVsmSQcfaxt/YQyyRS9pUPCxQKiKWCdfw3VZGiGftqyYehh7Ulktm14YmUuKVoisctyygC0bdiZQWBYixczQbExn2XD1UZMnVtKjAQ0g+9iW6c5MskwpikiX8w9ktfR5KknZCWWoqqCTxsVnXUppKWuZqUt1GgeuNiOyLrum0AumfUqGc1rmhKTtg/DWc2OEff6QohESjkaiWo35xQt7jlaC7c+owKNxI23lMSu2+YM89MRMKb6m0uGPtoOxsXQSCnhwXGY8bd0IBV2LIbRQCYYfkMWAAB+TvayXleGdjUUWINm1kfGfdepqVoIa9otiryLtJdyH3bicx++w7mQJHCtTsHR8I7NLDf78n2UUsKRAgGd5oS3FJlMbNHSpsyQUTXWTaEK0JoipcbfhmpBdyYSK6w2558R4Td5GrhR++dlWzC08sR63GR67g314n+Wul2p2yFUAKAgmp9RxuNSL1Oia0n1d0EgPRpeCgKil0lN1RtaDlJa+oxwooTV5v5DldjaiKs5dToRkYdJIUSLrs3tom89xY/+R4lRXzh4FrD4QSxrPAMAeF3jt9goUjzc3AsAsKa1EC1NKbZkiowzO551miOlIX1mKVnC9X3FrJuhQbLAX8y4w7dlXRePVufKGE+DYr1zkqZLnJAUTZ7aa3o0T+2ctTlDlqs/f87ceKprHtBidwZHVQoJwokTp7uaw8qXiBEQrRQnrOBdlKh25DRRaFFTVMZdd92Fdrtd+r3ZbOKee+6ZVJs9PRRJKfHNb34Ts2bN6qnRLMvGXykiIiIiIiIiYoL4+c9/bj8/+uijWL9+vf3OOccPfvAD7L777pNqu6eHor322gv/+I//2HOjS5YsQZqWU28jIiIiIiIiJomdLNIzWRxyyCEghIAQUkmT9fX14Stf+cqk2u7poejpp5+eVOMzGTJRfxwqHG0TKIiizmztSgIbk2zUclAibXkMrrO5LFUkifVd4cb7Q8N6/hCTQeMyhygRaMrEUgWQsPsQIEip878RJENf4kqCzKZNrGvPBaCyOxakW/C71jwArgBnJsLyHIChVoTyKIEruGmoIw5ivX3aQpVGMLRELmiJFvNpOZ/mMsvM94Q675nRvIacMrQ1hZJ4WSxCEozyms0aGs3TUkkGvw8UEommuRiRQcZZiydo5x59pik0AKBClXww2V5BYVEQm0Fj2uGSWEpvc9Zn57U/aVlKE3DZc2Z5nbRQ1x5MKguRomW8kyDsPgxdZjJ6mjJFg2QYIYpWrIncUm0N0g48k0xbLvuMB1QaI8IV/ZVh+RIOEpRtUft2WY4N2Q7oObMupKaNNcdQpNP8bDkGqXhrU8oE3BVTNkVsbboZgswsQShSk2YlgBYSe+zGl8jPPjTH4H82kBKWIiuCEJclBhBIImEqkxAi7XZSANCeQqZPUkhbbBTCy4rS5T8MnQZJ3P/7pE4t9KeReTZGvqcRM2NhtoX1KgIAZEB9o+rQI8/shtfMXYxFiSlIPIyUCCzvexoAMJeN4P6RlwFQmWCmXAfgaFlDvwbFo6UuF2QybjlDRhkGqKuaas4NprMf/UK9hj7rY5m+lzpvqVzSoA1zjXJBkXMazJnyc9KUmSB2zgiVam7MnIFAQnpeRARmsKX5bOhSrqfC84ECCRMOtymiT5HFmjVrIKXEvvvui/vvvx8LFy60y2q1GhYtWgTGWJcWOmNS2WcRERERERERMxPLly8HYwxnnXUWzjrrrO3dnQlj6dKlAADh1aWcKsSHog4QKUBSLcrL4Aowal8QrV1GNksCdS0MrreQEh54fQhQ/doI9Y5uXjNoG0yGPjzcK1SpCl7q7fTvxgcHQOD8Wqc5ZrOm6kPSBIMMPUT0qyKTEnPZKNaRuarvPCyMqfbloiCQFK3COWdE2RQSWcEh2N/WjwwFywr/Auqt3LzM5oKixtS3tmBoEneK1ii3EYYmT9DME4xp4WWbqwKQOXdvjwaMCiRMQOi91ADQRAZ9YEadKihaOYMwb6G6r4nuU1+aY6Cm3nrn1saCMRkTKbK8Yd9oR/Oa9Upq8gSz0paNpgwkLcxJmmDat6YowgYQFNU0558vdgXU/LZ09Mh8t87ilFlRK6A8YhgRgSjbRB/Nb0YYbgq3+vAjiaY9tQ3FCOpW4M0gXGRNR6ZMJMFEB8x+g6hSAb5jdVowhDEeWlb87RWSBQXqMrf9rdE8iDIUPauKIMQJc/0wgIQ6V8OIhHQRX0lCUxwpndhXC6TtpsQTvRIVrbACbiFB9Dw4CbfvneP9q6zFCwfgfeSwkSTaBhqjZkkfbpx1MPpfpqKKi9PNoBDYv/YcAGAh24Jda5sAABuy2UFSgIHvxl6+jzjxvImAAvoeZ/ytiFB+R/r+VGe5vaekhCMXLgnE3EOa3EWg7Bxqp3EXXVPz4tzDCeBFjWy0CABYOC/Kmsh8keG2LIzYER0NRPkU2iaYSqH1Aw88gDlz5mx9p3YQPProo1i7dm1JdH3CCSdMuK34UBQREREREbGjI9JnJTz11FP4kz/5EzzyyCMghEDqlxJj6Mj5xFMDJ1wQNiIiIiIiIiJie+MjH/kI9tlnHzz33HPo7+/HL37xC9x999049NBDcdddd02qzRgp6gBeB9BQ4WeRANSMlLZ612wVJCHIUu1bkyfYlPUHFAcl0voMjfGaDUErIaGw4eE+mqHOcgzxPtuHUS3YNYJGUx6jn7YDz5jcE/umhGuvf9Xuumyu3X+dqNIRQ7n6PsLrGOOpJ+iWgZi5LRzdVwydUyI9eo9UUmQGRaqsSK8BCESTwx3eZgScAJpzinbObNFHnlNI7nnIEAma6lIdfRxp4nyJ5tbH0J9kNhQ/mtWwpakLTWYJsoyBt4zgmIA1ctRq+tgEtVTbULsRFJPd0OxHM08t9ZJSbv2npCR4qdWHPu15NCdNMZLXbdmCJndCwcWNLVhcH8IzWhCfeyVLKJGgnlA5oTzwcpqVtNHneRr5nlApzdEguaW5Gh7tVgSFgAC19BsjrjyI8ZYxtJd/LprvVkCufWr8MhDqOIT97vbhBODmu/EzMv43bWlowhyZTKwwPKOJK/MhKbKE2ZI2G+gsbMkbVgDf5KmlXtqCgRLpBOc8UdSMpuMIkZA09CwSxIip1flmPXAAS3sRJq1GWi1U9JgTXnvUmhFke8VkDb1DBADmvHCIAJAo/yJA0SGWnUq0t47ZNjfeOnpOuZIFAEAyDIz+ci6uevEIAEDfYBPH7P1LrEmVF90f9P0Oh/U/qcZWUjzRXoLnskE9v4oua5mx98oMAYoiTb17le+rlklmy3wISUGJwCBTNDSFtOduSyQYyhuWQvaF8WYuDFWe5UyNrRlqrY+29BkVgKHTqQyiJVICoMU51CBKSG9/SaQtEK5XACHKH2o6EH2KyvjZz36GO+64AwsXLgSlFJRSvPGNb8Sll16KD3/4w1i9evWE25xUpOiee+7Bu971LqxYsQK/+93vAAD/9//+X9x7772TaS4iIiIiIiKiG6KjdQmcc+ufuGDBAjz77LMAlBD78ccfn1SbE44Uff/738e73/1u/NVf/RVWr16NVkuJTrds2YK/+7u/w6233jqpjuxw8E4gmTj9pKT6TcQ8ThKAjaovGzYPYF7fLCvAHUzHgjT2tkhstGeMp6BE2gjAGEkxINp2uV8Qts5ycOlS4Idl3UYKKJGBE/WorKEBglk6lEUhbYHVveovYlTUXdFXwVTxVu9trJj27qcr+9Egs29Ap+CPs25RhG0iPuZN20R4/HR4tdybEm+ZcawVnmttAC8QleUMtTS3ztQCBENZHcNtFR3aNNqHZlO/vWYUMqcgw2rOJJPggqCl38zbgY0CwWie2nEw82z3q4uLAqqYKKPURiSGSQ3D2oUbUNGqkbYSjdcoxx6Nl7xxFkiIi+ZViYNNxHE4ryGjpriuAJfEip7rIoNgbdR15CPjiVdkWIap1VBv/A0dhqghc1GZguBaSAIO53AuJHUFYXVkJSV6W108VOhowSjgicTzoKAo8+wDAIR9IxKAi3pxZM7WAhRcEtt34yY+om3ox1hqI3jK7doVF60xjlae2OUZZ/YcNEWQfbdrzmlQeNRoGkyxWBeBMMnfGlR9V8u0ANi8xhNPhU30Won+LoiKVJj9SGILwtqUcXN6MCgRtj4tpXLZULvPgdomAujkjTEmcduaP8DBu6r/qaxtzsfhg78CACxMhnTRVzVPm7NZgWWIALW2HikVYF5RbEAXl7au5eG5wyDstdrPWtZqxBSEzUW4vm/lYcbL3D+k97sZbzNG1mkcpBDBM//RkTcq7XzrX+ycwkT6vP8XgMFaIWxzRE1RCQceeCB+/vOfY99998XrXvc6fOELX0CtVsM3vvGNSVfUmHCk6HOf+xyuueYa/OM//mNg0HjYYYfhoYcemlQnIiIiIiIiIiImgk9/+tM2Lf9zn/scfvOb3+Dwww/Hrbfeii996UuTanPCkaLHH38cb3rTm0q/z5kzp7IwW0RERERERMTWIWqKyjj22GPt53333RePPvooNm7ciHnz5tkMtIliwg9Fu+66K5588knsvffewe/33nvvjC4AW4SkOjyqRXtBFNcT2xHqhI7tF/rwbP8cJIPqydVQHW2vyGENjq7Ipe8TJAIBci6ZFaMOEA4uEyuQrtMcfUwJEoWkSCi3HkZCkrDoLM0xW7czl43iuWwwKASqxN7OzTnXwUMKGbhUl8TTFVRZkS7r5ArMReg+64tVKaS1XZFSCZtNu77TcKlt42BrQt/UHaPxMTHU2xaeoJU5YW7OlUgbAGROFUemN6dNCpkTcCNeTQV4w9EnbZ64vlfctYwoeyyrgUkJ5ZKkaU/P+XssSy0NM5TVbRFfs25/0tafRXA+JUR5Ahm6IpeOsktEWNw1I4riqlMnyjd0HtVO0+bc4SDW5dqsa32JpKMBDVoiLVEjACAgkVXcZsz2XFLnU6T/YZ5XkqH+uKbogjY8PyQGDuNQQiHQIAI1I8pOOeo0wzBT189L+YBNYkgpV47m1FDcDAkRltbOKLNUGhfqejbdFSDaG0sv96g0ASXutZQOipQOrBKYUKmZEUvYwJA3ym3Z88fxhN9qRxKCaWpVKurMirm1ANj37/HtsGgG1Ib0Z14Hf3mOB3+jCsLuvvAlK0z/w8E1aJDMzu9Q3ocxkaJGjS+VtHRpHXlAcWWSYYtoeIJ5V0iWUYG2TKDrrYJBWk+jwQR4oT3LnusJ5UiIsMWiGRVgmiZGwpFzBIV74VHyapg9ITUlgHAcmUT5XgLosSTSVt+15Ke/unc+bHNE+qyE0047DV/60pcwe/Zs+9v8+fMxMjKCD33oQ/inf/qnCbc54en867/+a3zkIx/B//zP/4AQgmeffRbf+c538PGPfxxnnnnmhDsQERERERERETFRfOtb38LY2Fjp97GxMXz729+eVJsTjhSde+652Lx5M4488kg0m0286U1vQr1ex8c//nGcffbZk+rEDgld+wxCR4W8ejdEwD5xJyOwbw7pMMXIyHw8+XI1rPst2IA5tWYQbalRLxKja4apdilERq3QukZz+8bcEomOOOk3tayBhq6j1WAZmJD2rW44q2NxYwvGdOSoj7btW3lTphjifTYClVKuUpLhIh2mP02e2P0BsMfQCX7kJpcqElQlCC5GePy6ZwBQSzgSnY+cc4qMACLXAl7vzVsKAp4z50xrsputEzFcyjNTv5tjGxprIMsZ0kQ7Z4+lkMNq/OgoBW0T6ECceluUBLypIwA1YHREp/IPcBAqkNT1nOnad6YPCRNoZdqBN1PHYCJYQ2N1lc7riXbrqXqb3jjaj/vzpUi1i/aSvi02MpgSAc4y+wY9ktcwmtfs+ZBQFyVs8bpKP9fH3WAZGswJklPKrQg/JcpdPaVhBCghyvW2n7atcJkSEUQjM8nsH1AdSbLO7VKtb+a8RnJ7/qk0f+JFfwSaQb2rcJmK4pYtAzhoEFVKCcfCZAsWJlsAALumm2y6/mbeh5eyfozoyFyLJ8gZtePr10wzkVPzPRMMMgnPc5smLhg4p+AmcqTT+bleLnWigPlMPGdkP5GDmPR8HcmEKDhjM9jopKAqVd8KhWl4r5IMsFURdFDTtMPGgOb6Psz6jdrxb/dsYO28XdTcvUJixdxf45nmfADAL4cW6eilOh9mJS0MJCrhZozXgghfnWQYTMbs/FMi7dyk4GiQLBBsz6ZNO2dz0zGkxvZDJ4H4CSZjmas5mHPPyT1X7vbCu2f7BeEkEETp1L3CTiGIue3pcS6m6Jt5M+et5NMUfomRIouhoSFIKSGlxJYtW9BoNOwyzjluvfVWLFq0aFJtT8qn6JJLLsH555+PRx99FEIIHHDAATYtLiIiIiIiImJqETVFDnPnzgUhBIQQ7L///qXlhBBcdNFFk2p70uaN/f39OPTQQye7eURERERERETEhHHnnXdCSomjjjoK3//+9zF//ny7rFarYenSpdhtt90m1XZPD0XvfOc7e27wxhtvnFRHdjRIE6LWfz7pU2AGLNqDQP0lYHREUVdb5tQxp9a04kDl56NiuokWHprQcZsrKq2m6Y8Gyy0lwmWfXpfadoZF3f6WUG79PNqCYUtet+Fqzgj6tUvsC7kSo1k3ZBIKcWs0t7SB8W0RnrDZF1fTQhzW9xoyomYuCIoQCF2AGVE+QCZTQHr0EyFGbG2EjqHQWnoUmXILdn1Swmkt2BUEeYNCJq4/XFAQHfaWGQXJ1LJ0mIC2rX2L6nMCkNyJWQ23IQgg6wSZ8VjKKGgiwBKh+8QtXUK1mDbXNFo7T0GoRJJqYXPOMKqX8YYa64Gamre2SCD0/gdTxZ8nHn01mjuKrD9po0+fN6AcNRDkuTqYJk/tOQUo2iHTXMGIpjGNMzYlwp5bAJAzFji1MxIWM6ZEAJ7Q2lAZyn1bBJSdT5kpTxtDkVBkMlEiZSC46GxxXFusk4b2w9KJrp0dtFmmKDVDrw3QlmsXzv9JjWuKMe4mvy0SW6C4oZXLfpHfPEgEIKjrIcgEQztnnqM5h/BcmDmnjkrjRBWOhuk2sQ7W7kfPt4hKEJ+G9oXB3qqeylt9ZQjG1KeMKFeJJfVNWrDfRzA6W7uSsxwNktmx2jjWjxrj3pgJe2+o0Ryp8M6NBBgVHtVKmE30YFTRsKYdLgm2CEWDmILXzjVfJZ7UrHO7c2onRKKJ1N2XE/Vbpml3CWdoTaS+p9gxUCJ230/KDYoMhNREyMBDShKi3MajT9G0481vfjMAYM2aNdhrr70mnWlWhZ4eigYHB+1nKSVuuukmDA4O2kjRqlWrsGnTpgk9PEVERERERET0hkifKfz85z/HgQceCEopNm/ejEceeaTjugcddNCE2+/poei6666znz/5yU/i//yf/4NrrrkGjJlUVI4zzzwTc+bMmXAHdlRIJiGZfiOjzlnZ1BEi7mXcPn2zJkBbgBxTw9riCdo8CaIqVlgtksBJN5cUbc7QynWkJnFi1LZIQImwb/mUCAy1G3a7BNzVL4NEk6cYSEwNIYl5ySgAYEM2271pQ73xNzzRrg+z72KaPa24qgSIEkHrdTOuBLPmu7+d0BEe+2RPlfutGd/ME9bKQlq/lC41Weq3Jrtc6uiQWV1bKQCA5BTDIw37xk91RCnTImgpCNJhHckYAvIBwAQLRF2CZi5SJP20/4xApADJnZCeUMC8GJsUcdMdAhfZEra2GmwfTKQrzxl4ygOxsnEaH8nrNppjfq8xbsW/Te4MVWs0V2/WenrbPAnmuslT266K9LjzM9GRoIx7QmcanjtFVNVRE7pOlpkXBhG4IzMI65TNJdXrlwXbJvJkx0QKgLh0fhVd0ini2uXd1VnLILTLtcGAl1Yftq/qylE9jn5tO+UsLrwkhySI0vnXSio5Uurc7Lmg4FIgTYywnthU/ixn4LmEyE3kyFlCQBIdniyk6JuoaCEaa6Pb0FriwuVq8zqIKglmAlSCAkgkZj+jo2FzavZ8zARDg2Y2wpPlDFzQIFJkQCGRMk8QDYFMMDRhLBBymFhlKvPACT2TrtaiEWvbdqRK+7dRbebOP/NbM3fnPuDuDTmnNg4ntC2Cq4um1xWeHYKJBAl1PVtX/apoxFQ8qURMCIcccgjWr1+PRYsW4ZBDDgEhnuu4B0IIOK+u7dgNE9YU/dM//RPuvfde+0AEAIwxrFy5Eocddhguu+yyCXciIiIiIiIiogsifQZAUWYLFy60n6caE34oyvMcjz32GF7xilcEvz/22GPWbjsiIiIiIiJiChEfigCoYq9Vn6cKE34oeu9734vTTjsNTz75JF7/+tcDAO677z58/vOfx3vf+94p7yAAPP300/jsZz+LO+64A+vXr8duu+2Gd73rXTj//PNRqzlRZJXY6uqrr8YZZ5wx4X1KLaATRIJw4uq/6ii9sYMhwgmvk1GAtYHa82pYN8ydBUaFDeOmnocMIRIJFTbkrrw2XHHWeuLCw7m21zZh+wW1phVkt3VR11mp8veosRwbW/14ZmQuAGB+fdTSZ8btOnS8FhjWQtyRvG6FjDRVBzWqC3caWsu4QmceVWB+s2JYXSizSmhtpshFOxkYdeJq39/IOFEH17Fh3ahUVIC1vyah8NanDogKhY/qgqsD9TYas0Yx2tbHNpZaV3KZALwOiJp02zJA1IXdj9S0gqR6v0wtI/pfoSknwWkQWpeCWIoEUnnKiLamZmocSU1TSkwgpRxzakoQ3GCZFZzOSZqgRDrRsz7gKgrU0j7eCA61G45qJdIWs2xQHqwntFmOWXdEUnu3SAnXzsXO7bpInfmUSCYSbOEN+70pMzQ0/+xThFzSkmu16ZIvzgaUKFtIR9nRoB2iXb6Nh5FAA5l1F+eSItMH3qAZ6iTDXKaukaZIsZn32/6O8dSOtZAUmaR2XI3vk0FbsMDfiNZc8d4mT0pUtPCul0wwNDV1PtZKkWuRMM8ZeEYhM8NzEcUSajqXSEeJEQCQUgmAoX73Wc5igohMnByAq1wO0Eyfwwk8MyTgN+1dsDFT3k5pwjHWSkGJun6aaeKSSfQYJfrCNOcB1Rd8CtehpkzR4ik252rnvot7neaBOz+jEm6p8m4z50ON5ZiVtix1PJqnGMlqyI28QxArS8i5ovkN0WHuN5bW5jTwPlOu1npdbi5nI6wHIKbvOcNjRreqjZ0Njz/+OL7yla/gscceAyEEr3zlK/GhD32oFLjpFRN+KLr88suxZMkSfPGLX8S6desAqNIf5557Lj72sY9NqhPj4Ze//CWEEPj617+O/fbbD//7v/+L97///RgZGcHll18erHvdddfhuOOOs999kXhERERERETEzoHvfe97+Iu/+AsceuihWLFiBQAVpDnwwAPxz//8z/jzP//zCbc54YciSinOPfdcnHvuuRgaUoVztrXA+rjjjgsedPbdd188/vjjuPrqq0sPRXPnzsWSJUu2fqdMAky/dUlXXwhCOZ4as2cmYPM7CQeaC1XECADGWgyj7ZoV+AIFx2VJMJAqOe6stI0mT+wbTYPl6NcuscOZc+sEoAWHaqcJIcgBm45cozkaLMdwpqIibZHYN7A6VXWHTMSKQioBIzOCaFeLy38rA4DRXEWz/PRjm1Zv3sBNGr8g4MKJpIvRnqpEffNr0bXa3w+hzk2Wmzc6K6bWb87M25P5SCUoE0iYq7nkO0/TlCPT9eokoZBegEcwqd6avXmDl/pPOIHU6fysJkG8yKAUBMQcFyeqjzyMhEgj0mYSpqBemnAkTKCpRbqjuYuGCkkxJ2la0WuN5jbtWy33HJaJmmMzp1RHJ313chuVK4joKVGp9H6ZLRMhaZEE/aztiaX1eeA5ShswSGRwguZRoRyPM6raKkaZ/H4wuNBGW9dds7UDjQu7iQaBBicWl66GmjDLTEIEEd4Y5RigLVsnzTh3GxuLUVZDU2jnZJGgJZKgxptfRzCTFLmJkAXFEoH+RNXJK9YMNP/mgmKUqf3UGLduze2MIU/UHwCIjEISCr9Ck9We65z8ICLk64C9S4OY7yYAVZMAB7j2FGgPwp7ni+tDGOV1m9zBBUXCRMFqRB2LqcXnj4s/vw2So6nn8qVsAC2Z4sV2v27HJZfklAU1HrvBRLGL5++IuQfmiY28E8KQ5QxCXwM2mEzd+WRr8elUfXuqEBLevIhJ0R+3i1ODSJ+VcO655+K8887DxRdfHPx+wQUX4JOf/OSkHoq2qpTdnDlztlvG2ebNmwPDJoOzzz4bCxYswPLly3HNNdeMq3NqtVoYGhoK/iIiIiIiInYkmES3rf3bmbB+/Xq85z3vKf3+rne9C+vXr59UmxOOFO2zzz5djZKeeuqpSXVkIvj1r3+Nr3zlK/iHf/iH4PfPfvazOProo9HX14cf//jH+NjHPoYNGzbg05/+dMe2Lr300knbgUdERERERERsHxxxxBG45557sN9++wW/33vvvTj88MMn1eaEH4rOOeec4HuWZVi9ejV+8IMf4BOf+MSE2rrwwgvHfSB54IEHgnIizz77LI477jj8+Z//Od73vvcF6/oPP4cccggA4OKLL+76UHTeeedh5cqV9vvQ0BD23HNPFakkmrJhLvauhHmW6YAQAZsC2gZqOtg00mYYbdYg6sZfSFoqzVA5JgQ9K21hVtpCmxv6LMPC2rDah6SoUydsHeOp9fOgRKJBs6Coqy/+BBA4EaeUh+JU4cLbRe+ZJOV2P0K7VBsRJzz6KaW85CckJUGWuxC17ycEKoNQd7Bt4bu/3FBk6osTR7oNHU2nCmxq2o1IsEQgYcK2N5YnaGmhNaQTVmeDQnkSmQg6kwHNAKGE93afAGBEsRRg/W7sKRPWEwlEuZlLYWg41aClOnyPG12o1lCpGwUNhKyUCMzyaAVfwJ9LGtAywvN2UY7AzlcmLPjLAOooiDZPUKO5ozMkRQ7XTlOklmJi+vxpWlF+SB2lNEemz0FV9NULUHsfjbuxo7ZoQKEBjkZjEGBEoKX3KUCRIhR7C0vnCXBJwInaWQ3hec6IBDf7kcBs2rTXRL9I7fGMijqawgmvi/CL4ioak1oXaCEJWjQJhNjWoV4Xmq1594S69uEZZTW0coY200LhhIEnFEIrhWVGLX1LASXENsMnwn/1oOgf1e9mqkQqQTOK5i7eeanP3VmshWFet/NSYxyclulW869xMXdjS0E94fVL2YD9vCVvhEkC0owlReLxUtZFXa9Qp7ktej3KU33+6nlNgBrl9jzfgnqJzmxnjq4vUkrWGV8W7kVEBtS6cjWSNvFimyPSZyWccMIJ+OQnP4lVq1YFiV//9m//hosuugi33HJLsG4vmPBD0Uc+8pHK37/2ta/hwQcfnFBbZ599Nk4++eSu6+y9997287PPPosjjzwSK1aswDe+8Y1x23/961+PoaEhPPfcc1i8eHHlOvV6HfV6UUETERERERGxg2Ene6jZWpx55pkAgKuuugpXXXVV5TJgYkaOky4IW8Txxx+P8847L3C/Hg8LFizAggULelr3d7/7HY488kgsW7YM1113HSgdXw61evVqNBoNzJ07t+c+RUREREREROz42BbeiFP2UPS9732vUvg8FXj22WdxxBFHYK+99sLll1+OF154wS4zmWb//u//jvXr12PFihXo6+vDnXfeifPPPx8f+MAHJhUJkqlUf6qagPVz4Yny8OA1nXHUApIRvRFVHjfDe6iv6YsJxtBAPksXVqzn1pdlsNHGrLRtQ7wDrI05aRN17d9Spzn6mco+m8VaGBU1DOUq+6MtEkuzAcBgbSygvmgqMDtxRS9dkU8JLmmpmGu/pmJSwgN/GSqFK0BKORpJbr1Uchk+lCZEYF5jzH5vc2azP0baNUsFGU8j6lFbfjFZ43EEaEbJJabpbDT9WXsS2VB3TagNzDVC4egzpso8mgy9hKmyKEGWW+o2FH2OEyWJULxYy5nByFRTqalQ+zceMi0KzhKwui72yym4DtMTIsFqHLSR23Z4Ho5ho6bmfqDWRkq5pcwMJWE+p0TYQq0QDAnhlo71KY0x7dtissZAVCFif+5EIXXGL2kxymtBppotp6C9ewyNNJiMISU8yNIyqNMcDZqhoY2gUuSKVtJ9GOV1e00UPYdScOsnVIQACbLczL5NP005EUBlm6lzW7WbEWb7o2i4NlJivLZU2QnThwbJbBmSBs3QlknowaR9mEx/DUw7JhutxROkrI1MX4stkbh5EYkqJ2L8rSRBqudzXjKKXFBbLqSdJ2hmCZqa+s1bDMJ6GhFF7RoPo5yAtgjQ1PRa7qgf409khk3OztH/yxo2vUx9zwYFlr1sLQDg2dYgcsnQ0Blcu8/ejIQIex5RIq2/WUq5zhpz4+tT9nWa2ftRK1deQ3Zbr8gw1Rls/rlk5tXAFEXuZ0BGOOrmvGZtcBDM0/fozWkfNrWVF9IIrSHhwlKVba4y0UzxWCEdoyv1fckWnRYEJHEZo1KY8Z6e8M3OXPtszZo1OO200/Dcc8+BMYb77rsPAwMD26UvE34oes1rXhMIraWUWL9+PV544YVS+Gqq8MMf/hBPPvkknnzySeyxxx7BMlPzJE1TXHXVVVi5ciWEENh3331x8cUX46yzztomfYqIiIiIiJg27MSaolNPPRWf+9zncPjhh2Pjxo1dAxlf/vKX8YEPfACNRgNf/vKXu7b74Q9/eMJ9mfBD0Yknnhg8FFFKsXDhQhxxxBF45StfOeEO9IJTTz0Vp556atd1il5GWw3tUwRC1BsDcW/8IMRGC0CIFTLSDADx3JApQDJqXYzzxPkAtTlDmzIbHehjbcxhY/YNtk4z+3bV0q9zvoDWIJfqLdK8bTHogpYF12q1rBxqTGnuRNtUWudZKiVyySCkF4HyrigTMQIQimOhRI4NlqE/0ceWZtZ3ZTQLow9GrG3ekimRkLq/QlBlVG3e1HyfFU8Maf+V3msecW0TEt4LEiKAJEefFsBLSZBrfyPRZiWRtuSwESiaE4jU2zeTVskqM6reHI1nS8ohjFNurgvm6nbraQ6kbi6ldP0VBaF5jXIbpZmVtFCnuX3bFpI4S2Oo+Tfi3jrNVaRCR5WEpOpNXq/b4klQQFZoEbfbbw5zi/C9aHJQDGcNpJ6YdhZrBu7UAl5hTymCdosIopPeTJlrwYdthwDUK4QMOH8kLoEMTvScEg5OKFLizmUTsawRDqpF2+pYhOq7jioJLxpFoSMVepcmGpURJyI2UaOifTSnBC2R2GtNHYuOXFKOBnPH0eSJvUaMtxTVEWRVqNclOYxJJxsXxh3INEX1aWu+twio0edLFTmy3aFA0nTO1qImMa+mDNdeaM1G7on9Tb/M/AwkbfTpz8ZDzdxrjJ+VFV57EbyUCgiZg3oRp6Izui0kbeZER/QY3D5AVP+59K4fSW1kWN2LPKdxSFCizg1CgDYHqHfP8SN2fhFqtZzA5ntwqiLKeSxvtTX4xS9+gTRNbbbYeIzTF7/4RfzVX/0VGo0GvvjFL3ZcjxAyPQ9FF1544YR3EhERERERETF5bC/67O6778Zll12GVatWYd26dbjpppvwjne8I1jnqquuwmWXXYZ169bhVa96Fa688sqeU+KfeOIJzJo1CyeccAJ++9vf4s/+7M/wN3/zNx3X94vA7hAFYRljWLduHRYtWhT8/uKLL2LRokU9K7wjIiIiIiIiesR2os9GRkZw8MEH473vfS/+9E//tLT8hhtuwDnnnIOrrroKb3jDG/D1r38dxx9/PB599FHstddeAIBly5ah1WqVtv3hD3+ILMtwzz334OGHH8aiRYtw3HHHYfny5XjLW94y8c5OASb8UCRl9ai2Wq2gOOuMRyrUnyQqauuJ7WQOZ05EiBUcMh2Kpm1NM8xVFQSJ+d17TM8EQ1s4uiClKoRvQv6DZNR+3sIbQfmDBsvQNr4ggkGAWK+PPpppCk3YdhPiRLgN6oqLioJYGggLdKp9GuGjEvc2oD2XIAOhZbHYJSWwYuA5actSafUkx3C7bukLQqTyP6KGRiPWgl8UaDO/5AelEgJeeQ8qwzIGhUPjObWUBNFheiMc5Sl1YfqUqxIinieSpBJSF4SVnCkfI0DVesmpEnkDysdEWuYFhEowI9gm+jikGyNGBVLmxtuUSzGicyPCr3k+RHWaYyBpWZohpwxCCitIzQBLa4FAF+Y0YmUReMhQ5vyicq/QKeBRO+ZcIQRtXcYloQI5KLbkjvenHi1ShZYnhOaSehSKo28zyQLh96iolemUDjUV/HPZegMZOg1K9JxqykTQzIqiDWVYQ+e+m3aMuNsWcgUt0Gluvn2/IgC29IWwNTlCWk5dW/o7kdZDytCWZj5SxlU/zLVRz4yOGpxJCEohTaKCMp6ydL6kANN1W2hbea25bkjkdfedzW1jRJeX2djsg5TElsposBwJ5RjQCRrmnAQUVVksGeNjVNTtHHNJNN0m7bZGoG3aKcIX11tvJHAwCCfKJ2rOMn2997GsRFuS3NHjlEi7rqQSzBR2FsQWkLUgzmtMQChZBdvaJ5XeMJWRomLlhm7WNMcffzyOP/74jm1eccUVOP30061v4JVXXonbbrsNV199NS699FIAwKpVqzpuv8cee2D58uXYc889AQB//Md/jIcffrinh6I/+7M/w6GHHopPfepTwe+XXXYZ7r//fvzbv/3buG0U0fNDkRE0EULwzW9+E7NmzbLLOOe4++67t5mmKCIiIiIiImJqYB5ADC644IJJSWPa7TZWrVpVeig55phj8NOf/rSnNpYvX47nnnsOL730EgYHB3H33Xfjr//6r3va9ic/+QkuuOCC0u/HHXdcqS5qr+j5ocgImqSUuOaaa8CYe6us1WrYe++9cc0110yqEzsi0oE2WD+FEASCO7E0JJRrrBE9NwDR0M65bWqjROoHAH3SRg4oDVOrAZfaPpzX0OIJ5iQqrX0t3wUv5apQonH6NW/NghIbDci0X1PipTNTIq0Q13/TZjrl1aUq60iJFpG3RApReMP1wQqp4TXTH0nQSLJAJOu/8VPC0dBC0QbLMCdtYTTXBS8FU26/OuU4oQItnR6bc6ajRfotToZia5YIewZLPU9muV+Y1cyVSbtt68K2RizOmLAu0qKwLqDFlfrtO+9jEJl2E+YqJTcoRkslhF6XwLlT5zq9l3pp9qp/OvqX5DZS1EiUSN1E1/qTln2DBtSctmxksI06yQKxskEChNEfKKG/eWf2BdummCkvzHviRQr9t/+ECBdFAsEYr6HlRRmNuF9IAi5pIJr2i9T6EaTiskwwjMow+uy7r/tO2WqfLtmAg8DskUkVHcukc9W2CQ0kQw2A0R8XkxFS4pzkmyIFhXQRCRlGLnhwzgv0E26F/5lso0mdG7YvujZjb1yXa54rubLfYIWoLIdITeKHO8eynKGdJTbCmmcMosYgjZ1Ei1qRsKgpUXU+oAXQdY7RPYW9l+2/5AWs2byLOu48QV+a2eLVgDqvWkSLl0GQaVuKOUkT89IRNDxRuxkPAGDERaqL1iCmLbMsZbktLJt6YnYzF2YszRyYdbgWZdf1OViHO88Hkha2ZA2MJjV9HCqCbCJzLZ7YKHbGGWSi3fGhIls5p8j0//u4oJCCgMtyQsA2wRTSZ88880xQt3SyBsYbNmwA57xkjrx48eKea48lSYK/+7u/w5ve9CZIKXHMMcfgbW97W0/bDg8PVzJUaZpOuo5pzw9FRtB05JFH4sYbb8S8efMmtcOIiIiIiIiICWIKH4qmuph7sR6qlLJrjdQixqPoOuHAAw/EDTfcgL/9278Nfv/ud7+LAw44YMLtAZPQFN15552T2lFERERERETEzoMFCxaAMVaKCj3//PMdS2tNJT7zmc/gT//0T/HrX/8aRx11FADgxz/+Mf7lX/5lUnoioMeHopUrV+Kzn/0sBgYGguKpVbjiiism1ZEdDUkiwBJV6FQkAlKHq3nOIAUCl1No8aJgErJGFL0GAEyC1nOw1An3eEHw5xd2HUhalqLYlPU7KgcMKZxXje9eXZcUmS4Ya5YZug3QgkUvrJ+JxIpBmfEPsX1wFSIpCYXLlCgPI7+4qC9e9MWVxW3Ncju2lKPG3LZtwVxR08RRZISoMTPiai6oo6a0V4tpVbLQGZsyEQgkfTH4WJaqgpzCeU+5YrFaCGzoNEvfaVqlpgStgKLPBKfOJdiIqqkRgwsr2iyOg+mr6UMmqKXPhFTifSvg96jTlAqMiRqoR/PUaV7yl3IHzm3XW5KCSwJqBMheuxSkNL8AbFtCEldwE5o+03PmC/kBdc6l3m8+hUsLQmNF50n72S+qqigl4xmjKQ3q7UuE7tn+ec4lDZyyKQhEYDij+0Ol8rPRixgRqoipd+4YSq1GOASc1xgHBZeubwzOsyq4pgDUNXXNLB3p5okKilS6hAifWjNu5r7wmhJpqUvJOKAF8JIJSMkt9csSAULUPAPqtkSb1Dt+AqRuTEQfB62rPsxK29jSUtLvWfUWpCSW8gaAduIovQbLkJDQedy45FNIpDS3wnZGhKXSBQ3HKCygGy5TNKYEle68t/Mt9FzA8zAiIbVZJ05OwLSwHVDu7G2RIBEuqcEcV5srStPcR5gkYN69wrjv83x6Mq53REfrWq2GZcuW4fbbb8ef/Mmf2N9vv/12nHjiiVO7swqccMIJuPnmm/F3f/d3+N73voe+vj4cdNBB+NGPfoQ3v/nNk2qzp4ei1atXI8vUifzQQw9NKCwWERERERERsZWYQvps+fLlYIzhrLPOGrfqw/DwMJ588kn7fc2aNXj44Ycxf/587LXXXli5ciXe/e5349BDD7XF2teuXYszzjhjKzvbG9761rfirW9965S119NDkU+Z3XXXXVO28x0ZtZSDpVyLe4l9W8iZUFEG43oqXG0cpDpl33wnQFLnNurAPEdYIYl1fgbUW2YuGUZ0mvMwr1lHVipVqq/OBEWd5TZSIEBBPYdoIEz9L76JAwicfoOUYumE1Fy3Y9vS/6ReenjewZ5Bvd05sagAKaTsU/umC6b76EWZbF20DGiDIdHHSghs4rSQRBnZemMqiZsnSgWKz+6mPhgh0oqvi6inOdp5YtPPpU6dp8S0K0F1JEimur6ZJ8L3rQCyLEEt1RGehIMLAlLYr4mCsYpXOFGIdAFKWD3M6yY4qdYDcbW8pEBTD0kuGRhxaeCJFzUqtsuktM7XPhI94pwSF10hSrjsRyeLsO3qfZsIqakJxirEtsouwKVit7w6Y+5gtaCcsiAClUlmBbJAeez86BX3Bq8pVcQpcLuGf52G15a/Ty5V1Mil/odzyz1Ru4oiOeE1AIxq1XOq3ZhNFIQSaQXyqXf9muOiRAb3kgCJ55JufiPumjZbkZyoczU1VhMErC9HvS+zfajpFPw607XK/PpreYq8pu+BKbG2EbkWjQ9zdR+r0xz9tG0jR6AoiactiAC3kWrlz80KTwEmapcSjrrveC48R3NQPd/aZdsTrjMCgDnBeEoExrhArqNWufAjYDnaglkrj1yomn3cRi8JOKPg2TQJracQDzzwQM+aogcffBBHHnmk/W7YolNOOQXXX389TjrpJLz44ou4+OKLsW7dOhx44IG49dZbsXTp0m3S9yI2bdqE733ve3jqqafw8Y9/HPPnz8dDDz2ExYsXY/fdd59we2WjmnFw2mmnYcuWLaXfR0ZGcNppp024AxERERERERHdQaSckr+J4ogjjoCUsvR3/fXX23XOPPNMPP3002i1Wli1ahXe9KY3TeGRd8bPf/5z7L///vj7v/97XHbZZdi0aRMA4KabbsJ55503qTYn/FD0rW99C2NjY6Xfx8bG8O1vf3tSnYiIiIiIiIjoAjlFfzsRVq5ciVNPPRVPPPEEGo2G/f3444/H3XffPak2e84+Gxoask+IW7ZsCTrAOcett95aKv0xk7GgfxjJQIZcKEdTE1KVkrhCgQC4J542IVqfvqoxjob2m0kZD9ZpC4ahTI1jk6eo0TykvjzKKvMde3laCisbtEQStNESiQvvSxLSCNo/xop4CQfVIsKWSAGhnIwBgDGJjHBLJyRe6LsoihSSWt9rwHiBaMEuTEFG7c9Ds0DcKKSj2vK0hSZPgrA9t+NOLbUJKForpdxzkHZjYOYsZY7G5F6BUzMfZqzr9dzu07hoW8drSdDW/kZtztDOGBirnn9KhRW9JoyjnnDbB6E9T0x/E8YtNdlIcjRYjjlpU4+io1OGUQ9oBzPf3BTK9Ipx5gh9h1LCUU/ySqqOsZAC43rMDFXYxzLbB0MTmXNQaLG/QU5YIIAuiq0zTesByifI0G++o7vpL9OidnMc9tyQ4T4yyaxonRIZHGMmCFpI3HkuErT0WNdlglHinLMbJAMjwtF9hffGoo+REkIbitB3BBfIRIphz4fJiI4BoJ+2Lf2TCUUTmuOh0vmM5YIh8ZyeM0m1d5E+BwVDk7vzMRPMOk+3ObPeRYC6RnhihOAACNDXp6gkLigWzhm2hZtfHOsPjrM/yTC31rTffVreT2IQkiATYWFfAGjJVI+BsFSauRe5YrESqa5Ya0TXfiHhTLKAzrR+a1QiI06gnwkWjieRdt4okeinbcxiLXscTZFa0XsmqBP662oB5tzLBVNjL1zyQS4oMunouIjpxQMPPICvf/3rpd933333nn2Siuj5oWju3LkghIAQgv3337+0nBCCiy66aFKdiIiIiIiIiOiMqcw+m4jQekdGo9GoNGl8/PHHsXDhwkm12fND0Z133gkpJY466ih8//vfx/z58+2yWq2GpUuXYrfddptUJ3ZEDKQZ0pTYyIUfVcg94Z6JJAFOUOxq8kikjCOh5RpWRlDs3rZEIEguClABV9PKdxc26cNFB2ojvOWSujdqQlVNIN00lRLMS3H13+bTgig0k0x/133w3qiK6l1KBFLAOgrTQiEyAWLDuAmVAIQ9EXNPoE2J1HWWtFCYCOv6ayI9PkVOiBOzMyoCgbmQxEZiEiogKLFtAWV33bRCdKzWIyoNWoNRgZy7KGIRVkhNVV00K/j0+mn2558ns5IW+vQbdUskgOeEbOpMAertlRJ1PEA4hxQCHH70QtrfzXfzhlyMxGSS6UiQq6FnokmZoKXokJAuVd3UE/M/m/6ZqIJ12mbw6pAxJWS1tcZc/SqzrTmGTFCApoE1gesLKfyr29NRT0FpIMrOkNgIjiBUi3xdu7Y/Mlzm/+6Pg+uvs7hQx+Xq+fkRkpTmaphNjUTp1RLUbhAmrT4BR+q5iSeC2fOmSRLkktskAUaVvYA5B7OcgRCXQECoxKxG2647WGvaSNFoVrNRzZyoa83Mr0rBF7b/bZEEzumAE98nlGtbEDeno7xm1+HEWSfUaea5rWdKyIzqiJ0PSoS2lNDO1jqhgBknai9dX5UXoNY6gUJFjmwSih9xokzbI5g5E6iz3N43TL3ALJ2mSNEUZp9NRGi9I+PEE0/ExRdfjH/9138FoIIza9euxac+9anK4rW9oOeHIpPzv2bNGuy5556gdMJypIiIiIiIiIhJYEf0KdreuPzyy/HHf/zHWLRoEcbGxvDmN78Z69evx4oVK3DJJZdMqs0JO1qbNLvR0VGsXbsW7Xb4lHzQQQdNqiMREREREREREb1izpw5uPfee3HHHXfgoYceghACr33ta/FHf/RHk25zwg9FL7zwAt773vfiv/7rvyqXcz497p7bGv1JG6nn+eHDFxYq8Z0T3hXFuwn1Qt2UB9SagKMRhKRWWG3WNeJKVcRVWL8QX+RsfIZ8gSqD8Gg5vyglK/gFKZGhEelmJPR+8YvHmnZNGJpSKYZQIQAAWDtJREFUYVmzDGHovC2SQOCbEAFhfEy0eNHvQzC2kJYOKK5To9yKSjPOArqxKIimcF4uRBIbSlfH5fkvFfoQuHJXrN/mzLVrXKmZE3+rvuh2/QKhUF5TAV1GhP1eY9zOmTl+41k1ymvWz6qPZUF/OYgV6gJAP8vs+SFAS/MNKP8foOwv5K/ru/4CCObTiGAtLVXw51Hz4p0T0lGtKXjgXNziCRLixMhCEruu/1m1E+wGgjuaDnBz5ijvgn+Q9UqSAAytxUEJd4VlqfJsco7cotAHCpRvCcG4+Cj6Gvl+TUWvJuYdiy2MqkXjRvjPQfR9xFBOFC2h9lGjOZo8tfebthDBuZswgTZ1Y5QmHAM1RcXOStuoMW4p4OFWaj22SN05agPazdxzai9Sz2redEIGFHVmzh9WSFpoSZcYwiVFvxZAM+i+wxWC9WlZAHY+VSddkgWHSigx80alLPtdeeNM4WQMdc99OxMsaCcXTI2/LYRNkVGKNpt59NnOgDzP0Wg08PDDD+Ooo46yZT62FhPmwM455xy89NJLuO+++9DX14cf/OAH+Na3voWXv/zluOWWW6akUxEREREREREOhj7b2r+dBUmSYOnSpVMeiJnwQ9Edd9yBL37xi1i+fDkopVi6dCne9a534Qtf+AIuvfTSKe1cRERERERExNRi+fLlOOCAA/C1r31te3dlq/DpT38a5513HjZu3DhlbU6YPhsZGbF+RPPnz8cLL7yA/fffH69+9avx0EMPTVnHtjcW17eg3khtZpcfimeQlUUM2yJB5tFpRaqomKEB+HSNCL4DzlY/STjqLLdhWwZhs6Pq2mfIz3rhCKkOA+O/4pdeyGTZU8bfhytEmof78IrQtjR942fMBMdKXH9bPCmV/UiIsNkgxWVhhp5HW2q/Ft+Cv1xORH1OqAjG1e6XlqkX+72wT5t5kzjKqYpaNd4lAAJ/q+KxJFRgTq1l1/Xba3OGNu+zv9cYt5RITY950UvFFIQdBZB62X4tkbjCo5oSM3Pqz1mRUuxjLQzlDYzxVPfNzbc7Vw39E2af+eMHqDk17YzIerCt6aMaEx5ca0VajhfGmxWyN31axj8Wc736v5m2hnno+wT93RxrSv35dvSX2r8IssjqNCtlpvnfWyJ1mU2SBdmPwXEW3lXrJEOSmDIazF5DZozMtZVSrjy/ElPQVHnqiJq7ZnKvRMWstI359REAwJykiU1Zv82kzLIEuc5ia2cMeR/D7LryKWryBDVaQ40Z2o57xYFV+Rc7h57MAADGCsWr6zS39yMBovzRoLIA/bE199nM831y4xX6ZjFIMN+PzaN6izRaifpDmJXqnwsmg9LSu3qeWrVpKvMRs89K+PKXv4wnn3wSu+22G5YuXYqBgYFg+WSeSSb8UPSKV7wCjz/+OPbee28ccsgh+PrXv469994b11xzDXbdddcJdyAiIiIiIiJifOxM9NdU4MQTT5zyAvUTfig655xzsG7dOgDABRdcgGOPPRbf+c53UKvVglooMx0J4UgIRUK0cNNzhQ68iAgHtd4zEgnhSKl6k2jxBG3P56L45gvAPrkbYWoQOdKrt0QCyiXq+k2lTnMbGRCSgpEcLPCn8aIlXlQrEwlAnAg7pRmY9Lx/4EebaME7hQZCUP8zKJBKJ0g02wURHzOuCUcumeeLo71fKt7ii07ZxpNJ9UdFNszbm9DeUVXO2FXwo06dlvv/dlq3MlpE3Zt5WhG5AlSkKO/gwVPsv39cbZEEpLfywvE9gty5aqIjpqir0L4qRpBKCUeqo2V1kiGl3HrIDOUNvNCcbdut6bd6044R/wO68CnhNhqQedFTIWkQLbOwzujC+lkZD5/i/AdjW7iWEi9qlfrnpO9fRMz+ytFYIQnGRC2I1Ao4H6NUhskHyuHYRR0ywrzrKQ/c4dXYuIhRnWahpZdJgOgQMfJhfZOIKmjLhbsOfNRpbj2tBOXBPSeRwujLkRCBwdoYFtSGAQCzWRMtkQRO8ObelOcMo+3UFlROKUfGGXKpI4epO8dSHTViXqTVdyangnaMyjLP+4iDAJLZe1nRwb8qGm6G1hSTDfZhonlEVJ5XBgywLu6ZVJ5FXJpl6nqqE3MdKB8lXixsGzFtuPDCC6e8zQk/FP3VX/2V/fya17wGTz/9NH75y19ir732woIFC6a0cxERERERERGArmu09W3sBBgdHcUnPvEJ3HzzzciyDH/0R3+EL3/5y1PyDLLVDoz9/f147WtfGx+IIiIiIiIithFi9pnDBRdcgOuvvx5vfetbcfLJJ+P222/HBz/4wSlpu6dI0cqVK3tu8Iorrph0Z3ZUUCK1PTwA0rn4qylv4XvlJNTRCsYWvtQ2yjSML8oFNG3igXki4awQ4gc80SHhSO02Mgg7+4JxQHnI8EJomVsKqxwiDnxVCAlD+SL0L2KeIDaVwvajSnxuusgIrxTXmmVU+qFwHgiifcGu7VIXuszfTvXTzaHfp6KYOCiGWWgjkSKgwKqEyD5N53sRcUkwlCmxdTNPQEkabGcE16mhn4rlJXSbTHrFUYko+ejUidrnotoQBmgLv2mpl5vfjO6CJnceMg0Wniuu6G85WYD5RTRldeFdXyAdFm9lhf24sTXeXoA7b0zpDkoohC2bwYPxEBLIi+PiXVuKqjHr6zmjbv9uH+Vr1fdjaonEiZ610Ndclz6lqY4/LEsRXHdSlKhsQ58xiKAED4MsUElOeK36LirvVTWWY4C1MD9RQut+2sLzdLYVT48RGfgxtbMEo0xRq3PqTQgQW04kZxSUufNSCaTNdSr1dy2uJuG54N9DiueXAGyZFF9wbceleH0bbyfpzoWqtouootv89sz4cVD3/wENhrAkTMT04MYbb8S1116Lk08+GQDwrne9C294wxvAOQdj49PR3dDTQ9Hq1at7amyqBU8RERERERERmNLss5leEPaZZ57B4Ycfbr//4R/+IZIkwbPPPos999xzq9ru6aHozjvv3KqdzEQYoWtRcKtKC5IgCtI52iPQRznAXMqmL0YtRjKKgtTEvnUqAaLZti0SjOnIQUummMWagQMvg6wUHaZE9d1/K0oBW/hRpQlrkaYpkKj3aZxnfRde1uHtKyUclEn06VhCKKwmVhwMAIzmpehFKNAuR0DUOspZmE1C5NhNyGv23ym9XAmiw2KnrBCTLhaMNG2WBKZeYU8A1sF8fk29vY9qR+tiH1rcOYanRCChHHWqXHVTKkI3cc+VmhGJOskwK1Gp1YuTIcxlal8b+Sw8NLwUzzVVmm4zT5BQgQZzolLjsJ1Qro7Zi65QIl0auxTW0dik6tu3eB1d88fQOLkX3+bTgqN2LnwLAaG3dX1oe07Y/nGb/dgCrETA9/L2kxq4aUOnpgftSBXxKRah9ZMwzCJm7xcmXV9FUKqSFZgeFxeZcPcWc97w4DqQ1nUZFDbRw/TFj8apor/l8zwhAn0sw4JkCwBggLbwNF2Imk79BwF47m3HBFqZLkqcJGgk7p62udWwSQMJ5UiTcOwzyaw4uZ+1vYiitI7sAJyruDc2vqi9E6rS6lFIDLGWKgW7B/Pdtx7x76W+DYNJ13eFgE2K/vREijznkq1qA5j5Kfmcc9RqteC3JEmQ53mHLXrHhIXWEREREREREdOMKYwUzXRIKXHqqaeiXncvjs1mE2eccUbgVXTjjTdOuO34UBQRERERERExY3DKKaeUfnvXu941JW3Hh6IOUCLJMGRtQZQvDxB6+yiaSNpwdrFQKoME0xRDgtApO5MUCTr43oCAwoXy/e1GeQoKgX5dlNCIDK3fh2QQpfCyOaaiaFACxjFZJAGFlEkWvGUY/xHbZlCklAZ+OQBKFJMRbgtJAlFskUrrJJD0x8LvUzcxtd3WiKarfHA6Vfv0+2TF18IKgE1fKZHWeTyXDJnuf5HCMNSGTxGZYzXuz0ZMPacmrAjbePEUi+o6CkeWxL2+E/qspIl9ay8AAJYkm7E+HwQA/GpsCZ5rzsFobvat3JGrxiYXDPCKGxeRUG5PspxyJZ72xkj12VEQjn6mwb+McPhCd0EkEoTj6eY7LBZa7XGktykkMShqzYyRonTseSiYEzUTWaLO1J7DJAzAUbQczrtLEHeszPMLc+0YvyM3fn6b5ngDt25f6G/GzSRZ0FzR7tIUv3XnTJ3mmM2amM3Ggj5n3EuOSEJfJ+Mj1eYMKQupQDMfTZ4iJQJ9XpHUTIb/m2lQTb1Z/7GQKjOfGRFuHwXHdH/9IoFe1Z6BuV65d/4EDuICYLp/xhk7OGep84aydOc0+RRNRfbYzpJ9dt11122ztuNDUURERERExI6O6FM0LYgPRR1gHIarxMQUYbqqE+3xoJ5UCmEdsIFQ7EmBoI26pLqGWPi2bPcH9waYUlfrjIMEtcvqNNe1sLyU5E7qPMlK6ag2+kNVH7h+U6WQoWBaELRIYrfpFDVQ4+LZAGhXapdaL8Gle9tVvsPu2KqsCmxbkKUIVPG72qaczgsAfAKvTVVpzUKSwOjLpHrbtGwpwqiR8MX5wgrozbZh5I1iIGnZz0XhsG9loOZJR2IksedVQpRNgWl3Nmtij9pGLEyGAADP89lYPboUALCuOYg2Z1ZYXYwSAWUbgeJxh78J2wfjEGz7CwITCvFFxU487UT+5Uiajn5BQFRESTqhU8TRnRt60AqBQg4SCJmLkRvARYooRBAd9ZFJBgHquYuT8Nh8Mb93DlF9bZhoRtkNWoASMwYoWW6kHWrCzUmaWJxuxgBV59iL+SxsyZ1gmngO65RKGyUCgCxnaJIUNV0H0E8WyAVTUW89r0yqyJsRrvvjkxKOVEezDLiNEob19QAE0SLeweoBMLYOnRNBqqLBRsjNiLCfUy96qAZFW67o74Iod/Nu976ImYf4UBQREREREbGDI9Jn04P4UBQREREREbGjI2afTQviQ1GP8IsWFmHErybMasKvqpigCxf71JrxO7HCSwhbgBBQYehu7tOGTqkXPXL0PgKax2vHDzv7xSoBRcv5xS0pEehnKrxuhNe+b4h/LMLrBjWuu5oq4AXKISlEr+skdPD12/XpR7Wsmp7o7lhraLbxTT6qhLSdUKRKzLa+6DmxMtAsEMhz7RdV1W9VpFWACkelFgXoRdG9pZzAAo+dlPDgfNyYD+A37V0AAOtbg9jYdumri/u22M8tnpTF4Z5zNSMFd2nPRdovNEtJVjqXFe2ozz0W0kbCK/qrxlAXBCWKCvKNWgzdZtvt4C1l1q2iOaqcjIt9NQkTTEp1nB7U+Jdvo1XzqtpyNBjT+o6EcFtsVB1reVtzjVbRaMazKGXcXjNmf4DViSNlAn3az2qP2ka8orYODS3mf6a9C15ozrJeRABscVgp1WffmzcXFFSLsmniaMyhrI7RPEUjcb5EdZbb+WiJBENoAFBUf53llmL2HcCtiLoiQUEdP7dO4wad3PiDcSSi9LvvSJ0JZu9XGWHBPs32QV98MfgMwkw3b9yWiA9FEREREREROzimkj6b6eaN2xLxoagDWI9vAEXHaA5ia40VHVH9t5SigDilHFRKm+7pv+FXiXwNfNFyJ5TFi3p9XWPJusUKb1nFoas0ch60ZdrPJLOpv3Z9Yo4lq3xrC9v2RMb2TZ0rZ13PQTZwD4YTVhdrpPnL3D68lG3fIRh+9KEqmtDpPODWfsDf1hwLRdmWgJvoQEVrNoKn59REWzLh3vZLkTKijsZvwxy3qn3lonib8z40ReqdVxR15hxgjWs0UK61R70aWkYO70ZBOzlbcXAYafH/rYKdO6KiJn4ksXi8vjDduqPr9ULn8c7Xrl8vrDJiV4jMBbXthIvS+enwRYwn/BbSS4CgLlXc7K/okl90UQ5rLnrnrBSgxk2A0OD+kBBu0+HnslHMZc1Cn0IHf6YF8iZiRLz9CEnAtfg6485yoZ6oRA8j2G7rZAxznvnO3WMiRSapjbQrZ3ZT0686zd131Pfh31+6J31URz99uHOWBXXnSjX1erDvmFLE7LNpQfcrNyIiIiIiIiLi9wQxUhQREREREbGDI2afTQ9mzEPR3nvvjd/85jfBb5/85Cfx+c9/3n5fu3YtzjrrLNxxxx3o6+vDX/7lX+Lyyy8vFY6bShRD70yL7wCoUGshLO9cXMN2DDVlwsPGawNAiZbyUUUbBf0rulZ7FB4lEpDCeq9wUPUdZTfuYlvKS8WFulsixRauBJTGVyUlmbdupvtbcOitCEH7Y8MlddQa8eiECvF20UXbR5Eio+DV7uFFx2AUKMcivPEr7VPvx7QrQANKrxOdZygwasP2QOYV3DTrAK6Aqb9PQ/1QhOcHB4MQNPjNUjZQgm3fKToQLmsqzvSBFsYuB0Oit80JC3yVfIG5EusXCwC7oq4As8LbIopi6ZQIe6yih5u9oQaLJSMFEaAwBXZ5ULDYP+cAQxUyu539DdWibR9FsTwPaGviirwSCl5oqniudvLoCT4jpCJTwlG39NkIZhOOUeOML+rIJQU1AnlJwFiRqnRCcL/ILxfUipKZcEWEAaBtxkqva1za1TFQZGDIDe0qErSo+l9SP8uCRJTicftJIaqPfEJ0Vjc6vxN1aeQF201YHbPPpgUz5qEIAC6++GK8//3vt99nzZplP3PO8da3vhULFy7EvffeixdffBGnnHIKpJT4yle+sj26GxERERERMSWIkaLpwYx6KJo9ezaWLFlSueyHP/whHn30UTzzzDPYbbfdAAD/8A//gFNPPRWXXHLJhJX23BNIA66+TlZ4M88Is6JAEzHy3xhN/RyzfDwBpmmdUidIzESYsg74gkudEm+WS1EZhbLtF2ouCUKsuNtvtxgxAQpvV96xCMjSuPjptUUxOgDvDZ92fWszEaYiuBd5qDpO3z6gKiKkhKTlGkndHLSroJyowyhY5Vu8jjhYkXMhtZqC22iF+ccK1ZEhYdVjlEqBTNCu55UvzuXSOaC3RYIWT3R/ysetXMzdONtzgxPt+B5G0XIbQaHWmb0sdpdKPF8ZpaPIBXGp0H4ElkgIyey5SokI3KcTWh358/uXEhWlqHJK9/tAfadxlK0X/HX96E8xElSMHPnf/XUzycCkRA533C4qU50s0O289KObjAh7zdVphtlUiasbeixGpEoLGRUqml5P1Lp9aY6EuYidlMQKrYs1+7goXz+JvrZqNC+4wHuu/voeYs5BQEWLAFX/r05zK8Iuwh8jc6/p5BDuo1M0qVi70fzm39cYkYAM54BBIBMzLyU/ojNmlND67//+77HLLrvgkEMOwSWXXIJ22xUd/NnPfoYDDzzQPhABwLHHHotWq4VVq1Z1bLPVamFoaCj4i4iIiIiI2KEg5NT8RXTFjIkUfeQjH8FrX/tazJs3D/fffz/OO+88rFmzBt/85jcBAOvXr8fixYuDbebNm4darYb169d3bPfSSy/FRRddtE37HhERERERsVWImqJpwXZ9KLrwwgvHfSB54IEHcOihh+KjH/2o/e2ggw7CvHnz8Gd/9mc2egQAhJRDo1LKyt8NzjvvPKxcudJ+Hxoawp577qnFodXbFd2XMxv2Dh1pKcqiPJ+q8UXPxQKIAdVGEVBcgAsD++LooH/2N+cAxHwBqV0qAzG4od7G8xUKqEXtEWO9RQptcElhSLBu41GEomy8gqE9XNHMUpjlwo3jbWP20kv7PopzWNUG08VMjZiWQwbnWFWRVf+z7+MUtAsBSlngaRUIxUlYNJd7BWL9bmZCO5TbU157x5hvgYdNSOEUC8Uax+sqmPO2yl+q6GkkJPOORY+t8eDxqDSzT18g69M0xWKvfiHhkvgZBPC29Y+3dCySjiuu7tQGxfheRkG/rOhXC5rNmFeIkV3/CADn3+TvrykTtLzzr04z9CcZNhlKWVBIvcw5W5tx1L5HVNh/u9ORoSia+eeNFm37x2jW8Qsdm+O1/lKS2f/BC0IgKLU0Xkp4mOCC7hR5sJ7nO1akTY3nky9VEGDI5Myjz6KjdWds14eis88+GyeffHLXdfbee+/K31//+tcDAJ588knssssuWLJkCf7nf/4nWOell15ClmWlCJKPer2Oer0+sY5HRERERERMIwimQGit/42O1p2xXR+KFixYgAULFkxq29WrVwMAdt11VwDAihUrcMkll2DdunX2tx/+8Ieo1+tYtmzZ1HQ4IiIiIiJieyA6Wk8LZoSm6Gc/+xnuu+8+HHnkkRgcHMQDDzyAj370ozjhhBOw1157AQCOOeYYHHDAAXj3u9+Nyy67DBs3bsTHP/5xvP/975/UE3EmGWgXfyADoQgM9UWfb352Qup5D5VQoKD89YpZa6Ygq1m3G3LJ7LoU0itToUiYot+Q71Vj998DzWV/s95LoQW/398iTdRpTPwyAMVsrl48Qqr6acL0vRSMnAxMn8wcdupj6hWxpFKq4q0dymAUSz2ElFiB7vR2J0iRHg3pFQrnN0SltLREQrjyjTFeQzaTrNyHKhqznKkYUiGl9U0bpLP2U4A4ikRTaWZd6nkUAQADCTLTfLoq9EFS+7SZkQizyFiBaupUSNa051NSVTRbtywxUzKnG52j+hh6YXFJrG8VJSSg8Px1GYQu9eJKmhiadUTUMSSdf9tcNop5tVEM1VTUfDRzy/zMs6pjMxmF5reECo+yU6VjrG+VVFQt4LyGjC+V8hrrPp5VUBms0mZv+teVOu7JXefFcQ9+t32U42aoRswszIiHonq9jhtuuAEXXXQRWq0Wli5dive///0499xz7TqMMfznf/4nzjzzTLzhDW8IzBsjIiIiIiJmMqJP0fRgRjwUvfa1r8V999037np77bUX/uM//mNK9mm8f7gWI5o3GOev0/ntLnREdn4upsAn4N7g/WKDSjyqoyOFt11GhPMwggwiDgIkeBvy3ZqVMzGz2wGh1xLrItQcD706uxqHawDgsjx2ykXYRA7CY+aSBv3rFt0pRsGK2/QS/Rrvrd0X/1a5hXfdtiIS5wvmiwJPG0EhCMT0gfhcv6nWte+MP9bFY2EQSKkrYsoJdR423rnu9kOD830iwuAiim/9NhIDaYuAChAn+NbIbcQmLL5KZeiVZKIPZl+pd/0YDyPrqyVhrx8AqNMcddrbuezDL/BbBTFutKwgHu9SpNh3RqfERQS5DB3COZwA2bii+z5CBs9m89CUNcxlIwCAPdMXMThvFM/OmgcAeGpsIX47pj5vajVAiUTNOE/rc84Krf2xLkTWjDO6L8YPonha2K6WCVdsFzIoEAtA+WsV5tnfT0sWixiXvZ7GrwDQOeJpf/Pd/iXQmq4095h9Ni2YUT5FERERERERERHbCjMiUhQREREREfH7DCIlyFYKpbd2+98HxIeiDhjjKThPwSADQacJw3crPlgqRaDDw5nwyz5QRY8Qt41Pv4wnAnbhaB6U6jAh+2Kpj22BTrRUN0F4VdFWDmnpIUZCobbv5VTVlmtDj3EXcfx41FivqPbRGZ8+qxSBm+2150mn/Zn5LNJIRRG2LfILVIpES4JuOBqmXOLEzZSAK2ZcpJAtTVERmzclNco+TGXfJSFJobyNSxjwEweqUCwJUkRKhPW86YZiMdpO49VtX93QqQgw1YT9uNt7ZWHUv+H1FFBpkqhzQJYpRgYJ5G79AdpCg2TYLX1JrSud91WDZcgFK/lTub47sbEtdVThQ9UJ9l4qVVEVAABRFKlfDDsXrLL4brGAq/pMLf0sCh5W4/ZnXArdL/9E0J4u+kwAPZwi47cR0RXxoSgiIiIiImIHR4wUTQ/iQ1EH5IKCCoa88LsqNDrO24ZZrN983FsusY7GgHFtdWmkaluX1t5rynjoSj3+Np1clHtBVbHTqkKoRdfvTm+zjMjAQgBiYv0y+8kl6+mt1Oyz+FY+6bTawM22HDnr1Uk36EOFQ64dz4plldGiDusWtyvuv7PDtjtvE7Nth8MJ+lIRGSzCvP0rEa5X2JW6c6UXkfd4UZu0IjpFteO3fz4w/zMppHRXjX9HgXS5D8G4SiO2V3GibpGiyiLDKLud+5EjO3Y2igobKRhFDdxL0GjJNBiflHAsqm0BoITouWDWrmG8SLnqhxNW++sWI1nFOfPtEzIwZHx8WxS7zy7RoLLlhUuc8aNOEwn6mChoLCe2cyE+FEVEREREROzoiNln04L4UBQREREREbGjIzpaTwviQ1EHZJKC9BCyrwrrMy8MXSxMaWiyFLwUOs4k64na6ibo7cWLp1Pb3Tx+gDI9xmX4eyls37VIZKFYp952zHPZLfe77KkkPHqlWNxzPNiiml1di8P9hP0JfVCo7EzJsQkqHI1Hlmnf9ywqekt1Oh+KYvsizZkSrkTuUG7Cwf57pYhRnncfyptLVBZ+tSico3Y8PTrPUDbFffjXEPXms3QsXsKDP9+GOnNi8fLY+kkMpTEF7VqstxNCWomX6OZi/7veD0p0n5vTYlvWL0xQZIJhGA3bnyK9aM4X4xXEhWlLFZb2aTFfAC9ASkVeq6hNXwyt+uBTmKQU1aCe55s/n0J2d7+uujeEXlgToehCp3QBMqHtI3Z8RJ+iiIiIiIiIHRzG0Xpr/wBg+fLlOOCAA/C1r31t+x7UDogYKeoA9RYz8WdGSry3YhK+QRVhU2YBT3QZuk8DVW+c2+ZZtpuw27ogd9i3H9kwtgXdIjdcv12ZaE0n5+ROb6NVb4bF+Rq3dhLx+uJNU1Vque23J8w0b6guulcQjvou1GClt30GUTmevpO62o8XoSNEOYDDRTb882G8KKLvEC4k6RjNKAmMK2CP26ZRd44Y+SnaRVsBe2zdbC6Iik70Egz0I5Fq2/AcC1K/Tb89GwMu/WuOdo2adZrDcv/Hpy2ClPJimzI8Hn/eSm1LY53Q3ZLBPye5DCPVfh8yQYNlVffFTmJq30Vc9bV7RMd9Lq+rrj19zkkJ4VkEcMmC69aIoDv1t1vfu7paF9oSkgZWB9sUU0ifPfDAA5OqCfr7gBgpioiIiIiIiIhAjBRFRERERETs8CAiKA056TYiuiM+FHWAMB4UHeL1VbRYVQFCv+Ch+QVQvkS+ZxEvuBkzOO+UEvUii2Fl2j2cPklU0QZmP91C8+NRZ2GIvkyXVYXfqzAePcY69KGbn1F14c7wN+NdZSgd5wsUFrflYOG54ItKIUqO07267bZkYvdhqDQzL8ViseqY9JxV+El1g39OVc132dm42mU5aJPIcf2kqn1mXAHZ4Pce+LRSe55IFxBayOyckimcu3g3+rtbfzslBFShOLZVnl7m/mBE99b7zHcw7wGdHMyLHj/jFQPuNO68SH+Xjpt2vG6L9wVa6c3kXNV9Kg2ApdNM/4ti715h6DCXDNL9uunlHJwSxOyzaUGkzyIiIiIiIiIiECNFHcElRd5NeIyKtxgJqOfMskAQ0FEI7w3Vf+MvintVvR7P+dmLHPkRBpcO70UIICsFtCWhbyGCULV+J4F1UZAZONX2ECWyb186MlT1dln1Bha+3fb+TF+si9QNVW+yruZUWOdJzSnsMkFIMKeiYzSLWjdl90tvb/zCEwqbiGMw/56jtRKhdn5z70Uk3Gnb0v687yZqVFU7LIyehed4OXW6txqA46FkA+GJ7NW155YVrzu3r+5u1rxwLDlYxzmtEpt3asuHS+JwAubcRrWq+9fJDiGI6BaGsVvCw0QhPNEzhbQRoKrzphgtsrD2H8xbN9xPMV0+6EOFe3vVtirBRq2by/B/j1URMwDIxDRxUtG8cVoQH4oiIiIiIiJ2cMTaZ9OD+FAUERERERGxoyNqiqYF8aGoA5o8Beep/d6p2KDvNkuJREJERyFhUMixg1Db3za1PhwFl92KbTtRVsxzgU2pQBK4bYdOuUKSjnRKVVHXoiiz6D4crlvtIWTC1cITdbp9dl7WsY829E29/pBCu0SPtXb+paIjDWPW8+fYrJtQXprThDqn8sCBF8ZfxlFv5X65y7GbAy+AQLzfIuFl3M2pu1vR1G7+QlXLOxUprUI3d3PbPorjUS482olWKh1XyatIBPvKZXh+FtvplZYrtlvsL+0yF6VjmAC3USxUXbUPW2zaE993m4dufj3+uVy8F7ZEgrZQ52Cbj/+/lG7jULx32n2BKHrauxfkXfyBOou59XlRogvT0rr+PSToS2EMp82nKGJaEB+KIiIiIiIidnQ46dvWtRHRFfGhKCIiIiIiYgdH1BRND+JDUQfkgoKIifm6JFTo7KNqT5UiAupFh3T9bYX5rLOcTHs5EISyqzKrzHLmUT8GJjOtGA7mhZIGVXSZab8b1WHoMpO9V1xPhfm7ZLMV6Ihe/XuKdFQnrxgzZj69FtBjRQpCAok33jVqMqtUFlgvvlCGOqsqP+H10Gs3zNTr5pdVzMKx5Q8qimoChYyqLjQDUPBkqljuvlc201OR3olkBhbpvG50YKe2unlh5aJzf/2sQ4tCOaCS1w7880p07e94ZWzG6xeXDKzwP71ey10Uzy+/nwnhSIlAH2sDUAVihSQY5nUAwBivYTRXhZybPAmvJ0hFT3vXV5HKDo6jgx+Vf5xV2xbLAYkuRVqLWWXFtnpdVlWGJ2LmIz4URURERERE7OiQmAKh9ZT0ZKdGfCjqAC4JiPfG3otHixCk8LZXjtJ02p4SWvLAsW+ZkkCUokqqb8U3TyOINCLthHLUqXrfTwkHI2VRsTC+LALW/yTXb1q8w9uQHzXK9Nuy7y/kLy86g9OCwLsTqnyiqvrh/+u/odp2QINluejszlwlpgwjer5AmwfC+lR/rhLIVztliyAa5yJ2SkRa5chbjAQGHlgGXYpwCkkDkW5CnfC+6BMUjMF4wm90j0RMBL144hSjRCUBdkUT1YVKSRCN7MVBvdcoZ3Fbf7viNViOGldf38Xj8OFHk4P+dSjWWtzW75d/7tZpjnnJKBo0A6CE28+3Z+P51mwAwHBWR1MLrM215ScxFO+LnY67l+VV63e6B3RbpxeM50puzp2q+8k2Qcw+mxZER+uIiIiIiIiICMRIUURERERExI4PgcoI6ITbiOiK+FDUAc08QZK74ZGTENORCvqsKOgNhZhKlKh2SEsiTYPELyVBOBLiKLI6zZESjpSa4pzO26MpUoyJWtCfhPCgJIj1HuEJWiJBZgS3gmnfjgrxtA4hmzBylb+HL1ROaNknxN9/4C/khaf9ZVIS5JKC62VtzpDlzM4TpQL1RI1Bf9oG8cpdNLMUXBKkeqz70rYVTydUaA8UV4ZESIK2V17AzEWN5lp06tGIIkFu2tICVSAUxzt0KJoKCVBuvV/M+Ifj5PqjvpfbsV5Qup0q8W7GXR+60lHo7HFUtW5JLN7hbj6+91QXcXAnAew4/+conmNFdKZs2JSJav19JOOIqnst8NzJ46dI6fvr+7RZneaoM3UfmcPGMJiMAlCJGZt5P55u7gIAeKE5G8N5DWOZ8/ZhNEz84D0mqXS6r5ICne23XUTVb7Jwfyrej/wx8e/TvZwPReR8enyKYvbZ9CDSZxERERERETs6jKZoa/8ALF++HAcccAC+9rWvbeeD2vEQI0U9oPjW4aPbmwWVFS7AxUiRESTqaE0gVDSbSgAoO/QCsFGi1HtTC8TfINZxdYynGOF1tIwoUtLSW1NeiAz50Z+ioLCTODkXtDQuOXHHRQthDX/dXFAb0eGCIuPMjqEMIkXqu3kj5ZxCCAKhU6oJAdo6UtTKGWqMw+jJzcsS1+u2eYJhvf8ac8Jj0x/fsTYXtOK4dQSKp2gLF00InLBh5tubJ+2ADagojO82Tr3vFBSMlQX1VSimm6u23HnDiOxabLRbIc0qF2Wzz+K6E4nw9FpstJPIvpd1S/3rtk9vaP3kh17a8KO74/XHnj+ElK7bYLsuL/f+9SskK/TVrONZcEi3XdiOShKoEyWmTmlunbA383680J6NzVkfAHePqCe57WOnyBuX5XtBt7FxxYzNde5FLzuMQS/3ZOn1j3v7YVQAktj9VM0p7zD+Ztz5dAmtpxAPPPAA5syZs727sUMiPhRFRERERETs6IjZZ9OC+FAUERERERGxoyM+FE0L4kPRBGFD1RVhVhui1d+7hdellBB+yJw6Cq2IhArriWNg6IkxXkMuGRKhgsvGK8entEwYfCSvYzivYzRXAsmxLO3oGG2oKhMaNtcSoy7sbMSVKQ0D21woN2tZEVKnRFoRpb+fXAt+M6EE0wCQcwqh/wBAipDKJB7FKAWB5AQwjsSSINOUU5MJsJSDJcLru+tHJhiaVF0KxgHcLONaQG6oNkYlRtrKybcvbQd0Wy4oWjyxwksunD8ThQQhTpDKqEBKud2+FnzOtf+R84wpwvcTKgqgq7yrgu/EncPOh6q7MLroO1WFToV7exUnT0TEXEmPTZKG67ouyh474zkcA+PTZ0GShZQd6bNu25vfAzq3ogkjyk8ot9cLhQQjEn3ae2ggaSEl3HoRCUkxqgX6ozo5o4+ZZYZ21tep54QvC55kQpKA9gYAqftrrjH/muaF67uXOa26z4y7ru2gPqcrhN3+MfgoFqmN2LkQH4oiIiIiIiJ2dMSU/GlBfCjqAC4piJcWb2AiK/7bSfFNxRfx+VGRbu6sQhI0RRK8cZlta4yjP8nQn6jaQwkRVuzY5CmG2nWMZuptbixLkXOKqlRXLlTkh+f67SjXURgbXYEVOAIAiHT5iUSCMgGioy+MCRAdNQr04Po7pSIQNgvzRiYIOKcqqgO4/es+SE5gAyOcgPjfJXH7ohLFQyRS/Zl1zRdJgJwCOTXhLgnJJIh3bGEepj9PWugqCuMCqG2ItONQ3DyYA4nghmaiXFSPJ6HCfk4YR8IEqBeV889DAXfOER1xMBG8hHH0JeqN3kSfkkCgXxbYVsFZMHj2CD0KpLsJb/3zu1M7xWMtblvcHgjTqlVULoy8dIrC9OJU7ycY9JpiXhWBrUoFB2BrgxVF+d36WyXmL7pzl5erWn0A0JYscIzPMmrtIwxMNDIXDGM8dVFPItFgmW23zV1yQQZ9j+mQku+zN8XEByCc78nYoPgI7r0w0alwbs15wkiHRBVJukbBBEil8/62QEzJnx7MPNl8RERERERERMQ2QIwURURERERE7OiIQutpQXwo6gATNjXh0sDnQlB7bvlUBhCGbBlQCs0aFH2KbDFQ4QTH5vNIm2CICqTMeNo4EW4mGNp5grFMTWWrnSLPfXFy6HMii1RVIE5GSBMBymwJACggqITU37mmjswy+CJPAhBPyCwlUfsFLFUmdaSemP5ovTLlxFFgQlNnZl3/OChRzFaXCDsxC4kO1et4vaRSzao5bOoE2yAIaC57TMV//e1J4bceHIil7rswFCR1FF5bU3L2XCKOagC04LwwT4bWTFKORPszpYmi4YyHFSESKeP2fEyosE7eRZoNUOdkW3s0VXlP+esB3emOoChpoa3xXI2r1quipoyIXWiaynjPEO2E3Isz9HiFQ31au2rZuG17Qmf/d59aM3RaVb8Mil5ZvUC1EdJavlO6kI4KKvmM6eQJQNGyvru0781ltrX3M0k6j0uh6+E5MXX0GSFO3J0QJWnwHbj9+ykQ0qXFezvz3cGh/v8wkTnYKgjZ071l3DYiuiLSZxERERERERERiJGijmjmKViWltNJZeikXIxGMipB9VsIl8SmYhv4bxW+ELtYM6jNGdo6+pPl4ZsYIbIUzDCRIZ5TiJyWo0GAjtLALqNCv3h4kSInVLY7U1+LERQAUkcnJAWQFN7qiQxfBE3/9f6ptx9i+gXTH/1ZR7lKfYIKYJUiNBW7s4sK64baSBJGfSoiRVV9qMzG9dvu0j8QGexLvcS7yJD03m6D7Y0Y3g/qEDcXLZagnTjxNghAtRVBkqrIUT3VdfKS3EYf6yK3EQCDXFKbdi26vPFXJR8YUPu27qKG5USFymZBSOdlbh332Vw7jAo1PCYqI8tRpyKKkZdAvOz1taqeoVlOiHS19yCDOe8m0DYRY2PJkBBhnc6ranJ1E2GLCgdpu7xQR7C8bSeBdliD0Cz3HeyN67uKojurBz+qXoSU5XT98jpu3fHgz7Fvf0E8i41ihF5FFF1/c0mtpUaxX8aGxB8X//8F2xyRPpsWxIeiiIiIiIiIHR5T8FAUfZXGRXwoioiIiIiI2NERI0XTghnxUHTXXXfhyCOPrFx2//33Y/ny5QBUuL2Iq6++GmecccaE97nxuTmgfQ1PjKwXCNJR62YpEBNNLXjpEAHH62ifGrucVvndaOpKACSnVoxMfDGy1EJqj+ZhEs7bRzifHyLcn1pW0O0VRMSSVQiZfcEv1bRCoukban4P21PHbT6TsA+67z495S8jhWPzBc/B9yKqRNjE++AfR2G9jmNShQ4UWtXncD8FoXgFPRlsZ0XhCCg6SbVnk76SJZOQmj4TKQVJhT11uaZdW/qyVy7dqesRKVMz49FOto+yXKzX/N4rulNp6l9Le2hXciMUNw7hps/KBV6LaVGgTAo+NEWoYry+b02YKFGmnsr0ifF4MpRTW7BArK4oG1fMOOMSzVzNi993RaWJgO7x3e39/hWdzEvFqH3fKU15+u2a3wElwG7qwtFNntgi0oCixKpc6c3Y+PSoORcC12pBgu16PkcK96fiuWkSK3y6zO8jAGTanZ4Q5i2DV4SaWPqsylG/1KYExFizt/5HzAjMiIeiww47DOvWrQt++8xnPoMf/ehHOPTQQ4Pfr7vuOhx33HH2++Dg4LT0MSIiIiIiYptBdHsLnEgbEd0wIx6KarUalixZYr9nWYZbbrkFZ599dik6NHfu3GDdyYIMMxDOlPbVRGOA8SMUFVGIysiDdKubfyWFFdv6L09Ui6FtxIfDiqNt1MWLpoSRmXBZMRJTSjH3hL9EhJGM4IXY71+uU8T9bQvjU4pOFfpny6dVRYYqIkVGkG27Md617s9JxW8Bin0fb7Uu0bROMNGfqkhR8BtMNEj/xvTv5lyggGDegBNiI4qggPQSTLlULuYkmEcnhKZetJKg/MbtR2uq3sSrIkWVkYDiOWfbl8FPpHDhEC86wKgSJtcSJRr368h1iq704hitjq/a5dtGhErza0TRRUsDF5lRkSMapLxbEbsWMZuoUosnGMt9oXK4Q2OtACh7jo7HrdP8/Zp0fuSqzZmNkBRFw5mgth4hACRM2EiUERsXxfOmv1yGLtCqXd0H4cwIpCB6eeVwByJ6e24Uzk9/uXF1N+cy8yKFPoRxqdf944JYx/2cOzdunjHwjAI6UUXmNGQN9P8b5Ng01c5QXhxb30ZEV8zIlPxbbrkFGzZswKmnnlpadvbZZ2PBggVYvnw5rrnmGgjR/SRotVoYGhoK/iIiIiIiIiJ+/zAjIkVFXHvttTj22GOx5557Br9/9rOfxdFHH42+vj78+Mc/xsc+9jFs2LABn/70pzu2demll+Kiiy7a1l2OiIiIiIiYPKLQelqwXR+KLrzwwnEfSB544IFAN/Tb3/4Wt912G/71X/+1tK7/8HPIIYcAAC6++OKuD0XnnXceVq5cab8PDQ1hzz33BGtSUFBHS/ToylopDJaF5V0gg5hx9X4sRQYoCskTLhsHaPu9iurrIk4uUja2aCMJw9nFZWXvn2rxtKXzulB6JU8gsy4K61VRgxO45rv5HIUrdllWFHR3EXCXvJL88QYCobpPmQXeTVLPhVlXas8mS1fJ0KGcunC/SIiiHwL1vz44ChC/yC/VdBpxg29oGQ6UhLb2GPR3acW0RpBKvPUL1IihObSInAb+Mrp7mq6x9BkRJQqvKCL2x9p3bjbtdUIn+kztIzzJqeeGTGXZ3dh8T/RFWTPtgKBf331z7QhtqLU2Z4GTuO9uzwWFFMRSW4QAYx6txaiodNBXfffE3YKinTPnL8SppbhMu76onQuqjM0ASF4mGHznf5+OEpJACI9OE+q7WbfkzO5/9YpKG2G165NEUXRvjptp6qzqHDVecLlHl6k/PQ45hci0sDpjQEYA/Z1xgOQERYd90ew9mWCrEDVF04Lt+lB09tln4+STT+66zt577x18v+6667DLLrvghBNOGLf917/+9RgaGsJzzz2HxYsXV65Tr9dRr9d77nNERERERETEzont+lC0YMECLFiwoOf1pZS47rrr8J73vAdpmo67/urVq9FoNDB37tyt6GVERERERMR2RqTPpgUzSlN0xx13YM2aNTj99NNLy/793/8d69evx4oVK9DX14c777wT559/Pj7wgQ9MKhJEMoAyALLal8i3Gyov9JYVqaEOHjxmWbdyEn6mVYma6kQjVbTTEYUMKOOJYzf3llfRTd3sRoL+FPtfRTmisJ79LsPvHWhCf7uqbLiufa+ixCq273Ze2HYMzUVIKdvMp8gkK0yV12dp+gC9DVN/ACAYIBNpv5e8sSSAlqZa2iiVEwmz8rxyl0SCe/2ljRw0cZPkU1t+eQsgzD4rDoor2+At1nSM4Io+Edr/ys+GM/SZabedJWHGm0/LcKK8Zbzvgb9Ycd5K57i0v/mFegkVIEyCMk3TJAIJE0hM9pdXfLdI36hjDrOyDIq+R1I6OooLCiGqS6gY2CwrTRuZLDEzZsWyFD7MMkkFABpkENrSFzwJ59f035/DYuah973TfYdQhN5sfiaaBGSX8hnh+VXsT9g3WxrH9MenCU3Zo0JpIaCc9asYULfc3K9lNk30mTQHsJVtRHTFjHoouvbaa3HYYYfhD/7gD0rL0jTFVVddhZUrV0IIgX333RcXX3wxzjrrrO3Q04iIiIiIiIiZhhn1UPTP//zPHZcdd9xxgWnjlMOPZKAQKOka2SgsH8+t2W+/07Iu++i6bulYur82yKJDeCdRcRexcdW+K6NBfp+6RL0qjx0ApOzdibrYX0AJkv3+V2iRux1T1XZBhIlKSEpcXdcKEbYsLPP/NRElkQAihXWtlqmEYFA25lD/Sj8S5PfPOP6a795bb/Et2GxsuzlWc/ptKsNjNdGVcFO3y2LkxT/24ls8CmJb/4IjstB4eGzSOy7fPd5eS7a/0ivaG44VIYXfzbZQkQsppYo8QXk+5UyCMWaPjVEn9jWCcb/dIEIWRNBCL59SBKwQ/qOeIJ5r1b0SHFNPqF4ttjb98J2mjSA6iEjZqF44P8W+lyM8XkSqEFEy/Td9B6mOOBWd+qU5N/1z2JyQOlJOqgpbA+HY+deq15fKdfV6vj2VhHT7MV2fpkBRpM+mBzPqoSgiIiIiIuL3EkKnFm91GxHdEB+KIiIiIiIidnTESNG0ID4UdYJP3Xi0V6mshuiwDbx1OtE6RcbB/96FCgqEwyRkBgoEg/pe6o8MvldBMR7FHXde3/Sl2M9ObfttdhRal9aV5d/9dYtz0aFvkhbGiACk4N9RVVzYX7/Ypt+vboLzktCauT4FdFThu6N7yg0SKQP6gnASruvTZ0ZYinC8LHXWaeyDXZICfSbLVKtZVKACu3GRpCqpwf8+Dk0RUJMeZQcKRSva77JMk3Vqu0D1ghB7rFIAyCUEdfyKK0eh2rbfLT1XPn5T6kJ6lJn1ebKUpptMQqUqwAxFQRm6VHnwSBCwyn0VfXukdFe4obyEcBMmC9dYUdwMb1vbP6G/m3PM0FxF2gqKhg1pd7/R8oSUhs7QxFT1x9Gn+rOl2jqfc+WEGRnei7oIraNoeWrw+OOP46STTgq+/8u//Ave8Y53bJf+xIeiiIiIiIiIHR07aaToFa94BR5++GEAwPDwMPbee2+85S1v2W79iQ9FHZC0VO3NTo7R1BdMV7kxd0ApytBt/eJbdlU7Zj3/7aUQefFfgtSLUCi4rTI4loW+ld62SmLGcBwA9yLXNfrQ5SLtpoGsitaoaEuFotU2GA5kz07UQRud+2SiRDbNnhIX4Sm4VEvifgOqBZuunfKycEUEacbjVrC10RFPTGuEu55YVXrnlR8dLRZJJsUBq4ruFCOBVdOuAw5V8xLYQfjHYPcZCnbH088WhbadrBTKEbFCn2gYgQpE8hPwgei2qt8WoQRSSK+up4QNDHaKevkBGEkKvxWiP15UMbiEgshL+L24jyDqXVgvjAQTFDLyQxCUkwZ6iuiF97di/3xQI8j3rT1s4W0VJSLcLfOvA3MP5K0OfZpq/B44Wt9yyy04+uijMTAwsN36MCMLwkZERERERERse9x99914+9vfjt122w2EENx8882lda666irss88+aDQaWLZsGe65555J7etf//VfAypteyA+FEVEREREROzgkFJMyd9EMTIygoMPPhhf/epXK5ffcMMNOOecc3D++edj9erVOPzww3H88cdj7dq1dp1ly5bhwAMPLP09++yzdp2hoSH893//N/74j/944oMzhYj0WQcQrsOmMqTPICq1rmob9BDcLNI0JaFf2Kbdxm88UAnDUR3eaoHo1I9A+/uvELV29Bsqht197aTxFiqElW1bfogcxbB2Z16ocizHo5Hsel1WrKIlO8xLL/CHRlLi2veF1EVqiBaoN8BSIoZiMBSt72AtE7UsKACbuEmWIM6zqEg9FI5ZegNmRKXSnBSaVggoUa/IKxEeL6vFp1UUUJFSNZ+7+mdVLSr8WKLsKtoJN+iwakE0buhPy8J6jtaSqoK6AfPU9WLrgipRefVqCETjdoHXCUt5F6kxVNNgVaii8w0NVaCYDCXW0SG8qt0O8JNGqkT2pKL4bHVD3X8rUWkBnetRwX5VAYGA7it5wAmPUpsOSLn19Jc+GYaGhoKfu9UAPf7443H88cd3bPKKK67A6aefjve9730AgCuvvBK33XYbrr76alx66aUAgFWrVo3btf/3//4fjj32WDQajZ4OZVshRooiIiIiIiJ+j7DnnnticHDQ/pmHl4mi3W5j1apVOOaYY4LfjznmGPz0pz+dUFs7AnUGxEhRTwgiOkQ/bJvHSe+tV5r/9PIwX3gzC9Ls0TnSEvTJa8f2oUrI2umNrviGVoxAFfpXXMUtIyCoeIMutoXCcU0QxTEqr9BlWUUkqJsLd6cUc3/dkthbRxls5KhTWr3paiEiVRkdLMKcb1r8SUEgvBAfYa4+mNRO10E6vB+dqhID++7FXkTK1ogynQ9qicnQYdh/ezb99cJpRNoX1mp38+KxdhiKSkG3fxhVv5l1Sbie73AdiKkpvEiRdsL2I3CeQ3cgriYdxtfvvDfhvSYF2VTzysgIKUdEUBiGXiNswbyQrbBvMCt03m3HPnRpt+t2pfPIiwTJwvLCv5XRKn+drQzUbBW6FZKbUBvAM888gzlz5tifJ1MfFAA2bNgAzjkWL14c/L548WKsX7++53Y2b96M+++/H9///vcn1Y+pRHwoioiIiIiI2NEhfB3HJKE5+jlz5gQPRVuLoq+blLKr11sRg4ODeO6556asP1uDSJ9FRERERERETBgLFiwAY6wUFXr++edL0aOZghgp6hGBb0khill0fu36fNyJspoIrVQMD1e0X7moA/1UdnX1+lWg1GThu/s4SU5sqlC1+070yUTX60S1md+L+tbicu+3IoVTSS8U2y2KjAvO3UwQz/+IWHqnSkRc7F/Jp6e4zHz3qUAmIYlzUiaGVvIuAEIqPheP09sE0FRd6bs3uAVKpCcBccV+SwVnS1SbO+5i37vReMGl0ckPyL9XeEZhlpYPtoFdXjqcSnq8Yh+FMevk3RNQnBXbFp3mw/6Vfwpozx4puypq3aeuxqsM0NUNvaK9ShTvbxVjUKLTplNoPUX02fLly8EYw1lnnYWzzjpr0s3VajUsW7YMt99+O/7kT/7E/n777bfjxBNP3Lq+bifEh6KIiIiIiIgdHFIIyK2kz0xK/gMPPNAzfTY8PIwnn3zSfl+zZg0efvhhzJ8/H3vttRdWrlyJd7/73Tj00EOxYsUKfOMb38DatWtxxhlnbFVftxfiQ1EnSJTftAyKOsdCpKXTGyzx1vWzd6vaqOxPLyi2uzXrTuDtu/J7p2anIqjUQ3Snl2WV36u26bTf4rLifguC3nG/d1rWYf9GdG1cdyWpWin87EeFrKBcR3tMxImYz6YP0osaSZWabkXZQocgdVueUbYSLhf7osIHpf4RLVq29cIq1pk0ihGoDsuK6xSjV+EEV2zf4cQZV0g9TnSodF/wRe9+G4WIT7cITyk6VFqh0J1CO90SNMKIstuwtE8SbjNuJKdieacIUWVbnaJKVftAYfw6RJ56FoNvLaYwUjQRPPjggzjyyCPt95UrVwIATjnlFFx//fU46aST8OKLL+Liiy/GunXrcOCBB+LWW2/F0qVLt66v2wnxoSgiIiIiIiKiEkcccYTzL+uAM888E2eeeeY09WjbIj4URURERERE7OgQUxCW2gELwu5oiA9F46EHOqrX81SiwAJMhLbp1mixL37Ev7C8sk6qrFy1636mFB2OuSvt1UGE3LGtrelLN6qOlL9XfS755nTbzm7kFgWeVb2eI6R6P51dy1F2sLbUVnE74gT6hjrzaDm/6Gx5jgoHUcEE6U0rjqkTF1T9c4COlIzbuMrlvWq9yq50ocBK3Zswndal7U4C5ALK/R2HRuxEUfW6Xg/76dZutZi8ov0OCLzVClSf/Volpu6wz44u7NNKn21tSn58KBoPMSU/IiIiIiLi9wjLly/HAQccgK997Wvbuys7HGKkqAN4A0AdU/IWMClX1ohtj6kQhk9yWWWbUyBA9881qf/TNZhGKn/ttqJrfyIRqwlgWwjxd2hM4LrvVjNuQttMZN8TvC9Nm/C4Ywf0v77oe5wI8tZEy/k0nWtSKCuMrWpDR4omkn32+4b4UBQREREREbGjQwpsPX02XaZKMxeRPouIiIiIiIiIQIwUdYSkUAU1p6KtqWkmImJC6CnSvhUn50xiqCJ+DzGBE3RrKFs5TaGFqaTPIjojPhRFRERERETs6Ij02bQgPhQVYJ6kRau5nXsSEREREbGjw/y/YltHYXJkW0075MgATF3ts50RRMZ4WoCnnnoKL3vZy7Z3NyIiIiIiZhCeeeYZ7LHHHlPebrPZxD777FOqRD9ZLFmyBGvWrEGj0ZiS9nY2xIeiAjZt2oR58+Zh7dq1GBwc3N7dmXIMDQ1hzz33xDPPPLPTpWTGY5uZiMc2MxGPTUFKiS1btmC33XYDpdtGYNRsNtFut6ekrVqtFh+IuiDSZwWYk3pwcHCnu9B9zJkzZ6c9vnhsMxPx2GYm4rFhm79ANxqN+CAzTYgp+RERERERERERiA9FEREREREREREA4kNRCfV6HRdccAHq9fr27so2wc58fPHYZibisc1MxGOL2BkRhdYREREREREREYiRooiIiIiIiIgIAPGhKCIiIiIiIiICQHwoioiIiIiIiIgAEB+KIiIiIiIiIiIAxIeiEq666irss88+aDQaWLZsGe65557t3aUJ48ILLwQhJPhbsmSJXS6lxIUXXojddtsNfX19OOKII/CLX/xiO/a4M+6++268/e1vx2677QZCCG6++eZgeS/H0mq18KEPfQgLFizAwMAATjjhBPz2t7+dxqOoxnjHduqpp5bm8fWvf32wzo56bJdeeimWL1+O2bNnY9GiRXjHO96Bxx9/PFhnps5dL8c2U+fu6quvxkEHHWRNC1esWIH/+q//sstn6pwB4x/bTJ2ziKlFfCjycMMNN+Ccc87B+eefj9WrV+Pwww/H8ccfj7Vr127vrk0Yr3rVq7Bu3Tr798gjj9hlX/jCF3DFFVfgq1/9Kh544AEsWbIEb3nLW7Bly5bt2ONqjIyM4OCDD8ZXv/rVyuW9HMs555yDm266Cd/97ndx7733Ynh4GG9729vAOZ+uw6jEeMcGAMcdd1wwj7feemuwfEc9tp/85Cc466yzcN999+H2229Hnuc45phjMDIyYteZqXPXy7EBM3Pu9thjD3z+85/Hgw8+iAcffBBHHXUUTjzxRPvgM1PnDBj/2ICZOWcRUwwZYfGHf/iH8owzzgh+e+UrXyk/9alPbaceTQ4XXHCBPPjggyuXCSHkkiVL5Oc//3n7W7PZlIODg/Kaa66Zph5ODgDkTTfdZL/3ciybNm2SaZrK7373u3ad3/3ud5JSKn/wgx9MW9/HQ/HYpJTylFNOkSeeeGLHbWbKsUkp5fPPPy8ByJ/85CdSyp1r7orHJuXONXfz5s2T3/zmN3eqOTMwxyblzjVnEZNHjBRptNttrFq1Csccc0zw+zHHHIOf/vSn26lXk8cTTzyB3XbbDfvssw9OPvlkPPXUUwCANWvWYP369cFx1ut1vPnNb55xx9nLsaxatQpZlgXr7LbbbjjwwANnxPHeddddWLRoEfbff3+8//3vx/PPP2+XzaRj27x5MwBg/vz5AHauuSsem8FMnzvOOb773e9iZGQEK1as2KnmrHhsBjN9ziK2HrEgrMaGDRvAOcfixYuD3xcvXoz169dvp15NDq973evw7W9/G/vvvz+ee+45fO5zn8Nhhx2GX/ziF/ZYqo7zN7/5zfbo7qTRy7GsX78etVoN8+bNK62zo8/r8ccfjz//8z/H0qVLsWbNGnzmM5/BUUcdhVWrVqFer8+YY5NSYuXKlXjjG9+IAw88EMDOM3dVxwbM7Ll75JFHsGLFCjSbTcyaNQs33XQTDjjgAPs//pk8Z52ODZjZcxYxdYgPRQUQQoLvUsrSbzs6jj/+ePv51a9+NVasWIGXvexl+Na3vmWFgzvDcRpM5lhmwvGedNJJ9vOBBx6IQw89FEuXLsV//ud/4p3vfGfH7Xa0Yzv77LPx85//HPfee29p2Uyfu07HNpPn7hWveAUefvhhbNq0Cd///vdxyimn4Cc/+YldPpPnrNOxHXDAATN6ziKmDpE+01iwYAEYY6Un/ueff770ZjTTMDAwgFe/+tV44oknbBbaznCcvRzLkiVL0G638dJLL3VcZ6Zg1113xdKlS/HEE08AmBnH9qEPfQi33HIL7rzzTuyxxx72951h7jodWxVm0tzVajXst99+OPTQQ3HppZfi4IMPxpe+9KWdYs46HVsVZtKcRUwd4kORRq1Ww7Jly3D77bcHv99+++047LDDtlOvpgatVguPPfYYdt11V+yzzz5YsmRJcJztdhs/+clPZtxx9nIsy5YtQ5qmwTrr1q3D//7v/864433xxRfxzDPPYNdddwWwYx+blBJnn302brzxRtxxxx3YZ599guUzee7GO7YqzKS5K0JKiVarNaPnrBPMsVVhJs9ZxFZg2qXdOzC++93vyjRN5bXXXisfffRRec4558iBgQH59NNPb++uTQgf+9jH5F133SWfeuoped9998m3ve1tcvbs2fY4Pv/5z8vBwUF54403ykceeUT+xV/8hdx1113l0NDQdu55GVu2bJGrV6+Wq1evlgDkFVdcIVevXi1/85vfSCl7O5YzzjhD7rHHHvJHP/qRfOihh+RRRx0lDz74YJnn+fY6LCll92PbsmWL/NjHPiZ/+tOfyjVr1sg777xTrlixQu6+++4z4tg++MEPysHBQXnXXXfJdevW2b/R0VG7zkydu/GObSbP3XnnnSfvvvtuuWbNGvnzn/9c/s3f/I2klMof/vCHUsqZO2dSdj+2mTxnEVOL+FBUwNe+9jW5dOlSWavV5Gtf+9ogzXam4KSTTpK77rqrTNNU7rbbbvKd73yn/MUvfmGXCyHkBRdcIJcsWSLr9bp805veJB955JHt2OPOuPPOOyWA0t8pp5wipeztWMbGxuTZZ58t58+fL/v6+uTb3vY2uXbt2u1wNCG6Hdvo6Kg85phj5MKFC2WapnKvvfaSp5xySqnfO+qxVR0XAHndddfZdWbq3I13bDN57k477TR7/1u4cKE8+uij7QORlDN3zqTsfmwzec4iphZESimnLy4VEREREREREbFjImqKIiIiIiIiIiIQH4oiIiIiIiIiIgDEh6KIiIiIiIiICADxoSgiIiIiIiIiAkB8KIqIiIiIiIiIABAfiiIiIiIiIiIiAMSHooiIiIiIiIgIAPGhKGInxBFHHIFzzjlnp9rvqaeeine84x1b1cbee+8NQggIIdi0aVPH9a6//nrMnTt3q/YV0RmnnnqqnYebb755e3cnIiLCQ3woioiYItx444347Gc/a7/vvffeuPLKK7dfhypw8cUXY926dRgcHNzeXdnpcdddd1U+gH7pS1/CunXrtk+nIiIiuiLZ3h2IiNhZMH/+/O3dhXExe/ZsW+18eyP7/9u715iorrUP4P+hCDPMcJkCnU5hhICWi/UCGFouCiRQhJSCbVWsCqQUg1YGIVZqtBZFEFFQa1oLxOKlmEhaSGqtXIwXAiIVohELhdLKQBq8IYFaAzLM834w3YctIHiOPfp6nt8n1mXW2msNhIe9HvYMDWHKlClP+zL+6ywtLTkoZewZxXeK2HOvt7cXMTExUCqVMDMzQ1hYGH799Veh/e/jooqKCri5uUGhUGDBggWiv+b1ej20Wi2srKxgbW2NtLQ0xMbGio60Rh6fBQYGQqfTISUlRTgqAYD09HTMmTNHdH179uyBo6OjUB4eHkZqaqow1/r16/Hwp/EQEXJycuDk5ASZTIbZs2fj22+//bf25+DBg5g6dSrMzMywcOFC9PT0jOpz/PhxeHl5QSqVwsnJCVu2bIFerxfaf/nlF/j7+0MqlcLd3R2nTp0SHQ91dHRAIpGgpKQEgYGBkEql+OabbwAARUVFcHNzg1QqhaurK7788kvR3H/88QeWLFkCpVIJa2trREZGoqOjQ2g/e/YsvL29IZfLYWVlBT8/P+h0ukmtfaJ15eXlYebMmZDL5dBoNFi9ejXu3r0rtOt0OkRERECpVEIul2PGjBn48ccf0dHRgaCgIACAUqmERCJBXFzcpK6JMfb0cFDEnntxcXFoaGjA999/j7q6OhARwsPDMTQ0JPS5d+8edu3ahSNHjqC6uhqdnZ1Yt26d0L5jxw4UFxejqKgItbW16O/vf2Q+SGlpKezt7YXjqsc5LsnNzcXXX3+NAwcOoKamBnfu3EFZWZmoz6ZNm1BUVIT9+/fj559/RkpKCpYvX45z585NfmMA1NfX44MPPsDq1atx+fJlBAUFYdu2baI+FRUVWL58ObRaLZqbm5Gfn4+DBw8iMzMTAGAwGBAVFQUzMzPU19ejoKAAGzduHHO+tLQ0aLVatLS0IDQ0FIWFhdi4cSMyMzPR0tKCrKwsfPrppzh06BCAB+9LUFAQFAoFqqurUVNTIwSt9+/fh16vR1RUFAICAnDlyhXU1dVh5cqVQhD6KBOtCwCMjIzw+eef4+rVqzh06BBOnz6N9evXC+0fffQRBgcHUV1djaamJuzYsQMKhQIajQbfffcdAKC1tRXd3d3Yu3fvY703jLGn4Kl+HC1j/4CAgABKTk4mIqK2tjYCQLW1tUL77du3SSaTUUlJCRERFRUVEQBqb28X+nzxxRekUqmEskqlop07dwplvV5PU6dOpcjIyDHnJSJycHCg3bt3i67ts88+o9mzZ4vqdu/eTQ4ODkJZrVZTdna2UB4aGiJ7e3thrrt375JUKqXz58+LxomPj6elS5eOuy9jXc/SpUtpwYIForolS5aQpaWlUJ43bx5lZWWJ+hw5coTUajUREZ08eZKMjY2pu7tbaK+qqiIAVFZWRkRE165dIwC0Z88e0TgajYaOHj0qqsvIyCAfHx8iIjpw4AC5uLiQwWAQ2gcHB0kmk1FFRQX19PQQADp79uy46x7PROsaS0lJCVlbWwvlmTNnUnp6+ph9z5w5QwCot7d3zPaR+8MYezZwThF7rrW0tMDY2Bivv/66UGdtbQ0XFxe0tLQIdWZmZnB2dhbKarUaN2/eBAD09fXhxo0b8Pb2FtpfeOEFeHl5wWAwPNHr7evrQ3d3N3x8fIQ6Y2NjzJ07VzhCa25uxsDAAEJCQkSvvX//Pjw8PB5rvpaWFixcuFBU5+Pjg/LycqHc2NiIixcviu6gDA8PY2BgAPfu3UNrays0Go0oV2nkXo00d+5c4etbt26hq6sL8fHxSEhIEOr1er2Qc9PY2Ij29naYm5uLxhkYGMBvv/2GN998E3FxcQgNDUVISAiCg4OxePFiqNXqCdc+0brMzMxw5swZZGVlobm5Gf39/dDr9RgYGMBff/0FuVwOrVaLVatWobKyEsHBwXj33Xcxa9asCedmjD2bOChizzV6KBdnZP3II5aHE34lEsmo1z58JDPe2I9iZGQ06nUjj/Em4+9A7MSJE7CzsxO1mZqaPtZYk1mDwWDAli1b8M4774xqk0qlo/byUeRyuWhcACgsLBQFrcCDoPPvPl5eXiguLh41lq2tLYAHOUlarRbl5eU4duwYNm3ahKqqKrzxxhv/0bp0Oh3Cw8ORmJiIjIwMvPjii6ipqUF8fLzwnn344YcIDQ3FiRMnUFlZie3btyM3NxdJSUmT2g/G2LOFgyL2XHN3d4der0d9fT18fX0BAD09PWhra4Obm9ukxrC0tIRKpcJPP/2EefPmAXhwR+HSpUujkqZHMjExwfDwsKjO1tYW169fFwUSly9fFs2lVqtx4cIFzJ8/H8CDOyeNjY3w9PQU1mRqaorOzk4EBARMag3jcXd3x4ULF0R1D5c9PT3R2tqKadOmjTmGq6srOjs7cePGDahUKgDAxYsXJ5xbpVLBzs4Ov//+O5YtWzZmH09PTxw7dgwvvfQSLCwsxh3Lw8MDHh4e2LBhA3x8fHD06NEJg6KJ1tXQ0AC9Xo/c3FwYGT1IvywpKRnVT6PRIDExEYmJidiwYQMKCwuRlJQEExMTABj1PcAYe3ZxUMSea9OnT0dkZCQSEhKQn58Pc3NzfPLJJ7Czs0NkZOSkx0lKSsL27dsxbdo0uLq6Yt++fejt7X3kHRJHR0dUV1cjOjoapqamsLGxQWBgIG7duoWcnBy89957KC8vx8mTJ0W/8JOTk5GdnY3p06fDzc0NeXl5omfdmJubY926dUhJSYHBYIC/vz/6+/tx/vx5KBQKxMbGTnpdWq0Wvr6+yMnJQVRUFCorK0VHZwCwefNmvPXWW9BoNFi0aBGMjIxw5coVNDU1Ydu2bQgJCYGzszNiY2ORk5ODP//8U0i0nugOUnp6OrRaLSwsLBAWFobBwUE0NDSgt7cXqampWLZsGXbu3InIyEhs3boV9vb26OzsRGlpKT7++GMMDQ2hoKAAb7/9Nl555RW0traira0NMTExE659onU5OztDr9dj3759iIiIQG1tLb766ivRGGvXrkVYWBheffVV9Pb24vTp00Kw7eDgAIlEgh9++AHh4eGQyWRQKBSTfm8YY0/BU8tmYuwf8nDC8507d2jFihVkaWlJMpmMQkNDqa2tTWgvKioSJRYTEZWVldHIH4+hoSFas2YNWVhYkFKppLS0NFq0aBFFR0ePO29dXR3NmjWLTE1NRWPt37+fNBoNyeVyiomJoczMTFGi9dDQECUnJ5OFhQVZWVlRamoqxcTEiJK6DQYD7d27l1xcXGjKlClka2tLoaGhdO7cuXH3ZaxEa6IHycz29vYkk8koIiKCdu3aNWo/ysvLydfXl2QyGVlYWJC3tzcVFBQI7S0tLeTn50cmJibk6upKx48fJwBUXl5ORP9KtL506dKo+YuLi2nOnDlkYmJCSqWS5s+fT6WlpUJ7d3c3xcTEkI2NDZmampKTkxMlJCRQX18fXb9+naKiokitVpOJiQk5ODjQ5s2baXh4eNx9eJx15eXlkVqtFr5vDh8+LEqeXrNmDTk7O5OpqSnZ2trSihUr6Pbt28Lrt27dSi+//DJJJBKKjY0VzQ1OtGbsmSMh+jcSIxj7H2cwGODm5obFixeLnmL9LHN0dMTatWv/Kx+BUltbC39/f7S3t4sS2Nm/SCQSlJWV/ccf38IYe3L4OUWMTYJOp0NhYSHa2trQ1NSEVatW4dq1a3j//fef9qU9lrS0NCgUCvT19T3RccvKylBVVYWOjg6cOnUKK1euhJ+fHwdEY0hMTORjNMaeUXyniLFJ6OrqQnR0NK5evQoiwmuvvYbs7GwhGfr/A51OJ/zXlJOTk5A8/CQcPnwYGRkZ6Orqgo2NDYKDg5Gbmwtra+snNsfjmjFjxrhPts7Pzx83ufufdvPmTfT39wN48OiHkf+Rxxh7ujgoYow9l0YGgQ9TqVSjnn3EGGMcFDHGGGOMgXOKGGOMMcYAcFDEGGOMMQaAgyLGGGOMMQAcFDHGGGOMAeCgiDHGGGMMAAdFjDHGGGMAOChijDHGGAPAQRFjjDHGGADg/wCaD8m+t1pXiwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(dset_list[1].source_id)\n", + "for ds in [dset_list[1], rg_list[1]]:\n", + " ds.pr.plot(norm=mcolors.LogNorm())\n", + " plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "36031d82-c46f-4da5-8cbb-82067ade465b", + "metadata": {}, + "source": [ + "#### Take the difference between precipitation datasets and plot it\n", + "Now that both models are on the same grid, we can subtract the precipitation datasets and plot the difference!" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "4f781e26-0c43-45e9-be89-31d3575f4c99", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAHFCAYAAABVUkUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD5kklEQVR4nOydd5wV1fn/P1Nu2WXZXXoRpFiiWL4qGMREwQomv1gTiSYmamxfTRSxt9ixJhp7iV97lEQlMQkWiGgkkGhQjMYSC4gIGwSEy7Ls3r078/tj5sw858yZuWUr+Lxfr4V7Z86cNmfmnvM8z3kew3VdFwzDMAzDMEyXYXZ3BRiGYRiGYb5q8ASMYRiGYRimi+EJGMMwDMMwTBfDEzCGYRiGYZguhidgDMMwDMMwXQxPwBiGYRiGYboYnoAxDMMwDMN0MTwBYxiGYRiG6WJ4AsYwDMMwDNPF8ASM6VAWLFiAK664AuvWrYucmzRpEiZNmtTldeoK/vOf/+Dcc8/F2LFjUV9fj759++Ib3/gGnnrqKW36VatW4fjjj0f//v1RXV2NCRMm4C9/+Usk3Z/+9Cf86Ec/wi677IJUKgXDMGLr0NraiiuvvBIjR45EJpPBDjvsgNtvv72sdnRGvZK4/fbbscMOOyCTyWDUqFG48sor0draKqVZvnw5pk2bhokTJ6K+vh6GYeChhx4qq5xPPvkERx55JOrr61FTU4ODDjoIb7zxhjbtk08+id122w3ZbBZDhw7FtGnT0NjY+JUvi2GYDsZlmA7kpptucgG4S5YsiZz797//7f773//u+kp1Abfffru7ww47uNdee6374osvurNnz3Z//OMfuwDcK6+8Ukrb3Nzs7rzzzu6wYcPcxx57zH3xxRfdww47zLVt23355ZeltCeeeKK73XbbuUcffbQ7duxYN+mRPemkk9xMJuPeeOON7rx589wLL7zQNQzDvfbaa0tqQ2fVK45rrrnGNQzDveiii9x58+a5N954o5tOp92TTz5ZSjdv3jy3f//+7oEHHugec8wxLgD3wQcfLLmcVatWuUOHDnV32mkn9+mnn3b//Oc/u9/85jfd3r17u++//76U9rHHHnMBuCeddJL70ksvuffcc49bV1fnHnTQQV/pshiG6Xh4AsZ0KEkTsC2ZL774wnUcJ3L829/+tltdXe02NzcHx+68804XgLtgwYLgWGtrqztmzBj361//unR9W1tb8PmMM86Inei88847rmEY7owZM6TjJ598sltVVeWuWbOmaBs6o15xrF692s1ms+4pp5wiHb/22mtdwzCkiTot6/XXXy97Anbeeee5qVTKXbp0aXBs/fr1bv/+/d2jjz46OFYoFNwhQ4a4Bx98sHT9448/7gJwZ8+e/ZUti2GYjocnYEyHcfnll7sAIn/z5s1zXdd1J06c6E6cODFIv2TJEheAe+ONN7rXX3+9O2LECDebzboTJ050P/jgAzefz7sXXHCBO2TIELe2ttY9/PDD3f/+97+Rcp988kl3r732cqurq91evXq5Bx98sPvGG290UauTufLKK10A7ooVK4JjBx54oPu1r30tknbGjBkuAHf58uXavJImOtdcc40LwF25cqV0fMGCBS4A9/HHHy9a186oVxxCIrNw4ULp+IoVK1wAsVK7SiZg2267rTt58uTI8VNOOcWtqqpyW1tbXdd13fnz57sA3CeeeEJKl8/n3Zqamohk7qtUFsMwHQ/bgDEdxkknnYSf/exnAIBnnnkGCxcuxMKFC7HHHnskXnfnnXfib3/7G+688078+te/xvvvv4/vfOc7+MlPfoIvvvgC//d//4cbb7wRc+fOxUknnSRdO2PGDBxzzDEYM2YMfvvb3+LRRx/Fhg0bsM8+++Ddd98tWudCoVDSn+u6FfXJvHnzMGDAAAwcODA49s4772DXXXeNpBXH/v3vf5ddzjvvvIMBAwZg8ODB2jzfeeedkvLo6HollQUAu+yyi3R8yJAh6N+/f0n1LYVNmzbh448/jm3Xpk2b8Mknn0h1UtOmUinssMMOkToZhiHZNG4pZTEM0zXY3V0BZsth2LBh2HrrrQEAu+++O0aOHFnSdfX19fj9738P0/TWA6tXr8a0adOwww474A9/+EOQ7v3338ett96KXC6H2tpafPbZZ7j88svx05/+FLfddluQ7qCDDsJ2222HK6+8EjNnzowtd+nSpRg1alRJdZw3b17ZGwh+/etf4+WXX8avfvUrWJYVHF+zZg369u0bSS+OrVmzpqxykvLs1asX0ul0SXl2Rr2SyspkMujVq5e2vI4q68svv4TruiW1S/wfl3bp0qXSMcuypPu6pZTFMEzXwBMwptv51re+FUy+AGDHHXcEAHz729+W0onjy5Ytw84774wXXngBhUIBP/rRj1AoFIJ02WwWEydOxLx58xLLHTp0KF5//fWS6vi1r32tpHSC5557DmeccQa++93vBlJBStKuwUp3FJaSp+u6aGtrk87Zth1J11H1ovcF8CYSIp/O6INK8lPPxaVVj6tt21LKYhima+AJGNPtqCvzdDqdeLy5uRkA8N///hcAsOeee2rzpZM6Hel0GrvttltJdaTSh2K88MILOPLII3HQQQfh8ccfj/zA9evXTyvhWbt2LQC9pKIY/fr1w+LFiyPHN27ciHw+H+T58MMP44QTTpDSCPVqZ9QrlUpJ3x988EEcf/zx6NevH5qbm9HU1ITq6upIeWPHji27LB19+vSBYRgltatfv34APInRoEGDImmLtX9LLYthmM6BJ2DMZkv//v0BAE899RRGjBhR9vWdoYJ84YUXcPjhh2PixIl4+umng0kjZZdddsHbb78dOS6O7bzzziXVSc3zySefRENDg2QHpub5ne98J1bq1xn1UssS/S1sv95++22MHz8+ON/Q0IDVq1dXVJaOqqoqbLvttrHtqqqqwujRoyN1GjNmTJCuUCjg/fffxzHHHPOVLIthmM6BJ2BMh5LJZAB4RsKdzeTJk2HbNj7++GMcddRRZV/f0SrIF198EYcffji++c1v4ve//33QFypHHHEETj/9dPzjH/8IJh+FQgGPPfYYxo8fj6FDh5beCJ/DDjsMl156KR5++GFccMEFwfGHHnoIVVVVmDJlCgBPGiIkIl1Rr3HjxmmPT5kyBdlsFg899JA0AXvooYdgGAYOP/zwssuK44gjjsCtt96Kzz77DMOHDwcAbNiwAc888wwOPfTQQAU7fvx4DBkyBA899BCmTp0aXP/UU0+hsbERRx555Fe2LIZhOoHu3ILJbHnMmzfPBeCeeuqp7oIFC9zXX3/dzeVyruvGu6G46aabtHn87ne/k44/+OCDLgD39ddfD47NmDHDtW3bPfXUU91Zs2a5L7/8sjtz5kz3nHPOcX/+8593XkMVXn31VbeqqsodOXKk+9JLL7kLFy6U/tavXx+kbW5udnfaaSd3+PDh7uOPP+7OmTPHPeKII7QOT5cuXer+7ne/c3/3u9+5U6ZMCfrld7/7ndQPrhs6Yr3pppvcl19+2b344ovLdsTaGfWKQzhivfjii92XX37Zvemmm9xMJqN1iyDyvuGGG1wA7hlnnBEcK8aqVavcIUOGuLvssos7a9Ysd/bs2e6+++7r9u7d233vvfektI8++qgLwD3llFPcefPmuffdd59bX1+vdVhqWZa7//77b3FlMQzTNfAEjOlwLrroInfo0KGuaZol+QFrzwTMdV3397//vbvffvu5tbW1biaTcUeMGOF+97vfdefOndsp7dMR5wNN/Ik+EDQ0NLg/+tGP3L59+7rZbNbda6+93Dlz5kTyFW3W/f34xz+W0ubzeffyyy93t956azedTrvbb7+9e9ttt5XVjs6oVxK/+tWv3O23395Np9Pu1ltv7V5++eVuPp+PpEvq21L46KOP3MMPP9ytra11q6ur3QMOOMBdtGiRNu1vfvMbd9ddd3XT6bQ7ePBg98wzz3Q3bNigrRMdz1tKWQzDdA2G61bo4IhhGIZhGIapCHbEyjAMwzAM08XwBIxhGIZhGKaL4QkYwzAMwzBMF8MTMIZhGIZhmC6GJ2AMwzAMwzBdDE/AGIZhGIZhuhj2hK/gOA5WrFiB3r17c5BahmEYJhHXdbFhwwYMHTq0aPzZSmlubkY+n++QvNLpNLLZbIfkxbQPnoAprFixIgjrwTAMwzCl8Nlnn2HYsGEdnm9zczNGVVWhoYPyGzx4MJYsWcKTsB4AT8AUevfuDQBYtuwz1NbWdnNtGIZhmJ5MLpfD1lsPD347Opp8Po8GAJ8ZBtr7i5QDMLyhAfl8nidgPQCegCkItWNtbS1PwBiGYZiS6GyTlVoAte0tgwPf9Ch4AsYwDMMwPR3TBDpiAtbW1jH1YdoNT8AYhmEYpqfDE7AtDp6AlYjjlH9NJ22IYToAA8mieBe8A5bZvCk2xsuBnweG6Xh4AsYwDMMwPZ2OkoAxPQaegDEMwzBMT4cnYFscPAGLwYArifBN0wiOU7pCNC/KFGXpVAtJ9aDpy6lvd7S1q4hri1A1U/UxVT9vbmrlSlTnWxqb2z0rRkeqFjurzI56V3RHW8tlc6gj0zPhCRjDMAzD9HRYArbFwROwEolb5ZQrjaoENb9y86+0PluSxKtUdNKSzVmCUmrdO1pS1l3lJpWxOd3HzpKqUCm6C6PTyiknX7VO6ue4a75ykieegG1xbEavJIZhGIZhmC0DnoAxDMMwTE/HNDvmr0zuuusujBo1CtlsFmPHjsWrr76amP6VV17B2LFjkc1mMXr0aNxzzz2RNE8//TTGjBmDTCaDMWPGYNasWWWXe8UVV2CHHXZAr1690KdPHxx44IH4xz/+UXb7uhOegBXBDczxS/9jOgbHkf+SzrX3ryPy7Yl0V9035z7rCVTy3lH/2pzon+h38Zme64gy2/O+VD8nqRgNuF0ysHrUO78bJmAzZ87EtGnTcMkll+DNN9/EPvvsg0MOOQTLli3Tpl+yZAm+9a1vYZ999sGbb76Jiy++GGeeeSaefvrpIM3ChQsxdepUHHfccXjrrbdw3HHH4eijj5YmT6WUu/322+OOO+7A22+/jfnz52PkyJE4+OCD8cUXX5TZsd2H4bqsFKbkcjnU1dVh/bp1qK2t5QlVN6K+R+N2JnYEIu/25NsTbYx4khPSE+9PZ1Luve9p/VPUxiupgR3UmFLe/7lcDvX1dVi/fn2nxA8OfpP69kVtO9uVcxzUrV1bcl3Hjx+PPfbYA3fffXdwbMcdd8Thhx+O6667LpL+ggsuwLPPPov33nsvOHbaaafhrbfewsKFCwEAU6dORS6Xw3PPPRekmTJlCvr06YMnnniionKBsJ/mzp2LAw44oGjbegI97JHrOXTkyqaSdWF30xMkFkkLt45aDKp5t2fR2F6JT6V93BUSpvb2r2W6sX8dfS/jyusKeU5XUI50sZw+6yhJcHvGXWJfVvIw9YQXWQ8kl8tJfy0tLZE0+XweixYtwsEHHywdP/jgg7FgwQJtvgsXLoyknzx5Mv75z3+itbU1MY3Is5Jy8/k87rvvPtTV1eF//ud/Elres+AJGMMwDMP0dDpwtTl8+HDU1dUFfzqp0urVq9HW1oZBgwZJxwcNGoSGhgZtFRsaGrTpC4UCVq9enZhG5FlOuX/6059QU1ODbDaLW265BXPmzEH//v2L9WSPgd1QMAzDMExPp0Ijeh2fffaZpILMZDKxaQ3F9YXrupFjxdKrx0vJs5Q0++23HxYvXozVq1fj/vvvD2zJBg4cGFu/ngRPwHoQXWFv1l7peynX9zRbko6gK9qUVEZ3aE06ss3Uv5OKOKYaXlf6PHS1Cr+nPLftvV+qKr7U8sspt+x700UD/6tm61tbW1vUBqx///6wLCsidVq1alVEOiUYPHiwNr1t2+jXr19iGpFnOeX26tUL2267Lbbddlvstdde2G677fDAAw/goosuSmxbT2EL/KlkGIZhmC2MjjZ4LUI6ncbYsWMxZ84c6ficOXOw9957a6+ZMGFCJP2LL76IcePGIZVKJaYReVZSrsB1Xa09W0+FJWAxlGqrmTSehTdnurqKy7MzJSx01WmRcoTEobtXf46jb3+x/u+sPlM9clO6qq86Y+Hfkf1V6rgpt/+SzpdaZkfeo1IkNu2VuKn1LUfa1FnSPrVOtFzxvFYyRmm+JdW9jEGbJGWl53QuLkqpi25cdalNfweqIEtl+vTpOO644zBu3DhMmDAB9913H5YtW4bTTjsNAHDRRRfh888/xyOPPALA2/F4xx13YPr06Tj55JOxcOFCPPDAA8HuRgA466yzsO++++KGG27AYYcdhj/84Q+YO3cu5s+fX3K5GzduxLXXXotDDz0UQ4YMwZo1a3DXXXdh+fLl+N73vteFPdQ+eALGMAzDMEyEqVOnYs2aNbjqqquwcuVK7Lzzzpg9ezZGjBgBAFi5cqXkm2vUqFGYPXs2zj77bNx5550YOnQobrvtNhx11FFBmr333htPPvkkLr30Ulx22WXYZpttMHPmTIwfP77kci3Lwvvvv4+HH34Yq1evRr9+/bDnnnvi1VdfxU477dRFvdN+2A+YgvAlsnZtaX5SSpGAUbpbAkZhCZgeloAVp7MkYB1RZkfSFfZkm4MEjKJKwCodVx1d9/ZIwMrJn+I43m9G375d4Ads2LCO8QO2fHmn1ZUpD5aAFaEUdzMU+fkwYvPQGbkWe7aosXI5JKXv7skXEN/uJDVHZ05Y1T6p9IVdCvRHbHNyT1SqwXw546s7/N91SJkd7BA06d2gvic6cmyWmpcov6dutmnv+64nvBO1dIMKkulc+G4yDMMwDMN0MSwBK0LcalQnftcZZMZJyOKu1y1wEg1GRUalrsLJ565c6VWqTuzuBZ/oo87qq0q2/lfalx0duaW96sSuuq4UiUhSvkUNx9s5SIu1iW6csTroedC1W/rstLWvgA56cCsdY6rUMEqYb3s0D10qlGIJ2BYHT8AYhmEYpqfDE7AtDp6AMQzDMExPxzDaPwHjPXc9is1mOj1y5EgYhhH5O+OMMwAAxx9/fOTcXnvt1eH10KmJSo35GrfTj6bVXauG/C2pkmU44Gtv4F21vpXEvu2Isttb755G3G0r9g6upF3lXtPePu6I0NcdRdyuOV05nVF+d2DA9dSMSTdMeX+4pgXXtNAG76/VSfgrGGgtGGhzvL/uuMe6d0OhAOTz4V+h4P3FjdUk9fDm8A5hejabjQTs9ddfR1tbaJfwzjvv4KCDDpKcrk2ZMgUPPvhg8D2dTndpHRmGYRimU+gIFSRLwHoUm80EbMCAAdL366+/Httssw0mTpwYHMtkMhg8eHBXV41hGIZhOheegG1xbDYTMEo+n8djjz2G6dOnS9HRX375ZQwcOBD19fWYOHEirr322qJR0VtaWqTYUblcDkA41lXHfeKzaUbDC+l8Oak7JnW7H3XQ8xExeCmOxWIyLdfpY7lqqXKqUyyPzrquMx24lkOpKpautLuNu4edpWZpz87MUv1WdaR/sc70VabdkRm3NTqOjrxRpb6syqDYbtOkHYeqI96kvCxTziNpR7G6EzkuX7VuPd0fGtPz2SyHzu9//3usW7cOxx9/fHDskEMOweOPP46XXnoJv/jFL/D6669j//33LxqY87rrrkNdXV3wN3z48E6uPcMwDMOUSRcH42Y6n80yFNHkyZORTqfxxz/+MTbNypUrMWLECDz55JM48sgjY9PpJGDDhw/HunVyqIaklZlqgE6Jk4CJ73EUDTlS6kpXyShJAtbRC+1S8+sM6Up3edHvKnqa4W8xQU0l0rRy7lNHeoPvirKKBR2vmHI6t0Kxsag7NXBPSB77LlMlfm2OEevxvxhq+DBV+qUa49O60XlJkgQs7p7lcjnU13dBKKKddkKtZbUvr7Y21P373xyKqIew2akgP/30U8ydOxfPPPNMYrohQ4ZgxIgR+PDDDxPTZTIZZDKZjqwiwzAMwzBMIpvdBOzBBx/EwIED8e1vfzsx3Zo1a/DZZ59hyJAhXVQzhmEYhukk2Ah/i2OzmoA5joMHH3wQP/7xj2HbYdUbGxtxxRVX4KijjsKQIUOwdOlSXHzxxejfvz+OOOKIDik7SWWQFPqlUJC/69LoPkfzNBSxviyKTqpDqaqhUsOxlEql6tZS8ks6pjteariRdlHC5ohyNkF0JUIjVem9KOe3odR02nvSDv1lnGF3sTJjDb81Ruod4R+slHrStNIGoVKcxAmS0qr9TL4bymae8jfqyO0TG5p0PrWk9xMNj2Sa8suV5mqaMEwTbY4+X9uWVY7quO+xPt54ArbFsVlNwObOnYtly5bhxBNPlI5bloW3334bjzzyCNatW4chQ4Zgv/32w8yZM9G7d+9uqi3DMAzDMIyezWoCdvDBB0O3Z6CqqgovvPBCN9RIRl1p6RxLq+lVKlngtEe6VKrkRzVsVSkmcapE0pN0TSWe3uMMgyuVfkXcIJQgdekpEi+VSt2NdCaluhwIiBnslUg0So44UeQadQNOJc93UtvjgmlHChfE1Dni4qGMihaz508QpknXqv0TEdapdVITE7GWCyO4Xni6F5cUy6YY3baJhyVgWxyb1QSMYRiGYb6S8ARsi4MnYAzDMAzT0+mIYNw9VQT/FYUnYDEkBVmNE1mrKkddsFZq/GkX6f04nzjlPoOd6b07jkrVLaUGty3XyF6nEhXHiqm61PP0O1V16OqQ5COuWB27g/a8nytxK1WqJ/xA3VuC2k+Xr+qPL45iqkfdWNEZpMep4DsiWkQixXaqlKimLVdtm3Q/4/wfime9lH7w0sn9bPkXis0H1D+Zuvmp1Ge0HJL8oDFMKfAEjGEYhmF6Oh2hguwJqzwmgCdgRdCtbuJWV2LlJb7btveXTnvfk4w/S0GXXneMSnHKXcmWajSe1BYDbmRpm5SvbvOC7rPoT1FeomSvUhGcpr7y6t2IXfm2s8hO99xfSj6Vjp2k65LudSke0yOZiHIUVyziudQZvMe7e0mObKFDlZxSSVglz3jRcVyMOKv2JHGPcq6YRFlfxzAmopotle4bThsskR/JmHq+F3UQ34PyxE21bcBxpHtO3UwUCkYkH5FXOq14unfaJDGcaVrSPSxHat2l8ARsi4PvBsMwDMMwTBfDEjCGYRiG6emwBGyLgydgMaiqxSRP8yJdPu9JzEsxmC/FYXWcIa9OtRLnyVk1Xi2VON89cfUupi6qlLi+FO0qZ4OBqjLqCBT3QyX7PyvH31Cx8Vfs+iSi15fut4y2u1ikCHX8JKlxg8+mQcqw/Nrp750BNzLO4zRzunrEXUfTxlGpV/gQWRVXzLdcpKBKd7uUqYYUlOIPkOZlJTgKo4dlx/ZCvZkCAOSbAMexkM+HKYRph/g/iYhqM4YkdXkp13QqPAHb4uC7wTAMwzAM08WwBCwGdfWTZHgvVmVC+kUNUZMkIkleoG07XK1ZKGUZpnz3M7OKTbFjlm+Wct4ieSaVF/nsE115hqto9dIkY/RYSYHGV0clHtCpYa9aN3pcd0y3yqZx7pJIWpgWOxdrMK0WWoiKOKyYzIUxcmdsAFAlYupnnRQlrEto+K2OKdW9ASXOKD94zsgFlh1vKF5OO5NIql9JsSBjxKMuDEDZnKBzl1EssoVaR0sj5SxZKqu+SOk7BQgs9s10KOHKpL36BfEf0xZyufA9nE6H2YosqURWJdygYXglB1WyYCJsm2XKz24xCWmpUrIOgSVgWxw8AWMYhmGYng5PwLY4+G4wDMMwDMN0MSwBi6FQCMXWqidlVU1C1RnptOyrSlW9qGJymm+seo0mpBfraKdzMclQnTo1cxzZuU+5Ft4JPsHU7OKypuqBSH3LaHcxFU+p3atTl6qbHkp10aTLl6pYSqmP+B60z1dFBXUwrVhVTTnGyXFq2SS1bZKaRr1OpyrUX5Psb4x+TlJtAwZs25LSC+imGpGH7tkVRDeKxH9vlzCiDL2XbrwLFbNezasrKqp+1PW3eG8KVaLjANmsRcwyrFCtWCgAto2Wgtf3uRywbp1IZ6CmBujb1zuXsl3U14fqYAMuWonvL3qf1OdGfZfT/0VbxLXptFHya070X9Lz2aGwBGyLgydgDMMwDNPT4QnYFgdPwBiGYRimp9MRwbiN8jcmMZ0HT8BioGFvVFF9nIhaVVGoadRdj7rrA+K2g6kkbfmheenSa6KBR3bQ0con6U/KUIkYcIvvzkQ7AwQ7TlG1pBpUG4h/v5V73K9CRC2ihmgJUO6ZhTDYsGSp6Wcgdmvqxpw6bOJUg7GVBqLqS4K6A1F3X+LqoNZDt6hP2l2nPnta1anfITQ4s5qvOBaotUlFLVqIHd2tm7TbTm1HXLt16nRBnMpQkOQnTHdfyvFlFffKUd9/jhO2QVdfqv5znNBXl20rhTgOHMeKXC/SBo+FLe9GdSGrCulnVQVJr6PqSHEuzmxEfbaEmlPtC81rlGFKgocOwzAMw/R0WAW5xcETsCI4TujhXnxPp+UA23ErYlUy4a1ON2MRcLIlc/J1FaDzX6Q735Fl6rJRN2HEEfVLFXrqV30KeRKEBOtt+r9GdEqvjQsQHie90rUhDELsS74K8ZJfdaOBjiSDePo/9ZWn2+AiEJIUKr3wgixr/IL5GQoJo2lGJSyRPiCVcCFHWIgT9lKDcEGcr6zoLTWKjm8dahuLkSTJ0tVLoMtePUYlbOqGJZpvPi/3WTrtebc3sykUCkBjo3culwvTVVdHg2i3p530fa1KUdVnQh2vpUpzOx2egG1x8N1gGIZhGIbpYlgCxjAMwzA9HZaAbXHwBKwIhQLQ1AQ0N4fH+vcHstnwe+jXxoFrpyKqj1BkHQ1tkeiLieovVEtSgWoBquqNdA57RF60UWplkqy71c9qvv7/pQTtFcmTjKmpqqYjAmmLeqnhpWh9KElG5+rxSIgXP2PDNCW1k2UmFFpM/6MYmNOu1xkjx6lUdGnoLRTG1ipqHmr11GGjM1wWpMw2aZzTMEAteUPyJyUMpgHvmWxqCv1NefX1+kQYVffyn1HDafMSq/pAWhlSYYNUUA0kLSkzNX0jjXhFTSxtPiGdFLw/NHpuV1GflqOuLLZ3h25qKMeyQDVyV89pXgVSuDbV4J0ay9fWep9rauRxQl0SinLiXoNi3OrapI7ppHbr8tC9EiuxyqgInoBtcfDdYBiGYRiG6WJYAlYEsepWvSqL79K26kJBWj2XknfigqTUpVoSOulXnNiDLu/KLa/MlVWs5C9hyVmp9EuVGuiManUSIIpw+xBFPS5/F8byQR3i+rXUDQ5+fqrwLMl1Qynohm2c4LSUcpK+S1ID20IhkGJZEQme6sFcfG9u9qTQIj19JnM57094t7dtoH//3oHUuqYGMAqtyZWLa2yx+xRzXRDwWzfAVGlzmZtd4oz5dcLvSijnOjEW4ySk6qYLKsWqrg41CzRdsbrESXV117VXWqV71rpMqMQSsC0OnoAxDMMwTE+HJ2BbHHw3GIZhGIZhuhiWgMVA/cNks7LdOhWPG05bvBMc04IBN/BVVExNE/EOn6QOjFMj6igmd6d5qJ87YMVEDdOLqhF1+otK25iQXue7CNDvaYjbhxBXDK0uvfexvqd0lSslneaSpKGi3tJS1DFxqp1ifVIJ4rmi9VVt5MX3mhog5bRob5xrp5DLeXb3ALB6NbBqVVhObS1QX+/5ospmgZTdJluCq5Uoh2K7OeKghvcwgigOpQyFsiJE+JRiPB43plQtapxmNe67utGD3ts4Cw711arWT2dGoNtkE2dqENcXapm0jqItYmNIp8MSsC0OnoAxDMMwTE+HJ2BbHDwBi0G1xaWxzKRVmrIEaoMF05a3jlNv6Or4TzRAp2XEiSJ0y9QkURutQNIedPGwU8mC6n4hzkrbP07X5UapdSrxBRGNc2cl9q1RaA3ythwR7y9eOlWq8CLWfYb43wnLhIOgP0PP837tTbck0ZS4jhahevaW4gw6TmBooLo0KFJUyZRyy1SJg24YGnDR5hiSZJJKG9JpxWWDeuP8Cw0ANTUpyft5U5PcZ0I6lk4DcAqyn4R0OkxM/c04TlTcUeruA/XHM6HT1Bimie8MDfQ5NU35/VOpgK7UfQelzBHULtEZ6Os2ysS5jVG/i1tJz8XdBkDvToO2R90AIsZkynYrkj5WDAfj3uLg6TDDMAzDMEwXwxMwhmEYhunpUJFhe/7K5K677sKoUaOQzWYxduxYvPrqq4npX3nlFYwdOxbZbBajR4/GPffcE0nz9NNPY8yYMchkMhgzZgxmzZpVVrmtra244IILsMsuu6BXr14YOnQofvSjH2HFihVlt6874QlYDCLgtm17/1dXe381NZ5WwjJdWdUDAI4TiPypbx7xp4rNAzVeuXqgch8qaqWa9FfkOoO0JqLLUFVB6l+xsjTtc01L+mtzjOBPzVJXjNTvpK9cOyX59dKpQsT9tUxXuqeG0yb3AyGijqAZ+/oVUX+hPdPePpHe/6N9oOta2u5Ifdrx4tWpeUoZNqXkSa8VbWgtGIHa0ba950w8h+m0onqjuip1EOTzsJxWVNne38CBwLBhwNCh3p/wtg4A69YBX+Qy2IDe2IDeQH19GAW6lH5TdyOonULzqFDfq/Y3fQ7Uv9aCERkTYrQWy7c9f7S54p2ZTkfvoVAzqo+G+FO7XS1DV6buHRD3TMT1b9KritaHphORLzoiOkdJdMMEbObMmZg2bRouueQSvPnmm9hnn31wyCGHYNmyZdr0S5Yswbe+9S3ss88+ePPNN3HxxRfjzDPPxNNPPx2kWbhwIaZOnYrjjjsOb731Fo477jgcffTR+Mc//lFyuU1NTXjjjTdw2WWX4Y033sAzzzyD//znPzj00EMr6Njuw3Bdt4tGz+ZBLpdDXV0d1q1bj9raWsl2gKK13XL8UEQxjhFVkxVpIqPaeakXqm8cge7lruYTF7NDvVY1zNEZGMXVgX5PMqrQEWNEEudAVXymxaovSpqt4wAW2qR8dT8cIq1t60MMSQVpCNLFGdo4DtpIMJvIWFAbR/IVqD8sor7UtkosDNTQTXE/wnEk2dlQyp3bqfdIHS60LXRoRvqWGvuYphyXiNhquXZKctTa3By9VJh69a5xg0kcAO8E7WxqHybQzSrjOoU2Lg5yLt4BsB7d0It7bNVmJFWplDWTSKfez7jXV9wOV5omboM5fUTUd4H4rGu37h2hhjnSvUMAb0jQsVJd7Y3JXC6Huvp6rF/v/WZ0NOI3af2xx6K2nVsuc/k86n7zm5LrOn78eOyxxx64++67g2M77rgjDj/8cFx33XWR9BdccAGeffZZvPfee8Gx0047DW+99RYWLlwIAJg6dSpyuRyee+65IM2UKVPQp08fPPHEExWVCwCvv/46vv71r+PTTz/F1ltvXbRtPQE2wo9BvLDFA0gnVd7DHcYTFDEfhfF9nGFm8CMCRN8wSahvxqTJGs1bUGwSpctLfSvp6hGXjya+XqmokkL1ZSjOpWw/pmKB/JLa8o9jayGc7DiwAPISpjHpaDnBPSL3xVArRN7mrmkFXwOJaMzkCaZch9iVs9JvNJ1tG5EfM/qjQutuiBP+BQ7ijfB1P9bqBLFSg+MkSWHc5EtfTwOOQyaw6Sr52nRGSS++eP9V2Z73+2x9SvI6IYVEpQ+9SKDcz8BInopIRNqEsSKR9NyTH9lgTJUoPbPMaFmqUT5F/R63KKEG56LJcZP7pDkq7ZI4b/eA/vWjqy9Nr07IdBM63TiPm9Oo+Yh09NVtmkbZk+SKqUCCpc0D3qSOkslkkMlkpGP5fB6LFi3ChRdeKB0/+OCDsWDBAm32CxcuxMEHHywdmzx5Mh544AG0trYilUph4cKFOPvssyNpbr311orLBYD169fDMAzU19fHpulptPNuMgzDMAzT6XSgCnL48OGoq6sL/nRSpdWrV6OtrQ2DBg2Sjg8aNAgNDQ3aKjY0NGjTFwoFrF69OjGNyLOScpubm3HhhRfi2GOP7RQpZGfBEjCGYRiG+Qrx2WefSRMVVfpFMRTXFa7rRo4VS68eLyXPUsttbW3F97//fTiOg7vuuiu2Xj0RnoDFoNosqmJ8nS2C+K7LKzFBUiV0heooZntSCqphRalWrHF1SULtNPI9zr4JIDYhvk81i/gyU9VDSWY4wtA+KMghJ5Ns7mjdHcdTK8bhOEF9hJpCzir+JRan/lO1vVFbNgMp1Z14UN/oLS5GOKzi7fFUm5tod5XWTvVaXberw7wUdXXwHDf7qlnHQUokLjjIZjNobPS+tqZTMBEGUQdkn3P5vKcGBrxg36rPrpIbk2BLGNsoSonPOX1vJVWn2HFA9ieWlLdKnEZX3cSk5qfafKn/J2iKE1WQund2nL2Y6vkekFXWlb4iK6IDVZC1tbVFJUX9+/eHZVkRqdOqVasi0inB4MGDtelt20a/fv0S04g8yym3tbUVRx99NJYsWYKXXnpps5J+AayCZBiGYZieTweqIEshnU5j7NixmDNnjnR8zpw52HvvvbXXTJgwIZL+xRdfxLhx45BKpRLTiDxLLVdMvj788EPMnTs3mOBtTrAELAbhgsCFEWsQCiSPaQu+1+5CwnKTZiy2v8elTRK10XOxEpCEVbeaRzGr7FIe5KQlt2oF7ednAEj51q6tZkoy9m1zjKBpQd/S5aidClfRpoUC2RRHiUg1iRTLq5YczSAoi9bbh8b61LbN301n+QNFivdJxDTUS33EOJ9I0iwzOfafSc6ru3HFWBXHpboEogXy3TRDs33l9lmmKUmGiglnqeG1KtlIkmoIxH3PpOW+icRPpXVXz2kyb0UKDrmlq1d7u9vqanyL68ZGGOQeVtXUSNEMYitdTCyiinZ1OyuAcCzRMaVKyGi0Cj/+rIB+pp7wg+gDhdYwn3xes00DoSha5CkyoaEGyBhTnwkDbngvJHf2iLxA415ruhiRNK1OUqXbJEDdVNCmxb3OqHF/Pl90j8YWx/Tp03Hcccdh3LhxmDBhAu677z4sW7YMp512GgDgoosuwueff45HHnkEgLfj8Y477sD06dNx8sknY+HChXjggQeC3Y0AcNZZZ2HffffFDTfcgMMOOwx/+MMfMHfuXMyfP7/kcguFAr773e/ijTfewJ/+9Ce0tbUFErO+ffsi3WUBOtsHT8AYhmEYpqfTgSrIUpk6dSrWrFmDq666CitXrsTOO++M2bNnY8SIEQCAlStXSj7BRo0ahdmzZ+Pss8/GnXfeiaFDh+K2227DUUcdFaTZe++98eSTT+LSSy/FZZddhm222QYzZ87E+PHjSy53+fLlePbZZwEAu+22m1TnefPmYdKkSWW1s7tgP2AKgc+VdetQW1tbkgRMZ2sAEMlJksFFORKwpO/FApqJa3Srbp39WGdLwGiZRAIGIFhZtyIl+eSi2711EjC3updURD5GAiakMLomUEFDpCyRQBHNqBInKRP6WSeKK1ECRq+lrjp0EgNVAqBKzBLjV8aUGUEjASvFHKq9ErCI8+O4wnSVoc6//AxbHc+NiBhGTU1CAtYWHqADSZGAGU6bvqxSjINKkWiL4xVKwCh03ARjRJGAaVEkYEEmRAImnk0hAYvEjRXo/I74laH1U/3dxXWxoCMlYOprSzRTdU0kXte5XA59+9Z1vh+wU07pGD9g993XaXVlymOzEZ5eccUVMAxD+hs8eHBw3nVdXHHFFRg6dCiqqqowadIk/Pvf/+6QspPek6qxaOyF4jv9hdTp5WmGiZmXSDl5VJq2PfUTPyC0H/w3nW37wZf975bpwkKbNyHSuKxWvdRXUr3YRWaMDQX9oQlVmkXusThOED8KwsM2/ROTnTiP5nHQqAE6z+hqGUn1U6HObMsZrjpv42qRuu4qdg8j/aIrgB7zK5KyXSnSRXW1l7SlYKGlYHkHhBt3MVNragKamrwf+KRf7mKodYz7rCNBGlLuONHWR53d0HGs/hXJUqqTeN5plAf/nG5cxD1K6p/6ClEnoWKkJ72SaV5qfnF0qQpSBONuzx8H4+5RbDYTMADYaaedsHLlyuDv7bffDs7deOON+OUvf4k77rgDr7/+OgYPHoyDDjoIGzZs6MYaMwzDMAzDRNmsbMBs25akXgLXdXHrrbfikksuwZFHHgkAePjhhzFo0CD85je/wamnntrVVWUYhmGYjqMbbMCYzmWzmoB9+OGHGDp0KDKZDMaPH48ZM2Zg9OjRWLJkCRoaGqQQCJlMBhMnTsSCBQsSJ2AtLS1oaWkJvgchGvJ5IJ+HYZqwTBNWOrRTCOwmAF+dEX62qMGYGsMCUHYBEVsV5eGKxB+MU28Us9VKMs4p92EspmJJ0htRmxb1RUKNMEj/GYXW4mXSvlXskqhNCC1O7MqSbLf8vE2tXy+NMRKpkmRPY5p6QzKlUkLlYvu7LR3FzlCyo3GciEJJ1FNnI0P9NdEdaNpYlWGGJY8HXSxNFfVc0rCnVVCrlPSdQvvLUO2kdPfD/ywCo6sxB4VfsELWQra6NwDASrdEGiPuIxDeSwAwlHGSaIen1k+n1kwylCODwMiH77LIjl3/XSah6ye1Dup30TZiG2cpHShaK3b/GvT5Fp9tW+oV00wFn0W8RTq+Y8eu4wAOIHbquv5uaN2rQ6fiVMuhzVS7RGijAd88Il+Q+7wz4QnYFsdmczfGjx+PRx55BC+88ALuv/9+NDQ0YO+998aaNWuC7aflhC4QXHfddVJIhuHDh3daGxiGYRiGYYDNSAJ2yCGHBJ932WUXTJgwAdtssw0efvhh7LXXXgDKD5kAeH5Mpk+fHnzP5XLeJCzGQthxANNOqdl45cMNncUIkgxr6YpGOZfoYbsU2mMYT+tTTj10OxSKpXMcr890K2Q1PV3tx0gG5JV3zM5Cf+Wu62Ntv6uRfgU6iYKu3gS6k1OVvFADYkliouZj25HNZHISGrVBM/7NUJpLr1eEKVK+ldiX69KqQp5yh3ns7rpSKqSpuGmHhteAvONN1C/YeZlOo80xQl9ZhYI/XhKiIZC6Jt7TUlGlIKXko4s6H3edTiQpJNSkU1zTgpEmUkT/nRjsWlYHdgk3OpByEST/Yeq7M0YqqHrsT2qi+B4nidVVPagjNW7vClgCtsWx2d6NXr16YZdddsGHH34Y2IWVEzJBkMlkgrAMpYRnYBiGYZgup707ILtyssiUxGZ7N1paWvDee+9hyJAhGDVqFAYPHiyFLsjn83jllVdiQyYwDMMwDMN0F5uNCvLcc8/Fd77zHWy99dZYtWoVrrnmGuRyOfz4xz+GYRiYNm0aZsyYge222w7bbbcdZsyYgerqahx77LHtK9jXTwjVkeqrkC4qUrrejDOgj9PxxBmu6/LtKCrJvxw9lIpuFaZT05aiB4vTcanFlHIPkiihvNj6i+OmGatppdkm+nAiYzGumskaqvgAykndmzREOmpRnbSvo5QypE0r6v8xjVVVg6bpbaawbF9N6/upAjyja4uq4gLVnqeCpPdUbIAo2R+XunGgnLFJO0nXUaUcE+WL8mxb3uBCrnFNy29r6NxUrq4RmGkEhvPF6giRLLoxhmQcvUCDGrhe18w4VDWoTo0ZcbzcVbAKcotjs5mALV++HMcccwxWr16NAQMGYK+99sLf//73IDTB+eefj02bNuH000/Hl19+ifHjx+PFF19E7969u7nmDMMwDNNOeAK2xcGhiBRE2IfVq71QDUHQWscLTbKx2UI6DaRM77sa+iMITwKEyy2dSIKKQsRx4W2bnqfXJEiURCgbbRiQOFFH0sMYt1QsR/JWgvhCcrcRc15H0McJ0D4pOV9VikLyUfMSdQ9WxMI9Cdme72argvTUjljcboG08lbHDBExuKYVOU3D4dD+LCZ9ofnotucnCSCSPBbo0qt24KXsXaDG8TppkjS21cao/zuOPqJzOh1xWUDb7nujCdqQzQJWgbgd8L25B/URiJutK5PWTYdOOhUXaky1GNeFE9J1ttj4EucfhF6ntkPE4KHXNjWF15hmOLjFtZqNHyqR+1lMAhY3iES8K03fC7chui4WxUjPFr2nfh3o+6BQ8H4z+vfvglBE552H2kymfXm1tKDupps4FFEPgafDDMMwDMMwXcxmo4JkGIZhmK8srILc4uAJWAwiaLBpApbTGojbe6VtT3wvjHgVL/eGqldSUcXqOkdQSdeoaX2jbCfQBhhK0Uboq6rYhoC4skolTq4Pvc8p3TmVooauCUbxSdfGGUhL3tRJ/mExhqQloUa6KY3KQ9WoqLbIsrZM3DtZzeiYqTCdYv/taVosRUMlt4veZlXDJM6J61WP8HF4XvzjzxfTesftudBpwIDQf5o4JvmaUinjR0YdA0IVLO4r1aYFmjTlJmq92osbGFeX5J0S8c+SzqyBlqnzl6W7UaqalkajoHn659rSoSo9uAckqoMhXNfrTBfIMaPU90ucmQT9rrZLaVOcsXzgq8yHqu0tkr0a1NwQeRMVZLHnpEMRwbjbmwfTY+DpMMMwDMMwTBfDErAYbNv7s0wXcCCvPKqrg2VPqxOuhsxsRloAWs2bvA9UzEBXbdRQVKxUS11OSas9UgczupU60jA1jzixQ1yZ4nPcKl6cI6tog3y2ANnVuFg9A2gzU4pBrH7F5og2KzER4UiJtKh7A2jVLdOXjJH6OtCveAsFbygE+NdsKqSC/GlvmiaQslWj3rD+cZ4HqFBDFYCo3gN016tSN902ezH01LRxdaL56gRRSQIcddioAhudwFYrIKYPG9mIAijj30/nEtcISa4K4DiBBDST1sQMFQ1Op4FCIcgXUCIp6HYylNqhqlU4lSYr8UqlJyRJzEnLzOejUi86mB0HbdS9Bqm6AdeXSIZ96MAzDjcBmPRXxX8GpFiQOnGr2gcCRRIX+84hmgfXTsGAS4ZG1PWK46iST1VzED534pps1oKhVIk2p9NhFeQWB0/AGIZhGKanwxOwLQ6+GwzDMAzDMF0MS8BiECrIwOCeypmFHxx4BtCqmiRYZDhOrDfpWKP7OMP9IisXqtHz/kKReqASNU3Z75bOYLZSqHqgmGqzHZarpaja2pOPaXpG9hZR1ToFOS1NH/ETZJqRbhB1UzceGKaJgu+2SadpoapO1fk6HXP0vO6WqtfovOGXYgdOtdc6tUuS3bR6jJZH6yerSGUP9VrVetJNj1H3qZ7vk6A+wiwTUb0oFJ90xYzK486XYqxfCklG6+pnemOU69pgRfYThC7GjNhmqGM3uGc6daOuXknqSPWaIu8QenmxAN06CgXZrVo26x2007JJQtJmlA6FJWBbHDwBYxiGYZieDk/Aupxnn3227GsOOuggVFVVFU8InoDFYvibkCNLOoE/kOmWdXotTRMskaiRPRVZAKEoI0lqJLBttBZ842nTk9BUZV053wJN7xnIitW8FG9NzVstO8FAnxoyS6tN00SbY6C5OWx2oWAFWdg2gGzo0TlJOpK0yNUZdCcR52JBXXR732WjXNXoHRDOxA1iO50J2weN0T2thJ3CxiZDkhSIU6rQVTYE9tJSR+NA+F21uVbtrmn9dG2ndVdtwVWpG71OFaaow0Yea2aw3V91A+HlG24MUJHSm5bUfxHoSdPUpo0z7hflSF4dbMOTjCr5at0dKNJmNWJGxF1EXGeT/AQRVw5xhuoiH91g9w3u3XQmzEKRpNLxmM3Kew/SacCCL/lrbg7zbfb+pxLkiBYgCfWBo97alQFBx0JzM2D6mxPyjfJz6WUnSz3jIjmoERvI/iAY+ZaIqyHbNrpOAsZ0OYcffnhZ6Q3DwIcffojRo0eXlJ6HDsMwDMP0dFgC1i00NDRg4MCBJaUtN/Y0T8AYhmEYpqfDE7Au58c//nHJ6kQA+OEPf1hWjE2egMUhRPeqSFyj56IGnhEj4TiD83KMcRXdieSd2WlDyiYWshoX5SJLr26lGaHGBclWPdqLImUtbdRIN8bWt+j7IEmtWMLeBCkPVYUWZyyfVF9KnB0wPab6mzJ9n1HNzUBjY7xqkw4bnWZaVUFSbXfS0CrW/0m24MXsyCmxqsEiNyzutHqv1fwjkQ1oB5b7o+OEfsBSNgJ1PxBunpArZqk5aJGeW11jkgzQk/Sm9OarOyWovk3jJT9uMwcQvlKE6loUk077gedFgmL1VnV+cZRgWC+XFQZBpypHoYVNGstxz7llEh95aUMeV02KYzB4as8um9PwBKzLefDBB8tKf/fdd5eVvqQJ2B577FFWpoZh4Nlnn8VWW21V1nUMwzAMwzBfBUqagC1evBjnnHMOampqiqZ1XRfXX389Wlpa2l257sQ1Lc9wNt8SXf6rYobAIB+yAa/tiS6dgnwpAKSEdWexbesAkE5L2+HzxOY1H3hp9z1RmxnYyiInVWgN8rSoBXWCcaxhKxVG1GCaSmyyWdlQ3HDasKFJ8VIfA111Svu+bVuKzdYG2eiaVi/iwsBxJI/hqkRJbbo4pxrUJkmNTFMKC4qaGu+Yld8UJvY3Ilj+sry1ENaJ1sF3qi61TS0PCJ2V0/PNzXI/KPs1pM9xedN7SfMJNxhEbcZp3akBP70utAOPukVR66D2syo0SbJNVzfCmKYVSJmSvN5r8yMV0Ul81diqhqkf4LKHeksqy6IdoTZct3NCeS60Ui/TRLDzBQglYHHG/aYJq+C9p610Gpl8I1BNrM5ryeBpbg7r0GTLDxGtn2gXtV7XlAtACSMB7e4Q4Y3fNIGmJgBKVAoPI/KcxikeaBUpdKMFpUCkn7B7eWXQPRj6IjoHloD1SD7++GOcfPLJeOmll8q+tmQV5HnnnVeyIdovfvGLsivCMAzDMEwMHIy7R9LY2IhXXnmlomtLmoAtWbIEAwYMKDnTd999F0OHDq2oQgzDMAzDMD2B2267LfH8559/XnHeJU3ARowYUVamw4cPr6gyPQkhwraoeF+coCpInVG+7xnbVIxzqQQ5YuSuqEsMzTGalLoWo9UQhrRatY4qwtZZbOuMeyF7BFeTiWxoHWzbklRsSZ7ahfd5wFOFUB9MFKGNEfnQ/QahAbHoKzlAuU4loVNRiC5Sb6/OJ5dQy1Hti2kC1dVVQX2DsvLed0+NIhvSq/nq/ArF9b3IR70funNGoRVwiAqNXKTzZdfmyL6TaJ9QNaPQiKntoah11i3kVUN6nZ26mkds0HnSoYbfITov6KapqMCVwoxCASlakbzycCU1VLNLJBjnUDYJxDVW5EHLzGbRZoYBwCP1j2mL9OIw/eDlvlf3piaguqZ3WD+n1dslAngDt7k5fAiEejFuI4HO8D+urXF6Qz8fS9hTOA5sW36mo9E/ok2OI07trfalZUcfPNXvW+wY7GhYBdktTJs2DUOGDEE6xmQnT1/0ZVLRLsh169bhtddew6pVq+Aoo/1HP/pRxZVhGIZhGEYDT8C6hREjRuCGG27A0UcfrT2/ePFijB07tqK8y56A/fGPf8QPfvADbNy4Eb1794ZBdMqGYfAEjGEYhmGYLYKxY8di0aJFsRMwwzDgupVJQcuegJ1zzjk48cQTMWPGDFSru1i2IMLFhrdiCH0BWXDyoXrRNOVg3J46xvJTeioVuuiQ1WoGAlWZovIyTUsKAq3TdtD0AqEOpCqzVFoR8/tqCNffKUZF6tqwKv53yyTi93wLUn4+qayJDY1GUObatV4Rfft63zNpFxlbUasouyupalan9qPfKUJLUijIOzEdB6jLtoRf0sp2QAAt+WgoJZ02KE6lqx7TPQ5iU1qhIG8kq63V71AU+ajaGFof+n+SRkdd7LaZKe86kV9CvoAh9bdaH3WHpG3LG/BUzRfdMEeRVUeGtq2ArFbV5QMoOxZhQfiJKih+rHSas7hxH7lQfRB1DaKf/U40TAeWbYdqUAfaXX9ehTUDndgcuHZK3n1HI7XT7apC363TDTsOjLQT3LRe2Szg2N4uaXhjxaomOmadc0mqe1fVM/SGUVMGOxX/PBeI2YYYE0ER8i5SFd25uHBD9Lu6EVU19zCUC10YcvD1uMI7A5aAdQtXXXUVmsSzpGHMmDFYsmRJRXmXPQH7/PPPceaZZ27Rky+GYRiG6VHwBKxbGDNmTOL5VCpVtp28oOwJ2OTJk/HPf/6z5GCTmytBMG5/uW/bodGrugCmkgA6vtXVlEhP81FX5YHBNAnyHa7K9RIbXRm0TlKBuk0DZNUfZ1Cq+lKyFEtx0wwlILmc7J6ovt7wvPWTCun6RpRvBW2T06h7H3RSGRoQoLY2E+TZ5hjSqlftt6RNAqokRpUWiTJF+2k5qqGwuKa52ZPYqZspAG8Th2WaQft1NtkC9Z2sBhOmUk11ta9KZpPaHmcET7/H1VF1W6Xmo16X5L+JPh+Rimk2vdDr6LWiTyzTe8YNetPUfNVjpYhi1EL9c1Ig7SSr8TiRjWlGvf4LiTYMafNO0Nlx/v6o8znA++wPZisL2SmcGoScQm+4GPSqWsCHvteKCQ9144iep88W/V9XzSTJMD2mff+RDLvM4J7p0Vx//fU47bTTUF9f3658SpqAPfvss8Hnb3/72zjvvPPw7rvvYpdddkEqlZLSHnrooe2qEMMwDMMwCiwB6zHMmDEDRx99dNdMwA4//PDIsauuuipyzDAMtLW1RY4zDMMwDNMOeALWY6jU6F6lpAmY6mriK4FwLOXrtqgyTFW/CXWAOrb14uowrdb/EJGjB2X6hvJUsxCIzIVBqKLqEL6ezLTh+S4SF4pyykTVvli2KR20bQv9+3tfBw6UA/vmckBNjdeaTNoG8nmpbyLqSD9f4fdH5JPPywGCVRUF1bSYJk1r+PmF19K2xKpsETU4p9cJqL1xPq+3rXYcT+UoonklqQ7RnPfVHR6WuAC+D69CIRyDjgMp9pQ0hrz/hNorpTpsc8IKinPy2DYkNY8u1JAg6b1ObbSTVDi2rff/JvIwTTLeNbsRqBqRhvqxbSs0JxAtU1WMcbGcilEsLR1kNG9Vhxans1XjZikd7TgIVPYGXER2TtD/0+mgnW2OgUIeyIj88nlZdajq+9TNCKraker+dTpzzXstuC+6/nKoJz+/WFs+ovOXR6usVp+S6D+u2CQlyUahM+EJ2BZH2XfjkUce0cZ5zOfzeOSRRzqkUgzDMAzDMD2Rd999FyNHjmx3PmUb4Z9wwgmYMmVKJC7khg0bcMIJJ2wxfsBcOwXXThVNFxjrIzQap1v5k3asq4F+Jc/5dNu1IoURxtXaTDX1EyvoNseASVadhtNWfMUnJGmmvLjd2BS60BDnqEG5aYYOs6l7gsDQl6yIHTtDFutG0A9CYKCTgAmJDK16TY28A1+UK4JVi3PV1b4EskDcVCjtpZKKVjMDKiig2+jVre6qoCAO1VCYOlPOCPf1fqJWJxwX+WZ/nJDt+ZBuoQXiPNw3rvclif61jqPKFgCz4F1rkvY0N0eFKOIzbWdCTPeA0FOC/IzohAk6gUJ4zHfxokScp+5LQlcG0XZGSLLI1p2nuwR0RvSq7xTVGF3dGQDIz4P6XVyjhGIQ0j7LthG6FUmwWlfqaeU3eT0pHlL6AKvE3SRxLRX7inOqBM0n+s4jfiThRkTNrqkLvq3fB6B+Tnr+4jYBQSnPMt1oRooLnVJ+JzoEloB1K5999hkMw8CwYcMwfPhwvPbaa/jNb36DMWPG4JRTTqkoz7Lvhuu6kvNVwfLly1FXV1dRJRiGYRiGSUAE427PHwfjrphjjz0W8+bNAwA0NDTgoIMOwmuvvYaLL75YaxNfCiVLwHbffXcYhgHDMHDAAQfAJquAtrY2LFmyBFOmTKmoEgzDMAzDMD2Vd955B1//+tcBAL/97W+x8847429/+xtefPFFnHbaafj5z39edp4lT8DETsjFixdj8uTJqBHWxADS6TRGjhyJo446quwK9FSEajFWVB1zDRAaxape8GkaFUsji6THIqL6JGLk88IwP/D6rdOVxcj5hf8eXVJhZE2N0R3HD+gLoKYm9H7dghQyWchRtGOqILQZOvteoaWjWiCqHWpsDFWQAwfKQaltG7JRdpIa1nFg2noVhxpnWORNP6txi2kddN8BhJsmhIE8dfGfjg/wDsjtsgCYaTmAMa2/qtbWabDUtorjOg2TTvWjqmXFMxU35NS2xbVTRe83j5Ck2+xIo/tSr01SfVIVnqpnF+nUG0fLSBrXVJ9Pz6tODNX6quVT2wDdw6HTWUP2LB9552lUnTS9Lpg6rVLcd11XJ24CirtO0x+G2YW+wVgF2a20trYik/F8S86dOzdwubXDDjtg5cqVFeVZ8gTs8ssvR1tbG0aMGIHJkydjyJAhFRXIMAzDMEyZ8ASsW9lpp51wzz334Nvf/jbmzJmDq6++GgCwYsUK9OvXr6I8yzLCtywLp512Gt57772KCtuccH0ZWHuIxAwDKn4Aiq2yaF218ewgPGW7RFJhyMb+AKhhfVL5xaQcXt7e8LKJFCuXA5qaQolYOp1CTU2sza53vX8umwVWr/Y+r1sH1NcD/cwvvQNNjcC6PFJ+iKytBvbHl42ecWxvexOQzoYZNjV5mVLRGhVJ2bYX0NL/bqWbAvcMqZoaIOtVsM0xpA0GIgsa/5FKhUTWtBidR3c3nZGkr54xfLgxgfa1KiBpc0h8UXhxEJPQCS8E6vs+zrg5zt6cng83K0SfqSRPDUE7CnL/CRKfUV2DxPEkS211cBeTXCWhioWpSFGXBpBDJOig9aE7U9R8RZ7ioaF1FzsnREg58TzEDQg6GNT6qV7yi23siUnrKpsmaJxatWn0tqjS5SRJr/gc975MHE+KBqGka5gthhtuuAFHHHEEbrrpJvz4xz/G//zP/wDwHNUL1WS5lL0LcpdddsEnn3yCUaNGVVQgwzAMwzBlwhKwbmXSpElYvXo1crkc+vTpExw/5ZRTKo6NXfbduPbaa3HuuefiT3/6E1auXIlcLif9MQzDMAzTwbR3B2SFE7i77roLo0aNQjabxdixY/Hqq68mpn/llVcwduxYZLNZjB49Gvfcc08kzdNPP40xY8Ygk8lgzJgxmDVrVtnlPvPMM5g8eTL69+8PwzCwePHisttWLpZlSZMvABg5cmTELVeplC0BEzsdDz30UMkdhXBPwaGICKosvBsQakeguAF0iS7BIiRpS8R1QuNRU+N9bmryvq9b56klRd7ivLiOqq8KBUA8Y01NXtpdd/UehhGDqz1VC7HCr6nxHxT/ek89B1iO4+n1dC7X4xogAh4rKlvVaN2AC2TDaAfUcF21nQ78sCmIpyo0QJbvmZqPWlVKnFf+uGaqqppSfCqVcr6c9HHqaNOMVxfFelRXP6sUezZLeXbjnvO43RniHL2JqqqTeslXddk0b/qAqHkAUbVinHW66sGelqGWqUbBVnV8KuoLJy5fooKMM7nQVT9uLJUyJsU7UVceB94GZs6ciWnTpuGuu+7CN77xDdx777045JBD8O6772LrrbeOpF+yZAm+9a1v4eSTT8Zjjz2Gv/3tbzj99NMxYMCAYJPewoULMXXqVFx99dU44ogjMGvWLBx99NGYP38+xo8fX3K5GzduxDe+8Q1873vfw8knn9x1ndKBGG6ZQY1eeeWVxPMTJ05sV4W6m1wuh7q6Oqxbtx61tbVF05f0kLbHhqREkmwakmwc4iZgOhsw1YkinVzo0opyqZNMYbJCJ2C0vGITsDfe8D6HEzDv+4jBLaGtCwBUV6PVn4ClCpuAbDacgDVtUA2TEm3AkM0GlXKre0VMcATZrNf21kI4ARP2YOVMwNSbsKlZdV4ZbwOmUmyDWkyRWruuYhM33TCP+10udRGgfqbhu9o1AUuqUCWrEJFn3KQ+nY7foah2IB1U4lzcJMtxZO/EuvKFZoIOHLEtWLzjik3AdPZj4hjdQal7KcRNwKjtGGQbMPruEOg2aqrZF0MdX7p3lVoHFfUdmsvlUF9fh/XrS/vNKBfxm7T+scdQW6GqK8irqQl1P/xhyXUdP3489thjD9x9993BsR133BGHH344rrvuukj6Cy64AM8++6xkJ37aaafhrbfewsKFCwEAU6dORS6Xw3PPPRekmTJlCvr06YMnnnii7HKXLl2KUaNG4c0338Ruu+1WWkf0EMqWgG3uE6xKKXmipRMjdcKkK3AloVvB0W3fmnqrP6qqTaz4LP8mxU/cykG4MBDuGdJpb5KyapX3fe3a6PtafK+vD38vhg71Jm8ffSTql8HwvvXhjMdxkMpv9D77rvCFG47Axbtq/CwKLBTCgmwbbemqcPHfHH87cznP03spkwvvswWdt/bgNzRhokS9z0ubPWi7HAemJn/dPdYJT9S6F5tExc0tdNfETezipLCivWISrdbPNI1wcpZkfK8e01U0ZsEUZ2wd/HibFgxojOAFuVx4cxsbw+PDhsVLy4SXeXLD25QoiVbcgGxq8soXP9o0XTYrSXYB6CVtujr5aYQHeMMOJ0/FJk7eZhK//iRKAwA4UtfFb9YoBbX6cdeKelbibijue6ehvpQrzaNE8vk8Fi1ahAsvvFA6fvDBB2PBggXaaxYuXIiDDz5YOjZ58mQ88MADaG1tRSqVwsKFC3H22WdH0tx6660Vl7u5UvYEDADWrVuHBx54AO+99x4Mw8CYMWNw4oknsid8hmEYhukMOnACptprZzKZwMeVYPXq1Whra8OgQYOk44MGDUJDQ4M2+4aGBm36QqGA1atXY8iQIbFpRJ6VlLu5Uvbd/Oc//4ltttkGt9xyC9auXYvVq1fjl7/8JbbZZhu8IfRDDMMwDMP0SIYPH466urrgT6dOFKihB+PCESalV4+Xkme55XY2y5cvRyOVXPu0trbir3/9a0V5li0BO/vss3HooYfi/vvvD8IRFQoFnHTSSZg2bVrFFSnGddddh2eeeQbvv/8+qqqqsPfee+OGG27A1772tSDN8ccfj4cffli6bvz48fj73/9ecblFxctJehmfSsTbSdfQAODl+qChHsN1mpkklRklTmMjSjHNsG46jY7QaPTt6/3fv7/3P3VrJGzlhb3Y0KHA6NHe55Tt2VqJ58G2EY2UTfR1rUgFKr1UOh21W4kYBMu6PqqtFKcMuJJKTNVmKSYuWiQ/YP6FasQBis75uEX1h4ou0CAVMk0jVj2oUwUWU0HGqat1mzLiVJ1Jplo6NZJqqkXvRayRW5I+KqYQ3djVJafvBymYtKisWiehDlRtrkwzVONR20CRB0lr2orvvjjDPdWIUm2n+n+SPYKmEwzVFiwG6u/OcUp7X+mKVG3AyhEGxaWNa6JAZ6DfbX7AOlAC9tlnn0k2YKr0CwD69+8Py7IiUqdVq1ZFpFOCwYMHa9Pbth04K41LI/KspNzOZOXKlTjssMOwaNEiGIaBH/zgB7jzzjuDaEBr167FfvvtV9EGxIokYBdccIEUC9K2bZx//vn45z//WXYFSuWVV17BGWecgb///e+YM2cOCoUCDj74YGzcuFFKN2XKFKxcuTL4mz17dqfViWEYhmG6BDEBa+8fgNraWulPNwFLp9MYO3Ys5syZIx2fM2cO9t57b20VJ0yYEEn/4osvYty4cUilUolpRJ6VlNuZXHjhhbAsC//4xz/w/PPP491338WkSZPw5ZdfBmnK3MsYULYErLa2FsuWLcMOO+wgHf/ss8/Qu3fviipRCs8//7z0/cEHH8TAgQOxaNEi7LvvvsHxTCaDwYMHd1o9GIZhGOarwPTp03Hcccdh3LhxmDBhAu677z4sW7YMp512GgDgoosuwueff45HHnkEgLfj8Y477sD06dNx8sknY+HChXjggQeC3Y0AcNZZZ2HffffFDTfcgMMOOwx/+MMfMHfuXMyfP7/kcgFP8rRs2TKsWLECAPDBBx8A8CRsHTkHmDt3LmbNmoVx48YBAPbZZx9MnToV+++/P/7yl78AiKpLS6XsCdjUqVPxk5/8BDfffDP23ntvGIaB+fPn47zzzsMxxxxTUSUqYf369QCAvkKH5fPyyy9j4MCBqK+vx8SJE3HttdcmOklraWlBS0tL8F0YJwZqvqS9+zo0+peSQ12UcL5YGhdGZGddsfKTxPNJ2ho1bdL3YmWK7zU18rX5vOzKQXRvS95AoSC7qOidVvQTZKulScusrZW37xNfDm2wZO1kAcikw/6zCqRCACxSYcdMRdRiFt3KGFF1mmEDyC436moBAFJ2eN+EWlNNI7WblkcaY9g2LACWHb2RbY4h1V0d9moYGNVTQjF3GEk7JuNI2h1pmop5gDpQk3TkunOkgW46o62Xrn3q82TkldhP1H1EU1NY3vLlEfWfIcbrwIGyqwalEuq9kL6IPMS1olzaVlovGkuLRqzX9Zmic6ZtD59RvdlBUiBtndYzToMbd125xL3XStnh2G27IA2j/SrIMicKU6dOxZo1a3DVVVdh5cqV2HnnnTF79myMGDECgKeeW7ZsWZB+1KhRmD17Ns4++2zceeedGDp0KG677bbABxgA7L333njyySdx6aWX4rLLLsM222yDmTNnBj7ASikX8EIAnXDCCcH373//+wC8uNVXXHFFWe1MYv369ZLz1Uwmg6eeegrf+973sN9+++Gxxx6rOO+y/YDl83mcd955uOeee1DwH+JUKoX//d//xfXXX68VZXY0ruvisMMOw5dffil5x505cyZqamowYsQILFmyBJdddhkKhQIWLVoUW68rrrgCV155ZeT4+nXrPB15B0zApLp3kr1Akk1YORPAcmxy4q4rBbWbxO+BajdFJ2DZbPj7ks9714jfFgAYkF4vG5AJG4d0Gm2wovZCpUzAHHkCJlUIkGaMrYhOwBKN6oRhi1/HJFQfbJEJmM4HhLAzUg3vNDdS2LLFTcCE5w6RJmkCphsncd4OSp3oaP2oxU3A1EzKnO2VMwFTMZpkkwhpApbLhQP4k0/CMocO9T7TCVicPzHTRKtj0a+wCi36tPl88QkYHXf0s2oPJvyYAcHNcNPhO5UuktSidBN7ek43AdN9F8dUOnMCVgq5XA519fWd7wds1izU9urVvrw2bkTdEUd0Wl23RHbddVdcfvnl0iQS8Gzfv/e97+GNN97A8uXLK7IBK3sCJmhqasLHH38M13Wx7bbbVhwLqRLOOOMM/PnPf8b8+fMxbNiw2HQrV67EiBEj8OSTT+LII4/UptFJwIYPH96jJmDFjEB1adqLcJ5aigRMpIuTcqjX6qQZcQt+mg+dCLU5huTQFQD62etlK3VfOuqalhRvO5gY+Rm7diq4TGwCoAHAbVueIBq59WGh1dVBPm12pvjEQO0E2nDyS1RsnESM9+k4FZVXDb3LnIDRS+mcU2QtUMxLIogJGr1Wtf2m+egQEzDpHooMSiVJjEIq22amIvWnxC12HAew8pvkA3QCtm6dN2EHgBUrwlmskHj5EzC3/4Bo+0glhLQyqE+zX6b68IhNKaVOwKj0TPUJRmfY9OHwaclHN6PQbkgaG6VC82mvICjpvRb3vo17x/IEbMvmggsuwOLFi/HCCy9EzhUKBRx11FH405/+VNEErCI/YABQXV2NXXbZpdLLK+ZnP/sZnn32Wfz1r39NnHwBwJAhQzBixAh8+OGHsWl0/k8YhmEYpkeRtEIpJw+mLK699lo00ZU+wbZtPPPMM1i+fHlFeZc9Adu4cSOuv/56/OUvf8GqVavgKCvITz75pKKKFMN1XfzsZz/DrFmz8PLLL2PUqFFFr1mzZg0+++wzDBkypFPqxDAMwzBdAk/AugXbtiPSwr/97W8YN24cMpkMLMuSbNPKyrvcC0466SS88sorOO644zBkyJAuc4x2xhln4De/+Q3+8Ic/oHfv3oGPkLq6OlRVVaGxsRFXXHEFjjrqKAwZMgRLly7FxRdfjP79++OII47okjoGVGgdWomtVqwxdjvrY8CFpRjPqvEgKdQgXrH9jmjCHEcOJxentVXVDS15IxKlRaKmRtKNCVsZpyCrzFI2pL6g5mAiegvV4lH7p7o0UTHRDBBjl6XoVgN1hq9mFAG3PbWSRbOLxTQ1iUh7gjJUgzo/je4ellQmQRfqL86WR80/rupqGfT3pljA90hhSTpvFUUfXuwxoT7C1LZYamfQOtBBWF8f6nWrq70B6JtxeM+O4X/2bBdT8NUbhQIs24bY2+GaVrQD6cYCdQwmqcSTjPNUXbHSHpOobXU2X0nmCHHX6WzCOmr+kJRPl/n1YjZbDjnkECxevBijhWPKCil7Avbcc8/hz3/+M77xjW+0q+ByEUE5J02aJB1/8MEHcfzxx8OyLLz99tt45JFHsG7dOgwZMgT77bcfZs6c2anuMRiGYRim02EJWI+hUr9fKmVPwPr06RNx/dAVFGtwVVWV1kiuYpKsyIsN4g4Y5KUa1RczEI1QilU9SpPAqYbUSd8FOrtw+l6hUi1h304N4IMdho0bUFdbI9V3U3MY6Nc0EXgZNs0w9nBQSD4Pt8abmBfy0cU93UxJJWJt6SpYqgdwcbFwy0/7VaT10wS9apqSx3MLAAr+Z43rgVjUceo40YDQyu41QyMRte1oMOUkqVjcJgpaHP0et6mP5qX+vtDvQrpIxyV1uRLZcUozUgcdRUgmaVDoEu36qX19cB31i0IN4BVD9rbBW8FyWr1z77zjDTjfqD01dGiQT75+CEwTaClYfnUtWaDnAI7p2bAW8kCV3RpWMJuVxwcVU/fvH+5upPWlaemN0Yk8SR+bStfT+00/6wzp4zZ+lPiqajdJkv2i6MSgnQVPwLY4yr4bV199NX7+85/HGqUxDMMwDNPB0O3G7flj2s29997bIWGRypaA/eIXv8DHH3+MQYMGYeTIkUF4AQEH5GYYhmEYZkvl2GOP7ZB8yp6AHX744R1S8FcFXTBXoLSg23HQgNqqfbG2vA5a9VC1lKqtoGom8Z06ZaTXCSeqomrUKJ8i8qRphZavd3U1WguG5BfKto0k/5Weyk9kbJpBP9GNBjptVcQAnBizOw5ClaRoaDlOj0q8N1TVTI33A3TOtOLU6BqL9nBTR/GqxakcS1EZFVNrijjpalqrnCGss+ZPKlzZkJGEOpapfzkpL7WvRaf5x73//DRCP0713n70jsa1kqu54FrVWD3IU7fDgdaFnk+nA/9vgQKWPrRxeuaEzRzF0O2N6CpVY3vRmnt0pVSJVZDdSnNzM26//XbMmzdP6wGiEuFT2ROwyy+/vKR0TzzxBA499FD0aqfjOIZhGIb5ysMTsG7lxBNPxJw5c/Dd734XX//61zvEA0TFjliLceqpp2L8+PHt3qbZbSiDna72ihm8qyvDpGsr9WBPpTeOo0gI4jygA0XdEsTVh0q7aDHiHH2um5u9xbwIwZnNym4ehLd5wFvdm6bs0Z66gKASMNsO0+VrPWPk/v39ixobkcrlkBLeuR3H2+ofVD4tN8I00VqIeu9Op+WNAI7jRTSimwTMdLgStqjUgVrvi3JEfUSj1Nh7Ot8NmnguVOJlqIEX4wzOxY1RdzhQj+dKFkIiIrLSFSGqqBZLhT1xoabE+aQ9LfT+B+f8fjNoxrZs/uDGGeSLQaOJ1uGaVlE76qS9OOm0Ir0t2GEjaPBSMTb8uhjV1diU9+rbPHhHFAph5KzMuv96XvMBNDf3i4R3tMywfYWCJQ0puyYT1DGIRFWTCepLQ0BmTRJdIl8A0umwD6nvFT+Ul4ghKsaIalxP+0WVROt+93X9nmSgrysnjmLzDHUfSinvYfGeLOe3gNly+POf/4zZs2d3qAeITpuAddQ2TYZhGIb5ytMNwbiZkK222qrDXVqxPJJhGIZhejq8C7Jb+cUvfoELLrgAn376aYfl2WkSsC2ZJBF0McPUUq8tdi5JzQkgXuZfBF2A4bhL4+zAhaaFxvulapokh9vFqqsa/gvtUi/1BdPcLFnvS4brSsUVu+SI+iSfDy/J5cJ4yqZp+PXw1Da9q7NRHYlNVFKqrpZG+U7SydFjGqtl2R9WIT4vpUOTxmqx/QQqSixxqXiN/XZJRvqJvxfKCbpBxDSVTQpxRvmI+qyjx+KK1GmNA0jEg0IBSImBTweR/73KP2fbFnK5cINJpqbGG2ikPlSL7DgG0mkr+K4bQrrvmmoGQbTtdJVfmPeflSVjWYnioHt2O8sVlm5MlXpdKdeo5hu6dzB7xmcAYNy4cWhubsbo0aNRXV0d8QCxdu3asvPkCRjDMAzD9HTYCL9bOeaYY/D5559jxowZGDRoUM82wt/sUZbBhro01312nKh7gDKQpF7KklLKt1AI12S27a341WvjjPA1LgjiDEnVlR99/mncQ2GUK4qkRuuAZ/OtrtKpAT91WZFOywbx1BBbGOyLMqTm5PKyJX+hAKxaFRRqEGmUO3AQDLhwiL282kW0nlV2a9C46uoMqJ1/czO1q7fQO5sND1AJmG4pT62naafoLNipK4FCQQqmKcV8FMErRZm0PHGNMGhHFMtvnGka0v3WjhG/TNe0oudpHQBk6IaWbJVWuhAYz+tELGo/Og4MR5YqBREECjGW3bTe/jHRRlofKqFVH3UrT2KB5v37tbo5ktiwbaTofSwUQhEXLRhAqr4e1dVWIPT6b2Mv1Pf1do8PhHfbAhcqADblraComhrZ2f7q1bK02TQ1MVNjukZ2BUNiOxaiv/3FNi7ECV7bYzhfLvSdE2fMr5apewcX/ZntLPGfCk/AupUFCxZg4cKF+J//+Z8Oy7PT7saIESMiIjqGYRiGYZjNjR122AGbNm0qnrAMyp6AffbZZ1i+fHnw/bXXXsO0adNw3333SeneeecdDB8+vP01ZBiGYZivOmyE361cf/31OOecc/Dyyy9jzZo1yOVy0l8llK2CPPbYY3HKKafguOOOQ0NDAw466CDstNNOeOyxx9DQ0ICf//znFVWkx6IYcAtjX6qiCg2LrbKk0UnPgqrKlNSBdip0mt0su3VyYcjq0k5yMy1UNUCo4qCOvB0HEPP0YcNCF0ym6dVXxHMX6sc4g3vqM0xVrQhP5ABg1dQAa9fK+hZq8U0uXrcOSKcNrR8jURdqO09vcnV1qA6yHAfV1ang2nXrgEY7hfp6T/JblZU3SzgOYKYzwXcajFvqQNE4WinVeJ92hqqqo57543VM0T6CrE6ml9u2EVEb0jEau4FEtCVmPMt+3gyYZuhvSrvZgDSZGsE7DpBvFvlYUnGpau9mUr9vBb+rQ3VjWB86hKhK3LaB6uqq4JyVbpPVzOQHzlV8lBlwhQW9d4C6tzdNpNPh5o6mptAGP5sVG1qsoH61tWGfZdJeBAjAyz6XC29zNhu95bQtqqpd3VSguM2L5BGnxlNfOXGvI/V6neG8WlYScWl1Wm36v20b2raYJEC7rpxAdd1VkxpWQXYrU6ZMAQAccMAB0nHXdWEYBtra2nSXJVL2BOydd97B17/+dQDAb3/7W+y8887429/+hhdffBGnnXbaljcBYxiGYZjuhidg3cq8efM6PM+yJ2Ctra3IZLxV/Ny5c3HooYcC8PSjK1eu7NjadSdE9EINuA0AFlnW2bZsgBzxSA/ED/qCIxsX66QhAJBOe+tzkXb1amSESKm6GmhshFvT26+fGzXi1hjeB2UmYJhm0B4RL1HXJMfxqkEN6fv2BRoavO99attCo2zfgDxvhpKErOK9QfWaTp3Iqy4ihF1zIZtCr6FD5eWpECMoEiQb0S4R5WezcnLvfzuQaDQ2evfcy9aS3ADU1/sexoVEsrEx9NzuOLBsGy6RgHnG64Q4K2cqgmhu9j7TXQxNTRFJVqRhgHeTCgWtR3hxneXna4nOCHyLhEkNpX5aI2VaP7oxwDSl9CkAKVFnUZ5OHCGeAb/uli8Ro11Ei6T3UEi+dI8B3VAh8qES2RRaZXHJuiZVTBJawXsiMq9PRIVoX9OMly2Tdq1YpolefgV7CfEwgFakUCh4wl1Rv1WrwnrX1ISS3OZmb8iLdoqNKoo3ieCY+spR+5A2m0rZ1eAOpilvEgCUqAQxCGmrXpsQTV+qdiFOok7ziJOWSRseTFOKDBFsSCm0eh/yheK7HJgthokTJ3Z4nmVPh3faaSfcc889ePXVVzFnzpxALLdixQr069evwyvIMAzDMF952AZsi6Psu3HDDTfg3nvvxaRJk3DMMccEWzKfffbZQDXJMAzDMEwHwhOwLY6yVZCTJk3C6tWrkcvl0KdPn+D4KaecgmqdamNzhVqpElG043izVmGg6RmO6r3UG7Yd60XZcQDLNmWDZvpwaKIXC1VKqqYGbrYqSJYi10WM8NVCiz2AMYbVQiWhapbUqgJC7RCqh9pgwaIZxVRN5EXdYxUL4iyrQ8IEbWYKFvGVRa2RnaaoATf9TMuxbQB5uc6qmoQaPTc3hxqpbHXvUG0BF22OERiKh9eG4yioL41sLSqh6pGKGdeLNKpeJ+7+q1btaiNVa+okaDlx+arlinbEbT7wreGF53ZhPE83gIjPqoF5klpLGNmrYyGoQrViTE914gKyY6PNDlXMVtYN6gv4Hu5Fxk1NskG+ko84Z/p1pJtYVKf6qmG7UMvTWOBq+9XhpN7auPwp9Lhkrm6a5HYbkevps07rkPSsi+tKmT+ohvZqmfR4c7P8eHkWElZQBynQuS1eJd6YCDahxJl4MEwRKpoOu66LRYsW4d5778WGDRsAAOl0esuagDEMwzBMT0EE427PHwfj7lGUPXX/9NNPMWXKFCxbtgwtLS046KCD0Lt3b9x4441obm7GPffc0xn1ZBiGYZivLh2hQmQVZI+i7AnYWWedhXHjxuGtt96SjO6POOIInHTSSR1aue6kxUmhxUnBKcjqNqHmEKqvqLbFIGNcDtFDUVWXpmnIu6+yWclXUrPkG6gKWbE5LQ/U1PRCgai2MnHbgPyK6fw40eOifqpqTg3RQv1+SaJ9x4FpWkEfrV4NDOpPtlHZNvKN4bVAKOpX/X4laa/osXQagBMOZ8cBLCGR9W+e2MkowgcJVaEaLNw0gZTthhk1N3u72gDYdq+gfs3NsmunmhrZvdO6dWFbqquNQMMmqkR9Tnk798Ldleks2UEmdj4C4U5B6uuLojphoh0odFJ0659uG5h/bZsZ+jjLN4f1M034eviwGHU3nZStDVQPrIutoqqVC561Jnn8iTS06vS86gKOaohUdZQ4V10t+/oS2uqg3SRP73MmEuKmpsYLG2Q6QKGJnjMk126ZakVtrKog/Uq05I2gr4W6kWonaZ8VCt44E2kbG4EVK7zv9fXebmRxbTYbtlPdoFkohL75xHfaTvp8qFpwA24Y/sk/qL43KGrf0jqpwzEpkhdNo16rqlDp+5umFc+vGFe1taE/NtuOqiCpOjid9vw+thT0/sKYLYvdd99dG//RMAxks1lsu+22OP7447HffvuVnGfZ0+H58+fj0ksvRVqxOxkxYgQ+//zzcrNjGIZhGKYYbITfrUyZMgWffPIJevXqhf322w+TJk1CTU0NPv74Y+y5555YuXIlDjzwQPzhD38oOc+yJWCO42g9vi5fvhy9e/cuN7seS8bZhIyTCpeXYtlTk0arXYWU6fVBG6zYlZcFv59IAiGFcRw/oLW0VHRCY9amQiChSpkmzOpMYFzbL7sxWJo1o5+0wgvsQVVLU3FM+FOiUH9nfpmWbUubBAoFz7O72IxgOa1wa1LBOdruNlgoFIBBfT1/OW1mCm1+yyzThGunpNU3fS/U10eNcenqVzUeFlJBxwF6IZQUpdLpoEzH9Px1OX439O3rNXlQ7aawf8RyvOAvfwukQcTPVpXdHI6FbBatBUNqu/qZGhjrbLepBI+eN5w2UieyZKeiV12hqpiSnhPX6pw9ifRELGE1N3s+7+Bv9MiTsUorm8t5Pe0fS1EpW3CjQtGVRQdMPh8E0e6dzXpLQt9zPfpmIyIRl3gnp4JB05SDUveuIZth8i2AaWJTIXz2xHVV2ATJmVs+77Uz6CNFNCqca4mMxDXiu+J8q6pxdfh9HWlIY2NYibVrpcGQ6ds3KL+qpgZozntSbQAoAG3V4Xu2UPAkzOKz44Rdv3Zt6NdO9Be9jgpSa2rCTSS0SUBUEiQkhoG/LF9KTEmRcZRqatKK4XpVK5tHSB+0FjyNAPXJBRDpPd3slBTYXUDypY+IuM1UGk73RKjvNtsGrEKLf7H3/GQKG9ElsAqyW1m9ejXOOeccXHbZZdLxa665Bp9++ilefPFFXH755bj66qtx2GGHlZRn2XfjoIMOwq233hp8NwwDjY2NuPzyy/Gtb32r3OwYhmEYhmF6NL/97W9xzDHHRI5///vfx29/+1sAwDHHHIMPPvig5DzLloDdcsst2G+//TBmzBg0Nzfj2GOPxYcffoj+/fvjiSeeKDc7hmEYhmGKwRKwbiWbzWLBggXYdtttpeMLFixA1hc7O44TRAoqhbInYEOHDsXixYvxxBNP4I033oDjOPjJT36CH/zgB6iqqiqeweZCNhv+KXJoxwHgBwzON0dVZqHxrxcUOAguDNl3lm2HxraGasksMvP/z+dDMTn6hrdN2FVTLWPkQY3z7SR0MarPKfiqVUVU7zihT5902tugELZF7odCITQ6pr6JqqurUGiSVaZUhaoaxOuqD4ThQIRPHtMEEOOvSDSRGhV7/r1IAwpKY6j1r2qh759ryRuSTyZq9C2+0whMVEujavFUbaBtWzDT3vNkpcOg3WqQZ8cBrLSpVbeodh9CXWqmQzUeVd94eZG26qKVa/IN1EriWtJ/gco6zvBf1cNS/aBqZW+a0sYRL3h3WCVp3BQKUhgomKbeXVNzTBTqOGdSzc3Rc6q+jvaTquuieenK05WvDBZ1HNFq0GKqq2V3Y1RTKMZm//7e95oaOQg4vS3i+VQ13Rbtz7g+EQ+4ch+ltH7bXNOKGMuL92MhL3eRvMHBkLrIy94L7E6LEfVWNODSu4H2nxjWiXOWrrSr4glYt/Kzn/0Mp512GhYtWoQ999wThmHgtddew69//WtcfPHFAIAXXngBu+++e8l5VuRBrqqqCieeeCJOPPHESi5nGIZhGKYceALWrVx66aUYNWoU7rjjDjz66KMAgK997Wu4//77ceyxxwIATjvtNPzv//5vyXkaruvGR0uN4dFHH8W9996LTz75BAsXLsSIESNwyy23YPTo0SUbn/VUcrkc6urqsH75ctTW1obLJbrspJGnVbfU6bS8+lOtrwMxFuRzjuNZoAvI6rnN9ALyUoPzgQO9z0a+BXAcbEJVULyFNtnQmnqEB5FKFFqkurt2Kqh6YFhKryWrV2FoT4uIW7Q7Tlh3YedNvcer0iCBKvmqSivtArDR8dot8lRvk7g+88l7YSE1Nd5Bsd+ciA7a+g5APu9tOAjKocGuC4XgOte0sGJFeEpkRz1EqIIPVUqoSs8AoE9Nq3ySLOFbzCppxU6Hm4Aa/lOBQybthu1VKyMypcd00h5RWbE5heajSt5oJWgladvEwBDX0QrTdGLAi06m6cR3VXSq1kH340OfVZGPkHoDsl8RkUc5fUFF09QPhK4OAtFGwOsfdcMFbafjAEOHBuc22b2DItNp2dXJ0qWhi4rD/l8bsHQpWrfeJqjmJ5+EryB1g0Mz2XtSXx81TBfdl077UlX6nhNiJtEeKg2lY4Wm85/RFifcOEEDguuEhhQ6lKkbEtF1NOiEaeolYL2ybbJfHBHMnj6XTU3IbdiAulGjsH79eu83o4MJfpM+/BC17dzoltuwAXXbbddpdf2q4rqu1kVFMcqeDt99992YPn06DjnkEHz55ZfBjsg+ffpIxvkMwzAMw3QQVPXfnj+mIq677jrt8ba2tkACVi5l343bb78d999/Py655BLYRGwxbtw4vP322xVVgmEYhmGYBHgC1q3ceuutuO+++6RjbW1t+P73v4/FixdXlGfZNmBLlizRGpllMhls3NhF/lC6AiHjFmJyqoqrqQnVeFRNk83q1SCqCkHkT78rkXPbHCMw3nd8TaUwmDUKrUCT7PZbeq50Btk+LoxAzG6l02gthIb1+cZQBJ+prw7qIbK07dDnGTX4VaMEqOJ+tUqqX6G494LO+F66iGQqVC06bYZp+tEB6IEY/YUwlnf8dqfTlucDi6qhAv2fJdVdVYuI/ESR1LBZNQam52DbcO1U6AnfcQL/V805Wd0r2orwUqlZ8gYR37cSLVRnXF8MtaGiIXGG62pHqHpYeqOTylfvm1oW7VwaokB81j2HqgpSzVPo8cRxXR3i/KpR1auqblP7jx6jdZF21yAcSPR6orKs6m+jqjbUgbvVYTSDVavIc+c4wKpVsEdvE1SBqvAbG+Xq0OdJNFOkpb7GvCoaSKl6eNU+QRAXMTyd9t5VTXIXqc+PyFKn9dbZ/Yt04tmybQOG0+ZtZPG/i+tc04JBHzaexHylmT17Ng488EDU19fj6KOPRmtrK6ZOnYr3338f8+bNqyjPsidgo0aNwuLFizFixAjp+HPPPYcxY8ZUVAmGYRiGYRIQwbjbmwdTEWPHjsWsWbNw2GGHIZPJ4IEHHsDHH3+MefPmYdCgQRXlWfYE7LzzzsMZZ5yB5uZmuK6L1157DU888QSuu+46/PrXv66oEj2S6mrvr6HBW6EJQ1vbBpYvD7fVi73e4vPAgeGKrrHRWzrSvd/qypeKgpYuDc5b224brJ6b0/2Qzfqe8wG0IgWkZXcE0mNJV8jKat1Y/hkyYnWaz4crVcA7Luq+1hMnWX4dLNMEGhsDz+hVwpAd8EVdJqpqFOmf6JfmZvQqEDGN4wDDhgV1CPpCwfVj7AWSoIIiXTBN9HI8qWuvvlnZYLZWsdgdPDjoi9bqOlkYUt0r7IOmjchkqWGw7GOjpbpP0Kym1aF7DcC79dQW3HE8j+zBl0IBcIRBrw3UhNIgl9ShzXf3IaRwmbQZ9EGdsw7I5SXJSoYaipMgf1W2jbbq3kHXpsw2rz1UKkOlt6qxvCpGoJ9FeiCUwFAracUFRESCI6DjXxipCxcW6dCtjciGSkLiBL0inU7gpX4X6eh5VUBHr1ElLWreQQxRUWk1AwHtZ8WLvGTALq6hmxXUHS/LloXnZs8O+3fffWHYdvDMbr31iMAIX0gJRTXyeU/CTh7ZiJSaCpALBTktNcK3baC2Nnw/pWuJX6TaOimWKg1CkU73CrurUe4+NdajKjitrpa7l16rCtm8skic3ebQLQuN0OHVzwpifTrNgGlawbvWtgGrBlGJaGfREdI3lt61i0mTJuHRRx/FUUcdhR133BGvvPIK+gvVVAWUPQE74YQTUCgUcP7556OpqQnHHnssttpqK/zqV7/C97///YorwjAMwzAM01M48sgjtccHDBiA+vp6nHLKKcGxZ555puz8y5qAFQoFPP744/jOd76Dk08+GatXr4bjOBgotogzDMMwDNPxsASsy6mrq9Menzx5cofkX9YEzLZt/O///i/ee+89AGiX6K3H09wcOlmiKj1VD0F9dzU2yjJs4eeLeggnQWqlc0L9E4mqTdQp/rmUbUuBaIWhvMjWhREYWrt+IGqRT6/a2rCOQnegM0SW3UqHOiCqa1AtYqlzKmqlK66n7RS6uyQfUkHb/Q0P5FwbLKxeDaTTnnqj0ARks1VozntqK6c51Iz1qna9uvg6E6FCEVXI5cLPQ4f2Qj4fatP6VJO2Q1ZtiZjTtH9V1UjEx5PaH5qvquZKGhdi0wdVOao7DsS5piYvqLrIJ6cx6BaIvo0zRqdG7ep53bm4cAZquarKk2Blww0uln/eUlWb9FpSd0vVOcU4jgo2WJBzKZIvVdFLKnBaRkEZ22q5OuiOEep0S3wXCFf2Qt+nK4OqLKlOfO1aKcp7zdbA3nv7595/HygUAs1mNitfqlaDBuoWQb4FqnqQNltUlz7e1LhfDTKhIrpYG8WAXEddM6r7K+iw7lXtq4hFYx0HvatJ5rQvAfSuqZF3FdGx0uw3Trmm0+AJWJfz4IMPdmr+Zd+N8ePH48033+yMujAMwzAMw3wlKNsG7PTTT8c555yD5cuXY+zYsejVq5d0ftddd+2wynUrIg5kba28PEynvf3cYulWUxMa6Dc1eZascX4JhPEyEErV6LKNWBm3mFWwfUGVLRZYYglKtp0LSZgw0AcgrZAN20YGXp7p6gywjqyg1671yhcSMdVbuaiXoLZW7zfBX8qKugSLS2JELXI2TXn1jLS8uqWr6d5wvW3iwgi/OVxKW6aDmpoUGhr8spyogHHpUu9zdbWBoUOrYJpefXLLvVu1/fZ+FcgqvLbWM1Z/+11PbpTdNoMqZ2NQblOTLIyiBr6iS6rMliC/FmSC+pgmkGvyvufzoWNtAOjT9EVwjZVOI0XFYFT8IKTO1JBeZ7QtoJIiX1orJKa0r3PrRPJMcBnNrrY+vG+W6UoSzxazKrI4p/fBNGVpihRiUhGkStXXuA+IQ7XzV9PHXasb5qq3CFXQppZJ6xiMVZ/WghGpn1qeZbrBswMoeYibtHp1eEyVgC1fHn6mEvn//Mcb3P77wsjn0ct/V7V88wAAQJYMo759w/6gzv3Ffgtxbu1auf5CEizyoXuLdAJa2jQqOFddS8TtX6Dliv+pEFHs5dBJwBobDf8d5HmUN21lY0W1/HtmBv94P5YOgEy6Ta5YnJS7o2EJWJezxx574C9/+Qv69OlTUvpvfvObmDlzJrbaaquS0pc9AZs6dSoA4MwzzwyOGYYRuOIXnvEZhmEYhukgeALW5SxevBhvvfUW+vbtW3L6lpaW4gl9KnLEyjAMwzBMF8ITsG7hgAMOQKkhs8uNB1n23RgxYkTiX0/grrvuwqhRo5DNZjF27Fi8+uqr5Wci1IdChk7l5cJ5jWp8bBN5NjWyF3oq+qeDnBfFiyo0NcHLy9eXqQbf0gWmGaYV9bBtT6Svc5ZDr407JwoV7aZ9AE8VSpOq3SA0usKOVZeN+BNtC9Qyat38uqTTobs2cY0op7o6/Cy0vSJNU1Pooi2f94zwxV9jo7dxQXSf45B+T6elYUDvgVCBptPQ9yc8VZOoUyRoAm0M3ZihdqhAfCd1C/7oOCPHWwsG2hxD2wZ1GOj+Is+G/yfusWW6wR+tTsqWv4v7U13tacdK/RPX6P5onrR/aR3on/o40rFKx676p3vEpVuj6RtV/ag+H4CndhR/8R1fhMSbBs+noX+zCwUvOLsuQIR4hYh+l0wGED6/6jtKp84FZNt1zT6I2H4WY0W9l7rhrhtf6rOW9IjoXtG6MZJOQ//QbMGU+3v6yiuvYOzYschmsxg9ejTuueeeSJqnn34aY8aMQSaTwZgxYzBr1qyyy3VdF1dccQWGDh2KqqoqTJo0Cf/+97/b11iFJUuW4JNPPsGSJUtK+vvkk0/KmgeVLQF79tlntccNw0A2m8W2226LUaNGlZtthzFz5kxMmzYNd911F77xjW/g3nvvxSGHHIJ3330XW2+9dbfVi2EYhmEqphskYOX+ni5ZsgTf+ta3cPLJJ+Oxxx7D3/72N5x++ukYMGAAjjrqKADAwoULMXXqVFx99dU44ogjMGvWLBx99NGYP38+xo8fX3K5N954I375y1/ioYcewvbbb49rrrkGBx10ED744AP07t27ff3k09lCJcMtVbbmY5pmYPMlZUTswL75zW/i97//fcmGax3J+PHjsccee+Duu+8Oju244444/PDDY6OZU3K5HOrq6rB+1SrU1taGW7lXrfISZLOedbdYFo4e7aUBvGXhyJFRq2I1IKBANcIn7gY2VfeTHOrbNtA77euWfWmGuAwALLTp8xXfAbQ6FlJN68Nzq1aFS10B3cOt5kOhS+d0Gm46Q70fRIyiNQKsoGrSTn9ieCvsiQ2nLawTsY5utasC2+R166IeP8S5dDq0XQe8442NwM47e9/Xrg3Tbr21V+5//uN9HzYM6JVuDcpducqKGOGLtgl3eL3tTUFZLb7hv2l6UphNzUbQlGw2tJ/vY66XxwJ1EV5dTTz818odZZrRbfB0/JGNE62OJQ1HyQg/J9+niBF+bbhXw0KbJPJoTffyYkwS43Fh6C8M01vyoWheNWyPNcIn58r93VHTq8bxQrqqBmBQy1PrKo7F1SkYqz5tvhMQdfzTx0qtm5RYVLAUI3zHCQcuEIqD6PPtF7zxm5PRqzo6HoXx/LJlYTE1NeEzDYSeUKgRvHjuhABXjBU61gB5DkGlaCKNtEFD0/cU+rjQPUHCJQUNQKKONxraV90ERNEJnY18i3RBLpdD3dChWL9+vfeb0cEEv0nr1rU7/1wuh7r6+pLrWu7v6QUXXIBnn302cFUFAKeddhreeustLFy4EIBnR57L5fDcc88FaaZMmYI+ffrgiSeeKKlc13UxdOhQTJs2DRdccAEAoKWlBYMGDcINN9yAU089tcye6R7KloDNmTMHl1xyCa699lp8/etfBwC89tpruPTSS3HZZZehrq4Op556Ks4991w88MADHV7hJPL5PBYtWoQLL7xQOn7wwQdjwYIF2mtaWloko7kcDfkBhE+k+JETDqRoDA+6BUiV6dNQRarKkr4ZxNYdf/tRNusH3QYApLxkYiJVMIIsxWWmHb7oRRBvwPcJRoqTwvU0NclvT6oXU7ct0V9Jte7Kr4s67wTkmMKq3yAaAYm+dMXuKYu+BYnTrVQWGDLY6/uaGgO5XPjiz2bDebH4HaIu1mg0F+r/qKbGe8HadrhbMZ9PhRGa1sp+jNRdkPm83HfrVofnTNOQfhTEvZMOwA8CTH4Z3JrewQ/7+kbLb5MX6iVtA1ZWUYPTviI+4+AINaHXERk7/PWz+1Zpf2yC3bVNTUCjsl3NvzbV1waaCtLsTfLX5Thh+CtxgwtkFuN/TtFrxLlAxU4qRvOJQ/HZJV0LBM+Ebaf870oIIf9yS1OG8EtHg6WH5cq/4GbaUovWlyfVvRD7bPmVji0vko9thwNc6HEB9LJbgIKJQiEVFEOLra4O5/oi0hUd90D42qOTmIhKVqmm6hOMpqWuBcVaVFVT0nJoN6ivI3V3qm5si8+6/2laVW1q0QSbqQpS/Z3LZDLIZDLSsUp+TxcuXIiDDz5YOjZ58mQ88MADaG1tRSqVwsKFC3H22WdH0tx6660ll7tkyRI0NDRIZWUyGUycOBELFizYbCZgZcszzzrrLPzyl7/EAQccgN69e6N379444IADcPPNN+O8887DN77xDdx6662YM2dOZ9Q3kdWrV6OtrS0SGHPQoEFoEP4KFK677jrU1dUFf8OHD++KqjIMwzBMybiSpWDlfwAwfPhw6XdPJ82q5Pe0oaFBm75QKGC1L8WNSyPyLKVc8X85deuJlC0B+/jjj7Wiy9raWnzyyScAgO222y7o7O5A3YkgVKM6LrroIkyfPj34nsvlvEmYWGIJv17Uyzs1lKaBkE3T0+WIpVn//mgtGKFnbdsOnVOJ5abQo9u2J/3y+82orw/ERtXVdV6WTV4dUs1fok6IesQSrdGTDFnKcs8gdbdUhzkicLivomgzU1Iz8/mwmcJgnqpF6YqzqSFqhKtTQYpVLRW00XwpQmCYzfoSB7IJQYgANzSGKhR6m2hQAiGEFGUIrZxYwdMdxkuXAradCVSWhQLQD2sCL/Lp9FbBddXVMTGSiVRiUN5/Dmr6ehVYuzxsXHYoMn5nvflR7zDIdxOQzWZgmt6KdOhQQKy76+uj/pJ6pW1ZxED1iOvWwRCSqnTa62wqsfXPVdV7zp5c0yvHgPD15ejzpbpXVQdE9VOqhECMT93gEHkm6R3JMeo7q1KEJErKy7RiUsf46KI6dCUCAM0/lGgjuW06cZNQI+pES+Kdotbl+OPlwS12KQDA/PlANovejj/o0jZa072CYqlUWnwv5pdLQIcGNdIX5+IkVaoqkwYEV9W+qmUH9TUm3gWqipJer/MRprZLldBJDaSoUR86iY4QtonrP/vsM+l3XJV+Ucr5PY1Lrx4vJc+OStOTKXsCNnbsWJx33nl45JFHMGDAAADAF198gfPPPx977rknAODDDz/EsGHDOramJdC/f39YlhWZAa9atSoyUxboRK8MwzAMs6VSW1tb1Aaskt/TwYMHa9Pbto1+/folphF5llLu4MGDAXiSsCFDhpRUt44in89j1apVcJTZcCWb/MpWQT7wwANYsmQJhg0bhm233Rbbbbcdhg0bhqVLl+LXv/41AKCxsRGXXXZZ2ZVpL+l0GmPHjo2oP+fMmYO9gyBoDMMwDLN5ofMyUslfqVTyezphwoRI+hdffBHjxo1DKpVKTCPyLKXcUaNGYfDgwVKafD6PV155pdN+6z/88EPss88+qKqqwogRIzBq1CiMGjUKI0eOrNjzQ9kSsK997Wt477338MILL+A///kPXNfFDjvsgIMOOgimL6s9/PDDK6pMRzB9+nQcd9xxGDduHCZMmID77rsPy5Ytw2mnnVZeRqqjLSrvVkdxnLWn48C2LSAfM+rV/MX2IiVf2/Z3nlFZPf2sWonqtpjp6uvrGVzfENkhKgbRfCFtF9UTl9KNd44jh+hRxfqqhF41gqXGt4m21Zp20XJsW45ZTJMXCmE9hCbTat4IABhQnw50HTXDeqNQAHrXeGLz9TkDyDVJ/tdEmdT/mNTuZrJ9zKc13QtNTUCd2NqZz2ODWRfcOrGLU+Sj9r1IJ9Qy8m7RFLJZ7x5Sw341ZFAwVqgKkvhxM0iHBd/j3tilvslFHnE3WB0MRVSMCfbuFSEM6tXdn8XSA74Bvwnkm+n5+GttO6XVMgb432kAcNe0PDWmqvZSrdPjKiAeMPE5Lli440S0yrqsADk7tUgxpNRrNZuyI69Wmrdte88XVRnSmPT0elFX2jS1LWraJAN9+jnwy0YPqu/bLjLC70gVZKkU+z296KKL8Pnnn+ORRx4B4O14vOOOOzB9+nScfPLJWLhwIR544IFgdyPg2ZHvu+++uOGGG3DYYYfhD3/4A+bOnYv58+eXXK5hGJg2bRpmzJiB7bbbDttttx1mzJiB6upqHHvsse3rpBiOP/542LaNP/3pTxgyZEiHqDrLnoABXuOnTJmCSZMmIZPJ9Cid69SpU7FmzRpcddVVWLlyJXbeeWfMnj27xziJZRiGYZjNgWK/pytXrsSyZcuC9KNGjcLs2bNx9tln484778TQoUNx2223BT7AAGDvvffGk08+GXhO2GabbTBz5szAB1gp5QLA+eefj02bNuH000/Hl19+ifHjx+PFF1/sMB9gKosXL8aiRYuwww47dFieZfsBcxwH1157Le655x7897//xX/+8x+MHj0al112GUaOHImf/OQnHVa57iDic0U4wBE+DYRxvm/MuglVkuF6Bi3BMmpjPiXZI9s2kMqt8b6IpYiQkqTTngG+EOEMGxYs6VrTvZCyXUmSIfwqZdKuJMkICqRLOWHJ6tddSLzEqpJKWgQiS+rPh3rEXr1a9vFDXTkIA3fhF6vYopwayFNpj1gBBz7ONJK+FicVXNcr3YqN+VTQZGpQTLvaclpl9wwIffu0mhkUCkAVPF9erXaV5zvNb8Rbn/QO7JprauT69u8vb1xobATqqj3D6y8bU8jlgBHOkrD+NTVBw79w+gX1q8q6YWcAeH1xKihj9GhPWiaM//P5MF48bavov/p60n9Ll3qd7Vn1e51E3as4TnjDRR3puNKJLGhacaNVNwr0IVArST/H+ZwTqKJV1aJbFWvQ+ujyAmRnUbo6Sb5ClHQiXyJRbDNTUrLA8F7VAdEyguj1RMwpPtfXe5+FH0JANqx3HGDFivAzFQMtXeqlpbYpfr4bhu2IfB7oV9MStGtTIRxnq1ZFJbIC1e0c7QJxS9R3Cu0q2gVUoET3NglUo3naPPGZGu+L7yk79D2XTiv+2dT3CP2f+qdR06TT2s0UuVwOdX37drofsIaG9uefy+UweHBdp9V1S2bPPffELbfcgm9+85sdlmfZNmDXXHMNHnroIdx4441Ik1G/yy67BDZgDMMwDMN0HF1tA8bI3HDDDTj//PPx8ssvY82aNcjlctJfJZStgnzkkUdw33334YADDpDsqnbddVe8//77FVWCYRiGYZh4usMGjAk58MADAXjBuSnC9UVbW5vuskTKnoB9/vnn2HbbbSPHHcdBa2ur5orNFOHoSvwvZrhCxu7Lv6tqiLV0OgsQEbkQxUuaFdWKmHqlb2rSWgOrKjwRUNnLwoBtW6GncXjhT2g26ZrQ2zUAFPwiRbQb6qRcdXSv+ugRovyaGos6pY+kte3Qk7bhtMm6CNMEGkPL5d5CzQLAzYY+mIzmTbL+Q920YNvI+IVk0iawai16+Y3pVVsTqFoNpw0thbC+6XQKltMGgzre8lVRqZoapIDgfqdM01Px+Ddx13F7huqMQgFuOnRhYqz+AlVAoFKqq64Glnt+wPrU1KBPTQ3wvq8uqqmRnCtla4kapbkZG52qwNu9uoHANEN1quhO0RSqChbNMn2/VkNGjwbyeaxv9ups1gJZX02csl0gn0erGbYnZbaF45OGRoqzWBffVUNvUXHdZ6qTEpbTSYb/1L9YkspS5y0+yUJeQPXjoq60Pjq1J/keRA4QY1WnwlVRY/I0Nsp9Io7ROlGayS4A2vfNzZ6tgBgsIkYPyBgi5gl2OiUVq26UUaurNkE0W+kSqRvU6BhUWy1MFwSG0wY0egM7479UxLuMXmfbvikGdY7X7CAjMtNZ79MK0v+TPsOPoKCOb51OltnimDdvXofnWfYEbKeddsKrr74aMWr/3e9+h913373DKsYwDMMwjAdLwLqXiRMndnieZU/ALr/8chx33HH4/PPP4TgOnnnmGXzwwQd45JFH8Kc//anDK9htZLPhn2mGkaGFuIF6ZI+J4KqLZ9a3v+e8VrgZCARrWSBd2y/IwrYRuAWwVq2UxFPm1iMkG+J8HnCysvduWiVqEEuNXmtrvWszZms0se9zos0mEh7iBbwuvQmgC3EiKXDtlLd6FQ+740RiTLrZKqm+ju/p3XLa5FUpfeuoUQdEGvG/iFoAL15mc2DbbEl94gU3t1Bd7e2WyQi320AY7NF39AfTRMvgEeGLi0iUHMdCmgo0awd4Uk//HjsO0FwzKOjOQgHIb/0NAH5oxVWh/fQee4QL637pAnqZGwFHSCsywW1Zt07e5k8X/eI7Hao0zRerDdh2JhCmUMlZOm0gTaR5jgOkso5eeiR2XdDCHSeU0hQKQUxTrRE+Nf6lA1IE7FQlYrR8Ku1RXQJQ43Sdqwud0bGQkuh8IdD6C2j5auxKncQrzoBflVTRcmjwbHEzqZiaiokAOdI8lZSNGye9ZNy+/UIpsC+dX9NY5zW/We4+KvgT0SqS7NRVaFN1t1E0hRrsNzdDGpvptBW65DBNuHZKKpeOedM0YPobIGB6LlhaC35AeDsD0x/bjkPim9JMVIljqY0D9BLfToAnYN3PunXr8MADD+C9996DYRgYM2YMTjzxRNTV1VWUX9lG+N/5zncwc+ZMzJ49G4Zh4Oc//znee+89/PGPf8RBBx1UUSUYhmEYhmF6Kv/85z+xzTbb4JZbbsHatWuxevVq/PKXv8Q222yDN954o6I8K/IDNnnyZEyePLmiAhmGYRiGKQ/Xbb8EqzynUwzl7LPPxqGHHor7778fti8pLRQKOOmkkzBt2jT89a9/LTvPiiZgXwmoCkG1TqdWqNSJFVWlwPeUDb0Wp5hDZccR4ZfJBX45VOKtBsnVifqFyN0xjUg56TSAZsUFPhDoHKysEgGAGlrTjLLZoGKGqiJRcRwYdOSZJixR3wLpa2ppS9JK9aENJ99TpolUdZi2zTEiL68UfNVrvhDV5ZH/7WyomtOpUATCcFmoai046OV3Ra9qEy4MqfsaG0Ot2FaD27Ap79/x1eu8jHzVktBCAaHrMDrU6PdCIdRgqZo/1TcTVSXR4MTi2lakYBOj55SorNi5IdRxQm1InTbRexijoi8KvafifqvW3Wp68b9OBaneY5pvMTWjrkzR8fT5L6V+gNwn6rOkG9e6h1yH2naiFjXgQnjy1z1WcdpStTm6punco4m0tq0P5C0266jVjWuXkW+B5fe1ZQLwzS5Mk0R9CCrhSBEFRMaW7n5rytI2rJthFWT38s9//lOafAGAbds4//zzMW7cuIryLGkC1qdPn5K93a8VDksZhmEYhmG2AGpra7Fs2bKIJ/zPPvusYu/7JU3Abr311uDzmjVrcM0112Dy5MmYMGECAGDhwoV44YUXuiUAd6ehLs90ogRA9pRt22iDFRg2iyziVo6OE0pAxMI18LJcUFb/RAJG3UF8mbMiNu60eqaJYAVspzNSjEHJo7OoBJUSFAqhlbbYi16KUbEQrRBpgPAQ7jjwLA9JP6QQ+k9x7VQYk1CVDJBlugsDMC3Z0zitg1K+lc2GEkXRl6YdlkmldsqSnArbDLiBB31VKGOZ/jlqgE7yNEwTlu9pviptIp+2AvvpDU1WsCFj4ODhcJwwm+Zm2ZOA6jE8zlMHIO8RaWyUoxtQ1LYAnjd0Ki1D0O4M0ulByBKbdlWSYRVawgo1NckG+nScSVKLgnzPVe/5xP0LHEfelKFKn2hlhAhR1/CaGr04R5WE6tLrpCNJIoY4UQ8VcarpxGc1QkFcep27D9HHa9ei0fQ2+vSZcR6wejWydzwYZCk2hABhFAtxjkqx1H1H9P0jxmLkHYSwKup+CipApGFLCwXA8d2iiGGhxqEMMWDa4TvGtMmmIZ3kMcnYvpjUS5WKdpGUjCVg3cvUqVPxk5/8BDfffDP23ntvGIaB+fPn47zzzsMxxxxTUZ4lTcB+/OMfB5+POuooXHXVVfjpT38aHDvzzDNxxx13YO7cuTj77LMrqgjDMAzDMHp4Ata93HzzzTAMAz/60Y9Q8CfyqVQK//u//4vrr7++ojzLnrq/8MILmDJlSuT45MmTMXfu3IoqwTAMwzAM01NJp9P41a9+hS+//BKLFy/Gm2++ibVr1+KWW25BJpMpnoGGso3w+/Xrh1mzZuG8886Tjv/+979Hv379Yq76iuA4sGwzMHRVHXurNuXUYBsiyKvOGDdQmRWfLwcGqYEKBaERrmkCSAVS+Ezar5TQBaiVpeJ1UQf1vLiOntO4yg6MZ21NG5pCo2eDtlH1r0PyNKi6STkXfKfqVLXjyc0wqMpJHFdUFNTDuSjbNWXfa4B/P1VDbVEm/R/yVxLfXepKkUb2j+RHCSAZhAbHhnSdaL5omhpgXa0mNdSvro53Ik+10WLY0OFq0XbT/hUO0eI6gVZMp/ZXG0XzUPs4zrCdfo8bP7rrdA1NoiPVU6p6tRJRRj6PbL3/uVAABg6UAlrH+e4S3+ln9ZERiOqp+xJ0lhziO1UrqqpLWod0Wh4GcbehB9nNdygsAesZVFdXY5dddumQvMqegF155ZX4yU9+gpdffjmwAfv73/+O559/noNxMwzDMEwnwBOwrufII4/EQw89hNraWhx55JGJaZ955pmy8y97Anb88cdjxx13xG233YZnnnkGrutizJgx+Nvf/obx48eXXYEei7ovmxJnhGnbQFMTqqt7AQCMxg3e8XTv4LSQeAlDbqz2YgVapil56m41MzB99wdWc7O0RDXyLYF0qLa2d3Slqq7aqYU+9QqQbwxFHTQ9baNqOCzOU2Nf1epWjVVH8hHtpqtXQ22AKJN6+KYXwYuHCQAF+HEN0xmkqomTG9X9AY05mGQ8rdmPL0m1SB94rjSsoJhUwXPd0UoiGqiO0evEhgPHQW1tKEFbtUoOuyiczQOeI3NR/NKl3u3K+pEECgWvaU2rw/Ko1IpKqsR+EdV7hLhO9dRAhVXUS7rYIKCTZgDi9gsXARaAFBzTq2+6PhSYAvLQswot0ftGLb9VY2pqhE9RJbK1taHRvjhPK02lpfSYaIwqhvFxYUjRIaSG6erUEaKZGElqgK78oUODa5rWeh8LV92CpUuBXd5f6B3I5dB7552DftjYHEbbUB/v+vro/hwqVaVjTO2SdDrsQtX1CX30xdikjyW9TUlSL9HV4h1hUkm1RmoNyFE+yiLpd6KD4QlY11NXVxd4gKitrS3ZG0SpVOQHbPz48Xj88cc7tCIMwzAMwzA9hQcffDD4/NBDD3V4/iVN3XNif3yJbNiwoaLKMAzDMAwThZogtuePqYz9998f64RvIEIul8P+++9fUZ4lO2JduXIlBlLnMAlstdVWWLx4MUaPHl1RpXo8SeoE0wxVUr7fIpu6H/JPGqbpGXFTnU91teTtXhRRpaoDiRokn4/6GjNNi9jgW0jZodorZQJ1ItbvisZ442ThF4vqB6jOSvdZp55U8jX8zxbtPz/wdwShP6N6CR/L9PILjPodR/boT9uiqphi6habNk4N63j+xQLDd19XQ/2CiQ0ZwWXEy7roC6+p4S4a0WyhkR45Ula9OI4cQzqbDf2E0T0VQnVEVZBUJaQaT1Ptn+PIeyDq62Xtl2owrTqPV30/CXUVrZ+4TqStr8/AigvtIC6mOqkkJ3v0WnV8JhnW684nIKkhk1RRphlVWXY1joN+ff06rl6NkSMHAPntve81Nfgil8GAmvUAvC5TfQvq9rGI83Q8UsN6NfiAajyvulqkew2SNonoXKWJvo3z9p+EMI3o1vtTBFZBdi8vv/wy8prA683NzXj11VcryrOkCZjruvj1r3+NGvGWL0Jra2vxRAzDMAzDMD2Yf/3rX8Hnd999Fw0NDcH3trY2PP/889hqq60qyrukCdjWW2+N+++/v+RMBw8ejFQqVVGFGIZhGIaR4WDc3cNuu+0GwzBgGIZW1VhVVYXbb7+9orxLmoAtXbq0osy/argwYJhmqJpp9mTGkig8H+qSDLX3iYw5Ij6nTsTIVjfTzmg1KkJ8n88j2G1nOG1oKVjImK1hnuIiFVXNqmasqnR0Kh71ejX/pO+0zVQFqeq2dHFM4vJX9RY6VZOuDboOJt+DXVZ+Hay0r/LNFwJ/WKbtq4WbiS5RaSotkjab+j8SxaRs701q2waMfIun7gaQSptBfdTuyqTDMEpq06g/KHGOltkr26aoZs2wLY7jqcl1O/Qczzeekw3rpO5uo30A2wjV06qeS72HND5OKbsMu0D/QvtXp87qdlWX6IOmJvSubwU+We5979sXeXM4Ps/XAfB24A4b5p1Sx2OSxlYMA1VVqAvGrV6rbiik6vJKNhrqxlgxul1NnACrILuHJUuWwHVdjB49Gq+99hoGDBgQnEun0xg4cCAsS7+7thgV7YJkGIZhGIbZ0hkxYgQAwOmE2StPwCpBXYX73z0H8Bnk/U2j6XRvmGnAJvfNUpdlIhCvb1ktvKun6WpH2P1RsZYvssikPWv91uq6oAzVSb34bMEzhs4IUz5h00cDUQt0hvS03qrEgQYUTrKUFdDBTJ1M6dL6uOmMtKo1qI8msVxWl9RqneCtcr2uFKsWS8Tl9ozAVQt01fBSkfSIwOgiULO4h4YNtDreZ0cEFsh696lQ8NywCeg9E4bptKtVbDs07k+l04FkRTXCp9dWZeXm0IAFQqgqNjyLYS3q0NhowbbDVZ53PhV8hiKMDG+LJXWnGoubbjYJvf175dTWhmXArIMZ7lHxogEUWuWg3mIciwpQsR4VByYZ2eukbAQq4Uo6lnRcd45KXdojhaHRGYJxqXme3K1HIJ8Hmrb+HwBe3w9/54VA7LVx5E7o1fhfL3FzM1qHjpCuN83w9UElVQJVYkvHnCpJo48wPaca/scJOcNb2LE+mnoaLAHrGbz77rtYtmxZxCD/0EMPLTsvnoAxDMMwTA+HJ2DdyyeffIIjjjgCb7/9NgzDgOsb1AnnrG1tbWXn2TUufBmGYRiGYTZTzjrrLIwaNQr//e9/UV1djX//+9/461//inHjxuHll1+uKE+WgBWhHHWAaqwqjJxpIOdAPyRk9PS7aQZCdAtEXdnYWFSdR9U/NElNDWD54W9c0/JChlC1DZXrq6oXdcmlCxGj1KMocQb/JeRjIFQaoqDx6aSitEuofYTqTed/KKIjU8ug+hbhOEs5bxAfalRtp1aNjhUakqe52fsTx2g4IYFVaPH+N00g1xQECE/ZNmpqqqS0QfUaG2HYNjJ+/TM1diQ0lNA8i/7Rda9phmGNgLA7UiZZAYoLbRttjhFRQVLVJy07bp+H2G9Bh246nYKd9VSUhtMWqHthAqbtq5NpY3Q6Ut3Yj2t4J6KqJFVj/Y423jfgIp02kGn6EgDQp94GVqwA1q4FAPTadlussQcBANJ9gcbVocqR+gcDfHOAmHq1FoyIkb4cskoOSUTvfVxUJ5Vit6uU/RmUbt8oEQNLwLqXhQsX4qWXXsKAAQNgmiZM08Q3v/lNXHfddTjzzDPx5ptvlp1nRRKwV199FT/84Q8xYcIEfP755wCARx99FPPnz68kO4ZhGIZhEqA2c+35Yyqjra0t8IXav39/rFixAoBnpP/BBx9UlGfZErCnn34axx13HH7wgx/gzTffREuLtxLfsGEDZsyYgdmzZ1dUkZ5K0lZyAFCDu9IVvLD7FQbTMFOwxDJSXXmbpmyhumxZmGn//vLTQ4NU+8eMgudawgJQ1bguXF42FQDfcZxRX4/M4MFAzpe61dYme31Xl5bUMJ+KbJRzuoDbYTZWxBu2Ebc8Vd8WOkN+ckyVIkgbEQrRpooqWyZxsNPcHF0yq4HH6T2j5/w82szQB17cCsc0gSqzJTxANxBkU0GEA1Ekvc5LnwmKTNXWSm23/LEA00RLIYyKgGxvT2hHAiWr90gdjtRYnnojpx7shYQunQ6fBWFI7+Rlwa/6I6B2nxognN5D6qlf7XoacDmsl+XX10Ima8f/+qjHacGKFbihbOagl6vjWj2XhGqEH4fuXJykJtgMojvvODAAuPV9AHj9mvrRj9BS8K7JLP8Y/fwg3q22J1HtXRMvjaN9USgAGXhjO2WaaAF5HkgfZbPy40S9ymSzntuU1oK+L9T+1Bnrl9r3Kj1N8iVgCVj3svPOO+Nf//oXRo8ejfHjx+PGG29EOp3GfffdV3HUn7IlYNdccw3uuece3H///ZKz1b333htvvPFGRZVgGIZhGIbpqVx66aUQriiuueYafPrpp9hnn30we/Zs/OpXv6ooz7IlYB988AH23XffyPHa2lptoEqGYRiGYdoHS8C6l8mTJwefR48ejXfffRdr165Fnz59gp2Q5VK2BGzIkCH46KOPIsfnz5+/5QbfLhGhFhGGptSXUmBwHefgSdKXxSjthQ5GZyAep+QXlUqnPbl+nE8rml9SXUr4M+DCgBvxbK0WW7JqoJ2GDGo56r3R3ge1/KR6lVB1odYQfSOdVPKhhspqPrpbE1FLkXFCx6IIkqz7y2a9PzWtOn6L3U/dn/Y5INepdSylvjpfUqLZwk2e2MzQ2AhsbDLQUrDQUrDg2qn4h7RIZd3gDhqRW580jIp9T1I7dgW2DcBxkDFbvUgZTU3A8uXA8uVINX7puVgTz3ehFUa+RbsJJfI4OI70TqT3iQZlF9eqr7ik12Xc86BS7PFWEfe3p1Hh67g9r06GcOKJJ2LDhg3Ssb59+6KpqQknnnhiRXmWPQE79dRTcdZZZ+Ef//gHDMPAihUr8Pjjj+Pcc8/F6aefXlElGIZhGIZheioPP/wwNm3aFDm+adMmPPLIIxXlWbYK8vzzz8f69eux3377obm5Gfvuuy8ymQzOPfdc/PSnP62oEpsbcQazYju2aXrHxLZ52Yjas5tzHH+rPJVI0eVJTU28uIFaR4uCqcV2LidbTAvD/2rflbhvQO+mM6G3bBVqKVsMXzKgXkqbk+TROm61aSiW4ZKXb7ix5cY1Rd33EK6yreCYQb2p66D9ISzVBb5VeOB2BECb49VP1FP8b5pAWzp0F2GZJE6jEzjVByDbhItrVYN42udpkq+Tl9vrnQ/zEteJOov6ivSiuWp0BYr4HueZRJVUUGi+1dWhKwo1PzVvx5HbTfNW73M26wl0xHnbBrJZK/icTqfCZ1rjVoRCnxfTjLoYoXUoVQom6hnnZV+SmmrSxcWfVMec1A7Nu6XNTIXPweDBYcVqa5HKbwpcVJBdF9532w42J6RME7DNMHqHadLAHVK7B/Rt8/LxRWHrUSV5zAeMyHuDhgZVJalq/pUS19fdbZzPwbi7h1wuB9d14bouNmzYgCz5DWhra8Ps2bMxcODAivKuyA/Ytddei0suuQTvvvsuHMfBmDFjgu2ZDMMwDMN0LB2hQmQVZPnU19fDMAwYhoHtt98+ct4wDFx55ZUV5V2xI9bq6mqMGzeu0ssZhmEYhmF6NPPmzYPruth///3x9NNPoy+JXZxOpzFixAgM9V22lEtJE7Ajjzyy5AyfeeaZiiqyJUFVIDq1jBYqXxffBUIuH6caoTo9NR8g1Fc1NnpBs/20jkM8y4sKx+VbrO6KOibJWBso3e9RkD8AmFZFaoBinrLL8hOk9rXunhDdkpo3rb9QVavn1OPURViceldVM4rjFLUfDLiwRBp/zFjU+t82tNeqzVYDKiShqiTVOsW5oYtzAaeqk+l5NS1V6QZNDFS5Xlst6m5fUzCNjKG7F/SYrj/K9UnV1UgbROiLjA7C0MFh+F0gbgrRFVJtpTR2NDeXptMliVNlK9kkqn+LjVX2hM9QJk6cCABYsmQJtt5664p3POooaQJWV1cXfHZdF7NmzUJdXV0gAVu0aBHWrVtX1kSNYRiGYZjS4AlY1/Ovf/0LO++8M0zTxPr16/H222/Hpt11113Lzr+kCdiDDz4YfL7gggtw9NFH45577oFleVKPtrY2nH766aitrS27Aps7qiRHZxROt1SrK2SLLsWoHV1NTdQXAU3rZ+qmM9H6bLttYLDuOJ4BMuBv4SdZOgXAVGIVGnTV6ziSN+0kSRVdVQqDbirJqXg1qZFAqOWVmk2cdEL6XixT9Z6o1sCAdgyEhEb49LxpGomrfVXiRIukVdBJqlSBXZiWeM8X7SKB+ejYNNOWNJ7jpFZqHeKM0cUxXZxL8V0ndKGG9NSNAc2TxhOkedLNB7rrtChuWwpmBiBjUO17+qyXSqkSGYEB2Rqbbk7RGY3HGfermCbkHRH+mGjJG8jlUhggDI1zOe9/YZRPN/qorjscBylnE7mp4fmWQgpOAUG8VHVM0/uvc1+SJDml7S/W7jh0mx3UPHuqywqmY9htt93Q0NCAgQMHYrfddoNhGHA1OxkMw0BbW8yGtgTKtgH7v//7P8yfPz+YfAGAZVmYPn069t57b9x0001lV4JhGIZhmHhYAtb1LFmyBAMGDAg+dzRlT8AKhQLee+89fO1rX5OOv/fee3D47jIMwzBMh8MTsK5nxIgR2s8dRdkTsBNOOAEnnngiPvroI+y1114AgL///e+4/vrrccIJJ3R4BQFg6dKluPrqq/HSSy+hoaEBQ4cOxQ9/+ENccsklSBO9gs447u6778Zpp53W7jqUY5ip+iGKUy84DqL6otiEYUZtsGCl5UxD1YcBy3FgCKPqdDoMBg65CNV42rZlFZ9VRI+iGpRLfeM4sq+hOP0aygjGrTldqi8g1aO2amPcWRTLW9MdwXedKo1oCINzqlE7PaeWb9tAyg5VUzRvF0b0XvgJDIR+r4T6J04lqbaPqv/EtaJt1K2a7n6q45WeU+3l43AcSL6oqP24yFeUm04byGZTsIm6Uo5cEM2X1omeo//HdKt0bdxY1n2PHTidRN++AJpIB9IBoL67ij2I/jHb9vzvGXkvcLdZnYlcpnsG4oqgz7P32Yik1V2jqul76kYJnoB1Px988AFuv/12vPfeezAMAzvssAN+9rOfRQRSpVL2BOzmm2/G4MGDccstt2DlypUAvPBE559/Ps4555yKKlGM999/H47j4N5778W2226Ld955ByeffDI2btyIm2++WUr74IMPYsqUKcF3uoGAYRiGYRimXJ566ikcc8wxGDduHCZMmADAEz7tvPPO+M1vfoPvfe97ZedpuDqLshLJ+caY3WF8f9NNN+Huu+/GJ598EhwzDAOzZs3C4YcfXnG+uVwOdXV1WLdufdAuaoBeTAKmGsG2OYZ2dSVWIlbzxvBianUKhGIDsUQnEjA1T7q6T5lt0jbwNt/ZhGq83dwsSwOoVCBJuqT2CT0mNS5pJUwpUQKma3ccOuPzOKkE7QOj0BotW+2IuHaZZuT+l2Ogq26VF7dQ9U6Sz0frHifNU5sRZ4wu6hq0X82MfG5zjCDmoiijmARMrReVgMVtjtB5ZaESERohgPaXSjodzUvcb8eRNwKI/qESOyohFs+MWj+RNk7QW4pUJSrB0V9LIy0ACZEkEozw4wg8/Tc1BZ20Pl+FuloXWLfOOyca3tgYVlAY4UtBVgniezYr71SgA8mP0AF4GwvUeJF0jKkG+ur/cX2oe28kSdeSEM9MLpdDfX0d1q9f3ym/heI3adas9ejVq335b9yYwxFHdF5dt2RGjx6NH/7wh7jqqquk45dffjkeffRRaS5SKu0SttbW1nbbTVy/fr3kEE3w05/+FP3798eee+6Je+65p6hdWktLC3K5nPTHMAzDMD0JupBszx9TGQ0NDfjRj34UOf7DH/4QDQ0NFeVZtgpy1KhRiY7IKpkFlsvHH3+M22+/Hb/4xS+k41dffTUOOOAAVFVV4S9/+QvOOeccrF69GpdeemlsXtddd13FYQQYhmEYhtnymTRpEl599VVsu+220vH58+djn332qSjPsidg06ZNk763trbizTffxPPPP4/zzjuvrLyuuOKKopOf119/XQp5tGLFCkyZMgXf+973cNJJJ0lp6URrt912AwBcddVViROwiy66CNOnTw++53I5DB8+PDa9zhdMUto4Y+9AXaHqN8QShegD2+yMb7DvfVfVSqp6pRVWxL+XOEfVJDrDb4FtK/6G8oojpnRaUnF4eftqWp0Mv5i+kKbzv7tqsOMyVnBJxty66gQqYaqbKlZv5bx6v1Uj92Iqqrg66gzV4/ohSXUsPmvHb6HgKaqoqpHESaC9oCtbLYeqCtVngKpMVYN8mo+qkadlO05UfRnnDV/ko1PpquoqdZOA6uaN1lGoQBMc58d+V7XYtA467TcdJ9SsAZBV/3E+wdS02nNOW1gQaWjjWqAumw8bKt5T4llR7RhMM1RXmqbnN0xUeODAUK9YXx87kI18C1KmCbsmFbSfqpxpkTpDekC+h/Q61Y9aJBoIgb7vu9tDfk8Pxv3ll1/izDPPxLPPPgsAOPTQQ3H77bejvr4+oT4urrzyStx333348ssvMX78eNx5553YaaedgjQtLS0499xz8cQTT2DTpk044IADcNddd2HYsGFllX3WWWdh/vz5eOedd7Djjjti8eLFZbXv0EMPxQUXXIBFixZJGxB/97vf4corrwzKFmlLoewJ2FlnnaU9fuedd+Kf//xnWXn99Kc/xfe///3ENCNHjgw+r1ixAvvttx8mTJiA++67r2j+e+21F3K5HP773/9i0KBB2jSZTAaZTEZ7jmEYhmF6Aj19F+Sxxx6L5cuX4/nnnwcAnHLKKTjuuOPwxz/+MfaaG2+8Eb/85S/x0EMPYfvtt8c111yDgw46CB988AF69+4NwBP6/PGPf8STTz6Jfv364ZxzzsH/+3//D4sWLQr8kZZStuu6OPHEE/GPf/wD//rXv8pu3+mnnw4AuOuuu3DXXXdpzwHlOWWtOBi3yiGHHIKLLrpI8ppfjP79+6N///4lpf3888+x3377YezYsXjwwQdhlmAp+eabbyKbzSbOwBmGYRiGqZz33nsPzz//PP7+979j/PjxAID7778fEyZMwAcffKB10+C6Lm699VZccsklQRjDhx9+GIMGDcJvfvMbnHrqqVi/fj0eeOABPProozjwwAMBAI899hiGDx+OuXPnYvLkySWXfdtttwEAvvjii4omYJ3h57TDJmBPPfWU1ii+I1ixYgUmTZqErbfeGjfffDO++OKL4NzgwYMBAH/84x/R0NCACRMmoKqqCvPmzcMll1yCU045pd0SLl1ICkGSONqAC9s2wp1FZJec8J1kUZ0EEfu7phVsDmpq8nZlUZG7qsKgY0Pd7Zi0o4qqUNR8XRgQQbYNG7J6UAm3I6tijIhah/aJen1EZVniNqS4jYpJ6XTFRNpM6qSqHZLUOrp6xN2npGdZt1uTHqP5iHO6/Oh4ofmVOn6l3XakgJRt+vnKY5lq06m6Tx1j9H+q4kuZbdJJGp6p2D0E5N2dap9QjVmhINdP3VWaTocb8/L56C5hqoJMUgfH7cIT3+PGLM1TDcGk32CYoPonJN1rxwEspSEbm71nv7oacifpttGqWxDVl1XcFk/l2vD58wYUDVCve+/Rz2qfURWkXGUj1sdhXLihpO9dRUdKwNTNZu3VBC1cuBB1dXXBBAjwNFB1dXVYsGCBdgK2ZMkSNDQ04OCDD5bqMXHiRCxYsACnnnoqFi1ahNbWVinN0KFDsfPOO2PBggWYPHlyRWX3FMqegO2+++6SEb7rumhoaMAXX3wREct1FC+++CI++ugjfPTRR5LeV5QPAKlUCnfddRemT58Ox3EwevRoXHXVVTjjjDM6pU4MwzAM01V05ARMtXO+/PLLccUVV1Scr4iXqDJw4MDYHYLiuGoeNGjQIHz66adBmnQ6jT59+kTSiOsrKbtUbrvtNpxyyinIZrOBBC2OM888s+z8y56AHXbYYdIEzDRNDBgwAJMmTcIOO+xQdgVK4fjjj8fxxx+fmGbKlCmSA9b2YvhhVoutdpKM8oURtlht6fJqNb1VR74Z6JUOny4jtx4ZfxVp1vTyjOKFjyZioO/60iYqKUhaCIvA3MUQC17hNT3AL4i2xAJg2tFgzbpVOw0ArctXXu7LRvglCsYiWarXFjMiB4r7VqJpqJRMNbyvpK46iSatp2mGLpNMU76nqjGyLti1dn8BFQ/RwnzUDRFGoRUp/5pCwZC84YtAyjQLUV+dwbn43FKIv9/Ue7+4TueHS/dZGG/rmijswakfPSpB1sVeF4i+VY391fLFd/XeqJ+LScxoPrp2AvrxSb+L8+o7yzQNoCCLMZtzpM3pdLgbZO1aucL0hotKU7Eh8e8lDe6mpsgOIoPmSfIxAGRMeTdHayH0dE/7QZW2qtWL+HUkdZJ6zFGieaiDgeS3ufHZZ59JLqTipF9XXFHaRjlAH4nGdd1Erwm660q5Rk1TadnFuOWWW/CDH/wA2WwWt9xyS2w6wzC6ZgLWnlkywzAMwzDl05ESsFJ9eJa6Ue5f//oX/vvf/0bOffHFF7Eb4IT5UENDA4YMGRIcX7VqVXDN4MGDkc/n8eWXX0pSsFWrVmHvvfcO0pRbdqnQANydEYy7TJkCYFkWVq1aFTm+Zs2aYEcCwzAMwzAdB7X/bM9fOfTv3x877LBD4l82m8WECROwfv16vPbaa8G1//jHP7B+/fpgoqQyatQoDB48GHPmzAmO5fN5vPLKK8E1Y8eORSqVktKsXLkS77zzTpCmkrJ7CmVLwOIiF7W0tEiBsb9KxPmHSRrsseo0jT4j8Mnlo4Y3ovklGS3rHsBi31WjdK3lepF86Gc1UomnotU0oAhCbVOqmlFNW6yYOJUkvQ/aDQVwAzVrkqozydC+WB3V4NdUnaUabCeV4V0XqnF0xsex7SWDyfZ9ztHA1CqqDXbSOFW1UDShEaSxpHuk3i/LDNVMIh8aXogaaKv10I0d3Xf1Ry1JJVoKpZgR6J5hkbYUP1Wl+rJqc4ygb9JpyHpZUUGqZlR1zmoMIXGcDl5dQ5QdD1T1HadMintu4u6LbRMbZhgR/3fl4PrGKl1BR0rAOpodd9wRU6ZMwcknn4x7770XgOcK4v/9v/8nGcHvsMMOuO6663DEEUfAMAxMmzYNM2bMwHbbbYftttsOM2bMQHV1NY499lgAXiznn/zkJzjnnHPQr18/9O3bF+eeey522WWXYFdkqWV/9NFHaGxsRENDAzZt2hT4ARszZkxJc5fvfve7GDduHC688ELp+E033YTXXnsNv/vd78rut5InYMIAzTAM/PrXv0aNiP0FoK2tDX/96187zQaMYRiGYZiey+OPP44zzzwz2LF46KGH4o477pDSfPDBB1i/fn3w/fzzz8emTZtw+umnB45YX3zxxcAHGODZYdm2jaOPPjpwxPrQQw9JGrdSyj7ppJPwyiuvBN933313AJ5qkfobjeOVV17B5ZdfHjk+ZcoU3HzzzUWv11FyMO5Ro0YBAD799FMMGzZManw6ncbIkSNx1VVXSVtBN0dE4NP169bF6shLMdCm6XQrW3U1k8/LcWptO9yW3wZLSkslYtStBS2LrvpU+9ikFXucVME0gUzajV29unYq+KzWhX6O24UujkneuONED6hsK7ja7qRFT6mGzkm0OUakKXErUN0qnt4f6i2+uRkQQ1OkoxIm9X6r7UgSQFggriDoYFEHLLlpbWYqclq9jPYh7Xed1FJnqC6wCi3eByFKJRbXkud+zcYD4VbDhSG5oaBuKdR2FApRJ++qWwrV6FstV5yjGyJo21RDcHoDhaE5bVecxFNte2Sc6gaDGhjbpwUZqQwLbYE0yii0RvqevrjEeFCLElUIAt87Cc4qTTmwvc7ViRQ4XrkWgHY80HEQHKDoxrnuMzmWy+VQV1/f6cG4/+//1qO6un35NzXlcOKJHIy7EqqqqrB48eKIW4v3338fu+++OzZt2lR2niVLwIQB2n777Ydnnnkmsi2UYRiGYZjOoSerIL8K7Lzzzpg5cyZ+/vOfS8effPJJjBkzpqI8y7YBmzdvXkUFMQzDMAzDbI5cdtllOOqoo/Dxxx9j//33BwD85S9/wRNPPFGR/RdQ4gRs+vTpuPrqq9GrVy8pcLWOX/7ylxVVpKdSjqpLl7acFQe1T03ZLhBzrZcmVG+qRs2q5oiqpKiXcrV+SeqgYpTiMy2pTHFMGxjXP1ksEHqpfV2pcXR4fbIn+UrGQZIqiY4LqhIrJe8kg+7YisDva3VAxGSkG3NxmwR0Gp4YzSatTtjPqp8yUqiVVpxBER2aaRqhIb9pSobYol70f52KT/e/Wt+450ZVFVNM0+9r0ve0GXEqZfE9ftOF8rzoBplckbDcfKgqLhQAy1buQZwKEl5aSxmkOv9ttm1F3htxG5l0/ZeKG1R+2Q6pHn1+HNMg99eKPsNx9gKq/hdshP9V4tBDD8Xvf/97zJgxA0899RSqqqqw6667Yu7cuZg4cWJFeZY0AXvzzTfR2urp29944412OzdjGIZhGKZ0XLf9E6jSLL6ZOL797W/j29/+doflV9IEjKodX3755Q4rvEfT3Ayk01H3C0KkpDGY1aF6fldXy+oKT2TXkjcg5EFJKx+xcKYGwVTqpRpzq9IwdQVNz6uSCM/9hW+Iq2mIOJayyXFdZkiKR6hIMQgGydMQ29RJPsUkPepGAJ3XcGEYbCmrXH1dIbeRSFgA7+5Zdny7S13RUimLKtEEFHcNkNupkzjpJCq2cs8MRaoRqSgJ4ihaqBNIqBJaNbu4sQn4GwIKinhHiGVsW5aIxokP/XNxcRJF38YN1XQ6WUpM+zOpnWpagBqhy3WjG1Gqst7NDQzgNe21xOWOI22GARLGrrie+g6h91TdLKMTs9NzukCZ4nuhEDyvKf++lVI/wzRh+WoAK20ik4ZchwIZRLSyfhgPm/RFkLcdul0JjqsPT9xDKUIqkLIMAEa+RZ+e2eJYt24dnnrqKXzyySc499xz0bdvX7zxxhsYNGgQttpqq7LzK1MZA5x44onYsGFD5PjGjRtx4oknll0BhmEYhmGSoar+9vwxlfGvf/0L22+/PW644QbcdNNNWLduHQBg1qxZuOiiiyrKs+wJ2MMPP6zdbrlp0yY88sgjFVWCYRiGYZh4eALWvUyfPh3HH388PvzwQ2RFXFQAhxxyCP76179WlGfJuyBzuRxc14XrutiwYYNUgba2NsyePVsbkXyzJZ3WOywS6gAzVA/SJElGsjQbAZXcx6nQFKm39nr6XbVHVVWJ9LzqAylJJSTSePmEhqxq0GxAo+5QHCDJ/aTaFHr5mb6Rrs6yuZihe5z9LD2vGmLTMtqcUFUh230bUn/GqbbU+oo6J2k71M/Uxpn6P1LHk85QXEfSC5gaRguktqm6OEmPGQ1EHaeKi1yqUVdGGhfTmIgaPA5RCOnQQE1smrBsANXR55lWQ9eWYj9oavWpd36vKn6ZBVmLRw3yhdo/HINiXFqRuhmmqTX0F98jGysAyVbBTWeC5zatJHNhwPHra2WzxRsvqQrlXSRSwG3lmQ7HkFC5EuJCDYh8lAdIZ2IQnYh4/UuN8k1xH/wNAonvMlE+s8Xz+uuvB572KVtttRUaGhoqyrPkkVNfXw/DMGAYBrbffvvIecMwikZNZxiGYRimfDpCgsUSsMrJZrPI5XKR4x988AEGDBhQUZ4lT8DmzZsH13Wx//774+mnn0bfvn2Dc+l0GiNGjMDQoUMrqkSPxF+FRiQtpqUutKTPugFe6rFi6CQMYsWbtEpPkrKpBvz0+rht8zrUdNrVNsncNOUNBnFJaT70s7gmSdKiHi8lraXpxzgpp2kqrjFK7SxNvkmSU50bEWpEXOk2eNrvklGyrkLqTgDlFP1f/ZwkVTJN2V5bW8m4k6VIYOjnuAfRNJFOe+NRjeKgK1btBtqWuCqZJiSpnWkakWqFAjoj9nlOguaZlIZCNxk5Tjj+1XEeaUySUT69SCd61olwg7rIkT1SdgnPVJKk1CeUYhnaqtPqhp8N6X8vnUX6xRszrkYD0BnwBKx7Oeyww3DVVVfht7/9LQBP6LRs2TJceOGFOOqooyrKs+QJmPBzsWTJEgwfPhxmGT82DMMwDMNUDk/Aupebb74Z3/rWtzBw4EBs2rQJEydORENDAyZMmIBrr722ojzLVl6PGDECANDU1IRly5YhT7cxA9h1110rqgjDMAzDMExPpLa2FvPnz8dLL72EN954A47jYI899sCBBx5YcZ5lT8C++OILnHDCCXjuuee059vaEgKsboboPJ1TMb5kBBvnpT3BOpmKr1UbU5FU2D8nqUUoOkNt3f8GXJhpQzL21qlVdP/HqeUAJaCz2hj/f8P/3zOC1hvXq/1JDfKFny5xL4QqjtYvRtMRqT9FGN9T6F4MVV3qfVfUOjp/S/CUK+JuW7YplaVqaUxTcnkljQWdJ3zV5llQlY331K/TGgX9b1pysGThA0lAKhFRNSvfLVNV4+iTR+tD1NjFdWvSV9dOlaZO9TtLBHZOAWhxwmDS6jOpbiCgmzSoOp+mCbEAzTOsBoXXNZWaEdA1r5pWN1bpM60zTA8KcBD2h2kGz5hOxe3CgEH1tXF65GK7gpQHVXjQN21P1SeCkZsmAFP2cRa8Z9RyRaM1amjVDxkQ/97VZQvIwby7ygs+wBKw7qRQKCCbzWLx4sXYf//9g1BE7aVsPeK0adPw5Zdf4u9//zuqqqrw/PPP4+GHH8Z2222HZ599tkMqxTAMwzBMCN3B2Z4/pnxs28aIESM6XMBU9gTspZdewi233II999wTpmlixIgR+OEPf4gbb7wR1113XYdWjmEYhmEYpru59NJLcdFFF2Ht2rUdlmfZKsiNGzcG/r769u2LL774Attvvz122WUXvPHGGx1Wse6mJW/44YDidxiKz+F5Q9lFo1FHRdQh8g4aqi6g2hfqSiedlndrJanakrD8+un8YakrJp2YnrrhEWXLHzTfdWpY6FVxVG0V/i/7TqJp41QHar5Jx4qhu4U61ZmoQ0Q9RxKrcaXpZ1WVFLdrS3etdK+0AyTqQ0qnsUk5ZND54V0iF4rvOt0iQTwHFhyoQeZTceNGt3suTo+sXKtVi+quFVtKSV6ZajtQD6vjXndfaFbqWFB9uelCfUVNF6KBwmk+cYh09L2hPm5UXe6d99R6hWYvLQ1rpNZG7PpDoeAdo2pHdRuhup1U7W+RlnYIcUpo2MLMQDb3kPqqQPIm+bgwIu9VupNaJel1pT573nnZR6BiBt1psAqye7ntttvw0UcfYejQoRgxYgR69eolna9k/lP2BOxrX/saPvjgA4wcORK77bYb7r33XowcORL33HMPhgwZUnYFGIZhGIZJhoNxdy+HHXYYDKNjbf7KnoBNmzYNK1euBABcfvnlmDx5Mh5//HGk02k89NBDHVq57sS2o/ajAtWPjIo45tmbyv6w1KC6GjvRyGdRF53ERKzC4nx9SatGRYIgfFgFxtbkvAV/NWyHK8c4R9SmKQcQBopLRGhD6ZCW1q2OfEzy0WVG2yMFvnacSCBsSpzxbDFJma5JZXlkISvxTJqu5sPOlQzIIW8MsEw3YvSv1lkyBNcs5w1yTvUQLuWRJzecDjI1sRAL0bKSrNF1RvG642qaYlItH/XeOsL43Zf20GJS1RoneIVCGIzd1kuo46qgbgJRBTy661JKV9H8dFI1aseuSs9aC4b0XEYkoiQPVRglNVAVnVEJkx/k2qgmF6vSsObm8DutgE6EqIrSRcNNM3wfeFb4+odRkcBKm0dom+Bv/nEcpEg9XFveCBUn6FV97hlwAdtgR/hfEa644ooOz7PsofODH/wg+Lz77rtj6dKleP/997H11lv///bOPD6KKtvjv+5OurNAmpCEdCIxoCKLIAooBnQAZXUQ0BkFGSF8hoeiBgzogDy3iLKIghvjzgN1mA8yb8CPjorgk+Uhi8DAAwFBRzbHhM2QgEC2vu+PTlVX3b61dXd683w/n/qkq+rWvefeW1W5dc655yI7OzuswhEEQRAEQSbIaHH+/Hn86U9/wocffoi6ujr0798fr7zySljGO5ad8HnS0tLQrVs3GnwRBEEQRBNBsyCjw1NPPYUlS5bgt7/9LUaNGoU1a9bg/vvvD0vepjRgU6dONZ3hggULghYmFuEdWXl/Yz2/YUmdLXJyF8ViEvinq84FOLsjcF/sp6xewFed1qZajsQKSlkdWiaicGJg/1OZngyWBzF6EWmdt/ICs9stxglqrIvPYmMTOmzD61vORso3wNzG9b/uklDw1+f8eZ8VKS3Nt+9yMvNmZF5Io1kKoWAiL76+vMlW7znjy3Ak2YXPqpQPIHasF5kORXkA/j4UxRHk3z9aEz708hchOewrfeOdTmh/knu9gY7sypeiX6BAp3xlA/EmSD14m62WT4jZ/JR5aVym5XIioRnrkUhYVqxYgUWLFmHUqFEAgHvuuQe9e/dGQ0MDHI7QlqEyNQDbuXOnqczC7aBGEARBEASZIKPFsWPHcNNNN8n7119/PZKSkvDTTz+hoKAgpLxNDcDWrl0bUiHxiPQRJ0WhF33kAeqPO95JU/qAU05T5h1klcd5zZrWF7fDzrhFo7UjwCvh6+Gfge+fVq0sQ1kJG9RRpAO/8NWO4qoGEH1iijyXzaClXbHb5ej6QjhPWX7RbR7+vJ7TvlY/AYFfzLoascYLvY3NJkVnd9TWKpzCG7UAScmqy7QmCti8DWotoWIx4fPngHPn/NkGeBGkpGj3k7JAKUSFQkUboNVRak8U2skAh2kFDeopGY0TShRozQrhEPWBlFSWs1F2BpumTHrabv6Y9CxJz0KD1xbw7ElpL16U0vtkSUryy+xqVBhJEzFEmjB+7oNSCycd47HV1sDpdKG62rcvRxmRJiXoVM6GxslE/Crx8PVZfS3gysjwn1OEMGmw+1cZ8EL9zuHbB4pbSrTgvWjVCiPsUtsq7h2HIi6KI0khkJH5A9K7ODJaMRqARYeGhgY4ueUqkpKSUC+a3WIRmr9BEARBEDEODcCiA2MM48aNg8vlko9dvHgREydOVMUCW7FiheW8aQBGEARBEAQhoLi4OODYPffcE5a8aQBmgJbzq9iSZjP0W+atcVa+SKS0KvNYfT2SkpKF6UXoWf7UZg1fjDDetikp/ZOSHNqyazWastBgHfT1rjOZp9UFdK34/QamVa+mwLexnEphzvH/VJgdRTZvuQR1bDDVvakwB8LuQH09cOaMb/fnn4GWLX2/W7TwmaU0Z3rwGevd6Ha7+l5VyhAqeuYhpZw694LSVYB3GwhA4XwOiO8dkQjyfuNJh90O5WoNes0rTY6R5OPzNDuBRHq/iB45R1IS6ut9ky+05NEjwBm9sVB7kkNVb5VA8JkAlYe1TKm8PFLMQiVm37PKtFJ/27QSKhM33rfKyQc2wb0cqQW5SQMWHRYvXtxkedMAjCAIgiBiHBqAJR40ANPABtb4xaX/daN3QycnBTpnan0t2cDUT1i91++C3OitKjtic2UqnYbtdoeu47fWFyePz0Hf5i+Ty8BWX6+OUm31E1pLFWhWRaeVxgQ2rbyU+SkdbfkGV6COzq+eps9rWuD1yu0ZcB8oVBUOb53/GIfkzK2eoa/uX2XAen4ywblzPs0XAGRkADnZilUSvBAv+gmotXDSPo+gbiLNBcBpUDSc+0Vdq9Tm2Xh1EK+h08iIlw9QO3Qrw7Uo5WSwWboFfWkb8/LqO5wr81UHjhevR6ssg3f85+USvYdw/iLsznR5glCzZuqLlJM1+PKlySEquPtBmkDh9QJJKamquinXtTQaVKjX0lSvC6mH1q0hv88bV0Wwc7ex1+ufBONXsvonR8iWAQUUmoIIFhqAEQRBEESMQxqwxIMGYARBEAQR49Bi3IkHDcBMoqWOF5kO/GaGwAjc2vnbYLc7YG9cGFa9uLXgYr2YR9x1ShW5yiQlOwj70wYuzqyOoi87JPOfYyJZk3RiCvF1EZmP9CJfG8124PMXtZ/A7CmOeu5QXaaFlgO+/7cjwHwsl2AyLhpvthFVS+pvu90W4ETerJnNH+3eXgecb7RBpaT4g95JldEz0/J9zwmivjTwOZBNsybva618VeZCjWu1ItlLxem1p7Ju0mQH/lbnzZTKslSmO0U65eoY/HwCkZxmrKu8071IJvkd5UzH0aP+CRktW6qD1JtCIJTNbvctLi69W5LUEzaSk9SLjyvNuqI20HrX8udCRcsDQvSa4F0MIuWETyQeNAAjCIIgiBiHTJCJBw3ANJC+bETKHK3QA/xf3m9Z7+YP/LpzBK69JkD01c8M1kFURZVWfJ3y5Yhll76mHeDXlgyc6q0oR7kcABC4zpvyt9JTmf8s1tO8GM0q4FFq81S1AxyaKhFBlHfpGmhdI0bZ3qpI6ZIDdGP78loUhx1wJOndTI1p+frZ7UhK8jcFS0r232NSXyo1nVZUDpwWRNLwGDoo62h5RdfyWmUtRM+MSHxJq6VZNVMaucBVIERyKh39HXb/BA1J8SjSgCnfJRKi+Q9a2O2N4UXQGArDmSznq9SIJSU1asAan1Ob06nd1oLnRnjMAEn7paw376DP11X0KrCiCeMnQfDiSquDKMvjy/Sft1nqi1ChAVjiEUYlLkEQBEEQBGEG0oARBEEQRIxDGrDEI240YG3atIHNZlNtjz76qCrN0aNHcdtttyE9PR3Z2dmYPHkyannTV5iRHgot84HovGiTzklxcrxevxlUZPIMeBg1nk5RWpXjqELfrjT5SNY/flMiyVpb65dZ9IAz2Hy2BGnTypzbVDJKG5+HVp4i9M4ZwcsEmHLA5dNI+0rzi5HfuzKdnJ/ZunA3pM3boL6Uy8cf/w7aN6toU94AXq8/H5HZWHgDQ1x5nWppZaOFTdX6/nrypk7+WeHRa3q9e4K/PZUyGD0OweL1QvXsSc/suXM+B3xp3+kMMZ6Vnk1Q56WnfIQlM6jT6T8uodcewQxM9K7hzzVFvwSDlcdRbyNih7jSgM2cORMTJkyQ95vJ0QN9K5b/9re/RU5ODjZu3IjTp0+juLgYjDG8+uqr0RCXIAiCIMICacASj7gagDVv3hwej0d4bvXq1di3bx+OHTuG/Px8AMD8+fMxbtw4zJo1CxkZGSGVrXTeFH3QS79FX2ei36K8lPDOoHyeyinRosjM0le4/vR2HedjRV4SjEuv/OBVfhFK2h3JidfrFYRZ4D8xNb6eNSOU8xMH7PzalA6VpkEF53hu+OVv0Eiq6OyakdPFEc31Xoh695W8VqCeQzSfUeNxuV0UKygIQziIbnblbys3u16+WnmIruN+qttIrHnyV1+x9qZGNHNRyAqtfLWc+iV4TZgyT2U4GFXYEIibJwgfd/ndlJTij0ovGQRqa3370jesrG1qLEj53PHIIWmU/z00BFaupRhQmUZEYXIcdvW7TfqtbDeljCJFq6hI6bbVU5JriCk8ptIYE4RF4sYECQDPPfccsrKycM0112DWrFkq8+LmzZvRuXNnefAFAIMGDUJNTQ127NihmWdNTQ2qq6tVG0EQBEHEEmSCTDziRgP20EMPoVu3bsjMzMTXX3+NGTNm4NChQ3jnnXcAABUVFcjNzVVdk5mZCafTiYqKCs1858yZg6effrpJZScIgiCIUCATZOIR1QFYWVmZ4eBn27Zt6NGjB6ZMmSIfu/rqq5GZmYnf//73slYMAGy2QLU5Y0x4XGLGjBmYOnWqvF9dXY2CggLVorGAOb9u3tRn9MCIrDjKc1pl82ZAu90GKX6TtrnRuBwRWgvg2u3+yNmiryuvV91+9dyC4ElJLnW+UhsamF55c5KeZVOZVrG0uT9941+h07TC3GntpWXTNWOoJzr40yrbSst8ojznj5fki0VkEyXiPZl59EyB0nktE6foBtVywubRejAMTFWAwmxqtwP8gvBSllzeDiOPacWDKJm5AleE0BRJhZYDPl9d3dh+jbHJROiZIo3MlspFv8+fVz+j588DaWk2fxw8RZwySSZVQVa80Ll0yra128Vt4X+PqVeTEBVp5vnk0+i923lzpX5eNtTVUyR8IjiiOgArKSnBqFGjdNO0adNGePyGG24AAHz//ffIysqCx+PB1q1bVWkqKytRV1cXoBlT4nK54HK5NM8TBEEQRLQhDVjiEdUBWHZ2NrKzs4O6dufOnQCAvLw8AEBRURFmzZqF8vJy+djq1avhcrnQvXv38AhMEARBEFGAFuNOPOLCB2zz5s3YsmUL+vXrB7fbjW3btmHKlCkYNmwYLr30UgDAwIED0alTJ4wZMwbPP/88fv75ZzzyyCOYMGFCSDMgTVhFAs7xJshgHxqTE8IsmUislmMGg0l3wvTBzkIyK4uZGVFmCKZttPpDb6aeKK3Zsvh8leZIPfMOb7oWTUZVLSdlRnCzmKmskf1eaSMyajCuU1TLSWmYyMyIpGWNFaXVEtFM8/FlmL1GmVb5OyXFNwNSMsVdvOizVruSuNnFZgXm7jlVjDXOlqec9WnsAuGvi1nMtI2Z9w9frpHFniCsEhcDMJfLhQ8++ABPP/00ampqUFhYiAkTJmDatGlyGofDgU8++QQPPPAAevfujdTUVIwePRovvPBCFCUnCIIgiNAhE2TiERdhKLp164YtW7bgzJkzuHDhAr799luUlZUhLS1Nle7SSy/FP/7xD5w/fx6nT5/Gq6++GrR/l3SzcwG+Zed83klfwudA6/taSk5icDp9X5spKf4oz9ImCg7Ply+VWVvr35T7vHxKxYDZL2UrX9RWpjYrz2ml4/NRtq2yjsqI+6I0onZRbqK+E23S9Rcv+jZRPlr3Al+uUjYtmXhFDt8noi9y3yQG/33Dt2GD14YGr03WRJiJVaTUNCjrVldvkzcp3wavDQ1w+DepPLtDc7N0Q5q90ZxOsKRksKTkwNUQRHkqftu8DbB5G4QrFZhFVIxW/4o2rXuwrt5m+r4Tacb4TZQ2LQ3Izva/myoqgB9/BE7+7MDJnx04f96f1uZtsPTwa8Xdk9pX2eZ6E27MvOeUIkj1NbIcKN+7otuGf28pZYomRveT2a2pqKysxJgxY+B2u+F2uzFmzBicOXNG9xrGGMrKypCfn4/U1FT07dsXe/fuVaWpqanBpEmTkJ2djfT0dAwbNgw//vijpbL/7//+D3fffTcKCgqQmpqKjh074uWXXw5X1YMmLgZgBEEQBEHELqNHj8auXbuwatUqrFq1Crt27cKYMWN0r5k3bx4WLFiAhQsXYtu2bfB4PBgwYADOnj0rpyktLcXKlSuxbNkybNy4EefOncPQoUPR0OAPJG1U9o4dO5CTk4O//OUv2Lt3Lx577DHMmDEDCxcuDH9DWMDGGLnlKamurobb7caJE1Wy75jeRzs/y18ZhV75G9D3CeG/uIy+4pS/RX5TwfoT6ZVlFr4OIt8iLd8OPRnM+Ivo+dnwMpiVXSSLSB5ek6Wl2RL91kN0n0j3nV6d7HZxZHa9a0RaXbPy6p0PCGOghBfIws2v8uXSUldInS8QkF8NQS96vZYoZrUkIpGU+QSDnlJR9E6R+tfr9a8HKe2npACSu2xamm8D1CsmaAphEj2fRP4Yr7HRU26afd9paZVF+zq3jYrq6mpkZ7tRVVUV8oorWvm73W6MG1cFpzO0/Gtrq7FkSfhl3b9/Pzp16oQtW7agZ8+eAIAtW7agqKgI3377Ldq3bx9wDWMM+fn5KC0txfTp0wH4tF25ubl47rnncN9996Gqqgo5OTl4//33MXLkSADATz/9hIKCAnz66acYNGhQUGUDwIMPPoj9+/fjyy+/DFs7WIU0YBpomQZ59b7W4r78b6VpUjRIMmuCAgJf+FoDuVBVz6H8YxDlpTVIMBqU6MnP9wdvXtBb/1uUh55ceoMpM/t654I1DSjNLkaDWX7hZ+mYlnmSv3f07idL5g7Rg6C3bwJD06GWfa5RdqVZzKz5xspzpTVYD+UDRySrElFzKp+JtDTfgCsjw/e7ttY3IDtzxjc4k8zwDdA2LTO7Q7DEufYmQqu7tbrMyFRo5lpRO/HX6p0zyrMpCKcJkl/9paamJiTZNm/eDLfbLQ+AAF+oKLfbjU2bNgmvOXToECoqKjBw4ED5mMvlQp8+feRrduzYgbq6OlWa/Px8dO7cWU4TTNkAUFVVhZYtWwZX4TBBAzCCIAiCiHHCOQArKCiQ/aXcbjfmzJkTkmwVFRVo1apVwPFWrVpprkQjHefjdObm5srnKioq4HQ6kZmZqZvGatmbN2/G8uXLcd999xnUrGmJi1mQ0UTrS0iCX7RWpNkQfbEpzyvPaZngQlGTK8s30qjplWnmOr3jWnkbaW608lCm1ZPXqDyR2U2rPXlTR1KS2NRjlF+wGi/pOmkZVJEZTCWjXduk5kunf/+akUVrXzqmLCfwHlSsUOD17Su1c0YCqbR3GqpUeVF0nTbXWokgnJpKvWfYqAxeJq1I7mZMbFK6pCSgRQvfvuToLsG7Vhg9I/xzoZVW7znkEbWXqN7SPWXmfaTV5mbg38+iOsULx44dU5kgtSarlZWZW60GCG4lGtF1Zq7h01gpe+/evRg+fDiefPJJDBgwQLecpoYGYARBEAQR41gxeevlAQAZGRmmfMDMrlaze/duHD9+PODcyZMnNVei8Xg8AHwaLCl4OgCcOHFCvsbj8aC2thaVlZUqLdiJEyfQq1cvOY3Zsvft24ebb74ZEyZMwOOPP65br0hAJkiCIAiCiHHCaYI0S3Z2Njp06KC7paSkoKioCFVVVfj666/la7du3Yqqqip5oMTTtm1beDwerFmzRj5WW1uL9evXy9d0794dycnJqjTl5eX45ptv5DRmy967dy/69euH4uJizJo1y1pDNBGkATMJr2IPRoVtVk1vdK3Za0RYdRpuKpm0zKKhOLQG6/RuRV7RMd4UYcXMYgaleUWvLL5MIzOykanLqoxmyzFqe/959eLLRrHMJJSR2JXlBGMyt9IeRs93uExVevUw4zoA+NI5nX6ZU1LU/6BFrhNW+jjYZ0qZn547h5WygnmHmSWSTvixTMeOHTF48GBMmDABb775JgDg3nvvxdChQ1WzEDt06IA5c+bg9ttvh81mQ2lpKWbPno127dqhXbt2mD17NtLS0jB69GgAgNvtxvjx4/Hwww8jKysLLVu2xCOPPIIuXbqgf//+psuWBl8DBw7E1KlTZd8wh8OBnJyciLUTDw3ACIIgCCLGCacJsilYunQpJk+eLM9YHDZsWECcrQMHDqCqqkrenzZtGi5cuIAHHngAlZWV6NmzJ1avXo3mzZvLaV588UUkJSXhrrvuwoULF3DLLbdgyZIlcDj8/qNGZf/tb3/DyZMnsXTpUixdulQ+XlhYiMOHD4e1HaxAccA4pJgrp06Zi5Oid0MbOcjz58w6o5tx0uXlCAdW8mkqTZZEKM60oWB1AoHZF55IC6jnuByMls2MBiNcmtZQZNFLb6RlMoNRexrJoTfZI9h8tfIRYaRRNJo4ZEY+5buJ1/KIJsAo0UsbLEbvPLMaOF5LGMy7km/vSMUBu/POKiQnh5Z/XV01/va3ppOVsAYpTwmCIAiCICIMmSAJgiAIIsaJdRMkYR0agBlgNm6W2ev1YnIZOfprOVdbNQ2GIn+oacOVn1Xzrlm0lqRRnrfbzS3YHKwMPKFMtLDa33p5WjGNmU1r1YG6qSY1mKGpzd7BOItbvcd486CWGU/L7Ggkk5b506op0ugdZ1Rvoz4Ops3C9TwHCw3AEg8yQRIEQRAEQUQY0oBpYHZ6sRmnYNHXn56jtRFG2jO9/JriCygcWha9ttYKP2C3B4YbkHCI8rMgpJ6Oy6YQ1oo2zJfe3HEjtL7KzdwbevkFe54nmLAEkUTLkVzkpB2MJiVcmkejvIPtNzOO+kZ5BIOVdjE74UHv+mCu00prpN1rakgDlnjQAIwgCIIgYhwagCUeNAAjCIIgiBiHBmCJBw3ADDC6Ya3GjREtaquVrxmne+k3v3iunhx6MYDMOv5bjUWmd52WSSXAvMhdHGD84wU0EkgvYJFWxbnreBkcyt+q/HXk4OAnABi1NS+a0Tkz8aGMjhs5aJvFyFQZiiN1MOYr3sxkpm7SM200qUaLcMUK07pPzPaPlftCK05YsH3CnwvXZAurZRmZ8wkinNAAjCAIgiBiHNKAJR40ACMIgiCIGIcGYIkHDcAMCEfcqlBnuuldKzquNN1pxbMyk1cwcYDMnAMi9CKwEoxKz/YmmmpoJn8L8oj6SepHszMtzRQfzns0XGZIMwRjDgrHDD+bt8EwUVKScf+ITPhKs12wz4Oeld3MbD0z5UqPgJS2vt6Xl+T2oLyvbGC6Qinv5WBmyppxmzADmRaJWIAGYARBEAQR45AGLPGgAZgG0lddqI6Y/PXB5mUlyniDV/2VWVvr/y16iEUOtGa+lo00YFr58fkoJyaor9FzcRehOK+j7VF9rUOtfZK1h1rqCk5IMw7z/pM659TZqjQJorhjWs7qVgnlhWxGgWhVBj0naJEjuPK6UJzZNe9lnb4Otiytc8HKr+VQLopxpieT3sSf2lr1ZAOn07cBgMPO1G1jt1t7LgRprLwnte4Lsxp6Pa2wmXk8kdKmMRbacyblQcQOpIglCIIgCIKIMKQBIwiCIIgYh0yQiQcNwAzgzVVWES6JA21zhkh9biZ2kzJ8Fb8vIVKX65kj+fRKOcw4w2qZMa2aBsyo+PWcf/m25tPa7HbZbCuZ+DRjjCnyVZp6AZ8pRtnfoZqsRPY3yRzJ5x2sySYc5pNQnKBF94OVe0zCyiLpUnoVWg+C8j4xytRCQ4juk3C4Jxj9g9Uyz/HvjdpatetCSgrQrJlv3+lsnJwgX6w2kwOB7Wumb0KZNGFlMoJZDCdogIX+jFuABmCJBw3ACIIgCCLGoQFY4kEDMA34m93rFX/pWHFWN4porudkrHU9L6uWoz3gd5rV04LxWidlhH2lY66Zr26RNktLw2dGFq28fdhgt6ud9EWy+q61QeWwL2g/KS+7HYAiX68XqK/l0/rzNdIw6r0A1ef895svT+0JCHyZfJ9ZL9u4DKNrzUYAsXJOL08zmghLWmwNVVEoGo9gtOgiMXjNi5YjvQizmnTlxJiUFN+7Q621dKjLCaLP9LA6UDBbjtU+EPW3XzYbt08Q1qABGEEQBEHEOKQBSzxoAEYQBEEQMQ4NwBIPGoA1AUbxpwBxjB7efKA8p2eW4U2DVhzrjerA/9Uzg2pdq3VMVJ6eDGZQmhgc8vXWVgMQOYYro9IbOYlbMdcZxXDSut5sm+iZvYN1Vg7FWTqcBDsxRoUZr3VFZcJSJocoHp2E3qQDHiNnflFVJVOj1+v7rbw3JFO29NfMP+9wOa4bvW/MlKnbV8HYuQkizNAAjCAIgiBiHNKAJR40ANOgvj7wi1BEsDd0MNcpv1aV2qGkJPG6bEaYDQchlal1jZbjr5lo03pOw8F8jAbrJG3syGxeO2Glb622i6h/+bRaWjaz6ZRyicJF6OWvlbcVzaceKq1GsN7mwQoQyn+vMGpWlPe43nMnaZtEa4pK57S0W3phHaS1ILXOi2QRyW4Gh92vHbSs0RIIJpXvhXpijX/HejcrJyw0JTQASzxI30oQBEEQBBFhSANGEARBEDEOacASDxqAGRCM6cSMM7XonJZTtGQ6EpkLRM7yVqwd4bLUiEyWwZopzKDnuBwOouGLy5vwzMU/87WFNOHATHuI7k8rccC0Jovoyah1Xs+sJFwkXcKM87wVoazkHQxaHWoggih+nlnxRCtA8G0q3TcOO5CUZM60acbkpucYL1yZwgBhmiD7yej9HG53k3BBi3EnHmSCJAiCIAiCiDCkAdPAargGCSsfula0Rsro5ma+2kLV4Bh9lfKhHUQKh2A0HVZlaoqwADx68oUjsrYIS1PrFY0vXMOSy8zRuM9HU7eiDTCr5bIaNkNJOLUeltCagWLlWosVZ7CZ0kyKjmtpJ7W0pcKMwa/nqH2fGlVRt1yE8MyGYk4wmZWZ7oqWJszrBWwhKvyjrcUj1NAAjCAIgiBiHBqAJR40ACMIgiCIGIcGYIlHXAzA1q1bh379+gnPff3117juuusAADbB3fn6669j4sSJlsvkTWhWzIp6DsrhwKqjfTBYdW43kkcrPyvmiKZyuA+FSMskKs9mt2vLYRfEOzLpeK+XxuwEAWVMKksFmEUj1pOes7cwplQIMcWEbW93qGQwimFlg980DPhXcdDKX8uRXOwgL1q4W7xwvTIdP8FHeU7P1UL0/tOdUKElBI/JmTx8e+nFOBOJYGR2588nxcV/USIWiYtbp1evXigvL1cde+KJJ/DFF1+gR48equOLFy/G4MGD5X232x0RGQmCIAiiqSANWOIRFwMwp9MJj8cj79fV1eGjjz5CSUlJgNarRYsWqrTBEoqWKRohDMwSDmf4cJerPBeKDOF0yI+EHOFsbzNhOcw4SwfzgjZyutbNOJRo9hpaD1+WonZQplGvm2i3OwTpRTkE3qta2ii73e9YL/0WatUbtWXCTBq1Y7xayaH8bff/NtL+aE6M0VULIaCteWd/s1p/02WGAVH2oWp0zV7bFNAALPGI4aGCNh999BFOnTqFcePGBZwrKSlBdnY2rrvuOrzxxhvwGtxxNTU1qK6uVm0EQRAEQRBNSVxowHgWLVqEQYMGoaCgQHX8mWeewS233ILU1FT8z//8Dx5++GGcOnUKjz/+uGZec+bMwdNPP93UIhMEQRBE0JAGLPGwMRa92LhlZWWGg59t27ap/Lx+/PFHFBYWYvny5fjd736ne+38+fMxc+ZMVFVVaaapqalBTU2NvF9dXY2CggKcOVOFjIwMkzUhooGRqS8WnfaVRCKGmZJotUdT1lO0MLUZp+tg/xFZNTcFuyqF5uQFHS9xkUnUqCwzfWNk1hTlq8S0OVrHkV50mZFV24xZVM8sb7bvqqur0aKFG1VVTfM/o7q6Gm63G+3aVcHhCC3/hoZqfPdd08lKWCOqGrCSkhKMGjVKN02bNm1U+4sXL0ZWVhaGDRtmmP8NN9yA6upqHD9+HLm5ucI0LpcLLpfLtMwEQRAEQRChEtUBWHZ2NrKzs02nZ4xh8eLFGDt2LJKTkw3T79y5EykpKWjRokUIUhIEQRBEdCETZOIRVz5gX375JQ4dOoTx48cHnPv4449RUVGBoqIipKamYu3atXjsscdw7733xo2Gy8rsuWAXow7FbBdpk1moNEWMsXhrAyVm7plwzZINqp2s/neQZgg2Is0MdJiywUl/DexMoawtFgrKKphsF1ujDGYXZjfbR3w6h9VqBjHTVXSvhnu5tXiDFuNOPOJqALZo0SL06tULHTt2DDiXnJyM1157DVOnToXX68Vll12GmTNn4sEHH4yCpARBEARBENpE1Qk/FpEcHhPFCT9WNDamIoITlolW7DarxPqEiGBpapNOqItDN9WqHEZ5BePcH69Eygm/TZsq2O2h5e/1VuPwYXLCjxXiSgNGEARBEL9GwjHYJx+w2IIGYARBEAQR49AALPGgAViCI1x4OArEggyEMU3VT7Ec80xvuR4jYsERnJfBrNkxnLIH07/8NYlikiQIs9AAjCAIgiBiHNKAJR4x8P0W/9jATG/RwLx04dmiSaLVh6epZYuFOke6z+x2wGFn8hbZpyX87wu73dwWTuLpGYpXvN7wbE1FZWUlxowZA7fbDbfbjTFjxuDMmTO61zDGUFZWhvz8fKSmpqJv377Yu3evKk1NTQ0mTZqE7OxspKenY9iwYfjxxx8tlX369GkMHjwY+fn5cLlcKCgoQElJSdTXfqYBGEEQBEEQITF69Gjs2rULq1atwqpVq7Br1y6MGTNG95p58+ZhwYIFWLhwIbZt2waPx4MBAwbg7NmzcprS0lKsXLkSy5Ytw8aNG3Hu3DkMHToUDQ0Npsu22+0YPnw4PvroIxw8eBBLlizBF198gYkTJ4a/ISxAYSg4gglDYeVL9dfwNRhNf6+maN9Y8l+L1P2TaH1oRCz1sZJEeV+Yad94rWukwlC0ahWeMBQnToRf1v3796NTp07YsmULevbsCQDYsmULioqK8O2336J9+/YB1zDGkJ+fj9LSUkyfPh2AT9uVm5uL5557Dvfddx+qqqqQk5OD999/HyNHjgQA/PTTTygoKMCnn36KQYMGBVU2ALzyyit4/vnncezYsbC1g1VIA0aEnWiZHZqqzFgypUTKlB1NE1JTmezDbeqLRZrK3NkUplSr91Ui9VMwhNMEWV1drdpqampCkm3z5s1wu93yAAjwrcXsdruxadMm4TWHDh1CRUUFBg4cKB9zuVzo06ePfM2OHTtQV1enSpOfn4/OnTvLaYIp+6effsKKFSvQp0+f4CsdBmgARhAEQRC/IgoKCmR/KbfbjTlz5oSUX0VFBVq1ahVwvFWrVqioqNC8BgByc3NVx3Nzc+VzFRUVcDqdyMzM1E1jtuy7774baWlpuOSSS5CRkYF33nnHZA2bBhqAhYFY0pCEm0g7EEdL1litkxaxKpcmQX6u27wN5rf6Ot+m/K3YUF9vfYuCd3Mo75NQ7u6mylevPCt1TcT3qxXCqQE7duwYqqqq5G3GjBnCMsvKymCz2XS37du3AwBsgpXCGWPC40r482au4dOYLfvFF1/EP//5T3z44Yf417/+halTp+qW09RQGAqCIAiCiHHCuRh3RkaGKR+wkpISjBo1SjdNmzZtsHv3bhw/fjzg3MmTJwM0XBIejweAT4OVl5cnHz9x4oR8jcfjQW1tLSorK1VasBMnTqBXr15yGrNlezweeDwedOjQAVlZWbjpppvwxBNPqMqPJKQBIwiCIAgigOzsbHTo0EF3S0lJQVFREaqqqvD111/L127duhVVVVXyQImnbdu28Hg8WLNmjXystrYW69evl6/p3r07kpOTVWnKy8vxzTffyGmCKRvwacgAhOz/FgqkAQszv3Y1eSwTjr6xganyUe5H0xQYjbIttafdEZYydeupDG4VCyHqTRIL90880hTtFcvvb68XMLDMGdJUMQ86duyIwYMHY8KECXjzzTcBAPfeey+GDh2qmoXYoUMHzJkzB7fffjtsNhtKS0sxe/ZstGvXDu3atcPs2bORlpaG0aNHAwDcbjfGjx+Phx9+GFlZWWjZsiUeeeQRdOnSBf379zdd9qefforjx4/juuuuQ7NmzbBv3z5MmzYNvXv3Rps2bZqmUUxAAzCCIAiCiHFieQAGAEuXLsXkyZPlGYvDhg3DwoULVWkOHDiAqqoqeX/atGm4cOECHnjgAVRWVqJnz55YvXo1mjdvLqd58cUXkZSUhLvuugsXLlzALbfcgiVLlsDh8H/UGZWdmpqKt99+G1OmTEFNTQ0KCgpwxx134NFHH22StjALxQHjCCYOWCITz1/lkf6albRh8dxmoRCr2oN46w/lPRRMmwZb31DLjSSR6lMzbRKpOGDp6VWw2ULLn7Fq/PJL08lKWCN+9PQEQRAEQRAJApkgCYIgCCLGiXUTJGEdGoBpEDfxlQhNohWLLFGJdbOUFvEodygyR+vaSNKUciqfYa3fWumbEhqAJR5kgiQIgiAIgogwpAHTIFEj2xPxR6xo1WJFDiJ+iYd3qlUZI1Un0oAlHjQAIwiCIIgYhwZgiQeZIAmCIAiCICIMacAIIsaJB7MNQRBNC2nAEg8agBEEQRBEjMMYDaASDRqAcUgLA1RXV0dZEoIgCCLWkf5XNP2iMuH4n0T/12IJGoBxnD59GgBw6aUFUZaEIAiCiBfOnj0Lt9sd9nydTic8Hg8qKsLzP8nj8cDpdIYlLyI0aC1IjjNnziAzMxNHjx5tkocp2lRXV6OgoADHjh1LuLXAqG7xCdUtPqG6+WCM4ezZs8jPz4fd3jTz2i5evIja2tqw5OV0OpGSkhKWvIjQIA0Yh/QAud3uhHupKMnIyEjY+lHd4hOqW3xCdUOTf6ynpKTQoCkBoTAUBEEQBEEQEYYGYARBEARBEBGGBmAcLpcLTz31FFwuV7RFaRISuX5Ut/iE6hafUN0IIjTICZ8gCIIgCCLCkAaMIAiCIAgiwtAAjCAIgiAIIsLQAIwgCIIgCCLC0ACMIAiCIAgiwtAAjOO1115D27ZtkZKSgu7du+N///d/oy2SZcrKymCz2VSbx+ORzzPGUFZWhvz8fKSmpqJv377Yu3dvFCXWZsOGDbjtttuQn58Pm82GDz/8UHXeTF1qamowadIkZGdnIz09HcOGDcOPP/4YwVqIMarbuHHjAvrxhhtuUKWJ1brNmTMH1113HZo3b45WrVphxIgROHDggCpNvPadmbrFa9+9/vrruPrqq+UApEVFRfjss8/k8/HaZ4Bx3eK1z4j4hQZgCj744AOUlpbisccew86dO3HTTTdhyJAhOHr0aLRFs8xVV12F8vJyeduzZ498bt68eViwYAEWLlyIbdu2wePxYMCAATh79mwUJRbzyy+/oGvXrli4cKHwvJm6lJaWYuXKlVi2bBk2btyIc+fOYejQoWhoaIhUNYQY1Q0ABg8erOrHTz/9VHU+Vuu2fv16PPjgg9iyZQvWrFmD+vp6DBw4EL/88oucJl77zkzdgPjsu9atW2Pu3LnYvn07tm/fjptvvhnDhw+XB1nx2meAcd2A+OwzIo5hhMz111/PJk6cqDrWoUMH9uijj0ZJouB46qmnWNeuXYXnvF4v83g8bO7cufKxixcvMrfbzd54440ISRgcANjKlSvlfTN1OXPmDEtOTmbLli2T0/z73/9mdrudrVq1KmKyG8HXjTHGiouL2fDhwzWviZe6McbYiRMnGAC2fv16xlhi9R1fN8YSq+8yMzPZO++8k1B9JiHVjbHE6jMiPiANWCO1tbXYsWMHBg4cqDo+cOBAbNq0KUpSBc93332H/Px8tG3bFqNGjcIPP/wAADh06BAqKipU9XS5XOjTp0/c1dNMXXbs2IG6ujpVmvz8fHTu3Dku6rtu3Tq0atUKV155JSZMmIATJ07I5+KpblVVVQCAli1bAkisvuPrJhHvfdfQ0IBly5bhl19+QVFRUUL1GV83iXjvMyK+oMW4Gzl16hQaGhqQm5urOp6bm4uKioooSRUcPXv2xHvvvYcrr7wSx48fx7PPPotevXph7969cl1E9Txy5Eg0xA0aM3WpqKiA0+lEZmZmQJpY79chQ4bgzjvvRGFhIQ4dOoQnnngCN998M3bs2AGXyxU3dWOMYerUqbjxxhvRuXNnAInTd6K6AfHdd3v27EFRUREuXryIZs2aYeXKlejUqZM8yIjnPtOqGxDffUbEJzQA47DZbKp9xljAsVhnyJAh8u8uXbqgqKgIl19+Od59913ZqTQR6ikRTF3iob4jR46Uf3fu3Bk9evRAYWEhPvnkE9xxxx2a18Va3UpKSrB7925s3Lgx4Fy8951W3eK579q3b49du3bhzJkz+Pvf/47i4mKsX79ePh/PfaZVt06dOsV1nxHxCZkgG8nOzobD4Qj4kjlx4kTAF1+8kZ6eji5duuC7776TZ0MmQj3N1MXj8aC2thaVlZWaaeKFvLw8FBYW4rvvvgMQH3WbNGkSPvroI6xduxatW7eWjydC32nVTUQ89Z3T6cQVV1yBHj16YM6cOejatStefvnlhOgzrbqJiKc+I+ITGoA14nQ60b17d6xZs0Z1fM2aNejVq1eUpAoPNTU12L9/P/Ly8tC2bVt4PB5VPWtra7F+/fq4q6eZunTv3h3JycmqNOXl5fjmm2/irr6nT5/GsWPHkJeXByC268YYQ0lJCVasWIEvv/wSbdu2VZ2P574zqpuIeOo7HsYYampq4rrPtJDqJiKe+4yIEyLu9h/DLFu2jCUnJ7NFixaxffv2sdLSUpaens4OHz4cbdEs8fDDD7N169axH374gW3ZsoUNHTqUNW/eXK7H3LlzmdvtZitWrGB79uxhd999N8vLy2PV1dVRljyQs2fPsp07d7KdO3cyAGzBggVs586d7MiRI4wxc3WZOHEia926Nfviiy/YP//5T3bzzTezrl27svr6+mhVizGmX7ezZ8+yhx9+mG3atIkdOnSIrV27lhUVFbFLLrkkLup2//33M7fbzdatW8fKy8vl7fz583KaeO07o7rFc9/NmDGDbdiwgR06dIjt3r2b/ed//iez2+1s9erVjLH47TPG9OsWz31GxC80AOP485//zAoLC5nT6WTdunVTTS2PF0aOHMny8vJYcnIyy8/PZ3fccQfbu3evfN7r9bKnnnqKeTwe5nK52G9+8xu2Z8+eKEqszdq1axmAgK24uJgxZq4uFy5cYCUlJaxly5YsNTWVDR06lB09ejQKtVGjV7fz58+zgQMHspycHJacnMwuvfRSVlxcHCB3rNZNVC8AbPHixXKaeO07o7rFc9/98Y9/lN9/OTk57JZbbpEHX4zFb58xpl+3eO4zIn6xMcZY5PRtBEEQBEEQBPmAEQRBEARBRBgagBEEQRAEQUQYGoARBEEQBEFEGBqAEQRBEARBRBgagBEEQRAEQUQYGoARBEEQBEFEGBqAEQRBEARBRBgagBEJR9++fVFaWppQ5Y4bNw4jRowIKY82bdrAZrPBZrPhzJkzmumWLFmCFi1ahFQWoc24cePkfvjwww+jLQ5BEFGCBmAEESZWrFiBZ555Rt5v06YNXnrppegJJGDmzJkoLy+H2+2OtigJz7p164SD3Zdffhnl5eXREYogiJghKdoCEESi0LJly2iLYEjz5s3h8XiiLQYAoK6uDsnJydEWI+K43W4aABMEQRowIvGprKzE2LFjkZmZibS0NAwZMgTfffedfF4yuX3++efo2LEjmjVrhsGDB6u0FPX19Zg8eTJatGiBrKwsTJ8+HcXFxSqzoNIE2bdvXxw5cgRTpkyRzU0AUFZWhmuuuUYl30svvYQ2bdrI+w0NDZg6dapc1rRp08CvGMYYw7x583DZZZchNTUVXbt2xX//938H1T5LlizBpZdeirS0NNx+++04ffp0QJqPP/4Y3bt3R0pKCi677DI8/fTTqK+vl89/++23uPHGG5GSkoJOnTrhiy++UJnYDh8+DJvNhuXLl6Nv375ISUnBX/7yFwDA4sWL0bFjR6SkpKBDhw547bXXVGX/+9//xsiRI5GZmYmsrCwMHz4chw8fls+vW7cO119/PdLT09GiRQv07t0bR44cMVV3o3otWLAAXbp0QXp6OgoKCvDAAw/g3Llz8vkjR47gtttuQ2ZmJtLT03HVVVfh008/xeHDh9GvXz8AQGZmJmw2G8aNG2dKJoIgfh3QAIxIeMaNG4ft27fjo48+wubNm8EYw6233oq6ujo5zfnz5/HCCy/g/fffx4YNG3D06FE88sgj8vnnnnsOS5cuxeLFi/HVV1+hurpa139nxYoVaN26tWzys2Jymj9/Pv7rv/4LixYtwsaNG/Hzzz9j5cqVqjSPP/44Fi9ejNdffx179+7FlClTcM8992D9+vXmGwbA1q1b8cc//hEPPPAAdu3ahX79+uHZZ59Vpfn8889xzz33YPLkydi3bx/efPNNLFmyBLNmzQIAeL1ejBgxAmlpadi6dSveeustPPbYY8Lypk+fjsmTJ2P//v0YNGgQ3n77bTz22GOYNWsW9u/fj9mzZ+OJJ57Au+++C8DXL/369UOzZs2wYcMGbNy4UR4g19bWor6+HiNGjECfPn2we/dubN68Gffee6884NXDqF4AYLfb8corr+Cbb77Bu+++iy+//BLTpk2Tzz/44IOoqanBhg0bsGfPHjz33HNo1qwZCgoK8Pe//x0AcODAAZSXl+Pll1+21DcEQSQ4UV0KnCCagD59+rCHHnqIMcbYwYMHGQD21VdfyedPnTrFUlNT2fLlyxljjC1evJgBYN9//72c5s9//jPLzc2V93Nzc9nzzz8v79fX17NLL72UDR8+XFguY4wVFhayF198USXbU089xbp27ao69uKLL7LCwkJ5Py8vj82dO1fer6urY61bt5bLOnfuHEtJSWGbNm1S5TN+/Hh29913a7aLSJ67776bDR48WHVs5MiRzO12y/s33XQTmz17tirN+++/z/Ly8hhjjH322WcsKSmJlZeXy+fXrFnDALCVK1cyxhg7dOgQA8BeeuklVT4FBQXsr3/9q+rYM888w4qKihhjjC1atIi1b9+eeb1e+XxNTQ1LTU1ln3/+OTt9+jQDwNatW6dZby2M6iVi+fLlLCsrS97v0qULKysrE6Zdu3YtA8AqKyuF55XtQxDErw/yASMSmv379yMpKQk9e/aUj2VlZaF9+/bYv3+/fCwtLQ2XX365vJ+Xl4cTJ04AAKqqqnD8+HFcf/318nmHw4Hu3bvD6/WGVd6qqiqUl5ejqKhIPpaUlIQePXrIZsh9+/bh4sWLGDBggOra2tpaXHvttZbK279/P26//XbVsaKiIqxatUre37FjB7Zt26bSDDU0NODixYs4f/48Dhw4gIKCApVvmbKtlPTo0UP+ffLkSRw7dgzjx4/HhAkT5OP19fWyj9SOHTvw/fffo3nz5qp8Ll68iH/9618YOHAgxo0bh0GDBmHAgAHo378/7rrrLuTl5RnW3aheaWlpWLt2LWbPno19+/ahuroa9fX1uHjxIn755Rekp6dj8uTJuP/++7F69Wr0798fv/vd73D11Vcblk0QBEEDMCKhYZzvlPK40kzFO4PbbLaAa3mzllbeetjt9oDrlKZQM0iDvk8++QSXXHKJ6pzL5bKUl5k6eL1ePP3007jjjjsCzqWkpAS0pR7p6emqfAHg7bffVg2QAd8AV0rTvXt3LF26NCCvnJwcAD4fssmTJ2PVqlX44IMP8Pjjj2PNmjW44YYbQqrXkSNHcOutt2LixIl45pln0LJlS2zcuBHjx4+X++w//uM/MGjQIHzyySdYvXo15syZg/nz52PSpEmm2oMgiF8vNAAjEppOnTqhvr4eW7duRa9evQAAp0+fxsGDB9GxY0dTebjdbuTm5uLrr7/GTTfdBMCnKdm5c2eAQ70Sp9OJhoYG1bGcnBxUVFSoBi27du1SlZWXl4ctW7bgN7/5DQCfRmjHjh3o1q2bXCeXy4WjR4+iT58+puqgRadOnbBlyxbVMX6/W7duOHDgAK644gphHh06dMDRo0dx/Phx5ObmAgC2bdtmWHZubi4uueQS/PDDD/jDH/4gTNOtWzd88MEHaNWqFTIyMjTzuvbaa3HttddixowZKCoqwl//+lfDAZhRvbZv3476+nrMnz8fdrvPXXb58uUB6QoKCjBx4kRMnDgRM2bMwNtvv41JkybB6XQCQMA9QBAEAdAAjEhw2rVrh+HDh2PChAl488030bx5czz66KO45JJLMHz4cNP5TJo0CXPmzMEVV1yBDh064NVXX0VlZaWu5qdNmzbYsGEDRo0aBZfLhezsbPTt2xcnT57EvHnz8Pvf/x6rVq3CZ599phpcPPTQQ5g7dy7atWuHjh07YsGCBapYUs2bN8cjjzyCKVOmwOv14sYbb0R1dTU2bdqEZs2aobi42HS9Jk+ejF69emHevHkYMWIEVq9erTI/AsCTTz6JoUOHoqCgAHfeeSfsdjt2796NPXv24Nlnn8WAAQNw+eWXo7i4GPPmzcPZs2dlJ3wjzVhZWRkmT56MjIwMDBkyBDU1Ndi+fTsqKysxdepU/OEPf8Dzzz+P4cOHY+bMmWjdujWOHj2KFStW4E9/+hPq6urw1ltvYdiwYcjPz8eBAwdw8OBBjB071rDuRvW6/PLLUV9fj1dffRW33XYbvvrqK7zxxhuqPEpLSzFkyBBceeWVqKysxJdffikP7AsLC2Gz2fCPf/wDt956K1JTU9GsWTPTfUMQRIITNe8zgmgieGf4n3/+mY0ZM4a53W6WmprKBg0axA4ePCifX7x4scrpnDHGVq5cyZSPR11dHSspKWEZGRksMzOTTZ8+nd15551s1KhRmuVu3ryZXX311czlcqnyev3111lBQQFLT09nY8eOZbNmzVI54dfV1bGHHnqIZWRksBYtWrCpU6eysWPHqhz+vV4ve/nll1n79u1ZcnIyy8nJYYMGDWLr16/XbBeREz5jPkf31q1bs9TUVHbbbbexF154IaA9Vq1axXr16sVSU1NZRkYGu/7669lbb70ln9+/fz/r3bs3czqdrEOHDuzjjz9mANiqVasYY34n/J07dwaUv3TpUnbNNdcwp9PJMjMz2W9+8xu2YsUK+Xx5eTkbO3Ysy87OZi6Xi1122WVswoQJrKqqilVUVLARI0awvLw85nQ6WWFhIXvyySdZQ0ODZjtYqdeCBQtYXl6efN+89957Ksf6kpISdvnllzOXy8VycnLYmDFj2KlTp+TrZ86cyTweD7PZbKy4uFhVNsgJnyB+1dgYC8KRhSB+5Xi9XnTs2BF33XWXKvp9LNOmTRuUlpZGZJmmr776CjfeeCO+//571eQGwo/NZsPKlStDXmKKIIj4hOKAEYQJjhw5grfffhsHDx7Enj17cP/99+PQoUMYPXp0tEWzxPTp09GsWTNUVVWFNd+VK1dizZo1OHz4ML744gvce++96N27Nw2+BEycOJFMkQRBgDRgBGGCY8eOYdSoUfjmm2/AGEPnzp0xd+5c2VE+Hjhy5Ig8e++yyy6THcvDwXvvvYdnnnkGx44dQ3Z2Nvr374/58+cjKysrbGVY5aqrrtKMiP/mm29qOv43NSdOnEB1dTUAX7gT5cxQgiB+PdAAjCCIhEQ54OTJzc0NiC1GEAQRSWgARhAEQRAEEWHIB4wgCIIgCCLC0ACMIAiCIAgiwtAAjCAIgiAIIsLQAIwgCIIgCCLC0ACMIAiCIAgiwtAAjCAIgiAIIsLQAIwgCIIgCCLC0ACMIAiCIAgiwvw/TYckSFblhAwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pr_diff = rg_list[0] - rg_list[1]\n", + "\n", + "pr_diff.pr.plot(cmap=\"bwr\")\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "e1fc1957-c334-4431-9e0a-15715106b5d6", + "metadata": {}, + "source": [ + "### Plot everything together\n", + "Plot the regridded precipitation data as well as the difference between models on the same figure. We can use `Cartopy` to make it pretty. With `GridSpec`, we can also split up the figure and organize it to use the same colorbar for more than one panel." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "86ab0c4a-ce76-48ab-843d-e79333bdd58c", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAKQCAYAAACxYVGgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5jc1NnFf5Kmz2zv3eveG7axMRhjmum9EyD0GgiEhCRACqGEQKj5QiD0EnozvRgbbIN7793rLd719tnpkr4/JM1oZmexDQYM6Pjxs7vSlXR1Ve7ReZugqqqKBQsWLFiwYMHCPgjxh+6ABQsWLFiwYMFCT7CIigULFixYsGBhn4VFVCxYsGDBggUL+ywsomLBggULFixY2GdhERULFixYsGDBwj4Li6hYsGDBggULFvZZWETFggULFixYsLDPwiIqFixYsGDBgoV9FhZRsWDBggULFizss7CIioXvFcuWLeOXv/wl1dXVuFwufD4fo0eP5u6776alpeU7O64gCD3+v+CCC5LafvjhhxxxxBGUlpbidDopLS1l8uTJ3HXXXUntevXqhSAITJ48Oe0xn3nmmfgxZsyYEV/+1FNP9diXhoaGvXzmFixYsPDjhu2H7oCFnw8ee+wxrrzySgYMGMCNN97I4MGDiUajLFiwgEceeYQvv/ySN9544zs7/qmnnsoNN9zQbXlBQUH890ceeYQrrriCU045hYcffpjc3FxqamqYM2cOr776KjfddFPSthkZGXz++eds3LiRPn36JK174oknyMzMpKOjI21/nnzySQYOHJi0LC8v75uengULFiz8JGERFQvfC7788kuuuOIKDj/8cN58802cTmd83eGHH84NN9zABx988J32oaioiPHjx39tmzvvvJNJkybx6quvJi3/xS9+gaIo3dofeOCBLF++nCeeeILbb789vnzjxo18/vnnXHzxxTz22GNpjzV06FDGjBnzDc7EggULFn4+sEw/Fr4X3HHHHQiCwKOPPppEUgw4HA6OP/54AF566SWOOOIISkpKcLvdDBo0iJtuuomurq6kbS644AJ8Ph8bNmzg6KOPxufzUVFRwQ033EA4HP5G/WxubqakpCTtOlHs/riIosh5553H008/nURknnjiCSoqKjjssMO+UT8sWLBgwYIGi6hY+M4hyzLTp09nv/32o6KiYpft169fz9FHH83jjz/OBx98wHXXXcfLL7/Mcccd161tNBrl+OOP59BDD+Wtt97iwgsv5L777uPvf/97t7aqqhKLxbr9NxcQnzBhAq+99hp//vOfWbp0KbIs77K/F154IXV1dXz44Yfx83366ae54IIL0pIbA8ceeyySJJGbm8vJJ5/MihUrdnksCxYsWPjZQbVg4TtGQ0ODCqhnnnnmHm+rKIoajUbVmTNnqoC6dOnS+Lrzzz9fBdSXX345aZujjz5aHTBgQNIyoMf/zz77bLzdhg0b1KFDh8bXud1u9dBDD1UffvhhNRKJJO2zqqpKPeaYY1RVVdWDDz5YPfXUU1VVVdV3331XFQRB3bx5s/rKK6+ogPrZZ5/Ft3v//ffVP/7xj+q0adPUmTNnqg8//LBaXl6uer1edcmSJXs8RhYsWLDwU4blo2Jhn8OmTZu4+eabmT59Oo2NjUmKx+rVqxk+fHj8b0EQuiktw4cPZ/r06d32e/rpp3PjjTd2W967d+/473369GHp0qXMmjWLGTNmsGDBAmbOnMmnn37Kk08+yaxZs3C5XN32ceGFF3LJJZfQ3NzM448/ziGHHEKvXr1YsGBBt7ZTp05l6tSp8b8nTZrEMcccw7Bhw7j11lt56623djFCFixYsPDzgUVULHznyM/Px+PxsHnz5l229fv9HHTQQbhcLv72t7/Rv39/PB4PNTU1nHzyyQSDwaT2Ho+nG3FwOp2EQqFu+y4oKNgt51VRFJk0aRKTJk0CoKuri4suuoiXXnqJJ554giuvvLLbNqeeeirXXHMN9913H9OmTeOpp57a5XHM6NWrFwceeCBfffXVHm1nwYIFCz91WETFwncOSZI49NBDef/999m+fTvl5eU9tp0+fTp1dXXMmDGDgw8+OL68ra3te+hpeni9Xn7/+9/z0ksv9ehH4vF4OPPMM7nzzjvJzMzk5JNP3uPjqKr6tT4tFixYsPBzhPVWtPC94Pe//z2qqnLJJZcQiUS6rY9Go0ybNg1BEAC6RQb95z//+V76WV9fn3b56tWrASgtLe1x2yuuuILjjjuOW2+9Na156OuwefNmZs+evcvwaQsWLFj4ucFSVCx8L5gwYQL//ve/ufLKK9lvv/244oorGDJkCNFolMWLF/Poo48ydOhQ/vvf/5KTk8Pll1/On/70J+x2O88//zxLly791n3YsWNHWtNKZmYmgwcPBmDIkCEceuihHHXUUfTp04dQKMTcuXO59957KSoq4qKLLupx/yNHjuTNN9/cZT8OO+wwJk2axPDhw8nMzGT58uXcfffdCILAbbfd9o3Pz4IFCxZ+irCIioXvDZdccgnjxo2Lhw83NDRgt9vp378/Z599NldffTV5eXm8++673HDDDZx77rl4vV5OOOEEXnrpJUaPHv2tjv/qq692S+QGMHHiRGbNmgXAXXfdxYcffsjtt99OQ0MDsViMiooKzj77bP74xz/2mGNlTzBs2DBeeukl7rnnHoLBIIWFhUyZMoVbbrmF/v37f+v9W7BgwcJPCYJqDqmwYMGCBQsWLFjYh2D5qFiwYMGCBQsW9llYRMWCBQsWLFiwsM/CIioWLFiwYMGChX0WFlGxYMGCBQsWLOyzsIiKBQsWLFiwYGGfhUVULFiwYMGCBQv7LKw8KhZ+NFBVlXA4nPQ/FAp9478VRcHpdCb9d7lc3/hvSZJ+6CGyYMGChZ8cLKJi4XuHqqq0trbS1NREc3Nz0v+WlhZWrN/M+i017GxuJtDZQSToJxYKoMai3XdmsyHYbAg2CcGu/263acvtEoLdrq2zpayz2RAEATUW0//LqNGY9j8Wg/iyaPL6WAyMn6kpiEQRm9OD3e3F5c0gKzubitISRvTrTWlpEXl5eeTm5pKXl0deXh75+fkUFhZis1mPoQULFiz0BCvhm4W9img0Sm1tLbW1tdTV1VFbW8vGjVuZtXgZNbW1+FubiXS1ocZiCHY7oseD5PUgejyIXq/2e/y/F9HnQfR5kHweBJcdwaGRDBwSSBrZQFQRBEBQQdVqBSGqIKgIooogqYiSAoCqiKgqqIqA2ODs+UR2A6osm4hODDUaRQkGkQMBlEAXcpf+MxBA7upCCQT0dQGUri6UUAgEAbsnA3dmDgWFRYwZNojhg/pTVlYW/19eXk5GRsa3vDIWLFiw8OOERVQs7BFUVaWlpYVNmzbF/384ey6LV68m0NpErK0NBAEpIwNbViZSVha27CykrCyk7Cyk7Ez970xEvXCfKqmgAhIgqCjhCLHOTqLb6uhasARbbjax5laCi1YgZWcieNw4e5WRedQkBIcTpaOTWHMbwWWribW0E2toQm7rjPfZM7IfRb8+E8GhH08BVf32ROXbQpVl5I4OYu3txNrbkTvaE7+3txPr6EBub0eNRhE9Hpy5+VSUV3HipAn079+f3r1707t3b8rLyy2zkwULFn6ysIiKhbSIRqNs2LCBNWvWsHr1aqZ9+gWrVq2ms20HaiiEmOHDVpCb+J+fiz03H6kwByknC0EUNYVDSOxTEHRriQqCLIAqIPsDRDZvpWPWXNRwiOj2BhR/1zfqs6OyDFtJPpHN24k1NndbL+VlUn7nNYheD6oqoHbau7VRVRWloxNVVpCyMhDSEIDg6nVEGxpxDx2IvSB/t/sX3rSVrkXLcA3oi7NXBVKGb5fbqKqKEggS29lCbGdz958tbSAIOLJzKS+v5rjJBzFy5FAGDRrEoEGDyMzM3O3+WbBgwcK+CIuo/MyhKAqbN29m6dKlLFiwgNc+nEHNlk0E25oQJBFbUQH20kLsJdp/W3EBtvxcJLsLVEFTQwykEBNIkJNYcweCrGLLyQEF2j/4lLa3P+ixX47+1aiBINHtDUnLRbcb97AhuPr3hVgMwefS/EhUmYwpY0AANRLEP2Mu7e/NRm5NKCu2/CzKbr8K0eftRlQ6Z86h7Z2PUIIhkOX48uKbfoWzqiKpD1uvuDH+e9W//7Fb4wzQOXseLc+9krTMPXQQnlHDEDO8OKsqkDL3zMSjyjKx1nZijU1EGxqJ1jdqPxt2oPi7sHuzyC0p59CJ+zPloAMYMWIEQ4cOxaWrWRYsWLCwr8MiKj8jhMNhli1bxuLFi3njk+nMXDiXUG0dakzGXlKIo6IEe3kx9pIi7MVF2HKzEZA0s4yCRkIMIiKqqKL+U1UhGkWVw6jBAJ0zFtD56VeooQg5Zx9H6wvTkvohZHhRO/dMNSn61ZW4e1UhiDYQ1LgrCqD1Q1A105Gogl1BsCl0Tp9H85NvAlB9/5U4KwtRVQFFEYiGbaiBhBNr7R//TqypGWw2iMXiy72TxpN/7slJfemat5jWNz4g87CDyDz0wN0+ByUUwj97AV3zlxDZtK3Hdt6JY8k+7nDNzCV+8wwCsr8rTlwitQ1Et9cT2V6PGgpjLyygund/LjrhWEaOHMl+++1HXl7eNz6WBQsWLHxXsIjKTxSKorBmzRrmz5/Pa+99xCdfziJYV4vodOCoKMNeWYK9sgRHeQn24iJEyaZN/oKKoM+NqgoogmamMYiKqCJ3Bgit24h/9jxCK9d+bT8c/aqIrN+6x/33TRhM5mFjsJcWIeVkoMoSiiyCLEBQQgyJiFEBQSZOnmSnimpXUR0KXUsWs/Pf/8M1pJryP1+AGD8nAVXRyAqAIKhINoVYw0623fIUsZbOpH64BlbS644LEQTNYVcSFew2GUlQUVWIyBKRqA3FtF9V1c1aXSFCa7cQWLIOe3k5voljEETdmVdWiDU1E93eQGDJapROP6EV2ljaiguINTQBYC8rRsrIwNmnF7aCHO26lRYhCjZtLPRrEle2VP16xQSIygiqGCc7qqiiCCpyaxuRujoidbVEt9UT2V5HbGcztrw8evcbzGWnncjYsWMZPXo0Xq93j6+dBQsWLOxNWETlJ4KOjg6++uorPv74M/775hu012wBRcFRWY6jqhxHnwocvcux5eci6Hn+4kEyOjnpRkwgPhEaEoYcDrP92pv3at8944biGdaLnY+/k7S84t5rcJQXosTEPSIpqi3Ktov+CEDRtaeTedBQjWhAEqGABFERBRVBiVH/6Pt0zltL3skHIWZ5cfUuxVGap63vgawA+EPO+L4B/Is30vDP/6GGIvHzKfztRbgH9wO9jeGvY5xDrK2Luhv+mjQGzr69CG/YkrRMcDpwDepH5rFTcPYq166XQVoARJVI4w7qb7k3vo29pAhbXj6RujocZWV4Bg7ENbAvtiLNx0YOdhHZXkNk83bCm7cR2VqD3OnHVVTM5AMO5NyTT+DAAw+ksrJSi7SyYMGChe8JFlH5kaKhoYGZM2fy0tvv8sFn0wk21GHLzcHZpxfOfr1w9K3CUVyIYE6Vo391qwb5AASx++VXZQHCEFqznq65C5H9XdhLC5FyMnEO6cuOPz/4rfufd9GJuAb1wVaUi4CAHIgQmL8cJBv+mfMIr9lM0W/OxbvfoDijkqMidNmQuhLmEMWhonhkRKeM5NB8SxofeoXOWcvwjR1Ar5vPQBAS5xiTdZKmz7U2ScYmKdhFJd5O1kOYFQRisoiiaNvYbXK8jWS0VYX4PmOypKklqsCmax4mUrsTKcuHqihkn3QoGYeOQxC7O+ca5Kbxn08TXLoGgIzDD8I3fgyO8hItZ4sioUYjROrrCW/eTMfHs1DDEbJOOBLRJuHoW4mAipjpQcrLJLx+Ky3PvEW0pqHb8cwovPYy3P36aWOiaEMNoKAS62wjsn0boQ1bCG/YQmRbLbaMDHoPHs41Z5/OpEmTGDp0KOK3ME9ZsGDBwq5gEZUfCVpaWpg5cyZPv/w6H3z6CeGdO3CUleLsW42zfy+cfau0aBsV7evawB6QE9UfI7R6LYElK+mauzBtP2xFBcR2NMX/FtxO1GB4t8/DVlJA0W8vwF6Qo6kJEDeVaP2QqfvjfUgeF6W3XaqZLUwkBYgTFcWh7cAgKuE166i/8xlQNDmo+qFf4a3M/tZEBdhjstK5YD3bb38BAPfQaspuvRBFFlH0axNraqX11Y+x5WahKirR7TsILk2Y0fIvPxvPfiMT42woXDFNOQlt3kTzM68mXYueIOZkYMvPxZaTha0gHyUaw//R5/H13oPG4Rk8ANGXgZSRgeTNQHA5EVUhTlxUAWQ5rBGX9VsIb9hMeOMWBJudvkNH8usLzmXKlCn069fPUlwsWLCwV2ERlX0UkUiEOXPm8NzLr/LCtLcI1tZiLy3ANbgP7qG9cQ2qRvR4AM1kEK1rwtG7HLtX/2IXVCRJie9PjknIERE1JiLEdFJgU+NkYecjzxNYsGzvdN4mQUxOuyrjsP3J/+XxcTOFIIAiCyghiWj9Dupv+ScApX+5FFf/KiCxHkAISahOBVuGZlJxuaI47TE6v1rDhtteA8A3oJiBfz0FR46XSExCwTC1aD8lQUEySJs+E4uCiqyTkagiJikpsiKgKCJqNIYcDIMkIro98XMSRDU12Ak1EmbdWXfE/y785RFkTBmLInlQYiLBFRtovPvxrx3GPi/8CSSbRnCi+nUNiYmkdgqoapRYZzOdn32Fs3c5ostBcPk6Oj+ZC4BzQC9cfcsJrdpIeHM9os+DZ+xgAgtXo3T07NAs+ry4+vXBVV2Ns7wcR1kZotOJosZQ7YKW1VeIEanbRmjVRkKrNxJavxWb18vIMeO5/qLzOfzww8nP3/3wbQsWLFhIB4uo7EPYsmULH3zwAbf/5zFqVyxDFUCQRPIuPAn3kGpEh53Q+hrCm+uI1jURrd1BbGcbij8Q30fOSQfhGlCJPS8LW3lZnJwAqJ0hwhu3Em1pIdrQhC0nC8/o4YTXbqT56Ve69Sf/qnNwDx+CoNho+vdTBJetAsA39WD8n86GaKzbNlJRLuV3XI3a1oxgkwiu2kKkvoXg2hrCazWn2oqHf4s9LwtIkBA1FqPu93cjt7YDUP38bQhiQoFQQlKPJKXty7Vs/tur8T6Mf+NqRK+HSEyb3BWEOEmBnokKaGpKVDHUERE5JtC5fCv+hetpmTZXU2tEARSV8r9eiGtgFYY1J5Ws7PzfJzS/+kXSspLfnoVr5FBUWabp0bcIzF+OlJNFrD5ZGbEV5FB5368QHba4H8zXERZsKjiUhGqmh4qr+vgJoorc0kzHh18RWLyGaH33PDOCw07Btb9E7vATq20gtHYj4c21WhSUICC6XSiBIILNhi0vD2fvXniGDsY1pD+CW0IVwoQ3biOwaAWB+SuQ2zpxl5ZxydlncubJpzBu3DgrMZ0FCxb2GBZR+QGhKArz58/nmRde4omX/kdoZyPOflU4+1ehBoNaFtf8HKINOwmt3kR43TZQFESvG3txHo7KImx5WajhEG3T5nTbv6NvFfaCAiI1taiRSNokaACe/UcQmLu02/LMIybjGtiP0Op1+L9aiNLp11aIYty8AuDsW0l4a11a4lL1+K2Ibidym5+mx14nuHgtxb87H9ewAdoYhCQQoOX5N/FP/zK+XfWzf0UVbPE2BkkBkoiKLRZg2amJXCa2LDcTXrsKWRHTqimQnqhAd1Ul3Bll820vE1ihEaysKaPwjupHcP12Wt+eo597GZ7hfXBWFODdrz82b3J+EiUUonPWCtpnryC0oY6Km84k2thK/cNvp70WBvKvOBXfhGGIdhuCqCSS5bGbhAX00gL6RjppMcx+ckszXbMXEdvZTv6Fx6LEtFpJcadlNN8ZNSYTq99BZGstckcnkjcTJRAl2rCD0LoNxBqbEJxOJJ8XNRpD9LiJNuxIPhmb1lfRZmPsAZP57VWXcsQRR+Dz7TrhnQULFixYROV7RiQS4ZNPPuEfjzzK5598gBqTyZgwiIxxA3AP74fostPw6Ht0zlyCqk/8UqYHz8Byssf1JmN4FZ7yHEAgFNUSloXC2s9YREIJhIk1tlB380MAOKpKcFSXIUgO7JXlgEpw2RqCC5fvfqfNs+RuwNmvnPD67QBUPnYzktfN9l/fS3RHC64+pZTdfhmxsENrLIvEmlupvfGu+PZVN52Ca+xwABRFwOXUihHmebvIEjrZ+t4a2tc20VHTQdvaRuRgjNwRpVSdOJTyKX0Jq9p4+CPOJFXF8Clx2GLYhATRMibzqCLFiYrcGWD1za8S3NbMgFuOxzOsD4IkIuukoG1ZLW2fryTU0E5kyw5iLR0IDhu+MQNw9S6m6blPAcg9aj9yp46h/slP6FqysdtYuQZUEFpbk37YXQ563XsFYn6+RiAAUVKw2bS+O+yxeH8VRUDR+6b5wohxz9gkH52QLa6wibrzsWjTopeUqJTwbzJto8bExJ/m20ARiNQ2EFyxmuiOJs1xOBwh1tZKcPGqpHPJOfVgQutqiGzdoRV4jEQpHTiUW666ghNPPJGioqK0Y2DBggULFlH5HhAOh/noo4+47cGHWTh7plbMLiqDqlJ48dFkTR5J15o6FEWg+alpROubyT16LDmHj8Sd58Se68MmJriCmaDEIlLy5IEm8ythGSUSRXT4UJWU9ZIKIqixGNsu6h5q7Bk3isC8xWnPxTWgkoILj6bmd490W+ce2ovgii1Jy3r93/VI2T46P19K4yNvAVDxf7ciet0gi4Q2bKHxnv9iy3BReOoBZB00GNmdDRAPIXY5o+R5u2DzVhbd8RmdW1vJ6pOHtyIbX99CSg7pizvXjeSyIwoq/g6ZltoI7so8ooquynwNUQFtMjcTlfV3vEn74m0MufNUfP2LicS0/cgmZSYakwhF7IRrGumatxq5vYvAik1EtjWmHTvvqD7IHQEcxTm4ehWiRmLknTUFORDDv2g9La/MwDuyN3lHjmL91dr4Okpy6fXA1QiSREwP0zYKLKYSFmO8dpewgEZCUgkLfDPSkvS3pKIqCtGmBkSXgL2kANGmm9nEKPKOZroWrKZz7lqCG2rJ6dOHv117HSeffDLFxcVpx8+CBQs/T1hE5TtCNBrl448/5o933c3Sr2Zjy/bg7ltKx5drktrZCrOJNbbF/3aW5dLrdyfh6FVKTBaTolNAmxzDIU2NUBWQ7Npk5fVokTcuW4yQPql2BbSie9GQLZ67A0FF0k0Dkk1GCUeJNLYjhxQim2txjRiILTsDUVJR/B2o4ShKZyeds1aQd+YUIq1hmv7zOqGVm+J9lnIy8Ywdhmf0QHY+8jJyWydSThbe8YPp/GQ+aixG6TUnUPegRlSq/3kZjqpSVEVhy1X3E9nZwYQXL8FbkHBQdUkxol0RQovW0rqsnrolTexc20p2n2xG3Xokzl7aF3hXQydfnPEkAFmDigk2dBDrCqNEZEY9dCZFwwsBbfKOyJq6oqpC3CRkQFEFYvr6zpXbWXXDc/T/7VSKjhgaJylNC2po+WgJ9tJ8Ck8ah+Rx4rbHWHX9M3SuqgPAUZBBpCk5aRxAv+uPoGDqyDgRkkTtGthFLYooGNWuqeEf0zJ/K1v+9DwAg5/9NWRkxq+/AbtNjt8XNp28iKhxIhsMaT/liBQ3+Rj3C0A0aItHUqEI4ElxgLYp2JyxuJoDmjlIEFREnSSJhikpJsX9iQRRxaaTH+M8E/3V/o77BqESbPLTPmctrbNW07Wmlpw+vbn9uus57bTTLGdcCxYsWERlb0JVVebNm8df/3kfH0x7U5O4YzHtS9Nhg0h3Hw4Ad99ighsayD95AnmnH4LotCMIyeQEIBxyxNWRb0NQQCcpioBiONrqX+GiHs4sSkr8y11VBSJ1O2l++XP8s5bE95F9xlGokSjtb3ySOBmbRO45x5B1+H40PvwKXV+tSJxn/3KKLjoSZ99KABzBZpaf+yD9f30YlccPTRqT8MZ6Fv5+GoGmAFnlPnIHF1B9eDW+sf0RbSIhWcsGu/LuT6h9byUAvt55ZAwsweZ1UPPKIjzl2Ux6/jxg94mKEo6y/OqnkNwORj18NoKotQsFBRae/gBKKAIq5B47jvLLjsBtjxFtD7Dp3ndom7cpaZ9Zo3tReNhg8g8ZiM1uRBCJyIqYPIGLiZDnYNRBVBFRVZWdM9ahxhRyDtES1hlECnafsBhkBRKExUxWQCcsoJGWryEsQJy0GIQFQLQpccICCdJikKM9IS2h5i7aZq+hdeYqutbVUTZ4MPf+8WaOO+44PJ4EkbVgwcLPB7ZdN7GwK2zfvp2HHvk3Dz76H6JdneROGkDWhH60TtcmacFpJ/OwMTirivB/tpDA6mSfhL6/PxFnSQ6yKuJzhoEIUoppIqpIBHVfDVHX2H3OcDxapSviJKI7WNrtMSIRW3xyAW2CUU2SvSyLWkZWSUaOiQioWi4V/bCyIhKqaaHt1Y/pWrQWNRztdt6BBSu65VApuOJMLS38im3YcrNAECg87zCy++aQuV9vJBEgiCCo1L80C5vPSZ/Jpbgd4fh5dW3awVd/+gRHlosj/nMsvlJzob4oEcWGQ5RRVIHKQ6riRKV4XDmB2nZqP9HGd9A5w8m0hwnJuvlHJ2MxRSTDpjnkGuMXU0UiOztZ/JcPiTS2c9BjpyPZFML6tq2LtqAEtW2kDDe5k4fgtGl9yMizM/y241h01Qv4NySid/ImDyLv0GG47RFAxiXF4n0JxezxCTqmisiyGFdbYrJITJbImDg0PrnbJCU+sauqgNOeTHoFQdXKA+jnGNH35XZF4/u02+Ukp2LDVCQ5dWKiE9lYwJYIYRcBWSIWlEB3ZkZQsbliSft32GO47drvdjGZ6HRFnAQj9ng/ACJRGzFZV5VsifaOPB+Fx4+h8uSRrL3jbWpnrODs888FFfaffBj/uPVmDjjgACtXiwULPyNYiso3RDgc5u233+aGv97O9tXLyR5dRdHUoWSO609UdLH4mNvjbR19SolsrIv/LfmcZPQvpur8A7D36wVgIimkJym6nN8TSekIOuPtI5Fk/mmW7lF1HxVAsinIhqISDwOO4J+9hM4ZC4hsbcCWl4lv/0Fpo4o8Y4fhGtyHWHMrUm4Wrc+8jWtIX0IrN8TbZBw6lvKrj8bnSiYGgqCy9Z63CGxv49D/nhQ/tyX3zWLDayvIrMxiyn1HppAU/fyUBPGIxVRWPTqXxgXbiXSEceV5KJ/cm6pDe+Eu0swlBjkIxPTJUhHx2KLx/qiqyprH57P5xYXY3HbG3HEMucNKCMTshGUbLV9tZPWf3gBF63vf+y7G07cYpz7BeuwRBEFFDkfZMWcrgS07KT3rQESbEF8P9EhUIKG0AIRjUpJ6YqTsj19CtfskbezLWCcb/ipK4tobJCEdWZGNe8Qgc6lkBT3p3F4kK6oqIIoJshJrD1D32Idkjqgi74gRuB0ykRY/bQu30PTxSjpWbgdVxe7L4He/up4rLr+EkpKSbmNhwYKFnxYsorKH2LBhA3+56x+8+OKz2DKdFB01lNwpw3AWZBKO2QiEHHQt30TTc58Q3lCLYBPxDqumcHI/HBl2skdUYs9y07y2la4tzeRMGkyGO72CAhCM2uPkBPY+QQGNpCiRKJ2fzKXt7Zko/iDeMQPxDOtN5iEjweGi4YGX6ZqTHCkkuBzxWja+KfuD3Yb/ozlxr9/cs46k8JRxZHi1CU1MceqsfeQDWhds4YgXz0ZEpXlFA59d9iYDzhzKflePRbSlT80eUWwJh9EUE46Iik2fJBV9hjUTlZg+cZuJSuNXW5n322n0OXcMvc/eD6fPHm8PsOqf02lbup3SX0xi0x1v0Osv55A5uhoAp02OExHjvCKyLU46jGU/dbICGmFx6EqP2x5NS1YAghF7vB8AciDCjkfeomPWyqT2ff5yOllj++KyafuUgxHmnnC/dmiHDWSFPqP24+G/3cbhhx9upfK3YOEnCouo7AZisRjTpk3j6ltuoX7tGnIP6EvhMaPIHFGJTVJ1f4I1dKyqxb92B/7VdWQMKmHgGUMoPqCKjEztZd+xtY05f5pBy5qdSfvvf0gJh13Rh5JBmQQVJ81RrWJtVyxBQkKynZg+W/ijDoKxhO9BMGqPT3AGDDOQOfW7OVOtuU3zrM00P/kWclsnvoPGkHXsZGxFOYBp8otFkDv8tL3yCf5ZS8g59WAKzzyYWEsnGy+9D4DCK07EUVWEf+Zi8s+agivLEd/epU9gLtMX98aHPmHrG8uxZzgZeNE41jw+l8zqXA68/zgkp0ZGYuZJVhVxSdp+fLZwXFkx1kEyUYnpZM9Yp6hCnCyJcVIh0bSghrnXv8Xpr59IVkUmQVkb24agpuYs//c8Gt+YS+m1J7HjqY8RPU5KrjqB8OZ6YptrEF12Kk4bQ1apO94fm6jQpTvIqqqAQ0pM6C5bLE60REGN/2700W9M6FF7nEQY1zB+vrLYjayYSY/NdK3VlP1ry/S/FTFOaGK630vMyNGiJuoQGXWU1JT7TJGFuBrnztAUwSxPKN4fwy9IipMobTtZFRNmoIZW1l76MOnQ90+nkjWuL3J9E02frqT2f18BMPJf5yJmeNnx/lIa31+G5HBx05XXc9VVl1kOuBYs/MRgEZWvQWtrKw8++H/c8cA/wK5SdNQICqYOx52f7NTXuqyOVTc8n7TslA/PxZHpRIkprHh8MSufWpL2GK4MG6FObRLrO7UXh/7twDhBCekT5rclKEBakhLosNPyzDQ6P52La2h/cs85Hntxfrw+kCCocYdIJRql471ZtL05E9/4wZReeyKCIBBtD7DxonuQMj1kHTGWlpc/A2DIa39E1B1I05EUAFs4QOPM9Wx5awVtqxvJHlDAQQ8eh93nTPInMY+BS4rhs2kTYipRMZSnPSUqwSY/n57yFBPuPJKhhxWx7LWNSE6J3kf1oyGYQVO7k423voh/xTaKf3UKTU99gNzmTxrPnP17M+i2U3HpSo1NN2l0RR1xomCQFUMh2BtkBbqrK+kIS2obRRWSUuOkEpY4WYG9Tlj8q2vxr60j1hEk2hmm5dNlKOFo3LQGkD15KLI/RNfKbbjK8wisrycVB354PYIkokRlmmZtpOGdxXSurmfSYUfx0F23M2zYsG7bWLBg4ccHy5k2DdatW8evb76FD95+A2//InpdM4X8A3ojSMkvZ1kRcUox8gblU3pwNXUzN8fXvXbkc3iKvIBKcGcwvtzhtXHQ5QMp7++haFQxkkNkw9oY0y77mA0fbCF3eCklhw3E7nV8LUExjm8gYppYFEX8WoICEPQ7CcxfTuenWk2Ywut/qTkoSolspvHihQI03vcCwaXryD5mAoXnHKLVelEF2qcvAUVBbvPT8soMAOyF2d1IigGDpLikGHgcVB4ziPIj+hNuaMNblolok7qRFAMuKX3UlDFOScuU5FTtSkxh8V0zqPlgDdUnDmHUjZMS+8334in2seGV5bQv3MKqV7XigBllmdAvg3BdK/5lW3H1LSXn4CG4Blax5fJ7AfAMr8bmECj5xeSU44txsmI4ukZkGw5Ji85y2WJJBCWVrPgcYfwRJ257NImsRGNS/NraJEUPYVeTiIiqJiJyYrKITVK6mYVEQTVl7UX3FdHH0UyGolrmYEHS6kLJEZ1wpBAWUVJBUlFkgWBnQgkEjbAYRR8jzX5WX/8Mgk3CluUh2qyFcrt7FxHclMho6xvZm6wDBrHlLy/QtTLhfJ43dSRFx4xCDsUIyU4cgoxkh6JD+lN0SH+6Njex5vXFjBgzmuI+/Xj07rs5+uijLbOQBQs/YlhExYR58+ZxwTXXsWbxPAon92fMA6eSOaBI//qOxb/CDRhf8OHmNpSY0m1/gR1dFA4vZMrdUygfkhmPVPBJYcKKjRAQlSXy+8KI0/sy99GVzLt7DscXQ+lkLYS3LerBH3Xg1r/UW4Ke+LEdukIhiQroc4M5Dbw5HTxAKKKFPWsRQTKRTVpq+MxDRuHwhYHE5G6QFJcjiqqqKC0tZE0cRNUVh2rLbSEEQSXjpMF0fPAl7qoCys46gPo3FhDzh3DaYknmB6cUw66H0IqCmmTG8bhUPL2ytJBjBSI6yTAmbpcUwyHI8SRtZiVFW69HtigSIdkW396AQ5RZP20VNR9oOWw2v7kS77BKiqcMiLcZeNUkVtw3g6ZFCafnuQ8soO8/hqK2axNo6aVTkUSV2NJEyHXxUcMpnDJQGzNBixKyx31kBNy2qBY5JKhIgoJDSqxzSTH8unnIuFbGGAVjdiRRoT2gmZMiMSk+nnJExOXQztnjiHbb1kA0Ho6t/60k/x3WnVujUSmJ0NrtMgVZmmJk+NYY+wro/XXYEn5HSopaA2ATlHh/jG06Q07w5eId05/w1h30/78rEJ123LYIgijQsaaecEMbUmU5YlE+siBQec3RrL78PwBUnLYfNa8upOWTZWQOLMZ93ngyx1TF+wFg75NL9o2H0u+SCdS+s5xTLjgTm83Dv+66m7PPPhuHw9GtrxYsWNi38bP/zFBVlY8++ojSgYM54OAD8VdFOOC5Cxn2hyNNJIUkkhJpC9C2rJYV937Gewc/xKdnPEvD7K3d9u0r9zH5rslUDM3qRlIAoqr28neKMQoGZANw0LXDqDq4AtBIihlmkmLAnJvC3MdUkhLvu+5wqygCIb1IYMdni2l64oP04xOTaXjqU8I1O8k7cmS39Tavk9HPXcnAv52O6LbTOmsNrrLctPv6IdE4rwZnnofsoVqUiJKS06Z4Uh8OffWXZPUviC9rW9lA47uLaXxnEaCVMgBoeHFWvI0qp68SvS8jXWSvLCffJ206QTJIhgGDuBhJ8IBuBN6AQW6MbTJcmkmo7OLDiDV30PSBVl8qGNOOkTmwhLyDB5NdnYldz2KrFBRTfM5BWp82tDDy7ycz6OpJoCgs+e3rTJ9yH4HtrUnKFIAj20P1uftzwPMXUnneSK685Xoyigv4xz/+gd+fbLazYMHCvo2frY+Kqqq8//77nHvVFfhbmig/ZRTlJ4zAmeXsRk6UmEL7qga2vLqEHTM3pN3fiMvHUHFwJeHWEDabSsHQArzOxCTWE0EB2PhpDdN+M4eqiSUc/+Ak2mOaM21dQAuvTSUoxpe1QVLMlX/NP81KCiSTFG27GIgCTU9+QPt7X+I7cDiO8kKyp47FaY/S8eUaml6bQ6SxjdILplBw0nhA87Ew+0EY5oSWuRtZ/6dXyD9iONVXHYrk0iYgp66c2CU53lezGcf43ayGmL/SjfUOUU47KdpEOW7qMSJqzGhfWsOqpxfRNH87zgIv4aYu+lx0ANXnjou3cegqyMxznqFre3u3fdgLs+n30OUIDjurzriTjJHVVFw1FXeBF0EQkEQlKdtsom+JXCxGZJehqhjn9XWqCpBWVQHiqopDkvdYVTGWmVUVSJgK7XZtP9kezWzpsUfi+4JkZSX+nKQoK4YClqqsAKy87R0CGxro/dDVOBx6ZJR+PsZ+zOHM0ZVr2fbgu8idQarPG0/5SSOpeeErNj07H4D9HjyDrKGlAGn7o8oKTbM3svV/8wnVdnLjDb/h97+50SqMaMHCjwA/O6Kiqirvvfcev7jqCgIdO+l71kj6nDwEmzsRBpwgKgrrX1vFwntmd9tPwZhyyib1omRiFRkl2svOmGTNk6lHisR/NybsXHsX/qYgi/63gcETsnnzthV01Ac547PzEW0iNf7s+DaBqKPbJGOeCCVTRlC3/uUqm3w22oNaNV9FEeOTkFmFAVCiMeqfn8WOl7VcKd6hlXSt2AZA1oT+lJw7ibz+OfFzMJ+fMdka5776vunUvLWc/PHVjLzzhG7hwIYjqTEuhp+EP6rZrrp9Gevnmjq2hrnHmAxTQ5IVVdD8Uv69gNXPJ4dVu4ozCe/0M+Cvp1I0TlOvnHq/Vt0/k+1vLkluX12EqyKf9jmrUXUTn29wOYPu/QVeR1g/vpLU/9RJO/XaGeNhhECb1ztMZMMYPyO0N1UhM+7ZQERPwR9LNnsZsEmJTLDmLLLG9fA6wvFr2RJKKHnNnd747xm6c2xS/2QRr0O7lsYYRkyEpiPsiudWiTswx2x0rqpl1fXPYsvxkjG8iozhVSgdXfgGl9H25VqyR/Ui74A+SdspgTBbnphF3bQlOHO9DLl4DO58D7N/9wFqTGHobSeQf0CfxL1jZOsVEoReVVVaFmxl1eML8G/t4DfXa4QlI6N7vh4LFizsG/hZEZUZM2Zw6kW/xN+6g75nj6LPSYPjBMU8+YqCMemIbHxzFQvv/oKi8ZX0OWMEeSNKcTqTJ9M9ISgAOze08+SpHwNgc4rIMZUj/nMsoV7949sE4qGt2t+pE52ZoEB3kmImKECPJEU7hkBgWzPrrnmMnCnDCNXsJLSlkcGPXoYjLyM+0eyKpBjr5l73Bq2Lazhw2tXYPI4eSQpoRKUnkgLpiYpBUuDricrq/61g4QNzGfWr/Vn17DJUVSXSFiJnVAWh1iCoMPyRC3HZZToWrGfry4toWbQ9eXBEARQVR1E2uUeMJLChAcnrpM91U+PO1V5HeJdEBbRrmEpUIJmsGOt7IiupRAX2jKxoP5UeyQrQjbCYyQp0JyxG9FFPhKUjrN2LqYSl4YtNdK1tYOf0lUQau6tYnj4FDPrLKbiKMpK2C21vYcuTs2iauQ5vVQ4lhw5gwxNa2PLEh0/CPqg6qb3R1+6EZRurn5hP55YO/vKHv3D99b/C6Ux2BLZgwcIPj58FUVm0aBGnXHAhtZtXM/jcYQw4Yyg2t71bBV1IRJBEdLk+porJJAbja017GduE5AkKtAndkPsNxSDDpr3cVVXl0bFaKHNWryzat7Qz9Iz+TLwxYYZojWgTQ4c+gRsv+og+AcmmyRgS5ENNmSSN5Rn6BGRMINr56aaSmBbivPmf79CxdBtFx+9HzX+nM+yOk8kdV02eOwBAjiOgH9s4RvKEaR63uX/+hJqPN3Dk2xfizHHjEGV8du387aYxN8YmnGKuMZYb52GeYFKRer3M+UrWvrKShfd+yahbj2DxXz+KLx/wx2ORfC5W/f5V7LleBvzlFFZc8wzefsU4izLJGVtN7qHDUcIxBFGgeeE2ssb2xeNW4uHHZhgTdqtuokuNwjHCfg3fECNM2zi/cNSmn4NuEtSjbsxmHKOOUyhij5tpkvxKjCRvUZ2Y2hUku8n06NbugRJfh9YH/V7YEdDUwM6Qdq/F/Ui8Wrvarsz4Pup3ZscLD/oyQknnBhDo0O5TQVLJydFIeZYrEfFmqELGG8fIxOwRgrQsqycWA1DZ9OJiWhZsi2/X/6pJVJw8CkHUHJANUti2ppGV//mKpvnJ5PKUzy5CctriHxzJxDfZN0lWBGrnbGfx/y0g1CLzwF33cOGFFyJJ6cmeBQsWvn/8pInK9u3bOe2Ci5g/azoDTh3EoPNG4MzSXqbfJUkBbfJNJSkAoZjEi1NfJKsyi8bljaDCue+cgLdY+2rcFUmB9EQlXVKvXRGVUCwR5rz80kcJ1TQDUHjcfgy6djLAbhOVzqYQ22dtZeXTywjUd1JxWF9G/elIbbx+IKIy7bSX6azRJlx3RS7BmhYAxr92FVKmh/ln/ZvITj/Z43rjX1vPqOeuxu40srqaQr91AuG2R3+yRAU0srIrogL0SFbMRAXYJVkxiIrPnlDYjOvZtLCGJX+YhhzS/Zuy3Iy+5yQKBmiO2jaTMtg4v4aV/5pN+wbt+uYNK+LQ/5wIsFtkRVFFVEVl88ebWPKfRYiqh1efepbDDz8cCxYs/PD4SRIVv9/P7265hf/8+2EqJlcx4oqxeIu1F/L3QVBAm2zNBMVwpFUVla/u/oqt07cQagtzwuNHUjxCizT5tkpKunWpJMWspEBiQq599nMa311M6dkT6XXyMARB6EZSYgrUflVLZ20XgiTgK85AckrULWhg1bNLkcOJifHgJ88gq29+3HTTE1HpiaSYz2VXRCUdSQHYsbCObfOayB5USFuLyvq739PaFWQgCALhRm0yFp12el1zBAWHDYuPW09EBehGVtIRFaBHspJKVGDXZMVMVICfBVkJtgT48qIXiLQE4utKjxnK4IvH4srzJpEVVVao/3gN8/42A4DT51yGGaKg7JKsAMhRmbWvrmbpf5dQ0X8w7zz3AoMGDcKCBQs/HH5SREVVVV566SUuuOISfBVeRl87nqKhWjrtVB8GSLwQjQywNkGJf4EZf5thdrKN78OIUkFIuw1AWySRWr15aR2zr34j/veIi0dQdf6B2jrdJ6C1S/tp9jUwavMYCbccbt1vxJF44RqThdsZJd/TpZ9vYjLsybHV3MYWj0zR1mXYQqiKSu38BmbfPZ+2rR3dzk+0iTgz7ARbtUlHEAUueP9EvPnaebtNPikG/HKyX0o6GKQmqordsvWCmWBKSedjvgYG6Zt98f/oXK9VNrZnOHBkuAg2d2Fz2zni1V9gc9n1seneV2NSM469M6QRSnPkkuFD0xLwENZJhTnZnUGADH8Ow8coEEmcT0QnK+YH0jw6RqI3g7gaRMhmUl5SM9A6HbGkZIDGcbP0aB6DyHZGEr4Zhk9Khk5sPPYIjZ0JMhP0a23tbt33yqcRiZApZLnTrxMW/ZnxeXX/l5R7zvCLydR/mslESLYR6Qix9G8f0Tx3S9J5FU3ux8RbDsLmToyfogooUZlISye+Ek2hNPyZjHvJeE6Nj4+ofg+lJgjsao2w4vGFbHx7LSedcS5PPPwgmZmZWLBg4fvHT4aorFq1iiNOOY3mps2MvGY8VUf0wS4mp1T/oUkKgE8M8MLEJ+N/548u44AHTtxnSUpHrZ//nfBm0jk4s52E27SJZdx1Y1j69HJEQaB8bBHrP9RysxQNy+O0pzTTTypR2VOSAnxrouKv97P6vul0bWoi1KSNT78zh9PvjOE4ChIT0N4gKsAuycruEhX4dmTFuEf2BlkBeiQs34SswO4RlmBUYt2jc9j8v4WYkdEnnwmPn0O2I5S0PK7EmaLjdkVYID1pad7UzsJ7Z9O+oYNH7n+Y888/P54TyYIFC98PfvQJ34LBIOdfdgXDRo3AO1LimJdOp9eRffdJkpJpD9G5LVmRqDpuyO6eao8wk5S9BVVVWfDosiSSkts3G4CyAyo55o2zOezxk5h3/wLCrWFKRuTjynaSVaFNZIYvwb4Cm89J89wthJq68JZnMfGeoxlxzQF4Cr//PBqxziCxztCuG/6I0OLXCJqZhGT4DAdyPQS9Syebse65br4Ogigw4PKJ9L5oYtLyzo076dzQRFvElbTceF7NhMN41g0yYhAUs6nRIDFmgpPXO4tDHjqG0Tfsz5U3XkXF4KGsX79+j/pvwYKFb4cftaLy2WefcdyZp+LMkxj3h4PI7pvXY7gqpCcowLciKbtLUABi7V28d/F7dOgOnr1PH0HJJUcAe0dJAfaKmqKqKq8d9gyRLq39lL9NpN/Uap4+8jVsLhtDLxvHprfW4MmS8Dd0sXN1czcZ4IT/m0LF/sV7xewD315RiSki299eRu0biwk2+jn0v6eQUZWdtB8DqarKN1VUWj9bhlzfRMkZByCIAjvfW0jti18Saw/i7V/C0AfPB7qrKqqq0jF7BS2vfY7oduKsKKTw4qMR7doEvytVJZ35R9v3d6uqwHdrBlJlhc9/8RzOwgw61jSgBBPE/JB3LqcgN/km3JvKinauMZY/uoCNb63luut/y51/+TN2ux0LFix8t/hREpWOjg5OPOc8vvj0PYZfPoa+pwzGZkt+OZtfMjZT7RUzHKYXmJiGcECy82c4pcaMkfOiK5bIuGnkBEnNkBruDLP4+leJNHfR/4/HIzpt+AaUJu3H7FhqFB4M69lkjZe8OTOp4e9gKNGZbo0QmZ09DUfPXGdAP089F4VpwjeqERukwi1FmfGPRTStauHUhw7A4bXT0gKPH/Z6t/H5y/LjAJj7v818+tBaVEVlzPkDmHDpkHiEkPlayPrEIKUwG/P4m8mlGCcs2j46o4mvZ6PmT2q1ZPPYG2TCaNPSJvLFJS9jy/Ex8p9nAJCjO3oahNI4pj/qQg7H2PDqctTsbEoOH0CXfvwuPWeJkTsEEiazxs4MIjva2HDZA/F1gsOGakrb7xs3gMLrf6GNSTgxPqJdpvmpd+j46CvcQ6pRRRuh5evJOftYMo/QfJkI6+Pj0MfMuK/NzsbGrW4s69Lvo1h3cqja9Ta6g6zpsUCI6A66hdp5GoREMOVhiXTZk/thwBS6LHn02kRubT+hsLaNaLqfDWffbP165Dq1nztNCeha529m6U1vMOwPh+Pf2sLm5zVzUFafXA5/5nSg+0eKQU68+n0OifvPnDMpFdG487r+Ux/U+mVNzLl9DmrEzWdvv8uoUaO6bWvBgoW9hx+d6Wf69OkUVVWxZsc8jnr+FPqfPnSfJynBpi4WX/cKoR0dDL7rNLJGVOzTJAVg8o2jOeWBCbx85Wz+Mfr1tCRl4rUj4r/vf1Y1N8w6lt/MOY4Jl357c5bW329HUtLB5nFQfGBvwk2du9WHtS8sZfn/zWXFHR+y5I/T2B1eryoqW29+CsEmUXDRMdqylNpCvv0H4dCVDslUaiGwYptGUob3o+R35xBarpkZQqtM5ganfh9E9MfXICPme9zoprHMqx1LtXXvvxDV2+iROmYhQdXT20uNejK5oBG9ljiWwxtN7ocBE5mRA9o9Fwhq+3HpCqBiilryB7Xnpy2kKZItYe1nvisR9ZMztpqMAUXs+HIrAy6dyKjbtPFt39jCysfnE+kIE5VFYoqkR/oohGQ7IdlOV8wZV+ZkBGQEFFVEUcV4WzPsgoJdXy4KipYYEpWS4QWc+Nyx9JpayNgJY7nut78jGt17ZlcLFiwk40dTPTkYDHL2RZfwzhsvMeZXY6g6YSiCKHQLWd3XSEpgeyuLbnwDNaYw+v7TsVcWfv2J/sBQFZUN07ez/uMaNs2sJRZOHp/CIXn0mlTGkGOryCjxAl0/TEd3A6qsUD9vG3afA5dPwluSQSwqEdrpx57lSbtNNBhl4QNz2fjeRiqP7I+7IJGVtWnOZqR/fULvq78+v4bsDxJtasc1qIqsI8cSramn7SOtsKHocaIEwjQ89CbNr35OyS0XY8tNOPOKXq1f3vFD6fhscXx57rnHfONx+EEhqnFlRQ7YkTxRAkEHHncElzNKKGxHkcW4suIPOvG5w7SF3GS7grSE3eQ6g+S7AnFlJXtkBTs+WU04JlI0qQ9DbpjCynuns/qJhax5ejGqrJDVJ5dDHjoaV467x67tLuyCQlQnM4oqamYiu8SYy0ZScVAFT//5UZ575X/Mev8jBg4c+K2PZ8GChWT8KEw/K1euZOLhh+PKi3D43w4guyLDVOBPD/dMV6xO0AhFOue6VFnXDHMtnaCuPogppoqWcGKiM/wToin5Njrnb2DeXz7Bleth3D0n4C7KoMGvhU12hRMkx6yUGKnNU1Pdm/N6mFPaQ8LHwuybYPgTeFJyfrhSco0UOhPKQiws894fvmLbjK3k9M+l+ojerHx2OeH2MP2OqOTAKweT2ysxqcqm4xnXw5DUnfGcM6a6RCTOSdbFPLvQnUwa6zpiuplF/woOmIihkXY+NTmcca2jnSEW/fZNWlc1kg6lp4+j18WTAah97nMaPlgJioJoEwk2+vH1L8a/pp6i8w6l46s1hDY14CjOJry9mYop1ex33Xg8hd6k+8Dw79j0RSv1f/0vZTefi3dUPxy2KMH1ddjzM3EXeIm2+an9z4e0fr4Ge66P8gsOJuOQkQiCgCorbL7/AzpnLqHy3qupv+8VojUN5JxxFL7JYxGFBHESdBNQ3HTj1u93U+4Um67WGH4tRiHDTGfCmddQ3pq6NN+Tltosre32BOnWqz/Ef+puRkRN2fV14Su+LuYxKSpZifvOk6ObdnR/FsMXRjGpNFX5WvI2w19lR8BHqL6NDXe/C6pK+8p6jnnnApw5bkRUPrv8DZqX78Bd4MGR5aJ9QwuCKHDS9IsR7VLc/JPr0E7A/IETi5dnMIpK6r5rpP+IURCT1gdDMOdfy1j2ymYeuu9BLrvsMisyyIKFvYh9mqioqsr99z/Mb/9wPSPPGcDYS4YRk3QJejcICuwZSdlTggI9kxSldgefnP8KhWPLGfHHI7FnOLuRlHQEBb47kgLJRMVMUgBmPbaGJY8s4sC/HkzvI7WCcPbONkJtYYr7Jtd7kVNUqj0hKrtDUuDbERX/tlZm/eJZep88lH4n9EcOxeis7cAfcyHaRbzjBiHaJVRZ4cuj7iFjYDFFY8sJNnbiHd2PdXe+g+C0I9gkKn97KrUPv40gCmQWuWjf3Ioclhl5xRgKT94/3ieDqKx5ZiXNz71Pn6d/h+R1o6oqsbUbCa6rBSBn4gBcZbmENtZR+8xMOhZsovKKw8k5RttXrL2L1Zf/B1tuJgW/Oo/WVz8k8NUyAPIvPhvvGM3ktjtEBb5fsgI9E5ZvS1Y+OPcVApt3atuNqWTU308iy6Xd6zUfr2f+nz8hFafNuhRBFOL3x94iLKlkBWDDnCY+vHkug4aO59O33yQrK6vbdhYsWNhz7LOmn66uLg457gRWLp/NcQ8cRMXYIhRVRCKGjICN5JexU+weyRJWbCiqQFBOTHA9Oc8paiJLqjH5i4KKghD36WgJJcvIRqHAmE5SHLYYXVEHnkALc276EE9JJsP+fCyC08aW1mwAgiFtX6oqYLj2SWaHQk8YVRXimTyjJoJlEKnU6BZzATtPmigbgzR4pYQzYVB2EFZs1Kzq4NMr3yXalSA1OQW2uONhYVEMiiQ8ohaplM4ZNqRo52RE8xgvfynlBW+QEOMaNce0ySliMq0Z59sY0iZMI9ureTszDNJnkDsjb0nMqUc6Dakgp38eAJ1VgzHiVRrbfIS31NM5UzOvuKdOQZg4EA/gX7xOOw+PC0dJHltv+x8ZIyrpWLyFnTvasWe5yRpRyqIH5jJi8GC81Vpm4UhrF/46P0XjS2h+VmXjeXdReNQIoq1dtH61AcnrAFml4Znp5EzoR9XkSqomVbB2fS2BWcsYeMZgrXM+CP7tfLb9+Vma7vkvBb+6HGICgflL2PnY88gBP5mHHoBqlxHbbAgxAUEBukRUG4AdxZEYe3upH0jU8Wlq1QhzG16oTfj9FM1VcQG+LV3kE8TfywsoBApNzs36bRLQXKwI5evFLoPJ10YK6+Yet4qgguxVEKIi6M64wU4nLl+E5k4vkqQgSQrBgHYt3cpOkBWaujIoy2iPRxAZ5roJL1yIqzCTHFeCaA0+qozQlmEsfypRKXvgWUOTnJ0NIpJhDxFVJYodiVQBksnUa/hEGfei8bddML9zktXaqCrRf2I+eS9P5eNbv6Ksbx9mf/IpI0aMwIIFC98O+6Qz7dq1aynr35u6juWc/b+pcZICiYlyVzC+8HeHpHwTpJKU+PL2ILOvfp1IZ5hxfz8Gybn7XNDnCe+60V7Ewv8s4YPz34yTlIGnD+aAX4+mbGzR99qP7wKi24EgiURa0vvQyJ0B6u94io7355B90iF4xgyOrwus2qK1ae2k+LpTyT5mAl2r6xAdNlxFGUTbg7TO19qEG9qJdYVZfNF/WXDGv1jz66dZddXj8X01vr8U/7oGht16NJOnXcGkty6j19VHEm7sYMkdn7L8/s9BgUHnJU9orqpCet15IXIwTO3v78AzPJHGvfX5t1DC3QnpTwFKMMzaa/7Lql8+SPucNWxvyyAW0M61+srDAKh7ZzmCmPweEASB/a7cj3G3HRFfVjNjC/UrW+N/Gz5rhlN2Q2T3Ms0aBMUgLEn91cmz0SavQOL4Bw9m6KkljBk/hscee2y3jmHBgoWesc8pKu+88w4nn34Kw07vwwFXDUO0iV9LUlKVlHQEBb5eSTFgVlIMpFNT0ikpADnOIBs+XYx/WxuHPHc2jlLtS357W7bWJ5OaYsBQU8wk5ZuqKemQTk3ZvqaLRY/OYcsMrULtqGvG0efI3ngKPEkhnIUOzTTkEbWJoqfQ4t1BqppiqC+7i6/LuZIO7XM3aE6Vg0vSr39nFmo0RsWD12PLy0ta56xIODzH2rrI/8URVJw2ik13vol/ZU1S243/fJ9Bt58WL3joLM0hXKdNjlkHDqL6kkm4irPx6eYLyWGj6JhRFB0zilhnkNICbWy9zhgQiJsWy7Pb2E4OheceSv3DbxNYvhrfpP3xfz4X74RRiM7k+1sVQVBAiIFqAzEixlWVrjof3lJ/vI5PQU5nXFUxY8f+AkVzVfy9vPi2dOHb0oW/lxdPY0JVUeyaquKp01QV106RUL6C7FaTVBXZqSKFBaSgoK3rEpG9CgRtcVUl5Hfg8kWQZRFJUnB7Imx/+mPkVu2+23LHq9hyfCzvDFAwtpKsgdp1cejXx3C0BS2U3GcPMfjIUkJNB7DswTl01fv55PJ3mPLQ0ZSN1K6xTZSJKRKdURcZ9hANkUyKHR3IqhhXVeyCTFSVsIty/Bk0lkVVKUVZ0e5NUVDjbTz2GPtfOpTiYXlcc+M1vPPJZ7z63NNWzhULFr4h9hmioqoqv7/lz9z7zzsYf/MkKg/tTYsCbln72rfF/RkSRCOqigRle9x0kOqnkHwAMb4+NZETJGeoNGBIzm1hE0nRyYmRZEwSFaIRBxmOMK2dNtY+tYCiI4dgLy9AUTXThdsRpSvswOmMJRWRM8KO7TY5Hm6c4QoTkW10hhITebYniKyKVPjaAPCazDtBU6ixNx5qbCS10sfMJJy9ed0sNs6oi/992btHMrR3BNiR9AI2XtqdcuLcA/rvBnHR1mtfp1FVQhRUYqqEYqTuMJGRoJLs89OlE8m6ruSvWnPBOoDOoF6YMZy4VY0cHko0cV5GuGzApU2CDR+tQcr0sjN7KI3r9DHyJ657YNkmJK8X0VdETk47kCB9ckV2vF1moQ27K0Qg4qX4xjPYcME9ADj7VpFz5jHs+PujbHpxabx92Z9+Sc1fnkZu6aTixtNwOiOoKnSGXUkO1F1+J5BBa73Rf+PcEmNRUdCCVGGnHuh3/jA8vQuYv2YtXV8uJu/k8TirSyAzTEzPwyJ3aPsXg/pOvAmfkK52F/0qd2jrBZWskiCbm/KgqgtlUyKBW6BQzxVyUMLxxFnWPYlgtF4jVIpHG7P8knbSIRByIOnbml82SQUCdXNdoClEx4dfAlBy6VHUP/o+sY4AJWcfSMNLc+jY0opgl9h47/t4Ai1MvqACQRS6EYcpv6wgxzmKmf9YjByW2fjMfEaOOzD+UWOGx0TgjXeLcU+bz1kU1DgZge7qSlS//4zlQdlB4bgqjnqyiBk3fkDfkaNZ/MVMcnP3rYzNFiz8GLBPmH4ikQgHTj2aBx+9l8P/fQyVh/YGEhNuTyRlT7CnX+TpSMquENjeihyIUHZovz061vcFf2MwiaT8auaxZJd//ynkvw/YCrKRO7qIbG3oti5Sv4PI5u04epen3dYzoJzKP51Nn9vPxpbtoe7xT1l39l1xkgKQd8mpOPtUknvBKfhnLcU9qj8A9fe/iqtvGUgi4brmb30e9kzt/mv+Yh1yIEKv+69G9Lro/Grlt973vgZ3nhPvSM2Ju+XDhTirCvENLMOe4yN38hBC9e2oURklprD0oS95/YqZ+BuDaU0yA4/WwudFu8imWQ1s+qI+7TEDu6nsGe+P9P4qPaOgwsWRjx2Hkt9B5aB+Vvp9Cxa+AX7wqJ/29nZGTDyIjlgdk+89Ene+pxtBgfQkJVVJgfRqytcpKdBdTemJpKRTUyCRfrz2jUVsfGQmB734S1wFvrgjqPEl3ZOaYsBwdkxVU4BvrKZo56cdt3lTB0+d/AEAV3x4FJnFHsodLd3aQ3dFpT2NmqKtTygqADH9Z1ICOyXRz69TVFLVFNg9RcWcfMymKyqhdduovUXzD3CPGEDO2ccRXLABVIX29z8BSaTw1xcSrd2B3b+daGsXaiBI17oGYoEIotdFtEEz4WRPHEDb7LXxY+ScexyZhx8AioCqKNT9/h/EGrW2GROHUnDeEWz/05OIXhd5R48lZ0AunSu2Y+tfjauqkKbX5yA7MnAP74ejOFc/h8Q5p6oqG/8zg+2vLsSe5cE7cTht736F6HHS++k/xMNgDVVFSVFVlLzE9TIUFUg8J5ubNJOIWVXxaRZB2gdonTIUFfjmqkrqtuY+QEJVURWV5i/W0fT8p0TrW5LaF502gR2vfBn/253vQZJUTvnPIeRUZcTv4UhXlAcmvgXAuMuG0bSmlZq59fzy1cMpqkyuC2TAUFa+TlUx9zmdspJKZoxoNYBA1Maif81nw5sb+fyTTxk/fnzafliwYKE7flCiUldXx6D9x+IstbHfX6di8zjifiIJcpF4a5tDa412hq+GmWyYXyxGiK7RLmIiK+bfDXLiD2svF8mcItzkMBvUU38bocXmiJ1Nt/4PVVHofds5iW31irhmkpLh7V6QLjXTLEBJhhaVYGSWhUTdGTPpMkhKgcOfOG/9xeuPJV64az7azus3zueqx4Yz+CBtgjTGamcs4bPQHnP3eAzz2Brhw536T3P4sDnxnbFN/EVuGk9zbRkjM6nhwxOLmFLvdyXITjyTqvG3KS284tYrFLe10/biWyjBEKFVGxJtHXYEu42MKWPo+GQeajCMLTcTKceHEgF7WREOMQO5q4tIWxPhrdvIOfYYPIMG0v7VZwRXbKDi7iuwZfniZLNt1gaaHngGgMLfXIhrcD/C67fS9H/PoXR0JZiXKCLlZCA3axO6e/Agii+7CEXP/iqG9HvfFLGTV60RILW1g5onZ+BfXYcs2PGMHkL2MVMTg+DSt9HT4EvuxLNSVpBwKG0LaNc2qJOHopxE5IuRERmgrUMjIQYJdLq05yhYl6zAOVt0sqhfqmiG1o+KwclK1uBs7W+DyLbr9bDMBQXNz7pdDtG8qIZQQGXVX9/BV53LxP+cgeS08cmxjxLpDHPsHWOZ89gaUFV++fxknD477SEbTWvaePn8jwG44O1jcOe5eeaEd8gs93HWIxOxu21k2RLPlIGo/uETUBL3ccxERKJKsg9bOM2Hknl5IB5Wb4+32/L6UtY+8iWvv/wqxx9/fLc+WLBgoTt+MKKyefNmhuy/H7mjixjxu0MQbdKPmqSoKqy79jE8fUsov+ZYbdu9QFIgQVS+jqRAgqikIyltNZ28/pv5hAMxbvtwDIIgpCUp0J2opCMp0DNRSc3O2xNRMZMU6JmomEkK9ExUDJISXy6pqLEY2y79Y3yZrSgXuc0PioJ3/yHknjsVZ77mjxFu147vrNeOF5GCbP3DzWQffhg5R01FLdDGwebQvqYNohLpchBr7aDlubcJLlwBgJSdSdk/f0e0YSehxcvwTRxB8wsfEpinmWxshTlInkxKf33N1xIVSJAVI69Hw45sbUUoxfzZA1kxExXomayYiQrsHlkxiAp8PVkxiArsPllx2WKsfXQ2m/+3iImvXk5Wnp4+IBBh6a3v0LKmiQl/PoTPb/iQg64azEGXDuCR4z6iZVtCAbp20enEQjIbZ9TywR++4vC/7s/oEzST39eRFUgQlq8jK5CesKSSFe13bXzrZm5i6e0f8+i/HuHCCy/s1gcLFiwk4wdxpl29ejUjJ+xPyWG9GXrNgQii0I2k9ITUSrc9IV2ys3TY3ZLzBknpCUo0RmjTDkKbdpB37Fjc1ftGiG/zlk4+e2Al66bX4ytwcdb/TYhPsD8HdHw8CwSBvEvORPW3Em1qRbBJ5J42BdFjTJDpM5BGG5tAVZF8u/bjseVkknnkgXGiIrd1oIYiOMqKcFdPAUCwJSY8z+iB+L9YmnZfFhLI6l8IisqCy55l1C1HkDuiDJvHwYQ/H8J7Z73C5zd8iCAJZFf4aFjdRsu2LuxeG9FADFT49PYFrHl3K7GQrCkpZV9/Le1iLImsdF+vEFXEeKRPT3CKMcKKDY8tnERWAIon9cHmsXPp1Zezs7md39746z0bFAsWfmb43hWVVatWMXL8OCpPGMTAS/ZHELqTFPNXFSTUlK9TUszbpyopkF5NSVVSIL2aYiYpPakpqqqy8+151P/3YwSHjQEv3gx8MzUFupt90qkp0N3sY6gpnVEnXz6xjpkPr8LptXP4b4cy6PAyqrK1dmZCuDfMPpBeUTFv83WKiqGmwN5RVOSuAK3PvUZgwXIyDptIzpnHI3m6V/4FkGzadqmKSte61dQ98xjuwYPJP+M0xF42BEnqpqgAhP32RNp0Y7F+6SW9vRKOEFy1GdeAXjQ+8D+ICBRfcWk3RQXSm3/spozFaVWVFEUF0qsqqYoKpFdVUhUV+GFUlc5Nzay4fyada3cw9s5jyRutKSLy1lpqPt1E5WF9GDEcXr/uS9Z/lnAWN+OoOydQOiofb6Gmnhm+XOlUFehuBop1i/L59mag1hX1zP/tNP5861/4429/l7YfFvYu/u/vhYw++G3LR+hHhu+VqKxZs4bh+48h9+hRVJx3EABOw4lOf8BTv/YNsmHkM+gpBNlwbHXrJMX8sjOnoA/pLwqDhERjiReQmXwYy8Ph7l9X5oqvSsw0UYQkWl6eRudnc6j81+3YspPDIbMztZeiQXyiummoMDs5lX2vzGQnwlx74mVqE7tHG5gdXO2izM7Nft6+dTE1S1qZcEEfjruqEpdXO5bhFOs3nGBNY2MeU6M0gV8nH+3RZMdig5QYpK8rmpj0zC/rVFLZFTGlwTdNlNGo7oxrHu+gMesl+mgLJPZtzB2ingVVNIlo2597lFDtNvJOOBH3RK2OjqinnPfWJE8mnqbkeymcra1XVZXaVR/R8vknqLKM4HTiHTaM7CMPw15QoJ+XTMurb+D/ch5SRiZZ+40n58BDEGw2olmJ+0nQJ3ujr1v+9mcyxo4h9xit2KAYST6HaGaiT4azKoArT3OujpO+YMr9aXAl4x7VQ7LFaDL5t3Xq5E7nJfb+GlEZWJhcG2lbRzYAzdu1n1KnSRXabnIy1bvYvl/iXjRS+e9Xlcg9U+zSjlMXSqSXz3Fo93eGLUHkzfeQW4oSDcZ48dr51C+oZ8QNB1N13CAEQYhX/wb44uo32bogOdKqcFg+FRPLGXXhsG71d4xnKdOW/AFhkHDjnjeT9qR7W9/eeBb8pmcgnKaKt7lEh/Fx1La6gc23vMBdf/07v7nh2m7bWNh7eP7fJVz06x3k5YgsW7GDvJT8SRb2XXxvpp/NmzczfP9x5Bw5kvJfHAgkSEpPsPVQ2XhPICu7ZyraW4jWNuDsVc7OR5/H0SuPnFMOQZDSRxt9F9i6sJkXrppLRoGLXzw2gd7jC3BJwe/t+PsCom2tBNavoeCMM8jYbz/kb3gfCYJA3uQjyR47ka4Nawj7d9Ixdy7hrVspufZqJJ+PwNLldM76ktyDDyfcWE/zp+/TMuMjPH0HYqsuxTN0MI7yMvzzFxNracVdUom7T1/kQBei+9tX9v25wO62cdh9hzH3nrksuXsGbWsbGfGbg5PanPXw/nx49woWv66FLVUfWsWUvx2EaPt+3gE+eySJrKQiqkhJZAXAO6CM6r+cye9u+S0ZPheXXXbZd93NnyW2bt3KVTc18sK/i3n6pQ4uOa+K197ptIpH/kjwvRCVHTt2MHjsOLIOHkjFBQchCEI3JQWS1ZRUJQXSqynmAn6pakoqSfmu1RSAyNbtKJEoxLYSWAT2wlwyJo/uUU1JRaqaYoZNlFFVla6mIKJNJBqS8RW4QLeaqKEwr964gJJBWZz9r/1xeJKPkaqm9IR0hR7NMEf3pGJP89V8F/CvXo4gSXiHDd8r+5O8PjJHjCHmU/EMGULtgw+y7ZY/4x4wAMGljUXm2AnYs7IJ1dbQuWwRXetWE6zZQvsHHyPY7ahR7d5sA83Op6o4i9PncUmFGJBQPNq1VxUFQTRFx7hj3VUVM3wy+CUUu9JNVQFNwVHsEF2Xib1/B2saC5NUlcrMNrZ1ZJNX3kbz9mzkDDlJVTGgSJqqkrXQkaSqACzcWhFXVRpCmRS7Oih1tcdVldaIhxxHgM6YK66qiILa7V4q8XYx4aYJ+Ep8LPzXQkoP7o0wrjKuqmynhOP/YiPQEmHtjAYKisWvJSkxRcImynTEXEmqSqYtREfMRZY9SHvUHc9mm9ovY3uPLRJ/Jgyy4pRiaVUVg6z4nGH8YSd2UcY7qILqW8/gymuvoaioiBNPPLHHPlvYc8iyzHlnDuK043yceJSPA8e5GTFlK4/fX8zFv96x6x1Y+MHxnZt+Ojo6qBw8FKFfFuXXnYggCvFKwZFo4oVnriRs+G2Y6+gY+UbMeUfMhMUgFwbhSD0rRUn2gzFvK5ts8Ea7aCTxkpEjeghmLPmlJxj+AfrmcriL7b/+s7b/TC9KRxfl9/yajD5arhCXI6EgGXlKzD4xJb5EpI9LihJuD9G+cAtKTCEj10752CKm/WoG2+clHi53joOyEXn0PbgEX76LV6+Zw63vjaOot+ZfENa1/R3RRL6SeBROSr4/oyKy4Xdi+A+k+gK1hV36uHWfBMymnZDJ30HUCaVxnYL+ZAdDJaSNt1ER2DCFgJYa3oCjTTfLmOZKI+Fo5mat4Y71c9iy4A1GXnw3gijFfUYKFmphwUpK/SU1ZTLzVySIXDDPFMmhJxWNdXbQuX4F7Qu+Ily3HXteAX3P+w2izeTLFARVkYmuWEdr3Soyeg/Gm1/J5q9eQbTZyKgcRHb1MKL5jqRzNCdPDRYkfo+E26m77wHk9nacA3pTcM0FOPO1dbLpOVL9Jn8e3XfH0SbqP5NOE5sutAX0KgORMhPBkBL3pcsb0ftg8j1q06+zySxVXJw4wNSyVdpq3Swppqha67qKAagPavdl34ym+Lp0OYB6ORPrN64Kcv8pX5Fb5ePcxw/CV+BKCil2K0FWvr+d7HG9cee6aA4nO9AaJhvjY8hsTjU7vu4IaNsFTCqJ8d4wymZAMjkP6Pe/cZ+bP4YgkS/G69TLUpieocYvNlBz75t89tEnTJo0CQt7B3f+MZ8nX+xg4ceVeD3aeH/4WRenX1LP4iXr6Nu37w/cQwu7wneqqMRiMUYcPBm5wEb1tceBmP5r20xSfsxQI6YXvaK/BAuy6SmqpMf9KCob31nDovu/RA4lXojOLAfh9gh9D6tk0NRygq0hpv99MRtm1LN90U4OuHQQkl2ksPrna1II+1toWPsFroyC7h7Kewm2jEyyxh5A5n7jCWxaj6usHDHaPSpMECWyiweQXTyAqFfrS6SzlWBTDb7Svix77Cb6XnUL9sycXR5TCYWQ29oACK/ZSNur71F0+dF79bx+LCgblMn5D43k5VtW8fn/reLoP41OWi/ZRYYfX0lT5OuVw30BkqjEyUrWhAHELjmCKUdPZdWiJfTv3/8H7t2PHwsWLOC2f7bw2RvlcZICcOQhXn55ZhbnnD6UWXM7rTpM+zi+U+PtKedeQH1zDZW/OxUkjROlqimpJCVVTbHb5O9dTTFjd9UUbCpSZgb2Ui0sWfFrn6sOUcvpsCs1xUDjvG1MP/cF5t/1Bf2mVnP2e6dy1rSTOfh3YyganEffwys5/A8j6X9YOfudXs11s45n6p9GE+qIEmyPoCpKt/NPGoseTDOpasrehCh+PVEz1JR02F33EiUaoXHDV6z8+GEUOUb1URciCN/s9vbVdI/OSts3UcTbbwCSx7vrxjrKRmjVfWtmvAxAuCk5MVpPkbGurCKcvXtjLykm+/Rj8X/2Jf653dPoC77uYfmRbD2PUHb6fXv07PKO2vQmvVCXttzhTONTFkgoBg0N3Q9gKB09VSwvcWsq4obOgrTrRZ3kbwkn1ruEKEMPLaR0gJclr29FjipJDuVGwUsjEi7P6ccMw4xjRBGanWU9JufcIo8eSWdP7Nt4fiKmtAbm94nHobVN986CRG4lc90nw3zttMnkHTmK3CNGMnLigTQ3f/sSDD9ndHV1cc6ZB/CHa3MZO7L7e+3OP+bRFVD56++Kf4DeWdgTfGemn3//+99cc9Nv6HPPRTiKkr8YjSrC3TpjmFDSpEY3h5QKJlnaoRMAIwxYUZInYrs9+UUR68EvJWKaLGXd5h+f5yLJL1kjciMJqkDtvfcRqdmu71wEWSFzyihKrjqR/cu3AlCgvzQXNif7JzgkmaavNrP4929TvF8pIy4dTc4wTZMPycnjZewj065NqC9f+CkApUOzWfdpHTd9dDCqquJX9NDPqCe+rSFzp4Y5G2GURnmCnaGEXN5u+jI1m3NCxks3YDjJpISL66aHeMp7cwmBNlOmWdMdKAW0NkatODFl3hX0udIcVeqpl1k7+wla61eTmVPFoDHn4Y0lVKVQnjYp2Dt1v6gUZS+kJxLrrDCRVnvyT4Botok16X12NWr99aSUFJIiWgMpavK7Cmjbz3rrt4llLh9DTr0Jm9ON7NQLK+rvzUh2MksL1dXQ8PcH8YwejirLBJeswDWgL3nnnYlXziW8ox5UBa+vLL6NMbbxCKlk95E4eTHOM+ZNHNMcbSQ6TZFHuinI8CnLdCcmd4CheRrzMSp2myfyfHuCNLSbrtHWgBaBUeXRJufU+j1GQUHDLBRWbLzwy8+oXdzMNfNORbJL8eWQHKVm3Os9Oboa/bOZCHWHKXTeMP2YzTRGhXOfPXlAm0Pas2Y8J7LpmTCnOTAIjNNEZIw3cTBsY9tdL5Hjd7Fp6SKk79EZ/6eEy87LYtXaCNNfL0eS0n+gLVsVZuKxNXz08RdMnDjxe+6hhd3Fd6KoLFiwgKuuu5aKG0/pRlJ+yrDlaOcqZfkQ3S5seZlE65pRlV3LAqqqsv6xORTvV8qhD06lYPjuJ4wTBMgschNojWBzivxuyAfcNPRD1k5Pn1Pip4bGzfNorV/NoDG/YMSBV+FwZex6ox8QY6ZqOXYycipRFZmts17ere2cVeXknXsqgUXLUIMh8s49neiOJupvv5eaJ/7F1n/9g63/dy+d61d8l93fZ2B32eh/WFmcpPwYEY5177sgCpRfdxI72uq49Jrrvv9O/QTw9ttv8+Kbfp5+uLhHkgIwfLCTv/42j3PPmkxHR0eP7Sz8sNjrRKW1tZWJhx9B4ZmT8A2v7rb+h1RTzNhtNSUFPakpAPlXnwCShNzuRwmGkTK9BNfVsF/+JiChhKTCIcl0bWvFv3En/U4amJSpd1dqCkB2mYetC3ayYWYD3uzEV2PL1q6kbdPlYIHEV2g6tPdg5w/1ELVkQIntuX+IoabsCeQVG9m08BUKeo0hr3joHm+/txDYA/XY6c6irN8hdHXUU953Mm1bltGycVG3doYTrBm+A8aRe8aJhNZuoPm5l8k+5gh8E/dHlRPXtn766zTN/pCureuRw9qXvyrLKJEw4XAbgbrNyKHkRGeGcmXrSn8NlHDPZKAj6Ey7vEs3wfRkbsyydQ+bN5SVnqoTG0qLU4wh2UWUmIIcVZCjcnw5QJY9sW/jvk9VPwykSzSZ6UioRIbpxxxh2B7SI+hSVJo8lzauLrs2oOYIOrczIQ+anWwNsmK8A132KJLHScXvT+OpJx9l2rRpafttIT0aGhq46Jcn89AdBfSq2LXvybWXZtOn2s7VF+9eFJ6F7x971ZlWVVUmH3sizr55+I45mFBYQDQRAln38zCbACBh+w75u7/wBElJhDCrCQJjd8eQFRFJVJAkzSFNNJEYOSYSidiQTYXtjL4IkopiMn3Y9Yq7AoArRsifePmoMRHs+nYRMZ5F1N6q+8WY3n2efiqdBw+mdfpy7Fku8vcrpXZzPdQ1kDs4l2EeLURzXbCYA/I3x7db3FrGuodm4MzzkDGqF/6YE4f+cjVneS12d8RNM80RTWJ2S1FyR5Sy7G1t370PLqW5LsR+p/Zi3Ll9AHDqmX2N5G2pyfKMfZojHozjGllMDYR1gmJcQ9kU8qqYxhoTuTSWi136mIVSquimSdgm6TzMkZ7bkbtaa7B2yzIczgwGDjmVrpLES8nZnuiXv1T3RfDq/hIp765Ijp6Uzlxjx+hiCuGKZ2E16gya+uxuSUyussOUHVY3A3k+XAZAYOoIKvpPYef2xbQ3baDI15+az18ls9dQJLsTXw0EdEHNudOUuFDnjFl9R9PCG1rfl26g9JRf0JGxkPqaLdp5hMO0LPycptkfApp5KRbqSnQasGXnUHrJFdgd+fF72N5pnJN+zDaRcIHJ/KP7v0QiNjJ82vhnurSf5vwgmztzyXVqRKFZTfjveGwRGsMZDPAmotZ8UpjmqJdiV3vcRLkjnIhQM7IihxUbndEEaS5ydRLyR/EVefjszoWseW8Ll/9vIsX9tW1bY148UpT6kPa3EXWU6Qgl5WdKVyfMCDV2SIlzckjBeOVv8/NjZM02Z77OcQbxRx3YnXJ8H0YW7ExnKCnlgjmy0etIZID2OcO0VOVRdtXRnHT2mWxbu57S0lIsfD1UVeWCs/tw6CQ355yye8qqKAo8eX8xIw/dyouPlnDmpfXfcS8t7Cn2KlF55JFHWLVqEf0fvoTIzzSRTmRHGwDRli7KzxhH0wfLWPnWZooG5/a4TeOczexcUMOEfxyDI3PPnVn7HVVNLCzTe6iHZ877XFs2uRjJ/v0mu/u+0d6+lbotsymuGPuNHWd/KNjsLvqOPJWVX/6X0swhxJQImz99luop5yA5vj5qS/J4KTrudHZMe5nOFYvZ0txEuH47voHDCDc1IAgixROPwebLRK5vJNzRjN2bhZLlRLQ7kAs8NL3yP3a88AxF516A5O353txX0bbdz45VrVRNKGHe46uIhRVWfFQfJyo/FeRMHkrnoo2MO+JIti1biij+uO7z7xsP31nEqrURlkyv3KNkbmUlNh65u5BLf9PIxKNqqKio+A57aWFPsdfu+m3btnH1r39NxXXHEXFoL769oabEYRIB7Hr9EqmHaBI51v20zGqKGTbdPJTulk6N9IkfP52aMlZzAqz+3UnxZe1Laxh30SCWv7aRPuGNafe1pK2cLa8uJWdoCUUTqgDiakpHNL2kDhANRtn88WZWvLyWhf9dTk6mSumQHIYfXwlAXpXmDBvUoy78PSRpC8rdpdGWcPqJMvw15p4kNcWEnsbw6yDtRtCNqiqsWfMGGdkV9B5y3B4fY19ATtEAfNkVtIcaGF56HF07NrH18579Vczjkr3feCovvAZHXiHOwmKyRo+n6JhTKTv9QhAFtr31BDXTnsbVrz8lY44kf9B4sgaPIqPfELKzqyk8/WyizTup+effaV80t8fjmCG3dr8fO0JGKYbE9ZeDUUKtmqKSLrv02q70/lfZ9kDa5QYydHNnuD3M2zfMwZvvYvRZfRF1H4T61QkfgxybZvYs0VP2m1UQc2FT0fRiMdp4bNqD7UgxlRrqi9mUZSiPqW0NM5ORXNJlyrtiVp9sJtWmS3fgNfqR69HGo+zyqTQ21vDP+x7CQs9YtWoVN/1tJ08/VER21p77LZ1ybAYnHuXj/LMGoOyGX6GF7w97haioqsrBx55I1kEDkQYP1nb8LUhKaP1WYs070x4rHUkxe+ObSYph9hF7yNNiS+PDYph9uoUj65E/BkkxwyApAPa8DDIGaxLt2JExBh1XjSqrrJjdBmhmHzM6Nu6kedF2ep88BOj+wjNQ7E68hJtWNvH8wc8z848z+eLvC1j0xEqm3byQ+w5+F1eWnRu+OBqb89s7GO7oTC+dpl7HHwL+rh10BRop7z0JSeo5U+6+CM8HiarJRVVj6Yo00xFqYFDuFNo2LyXQXLtb+3FXVlN9zU2UnHg2xcedjs2bgbOgiF6X3Uivy36Dqshsfukh3ewDzrbEtq6qXlT9/k/4Ro5mx5sv0bbgS9IlLHY2pb+POv3plb9gQwezTnuUd459mhX/SSZAPWU0zrN3pV0O0GUyR279opbnxj/OK0c+R9v2Lk64byJOn50BR2kEf+3MxrT7SEdWzDCTFQN7g6wY+LZkRfI4Kf/VMfzu5t+ydevWtMf4uSMcDnP26aO4+qJsDj7As+sNesD9txWwrTbGPX/e/WAGC9899orp58knn2T79vUM+MPlhHfdfJdoeuhZ7MV5eMYPJ3PyWAT791aSaK9g8J9PAFEgr08zqqoi2gQ6dnbPbwHQvkZ7uZYe3Dvt+o4NTeyct5XtXR0IksDA0wby7i/fTds27I8x79mNKFGFQ68fit31442G2BXWr38HhyOD7IJ+P3RXvhVKqidgr29nTeOnDC85DhAINNXgoWyX2/YEQRBwFpVSsP/h1H/6GrGgH5ure64X0ekk//iT6Zw/l6b33iBzxBjkljaUaAR71Z4df+fs9eyYtoSWBYmJdM0ziykaV0HOyD13UmxYUM/S/y4msyqLwr4+mte3seYtTZUccv4I+p0wgAL9kTno1yNY/upGhK+J7vixI2Nkb7InDebgE05i8+KFVo2aFLz11lt0+lX+cuO3KzSY4RP5992FHHtOLU+9qn10X3XVVVx11VV7o5sWviG+NQPo6Ojg8uuuo/zKw1FcXuzEkpK4BUMOBEH7Cjc/W5JNRlEEZFlE0pUVo3ZO2S0XsOOBl2l9ehod02bS/7/XIYgCLkdisjcq70bCyaYLQVdaYl2JrzeHnvdBSlFWQnoEkmxENJgiGwRT7hSHyTHTqO8XzleRdeJe4kpEGJR6O0B/VhRVoGZeI0pMpUXIZl2wmOGeRCXZZtnH6IIdLAdchLDbHDQENBWjI+Ri2yMf0/j2AkS3AyWoncOgY3txyJ8PwOa2UT2lAlVR8a+q4+M7FrNzvZYifsGLm1nw4mYO+Ncp5A4rTDpnw/nPgGHmMdclMRQqNSVaI6pHRylGmnal55elGE+FT7e25mK15jxgRhCI+ctfCpucck2XuqujngJPH4KVmokrkuKaoJp8VmL6HG2k7ZCdKV/Qsp5q3uS46tRLLqVaIzxNesXcfJOpQ9+vFEzcX1IQXPWaUhAu0m+UoX1N6xNf0bkHTcXx3kLqbNvJzCindfFssoaOQdSTJAZNl9AQBRR7Ijmc4QTrMuUHk6Nhmj5/H4+3AJ+tAMGvbRjK1c7VyFMjYaf07Iuof/lptj70d6IdbYgOJ32v/RM2QXuGzIFucpuTzFJNoTBUgfagi9oP1tKxYCulU/pi9znoc9Yolv3pXdY8MovT/juFTLfW1ojaMZKyGYgrCI4u6tZ2Mv03H5NZ6mX9mw2sB5xZTkZeOppBZw/B6dH20RzR6vLY3A6umnMKwbYwjRFf2v2Wudriy4Kyfl4p0W6ppSK8tkg8D0pq9J2RwC41ks5her589nD3iCcHtOmlKVzEkkxjZsd5j163LCTbKM7opKnLR9mFU1h18SNMmzaN448/HgsJxGIxSookbA4VJY1CtieorJBQsbNq1aq91DsL3xbfWsO/5Fe/xlmdi2v/Yd3WBUPppV7J1l0iNUiKzSHjrCyi/M7LsVcWIbd00LlwfVLbPSEprixtVtwlSTEjkn5Y0hUhrhqWXqbP18NV5j+uZQ8dfnxlEkkx4HDpETeNyfJ3pMVP4zsLKTnzAAY/cAGi00b+/lVkV2XS/9je9D5UcxYTJZHyUfmc98Kh3fb95bWvM/e305h12Sssv3cGOxdvT1qfzhelp2rTXWl8iHqCQVK+S5T4BtHQtQY5ujc0vO8H4bz05hK7X8aTWUgk1EH/fsfi99ez4bWH4qHFu4uQ6WOycfFnxKIBynsdhGdn94yykmnYfAOGUHH+lbjKq8gZPwklFKRr45rdPq5S30h4+048gysY85cjGXHjIfjKsxl0w2E0b2jnjatm0qiT6J7Cjs3LlzyzCk+ei5Ofnsqw0xOKWfVRfbC77Wmz3EouO5kl3m7mHYMopCaQg0Qo8+7AJaVXRFMTJ6Yinbkp25H+uqZ+RJiXFXj92DLclP5yMqf/8gJCod3LnmzBwk8B32pG2bJlC6+88Azllx6+16VIwSYR3aaFMXalEJUfE7IrMvDmOfHvTP9iGThBSxJXN0cjMaqq0rmxiS33TkPyOCk6aRxNHy5FCccY/udjEHqolyTZRfY7R/tiLxxVTMGIIrzlOTR9tZWumja2vrWCr659k8+ueJPvuA7l94JMRyGKKv9kJPDMgr74W7bh8RQyatQlRNp3UjvrrW+8v45tqwCB4rKxu9XeXdGL0lN/QeERx2PLzCZQs3nXGwGxziCrr38GVVYou3xq0rqcwUWc8MBB1C5sYtrNC1Hk3bvvGle2UL5/CTaXxJp3NuPKchBuD1P/1e757vyUkXfESMQsB//4x30/dFf2OaioyKqyV/5b2LfwrUw/Z158OXmTBpDbPxfQa9voXwChmD1eIdT8VdHiTzg6CYKKzSZrJgZdBInqNYBUWcFZXYq9KIesk6dQnKnJzV0RJ1kebdJvN/UlEraj6mqAI1P7XOxTkHDIre9M2AYCQUdcYZEN+desrJjzadgVIrrpwO7VvqrysxLJPcxpt0s9CYdX42tt8Hkj2Dp3B89d+iX1t+5P2ZhCBEGg2Kn33gUFw4tY/NA8lj26EMlpI9IRxpHjYcStUwl+tZQdr80l55ChtCo5NOmmkEDMVKlXUFj179ls+t8GMqpzGfqHI5l1yctE2rRrEvUnPp+blzXw3knPEWzqouKUUfS7ajKQyOdgJO8KBZLVMKXLpF7pZhwhauQ/SSELpuEzcqYY+UZSI0rM6ruhghsfv1JYTaqS7N2hfXV71u6kwe5GFCTaSsLYMhykfriGdXXB/AFv7F9xJTc2zsNskgrppWXUluT9Otv1PD7BxD6ytuj5RTKSv66j+ZpiZf9oQXyZOk5THsM5yY+eu3w0yor3WbvmDQb3O4nq4gPZuO4zcg85HLl3sn+J2qVtq+oRbNE8cO7Qro8UVmla+xXBpu24c0vprHQgCEJ8HM0WF9mdPA6xIu08XCMH0bF0Mb4Lj0TQ07c7MhMhboZJMBS1U/u/z1GiMmU3X0Ysy8fybZCXk3g+eg0dyEH3+/ji+nf55ME1HHjtCMqcrfH1GWJi0HdEswDoMyabpe9sZOTx5eSUe2hcpz1XmdU5cYXErb9nwoqNTP3C5di7eOKSeWyY00zv8fmc9+h4BEHAblJOEin4tfEKyMn3uU/fV8A0UIaJqCOlDpZdv6HMlaF7Sp5omJsME1KmPRyvK+Q35YdxSTFCsg1FTSR9FAWViCyR4w4QiDqoumgSf7njNn71qyvJyspKe7yfK76t2Qc0wmNh38I3VlTWrFnDvM8/ofy8g+LLHGmky5487YU0y6OmcvWCzUbF36+g+Poz6d23u+zaHkgvo0tpInnMJMWMiD+NaSpNoUBIkBQzfI70ZociZ4KwZJRlMOXvkxEElTcv/5SZdy1AiSVebKv8JUx56CgGnTOM7H559D99CPvdcxKTXr6Q/HFVbHp2HgClFxxCdXZLt2MZNu6u7Rrx6dzcQuOczbiKu7/AivavoGxyNcEmzcwUqG3Tto3svlnH8OfYHdiCu99WSp809GuhqHL6uPIfIRyZuZRPPYvG5pVs3f4F5SXjkbw+tr/8OEpg92R+VVFoXPUF22a/gs2dweATb+imOHl3I5dVxoH7I7d3EFqaXskM6SbXzgXraX17DrknHYirKP3zuKU9h6Kx5Qy+cAyLnluLvzFIbTgnrapXZNfu4aN+P5SiwTm8cd1sJl45hDFnVXPUzSOSykqYo4EMtEa91K7Qnr1NX+1k3UxNkY2mIQ9OnTl7Um48v05GPCbbmPHRkWlLvg5GokSzKaonc5JbP47ZhGQkWPTZk/drmHvShXZ77BGyxlTj6VvAn267I+2xfq5QAWUv/bOwb+EbKyoXXfdr8g8drE+IFgP9OuQPyOPcN45jyfNrmPPgEuoWNTL+tDLGn90r3mbohaOQPNqLqyWsqU6xrjBRf5ii0w/AkZ8JdCcqBkbfegQ75mzBmeMmd1gJBceOBiDSGqB5xmoqTxpOpksjcZGOEHJEJuD9dh7yPyRaAttwSB4kr2/XjX8kyBk0BmHpFrbWzaaybCIVp17I5ifvo/3dL8g57fCv3bZj8QLaZs8kXF+LzZ3BkJNu/Mb9cFSWYS8roeurhbhHD0zbRonE2Hrb/3ANqCD35IPStjGjz8lDWPXf+Wxf2Eg0GOOZp1ZyxVNjyUgTXGR3Spx03wE8f95nzPjncs54cH/ye2ewJbBrVmp3iRT0zgZR5IvHNzBg8k+vMq4gCJSfcwD/+suD/O3Pt+Dz/XSegW8HFXkvmLV300Jp4XvENyIqNTU1fPnpxxz+3Ol4vFrIgdljXVEFHJJMrjM5ZCKmSFpUDLDdr33xGzJyqsLiNKkzId3M4bJF42mm89wJ59OmgA9SKrjmeRLrvY7EV1MoZiPDq33BZORoX3Ad4cTXoMfUtsTTGf/d+BLKdST225NaVOLQ9lsfySJXzxHRFvUw5NzhFI4uZfGTK3j/H6uZ9UINJcPz2fjpNlRZZcwFA5lw5TByHNq4vXL5+yihGP5ZK9i2ZhNr/AreQeXk/uIoRIc2JsE2k0NsRTVEROrWgqqn/Xdlh+CQMra0gSPFidkR0cbYnEfCiNhyupMVJFmvnmtWoVQjiiaYbPIQ9LTz5uzzNn2SkVM/hPVDmz8ejUAJZ3vyl40Y0f6uP7KY5tfbcOVWIxend3KMK2Pmuc1Qg1KS/hnvNrkqce1lPcIp4EpWChSn9vUsmA7bVaSNSTQl7UzGNv1L+8IJ8fNr76vn4UjxwYyVaMdWyg5E/s0cVhSuIHPIgWTsvz+BLxdT9stJiePpUVdCTMC9XSJUX8OOV1/AXdKL0iNPJ6PPEGJeHzESEU+QiMAKF+l1cQqSn8/izITJxnV8H9Y//iWZju048jMIRRKmv445q9j8mJaeP+vEQ7E7BEDBnaVXFHYmP4vlntZ4eYKZdy0g2KHddx/du4pL7xuY5Ehb7tDIeHkJlDw+gIcuXcV/z5jBSQ8fROVYB03hxKRsPH9+2RnPxdLRGKajMUzFQC9IIrk27ZyiavdXnUcfEI8YodOUREbSb8oMk53SJWoXLMsWJGQKP3OZaijIurJijmgyO/Fmm+oPGSYswyTkkyJxhQYgZtquM+oCeyJRXbYzRMnEbBp6ZXH//Q9z8803dTu3nyM0RcUy/fwU8Y1MP3+9626KJ1TgKe9eGbmnAmRm7/hUkvJ1iKbxqk/nHd8TzCTEjIw0ZhszSUk+XvfJsCeSUunsrnoYNUwACgbnc9g/DuHYx48ib2Ae9UsaGX7mAEae05+5j61i9ScJbb58f+1r0J7hRLSJOIqy2fnuImrveSXtsXuKVkoHh737GIZjP458NZ3b1tJVt4nMqsE/WB/UXdc6+1r0kBsMW0EuGWP2Z+e0N2mbPh0lECDa2IaqdL/fYm3tNM14n23P/RvBZqPy+PPJHToem3f3apyEm3pOjFV29GDsmS62/nMaqqImpQbomLUSua2TsruvxTO8ex6b1mDyfpe0lCHaRKb8YT8Kenk55OJenPa7Xiz+pJlAR/J9KJkYa2Glm5vfGEn/MRm8ff1sgu3Jz2w688+gI7RkizVruqgemTD52oXdf2eEUotB0XO0Urq2Pim9STid/4q7B5unLc3xzKYgQRDod+Zw7njgbiuLqgky6l75b2Hfwh7PTOFwmGeefYJxt3UPh7Ww+ygcWsCUOw7GLRpVVmO0burg87vmocQUKieWMuFXo+h96cHxbba057D2N88Qa2z7gXq9b6Bh/kcA5AwaS8dP0J5ccPJpSBkZtLz7LvYizS8jsHIL3mFaNXJVlulasIS2tz5A7QqROWQUhaOnYPftPcdKR6aLYb8/nAU3vEnbrNXkTEqQQlt+JlKWF3tJ/h7tc/hpfTnqXN3cuLOV1+7ZwldvN3LkL3rOAup0S1z0j/78dvIClr22id7nfL258rDfDGX1R3UAfP58LfXruzjwzDJGTS3Yo77+GFB6cDXLHpjNBx98wNFHH/1Dd+cHx95SVPbGPizsXewxUXnrrbdwZtgZPDETSdRMHGa1xEiAlOpUZpR0l1WRgRkNQOIrpUNOzuchm5QW4yukVa8WnJqmuiPqoixD64fxxWFOwlToSsjZqc5wkPxFY3asc5okXUMK9pmk4FTlqFPRnfDExNfUeN8GANrk5KiNdj1TXItJl2+K+Jj4xwm8fcV0Pv79LBwZTsoOrqJpe5RefziVzkAesr+LrrV1FJx5MKKo0tWYvF/PNlMSMj0rraJHg8geFbMuFKtMmLV65WkqkHlsjRTiAB2RhCoVy9fz3Zi+7jpNNYnag4m2hh9nOJK4zcwO0wAx3cQSCSba+HXTTGuK466kmzwyRh9K4K7/0pi9nupSra6Ux578ZdoW0u4pcwVco405uZ0Z5hwyMbf2e0uKmShWkThvm25KM7YTSM7Xs7NX4r426lbl5ibuR38wMW5H9FoX/31FWQll40ayzpvDjnc09axlxhqUrCLa3ppBeNV2IvX12AsKKL/6GuxZOUQzVaL6fZpUBRpQ7dpywagCbkus95lMpsGonaF52rNZ7mqFwwTqR+SizJ7P2FN9cQVjx9RcPn7bj9JQi6t3CaVZifg7Iwou1exrbKs49DHOy2PI4cW8/3g9jqoivnpuE30OKGD/s6rj5hpDtXTl2hh8dCVLXtzA8HOHIEqJ65RnKq9tF2RcpXYOu6iCTx7Xwv3Xz2tj/bw2mjtHMPTERPbnalcTkDD/FNnbk8w/ZpNNSJfPDO3ELsnIJpuiSzBHFWm/m01C5neCGcb5tZvef63R5GdaQSTbHsRpsjUapqWwYmPwiX24/s9/tYgKRnjyXiAqP4H0DT817LHp5w9338mA46uQ0myZmqXRgEFSzOhJSjWjp1C/dEjnId9T7Y10SPX+3xMYJMWMAltHmpYJkmJGk55N05PnZuqzp3DUC6dSNqmKze+sw79kM80fLAYgsrEGZIXMA77e5GG8b4PbttC5dBFKONxj7hSDpJhhJinfN1Rp1y8JKUszbeztfDA9Fbn8oZA9ZgI5BxwCQOen86j51T/wz1qCvTKP4iuvpOym32HP0syv9o7dD3/ak0KRAw8tZfvcekJtick2p59GDiPbm3Z7PwY2BBJpdo+8bgD+nWHeu2MZa2fs4L07VvD+31fQ1apNyuaPgUFTy/E3BontaO22z1SMTqOevP2npXxy52JikeR3QkBJn5Qy3ftJTPOOAQil9X/Z/USEWekySaYgnMbW6BRj9D+mmvWL59PS0rOj/c8Jyl76b2Hfwh4RlebmZjYvXUa/qdXfVX9+9hBEgazqHPa/+WBO+fQCAFqnL0NVFAJL1yD6PNgLsr92H3Kgi7a5s6j574PseOk5Nv3l9zQ99wJqbPft9PsypPxskET80+eixHafjP4YUXDYMfHfMw4dS+lfLqfw2rNwVfcisq2Gli+ms/5vN9H82YffyfGHHluJZJeY96/F8WX+Ok2Nsxd191HbE+RWeMjv5aWlRlNf+kzIZ/GbNTxy+TKUFJ+cXL0aeMvWzm77SUVxHy/HXdsLgKwSN30masRl3otbWPLalm/V530NWZWZ5A/M5ZVXevBb+xlBxfJR+alij4jKe++9R3avXDLLE8566VJI95RLQE6T+vrrzD4GDLNPt22j3ZWMnlSdbwopzU3bk8NwOqSaffYEG4Ll9Pn7eYS2NNL6v3cJrViPd2gVoiO90hRp3cmmx/7BxrtuofHd15PWdS1cRP3//YfQ5i1EduxA9gfp/Go1W19fytr/zGbNv2cRC+y5kmI2++wpDLPPnkJ0Osg6YQqBectZf9ubqPKP/xvo0y39uy0rPFDztXCWaEX9fBNHEqnZQfOz77LtL3+l7oEHaJ7+PmokQrhpx17tz/aQRkK8eU7GXTOK1W9swL9aK8HgyNDNOEFNNdjW0p2wGCH2u8LQI4uRoyqiJHDuI+M55+FxbFnWwaePbyOi10OSYwqrnl0GAnhyk5/55kj30Nw7T1nEp09t5/y7B9JeH2Tj7ITy89Fdy3arX2a4hO7O9OneC5A+uiigpH9G0r1HclIqSYtpvu9TnXV7H1bJnf/6v7TH+DlBVbXQ4m/7P43fuoUfGHs0U9z9yL8YP9XHUG8ilXWWpH0NKV/DeYwH3S50zxAZSpE009XxkPV9p9br6DK9ALL1fnhNkqvZIz/DJK9KaR7+kJosARv7Nrc1+p9KPqocWgZc8xh4hHBSvwx0Km59H564Lb7E0QbAtnBeUgijP+pEGetjI9D58Wzcg6tQmprJcnYhSCLBDFs8oZcctFH7+SvElCDZx4zHO6ovtX97DoBef7+Ylumb6fjwU+ofeAhEEcnnRe7oxJyUvPdhvcgdVNgtyqkiS5PbzS9RI7NnalSWWaIO6Fk4zTK6OVqqM5Y+IiveNmUyMIrGucUoDClkw7gD+eCmWZQu+pghx/dKapta9A5A0o+dGlGRb098pft1u1ljRCfjRbDVnxtfHzPdn5l27RqbyXEglriPYjnd72WfyZdGyUqeqCZkaD5NGztNTqo2kYoLr2Trf/9B/V8f084jJ4OcQwaTOX4AanEv6m9/AjVDwVauXZ9sb7IpwUz+DZ+dYm/inAucJj8uU/Ix43k78dxM1rzgZusrSxj2pzI6tmj3Q8bOTfTOzwYSPilFrsR+Uz86Us0pEiphhzbO2SUufPYIg8b5mHhOJW//cxMzX6jjnH/tz6wnN7Li/XrOuLU/Y0ep5No2JO2nzWRO7QpA02ZtHPY7JJOn6Y6Bbo0AGs+r0U+PGE56hiVTKnW7Knc7h9R3lwHj2bALyb4s6WCMsUeMxM1Q+XZ/2jZGOyApu2/hkXZuf3gJfr//Z59TZW98siiAoigMHmxVT95XsNtERZZl1i1ZxFG/Hv5d9sdCCgRJwOZ1EOuKEFy1FVumm40PfkT2qCq2/ON91GiMnDMOw1ZeSWjlenLOPo6CU8bQ+VWi8qe7fxnZ7v54Rg5DQMA/fyHR2gbyzjodZdXn7PxiPYJdwlOye2Gt+wr6HFZBvwMLmXbbMoqG5ZFf/ePq/+5CdLqovPNigqu24h5YiS0nIx5e7vc7idQ24p3w3T2XoihwwBnlvHv/BvpfF+aLW2cCsObfs8nok0/B2MpvvO+sCu2atWwP0rDeT3E/Hyf8YQCjTqrgyUvn88QFswl1xjjp9pEcePKuTU3P36QVAR0zNQ9vpp2Tr6vk9fu3AVAx0E3NmiCv3lfDqb+u+MZ93tdQ2MtDbomLGTNmcOyxx/7Q3fnBoJl+vn2qagUBURSt6sn7EHbb9LN06VIAygft2WSQTjbdHUfaPUGqagHp8xvsLrrSSLV7kodhb0IQBKa8+AsyDtQmIiUao/H9Zay7YxpqVOtT62uf0XTvEzj798I7Tmvn7l+O6HaQc8w4bT+iiLOiHEdFGbknH0/xVZfiGTKIIX86nhH3nI4alVlw+2fI4R+PH4sgCJxx3xh8eU6+emrDrjf4nmHbi865tiwfGROGYMtJfv6idU2o4SiO8sIettw72O+4ElDhzdNfI+qP4MzSnpGld3ycVEtqR2jP3g+hjoTC9Nz1S1EUFUEQKB2USX4vL6HOGCOOL2fEceXxduZoOTN2bA6w9CPNzHP+37QCnYddUErFADdOj0jNGk1pevvfdfjbEvd5T2pwuvdUuirMqTBHDBroSX1Jp+5+k8m2//gs3nr3vT3e7qcGRd07/y3sW9htovL555/Tb0wGovQTKa7yI4Ijy03hlScgZXpQgt1fgu5hfck+5UiKfnNxPCLGlptJ/+dvovjio3a5/8zBJRRPHUrjglq++PW7KD8inw+7S6JqTB41S5qRoz+efu8tBBavRbDbcA3q9Z0eJyPfySl/GkS4LURO/1x85RkUjykh1hli21vLv/F+JXviFbRjYxdbFrXF/z7lb8M44rr+nPCXEbtVJTsWUXC4RX771v54MjSxuLMlSs3aIOGAdm9c+DctEGDZF2097eZHib5js3n7wzd+6G78oFARkPfSfwv7Fnbb9PPitHcYPtpOhaMl7n/h2A1lxHAGM7c18g6k3hBmB7UOXdUwf4koKe0juuOaOZulHd2WnJK91lhu3ofhl9KWEjJs/moy/CQyTPkxsqWEr4b5qyti2i6i6nlfUsaoQ/eByJUSdmgjlLnC3pzU1kgnvjOWwX4521BmTqFjTSMPnKUVKpx4RinNNUHcWS38+64u7A5NqnyxdX8A5jcnJHk5I9HnbeuKMFwtYqoIdgf9fjOVvEkDWPmH15j+8HqqLjgw3t7v0frc5kiMU19PIwBOWzJxMqrhmkO2Ddu7YV9PB8M3yXxPpPorGSGf5hwVTiHKib/I4m9n1fLWVTO46I7eFJQ7aZE1W32r6evbqJSbkVrC2YRCu3YtcmyJ8RrhrYn/br4f22PaeJjvF7O/CyTOvSaU8HMJ6r47bSlO4u/sHKmdp2lMI721vnqkZBLW0aZt6/9yBZ6R/bB5bPQpSDiNGv4zAH29jfHf4z4RpnD8VD8jw0fCaBtVJZxilANOLcFVmk1hnww+uX8VO9Z2kN83C6mujjJ3aXz7ntIKGE6gZrWzdHJv+hxVz8b3NwHwym3rOOSm/RgzXqSoykPRJb0Z4dbWRUyOqsb1Bc0vbXO4gK11IYYeko/LJRBQHHjECJuXJft7vPuY5p+yfF6Qsccm7i+77mckkfy8xp1ZhYT/lfEOcQixpOfY/C4w3ilmn61UldeVorx4xXD8GUlVWuK5XJLeo3pbQUUarfJcTSPRaBS7/VumTf6RYm+afizsW9htRWXD2kVUD3bHScoPjUga73o7e9eklOrMCeml2t1Fh9zdeVTqITdD2v7YRKpGZPG3Lydz9RMjOP2W/hx9dS8Wv9/EyqXfPvdJ9qhKvL0LqH15Hlsem8HmR2dQ+8p8uurT54T5PpEuL4WRBKvPCB83PDaAuk1B7rl4Dc31u3eP1q1q5+3blvPPk+Zwx2Gfc89xs9m6/Ic/191FZFs9kU3b8U0c9r0ds3pcPt48J73G5lO/up3G1a1EAt/cXCjaRCb/9SD2v34sADvXt/P65TOY+W736+D4GvOrHFX46J6VLHqvkX9fupRAh3ZvDNw/i0POKOCaB/oAsGOrdm9EQ0qPOVS+KdKZhZxpTN97+xiyKlBc5cDhFFi9evVePZ4FC/sCdouoRKNRWuvbqBrg3nVjC985PFl2BkzIRZQEIiGN6OwNs6polxj58DnkjK2m9pX51L+5iG1PzeL9015g/m3TUWL7rmll6MQsfv/sICIhhT+fupLGzZrfUtgfZfl72/ns4TXMf3YdNQubaNrs56lL5/J/p89i7cxGKodnM/q4ElQVHr1m5Y/GhNTx0RyknEx8477/mkfDji6j/8FF9DusnIN/PWKPt3/jj4v5+0Ef8OG1n7Dh/U0MOXMQDp+d/S8ZTO+DS/ngD19Ru6p91zsCYlGFt/+0hOatfo69rpqmrUF+t/8sls5oISPXzsV/q2b80Xkcc3GikvIJv+mzx33elyGKAhV9Xfw/e+cdZkV5tvHflFO392VZYOldQBBBRCzYu0ZNNEbFkqhJPluiMYkmRmOMxpLErtFo7AY19i6IIEhTeu9s73v6lO+POXPOnLLsAgsL69zXda49O2fmnXfeKe89T7mf5cuXd3dXuhWaLuz9x7aoHHDolOtn69atIAoU9nLgt6QcNmmmaTjeTLJ507QYWDVUzMDUZM0B8w0nob3o92Q3gPXNoi2NpcKKdJLp1kqlyWmypiUlbDFhmymonqTUXadFM8bUlLGmeFpl963fTZOw6SqB1IC7EofxoJ7qXRdbtijYD4ibjfPchiXFnSkT0SWero1X2S2NVn9OHrvmPvHjNdOF69viLpLcX1xG9lVhBFFEVzXkxXPY8OjnvONXGf8nQ6q7MmAUfEsOGC1wGS4TT5qAwl0pDWfIxpuuZElfturkWKtWm64bq+R5juyHcvjpy4U8eel8/vbDRfQ/qoxNsysJtYTwFnkJNQdRoxWYM0u9nHT3EQw6rpxR2YZs/KST8rjr7MW8e9dyFF+YT99u4+Z7ijjknLjAYau1T9H08mRXlBVZonHMI3J3xpYtDxiBoTPrEif4+m25RhuF8fRi2RmtWh1OHDulcge+LxeR/+OTOGeEMTkVO+NWiOQgdtOlYO2rmcqfHDxuWg2tAeTmdpIrfr6nPJPP5nAR0Aa0pZURaO/ebKny42+KkFfXyOzbv2RMaT3DxripmrOJu2cO41en1TH/6dVc/4+BtGjxF6Tt4YKUfbx9zypWfLCDq/86gGln5LDq02o2LPPTWKcS0SUqQ7kATL6uiEFnthEWXfiyM/CF41L6phvFOi7xsUx1VZuuHTXpXc8c976OVKXYZAVb67ibsgXWMbdab61uZXMdKakwanG5mw0bNqTs9/uCrnL92DEqBx46RVQ2btxIUZkDaTcDadO5Nbore2ZfI53wXeYuYiG6Cjs3GJNaS1PXWgFEl0Ea+5Y1QJ+xaGGFjY/PYsfHa+h9/NAu3VdXIrPAxVXPTeKt+zezbUE1A04ewKgfjyKjJAMxHKR+bSPh2lYqjizD4Um8/PsMz+TMGQW89a96yvoavz18Zz23jy2lbMCBY03UVZW6J97E0auAnBMPBw6+t+hz/jSaRy6Yi+hxMvBQmcf+bzWn/KSINx+vpnpriMHjMti6pmNp+a3fNTHnuS1ceHMfjji9gC0bAmxY5mfw2AymnGtYUArlVuoUI8i8qH9mLFZpX8KnO8kQEt2xbkFJK7ffGWSIoRRCGdalhBi48gEyn86dw+/3aA8HP4xg2t2uCpMC26Jy4KFTZ7Wqqorcon1/c9vYPQT9Kgs+bECUoN+APXsAdhblPxhPZv8CauZu2qf76Qpk5Dk59neHccn/TuPwGw8no8SwFjncMqWHFDH4+L4pJMXE5b8t4811o3h5Vj9e+6ofLo/A249X7s/ud4jGN2YT2riDop+dgyDv2/O+r5Bf7uWSRydQt9mHyyMyaHw2bz9dTUEvB0/dvpXsPIm6HWFUJb1Ts7k6yAs3LuVfP11I+agcTrrUICWLP21CEODmxwek3a4nI7dIZmvllu7uRreiS1w/u6E8bmP/oFNPudraWsTsTNaFSmKZOZuD8XLrpvvArJBqwip971cMt0bQ4oZpDSWahZVoFVpFjfOniGJYKqyVbSFeQM4UvrJCS1q3rdXi6ohWjhXF+ANQTS7SFv1JsBTIcziMN5cMT6JZuLHJmAQ1Sxuyy+iT15P4RuV1WszuTqOdQ/LiLoHk0gND3IZLokWKj+tAp5HB4RYi/PGPtSyb4+O3fy1goWcctCYWThvgNRRz1/sSNTZamuPnpanaeNMU5PixCi3xc1TpzI59zxw/mOp3FrG9SkbOMiwMvkDiORei14JgMUvL0YwVPekBIFrcRuZv+d64Jk51S1yTQ7VcE5neaNaZpTKyL5RIpM39W8e8JKrGmulIPId1zvh+8uU2EMAtttKvHEp6SUioMXeANTPNzMCwZmIkF48zXZ7Wt+G6iJGxUpaZGDBa7zb6EWpzxq7TjMx4XzNcQapmfkPDq58z5LLDGHaMA6iMFf0skeMxHe3JtltdJvWK0Y/kN0jTfWstoGkuS3bfRRJcEmrKMquCKsTHzyVGyBnn4vzfDeLfv1rFadf0wd+qUrXBz4qv29i+MUxLg8Ljz0uccGG8yGB1s5Nv/r0G33dbWLnQxzlXFnHKjwsYFs1Cu+AMjZfvg9efaeas6+ICcWb2lxrR0DWdPE+IFR9Wkj0Oivq4aVIzKHU0GeOiJmrBmC5Gq15ThcO4t5LdBNZstyolB0h0tyW4doTUayld0VITO8PG8aR748+Ugvizoamhrt3tezps10/PRacsKs3NzWSmkQO3se9gkpT2sGNrhPdn+igqkTj9/P2jyJo/dRhaMELli3P2y/66G8GAxtqVYfoN3XUM1P6Armps+vuHbHnic8oumMTQyw7rln60V8drT3HYacWcdm0f3nlkG9Nn9GX0sYV4smWaaw2Sv+GTrQnrf/mPZXz9xEqWfe3jmLPzuPimUgpKLenOfWTKhmTwwWNbqd8Z5PW/bODtf2xm89wqti2s4eGj3uS/18ymblMbr/1qEbdMX8Sm7zoudLgvkM4NvqsU/o7gzpRRI20dr9hToQuourjXn3RlXGx0LzplUQmFQsgOm2UeKGhpUrnw+J04nPCXx/etIqkVotuBIEtIGXteiPBgQiiko0QgO6973Su6prP9gTdombuKATecTPGJhyAIPWNCEgSB06/ty5zXq1m/sIlL/zqc6o1+7jp9Ae5CLwOnJ8rz71hSx8gzKvi/612U9EnVCwmHdHasNgKvH7l6OTvWmFaQOOERZZHW2rilaueGAP0POfjLL8hOEbWHVxPfFXR2XXOus7BjVA48dDo9WXLaLPNAwXcLAoRCOn9/vpSRY/cfaWhevAldUal58xtWX/8srd9u7hGVi9vDmuXG2+2AUd0bSFs38yua56xg8K1nUHzi/qu1lZOmNMW+gCgJjD+hgHn/rWLHmjZKBng548aB+Kr9eAsSrVmCYKjZrslLr1a7fIlBQC69b3iMpJQNjrtTysYUcPq9kykeGCcmvQZ40FSdVYv9PPGnSua9U0/Qf/BN+LJDQAl/f/Xfu0qZ1iYqBx469aooyzKaoqPpIv6or7rFktIbjCpttkUSJ822SDxuIBiNUQkpltTjpJTLSMT4X7fca2rE8HdrofQ1NgJyfKK0xpRY4XBbTKzRVTQtfjHKjsSHkstprJ+XEX9Qm+m71vgZgIwM48GY6Y6/oYVVKXociRd8jjuexeCLjk1VMB4DIlviS0Z6tse+R4gf+9FunRsfbmDwAAdXHRV/2M71GxlGozLib9pmpkNycJjXEvfga4kqfFqHyBEfR81yvNknHE65N5OWz5fQsnQL637zIo6CLApPm0DRqYciZbhjcSMeS5VgM04jOc6ozRJXYo7VjoZcy7L4utaYoja/cZ05LOdNSkqTdqeJXTLjpJJTqrcE4vFWZqaWpou8+fYW8kocFA7KwRe9XqxVuM0UVWt2Wz9HYoyAGaeQJca3M8372c7ErLBpw+Jp6DXB6HnZUcWKFz9n2MVjGXJCb4xUYMh3xdO1zfa2R+Lqt/6k6tE5snEt51tUlc14CDNmxkSLkkrMAhbZAasQYq4jfo+YFaut11tISx+zY62Hsz2cz2HXZrPi69m89Mf1/OI/h5FdZtxvGaFmWtV4jEqv4dls+qqSydJ3SEL8vlgc6Ieu6/w3qnDrtZz/nevifbzxxXEIgo8d4Xj8SkmFh+uPWEBbk4IggK43cNRxbv7+L6OKdVbU3VVrSbX+JmCkrFtjUgD6OePq0qaCdWIF9sRnjSlS6ZXi92SrEFWCTqrS7oj2o01JlRfQdBFFEb73lm+1C9w2XdGGja5Fp86Iy+Ui8j1m6gcadlQpiAKE9/M5EWSJ3KMPoc+lU8mbNIjhf/0R2RMGUvXibNb95gUi9a3oes+5Tgp6OWhrUmip756U+mBdG/P/+BnObDcjZ0zolj7sL7gyZE68dgCbFjexY1Uro48rpmRwFv+99VuatsfJ1eE/HkRLVYDn/1aT0sa2lW188uwOzv5lOZUbg8gOKCqxkPzL+iVYYa5871R+89JoPFkSGbnGS9KRJ2VRVCwyf06QSFjn0QeaGTWkmnGjqnn6oSYC/gPXgqiENUS546KJPRWG60foko+NAwudIipZWVn4mw/cG7Qn4qOGUe3+piiwZkOEW//cPRH+WcN7M/SP55Izpi99f3kqfa49mcCGKpb/5O98e/kTbHn8UzY+9SV1cw9u8anjLyrG6RJ56a9bO165i6EpGl9f/Sq+qjaOuv9kJOeBMQGlKyvRVRh1bBF5ZW4+eXwjoiRwyeMTcXgknjzzQ2rWNAFQPDibAUcU8/lbzcx+p5mG2gitzYZVorHasCxNPbeI+e/WMWCwk7xCY9wmndebM341BIBgm0L1ygbqNjQz980a3nt8O5f8aRBDRrv58v1Wams0QiG47aYGnn64lQsv9nDODzw8888mpo/eym2/rGXzd7sutfDgz9dx6oAV7NzcfjmHdG/uyRaa3UHIpyDKB47ez/6HoaOyt5+uiHOx0bXolOunqKiIYHOAQa6qmKDOcM+O2O/WKGmr4I5VpdZUXbXW10g2C5uptdb2zFTHZMVbq3nZXKe9jATT7G2F1TTelmQmN1MwvRYV2rZco9/NkcQHQYZsPBxli0nXTNMudCUGPOZZ+rE1WqRuiLc6tsya8g3xwmutFmXOiF7NOVcX8MRdNfj6ZPNfn+He+azOEGEbnxefVOvDxvbb23IS2nVZzOI+My1ZtbxFeOLHYk0zdsjG8pAi0zvLSIXNdQYIHJ9FVsMh5PTPpX7JDnbOX0mLAltf+oaKEwcy/fcTcHhksuVEV0eTZSzNcyda9lcTiru2wpa0djPFXbFcJ42BxLRO0xXU0OZNWdYcTDyHztz4eJiFBkOaAzxw8q8VXv/dcnLG9mXs2f0Sig42RgzTvPVaSp7Id1VPJtlV2hgy+lXk8RFYtY1gTRtTf38EfUdlAUEgPollWooKbg0Z15I13TVZbNC81yKipYBitBhmcv2YdKJZg5zVKcsgUQG3OmJcZ9Zjtrp4NF2MuT6s9745YWc5I5z5f/149uY1rP1sB2OnF3L72+P546kL2fnpeg4dPQC3GGHUeDf/m6tyzy8N96jTLTL4yEZWfREtlFmYQUNlmJ2++HW8+N0qTrxtPADP/uJrtsyvwZkhE/bFz/2xFxazdll83N5/K8CNdxZy06VGX2fM8PLWm0HeejPARxcs4pDDXJz9oyxOPCsDUTTun7n+wcYxyca5vfLY9fxr9mBKyo0xcVt9rGmKqfa2qAvXJrl+zKKl7ZGZTS315ORlpv3t+wCdrnL92BaVAw2dOqvFxcW01XRtcS0bewZfq8rzD9Yx9qhsjvlBQccb7Ad4CryMu+YwBpw8mKNvm8yF/zubs9+6gCl/mMa2WVv46OYvUSMHX3AiwISzejPuBxW8f+e31G3af2ms61/5lsw+OQw6tWfVpOkIh59RzKhp+bz65w3UbQ/gzpCIhDRKB8cn7dN/3pfHlk3mJ3cM5LxfV3Do8QWs+KQaTdEpHpiJJImMPCo/od2wX2X7t4as/fCT++DJczLspD6c9NM+HHmeIRZ36HF5Cdv06iMzanycFPTpK/PzX2bywceF/OnhYpxOgT/eUMffbm9IcXmect0gXG5jwrvr6m3sDzTXRygt6tvxij0UOgJa1CKyt58DFX6/n379+nHTTTd1d1f2KzplUenfvz+N1X7jZtwNsukWIymWEK8Y7vKqpQcCFF1KsKoA1IUyU6wqe4ut68MEfBpnXFmCJO975h/2OXFm7L62gyAI9D9pEO58D5/f+BEvnf02vUfnMf2WMWQUdL8uSWchCAIn/Ho0m+fX8vG9yxn2ZPsuua5Cw4pqKr/czNibjkKUjIemtcZQT0KDkmg1EASBC343kIdmLOOe85fyg1sMhdnSgUmBpU6RaRfEiwyOOLOCzEIX/XsbVoryoRkser82YZslb26jfEw+o8/qz+izjGDYgW7DCnPFHX0RJYHbXxtJgdrIzOebWTIvwOWnbueiC7388fZsojGuSJLAsad6OfbUDN5+qYW//KaeSdM8jBjjYuXCWj57ejMbFzbF9ltQKnPLhZu47YESMkr3LNU9nKZqcjKqt4U5ZmL36OscKOgKa8iBrEx71113cfjhh3d3N/Y7OkUd+/fvTySk0VjTM+v0HEwYMtqNwynwySsHhwJlr4m9OfffJ9J3ShnrZ+1k/jNru7tLuw2HW2LSpYPYOK8GX9O+tyzu+HwDrnwP/c8Yvs/3dSCiqI+HW14dhztL4vnfGdfL63eu5atXd6IqOrquEwknxswNmlxI6eAsPFkGEWipN8j14cdlktfHcOcNOLyw3X2K0TpmA8dkcs/NNXzxro9XZ/fjmt8W8PIrfv7zQvpU7TMuyKS4l8St19Rw0+XVPHX10gSScumvi5k0PYtlX/v5xx9r07bRVajaEmbYsGH7dB8HMgxl2r2PUemKekH7AuvWrWP16tWccsop3d2V/Y5O0Xu3201mfg6NG5sYWhZ/szPTMq2y4t6kqrkmO7UW4zIlipOrBVv9i2ZKrum7hUQhHmvqnnlhWdm0Gd9hItmK45VCVIUMn3qgnSJltZaSAG3R72bqsYmWcOqbrleOj4E1bmCDP55m+W1tGQDV2fE4jKq2RNGpr1Tjra8iNy5DvrLyOISSfzD3nRpyThpP+eFGO6Ys/Jq2EtY0GCJwE0uMuh9jCnawxRc3he9siadE55YZPvEMZ9xqkpLOHE01LvbErUM5jvQF48wYHr8SH1Nv/3JG31hOOKCycX4dY8PGuTMrMEM8NiVsKe5o7WcoHL9WzNRyq6y+Wpd4HqRg6lvRjvxobIqYaKavqcyNfV9e0AuAQQVxItjX20DuyFJ09Vu+/qCJCT8wKlhXh7NJRnK8x/ag0bY1psSMxZqUvzFh3a8bDOvB2maI+CJs2QKRfsY1kZxSbS2VYF5jBZb4mRxLGrW1GrBp4ZQELSb338uRKHNvxrc0q/FYHrMKcmtSNWTzWrEet5ku7ZXCCbEozWnSnq0xSRuCFvFCD5z2UA5v/GIOTdva8AVFXr59DfM/bKKtNkD9plYGHlHMlCuHUj4mn3zZyAz61tcHgMHXlqFMCpEzuJBSGfxVrWj98ljWAnlOS5mG0CAgHiOlKRo7tswH4L+BI3CfrVLywWf8e5aTmtONyuRn5C2ObZ8rBfjH8yVcMH0nq74L486SCbYqZOfL3PyvoVSMzKCxMghUMvuDNn56zg5uf34gLrcUk+SX0GPuhqZo6YPkAoTWZ595Pr2WoodhXWTLmjDDh38/yS1EXT9dEKOyJxaV2bNnc++997Jo0SIqKyt54403OOussxLWeeSRR7j33nuprKxk5MiRPPjgg0ydOrXT+7jpppu49957mTt37m7372BHp89qxeABrFseStD0MNEdtRFyLXoQJpLLnu8t0gXnWuvL7C6K0riBtrXk7nY75XddRZ8pvfn4pi8INu37Cs1dhdKxJdSvayTi332rhMuZuo0k7b9MtMLBufQeX8SqT/Z9gcLikw5BCym0Ltve8co9FBoi+RXZDJhqEMfmncb9vmluNbXrWigbmUfDVh+v37CALx5eRe0WY9LXdR1N1ZAcEgVjeiF7HYhOicw+uSn7iKSpeC5JOqc/cTyn/ONYBEGgaWsrOxbVEgkkPguaGxReeayepx5qorHeeCb0GZ3NnfOmcdtnU3l47jgqRmYgoVHYy8kF15dRXO5gzRI/l09awfWnrCbg65rrN4JEbaWCvy3M6NGju6RNG7sHn8/HmDFj+Oc//5n291deeYXrrruO3/72tyxZsoSpU6dy8skns3VrPPlh/PjxjBo1KuWzc+dO3nrrLYYMGcKQIUP21yEdUOi0w/Tck87kswX37cu+2OgkRLeLo/8whZdOn8n8hxYx7fYp3d2lTkEJKkgOEcl1YKTa7g4EQaDP4aUseW4VmqrHXAX7AkqrYQ3JHF62z/ZxsOCYX49j6LG9+HbmJnYua0AJqrTVBmmuCqApGr76EHMeX8Ocx9dw/h+H89lLi6hb3cDAE/qxc2k9kbYQij9CyeS+TPjdsWx6ayU7PliNt8jLMfefgOxOfAQKokDZoSWx/z+5YwG6prP16yre/NmnnHL/UTQqCleetIlQQEOS4PXnW5k63cP8r9oI+zVyS92IUmJa8tnXlPGDq4v46p1GnrtnJ1vXBvnZ6Vs45vQsLr9+74Pi1y4LUlCWh9fbflHD7wO6wm1jWrdaWhJT0F0uFy5XeiXwk08+mZNPPrndNu+//34uv/xyrrjiCgAefPBBPvzwQx599FHuvvtuABYtWtTu9l9//TUvv/wyr732Gm1tbUQiEbKzs7ntttt269gOVnSaqBx77LHc99DdBDQZVYheDHrcRRNz26jgtBTb2l3dBbM900QdxBGzlLQkm51jLp/4xVkZyQVS1TZ3BnLj20VNe6ZSKSRaSra3xNN524LGhWlVVU1WQVWiFZ4jfot6p9Nob4nUO3HdoDHkYkPcNbIqbLhllKwk1como92V5BMpNx587o1GfxYwifHX7WD+X75i8AWjefHY+EV+bvBcAD5YMTK2bPKQuJshtzAQc820hC2ptdFxznclunXc0TRtl6SkrLvDn5uwrrU9X/S7mRCxaUkAR68CljQYmQnhiCXlOBRNnw3ElwlJLhpTeVivj+9DUIxzKYcSiUM645q009iH5kz80dlsUVLdYRzPkvL4A39tnuGyq9q6CUUR+KqmH6JTJjeqLGtNk85KSsEucRnuGLOCbrq3eBO9vU0ArPcYLpJATRsMNI7VqloM8RT+bDl+rkwXrFcMJZivre4a80Hut7g7rYXwrC6cmqhry9pWUyT9RGi1FjZGU7yTLZJWNWsTjuhxWa8tgJAlHV0YNYSxo4ZwiC6gazpVC7ZT+U0lgVofWa0hqr42smo++td2mrYY471p1g60ULxNJaLz7qnPxv5vrWwjgowWPR/l7saU4wfoPbEXqqIj9C5l5+eref5Hn/BqhkRLo8rlM49HDWs8+8NPkQ4ZRPiTZdxxwldc8fFZODKNfWdZ0sRFJA49rRfDjy7izh+uYNvaIM//vYFp1wxDEBKFxrLE+HbW6stiVOVWQySoO6NjqLB4fogpU05IGd/vE3Rd6JJgWhUBVVXJyUmUdbj99tv5wx/+sNvthcNhFi1axC233JKw/IQTTui0G+fuu++OEZpnn32W5cuXf29ICuwGUZk4cSJBX4RtG8IMHNT5yHUNYZ+KRIHhb0/Ony90tKWQlc6iPLs5gayAQU6SJeC7GwNPG8KK57/ju6eXwrHd3Ztdo3XFNuq/WEHvy47p7q7sMUS34UZA7Nx1sKeVhjOHl+EozKL+85UMmtx5H/aBAL+aWihwb9CQRIwEUaBoYgVFEytiy/KVehwZMlvm7KR2QwubZm2j5jsjxmjETcfhLc5g4a//B4Dklhlzw1T6njAYKUpYB3jTB6a3qS4mXDmaCVeOZlVTCcVHD6F59kratjVxyHVTKByYja7rDJhayjf/NoJ+g01hXvnB29z2waSEtkyCAdBSr7BtbZyIqBEd2ZmepHQW330d4O7bz97t7XoauiK1WEdEkiQaGxNjt9qzpnSEuro6VFWlpKQkYXlJSQlVVVV73M/vEzp9Vl0uF32GDmTRrO4piW4jFaIsMvqysWz7YjOLlravgNndiDT72fiXN8kcUU7xWRO7uzt7jKwjRhBpCVI9a13HK+8FBEGg6LhR1H74LaGG/VMY8GCGM9OBIAhUTO3N2EtGcsJfj6L4qIE4st0UjO+L4jPujYLx5Zz69qVUnDoM0RG3nOi6zo7vGmitSR8gbiJvfD9cuW7yR5Yw6DyjOKQgCJzyx/Hk9I4H99duCRBobZ+kFvd1cc1fK+hVYUx8a77ZtcptR6ivjrBlTZBjjz3A31b2MXQEVF3sgo9BGrOzsxM+e0pUTCQX0dR1PW1hzY5w6aWXct99368wjN1K6r/xp//HA8/cxuSfFMTMlFZriZkFlGzdSKdKaypaZiUpaFp1V0yTp7U9s5AaJAbxmuqgO0NxS0hlINEqYrolrG4eU6U0kmQtaWw0Hjyaz/KG6Ii+FfmTzPeWTSW/8Y8uRLdLel45lHifzcMyvQVyQMJquXQ1xb+rGY6EbQDmLBiOXjAER691nPwLN5e9egSCIHBbxdvGChWwOFgBwGvbD03oR4HbmACLPfGg5JqAccxuKTFwtcXU8IiAN6rEa145zaHk6rbx6yEQzdSpnvkNajBCn5vOoTVgydZS4gejm8q4wfjYCoGkcY42LVo8ZKZHRE8qSGm6hKweE1PmxtGS5CaytGcm5zh3Gteq0j9AwB+9bkv74S3yImzfSZm3lHJ3EwDrffFsLqubpNzZEPteGc4FEjOFvFKiPk2BwzgXvbOakQ7LY+crIGkRnJKaUn+kLpyBGlIIyioOj3EyiqOqpmYxShNmxo7VLG4qxLpEJUFZN2C5R013qTUTy5r1Zu2TaT1qtWTK1YfiFk2nxboUjio/N1ky5txS+om92hc/FjWa7eVKKjjZkqTwi7uAsXf0ibWb23sgvSZfiSPDGc2Oi1Dsir9wff5+kK9/MwswLDDZQ0to3VDL5BNzcGcb41GR1UD1kmrWvrDU2Ojcc9mRGX++THi4AiUQYeu7qygclMNCpTcF/rg7rNgZ319Ek8g9sTdH5/bm878to9WVl5Bhlaw9ZbrrrBktZhZlidzCrE/aKKqooKioiO8zzFo/ewsNAU3TGDFiBADXXnst11577R63V1hYiCRJKdaTmpqaFCuLjfTYLaJyxhln8Mv/+wWtDREy8o0bOJ1rJ50rBtKLvbWq7gSykk4krr32JPSUjKMyV3MCWdlbiBmRRLIC4FVTyUo70GTYQw8AodxEsgIQydFwNMfHQpAk8s8+g+pHnmDd+2UMOaX/nu1sDzEop471ze3rU6j+EI0ff0vetFE4CrKIWF5aJVlLICsHOiKVdQTqA2T26nqZ8uRrXolmRjky0rtSdE3n3R++hssrccGrp+7Rm9musM2fl7IsOTXfRJ9obI0VXZEmaoWqpT++DEfHYoSCIODISJUg0FSN2X9byrevxmtSrbzv0/gKawdxzG8n0haN5/nmoW9iP+Vnplq6ZI+DEReMSFluJSlWDJucz7DXp0X/M56BDiHxYZEuONQq9QCw+KMGfjHjxrT7+L6hKyT0NV1EFEVWrlzZBT0Cp9PJ+PHj+fjjjzn77Lh77uOPP+bMM8/skn30dOwWUenTpw+lA/uy4L06jvmxnZFwoMAzbAjecWOYc99CyieWQn7H2+wvbP3Lq6j+EEXnTu7uruwVdF2n9pHXyOydyYCTBuzz/QnR2jF6OxmslfO3469qww/ULK+nZHT7ZNFGesy+fylLX1rHgHNGkTusiPxjRuLb1si3t7+Hf1sjuf3i1py6VXXUrazDPbwfwVVbUP0hJO/euQK6As11YVbObeInL/yku7vS7dCjRQn3FnvSRltbG+vXr4/9v2nTJpYuXUp+fj59+/blhhtu4OKLL2bChAlMnjyZJ554gq1bt/Kzn/1sr/v7fcBun5Hbb7yV2a/Xpw2QbY/NWguXmUgWe0uH5LfMXcErpcZo9PI0p1033ZuhQ9wLTYM0m7Yn6aLLqT+kSYbYbRT84GxCzWHWvreJlxomdbxBFEE1latu93WNRUrXdHzLt5B/4jicxbmd2kbwdp/68a4ut9CaLYQ2bGfyzZNTUlr3BcKtxvWczqISqW5k9g0fxP5v3NTMUG/ng/IcQvfVXTLdPlZ0xu1jItntsytY2w3UtDHnyleYefJ/WPzQ12ycvZOlL66jzwmDGXvj1FjciiAK+Lc10mtsEWN+NDS2/fp31iMX5uCqMGT7/ZvjKrMlGakWk4J2Smeky/oyLcrJ9YKsSGehKpFbWPBOHaUDB9GnT592t/2+QMdwvXbFZ3excOFCxo0bx7hx4wC44YYbGDduXCwz54ILLuDBBx/kjjvuYOzYscyePZv33nuPfv36deUQ9Fjs9hP3/PPP59pfXsvMrwuiVV0NmKmRngQFzviNp1jS/sx4kJDloZUpJ/vrjZvfb0l3NS+g5GyK+mgVW/NmdghaLBXSetFlOsK0RZwJfcvz+KmOKsI2t8b9xIKko7QZk4QZ74AixWMfkp4psXUsy6WwsUxLIidm1q2gGq4hIBabkpSBjSnm6a4WcRvFU2keYjQgRgRLvEU2WRUj+OapDdTVHseaK84A4C8DZwJwxJD1zPfHLQEf1sZTl02V0/KMZsuyeJ9znQEc0cAQM9bAOuEk+IV1Ibauy6UieZy4CjLQoweoRhIfuFoo2k7A4s6Kmvn15PTk6L/WZ70YEczdJrZrbmshkZLpPkha18zOtWTpxmJbwo3G9eJfsBExM4PmgWNpaTQa2Oow3CO5LmOiKfckZgmYcSkQT9lNrgdlwkq0B2fW0CoZ58KtB5EkOTbeakjh239+DcCJT57Gh1e+g6rosVRigBaLAqw1a8ZMcbbeP7mOuAtjXVtcGbYxFrsVH+ygEj/nVnFFs3K19V5LThM1z7+QhsEnZ9NFzHR/xRIPE41h0pJchRmZxrjleOM+xbxoer0zeh22bG7k86veQPGFyR9awOqXlrP6JSgY04t+vzqD2oBAVZORwbPlN//BUZpP/q2XMafaGUuh3zj3HdwjBiC4jXFZe/c79Pun4W4JRNeRLNdrOMfoe4m7hapQ/Ny0pnkuDc2spn5LG/+eMZcz7hpP/8OLEtbZHEjVWZEFjVV6KZ+9vJT7/vhoyu/fV3SNjsrux6gcffTRuySaANdccw3XXHPNXvfv+4jdJiq5ubkce/KZrH79O/qOOngzOHoiyo89j03/e4r1rzyInn0Efc4d191dwlmcTbgmvWXrYEJg9TpcAytiLpl9jXWf7yR3YJ6RDg2oYZWaRTtY/uRCWjY1cNTdx1E5fwcALTu6tvBlT0Lj6lpm/eJ/eIszOfb5s8gozWT+g8YY9j97ZEpsjyCJaMEw4Z0NeAYa1hPftxsI76gj99zpeMcNIbxpB8F129A1DaGTqeodYdXHlbTWBNm5rCFGVDrC9q+20VSncd5553VJHw526HpXSeh3bYyKjb3HHp3V++64nU0fbqKuOtXn0V7dHOubpOlm6YzORDqXTiiN+RgS65+YyHelT++0vh2ayMlKn56oO1Pbbdc6mGa5qHR+cktKgiK8G14YrU8Og877BQWjp7D+8dks/PnLfLcwvSbDiUUrUpYpu3GTOzsZISw6HejK/pO63xfQIxHCW7bhGR53BXg7EcS5K/RxN6ZdrioaXz+9hs3zajjkikMRBIGQKvHRT17nyxvfRw1GmPbX6fQ9poItn20CoGJaeWz7ljT1dNqD1ZrSEdLdL+2hPWtKZ2C1opgwrSnJMK0pVpjWFDUY4eNLXuPTy/+L4o9w4uOnklmWhSAKHPJ/UzjywdNxTkyUmxcEgV63XISc7Wbj7/5DcEsNWjhC9dPv4x5WQcakUYhuFzrgGtwHQRTJ8Kb2oV9O+nPbmsbHOzSzGoDsXsZvosPM8Gl/zHzVbbxw1L+Z9ZvP+MnFM3C7e2Zl7T2BitAlHxsHFvbI2T569Gj6jRzFN/9Zx6Arj0SJmm6txfjcsjGRJStqpqQSYrgWmiMesuSQZT03GdH/FYv52YzA9ySl0JqmcTN2xiUqBKLiU9Z+eeVISlxGn+ymWApmwgMiM4jPb/Q3EoimBwO0Gttbrfi6rCNEXT1mUL4q6UiB6DJLqIHi0OMuG4fRX9UDss9Y5kySVQjlGevIfuP3jG0CzhZjWWtF4rq+wQ6yBp9B7peHsOPLmVxx7g6yjx1H6TVncuWIRBXEQVmGn70mFHfhmWTFH0kknIOj6zZF4hOh6RYosqQ4AzH3WnFGG2tDQTIywRW9HnxJacSY9XpkS9p2dJEQaeeBYVmsRccv2aMQS3e2jLtmtpu0rpmIZq2n6YgaKYoXiESCEbbqOvlV2VTXGWZ8wcLpivPT62BkRq/fbDkYc42OyTRUVJNTiNf6Stj08SaWPLqYlu2tjLlkFEOOK0MQIohLvqN1axMn/3o4R1zcnzJnM0HfCl6r8THyjAoGjsthZ8h0vySSzXD0WndLkdi1bRaOtBaFBKiLpo4HIvFBC4WN7ZUkAmEWhnS54oOmRGO/kuNIzDYSikhGFZrxJbbraDH+tya/aNnGiRNLA4hy/HmSl2EQrUDYQSjqfqmOjuvmu16jeb3hKx39pzPYqpdDU6LrqaYxNQZGKiyk960Xsem6R1h33VMUTRlIpLqRobechScnQDAso7f5kDI9OJ0KgWBUHdahokSfB1uj9buKM9oSioEWu42LyhoDFow+o3yDcik+vB5l1Ci+ay6MxdeYz6WgKqMpGlv+u5RNLy1CDakIksidt/0+5Ri+r+iqooR6F2es2dh77HFU4PP/+CfTTjiWfhdMQMj8fteXOBCR2as/Q35wPbXffsHOz95BC4QI/7MXTs/+q7OjKRrhRj+SZ98Hn+5LSA7jjTUSattnBeBXvbqK+ffNp99R5Uz/yzQKhsYnuPVz68gr93LExf1jroqN37USaosw7sLB+6hHBy9aV2ynds56iqYOonDKQAqPGMDu1MF05GdT8der2HnHs9TP38yw647F3d/Qu9BVDbXFj7uia/UvPCVZTLrv9F2us/PDVax5ZA4AmQOLOPrQ42wdDgt0uqZAbveFmttoD3v83J0yZQpl/Yey+aW4toC1do6J3XEnWMWirJDF1Esn0I5UdzrBn866KQB6ZaV/O3Z4Up907ZVtEdLsTvKnv4GkYOrydjxb+HqnBmtlbU4fwNU8SEcQRYrHHUvpL8+hbf5qHnosvYnYKn7VEXIdu1bvtCLYECDcFCB3WGnHK7sP3MeDKMlklQ6iavnn6JGuz0r6+O9rmH/ffEZeNJLj7zsmgaSYkBxCQjzFnNerye2TSfGQ3N3aV7qsm/ZgWkKSoaXRNFHa0VhJ10bMmpIE05qS0G52erdhWUFq3JMggG9tJWtufYnsYaWM/O3J9DphBP5I6nWfzpoC4HQa53fAcJEj/nMpR735U9xHG7F4wbBMpLqRSE0T3lEVMSuTwxG/dt3RKt/FGYlxQ+msKdlOw+KW7OZJtqaYyOiTR9bgYoqOGoR/ayOP/O2vaY/h+wxNF7vmEw2mHTFiBA8//HB3H9ZeIxKJsG3bNtasWUNDQ0PHGxxg2KtX3Tf+/QwTj5hEv3PGkFkSVxz1RZz4klwHVpNr0EJoREGnJeQmN+pbtrp/fIqLiIXotEUfOCYZ8ScRm3Tum2xHaoyGW1JS3D9OUUWOxs5ku+PbZLuDhKP++SYp6vbIDBH0RQXvLEqqeEAIGv01M1dUr45oFsyzjEEkJ77cTIiKZOuxLBU5ED8GOSAQTYIiGI2z0yyukrzViQ/z+tFGH2S/sb8++hT8JcsJvL2GWRefFFtvUv6m2HfTf24Wg8t2BBMmtTYlfj59SuK5dYpKzNcOsKjRKDoYUYw4Dj8eXNGJLDMjGDOXA4ie+JioUeVfNVqYUHfGx9P4ITWzykQyaYx5BrX4+JrqtXpSQKwpzGp15ZmhVq4mY+GAISfz7ex/EP6qCs/AwdA/7u5q9keVX5OyVwbnGe4y6zXcoBr3iZnK//mja5j1xHrGXT2eUZccgi5o6EBzOO5iKyiRadjmx00IXRTZXCWz8IN6Dr12Ag1KBlUWF45i6YP1u3nPKWr6Fwez+CZAJGIMmBKMZr0lpe47PMZEqmsCkajLRYy68IyaWPHxDZuqvlaF4Kjr1NmU2Bdz/K3vNpIv+o8AbIw/Y3ZE73FR1FHbArR8tojIzhpav1qOs28JRb+fwY5o1l5Bli/hGENhGSna31CThcSIOkpU3HFdXdRK7Eok0Lq7BGdFbyofe49eJQNxlBaiRsfD6VTwR6/tda3xgNjMjBCVrcY58vldRGoakdvqyBzVl6IkQpPtDKHoYsK5M18Ac0b3ZvKTP2Lhr97khxdfZqckJ8GU0N9baPSMYNq2tjZeeOEFXnrpJRYsWEAoFJ9by8vLOeGEE7jqqqs47LDDurGXncNendXx48czdtJRrHuycxUgbXQfcvuMpK1mE0pgN2zge4ktby1H8jrJGt6745UPcGTm9sbhysK3elWXtrvwlS2MOaOc0ZeOSasuq6saSz+spnxENmKUYM17eRuyU2Twmd9ft4/aFqBx5uds//2TbLryHupf+pjg+h3knT6Z8j9chujq2uKIJgRZpuSWK9GDIRpfenuP2qh5/E023PIcTXN2/1qq/XoTLSur+ce9f9mjffd0aAhd8jnY8cADD1BRUcGTTz7Jsccey8yZM1m6dClr1qxh3rx53H777SiKwvHHH89JJ53EunX7tn7Z3mKvgwfeeuHf9Bs4kNrTKyka06tT27jlSIJVBaAp5CHXFWCHP4fe3rhZ1yFoCW+kYATMaggoupgQrOsUVcKahCjoMatKS8RNtiOIU1QSLATprComijw+ai01aUzkZgRo8iVlVbjVhPo0JnRRj1lVYv0OimjuVFO2oMbf+juLcB440ycXpPZFgOyyweiaSsOynRRPNESGvm7on2BVAXBJSsyqYkVjOIM8py9leTqMz9vKosa+VH25kcLjRiJnuQnvXZJMt0MQRAp7jaJm6WIKTjxljx5l/Tz1Kcvy+3qpq2+/teVPfMO2ZS1c/a/xAChhja9f3c74s8pwZiZatpR2qnsn32u7gmlN2R2Y1pRk+FtSM5BMa0rK8jSev5gAn2V4wnW1tFUtpvn9eWitflwDysg//xhyjhqFozgvJcMo2ZpiRYI1JaEvuz67oseFa2h/dEVFslhTTFjHMDPDYiGOBua78twEgKoXZzHohItiBNV0BVlhWlNEQUcNKax6YDb33fUX8vMPIPnpAwS63jUWla5oo7sxd+5cPv/8c0aPHp3294kTJzJjxgwee+wxnn76aWbNmsXgwQfui89eE5Xy8nJuvuVm/vHAIxQ9dT5Ol4BTCiS4X8zvVp+rU1JjomJWstHLY8SIWFmtJOhENAmvHI5FyVuVcdNlEln3mx194DlFJSFbSBadKeuaSM5k2RaN5DdNxhnZwVj/Q97EYVRCURdUVMxMAzAzWCypypqsI0VdG6YbKFZkT4RwXvzpLUYfflIQMnYY+23pb2zTkCPisrgdPVEvTChXwFNvrOufVILwnosNn0FoWG5s3UJ33ERtErne0WJ7LUnplObxlrpT43h2BnMT/q9fVkWwto3SIjeZzhCZzhBNAWPiEjyJrCUYiroYou1bJz7NE39oaCHLJBqOLrcIyIlpCj6CpTBhe2rBUuJfiKef+3rFz22u+ygqX52P/tJs1BunAiBnhAlH4zAaI/F1x/beEcu42RQ0BLusRTLN600rXceO91ezw5eFIAixbCvTjbTx7dWUHj+cdf2nsq4aaj5dSVt9mMzTjoi5Qk2CkkxUTILiC8Wv82A4PvGZsGbjSNGsGiUsIzmN6896PgRBj42jqW+lRI9fcqiJsSrRjB4xaD1H0b9hIeEcmeMtqnEPqbmuOyoCG2yoZusL9wDgOWQYJVefhlyQgxbtvxIGtSl+rLpDY2eTK3EHZj8CYoI5Oe6eJQkSSm5SXJIuEFpjEPzQ5gByXg6BqFqxaIlXkR0q/kD0fJpZU4KOe/IEmL2S0NY6Kle04B1YSrY7SFO0wGe2MxR72fLK8WyttS9/g8uZyc9//vPkTtqwkYDXXnutU+u5XK6DQoSuS6jjH377O6SQm3X/WdQVzdnYBxAEAUdBAZH6un22D03RWPHqat6+6gPmXfs6rvwM+pw9Zp/tb3/DnVdCVl4f2pp3dlmbpsZMe26fSHOAvEPidbW2vbWc/EPLye6XWjSwp6N28ecAZB4zmeLrLkMu6Lrio7sNKaqeu7PzpQtMeMcNIffcY8g7ajjO0txObdOysZ71Lyzm0zfeRJL2X+bewYSuktDXdXpcMO3Bji4hKk6nk0//9xYbXlhMw1rj1d76xmZ+dyZl75hvCukyg9LVEgJDDyIZ2Y5Uk6l1vzXB9NVuM6T2/RHJmUJ9spuMbVyp27RXf0R0pVmeptYPgOYyAz3T9ydQmmobz96Uvq32tKIcBYW7RVSy5fRicekE9zbP2spbM95n3v3f4MxwMugnhzHm1uk4MnuYGJWuI4p7N1FYrXctG+vxlBkTbrJ2jSCJuAozCVQbkdRtm+ppXLaTPqePiq3TFE4/vuncPaY1pT2kc+G059ZJl/ljRbgm1e3TbvJdmsvYvA9Ma0rL5lU0rv6G3PNOpuDis3Bkpt6HVmtKYmMduHJC7f+ezpoCkHvWSSCKuIcMgKg712pNSeiXxZpiYtDlkxh4y1nIGe7E4P2kTCBNF9AUjW//8ik/umQG48eP3+WxfN+hInbJxwymXblyZYfy+QcrNmzYwLHHHtvd3egUuswZN378eGZceQ2L//QRaqj7CsvZaB+OomLCtbUdr7ibWPvRVj7+1Rc4Mhyc8vDxnPjAsQy5fBL5Yw7+INpkSLILJZKewO0OWjbU8c1v36N1Qz1lJ49sdz01FEGPqITqfax7/EvcxZmUTB241/s/2FC35As8ReVkn3hUd3cFAM/wwaBpBNdv3uf7WvvsN6gt8NTfH9rn+zqY0Z1FCQ9GtLW1MWvWrO7uRqfQpUpcjzxwH2+++w7f/XMe426cmhDUan43A15NaLqAKOixwNjKQHYsTsUMmgVwiGpMCdUtRWKxKp1FTTCTYncbAdWREKeSIYXxqc6EvppIDsCNbeMK4ws5Y30Hw6piqmPKLjUWpxKDQ4/HqVigurVYnIoJXTTiKpyNUkKciglfbyEWp2IilE9CnIqJQIERp1KwXKe1qAi1uSmhRP2SmnLGFW9P2GZHMDcWp2KF9XhNKCGVL/66hEHHlnP0n49JqYWTfL47A1HU076xiy41MU6lG+Dy5OJrqSS9ja5z2PL2Cpbd9zneshzG/OY4Co8f1e66+Yf2Zcsri9jyyiJEp8To3xyP6JDorCyVNT7FRPI5TIbSjn5KuoKCejQuRmrHmiAG01hLw+knAjFNejJAsKGKtu3ryJgyPqW2jhmfkmxN0R1msFea68hSADPBmpK0anvWFEEDucSI7VKa6oCBKdYUOfp/OmtKfnY8/q0ja0r90h1sfGUpS79ZZEvldwgBrQvevfV9Juu4f/H3v/99l7/v2LFjP/Vk79GlRMXhcDD/048ZMnIEGaMrqDiuwthJVIdBFHQUzSAkyeJwZrS+xxFhmz+XXGdcWCwmSCbFJcKz5WAsG0jRJbIcwZQaI+nklM3qztaHdQZxM7JJjOKup1BsWV6hPyY01xCKq/E2RSvNuh0Wt5QXwtHAwnAkdZjDlslAjU6+KkB0gpZrjf3IvvgxRLJ0FG9UMj46QchBS30ga3AixLVXco02pWxDxbJ2fhvuQ+IVWV2lxgPZZQk2Nt07yW6e/tHMlRKHkZm1cXUL/vogx1xeQUSQ0prxC93GgznfFT+nbRY3RzAajGx1V7RGszTMTAkTUlQYTs6OllewZFiY+isABOLLzclS6OD5k5B5ZVZPtuiC5a9RyMgqoXb7EnptlRBEEWVwfDITZdWyuRnIHSAzquVjXo/rX/4WQZYY89TliLJEQzTg0rxPJFGLkYLSG87DMWIxqi/EoHNHIGe6yHbEJzozgNYpqTil+P7Nis7BaJBna9hFtsdY1uyPu2VCYTm2LzVamdhaBFa1VCs2Kxc7PRFDv8Qiqx9qjE+iUqsUuxTNQObYX1VIGGc16vIUlbjUilkR21VvZP6sfSEqbNYQxFHlIJKtEfF7YuuJkcQHmeYEQiKiRUxRydQS2jbhbBZi+weIWM63YnmeOKLXm0nMfJ8aQpdZY8qRkly8ZsC9IOrITiWB/xRmx3VT8iz3g6KLBFWZlmhArUNUCTf6WXTHJ9z1x7vbzd6wEYdOap2pPUFXtHEg4LrrrqNXr144neldouGDKBWzy6njgAEDeO3Fl1hz74fUrDdmSms2gvkwttbfgfjbmllnpMkieGWtRWMtPOiIfjcLHkpJb3zpihSasFpPrMq3JkFpL5fenMitxQ5z3cYDR27Hn+9sJ4bFhORKfRtVitLrnZj1fvy9dr/QX2FTbwSXi9CGzQnLP1jR/ht9e3Eq1REjriKvlwtBgNoNSUqcns6r3Zpwy7uv8SK38ya/r+DOKEDTFJSWRGVUSe5cP3RdJ9Lkp+DIIYiyhD/cTlwFxr0gSCKFp06g5PwpyJmJpK0mTQo9pN5bVlhJihWmBUtrRxBOU9p/VCht6a2bySQlGSZJscJKUpJRfN6FRLLTE45YP826TZ0gKa769klKqDh+zyaTFKW+ifr/vEfWtLFIvRIl7K0kBeg0SQESSIquaqy88x1GjpjAzb++Ie2x2kiC3lWun+4+kK5Bv379eOCBB9i0aVPaz7vvvtvdXew09omN6+yzz+bCi2ew4g//I9JmFhbsGea0gxmCKOHsXbpHmQrtIa/URV65l9qNu09MDkZk51cgCBLNC+ft0fZNG5tQWoMUH99+XIqNOJSAD0SRwtPOQnJ3vjL0vkTb18vRIwpFl52y1221V2JkwxOzUasizH73f2kzwmykwixKuLcfvYdI6I8fP55Fi9rPxBUEAV0/OFjZPqsW98wj/2TeYQuZ/7uPOOK+UxBlCUUTY9L6ZoZDhkXkSBB08t3xN42wJscsHDsDuQntZ1qk8T1SBKegxCrUJgvEmTAtMObvmi7ELQYSRCw2abNic8jSBxNmtlCGNxxzjVhdVdb4GdP902rReglGHOAJEbJWpM0gJi1v6lrofeJv6da3VlOQyt87/ruz3mhLtpTiUV1xIa1gYTSrCA2cUVdQXbzNbT4j3XVIdg1guMbMY3NYXom3B/MocRkxRBFdorU+jK8hhNsNwzOqqIvEozdM65M1zscUkyv2WCtlxycgMfqm2eI0xqvZmTg5BaJutJAlgyXDa7QlZMSviYhlbANtRlta1E2kuhLjXEz3mtXia14WVs9Xcz8ZyKGo/jhqvvyE0gFTCJZFXYBJxg1Td2dyiaHK19vVRKAlwvMPLsGZ42LE5CxkdxNVfuM13heOXx/mNWN15UDcGplsSUkWCgvGKiYrsboxmiNqPciIX8ttIReOqCXIlH7XpEQ3kAlTU8Wsa6PpQiwuRbGUqBaDIrrD0Fox92S1ZOiW6tmmAVRz6Kiy8b+Z/aZEL6PwzibQNOTiAiI58fEQlHj5idg5srStmi5SRUAMCykVs8WQgGKppapZrTsayE3Ra6U4ghJ0kJNvWEMCm6pp/u8nlE8fjCPLhRkrZI3fyfEmWiGdcqJFVUSnNewiyxmKaUi1hl04RJWg4qDy3WVUvbeSVd9+S2bm3kRDfb/QdUUJhR4hoX/HHXfg9/vb/X3EiBFs2rSp3d8PJOwzM4ckSSye9Rl6dYhFf5tLnd94KmQ4jEneG/1rfUADNAQTJ6b2JI3bLIXGzLgR8yJ1tGNrNgmK9XerqJkjjTymq4OChubvyanXJszJJsuSQm3GsrjacReY5uOUp2sUsYd9mrOndPDS6S7pQ3DZOnQl8bhWL6wAYG1L8a4bSMK8/1ai6zDpgvbrjnRUFDJ7F4UOc9zt/7YrODrpikmHdrxdMRSNm4YgCDStW9LpNjVV59lrF7NtlY8pd01Hdqd/R2jPP26OQ0eWyXSBy2Y8WKAdhdoYSenAN+9I42azxqakDZxtx0VjQnNECUU7L3bhLYZmjdgvLkwo+aPE0nqoFpJiHoZJZtKRlIQ+JJEUE2qxcZ9aScqW3z9PZnkOnovPja23uyQFIMtCLlujz8Cg4qB5yWa2PPoJn77//gGtFHqgoktcPz1AQh8MIjJhwoR2f3c4HPTr128/9mjPsU/9MVlZWSyf9zVNX25k54tftbteMlmxse+QOX4CanMr4S2VXdLeugWNDBqfQ3bR9ycjQXJ5yO4/iobV33TadPrlc5vZvLiRqfeeQMn4so43sAFAy1dz8AwdhqOwoOOV9yEijW1suv0lPMWZTH7wTERP1zyzWi3PPt+6Ktb9aSaPP/wI06ZN65L2v0/oStdPT8Vf/vIXmpqaursbu4195vox0bdvXxZ9NYdDD59IUYlA/7NH4ZYVGoIeMpyhWLaPtUZHfcAbe+OwBgaaQa/mm19QdeC3VPI1TeNl7mYcgpZiBgyoDkKkWklaFHfCMoeoIVlq3lh/C2jxt1Lz7VcUNCRBxyGqhFSZTDmU4O5wimpMDtvMNrLWGZIt1WlNGe3K5nhFXFUTkfOVhAwXpTV63BIIYYFwvoruMtoJhxNvNDEU/b8kiJyTDbJEZP1axLNKCbfEx29HqxEga/Wb5zqNN8Qsi6utOmT0bc1aWDu/mUn/N47NwV1PJGbAs2h587W66AqidYTMAOgCV1vM9ZTpiEent1ge7JGoi8RMW09OnzWrXkvRwEYzfTziSCp54I2Oa3TcFKvku+XtW7VYqzKnTKL5ucdRv9mKZ8AgFEf8HHqyQrQGjH6ubC6l+vO1LH9gLUN+NAbH8P40WYLtzevbvAbas5iY7h3TVWC9fqxWFDMYXdFFWjH6YAZuOp1xi0hbxBmz0kjRNkPR8VJUEdnidlKURCuN120cQFvAhSsvfl2E24xrSY+6JoWIiOqMWkwsKcmx0245X+b9L+bHLQ1aOEJoxw7yLjozdm0LmoCao8ZLKABIuhGkvKOSwIrVhLfuQAsEcA8fTM6kqYiWrAcpIIAQD+TVowKMmifRCit5I4hAXp6PcF0r22/7D7KoMfm+0yAzg/6ZRrSvef7aIqlB0dZzabVWmdezLGrkuQPIgkbrtibW/v4tfnXjb7jiiitS2rLROXSFNWT30xQOHvz5z3/m/PPPJzc3t7u7slvY50QFYPTo0Xzx8SdMO+4YZK+DPicOJd8doCHoiU0uycXETB+uabb2yhEUTUIW1QTNE69s3PR+xWmkPosaO4M5lLmbkdATyIpHihhkRZNTyIp1WUQTcYha2gJ9HjESIyuSoMfIiqoLSIIe2yZZg8Xss6lF0l5RxFyXUfOjV05LAlkBI8PFJCtyVjhOVqIQQiK6S0N3agjhNBNetRupBLKmHUrj21+Rc8pkIPUBW92WRUlm+8GxGgIiOl/cPofMUi8jzxnU7ro9FZ4+FQCEdmzHMyD98ZfnNVH50SpW3vMRfY4fxOirD8dn4VLtqS8nI38X7q+ONGqs2SXp0BYyyIyVpFhhkhQxSvZMkpLSjySSYkVHJIU0JAWg9bNvQNNwDzUE7mJFPqPXdqSuHv/iJQRWrSVSWY3W5kNwOXFV9EULhWia+R4tH82m/JZfIWVmIrQo4HB0iqQA5Oa20bJkM9sf+B+CCFP+cSbkxu/JvSUpYBBPX2ULs//vHc49+yLuvuMPKW3Z6Bx03U5P7ggHS/BsMvYLUQGYMmUK77/9LiefcSqCIFB+wpAYWWkPJlnZGySTFRuQdexhtH76DaFNlUi99oxkKEGFulX1HPmr8e3GW/RkhKoN15mUFc9p1XUdPRxB96gE1u9g+adfUfXpGspOGclht0xBkESwRZs7Bf/i1TS+9CFZxx+Oo9SIT9G1KKHQoOndD2n58FMEh4xrYH+ypk7CNbg/7sEDEZwSuq7T/OoHNH/2OcGNm2hbuAj/d8sov/r/cAzu2+H+tUCIjf/8L83z1pI/upSJfzoRd2EGwb3IhrdaBmPHWdXKrF+8zfRpp/PC00/seeM2IOr62Vv0ZNfPwYr9OsMcf/zxvPvm25x65mnIokrp9OHkuwMp4m/WN5CwJqHpAkFVjmYwOGKZDE4p/tTPtASrKppETSgrQR/FWqFZ0cWEjCJzvZAmxzJVIqqEQ1ARBY2AGn9jEgUt5sYw2k0UjwtrMi5JQUTHI0US3BuK5e3XJSlkOeJuC2umUKHbH/trjk1D0BvrVww5vtibW2NjNBMkbPyuOywZEA4VIepyKc5rQ8vIYKcooO6sJHtUWUx8rs3nIjszMRiwKezGLSl8cf3nKP4wh/x8MvmjStn59hIQoP/kkpQg5HQPi5jGjWBYqoyxswikWc656fIxx9U6bl5PGH/0fJjZMVb1YyvCDuP3HLfxu2kdU7MT+xdWEl1IgVD8XITa4uc+Eo6rjKoOg2AHajehb5fw/28J/m9WoUcsLsTCLPr98mQKTxzDljbT8hbftysaaGkGljslNfambR2PYNTa4ZaVmFvOtCQ6LWMT1iScLpWgKmM6yMzrx+peFAUdd3Tf5l/zXrDei4FYJWeL+8vS/8xo5lYwLCPnGJabYFS8TlNEcGigCejpwpdiKUHROmDeuIs3sngp1ffNxDusNwU/PBbfwq9pemcekao6BFkCTUMPRcg77zhyTp6M6HXHAtB1XcFkg+6RBTR/BjX/ejZ+7ENKjQDe6H7xJL7GODIihLZWUfvQy0Tq2zj8zhMoO3pANEVYj1lRzPGqi96X5rhkWM4lgKQpNCyvpHRUAZIkx541oqDjq2xl1i/eY+qkE3nr5RfsNOS9hCmhv7foyRL6K1eupHfvg6+0yX5/FT7xxBN59613OPXM0xkfUCg/fTReOZLwgDQnnGT5fZOsJLtMrIQFDOKhaFJsgpNFNSbRDwZpUXQx5sKwrmeV2I/oBlnxSOEYWdF0MUVIziotb7p8zLYdghYjK2a/wJg0XZISKw3QXlkAc2zy3X4agl4ckppIVqLIy/PR2JiB4FTRwxKCpKc1w9dU5lLcqwlHXgZKQ6p7p6XNTXZmkFpfJkUZcYGqmvlbAfjip28gOiW0sEr5lHLEsiJg72vfpCthsK8giRpqJ3R9rCQlpY18I56n9dO5tH46F0fvInLPPAopLwvB14Kcn0XZicMNK0oUaiff1DoaBzOLSunA7WOSWCtJSYd0JCUd0vU/aFFYTiApEFNZTsEuSEqmN0RDtKK0qghsu+mfqI2tuEcMJPuYQ9ECIQS3E/egctxDjYyFOElJ3F/LrMSsrMIZFyM4HAkkxQpHRgTf4rVUP/QKrtJcjn3qbLLSVKnuiKSYkAWNb+/9nG3vrWLcTVMZeu4wY3tBp2VLE5/+/H2OnnYy77zyik1SughdE6MixHRUAK699tqDujDhtm3bDC9GeTl9+vRhwYIFvPjii4wYMYKrrrqqu7vXKXSLzf7EE0/k848/5diTphNuCzPgR+NTyEp7iFtWdg0rKdgVTELREaxkpSfAkZeJ0th5kbZTPrqKZfd9zraP1lEyqS/Z/fOZcOmwfdjDAxuCJNH3qbtpm7MQZ+8svKPjLjSXKxJd5+CRqD6QkH/0SCK1zTQu3IJ3zGAyjzsSR59eyO7d87sUXXoKW2/4R+x/79j2ZehlT4i65z6k6Z255EwcxMBbziSrJFWDIpmktNueoKH4w2x7bxUAocZ4rFDj2no+++X7XHD+pTz72CM2SekidKVFpSfoqJi48MILueqqq7j44oupqqri+OOPZ+TIkfznP/+hqqqK2267rbu72CG6zRk3depUvp49l5X/Xs6Kv3+Jrukp0t9WU771u2lRMf+G0wSlQtylYxIWazaL1RVksnBzvYDFsmEVgTPrBKVzbVhvEPONV0uj6yKn0VtxRJe5pV1LyOdHXUIOS0ZGurdlIZrdIVi1JZKsK5LXibrTqKTsdO6a+AVVGdnjYNT10/CUZNK4oprhM8bjyEhPLHdVusAKRe+YSEJixtGusL9NtoIoknXUxASS0lm45M4Fq5jXqbuD9cMxF2I0KLYdi1Gye6w9kp7s9unIGtRV1hQTnpOPpez3l5F/2fk4+5alJSmSpLVrTQEQCsvo+687AZCLi4yChmmsKZLDT9X9L9P03jz6/HQ6x94/nYpOkBRVF1F1kQxHOMGaYp6zne8uiy0b8ePRiIJO9YJtfPyzd/nFNTfy78cftUmKjX2O5cuXM3HiRABeffVVRo0axdy5c3nxxRd59tlnu7dznUS3RkGOHz+elUu+Y8wREwnXvceE3x9HrkuJuUAUTYwVy9B0IaFwhuluCaoysqihKO2LVrklBSUa6xIm1VUEBqkIqg5QiRZNdKUQh2w5iEtUYhNxQ9iIC7Fm91gnVVUXUBFiv5sERhZVwppMQHUk9FcUdCOryTJ5hDUZrxyJrZdryeKwqt1GVInSouZY3IYp4gUQClpUbQWob8okVNlIuLYVd5SkWF0hvqATl0OhsiWbfK/xwM53+SFXYNwVhzD3rrl41TbAGY3DkWIZU2Z8iWQ5BpdlvFVdQNUFy3py2vXAEOAziaK14nUsxVtwRMdISvkNSIn3sBJhq/XOG/1qrhdxR4tJZrRDgKNE0eyvtd3msBGQ0RxwpyjMWsXrzHTjdJWM5TREzyS4prBgUHUkbBuL2zJT+KM3ixnfYl1mXc8kNBpCAhlyy0qs/0axyFQFVkWVcHpU/GEHmZnBWMaQkuSaNFVu40KGxh9dE2IEQxB02qIFKCVJw+FQEUUdl0tJUBnWooTbzEICo66OgI7baZEykDTIhKq5RmXwwouOwdXLR2D1VpAduPJL8H+7ntDGHfgWryO8uYqxd55G36l9UXVAT7xGzHEqdPtjMWTQftZVw4oqvvtHvMzCgts+ot9R5cy9bxFPPPI4M2bMSLudjb1BVwXT9izyGIlEcLmMe+uTTz7hjDPOAGDYsGFUVnaNnta+RrenawwcOJDNK9YwcuIkZv3ibSbffSKeAi9B1WEQkF3EEphkxUxL7ghmHERYldOSle8Tyn90OBv//gm+1TvIGNZ+cJWu6TQu3oKYEcBX2cbal1eS3TcbZ2bPcYPZOHghiLt22yoNRrmHpvfm0TBzFuEt1QDIhTkodc1IuZk4ywo49K9nkT+uHDMQNx1J6QzUkMLWd1ex4uGvyB9WSMPqOgC2ztlB5aJaPnz3A4477rjdOUQbnYSu28G06TBy5Egee+wxTj31VD7++GP+9Kc/AbBz504KCrpXSLGz6HaiAlBYWMjmFcs47oyz+WTGG0z564nkDy1MICvtBVsmk5V061njWnZFVsyAVjPwNqg6EqwqLYqbbDkYC6jNd/poCGckaKa0Rtwxq4qps2L+HtbkmFXFXGbtr3ks1riZ5PWssTxZjlDMqmIG2TollbAq4XWHE6wqJnTdsKrohx1F5rAVbHvwfwx77Goy3GF8adYP7Gxk2S3/jf1fMKqYI381sd1zaUJFiFlVzMDhjhAPMNaI7Mbk4BTVDvVEugvJ9Xo6QjprSmcRu47SWFMS+pTGmpKMcJqA7WRrCoA/WnNpT6wpye1KlurjpsVkV9YUk6RYLSkQr2Le6nOTfdRYBAGa3v0aPRRfzz24N/k3/4hhh8WtkuYzoj1LihXprrf67yqZd/1baGFjfJs2NADgLfIg4OabWV8xfPjwlO1sdB26Kpi2J+Gee+7h7LPP5t577+WSSy5hzJgxAPzvf/+LuYQOdBwQRAXA4/Hw1Ufvc+ttf+C+n/2Zab+dyJBT+gPxmBG/YjxUmsKW+iLRCdwaYJuOrJgPH2smUVCVE+JW0vnrk8Wc6siImci9kinepMbcOdb+JqfNmplIJlkR0WMTeGu0dpGmW10VRvtuKUJYkxAFaIu4Ekz+Oc7E+A1z2+awG48jYkwc3iC+UPw4Mt2G26HgnKEs/PMX9HVUUq0X4cpUaAkY/VA1EUUVCTjLcA/uTaS6kcNfvBLJ7cDtaaMtYo6Pm34ZxgPZJUTwimFaogWHrLEqpoiSmcpsjbMJpSlaaMJc3xrTkSvEJw0zwNkU4bNub55bc/K3jpu1NlMsriO6vrme1R1mfpdELWYaNtOZG4LWlF7juznBmuvme/2x7zmu+DkzibD51ypEmJyebX2AOtqpLWUdA68lmNe8znxRF2lYk9NaIc3rx3o/ZTtD7b4k4I1P2sm1hMwxS86wspJQk+CYYxP/3yAckjN67qKkJNlVlq5fGU7juIujWWvhE4ponnYecqabcEMbvjYRV1k+fXKaAC02DtZ73Tx+U/tE0cWEa8b8PRiCHZ9vwDWknFVPLoiRFIDBx/elcmkdubkVLPlyFvn5+Sl9tdGVELrEGqL3MKJy9NFHU1dXR0tLC3l58Sy2q666Cq9310HhBwoOGKICRtnpu//0R6ZNmcyZ551N9be1HHHjeDxOY/L3yiH8iotcZzBGVuJy+vGKsdB+inOyQqw5iZnpytCxYmhQkXHLCn7ViVcKxyYSk4CELTogCfuKZiJZLSumFSHLEYyRFXM7v+KM62VErQaZjhBtkY7rjOQ4gzSH3ciSiqJKZLjCMbLSFnSR6Q6hDh8Owhds/2wDjmOKUtoILFzJtrtfif1fWyVSWgHVgUxKPG0p6+8K5hiYKd+7C2sK+J620ZWQopNbZ9Kc24OViEJ6krK7SCZ6kJ6kpEN7D/l2SQr7hqRA3CoCu0dSst0GCTSDW5tWVrHg+jfQgnFryuCHfxYlKeySpFitYclFR3VdZ+vsbcz/zfspfSgcmseAo8tZ8p/VnHveT3juiUdxODrOaLSxd7B1VNqHJEkJJAWgoqKiezqzBzggJfhOOukk1ixbReWCEG9e/hEtO9piwZRe2bAG5Do7lwmSLnMomcTsCUyzur8LU5Y7m93SVXAVZ1NyeB8W/WUWlTO/QdeSMkIy4parrEnDcBRmJzdhw0aXIx1J2ROowQjf/fVzXMXZiB7jPhW9LgYMNu77zsS1QSpJqfuuio8vfyMtSTnmdxPpPb6Yxf9ey8vPvcxLzzxlk5T9iC6pntwDicrBjgPKomJFRUUF29es4Qc/uZRXfvgGR956OANPHIBTVPBIERrDXvJdflosbqCgKhNWpbTZEFaS0pJUrdl8c7KauzsT8+BXHIjoBJW4GT2+P4sSbpLpXtFEgqoc61Ob4oq9XVvTl8OqjF9xJpj83VKEbGcwLtKVpNJqWG6MfVvLD7SE3GR7gjFLAGBYRU4bTvXX29jy+GeQnUX+0aNiIl7ekRXknzOVhplf0vr1akTUWG0YK6oDmfTJbDL2KRtkyxd101n7nhx/kc59kc4iYMJ6Xh2xLBgl4a9HtCicRl051jRos33rOHvbIa7ZTqvasdGWee2Y6brWYwipMi5ZQdVEMt3hBPeWddyT92NmKlhdYI6Yu0pDFLTYMUQSMpy0hHVD0Vim5GvXzIgzJ9wsObUsRWys0riZ4mOQ1K4u4pSMLLVsR2qbZj/Mv8kZbtZlsXgZyzrmGCe7UK0WT6vr1pXkrvnmnk/wb6qN/d735KGMvvFoJJdIUDVcm+aYeOVI7N41rw3zenVJCmpEZevsbXz7ynrql+yItenplc2gSw8na1Ah+VkRvvr9F+g+Nyu+/Y4hQ4akjImNfQc7mLbn4oAlKgBut5t3Xn2Zt956i/Mu+iFb5lVx5K8Ow5nhIM+ZGNzWEpV6h7gbyIxDcUtKgusg2xlKICvJgYNuSYk9wDoiLHF1WyOYN76/uIKt6fIRMQJlzQBh6wPYrAJtEhYw0qjDqhzbzjg2I8DX3K9XMiTlzSBaINaX9gofmqgOZFI2tV/s/+aZs8k/ehRupxIjK7nTRtEw80sKLzkBQRRQVAFZ0mgLuch07V0dpogmpZCVdIUgD3a4LenLZiqzWfLBvM6sxNaxFwG17cHcT3IxTthzkgLtu0m7m6T46oJUfrYu9vv4W4+h98mG0qh5T6SLObGSFF3TqVu4lS1fbGX9+xtRAvGxc/XKZfDF4yk7cRiCJNL8ybd8cP88Tj/nAl566qlYOqiN/QmhSwJhdehRyrQ9AQfFjHDmmWeyac16Jh1/IjN/9D+m3T6FXuNLcYoKeU4/jWEv2c5gzLpiTtBWrZWOyEpXYnfISndDlCUm33UC8377EU0bGtGCEUR33FQtZUXFrRp3LybFxvcXySRlXyOZpCiaiDPPw2H3nYnHAwVjeqHqiYJ4uyIpQjjM2nfWsebV5TRvaUnYV96oUjzD+tD3sqPIzYwQavSz9v6Pqfu2lrdee5NTTjll3x6sjXZhK9P2XBwURAWgd+/ebFn+Hffe9yC//b9b6H/mMEb9dCKZGcRSib1yJPYg8sqR2INSFPT425cefyuzrgNx/2ab5kzwXydnjShJokJWq4r5W1CV06qKJpMTcz+mNaQl7I7txy0p8SBg9FjmUlCRY28OmXI4Rn6SrSrmdqKgk28pcGh1aZR5miiZnsOCOySyyrPxqVngM36LNLqoe+ZtAFTdRUtDBtn5PhRVxCGr+MJOHNH+b2gqJMsVpIbMmNXAfGhYgxKTRfSsAZQmkt/SzWO1PoTM7drLsEpuy5zMYgUREwpfJiocm2nr1v3JgrE/tyfxt3RvcMnFLtMhuZ+S5f9IzJpgZiFZCwpqsd9MIhyJfgfDFZVspYpnXKW31Dii7iWXqKR1Q2nRFHurJaS9yCxFFw3RwjTBwMkK0eY4WddNHtdY0K7F6mlu74lulxm1QlqtkQB5RxoB4k3RIpNmKr/LYmk0Y93M63Lbeyv5+qFFhJrDyB7ZSKfWoXBCH0b/35FkVeRH71k/2z7fyLf3zmLo6AksXb+QwsLCdkbFxv6C7fpJxfbt28nNzSUzMzNheSQSYd68eRx11FHd1LPOo/tf6XcDoihy869vYNWyFbQsDPDRxa+xZX51zB1ifJQElU6nqKYESGkWE6G5Tmwfgh7TZTFJhaIbBMRsRxa0lHgLs03rbzHSYtGzSA7gM/dhncyTM5nMB7lVAdV8yLdFXUYx3RUp8Vis7ZnbWy1JW/35SA6JiiN6EW4LU75ldkL/BFlG8Lhx9CpGC3VP7ZrO1GLqigDp/QWzr+Z1YiUWJqlIR1JMJP+mpYmXSW5vV+6k5HaSSYq1z7sa3+T07oTfupikiLsgKeb92hTy0BTy0Bpx0Rpx4ZKUGFHNdQbJdQZjz40MOYQcbGXWHfMINUctMwGF7EFFTLrvdCbffzp5A3KRRQ1/rZ+vf/shS+6ezZN/f5zvvvzSJikHAEyLih1Ma6CyspKJEyfSr18/cnNzueSSS2hri1vGGxoaOOaYY7qxh53HQWNRsWLw4MHsXLua+/72EL+9+TeUHD2QQ35xBM5sd4x0WANjze+KnuoLN9FeBoBVFCv29hx9tppVmIEUsuNETfDBWwNurTDE56S01gdFE/ErcZl9t6zglpVE0qULCVYhWdTaFRkT0WNuMUUTKfEYRQl9qouR0/LZ8Pl2vvjVx8xY0Ivv6npDph/9wuPQgm3UP/EKzUV5SPddjzdHRQ2LZEX1WEzBrrawC4ekElLlWHqoLGiEVSlGulqIkyRzzMz+ppu0doVkS5c54VprP1lje4zxSQyUTPieZEnRkq4Xc1vDkhG3dFn3Y36XBQ1NFxOsb3GNkkjCNulicuLEIPWabe83X6yMRCKRcUsRIrpIZhpdFTNd2NSjiVjclcnkJpQkUGjtiyhoyKgxy5CacI2KyJKWQqR2fdzRe0cX4+Olx18cwLg/DH0hnZZIolyBLGq4ZQVZ0Mh0hNP22WxX0UVaFTdtUg4T7jiR7R+twVGaT+n0YXgHlSAIAhFdIRzW2f7uCtY8OodDDpvCko3zKC4uTjkGG92ELiIZPUVH5ZZbbkGSJObPn09TUxO/+c1vOProo/n4449jqcq6vudZdfsTB5VFxQpJkrj51zewae16vNUZfHrhC2x9dxUhpf1DSif8tbcw20x2IVn3YxKUdDEpySnT1rdHc7tYbRsl0cLSlRh/bj+mXjEIV44LTYlPUFJOJiXXX0TeD09EqW0kUl3f5fu20TXQdR1fVRvNUUXUgw3pSIqJdCTFuo11O/O+kWOWol2TFCCmTVR2zCBG3HE2g6+ZRsbgUgTBqIHUsr6W+b94nfX/WsRbr77Bos8/s0nKAQYdQ5OnKz49AZ988gkPPfQQEyZMYPr06cyZM4fy8nKOPfZYGhqMZ8TBUhTzoCUqJvr06cPaRQt45ZkXWfXEIr685r/UrGr/Qb27ZCVGFizuh2TTdHeSleTj2GVtJBJVR6sDWbHftgbzOeS0chRfmIX/XMyYop0AFOQZpsJIZR1yUR6OXoUEfMbbd2vQeLhbb+xItO++qICWORFYLVwHMpKtKfsKu5LK35WwWXu/KbrIque/5e2zX+LDi1+jav42ID4hd9aaYiKdNaW9voiChiTosZIRVveVpospcTMhVU6xpnSWpJguWdNFa26j6UaAuixqMfer1Yxvrm+6ekz3UFvEFSMpbREnbRGnEYMjqbhlBSngY+VDs/j6mtc4c8qZ1G/dYQfMHsAwLd97++kJaG5uThB5c7lcvP7661RUVHDMMcdQU1PTjb3bPRz0RAUMVnj22WfTsG0n5047nznXzGTBX2bTUpc+fdZ8kFkfdruC+QAU0RNM/Rpxn6bZZliTElIyzUwjU9+kvWyfvSUr1uPYU7IS7N2P428cwfIXV7LmzbUJZEWpa0JXNQQxOrn59l7oLpYdorafwrq/kBwgvTdIjlGCVLdPZ9FZkgLQuMYogJfVN4fCUXGl4a4gKekmfVPjpT13D6TGzaQjKFYFZ8XiLjOJjrks2YrSFQTFJCctYVcCQdEUja3/W8bsi56DNTorv13Os489SkZGBjYOXHRNjEp3H0XXYMCAAXz33XcJy2RZ5rXXXmPAgAGcdtpp3dSz3cdBGaPSHrxeL089/Hduuf6XnP7jH/Ppj15gwEUTqDhvLJIrUWLfinTWibQBfLFCgalxMMkBiekmPvOBnC5wNnn/0L71RdOFhJgXa/+T39ST+2EWPTQf8AD1oQwyoyJgBWcdzoj1YebcNY+I7GHAiW62tOThdCiEIxGEQCPuQuNh7XIohFWJurfms+2JT/BUFDHghlPIHNILWVJpDRsBjGGkXRaMtP5NR1CSTfmxYyMa4JxU+mBXJEe0ZIIl7GMXFg6zfX8sBiTxGJLPQ7KlDYgV44sFlZKYuhu3vKkJ7Sfrl5hxMtZjdUbLCRx557EAqNHbWtEEWjSZlohRe8kUxYu5RNp5cwyTOpbJ5MC4ruLiiukCnjWEtFldsd91wcjCswQXm8ei6QJEY8Cc0ay+ZJVpUYi/OCi6SFiXcFoyjsyxUjQpur0Wi1UyZQuckpoQ7B5UZJoXbWLtI7PRfPDqsy9y5plnHjQm8u8zdLrIbdNDXD8nn3wyTzzxBOeee27CcpOsnHvuuWzfvr2berd76BEWlWQMGjSIVV9/zSfvfkjNB1v58uLn2fHBKnRV26UAmnWCsJKJ5Ae7SSCsbe0qS8OKlPTZPbAcxNKk90CHpaNgM0EQOPKWifSb2pvvHp3Psie/Idzsp/8vT0Jr9bPxivvwr96WsE3la/MACGyupeadxbvdJxtdA0EUEMS9f8h2hvB1hM6az5MzoCDVUmSSi+RtrCQFEgParSTF2EZLaCdGkC0kpXV9Dct+81+W/fE9fnPFr2javpOzzjrLJik2DkrcddddvPbaa2l/k2WZmTNnsnHjxv3cqz2DoB8sYb97CE3TeOGFF7jq+l8iZ4kMueoIio7oj0funMbFriwrybL5xrZxy8qu3AnJhKGj/3fVhmmtMNGRVcXoZ6p1I9Mire6M+Fj+yhoW/HOJsb5LRgsZx+koyaPfH36Ms1c+LodC8zfrqX3ja3IOG0Tx9JE4cg2RODlK9lySEhurdMeVvCzF2tGORcW6rdWqskuLSjuxPZ2xqFjVhNP1zzqBputDe+c02QJgItmaYq6TjkjEg0wtbkcLWeisNWVXJCVuSUklCwnrdUBSUuK3koJe2yMo5jadJSjmvdgRQQlXNrDhX/OonbOBc390MY/+7V4KCgp2eQw2Diy8+OKL/OzPNzPy/ov2uq3gzkZWXPUM4XD3yDHsS3z11VdMmDDhoFNO7vFExUQoFOLhhx/mlj/chqc8m/6XTiZ/Ql8EQYj5t00kp8smPxiTH7SmZcMaTGvVczFhJQzmNqZibvL2JpLdCcmS5MmZDskTh3ksyesnbJOGtAA4BIXZ171H9Tdx86Ccl4HkdRKubaVo2lDyDh9IyZQKRGeqVkxy35PHzUR7y5P7a/5vTfOOS9CnP0cmOnKrJffRqlmTTAR3hV0RMWssUYIFwTKxd2TN2JXFzrTqhTUp4fjSEal012J8H4lEPBnJxMK8Js12YsSyHXKafL6Ti/4ln8Pk7ZPPublOipig5RjDmhzTDzL7GahqZusLC6j+eBVHnXAKzz36T/r06ZP2mG0c2DCJyoi//Xiv2wrubGTlT//VI4lKdnY2S5cuZcCAAd3dld1Cj3T9pIPL5eKGG26gYWcV1/zgclb86X0W/fwV6hdsJqIKhrZI1AoSVqWYton5ZmoVc0sOADSD+azicUFVpinsTnAPWcXgzG3M4oSioKeIz0H7D/V4QGNcoA5S32bNY0lnSbDWWEkXWBzRZaY9dCqn/+/HlE4baGzT6ENAQA8r1Hy8gjV3/o8dH6xKO+bJfU8mLibaW94e9mfpgc5W2G0PuyJhkN76sCcul86QFDMYvD2Skhz0nYx0warm/sz6UtaP0a9EzR/rtZZ8vScLK1r3A3FxxuT7zykqCSQldh9rMmFNpi6YQUvYFetnoLKZ1fd9xIJLn6XUX8iK75bx+Ttv2STlIIct+NYxDla7RI8Kpu0MMjMzufuOP3Hrr37NX/52H3+981685dkMuOgwiqYMMArvmWb0NJosVtNz8puw+b/1bVnRRNo0IwizvRTlILvWR0ku2pYuSNP6e3JwqaKLCcdinTzDmpRAnszfYxORKuEuEDnizyeA38/Wj9ZTvbiKnfUtqEGFwgnl5I8pA+KF5HRViFULNicm87saPZaQnjhBmlC1VIuIWYVYEuKWjZhqcDvWACs0PR5kZ46N1EEskVluINm6kGx9sr7178qtlPzwMwOMk9fXENC0RCtZwrFYrG5W5WRrX0yIgo6iiol9s1jcrP21PqTTEcHka8rahpXkWsenvUw0k9ybYm0J+0myoiRvl67vyWJv1jERiVcTD2ytZ9PLi6j8ZA0TjjyGz797jWHDhqUcq42DF10xD+tgFyU8wPC9IyomsrKyuOsPf+Q3N/2K++//O3f97S84nvyKih9NoNf0oYiO9AXVjGwEYm+nMU2VaL0f0/qSzndvfeu0PoDN5da3zeSHsvmb9a00Ge25cKwKup1FuracmU4GnTOCAWePIqBIoBsBnPuquKONzqO9t8CO3g53x3rTXimDdATNev20ZwHbHZKS3HbyPtojKRoCTauq2PjCIuq+3syU6afw2bKZDB06tKPDtXGQQafzQdy7bqfnFiV8/PHHKSkp6e5u7Da+N66f9pCZmcltt91KS1Ut9/3mz2z692K+vPBZNr20kEhrMO02VndQshBcMoFJRrIfP3l5e66Cjtwn1vXSWXysVpjkNtpT+zT/moGHZvE+UdDwyGosw8Qscmi1UqjtvAmblpb2glelNFYGK7rTLLsv+tTeZN1euQUTVmtKuv2ns2xY41+sVpBdmbzbI97JrkfrNWPu21ovyzwms8RDcnxJskXHei1a27bGCyVsY3EbiejoqsbOLzcx/5f/5Zvr3uCYQdPYumkLs9/7n01Seiy6RpW2pyjTpsOFF154UGoBfW8tKslwuVz87Gc/48orr+Ttt9/mpzf/mg3PPk3ZicPp94NxePrkJ6zfXqBf8u/WCSe2rpoYFGo+eMNKqvBZchvW9dubXNJlp7R380lRS044quuh60LM1WJ1BbVFnLHJwyQhEU1K2I+5naKLxjpqnHhAagBp8mRlHptZO0iyHKeuC0T0RA0UNdafxGMThMT9WscgeV1JTJyAVU1IyPSSRB1XtPq1w5LFBNF4ISFOCJPHPEYmEFNIgyxqKKoYK5pphYZRvymdGnJCu+1YHNL1pTNIR45i15pZvyjpWEW9/SDmFKKktR8o3FHckSxqsRpbyYTNSmTC/gg73l/J1v8uRfVr3PzLm7ju/35Ofn5+umZt9CToXfMi01ME30wEg0H+8Y9/8Pnnn1NTU4OmJd7nixcf+JISNlFJgiRJnHXWWZx11lksXryYq2++hbmXv0D+2HL6nDmawkn9QYpPZOkmW+tya8BtusnESmjam2ySrTDWCSCdhcXqWjKXC4KelqyompgQTyIIekwG39ovK7Eyt3OIagJZiagSDvNtWdRQNTGhfSuSrU7JFoCOrARWSKKeQkDa2+/ewpWUydURSbH+lhzvkhw4bcWuSEpHcTldQVKsbZoEJV12UqcISppAbRO7IijJfUq+H0wLC0Dbpnq2/W8ZOz9cRXZxL/71t8c499xzcThSU5xt9EzodFGMSg8jKjNmzODjjz/mBz/4ARMnTjwodYFsorILHHroocz/+COqqqq4/x9/5+9/exikLyg/fRTlp43CVZDRLjmxwhpbAulJiZWMtBcQujuEJTlw1yQhkGpdMSd1s58mqUkmLMltW8mKuY9dkRVFF3epV2K2kS5Ox0q02ovR2Vt0ZG2xYlckIx2S+2tun86a0lmSsq+tKAcCQdkVOdHCCpVfbmDbW8toWV3NpKOn8+qnjzFp0qRdHbKNHoyucNv0NNfPu+++y3vvvceUKVO6uyt7DJuodAKlpaX89a4/8+c/3sG7777LL393G7Of+xf5h/en18mjKJ7UF1GW0j60rRe9+cBX1URLg4ieYNWwwhpIC9HS9mrcBWJV0LUipCSeWkFIP/nFliVpuMQmCMUwrYfU9jNlpCghSXbJWBFz0yAmkCpzufkWo1omwGSLiJpmkk6eaMOqhKImuojE6DqCEN+PnnR+DPeS8ZssmefC+D+kGLVuAhFHyvaypMXOgSlwJwtazE2UrPlhJaJWt4UJqyZPQEm0Bpj7VNO49sx2JFFLqa8jJO3DqnOSbHkzx1gQdEyV/+RCnqKg444KyLUXYAvGdWYlJEFVjl2Xii62OyE40wgEqpoYu24Dm2upfH85NZ+sRHZ6ue2Gm7jyyittkTYbNlFJg969e5OVldXxigcwvvfBtLsDWZY588wz2bLsWzasW89Fk85h3f1fMOeCf7Hu8S8JbKuPrWs+1K2ThPWhbk7uYDzQ2ws+TbYeJL9tWuMprPs14ypMWG++jlJzk9EVft/gzkaWXPo4y37+b5R2gpRt7B064+pKFmODdkiKuX4aktKeuKAVXU1Swm1hKt/5lqU//w+Lr3mB0sZcPpj5Dm1VNdxyyy02SbGBrndeJ2VXn55GVP72t79x8803s2XLlu7uyh7DtqjsIfr3789Df/sr9//1bj777DNu/NOdfH3FC2QOKKT0uGEUHzsUV74RXW1OCbouJGTkWMkKogbR72aAq9XyYP2e/CYcVqUEy4pphXHJSoJlRbe4fyRBi1kv0iG9XoiYQHJMd4xI3M2Trp2qD5ax8f73AQgB4bYQcpY7dqyqJsasHdZ+JceZJJC7JAJntZbIkhqzqiTDul5nYN1H8nam5cXcJyQGDHdkTUlGR9aUdBozZvsdWVKSCYo14DqZoDgldZcERQ8rSM7U8W2vFlZIkWOuonSTQDI5MS1tSlil4ZtN1H6yivqvN5BV3ou7rr+Viy++mNzc3JR2bNiwY1RSMWHCBILBIAMGDMDr9abEbTU0NHRTzzoPm6jsJSRJ4vjjj+e744+nqamJ//73v9xy3z2sf/xLcsb2pfi44RQcMQjBa1SwFRImvrjbQbNOrGpi9ovV5J9sxjcnklBU4RbSB2LGJnbLPq1tJyNdHEhQkRMIUgKJEOLuK4ekxgiNrgtse/qL2HqDfncOQmEhgQgJlXWTM3J0XUAUdSIkioKZ6yiqFMsCEURLTIRojpmFDET3YxILMY3lQRK1OImzxKYkxskQ2w/oSIIWWzdOOMEhqoluHd1wSWmKSu2inbQs20a4ro2M/kX0Ons8miDH9hOMyIQjxm2pWsZHlLQk0hRNy21sRVDDeHvlJPQ3okiARmhTJS2zviOweivl/3cmzvIitEAI33ebUCprEV0OSs8aD4BbVpDUMGGnFMsC04IhtKY2CIVp3VjPt3d+BMCxz11A7sD82D6TM3HCliBrQdBxCCqqLhKrhWWxIoZVmXCUY6mKTuuK7dR9vpL62WuQPR6uuOgyfv7ElbY4m40O0SWuny7QYjmQ8KMf/YgdO3bw5z//mZKSEjuY9vuO3NxcLr/8ci6//HK2b9/Oc889x92P/JN1939E7oR+FB01JEpajKJ91jRcPelhr+kCWMiCIOjIkprwZi1YM2UA1bSYmBMqcU0Vc1lysGp7AbbpdDgcFquNEg2ShailQxcgagGJqBJIhnVEVxUizYHYdoHt9eRFLUKypMXIiiDoSGJiQKumCTHiYSIhw0eAZO+DdZv2Mp12hV0F0Casl2RZMraNWzVMC5caUmhYW0/915uo+XwNwZ1NOPIziDT4qAXkwmxyJg2ldXsrzt4FRJT2SYra6se3bDOqL0ikoQ21rpHmT5cAUHLp8WhhBVwe0FSUxlba5q8iUt0Ya2fjjU/g6l1IcEt1Qg6m0NyE7g/S8M0mglUtOHI8KL4QzlwPoTpf2uNffNdnNK2pZchlhzFsxsQYOYFE4qJaxNeAWOC1Faqi07JsGw1frqbhq3Xois7xJ57K7z58hMmTJx+UD1Yb3QM7RiUVc+fOZd68eYwZM6a7u7LHsInKPkJ5eTm33nort956K+vWreO551/iwWeeYN39H5E1tj+5RwwlZ+Ig3AWGe8j6thxJ50KxzMixN3sSJ3ZzuSRqhvsoKoAUC4yNTn7JLh8rYUrOHtL1+PqSoMWsEg5JTbDKCElkRhI0dF1AERy4y/MIbjcmTCE7k9ZWCcEhWQJpEwmZ1dKkaoCe/uEhiHoCKQEQRR2HrKYcRzgiEYpaKjQ10XIDhuy/rgkx60x8J0lBuNHx1jXB0G3wh4hU1uAe3AtBFJEcEcIbtuNfvR3fwtUEVmw2+pXhxVXRj14XXYqrtByloYHt99zD+r++i+j5BK3VIASu/v0ovexKZLcH1a2jtrTSumwRwZXrCa5aD0o0iDUzE9HjjnWz5qXZ6KFo9WtZRnQ58YweSd4FY5FLc6j/90wESUAuKaDgmIlkjBuE2tjKjtueZMcr85FLC/AeMpzMU4pQW3yIXjdqcxvZvYuQ83KQPBINM2cTqazHM7CUpjkrANg2vxplvIC73KikDUZ8lGldsxJr63WtRRRalm6h+eu1NM9bA5rAiSecxg2v/42jjjoKWbYfTTZ2H13htelhnh+GDRtGIBDoeMUDGN+b6skHCjZs2MBLL73Evc88RcvmrXiHlJF7+GByJg8mo28BgiB0mrQkuiLipMVKWMy/nSEsxrb6LgmLaUmIuVGilhdzwrcSFpOsLL/tTernbYzN9mKGi5yjx1B4/jSEzMxo++2TFfPJkUxWrC6fZKJi7RsYRMWMW0kmKgZJ0dDCGpJbRtc00HR0RUFt8yNneRHcRpkAXTMIjdLQQmjtZhpfehe1sQW5JB/vIQPwLVyD2tiK4JDxjOiH+5BhSIWleCuGIpr7d0XjRAINNL/zGaLsRldUWr+YA0DZT68movgJbFyLb8436Dq4B/XHM2IomaMPRcr2Isgymhy3ngFoobBR1sDpQJAFcEatPnL0XMkaoqTFxzF2blVEKXFszXUkSUMU9RR32ba7XqJt4drY/4e/9ytkR3zbdOREafHT/M1Gmr9eQ8viTcgeDycefyo3/OxKpk6diiSljyuyYaMjvPjii1z+p9/Q584r9rqtcFUDO69/uMdUT/7oo4/44x//yF133cXo0aNTYlSys7O7qWedh01UuhHV1dW88847/OnhR9m6/DukvEw8Y4aQMXYInlEViG5nnIxEzf8xC0C0DVHQkSUNSYqTEivSyelLQuIpt07oqiUexnplWANHgQTiYyUYDlHDGc04MgNj1977PtUfrojvP8uDrqgIskT+eceQeezhCLJkTJwW0mHCtGiYYxGzAEUnUV0nRkLUiIWM6MQmcl0ViVTXg+hEzsxGD6gIkkhkRzWBtWvxfbOEyPadSNEgTbWpKaEPjl4luPr1RVcUItW1hLdtB8A9cBCukl40f/0V6DrZ4w4ja8JE3OV9ESUZMQJiBExOqEWfEZoMggqRDdvY/OwDpIOUnU32xEkUjp2KS81AjxoZVHe8HTDaif9j2ZccP35BA0Ex/prrxbwwgmU91TgNumR8AHQz7sepG+TIo6ErCi3vf0bTG58C0OvmC8mcYMSQCKJxneqaRnBDpIHFfQABAABJREFUNf5v1+Ffupbg2u1klpXx8x9fygUXnMuYMWNst46NLoFNVNqHKJru9eSXER1BEFDV3dOE6g7YROUAgd/v57PPPuPJ/7zE+59+QKSpGfewCrxjhuAdMxhn30IEQUAQuo60pCMsEHW57IKwtK3YxrbHPiJ7/ECcJbm4+hbhHVaOJFosKhbCImoK8y58inBdW6wdwSnjyM8iXNOEq38vin9+Po5ehZ0iK8lEBUghKzGiAtQ9PZO2WYtiFh3B40YPxFOkBYeMa8AARLcL//KVuAf0R87Pw9m7DEdpCaFNm2lbtATR60GUZOS8fDwDBuIZPARHVh6CBrqqogfDiBnRoGmdtCTFJCgAvgUL2fn2iwnHmTVpElmTJ+HIysWtZeHwCbtFUDQ5/r9JTiBKUMw4JYlOkRPdGb0eouTEGCsVyakiSjrNHy2k5on/xbpQ8diNCA4J39KN+JeuI/DdevSQQv/R47j5yhmcdNJJ9OnTBxs2uhoxovKnLiIqN/QcojJr1qxd/j5t2rT91JM9h+0IPkDg9Xo57bTTOO2009B1nfXr1/PBBx/wlyefZsdrnyC6nbhHDMAzagDe0f2RS/IRRSEhG0TXBaNekCKlJS0mQTEJi2pxpUhRq4oWilD38TK8ffMJNfhx9MpHynThKC2MkgERMjIIbKgmsKE6tn3mmH6UX3Mq9R8uoXbmPFzl+RRNH0XOkEIcOV685XkJREUPK4SrGim//iyqX5zF9l//k9xzjyH3jKkISIYxpB2yAkZMjBFwqqUE3JoIb62kaean+BetxD16MJo/hLN3KVJuHnpYQQ+HyRg9GkdFbyTJhaAbhEOQJKxeJs/wIeSecoLRB1UwCILJAaNkQRQk9E6SFNlvLGv8Ov4AyTvlFLImHY7DnYmjVUBujY6TvIcEJZJkPTGtK2nIiRYtfm2SE02OjqdHQ3CoyE7VcI01NBFYupXg6i0EVm0lvK3GOPYsD45ehey863nC22vx9irj0nPP44I7/87kyZNtGXsb+wldpIHSw4JpDwYi0hFsi8pBgHA4zIIFC3j33Q95/LVXady8ASknE9ewAbiHVuAeUoFcVoTsMiZtSdLSTPJ6QkyLQ1YTgmMlUaNp7lrq566j6sPU8uauoixCtcbsWXDsSOo/W5GyTjJEtwMtGEn9wUjvwTO4jL63XoDu9lD78iwa3/qKnFMmk3fh6bGgVYgGzUo6omQGaBrLNTUxxkaLiGAGu6oClb+/n0hlNYUXXUDm4YchKAJyQEAMgRR9WRIjgJaUQCQa/0SzkI0+RL+LVvcJ0WdakhtFFw0iYK5n/Wt+12QIa35CwSYcvUoQRKMBKQgOv4WMJN2duhzfp/V3MQKiqse3E0B1CqjOuJVEjETbtT6HBVDcoLpAMZLRUPQQgZptBLdvIVJTS3jHTsKVVfFA3twcpAwPekRBqa3HVVjECcdO55LzzmHatGkUFhZiw8b+hGFRuZXef9x7i0qkqoHKm/7ZYywqPQG2ReUggNPp5Mgjj+TII4/k7rv/hN/vZ968ebz3/kc88+ZbVP7nHQSXA9egfriG9sM1pALP4BJktxyzqIAlc0UALZoBIwo6da9+TtULX8bWc+R4UNpCgI6u6aATIykAgY1xS0o69P+/kyk6YSSSLBDc3kCwzkfr2mrcvfNRQiqBTTXkHnMI7j7GhKaqIkUXTKPxra9ofm8eRZeeghKWEjJsTC1U0XI8oqSlkBVdi6A2tOFfsppIZTVSdhYZEw7dzRFPxJ6SlPYIiuYE1QG6y4sTL+i7SVAsBCqBoAigulLJiRghTk6ibZjkJOJSCdTtILB5M8FtWwhv30Gkpta4WJxOHEX5CG4Xzr69UZuaURubcbg8HDNxKj8+90yOOeYYysrK9mp8bdjoErSTHbjbzdiv7gccbKJyEMLr9XLcccdx3HHH8bf77iEcDrNkyRLmzJnDP198la3vfonmD+Ao74Wrfx+c/ctx9u+Do6wY0SkgmlkxsoZa35hAUgCUgMLAl29HEAQ0NW5OleS49UUI+NB8PiKV9YS21CJ6HCitIVoWb0QeWE5A9YAKemFvhAKB7KFD0TQBQRNxTjTcTP4AVP1zJq2zlsb2XTDjTJSwlDJRA+iaEYeiKyK6IiAoYsz1ogcV6l96Df/S79AVBQSBjLFjyT/lVOSQAylsxGvIAeMjRl+WpLAeJSBGAIwmG2RDF0GLZsKYJMF040ghHSkMYiRuwVBdQoJZRtANMqK6BMN1I0Y5ghrthwJSM4iK0YYuEtte0OPERvZrBtGxjIfZD10UjH5F72JNFpCD0fYkAV0yCIniAdUDqhNUPUxoyxYCK9cR3LCJ0Nat6JEISBLO0hKkonyk4nw0f4DIzmoiVbVk9e3HhaecxmknHc8RRxxBfn5+J69UGzb2M7rEbXNgun5kWWbUqFGAoTb71FNPdXOP9h9sotID4HQ6Ofzwwzn88MO58cYb0XWdzZs3s2DBAj747AtmfvIxjS++BYKAs29vnP3KcJT3wtm3DORURqCHI2y/+TEyJg4lY1QFjt7FCF4vmioZqaeISK4scGXhLSkk89DBMaG0Xj88wmhD12Lp0qagHSKIooqmGcG6gqijJ0WcC1J0uSYgYAkY1oztBUFn2/V/RvS48R42huxjjiKys5bqvz+OHlHImX4M7op+uHr3QcrMMoiESWb24Gq3WjIELZWk6JJBEKwkw0pQwCApohq3lkhhg6DE0q6l6LZRy4sY0Y32LQRlV+REdaQSE8WtowhhlEArSnMzoW830fDee/Fx9nhwFBfhHFwBiopSU0d4ZyUuRWXcIeO5+KxTmThxIocccghOp3P3B86Gjf0Mna6xhhyoFpXc3FyWLl3a3d3oFthEpQdCEAT69+9P//79ueCCC3gGUBSFVatW8c033/D+Z7P58Is5NFa9gx4O4+hViqO4hMDatehRYaDgxkqCGyupjzeK6PYgZWTgyC/EmV+Is7gUd5++yL17gVNAd+iGG0SK3umSbsSMmO4STTACVs3fRSj48U/I/7FG42tv0/rpHOqefJO2r1bjHTUCV69eyMVFIItU3v8P9EiEwkt/hNrYgtrYQst7X9D6yVxypx+PHjTEzlpnzUHZtJOsU/sgR4x4FFEh7iqxEIbmIdYnUrq3qF09sTp669qbp501CKVjaMEg4aoqwlWVRjxJVSXhqiq0ZJEnQUDOy0P1+dBDIYRghBEVQ7jwtBOZMGEC48ePP+irrNr4nsNWfOuRsINpv8fQdZ0tW7awdOlSFi5cyPPvfUTltk1E6usRZAnB5TJcSMXFuAYMQJJlNFVDbWggtGM7aktLrC1HfgElP7gQqbgQKSMT3WshLSYxMUmLSVgEQNRjNbwj9fX4F39H4NtVhDZuAS2aEpuUTozTCeEwgtOBHo7gGTkStb6BcFVlbJXcyUdROv2sOFEBI85EjQaVatA8+OC79NVAgPD2bYS27yC0bRvBLZtRm5uNHwUBMTMTyeU24lV8PjS/HzEjk8ySMk456khOnDaVMWPGMGLECFwuV/cejA0bXYQXX3yRGX+8lV63/XSv24pU11Nzy993K5h29uzZ3HvvvSxatIjKykreeOMNzjrrrIR1HnnkEe69914qKysZOXIkDz74IFOnTu30PpxOJ6NHj8bj8XDXXXd1Optn3LhxafWKBEHA7XYzaNAgLr30Uo455phO92V/w7aofI8hCAIVFRVUVFRw1llnceeddwIQCoVYt24dq1atYvny5bzz+VzWrllDS0MVuqog5+bhKChC9fkg6rqJNNSz/Yl/ACC5M3DlFeEqKsVZWoazqBixOBchLxMhx40mge6IkgQVhIiAoIHLU4T7iOPQjzwOVQ0RaaonUllNcN0mgivXoLa0oIfDEH2A6GEjoyiwIp6BlDPxCNx9+pE5dLQRXCcZ3EhUDJeL6V6xBrgeqFB9PsI11URqaghs2khw8yYUs9KpJCF5MwyXlCyjKwqu7HxKy/tx8jFHMGHsWIYPH86wYcPsmBIb3x90k0XF5/MxZswYLrvsMs4999yU31955RWuu+46HnnkEaZMmcLjjz/OySefzMqVK+nbty8A48ePJ2SWwbDgo48+oqysjM2bN1NWVsby5cs59dRTWbZsWadUZU866SQeffRRRo8ezcSJE9F1nYULF/Ldd99x6aWXsnLlSqZPn87MmTM588wzd//g9wNsi4qNTkPTNLZv386mTZvYsGEDa9eu5eO5i1i7aT3+xlo0nw8hFs+goytqzCqyK7iGDiDj0EPInDIZASkqVGaQFyN2I/4dRSVSVUVw61bqPnsfQRQZ+LPfoDQ3Ibo8ODKyjewbUy9Ex0g/NgNUNYO0iOqBY1HRgkGU5mbU5maU5hZ8S78lsHIlOBzGm5CuoUcUkGWcuXn0Lu3LtEnjGTd6JAMHDmTAgAFUVFTg8Xi6+1Bs2OgWGBaV31L6u66xqNTe+hB1dXUJy10uV6eskIIgpFhUDj/8cA499FAeffTR2LLhw4dz1llncffdd+92H08++WT+9Kc/MWHChA7XvfLKK+nbty+///3vE5bfeeedbNmyhSeffJLbb7+dd999l4ULF+52X/YHbIuKjU5DFEX69u1L3759Y2bHv1h+b2lpYePGjWzbto0dO3awc+dOPpr3Das2rsff1IDa1mZYRAQBQZZBNBTcQhu2EFqzkcCadbiHDULyeBG9GYjuDCSvF9mViehwIeoCiBKOPr1x9u5N9uGTEaPia05XiUFkTHKjR7N3BBBEI2OIaMyrUc1x34yRFomg+f1oPj+q32f8jbpgNH/0u7nM50NpaTHiRWQZKTsHV3YuZcUlHH/1LxgyuD+9e/emd+/eDBgwgNLSUlty3oaNXaGLLCqqqpKTk5Ow+Pbbb+cPf/jDbjcXDodZtGgRt9xyS8LyE044gblz53aqjcbGRrxeLy6Xi+3bt7Ny5UoGDBjQqW1fffVVFi1alLL8hz/8IePHj+fJJ5/kRz/6Effff3+n2usO2ETFRpchOzubsWPHMnbs2NiyO5LW8fv97Ny5kx07dlBbW0t9fT319fXs2FHNd+s3sPHbrTS3NBEOtKEGjMkdXQdRRHA6EWTZ+EjGX1Gy/B/9iJKMIBp/RUlGFKO/RZeZ60R2CuiKYsjfK0r0E0FXFXTFWKZFImD5X1ciaIoSX0eNRNuIbh8x3FGiy4XoyUD2ePFkZlNWWMTYIQMZ2K+cgoKC2KesrIzevXuTn59vkxAbNvYaXZOeLEkSjY2NCUv3NKarrq4OVVUpKSlJWF5SUkJVVVWn2li1ahU//elPEUURQRB46KGHOu3SdbvdzJ07l0GDBiUsnzt3Lm63kZqoadoBHbNmExUb+xVer5dBgwal3DTtQdM0mpubaWhowO/3EwwGCYVCCZ+OltU1tlDd0Miyjdtp8wXQ1Cix0PUYcXG5nPQpLmBQv76U5OeQkZERM/W6XC7cbnfC/+mWu91u8vLyyM/Pt2XjbdjoDnShN7erqwq3VxSwMzjiiCNYtmzZHu33F7/4BT/72c9YtGgRhx12GIIgsGDBAp566iluvfVWAD788EPGjRu3R+3vD9hExcYBDVEUycvLIy8vr7u7YsOGjQMZFsXmvW1H0zRGjBgBwLXXXsu11167x80VFhYiSVKK9aSmpibFyrIv8Lvf/Y7+/fvzz3/+k+effx6AoUOH8uSTT3LhhRcC8LOf/Yyrr756n/dlT2ETFRs2bNiw0TPQRUUJRVFk5crUmmd7AqfTyfjx4/n44485++yzY8s//vjj/ZZlc9FFF3HRRRelLDetOgd6IL7Y8So2bNiwYcPGgQ9d75rP7qKtrY2lS5fGlGM3bdrE0qVL2bp1KwA33HADTz31FP/6179YtWoV119/PVu3buVnP/tZFx59erSXVaSqasyicqDDtqjYsGHDho2egW7SUVm4cGGCYNoNN9wAwCWXXMKzzz7LBRdcQH19PXfccQeVlZWMGjWK9957j379+nVBh3eNBx98kIKCAq666qrYMlVV+eEPf8jy5cv3+f67AjZRsWHDhg0bNizY3RiVo48+mo4kya655hquueaaLutjZ/Hee+8xffp0cnNzOf/884lEIlxwwQWsXr2azz//fL/3Z09gExUbNmzYsHHwQ+eAjFHpbowfP5433niDM888E5fLxdNPP82GDRv4/PPP90swb1fAJio2bNiwYaNHQOgC109XtHGg4eijj+b555/n3HPPZfjw4cyaNYvCwsLu7lanYRMVGzZs2LDRM9ADScae4Jxzzkm7vKioiNzc3IR4lZkzZ+6vbu0xbKJiw4YNGzZ6AIQucv3sfRPdjWT5fxMnnnjifu5J18AmKjZs2LBh4+DHASr41h145plnursLXQqbqNiwYcOGjZ6BLiIqPSmYtifAFnyzYcOGDRs9A3oXfQ5ynHTSSZ2qzNza2so999zDww8/vB96teewLSo2bNiwYaNnoIvSkw92nHfeeZx//vlkZWVxxhlnMGHCBMrKynC73TQ2NrJy5UrmzJnDe++9x2mnnca9997b3V3eJWyiYsOGDRs2Dn7odnqyicsvv5yLL76Y119/nVdeeYUnn3ySpqYmwKjiPGLECE488UQWLVrE0KFDu7eznYBNVGzYsGHDRs+AHUwbg9Pp5MILL4zV82lubiYQCFBQUIDD4ejm3u0e7BgVGwckvvvuOy677DL69++P2+0mMzOTQw89lL/+9a80NDQAhoiRIAhpPxUVFQntrVq1iosvvpgBAwbgdrspLCzk0EMP5ec//zktLS2x9S699FIEQSArK4u2traUfm3ZsgVRFBEEgT/84Q+x5YsWLeLaa69l9OjRZGVlUVJSwvTp0/nss8/2yfjYsGFj38EMpl25cuVBSVLSIScnh9LS0oOOpIBtUbFxAOLJJ5/kmmuuYejQofzqV79ixIgRRCIRFi5cyGOPPca8efN44403ABgwYAAvvPBCShsulyv2fcmSJUyZMoXhw4dz2223UVFRQV1dHd9++y0vv/wyN910E9nZ2bH1HQ4HiqLwyiuvcPnllye0+8wzz5CVlZVAbgBeeuklFixYwIwZMxgzZgw+n4/HHnuM4447jn//+9/85Cc/6cohsmHDRhp0ietn75uw0cUQ9I4qKdmwsR8xb948pk6dyvHHH8+bb76ZQDgAwuEwH3zwAWeccQZHH300dXV1HVYAveSSS/jvf/9LZWUlWVlZKb/ruo4gGI+nSy+9lNdff53TTz+drVu38tVXXyWs179/f0444QSefPJJbr/99phVpaamhuLi4oR2VVXl0EMPxefzsX79+j0ZDhs2bHQCL774IjN+/zvKfvnzvW4rUldH9T33EQ6Hu6BnNroCtuvHxgGFP//5zwiCwBNPPJFCUsDwu55xxhm71WZ9fT3Z2dlkZmam/d0kKVbMmDGDuXPnsmbNmtiyTz75hC1btnDZZZelrJ9MUgAkSWL8+PFs27Ztt/prw4aNPUBXpSbbr+4HHGyiYuOAgaqqfPbZZ4wfP54+ffp0ejtFUVI+mqbFfp88eTKVlZVcdNFFzJo1i0Ag0GGb06dPp1+/fvzrX/+KLXv66ac56qijGDx4cKf79eWXXzJy5MhOH4sNGzb2AjZR6ZGwiYqNAwZ1dXX4/X769+/f6W1WrFiBw+FI+ViLbt10002cddZZvPTSSxx99NFkZWVx6KGH8rvf/Y7a2tq07QqCwKWXXspzzz2Hoig0NDTw5ptvMmPGjE737Q9/+APr16/n9ttv7/Q2NmzY2DMIGDEqXfExs35GjBhxwIuhdRbhcJjt27ezdevWhM/BADuY1sZBjYEDB/Lyyy+nLC8qKop9d7lcvPHGG6xatYoPP/yQhQsXMmvWLO666y4ee+wxvvrqq7RaApdddhl33HEH77//Pps3b8bpdHLeeefh9/s77NdTTz3FXXfdxY033siZZ565dwdpw4aN/YqeJKG/bt26mCvbCjM2T1XVbupZ52ETFRsHDAoLC/F6vWzatKnT27jdbiZMmNCpdYcPH87w4cMB4yZ98MEHueGGG/j973/Pq6++mrJ+v379OO644/jXv/7F5s2b+eEPf4jX6+2QqDzzzDP89Kc/5aqrrjrgFR9t2OhR6CIdlZ6ESy+9FFmWeeedd+jVq1famLwDHTZRsXHAQJIkjjvuON5//322b99OeXn5PtuXIAhcf/313HHHHbvMGpoxYwY//vGP0TSNRx99tMN2n3nmGa644gouueQSHnvssYPyoWDDxkELm6ikYOnSpSxatIhhw4Z1d1f2GHaMio0DCr/5zW/QdZ0rr7wybXpgJBLh7bff3q02Kysr0y7fuXMnLS0tlJWVtbvt2Wefzdlnn82MGTOYNGnSLvfz7LPPcsUVV/DjH/+Yp556yiYpNmzsT3RRfEpPu2tHjBhBXV1dd3djr2BbVGwcUJg8eTKPPvoo11xzDePHj+fqq69m5MiRRCIRlixZwhNPPMGoUaM4/fTTAQgEAnz99ddp2zKJxVVXXUVTUxPnnnsuo0aNQpIkVq9ezQMPPIAoitx8883t9sftdvP666932O/XXnuNyy+/nLFjx/LTn/6UBQsWJPw+bty4tOnWNmzY6ELYRQlTcM899/DrX/+aP//5z4wePTpFmdYqdnmgwiYqNg44XHnllUycOJEHHniAe+65h6qqKhwOB0OGDOHCCy/k5z+Pizpt3LiRyZMnp20nEokgyzK/+MUvYoW5duzYgc/no6ioiMmTJ/Pcc891aCnpDN599100TWPx4sVMmTIl5fdNmzalyPrbsGGji2G7flIwffp0AI477riE5QdTMK2tTGvDhg0bNg5qvPjii1z+299R/tNf7HVbkfo6dj50b49Rpp01a9Yuf582bdp+6smew7ao2LBhw4aNgx9dJdbWQ6onmzgYiEhHsImKDRs2bNjoEeiKooToPUtHBaCpqYmnn36aVatWIQgCI0aMYMaMGeTk5HR31zoFO+vHhg0bNmz0DNgS+ilYuHAhAwcO5IEHHqChoYG6ujruv/9+Bg4cyOLFi7u7e52CbVGxYcOGDRs9Az2MZHQFrr/+es444wyefPJJZNmY8hVF4YorruC6665j9uzZ3dzDjmETFRs2bNiwcdDD1EHpinZ6EhYuXJhAUgBkWebXv/51p1W9uxu268eGDRs2bNjoocjOzk5bfHDbtm1kZWV1Q492H7ZFxcb3AoqiEAqFCAaDhEIhQqEQmqbhcrkSPk6n01aUtWHjYIWto5KCCy64gMsvv5z77ruPI444AkEQmDNnDr/61a/40Y9+1N3d6xRsomLjgIHf76ehoYH6+vqUT2VVDTvr66lvbqG5zYc/ECAYNAhHJBxGiURQlQiaEkFTFDRFQVcVNCWCriqQLBckCCAKoGop/RAkGUGSEWUZQXYgRr9LsgPZ6UB2OHE6nbhcLjK8HrK8XnKyMinNz6NvWSkFBQXk5+dTUFCQ8MnJybFJkA0b+xC26ycV9913H4Ig8JOf/ARFUQBwOBxcffXV/OUvf+nm3nUONlGxsU8RDAbZuXMnO3bsiH1WbVjPp0u+pbahlrDPh+bzofn86BHjJhK9HsRML2KGN/43w4vociLIEkKhC0HOQJBlBFlGdEi4HA4EhwQOCdEhI7hkBIdk+cjGR5ZBlhEkCT0iomsauqKCoqBHFHTrX0WF5GURBU1RCSoKgYhCo/lbuB59axXa6sVovgBamx/N50Nt86P5/AYhEkXj2DK8yBleMrNzOWzwUCaPHkXv3r0TPrm5uTapsWFjd2FbVFLgdDp56KGHuPvuu9mwYQO6rjNo0CC8Xm93d63TsImKjb1CU1MTGzZsYOPGjWzcuJGvFi1l8YpVNNbXEWxtRPP7QRSRcrOR8rKRcnOQ87KR+uTiGtEHT4YHKcOLmJkRJSQeBFGM1dvQdR21tgGltgGlth7B7TQm+l6FOIoLYg8VXVEIb92B2tBEsKYWraUNwSEhet1kTBqJozAvuiLomoCuAZqAgIQgSyA7wb1vxkjXdfRgCM1nkBa1zY/WZpCYr5prmfXem6hNzahNLaiNzeihMILDgZyTQ3ZOARV9+3H84YcyZMgQBgwYwMCBAykrK0MU7RAzGzZi6ELBt54Ir9fL6NGju7sbewSbqNjoEI2NjaxatYpVq1axdNlK/jfvK6qrdhCpq0fzBxAzvciF+chF0c/4AXhzx5Kdk4Ock4OYkYkgRCdVARB0dBEQ408Era0VLezHP385obWbUJtaCSxbv8t+OXqXENlR3WH/m/77CZ7Rg/COG0L2SZMQHQYRUrX9Y7EQABxORI+EluXEldF+tWYALRBEbWxBiRKXDQ3NrP7qE5Q3X0WpbUBtaAZJxFGQT1ZRMdPGHMrU8eMYPnw4w4cPp0+fPjaJsWFjL3CwK9Oec845PPvss2RnZ3POOefsct2ZM2fup17tOWyiYiOGqqoqli9fzqpVq/ji6wV8+s0CWqt3orW0IeZk4SgtwlFahNy3gKzxg2PERPR4QBcM366OYQ3RiZESBNCTaqhr4QiBhd8RXLkW//K16K3+hL64hvVHzPSitflJgSQh5+Wi1DQgFxeh1NWDIFD2f9ciFReh1NdRed/fE+JSAsvWE1i2nswJg3H2KkDXBVQ9fvmrLW2E1m/Bv2QFvrmLcQ3qh7Nfb7JPOgo5Pzdh91tmGNWWHeW9KLvjuk6Pb9tXi2l49r/G8Q3qh3fCaFyDK3D2621YkaIQ3R7EXh4cvUrStqMrCkp9E0ptPUptA5/WbuGD5xYSqaxFqW1AkCVcxSUMGTSU86cfw7Bhwxg5ciSDBw9GkqRO99eGjYMNXRWjcrAr01rj4bKzsw96N7JNVL6HiEQirFmzhm+//Za58+fzxsdfULN9E6rPh1yYh1xajKNXMY4ph1DUazqO0iL+n73zDrejqt7/Z+8pp9yae5Ob3hPSE0ggkNBD6L2rgBRREMWCgg3FivwERUFREAVRQWkiUqV3SChJCCG993b7KVP2/v2xZ+ackwSJEqV873qe+9zTZs6cmT0z717rfd8ls1WVF4EYiACoCJtY5gNahXS+/Aa5V2bTcNZJtD/2HIUFS0CD3aMb6dGDaP7zQ/9yG4vzl1U8d4f0JzVsMFWTJuD2749QEhmCLApQAgQoV6Ntjazvx8Df/5jiipWs/+4NANQdOonaAyaQ6tuA1iCEhqB08q77wS8JtzSXvn/RcoqLliOrq6k/qrLrqKzKojpz+KvXVazj3cJp7F5a/+IVFBevqFxvbTXVU/eiavLuuP16v+N6BA5OYw+cxh4wsvI97Qf4mzbjr9vIivWbuPL+u/Fv3EiwfiMgqOnZl6l77ckxhxzEhAkTGD9+/IeizXtXdMVORVfpB4BbbrkleXzrrbe+fxuyi6Kre/JHPMIw5O2332bmzJnc+8g/eeqFF+ncsAZhWTh9e+H274M7oDdOv944/XohUylEKAzyiJFJ2b1YCxDKPAiamykuW0XnjDfIz5qL3aORYGsLlLUNT43djeLchf/2dgvXwR0ygNSgAWQnjCU1aEAJHCmQnkQWTRZHC9CONkDFVeAqtCqy+ss/Qbo2/b53HunepZ4WSgsEkN+aSV5re/QZWu5+cLvtyEwcR4/PnrXd63GL9HcLrRT+uo3Y3RuQKReAsDNH4a2FFBcto+P5GRBs32Y9NWwQds/upMeMID1yqCECu25F5uXfCa0UwYbNeKvW4q9ei7dqHf7qdYQtbbgNjQwbOZpzTzyOvfbai0mTJlFdXf0ffU9XdMX7Ebfffjvnf/1yBn3yvXdP9po3s/K3H53uydOmTePee++lvr6+4vW2tjZOOOEEnnzyyfdnw/6N6AIqH7FYt24dL7zwAo8+9Qz3PPpPWlYtBzTuwH64g/vhDu6PO7Avdo8GwxvRIgEeSG04rDFAKS/nlPE5Nv76FvJzdm1atGrfiXS+UOo7kZkwgh4Xn4lwbEBAKNChQPjCgBSvtE3a0mgblKvQaYWwPFZe+AN0waP+sEn0/uwx6IScKxK8I6XCthSOHSLRtM1cxMIr7gYgO6SJ3NKN9D7zAHqcfgBBaKHK9kG8vjhEtM+UFmgtUPkim29/nM5XFxBsagGg79Vfwu3bw3RnDWXlcqGmMGchHS/OIvfy7B3uI5Fycfr2IjWkP+lxI0mPHmaOoTBqa6QGqZGWQnkebQ+9QH7+ctIjB2P3aMTu2QORSePU1yJcBzQErZ14K9fiLV+Dt2wl3rLVhK3tpJt6sdekPfnEsUex7777MmbMmC7eS1d8YOP222/n/K/tQqBy80cHqEgpWb9+PU1NTRWvb9y4kb59++L7/vu0ZTsfXaWfD3ForZk/fz7PP/88v77rbt5841WCLc04/XuSGtaf1EHj6DX4SJw+PRCWTZKSiICJ1qWXTGoChIqyKQq0DimsWEnY2YHbswmZqSLs7NwlICU1ZBDuoP7YDfXUHDwFb9M6vJVrsbIOxaVryc9egHpzJjUH7UEQWPhFGwIJWqJDjUphttHSaFdDKkQ4CsvSqJXL0QUPYUtGfvEgigQEocQPLITQWFIjI4AghEZrgZCaHlMH0/Ohi2mdu5aaEb2RVWn80CJUIa4VohCESqKUSICK0iIBMEJobKmxrZBlV/2V9ldLZGC7oQa3CmwnRGuBtBVayagMBdLRhC1bK0CK07eJpi+fRecrb6KLHjKbobhiLbk33qL98RfITBhFj8+faWTZ8XRDCVRo4a1spfmuxwEo/AtScr/rv05292Fkdx+WgKZgayvFpWuYvXQ1M6+/huKXvghS0jB0GJ8/+WSmTZvGXnvtRSaTecf1dkVXvC/RVfpJYs6cOcnjefPmsX79+uR5GIY88sgj9O3b9/3YtH87uoDKhyi01rz99ts8+eST/PSPf2TlvLlozyc1tB+p3QbRcO5xpIYORGYinW3CIYnBiSyBk/JsSfwZQBPirVhNbu58cjNnEWzYXLENPb9yUcVzkU6hQ+M3sjMhHIeag/el/rgjENIyTRykJjW4D4OuvQjbCln787/R+swc3D3GEAQWgW+VAJWt0YGp92hXga3BVQakyAKdT7/K+hsN/2X4F6cjHQt8CJVESo0lVXJDNp5vGiFKwMVKOTRMGpjsb0saQ7hQSaTWSBmipAEqoRIILdBamkyNFoBGKYldZzwKhGuTHTuY3l8/EyEjQBPpKL1V65DVWURVNWFLO1t+/49kP/X66sepnjwaFUrcEw+MJNWGpKw1tNz5CG0PPcPKT38rWUZm06SGD8Lp1YO2R58DMOW8TIqwpZ1g09bogxKU+V3rvvNren33IpyGGrP9Gqxu9WQn1ZOdOMbsBxXir1pHcdFyrn74Hn74i58RtueoGtSfc084kZOOPpYpU6aQTv+X9N1d0RU7GV2Gb6XYfffdEUIghGDatGnbvZ/JZLj++uvfhy3796MLqHzAY/ny5Tz++ONc/cfbWDL7DVS+SHrEANJjhtLz6LNIDe5jjM8Eyexca2VubKE0WYfoBpeAkzhiAAMUli6jc8ZrdLz46g45E3Fs+OkNFc91ofhv/Z70mGF0+/gRUUZHIQQIN8R2QzJ2ns0PvErrM3Poee5hVDXYCOGhXJMNUUrgF+ySXYKlEJZGSE3K6mT+6Vcm3zPk/H3peeR4vEBiS4WdMmlcWbYDygFK/NhXVvI5R4aIqDJqSYUUGokm0JIgtAiFwFcWNirJsMQgqPenDqP5iTloL6CweA1hSwd2t5oEPHa8/Bbrf3bnO+4nb+lqrCkjsSxzgDRR2SoClD0+OY3qPYdQXLWZjudnU1y00hjPKZWAFAB/9XpEyjUZmeos1fvtQXr0EDb+7I8AhM2trPnijwFw+vTAbqzFqq3G7tlAeuQQ3GEDELaLO6gf7sD+1EzbH601weatFBcs5ZaXn+LXv/8dYXuO+mFD+eLpH+OII45gr7326lIYdcX/ProyKkksW7YMrTVDhgxhxowZ9OjRI3nPdV2ampo+NOdoF1D5gEU+n+fZZ5/lt7ffwd8f/DvB1lbSI/qTGTuUpi+dTnpYf1TRI1i3meKqDeRnLSA/bynFBabpVL9ffgurttrcMIUGGd0btUCriHkaCsLOTmQ2BSmJt3o9G665Ybttcfo1kR47HF3w6Hh6ZukN1zFgRm1vPw/Q7ezjcXrU469aS+uDz6M68sl7xWWr0SJESAuBRjqKVNrHsUPW3PgYWx58FYDex++ObQf4ykpu/mFgGT6GEyKkkTrbTojURZZ94VfJdxx4y+lYA/tQCCRCaBxZ2k4VAYptMylKC5QWCRixpMK1DGBzdUjbylaW3vk6flsB6drU7z2Mur13w7JLGZVQiYRgqzNVyXeGbTmWfeZqUkP60Odrn8BurKVq9+FYtVnCth3Ir4Gt9z5H48n7ka6xEUIT83ZjRpnWguye/dCT+qOOn0gQSlQoCYoWqhAQtucI2zpxevdAOBbeitXkX51L25MzaHvkhR1+p792E+6AJoKtreTmLKLl3qdASty+PXAG9cXuVkvY2olMu9g9G0gNH0j1AXuAEPhrt1CYt4SrH7qHH1zzE9CaQeMn8O0LLuTwww+nd+93VjF1RVfssugCKkkMHGgyw+odrtMfpugCKh+AWLVqFffffz/fu+nXbH57AbI6g/Z87MZaGg6bRt3BE8m9tZyOp15l06/vJdgYyWiFwKqtImztSNa1+vM/MrPixjq6n38KKleguHQdqmCcW3Mvv7Hd99efduQOt6vnpeci6+oJ1m5C5TxyM2ZjNdSDbRFu3LLDZWRNFd6y1XQ+MxO0ZvBvv4awLHJvLWft936Ham2n+NbbVE0cBUJjWaYU0/byggSkgLkR+8pCa0w2JVIhWY7Cts0yjh1iW4pFX/otxfWtybJVAxtpjwCOI1UCTnQERCDKkFDKpljCvB9nTlxpeClrH1/AvFtep2NVC05thuzARjoWbWDj44anM+BLx1C9x1Cs+mosaRGW8VeG3nIZrU/PovkfLxFubae4dC3tL79FdtxQtt7zDFa3mh0Clardh9LnC8djZ138QES/M0yAUwyKFAI/sCDabksqbDskTEvCmmpUU22SgUkP6096WH/qTjoMf+ky2v75Ip0z55vjf+RkOmbOZ8BXTyY9cgAAgQ+FFZvIL1xNcek6ikvXUpi3BKu2Gl308Z/YAkGI1VBHdq+xWPW1EPikRw2muHQ14ZYWlr78Cue98TraC3B79eDsk0/nvDM+weTJk7uIuV2xyyOem+2K9XwUY968eaxcuXI7kvBxxx33Pm3RzkeX6ud9CK01s2bN4i933s0v/3gLufUbyI7qT/WeI6jdcyiqUKTlsTfILVhD2J7D32KASGZIE1XjBpEZ3odU3+6k+nXHzhisGeaKdL69mo7FGyksWUf7i2WEVyFASlKDe1NcvPrf2la7ZyPBlpZ/WQ7CtiEocVRkQx1qqwEOu/35G7jVDmt++yjND7yCSLv0v/YS7PoaLNtkRgSw5MJrE3VM1bhBDL3yTJQyN7NQCSypaazqpMYtkvHbyK1uIbe6hXWvb2D+PQuS7z7oDx9D9u+Nryz80KQ1LamwhUr4JjFYkUJjC5M5Kc+o1DoFMpbP3Dvn89LVM2jabwgNE/tTt89upJtq8TzN7C/8mdzikiuurEpRO2UUdQdNwOndyMY/PEbVbn3I7jUSt6mO9pfeZsv9LwEQbO3A39jyrvu+zxdPoP7gCWYXWwaU1bhFnAiw+KFFSyGD51sEUWksJugCSRZGhWVlKUOjMet0Q1JugGOH5AouYWiIwpalEgBZ4t6YxQLPRisI8yHFJSvIzZhLbtYCwi0tyGwaVfQr5OlxiEwq4jFppOty0GFH8qVPncchhxzSRcrtivcct99+O5++7HIGf3wXqH5aNrP8Dx8d1c/SpUs58cQTefPNNxFCEN/y4+xvuIPz9YMWXRmV/1ForXnllVf45c2/56577sTv6EBrjdurGyNu/SqyOoPUIVsffIV1tzyOTLs0HDgKpy5LZkhPsiP7YjXUo3VJGivLLOhlJkV6/G6kxo1AaUH1AQspLt9AevSQiMcikJa5ialQErYX0dJh1ae/vf3G2lYCTIKtrduBlMye48i/+mbphRikWBKrWx3h5pJxmm5pheruFFdsAiA7bih2fQ0iAg06X2Tdjf8wIEVKepx7OD2Pm7Tjfag0S++cxcLfv0KQM5K66t5VjD17PIOPHUmqdwOesujYBWq7+X9byEtXz2DEx8cx6IKD0EiKgTldpGMx/lfnECpJ57o2css2kVu4juan36Tl8VnJOtqefRNufhSZTaFy23N5ZNphxM/Poe3Vpaz5/ZOgNHa3auyGGgpL1rH2F/dRWLaeXucdjlKSACiGZhtSdoBjhaRts+8TUKc1AhGNkwijWhoVGsAhKIGVwCvVp7Npj1zBBSRhJJ2OwQoQLQu2GxB4NlbGIj1qGJnRQ2kUQOAjHBsVaggDVFsnnTPm0v7Uq9TsP576Ew9GF/IEK9fiL1nBrOY1nHz+WQTNnYzcc2+u+OLFHH300VRVlUpmXdEV/27skmzIR2zq/sUvfpHBgwfz+OOPJ3yVLVu28JWvfIVrrrnm/d68nYqujMp/MbTWvPzyy/z8xpu47/6/EXoFVNFHB6WaYdMnp9P86Kv4G1qS13oesweDP3MAqazhJ4Ra4gU2oRKEWhKEhhORcDfKZtE6ygyUv6+1QIUCFUp0fMOSGmGFtD38Ep0z56FDRXHhSuqOO5BupxyEt2YLnS8YqWzujQX4azZSfcBEup0ynaCjyLpv/qLit1oNdTSecyIbf3Zr8lpmVD9qxg/Gay3QcPp0lp5rSJt9f/Bpqkb3w7VDVl1zD63PvUXvzx5D3aETcR2VqHFcK8SSAXrtRnJvrWTdQ3PY+NZWJpw+jMFHDqO6Xz1WTYr5d81nw7xmGvboR8uaHPmNHWyZuYJJt12AtAWODLGjkg6Q8FCkKP3F5SFXhoiODu4/9U6GHNiXsV8/lHzoUghtvKJm67yNpHvXkepuVDJ+aLH4qr/T/Mw80oOacLrXVsiS48iO6sfg759JcdVm0oN6YLkWUoRYkQdKqAX5rUW0HyK71bHlH6+w4XePADD895fgNNRgWyFCQNoOsK0QRxoAWQgcvNBKsiJhKEvyc0BIXVINRc+lZeTR5rkim/FI2QGdRRfftwl9ibA0rhskaql4LEmp8HybMJRGkRWtM+bSKCWScVb+fY5jtjcu2TkyIL9sE1uem8/W5xfgbWhlt0mT+e4Xv8AxxxzTBVq6YqcjzqgMOf29Z1SKLZtZ/sePTkale/fuPPnkk4wfP566ujpmzJjBiBEjePLJJ/nKV77CG29sTwf4oEVXRuW/EG+//TbX3/hbbr7lJoJcHjRUjx9AYU0zYWflzHrjbY9XPB/5vRPpue8QFIJiaOGFliFKKpmUQFwnQKJRmJuBHSlDYk+P+AYRKkEQWISBVUr/S21KLsI8bjh2H7odMwXHCRCCiPMAzrAmqoYfatL/5xyKCgX55ZvYcO3teMtM+cjp3wunXy+0H6DyeVru+ScA7qBe9D7rQNpnLmbjX40CpeURQ8bNjBpA3agmspkCUvm0Pv8WPY+bRL/jxhHqINn2PqnNLL31JZb+YwHF1iII2G1qd464eQoNkwbQGaRQCGb9eT6v/fwVAJY/ZBxw3YYs3tYci35wLxOvPBZbqArSbAxOgORx/Jm05fPqTS+jAsXkz+9BaIXkQxAoZn3lbtreWmuO0zeOoschowmVpG7PITQ/M4/C8o0Ulm+sOJ4y5TDwgmk0HjgSkRWkRjYlMmYjHdRobcCmXZuNQCjUHTiezfc8h5VJIetqjOJJW1hSk1MOtmVhCYVrh1hSkRYaJ6sIlaA9nzZlnCgzghbmeNsKFchI4iyw7DApF7W3ZeiQGstWVGWLaA3t7RkKORcnHaAtEnM8gEzKpK3i8pAfWBR9A6xtuwwgq+gvlBRDacjPUiOlJtAWqUE96T+kicHn7Ut+xSY2PbOAcy+7iOI5ZzFx3wP5/lcu4dBDD8W2uy5VXfEuUW638B7X82FvSlgeYRgmTtPdu3dn7dq1jBgxgoEDB7JgwYJ3WfqDEV1n/y6KDRs2cOutt/KjG66nY9167NoMfltn8n5+6UYa9h1OcUMrra8tr1h20nWnUzPGGO+EWuIriYoIklURfwLY/mYbgRWljRFZHF5oGcCByZw4bpDIW4XQiSsrmBskCjyvNBSkFbulQm7uCjpfX0Rh7mK8Fesqtrtqz1F0vjoPf1WJq9HjpCl0mz4Bu3s3Ot9YAkCqdz2p/j3ofcb+VA3vRW0qT61bZMNj80DDsOn9qMrk2NRZTcbx6V+9leU/fYhF969jnzMHUz9pEI2jGrFrs/jKYqtXUu8Um0uKoiO/vyfZbikWPLGWufctIxXk6ZVpR2mBp2wD5BBINHaUjSjPrgAs+ccC5t2zmAO/vhd+XQNeaCOFprPZT0AKQOe6DuoCs86GQ8aTHjmQBZ+7Ee2VuDq9TpvCoE8dUCaJDpHRcYqPrxSaQmDjBwaQgqnMWDUZhv3uMmMfE4EBs5yxnglCmcijXStECp0QbKsyxQQ85AtOkjlBC6RlshvlXjJIhUQS+hIVSFryjvm80LgZA0iCwCIIY8O8UtZLlWVuUk6A6wQJgVlrEjBd9G2UEkk2JWUH0TZLCoENgY3s3Ze+Z/ak/1n7kl+2kbeufJCjTzgWaVkcc+IpXP7lLzNp0qQPfYO1rvjvxa4YGeb6+OFuSlgeY8eOZc6cOQwZMoS9996bn/zkJ7iuy0033cSQIUPe783bqegCKu8hfN/n4Ycf5pIf/YClr71Ozdh+NJ06nlH7ncLsi/6QfK7XsRPwm3M0v7gIv6VM5SEFY795OHVj+yCFwo4u8F5oobUg0JJQyURGGwOSWLESRCWhQEksYYBHDFJMOcj4p6i4DCRKJ3KoTNq+ohwQpe+DDo/2F9+ic8Y88rMWIOuqUWXKoji81eupO3RPcnOW4C9fi7+5DelKFl70G8AAlMzA7gy//gJs25RymrKtVDtFMpbPvJeX0mNMd/ru2YsWD3pWt5NetpCXr5/Bite2cvR3d2fwsaNpC9JooBhlhVT0KySacWeNYe4fjAPjw98xqqFu/bNM/swYJpwzDmRAUdm4MkAhCJSFLMuwxKClfUULr900i+WPLWe3E0fQ57jxFEJTUunYnGfOZSUztj4fm0qfj+1TsS/cXt0Y8LVTWfn/7kJ7AX2/dALd9hlGEEqsaL+Wh4zAR6gFVnR8BaZsIi2VcE7iYyWipkZKGSBZKuuZYw7gyBArztBgQIHMlso0sYOu+S+SUo2UGoXCTkVuuZH3jg4lXodb0QVbCI3lhli2ISc7dhipkGQCtuyIjBuPUyUg7fpmTIcmM+iFBmC5doBrB3iBjRdatKzN49RlSfXvy5hvH82b37gHFSjuv/Mv3H/nX8h0r+eKL3+N8847j+7du9MVXVERXRyV7eLyyy+ns9NMmn/4wx9yzDHHsP/++9PY2Mhf/vKX93nrdi66OCr/QSxZsoQf/fSn/On2PyJdQc8jxtDj0HGke9cbQOEFLPx/D7HpmYUJcbF6SCNOXYbuk/pTM7CebmP7UNU9jSvNbNhTpsxTCG2KoW0MxRJrdnNjs6QyJmTRTS7mJsSz1yC0khtSXAKKb0ZC6IR8q7QgDCrloUJoguYczf94jvYnZqKLHk6fHnQ79RCye41k9ZdKqhwAkXLQRR+rLovKe4z43sksuOIeUBodkW/dpjqGfOcU6ob1wLUDemY6yNoeGcsjY/k8c80bLHlmLcfdfTqBlgyx13LttEeoaXDY/2uT6T55AEVlo7TZViniEpdMskqODLEI8DZ30rJkKzXdU9QPb0BjEUaAJlCWsb+PMitxJkqiSVkBxTVbufOMh0nVuIz91ET6HTWaonKSY7LoxudZ++Ac6qeMYMtjc5j454twu9ckWSyto0xYUCKnxkZtUmgsoRJDvtL+Lnm5xLyizqKbEFlhmwbV0bGUkSy7nEgdb0O56Vw5OIrbByhVAiul3kelTJuUxjxPR+ND+bLU0ygCvaZTdUx+AemG2E6I44SkXb+ixYCUapttLH13/H0xWOlctI51f3+DDY++BUCf8w6h30l7kEqDJRR2WzPrn1rE3OueR6YstK8YsfdkfvHd7zN9+vQuufP/8bj99tv59KWXM+zUXcNRWXr7R4ejsqPYunUr3bp1+9BkJ7syKjsZQRDwwAMP8PkrLmft2/PpMXUIYy8/lIY9+uM4IJRC5VtombeOt298mbZFm+k2rjd9DhrKwP37UT+gmhq7gNiylQe/NYPXv22s6aee1JMpx3Zn9NR6fG3RrtLM7+zNpkI1zcUMfmhVuKKCudAXQzspESklEq+R0s2KJMVf7r4KGNt3GSlDlCQs+rTc9xxtDz8HQlBzyBRqDt0Hp7HWZFpsRe/PHUfr46+TX7YOf80WnO419PnYVAorN7P+rpeZ/42/MuyKU8gt20jb7BX0/dhUGif1xZEaxyqQtoIEpKRkgCU0xeY8bas7WPTbF9n9jBHc971XCHzNIdceSqpfI+2BXUZ6VaRkYECLUElWxJSABKke1fRryiKFSoANmBt8XOZRcfYi2o++lmSkT9vSdXidARfcOw2vsYl8GGApTa5QRSFwyDcXsbJpen58f5qfe5vVf3mF3hcciSr6FFZvwU7bOH26Y1mlTE3spxJqST50Kuz7y12E47Ckoirl4UVgMyZMJ40QI2ATgxRLqgTgxCA2BktBKPExnBLbUlhSoy0FVlk7gHKjuzJek5SKtBtgCYVCUPCchKCr4j5QkLRi0KHAVzaBZ77XtcOEQ+WFBhyVZ5NicBdBPADal25hzkV/qjjf1v7+CZoffZ09fn4aVU0p0j0yDDh4EHOvex5VDBl40gQ81+PYj52A5aa5/Atf5YILLqCxsfHfOq+7ois+6nHeeefxi1/8gpqamuS1hoYGOjs7ufjii/n973//Pm7dzkVXRuVdYtOmTVzzi5/z8xt+iXQU/Y4ZS/9jxpBpzCYX+8L6Vh4/7Y8Vyx1/61H0GttAUdm0rc3R/PRbPPXzt97xe4ZPyHLGl5oYsm9PNgR1bPRq2VCsZWOh2nAYlJXcmMDMkuP6f77omBtA2ew4mYprM7uXsqx8FEYAJxQUV25k/U/vINjcTO2h+1J7zIFY1VUgzOxaSI2bCrAshWpuZvmP7kK15xj100/iNlajlOa1o68CYMT3TmbFjU9QWNvCvo98GccRiXona/s0up1kLC9xil0+czPPX/sGW5a2YTsSLx9w6LWH0HPyAII4ixJlPWwRJttfboMPYKGTbEscSsskoxJHoCz8ChAjyVgexeUbuPWUx/j8bXsixw5j/WZJR5BGVVXTUsjQtnATC77+Z+y6LNnBTTS/sAC3Vz3e+pZkXT1OnkKvs6cjpU6yFNt2WAYqMijlYAFKXikx2Cgv31GWgUm5QQJU4uWVKmXP4nYDKpIUp1w/AUclonWl38q2wCft+KScAFsoAi1py6cTUrcoywSVb0OcMhdSk3KCCkddpSp5VGHBJ+ws4KRtOmbMY/UvH0KHCqsqTdhZMPujNkPV4O70O24cb/3gocpjnrY57JEL0YFi0/OLWX7fXJrnbWCvA6fzqx//iEmTdixx74qPZiQZlVN2UUbljo9ORsWyLNatW7dd9+TNmzfTq1cvgmDn+rS9n9GVUXmHmDt3Ll+8/Ns8/dAD1I/vzeivHkj3vQdhO6KCfCmFhjAk27uG3Lr2ZPm/n/MQ066expaFzbx5yyxUUHlzHXtId/Y9oYndRjs8dssaHvnTZq69bA3feno4m/xdB1Lix/FNPuEphILCkrWs+eavAejz40tw+lQOZADLNgBg60Mz2XDrP7EyLkO+cxpOg2GRN79gWOPp/o0svvoBwg6jahKW5N2KvX0nNfHxPx/G+plrWfrMaoYf1If07n3x/0uOz+tnb2TdnM00jmqk96SSpXvDwBqctGTJq810c1v423lPYGUcpt56JrgZ3F51pPo24G1sZeg3TmDDP15j1Y2Vai275n9nWhaGMpEL7yjMezJRevmBhRMpvWJwIkWsGjPPk3JMtI6Y90IEVlJ2ANgElDxbyuXv8frQht9S9G1SjjF4i3kwoPDaPFZ85w8Ulm8wzOBtf1sEUgZ85XgyTdUs+s5feWv2quT9brv3o7ipnWy/etDG06bnwSPoe8hw2pdtZdm9b7L3flNo6D+Y31z1Y44//vgPTT+TrniPsatUPx+RaGtrQ2uN1pr29vaKpqFhGPLQQw9tB14+qNEFVMpCa80TTzzB2Zd8kfULFtDn0BFMvfFU6oc1YksFlJQicUg02UFVDDl0MHNvm1OxvicvfRLLlYw/cTAD9unF5pU5hh4xmMZeLtVWke5OOzWywDlXDGLVUo+3XmzjsjGPcegvDiUzsSd530ma5IVRmSeIZMqxXDmeyVbM3nUkQ47S/kBCxoxnwpatCDea8lP1tMk4fXtE9QiSTIq0lPmTiranZ+HUVzHu1+eSqnEBo0Zy68zgL6zaQq9DR+F3FPFb81hlm+PKkGxU8gHjGWKcYCVShPSd3JumPfuSD12KypSw7Ki845T9BxLvkPg4mFJOxF1BEmpDmIXKTMuGt7bwj/MfS5Y94q8fp35ANVLYILOMOLQfD1+3BK4zSiU/57Pk9jcY8KkD2bxgPbmF6+j9qen4ONROHg4RUBn49ZPIjuhLuqkWVZacjImj5WFu7CIBDDEpOM50eMomCDV25Dwr4mVEqRcRURZDaUHKCRJ+khA6GRNx2JYyZRslUZ5MCK7locoUZvY2aqCYR5NxfKocj5ZiBi+wCKOslCXM+IrVRuVgWpVtRxhKpDRgx60OCVs7cHo10PTJw1GdhlxeM6oXm+99kfziddg1aRp270u2ZzXWN49h3hX3AZDuVUvboo30Ong3Gib0JVQgZcxDklQNamT8Vw5k9Gcms+KBtznjs2fDBTY//PrlXHjhhV2+LB/xiDnf73k9HxGwU19fn3RP3m233bZ7XwjB9773vfdhy/796AIqGHR577338ulLv0yueQtDThnHhCs/SaYhRqAhtij1jInLEh1r21n7xCLm3fjyO657n+8fwsCDBiLRNOwf4giFJcysMeZSFLTDyZcO5q0TjcGaM7gPhdDGkoYnkPcMYClPn8ekyzj9ntxgpMYu40okvzFK9cfEWq0FW+4wN9vcjLnU7DuO9KghCcCR0f+UE+CtWE9+2QYGnL0f6VqnYlZev/sAxl/7Mar61WFlU7zxhTtI920g0BIbRdbxEpVPHDGQCBGgLIqRGicuy9iResWVAU5U8omjHJhIobGixyEStCLESjgpZh+b2f78exZW7I9lT61k1JkTAPCUzcRvHkTPfVfw0k9nkttkbp4r7phJj8PH40Rq3ao9hqM1LLvy3tL623Okm2qT53FmIQaRugxIJsqrSOFT4foaq4BCAzysKAMRl1psqcwxjMaAkZvb2JaqAKkJcIg+IyNiLURGbFompZ5YbRTzYYJQJuWaUBkAFZOBqx2P7plOY3wXWhXHJP6dsVS+fDwaNY8Zr7nQwrYs+pw7jRXX3I9b55KavFtCvO31+RMNH0tqUnaAECE14/sn39P3tMkU1zWzdeZy1jwwlyW3zWC3z0yh9/5DQIgSmKuqYvgn9mDoaRNY98xSfvDb/8c3vnc5n/3sF/jOZZd18Vg+ytGl+kniqaeeQmvNtGnTuOeee2hoaEjec12XgQMH0qdPn/dxC3c+/k8DFd/3+f3vf88lV3wLTZHhH5/AkGOOwM440YW4sutuvqXAqieWMu83LyUW7uUx4KCBKA2ty1oYe+7u9N53IOlaFyjdfMHYoEsUrWGGEEFxYxu3fnsp6Rqbs/5xAs1OhhYvUvUEFgXfqZidxyRLrY2U1XbCxBG0nLgY33jK1T9g0vASTZ/PHE7Q3MGWB2ey/ie3MfSHZ5Ae3IRMmW1WBY+Nf5/JutufJ9u/gb7HT4hufCW+CED17r0AWPPAm3Qu2USvw8eSsgJcyzjCeqHxGylKm4xVWfcNdEmRYzIsJntiyzDKiJSyJklDQZQBJmVhPFLkdhkWAEeEhL4BL8OPGcqiB5YgG+vo8F2CxNckQ2rKeLR8vWK9r57zu+Rxuqka21IE7Xlqdh9EZre+VE8aXuFzEwOj2IQvBpK6jAhtnoOOzN0Sn5OI+yEtgSUDLKlRytzky8FIOcDxfLNvtSplZ8xnorEiNEprXDsknfYT+TIYUFPudxKroQqeg2Mb59tQmXFoS0XW9hOVWiGwKQQOWgtcOzDy5AjAxCUkR4ZIxzdZnAjshUrScPAYNtz5Ilvuf4m+lw1M+FMy6lhtRWRhKTSZWodpj13MvB89zJLrHqf7Absx7v+dim5p442v/Y1Z336IpSOa2Ps3H8OSJETpQEmQkt7ThtPr4GFseW0Vt//pdn513bWc/PGz+MWVP6JXr150xUcrujIqpTjwwAMBWLZsGQMGDPjQKHx2FP8nybS+73PzzTfzle9+E8vVjDx7IoMOH4q0zUw/Vo4oLehYsZXnvvIQneu29xEBGHHqaEZ/bDRVfeuS11QZiTMuYcQZgrgckZIBWcsjI4rccelsZj+8nkN+dzLhoIFJuSc2xGrJZQgj0JHclKK0vIzMt+KUfpw5KZeqxlGReSkbs/ml61n947/gb2oFoNeZB1JcvZm2mYtRRZ9eR09g6Pn7YWcdsrZvZuFaJjeFGEB4nT7Pn/8XCps6GHXRfgw9eWzyvitDXBkkCp44m6TKbsCx3DjOpDhSYYswyZr4usQ1MBZllY6z5a/HIGXDolYe/PrLtK3qIPRKmZaqId3Z49rTydaVsLotFK9cch9bXitxIuLoeeoUgvY8Yc6j5dl5pPp0Y+RNn4v2awmAxMdDa0rlOSUrJmkxqIjBplYlwmxsRR/7lGgduwvHvBCSK2nsexM7v1bomcs+G38uk/bIugY4xP47KTsgbRuPE19ZFSXGIJRGZRQBmCrXI2UFiZ9PoCVBaFEI7CRDE0u147JQPC5jABdnBDc99DpLf/kYfT+xL1XjB5EdPcBI4jMOYXMbbmMVliTqgB1iiZDNTy/g7eueISz6DDx1Iv2PH88zJ98MQLZvHXv+9ESyvWsjb5ztOTxSaJrnb2ThH15lw4zVnPSxM7j+qqu6AMtHIG6//XY+85XLGX7iLiDTtm5m8V0fbjLtnDlzGDt2LFJK5syZ8y8/O378+P/RVv3n8X8KqIRhyC233MIXvnUpVkoz6pxJ9J8+DNsxEtb4dlIONF783tMsf7jUu2XMeRMZfuRgavrXllLqZTfdeGYKpRu4s826tRfwzLefYcmTq+k1vIr1izoZc8YYep9/KPnAwRaKKsfDtULWddRSCOzkxheUlXxib424jFCePSk3DAOSMkC5TLa8uaHf0sm8M68FoHaPQbS9sZwBZ+5D36PGUNW7pgQ2rJAglkWXZRJi4FJc18wLF/+NwqZOjn7mc1iSZBYeS4rL90VMTHZkiC3CUjZlmywKmOyLkWSXfFXijEtsnAaGAwOw8pUN3P/F56juV0vLkmakI1G+on5kD1rmb6LpkFGM/uaRJgOiPTa+uIzZ33ukohdTebg9avE2tQEw5EdnUj1+UAL4YiAZ7994m2IPk7hsU3FM4sxYDFQAYRkuEaJUggtD4xqrlYjeJykpCWnKSeVgZ9vUteEcGbm6ZSnSKZ/GbCedXopCYJNxfOrTedJWYHoGRZmSQuCQ9+2EqxJn6NxIneSFVgKMy8dbCQxrUpHFf8nFNiL45gMW//AecovWE7SV3IUzAxrJr9wCwO4/O5W68UYBFne/1p05Vtw+k+X3zMbO2Iw9Z3da1+ZYcteb9Nx3ELtfcSROugT0y9slBJEsWwpN64KNzLvlNTbMWM0pHz+LX139ky4DuQ9xxEBltxN2DVBZdPeHG6hIKVm/fj1NTU1IKSnvmlweQoiu7skflNBac//993PW5y4gDHOMu2BP+k0fjrTNheudQArAXl/bnz2+MAWnznh0uIn1esl8zPzfOZAi0TzxradZ+vQaADavzFM/tH6HIKXDd9/h95RAyk79/p34TPOTbyJsyeBvnMSy/3cffU/fm8Hn7BvNiHcey1b1raPbmF6se3oJ+fXtVPepefeF/kvRvKKNoBgy7Zrp3HviXUjbAJW64T3ofsAIFt/0PJm+dQw4ZQ9e/uzt5NaYjFLtiCaGfWoqLYu2oGyHrS8vpdcJe1K75zC8tgJK2Miq9Lt8+wc7QiWpcovGvv4dwo06M+d9e7vzAkhk5qEyZNltwTFEoFFJY9MvNAozfp2MzYgffoyU7dH88hKW3/oCnUs2ke7XLQEqsy65i26TBzHiksOhsRYUWFVZhl2wPwNPmsDy217ijetnkOmeJdWQYcMLy3nli/cw9TenV5Qmgeg8V0mpr25EE/tedQTNCzfz7G+foNeAvlx88Zf5/uXfqvCb6IoPWXRxVABT7unRo0fy+MMeH/mMygsvvMAJZ59N+5a1jP/U7ow8aRiuK7FFWGEMBgZI+JHqpHyWD5EbasSlSJ5H4CSOODsQv77thdKVAWnh8Zu9bgeg57AqNizu5KgbDoUxI2n3U1Q5Hlnbxwst2r0UxdAmVDIyzzKyz8C3klk3kHSljR1p44aDyQkXlYZia3PXCnEs43AbRlmaty7+PSpXRIemdLHP7z+Jk7UrGvZJoZML/bZ9h1wrxFYeKx5dxKxfzSTdvYoDbj4NyzIllfJ9UMqY6DIuSmUZR2mJLY2yyNdW4i4bHx+oJN3G6/C1ed8Rige//DTLnl1LzYA6Otd3oKLSz9GPX0B73uLZY28AYNiF+7H4pheYev1J1I1oAsvCxyYfOASRTFdEGYVQVxqYbestEjvCGlt5kWTByom1cdYjbggY+rLk/FqeERG6ImOSSM8122VnSha20Xr8UilICxCuwnJDbDcwfBXHpzZtjPi2FrJl/ipm/DiWyYQobbpPl2dY4og9X8odesuJwSLi6qTsIDlP4kxTfL5YUpO2/ZIaTSpyGzqY9+OHaZuzOvmu0d88gt7TR5CyTKsJO7Lnz6/azJu/nsHKZ1Ymn93nh4cyYNqQClPAbUuE5rFMypCbZq3jzd+8Quuydq767g+4+OKLcWIWdVd84CPJqBy3CzIqbZtZdM+HO6PyUYuPbEZl2bJlHH/u2bw94yXGnTWWCWecQKrKii5MejuQApG5mKw0vwm0VVFW2BaglHuqmOZ31nZZFlcaLwpT1oBpXxrN2tmbmf/URnb/zO7oUSNojaSfcUlFaeM+64UWnflURa8WtEBE6ghECaDE3XKF1KY1izDp/rjrrRvJXstLP6EyN1+noZq2JRuoGtqDcT88AZF2oaz0Emhz47OFIm0FCRCTQlPc0Mprv3mFVU8tQ0UmKMM/ORHHLjX8iwFKLDc2ih1dcTMJlFVp0hY995Sd8Ha2vdE4IpI8YxxSY0AJ4NYbb5PqfrUMO2kMb/z8RQDm3TwDqktS1cU3vUDP/YbQfXzMVdAIFRLIShKrJTWoUkO+UAlcKySMlDZCxMZnoqIcIqUGFVGzI9CR8FM0BngEEcAoA6BgSLdCAlaJBGsOOpUd2MpAqfnxCjxzzASgfUEoJLZrDAAVgvZiGt/xSVkBOd+lGFh4ERBxHUOGFgLy2sGRpvRSnfISgnchtLAtY53vRVmX8tYNSklCYTxZLFnijaSjTE083guBg2sHCf8l27Oafa47mZX3zGL+9c+YY3blIyy9+XnGf/9YmkY3JmWcVP8eTL3qcEbOXsvMn75I86JmXr78MYa8fH6SybS34ckkEbnvgqLnHj1p+s2xrHpuNd+97gd855qr+Otvb+Goo476UJMQ/0+F7iLTvlMsWLCA66+/nrfffhshBCNHjuTiiy9mxIgR7/em7VR85IBKR0cHF1/2Nf74+5sYfOggTrnnROqaUpEPh0oksOU3SzA3OqUFQRlhMwYoMUipmM1v44QaaJnIboEIsIiKi6RC0Lm2lSd/XurKWdczTcYNafWJZK2SYmD6/eQ8h1w+lViXi5ggGHEhtBZmNk7lDFuUeaeU9wgyvzsCHlEvoZj4OOzzh1BcPobGvQcjnW3kp5j65pZnFzLv1y8aYzsB6e5VuNUuHatbkY6VgJTawd0YddoYHMuv8EOJZcPl/iYG+Jnv8bWs2P8xibN8v1cCxLJ9u03GK9Q2e3/rQCZ982ACZfHUxQ8k6132lzeQaRuZtlGFgOFfmMZuxwwrZcOidWRtH9cKDRdDx1mTUkbJ1H2FAS9WrLopZVLCBIyU/G5iIGHufRpkiWdCEKU/EGgrJq2UXX1j0KQEOhSYIS0qAYvQaMtwUnAVOixbxpcUO1KoUJLNFMFSdHquydj5FkHUqygMJYVOF+koHCfEsUPycabFDqPxI5NsXHWmSFXKoxDYCZclybJEAFtKTWiFpOyQUMmoGSFJ6SkG5k4ZD2rAybuTrneZc9WTKD+ksLGDGRfeQd/DR7Lb+VOo6lkVZflcsmMHMv3Wvqx/ciFty5tNE8qyc90qG8+xwiweR4lPjRAMOKA//ab2ZdHf5nPSJ06m54DhPPLXvzJ69Gi64kMQXaWf7eLuu+/m4x//OHvuuSdTpkwB4OWXX2bs2LHcfvvtnHrqqe/zFr57fGSAitaau+++m7Mu+BS1A7Ic9dsjaRrVkBA0gQr79J0FKXGU3yy39SjZFqSUz/q3DSEr31v03Eb8/WsoBDauFZomeRFI8fz//PDEPiiOHSY3l38V6d711PSt2Y73orVm7aPzefPHJbM0mbJQxZDCpk6aJvUl3S3NxtfXJe+3LWtm/h9nMe6cDw6bvP+0oaAUdk2Kdc8uRxUC7Jo0Qz59IH2PnYDlFvnIXaF2YcRKptjlNuUGFD37X471HUUMJL3AxrUD0nZAIbCT53HmLAYrTYeMZv/hPZhx2QMUt3Si/JA1j85nzaPzGXrmnoz6zD4JwPSx6X3ICAZbPiYbGKv3JFACK+Z/ZU8oKXQJSNqSEaeOZuBhw3nr968xbo/xnHbmOdz082u7+Csf4DAit/d+Du+KdXyQ4rLLLuMb3/gG3//+9ytev+KKK/ja177WBVT+V7Fw4UKmn3wym9YsZuqXJjLi6EFRurZUFrCiso6ZgZmSQlHZySy8HJTE5Qpfy4qLWam5XSThjABKPMsPlDSKGIyzapxN8ZSNijIKmcYqnKyNnzPblq5PJ/wHk6q2yfsOxagZXJxN0drMTmPFR1jGZxBSY7shsqxjb1zuiXkoISUJc5x9saQmZXmG8FumkIhvPmF7nidPuTnhdsRhpRyGnDQOqQKWPbgAv8Nn99OHMfUL47nns8+xYc4m1j27lEnnja4o9YDJpsRlmjgCbVEMS4RNuyxTEuygRAfmt3vKJihrWhgfFyApTcXHp/f03Xj96meTxWuGdWfiLz6GSqUJNRRCm6ztU+0UK75fISiEDh2+S4eXquCpaC2whMK1DZfGC8t79JR66JR3VS4PrU1mRMd9dyyNUKClUf6Ye6eISkMgQgGhQPgCyxeJzY+2QNsmMyDKGgcqW5cciSMxEVLj5yxaSZvx4yqEGyKjDI4KBdqzIBCEnYIwFeKlzNhSQakUZrulLt6t7ZnESDDm3egyHk3Ml7IcZQwFo3HoOkFiWBdiwIsTlSdDVVIYdRtSz4E3ncRLX3mA9hXNyXhc/ch8hp0/JclyuWVGfyVQEpYR3EtZPCk0KvpMnJ3bNitX1ag56NI9GH/iIJ7+yQP0GPhXbvvN7zj11FO7ykEf1OjKqGwX69ev55Of/OR2r5955plcffXV78MW/fvxoe6N7vs+l37rckaPH0P9mCJn33cU444dgCsVFiZj4oiQVMSPUFpSVDa+lob3oGNDMEPMs4Uhz6oIxEBcIlIVF7kgWj5QFp4yPhIdvkshutm60hidlfNN4u955mezE5ACYJ16Iu2FFDXpIpbU5H3H9O8p46SoMLqhhSVjL2lHNveOqgAplqzMomhteBTVqSI1bpEqt0h1yvxVuUUytp+QE10ZJhyUtXfP4KnjbkxuCsf+8Vh67tWHqv51HPGHExlz3EB6j6zG7zDGd7P+upgb9r2XDXM2ATDquCFkLJ+M5ZGxfFKJy6xKjNxUVOrxIzCRgIx4v8VlnojQa4ttCbeVZOb4eQwgg7L1Wimb2sHdAOg2thdTfn2aIQtHTQ/TVkDa8qmyPOqdHLV2IeFMlB9DX1n4gUXBc0zzv6hcF8uQ/cBKbOv9XEh+Uy6RIPvtBZoffZ1ln/s5W+58ypSSJAhLIWzzOC756NCn7ZkX6XzxNYoL1yLyFqIoEX5UYpKmIiQDgZ0X2J0SWRTmryCQHlh5gZWXWAUDbqQvkF60jrgjRM5CtzmEW13CZhdVtMBWBgD7Atlmo9odgoJTctlVpuQYxs0PA4mft/FyLqFnoVVJLq2VQEXS6sCzCDwL3zd/nbkU+aKT7FutSfgvsSV/MbDJBQ52fTX7XXMkAH2nDQWguLmDRw++nq2vrTTdmpVlAGUQkdB1ZCS4jWJJRpOG+HyPS5MZy6PKKlIdjVnj+6PoPryOE357CAdcMo6zL/wku02exMqVK+mKD17EldL38vdBBSrLli3j4IMPZvTo0YwbN47Ozs6dWu6ggw7iueee2+71559/nv33339Xb+Z/JT60GZUZM2Zw2EknYGdynH7zgfQeZ2yxQx3PnsIKXw2lxXYlnnIHVDCZl3zoJGqAyuVLWZT4cSFyXC2f9cc30/jmFpP+srbHrFveZN6d8+m2R39yLQF9v3021fVQl84RasNp8PzIA8IyjeVio68kIkVPeXZSKYEUpe67cc+WuJTkRA6xyefLAEH5dpv9pnFkwLxfGeLpXhdPYuQZ4/F82DBzLQD/OPGOZLmT/3QUfmue+z/3VPJabZ8qxhzdn2xkm++XyVZ3pOAJohnutryf2LgrPha+srYzNbOF4d+EZb8pLsOVgx9pSw6+7WOse2ElM7/1MEtufYXhn9mXtBUk+0YKTa1ToBjabPWzpYxM3sO1NIElCW1JARsR8U/iTJgQUW8dJQlCgdepWHHB1eh8kaqp43H69KTl3idAme9qf+YNGk87GB2BFa0ivooGb8U6Nvzsd6j2zsRqtvcXPk9m4ODSD9el/yIEEYD0K8gqaElJRSRA2URXYoGWAm0bYKSJMzEgfQu0jbK14fUCoijRvkTbGm0rhDT7WVgRozciAetAoLEMP0aWk1ZBqxJ3Ckg4VsWiQ7Ho4LpB0hVaak2n5+JIRdr2E9+ebEMtQ08cw5J757L3VUfyytcfBg0zLrmPwafvwYSLTf3dCy2UTiUmg8gw4qFYiUIMonYM2445oZEixI7Gkizb5jHHDGDIfj15/tpZDBs1jB9898dc+pUvI+WHer730YldBTI+oEDlnHPO4Yc//CH7778/W7duJZVK7dRyxx13HF/72td47bXX2GeffQDDUbnrrrv43ve+x/3331/x2Q9ifOiAiud5fPbLl/CH3/2GvT81isnnTsVyIhJguUJjG5ASy1ZjkFIujYV/H6R4asfp/B2F1pp5t81m1g1vMOHTe9D48YNY01wfZUyKu2K37NIQQnDyM+eTTYWsfXYZL/7geZY8uGi7zzWN7U73kQ04QvHF109DBZrVr2+mx8huuFUO5S0IPgghhKDXvoMYcOwY1jy+kOGf2fddl1n73HJe/PojAIz94QlU7Tlyp76r5e/PovNFZE2Wzhe3d4ZsPPvoHS4XNLex7vvXg1L0vuISOp6ZQfvTz9P23POVQOX/aIy9cG9WPb6ILbPXccwj5/HAEb8HYOU/5rLb6ePINFVX+KUkEUnZPWVXgJX4fI+jXBm0rbQZIFOf4tDv7c2oo9bz4x9cwfW33shzDzzK4MFdx+aDEB9V1c9bb72F4zhJBqS8b8+7xUUXXQTADTfcwA033LDD9+CDbf72oZoKzJ49m55DB/PgE3/iU38+gP0vGIHlWMbBFIUTZVFKKh0ZNbsrZVCqrCI1doGM5WFheCjFqIzjRNb2APnQoTNwKYSOUfAgkrJPwkmJnsflkqztJ1yFXOCQCxz8ULDgV88x64aZjDxnEnWnHcyWXBXplE9dVZ7qVBEvtGnuzNLcnkUpWcqKRNwTJxVgp0Kko5C2MvbqtunxY9kK1w3IpDyq0x416SJZ16PK9Yx0OLTJ+S4thQxbclXGmyWwE2WRH5ayD64VUusWcCnS8tY6nv/+8zxx2dM7BCl7fWYsp/1mf2rtAlV20ZTbHEn/yT1J17ooLekIXDoCl84wRYufZatXRbufpjN06QzcZF+W3xhsGZKxfKrsIlV2MTkecfYlzpLEf56y6AxcckGKXOiSC9zkeIHhLaQtv+JmI4TGrXFJWwHVThFXGnO9rcUsyzobeXVmwLPXvMHi2Z2smducLDf38vvILVmfyLuVNuoeL7ToKLi0d6bJ51zymxQt9zyFSLn0+dGXEOntZz6bbryXwnOvUF+bo7Y2T1VtAbfaQ7VuAKVouuRTBBu30v708wCkBw02HBMN0hPJnwhJsirSJ3kOpjykHE1QpfFrFGFWEaY1QVYT1IWobj7aVWBpVDZEV4eE1SFhdWCUZYFABAKrILA7JFaHxOqwIWdB3kIVLdOvKJRGXk0kpYaSn0sU0lFJmdKyFQiw7ZCqbJGa6gLV6SK16QL1aXNO1KYKZByPjOMnZUkpNMK1adqrP5teWwPZLCc8fxFWxibM+Tx60m3M+tE/efXbD9Py0gJqnQI1ToGM5ZvsaVTqsaJynylLmq7epkzpb2dPEDsfxyXkaqtItVVkzL51XHDPwfQc4zNizAh+9atf7dD5syv+x6F3wd9/EM8++yzHHnssffr0QQjBfffdt91nbrjhBgYPHkw6nWbSpEk7LMe8UyxatIjq6mqOO+44Jk6cyJVXXrnTyyqldurvgwpS4EOSUVFK8f0f/5gf/eC7TD5nGJPPn4LlWATRoPK1lRhJxVLV2I8jJtECpcyKKpMnipI6wC8jx8YzqW0dayU64kDIstKETkpBgTL8BMcKqQ3beO2qp1j15FJ2++I0sofvw+ZOB6UEjh0avoyyyBcd/KKNkwqQZeTLxDgr8uGwLB2VfUTSZTZuHmdbqoKIWG597oWmY65rBwl4Mb9d49g+aStISi9rXlzFKz98lsLWPNV9qiuOw+6fGM64o/vTb0wtlgTQKB3ia6uiD09c3ikquwJcbKuWKo+Y0Fiejo+PSTmhWZVluLblp5TPoi1CNjw2j9dvmoVTncLO2KR71YEQrH9+OT1274UtFG1emvVL82x4dhYiDLG0z8rbZ6BDxeq7X2PApw4CKRBSooOQNz93KxOuOYW63QfRUYw4FlEvHhXtZ5UzlvCNnzwap7GKvld/lea/Pozbrxc106bS+uATtD38HKuvf4Dg7UUMvfhQvFQNnm3BkAashlq2/vk+Gj91UvJ7MvvubgizGkK7VOoRKlE0mypRBGa0MATbMG3kytgaHA22Sqz+EaCtiI8iwHLChOCrLAuVj8tJxttFqKiEE//3JFppRFQOMoM2OsbbSqYj4KKEwLY1th1S6v2j8LFQniBtB2QdLynHxaXTtB0QeIrVTy2mpn8dqx5bhMoXUVmXwx/4NP889maCnJ+0u1j91DLWHTeC/S+fUuHfE497YAeduRW+MtL8cgVgaUypZDmAqirBsd8Zz4hpvfnGFV/l+tt+z/MPPtplxf9/MDo7O5kwYQLnnnsuJ5988nbv//Wvf+VLX/oSN9xwA/vuuy833ngjRx55JPPmzWPAgAEATJo0iWJx+wz7P//5T3zf57nnnmPWrFk0NTVxxBFHsNdee3HooYf+13/bByE+8M60GzZsYOoRR7Bl40KOvWoyvceXLgJx47m45BPsoBwTg5CQEojZNmKAYtZZ7tNhdk0Ql36UlYCUcn5HoM2sGgx5NWUH1Il2nvjM32ld2cqIS4/E3msCBc9BRR1z4wh9C60EdipAWhoVikRBEa9PbHPxt6TCdUx3XUtEjrOxokeLxMOiXGoce6lUZi9UQvx1ZcCWN9bw2EUP0X+/fux9/mh6j+vG2/cspHlJCweeP5SG3qntWgcUlBOpp6TpbRMBFL+sTBZzUMxy20u8Y56J3GY6E/NY4uWCbYDkjrg2SfO7pat4+Jy/021gDQ279yGXg9yaVoQUCMdiwhf3Izu4By3FFK+c+EvCzgKyOoPqyFN3yETaZ7yNLvrUjOlHn1P3Zv7ld1IzfiCqPUfnko30mTaMvuceRKGuN55vo4HAMwCw5ZFX2HrbPxh442XYdQbsqVCgo4uQzKQQYZGN195B+2uLceszTP7pCVgD+lAIHFrnrWX+JbfR7fTppMeMYv0Pf4NWioYTj6Nm4p7IdLqUWQkBtU26OnqsXAiqFLrOx0qFZpw5YdJDKOUYsrAfWBSLNqFvRX2BNCqQqIKFzFtIr0xhFPNaXF3JQwGTRYGIlWi2Q0vjiiuj7J8VuSPbVpgYysXNF+Mxm7KCiv5AMfBf/ecXmX/zDACcapdD7zkbt8p0On/zly+y6I7ZpLulsV1BxwYDFs9+/kzslOGmpGRQoe6zRUha+gnwCKMxbUUOx76yCJEJQDHZFVUxTuPrRUdLwAPffYNVb7Tyj7v+wbRp0+iK/13cfvvtXPDlyxl9+Off87oK7Zt5+8Fr2Lx5c8XrqVRqp3ghQgj+9re/ccIJJySv7b333kycOJFf//rXyWujRo3ihBNO4Mc//vG7rvOll17ie9/7Ho88YsrQsVrn0ksv3eHnr7vuOj7zmc+QTqe57rrr/uW6v/CFL7zr97/f8YHOqDz99NMcecLRDNy7gXN/OR2nutT7ZmdAys7EfwJSdiZm/2oGzYu3Mu23JxEMGERzfvvPbAtS3q/Ib+pg89JNPHuJOQnGnTmGXuMaEUKxx2lDE8XOB41z8q8i7jG0z4Vj6XbwGLYWs0AJ1KStgEBBftVWws4CPS84hprpe0GxSH7OYlqfeB2A9rdWs8YLaJw+ni3/nA1A46T+bJ2zjk1fuJ1h110I2bqK77a7dwOtaX34ZeoO3Qtv1UY2/+Fh/LVGEZUZP4xux01l0OWn4bRsZO6X/8zC377EqB+YmVj1yL50P/0ANv/1cWqP9ulz1aVs+MnNbL3rb7Q8+Ah9L7sMu7b2v78T/92QugRWdmFYUuGHFovumAXA2M9NodfE3qSrbYLo+3Y7cw/WPruMzjVtyXKDDuqPnXrn60KgLQqGsx6VjZUhtWtpxrtJ9iRgxYwdCWVgJTYlzNS5nPTTvXnj7uUcfvThnH/h5/nlNddgWf/Zdakr/oPYhWTaMAypq6s8r6+44gq++93v/tur8zyP1157ja9//esVrx922GG8+OKLO7WOvfbaiw0bNtDc3ExdXR3PPvssF1xwwTt+/tprr+WMM84gnU5z7bXXvuPnhBBdQOU/Da0137jiu/z06h9xxKWj2fPUgQTIHZYZoHJGHZd8ktm2sitdUCOfhG3NnsqVJYliJ5IhqwQMyYREq7TADw14KbdZd6TP2tueZeGdc9njK/siBvenPZ8iX3RN7xM7xCs6hAUL4SjcjJ/IPh0nBNuod4Qw5lpBaJQ/QoCMZpkmg6JJRVbkUpR6q5j+KiZzEstu4/JUrKrxlIUtFJ1rWrj/tL9st/9HjpI0pFoByEov2X++tsiFKXLKTeTbOzoORoIsiB1ny5VQ5SWB8plpGKmySuuSCUj0VMm9NC7xxEqr8sxKWAYii9QiLMHGzYKwUEVbMV3Rk6bgWyz7wd10vjofu6kRZ9QEgqIDOBQ2m8yH1VBL70tOYcO1d9L+1mqsqhRhZ5Etr63C7V6N39yJv34LVaOybHphGc33PUeY8xJOSsvfnqHlb88AULv7QAaccQxBMWTTA6+x9oe3sTHrEBYCtNJkumfxlZVk5vp/cn9SNS5rbn4c1dZC/QmHsvk3f0bl8qy+8ioGf+t7CNdNlDmJsscx/ikqpdFphcgG1NbmkdKA726ZXLIfCoFDqIQpuwQSnbOhKMEXWAFYlMpKpkwUZVMkEAh0qpRVEZGyh9gDJgLewjZjPJP2yLrGrj92TJZCJ+MzUJJc4FAILJbc8CS6tZ3JX55MXZObTCT2+PxkXv1/z2PXZqge0QvQiXdKusHh2N8fxTPfeJJ1r28EoKGHRR97CylHJ1mTOMNaHkaeHEalRisZ744OCWV8PdnxBKU8C4OUTDx1MP12b+Cvl9zMo089xYzHH+8qBf2PQrDryLSWZdHc3Fzx+s6qbLaNzZs3E4YhPXv2rHi9Z8+erF+/fqfWYds2V155JQcccABaaw477DCOOeaYd/x8eSPCj0JTwg8cUGlvb2efww5jzYrZnHfrVPqOqU/AieElyO0UPds1FywDDju6MMWvQ6U6qNx0LPZIMY9LJYz4eaikSQ2r0g3TsUKKsxYx9/dvMPaCyfQ9fg8251O0dWQM3wRBIe+gfYmwFZYTEoYSxwnJpr1oe0wvGS+08DybwDOSXMs1TeIyKR9HqgSMVKgU0DhWSDbyRokzQ7HhWiF0CJTElSHBhq08fNqdyf4Yc+xATvjh7mSsgJT0SYtCiXujnQSgxLX7bS3JS72QzEU9aTy3gytHecaqdMy24aEg8EI7KavFoKUcmJjvNsciLhEkMuUN7ehQ49fUR80FTWuCGFRufno+na/Op+aw/ag//hDsetdwKUKBLppjEW5tQ6bTDLruYjqenMn6Pz2dfK+3uQOA5vtfRmZSrP3xn7f7nQDdj9qD+klDyO45Ass2LRX6Hzua4sLVbH19Falal1S1Q9PBI8gplRx/gMbj96F96RbannyDsCPEbuhGsLUZt6knuA7KjUADEWclEMSTfjDGcVIaHkjWLZKO+Ei2o2jzUgihKQYOvm+ZPlHpECVAaokOhSHTYoCPdkCllOHJgOGsSJCpAGmbbY6l9InRW1wCiiIxi5Pb9JBSpZJd+7y1rL73DQCeyysaR3bH39TK8EP60mN4vTm2HfkKc7e4+3mmweW0mw/ir594hPXz23j9ruU0r+zgrF/uSbYqxBFBZWsILQijnWURlR91qVQshUrUBgqNr60EmEAETihlVSyhsAQ0Da/jvDsO4oHvvE7/3Ybx3D8fZ88999zh+OiKXRy7gskQraN2F2cttzUJ1Fr/W8aBRx55JEceeeQu3aYPS3ygVD9Lly6l/+hh5FnMhXceQN8x9e/42R2BlJiHsrNRDlIqHWb/vXRtDFIa0x0sunUG1f1qGXHWHv/WOv5X0TJ/I3fv+xvuO8mAlAO/NZnPvnYGR/1gr4+U2+a6e1/FqnJpnDRgh++3P/8mTp8eNHz8GGQ2U/Ge3bOx4rmVSdHjhH0Y/sOPV7xeP3koW55bQGHZhuS1vleW5H673XYZAz5/JN2m7oawSuNUCEHd6N4MPnMyA04YT99DR1S8Xx61B5txVLXX7jSda9wlVbGAKhbebRd86EIWC7z5JdNZvPGgUWx+cSkLfj+DdS+t4tEvPcnMa18BYNPra8lvqjS7UpG9QC5Mc8JNhzBgopFvLntlM0/fuL1qbdsIMWC33JRwZ6IcrMThyJBUtcNJP53MlE/2Y8r+U7jtttt2an1d8d5iVxi+7Wp5cvfu3bEsa7vsycaNG7fLsvw34pRTTuGqq67a7vWrr776Q2GfDx8goPLMM88wcvxYhu9fw8dvmEq6PkVR2UmZIYiyKqEWiew4BikhooIsG2grWSYu9ygEfjTTN3LDqJyhLOMyG5cZQptCaJxmY5mxF2VX4rKDr4zleyGwo4Z1AkeGFLfk2DJ3IyM+vQ++tmn3UmztyBL6ksCz8DoddCiRbpikxlMpn/qqPCk7IGUbS/G859DekcbPmc8LqXHdgOq0R9oOcG3TjTnOTDgypM4t0Le6lV6ZdmqdAmnLx46kua4MKYQOhZYiz376rmSfT/3KJCafOoAmt50mt43uTjvd7E6y0iNE0hpm2BzU0BGmk2xKuA0QjGXhoTY3irxytmn8GJN4VaKi2nZWmxBly/7Kj0On75IPHIphJKlWFoXAodNLUfAdvMCKJNfGMTZXcClszaOKIVtaHdoKaTqLLrm8S0d7mo72NPm3V6ADBRJkKsRylDHZE5AZO4TsnqOoO3IKqQE9aH9tMcuuvp+1976WbHfvL5xA/8s/Rv1+I1l9w8NkJpgupJ2vLaBq77FY3WpMqUhJCr6NUoKCZ1PwbQq+k/yeQuS8WghMiTGMeFBBJFMXESBx+mSxR/al6cLz8TdvouOt2ejIyVY5htwapjQqXXouXGN7b0lFxvFozOSoT+VNRlBL6tN5GrI50ikfJx1Q0X1WgorXmdKolIJsiJX1zV8mQKYDbDekuqpIbXWefk3N9Gxso7YuR21djqrqIpmsh+OESZYolnXHWcpYLZcLHFoLJQ5aql8j6QGNNE0fzd63n0/DuN5sfstwfNa9sIJHz7yTdU8tImsXqbI86pw8NY6RyjfUwceu3RMnYyYcL/95OblWP+rvpXBFgBV1BndEiIVKCLNWNJ53BFZMeTgqIyNKmd7o+hLzW+KsixIWk88byQnXTObTF53P+Z+/GKU+PDyvD13sCmly9KeUYvTo0YwePZpf/epX72mzXNdl0qRJPPbYYxWvP/bYY0ydOvU9rXtn4plnnuHoo7f3bTriiCN49tlnd7DEBy8+EKWfW2+9lU9f+GkOvWwse5wymKJ26PDldlyUcnO2HbmbxhHzMWKORCI1FopAWeSUXWHYFt84vbAESMrdZcvt04u+8SCJ+7nE3JAglLTNNOWAjprerG6vozOfotiWgryFdhXC0Ug7RAUW0g5x3YDaTDHZhk7P3EzDwEKFAivqsWLbIZmUj2sHpCzDS7Glotrx6ObmKmZzcUkrtqaPf3/a8pGyNAuf/rUJHPrJHlRbhtnua4ucMjeKXJgir1x8JZOSW7yNFpqg7HuUtikqm87QjcCjMKn4MlASqBLPhIplSzLjcu5J3FHXi3xetI47OJeVfJQgCI3UPAyjG0PcrTgUpKfuResLb7PoJ49RfcA+ZCaMRocBMi/Z9Ic/ozpyNJx9MtL1kZ2t6LZWVK5AbuE6wpxHdlR/Ol5dyKorbsWuTtExc2Hy3ZmxQ8juOwnPVzR95jhaz/sp+dkLAGh/+lUaTp9O58y32PDnp+lz1gEIK2rP4BrOUWFrJ6o2g6ddir6NjroLx+W/jOMb/pOS1O0xgI19G1h/1S3UHjSJqoOmItIp2ma+RPbwSYioFKM8CZ40PX1SChwjO7ZSRnLc6aXons5hC0X3dCdpO6DDN142VSkPxw5pl2nCVEiYsgiirtzC0TgZ4zDsugFp108ykVqbc0ZrcKKWEbWpAn2qS4RWMB2SPWWZVg1l5mquFSZy/0JoY9dJ9vn9mSy4/mnW/sn4xxRWbmHj4/NoGt+E5UpCL5pg5Hye+9aTdMwZyrTLdqfW9YwiRyjcoMBffzKX0AsZfXAPlr/Rwm8vmsXnbpmEm7K2I1wafoopA4XbZGjjcRpfi3xtUVBOUoaWOyCYKyS+Ksnqe00ZxCl/6MZdX7yFNxfM59kHHviP+Q5d8a9D7AIcKDRIKZk3b967fziKjo4OFi9enDxftmwZs2bNoqGhgQEDBnDJJZdw1llnJR2Mb7rpJlauXMmFF1743jd4J7bNdd3tXncch7a2th0s8cGL9xWoaK35xne+y89+diUnXrs3g6b2Jhf1aNm20zFQYc5W7hJbHq5V8kwpj0BLvMhkbEfKnWCbdeUDp+J5qCS5qL+LASmiohZvSc3WGcuwezXi9RqO3wZhzkF0WiVCIkb2KZ3QGLnZIXnfxrYULZ0ZwjBudgfSVmhlPFRSbkAY+UnYUpG1fWodAzpiMJKxPByhSoRUXcnPsYVi03xToug7vhuHn90TUBSVEzVodIxhWpTBSvxKypRQoBKDNl8ZgJILUhTKfFkApDafRcT8HrnN/q3sNB0DFJOdMpyTQmAThOXlknjMQBCafjpKC8LA8ClU/FktTOM+16h+8nPmk58zH6dvL/y1G5L6c/2pR1GYN58tv/sruuCVvsd1QAp00S/Vqg+fQt1he9L6z1cBaPzkkcYCHhBVVdRNn0jLIzMB6HPpx0gP7UuwoZmt9zxJ84MvY1WlCba2kx3Vn6o9hrHpL0+D0nQ7+SAaTjuEoGiDhkJHCiEVHemATARasF36XXE2LY+/ztb7XqD1kZfNeGxtNb16AgvtqAiwKGNjb+kkY4cWhMo0tVyXq6FHppOs7dEn3UrRtdlQqGFjrhrXCrEtw4NSToiXd8yxtE2myYp4UVoLgjKuSdb1K6TE+cDBFor6VD5xf651IBekUFrgRv2T4nPYEGrjrJ9Ndngd9T8/ieaXl7Di73PJNKRY9sBCNs7ZyBmPnEphUzv3nPUIOtQc9tUxPPazt3AsxZHfGIcTZUGUlsx80GRfpp7amwM/M4zfnPEST/xhFQeePzSZ8MRZEz8Zi7ICnAAVBO84WxL7MZn3re34WuURZ3prBnXjlFsO44EvPcPQiXsw94UXqa+vpyt2cewi1c+/G6+++ioHH3xw8vySSy4B4Oyzz+bWW2/l9NNPZ8uWLXz/+99n3bp1jB07loceeoiBAwfugg3+1zF27Fj++te/8p3vfKfi9b/85S+MHj36v/79uyLeN6CiteaUc8/mkQfu4vTfHUzf0bVJBqQ8yv03dqQ0KY8YpGzrx/FeIwYp7xbF5etJjxgYcT3eP7nxO8X619ZjpSzOumkKcWfpj2qkhg6g3zXfQwjBqq98B3+NqQ87fXuhcgVa7n4YkXbpduxUUoP7YHWrBR3i9qxHZLL47RpvdRvrf/BzrIY6epwyhR5nTKd97mrcAZV15R7nHIGsrSI/dzmrvnGjybhMGk3PSz6Gt2Ap7S/Oo27KbuSWbmTzXc8SD/Tc7MU0nHbIu/4Wp3sdPT52MN2Omkx+2SaUcrD7DTDj7IM3zHZJ9Jw6iL77DWD53bNYBhz1m8PJNmao7eFy6m/2564Ln2PRcxs44uvjePjKNxm8d3cmTO/OkzctYe4/S1yAMQd1RwjBfmcP5tFrFzJ4zwYG717/jt8bd/d+JxJ+HI4IS2BFV3Zf33Z9ps+QwGmo4sSbpvPoN55n8PhRzJ8563/CUfg/E7uIX/KfrOOggw56V2fiiy66qMKy/n8V3/72tzn55JNZsmRJ4u/zxBNPcMcdd3DXXXe9y9IfjHhfgEoYhhx28snMnPE4H791GjX9augMrAoX0qSEERmIeVGmpXxmHpdo4pRyUrLZVqKsZbR8aWZvC7Vdx964du9FfAFLKoqBnXQzNtseKRtCkZR9LEfR2WHhr9uK9iH0LChKZKdJM6uaMOGlCKmNhTgkBnAqlIgyw7a4E3I6a+Z6aTsgbftUOR7VjmcarRHLKktmVFIoYhmIW+bGu+bltcz+4zxWvbKeAy4aRW1NDP4kHcqloBzyoZNceHecTSnNMvNRBiUXuEljRiAxkDPLVzYGLDfJK38tVk0FUSYlfh5nrURZmUFrgefbpjtxlEnRSkLUWTpJ+yoBlsZKV+EtM11uRcrFqq3G37AZ4Vh0+8TRZPccg9tUa0z4olJHaGt0XiCUxM3YCMdGtQZ4eQeZsqjZa0SiZtE6cmx1bLqffjCbgifIz1tO/s2l5N9cSr9fXU520jjqzzgeaSlWXf5b9IYWAKqnjKa4dJ3JphQss82BQANe3sZLG2CcrvIQQuN5NjJbS2pkPaEnoWi6KQMI30I7GlyFltqAF2VKh9lsEdcJktLZxlw1DekcdU6egZkt9Em3sCVbzfLOBoqBTVtH2ozByMHWyI4FfmgTBFbSWDCRyUdj1bVCXDvAis6rXOBSG9nXxxb1AJ6ysUVoeGShHcn/Ja4McGVAoCXZaP2uDNCdOYQUrH1tAw2je5DJWPSe3JdTb9iXuy56Ab/TrHfDnE2EU2v453WLSNfYUaNHyC/ZwKN/3kLzGlNiXbmgQO/xpUmHIwMsrSuMIcvHelh2HsQln21L0nGUl3vKy9NmPQbMyFSaI68+gCe+9zJDx49l3szXEmfSrtgFsYtUPzFHBeBzn/scn/vc5977et+nOO6447jvvvu48sorufvuu8lkMowfP57HH3+cAw888P3evJ2K/zlQCYKAqUccwaIlMznu5sOQTTW0+HI7pU3pZmYlZNbYTjsOKTQ2UQMyCW7EQQEqpMSF0E7KCpZQ2FKRC52kbBKElvGTUBHnQUmUEgSBRejLUlkhFIkVOHGKV2pUqFAFjayuwluxhg1X3kzf8y7CzkGYBu1IlLSw0gE6jCSR2qTjtRKGMGsJ0wcluvA7dkja8alOFalPReTYbSzAK+3mBZ0qVTKiEoqWFW28dM0MVr60nn7j6znt/41n0jF9KCibDpWuqLsrLZPZpCMUYex7Eh83bZEPHdP7KNze/M6WKjlG2zrHxp8rlxLrsve1LpWwtr3OFD0DEkNforxojPgGnBCBExEfj8i8C0ClFYVFi9jyp7tx+vSi93e+hPRs8EK01kjHMTOwteD4AhmAVaTC0671rYVoP8Bys2jfsBG01AmQFElJz/yvP+VwMnvvTXHJGuy6OixZh2oHhEYB9ccfQev9/6T2sD0pzF2ClhaixcFpNxLdGGgJJdHSJshqCnUWstonlfaNnFg5WKmQUBhsI/xSViUBawKkG0RlMollSdK2KR96oUWH5TJ7S19eKA4GIOv6DKhpYXLPFayobmB1Sz0d7WkzjqzS743BWRhIVGBI3umMR122QEM6B5CUfOIxmQ8NKHBEiCMVjU5n8l5RO0gUCmlI0tu0SwDY4xO7EbTkePO2N9k0ax2HX3swZKHvlH5MPX83Xr9zGfuePZhDPjuMl25bgtaQbytlC7957FsADJvSyGFf3I09T+xbATSKgb2dVD620q88P8Q2QKayxBMDe19tU9YsM5Qs9bISHPDd/XnhJ68wcuI45s54gyFDhtAV7y12lY8K/wFH5YMeRx999A4JtR+W+J8ClTAMmXLEYSxe+jrH3Hg4VY2pHZZ7yjMd7xTlBmbvFDFI+ZefiUDKew1hWfS58lLWfvNqCgsWo1XZXfN/HFprFj68lJd//jpulc2R39mdySf3I2WXdaz7iEf7My+y9Y6/kRo8iMazT0fIKPtg2+zs0a4avBtOfQNb73+A/PJFOH0aqd5nLJkRfSs+V1i8hvbnZyNq6sjuNZGqyRMQodjOyDc9ciiZcRdipQJa//4s6RGDd8Ev/WhHqsblwK/txfDDBnL/xU/zwIWPc9y1+1HdPcVBF4/hoIvHkLU8HBEy47512y1v2YKqbi7n/GoiMmVHWY9/fzsMmDEZy/AdRpDEKPB89c72BoGyyAMZy2ffr+2N5bzK2MkTmffqLAYNGvTvb1hXVMb7xFH5oEdLSwt33303S5cu5atf/SoNDQ28/vrr9OzZk759+777Ct7n+J8BFaUU+x99DIuWvMFhNxyFqqui2SuVGuKISXnlM/Zc4BAqQzR1rcpGYmmr5M5aXhryIpfPcuVLDGzygYMXmAaCMWEzCM1sXythmhYGEhVYaF+Ymw6AEtEsOipHxITFDnPzk74gNWQIIhQEby6Bnt0R2W7GPTRvEYJJnZf9Xq2MPNY0hjPOsik3IOP41KYK1DpFXCvYzqehvLSTlMvQeIWQp7/9LCueXsVu0/txzDdHU9fDKAx8ZZOLJJXFCrfX8mZ+uvRfmFR90kW6rNPytoRkL7S2A5exSqe8rBNnTMpVPKEyXYi3jSCUldmUooXwIgJzktkqm0VFVQ8dBDTf+yA1e+9Dz2NPJcyCbAErbzIn8a4U2hilWZ7pOmx5EDrGgRXAoZqh517K5jdfoH3hXDqXzqHtoeepnrY3PT51nPndqzew5ju/w8pmCTs6abnnCar33ovM7uNwe/bCrqsFBEoEhH4eWZtBOgJ/cyvZST2xchJlQdRPMtkO5YBVFNBuEQaCPC6yziOd9cy+9CzjAmubcWkyMsKUgADV7kDGGAr6gVVyBgY2d1RTlfIoeg6FjhTtTkjedxjXPaBXpo1emTZW1nRjY3uNUaH5EmFFXckFSekSLfAjFVygJQ0poyqqcA1WJitqy5BGN0fWKpKVHuu8emwRJsRtQ+g2ZaByfkhR2WQsj5579OT4m6bz8Jee5o4z/skhV+7HkEndqLPziZvsid8cya1fmo1fKCHEi/64F73HNybjP54EhWWTCL9soqLKXi/3aorJ/duq6RJ1IOUZxEqgUl6utqUiCGWyT/b40j74wcuMmjSRhbNm079//+3Og67Y+dglHJX3vooPVMyZM4fp06dTV1fH8uXLOf/882loaOBvf/sbK1as+FB4/PxPgIrWmhPPOos333qRg244Ab+2mqK/PTiRQuMFVkWTv7hcYMkSHwOMiiUGKcbF1KoAOH4ZSIl5DsXQKEniEk8JpJieO2Egk1KM9gXCl2bQxjcBAVgakwMHEbW2l75MzhBvwRJQsPJ203yq//lfwB43AFUTGpDiSVDCKDUECGnAi5M2jdgcO6Q2XaAxnSMd1fVj58u4sVpKBsmFPPaHiZ8/8+2nWPPKOo69dj+GHtQXS4TklE5q69teRH29PUCIQV+yz+K2AhFACVSpbcC2HYzLSzql42+UJ+ZYVsqModL6Pi69gWnkp6JjYtQ8IEKBiE1JdRlgiUII6Hx9Hrro0WP8gbhtAtrAzoOT0yhHEJYp9aQf/QXG5VULUUqESHBI0WvCNJomTiO0FVtefpLNTz2MailStc8EgpYW8AMGXnQpzoYim174J62vzqb9+ZcASPXtT3roYNpnzkTlTcOnmgP3Q+eLWLYbfbcBKCICXmY7QHqm8aCVtwhTmlC7+I7CcYwbrAJwiICKAF+YdbhG/YMvKfopPEeRtxW2E5JO+YRKsLUjS7HFAFjdlqKl1eW5LVX07d3MqG4bGFDdbPZBDTTns3TkU8n5ISNuiogaG8auv55jJ2Mnlv/HDrKxPL3RaafeytFhpVmc65G8XmMXsIRGaSpKJY4MI3UfNIxs4qQ/HsUT33qOf1zwGGf+4wScPi7VVhFf2QzbvyffeuIAfnbCi7Rt8tjn4wNoGNuLYnRA4yaD5TyTch4bVJpGVrglR+M8HzrJ+QBUNNyM1xfzseI2AeUtH6QqyfalsLGlYuJXphIGzzNqrz1ZPvetLsv9/zQMkW0XrIePFEflkksu4ZxzzuEnP/kJNTU1yetHHnkkn/jEJ97HLdv5+J8AlS9/7ev889H7mH7TsaQbswRlY2lHFutxxCDlX4V6F/wrdknRcudCBwF+89aKkyXM597TTtZaGzZ51HNk4UNLWf74cqRj4ecD+k3tS/XABmoGdqPQUmDF06s49Mf7MvSgD346778VQVsLwnFwG5t2aR9FISUNUw8myGo635jNphv+YN6QEh2GuLUNDDzwYxTTHh1bVxJ0tNG6YBatzz9PdreRVPUZzKYnH6T9xZdJDR5E9aSJOy2+0lrT/txLhG3rqB7TD3eP3XfdD/sQRVVTlonnjeXBi5/itZvf5KhvT6h8v5vL2ddO4P6rFzLigB47vd53U/nEk4X/JGypQJV4c9tGUbnseem+vHD5k4zYe0+Wz3qz4obSFTsfu0r181HiqMycOZMbb7xxu9f79u27072G3u/4rwOVm266iV/9+hfs98sToUd3coGoUOVIoZPsSTE0vVisyDyqfHZengeISzgdgZuUIBLHWN9O1mfJEqkvDGVSYlBReQdI/FCUH5V5AgmBSFLxaONLoS2NCASyIJPcoJYkzeC0hHBzWwJS3IYmvK0byQwbhl8VYmcNGVI5EVdCAkJjO2HkUaGoSnlkHeOf0bm1yKybXmDts8tQgSLdLc3gw4bw5i2zsbMOjaN74LV5vHiN8fboNrI7I04eBUCf/QeTDyMTOZWqUAeFGPM1vyxLUh52ZJoVKIs2P50Y4JXv45gQWx5SaPzQlNvifStl6aqhNUl5x3jFlGViItO2MLCMoiU0jfGIMlbYGm1rhIUpd4QC6cfZLLAK5r9QoJWmddlGCBW1ywLS7YAUhI7JNmgJVlQaEKFGOxJZVARZSb67BaLMNEqZrxNh9Kc0liepr58OB0+nsHoZqxY+TWP/8fSen0V6PiI0v7mHNdCMj8Hj0AMVUpvvn99/E1s3zmfcyDNZ9dsH6T7leKTlELqCIAtBJt6foGxThhIKvOUr2fqXewFofQh6fiVF/dThSTLJkoogtCi2pgzJWGKUZ55AOYYIXHQVRVIIV0HBQhYkbos0yaqMJhQ2a5b2YH19Lb0a2hhQ00x3t5NMg0dHmGJVZzcA2r2UcQkObITQVLle0iCzEDqMrlnH+OxKWsMsr3cMZEOhlkBJsnaRhZ09ocpsc4uXxQtLZakq28ORYULaTls+KjQGgqmo1OkIxYA9mxg4tRfz7l1M/zE17HNafySagnKwhKL7hF6c96deKESi1IlLnTExNi7h7MhvKS4/xePajH0r+n12Qs4HA0J2VLqG6LqzjT9TbISYsoOo/5bJQuVwGH/5Ebxy2QPscdDBzH/lZWz7A+HH+eGKLo7KdpFOp3do7LZgwQJ69Nh5MP9+xn/1THjmmWe46AufY/JVR1E7tJFAlWq5MUgpdyG1pJFwJA3mohubY4UV603UJdEFoBygaC2SG2QMUCr4J6E0XV6j0EqgfcsoJnyRlHMAlAVIhQgFVl4mJYcwbdYv4tp2LABqqsOubyBo2Yq3dSMIgd8bUvVFHNss7FsWYSCNE2mmmIApMCWQzk7Y+vBrrPjLqxAqhp40ltALWPP0Ut68ZTYAU68+iu6790EFIcv+No+ONa0suetNWtfksFIWjmt8XGKX2NjzwVN2ReNFMBfg8otyoCWUKRXKZcTly8UmX/FxKoQl1U4sK44TS+WgJM5wxfwFrQVB1MxOBaICpCTcoFAY75GoAiRVBEzibET0uhIhGx65m63zX2HYyOPINmtS69rRloXKOKi0ZcCJFSNN8F2JV2fjVQvClCg1+SsrxchAm/KMKh1rZUO6/2DGp/tj5wJo8ZP1aiGQXghCoG3DH5F+YEBMvoBXbOPVh38IQK/hU3F69wHAzkWAN23GXrwtoQupPv0AyI4fj1IFNt18H9mRnyXTI5vs25QTYHVT5FvT6EAaRZQnsDxh9pEnjRW+BLvZNr8n4vjYOQFIwqwiLFpsaa8iVJJlNFKXzjO4egt7dVthxrC2WF2op8XLJscybRl5cd9MC1OqFzHINqWjiekVLPcbmZMfwLKcKWls9Eyzt0FVW1ja0T3qSm4acJbzOQoYsBKPxRisWK7FcdcfyCNfeYZXblnIPqf1L5v8lKY0vrIiQGLARwmsyITPFkuIy1s7eMpCClnR1LMcbNhCEYjSBKl8jPuIhE8HlaT/hKsF+J6FawW4VphcD7Fd9vj+Ubz0ubs5+exz+Puf/0RXdMV7jeOPP57vf//73Hmn6e8mhGDlypV8/etf5+STT36ft27n4r8mS1m6dCnTjz6SsV/Yjx579t+hG2wc3r9Q5mwLUj7I0fb0c4TtraUXtKbjmZd3enm/pZM3v/AnFt/4PN0n9WfaH05nzKf3YvznpnDMXadz/N8/xklPfYruu5sbm7Qthp46Dr/DI1WfRiuFtOVHbkawM9Eydybzf/4Ntr49g2ETT6XfgP9+D43/JEYNPaHi+cq5j+7UcsK2aTz+BHJvvmlURQjW/PA22l78aKSn/90QQrBlWQctqzvxcu+/eeG/KjH/q5JRnJmJw6lOsedVx/DIg/dyzc9+scu27/9K/DuNB//V30cprrnmGjZt2kRTUxP5fJ4DDzyQYcOGUVNTw49+9KP3e/N2Kv4rGZVcLsceBx7IgCOHMfj40UkmBUi8UOKSj68sRPQ8zqTEmRHXCgmVNNbe0azES2buZn3F0CbvO2htiJRWWSrW802ZIvZ9UKEsU9xoQ2qNZ57R7F1LQGqj1PEFwotmTALCKgW2WU4EIhrVZm3SF3TMfA0dhqR69EbpEH/zRgpLlgMTceyQomejQpPxqcoWk/1lCYVrhyz47RP4zR3s+9vTqR3a3cy2MKniEBunez1Qol3EWam25c00TRlEoSOgqlcVj17yBDV9atjzgnFUdUuRj9ijfjR7jMmACRFQywpVUUyazQVO8j2KMpKrNikMHWVUfGWUJeXHJSZAl5d5SuZtIin3KCUIfQudeKQIU7oIzT4WYVT+CISB1SLa/2GpROO3tbDun3dTO2AMA4YfTL3bB3tztH+1RnYWEEGAUCm0JQkjM7UgI/FqLMIUhK4h5crIuV6Gpf0Rf1dc1gldQegK/CoI0g523kZFHmJ2QWPnNTIiYmkJwteEKYlVVMhAMnr8J5g3x3QJbl4zl60LZlI3fnJEDja/V9vmsbJBhuZ/7ZSpdLw5hy1/uIe6I/eluHgFq39yF7UHT6Bqj91ofmgGWmkaP30GTnUDSAizCisnkb5AaQ0ZjVbgN/o4Wxwz3qPSpQij0mbBJe9Z+J6N5YS05tJszlUxoLYFgAHZrexes4q08AmRpIWfnJ+hlmwKarFQeNqmVhZotDo5uPpt+rk9eSvXlxY/E40jM/5cK6QQ2LhWSC5wCJQkHVnte6FF2gpIR59XMiBjeVRbRep6Z6lqSOFm7e1KLLGqJ9zG/yQfOmUeS1Yy1s15AOUE2DjK3bHj53EmJA4vNNcxVZYJFkJD3F4gaj0RaoEXnSvxtc1XVtS401xPsr3rmPiDI/naVy9l3ymTmTJlCl2xE6FJXJ/fU6iPluFbbW0tzz//PE8++SSvv/46SikmTpzI9OnT3+9N2+nY5UBFa830k07GaQjY4+K9EUIhLY1LmJRrioGdABSzjLkgxcoQSyhSrlG8JCcw29d8dQRsYv5DUgoKTHlF+RKtpFFAbOOVIhQQq3psXboJYkCHsjW63kcDlhsa5YlvHEwFRDfqSJVRNCWD7ocfw7pbfktxk/FzsHs2kXvtTaqZRresJue4yXb7SuJaIVnHMynqziJbn32b3T49leqhPZJ0c3yRi9PH29a7AyVJd68it7ED1VHAL4SsemEtAHnfZsJXD0yWiy++5eqdxE22DEjastSZOeallH93vP0xOBFCI6WOFDumnGNbajv5sdICFQNCJVGBUVjhmXJPUkrT0X4tiKQ8AUYdoxyBciIjPQm6pYOVf7wey0kxZPKpVBVSyIIirIrk124VyrUIM5IgJQnTgrgTQwxA3HaNUAZcxPwV6SlEdNELU5JcTwflRvsoY/gkcYlGxDewohk7UhlgK0JwOiPOUrvGr7bQFtT02YOatS8T+nmy3fqwfMa9jO23G7JHPaEbLRslCUQAUa9IpLDp/enPsOGPf6D1gefI7jmBupNG0f7Is7Q9NTsZFy13PUjDGcchs7XIgkQ7xnEXMG62lrkhhhlFUK3N+AdTYoul25aZWupIXtzcUkVzSxVCahZnujO7qi81rgGD9a7pXNzNzlFn52kNMiykF20R4SZjeTS5bfiRaWBKBuRDl1zgJr1+6t0gWhdJ/6jEPJBSU8sg4o9UW0WkLchkU+RiIK4rOSflyh7jbm3jbVP6lGhcGSZqQVMujSZFkcUBGC6K2dYgMZqMz5c4ioGNLRR55SSKQttSODI2CCwH7dtnYWL+ii0VvSb2YvSFkznoyCNYuWBhl9X+zsYu4qh8VMi0QRCQTqeZNWsW06ZNSyz0P2yxy4HKzTffzOuvPMNhfzgZy7HeFeBuK1X9MEd2xCi6TTmI5peeRlZV4/RsItiwER2WkRveIdY/OAcdKLrv9e/badcOaWThHwypdvdLprL17S1semMNw8+c+J/8jA9VtL0+g7CjnRGf+Bo2GSjz0PighhCCQROO5c0nr6e+zygs22XJM7cx7OSLebdxIh2HhqOPYs28t8m9Opvquir6/eQK8nMXsOk3twCQmzGH3Iw52D27k+o/AKexkbCtHeX5qGKBoHkrmbGj6HbkEWB9eM+/WI268Mk1rHtzK5M/MxaZeveeXB+WGHrqeJrf2sA+Rx7OkldfR8r3x0DywxRdPiqVYds2AwcOJAw/PBSKHcUuBSqLFy/ms1/4PPv84BAyPaqS1yWG3R4btymMsscvK+PE7rAZx8eJvBcsWbrplJM5y8tExcAiCK1kdh/6xvbelHXMLD0ZeBqTWdHlpR6dGIdJX5pMSqOHAJx0ABoCzzKGYzpSU8TrDUxJIkyVzo6OZfMBUJ0d1J00nfycuWx6ZgHdTx1BfTpP3ncoBI5pbx9KshmftrXNLL/lefqfsgeZwU0Eyihm4swGkPhSlP/+ePbY7/ARrHtmCQ0T+vDmDTMICwFTfn8GdG8gF5RKREAya0za2atyLwkzmyxvVRCnwsOy1xAav4wwaI5hyTQPTFarnDgbBqWO03HX6TjbJTyJDDH7NzqfpC/KLOVJXreiio6yQecKtL3xGuk+A3DrG9FtxgtFuQLlRPsrYxGkJX5Elq3wXAlNqcZkbUy5L0xFWaC0jY5KIsoVpVKOZbZReobQGxN5wWR8wJi16chax68R2J1QrItm0toQc6t69KfXbvuxbsGzNO51IJtfeYKtK2ZTN2p37LzJ1KgUEBpVU1yeAYFd0xe7to6grZWOJ14k0zSQliefNNN0rUmPHEH1vpMoLF2Gv2It+YULsetqEak0IuXg9u1F2z+fAqmpP+lIhBua80UJhF12znkWuKEZi26YjAc/sOj03ISEWghtthazrKCB+lSeOidPoCzagxSuDPG1pC1I0yfVSq9UG2sL9SVfkai0mYlIswpB2vITgjdA2vJxhMLXMukZRBiydXk7gw7oy5NXz6Z9XY5MUw3jTtstWa7crC3OyMQlHjP0K1VvMZm8XElY0bIDXfGaLdU2ZNiAYmBT4xYpBA6FwC4JAmQpw2jJynMrLpvF2cySOZxm4mUH8MTZd/GDq67iim9+k674F6HZRT4qHy2SyuWXX843vvEN/vSnP9HQ0PB+b85/FLsMqIRhyD6HH87AY0bQc+ogAl26ASZp3EgNIrXhS5TfcC2psa2QVJnTbPxeclOFBKDEJlOFqKtx4FmRWZtRjpQreygv/cTlpthVNiozRGIXqAqxXWPOlgAUMDBbk0g+0aAdbf7iioWlqZ9+CJv+9GfzvK1A9eQRbLn7OZo+0QtPpKi2PTblqyiGNk3ZDpQWLL9rFnaVy6hPTcaWIWk7wBZR75wy87u4TBPXsrXW5Jo9hOsw9bcfR7g2m15bQ251CzpbRT4CRDEHKNl/2hjiGSAoCXV0EY7a2FtCVXxeolERWEkutkKjpS65j8bNGnW0bwTm5qfLQIkqycHjJoDCk8hAlEodoTAAgKgEEkmK4xu/jo9ZABv/cR9By1b6nXgByoIwLdAdAqEMYPGqoxtORhBkTMkndn4Fw0ORoZmWa0vgV0WlnbQBSU4+Aj4WWF6s9Ip4KEXzegxstGW2SznG3RZhwJRdgDBltt0qaOyCxsmZde3W/zA2LX6FjpWLqOo/nFUP3YYKPLqNnWy2rxjRoKKxrJzS9wz93OWsve9PtL89m0133IGwLPqf9mmKzRvY+M+/469dT+2ee9P94ovRmbi0Q6Lzt3v3oPX+xwi2bDIuu+mapOGgkwmwLIWUxpQwjpRTUqlkHS8hupeXJ3ORi3EchdDBUxZVtmd4TlrSM9XGJq+avHAjWXIxMTIsKptQC2whEpPD6uiA1UbXhoz0eOGXc2ldl2P8kb15675lALS9vY6QEYm7sowM5FTEwSoHK7FvSszVil9PW0HF+RbHth3ZyycKMWdFKg22ARxVbpG07VMInJLFwjYlIBFd4yTmcVJGkuAKs5+d6hR7fXc6P/jiFZx83HGMHTuWrthxCHadj8pHKa677joWL15Mnz59GDhwIFVVVRXvv/766+/Tlu187DKg8r0rr6Tgb2XqZ987QScxOSu/Sn5IonrSRLY++BBhczNhRyc9TtmfZZfdzKY5G6ibsH1Zx+/0WPvIPPqfMB476+5gjdtH6IXMvWkGC26fk7zm1Kbpd/QYhp29F0EgSHWv2ZVeZx+4CHOdtM16lZ4HHkO2z6D3e3P+o5DSpmefiazfOIshp1zE5tefYf2z91M7bCyiOvsvlxWWRb+TzsbftAU7W422QTopquyRpHv1o2XBGzQ/+U8UHnWnHoXY5lyqPWoaVrdqWu55hNVfv56el52P06dpl/yu+X94jU2vrmbs56dSt9uuWSdAvqXIrDsX07K0hXmPrOHgL46h34RGug2qYePbzaybv71XxEchGsf1Ysgp4zjwuGPYsHBxl7/Kv4pdxFH5KMXxxx+/3fn/YYtdMuIXL17Mj374A/a59jhCO0UYbG+tDpUzFEuaDqVCi8STA8zsZMZFd9C473B6n7YPInJkLe9wHHujxBH6lpnFRyoewNjfB2Wp/jjrEakckru4BcrSkA4RtkJGmRRdtv7YnhwB2lWEbkQ2lCZboZWAYkQszUPjgYcSWB7V++/GyH4bWG5JxIpV9Nmnls1eNVWOx8j6DQDMfmIdQafHxNOHkErlyQVmltnip5OZnZPvwM534APpHi7/OOVO8ptzFcfAbyuw7I7XkK7FxOtORwiNhY6IrxZeYGaqUFLkOGUlnzi0LqWmy0s7cQYLSDxhbKnQGryYtBilxbUAFRq1VXxcwGRVCAUEAhlnpiA5TkJHJZ6YPBs91laUSYiyLlYBtj7/HChNQ9MokmpACtoGSJQjE2t6IHksg5I3STwWQlegbJFkToAkm2LnFW5LkPijBFUWWppSkbKgWC9Jt5iB5GcFQdqsR/qlrI3TqclsCXE6AmQxxGozNvrhWwuR2SyDxx9ES+cqltz9S3qfdR4tb7+KP3cRTU3jAMh3j9QrDjgdxtMldEWiMkpZjYh89IMiAm82NZQeY4ewvGCx5cmnaew3iUxTyak4zIBXK6mdNJX0mGGsvfQnbL3lLoZfcy4pOyDj+igtkuxmrVusaABa3ugzJpkWO302vLaO2T95Eq/ZbNBLX32AI/50CkFdNa1ehiqrSK1dAKCH21HRxRjAQuFENT7fyzP/qY3UDKpHDKsmv2QDT//wFdbPb6W6e4qDLx7JtPMHogg46dsj+M0nXmb9wnZq7QKdQSpZZ7GMhGvLMLH3l5EPStry2XZ6kLWpaBuxI3PD2Kk2zqzE5VVXhgk5V0lFyg5K3cMjK31ZpoEtz3iWXx/L+wgBjDxvL5589k6+f+WVfP8736ErdhxiF5RtdsU6Pkjx3e9+9/3ehPcc7xmoaK057NTTGHDUCOrH9qnofZGkS8vO8/J0qenjUXoO4IcWtRMHs+pvb7Dsd8/T/9wD6P+xyQlIUUokzftiEzcwN0MhtDGK9aMbYtl3axkpe+KmgBbmYuEqsDTSLktzx2ZlUblHa8DWCKmx3BDLKaVwAcLAIvAsrHYLLaHqgL1RWYWdKqC8AB0qCp7AkQpXBqRt06un3slRZ3cA0KNbSGh5eGXOly1zVrPkt8/T/vZaYgfco/90InbaRkjBgdcfQ25zgbXPLWf144vM/vVDXrvoDvodNYpRXz4Y6VjkfYcgkkaC4QHF+3zbFgVClC6S8XvbSsJjoBOfz5bUKKkBhVJGFRUnxHR0DHRSGiLpzxMrY8zNv0xxEgMWSNx/RWAM0WLw0fLGyzQM2Z2qbBNBCH61eT1MlVQyViH6X3Yjj9cPkbLIi9avdcJ/SbUGOG1+VHYqDV4RaqyCRgaKXE8XLQVetcBtV2hh1iV9cCOlj9MRIj2jJhKBwt5sjnWwaAnCspBNPXCrahkz7UJeu+8HdM6fh52ppnPlQmS3MShbkNkU0tnbwi6Y8lMMpuLymFAGvCirxKNx2zVBWiClhbBsauweyDZAQpCGwDJOtFQH2NXdqJo8hs4Zb7HlzqfJLVyDJRR7XHVC5CbrYwtlzMmind+YMqqdQpnU9/XvP86655cn+2r3T+/OvNvnsvaOl9n/KxPZ4mWT0k58rtdEByjUkpxyCTHXDssv8vcvPMva1zdWjM2a3lXsd9FoDj6nP5kqMzAsAgZPqOf8m/dk7aIcgbZIWQG5qPxU7+ToDFPJdaa8mactw+QatW0rDyWEcQfWkoBK6bPSZtJiC5WMqXg/xE67NgpPW0lZCCAQGkISbg+QgJTyiVp5xGDFStns8fWDuPIrP+Qz551Hv3796IptwlyC3nuoj0avn1wux6WXXsp9992H7/tMnz6d66677kPZS+o9A5V//OMfrF76Nof86IxdsT0ADDx3f9KDe7HkJ/9g9Z9eoNeRY6G6bpet/38Zc/7fEwAMmtJrh++rwJxZ24J4FYTM+8GDOA1VDP/idBb9/HHQUNWrmuPvPjWy3zY3ij6HDKfPx/dhxqf+GAErzaoH5tG2dAujvnAgYbqaQh7sAT0/9CnAOJzqOjo3rUJrRWWDhQ9fWE6aTG0P/M2b6DHuANbNeJhsXW96DvvP/TOaV85l0xtP07jH/kj7nUuKQgiavngarX+8n7V/eg67NkPQlqdt0UayQ3c8ZrcNrTXSkdhVLsc/ei6OpUhbPrVuked+/TYNuzXQ87BRO73tr/9pARvmbmb6L4/k9RvfYOub66kbXM/H/ngo9TWKlFVg2zvS8CndGbSPRfP77/32X4vuE/rQe/9BHH3mGcx++pn3e3M+gKF3UTZEfyTkyVdccQW33norZ5xxBul0mjvuuIPPfvaz3HXXXe/3pv3b8Z6Aiu/7fOxT5zHy0/sgq7OJqVHJejomi+kdMuzjKLdpL0ZpZXvS7th1T+JvbmPVn19myOem40fE1iCUqIjYKaRGoowvh2eVbNftsqxIVMrQiV29NqWbKJMCIK3IpyQyhhPRc6xoFZYmlfZIR34PsV+I59t4vkSkQkIw5SM3JJPxGdm0kZc9n0y9S6/dqikoiSWMpXarn6HeybH3VIfHgDUz1zNsWr+om3GaRY++jbe1kzFXnkzHIlMmmn7jcchs2hCVo2xHPKvrtVstbvdqvGjWDpBb1cLLF96ZPBe2ZPRVp5OZ0A9bmNKbJRWUdXut8HYo817RGuQ2Kixd9lnLUgghCAWEocS2FWFoSkDR3k8ItMk9RkTGZmFEbhaGTFtWZTCKHxX18wlKmZaG8VNZ89hfCUMP5WZKJZ1YhRNZ0YP5LxTbzbbsXOn7nU5wOs0HnPYApEAJgdAly32nI0DZEmUJrKLGi8i3flbg5BRuuyrzYQmRnkIWfWRzJ8HyFRX9B62mHuiqFM7mPM7mPLXV/dmydgHVp59Lz9XrWTL7XqTlkNlvb+PVouLSlSEbh6mSOZyKwKcSArtgSkMt694GoPfIg8xnbJN18mvAr4924v9n76zDLCnO/f+pqu4+Mr7uvizLsri7BAgkECBG3Li5Sbi5yS837nJzI9x4QlxvhBAkgQCBECS4L7LAGsuyLrMycqy7qn5/VFefPjNLsMX3fZ55ZuacPt19qu2t9/2KsETlmEKkGfWB45n7noMQoeKm089hcMFy2meNTSsCzT1vVw3agjrtQYOKDrHWctnHbmb1NcvZ6/0HUkjbgkpYdnv73mxdOcDfPnMbe967ieM/tQ/tqk7FRE7a3ipC4cQcy7KRtWmW/H0V046eyvQDR3Pn99y2ty3fypKrV7H/qybQr4uMCAaRwmTAWXDGgp2qyoAuoLAEKXtwVDRAVYdUdeScxnNeYx6wq3LnsraCSKbvC+tEGlNGULat3HYDqYlIWiolhlYGnUm1haCpvZJv9+Rba/697bWc5v/HwVz5+nO58cYbOfTQQ9kZQ2InRiWLCy+8kJ///OecccYZALz5zW/m0EMPRWuNUi+syd3TSlR+8IMfoNo0U185F5lelIE0maok5Hx5hrDTfV83MTJj9XhTu/5KEdtoEG9y4LjCvBlsrZRafGSkNJn+vxZO4VSVEnR6ADyDwbeGZOBs6YWwqDQ58TcOIPOdITCZgFkezxsGKRtH6RbtlzhM6CzXaIvqBDnKdWIlA3HEzJfP4MYbHuHK/7mH1352NiWpWR93sqIygs1xG6ZzJsWO27jxO/ew7dF+tvYJ1t2xlo33bWDcCfMY31Xlsm9cQfesEYzaY2zGVACyB4ixgr4H1zL92KmMnVKgfZ/pLPrD/Sy7eBEA40/and6bl9HYUmXhh//AhDOPIzJVJuw/nmiXyaCG69kk1rV3VJoQDsWxxMZRwt0NWGfjGQZOTVhrmanxWqOwiCwRIbCYMC19J01/JaGd0J6MBarebN2IJMV8GNfWqfeA3lCkPHkm1S6D6CArwZuw2RaxAZm42/bEEUwTyuAMJ+P03LEKEUOhD0obNVF/iptoD0iKEhMJkoJruSRlgVXCJVGJJex34BTRSBDL12AGBkmSuGW7IgihUMC0uR0YmNpGW/+erL38ZqoLH6LjfW9i8FzNiqVXMf2E/bAlha5DvdtT6h1NO6iSYXi8mWJSEsSbe9m06BYQgqC9m6TkxizuMpiSO+dVOSYsJhSjOEsuZHuJrqjGuD1Hs/W2ZYw4/VC2NRSbqm1Mat9GR1BjZDRAe3pgtiVl7rqyl0f/sZwTvnwQc06cRt3UMFY6Fo9KOO1Le5JUE+7/83KOeNVIJu7bSYetsT7upGZCtpkS7aru2GjpFR0WBAOPbkHUqwyu6aM8qkRlUxVZiNgal2gPGsRWUU6z1lA4EbaKiVh42aOsebCPyXPKzD9lCrEJCGVCh3Lr7tdFqjpkUBcyRVhwLSGFRSNQ2HTCAIlVGQNP2iYTzuBalfn2UUnFWdITCJ0lXjUdUkmiTGIgS06kIRCmBZvi1z80AmEwCAoj25n1hj04/R3vYN2iRS+aCukOiZ305JZYuXIlhx9+ePb/AQccQBAErFmzhsmTJz+He/bk4ykrCFUqFT72+U+z27sPcv4yOzhkIWSXb7yVPc79IF0H77rD1/9sxdSXzeCID+zOgvOW8a2Tr2f53Vtb3pdK8rZv7oFJDNd/516W/GUxpZEl5n/m5cz5yPHc8Mm/A7D7mfv+y+3c/fXrWPTHhfzz7LvY/NCmLEkBWHvZ/RnAEWDNz/7OI7+4gXu/etWO+6LPcsgwpLJyGTaOH3/hF0B0jJ9F28SZrLrwl1QfXkLPkcfS6N/Mxusudwy4Jxj1vl4WXfp9AOa8/L1P6UG2y8mzWH3HBqqrtvzL5Wp9DW741t1MPmAsc06ctt1lpBS8+mv7MG3PLn770fvQyeODCI792F5sfqSfv3/qJua9YS6VTVW6p3Yyfp/HV2f9y5cWcsOvlvOHTyxk69rq4y7/QoxZb9iLrRtXcdlllz3Xu/K8C49Tfro/L4bQWhNFrW3fIAhIkhdef/QpV1R+9KMfURpTYuKR04iN0yLw5cuaDjJ9Ai/VPnTGnkfTJzn5/ERLilHsWgszptOwAnLPIgekpaVNEShXr0kSiYp09nqqf9UiV63SWf/QiglApHQLA6mWBCRaEiiTvQdNPQSJpbPgZpflwO3kQBxRTwJK2f8FJp9xAK+e3cV1Z9/NT/7tLk74QB8Tj9+V3sI4Dup+GA4dydt/exSbNyZ0zhxJvy4xkBSAGsQJEw+awLSjpjjfH6Ez59dGahFvrGDv/zqMB392G6XOkDFzR3LcL0+nf+U2Ni7extprFjP33QfRuc8MGpUGG65dgh2sMeaQ6RlrIzsuafXE93pD6bxI8kBaBGhrsdIgrMiOB6Q6Kda15xIvsS/TClfKlHIbEpn4ns215mQi3Fsh2PTgqDpQxbVzCg4IWu/bCFKiJ3VgAjBRul6LszQQOYZX+rp3P8607kKbgZRtqXmD8p9r9AiSkgIUQRXCAae7okMyzRVfwWl0CGojQyBE1aFtraZNTEQueRSsq5zogQFkqYScMpHa5G5qo9IZd7dEF2Daq9/Dw+f/gN5LL2XS+z9Iz7HHs/mqK4jmzKBjxm7ZMQpqEPU3z1srwVRrbF58F6tvuRiTNJhy2GspT5mVaa+YCFRVYkML5QQZOAGyeiOk3ggpFmKiwOmk7Paycdz0tZDSTdfT9ebj2VhpZ2vD9dF66+1MKm9hTNTHef95C/W+Osf/6AhCaYh9OzKtUtR1QB8lOsMqp31iF/731bex7OZNjJ1RZskVS9n1jXughEIJgxJQSdxNdcy8UZzy9YO48AM3sef4Mm+/5rVEbRFCuhZMRYdo2067qtOhaoSpCE9ZNhgxrkDH6E4W37yZa3+wiDO+vHt6Hic5/ZS2TMY/tpJQGIIU2O+nXCX/HYwlkgmhCVI35pzfFU3RtoJMsipMXQdoKWhXDXQq/98e1qkkUea6nK+aJKmdRp584F2km7L6Ov2chHLE7Dfuxdv+8z/ZeNJw6vlLOnZWVLKw1vL2t7+dQqFZOq7VarznPe9p0VK58MILn4vde1LxlBKVRqPBJ7/8BeZ/8GBiEzQTDuvoqF7cLfPeSUue+b7rULaJQWQtF62b/j3gsBGBctTh/ENVCcfUqcWB8+QJWmdr/vKV0qCkJUoFq3yEObNDX36N0htCTQdZQjLUX8eXi4vKMXiKKm6yB7DU/E0v/b5VU6B9/zm86Q+jueVbt3PJVxcRfW8ZB/zbPO7edwT3/nUV9aphzzfPRQjBpOIWBnSBu3+7iL5VA0zYdyxrrnoIU2nQudt4oukTMtyPxwON2mM8h3/3VVkCWLKC0qzxjDka5v37gc1B6S4x8o17uONlJAaT+Ytkx8K35WzT+yQT35OSaiN04yYlYkhvPdGSJDWV9MJWDv8jMcJkrTihrGNmadWCHTHKJTVWWuJQEPZJdAmS2NFq4zaLLhsGly6iMGMayUjApGaRacJj6imuxjO9ABELp3abiKztZNNERVgwQXNZm67LhBIP1FV1kHXnPyRz/jtWgqi7k82fmSaERoeEKe0UyzPdeVHTqFoD01agMqJAvduttzpKZviRpKzoPuE41v7yp1Q2PErPy15GZdGDbLnu7xQOnEPQJ1E1QdjXxOroCGxfhQcu+DpJpY/SyImM2f1wRs/Yn3oJkjIkbQ7fEncYKLgWqDUSbS0ap4IMUApiyqpBH53MOX4y9//1UV75jkG2BUVirdhYbSNUmnpvyK1/fYRH79rMEWfNpXtyO3UdUDdB9rAGKMiEwAqUMIyb5W6Mt/55Pcvu3MrW9Q1OkiUOect0NsXtdAVVVI6ZNu3wiRz78b246n/upm9VPyd85RAK7SFJzneqbgLKStBvinTIGlJY1i4dZO3SQfZ82ShW3781awu1yTplWWd00Ed/UGJ90kkodNZuGnqd+1CpMKRKFXQLkH1HYyWh1BmTKEDTMAFGWJSwVE1IJBPaVINBHbWYGQ5lO2ZJSY4xmWH8cng/Y52w3oxTd2Px/93Fddddx1FHHTVsv1+KIQDx+AW7x1/Pi0SA6m1ve9uw19785jc/B3vy9OMpJSrnn38+QUkw/ogZLxbc0bMSUTngNV+Yx8vOms0V31nCTd+/j+tjQ3lkERFIHr56JW8490Q6J7kb4b3nOcrxQ39ZxkN/WQaAkIL9PnkUU0+c85x9j+c6TK1G49FVtO2z53O9Kzs8SrN2IejuYeMfz2X8O95FNGoM/ffd/ZjLN/q3sPaGS0gqfcx4xbvpnpC2SZOnd2XOP2069134MA/+cSGlVx7R8t79P72D5Zc8xAFvnsmBb5n1hBihKhRMnNvOnZdtoGd8gTn7d3Djb5Zz0JumPeZn9n7dTEZOKPDnj9/JpR+9idO+f8RjLjs0lty+lT2O6H7Cy7/QImyLmHH67rzzwx/i4Tue/8qiz0rsKIwKLw568i9/+cvnehd2WAj7ZBrgaYyaNYtJrxjLzNe7B4Vv7+QBs5mnTPp6XjfAV1h8e6QcxNR0QD0JMtaP95ZR0mQVjFA5MaUWKXlcJcfbw+dnRb6t4bddDJwWhBSWNtXIyqkKVxKum8CVViF1W/WzN4/S9+A3nXmOlFWzL6WtyGZ8vuQ7FLDXGdQYEQwC0LexxooHq8w+oIswrvHVV97CuHk9nPHdA6gTsW69Zfktmxg7rUR5ZJEpo2p8+1X/xArJKRe9ASBr/yRWsrXuyvODjUImc14K46xK5L2D/Pf2YVJHWv89G7lZa/54Nowi1qqV/eC1ZIzMgMQ6Pe55YT5tXLXN6eA0t61jiUkkaOmsDsBVWqTFBrbJ4koEtmCQBc2Gb/6ayl2LmPXjD9A2sQMlDYmWLe0pr7fjxeu0ESSp3o1JW1I2FggtsIFFlRLCQtO+wVrh9j9lmpm6SoXpcnov3vFZWLAixyqDsF8S9jWF31TdfVQXHfMGUgn+oqsQye4GnV0OU9H/yBYe/fy5mMEqhZnTqN7/AJM/+2nCjh4KWwXRNlfWXX3zX+i963pEGDJmz6OYtNtxCCn97qALgka6rUYXJJ0G06ERkc7YboVCTGepTk+pQnfktt8TVegMatz4jTu4+Q+P8pE/H8yqkXNZMdADwJKvXEJt1WaO+vlrCVK7BZmzXQiEoaQatAeNDHhblg1CGqx7qI/RkwpsXbqZL7/pQT7w6z2x8+dSkM2+uUESCE0xRUUvuX49v3/frbz1h/sz6RCnH+KvKYmlKGMKMkZhuO+aTfzkffcBMHJikVd+ZBd2PWoMQSQpipguVaFT1TKRws1JO/2mSN2EGahfCSc8J4VJHZnd6zUTUjURsZEZUNakQnKh0C0Cdh6Y2zBNoUW//NDKjWs7yRb/I38e5sN/59goKklEdeMAl73mDyxbvITp06fzUo7f//73nPWeT7Lf/DOf9roqtc3cft/3aTQaO2DPdsaOiCddUbn33nvZumoFR598CFKYll5qkLtZGZlSWxVUEie+lEe7++WLgbtBtcsGgTCZf0iQw4E0LdabD92SamTJgk8OYitJhqhdaitQIu0zi+YDWgpLWTZabgaxVSRWoa1AakNJpa0eoVuWC4WmXdVRwrT4EOXXk1+f+x7u+xRlnDELSqPamH+ESy7KZcWbvzibc963kP896gr2PGkCu75hHp2zRjF2TpGppU0Y7ZKu8fN7aFMNqjqkqGLnp6IV2kj6G64faa1wPiMIEpVQDuKc6ZlsebBI4fvfZIJ9QwWufPk5VJqQ1nH0yySqyeDyiUtDOyVhz7AyKYbFh5AKrSxWG4wHZVvXGpKy9UYdhA5b1Ln7eCp3LWJEaYAxnS5x7WsUqKXnmcoZu/mwVtBIFLUopB6nyXCsHE5JWsJQU4jc+RQo4/Y/URltPQkMVjtTSu8jZRJPjrVZn1Eqg1CWRreiUXUigEDmYWSCtOUE6ILFFgyqLWbsSMdwm9S+jbWFDhqfej+93/k/qgsdzXjwtrvpPuoYBvpW01j8MBuvvQzTqDPmqFfQs/ehRBTxt1WhfRLk/k/KkLRbx/jJUfLLpQbtxTrtkaMbJ0bRFVUdZRjDsR+Yy4JL13HreY8y4z9mu7ZmElLeexbr/nEpjc2DBCNL6fnhjm0kNSXVoDOoUU6ztIKM0/NNMGG3LgDG7j2WCTMf4epfr+Lo/5nJI3etZ+S0DkZMLBFbd43563Xu4SOZtHsnN/5mOW8+bHx2TP0yWUKBZOaRE+ket5it6+r0rq7x6w86m4kP/eUwxs8uE5oCFVOgW1UoyjgTneuQNSqmQGxVlvQAFEVMbANqNqAovWKvY/hUdZglKgAFkZAYlf3vb66JUdn1lqdT6/Sk8a/VTZAlQD7y5ow+4Qmlpj2sEYwtMfGwKXz5G9/gZ9//PjuDnfTkF2k8abrO1773PSYdNY2oo/D4C++MJxV7HDOS//j1Psx/+XhuO+9RfvnKS/nrGy9k5a3rAFj9YB/b1tXY9w0zn9D6rLWY+IVt77296DrQtb2qa7Y+tzvyDIZqKzPhje8kGu2YLpv/dilrf/ojVn7vG6y/8iJKk6Yx6a3vYdRBx6IKxWdkH8KCYt7x41jw940tzKOuvacB0Hvfuqe8biEEp5w1ifuu7uXi/7qJP73vRn500t/Y9PBwvx4hBIecMZllN2+isqX+uOs+/r3Dqws/f/ft9K6sbGfpF3bMOHkXfvv732DMiwRY8bTCCb7tiJ+d8fyKJ1VR0Vpz/nl/5LAvHeI+LDUyZ1Ps2yL+70ZaouyM3M0lyrUc8stB6sURmuy9vB4BkCHry7KRlYnLqeZ5vmzrqxm+2qGGIKPyr4XZuo3TW8hVXLoC0fI+uJmPf62QlqWH+pUAqbV8swXkS8f5WWJsFTrnVrxNOxO6kft0c9zeU9jnvftwy48XcvfvFvPgX5Zy9NGzWXn7RoSAGbMUldDNBPuTAoHUBFbSkY7zYCMi3jrA/Z/+A/V1Wxmx7xRmv2Vfuncdmzkvu/0UrTb2wiBTjYg8sA9c66eokpbX8iJVBpG1AP3xTIx0eiu6OUbWiswOAZz8fiJlCq7OMbZogqDz3kK+orMIaOvfwMRyCSks3VHIQFzMtp0/r/z+13RAJdDUQnfaN+IgA2qHaQWvGMSEShNrRSWOqKXVFwFomZbmI/+9kwxw7SMMNEJAI1ZUKKJLGtuQrhKTY5lZ68QBg4Kmu7PCtM7NAIyKBqnpgDXtMXZEkbHveicrv/I/AFSXL6Pn0KPoOewYCqodLDQaA2y5+TraZ82lY/QMd261O5BvUkr3skNDm/Oy8u2tMNS0FRp0Fmq0h87ZuD2oO5C2lWgk/brIHidO4NY/rGDVVUvhgNEUg5iBVNRORSpr+4C7vjuDGp1BNaum5K+pfAtVI5l/0kS6z36UgZXbsmV++up/cOx/zuXwd80CSKuehinzXA9r84oBukYELWJvvkIYpyJy+5w2ib9+cxmVbTF7HT+aBVduZNv6Ol894QY+cP5BTJ/XRs2GFIlpk3U6ZJWKKaCEoWEDopRFlAHWrXWAb+Gu+7oJqZkQldNh8lXIWDTP9dgqd89QjZblfPibrwcRD62m5Mes+XmTAW3DoM60g8dyi0649tprOeaYY4Z9/iUXO1k/L8p4UonKTTfdhJAxux/SSRi6mY/HlPjSpk8m8jFU7E1iUcIMU5YsyDgrOwNoZPZ3mBN3AoYpSbrttF7Ufl0e2a+toG5dUqOHFpMUzXLvkP3w+6KtGLYNnSpd5hMl1+NOhm3Dm645Rc5U4RaR3fiArFXU2aU55eO70tUtuPYHi9hwbzcP/WMtc/drY6/xm9msG/RHJfp1MRtfayz/PHcdW25Zy5oFG6huccdh4w3L2HjDMo47+ygmHjUFg2DlYDfg8EG6oWlsHqA0rmsYw8knn5FsvuZ76K433/qgjq3Mjk0gNIlVDCZRE0+Umr35RAaaJnflIM4t51qKkdIU0xafbyu0ja6zdI8ebvvaDcwd28chJ3SwVZfZErdlx8CV2ZvHfjAp0JcUGUiavi+e0ZRPuMpBPWspbqx1sLHapPF5I83MZFOY7Xq1SGFpaEWl7JLJehJQj4P04eKVWx1jbXR5gKntLkmZUdrIgC4SW4mcbGEyPLh2FCIMsHHClK9/CWUKxJs2seWmf1J96CHqG9ditaY22EvwhhlYZbEhmEL6nQrG4W+ihChME/wopi2qUw7ijFbfEday9qgUlnqauE/YezTzjxvDTd+4g49dErJQ7MKAdglxV4+kI02YSzLOEhSfxIdCtyQnbsxbWTaz9+vm9kuc8vIHr3k5d/7yAa7+/kPse2w3I2Z0IVO8SDLgthNs3cLYUNCw7pypmzBLUGITYBDccv4GDj1zNqsX9LLgyvUt5+c5b7qN791zGNpKepN21/6RVbrVIGXpvlfFFGikraQQQ0G4hCa71tOE1beK/KQDAYVUfzi2igIJJucV5c9Ff/7kJy1SOF8i/3/dBFlL20cgdXa/LKiEQGhUZNj9xPF868c/2ZmoWHaY18/OeH7Fk0pUfv67/2P2kWNTgbedWeezEYe+cxbX/mAR3zpzIeMnBYye/Ni+LVd//yFu+OkShBTsdtIUFv51BQAd00egFPz9I9cyYnYPpZElgsljWXvVIhpbmuXwo3/5OjpmjX7Gv9PTDSEEr//2/lz82QX86oP3MP2v+1CaVn6ud+sZCaEkYz70JtZ//Tes/eb30Vu2YqpVZLFI2/Rd6dhzX7beeaOjaD9D8epP78p/H38DN/9xNZ1n7EKQKur2r+6HPUc+rXVPntfB7Zesp21EgfaRRU78f7N56J+b+OE772S/0yfziv+YwkPXb+IXH36AGXt3svsRIx53nX/9osOl/L9LD+eBf7QmKnH9xfcUmnP0eP78yUux1r7kNVV2uie/OONJJSoX/PkiTvrEdEaFTT8ZrVrbKwUZU5aNrHwKtFQw8lUKlZYxfYSi1XMjH0OrGy3vpaVTXwXJStG5srNOHU8j67QT/Ewov3++glMzYUsJd+j32N6+eAnwoTNItz82+9uPVWwVZVmnZkOMkEhp08pIczbarmqUUrBftV/zyGLNiiV1ltxfZfJsuOKXK1m9rMrJZ02ha0TAzb9cyqFvnsorPrEbd99YyRKVM857JQOrtnD3rx4gMYJHr32Uxi1r6Jw9uiVRCTpL1HTQwp7ylgh5QapIJZlcePP4pDM9mm09JSyxcQwOX3mRwrVZvO6GGwvfGmuOa2ybY+nZDiUZU1INN2sfq3jTN/fka8dcza8+voj/939luoJmVcvPciVN8HWctgjyEQrTov0RCkMhbTt2RVW6oiq99bYMKO4tIdx3aQKJszFMKzQ10by0QqUzcLgHi4dSEyrNiEKFiYWtgGtzKCzbVIly4KphXeUa6qBp6He/moFrF1Deex6FcZMpz9yFQBSwyrL5pqsJRo8iaTdOSyZIr6HI+U7lParKUYOOqO6OaY6NFgjtZO9bjqnb59KoMvu9Yiy3/GkVp76xzprf3wHA0osXMf2ICai2Qsu41k3YwpiRwjghvkxrKNVXQtE21iWY9cEYiaYetPHWH+7HDb9YxrU/f5hKb5UFV2xglwN7eM83d6G9pNHWMXic47LIQKmhTFh8Y2+2Hx2Tu5lz9DgWXdPE0oyaGLHt4S1Mml1K7xkJBknNRjnhuDrShsRp1cZV5pynmL8/+XtHzYZgSDVZmm1elTvfzZDzzld+ZHbNJC330JoJW2wFEqsyML6vFLpz1L0258BOkmqdBQsWsPfee/OSjh1kSrgznl/xhBOVtWvXMrixlzkH7tXSssm3a3wpsyjj7MIyyFa2zePU1Xx7RbYkNLalfePXOyysU7j00bAqu9n6m05+HW4ZTzP061VuW3Z4fxiaSH1olm4VhtgGLXgVmTJ7EGQPS7ftZlLktitbsCvZ54VxN6TA8O/fmMWP/2spRsOuexX5+KmLKLdLKgPuuy24chMjxgToxPKyE4t0qSoixWF0jG9jUnELvVPbOPIzB5NYRfLRA1m/xlCa2MWWRwdY9KObWPvPh9m6aAM9h3RTS8IMVyKFpR4klIIm40oKi5ZJC8ZF4xLFULpSuV+uIAQlFWdU06zcrdQwxpR7sLUe3/x5UEhbE6FMKIqEYjt88OfzOPtN93HDb1dw9LsciLJiCmzTpRQjMPx88wlRW1AnTD1ZhmKNJCbDR3WGNQoyySjs0GSaOWxOk85dVHHGCOmOqvTFRSpJuF1hwUAaZ/CXJqORSKgQUTdBptIaKo2Slq5j9qTtkNRGoRogKhKjLbGpoPv7CaaMgbIGZRGeMRcayqUGnaUaxbTF0x42nFChirOkJJDNJMWPl38QelbNvq+ezC0XruXRP93FyksfQBUk6+5cxz8/cx3HfvNlhKmMQGwVEotOcVomx1QJhR5+zP141g0Xf+E+XvX5PRg5pY3XfGEey27dwi3nr6FrbIHXf3k+ogSxTVumVhLboAWfZhoxv3r3bQC879yDKaqE486amSUqxbJg0+oGHzvpPs5btCdKOtZOzUrXqrVhZpLYJupoG6etXEvDKsLcvUVhQEKRmFiq7Pu2Csg1BSv9/xqRUeaB7F6alwcoyLjl3jOUHeQ/5yOMJDP26+baa699aScqzgxux6xnZzyv4gmzfq677jrG7dJBqTN8JvdnZ2wnDj55ND+80anJPrSgRhCSJSkAE6aG1CqG/71wJnMPcKDD8XuO5NgvHcIpP3nZsPUFxYD2SV0IIWif1M0eHzocpOD2T17Oqkvue3a+1A6KmXt1ssdhnTxwy3C2yEshaoudKGBx1jOrozF1ry52PaSHq/73foKCYsSUdgrtIStuWMPqW9c85fXWBpo6RPdc9Ajb1jX9eY46cxrd44r820/3pa378e87y2931ZQDz5jCpPndAIye3sak3dw1UatYUgV7liwYfMr7/HyMmQeM4Jw//Pq53o3nPswO+tkZz6t4whWVS6+6iln7dNAhay2zBj8Dy6PZ+3WTLjm0VZJfNpPTf4xlhr7mWivDe7D5ZSuPsexQ8SRfVnXANXcT9O2CvJPrY7Wc8oBfYJheSsu2cp/zui4yV4GC5owzW86EDFBkc9Lu2E09Hfy/30r+/PWlLL/Xtd5m7lFm5UNV9t5D8tGvjWNN0g7EbKh1MqHQxy6vjdgUu/2ZXNyczegqusD4wjZ64zYnSDVB8NZr38Ct37ydB75xNUfuPppoykQaKci1kQQ0koBAaTqiOn2xK/Vns/AceNYDkf2Mz1eLHLBy+PHY3vgObRtmY5Qbnzxza49DO/i/r6xi0d9WcOgruhmQZSomIqbZ3vO/w9SF1kfdOJBrZ1rV8PtYkAmTi1uGbdvPbusmZEAXqeiwZb98laIgXUWkLaiTWEWcammAq8Y0TJBVaBb0T2ZCYRuh1DzYP561FfdgjVMrgjhRmEQiA4OuBciGAGXR7YbB++4lnDyWnvkhxXArpVQLpi1s0B1VaQsaOQGxJuC9CU7X2bmXZ7QNva4VhrO+N4dff3ope71sJLf9dQNjx5V5ZGGFrTctYdyxc7JxrpswE2Lzx9AgXEvVendxp1c0bv+JgEuOrYF7zl3CSR+YSTE0HPnasRz6mnEkBEgPjE9Zcr69J0Wz1TtzXokzvrQrB5w+ASmdw/Ly2zey6oGmMdI7Pj+NX3z2Ee69sZ9d921ne5E/54oyTltNzmzCV2M9YD62gWsJSZsbs2YFpZGdf8EwUkE2/kOqqX4cs0pRCtbfHsNQI0FoZu/bzj9+8uBLHqeyozAqLwZl2hdTPOFE5aobr+Lot3S2tFCAjOqqLY5Rk+vTQtqjHVq4Sc+lfBsFMRzP4WMYQycXGkls3APYX8jGNoXHhtKTh33etuJV/A106EM170Piw3lvyBaMg18+v4zfp/yNSmJbyrdeDErnzBp9b9uzUNr3KPOu309k4SWPcO9lazj1Q9OpPrCS73x2I697d8K2ienM0YR0qarDwaQU7m5VQWKJraIomsyEvsQllT1dVUZ8cDaL/ryE2z58Mcf8/k2YLQlhRwHVViQxjkLcZOqEtAUNlGhQkk0qapg+BH2Z2nutRCIhf7glNsMEZGO1nXZPTPMG72/YShjIPbCOetMEHrq7wrc+uILF99V4w8emUJCubO89pRTeOM4lCQCVJKD/4S2su2cDZrBGWFLse/oUyiXoCirZA2RT3IG2krKqE3pKrJBZstlK8fb+LF6wUFASDs/TZHs4JlXDBNS0S5IXD4ylkoRsrLRnledAOeE6KU2muiu0cKaJFkxcpXrPA4w87VDaCg26ilU6w5SRE1XpDqtZ+8qNQTP5yNqWaXvH/STZccwnGdly7Yr3fnsOBsH65RX++oOVjJ1eYssj/dn6jJUtrL7s2G6ntaZRjJhY4pP3nMZfPnQjC/+xgWt+/giP3NHLWT/ana4R7mFdS/FnGkkkkiGYN5uy6DQXffVBbr90I1sf2capH5mNsZJClxvf9hEhA5tjfvHZRwBYdHcl/V42259snFJpA5PDnIXCtcXcUW+2oUORtJzHfhICUCOkKEx6z2w91/19ND/ufvy030qGZwucJ9N2Jls+Js9poz5QYe3atUyYMIGXZOwoCX1rkVLywAMPPP117YwdEk8oUbHW0vvoOibu+uLzVnkhxv6vmsCRpzm2hQqLaA3r1yYUJz699ZZ7CrzqnGO49L/+yaUn/AxwrJOR+09h8uv3p3P+lKe7689IqEDw/m/PZNb8Mr/72ioqA4aXf7o7e99ay8DGKhQiZJt7YK647lHu/dV9bLh/E0IJCm0Btb6YNQs28fqz93mOvsmTi4Eb78TGCV3H7PWsb/uw147jsh+vYt3DVY58+9Qn/fmHr1/LxkcGGTulyKR9RnLaZ+ax6J8bmbl/DysX9vGtt93Lx8/dg7D8xLrTi2/cxB2XbySIBH/7+VoG+izHnjWbqXt28427jkAowZdPuoXe1S6RO+VdY570Pj+fo1BW9EzqYMGCBS/dRAV2UKLy9FexM3ZsPKFEpbe3l7hSp3NyJ7UhFRVlm2BK2I5AEQKznSPvZeSHVhWa7zdbMEPX6asncU4gyQP3hmoVAC0zoOy1YdWRZmVkaPXDfQ/b8pr39dleOVfSOsOGpm17fntD98PPxvNeO1JYIum0RDbRTikFQY6MBti3vJy7Nqa6K6Mi1iXtbIg7szHalrTRpaqMCFyrqCzrmV7L2riboozZakuuFZACZecd2kXn749n8fUb0SrCGsvSixez4CMXsN+XT2LswdOaY24UsZGU0sPjqyn5crYHWQ+tbOUZFNAsdatcBS5f7cpX8ry2Rv60MlZw0NtnQ1c7v//0Q2ztu4d93rQLd1+6joV/XUG9P0YGgq6pnRS6y6y7cy1j9xnH8f97NDMOGUNb2XLfnx/mys/fQe+ZUxmo9bP45s0ccfoo1Ng2tiWlliqBb33l2wFZi8shqIGmrga0nof9SZHEKDakOi3baiUGaxHWCDraXBvKV4MCZTLZex1YsAZt6vRdcR1tB86jc2KZtqhCd1SjK3QYj86wRkk2ssqI3+f8Necrdv41jWPTDK2w+GVrhCmTyjJqXMTnL96bqC2kMLq9eQxxgoHkxAzd8XZOzV5H6Lpv38umZa4lM2JikY+dvy/dY0K6Ryre9vu5fO70+/n7z1Zw+genomzTqqKRgtbz94TlN6zh1+9fwLzDevjAd2fy+dcu5IY/raN7chtHnjkTUXR06k9fsBdX/mQFEyYp9jysIzsW+fNQpSD2fBVX0vqaxLT6+mynKmOQREI3Af2iub78fcif3y36UTlAuc7di4buV/612AaMn1lg6dKlvHRjJ5j2xRpPKFFZunQpbSMKFNoChndTd8ZzGVq7i6pR33EXV8/UTnafNJrBlHky+ZTdufljl3P7x/7KUb99E+1TenbYtnZ0HHTaeEpF+O3nlnL35TdQ6AjZ67UzGDd/FH0bqqy+ZzN96+sc8T9HM+3Y6RRkQiATIGHuiVO585cP8t3X3JSt7/4bt/HWX05gO/nocxrb/no1etsAI15/3HO2D+NmlNPWzJP/7EFvm81fP3sXB712IvddtYGf/Mf9HH76aC792Vr+/SvT2P+EETxwcx+nf/Bfr6c+mHDhFx9k5j6dnPWDuWAarFnqkrX9ThnXsmx7T8ibPzGFonhxms2NmFzm1gV3P9e78dzFjhJ825mnPO/iCSUqq1aton10U1DLVzI8ZmCoFLsPXy34V+8NDT/D8O+3UFbzqpZDqhvefdQvmxiV/e8rFF4fJL9tm0rGD33NS7m3mBamxn9PJOFW0mby6l69dNh2rcg5/jbH0q/f74eStklrDRI6ojr1csAuxRIP3udUTZdVR1AyISNDN0sd0MVhCsFFEWOEZLMNs/emlnoZSIrolCZdkK2Kuv1xkSiEgz52CBe/5jw2XXYXs//f/tn4exVNH2VVT2nZzZQ20zXZTrXLv9Y87k18EbjjHJsmhsikmKQ81gSa5wAAh07n5PP3ZdNDvXTtNpGg7MwZe4CuVwgaKfV6a8NpxJSDulP6LCje8rNDeOS61UyfBpXeKj/+2HLu+e2D7PfOuWxodLbMvj2FuSSbeA+JbZHVz+toeNB2zYQYVSc2TcDktv4SeksBCoaBlL5aKsRYC4mWFAoxiVZQSmise5S+y69lwhsPY8bugrHlTYwsDNCe4pHy1GIfeYBz3tLBV6eaNH7ltH0Q+K6LlwzIz+5dghI60HLufuDfI9MRatJtjWlWng5/9Rj0ivFc/vPVHHV6D7dcsQ1braFjw9U/WsbItoTVgzFF0aS1e5B+UcSUZI1Ft/fzj1+vprq1zqf+OImJ7Zu4/Dwnx/+lC3ejOKYtPccERRHnAKkp9VskFEXcUu3TVhKnt8V8hWR72k3588DH0OofkKnc5pf3+CpjVSaRMDTyukvZ76zqIjMphhBNjGL0hIjbr1m43XW9FEKwU/DtxRpPKFHZuHEjPWMcwl4PYVFkv01rq2Uo8BSa4FMgA42alpufyBgReY8Wn1zkk5OhXi7GisxbJp8gGSvS5CL3cMx5zTjqvWh534cQNktY3LKi5X8Ak5bn/evbW4/3rBn62Way0lyXsSK7oee/h5detxZKQUxnWOPqSwc4/zur2fWYcYycPw5FjW3aGbx4Aao8qdPgWAi+RA9QFAkqqGYCXQBGF4YxDLomtDH3xCmsv3t96jfSDL+stJaKLmBkk6HgH4SecZTtS3rcfCsqn5DkWyReSjzOzgd3fjRMPoFt/s4YZcU2wj1HORZYnGvBmdYHTkMoAhMQp693jm3j4DdMoSzrlGWDay/oZfl9A8w3YUuC1XTubQWm5r9vtqyMUdhMP0NbCQpiW2dsybXlNoQdaGkRkaZRDZGBoZ6evxmQVljM5g2s/+YfaJs5hqlv2p+ugmv3lFU8DCA7zNk7Zcnkr0FlLUbInKVD87gM1RjKh0ZSN06HJHvQZ2KHXtSuCaw2OEG7mgmz/Tvjo5OpbEu4/YpePvSl0Xzz0xsYOzHkvJ9u4eCXtbFicZ2H7x9k7G5OjdbpM1ni3gFuv3oD3//0Wjq6JZ/+Sg/zptSJrWJMj8Va2LAmYcqurdojPnyrxWiLCZqtZT0sgW4K1kXoVJDSbFebB5qaTPmkJmst2aau1FBygV/fUDf2Ye03Wt/La1UpaxgxUtK37akbRb4oYmfr50UZTwip1tvbS3vPkxKx3RnPQvz8gw9Q7go47ct7PSvbm7TfaDY+uJmH/vLS6INba1mztMr4mc8Pef7q4pWs/NTPEaFi7hdPRwbD6aovpBBC8NoPT2bk2IDvf3Ej7/jIGNaujGnULddd6hK4y3+9oeUzd1yxifcccg/f//RaZs4rctFdMznx1KYf0+HHlRg5RnHFr9ZirWXdkgG2rneYH2stl/98DVf931oGtiacMeduXjP3Xvo2tzJyXqjR3hNSGxh4/AVfzGHsjvnZGc+reELZR7VaJSi42YWvgPgZsy/752ddsVXDgKb5agmQzYi9QR1AQ6vMbTfRTUClNsMrHoHyZewhoFgjMhAiOCM5bWQ2o/ZVDW1kS+XCmiGzRkFLBUSkn5Vy+Ekshc22abazryKVyFfSDKuqwParMP57WeMkwv0y1goSNchf/t8NAEw/chKiXCIUfWxJ2rJKkZQ205jws7RBU6DflIZtKyvNZ5TiVD02p/0BMPW4mfD5O9j8UC/hqTMyQHTWbkuBg94VGtwssZ7WdYZSxmOrWswYYyOpmyB3TsnUvFC1VNi8jP3Q6kg+fBtt6DiL1GgR0iqLBilCBnUhHYuEonTtj8GtMf2bY7rHpq0CabJZrG+T5VssQ+X589FKYXW047KKmdq2mboOWNPRyeqBiGK5kX73tIqoJUJaBu9azNqz/0Db7PHM+dypjBirgAbloJEeY0FMmrgYsimIB3Z7sHIeXBubgBiIhaIgm20ZLxMwtEXnKw/5aps3IGxS64fbFOSlA7JtW0XdhhR6Qv7nd9N5x+GLwVj+dNcuXPr7Lfzy6xsBqA7m2h/ANb9ZhVRw+jtHcOyrOmmXMUWviC00gzale9/Rz+VnP8Q1v1qZbbO9O2Bga0JHT8CMXdLzrmG585/9HPGqEdvVc9K48y0/pVPCadNEadUSSNtlrdpLXkPFtXD8+vKWITo9bkHaNjQgWisnvsXkZfzzVZ+s/WQNoAiLkvipAIZ2xs54nscTSlQajQZhQbCyNgKdSob7UnwjLc3n3XATI6npwPm5xKmfi1FoLYmT1F9HS4yWGC0y8JI1AqzA5l4Tpvm3z3uswHmaGAH5ZELi/k+TCaHSdosAr4FkrdvOsMSEXGKSS1L8cvm2j5D55WjZB6zbp5YkJ11fLFRzHbiWUKBMlvx4mfNKI6SRjpsVbh98kl9vBIgt61h6zRr2ecMsjvnonvSE/ayu9yBFU2RL5VoQ/cb19jfrNgZ0E48CDktDmjBkyacNqeowTQjca4EwPHCRq6Q0NvbRd+fDTDloHFUTZW2T2Ei0iBx7JN2PYtoiyT+s4lSyPo8/8hgT10pxN/rB9NxqZUs1k0uf+OjtJCy+DZTHGpn0OCbpg0BohQyc0/G2Rinbj7oJKKmYysbUWXhiO+2qliZu6bGSceZr5fepZsPhrDdh6JA1QqHZlLhkaEAX6YuLdKbOw7GVNBJFR3eVSd1bAdgw2O7OgUBjHl3J2rP/QNd+M5jx8VMplkEKh0dJjGIwKVDVUcbcimRCu6rTrurDrAu8ro3bbhP7M7RF0vpwlYTE2fXnsThDdXC8qFl2XFLmXmyDFqfg2HtpJY4t1NUl2e2gtVx5YR+Hv2ECL/+3Nm65rsaSu/s57h0Ts2RWCUP/VsNJbx7Fmz8+kbKoUxQD6di777F4cULvBs2sPcstSQrAwFa3vx/6wUw6u5vHKQhTdpVNWL+ixrSpAqGa7zds0CraiCQUsdNQycbL0kBnY7Q9NmAjZ7Phx6NmQ5S1LewjY5tJfN5qoznO6T0Ur+PkJngbUVi7bNh2XzKxA3VUdsbzK56whP6AHj4T3xnPTTzy54WEHRFH/Ofuz6oK5eSDxjNhjxEsv3UTv3n3LfzwlKu4+ccLqfTWnrV9eDbjwX+sRYWSGXt3PWf7YGoNln3lz5Smjmbmx09Fhi/OFuzpZ01gxZI6v//fNQghePk7x5M0YLC/lWc4YlzIyqWPfb6tfNglZm/4r6aWyNz9mwq037h8HnP372DCjKZ69l6Hd3Ded9fxnycu4r0vW8wZBy7lsj80VYlfSLG96uxLJ2zT7+fp/Oyk/Tzv4gnd9aIoolqDqgkzsKovxdd0SEO7No+vqMRaUUtCaklAI04BmilQVCduGatdVaPlwkqrEy3PXmvdeZOrXAiRVjX865BVTvIhsvU1Wzb51s2QQk1mHiYEGXPDz9a3l2QLQTZrzy/nqy/57+GXG9r6yTN6fEUlzoF/E+2UKrMKD4I11yxl1JwRFMoKUmXOugnoDGrZbNZXUwxADvg8DGCZvj6U+aSEdTLvmfy6ZdT0Tt7yf0dz3wXLuOyLCxizSxe3/+ohbv35gxz5H7ux71t3JbaKqm4FnrarWisTSALGzZCzVlVO/TfPVqkLB6z2cv5SWKS16fImW58HTftwbK5mJu7VhlVqngfOIFDSHH8grRYqSsRsXT1I24gIVXB6tPl2iE7boNuXNRdZhUJhM22VinEtJO8cPZDSv6s6Igo0sVFZW6oYJFhrWf+X66mv3cLeP3tXZjRpbfNaM6luSV67x+mi2GxfAEJcm6YomgaRmWVErgqSMZeGtG9aDTfd+ypnXdGwKlMMJgPXAqmCb5x+dx95FlLNhozdcwynvnsrl/xiA6f/xwSmzHYTo999YRn//Y9RCOEk+Pd/5Vh+8fEl3HrpJo58pdN1GrSCmg3ZvDHhvz+8milzimx4uOnl8+DtTdzGuFltaEBLxZs+PY1HFg5ihOSP33Ug1INf3sW2jQ3OO2cjb3xTkbUrG/zpNwPIUHLSG3sYOzF044tpcfuGJGPz5K8xlTNwbVhFxbqKo18mytpWTY2UOGUCOUXaJuPRH688kcG3TI2V9FUDkK3j/JKLnYJvL8p4QolKqVRC1/Po8yZ7R6bU2ySHA/FYDCksxShJMSZOBlyn9WRj5LBEQQjrGDhDXvMP/TxV2L/umRTbw37kw5dVQ6VbcAr59fnw29kerRq2Jxb32KwheAwMCs0Ha57OCg4LERYa1JLhh0cqg25o1t6xjodvXMeMQ8dRSfEVQ3FCecEtIPs/f7PzOJ3YtDq/RjKhPahn1G4nCCZIrGLeq6Yz9dDx9IwrUu+v8/ev38fV37yfJdesYfaxk5h02GREEFAeVSQulJry89lNOUFJl2D5xNEzMfJ050Bq12LMMcN8kpyYZvLix99TvJuvNVt+SrYKzPnx8C0iqVJWkJUp60yx9+lTueP8ldx5yVr2P3VCOpb5FoAY1upx224SVmXqLTRoCq2MDqlTl+RC9n9b1MiSpnLY4NEfXsuaixYw5Q370zWti4Zunrv55Eqm9gDeZ6iknNBb/iHpJeDzrJVQJsOotCqVbs+LizlZfNOyrMThYvJCZv6c257lRSaUZyUyl6T4zwEcdsZELvrROq4+byOnnTmaL/5+Fp9941J+fNZC3v2NXaBYYu+TJzD+Jyu55rJB9j5pLDUbpUy2gAce3Mpgv+HT39mVS7/3CFPnFJk0I+LGy/s4+GXtfOCc2fSnCVPDBhzy2vHsst8g2/rgU7+dw48/upyb/7Yt2687r+3nv97TS7ldohP408+3ctJpbZz86hJ771/IaMxu3Cyk462E5rorBtm4QfOmt5TwXaQyMW22Qc0GKQ06beGk53fDBlRMwVGphUTJJhOvRojMSQL4Y4UALVxrOKlrgsITLpK/+MKyY4CwO8G0z7t4QonKyJEjqW+rP9P7sjOeYMw5bQ4Lf7+QJdesYcah4x7/Azs4ZCDpHFcGDKXOiH1eO517L15JXE247jv3o//3XgA6J7Zx/BcOYNcDnrvWydOJSfN72P3ECfz5q4uYsV8Pwfhnr/1Z3zTAqosWMO64ucw48/BnbbvPZXSPiTjq1SO56IfrOOKVXey2fxuv+cBEzv/Oaq49dx2Hv306Ugkmzylzy+WbecOudzFt1xJTdi1z9BvGsvSeQaSCnnEhN/1tK0bDikWuTbRuZYyUAjRc/pNVXHfuOkrtklWLnOdPoSTZdb82Nq1pag996N97OeDgAmf/cATGCn75w37+fN4gF507yG57hJzxri6OfnmZQnH4ROTsz2xm0wbNn34Z8Jerx7htP8NR21qn2LF9o8WXRjRp4E9vNTvtk59v8YQSldGjR1PZ2KBN1YllCrDMCAaCum6aq/kWUKR0VhHI60D4yAutZRWMnEx9Jr39L6obflYpc6Xuoe+3GMZhCaRnaLS+ng+/D/mqi9efyOu55MXlhr6W/3uoyJwfo4ylkXs9v6wX+0oSlVU0wyBm84O9RO0BB5+5K0DGlAlzs2xtHIMhlDr7fnUTDHOFHmoWB802iRSGYsqualcNJ4qWk8b3YzhpzxF8+t5TUcKwbRs8fPc2arHint/cz/n/dg3HfekQ9nrlBLoCpxhakLHTG2H7TKD8+Jm07eNF2mo6yKopjaQ5I9VGkOjmOHltnAy8nGsbNo+pJQoT6mFAKW27RTJIfycURMxxn9ibNW+6ml++fwHvOfcQypGvJG7HJTtXqfLfq25C+ilRs0FLpUiagKoJqSRNpRuRq06uv+weVClk/lkHowJXKYmU022RWIrpa0UVU1JOV6c9dYAuy0bTZiANbzQYDqlmeEBsVmVpMTF0Y1ZLDfry1TkvABfb5vXiANlBS+srFEmTLZS3vDABRrSO5VZd5rX/NYU7r+njF19azcd+MJXT/300f/nRGiLVPN9e9eFZzNxnI5f/dDV92yzXnN/LNef3ZuuuFTrpGRvRm0s6li+qs61P0CgHPPLAIL2ra3SNabZJ6lXDPi8bwT3XN52WR41RfPWbXXS0Oebd+z/SyQc/0sGtN9X54Xf7+ewHNtE9QvLlH45hrwNLaTXJncvf/+M4zjh6NSseTjjn7G187OMd6UHWxDahkas61WxAnDLlvMBdWdZT8b2IiokoEjNoCpljdHYcrCQUIbFU6G2D9HSN5SUdOwhMu9M9+fkVTyhRmTRpEpVNA8wurW/pm0LqAWLCrP8+rC2Sir8NL7s3Bd+AjEWUxwF4J+OW9W2n1N58r5n05B/QQ2Oov9BQ4Tn/OYPIHszGSuppWwDcA9M/NJuJRTMhyzAmVpJoRUMrag332UQrjHYPUqvTZCaRNK2o0/VpgWgIZCIQiXutb+1qNty9jkO/egJqVA+DCRSUexhsrLe3MD/KKs4SFjfGrUwbcHTcoUleIRXqykrMwhIITVk2Mjfm/IPIP9w0krC7jfohk6jqkHEHT+L6/76Fqz53M2tX7McuB3QwcZ/RdAQNQukwGfWUTlrX7madWEVdewp7QCUJGYgjqrE7vzzuKdEKneKfdEOCaY6l0MIxwgwpRczBm4QBkRtLYaASWnqLFltKWTHtDdrb6owsDzKu3A8RHPP1Y7jwzZfx95+s5JX/MTUbJ2Ml8ZBroZmgNDE125JSej4121ImZc+1HAuVUFQxQWUrj/xpAdOOnsL48WBsE28RSE0oDCXVyBLTIE1CyrJBWdaz7QLOtRp3TsdWpfTqVo+sPG05tt47poln8mq1ri3XSjXPR6ZWbHJ4lhRLFBuV3SMyJpnUWbvKR7HUxis/3OC3H13I1z+8jiPfNpm4bpk0rytTkVUTi+z/plnscsZ8ADb2BVz2qTvoW93PAe/fh4UDE9nj3/bhmi/c0rLun323nyM+OJ0jP3sIe7+7Qtf4MmEpIGloHrx8JR1HTeDABy3rF25m08oqq1dq3vPeAT7wmRHsMd9R7w2WfQ4u8aODyyxbZvjKpzbzsX9bz7l/G8eYiRHGCm64rs7NV1ey7V58UZX5exc4/vgIIQShsIR4FpQgEg10mkFratk50cCdH410/IHstz8u7rWImgn5+9oq+8/bZ9hxecnEjmr97HRPft7FE0pUZs2aRWVzjfpggiy/OFkHL5RQnR0gBP0rtwIjn+vd+ZchlWT/TxyOLRZ54Jd3cv9PDcd+9gAOfPXTtHl+lmPk7B7mv24X7vjDMk567xSkEo//oacRD1+1gqSasN/793tGt/N8jf1OHocQ8LuPL2TtcleFW7VkkAmzyy20Yh9ROeS4s49qeW3NnU4ornN8ib61bh2qoNLlA0bN6MyWDSLF/FdNA+BVn5nHwvMWc+9VGznh1e388Zxe/u3kVZzzh7EccHArUHXKjJAv/nA8p+z9MJ/70Gb2PKDAL77b17LM7F1DXn5ykfefuZlPf6GTt76zjWcq4jWbOfDUvZ+x9b8gYic9+UUZTxijEpUL1FdtZtzcbiDP5XeaHB2q1vR0GVKdGMpK8J83VmQzapnXwhDufWkdkydzE82BH7O2CkMrLoIgncFtT/o7scPdmIe2c4Z6FHm/oFoSZADORqKoJwFxolorKkPOcZsynUxdQSPdbiLcrB+y32FVoBogkiY5xkQgE/CWPTIBHXYhwpD7fnw76uhD2W/qJldRIQWZaklJudmxtiJ1r1Ytjsa+5B5k2hpNd+OhLtH+fSkMZdnIStPbXd66alVZNUXFGkHArv95FHPfeyh3/9f5LLl6NfNOnQHaVR0Sr92Stg8bRlFLx7ieOC2eREvqaRuxHgfE9QATK6in49mQSE2zUpKIjHiSFc9MWlHRkBadcF9FYCKBTi2gG12KrbWAaj1ksOGArm1RneK+c6j+YRH33FZj8n6jM/n8YtrGItuM2G4rssXrJW3fSGGIlNuZxCaUA9fGWXdfL6WRJcrdEVYYQmmz68dXIEJpKKTHIi/jnwFerW9XNquMilR8zzYrIhnTRDerIN6XqZ7T1tHWifG1aK8I2yLj7s6H4S08JWzGTMlXYzGtbT5I25NWMvWEDk7apLnsG4sA+O3nH+bP31nJW7+2K1s3xCy7r8Lkwycx7aCxVAkZ1FFWqQGY9ur5xDHMPGEaxc6I5VetYMbr9mRrHGXtXzcmXqjOjdO2RoHffcFpkbz1nP35+HF1vvSqO/njBYbx+49gtOqjmNOP6ehSfOi/R/GNT23irltbcXwnnt7Gf3xiBKtXNIB+/vtzfXSPURz/inKLbo0fE4VNQbluPCI0Wrj98g7S/vrzY16zAW3UqcmItUtrzJo1i5du2J2snxdpPKFERQjB6KljWPFgJUtUdsZzF6Pf/EZ6z/0DSz57Hvv+8ujneneeUKhIMfmQCSz4zQOYxCCDFxY7oWf3cZRGlXngskeZvN/oZ3Rbkw+ewNLLHmb51SuYdtyMZ3Rbz+c4/K3TuPPPq1i7aIDdDh/BA9dv5px335e9f+sfH2X20RM48GMHQXex5bMj545m/JeOSJMpy7g9x6QJ9b9+ClljCQqSyXt0o0LXUtTasnn9cMflrZs1g7Fg/r5u20LAd343lltuiNnnwAKHHuFaPSNHFejsEvRts3z4vVs4+dU1TjmtxCFHFIet86lGraLpXTXIXnvttcPW+YKMnRWVF2U84T7O0Yccx9oHLmTi64tZT1Sn+JMOWSW2zdmWn6XVTdiiA+DDK6PWbUBBxFlVJT/j8gBVSVMfJTFN3IdfJu+YDM3Zan45t24HYG2huZrWz9qU+jpUj6OhlTMyTMGbHmOS1ANsnKqcJiKrlIghqrcihqjhKyjpLN80Z/tBFVQdZAwyScHDiXs/X/zRoUBF0DN5D8IPw+ov/orFV6xgr1dO2A6Wx80S84DdJmi5FTgZCk0oPajSDsMt5F1288Z3nuY81BVZYlpmjCZVg5Uju4kHYzZXiwRFZyzoMT+VJKQah05jJFc9MaZZ4dKJJKm5MRd+3GOBbAhkLPATXT92wpBTOHZ/C92sWKmGe10XmsdCaElSj6hXA9ZX3XkZFhPKxTZGHL4Ly29bxsZGO91hNatEedTAUP0M/5pT5s3f/JraMR6w3R42aA/cjFyM7AagPK49HU+bVW2y2b+RBMpr5uRk8XOVDG2DVFNluGvyUP2X7eHO8q7YHmuWx5UlbA9ULFNAcNP4ciioN78dp1ybUuXTqkbdOCXbvqTIq845his/cwsP3tjq+XPAO+aw+t4tLLlmDUuuuZCR88Zw8FdeztpbVrL2phXMfM3u1Nf1EXWEbFvRR9RRZPopc9F9g1QWrwdjmHTY5HScHIYu1g6o+ubr30pBJiypWu743h1sXFFj44oaF11iOfakMYwU2/jJ59fw1z/2YQ0ceUoX3SMk46cVmHVAD7sc5L53BU1oNaA499rJLH4w5rPvW88lF1S55IIqZ328m8OPKjB7bpQaN7bex+Lc+RSm1Of8cfJGidpKli2qUWgvMX78eF6yYQGzAxg7O2IdO2OHxhNOVF7xsuP49Jd+T7esAlUaMhUdojU5AVd+1tZpR/gkpJFLZDIZaZm4ZMbIVJ7C5IS5WrPaugncDTCXpGR+KDl2jdfYyB5uQ5IT/1qiHfAx8xQy0sn6m5x7cSIdyFXLJlDTANoBMqV/LcEBXk3zIZjdv617cEL6nkmBnbnlsoenBaMEMrHp65aUyIEJQcYWkz6Uy3Y+23bbkxvPvp0DjzuGPboc6+Hh6mi2xiX0EDrkoC2kyYbbMQfAFQ44m0tSPBvH66Z4+XttndeT9+1x/kAiazU4VktIzYRUtevl9yVFKokDGHZHNVY82kd5TBt9ohNTE1mLpxJHDNYjGnFAkgoC6lhhtcQ2ZEtLR2rhxitOk6J8UuL135K0hZYTmRQapE9c8gI+AoKa+wGXGOpIoIuKpJQmpu2WrR1FqoVR9K9awMa+AmGX0xup6oiScrPtfLsn7xkjhaUgGk7kLdW8CaQmsgklFVOSvoVjGNQFVM0BMds63VhXdThMkC8QhhHRICPDweyzXmreH08HAFdUdNSSdPhWUb61CS4Z8UDmx3I3D4VpaZ1oq4bJ78fWAYV9ElO3QbaePPMOoK6jlraNv4Y9UB0J0/57JhP7agwuWUuY1Flx2UPc9ceHSSrNBK134QZu+sQVbF64HoANt68iGWxWQdpnjWLTos2s+HOzInPq395Oe7fbbgNBQztxwUAYBtJj9PCtm7Llf/3Be3lw8Z4EQYGbftfHke/dBaPhmp8s5rWfmMGfvvIwP/v+IKe8b1JOeDG9+Ntg9P6Wn9w+kQdv3cYX3ryEH3x1Kz/4Kly8bH6a8DYnAdtzfc6OHyYTivO6LQ/eWWHa3JnPqlL18y92VOtnZ0Xl+RZPOFE58sgjefhNNfq2aTq7XtiurS+GEEIw5vhTWP79/+GOc5dz8r8/vwGq8WCDFVcsYfSeL1z6ZLxxK6VxHajCMwsoH7f3WFQkWXnTanad2vOMbuuFEmFnkVH7T6UcxIw/fDoKTTLYoNFfZ8XVj9A5axSrr3iQzQvXU57UTWXVVoL2AlFXke554+i9a1WWpIRtIQd96WVEnQVcXeix4+U/ejl6sEFbT4HrvngTt51zDwBjZrVz6Dtng7XcfcEKHrhxCwAXfnsl46aX2Pflj90eHD+t0PJ/XDeop9kFuuuWGu8+451PbyUvhtiZqLwo4wnfccePH0/HmBHccXOdw05wmgBNAJ2F3AwSkSCRdKoaUGPQFJA52pgvPSssoRqi8yG8Vol3TxbZbEsKQyQMiVEEUrtSsc0piurWNkfeXde3c7RxmhsNrTDZa04lNolVRme1xlVUbCJdOwccbVinlRMjnCmhbnoS2nSG7sYgneWLJmZQiGblxFd1hQaZsml9EcRagbHWzY78+qzFKpFWY9wGy7KHtsP25+Zf38VRb5xAsT1gVnk9iyrjaJigpd3mKlIGky/VK3fYTK5E79sYGfA2bce50nQztGkaooHT0KiaiIEkyioqlSQiMZKCjLn9K9cRDzSY+a7DqCSuipZ3zU50WtHyFgueXgzDAcoCUMNVf/1fJkjHMq1ggTtGhrSqkq0o97evxqStOZE7RrogoCEp7Dqb/n/cgVy9mnhGN1hJItIqlDQtzMgElYGVJZqKiTLgsBtX126IZJJVHhx92KLaCkzYbxz3/nYhM0+fR6yCFtNPYwWBNBRUklVUQqExQrZUTxwgNmgxEXXLGkxu5u2PsbGipfLSMA48nm9JBMIQDaEUZxR/WoHoeZq/GwdXTTG51micGl/m27Q1HdDfKNBIguyZYRCE0lANwmy9IrDYbsHo08cTKs2cvWcw/5Oa1Vc8xD3/83eSgTr7/O/pbFm6mTVXOlDukd98OeMOmoRNqb81HbZUwiKpCaQmEKnVQhAgy+64Hf3Fw9jjjXPY8sg29jpxAoSuKvX2/57B99/7YLaOcz6wmG/cMYZie+BMB1NF4AIxGkWhLaRzREC9aqhXDZu2KXqiwOkepe7V0KzKDSUiKCEytWCAuGG585aY73/jKF7SsQPpyTvj+RVPamp4+qtO5/qr/siBJ3QDzRsrNNkfeR8L97qhKBogQdnmDblhg+xC7JC1TKvBtw+ADGNhhHA3D7RLWiTNknQqUW507mYqDQ2tWkTlvB9PnLZ9PN7EGNfu0bn2jrWpu3Lq3Gylzdg5Pqy0CCNSJ2eaDtCymaBYmSYx6WuW9PVcOwLIPGm0cq9ZAVa6FocGVGyRidtWOjQY5RKmkQcfz8qb7+BX39nC2z8xgemFDVSKERsajn45mBSoG4cHMWkbLpJJeqwEsZCgHYskSDEoGXZFNsW6fC/Ll6S9pobXzKjbkK1xiaoOs8TSYVAUvdc+yKqrH2bfL52IHDuCulbEaXICOOZUehwyV+vUC2qYjp9IdfHT3TKBS+ikznJMhMNAusXi5nEhJWX5cbc+DzQg0+RPGLDaMa2MFDR6HJbFJILSHrsRtEWs+MdyRs7cKzvnHRvGM2tc4uIefs12Rj1NHDMp+dSzyOGDvLy8w3bUdMiMU3dj5UevYtvaCtHEskusc+y0REv64yJ9YYlOVaWiC1RMlPostWK94pTp5jV28tpF/m/HbPPnyWO3UgNpMgn//GTAf86/75fNizkCBGlrJd/GzePFfDvQTywMTXsKjxUb6sXlMSYqTd66j9mDIw6YwaZ71qOmTaKjo4cp7zqKKUdMZOquBUIZU9fNJGrbkl4ufctFjN1nHMd88zja2kR2nJLUB0tbQWNrlQvfcjkA8056I9ImFIiZfMRUvvpny/239HPxj9cxY/8ekkKJukkF7zxOTDjXbdOu+Mmte/GjT67g2j9t5Na/93HsG8YQ43Rs3IRMo1umBq2iiCEalSabd9w6SFQKX/JAWovF7gBVWbszUXnexZNKVN75prfyylf9iv+XWFTwUu6FPn8i6Opm+hv24eHf3cHmN3fBLs/1Hg2PRy66n5H7TGL8kTOp6cdf/vkaQjr/IBU9861PE6fmhN1FHuvWu/i8+9gQVDj6bZOf8f15oUXUVWLkobPQRhCN6mDC6w6kvVgFBlqW27K4l3t/fAcA6+9ax/mvOJfSyCKD6ysc9rEDmHVy84K65xf3Pub2ZuxeZsbuZU47czTrkm4q5vEZRmd+eRqv+eBEukeH/3K5x4ub/j7AUced/BLHp6Sx0+vnRRlPKlE55JBDaJgC/7heMvewEUDTTM7z+/MOoEBWynRy7sP7wcbKzFSsSAyqKcVdswGxCWhXdScTb0Ni4eTHgUzF1M80I6VpxKm+STrDs/nZoXGVlGY1Ja2k5GfyNm07eEVTZd37vjqirDMjTqsmvppiQwvGVTmsbw2l68szULIKgXUzf6ndenTg1imFez3rEliwgWuDyMS23PtkDOV1YNpOQ5UX88tPLqP71/PZt30FFKFN1unV7dxbmcKj1RGAZiApgHGthLoIKCh3TAKjM6CkVxEOjM7cWb1+R0EmDvgndGaGN6ALTlnWqExnpqYd+Hn9n++g9541HPiVE2kYd7xqcUgtTvVo4gCtpdOaSWSu9dasaGUyLTL9x1dVSN8TFiNpHjPtxlCoZvvG6aw0zbihCbpVDZsdF8fKcmBmXRSw1b2elGHbJVdh6jGzjxhHScbEVlJNCsSiCRz1Yxj66h+ucuEBrF7jpmATBkiBtb7cL8iuSCG9toabYaOcXL6vTGzdalnw7ZsAGHfMbNpGl10bxcom0DzPIknbLlEOyFrTYUtLqaYDqmlbLq8NpNNz2Q/50AnnUEVnJS2l0AFZi0FClLZp3TrDrJpSSwJqqYVA/jqt59h1+W0FypAgCQNNIw7deWPy++nGuRDFLeuME0VHqU5vpY3uqIoUhoYJ6H9gNVe873KEgO65Y5j52j3oXbCadTc8gq5rHr2zl/EnOqBvrb/BwnMfdKefEGytSAhdC1wKy4OD4yipOKtGejfwgoizSpZzr05a1JyDkSW25dSj8/pEPlR2bukWkDaASTR/v7jKJRf+Oy/5sOzEqLxI40klKkopXvPaM7jxz39myiHjW1gf4C5E34/17Z8aYfPBZpsOttkNGCcIpUSMTtcnhSXEXdA14USnDClmQYaEspEmKNIxCAwEqkFFR8OZDNbNgn0LSKXeNY1ENSXvpU0B47kZicebpM9EK2zTONcCQrgHZ9rScZiVdGEBVqUPP0P2mtshsuQFmT448+2i9D7kEyOhHeZCaNBpu8ffw2QqXmaCAhOOfz2P/unH/PNvM1hx9L7s3/kIo4M+IqHZr205XYFjktzdN8XhDqzCCGcJUA7qBMJhgPzxcXRnZ2HgvYQcZVJRlo1sLHT6EG6WyputgIKMefBXd9IzbxyjDplBPaUaW9v6YMpaPjYdXCsQ0rr7hRAOj5L2zSxpy827ZiMybJDH7liZY2j5h2uaVNrcoXDHybF8ZGKRiR93QVICHTUTnbhvG9su/Se7vn0/2meMop5iexIrCTB4zyQj0pakb03ZZgtGSY/l8H5LNhtXH3XjMCG2nj7oywItE4rCUlIN2oMGq7eWuPpt52efWX3XJsYf05z555MPSNlIwk0KkrS95I+RT+C955DDcDUTAB+GXDIPWQsmH5rUOd1CLQkJlWYwjmjI4QyjWhLSSFSKT1IZbkVrOcwbTEqLlMb9Tu0p4sS1DrM2LW7iYaWlWovShKKJYzLG0r1hKQ9csIyJh02BkT1c8b7LCcoRB/7+3cjI3cd6Dt+VVVf/BKRg5tsPpGECJJbllzyEDCVzT5vNwvMWYROLDfPsJke1j2RCKJr3Nj8ZkKQilKoBROm9svWBKIVB2dSjKZewSAwmtTWIaVobGAT3Xb8ZGYQcddRR7Iyd8WKNJ6269ZH3/ye3XrmVSl/8+AvvjGct2qbtguruZMnFSzD6eaIDYCEZbDDhZbNf8GXpyv33AYIZr9njWdleXI0RUiC302Jdee0jVNYPMv2UuQAktX/NXHmph9Wa5f97Cf94x/nc+7O7ueLfLuFvp/6GsBxy8HdPy5IUgIe+fx3JYINDv3ca5XFNmf0Ntz7K2L3HYRJ3bd3y9VuGbefpRKOmueqnjzCwZbiw3L+KG85fz+vPeDtSvrAEFJ+xMObp/+x0T37exZPmWe6xxx70TJrKdRf0cuTbpgBeDl9SMVGu9GkyYKGyBi2aLrkSZ1Qmbav8tp8pFEWMEYKGDTJtgVBpYqmQOhUkkw4MGqBJhCG2ksgmJFISFTQDcUQtCVPix5DZoRXZK1JaN5tLqyfWT7mtTVGtbjkh06qKxc34fXlQAmbITD+thmTrEq5dJAxY0ZR3tzJtURi3KQnYIN1k2i4SuHaQVU0QqGcbeU0QVYe2QRh/1Oms+suv+dO/34z92u7MmNSJxDKruJ4J4VZiqxhT6Gdzo60FyOgjtg7kOlQQzAt4JanuSv5YGSvStp6bRXZHFSpJgURKCspQGtNOY2N/JsznBfSy9pvOV1OGPJQFzcqJP0b+OODGHWxzrD3uN+0QWUWzz5O23fxxAPe3AXcViBymQDiwso4gcZprVFc8Qmn6WIqdEXXTZJoZKzOCa55l5UXaTG72q1Pgra8uOKaNpKq9XkqTLbVtdYWgFKBsQhS6SoLSMff9aTE3ffUeJh8xmVmnzWX5xQ9S3TTYIny4vaoiOJM7Ul6XP/4S14axVmTA6KFtI2htAfmKR96pGkBK46oc0qYO181zKJQGIWx27Otp689o6X6S1oqNkBahLCowaN10wYamEKAUjommtcqeLdprG0kIooRI1Fl/zvlsvn4JYw+YxL4fPZwr334hyUCdcSfMQ0wcRzUOiY0kEJo1f3uIrt0nEu4yGWM1kUyobK6z+d617H3mnkzcbzQPXriEZZcv44DPHJW2tJrfs5G2PD1zyMikRfhO44QUtc7rTinuu+wR/vrNZVTrglecNd05l4sYhBmmReVj67oaC67ewvk/+i92BrBTR+VFG09JEOJbX/gS7//4v7H3G2ajRYCmVeE1r2IJDtfgHXnzOJVMYGxI79UrfhZF7JIWRHaRNj1NFHHqPWKsyLAxiVX0xUUiWaaS4i8qiWOnJNrhLQggDBxNMtEyU5pF5Rg/HqtCE7MijEifpzbrUpAyipAOde6oOe5cF5r0dfegtQaX4GifjIgMvyJMilPJYVr8A9V4UTPdbAeRLutxFjoSjB67B9Er382Ka37P705fRc+bTuSIt43hHjmJnqjCLuX1HNS+LHNgXV4fzYZGR1PYyzo8Rb8pZg8qz+CQwtCuGlmi4sfcsVncQ6M7rGa026KKaRhF1FOmurlGaytOEIUJtUaYPqRks+0DGRhCiFyeIa3bo3TM01fdn77t5plZIh1jIch0A0WTCeSfwSIBG7oxtAHIOIdTkhDUSVlaltrCB+k+5SD6GgUaWmUePRJLJSlkbBWASEYZDqMcxC3jCK7l4sOr03omFkDfqj6WXPggu5w2BxGEgOHOXyzkob8spW/VAFOOn8Vhnz2cS864wO1uuY1KElJLgixpUDnGjffxyScfeQ8gn6wMbfnYlmPWfE0bORynYqRzqhnSMvKfyWjGORFFUiG/5nEDGxhUKRUgDAxBoGkv1imE7rVGElA1gkY9RMdOEBBA1F1fzxY1IjKgYXDBctZ/7VcA7P75V9Jz2K70A3N/9UEGN1QJR3bQO5jeN7TE2ogxb3sZ6356Ofd98XLmfOYUKknIwu/djCiEmCMOZV13G+OPeZh4w1bWVrvQQ5SsRXo8fWIVKYcLKgcxRRWzNXbO7p6pFAjnIF2xTkgl7Glnmy4NG8O8Z5oxlodvWMc/zlnCjL12Z/r06cOWf0mGBbsDVGXtTjDt8y6eUr3wNa95DbWK4qF/rN3R+7MznmZ0TJnD9Pd9lNLuu9H7swu55szz2XTPc3ecdF0/4wJpz3To6iCmVqMw9ZkVq4srMQ/85h6uffeFlEa1Mf/tewIwuLHCbecsIGoLOeGHJ3DgZ49BKEFQdgnn9FfNfUb364UYAzfdnSUpI47ajTFHzM7ek8WQaNyIlpaPjxEnHcC0j51O7/WLefCzF9F7+wrW/+1+Jr3tcMJu53xcXd9P1BEN++zTifIIB6x+PGfuwS11rvzGQv7vrDtYv7iPn579nR26Hy/4sHbH/OyM51U8pSdIFEV86ZOf5+s/+SKzjp3kUOlCkliVec54r4+mDLekimeXuJ96bobnX3NthyBtHZmWMrZnRhgrQWhC1SpKZqzTcCmImNFRP1uSMtviEpHS2Yw3MZJYq8yV1/mlJJm2ihkKzrOummK0wHrhN5uvuKSzetts6WQAzsCmFZJ0xi9FVhBwbR2LpckoyoCy/vMpoyirCtgMx5tVWEyQYxKZlAlUb2Pyy99EZd4hrL3qAv75/kvY8tVXs/qAXThwhLvBjgr6s/HeHLelH28eLy8lnqCIZEJBOkn9xCoSlAMHDnHI9VGScTZLN9U6ohC2aHG0FRpUGu4hK6R1wNkhOjW+ZSZEOs4iHTc7ZBnbfN0DmH0bSGAzYG0WtgmQ9S06v26vdebBuZkWTuT2Nd4m2Fot0RY16IicL48XGtRGtrQnwFUyGlpRDmIaqBR0nM60UyYMuApL36p+rnv/xdR6K0x/xa7MO3Nfwo6IQS1YeP4yoraQ0358LKatjao2lNatZMviXk748kGgApLYnfu+YhUb5aoqXt8oN+vPs+HygFNtRItuSXPZZiXFLUsmlpgOqVtWyyZQOrcOm14rGZMrfc2BzXNls3TMTSKJyjGlosNrGASVRkStEVAddA90U1eIWCIbAlWR2UWijUJXYzb/+mIAwgkjGfmeV7NxwH3XPHAXXCVFG8f8k9KitaDjkHlMfFsvq399HVtuWUb7XtMpHHUwG7dGTBy1lcDGNFTTh6lVRdDtr8ISKZ0d81oqzx/JhEoS5c6DBKMkkw+ayDv/dgrdYwsMaIFM7335dt66B7bw6zdcDUD3hBKqMIYjjzySnZGGtS9aevKiRYt4/etf3/L/H/7wB0499dTnbqeexXjKU933vOc9fOqLn+Ghq9cx99jxTXolikpO9AugniYSodAgXXsmTh+SniGkraRGSFHGKfU1NdSzeSv21gKQx8EoocEqVLrOsqq7NpHUlFM6aF9cZFtccjcMqWkLG9RSSm2sFUpIpL/ZpbRHk3u4qtDdbF1PPU1apHtKuoesbeIc0sQlE4HzGJP0AhBW5B6WTkzOQzQEbtksmfEP1vS3NyqUCVlCk6jU0BC3nIyh2AtR53SKrz2LFZf8lPs+ch7rP/IeHj10b8Z09LPXiNUUZEJsFR1hjbXVLhpatYh0NaxylFjhHnaJUfSlLAfnEe8UhCIAAQAASURBVGSa1FpIPZ+a75u+QQZW9TF5Uo97cAqTCXUp6QS6rBSO1aNsDq9im4NB2gKyuJabFNk4NpfxY58mcrnxyjwZ/bMpGDJh8rgfS2t9UeBwQhpkEKJKbdRuX8LmY3ZHdDUFx4wVGSW7GMTZ2GUGmKkCr6cFJymFNpA6+9zaB7dx72cuQUWK4//wBjomONprTbuHXm1bg45xbcj2IhJNm7KsuHYFqqAI9tu9eT3QamynjcSkQofba9eAa9PmWzxAlmzkk5lsmZxJZMtQGdcCNSZtwVha2qfZGIO7Xjzl32ea0jo8Upq8+ElCoiXVukuurRFYLaEmkQ2XpIC7JmRDYAKw9QYbf/prbCNm4jc+THlqJ0oadO7hI3M+Yh7r0kgCjDSowLGLuk87AjV5PHHvAMVD9qHRKNDdVWHL2gabHuhllw/uDTjsXHa9pC22QJoWGnjDNIUxG6nXkzsHDNLKjOklRvbQnzQFA0Ohs3ueFIa19zR9h2qDmvN/8oMXPEh9h8cOAcI+/8C0c+bMYcGCBQAMDAwwbdo0jjvuuOd2p57FeMpQ8XK5zFc+/2Wu+97CDAm/M55/oYolxn783wlGj2Twlrue1W1nomWj25/V7e7oEEIy5qhXMHD3ncRrNz3+B55EbFm0kbv+6wKCUshh3z6Ztgmdw5YpjSjRv24wU8w0ieG2Pz7KjOOmEbbt2BbECzV0rUpt1aNs+MWvqS9fztj/OJNwzIinvD4hBJ3770LPCfsio5wgm5QIJdh08zJM8uyqF+77+hm877zDOOwdM+geO5WTTjrpWd3+CyGssTvk5/kcF198McceeyxtbW3P9a48a/G0wANnnXUWn/qf/+aWC9aw12tnZK8rLAmtEt2xlSRCEVudAjJV5n0iU48Lr9OReZ6kegT1XCVFW5m9jnVuFx6Q66suxkoUloJsCjD1BIPUCu6G05cU3U9copYEEDqxKyex3yoUp40ro5vUD8hkpevmDNMj+G1aEfAlbj+bFH4GaciYKu7DaQtJWtKikPMV8sWptIJuIzJ34Ax461W5dbPKkr++PJMoqEG0oUD7rnswcMcdNO59PctHtiPnWvYdsZJ2VWfZ4GhWbOsBoBA40GI5bFAOYmqEqVZEs1TdEdZSLxeTMkSUA0yLJKtCSWHovWc1ACMnFIjCOgZBkSQDcgphacRBiwCfSatWmZ2BEc0WjRXuRqJIW202pURBCm/OaaykoGZps/HxUvtZh040WVci98zJ2nBA6ORnGDl5L9bJC6hfsYKNo/aHUdCWtn/yPlKmpZUiHessFtTSFUbKsUG8h84tX7qWoKvEnK+/mWpXiIkT1ypI3KVZjSO2bIwRgaKqI5S0PHLtI2xdW2P/V++FFJZKEhJIk4FmRa6KAmRtt3zLY3sxTNtmSOXEDlm2xS1amXT5VNo+BUm7a0Bkg24T2aJvkw24b5FGhqitQRBoEi2pVSNMIpGBwfRFqBT8GgwKzOY+qkuXMPDIIrYtvAusQbW1M/4N76A4aRf0NktjWwSBhcggIo0QFuHZYdI4cG+s0oqaIgEa1dBVh7SrDsnAnRwDlQKFdsW0z57B8s/9gbW/u5E5Zx5EIE12TlfjkFgrqklIQSUEaeWtYRRoqOuAh3/yT7bdtpR9v3oKpfEuMfW2Ar6imQdfg3NyHlQFKh0hN//hVq676pqd1ZSh4XqMO2Y9T3Jo//nPf3L22Wdz5513snbtWi666KJhbZlzzjmHs88+m7Vr1zJv3jy+/e1vc/jhhz/p3TvvvPN461vf+qQ/90KOp5WohGHIH372C1731tcx6ZiZtHXnreQNBWEyjxNnOS8zHIRXcWxVcmz21H3C4sXioEmJ9a0ik0tY/JPFJywAWInKJTBlVc/2rzOosVU1GNARA3Ex6yOHSjsfmpSyGShLISWgetZQkhOlArIStU5/3IsuMTFaghLYxJep0789tVaLjErrROB8KZwmTdnjMHLYlRYzRAXexyaj4eYutPJ6KM2Zw9brr0EsWYfsGsvy+yYS7aXZr+dREiPpHywSBJpqPaRcbKCkY/N41kJ2XEOn6gnOeM8fa1+qlhgK0lDVEbf+3zImHjSB7lkjqWmb4VbAMR9KocOyFMOYehLQiAPXzREmY3FBeu8RAozNFFutybXacgJreZq48K2MdLx84petWjUxKi1hm4leeiiRhSKlqTMZvPceSq86hGpnmCUqrrXgzu1QmBaab6IlhsAxocKYauI8d/x1EA806D5oF0R7G5VUmkgIi7aSwUZE/30rWHHRfcw58yCqukBZNFh83kIm7D2anjmjMNY91PobBccKEZZQamLhBNFi06ru6tVb/XaGRqJzqrRDafs0989hxVy7R5B7X4COVUo3zg6KG8TEMedaMCmQiSCigJpCFxRKGeq1EBMrhDSu1RoLZEMQbGiw6Z9X0Hv3P7FGE3aNYOQhx9A+Y1eKk6cilEKnl7opWHf+JAKbBBhlEYFBBgYdp1oAqVCjTQQiEVghsaG7n1gt0I0QWUxSs1BBac9dKIzrZP1da5ibw9D55KISRyhpMLKZzHn/MW0kg0vWUVnRy5Kf3cgenznRJZJCtDCxnDliMwEqAv1Gcdd3r2P+wYdw6KGHDjt2O4MdUg2x1j7pXsPg4CB77rkn73jHO3j1q1897P0//vGPfPCDH+Scc87h0EMP5cc//jEnnngiDzzwAFOmOJmPfffdl3q9PuyzV155JRMmTACgr6+PG2+8kXPPPffJf7EXcDxtOsbJJ5/MxBnzuOOHd3PkJ/bfEfu0M56BKE6bBkJQWfsIEc8sewWgUYnpWzPI7JPHP+Pberaie68DWXPR/9G+5GE6JozeIescccB01l1yJ1Pfd/x231/1k6soju9ieio0t3lxL2vu3sjLv3bYDtn+Cyms1iz9xIcBEFIx5qDjaZ89j2jMWEj9l+xTbmY/udDVmL7717iH2pOcfXftM42+BStY94/FzDnrCFR3xxP63Ma717D8mtU8suT6p7DHL4XYURUVt46+vr6WlwuFAoVCYbsfOfHEEznxxBMfc5Xf/OY3ede73sWZZ54JwLe//W2uuOIKfvjDH/KVr3wFgDvvvPNxd+0vf/kLJ5xwAsVi8Ql9lRdLPO3LWgjBFef9kcWXPMzyO7Y4t9G0gmKsJMyAlxopTCbJ7l19NW6G6UG0oUya9vApe6GiI2ombKm0ZH+nWip1E6ZgzhT8mtNoKcsGZdlIfTY0XUGFsqrTGVRpVw3GFfsYVRxgRKFKOYgpBG5/I5U4p1jhXFnbojptUYOuUo1imBAGmkAZwkBTiBLKpQblUoMw1KhQE0SaoJAQlGKCtgRZ1FAw2MhAYLGRxYQWq2wLy8SE6esyd4TSqosN3N9eDh7IgKM2+3zz+FiZMoOKIaWom3DhWnrul26Ca5z4lBSW3SespV4LaTQCqvWQRuqXNBhHVJKwZbZX1wH9cZGqCYmtk/ZOrHJS+wMx9122it+95lJq2+qMP2QKUljKKdA0c9tOZ/7tBaeRUQwTotC1PYS0BJFGKuMAyx4wK3HA23RGb/17IqVG+XHJ/s5RpvxYtbQcmg82m/oCZcBlkQKUE+eerBrQM3VPCl2jGbzpLucZZZycuUrFzHzrMNaKWhymzr6OTVZthAzU3U3Oj2s9CUg297tz3TjLgDgHQhfGUH14PRNeeyCUijSMYumFD1AaXaZ80Nys8hEpTSFwHkwFlWTj3PTmccBwr2fS6uMjUy0hmVVTrBHoRDY9mHItuax95Kt56XtaS5IkBZr7Sa3Ftd/yr/nqSf7HRyKwoUEFGq1l09oiVojNEZVLbsgWnfX2j9Jz7HGomRMwZZWty1kipMcyvQ5EIiB2VgtCepyPai071iVqQCFrElmV0JBQUwgjEKFBhgZjBEoaRrYPkmyrArDuxhVZa62ShNRTgLS/VmpJ0HLtKGmYeuruhN1OK2XbZpudMzplJCZG0jCKmg4yzZ3BCtz21ev55Cc+zaRJk9gZrTFr1iz62cqg7Xv8hR8n1vEoxJKurq6WH59QPNloNBrceeedHH9862Tk+OOP56abbnpS6zrvvPNa2D8vldghAhezZs3iU5/+DN/68jd5+W9Oo6vdZEJGQEsv29vOJ1YxqAsM6kJKf3U/eeG3FiG53A0tTJXUlDBpCT01QARMmqDoIdMcbwTmDb60lXTIGqPCAfp1kU4TQAHqNqQvLjKoI2o6zJD83vLef59SEGf7FmuVYVtUwWTYgIZWPJZoVpwokkSR1BVWu8e3jSUiduVnkVPjlIlowaK0MIACEMkQ2q5pJisydoZ6AEwZRWVjL75DJ4VlZa2HscU+Fm0bgwoMSV3REAGNUNPQirao4R5m0nnaJMbRkwOpkUYRKEezHRiAxZc/yvXfuIuklhC2F5j1+r3o2H0Kxjr2iu+/R+QYEVpR0y5pKYfOw6me4jPqcUASyPTBmYrygVP3zfn/ZPgHLdJWmmv9eJyLTDOPDLsypDpsBE2lX9yESjZSI8PUpFAXBGFDEkZtqEFDra/A5hwtNVDNv6X3KcIZ4nncTphiHfz5YYRFFQOKo9roKdcyjIm2klIQI4saVS5Q29Zgw2A7Zd3P0iseYc4Z84kiCETTxiIQhkoSZp494HBGEFG3KmP9ZMlKSkO26fnoEw73/fNqwc2He0bVT2TW/vHR+pnW9k5GP89anrm2pfDMNpeACi1IGoqwmDgfLyvQmyPiSh9bb7+BoK2TmWd9EtseZTpxKPBfO0s2af5PaNxvYbFJ+qZnGFmJSESTQZQITJR+t6J2iTFOfG5Ee4WOgsNn7fqOfXnol3cydv6oTNwPoKASTE4Lxak6N1vWUlhqYSfzfvIebJzQNqaIEjrDsuSTmsRIAmmo6YDFP7+FQtjF5z71KXbG8DjggAOYxEzu5zb2t8cgxVObg2+zvTzCIm6+9SZ23XXXlvceq5ryeLFp0ya01owd21rJHjt2LOvWrXvi+7ZtG7fddhsXXHDBU9qPF3LsMCWuz33yk/zwV7/innNu44iP7rejVrszdmCEo0ZTWbl0h693cFOFv/77VWxd0cfME6az23sPQowckd5wX4SMsB0gCGWtZeudy1l/3VLGHTJ1u8sIIRBRgE3ZJWsuvRddT5hx8pynvf0XWmz5y+WYuMHs1/0/RJhPdZ+b6Jo5EoC4v06h68mz2oL2Ylrxenyfpq33r+HRC+/h3jsXoJR63OVfqrGodi+jiuNYxkJmM/9Jfz6xMfdzGzPYjQMOOGCH799Q8LO19kkBoru6uli/fv2O3q0XROywREUpxc1XXMGc3ecx+oCp7HLkmMxF1M8SlLB42oUUNgNlVnVIVYdZmyhIwZseRGuQmQASuEpLnM7MPFsIUpCtkIQyyZxJDYB12h6xDVoqK85vyDqXZutaR2XbcIJxQMVEWYuqYVQTRGqalRUAkxrHNYxqca1N0lYAMKSyItApu6ZRUjTigEYjwCiJDVx1xSQS0RDI2DFJhBDk3Aea4nI2V03xbJV0QusrMKoGQUUQjh7D5vqt1DscrWjxfZMZsV+FSGoGGwWnhaEc26FSiyhGMdrITB+kkbJ/fDsMnD3CXz97E3E14ZW/P53ytNFsbRRJ4iZoM5KaSGmKariRZTZ7TGekQliKQUxDBwhhqTVCB6wNNCrAVVYsTTYJpCZJjsGTWRdANjBW5JhDYjsicOnYkerRWNVsBQlvX5COvezpQm/dBnVFoxE43Q1hiRPlgKXC3YCKYYySllKYEBvX/omUphTE9D5aYcnZl9N33yq65o5j9w8c7q6PFDzp2pZOMCwoR/RefT+1ZWvYesdyppw4h7Zx7e4YSI0SrnVQVHEq1peeZ0pkzKFCoBECGrEaBor1cGRNk7FmW9o7IgUu58bJj7k/r60Yno9KsraPyIQSm+ftMCyJAFswBOWEMEpagL5WJlTvfYCOGbvC5BFNW4WApjifJaeM6AHmFlswzepJfnOxdEB1L+NvXdXSSpxQY2RQhfQ+FCWUiw0CpakmIaUgprzPbOBKNty7nsmTRpKkLCuvYyNzGzRWZESAJjPLtYHccWytpmTWBsISD9S590t/47Of/QLz5s1jZzx2FAoFbl14I/Pn7cFIO5YRYsyT+vwi7qFImUV6wQ7dr1GjRqGUGlY92bBhw7Aqy87YfuxQbfNZs2bxo+99n7M+8gHKM1/PmAllusJqKlzkLmDf+gEI0idKIJy6bN0E1E2QtYF8i8EnLIlVWcLiVRtj6/rTUlgUhrp16whznwNSATknSuaxK/n3i8LZrsco2oMaAKHRdAVVaiYksU7IrmGCrA+dj8RKIqOG+an4fnNLGyhVCo21IlAGIRIKUYLWknocoGOFji0oiQlShkZDYmKXrMiGy0RsQI7WTCYQl2nvebZoilMpjBiLtZryHesQTGBwmqYtaDCYRFgLIzoH2VYpuQdKjhniy9eRbCptet+RRxbVWX3bOg7572MpTh3DQNzaLgukcSq3KUDNM4ikMChhiYyj69Z0yjKSOuvLK+mWqaUGdnGi8KKCOhYZBiILYbMHZObymFcLTp+pWSsjJyqXHTP/h3+o+lYGoEtQ7BrNlpW3IRqCpBZAMfHdDKRygnZCWgJlKIcNxxIBdOSwWCMKFe783pX03beK/b/2SsYcNBWNIkmFx7xYmH9ozf3EiTx09pUMLt3A3Pccwm6nz8oSPj8RQLpkP7Gy6UGUJpTaSqqNEGMEgTLEXuk0FdwDaMRBSi9216HNePHZwDbHN4d7acF4QOv/OveaFaBdC9MvI6zNkgwbWCgnRKVmJh7Hyo1vTbHm01/DVAapD27BpPgTXbBNNlzKThLaZ+ik7U+LrEpMWWdfQyiTtgRF08Qy/ZwVYCID6fJSGVSKQTPWqeMWgoSBRgFWb3DHoKuUna9CWBS2JRn0ExPPZlTS0biFaI5/rFVTVC99LTESay0P/O/VjB0/g898/OPsjMeP3XbbjdnMZyG3c5A9jlA8MZ2h9XYVG1nNw48u2+FO1FEUse+++/L3v/+d0047LXv973//O6961at26LZerLHDTVjOPPNMfnnBhdz5uSs4/pyXe7PWnfE8iOLEKSAE/ZsfJWDCDlmnTkXdCj0vDRR6YcRY4mofplZDdD21Mnzf4g307DGBsQdPcy/8i05S567j2fMn70IKy4hihSCsA8MrUy/mSHp7ARhxzPaZUc92mESz+DvX0DapizEHTHkCzZunFqsvvIttd6/jvkWLd/jD88UcD5q7GC0n8BB3s7s94HHbKzVb5SHu4nd//C2TJ09+StscGBhg6dJmW3358uUsWLCAESNGMGXKFD70oQ/xlre8hf3224+DDz6Yn/zkJzz66KO85z3veUrbe6nFDk9UhBBcdeEFjJ8zh39+YwHzP3gEnWGdrsih5CU2a6VAc4ZdkAltQeqfYhRVjwY1IRKbtYNU7u+WsM5vRtKcpRi8lX1T58ODaV3LyFVWisK1NgoipkCcVmqcpoqxkoJ0D4ZO5ao1nnmUrw4ZK1v+NlbQMIFre1iNCVx1xXvDgKsY1OKQJAU5KmVoD+roQlp90oo4Ua7CUlfYevrtEuFmp0Y4ZkoskA2g4No8Mt+uEJBEEG2DysQCxZ6xbNSPMqrzICbN3sD6qqNGjmobpK9eZGTHYKYLkgf1FYMka980mTuGcbt0UOop0HvXanr2cnoA5SDOvIJ8Bca3+tyYJARCZDf4QGp8muOrAiZIfYeiGgOxmxX11YvUGqHbv0CiU6G4TK/GCifJHpLpKQgjsIHFmhSkbMhaG8I4jQ2RisZ58Cy4apUp+LZZOosPIRrn6Nb6zuWEh84l0RIRacJUZ6MYJZTCGCUNRZXQGdWabTKVIPoHSAZqzDjWsaH6Gk0mEEBHVM9aAYmRtIUN2kLneeO9Y4x11Rl/rrnrKEEGDtSZpJW9SGm6ohpKGKJA00hUC+gXQAlDW8GtXxtXfQGyyp4HMOeF0nx4Kwl8Zcq3a0wKHDc5/yvlwMPY1DJC4mTzw/Q4QVqJ0iRakdRCqCqs1ogwpOPAgyjMn01DGWxgs5aNrKcgaQk6dBUfkYLPZUOgi83zIHPZDiw2NAhlsUUwSfNBpsrurCyVXatHSSdMKLFEKRg6XvAgW+9fy+E/OA2CgACTvQe0+IoZK7LKCWlryLPEgpQMgBsKYqOopajgvvtX8vDPbuKGa6/b2R54kiGE4P61dzNl/FTW8Sjj2T4GDFyb9gFuZxTjed3rXveUt3nHHXdw9NFHZ/9/6EMfAuBtb3sbv/rVr3j9619Pb28vX/ziF1m7di277747l112GVOnPva+7YxmPCO2tuVymbuvu45d9tidJVPHMOnk+RkboT1sUA7qFJWhpkNqOiSQmkRHRNa1fJqqs81WSVW7zythwYREORxKnpJcUIlTTM0xr317qJ4KbwVCUyNsmiBKhcK2tIJCkRACMYFrG6XMooJMkNam2BZNAYm2zgenABmjSael+8Q6ymaSIv6lbapPJkYSBc35WEM7kS5XFrYIj78JE+JIERcCdF1ByoaSWEwBTASi6G/aoOruxwudhYMQt6d4laCINZpoK6xdMI6OA1bQ3yiQaJXdULWRzsMESymMKaome6umQ8qqQUnFjvkjDUFRYaoNeqIK/cLRaKWxWSvDh8RmD9okXZ8kfQjIxLWTrGMWZfATYeku1KgkIUWP64mDFtaJ0cLhU4xnn8jmQzUFvjrxMulEvfwDVQJauKeEASNEU7XUiSe7v7VLYqwEOWM8xSnT2XDln5m0zy7YgsAqx0wqFRtOZE0qIpVQDBLagkbGaguF5o7LlmK1ZdJR09BpWyCxsoUplm+x5TELQSqIKHOqpf5akcKilEWmOKLEKBopE62c8yCKdYrjScfOH/NQaQoqIQoS6mmrrU7T4yofJsfwETIVVEuBUS3LevFCXzLyKsJBa7IkIkPUFlMIE3RKjVaFBG0hWbEJG8dEc6ZhCqZFUEFVJTIBHVmXjAZpEhS4/o9VDqMiAnd8s8zYgggsMtLp/qTJQrpfhUKcJSmRcmq27am4X1lUuenc22mf3EXX/InuuOTOce/l5NueecZjA7LrO8OhYFu8lABq67ay5EsX8bWvnM3BBx/MznjyMW7cOC64+HxOO+V0uu0oSmL7cvOPsoQqgyzftuRpbe+oo47KLC4eK973vvfxvve972lt56Uaz1g9ccaMGfzj0stZ8aOr2XTHSvrjx6Z25Q0Md8YzGyqMaGzr3WHrW3bVSvrXVph44I5pJT3fQwjB2FeeTryll8qiRU/qs3f9YSnX/O89zH31LrSNfWH7Hz1boQedh0Ewsuc53hPX8rnj81fR+8BG9v/00Y//gScQQ9WBk8Eaiz97PieddBof/tAHdsg2Xqpx8sknM44pLOS27SYR/XYry1jI32+4gs7O4R5bO+P5E89IRcXHkUceyQ+/+33e96EPEJz9RuKZoxmMI9rCKCuJJ7jy9faSlXyJuyCTlvaKr7CEudml9xcKU0ZEcz0iW18CxMLNerIKi2kKznlH5nwoHJXECCdu5pgZBkNznwsqcVUU65hE4BIwaWVWSUjSllAkdLPCkpaA/f9xzjdGCosKk6buhhWoUJNEChM7QKmIpQMqIpzYVSoKp4tOC0TVydgM5TWSwRP2p+8Xv6Pe30syp4tqHNJXdY0Xm2p9RMq1yMpBTKQ05cC1BoIcg8vHIzeuYeTsbmYcNpaqFhnzxM8mPfDTf7bl+CIyUK6vrpgcyNG3NRIrKaoEEzY/H6dtjEQ7ppfRTSaJ0WkVRecdgMFagxCixUdIpJonwjh2i/P9EdgIvLQ6uBYQwrGCSiMnEo0fz8Cdd1I4ZA7St2q0pBglmf6Fr4AkRlFduo6rz76HOWfszl4fODAbx0KQILQiEK4dUFTu877Nk7GspAMdN7WJTIubuEGg0+8apABbf075yooQlihIWtp6bmyaQnyBMMgoJgo01SCk1gjQQjp8agaExQnImRzo1opMFNRXpbJngy+qpFWwFsaPtISlmGIUu/2Q7tyP6wEIy8D1N6N6OgmnjHWePRaIpRNi8xhZLSABlQhM6CwUkBZbdP4+2U4E6bFOZfTBVVF82xUgCHR2DRRCN9ZdUY2uqMJNn7uWdTcs55AvH0/XvAk0dJOlk2f7+fCtTz9uXuQw70oNTWuQpK5Z8qWLmDBqKhf85lfD1rcznnwsGriXMe3jeISHmM7c7HVtNfdzG1PZZacdwQsgntFEBeDd7343C5cu44efPof533oj4cROx/BolCimKppZGDLmRyEFWvj2T9207qoSFm2bLaEkd/fzSrKB0JnxoXs9NT40reqRoZCOHi2Nw6nIBC1FlrD4UntBphgWKamZMEtIvDKrX6eyFo1wDxc0pA/rxKgMn5MYle2zx64kRqZof9cOaKT0Uik1ShqkNI75EqXl8xJOOTRVBDWxhFgg6xJVF5gQdAFEh2tlJO2WqMOpWvbFq2kbHMHWWsnhERJJEBiKodtXbSX9cYGCSWho105oD+t0hdXsYZk0NCtvXcvsYyZRVo41pcRjlz/9+OdbbLFVGZPKH2uP6TDpTT4ShkhCUSWUgzjDrNSSVP01NY7UqbqqVq374MXMTCKxWmadCNLnnjWpUJwWqfFjk56ri5YkEah6igMSbkw79tmf3r9dSs+WAdSEIkI6arIQlo6oTlElVJKQhlEE/Vu58iO30z5tBHPfewhxilUIpKFIkiWq/vzxxoVAlqD489DhqkxL+8cz5nTqH5RYScMEWRsin/AYBDJNRPPXXsvDVFgS4VoU5ajhzg+bjnPiBP+ssViRGvdByjRLsSkp+ypjnpHSlC1OhTkdWyFBFhN04ujb1griOL2OlHPfrN77IJ0nHIrqFkDikqOCwTQkVqUGh175TbgKTGPNGky9QrT7RKK29tTYUmONQEqbiQUKaTN6OUAUJhQCTTGMaQsbGX6uK6yw4Md3seLKZRzxP0cz7eiJNEzcYhwYSZ1NRCQuIRvW+hSWRMqWZD8xTkix0RA8/PVLUdsEC+69liB4xm/NL4loa2vjn3dcywH7HcgIO5YuMQKApdyHQrGocc9zvIc744nEs3I1fPtrX+WRVau58hPnsee3ziAc7eSjazoYnqwMiWyW/RgRSP0vW0dDk5WXeqhRPRQmTmLbtf+kPH/3p7WuW390P5XeGvNfM3MH7d0LJzr2P5Dey//K4J330j3hscWhapsr3PzBy4gHYw7+/snIQPEvaT47I4vG8jWYwRrRzMdmYiR9fdSXPEJj3Vqqi5dQX7EiK+WIYkT3yUfQefLRj8v8iMLtc3dMYrjt2zez6IKH2PN9+zPt2Onb34/HMRnaXsXFRyORLP7uVVQWb2PF/ffT3r6zLbgjY99992U6c1nIbRxgX8Y2NrGGR3hoyYOE4U5a6gshnpVERQjBRb/9DYe/4mTu/vB57Put1xCMKrlZiC9zpyDBbDadtgQgnYkjWxIWbUXGroG0rZP7v6ZDykEjax3FRlG3QdYSMlZms9MELwhniYWkbkNKtpH64DRhuQpXKZHCUFb1zGPIWIEShhiV6bTIdBt5KX+vDxOnM2A361WZrHxedyW0goJKqOuARCswpMA+spZHohUq8OMlQWkIBTqymKKrrMi6QKby8KoqCIKQjlOOYtMPf0tj2wZKoaBaDykUEowRDNQKhIGm0ggJA40OJCYHxhyIC7SHdQqywT1/XML8M3ala/oIIKGgkmyfNSIbL5MeKz+GxsoM9OyrUh6Q7NtBkAPf+v+FpiwM5aCRgrAN9dSTSBmLlgIdpFUq3XS5tkIgFRhpMca0tH4g7UykrBCbSPAOrClg1KYeQyZK/1dQ61sPxiBCidESa0y2z97FuPrACm7+4nXohuaQ755KaWIPiUnB1OlygTSZS66/FhwrymStgnwkVqVtMnJaQs2WqBSt4ma+SpcXI3OzfseA8evYXnUlSJ2gM5PqNALlQKgm1S+xJm2xidRfKCe8hsJVW4JclcWNfvZLBoZGI3CVLQEq1JhGwsYfXUg4YRRte013VZpUI8VaQX3tGraedzm1h5aC1si2MoVZ0xnxpldT3GUaBA02nnMuW/50FdGMSQQjOtn8+ysY9a5TCEZ1u4qHdN/fe3aBAxW3hQ3KQczGWx7hnu/eTP+qbRz0iUPZ5dQ5zpnaCx9K3XIP8mw+z3jz7c+8EF+U3X88iBqW/eBqtty8iiULFjBq1Ch2xo6PRckCRgXjeJA72cJGfvyzHzFr1qznerd2xhOMZ62+KKXkn3+9mANPOIG7/+t89v3Wa5Ajiy3l08QokBAJjbbCPeyEzRhA7gbhRMDcT+tN3Ogw9f4RNKwiiYsZvqKkYuo6oKbDpqKsUdRotoACYQilJjCaWErqMsjYGkCL4q1PQAoptiW2ihCdicN5rEn+Ye3bIm6dhlgmLQmLK8u70r+nNkbKee7UdUAjCZDCCWWFgWMlJKl5m1HGtYCsRAQGKwQ6MpiCRNalY67EjhFRnDEDgMamVaxdP5+J47awtVKiELlZZZw49lGcKCpElAox/TfcR+f0HjpnjiSxksH7N5FUE0bsM4mtcYmSiTPGVj6588fOtyo0oqX1o9JWkJGCQjoe+YTFqeA2Hwj+WOWxL43U1C2xMuv/a9VsCRnjBPZMyq7wSsKZv40VDmyXMlKskWk7IWW0WIExZIkLAmSnaz+pngJCJlQWPsLmO+9H1ivIRo1t96+m3luhe9fR7PW5V6DGd5GkbDGffEWpUafDTjXF2sidkzp33gAZ5iVUOrsOYmszhVpPT86rJ+eVT915yDBGin8vL0roX9OZQBmIUGfCe3mmCt40MqUqZ6J6qeBg01yyGVJZpDLZMciSlN5eVnzm1yS9fUz87/dgGpaB628lXr0RggA0DFx/B6qrg57Xn0T7Afshy6XUy8lhUFQpYdRbXs7ar/yGvr/dSPUex+qw2mTbCVTTVBTcRKC7UKUk6iz7vztY8OO7GLvfRA7/4hGM3HWUM1b1rKvUdDU/VoE0rpWTJim+peffGxrawLIfXsumfz7CQ3fe/ZQ1PHbG44dSigWP3MGsabPpYTTvfOc7n+td2hlPIp7VRqhSilv+9jcOfvmJ3PGBP3HAN0+lfWwrbcy3cSLZxIYMjaE378cK52gaZcnKv1ruX7WfXmyhOtuR5RLJ+ifO/ln6lYsBCHvKTHjZLmy9ZxXl8R1MPPileXOV7c7pceN3z6W3sw3TN4jqbqMwsg29rUJxRJl9P3wYow+ZQdU+NTOzl2psu+Yekg1b6TrxQAZvW0jfFb/AVOuE40ZiKnVEMaK0xxx63nQKqq0M8fbbKn3X3AmQJSkdx+5POGbEdpf1SWJSjbnpS1ew9qYVzH37vuxx5t4UApMlKfG/aPH45DCflKy/5VHu/O9/cODXX0HPXKeHYqygnkge/PY1bLzhUR64/S6mTZv25AZpZzzpmDp1Kpu2bqRYLD4pj52d8dyHsI9H/n4GQmvN8a9+DTff8g8O+c6r6JrckZW+feRnfHnBN98qASdy5VoI7gbiAarZTCc345PCaXWAawvl2SY+spK3Z1ikgNw8i8g7PLc4O8OwRMfL++fxM3UTtLAzvKaLLw+7SoxKReGaOaQH2mZAydStOdHNyo2vghgj0Vo6kG0sQUsHZMxJyYtywqqPfIvO/WYy4i2voFR0Dsl+ZlkMElfez8WWW5bywGcuct81VKhSyF6fOZ7xB03O6X4YiipuGS+VzkCbJXCZedToXEncjZlrlWUO20MsCZpCczarrOlUWG8YODltdfiqQF0HKfDWs6qc/4qxrqpis4pCymih2Rry7wOZn49UhnjRw6z7+RWEY7oZdfL+tO8+hSgwbpautHu45c4LP8vOnzNDz5s8U8qfRyablTfPyyhX6fNj5y0oHMun2QrN/+S3kz+3fEVq6L74FpU2zfM90ek5mLhzEIZWp1KgqnJ2AkPqLu68kCZlYrnxBpwmjzLoSp1l//Vz6qt7EVFA11F7MOrkAwgnjSXRKgOQ+xZeJt0vbFa5kcrS//cb2PiLy7NtT//pRwlHtDmPnbSSEilNe1QnkprKw+u56wt/p7J+gEO+fCwT0iTcA5GlMKk+TdB63m7nXgJOTOyCo36GiQ2zXjefPT5wmBvPRHP7l6+l9+6tPHjHHUyZMoWdsTN2xmPHc5KogLuIX//Od3LxxedxyP+eRNcuY1pvqrmL31c8Mh+T9ObpGULloD7soQVNgFveIMw/5PyNPHs9t06/nKeFRjLJKjiB0GmLo8lw0bmbVr7So20Tn+FbRcYKl7Dktz2EyZFPWPL4Dk8zhSZTqKEVDR24B41xuAwgw7D4hMUmMvW/sUTtDVZ/6dfIYsSunzuVbYMlEO7h4ZkPodJEKslmh1JYtizbwu3v+g3jXj6PeR99GR1R3NK+yH+fSOpsFuqNJkOhMalAXj7yOCNoFc3LJ51DsSt5/IbOxqXZ/vDj5T/rExi3vMwevjb3ELe26cWUf4gOfcir1NcnTFVG/etApjo69PViOp4ZE8djsFJAuP9+RRU7ATwrs6Rj6Ni2jGkuwaubIPv+Pnwy4r9HHjeRV0r2YwLeZ8lRd/OJSn6sktRsMdHN9/ylJlL8h5TNMfCJYKDShMSILNFRuSqEEBZdS4g39aE6SoRdJZeApy08a0RTlTh39xKCFCdjkcp56Wy98nbW/ehSAOZe9DnC1KCxGCS0RXXKQUzDKHpvXsaCL/yNtkndHPi5Y+iaMSKjd3vMUHMsUy+rPI4uTUqT3DW6YcFa/nnWXwA46mevYcTc0VCrc/NnrmJwZczi2+/eqTq7M3bGE4jnzEBCCMEff/ELPnjWh7n+P/7C+lseHbaMTxz8Tc7fULcXvh0U5dyX/1XkgbuPFw0TDHu4vtCjvnwdlfuWP6nPtE0bxeQ3H8S6vy0kGag/Q3u2M3YGyEJIYeJIgs7yYy7zRKZY7fvORpYKdJ+w7/DPG0t9S4WVF9/HXZ++lFH7TeGYH78qS1L+VQxNUoaGbmhu/cyVuRc0yZYBrjnrEuTWdlbc+8DOJGVn7IwnGM8pWV8IwVe/+AXmzpzBO//9THb/z8OY9Mr5rQ7EuSqHsQKTNJkS4CjODaNoD+qZQrYZMuvLh5vNDnmNPLPEZm0WI5qJUmKUK8lL58GT1wTx7wOYIfoU7m+Dts2ZVl68zqQ/9Yy14VoaodRIa9L3m3oy3iMpkMZ5jEiNSb116kmQsoQkUjq2RhhokpSZohM3GzVa0HnALLZcdQ8qrmBMGd1Q6NCxL+JCTDFKiLWiHDYI00qWMJpkWxXVVkCWi/Q1BO3/n73rDo+ieMPv7l5JLoUUEiAQSqihhN5Dkw6CgEhHFBtg+algQ8SCCoqiIl0BGwgqIqLSpPdO6C2hQwgppF/bnd8fe7M3u7cXQlFQ932efe5ud2Z2ZnZv593ve+cbs1MJsc8uU0/dLVQ4GgjADQFWweuyoMHzvP3lmXkBOZAfO2OI9hU7gLBaJeVTcMNEOLg91jA3Y5kycRIk3nNfePbRuDXq+5KoQttTKwMdGDmP9UnwuHI4ps3UAiHRFYg97QowuZW+sfCiMrgp7iyBCQwGtVjcTbzH2FlxVHzuvdck5b5RWQhVFhmvy8fr6pSUe562n9aLlsF5ZhqBI1C9Lpg8FhCPBYquDMyG6FdW4qbnY9YbopYUNg8hUFliREltzSI8wFncKgsOPS88sWyoeydn70lIhQ6ExpeGc+8hHHv3Z4RWL4WoxMq49Nth2K/mAABiOtdAk7FtwJt4OCWvcJu6NZ2e2Evs/ceSFTlopXzd7VkF2PXGGjgyC5W0G55aClupYNSq3Rybf18Oq9XQLRkwUFzcNdePFhs3bkSH7t1QrnMV1H62JXgT419nTP6AL3kB1DN36HRPJQ3UaSmUtWY0WgFFG8M8sFmwb1CslkU+h3oaNSU0dDFF6qICvEHrHIy7ykV8o/TqtZ+mcXpmeLBtpdYnqmOhMzfYAZfPysChJ79EuQ6VUXV0FyRfiYJkNwECAcdLsNhcCLS64L52HUefmgXiFsGbBUgON8oPbooaTzRTptDS6eXaGQ4W3q24hgAo2hUaME7rFlPaq7mm2mnOWkGj1t3G9p8yw8tDPLRuFKr/YPUsLNlip4wD0NVyaM9Fr5PW9WMzuWAzedZI8twPdAaYqLlH6X0kMr9Zl6XWRcnOSGFnowDy1HwaZFDrAqPp2GCDgJdA0H6g9w7HqYOY0f5g7zMt8WP7gkIhFmz/efpN4GVyQokAbQdbLqsn0vtfm00iAs0u5F/MxukPfkX+iSvq+pgFlOlYA+ValkNo+TCExkUo19rtiSbNvhA5Re+LBt2vesEBgbvAhSPz9uD8H8fhyHYgrHYZXD8sn5e3mvDo4yMxZ+qnxkrIBgzcJO4ZogLIS2MntGoBa2kzGr/dCQFh8luHVpdB9+kJBNmNhdaywualugGTxhpCjylla4gSS3So0FGrm6CDBrWUaMW5AFTkhZIWLWHRE5VK4OAUvStRa9uonbZL60yjp175fhsOztmLx3YMQaq9BI5eKgOx0KSEOhesIsxcPk4MeB8AUPbxDoisH4OIGiXl1ZSpVYDR89CBlA7ErFaFEhZK3Gi/ULKi1arQ43qCZ2061bX1TGXXap3Y/NoggqxoVQslajAjZKZ59KwxFNT6IXgGtgBB7jOL4NU8WHk3AgXvrDS2TaxWR/Dca6zIWEuiKRFm97N9wUas1bZT+79i/0Psf4Xdz5Ib9uWBMMSG7V/tNaCg9yQLPbLD5iMEihhanU+22Fg0YvDcIxdlV09GAQpOXkKFvvUQFhOouocVSyqdFs/EQWH7jEYOZkX9Jl7Eto/24OQPh8EHmCHZXRCCLLBGBsN+NRfz53yJhx9+2KdNBgwYuDHuqTjNlSpVwuVjJ9GsUxdseOwHNJ7QGZE1o3XT6g1eeg/AosA+hEy8BDfkcNY3O1VZIowZXoJPkK57FSXrRINIBGkHrwHVSvgcd6VmIGP5OgghgZCcboTfVxvBJS3wLkNrwMCdhx5JKV4+X5IiFjpxdvoaiIVOmErYQESg/GOtERBhAr2Pb0RS/MHtcOPIjO048eNR2EoFo+BqHgBAsrsQ2bIyIBHkHcvEzi3b0KhRo1tqkwEDBu4xogIAISEhOLxtC8a+9TY+fPY91HymFSr0rAmB91g+iNfFwOoCAPltVvXmx/jptREiAajeAB2iCTwInBxRmXbpOjcU2jdKlZtA5ODmiGJRUL+RCnADcHi6XJ6xISkzNyjMnBzIjSc8M4VXLk9rDeAhT2WlWgztg5UG+3KKAkRJre+wu00ITyiPkJggHJp/ALXHx0AwiRB5jxWHAwqOnEf2ugMAAGu5kpDMNuQ5eASaZWInay0kr1WJk8DzoubtW5KtRRyUaKpuSVCoDrWyaN0VgEeDAk6JXgtNHu0+73URPGnkdX1kvYgmvWZpBqolAvRdCfTeoy4BJdorp++CpIMeu6aOk3VJCS4Eeq4dBXXvUFg5CWYiqaLO8kTddq3FTs9VyfaFur3e+9lEvO5S1f8FnCot23e0X5T2Mv8ndhYP2zdsGnpMz6Ki7UttHkI4cERSdEOSJzgk67KyCG6kfPUn0tcdARG95Vcd1hABpiDFmsLCxEmKK1N7fyj3PHEibdVh7Jl3FNcv5gOAQlLMYYGoMqIVzn67C9ElK+D4qZ1GtFkDBm4T95TrR4sNGzag0wP3I6JhWdQe3Q7WEIv3wcr4ju2iyWeg0LOK0IeieqqhVyyp1YIIjI+azQ+gyHgYrCtED5JGYyB/Ul2H11VC97N6BSVqK/ENUicxx+lv1m1G9SxsndO+34yDc+TAWJ2/ewjnbLVQmBMA4uYgOZxIfesTuK9lwlwqHNXnPC2vPkw4ZfHCCFsBgs1O1cJ5dPosGz+FXW9J65qgrg29ad6sYFabjx6ng7WZF1VxabT9RvPdyPImEc7H7aYluRTUJcQO7loXHOsqYN/aZc2KQ5mazmpyWAKnXYCQdQnJdfAuiEkJC+0v2n5Wi0PzsL9pu/WIvBbafDeCvzL1ymeJvz8XrlvilRWHVXnhJSoBghu5mw9j87j1MIUGeCIME9Sb1AslasUoVhd6XdgYN1qyb+HdCDI5EMnn4PyGs1g9+xzSTmQraYSQAARXLInYAQ3hSMtFyuzNeHzE05j+0UcQBGOdMQMGbhf3nEWFRdu2bXHxVAqad+mGrY8tRN3xXRBZuzQAKO4a+sChZIUdMIrjwqFERJR4rwXG4/+nBIbVqRS33BuBtfDI39UD0t+FuPurKUQl+ZejMA2q5a2j1YLoFx7B5bFTYI4OV8LHGzBwN1AUSfFJW+jC5nHr5e85dtgql0LNd/sgtFSAkqY4JMXMuWA/cxXJq08iaelZFFz3BuOzVSmN2IcTEdYkDlxBPk5PWYWcI1ex5o9VaNeu3Z1qtgED/3nc00QFAKKjo3Fqzy5MmDQJ77z4Fir0q4/qwxrBZOEVskIDadlFk8piAPiKAyXCwQ1esXpIkNfTkTzmfNCIpnRE1lggaBlOIniV/8S71gd7nC5ORt90KUwe9wjPMS4P6h6SBEWYq31DFjgCQXCrLCssqKiXncarCP4EzzRqXu3acIdFos6gmji08ChO/3QEfZ5tgUNSLJz5FoAAXLAsaA6oXwt2pxUWixsCL8HukhctdIoC7JxJnn4LAomxnMize9SL9QFqyxUPWbgrqt60eUjEa2WiVhV/b/HKG74Ez0JzNFKup5/BwyxIirAUnP+3eQAAB+XeAOC1YnFqywqd8UTdJoBalCpfa0nRPCggUN0TsmuKV/pK7g9vP4pEUMTHynWGCICxqhDq2hFUVkPWXUitTKo2M8JsWrY/SwprrSxKHOsDtr/p38rPtVSsZpz3nEqdaNWZrtRaWKnrxi26UbJFHNyFLpRqWQlxfeqAE3hPTGlvHlYEDgAWT6Rrsz0XaSsOYvf3Z5F23q6qoxASiCov3Y/IZhUg8MD13ck48fEqlI+Lx7GT2w1XjwEDdxj3tOtHi4MHD6JV9+6QrA7Ueb0TwitH+ET6lGfCCD4PT+rmUWlKiNfPzk6vBeQHK11xlpqU9dxK7MwfFqzvnq2fNh1r4vedwSQp+ZSQ9Ex+nxWkNVNc2RgibL3ZtgebHQjPuoDpXVcBADqtfRopGbLVylVoRu76Hcj86hcEtaiHkiP6QzBLyoJuAi9PA7VZnAjyxFNhBzE5wqqouGSUdiozcSTVPlFnIFX3oeTjItK6NCye6b5at5vWFcRqO7Tw18d0enNRrg+JyPcf6w5i39zZe0/WPHincOu5uCi0riEaV8alzORRz3KikVJpWWzd2ftAq6lh7w/t/ch+6kFP4K79fiOwBI+tG3WxqRZb5Lz/ffb/xrre2Dppl+ig/U+viYUXYSrMxZlFB7D92xQ47RIkiSjantK9GqJM11qwxUaAt5hA7HYkz9qEtD+PY+rHn2DkyJHGGjIGDPwFuOctKiwSEhJwLTkZo14cg/kjZqLS4EaoPLgheLNJETnKA6T34UPfcE1EDvbFCgRZsS19SFPSAgAQfMWRgHog0T4k/WljWJKkWjGa+OpraB5VoC7ROw3aG/uFahs8AlJG5AjIb4cmhXjxqrYDUEKDB8cEI6FNGOy5LtSLuIJsVwjSMkIAEBQePAEAKNG9FXhBFi9KIgeR48FxsiWhwGmBw2WCxSQiwORSxIg0krBFEJUgZ3QKt9zvGt0KBwielbPVoFYK2dIi95VaI0QviSzUFcBLJiWNlgDIv2kMFV6VTn1tJZg473Wh08ZpXdx65BIEbsEbwl/Zz9TB60pkZ5Z4rUjyVG3e556jAmyJ0QMJ4JTryC65wFqlTJ5N8kMyVNYuHfKrR1j0ylAd01zCG7k1tVPS2X0SOJg8FjGthZSCLjlA02qvDa27lpxRCybPEQhOO+a1/dHbBLMAiCKiW1ZCtSdbwhIbpbiDs/adwckpf6JEeGmcOnoclSpVKrJ9BgwYuHX84yIPWSwWfDltKnZs2Ya0Veex9fFFuH7kihK0yvvmqxbOsq4b1tyttzChVmCo5NeYyf9NCAgScHJfPmZ3XwnWyBbSrjE4ixlXJ3+FrCVr72INDRgoHvRIipbgsIJ3niMIEpwoEeBAeJw8TV8IsqB0x3g0m/EQGrzfQyEpruxCHP9wBY68uRxvjR6Py4ePGiTFgIG/GP8o148WLpcLY99+B1M++gBlu9VEleHNYQ6xKpoANnqk1iSsfVvVM1uzb22sS4jCxwXE+Pe1ebXaBtZ0rfdg1QPrPmLXKtJaffQsNOo2sCZwEUGCE+WEVMwftAkZqS6M2tgL6y5XQ3pmsBx6PyMdWYtWIX/nYcROHQNzdBgAyAvzeVahNQlyqHQzL8FicsPMiz7TPJXrwkmqoGcs/AXMu1mwFgG68q3eIpIstBYVduo4DfevdR+x143VB9G3dT0rHODr2lPfS2p3IL2m9H7xF6eH1okunEfvEXquG/Wlyl3DaFrY+0nPSqGttxaqNDpuLb1ZbFo9jd7/g3VzsbosrdtJfY28wR3l36JijSpwW+QlOa4Xgg+0QDJZlOB+hBCkrz2K5JkbEFu1Jjb8vBSxsbG67TVgwMCdxT+aqFCcPHkSHR7si9SLyagyohVKd4xXfMU09oEPafAzTVVv8NSSDn8+cHrcp0yNv12PtHjdC3yROgA2H/tGWFQd9OrJwsRJCDXZUbDxAOa9eBTvflcJaTWbYltqJWRmB4NIQMbXy5C39RBiP3sRppAA8DxRra8i8BKsFrci2qVr4Qicd2aWIjj2uD9kF53kM5DRCKsUxVkQ0p+2RUtGtVN92d+CQhrkOmmnCbNh/Nnw9mx+Wl9vuHrf6alyP3g1JNp6se0pilADXnIgcATZp9Px28g/YQm1oPVHXRBWPlRxFynlMtO6b9SXelocLYHgdciyun5qt5vevVqkSFqjJWLJGyWgWsLIuoi0VhS9lxIacZhaZQvdZlVspvwz15Ay9U8UXszGgjlz0bdvX0OLYsDA34h/lEbFH6pVq4ZzB5OwZMkSDH7yMVz67TAqP30fQqtGq4iFvwcWa3Fxg1c93Gg+wDtQaGOrUGjz0Ael9vx6+f2JD30HJu9vp0cHQfdpLSxaEqAqhxkg6UAW2bYG4ptfwsfPn8d7v4SgMMqCvSiH3IIAkIJC8FYTbJHeiJ4CT8DzEiRmDSFCZEuLmRdVi/XRtiuhyEWgwG3WnxVD+wrepQmsgn40XK3VRaut0MYYobNiaPvVeb3l6oX995bjnU2k27ccAXgo+gcWVI9Cv7PXRxX/hKOiYV7XCuEtTyZbPAi2f7IX9usO2K874CqUiZDVIxZlzy8RXneauXfGjZrYsLFsAF8RN3u/STpWDb/3oEdfpc3D/i/dShvpOTQBBUEAZoYWQHVK6v8c2z6a3ykJyHNZlN90KQCeI5AAuHIcuPDdVqT+loRBw4Zj5pSPEBISotsWAwYM/HX4x2lU/IHjOPTt2xcZ5y+hT+IDSPrf9zj24UrYr+WryABrUaHQLkzIkgyaD1C/qSl5dVxGN4OiiMjtwt/aNX7rInB48uNqEEwcxvc7juwLOcox56V08AEW6BngnKlZSFu0ERkr9kJyGeH17xaajEhA05eaous3vRFeLfIvOYeey+tW4COY1ZIU4p1lpR+JWF8z5m+mm5bs+SMpAOB2Sbi8dB/2PTIHptMuHD6QhO++mG2QFAMG7hL+Fa4fPZw5cwY9H30ER3duR2y/RqjQvwFMgd7ItkURAmoB0bOW6D342Fk/LLTn0S3Pj0C3uO4b3XPqLMLHaiKUtIw53syLCORdCDI5EJJ5CVP670FUbACav9sBJ4VqSPnlBFJnLIM5JhJxU54CZ7GA5wlMgoijQ6bAnV0AAIjq1QQVn2oPsyAqrh/WkqTXXnbGlrZNbKwLaur3tl1/wFSvru0/CjDb//7A5tFb8E+ZaQV12XTqsNba4yZqt6HW9SNorjG7erL/Onr1Ny7G1US1LHoRfel+rQtLz+UmaO5TrRVLe0381ZEFuxo0m0ary5H3q7Vfeu5Z2rfaBRvZ+51Ob2ZXHJeIdwkOkQAZ21Nw9ouN4Fwm/Dh3Prp27Wq4eQwYuMv41xIVim3btqHnww8jJ+MKKg5pgrL314HJ6rt+D+D71kVjsuhBj+wURRL8DcTavOy5/YlitdOj9SxE3jqqzfHsTCdWzAnIwkIr70awyYn8AynY9c0p7F+fjfDyQSj9YBMcnbIeABDaqjZiXugDjuPAcUDq7OXIXLEPfKAFlV68HyVbVQPHecOZmz16DK2QUdtHWi2QXCeqaRF1+8gf1K604q3GrF+OVyOhXRZBSypYfYs8cAoqouFPG8WuxKtHWLR6Ep+gbRqdDaAmLNo0NB1rHaH3g7+lDNi6FFfgfDORltn6+BOX03tHW67XiqIWibPHad/T6LbeqdxyvKTrhy7izBebUXDhOj54awKeffZZmM3mYtffgAEDfx3+9UQFkBX7y5cvx6CRT0KSClH10SaI6VAdvKkIjQED1vWjF0xOrV9gLC2MNcGfyFbv7VALbV69adVymb5CUb1BWc8SwRIXC++WtQ15OZjZ9lfdOoU2q4ZSA1ohtGoUeJ4DJ4kwmWVRLQ8CMyOgVZ9DbZVi+8Hi0aE4RZNPZF2lDM2bsl479GaQ6IGmYQctf2Wy15gdLFktDSvG9Z7bd50mvXppLV3FcQHqkQ8AcIiy9ExLdv0Jim/mHCz0tEHae117vhtBS+joOWj8IHXdfEWxdL82Mi8lMuzMIIlwyDqRjuNf7kDmgSt47n+j8fbrrxkuHgMG7jH8J4gKhSiKmD9/Pp57/SVwFqDK0EZ+CcvfRVYC/IhE9c6t2qdDVvQGIJasFEVUAChWC0pUgk1OhJJcrP3oIDYtuKSkC2sSh+u7UpTf1T8YjLC6scpMH4Oo/DOIys2QFD2tiJ6+xMda5GcqtR7+TpKSeTwdJ+bvwrXdF9F38MOY/uEHRuh7AwbuUfyniAqFy+XC3Llz8eKbr4EzE1Qb1gjlOlaFyVx03Ab2mEQ4OKlJ2UcDoR7YWLGu3sPcZnIWObAWx9R+o0GFrZ+6Hb6DDXVzWAU3LLwbNsEFqyMXR5adwc6fLiL1VB7YcSP+9e4odV91Vdv13Dh69WD7hrUwUfKgtTixgy+7Ho+q/CLcQ9rZVWwd/Qmt9drlJVmiT5wWf+cvrhC1OCRFTud7jdnVtbVk1cK7VVOo/c2W0j2XjkvzxvUr2pqiva9ZwkHvYZMO0VZdMx1RvKJV0RwHgKxjaTj21V5c230RvQcOwecTJ6J06dLFao8BAwbuDv6TRIXC5XJh/vz5eGH8WBDiQNWBdVGxRzxMgWaVeNDfg5l9A2fXIWHhz4JAj7H72SBuyjmg/5Z/IzJyIyuC1upA92n1HFSXYeXdCBRcsPFOuLILkLQhC+7AYITUrQjOFuCddgzoDvTatvgjK3quA5WmxY92R886UdR1087e0pat7TN2oKaB7NhrxnP+A7FR3E4AO7buuu48DTlhdSeAWgejV6ZefhZsWcWy9oAl6/ozfFR10PQ9O9X+Rtebgl3PiAUhBGm7L+L4dweQeSQNDw4cis/ef88gKAYM/EPwnyYqFKIoYunSpXjipRdQkHUNVR+shcp9aiMgIlD3LQ6AXxM+/U6tLWxevZkI7ABN38y1Znq9B7zPyslM2XSQ0tbVn6uBza+XXkuoAHllZOrScEomxV1DhYrFsWpohbRasG4zbZ39uWnYmDX+LDn+RK3astm6sW1nRcGsW8KnT2/CmlBUPr2FECmp0LMaFNUepU3M9dGL6OpbJ/3ZNoD3+mpF3Foy6i8vGxSP5vMSFT/nLCIonbLfLeHihjM49t1B5F3Ow6hR/8P4l19GRESE33YaMGDg3oNBVBgQQrBu3ToMe/F/uHL8OCp2qoxq/esgrEqEz5sq/Q6oB3Y90lKUO4H9pN/ZsOfsIOl3YNUxf2uhXhnadxaMnvbDnzVHSxi8YdvlcpXp3T4D642tHr6Dva/rjC3P39u5zz69dMVwYagHTW8f0WjH2sURtTOy7gT0rgWd6aLXDn995E+ETdPq7dfem/6gkDgNwdAjK5ScsPXyR9J961m0LkYCB2eOA6eXHceJH48BxIQJr4zDiBEjEBQU5Lf+BgwYuHdhEBU/OHLkCP73+jisX7EcUQmlUL1fLcS0iFWEt1o3ibJPExTO12WjJjf+rCyANz6LdjqxP7DaDb9pdNZwoefUkhY2vfccvhYTVozqT+ugRyxMvKRL7PT6wd+U7OLqJfyRGu15teSRvQZ0P3XfaevEXp+ixJ/Fra/yXbOysZ6bUa8f9YiMv3rouQH9Hfdtt+91Ut/P6vvWn36EB4FFcOsQeX2rohaZKddx6qejSPn9FEpWiMPMSZPQs2dPCIJ+iAEDBgz8M2AQlRsgPT0dkz/9BFNnfg7eJKHyAzVQ5YHqCCxpu2fJipZsaMHGnPBx7+joZNggZXoaAHblaoOo/PVEhXUr6qbX9M3tEpV7maSILhEXNpzFySXHkX70Gpq264jP33sXDRs21G2nAQMG/nkwiEox4Xa78fvvv+PZN8fh0tGjKNuqAqo8UB2lGsWAFzSLomm0A6zQVD5etBaApmEHTZVWQ0eoSM/rm9fXBK91AelqGPzoJJTf4Hz0IHouHxZsxF9/+hR2cNUjbv4Elb6ES/5kA/YRzQBZFJnjOHWQPqWuOm4oreuMDfqmqpOfgdzbBvX10EbY1U6j1vaX2r2nTqcsIKkDwpyPhbZ/2D5hXT3a/qBgp3Gz04O156BTmLVaIG1fsMg5n43k5SeR8tsJCNZAjHvuJTz55JOIjPxrlg4wYMDA3YNBVG4BycnJeH/KFHy34GsIVg4Vu1VDhW41EFw2VEnjz6JAv6utFDpv9DrTQW80FZfND6gtIWyYeu0AeiMocSk0xEuxbPh5Q6aDl0Q4OEQeZ347CU7gENWhlhKWXFcX4WkTxxABiXA3RTTY+opMfVXHNf2u/S0wVgK2Lqq+4b3uMi2x0TsHzxEECC4f8fONhLJs7B7tWjb0GogMUVT6S5OOEA6ixEH0lMH++02C2krEcXI+GmXYxEnKQpPaKMN6ZMUfaWL7UcnnR5CsImV2Jy6sS8GZ344j82gaqjdpis/efBvt27cHz/9rli0zYMCABgZRuQ243W6sWLECY96bgFN79yKyTmnEdq6OmLZxMAdblXR+XT9FEBAW7ENcG1mzqAGATcce13v7LSrImJ41Q2sl0raDrogcILjgzMjD0gcWgYhy/uqfP46gytEw896BTynDQyjYt3/tcWoBYPOy+9m0/kCYa6D9B2gHaN2+gLeOJl5SXB9sX7F9bxFEJagdK47Wmxas1fzQNE5RULWRnp+1iGgJCj1O2ymBU/2meXmeqPpdbh9gMcmrL9M1m2isG38uMHYlci0B0xOR61nN2OtHRAkZSZdwYdUpXFyXDFvJcLzx7Bg8+uijRoA2Awb+IzCIyh3C1atX8dVXX+H9mZ8j73IqSrWsiLIdqyOySUUIlhuL+Yqzbo32Qc7qQkTt+i9QD/Z61ggtSdC6M/TOr7cekhZ0IA4Q3ChhKcSvw5bj2tFMAEBk+9oo88wD4ARediV43uL9rfvG1kM7MKvq4dmndzezZXstC966awd2tSXFt98pgaH9QV0iSh9prGIBghsWwS2TN86NgrQC5KYVwlY2DOYSgaoZMOzCeaylRILXYqK9brT9IiOwZcmI41IG8o5dQnireMBqgSjxIARw5zvBS05Ywmze/oF8TcyCCIGTGIIlgiMSLqw4jivbzqHhmETYIgM85+ZhF03y/XiDWDT0O60zz/Qd3UcIQc7pdFxcfRIX/zwF4iK4v2cfvPbc/9CwYUNjkUADBv5jMIjKX4Bjx45hxpdz8eU38+C2FyA6MQ6l2lZFZMPy4M2C6m2Zhd4ADKjFlHrp9Mz8QNEDOwXHEUW/QN+o6WDu18KicYewAw19ww42OxFitiOYL8RnDX9Qjpd95n5EdKqvnFevLqzFhH7SsYm9WwnxTzTY8opbhrZOHGNhUFlZGKJC+4taHNiB3SY4YeJFEEKQneZE8u/JSPn1OPIv5yjnaLNgKKxlI+AUBcYdI5MO6u6h5ZsEyVNXAndOIRxXc3Hi7SUIbVgZZR7vDMktgbcFwpEvwnndgdwth5G/8zAcyRcBAGEd68NSKRb2k+dRmHQKrqx8AEDC4hfgSs9F3r7TcF1OR0h0IFz5TvChNtgvZcGdlQ93oQuZh1KVetce1QyBUUEIqVYaAeUiVDOR9MiuHlh3GyEEeWcycHXjKVzdcBr2q7lokNgW74x+ER06dIDJZCqyLAMGDPx7YRCVvxCEEOzYsQPT587HT0sXQ3Q6ULJFZUS3rYqw+hXAmc1+g6EVbTXwl8e/IJIdpNnZRnqDN8dBGYi15wCgGqDZ87BiywDBDQsvIlzIwdxWiyC55EG25keDYI2vpHI9sG//RVlWfFwdGrcNLYvnJQi8ryiZJXJaaxPbTrYevIosEQi8mjTQfjLzIky8hGCzEyZOguAowJXtF3Bh+2WkH8tA9ukMgANKd66FqOZxyDufhTNztyC4VjkE1SqP/OOXEZJQHoEVoxDatDokMBqmQgcKjpzD9S3HkbPnNMR8B4j7xmvocGYTbPWrwhQWjOzVu2mDEFAhCqEN4pC1+RhcadnePg4wIaB0CbiuF0IIDoArKx+22AhYo4LBm3ikrT/hcw5b2RJovXCYvJwB46bSXjs9AbAoAfkp6UjbeBJpm07DnpqDGo2b4c3nnkX37t2NuCcGDBgAYBCVvw2EEOzatQvTvpyHH5f8CLc9D2GNKiKieVWEN42DKcSmq7Og0DOna68cS1L0ytHO+mAHfH+DueDHzeBPw0EFlwEmNwIEN0LNduz9ZBuOLDoOALBE2BDdPh5h7evDUj4aTpfJq9WROMWyoTdDRUuqiE5/EQCcp608X7TmRo/4sOVrzy14NDUWQYTAE3CSC5e+3ojr+86jTKcaiE6MQ9qao7i6JQU5yRkgIoEtNhwBsSVha14HturlYIoOByGAKHLIXLoZGT9sBGcxwRoTgcJTlwEA1ee/AK5ECdjPX0Pmz5uQu+0oiFuEuXQEgprVARccDCE0DHxAEHizFa6r1wCOQMzJA+cGeFsQuCALAupWgSnMAo4nEDMzwEGCJSoEvNkEUeQhSRzc587DfeYCbLFhMFWNgyRYQCRGt8JLCLC4YeIlWBw5IHYHrDYB259YCPvVXABAeJ0YNPmsDziB13UNUuuhW+IhuUVcP3gZGdtPI2NbCpxZBajZqBnG/+9ZdOvWzSAnBgwY8IFBVO4CCCFISkrC4h+XYNp385F38TJCa5dDeLPKKNGoMgLLRwLwncXwTyArVItgFkQEm52wmZxYOXQJMk9ledNYBEguESW71kf04HZAUIhc5l0iKu5cB7I3H0b+sQsIqhsHV2Ye8vefltNYzBBCbQiuWwmBFUoCbjfEK9eQves0co9chJhnBxG97RcCzSiTWBHR9cogqnEsxKgoFLgsyCkM8CFkEuEg5tuRu2YX8nYdQ+FJeYXqgMpl4ErPgZidD1NkKCJ6NEVQo3gI0ZFwO80gIg/i5MFJAAgH0L4SOXBuDsRCQMwSeIsIjifgTZKHdMjpKEkxm0VYzG6YTSLsTjPcIu+XpNjMTnnmj+daZx28hNNfbkPWQZlcdVw9CmarWotFhd8FWQ5k7DmPjB0pyNx5BpzJhDbtOuP5x4bjvvvuQ2BgoO51MmDAgAHAICr3BC5cuIDly5fjnS+mI+3oSZhK2BDSIA4hDasgOKEihKAAlYsE8A62oqTWdLBv/jfSHLKzPihETcRTSkZMggSBk8BxgOR0w3ktB6bwYJhsFoWo0LJMgqjoKgJMbtjPpGHDI4vYQmGNDIIruxAQBMQMb4+g+5qAgNe3KCkuIl+yQkH3c7yXPAk8gSBIyD90Ftl7kpG99TgsZSNhrVAKrmvZIIUOuHMLYU++DOJmLEMCD4gSTCVDEVglBoUnL8Gdmas6X2DVGITWr4jYDpURWjEMF9afQf6VfFgSm4ELDFb6g4gc4BAASixok0wEbmceLr/8PojT5W1HoBVBjWtDCA+DuVxZ2GrEgydmcCIH3gVwIgfODYAHFP00ATgJIILMW4iZyN8FAsKQNU7i5L4UiMyDeeLJAO9q2Jxnv5mAM4vgBALBJPnofUwmETkrd+DS7FUAgIAyJVBv+hBYQwMASUTmsTRk7T6LrN1nkH8qFbbypTCkZz8MHzQIjRs3NqYTGzBgoNgwiMo9hsLCQmzevBlzv1+MZWuWw5GaAVv1sgiqUwnBCRVhrRYLzmSCJHmN7DzjwpCYwYT3WBUocfEHPXJA423IZakJS+62Izj93i+q9FXH9UJkq+pw59lxefEOhLeoiuDy4TCHWEDA4/Ari5G977wqjzkiGKEJ5ZGx4ShCGldF1OM9IESGQRJZQStDqIjvVGIWHAfwggRBkGSdCici/2AKzk38CVKhU0lniggGEQmIy43ghlURWKM8bA2qQQgvgez1SQisVhbWshEwWTmYTRIgiig4cg5CSCAgmEDCIkCsgRB4CRazG5LEw+kW4MizyKSEAJBk6wYnAZyLAyd6CAFPIJnlz0sffQrnBVnoKpQIRUi7lghObAaTJUjJy7tkgkLJCDiGoLDXi/ceIwIB4eTfIF6DCwBlv08ZnCefSSYxRPBYnQgAkQMEApgl8BYXpKtXYD92Fvn7TiJvr2x5MpUIREz/5sg5cgm5SecAcKjSoD5eG/4kOnXqhDJlyvi/cAYMGDBQBAyico/j3LlzWLNmDT7+7hucTtoPscCOwBrlEZRQEbZaFWGtVBbEZJYTU7+H1trAxMgwCV7Sop226ypwIe/IBZx963ufepR7rT8Kj12AlF+IsDa1cWbctz5pStQui+zDl1T7rKVLwJWVD8nhBgAIIQEgLhGSXbYiVJkyHFJmNi7MWAWxwIGYVwYhsHZliCLvGVUBImnIlMYSpLRHIOB4ApNZhEmQcHnqL7i+LgkB1WNRZswAwO1CQOkS4DhAdEpwOTlwZrNs+ZA81g9PfwlmCbxHMMsBEDzfRZGH02GC5PS4OThPpzt4QOTAOz0Exc2BEwHeDYUsKCSBAyQLkHNgNwpPnUJgfA0E104Axwvg3bLFhJPkPJzbcwrG4qE03fOdsB4XlnMSJi8lMRyThgMkk4eUMOVyopzP7bbDkZ0G5+VLcF6+AvFaGhynL0AqsAM8B0t0CXBWM9xZeZDsLoRXqYzn+g1E586d0bhxY2ONHQMGDNwRGETlHwRCCI4fP45169bho2+/xfkjh0AcTlirlIO1WgUEVKsAa9XyEIICPRYIKIMSx8mDr9mjSeA4yDNVBAl5xy/j0qIdyNp+6o7UM6JZHEIrRyKkQhhyTl5D/qVspG8/A3O4DbbYCOQlX0OZzjVRsn0tcBUrwOUWIObbcWzQhwCA6kvehijyEN281+0jsiMp1GSMAwCiEBVekEAKC5HyyPsAgErfvA2JWGVdBx24JU6xdPAuz2/iGcxNXosEJ3nIgIl4+1LkwDtlawcnQiEEnAjwLnjK8/IBSfBeB8kEEBNkqwo8eVlCIwK86LGeEOaT6nIo0aAuMB5qQqIHzpuPALLFhM3PA27iRGHaRRSmX4L96kU4Lp6H60qa4mMTSpYAH2ABJwhwZ+ZAKrAjuFJ5PNm7P3p064JmzZohICCgOLeHAQMGDNwUDKLyDwYhBCdOnMCWLVsw+6efkLRvN1zpWTCXKwVr5fKwVIqFNa4czDHR4Ew8ON5reTBb3TAJEqwmJ44Mnw5nmje2R0z32givWxbmQDOcOYUgbgkSAYIqRCAkLgoF5zNw7qcDkCQC0UWQd/IqXJl5Sv5SI3sirENDeYaM2Q2rSYRZEMFxBKLEQ5R4ONwCXG4BeccvIf/gORQePI3CI2dgrVQacVOektO5eRCJh+TmQCTZYqGawsx5tBacTFAcJ1OQv/MQ3GmZKDx2DsQtInJQFwR3SAQkDigUwDt4cC5Zr8GJaiJANSQqt4nH3SIJkM/FEAvF8iF6rRBKmfBoRnjvJrt8NJYLSkzYMiSo6qaA06mfjltHm1ZxC3Hy+SUBcBRmo+DKGeRfOYPCS2fhuHwJkCTAJMBcKgpCWAhg4iHl5sN1KQ3geURWrYJn+vTFfffdh0aNGhkiWAMGDPwtMIjKvwypqanYunUrVq3fiCWrViPrwhmAEFgqlIWlUjlYKsbCElsOpuhI8ByPwiMnkPbZXJ9ySr/xDCxly4Fzm8C7OYAKQRWNAwGxECBQhGARYbK4FVEt1c9Qq44o8iAiM6PHI9AUeAnH+74NSN5bMOb9Z2EuF6MSeRKJky0eHtKQt3MvJLsTtro1YQorAanQgeyV65Gzcj2EkGBYysfCWqE8Qpo2hikkTB703Rx4t4ZgaIkAUZMNuinWDsXKQbzkQlL/fYjAKRYUFXFgy6dli0RzPqImHx5WppANegkY64pk5jy6FA6iGZAsHESrbLkRLYDk+S5BRPb2LXBmpKEwJQWutKsAACEyHKaokuAtZkh2B9xXr0HMyUVgqdJo2qgJ+nfvgsTERNSsWdMQwBowYOCuwCAq/3KIoojjx49j9+7dWLJyNTZs3Yb81EsAx8NSpjTMMTEg9kLYz52DmHXdtwCOgzWuIiylS0OwBUGwBcEUVVLeoiPAeXQIxEQAkyy45EwSeJNXmEEIZKIi8iBuTnapCAScIIHY81Gw/xiuzfhZOWXUCw8jML4aOJNZ9jxIHNyp6bIGhBNw8U3ZpQNBQGiHNjCFhiHzRzl/iVZtEVS1BoLiqqlnstCvlHy4AGfIne/vuwkiinBeuwpn6hU4U6/AnZ0DMS8X7pxsuK56o8paysQAPA8xOxtiXi4sEZGoEl8Lw3v3ROPGjdGgQQMEBwffxZYYMGDAgBcGUfkPwu1248SJE0hKSsK2nTuxdM0GXD1/BmJ+LnhbECBJkOyF3gwmEyxRpSAV5EPMzwNxu1XlmUpGIvqpx2ApHa3sI7zHLSMQEI92RD7AAW7PBijkRszLxfWfVqHwyGmI6dcBkwnm0iVhjo4CZ7Egf8den3bwQUGQ8vMR2roVnKmpsJ/0amwi7++JsMS2qvTUOsK5ZXeLaMU/FqLdDsflCyi8cFYmJ2mpcF67CiLKEWv5QBt4iwXgeEAU4S7IA8dxCCkdixZNGqFH+7aoW7cu6tSpg9DQ0BuczYABAwbuHgyiYkDB1atXcfjwYRw7dgwbd+7G2u07kZN6GWJ+LoSgEFgjomGJiIIQFATidiNz10ZVfmt0GZjDS8ISVQrW0mVgKVUa5ugowGKCZCay+0JgCAsVgPIeV5JnaqzzUirsx0/BdfUaXFfS4Dx7HsTljTXCB9ogFRZ4fvDgBBOIS55+zJlMIJKEMo8/CVtcNUVkSq0ovAvgnbK7xfUPGZ+JJMJ+5RLsF8+h8NI5FF46D3dmOgC5vXygDbzZAsnphJifC85kRkBUKdSoVh19O7ZDjRo1UKtWLVSpUsWYiWPAgIF/HAyiYuCGyMrKwvHjx3Hs2DHsP3gEv23djquXL8KRmQHJXgDeYgUfYANvMoO4XXDlZOmWYw6PhLVcLCzlykIoGQ4+wAwhtATMkSXBBwQqhIXqO+gUXSJJcKdnwJ2ZBffVDDgvXoL9wgU4r8hToSM7d4f93FmYI6MQ2b6LbEnQCE1VAliPgNUe8Xf03s2BEALHpQu4MPtTAJCnT3usJJzJLPeNwwEIAsxhEQiNLo02DeqhVaMGiI+PR3x8PMqVK2foSQwYMPCvgUFUDNwWrl+/jpSUFGXbsmc/du1PQnbGNTjyc0GcDoDjwJlMAM+BSBLgcuuWFf3s4wioUQUcL8jTez2RVDmJzu2lwlNZGOvKyoKYnQNb2QqKHoUVyNJZNJC8pIeWw0tAXvm/59YnhIDY7RALCiAVFEDMz1c+3dnZELNz5M+cbLizs0GcTkAQYLIFITi8JCrHxaFjs0aoXr064uLiULlyZZQpU8YgIwYMGPhPwCAqBv5S2O12XLlyBZcuXVK2o6dO4c89+5GWdgWuggJIhQWQ7A6AWg5sgRBsgeCDgsAH2SDYbPJ3swWcYAJnMoHjTeB5M3hBAMeZwJvM8jHBBF4Q5GOc5zdnAg8BPGcGL5ggcCaA45FfXrbWELfbu4luEJf3O9hjqk0Ecbu830U3iMulkBEpv8DzPR9iYYE89ZfnwQfaIATaZBISWgJNa9ZA0zq1ULZsWdVWokQJcDdaA8GAAQMG/gMwiIqBewaFhYXIzMxERkaGz3YlNQ1XMjORcT0H2Xn5yC8oRKHDDqfDAafTCdHlhOh2Q3S5ILldkESZUNBPEElzNg7gOZlAaPZzJhM4QQAveAiQyQTBZAZvMsFktsBsscBiscBqtSLYZkNIkA1hIcGIDg9D+ZjSiIyMREREBCIjI1VbaGioQT4MGDBg4CZhEBUD/wmIogiHwwG73Q6HwwGHwwFRFBEQEACr1apsZrPZIBMGDBgwcA/BICoGDBgwYMCAgXsWhhrPgAEDBgwYMHDPwiAqBgwYMGDAgIF7FgZRMWDAgAEDBgzcszCIigEDBgwYMGDgnoVBVAwYMGDAgAED9ywMomLAgAEDBgwYuGdhEBUDBgwYMGDAwD0Lg6gYMGDAgAEDBu5ZGETFgAEDBgwYMHDPwiAqBgwYMGDAgIF7FgZRMWDAgAEDBgzcszCIigEDBgwYMGDgnoVBVAwYMGDAgAED9ywMomLAgAEDBgwYuGdhEJV/KQ4ePIhHH30UlSpVQkBAAIKDg9GgQQN8+OGHyMzM/EvPzXGc3+2RRx5RpV21ahU6deqEmJgYWK1WxMTEoG3btpg0aZIqXcWKFcFxHNq2bat7zm+++UY5x4YNG5T9X331ld+6pKam3uGWy0hJScEzzzyDatWqITAwEDabDbVq1cK4ceNw6dIlJd0jjzxSZF+xuHDhAkaNGqWUGRERgTp16uCJJ57AhQsXlHRvvfUWOI4Dz/NISUnxqVt+fj5CQ0N9rsXJkycxZswYNGzYEGFhYYiIiEDLli3x008/3fkOMmDAgIGbgOluV8DAnccXX3yBUaNGoXr16njppZdQs2ZNuFwu7NmzB7NmzcL27duxdOnSv7QOffv2xejRo332R0VFKd9nzZqFkSNH4sEHH8S0adMQERGBCxcuYNu2bfjpp5/w6quvqvKGhIRg06ZNSE5ORuXKlVXH5s2bh9DQUOTk5OjWZ/78+ahRo4ZqX2Rk5K02zy9+++03DBgwACVLlsQzzzyD+vXrg+M4HDp0CPPmzcPvv/+O/fv3K+kDAwOxbt26Isu8ePEiGjRogLCwMIwePRrVq1dHdnY2jh49ih9++AEpKSmIjY1V5QkODsb8+fMxYcIE1f4ff/wRLpcLZrNZtX/16tX4/fffMXToUDRu3BhutxuLFy/GQw89hLfffhvjx4+/zZ4xYMCAgVsEMfCvwrZt24ggCKRLly7Ebrf7HHc4HGTZsmV/aR0AkKeffvqG6cqXL09at26te0wURdXvChUqkK5du5Jy5cqRsWPHqo6dPn2acBxHnnjiCQKArF+/Xjk2f/58AoDs3r375htyk0hJSSFBQUGkfv365Pr16z7HJUkiS5YsUX4PGzaMBAUF3bDc8ePHEwAkJSVF9zjbV2+++SYBQB5//HESGxvr04+JiYlk4MCBJCgoiAwbNkzZf+3aNSJJkk/Z3bt3JzabTfdeMmDAgIG/A4br51+G999/HxzHYc6cObBarT7HLRYLevbsqfxevHgxOnXqhDJlyiAwMBDx8fF49dVXkZ+fr8r3yCOPIDg4GKdPn0a3bt0QHByM2NhYjB49Gg6H45bqmpGRgTJlyuge43nfW5PneTz88MP4+uuvIUmSsn/evHmIjY1Fhw4dbqkedwpTpkxBfn4+ZsyYgRIlSvgc5zgOffr0uelyMzIywPM8oqOjdY/r9dXw4cNx4cIFrFmzRtl38uRJbNmyBcOHD/dJX7JkSR93EwA0adIEBQUFf7m70IABAwb8wSAq/yKIooh169ahYcOGPq4Afzh16hS6deuGuXPnYuXKlXj++efxww8/oEePHj5pXS4Xevbsifbt22PZsmUYPnw4PvnkE3zwwQc+aQkhcLvdPhshREnTvHlzLFmyBG+99RaSkpIgiuIN6zt8+HBcvnwZq1atUtr89ddf45FHHtEdsCnuv/9+CIKAiIgI9OnTB4cPHy5O99wUVq9ejVKlSqFZs2Y3lU+vn1gi1rx5c0iShD59+mDVqlV+3VssqlatilatWmHevHnKvnnz5qFixYpo3759seu2fv16REVF+SVJBgwYMPCX426bdAzcOaSmphIAZMCAAbeUX5Ik4nK5yMaNGwkAkpSUpBwbNmwYAUB++OEHVZ5u3bqR6tWrq/YB8Lt9++23SrrTp0+T2rVrK8cCAwNJ+/btybRp04jT6VSVWaFCBdK9e3dCCCFt2rQhffv2JYQQ8vvvvxOO48iZM2fIjz/+6OP6WbFiBXn99dfJ8uXLycaNG8m0adNIuXLlSFBQEDlw4MAt9ZM/BAQEkGbNmhU7Pe1Tva19+/ZKOkmSyFNPPUV4nicACMdxJD4+nrzwwgvkzJkzqjKp6+fatWtk/vz5xGq1koyMDOJ2u0mZMmXIW2+9RQghPq4fPXzxxRcEAPnss8+K3SYDBgwYuNMwxLT/caSkpGDcuHFYt24d0tLSVBaPY8eOISEhQfnNcZyPpSUhIUFXDNqvXz+89NJLPvvj4uKU75UrV0ZSUhK2bNmCDRs2YM+ePdi4cSPWrl2L+fPnY8uWLQgICPApY/jw4XjiiSeQkZGBuXPnol27dqhYsSL27Nnjk7ZLly7o0qWL8rt169bo3r076tSpg/Hjx2PZsmV++4YQ4mPlMZnu7F8mMDAQmzZt8tkfGhqqfOc4DrNmzcJrr72GP/74A3v27MGmTZvwySefYPbs2fjjjz/Qpk0bnzIeeughPPfcc1iwYAEqVqyI1NRUn1lX/rBixQo8/fTT6Nu3L5599tlbbp8BAwYM3C4MovIvQsmSJWGz2XDmzJlipc/Ly0OrVq0QEBCAd999F9WqVYPNZsOFCxfQp08fFBYWqtLbbDYf4mC1WmG3233KjoqKQqNGjW5YB57n0bp1a7Ru3RqAPH32sccew+LFizFv3jyMGjXKJw8dPD/55BMsX74cX331VbHaS1GxYkUkJiZix44dRab7+uuv8eijj6r2sUROi/Llyxe77yl4ni9WPwFAhQoVMHLkSOX3Dz/8gIEDB+Kll17Crl27fNIHBQWhf//+mDdvHipUqIAOHTqgQoUKNzzPqlWr0KdPH3Ts2BELFizQ1a4YMGDAwN8FQ6PyL4IgCGjfvj327t2Lixcv3jD9unXrcPnyZcybNw+PP/44WrdujUaNGiEkJORvqK0+goKC8NprrwGAXx2JzWbDgAEDMHHiRAQFBd2SQJUQUqSmBQB69OiB3bt3q7ai0LlzZ1y9evWGBOhOoV+/fkhISChSbzN8+HAcOHAAy5cv1xXRarFq1Sr06tULbdq0wZIlS2CxWO5klQ0YMGDgpmEQlX8ZXnvtNRBC8MQTT8DpdPocd7lcWL58OQAob8ra2UGzZ8/+6ysK4MqVK7r7jx07BgCIiYnxm3fkyJHo0aMHxo8fr+seKgpnzpzB1q1bbyh6jYyMRKNGjVRbUXjhhRcQFBSEUaNGITs72+c4IeSW4tf466e8vDxcuHChyH5q3rw5hg8fjt69e6N3795Fnmf16tXo1asXEhMT8csvv+jOGjNgwICBvxuG6+dfhubNm2PmzJkYNWoUGjZsiJEjR6JWrVpwuVzYv38/5syZg9q1a6NHjx5o0aIFwsPDMWLECLz55pswm81YsGABkpKSbrse/iwLoaGhqFmzJgCgVq1aaN++Pbp27YrKlSvDbrdj586d+Pjjj1GqVCk89thjfsuvV68efvnllxvWo0OHDmjdujUSEhIQGhqKQ4cO4cMPPwTHcT7B0G4XlSpVwqJFi9C/f3/Uq1dPCfgGAEePHsW8efNACFERBkmS/Fpg6tevD6vVivfeew9bt25Vyg0MDMSZM2cwbdo0ZGRkYPLkyUXWa+7cuTes+5YtW9CrVy+ULl0aY8eOxYEDB1THa9asqdLNGDBgwMDfhrso5DXwF+LAgQNk2LBhpHz58sRisSiByMaPH0/S0tKUdNu2bSPNmzcnNpuNREVFkccff5zs27ePACDz589X0vkLTkZnmbBAEbN+WrZsqaSbPXs26dOnD4mLiyM2m41YLBZSuXJlMmLECHLhwgVVmeysH3/Qm/Xz/PPPk5o1a5KQkBBiMplITEwMGTJkCDlx4kRxuvGWkJycTEaNGkWqVKlCrFYrCQwMJDVr1iQvvviiapZOUbN+AJBTp04RQgjZsWMHefrpp0ndunVJREQEEQSBREVFkS5dupA//vhDdW521k9R0M76ofn8bWyfGjBgwMDfCY6QItSBBgwYMGDAgAEDdxGGRsWAAQMGDBgwcM/CICoGDBgwYMCAgXsWBlExYMCAAQMGDNyzMIiKAQMGDBgwYOCehUFUDBgwYMCAAQP3LAyiYsCAAQMGDBi4Z2EEfDNwT0OSJFy/fh2ZmZkoKCiA3W6Hw+FQbUXts9vZ/ep0kiTBarUqm8UifwYEBCAgwKo6FhAQoPqttz8gIADh4eGIiIgwQs8bMHCPweFw4N2AADQA0NuIyvGPghFHxcDfioKCAly6dAmXLl3CtWvXkJGRgYyMDKSnZyAzMwOZmZnKvoyMDGRlZUGSJJhMJgQFBfkQhqJ+WywWBAQE+j3O83wxSI+9yOPs78LCQmUhx+DgYERGRqq2iIhIREZGKL9LliyJMmXKoGzZsoiMjDQW/zNg4C9CRkYGepcsiWwAKQDGAXhZkoz/3D8EBlExcMeQk5ODlJQUnD9/HpcuXcLFi5dx+bJMSujn9evXYbFYUKZMGURHl0JERITOgK7eVzIyAsHBwcV+qKSnp+Nq2jVYLWaEhYWhZMmSuulE6c4/pBwOh4psZWZmMN8zVb8zMtJx+fJl5OTkwGq1IiYmBjExZVG2bFnExJRFbKz8vVy5cqhUqRLKlCljPFgNGLhJnDp1Ct2qVUNdAN8AOAHgfgDdAMxwOmE2m+9q/QzcGAZRMVBsSJKEixcvIiUlBcnJyUhOTsGZMynKZ3p6OkJDQ1GhQgXVgMt+xsbK1gN/KxcXFhbi4MGDuHLlCjZv3oxPPpmCdu3a4dy5c0hJSVHSVa9eHS+//ApcLheysrJw9epVbNiwHhcuXEBGRoaqTJ7nsXPHDtSsWRM2mw0EnKc9f11f3Qzy8vIUKxNL7C5fvuwhfBdw+fJlBAYGolKlSoiLi0OlSnGoXDkOlStX9vyuhMDAwLvdFAMG7ils2rQJvdu0weMAJsIryrwImaxEAfgxKwthYWF3qYYGigODqBjwgcPhwMmTJ3Hs2DEcO3Ycx48fw7Fjx3DixAm4XC6UL19eGRwrx8WhUpw8WMbFxSE8PFx56+fg/9Yi4OB0OrF7925s2bIFr732KoKDg5GXl3fL9X7kkUdQtXJl7N6zB78sW6ab5sKFiyhbtqzfMjIyMrBt2zY4nU7UqlUL1atX97FivPzyy/jxxx8wffoMdOvWrdj1W7VqFUaMeAqPPfY4WrZsiSZNmiAoKKhYee12O86ePYuUlBTVJhPFZBQWFqJixYqIj49H9eo1ULNmPOLj5S0iIqLYdTRg4N+C7zgOTwH4FMATOsdzAQwEcAbA72fOoGLFin9f5QzcFAyi8h8GIQRnz57FgQMHcODAARw8eBCHDx9GSkoKbDYbatSogfj4eNSo4Rn0alRHXOUqRZpKWXKSnp6OkJAQ8DyPjRs3AgAqxVVGRERJtG3bCgcPHvRbTuPGjRWLAovmzZvjySefQosWLWAxm+BwOGAymXDt2jU0a9YMgGz5OXz4MFasWIFXX3tNydu9e3cs+v57BAWH+Jzv6aefxsyZM3z2L1v2K3r06KHax/Ne4iJJxf/7fP3113j00Ud89vfo0QPR0dHo338A6tWr59dV5Q+EEFy5cgXHjx/3kMtjOH78GI4fP47Lly8jOjoaNWvWREJCXdSrVxd169ZFrVq1YLVab+o8Bgz8E0AIwds8j08B/AigYxFp3QBeAPADgF937EDTpk3/hhoauFkYROU/ArfbjaNHj2L37t3Yt28/Dh5MwsGDB1FQUID4+HjUq1cPCQl1UadOHdSMr4Fy5cqB4zjFTaIFJSSEEFy8eBFHjhyB5Hbj0uXLeG/iRJw7dw4A8OILL2DKJ5/cVt3r1q2LLVu2qqwPN7LWAMDrr7+OiRPfR/Xq1bFv714E2rz5JQlgvU+JiS2xbds2hIWF4fr168r+ESNGYsYMNYG5cOECfvrpJ8UqUlxIkoTNmzdj69atmDLlY2RmZuqmq1+/PiZMeBfVq1dH5cqVi12+HrKzs3H8+HEcPnwYSUlJOHgwCUlJScjLy0N8fDzq1q2LevXqoWHDhmjYsCFCQ0Nv63wGDNxNOBwOPBYQgC0AfgdQq5j5pgIYC+ArAH2NIfGeg0FU/oUghODMmTPYtWsXdu3ajd27d2Hfvn3gOA4NGzZE/foNULduXdSvVxfx8fE3fLNmyQoHgvXr12P2nDlYvHhxkfmsVisqVKiAkydP3rDOpUuXRmpqqvJ70MCB+HjyZJQqVUp2vfjRtOgRKbdbwrhxr+PDDyfhgQd6YenSpT5pWH2KJMkDer9+fbB+/Tq5nRwHQghatkzExo2bwfMMOZIkbwE8D/C8bj0OHTqE3377DStXrkDVqtXw6adTYbPZlGxutxspKSk4evQYrl/PwgcfTMKJEydQr149HDhwQFVWhw4dUKdOAurWrYtmzZqhatWqfoW1tHrnzp1DdnY2YmNjERkZ7u0zQnDhwjkkJSUp1rS9e/fg0qVLqFGjBho3boImTRqjSZMmSEhIMCwvBv4RoDN7HAB+BVDqJvMvBzAIwBsAXjJmBN1TMIjKvwBOpxP79u3Dli1bsGXLVmzbthXXr19HQkICGjdugkaNGqNx4yaoWbMGBEHQLYO1UGgHXcV6Ag5XrlxB2bIxd7T+X86Zg6CgIAwcPFi1f926TUhMbAVA4QPFQk5OHsLCZPfOn39uRuvWiTCZ5HawQlqtmFYUCRYu/A7Llv2MJ58chbJly6JixUoICgpUzq0QFm0BJhMIOGXX7Nmz8PTTI1Xlr127AW3atPFb70OHDqF+/QTVvhEjRmLWrJkAgLi4OEVQXKVKFbz//kT07dtXt6w9e/agSZPGfs+VmNgK/fr1x8iRo5QH8tWrV7B7927s3LkLe/bsxp49u5Gfn4+GDRshMTERrVolokWLFoiMjPRbrgEDdwNnz55Fx0qVlJk9tlssZz9kkW13AHOMofGegUFU/oEoKCjAtm3bsH79BmzZsgW7du1EUFAQWrRoiZYtE9GiRUs0aNAANluAaizVDvRFuU+uXLmChQsX4ptvv0VaWhoAoGPHjnh97FjUiI/XzSMIAkRRLFYbdu/ciXp168JkkmMOioRg/4Ek8LwFkyd/gEWLFmDDhi1ITGypsmboWS7YdhQWFqJGfDzOnz+PoUMfxdy58xSSQlEUEdMjMD4kBdCfMuSxrEgSUKNGVZw+fRoJCQkQRRFTp05XkRTttRBFEfHxNXD69GkAwIwZszB48BAfsW12djZ27NiG118fiwMHDmDgwIEoUSIMUVFRqFixIkqXikbDhg3x/fffY8PGjVi9erUS20UP8+d/jaFDH1Z+s4YiQghSUk5jy5at2Lp1C7Zu3YKTJ08iPj4eLVsmonXrVmjXrl2R4mQDBv4OLFy4EB8OHox9uP1w6/sANAPgNIbGewYGUfkHwOl0YufOnVi7dh3Wr1+HHTt2oFSpUmjTph0SE1shMTFRd3YKBTso+iMnhBAcPHgQvyz7FUuW/IRDhw79FU1Bvbp1sX3rVgQEBKjPzwuQJCA1NQ316tVCy5aJisuGWkK0uhIt3nzzTUyY8I7y+8yZVJQtW0pFVPwRnaIsLew56XfFqqKFh6wcPnwUCQmyh7xhw4bYvXuPUj4AHDhwAIMG9UeFChVw9uxZnDp1SlXMihWr0b59R7/tPXXqBN54YxwOHTqEEydO6CdiULVqVdSv3wADBgxAfn4+hg4dohyrWbMmHnzwIZQqVQqlSpVCVFQ0KleujDJlyviUc+3aNWzfvg1btmzBpk0bsW/fXlStWhXt2t2H9u3vQ9u2bW9aDGzAwO1i4cKFmDl4MDabbj/YejIhiOd5OJ3OO1AzA3cCBlG5B0EIwalTp7By5UosX74c27ZtQ3BwMNq1uw/33SdvcXFxEEUR165dw7Fjx/Dnn39i+PDhqFqFEV/SUZGO8J5Rjw7KdPB2uVyw+NEhlChRAtnZ2T77eZ6H5CcQSYUKFZCRkaE71XjUyJGYPn26apAnvAC3G1i3bgO6dGkHADh69ASqVKmmc16PZUMSqdADkCRM+vhjvPb66wCAkSOfwccff4yAgFsLY0/JitvtJSaEEBw6dBDp6Rmw2QLRpElTmEy8qk40L8/LfWq1es8/bNgwjBk9GrVq14EkAXv37kXTpo2KrEdubh6CgoKU+vC8PxIlYePGjYivUR0OhwMrV67Etu3b8e2332LSxIkoXbo01q9fj+W//YasrCw0a9YM27dvv2E/VKtWHS1bJqJBgwZo0KAhypYti7S0NAQHB6N8+fIICAhATs51bNq0CevWyST68OHDqFu3Ljp37oyuXbuiRYsWRkAtA385Fi5ciJlDhmDzHbjXkglBPGAQlXsJxMA9gfz8fPLrr7+SkSNHkfLlKxCe54nNZiOlS5cmBw8eIk6ni2zbtp18+OFk0r9/f1K/fn1itVoJANXWqWNH8t6ECWTBt98SIkmESBJxOl0kP7+AbN68hTzxxJOkefPmJDQ0lERERJA5c74gkyd/5FMOAHLhwkUiSYS43YS89tpYAoAEBASQ559/noSEhOjmqVmzJkk6cID8sGgRWfbLL2T7tm1k/bp15MUXRytpDh86pNRNkghxOgm5cCGNmEwmJU1OjoPY7YTY7fJxurndRMlLd344aZKqDhkZecTtltPS+rMbze5vHz1XXh4h589nkA8//Ix06NDZp62jR79Mrl/PV+VntwULFpKSJUuq8sycMYPY7Q6yf/8BMnz4Y4TneVK9eg2fsh9+eBhxOkVVfZxOovRJQYF3o31E66FbGUki9sJCMn/ePPLggw/qXruhQ4eR1NRr5ODBI+T77xeTp54aQerVq6e6LnQzmUykSZOmZMKE98jRoyeI0+ki166lkwsXLpJ33plASpUqRcxmMwkMDCQ9ez5AZs+eTc6fP3+3/2YG/qVYsGABSeR5Qmy2295OBwQQs9l8t5tkgIFhUbmLuHr1KpYvX45ly37Fn3+uQdmyZdGlS1e0aJGIK1cuIy8vDxzHYd++vdiyZTMyMjJgs9nQoEFDVK9eHbVr10b52HIIDAzEmJdewtGjR1GhQgVlajAgux2SkpLgdrv91qNZ06bYsXOnz/7OnbugQ4eOWLt2DVauXOk3f/PmzXH48GHk5ub6HMvKuo4SJUpg3759eO21V7FmzRps2bIVLVq0AKAYRDBs2GAsXrxQyVdQIILneZWlwmRSTyvmOIIjhw8hoW5dJd/99/fCzz8vVdLeLGgetxtITj6L+++/D5cvX0RcXBU89tiT6Ny5C5KSDuDhhwcCACIiItCiRSLi4+PRt+9DaNSoAQAgLS0NUSUjIQgCduzYgfXr1+P3P/7AhHfewcqVK/Hh5MlF1mPQoCH45JNPERkZqTKM+fE2qUCt3ypNDWRLGnVzud1u7N27FydPnsTgwYMhSd5CtC42l8uBQ4cOITU1FaVKlUJ+fj6OHTuKDRvWY8WKP1BQUKCkpbOltLDZbCgsLET16tXRr19/9Or1AOrVq2fMrDBwR7Bw4ULMHDoUm223KqP1IlmSEO9yGRaVm8SJEyfw/fffY/PmzTh79iwKCgoQFRWF+vXro3PnznjwwQdveQahQVT+ZiQnJ+PHH3/Czz//jD17diM8PBwvjRmDng/0Qo0aNXD16jX06dMLO3ZshyAIKFGiBBIS6qJ58xa4v3tXNG7cGGbPzB3Cy5++HERC69aJ2LFjO4YOHYqGDRshICAQ9es3RExMGSQlJWHAgIdw//33Y9GiRUXWl+M42Gw25OfnK/ssFovfP7HZbEZ0dLQSqO3SpTSP0LMsLl++jK5duuCPP/5Q1tmRJGDz5k1o394rND1y+DCq16iluDoE3nuLXrpwAe9OnIR9+/bh1KmTyMrKQlRUFIYMGYZRo0ahcuVKXv0II271JyrWTlOWJMDpBI4fP4k+fdrDYrFg9eq1KF++okpUe+HCJaxa9QdOn07G4cMHsW/fXqSlpXkC5NVQ9DWVK1fGm+PH48233sKZM2d8+uupp0Zg9uxZfvt/06bNaNEiUeWOojCZAItFozu6gZCHnZnEtlnr2tcSIo33UEF+fj42btyI06dPITo6Gnl5ecjLy8WyZb9g8+bNAIDAwEB8+803OJCUhHXr1iEtLQ2pqakIDw9Hjx490bfvg2jdurXfGWkGDNwICxcuxMyHH8bmEN9gjjeLZFFEvN1uEJViYv/+/Xj55ZexefNmtGjRAk2aNEHZsmURGBiIzMxMHD58GJs3b0ZOTg5efvllPP/88zdNWAyi8jfg1KlT+OGHH/HTTz/i8OHDMJlMsNvtAIA1a9bAZgvCN998g6CgEMyZMxNmsxnvvz8ZgwYNQWCg1avLYAShHAhEibvhGzY7i0N73Ol0o1Spkj4alFmz5mDt2jX48ccffcLav/bKK3hpzBhEREX5nHf4o49i3vz5yu+goCBs3rwNJhOPrKwstGnTGgBw5sx5xMbGwu0GFi/+HsOGDUKzZs0w6b330LJVK3C87Gem1ha5rgVYsGARxo17CYIgoHPnrqhSpRoSEuqjbt0GuHr1PBo2rIf8nGw5AN3xE+j3UF+AMxWLqFBS5HYDLhdB586tkZ5+FatWbUBsbIySRi/v8uW/YsGCb1C2bFmcPHkSq1bpW5+mTPkEBw8mebQfLXHp0mX07dsfAHDy5HF89903KFeuHIY9PBRNmzXD0aNHYTKZkJ2dg8DAQIWk6MyMBs+rCd2NCIsocUqbGamPUhZ7nqJIC5uWBd3vcjkgiiJsNpsqjcPhwLp16/Hrr79g2TKZ1PXu3QcPPdQXbdq0UWaDGTBQHCxcuBAzhw3D5juwZk+yKCI+L88gKsVEhQoV8NJLL2HQoEFFLtexfft2fPLJJ6hXrx7Gjh17cye5e16nfzfOnz9PJk6cRKpUqUp4XiCtW7cmffs+pPLzm81mH99/ly5dyZUr6SpNBqs7kCSvToHVbyhpGMGEP+2E3paXV0j27EkiTqfI6DVEIooSuZaWRtasXk0kl4ssW7aMhIeHq9rQpk0b8uqrr5Iv5swh0dHRBADp3LkLGT36ZSXdqFFPK99PnTrt0YC4SHh4OImLiyOFOTmqhkkSIUlJx8jrr48jbdu0IcHBwQQAeeCBh8jp0+kkJ0fWkOzYcUApNywsTNWX3323QOkzVo/Caj2o3iMvj5CcHEIyMwmZPXsxAUAWL15FcnLk404nITNmzCa1atUmvXr1IcePnyFOp9zn3bt109V80K1ChQpk9apV/kUz9EIz257du5X8mdeuqa4pm0V7n+jdB+x1Zn9o89ON6l5oela7o6cb0ivDpy5+KitJhDgcbvLnn+vJiBEjSalSpUhUVBQZMWIk2bJlC5Ek6S7+iw38U7BgwQKSaDYTEh1929vpiAhDo3ITcDgcf2l6QggxiModRFZWFvniiy9ImzZtCc/zJDAw0EeAyPO8z0D2/POjSf/+g8hvv60mhYWSz0BAB4e8PO9GB1eWqPgbxLQDmd54qUdeiCQRSRRJyqlT5KcffiAJCQmqev/ww48qkSwAUrZsObJ27WbidhPSv/9A1bHHH3+CnD9/iRQUEHL9OiG7dx8nAMjcuV/L57PbCXG7SUEBIbNn/07MZguJjCxJevXqRSZMeI+cOnXaR0w6aNDDSvl9+gwi77zzKfnf/14nAEiVKtWUvqJ5WGJCyUlOjlyfzExCDh26RCIjo0i3br0VkmK3E5KfbycAiCAIBAB54omnFGGv2+UikzWCXgBkyODBZNvWrUUyREki3otMT+a5KEcOHyZ79+zRJR5arkM3n7I1v/WusfZ+YI/r3Tt69xa7nxX50nuZLZO9R7V1dDjcZO3aDeSJJ54kISEhpFSp0uTVV8eSo0eP3r0/toF7HgsWLCCJFgshMTG3vZ2OjjaIyj0Gg6jcJtxuN1m1ahXp168/sVqtpHHjxmTKlE/JM888pwxYbdq0I6+8Mo6MG/cWqVMnwWdAu3QpTUVOtE917SCiDEj0ic+8aWvGNJ8Bgk1X1CDmcDjJb8uWkfj4eL+Wgnr16pHmzVtoyMtS0rdvP/Luux+QoUMfJYGBgeT331eSlORkIklEISnp6YQMG/YkKVu2HMnN9TKuvDyRzJy5kISElCDt23chWVkFuu2gn5s27VDO3bp1R1KxYmUCgJQuXYasWLHOx3JCSYp2f04OIStXbiQVKlQkMTFlydmzV5TjDodEJk+eopwnPj6epKSc8w72TieRCgvJQ336KGnKlClD1qxcqZqd5GMC047c/lil1upSBOnxR0Z8Oq6IfHqn8Ud0lXO43eoO1bTVX5P8zlhyu8mbb75NABCr1UoEQSB16iSQadNmkKysrLv3hzdwT0IhKuXK3fZ2unRpg6jcYaSmppK33377lvMbROUWkZycTMaNe4PExsaS0qVLk5dffoUcPXpMeaOMiIhQBq3IyJKqAax9+w7krbcmkJSUKyQvTx646eCp98DWDhjaQcYfSdEOQto3b71B7cSJk+TpUaNIUFAQAUDat29Pvv7qKxUZ4TiOWCwW0qpVa/Laa+PIk0+OJH/8sY4AILVq1ValnTjxA+XceXmy1SItjZCLFwkZPPgxUrdufWXcTk0lpEWLDgQAuf/+XiQ9PVt3wGTH9cJCiXz33U/kuefGkK5de5Jhw54kS5euIllZTpXliZIRaklhrVRXr9pJly4PEACkQYNG5PTpc6q+nD17DgFAbDYbAUBSUi6oCR+tTEEBOX34MPlp0SIiuVy+pgZ6c9wsWdEzQxRj0yUrxUxfFGnRy6ey6LCkhd2Ywtgm0cNHjyaT0qVLk4ceeohkZGQSSSLE5ZLI3r0HyEsvvUbKli1LAgNtxGQykwcf7EvWrl1LRFG8ew8BA/cMFixYQBKtVkIqVrzt7XTZsgZRucM4cOAA4Xn+lvMbROUm4HK5yNKlS0nHjp2I2WwmDzzQiyxb9itxOl3Ki3NOjot89NFnJCIi0uN+qEr+978xZPv23eT8+UvE4ZDI1auZ5LXXxpMnn3ya7N9/mqSl5f/lJMXfoEO3lJQz5JFHHiE8z5Po6GjyxrhxZMP69UT0ZBg9erTivgJAeJ4nTZs2I6GhoQQAqVGjJvnkk+kkJiaGACDNmjUnv/76h6puWqIydOgTpESJEiQ5+TyRJEJmzlxIAJBx42aQnBz/4zU7plOyQfUlmZlqQlIcovLNN0sIADJ79nckP19SudIkiZDhwx8jdevWJZs3bSIAyLfffu+XqChEROuTuZNEpZhk5WaJih6x/TvIyvnzV0j58hV8LHYTJ04ioui1FhYUiMoxnudJZGQkqVy5Mvnww8kkPT39Lj4ZDNxtLFiwgCQGBBASF3fb2+nYWIOo3CSSkpKK3BYvXmwQlb8aly9fJm+//Q4pV64ciY2NJW+9NYGcO3dZGTdyc+1k6NBhpFq16sqDdNiwR8mhAweUB3luTg6ZNm22rgulWrVa5LPPviKXLhWQvDwiF8qKJ1ixBMtotIOXdmMGEdVIwuRzOxzk/fcnkoCAAFKqVCny2WdTSWGh3S/JGTxY1oQsXLhIKYa2Y968b8jPP/9Khg0bTvLznSrpRUGBTCLS02XLSWoqIS+++KZioRk27EkiCALp2/dhcv26qLgE2PzU8kS1OZSAsGJYloywRIUeY4mL3S6XuWSJTEC2bz/sHYg9JJG43eTTTz8jAMgbb7xJatSIJyVLliRTp04jTz/9DGnatClp1aoV2bZ5s68/iWVT7PVjo7VpI7exLpMirqve9dGSXJ/rX0ySohVrs2XrERUtOfa5afxsNMnFi1f9uhc/+WQquXr1Onn//cmkUqU4Zf9nn00jOTkO8s0335NWrdqQgIAAMmTIULJ9+3ZiCHD/e1iwYAFJDAwkpFq1295OV6xoEJWbBMdxhOd5wnGcz0b3G0TlL8LevXvJkCFDidVqJZ07dyFLliwjeXkun1kjf/652ecB+8MPS0l2dh45f/4S6dKlp+5DuGnTRNKt24OKwDYhoRlJTZUHVOVNnVWAalWzfsiH7gimM3hkZ+eQatWqEQBk9OgxJDc3T9ca43YTkpJyjjz0UH+PxeNNZSw9cuQkAeRZPgMHDlHalpfnUvVRXp6apFy+TMi1axJZu3Y36dfvYWIymUifPoNJTo7LR0hM3WOsi0wrLqbHtUSFJSm5uRIpLJQUwbLdLu8/fjydACBTpiwgeXku8uyzz5FXxowhUn4+IU4nEUWJdOrUiQiCQDZs2EYSEur6XMuePXroh44tripaq/ql6W9AQPU2n/viFiwp2mrqibb9bQph0TnoLiwkc2bNIo8PH04e6NGDNGjQQPe/8dJLL5Nnn/0f4TjOR5ROt8JCt9JN+/cfIaNGPUtCQ0NJ48ZNyMKFC4nT6byrzw8Dfx8UolKjxm1vp+PiDKJykyhZsiSZO3cuOXv2rO72+++/G0TlTsLtdpOff/6ZJCa2IjabjTz11Chy6NAJ3Rdhr0tBJAMGDNJ9mJpMJsUNBICMePxxsvqPP8jlc+fI9euyC2TXLhepWrWOPOD1HEhOnTrvHS2KQ1D0BjI/AxQdyNxuQr7/frFnpk5Zv2MYLbJFi0SPe2QeKSgQlTH3448/U9oWEhJCbDYbSUioq3ojZ10+aWkyUUlP97pq0tMJycqSVEYFvWnDlIzQ/qf709O95bFWF5r3+nVCLlzIIfXqyYNi3bp1FZcCLSc+vjapWjWetGrVVmnPkgULCHG7ybZt2wkA0qVLF4+xq1BJM3z4Y+S1V18lqVeuqN0deqpdraJXW1GWsGgtaH4Iqa4lQ+u3Kcpl5MdSo0cStSH7tYYiLYGnxbPnv5qaSjiOI1FRUaRL586kdq1aBAB5bPhw1f9m2bLfiN0ukocffkS1v3v3HmT79r3kwgW1AJ1u167lkI8/nkri4iqTsmXLkvfee59kZGTc3YeKgb8cCxYsIIk2GyG1a9/2drpqVYOo3CQ6d+5MJkyY4Pf4gQMHCMdxt1z+7a6I/a+Bw+HAF1/MRc2aNfHcc8+he/ceOHPmIj7/fDqqV68GnpeDYdFooBYLEBAAuN15WPvnMqxZs0q33Ad69MCJA/tB7HYQpxMzp07FfZ26IiyqPAoKgIICICzMhMcffxEA8Ouv3+P80f3A9etyiFSn0xsuVRuJy+32pmE3bWQwJmqXJAEEcrCvn3/+CQDQqFEj5OflggPxWV2Z5+XFuS5duoAnn3wKjz76KCwWXumDZ58dhb59++KNN97CkSPH0b59R8TExCh9xQYMowHCaFAx+hkQAAQGeiPVut3yZrfLGxv4TZK8+2lTtYHH9Lpi+vSpOHBgHwAgKSkJ06ZNU8o0mYAvvvgaMTFlsGXLRqXto19/HYVOUQnON+Xjj8HzwLhxryppWrdKxPvvvotSUVG+EdMAb+XZhrFx+mlabaQ1GvDMYpEj7PKC9ziN1CZJ8uKM9JOWz27awG/sYpDgQHgBIgQQXgC7WKUZLlh5F4IsLpQIJbDZ1EHe6PWj94HFIv+2WoiycZIIQXKBjSwXFV0Kjz/+BFwuF7799lscOnQIxOnEl7Nm4VpqKo4cPAiHw4muXbsD4PHGG28p9Z32+efYsWMbmjdviHr14jFt2hS43XZVncLDQ/C//z2LI0dOYOrUGVi9ejXKly+PF14YjYsXL8LAvxzam/RWNwM3haeeegoVK1b0e7x8+fKYzwQDvVn8569Ibm4uJk/+CHFxcZgy5WO89NJYHD2ajNGjX0KJEuE+0TldLhc2bNiAjz/+CNHRkQgNDUHvPn2QkZEBAKrQwOPGjsW3X34pL3vPkA1BciEgAIiIAMqVA8LDCbKzrwIAFi1ajvt69ABCQ+U/DF27Qjvq6zGAov5kPK8KWy+PhXIE2BUrVqBX7z5wOAlcbnXI+cuXU9G3bx9cvnwZjz32lFKcd0VfExYu/BFvvPEmDh8+guXLl6Fmzdqa83iJHUv2WPJHq86GsdfyLO0+nSb68AG6JSXtQUBAAPr06QcAKBUdBbOJKINsixYNsH79WlSvXl0p7+zZsxgz5kU899yzAABbUDAkCfj+e3lNIkEQEBUZ6Usg2GtCv7P72IrZ7d5Ks42iJMbTaE4S1Y2lREbbYO13zX1CCQkNpU+TsMROlDgQkxkib1bqzl4jNqItjYbLgfjUkfACtIsucSB475234XK58Pm06TI58twEJUuWRM3atWE2m5XzxcZWwC+/rER4eDimfPIp5s79Gps2bkSfPg9izJjRsNkC8ccff/jc+mazgB49emLNmvVYvXodzp49iypVquDRR4fjxIkTvjePgX8+OO+9dNubgZtC7969MWTIEL/Hw8PDMWzYsFsu/z9LVHJzczFx4iRUqlQJP/74Iz77bAb27TuMoUOHISDAohozzp49iwkT3oTFwiEoyIIOHdrhlVdeQmZmJgDggQd6Yd269SgoKMSpkyeRkZoK4nZjwrhxCAwMlAth3raJyawMugUFwKxZ0/D++6/i2WfHoH+/7l5LSUCAnJcdlGi8c4risH8/ab79dgHcboJJkz7E2rV/onHj+ujevTOOHz+Obdu24LnnnkPVqnHYtWsnfvxxKerXr1/kacI84auPHDmku67N3YAkSfjyy+m4cuUS7HY7li1bAgDYsmWLbnrtejMzZkzH4cOHcf/99yMzMxMXLlzAtWvX0Lp1a7hdLnTr1u0vb8NtwR+r88Df7UNvNRG+6+9ob0O60KGKqLH76f3ryRBVqhQefngYZs2aiWvXrkGiRjxPfmrVo2SlS5fOWL9+J8qWLYdeve7H7Dlf4vWxr+Hnn5cCAHr27I7Zs+dAFEXdpSIaN26CH35Ygl27DkCSgLp162Lw4ME4fvz4DTrPwD8Kd4qoGGtO3RFs3boVDofjzhR2y06jfyhyc3PJe++9TyIiIkjz5s3JihUriSj6j9o5ZrQ68ioAkpjYmsyaNYds27ad2O0uxcXPzpLQykXYaLHE6STbtm0nFSpUJB9//BkJD48glStXlhPk5flqSrQ6A3/xy7WiASoUKMYsjO8XLFDa17x5cwKAREdHk9dff4OkpWX4zU7rSNv62aefEgCkfv36SlVpv7BV0/Y1qzOluhKqPaG6lrQ07z4aSVYroqXC2ZwcQs6ezSAdO3b1uX5169YjAMicOV/6tOORRx71SR8WFuYTlfeRYcN8NSl6Ihvtfj31r1YBrN1Hpytpy2dFIbSzbyCY1UtG2+8jLnE6fW4zzQxjr+hbK1Dx7FPK1tTj2LHjylT3WrVqkd69e5PmzZuTTz/5hLRs2ZI8Nnw4cbtcmnqLZPr0OaRUqVLEYrGQ/z37LNmxdSuJi5NnA02dOs1HxqMnyzmTkkIef/xxYrVaycCBA8mxY8fu2vPIwJ3BggULSGJICCHNmt32drpePUOjcgcQEhJCkpOT70hZ/5lFCR0OB2bPnoN3352AypWr4M0330anTh1AiO8y8+xb2erVqzFjxgz07PkAOnfuhqioUirTN6C//pvWCAIAXEE+wPNYuXYtuvboAQAIDg6BJIk4vm8fYqtVAwGnGFSo31+lG2H1J9pV5djK0wpo3nJ9GujB5s2b0bpNG7z77ntYsOA7mExm7N69HwCvWO+1ng1q9qfaBlqtbt26YPXqVbh8+Zrs9tKcll08j4BTrEvUa0HL0Tsnz3vdRnoLDbL7pkz5AOPHv4rffluBESOegNPpRFpaGrp37wG7vRBHjx7Btm07Ub58OUyePBkff/wRrl27BgBISKiL1NRUlCgRilOnTqFLl64YMWIU9u3bgzJlymDEE4+rr4mey4dtCPub5tFWXqtt0bqUtPoXFqyuRS8Nc6/QPmeLoxIongcEiN7yJAkiBNV9TIsSIKp3sBeP6QtiMsvp6XX3HD95+jT27juAr7/+SlnIked5SEx/rV69Fh07tAO76nNOTh4+/fRTfPrpZEiShH79BuCXX35GZmYmvv3mG/QfMFS3a7SX5fz5s5g4cSK+/fYbDBw4CG+//RZiY2P1+9fAPY2FCxdi5siR2JyQcNtlJRcWIv7gQWNRwttESEgIkpKSEBcXd9tl/euJiiRJWLBgAcaPH4/g4GBMmPA+unW7H4LgS1C05MPf+EPHA9Vqtf4KAmQdgkeQ4RR5WK3ysRYt2mHbtvX4YOJEvDxypHzC0FDAZAIBJ/v8ixr0WOgREgotufHUhfCCQoJ69e6N5ORkJCa2wpw5s7Fnz17Uq1cPnNsjhvQISlXnY+FhD4V2FwYO7IdVq1YhNfUqQkND5XNoB2bPgMlqT7TF07Faq49gV5HW6kapt0ySgPffn4B33x2PV14Ziw8+eF8pe+3azQgNDULjxg1gMpmwbNnv6N69MwYNGorKlaugbdv70KpVoqeJEpKTz6By5crywMwSCC3poCfXHvf3qYW/fICahGj7Xo+Y6BEkeh3pvWKxwMVbYTYRRb+kkI+CAvka2YKUIux2bzVY8krBcmWlHI1gmK78rTomSUhPT0d+YSF4nseM2bMxadIkpdyhQ4di2uefIzQ0VNlHwCEtLR2TJk3EjBnTVIPK5UuXULpMjPJbl+gzfZecnIzxb72Fpb/8ghFPjcDr415HZGSkb58auGehEJV69W67rOTCQsQfOGAQlduEQVSKiQ0bNuDFF19EZmYm3n57Avr3HwSOE4p8gdWO6RRaPaSWpCjEgs1AxZKAoiCVCNCxY0fExlbB11/PRkxMWRzYvQtRZrPXhEIFtLQi7GdRYFmVtmFsgzwkBfA+xOvVr4+kpCTwPI9p06ZjxIgR4JwOlaCTJTnaQXTLtm34+pvv8M03X8HpdGLkyFH4/PPpEHjiQ7qoBYYVx2r7mG0OtaCw9aVwODnlmmknztSpUx2nTp0Ez/No0+Y+rF//JwAgOfk8IiJC0aBBfZw5cwb169dHVtZ1HD58GjzPq+rBNlXgiT5ZpBWwWIq+Ltr07DE9Mx37yTIEtpP0wJahR1ao+YRaWAICldlDKoboISvKlB8AhXbOh7Sz1dYa9gSI6nMCIB4RNwAvEdb84a5cvYrWrVvjdHKysu+77xZg4MCB4Dm1FS8l5SzGjXsdixbJIufg4GDk5OSqulDL73zEyQAOHDiAsePGYfuOHRg3bhyeffZZWPxdUwP3FBYuXIiZo0Zhc8OGt11WckEB4vfuNYjKbWLhwoV44IEHEBQUdOPEN8C/kqicPn0aL40Zg7Xr1mHs2LF49tnnYbEE+JivKe44SaGJCwrk7x6SQsAhL8+O5s2b4vjxIxBFEVs3bkSLunXVvh4tUSkOSaFp/TWOfVrzvA9RmTdvHhYtXowxY15Bx47t5WMaopJXUICZc+fiZHIyXC4X6tSqhcDAQKzdsAE/L12qqsrFi5dQunTMXSUq58+fx65du9GgQX389NOPGD/+VeghISEBH3/8OVq2bO1Tj/8kUaF1pPdwcHCxiQrbPB+y4jmgIirU2qZDVuxOJ9q2a4edO3cq++rUqYPZs+egebOmPi7HPXv24r77WsPlcqGw0KkyMhaXrADAmtWr8eJLL8HucODDDz9Er169wHG+FlgD9w4WLlyImU8/jc2NGt12WckFBYjfvdsgKncAOTk5WLduHapXr474+PhbLqeIp90/D/n5+Rg7diwSEhJQMioaR4+ewujRr8JkCvB5mFKXA52SSZ/ddOosGyOCfjebiD5JYQdPOjhQEYDHvO5yc7Dbga1b9+PIkYMQRfkh+fPPP8uF22xAaCiILQguN41ownkrZTKBmMzKpjuNjj6JqSWH/aOxT2m3G5zTAS4vF8jLAwoKMHzQIKxevhydWrUAZy+U9TSSBBQU4Hp6OiZ/+ilCSpfGy6+/ji/nzcPX336Ll8eOxf9Gj8b+/ftVZnkAyLh4AYI9H7Db5fMwwU04t0vRDdCmBwR44qkEEFhNIqwmEYEWEYEmlxyLwwNR4iBKHFxuDg6ndyo1u9HmxsWVR58+D6JKlTisW7caABAXF4fAwEDlTblxw4ZI2rULHdq3ks9vcsEKB6xwwCw5wNkLIeRlQ8jLhhL4hr3W7KjsGXCVmCdshdjvrC+L3mSsj0sbrIfO69aOvHTTi5/ib4oy4C3P46ri7IXePPSeoQzEZvMSDHAqLsa6QOl/gAOBmRdVTVRmDnnuWQ7EWx3af9p6ShICAgKwefMWvPzya8o5Dx06hBYtmoPjeRxOOgBOEsG5XRAgokmThrh+PR95eQ6liwSegOfV/13VVGrWp+jZOnbqhP379+OlMWPw1FNPoVOnTsYMoX8C7vL05BkzZqBSpUoICAhAw4YNsXnz5iLTb9y4EQ0bNkRAQADi4uIwa9YsnzRLlixBzZo1YbVaUbNmTSzVvBDe6LwulwuvvPIK6tSpg6CgIMTExODhhx/G5cuXb6mNN0K/fv0wbdo0AEBhYSEaNWqEfv36ISEhAUuWLLnlcv8VRIUQgp9//hnx8fFYt24D1q7dimnT5iAqqhQA9UsiG0ONHmPHCi30JAGA1ypQVKAtYrGCmMxKfosFaNOmuaqcpCNHvZWQJLjd3v+J1npAobz9soOknhVFT3zJEimGBPmYMzxv3r+vWoXwihXx8vjxShGUlISEhOCtN9/EmbNnUaFCRSxc+L2Spv+wYeo/PmvNMZkh8ETZaGAwzumASlnLmFwoddOOK9rni95xAPj552WoUSMeKSkpKCwshNPpxPw5c7Bl7VqlzzgQOX6IyQrRZAWxWNVEge0/f/0vMTFP9PpVzzqmZwnzB5Z8aCPhaYkL+5s9Ttl5Xp63n6mL0kNOVQQCAAoKwBXkQ5DkQHBmXlTzH6dTvn6ec3Ful3LNFHLP/D8EySX3k/bCsXV3OmEGwfvvv4/587+GIAgqV0y/gQMVyyA9p9lEwHGcUoTLLQuHKcEFvIHuWAsfgXycHuN4Mx57/CkcOXISNWrEo0GDBnj55VeRl5d342tk4O5Bh3je9HYL1rPFixfj+eefx+uvv479+/ejVatW6Nq1K86fP6+b/syZM+jWrRtatWqF/fv3Y+zYsXjuuedUg/n27dvRv39/DB06FElJSRg6dCj69eunsjDe6LwFBQXYt28f3njjDezbtw8///wzTp48iZ49e950G4uDTZs2oVWrVgCApUuXghCC69evY+rUqXj33Xdvudx/vOvn/PnzGDlyFHbt2oV33/0QgwY9DJNJfgD5GxuYl18fuQWgP777kAa9AYIdcAICVKZp6ov/c/0GdOzYQdm/9c8/0SIxEeB5OCSz+v9C41Cw9aCDIHsu1m/FTt9gG8ya1rW2eVoe88aen5WF1l27Yt+BAwCAzp06we12Y8PGjZg4cRKeeeZ5XLp0HlWrVgYA1KxZE+fPn1ce5OPGjsWEd99Viyk9ECEo7fPpP2176GBisaqazVZb6/pRyoY8UPE8kJubj/DwYAByJN4506ejft26UEw7JhNEiVPGa3pvmE3EGx6XnpAOlmxYXNp3HsLp0w5P+/Lz87EvKQkRERGoVbOm9/w6ZKWgoABWqxWC9sFZXFegNr0eEaIWFNZ9pW0Le29Ikko0rLgQ6X1Jy2PPpXWJ6Ym72b7S3jMecrto0Y8YNKgfwsLCcP36dQDAt99+hwEDBkAQBPk/5klPZyppbmtdV5W2m9jfNO/Bg0n43/+exsWL5zFz5kx0797dtwADdw0LFy7EzGefxebExNsuKzk/H/GbNt2U66dp06Zo0KABZs6cqeyLj49Hr169MHHiRJ/0r7zyCn799VccO3ZM2TdixAgkJSVh+/btAID+/fsjJycHK1asUNJ06dIF4eHh+P7772/pvACwe/duNGnSBOfOnUP58uWL3cbiIDAwECdPnkRsbCwefvhhxMTEYNKkSTh//jxq1qx5y0T/H2tREUURU6d+jlq1aiEyMhr79h3HkCGP3DZJuWncBEk5cvwE+vfvp+xfMG/e7ZGUvwiEEASXKaOQlGOHD2PF779jh4fJHz16BDabGd27d8OwYcPRqVNnHD16VHUT9u7V6y+t480iKCgIa9duxP333499+/YhJzf3Lz0fIQSvvPIKevbujV27d+Pq1at4bMQIBEdFoXWHDujRp4/fvC6XC+PGj0dk6dKILF0azdu0QVZW1l9a37sG9v+jnVLEpOHcLvTv3xdNmjRFuXKx6NPnIQDA0KFDYDabsG/fPq/2RZIgQPTh54BaDqOFlryweRMS6mLdus149dXxGDJkCAYOHIS0tLQ73BkGbgt3KeCb0+nE3r170alTJ9X+Tp06Ydu2bbp5tm/f7pO+c+fO2LNnD1wuV5FpaJm3cl4AyM7OBsdxSoDOO4nY2Fhs374d+fn5WLlypVK3rKwsBNAXnFvArTnj7jJOnjyJYcMeQVpaGhYsWIY2be5TPYgA9YNI6xKgL4osKHHREgTVWz/7hNN7lQcU0Sz7si3yZhw+fApdunRATEw57N9/EMFmHhFhYcoMHCs7ZdMtP7Q59glb1JOVrRv79qpx4yhp2UEB8FphPFNXObcbX8+cibT0dIx64gmcPX8eK5YvR35+PgDgq6++8lyHEzixY7tsKdq8GavWr8epU6cwePBgNGjUyBOV1CucpP0pSKLcRq2Gg+1fTduou0tg6k2nN2s9LHIRsiXFzMvkToCE+1o1R+vWv+C++9rhmedfwL59BwHGPSRPqRVgMgFWkwjCC0hNTcWIkSNRokQJzJk5E9bgYPXIpx0FPRGF9+/Zgw8nTwYALP/9d59L1+uBB0AsVtX9xoHA5XCga48eWLtuHZ575hlcS0/H94sW4cNPPsHE99/3KafYpFXrgqJ9GBCo62IskiQzZXCSqF6HyPMw8smvmZKsFXNTrRcxmWVibzIp86FJgBzdWXQDM2Z8gebNG+KJJ57Egw/2xeDB/QEAwx4eisOHD8v5PP9LWiXFleoRdBNwishbr5v0/uoAwHEcHn30cXTu3B1jxjyH+Ph4TJ06DYMGDTDEtvcKiuM+LWYZOTk5qt1Wq1W1RApFeno6RFFEqVKlVPtLlSqF1NRU3VOkpqbqpne73UhPT0eZMmX8pqFl3sp57XY7Xn31VQwaNMhHV3gn8Pzzz2Pw4MEIDg5GhQoV0LZtWwCyS6hOnTq3XO4/iqhIkoRp06Zj7NjXMGTIk3jjjXcRGmrzMWpQaF041G/NjtHsd/kBxXlnIrD2Yu2TS2Oy17omWNKzc+ce9OrVDRERkVizZjVKR0aoBg7lfJTdULKhR0TY/do0/uaKUgEoPWax+JrZ2UUPTSYMHTQIu3buRIly5eDWxp7w4OeflyozlDq0b48OnTvL5XmYIKd5K/ZxIeg9VHje96J4PonJrBrYAI9rBmpRs8B7j3sHRLkMQRDQuHETLF++XOGaPA9ZsOt0IshkgttuR/KZM4irUQPTPv0Uy5YtAwCsXbsWKcnJsOjpVQCFDDoLCtC4WTNYrVasXrECbe67z6eZLrcbdrsTPG9hbgUOK1avxdp16zDmxRfxzMiRqFi1KgCZnKv6pLgPZJ17hfYNLUZvwJb7jCEwrCmSva6URGrqo71OoiQTR3iuISU47PpTbjedUWSWr2twsCL8Fk1WSBJQu3YdtGzZCqtWrcJvvy1Hw4YNUKNGVRw5ehSdOnfBm2++jbi4OAQHB8Nms6kkOiaTAHj+JnRNK+17AGuFob+13smIiDKYN+9HLF/+M55/fgSWLl2KWbNmqIIbGrgLoBaV24UgQBRFlChRQrX7zTffxFtvvVXE6dX/I0JIkQRWL712f3HKLO55XS4XBgwYAEmSMGPGDL/1uh2MGjUKTZs2xfnz59GxY0fwnj9YXFzcbWlU/jFE5dKlSxg69GGkpKRg6dLf0bZtmyKnE7MboBtvzOdlXqWb8CSk5mTtWyf7NixJANTPbuXh/eea1ejz4IOoVasWflu2DCXpYoOegVeSmOBYrPbBH7QDBtNQeZaQZ2Cm/npWnUvzsOXTKF6ejsoDMHnyZPz4008q/ynFo48OR/fuPdGpU2dYLAFw8Zq+D/CQCSrYZAmfHvQEJjS9pz8oQaFEEmCvnfcPyfOcUhenE8jMvI558+agZMkwBAcHo1L5WEicGTt37kTJklEKpxIgIjMzE8TlQr7DgcGPPIItW7agadNm6NLFu5bPpUuXcF+7dti4cqW8JhCd2UUr5GlDbn4+JElCn9690bp1a8yZPh1PPv00KsfFoXfPnliwaBGmTZ+O+V99hR9/XIZOneTp4AJP0Kh+gnz9OA6rqdAXwLfffOO9htprr331Z0dZnXuJ83SQYuCm6T2kU+RlNyQlEcopeI91jBe8l1T7ycAfzxZ4mUDKs3W856PGEPmWpWJ1OTM7GSkxsTWmT/8MRBJRvVpl7N6xA42bNcOaNauxZs1q5fx79uxH7dr1lL+A262OyceSGL3nh0J8LV7rHZunf/8+aN8+ESNHPoVatWph/vz59/7aT/9mcNwds6gIguDjbtWzpgBAyZIlIQiCjxUjLS3Nx9pBUbp0ad30JpNJCTboLw0t82bO63K50K9fP5w5cwbr1q37S6wpFA0bNkRDTTyb29V0/SM0KsuWLUNCQgLKlSuPPXsO3nGScifBkpRPP/0UXbp2RWJiItauXi2TFI+1gWhcIvcCMjIy0DIxER99/DEaNWyI5cv/QJMmTQEA77zzLvJyc/HFF3PRs+cDt+Vv/Dtw4cIF1K5dGePGvYKRI0dgyJDBaNm6NVq1ao6tW7egd2+vVqhvv36IiolBydhYVK5RAydPnsR97dph584dcLlcGDJEDsneunUbbN2+HQlNm2LDpk1+z00XPHxm1CgAwBOPPYbstDQcS0rC5Pffx+WzZ/H5Z5/B5XLhwQd74KWXxsDuUfHGxMTg/ffew2TPNRj94osAgJFPP33PLPRYXNzp/9bevXsQGRmKr76ai6ysLKSnpwMAGjVpgvYeq1VcXBy6dOkq729UH263XSEp1LsJeA13es8DSkT8WZpYlCwZjZ9++hnvvvshBgwYgP/97/k7txCbgZvDHZ6eHBoaqtr8ERWLxYKGDRtizZo1qv1r1qxBixYtdPM0b97cJ/3q1avRqFEjmM3mItPQMot7XkpSTp06hT///POfGXX5jqwY9BehsLCQjBw5ioSGhpJvvvletc4bXa+NrtPGLpymXUCPXTSPSJLPMb1F+9iFCYkkKYUXseabdwFBSSJr1qwjAMiLL7xA3IWFcmW1q7qxCwrqLTTob+FBdqU/z/lUdaDptYvisfvsdu+qfp4F8IYOHUoAkBUrVit97XBIJCvLqfS5dr08dj08ZQE6p9ObODPT/0ZXGdSuLEg3ps/ZNrLftYsk0v0nTpwjAMg773xI7HYHybl2jezfuZMkJR0kx44dZ9bOcxEApHfPnmTRvHnkw3feIT99/z0BQAIDA4kgCGTWrC9I06ZNSWhoKGnRtCmpUqWKvDDh4MHEnZ3t7RRP334+dSrheZ6cPXOGEEkiebm55LMpU8jggQPJ4IEDyS8//UREu51cz8ggY8a8TCwWCxkz5jWlD3Nz80h8fDwpVaoU2bdvP5n4/vskKCiIACBvjh/ve9Np7yft4oDsn4DdaNqCAu9KkJ482v+NNru/21NvUUDtopzsPUMLZ29req+pVqx0OkmJEiUIAFKxYiXyv/+9oFpMct269T6LSZYqVVopk64DSS8Vu4Ynu5Ale3/rtUG71iTb/sOHT5IGDRqSevXqkRMnTtyNR+Z/FgsWLCCJ0dGEPPLIbW+n+/S56UUJFy1aRMxmM5k7dy45evQoef7550lQUBA5e/YsIYSQV199lQwdOlRJn5KSQmw2G3nhhRfI0aNHydy5c4nZbCY//fSTkmbr1q1EEAQyadIkcuzYMTJp0iRiMpnIjh07in1el8tFevbsScqVK0cOHDhArly5omwOh+N2uvxvxT3r+jl79iz69u0LgMeWLQcQF1dJJVDV6k+UqKGenaxOQW194Xysg94FzwSvVR2MG8hzQlHiFBM3a32n4EBAeAEHDhxG//590bZtO0yePBk8Y3MWebO3riZm7ROP60ZxMbFh67Wvpuz0TY89Wnn3Y6eHstoaSVILaj2R1t6aOAlvv/2WqviAgFBF1mKxcBAEsyJtoVoOr8YFgMkkuxEsFq9Ilp6HhbbTqPmRuZj0mtntctnepnrdENT9w55CK5wsUUIuu2zZMrCCwGq1ol7jxko+UQKWLl2C2bPlIEvPPf882rZuDQD4zSN+jYqKQufOXTBixBNI8Cx2ts0z86lPnz74asECPP3ss2jUqBGIy4WNmzYhOSUF1ePiIEkSKlaqhFq1aoEQglOnTqFxo0YoLCxEr759UaVKVfTs2RP5+QWwWCzYtXMLzHABTjeCBR7r1m1E9+5d0LZtG6xc+Seupl3Dp59+grffeQeXLl3CnFmzZD80azrUCmWh1mFwPK/EFZGTC4pbxKQxkPHwfxnZMrUaD206+qn1OFJJVEGB97rSz0OH9uH69Tw0bdraM1vaCkhAt24P4Pvvv8Hy5StQvXp1VQC3dokt8e2332Ho0CHKOYYNewo5Od5z0/MHBMjnp15YPU8a/buwfz/Wg6r0E+/1sNWoURUbNmzD+PFj0bhxY3z55Tw89NCDvh1j4K/BndKo3EIZ/fv3R0ZGBt555x1cuXIFtWvXxh9//IEKFSoAAK5cuaKKqVKpUiX88ccfeOGFFzB9+nTExMRg6tSpePBB7/3SokULLFq0COPGjcMbb7yBypUrY/HixWjatGmxz3vx4kX8+uuvAIB6mnWQ1q9fr4hd73Xck3FUVqxYgcGDB+OhhwbivfemIDBQNrnpuXUotERFS1LY/HrQiudUehVPJq3PXlsWB4KUM2fRqFFDlCtXHuvWrUfJyDCVlkGEoKqrMttBG+G2KKLCPlXZytN8tJJaEbAmFkiXBx7AKsZsOGfOV2jUqAmqVYtXiqEzpGiEXh+iAnj/2GzcDdaGzl4AtuOo+8gfUYFuSA3Vb39EJSenAFFRoZg8+TO8MOpxuc7BwUq+k6dSUL9+AoKCgjBt6lT0699fKWzcG2/gPU8MgnPnzmPduo348MP3cezYMURHR6umpc778kt07dIFZcqVgz906tQJH773Hup64rZs27MHs2Z/gXXr/kRYWDjCw8Mw7ZNP5OOefhUtgcjJyUGzZo1x8uRJfPzxFIwe/aJSZn5ODmzMGjx68CEqIBqi4pUwaZ/NRbn6i0NU9HTUWrkMK6Gh5Vy7dhWVK5cGAEya9Cl69uyHzMwrqF+/PpKTzyIhIQ6jR7+MiRM/UITUAAC3G8Rkxq5dh9GsmTy7wGQyYebMb9G79wBdssLzMllhtd0sUdE+E+QyffuD3r70XnW7gV9++RlPPvkoHnvscXzwwSTFnG/gr8HChQsxc/RobL4DgcySc3IQv2SJEUL/HsI9pVEhhGDSpA/w0EMP4YMPpmLKlOkKSdELwsbzshBSEaPCG2WSfSix5EbvAQp4Q20DcplKxFlPJjprQdeSIokKyZg+fSays7Px559rERkZrhKzEt4/SWHrrqqkXgh0tjO0RMBk8kZTpeJcOhtIkiC6XJj9zTfgbDaFpGzduhdZWW707TsMFSvGIy9PDlpKTx8cDFh5lxwSn0Yt1RvJNFYe3akU9DsdZLV5ACUCrdZtTMmSlrCyVjYa7Xbx4m8hiiI6dWrnG5lVkvDJJx8jJCQEJ48dk0kKU//atWsrTcrMSMewYUNwYP9+PP7YYz6xM54aORLnzp1Tfo954QXl+3sTJiAjPR2rVq5E3Tp1lPY1bdYSc+d+hTNnLuJw0gFs3rRJPs4E6xPcDoSFheIjzxTn8+fPY5KHPA0cMEAmKew9owG7j/JKuuRAUcSvKLCXlLU66HSvbnotCWBvI54HBIHg4Yfl+ChlysTg1VefR82aMUhMbIgaNSrik08meo7FQpLkdYdoRFmRl4XpCQm18fXXywEAbrcbTzwxEMuX/wq73buqhN0OXL8u38ppaV4Co7fqhJZgsbew9plC/2YmE9CrVx9s27YHq1evRpcuXZCZmVm8TjZw67hLcVQM/PW4Z4hKYWEhhgwZimnTpmHZsk3o1WuI7nRi+mCjISscbgGFTgEOJweHW/BZ6BfwfcGnDyv2AStKnPLAAS/HeSAmM1xuDi5J8Hkjo2lZt016Rh4++2wKXn11LCIjI9XROiU5aBVbACeJqtkEkqSx4tDRF5A/2dDndN0Z7bQFOvXYbgdyclRr7EhOJ0yRkRjx3HNKf2ZlZqJFrcoIC3QjPNiF8DCCUtEEsRH5CEcWSpjy5XV/8vKg+H/YDrDZvGsQaNcmsNlkluNZxwihofJ3mw0iL69ZlGs3I98uKFtODpCdw/kMgPR6s5OJtAOk2+0Nlf77738gKioKFSpUhcMUBJetBFwSpbUCtmzZDLPZjBIRkd5CPSNVXQ9RsVqtKFe6NK5npGP37t14+OGHlX4bNuxRJCdfRHh4BEa//ApiYmIAAEOHDkWzpk1RsmRJjH39dTlWDr2JLRZlGjttS75dQG4eh1ynFfkIggNWuHh5tSHO7QLnWRPqkf798MrTT2PAQw/h+0WLsG7NGmXqruq+gpqk0NvCEyIHkiRz2KAAUTVDXct32SUOBLcDgtsBMy8qG5tWO7HMbCIwm+Q1m9gli/TGBHpLmUyyNWXrVnmdksmTPwIA1KhRA0uWLENubg5+/XUpKlSohDFjnsVTTz0K1/Ur8lpMzkKljoEWEQMH3o+ff/5DqeNnn72N4GAoW2goEBYm1ykszPs3o6JbSmLYRTNZMqJH7Nj7kl7bihWrYuXKbQgICEHjxk1w9OhR34wG7hwMonLX4HK58PLLL6NKlSpo0qQJ5s+frzp+9epVeabkLeKeICrXrl1Du3b34dSpZPz55240aNBAWaguONj7IGMfEuzDhT4MLRbAaiEqkqLnLqJGB6tFXkBNeSBDVKb1eqfDqje6uBldowaSJC+853Qg5eQhiKKIdi2aQXA79B3dzHfCTPOUJM80Zb1XOpPJO9KwQp3gYIi2ELgsQd4OoA1kSY6njKuesOOA7CPNznajRFg4xGBPvAC7XSYk6enylpkpk52cHO+5WXJE21dQ4CVPlAGyLJHmZRgF7T920Ueel68LvfbsopD+Nm0aem1at2qJa9euYe+uzbCYJZhNRDm+csVvOHz4MPr36yf3P+1PiwVZubkIj4rC4aQkfDV3LvLz8/HSK68gsVUrtG7TRum/jz+egtjYsliwYBG2bt2C6OhoAPL6M7Vr10Z+fj62bNrkXYvGQ2YpaN1ZLkcvFyUQLphRq1YtmEwmvDt5Mg4eO4aFCxciJiYGP/3yC3xudIassJYAeivQ7i8oAFySoCyKzHJgmo8ujClKnNLJhBfgkuQNUHsACwq8VcjN4+StQFCsc9RawZJMhkPD7Qaio0tj9OhXAABPPfUEIiIikJ9fiFWr1uKBB/ojIyMd587JM5+++eZr1G3REjuSDkO0BCLfbUW+24rcApnsAiVQrlwFlCwZjQMH9mHOnKkKKWLvOXr7MlxS0a6wzw/ts8cMl7zxokzKLERlzAwJJrBYgFKlQvDLLz/joYcGokWLFljLTDk38BfAn7n1ZjcDN4X33nsP33zzDUaMGIFOnTrhhRdewFNPPaVKczsqk7supk1OTkbnzl1Qp049zJjxLQICAlQPEn/Qmq+LA5Z4+Fvw73awdt062Gw2NLoDS43/FTjLuCgOHToM4N/75tCsWTMAQNv27VG+fHlMnzYNvy7/DZLoxncLFqBZs2bo0qULXnnlZZw+eRypV6/ienY2Tp8+DVEUwfM8JA+LHDhggKrsxYt/RFhYGCRJnrLcqFEj7NmzBwDQ/6GH8MrLL+Po0aMYNHQoHnywL6pXrYK9+/ahTdt26NKlC55++mkEBgbhkUceRZs2iUW2o1KlSpg5bRremjABjRIT0SoxEZcvX8a8r77C9KlT/1URUSUJmDBhEgYMeBjjxr2EVav+QGZmJubMmQoA+Pzzb/Dee68iNfUyCCGIiIhC+/ZtsXz5H2ja1Esic3Nz0adPSwDAu+9+iitXLuHVV/+HJk2aIyGhcbGeFwEB6qnMrNVIt+I87+PGNZuIZ60pHm++OUERUM+YMQvDhg295X4y4Ad3UUz7X8eCBQvw5Zdf4v777wcAPProo+jatSseffRRzJs3D4BvYLqbwV0V0+7duxddunTFgw8OwZtvfgSTifchtKwhQhuwVesn1ko5ALXfmObTRs1kz6MXFV+SoMwwUESvrCnEk6Fdu3YIK1ECS3/6SX2MrSw9CWPxIOD01/FhX1NppTyfNKw4AG/IcfpqSPMC8hPX8yBd+OOPGPzEEzi2YwdqUAW4x94tmqxeiw7tNPZCaBc7lCTvKylthyc2jD/hpLav2a7QGp20g4lWFK0tU7svOzsbn0/9DLm5uZj80UdKuvj4eBQUFKBJ48b4ackSlC5dGnXr1kWZ0qXhdImoVas2IiJKIjMzHWlpV/Hpp1Pw4YcfY9iwx7B48XdYseJ3LF60CMEhoUqZu3btRbNmMjmdMuUzdOzYEYRIeOGF55GUdECJ96FF+/YdsGLFGt2+oe0NtMhWO6fTianTpmHHzp2wBASgx/33Y8DAQfpCbAYEnLyqseeGzs2T3Wp5efKukiVly6Lq5Iy/lRXkeoyHqrrqXWfPKgKqIktYCuUvrCsTat2M9hqeOXMOu3fvxaBBD6JPn36YN+97ADwGDeqFP/5Yhk8+mYpff/0FBw8mYffufShdujxOnTqHP/9cg9GjnwAAHD2ajqioMLRpUw/5+fnYuHEHSpaMhs2mr6uh9Wf/qmydWOuf1g2szcMaE+n+9evX4JFH+mLs2LF49dVXdK+ZgZvHwoULMfOVV7B50KDbLis5KwvxX31liGlvAjabDUePHkXFihWVfZcvX8Z9992HRo0a4cMPP0RsbCxEUfRfSBG4a0Rl8+bN6N79frz44ht49tkxyn6WzLJ+YZakaB9orI9dqzmln8qDnHG7sOfRelVUA4CO28bn6QagZkICElu0wJwZM/TFrxrzfJEoKFD7AtiZNSaTan0YwDMgFchr8SjOdc/T2OFy4Y+VKzHq+edRKS4O21at8pbndMrpWDs+G76TpmF/s8SJhnf11I0KmVn4e4PV8jituFI7aOtdeza/3grX169fRzgT2lzwhMeOj4/HsIcfxpgxY+TViSVJRbTk8zoRGhqC0aPH4O233/P7oiW7MtwYPnwYFi1aqOzPzc2Dy+XCxg3rcV/7Dnhs+KP4ybOMe/369QFw2L17r27/sG23mkTV6OdvfR4W7Kw3RVPiOVF+AYfr12XvHiUrYWEewsL8maiehoKe0+Fkw95768v+JeiMfHpblS7tKUMSldWz6f+OvfVYHgwAr7/+Mj7//GPs23cK1arFeVxGEl58cSQWLfoK7747Ay+//DhefPE1vPXW+6hQIRJZWV7h6uHDIs6dO4Tdu7fgrbeeweefz8ZTTz0JSfL0K88rs/nY87L3I/tcoMfYFxe9+5PR4Sugf6O9ew+gb9/OePTRRzFp0sR/lVXsbkEhKoyO7FaRnJWF+C+/NIjKTSAuLg5ffPEF2rdvr9p/+fJltGvXDuXLl8e6detumajcFWfcqlWr0LVrV7z55mS/JEUPN+M+LK71TmuBKfLkRcDhcODY8eP4Yt48/PzLL8Us9K8FIQTLfvsNDVq0QJ+BA1E5Lg5Lf/75blfrb4Pb7cbLr76KwMBAHExKwsrff8e0qVMx94svcOjAAbzyyitFCrw2bNgAp9OJSpUq3fBcJpMJb7/9rhLJt3Tp0hAEAWFhYejVqxdCQkKU2AZlypRBmzZtceHC+TvT0H8xunS5H8HBwWjcuAa+/fYrAADP85gwYQpiYyvi5ZcfR9my5dC+fResX/+niqQAwEMPNUT37vXw1lvPoHz5imjVqo3OWbwozvOFiu+Lgp5RkqJOnXr47bdN+O67BRg16mnFxWjgNsHGFbqdzSCON4377rsPCxcu9NkfExODdevW4ezZs7dV/t/ujFu1ahX69OmDqVO/QL9+g3TfkNk/OPWQ0DcYFvStkX0Lo+l5Hl6xqxvqVyWTSQlzL0BSrCtmk8d64pbTcmyhWpON5uFiNZux5vff0bF7d/QdOBBSfr5vXvbVS89KwzIx2ghqGWGOs4vKCdSdlZfrFbcCyBVFjHz6aSxYvBj169fHzp17UadOAwRK+V5RLGuyonWlASa0r4P09Zm+cVO3D7sUtSQHnjOZBPUbv58HMW9SW7X0yCV7PbUPfT0LCsWp5GT07tMHx44dw+dTp6JOnTqoEx+vTq+Z+k0fT3SF5hKhIQCAzz+fijJlyqJGjWqIi4sDr3mOCbyE4ydOIyamNHbu2K6uj8elxwGY/MEHeP755xFTthzatWuLli1bee9T2lhaJuTrwVs4wKmeDs45HcpaU/7A3lIuSZCtKp62mkxmREcDHv2vcmnz8jjYbGbZ3eR2+7hIqYXRapKtIvSWoVN/AXX4HxpUDZCnAYeFAU6n95pTjTitg95t17Rpaxw8eAGvv/4iRowYjoICO4YNG4GgoCD89ttmbNmyHs2atUeFCiVx333Nffrh2LEDAIAtWw4hPr46zGazYgQkvCDPGtLcWHINec81MMFsknwrBh6Q5LWIzLQxzLMDAMySnF/wrIRoNnmtUfHx1bF69Rbcf/99GDlyFGbNmmlYVm4XhkblruGNN97A8ePHdY+VLVsWmzZtwurVq3WPFwd/6xVZs2YNHnzwQUyZ8iV69RqoIiRaNwD7nefVi4Jp02tnN9DjgmZ0U/ztAKDMxmCWm/cncmFPqB0xmQdYh65dMWb0aMycNQsSz4OuHOnTSJa9A2rXCs973T6UOLAmSEkC55niIgDyg1ET5G3F2rUY/swzuJ6djW++/hpDH3rIk7lQJj16ykBtu2lfsExB685i2IWyOi5oNsY1xRzQuty00HKjouATP8RTNiEE/fr3h8vlwq6dO70LZDG6i+KgabPm+OP33zHq6afRo4e82Fz9+vUxceJk3HefbOLMz89Hjx5dsWWLPK32oYcewhtvjEd8fC0fa40kAWViYuFyAceOHcPIkaPU/aMDDkRxrYkSB97jxlRIuJ+8gofQKjNsJFoXQSEXVLQOyLcZlUQ53AKsvCTP9goIAAcoqxfLi0AKSntY0PUt2anKdjsQESGnpbIpmg6QP+mMJ8FZ6PuWAiA8wIxvvvgc4eFBeOGFkThx4ijef/8jlCoVjd695Rg4OTlAtWrVsGfPDlWdBgwYji5deqBatdrwePjUYQ/4QMUFRBulzGpyQ37JgeCpr+Ctlie/BDm6L+8G3G5B6V+lb5yePmeaRWdZlStXAb/8sh49e7bB008/g+nTpxlk5XZRXJP7X13GfwwVKlRQLMZ6KFOmDIYNG3bL5f9tV2Tr1q3o3bs3PvxwFvr2Hah6oPlDcYhtcSUft4WbMM1u3bYNdWrXRs2EBPTu1w/Z2dl/YcV88d0PP6B7v36on5CA40lJGDr0vze74PDhwzhw4AA++j975x0dRfX28c/OlmwKIdTQe5cOiiC9V5EmRUBAehVEQVBBUYpIFelNpIsggqBIB0WKgPgTlN57J6Rstrx/zN7ZO7MbCCGIvuR7zp7dnblz+9z73KeOHesXxfNRUa9ePU4cP86BAwf55puVWK022rdvw44d23G73axYsZydO3ewePFS3nvvfW8AzWIUKJCXZs2aMm/ePC5dusQ777xDq1av8uabfTl+/BjXrl0jODj44RVIAaCKe8aPn8Tnn3/BnDnTefnl2n7y7unT5zFq1ETtf6tWnRg3bja1a7/y8AIe8o4/bJ1JiCMo3w9EV2bLloNvv93CmjVreeedFOXax0KKH5V/FcLDwzl58mSy5PWPcFT++OMPGjZsyEcffUa7dm39OB+6CklsftncLxCMypeBLHuMCCRC8mPVyJp+xgoaVxqJS+LxeDh06BD376tKrX8fPcqKevV44403/MU+xlVN/I+O1jt7MOBOTAy79u7FajYTHR1N2dKlyZxa9YNy7fJlegwcSLtWrZg3a5bK0RGOzIQIKTpaPT4HEkMFapfcJ+K3UKIF7dss1dUsd5EhH5PUf4Fi9ogqBfptRCDrLVDFi3a7nTp16viPK+jqEOh5IxRFoWSJ4pQsUZzSpUpSuUoVatSoQvbs2YmIiADgxXLP07rVq7w98C1WrlzJuvXruXz5Mp07v4HH48Fms5E2bVouX77MlCmfA6j1exAM4sHYmBhu3LhB1mzZ9eKKQBw7b/9YLWo/iykuhs3odsfthgwR8cS5VQ+vcVgJEiJHiwWzMx4Uq6ZcKoqTmW5iWhilh7dvqwq7igKXL6tTMFMmXzqtysIm2DgZvAVZcdKjR0+Cg0Pp3LkDK1cuplmzdhqD8PZthX79+nHx4lk+/3w8uXJlJjjYpCvDyMy02cCDWbWM8jbK6naD3Y7VrnKXZBjXGDNuzBafcr7oS/BXEDbmIayLcuXKxapVG6lfvyIZMmTgnXfefsCkSEGCSBH9/KuQnHY6T3xEzp49S506dejVawDdunUHdGuPBpl48Z1e9BuIUewTSLIiCBzw34CMlj9+CLCp6QowwnD96uXLGpGSM0cOzpw9S/26dX06HXKj5SOasHc0xKPZu3cvq1euxOFwkDF9ejp26ED5KlU4dvy4rtxcOXLQqkkTypYuTVRUFKN690a5elVPvaVN66uzvBkYxTlC3CTfN764xo6X85EIH49i9onYUAmEQDGY5GzlDc5IzBrHPZDlE6geZWNjY31B+7wPJVbk8yDkypWL06dO8esvvzBj1iy+WriQGtWrkyNHDkA9RXTo0IEOHToAalCw9evXU716dbJnz84HH3zAzVu36N6tG2ajsovUBhS9ns+JU6fIlz8/ABkzZmT//t/JkiWT1i/qlDUnqMcjb8xG6YoassAEioUgPLjcJtXNfJRVC6Vgs1m1qSnnIYgTRVF1UEAlRpxO9X+k5YYql7ntxGq3kx0gTyZu3LUS5Lzv07+KitK/B0L/SUwIrwt6s3KbqsVUXaN3332TCuVLUrhIMV1sqHHjxtG2bVvy5CmCzeYTNcl6MKLumshXiAW9/e7BpImqjP4LBVHmwYRb+CIyvNYPOueI/OQ4WsWK5Wflyh9o0KAqGTJkpGPHpLPJn1nI7/vj5pOCfxWeqOjn7t27NGjQkHr1Xuadd95LuBKPUYt/kzhRURQs3gXvjDdSZnrJNDaxuHnzJn379+eFcuWYOXcu02fP5u2hQ0mfNSvHjh9n2JAh/L1vH79s2ECh/PmJjolh4owZHD91CrvdTpbIyGRt138JO3fu5KOPPqRGjRpPLBCcoihUqFCBL+fN49zp0/ywbl2C1kPZsmWjS5cu5M2bF5vNxsZNm5g1axYzZ86kRMmSHDcQnQkhKMhnKnz16lW6d++arCeW/xLy5s7NoZ07iYiIYNjw4QHTlCpVStdnj4tHkP4+0rPy+lWiRCkWLlxJ79492bZtW9ILfFaRXKKfFI5KsqBt27aEC236x8QT2+ZdLhetWrUmY8bMjB37OWaz3kJHQJ4bgXRZZTatUcwji4ksFtVqR5yG5NO2Tvkw0McY7MRYgURevx8T46dQdOz48YSdwMiNADwuFxMmTCBb7tzMmjOHyWPHcvnMGW5fucK+HTsY+OabfPzBBwzq1YsCefJQvnRpjuzaxTu9ehEbG0t0VBQOhwOtJfIREnx+yw3WLrr2iCNyIAcZxvRy3oEGzwsxBgl1Y0JjbEyTUL4eTFy8eJG+fftSt24dihQpwrKlSwOWl9zImjWrRpwmBvO8XhpnzJwJqKHWZQTqJw8msmbLTosWLciSJQsLFy5i7do1fPTRR8TExOk4ToGGQATcNL4vcv6ymFUw1cLDIUsWn9jm/Hn1c/q0yuCIitKHkxK+Wfbtg19+gXXr4OvN6Tjhzg1ejhMAd+8SFgZxllBNw9YVkkplfYggO6Cfp4IjCOBwUKxQITKkTcvKlSuJiYnRuf4RPghThalu7UU8H8GgEel0ZXi/Tc549dvtIjRE329yHxt9p4iP0au2USoXQFdY92z16jX49NNJNG3alGPHjvkPZgoeDOOAJOWTwlFJFkybNi1JB/VAeGIO3wYPfpdVq77lp59+JU0aVYdCzINADpKMe6q4Jr4T0mGQFx/5GZFOi1YsFxKoAFnOEMjSx4uExAcmPBR57jmOHDkCqJyU69ev06F9e+bNn6+u7E6nL25Otmx+ec+YMYPuffrQr3dvhrzzDhkzZQJFwWVwdW92eL18evnd5apXJ3NkJLmyZWP9li18t2ABadOkIUP27Go6wV4XhIqsZyITKFJ9PLYgzWzWI4kh5PYHcmolIIv3AhEZCYnvjHk86BkBl8tF2bJlOHfuHM2bt2DihPGJUlRNUDQYqFDj7wdV/CGo8NJL7NqlmjGHhYVx6PffyZU7j7+XWUPnnT59msJFilCkSBFefLE8U6d+QbZs2Vi06GtKlizDt9+uwOVy0aZNGywW33NyFWWRm0ysGMs2BssEX0TtqChVvCNb78jvdNq0KkETHq5JbAAoWhRypr3ns0mWLdpEgJ3r133yELmicl9YLLjsodSqVYO9e/dw6dJtrFazrh6BCAmhy2IkEAINodxPgcSUgjAyOeP1i5pXniN0VgKpv4mPcWrJn8GD32Lz5h/YvXs3YZI4OAWBsXjxYqZ98AE73nrrsfM6ce0ahT/+OMXhWxKxZ88etm7dytWrVzH6CBo/fnyS8nwiPK5Vq1YxdeoXbNq0h9SpfUTK/3dUrVpNI1Sio6MpUrgwv+7eTVxcHA9jQrvdbkZ++iltW7ViouTyPTFIFRaGxWzmwuXLABSqqMaPmfzpp/Tp3v2R2/Ffgsfj4e233+b3339n165fKVeu3BOJ45Sc+PGHHwhPnZo6depw9OhRWrVuzc8//4LF/OCXJFeuXPy0YQMNGjYkKiqK2bPnM3v2DKpUKU9kZCauXFHH//79e/To0eOfaMpThdVqpWbN2o8VlfWfQELE/IPw8cdjaNToAJ06vcGyZUtTzJYTg+TSUXkWNqsnhJEjR/Lee+9RsGBBIiMjdfP2ceZwshMqJ0+epEOHDnz++Tzy5Svkd5oIxDkBf1cdxjgaAoHEBIHumxDuwAmckVGJVP7traQ4FcmMB2O58qb4+fhxrF3zHefOn8dkMhEeHs6vu3erPPHQUJ/FjVRRj2LG5Haxa9cuzp47R+tXX/VT7lOk6hq5Kbjd5MudmxlffYXVaqVpnTpcu3GDW3fukDYkRD3+BupUwfIWPGeDLxeTl1Xlf8L3bQpWi8d72TcBjazuxHBMErsuBGKGrV69mokTJzBmzKeUK1dOu29UtJWvGfFQTsoDKpJYBV1ZtBKWKpwJEyby1lsDGDv2M956awCfjhnNu0OG+pcjcxLcbipWrMi8uXNp1rw5nTt3YPLkz+nVqxfbtm1j9uxZAAwe/DZbtmymQoWXeP7558mbNy9XrlwhOjqaO3fucPbsGSpWrESRIkV0NRTfxo1VvFNC+pI2reosTkwnoZsdHa1+cuRQP3Y7WmC+u3e9U1qwNYSsyOtEJR6r+q6mjcQadUvPrpM/3mtmXFitVlyueO7evc7du3fJly8PQTaP5jXWGB9K1hGXoVPC9/6xWny+gQTzURb5COM8RbGqXFuRyGvKY/LmI/zZyE0RZcrf/rAwd+5SqlYtw+efT6Fv3z4JJUyBQHJZ/fzLCd9/MyZNmsTcuXM1Y4LkQrISKvHx8bRu3YaWLdvRsGEzbU0KJJc1cHIBf9WJQM8Fuq4tMnIC40MJZSAKliBinMhrY0KbqbxRmV0uihctqhEqrZo04dfdu9mxeTM1a9VS+eFOpyr2OX8eAJPdTny6dHTv2ZOizz1HtRo1dGIYmYWtESmKosXxwemkVu3azPjqK0JDQkgVHs6tO3dY+sUXvNqwoc88GfyteWSIFVmIfrztio0FRREmnmbcOpa66YH0nxGB0sp7cUJiogdh9epvyZs3L2+//bZuDgQiPhLktDyKMx7DQpgYQijQvV69erFw4VfMnz+Prl27MfzDD3mjcxcyZsyo1xkxWE0B1K9fX7v2448/sGbNWs6dO6ddy5o1K1evXmHIkEEJsq/DwsJYu3Y9FStW9BNBJCSqkwkYYeEuHLYJCC+1ISFq+jiHSTNZjoqCWNIQabulJhYES0gIVsXlE3FGRPgKEgonXhGo9j64VaXi554rQseO7Vm/fj2bV6+mWqVKai7h4ZgVN/FYde+vJgo2rhFO6b3wim9kE3Crd9htNr1JvebuQLw/cmcKvRdvW83gy1PL2/cOyYaBNhtkyJCRWbMW07x5XapWrULx4sX9ByYFeqRwVJ4qFEXhpZdeSv58kzOzDz/8iHv3ovjgg7GA3vtkQnJZMSeE6oRMrCR04tb55lE8+hN/QjulUeAuX5ehKLpkskwbAm92bjdaQMBQ76odFRVF43r1yJ4lC1MXL1YJE4tFXbFFx4SE4MmUmS/nz+fPw4f56ssvCQ4N1Rongrfp6iALub03mjZsyNZvvuF/Gzcy2xtvoWjevJhcLt/iaXB1r2ug8dRqs2mKqoHoO+NB1wi5igkReYHuP+r6sHz5MhYs+JJ27doD/sSArFSdbHhUHn4AqP5NzMybO5c//viDy5cvYbVaqVq1is5BkqYIblBGttvt/LxzJwDff/89dnsQQ4a8y4D+/alSpQo3btygTp06HDhwkH37DrB8+Up27vyV33//H8ePn+LGjdsUL16C119vy6ZNm/1oV82brUM/ztHR+nsyDSzSWCyqhX2w3YNZUd3ty0xEiwVuuNP4tE69HD1BpDid3nGUTjEeixWPorrsF5Gft23bxf79v1GyZBm2bt2q9sX2Hb5OvnsXAKs7TtefWkXkiWfkrgoHJ9L1QHNJUaQ5F+hEI7cxAQpQKDqLtstZ2O1QsWIlevd+i1atWhMrh65OgT9SHL49dfTv358vvvgi2fNNNmXa3377jUqVKrFp068UKKBS/kaOSaD3VXZ+BP7sWvnb+IyiGBy4PcpxPqHrioJLscp/dQjkhM7tBnOsSqjcv3+fMK958MKZM4m/c4eOb7/N6bVrySmCq2TKpDY0JAR3hoyUKVOa7Nmy8Z0IZugtVLCwRR1MsTFaw48dO8bnU6fy15EjBFmtFM6Th0E9e/L53Ll8s24dB9euVWX3YpcQ3+Av9hGQ/ah4IWKTBJBCJLj+JkRwGMUJD0r7MMTFxZMnT04qVKjA8uVfa/LPQByOh+qsPApH5QHstUcRAwnUrVePv//+myVLlvLaa23IkiUL27Zt94snFAjnzp1j4Ntv83zZstjtdjp16kR0dDR9+/Vj7dq1eDwetm3bSbFiJbSqC5w4cYJWrV7lwIH99OnzJmPGjEVR1BdVJlxkBpIx8oKREyCuHTt2lMuXzlClShWsZjMuzJpBj6hDOuWWbx6mT68jVGw2fUgLEdXa6YR79+L5+edddO3aily5crFp0zZy5MjMjRs3qFWrFhuWLfNVMCwM3G5clqCEua7G34riq4Q0uR80trLIyO8QIFsUyp0nDYbLbdIlkYlDlSB0UrNmBWrWrMGYMaMSrMezjMWLFzPto4/YMWzYY+d14soVCr/zTooybRLgdrtp0KABR48epUiRIn4uIlYmMShusnBUHA4HHTt2on//QRQpUlwzzzOapBsP9EZuirg/d+50/vjjgN9pW+yrBqtefeaB/ieGSPEe9zwWH6s40H4kFhX5ZGl2xmkPhIaGUrdGDTKkT0/VIkVo2rw5iqKw8fBh1bIhXz618hkzQlgYW7fu4ODBg3Tt1keLMSJWKHWJ9wa1c8Rpdfxi+nQKPPccn3/xBT9t3szaH39k7LRppC9WjN0HD7Jn9WrMVqueqhCVNZoni4bIQnjvJ95pCsTA0brrYd1qHLvEcFoSi507t3Pp0iU6d+6iU9KSeRCJxqNW5kGcuwAwckTkuvXs0YNz584xYsQIxo2bwM6dO/l5545A2fiVnT17dpYtXcrAgQPp3bs3ISEhpE+fnsWLFnH+3Dny5MlD1aqVuHz5vDZ24gSfP39e9u3bx7hxE/n884kMGzZM45BER/tEOFFRqirJzZsqkyIqyqeLIk8r0R0bN/5IsWIFqVW7Nq+2bI3To/arYCRq1Q8PVz8REeB0+k3FeKcvEq7JGY/bDePGjSddOhsvv1wFuz2EJUtWYTJZ6dGjP6DGEtMR5ABOJ+bY+/5EirwIed97LBY8ilkT/bow48GkvfOBPrrxlPJDUXVTPBar3su0NNfEPJVfU1lVDMSjFqZOncvnn09i3759Cc+NFDx4sUnsJ0VxOcno06cPW7ZsoUCBAqRLl47UqVPrPklFshAq48aNx+32MHDgu8mRHdOnT6Jz59do2bIxV69eSZY8/0msXbqUy0ePkjVTJlKFhWEymbhz717AtCdOqA6/Klf2Dz8fFxfHwkWLaNeuLfVefpmGTZpw6tQpevftC0BVr3WPjB+2bOHlzp05Leks/H/E228P5LnnnqN69epPuyqPhZdffpm1a79n/fp1nD9/HovFwsGDBx873/DwcLp368a9e/f8YuIImEwmunTpRmhoKGPHjuTKlcv8+OP3fPfdikcub/LkCURGpqVhw7oAmM1mvv12JStWfJ2k+s+dO5u06dJRoWJFmrdsSfny5Xj3XdX0dNq0xWzf/j8ivZzL/v0HU7JkGYoUKZaksv4LKFKkKP37D6Zz5y4JjuczjxSHb08dCxYs4JtvvmH9+vXMnz+fefPm6T5JxWOPyPnz5/nkk49ZteoHLBab38HU6GvDeCIPIHlh69ZdvPFGO77//ju2bdvM1at3sNkUnZjH6KTKJB9LBM/aKHw3wktByz4PeMBB2XgQ0yCzhKKiVCa2N+85ixbhcrnImCcP5MkDBw/6tA2zZCEoWiVg4uNdBAersUUsFnArZpo2bci6dd9Ttuzz7Nu3F4DJLhd/7N9PSEgIeXLlAqeT6+fO0WfwYJauXg3Axp07yV2pEnNmz6ZTp056B25GEyajZyrpt2IYMzmLQOMmZ2EUExmyTkhkn2icP3+eSpUqYbNaHt0Y+UHzIdDvZEJCIqg6deqQJ08eNm/eRJ06dfhs3DhatGhBpkyZ9AmNL5Hxv4QLFy7Qs1cvKlWqFDCqqZiudrudbdt20ahRXQoUyIbL5SIoKIiXXqpOmjRpda+Q4J7IqhdCurF37z5u3brFlClTyZ+/IMWLl6Ft2xYMHjyIqlWrkCk0hDQRqj8QjzdKTqzbF41Ywccx3bJlEz16dOXlBg1YvXYtAHnz5mX58lXUqtWY+HiVw3H3rjdWj8fMpk17AScumxVswSonUlRQKLaIhoi1QVIu99k8+TrIDOAGs1EGFmgMBCT9FpPb4T82Qqwkl6UoWBXwWCTFaTwoNp8issMBb701iGXLvmL69Jn06vX/3/z8kZFinvzUkTZtWvLmzZvs+T72iAwc+DaNGjWhQoWKfhuVYGMGksIYJQ8CqifJCNasWUPFipWIiopi/vzZujwEkSLLdnWZymzWhPQPvJRzIMdMRgSSnIhPkFuyxBELo82m3kyblmVevZM2r70Gf/3lS+tVjMtaqBCgBm6U8z9y5Ajr1n3P7Nlz+fxzVTmpV69+5MmVi6JFipAnRw5tt08fGclir6dTGV26dsWkqKbGFWvU4LPJk/EItqbQRTFszh7FHFB0YuzGQCKcQNK3QERKcqBv3358++233PUqTRphnC+69jyu3CmhfNErwCYWJjwUL16ca9euMmnSFO7du0fpMmU4efJkYBFWIsROEyZMANT301hn+XGnEwoVKsbGjbsZMuRjvvjiS+Li4tiwYZ1WlDz2Docq9omK8omGfvzxR7Zu3UidOg3p2rUH1apVJ3Xq1EycOJP4eAcvvlie9du2gdut6TyZ8Gj0giyJdLvh888nUqZMGVauXEnXjh0BOHPmDDlyZMdkMmnqI7JSb3y8CZPJ6gtjJUQvmHBZglR9FVlmLAgYmdh7kHwywDriweSNZ6Vo37r8ZWU6+SNrzUonNxMe3Tsj+gjUJcVqDWL06Em8//5Qbsqe9FKgIkWZ9qlj+PDhDBs2jGgRKCuZ8Fir9W+//cZ3363mww+TX8ErLi6OnV5Z/bFjR5M9/38KpYoXJ1WqVOz0WmkY8VKFCgAsWfIV8fHxXLp0kUWLvuLVV5uSM2dOWrZsxbhxY7FYLIwePS7BctxuN6PffZfyZcrQu1s32rVrR65cuQCo9NJLXLp8mbcHD8aWJg23b9/m0qVLGL0G/peQNWtWcuTIwaO4r/83o3atWuzatYvg4GAOHfoDu91OvzffTFJeTqeT5V9/TXBwMA0bNkzUM1mzZqNfv8G0bNme/PkLsWtX4mLNnD17mjZtGlG0aEkmTZqtu5czZy5+/HELly5doGefPtxLQPxpxIkTJyj63HOYTCa+XLyYgvnz43Q6OXTo94c+e//+fW7fvv3/VjxSp059ypR5gZEjU5RqAyI5dFRSOCpJxuTJk1m/fj2RkZEUK1aM0qVL6z5JxWOt8oMHv0uPHn3ImTObdk1mYsjBT8XYy4rUshhI/rZYwOWy0K7d6xQrVpwePXphdcaAU70pzpiK1xpA9jlhkuVMsrMzyQ21sCIwnhbFtYQgc4w1OCVKPDra51TCe/Qc8t577Nz7G41eeYXBgz+iVasuZMkSQtDNS2CxYI+NpWnT9syc+QUzZ/rMuipXrsy0KVN49913WbHia3r3Hkh8vBlXsFnrY+0wGBZM8w6v8N13quhn4tTZVKhQVlusd/z8s6+6TidpvO7769Wrz7rv14KiqBZGbr14Rx6TQKKeQH2WkHM8eVjk5xJaEx60VqiGIhk5c+YMd+7cIUR25OGFcPIqcyT8rIAMhchpdZYcBgQyg9blK+eRSLRo0YIBb71FkyYvs3r1WgYPHkL37l3Zs2cP5UqW0CcW8hYBiYvodLnp92Z/zp07R9u2bXWKxsZxMooyhd+/OnWaMX/+54wfP4mwsBCNASjC8Ih32OGAUaPeIzw8DZMmrcRiCeXyZZ+PFYcD0qUrwI8/7qdhw/K83qkH06YtIWNG4O5drID17l2fCMbrUa518+Z8MGIEtWvUoPzzz7PVS+SXKFGKkBC1Lna7z9GcmFthYVC0aGmOHj1KlixZOHXqNDarRZ0LbrfaQKEpLDpBvMyC+yFOgkIkKhcgX0MvujF5v3XcXAHZ3FleCOWO98Ks+GKVycwe2RDpo49GUaPGS/Tr15fsIkxGClIcvv0L8MorrzyRfJNsnrxz507q16/PkSOnSZ8+rd96buSoChi12h/0W8Ace19PxeAjNuTyFMWwOQixgLyRKarjKKPmvsgjgCGQbq0CKc6HpCPjcEAQceqKcvu2r74REZy/epXuvfrw/fdrqFKlFtOnL6ZQ1iC4e5dTjqwAbNiwkN27d1KzZm3KlStPjhyZAciZMyuXLl3k1Km7ZM2aSusCoxn3gAH9mTx5IgDz5y9mx46tzJs3W+OaZM6cmddatyZVaCjzFizg9Jkz9O//FuPGfaYbEyOhIq4/SCfF2IfGMTcSosZ8HoZAYv5ly5bSrl1rbt64QZo0afyJDB7RE62UXt5PjGmTYoIcqG6Bru/6dTcNGtSnZctWTJw4mZdeepHTp09z6LffyCLrq8j6VwKKwp07d+jZpw+LFy+mXLly7Nr1q3bbqK6V0NyPjYU//jhFjRp5+OijBfTs2U6jI8Q8uX1b3c+XLJnEqFFv8umn82na9HVt3GW/gsKkef78uQwZ8gZbtx4hb96CeDy3yJ42SM1MvFDR0ZA2LR6Tide7d2fZsmUsW7yYG5cvUzB/fspVq63L1+320RXievHiGbh+/ToAkyZNp0uXbrr2pQpx+fRVxA2jCFTYUQuKS05rIFZE3/u9JJJY2eSI0+dhtPkGsNsDzi1ZRC6jXbuWZMyYnqlTk99nxX8RixcvZtqoUexIYiwZGScuXqRwly4p5sn/IiSZUKlfvwHPPVeMjz4aHZBblkKo+AgVbDbi3WZWr95I584tcLlctGzahDFvv83d0KIcP34Es/k+pUuXwWpV87PZ4NSpUzz3XAEGDx5B377vkDq1CZPJFJBQ8Xg8HDlylDRpMpIuXRrp4BbNrl27qF69OhaPUzcwLkU1xf4vEiqdOr3Ozz/v4OSJE0BgYuC/Rqh4MDF69GiGDfuAM2fO43Y7KVSoIK1efZVZU6f6MjcQKm63m8FDhzJrzhxu375N1apV2bhxE4rUcY9CqNy+Da+9VgWzOYi1azcEJFROnjxP7drZqVevGZMnq35sHkSoXLkSRalSqZg06Sv27/+VL7/8ggO//EJJ4WsfNEIFRSFOMVOvbh0O/v4786dN4+X69Ym3p3oooZI1q0KGDBkoUeIFrl+/xM8/79O17/8LofLHH4eoWvVFTp486a90/Qxi8eLFTBs9mh2TJj12XicuXKBwp04phMq/CEkiVP744w/KlSvHqZMnicyQAcD3UsoLu3EVkV5Qjz1Yb7XjlmTKRioi0EIg/5Y9TgnIXhwl15geRa9Z78GUoDhKc1kP+iAf8qJmdOridKqhZSVWtldDmBiHmePHrzJv3hfMmTOJ2NgYihR5joMHDwDwSuPGrFi+HIfLhs0GuXPn4Ny5c5jNZlKlSsWdO3coV64i8+YtJzJSXZwSepdEdWR/bsYNPyEfN0YutQzjOis/K5eRWJFOQunkoRffch1ffLEsuXPnYcXXy/wr+zDdG2PmArK8K1BDHiSrSiwC1U2iEK9du0bmHDno1+9NPhv7KQMGDGDJ0qVcPnPG904YnPStWrWKps2a0b59e3r36kWpUqV0ujsyASY3QbaiE84FxSs7e/Yc3nqrC1u2HKBChRK6vp84cRJDhrxJ2rQZmDnzB0qXLq3pkMuSDKFwHhIC9+65yJnTjlPacWtUrszGlStVJy3CtEXq+9t37tDurbdYu3Ejs2fN4o033tCUcUU7BM0h5kf69Or9XDlzEpkpC7t2/YLbrZ5ZRNvCwiB1SLzvAvhTVwKy2aIs0zZSYvI4yn5TBFHpcOjd+Ip2yi+TPK4yvESMkYBu9PLLFC1alFGjUvRVFi9ezLQxY9gxZcpj53XiwgUKt2+fQqj8i5AkQqVr1644nU7mzJmrZhLAW6sJj0+IDLoF3mMPBvSnd9khFaB7Ts5bvKxGSwSjAziroponxjtNukVWVvQXeYj5KBZaUPMTai3C6Roggt8E5OyY8MDVq77CwsN9wnPUzUBYSly7doVFi2bz++97aNy4JU6nmz592jNmzCS6d++DxQJLl8zlg2HDqVKlBqlShWMypWbatBEUL16GzZv36dogr3miL4ynaONv8ZxIm9D+LRBI4iDyDMRVC5TXo3BVAtEfbjfMnj2Dvn27s3jxKk0mmthy/Lhu3kLk4IvypmCkXR5GAz2sTQ/i0Ih5OH78ZwwZ8javvfYaUVFRrF69mpibN7GLzdS7oe377Tc+Hj2a7777juzZs3Ng/37SCuLYANEmI3dQGL8IGgHU/fv+/Tjq1n0Bp9PFV1/tpVChYI0x2bJlMzZt+ok//jhPaGi4jusodanmNA5UxuLWrdtYs2YhlSpVweFw0KNHZ86fOkWW2Fj95i8ms82Gx+Oh56BBzF68mEOHjpMpU06tDFF/sX643TBixBAmTFA37u7dezBtyuda4nismtM68a6kTau6+xcBCOX6g/cAZVxAZJamkfoT9U8orpZYgBJDoHjTyF57RVE2G2zatInWrVtx7tw5dW48w9AIFZnzmEScuHCBwm3bphAq/yI88vHw9u3bLFq0iF69ej+J+jwzyJAhkjffHMqSJatp3rwNzZu3pV277gwbNogRI97n2LGjdOzYkePHzzJt2jw+/XQSffp8RNmyFTGb/39YuiQVa9Z8C0CNGnWebkWeEN58cyCLFy9h1apV7NmzB4D1P/6o3b958yaD3n2XarVqqaEUJk/myOHDCRIpSUFQUBDjxi3i9Om/WLNmvu5e0aLFMZlMBAU92uZYoUIVpk2bRZs2bWnSpBnBwcHMmjPngc+YTCbGDhtGaGgY06d//tAy+vUbpP2ePn0aZpuN94cNIy4u7gFP/TdRvXp10qdPz9dfJ82p3v87pJgn/7/FI+94y5cv57kiRShT9DmIvq+dFvykq7JZihy9TFG0tFbvycIqjmrykUFibZgURQvHqkhBUES24lQouy2Id5tBOrgIjqw4eMiHIwEr8T4Wb3Q03EQvAhCsYotFq49JtEu0QfhQURQ4eVLzp4KiYAZCLRZC06cH1BOeqNf16/DOO+O4ceMW06dPZuzYj3nuuWL8+ecf7NlzFqczO1evnmffvp18/PEMHWdItEEc1Ix6CPJQiGtyP4hItzJXShPFuX2xVhLS7ZBjEhmthRLSXXoQEhI9iWeHDx/BTz/9wM8/b6d+/Toak0Grs6L4xUkCMDnjwRHAzEtR1Dnm7UgT3ii3bjcWi16kaZbrlJCPHkUBpzuwdY58SrPZ1HIVBa5fJwhU7ltICK3r1yPD6u+oV0/19LpqzRois2Th7UGD+N/hw9y9e5dmzZoxf948wrwxbfzkdxJEm8T7Y+RKisfEXLDboWbNotSsWZvNm5cxckRXzW9+k1pV+eST4Rw8uIcXXqioBfIWechzICTE957K5aVOnZqWLTsw8fPPyZwxI+999BGvtWrFhHHjVCUYaTKG2e107NiVuXOn8/77nxAUFKSrr5xvWFhqRo4YwZD33/emcfPxqFEoVjsDB36gGfoIqyG7HZ+TRu94mW02zY2+6h/FrM4d+eUSHWhssOC4yk6khLg4IVGjYN0KOZksRvauG2pIDS/sdnCoY9rtjTeYO3cu7dq1IwU8vmg2ufJIQbLikUU/lStV4tXmzendtavvorwwyvxTIaQWG7z8ssovvLzSgW+RkmQxMbEmbV2QzSMFoSI7WJXFN3K2QmcukHjZaOFqcsT5K2OIwkB1IoUqqpLl5sFKnPrj8mVfO8PDfRWKiNAKFyHob9/21V21ao5i6dJZDBkyAID+/YfRrNlwNmz4mo8+epW1a09QpEgerU3iWbFhi2ovWjSf48ePUr9+MwoUKEJwcLA2LOI5yWpb6zudqAu0KM6iOQJGEVogUUlCxEZi1gJ57xXluN1w/PhRypYtyOLFP1KzZm2N8JK532KOyOoDOmLGWBlvhQIFiBMQYiPZHDkhBUhhZirSaTcMhIoQT1qdqj6Uxx6M0wlWx308IaHMmTOHLl06a49kz5aNLp060f7111WPs4rCuXPnyJAhA/aERAiS+NRIUMh7qsOhhd4hyKbWecbMOfTs2Y0jR45SILMaVPPmtWuky5uXWbMW06RJa+3dEc2T1bjEfJD7UsTmvHz5NkWKZCdz5iyar6Tq1WswedRInitcWEc9r9/4K/XrV2b//v+RJ89z2twQ81cQ6RYLnPrrCHmLFPHrhmLFirFu3TZCQ9MQFqaqxoD67gv6wOR2aaIWWclcXgrMuPzdM8s6bAJCnCUd0uQx8aPoHA7/WEXyMyK9tFhduXaNbDlzcuLECXLkyOHX5mcFixcvZtrYseyYO/ex8zpx7hyFmzdPEf0kAQMGDAh43WQyYbfbyZcvH40bN35k7u8jkY7nzp1j16+/0rJFi0cqJAWPhrCwMHr37s/Nm/GUKVOOr7+eT3R0FDt3riJjxhxkypTwghQfH8/27Vvo3787vXp1ZMKEUdSqVZbq1Uty48b1f7AVTw45c+YmJCSUceOGcfv2raddnSeKDh06aL+/mDSJ/b/+yvtDhmA2m5kzdy5t27UjR86cCS4Qj4tWrdoQGZmVfv36IM40J0+fBiB37nyPlXdERASFCxfRiJSBAwZw/vw5GrVsSaysDA9ky6bO+cQ4fzSZTMz84guN81K1ag1ANQIYN+7/l+JpZGQkNarXYMmSpU+7Kk8fwoV+cnxSkCQcOHCAOXPmMHPmTLZt28bWrVuZNWsWc+bMYdOmTQwYMIB8+fJx+PDhR8r3kUQ/3333HS+9VImIDFmI914znrR1YgZAsUFIRBpdGvGc2+3V2vdeF0p9RjGFiNQq5y8fTuX5JYtBxLeoY0iIj0kju6Y2Ktmqv4P8OOjh4aFYBKdXM1AwadxegOAwySuc2+2z/PEiziGU9qya6MnIERJ1uH7dwogR86lfvzDvv9+akycPU6BAec6etWgKgSIqLcDevTvo0aM6TqcTu1dhWeDEiaOULZubd9/9jPTpIylXrggrVixl//7dREffx2YL4quvviIyYwZVbCF1rNup1x0UkMdAVj419r3Rusi4Foi5YDSJFullpWeVSWdl+PA5fPBBRxo0qMK0ab+QKVOYxrgSXAJZZ9FuF17UzRIjxWemLiA7NJO58KIuFouPg6IoJr/njffEb7UeZqzeE7MHlUMYGy04asEqV8jrKC0sLBQc4Habad78VVasWI7T5WLcpEns/e03Nm3eDECBAgUAuHHzpq6yRgV0uZ6yxEKeb/J74HSaCLW7CAsLYfToqbz+eiO++nY77V+rR+asqu+fixcvU6SIL/6PUJ6VuSjGNV8eV4sFmjVryd69e7Db7Xw6ahTtO3ShdOli9HznHYa8/Tb58ufn5r0oBg7sSnBwCNmyFeP6db1lUUSEmpfVojrpy1O4MACb1q6lRsOGbN26SSt/4sSxvPPOp4SHQ/r0vvrevCnG3aytE8Y+83HnzIAZm83LpROGA6ByT0UnijVAyJnkAQHfffFSCG6KkGcFYj96XzKXTeWOOmKhYaNmLFnyJYMGvcMzjRSHb08dglsyb948wr0L8t27d3njjTeoWLEiXbp0oU2bNvTv358fJb27h+GRRnX16tU0rl0Ta6zXFbYktzB7J4hVvL3yhLmtUhpmw45gtlhILctcwiz6l9dbhse7oRh9sMjvfupwldVuio3Ryo5xWrU1IJgYrVwdReTAuygYKIW0Ef47UGwsxEqiHC+Co6760t70fgsW8PXrOvlDUPr0anlhYVgBohwE2WzgcBMfklqnU+N2Q7p0+QHYvXst+fOX56+/dgP3iY4OJSrqGlarQqpU6XA6YezYt8iXrwSdOg2iQIG8vPJKGQD+/PMG69evZ+DAtrz3XncSwsVzZ4lMm8bPWssqKDFZR8dLIYXapXE2KLrEO9UN2uSM14kG/QJKul068QRInmGlMYl3+kzJO3duSenSeahZ8wV++GEC77zzviYGkFVDZDGg2Rnnz7KXZW9AaFgYhNuIU4IJsqhiIuF3R84PJBGZlJ/HYtVEPwEVNxzqNZOiYFUUsAdpeWaw3wOHg2vudFp+DgfMmbOYq1cu0W/AACIjIylRrBizv/iCVxo2JF1kJMXKlCFEmPcCOJ0+T6mKgtliwWxRCxF9HGTzaHo8Znc8nnAf4SzgwozTCe1b12HKlBdYuPBzXnutIT94iaQDB3bStGkjpKI0yaa8/xr7Ti7DZFIJ6syZMmFyuSiWLyeTJkyg/1tvsXTZMhYv/pZPPx3BkSN/smLFaooVy0cqi/ddFpSRwye/vHbLx2F7sVAhgu12YqSFwmQykS6dB1mrTtAIgsAVemNynY0HHCHKMjnj9eaLsgKYnFC+FkgXTyZUZOrfeFryip/NsbcwKwpWoFmdqrz5Zg+uXbtGBq+7iGcWKToqTxVjx47lp59+0ogUUCO5Dx8+nNq1a9OvXz8++OADateu/Uj5JnpE4uLi2LFjB3Vr1nykAlLweFAUhaJFywFw7NguzGYrb75ZjtmzB/Lqqxlp0iQ9I0a0ZNWqSRw9upemTXtQu3YLLl06p+WRJk1aXn75Nf73v1iOH49n0qRF9Oz5Fr/9dpLhw0dgs9mw2Wxk87rW/6+gdOnn6d69H5999gG7dm1/2tV5YjCbzWz66Sf+OnSICydP8uN33/HG66+TLl06XC4XR48do8xjxNFIDLp27cbGjT9x6tQpOvfsCcCECZ8yb96sx8o3a1bVBfyp06f5YcMGAHr26MH167dIly4dTZrUYdeunSxcuIoaNR6+9pQqXx6AYf37ExISwhcjR2r3XnjhBTweD02avPxYdf63IXOmTBQrUoTNXgLymUVyWf0kB1fmGcWdO3e4Klx0SLh27ZoWQDYiIuKR9X8SPSJ79uwhderUFCpSRGWNCapTHEUEJwXAYvGd1hwxvpOCrL0nK8wG0pgE7ThmUhTMisp2lw8gIlmwJR6cYJImWDxWvX+HWINMQnwHcsUaFuaTN8nyIK3XLPpvWR4lt0NUMpClQAD5iPEg5XaDy2Vi+vSdLFnyJV980ZmrV48BcP78X1pR+/ZtZNu25VSu/AZFi7YiKgrKl69KmTIVaNq0LTdvCiaIenpv1KgNLVq0QVFgyJD3qFevIeXKleKlypXZ9MMPZE+Txl8eEohNEUDm4VHMfqIaRbHidOgfsVhkR3tmLVvf+Jq063I1jMPx0Ufj2bJlM7NnT6d8+cqAfkoGhDx+FoteXmFks6Oy1+VDsO9RVclYcCvkNqsiIlU8YJInrUHb2BErOUpNr8pP5LXS118WCnojbcvzZ//vv+NwOChRooSvA+X5ZrGoHCFpmqtV8ImmbDZ1fGRRkDxNg0IUWjZvyttvv0X+/HkAyJ49J+fOnWHQoDepVas+WbJk1fIOC9MzCuR2KIreU+vduze03526d+fk4cPYbTZCQkIoU6Ys58+fZ8SIUVStWkV7n2MIJthxx9fZ3sz3HTzIhYsXARg6cCBYLLzepg0LV61i2y+/aKbe69at5dix81qMMqNqgtOpjolRTCUgi4UcWLHZVKV4s83nc0V4fXa7UY+DliCVA2fkkEimikIp32IL1pLInEe3G8xGrosXVSpXZuvWrbRs2ZJnFimin6eOxo0b06lTJ8aNG8fzzz+PyWRiz549DBw4UPN5tWfPHk1knVgkelS3b99O5eefx3Trlo9VLnuJkt92p1PdYmR5jUwICNf2gRRcxLUsWdRvySzFKi/CQLAxcJjIw+3GGshiB/QT2Wj6Iu+wxk1Y1BlUgbYoT/a+Kys1yG2TzSpEH1286Lcphso7q9tNaq8Wf4wtNSVKdODvv1eyceM6720XadKk5datmxQrVpOhg1rToEgRTKaLxOXIj8ORmhkzftZY8XIAt9hYtTlhYeqimzdvcUaOnMiUKZ9RtVYd9u49SOqIUJ/zPbFqyzuoCCYnK+goCibHTbXvw8KwKmp/xzhV82ZZyicWfyO9JhNp8nSQh0tYgKtFKlSpUpG1a78jNvY2ERERqpt0hwOiYn1j65AIBEEZyOx48dt7LyjEAU61rcEaYY2P+nE4AIu+kopCUHQ0QTIBLBopBkIiJoQ1VY4candeuhlEpkwZSOOIA6faKXZ7sFqk3FGSKGHN99+TOnVqnn/xJZmqAVQxlMMBQY576vuoKOrYhIh6oxEyAsLwRKZL78easYdGsHTpKurWrUbduo25desGBQoUZd++n/nqqzm8/fYHOomvkT5XFAi2ufwcpWUUJkDApcuX+Wbdz9Su3ZCwMJg6dS6vv/4GTfLlhPN/Q1gYwSLD8HBfYbGxxKeNJDRjDpo1a8aMqVOxpksH0dEcPnyYzTt2aGVs27adKlUqs3r1Orp391kuyqIdeYkwEm+yeAggTVi8fm0TzylWXR9aLBDnVHVbUKzaNacTjYgE1fmcNhDeh03el8UsryXedosXpUqxYrw/abJfPZ4pCGXax0WK6CfJmDFjBv3796dVq1YIL9QWi4XXX3+d8d44TIUKFWL27NmPlG+iR+TAvt8oW6zYI2WeguSD2Wxm6dLvuXo1RrNm6NZtAA0bduLu3WtUrlRJFyn3UaAoCt2792Phwm85efI4ffv2TM6qP3H06/cW0dH3qVSpFHv2/PrwBwxwOp3cu3ePmJiYhyf+F8Hj8bB8xQpeeeUVrFbrwx94TFSuXJUDB84zZ87XFC5cjNOnj5M3bwF+/31/kvOsVasukybNITJSDcLZr19HFi1SncClSZOG+vUbJjqvzZs3cuTIEZ1FwV9H9VZCVaqoXLe9e3cmuc7/RpQtXpwjf/9FtGwe/awhxeHbU0dYWBizZs3ixo0bHDhwgP3793Pjxg1mzpyp+nsCSpYsScmSJR8p30RzVA78fpDuLZr7nA+AvwmIUbQCPi6CLNJJKDKhzH8V1wKZVIA+OJg4WRhNUOQyZNf3xtOpjx+ecHmBxDuiTMNJNuBzoJ7uBWcn0IJi5Pd7eejBGdW2BkfYwGkiKuo+V67cIGPGjKxa9TstW5bkwMGDVPH2iS1ffqKi1C4SXRIV5eNiyD5GZPcPuXKV4uWXW7Bo0QKuXLmMopiIjMxEq2ZNqFOrluoELVC7ZBMq0CkGejDhjPXnjhgPh+Ix+XAqLC0UxccYURSVHW6xmDSfKEUK52H37n20bt2Sli0bsnr1d7z0Yjn/k67UYIfDwZLly5m9aBG79+0jPj4em83GounTaf7KKxAe7hNfxsb6WA2BuHjGb2OjZLMuVF8tZotqTSUuZ8zoVcyMivXLz+02CsFUbNuxg7///pvPP5+C0wlmm414p09MEHvX6xMlrY8rKfzEWGxmX7pY/SsguG5yE8VQR0ZmRVGgZs2GzJ8/DYC8edsFlAom9CqBakbvdDgwBYXSsWMnUqVKQ6dOTblx4zr9+3fmwoVLvPfeewAEySI6WdleYsPdvHmbjz8ezuXLF3mlWTPWr9/IC4Xz0aBWLT4fPZrK5ctTqlo1RDTx9OkzEB2t93QvIOaqzF1xOPTXtb6xWPBYrDpfOR7FTOxd//iFsvK/MR6SgMXiVUCXxeKyGFlmJ/oeIlvWrKRNk0aLw/bMIoWj8lSxadMmatSoQVhYGMWLF9fdmzJlCr17905Svoly+BYbG0tISAjnt28ni6xVLnaRQFru8ool3m5fhuq3HLXUZsNlC9YeAd/GZaRXxH95EQlE58h5iN8yG1fAEAtNlmDp8gGvCaSAWESMPG5ZHCITJPJvIUqSRUpGiyeR/uBBX2Nr1tRW0Hvpc7Nx4480bVqXPdu383xsLDEVawG+AM5RUT5JnViYHQ7VNBPUb2GeCWA2e/j88w9Yv/5rgoKCcLmc/P33YUqVKsNPP23QOeoR+7eopjBTlSWCMh1oJELkaWI0BZbzs1j0hlZi/Za7MywMbty4QatWr3DgwD7mz19Dw4Y1OXz4MMuWLeTo0SNERETw/PNlyZQ2greHDOHM2bPUqV2bhhUqkCFjRuYtW8Yv+/ZxaccOQhWFS3fvkjFdOsypUqmFhYWBHKn27l19sDmj7EpcA7WDxbUCBcDh4J49g/bqWC0ejciQIea5LgaWt+MavfIKJ06c4M916zAFBfk6TEC2XZc9poo6CRGYLEYJ9E6LtGLAUbk5Q0ePJihjRt7s2ZPUqVMHpE48IaGA14pLOgxUqVmT7Tt3ki1rVtq1bs0no0aRPjKSnh07YrLZGDFqFOtWr6ZejRq6dywuJI1sROft2ps0btiAw3//zdxp02jSqhUAc2fMoGPr1sRYUgEwZ858+vTpSLp0kfzww0mCg0PIlEnNWnYcFxri8U1c0XdCNiTaH5ZKSy+fcYJtqgWb9kLJFoayZzynU/3vbYwrLLVKVFpc+nJ9ikS+Z8V8kw9mTidV27ShQ7duOt87zwoWL17MtMmT2bFmzWPndeLUKQpXrJji8C0JiIiI4KeffuL555/XXZ84cSIffPCBplD7qEgUR+XUqVME2+1kzpgRHj2GYQqeIIKDVeIuKChIf2RLIkwmEwMGjGDw4BHa2vjHHzt59dVXqFKlMvv3H/hHxAxJQbp06Viz5idatnyF1q1rU7x4SQ4dOki6dOkpWbIUJ04cY8mShTidTqpVqcL3K1fyXPHicP482GyUK1WK/JUq0aBbN67duMHhkyf5qG9f3h848Gk3zQ8//fQTa9euZfGiRUkW+T0OTCYTI99+G3LlSjiE9wMQ6dVNKVywIKM++4xMWbNSt1YtFn79NSf//ptNW7Yw+YsvVELlAfB4PHTr1pXDf/3Fum+/5cUXXqB4sWIc+uMPP1Pd1q07UKtWC+7e9RAcHJJAjv9d5MmWjePHjj/tajw9pOioPHVMmDCB+vXrs23bNop4vUN/9tlnjBgxgu+//z7J+SaaUMmVPbu6IHr0JyPtW+KMaNDzNNVveVEznL7MXo6CWbpnDiROEfl50wTbbD4nZUbxk9utKuGKa97rVknMYrXZQK6Ktz06UYem5m9YlI0nZ/A/8Rivg+80K77lk5KAYBncvevLX3i7stkIywXHjh0C4NrevZArl8agCQnRPyaKFxxlUdT16/7xj+RhSZsWypevyIQJ02nfvgUTJ06jR4++Ou6TPOQJcbVkFrs8HGIYhKWI/LwsokoVJhHIUVHgdJIqTDplRql9FQqsnz+bGcuWsWnrVnp360L7tm2xedkwN69f5+qFCxTKn9/H/fLKmHJlzcoXgwczedky8ufMyelLlxj2+edUe/llKhYqpHaorBEsZFOStZvGsZBPwrJ8RVzztk/LzuHAarPpojgL0ZP4rSiqSOBedAxde/SkYsXKNHq5NcTf9lmqiXoIVqToTMEpMXIARf1lVqNII4sixYSR3y8RClye50buKT4rI6s0aabNnMP+3//kyNET1KnTiH79+9OxYzdOnz3LqnW/kj1nYY4ePaR2kCg7KkrrYvHaLF++km+++YaZM5eSNU8VVv3wC4f++IO+PXvS0OurIdh9n/uEenVwQ3VLkXG+Wyz4LhpFnVK7xDNGtzw4nT7O1t27epaiGHAxFuKFc6rxhcyg+pySC5FF1yKmk8z9kvo+T65c/O31GvxMIrmsflLMk5OMjh07cuPGDWrXrs3OnTtZtmwZI0eOZP369VSoUCHJ+SaKdLx69SqR6dInuZAUPBmcP3+eWbNmEhmZiXJFiz7Rsl55pTlVq9Zky5afnmg5yQGr1Urv7t1ZtXQpnTt1UokUL9KmTasSKQmga/Pm/G/NGr6dNIkrv/5K/ly5mDJ9+j9R7UTB7XbTq1dPrl69wowZc58KNyU5EBERwZIlG7DZgrh27QqdOvVm3rwZ5MlTgKFD+5AuXQaOHfuEmrzcAACEVklEQVSbe/fuBXz+jz8OUrFiEXr3bk61aq/QuPGrABw48KvKFezb959szr8CkenTc+XqladdjacL+bST1E8S36mpU6eSO3du7HY7ZcqUYYdkbRYI27Zto0yZMtjtdvLkycP0AOvMN998Q5EiRQgKCqJIkSKsWrXqkcv1eDwMHz6cLFmyEBwcTNWqVfnzzz+T1MbEYODAgbRr146yZcsyevRoNmzY8FhECiSSo3Lt2jXSZ8sG+fJpp40Y1VBQJy82HqxkBoHGXLHr0+tO3+6EdWoDQj68BXhOHEgC6Zo8KndPpNd0BbwIpFdgTOsXnA58nSU7xzEe786eVb+90ZcBOHxY8wffpmNH/ve//7Hh448xv1CFGMAuia3Tp1ezlPWfZf080DvOFd+y6pA4pDudULp0JSZMGM6hQ3+TL19BrcqyKxr5QC6uud3+YyPKE2WKQHayroqYHxYLREX5ov7a7alQLKC5L1HAGZIqICdHpHG7Icjmi66sfSuKelIVSgpCkefyZcLsdmyKQkRIiNqJ0dG+iHpGxSnRWNEAo26BNBFjCMYSEoxF1qcWAS8Vs85Dr3ALD+CIiqZ7794sXLiQr+bOpUjebHhsqN6S5YG2WPyjbAbyEyN0U+SBUB3u4MGk8yLgtKm6JuIVt1jAJs4uBq+tsupEajwoisn7LijaQJsVhUKFcjB58nQaNqxOZGRuatduyqZN3+F2uzh9+gSxsTG8O2QKw4YN8ZYZzJHd5/ngg76cOfM/rl69wty5SyhbtjFp0piwKi4G9Hud0aPf5ePPJjJr4mdae6Puql1w8uQF3G4X2bNn5e2321KnTm1atuxAVJSJDGExgEIcQSjSunbXHURstN6LQZrrKkFgltmJQuFaLHxirsgviRygVYaYL5IOmMtt0q2pt2+K8vXhMRQFItJCqpwFuXb9GY758xQ5KsuWLePNN99k6tSpvPTSS8yYMYN69epx+PDhgMEiT506Rf369enSpQsLFy7k559/pmfPnmTIkIFmzZoBsGvXLlq2bMmIESNo0qQJq1at4tVXX2Xnzp2awnRiyv30008ZP3488+fPp0CBAnz88cfUqlWLv//+m1SpUj1GR6mYPHmy37XMmTMTEhJC5cqV2b17N7t37wagbxIPEIlSpv3ggw+4ePESs2dM1zbTeO/CZbH4NmCxaYtrMbE+B21Gq49A/sPk34klJIzpdMQAvpgqgZ6TRRBGAiehOuii7wLxbn97DDHPjXXRbWyiUgkRKoJIcbtV4kTAZgO7nR9PnaLuiBHkzpiRkzNncr9mY0LtLu7HmrXsxZp58qQveyEhkDnKgpssrtntvrhI8uJ85sxJypXLy+uv92TUqC80YlMmSoxKsw+CcX8UNINct0CEqyCk5LnysDEGrwt9UVGRAFRqTWzsFy+qv48f547TSZpGjZj44Yf0feUVtUL58ukLlQsPIPbQKiFtVjFhGVAUn/jCYoHU9jiQrHY0Ytfrpv/27ds0btKEX3fvZs7s2bRt0wZQ55816paaiYjY7fVjo8sokB8huX6S+MpjD/ZTVg5kASR3pTBIka+Bb981Ob3RwSTRmFhDZs5cQu/ebZg4cTmXLp1mxYp5nDz5Fx6Ph7Jlq7B27VYtvw4dWvPDD0sJDg7mnXeG8sYbQ7l8GfLk8ZVXsGAxjh37Hz9v3crwjz8mVVgYBQu/iN0eyrBhfcicOQdTp66iSRM1xMTKlT9SvXptUlvuAxBnCdXaalXUd0oW00VHQxpu+VPaQjwjqAspUrrW15p3P3zj4XSqRKO3ULGmGBV1hYK8/L6JLCIiYNu2zfTv341jx47xrGHx4sVMmzqVHVu2PHZeJ06coHDx4o+kTFuuXDlKly7NtGnTtGuFCxfmlVdeYdQo/0CYgwYN4rvvvuPIkSPate7du/P777+za9cuAFq2bMndu3dZv369lqZu3bqkSZOGJUuWJKpcj8dDlixZePPNNxk0aBCgepmPjIxkzJgxdOvWLdFtTAi5c+dOVDqTycRJsRk9IhJFOsbFxanxaFLwr8Cl27epO2IEOTNkYMeIEf9YuRcvngcgXboM3ki6/02xQ2LhdLnweDxkSJfu4YmfIKKjo6lbvz5Hjx1j86ZNvPTSS/7cnP8wGjduxbhxH7Ft2zrGjp1Hs2YdqV49D2FhaWjXboAu7fHj/6N58958+eVkTCYT16/r87p9+zbHjv0PgCavvupz5/3tt1qa2rWbER19X/t/5crlJ9KufxpBQUHExcU9POH/Zzwqq/wBeRgtVIKCgjQfVjIcDge//fYbgwcP1l2vXbs2v/zyS8Aidu3a5Rfvpk6dOsyZM4f4+HisViu7du2if//+fmkmTpyY6HJPnTrF5cuXdWUFBQVRpUoVfvnll2QhVE6dOvXYeTwMiSJUnE4nVrdLZS0Lz69pBX/eZ46pKajGqkeBYLtd8wgaJPsvAXB4FVrdbp8iq6KoSrGKolduFfeMMJpDBmDHmACLxSr9l8081Z9mQ95mBZ1So5Ze7QxdWuGPQoauDBlG+9xAspAAZejgdrPhL9V9/oZhw8iaIQOEhRGqxIDbgtPp46iIbORgfSEhKhNHVC2QuEfoV8pcFoCzZ9UJOX78h4wf/yHvvTeJBg2akzlzFu05cUA3Wlga9TrFJyEOODxcDGiU4CQagWzdJYVNnE64e5ftBw4AUK5YMbXjZEVG4c8iJMR3SpaPv3JjhZmwd1e121UOQ5QallJN6nYT5zBpXAwhQVIsZvoNeItDf/zBju3bKVOmjHduSn0gtEJlZVov502n6CsekLkqgdia3ibY7T6nxIEcohollUaPtkLX02KRlOIFZ8nhQLyV2bKG0LZtOz755H1at25F9ep1GD9+Cl27vo7VatIpewcHhxAbe48jR0wI/WbBiQP4eYvq8G/dul+oX1+Vi1epUoNt29QIyu3a9adv39Eois+5X9my5Th//hzLtn7Hsm++oWix8nTo0I1s2XKgKGaio33DqHWVor5MHkV934TfE2G2bHK7uBNl9vaj2lKbBcwhhhdPdKTF4nOV71SDRuJ0EqSI8QFL+mC/+a8oXhFzVBTh5jji4+N5ZmEyaePxOPAoZlwul2pyL2HYsGEMHz7cL/3169dxuVxERkbqrkdGRnL5cmAi+PLlywHTO51Orl+/TubMmRNMI/JMTLniO1CaM2fOBKzbvxGJIlSsVivRYlUSxIW8qRqVHATPUl4UjbtOIMWFQLuN95rHcHp3u9HkyA+DTHBo+TxgQmvp5dVZLPgGzpKIxaGxtqU662DUaRD5BAqM4nTCca+ZodgxBLp3ZzhQDCgwYIAvj8OHISSE1Hg3K7uFOEuojjstN0FURYhXjOIv8PeN16TJ6+TJU5I5c8bx7bdf8fHH/Rg1agANGrSkT59h5M1bQNsfxXN2uy9sktwVsmGKuKYoPva2qKdImxgxT6Bvv0SBGpk+vV4xxiv7Wr1sGbmyZSNPoUK+BohTlsUCGTMS79Rbs3D8uL4zc+VSf9+8qREqprRpweEgLCy1lhXRToIcNwgS8gVF7aCft+5k9uxZzJg0iTKFC0N0tBrTyjs3zTabT5YnfLx4Hc+4FKvO0Ej2cwNoG7Axrk10tL9elzx+4vWWxT3CH5vcvU6nzwWJ3e7V05KpDm/iO3dN9Ow5iK1btzB0aH+2b/+TsDBVv+N///uZ6OhGWhkVKlRiyZI5pE17Frs9h+YP6PRp9UA1evxMzGYzp06d0OohiBSAzz4bh8lk4vZtG6lTp+HOnVtERmYgRw6Va5Yje3a2bd/O7l828OvmzWCxcOfAz+DxEPzCCwAEKwp7/0pFVJSPNlTjaAWRLZtolpmICP2BwW6HVHaLr2Pkjrp9G5M3YZDdrlr/COLY21/BEeqLpRFHwjeNQyX8HNHR2P6lrgP+CXg8+nmaVLjdqifwW1IkbiAgN0WGUbHd4/E8UNk9UHrj9cTkmVxpkorRo0fTp08fQkNDH5p29+7dXL9+nQYNGjxSGYk6h6awFP9dcAB/ANeegk+bwoVL0Lv3+/Tu/QF7915l6NDx7Nu3kyZNnmfTprXcvXvnH6/Tk8KLpUpx5sIF/npKMv+9+/bRrG1bChcsSOfXX38qdfinYDab6dNnKMeOHWHnzs1Ur16XJk06MHXqGLZs+UFL16XLmzgccXz88Ud+eRw6tIefflrF9OkL+PvvP4nMkIGqL72k3Z80aYlucd6x4xwXLlwmTZo0NG2qWg1ZrVZcLhe79+3j+o0bNG3Viry1apGjdm1avP46+w8exOVy+ZVtRHT0/QQtlp4U4hyOZ1pELzxnJMcHIDw8XPdJiFBJnz49ZrPZj3ty9epVP06GQKZMmQKmt1gspPOKmhNKI/JMTLmZvIeXR6nbo+Lw4cPkzJmTHj16sH79eq5du6bdczqdHDp0iKlTp1KhQgVatWpFuOy9M5FIFKGSOnVq7ib00j2M7y5zUuSPzP/3fjyK2e/jcpuId5o07rb4iEOJ+C//Nn7inSbtI9JGR/s+xv8xsSZiY8FlCdI+MbEmYmJNxDn0n5hYNU+XYtU+8W6z/8dp8kWYttnwWKz+fSDjhRcS7FtBt74nTqWyjwvpbRPim0BiFlmHUr4vM3UEE01WLlYUyJcvPwMHfki6dBlo27Yvgwd/RlTUXbp0aUTJkhlp2bIWHTs2ZOrUkVit8VrwQwGRd0KLhChT/gRivj3oY3K79B+dyE/6GB1hSNc6NGtGzqxZ6TloEC6Px7+T3G79sBnZCXJjhLxEaozFonoiNePSs44UhVink2r16hEcHMzm9etRAg2UzMkR4h4vS8tjsfo1U1RH/BbzPipK/7l7V/2I/+IdCSRpfdArLXNpAj7kzVBUu0aNKhQtWoqxY4cTG+vm/fcnkTlzNl57rR6bN/+EokCuXNl46aUazJs3lw8Gv83+PWu4eGwn2bKBw3EBgJcb1WD58i+JTJeOrT//DEDDhu1o1qwVISFw9uwR1q6dz+LFU6hVqzpNmtSjZs3aVK5QgROSst/LbV5j646dfPnFF8weO5adu/dQpmpVSlSswqJFc4iP93Fc5b6NjYVWraqQO3c43323juvXVWba+fNw5aaVe85g4mypiLerHyIifJZnEREq60V8ROcoisoNluaY9l/jTN0ltVDgfUYRaO141M+jnv9sNhtlypThp5/0rht++umnBM1yy5cv75d+w4YNlC1bVnOomVAakWdiys2dOzeZMmXSpXE4HGzbtu2xTYYFFixYwObNm3G73bz22mtkypQJm81GqlSpCAoKolSpUsydO5cOHTrw119/UalSpUcuI1HCkwwZMqhKabIlitGxkCzrFiMur+KCjy+zfo1ilAD6JpojpISsFeR7CckEjI7UxA4tfhvdhQuZUrTPflpEahbh27U6i5D1sb6yzUK2YtTwl/6bxILiDUsP+Pzay6aKbrfe1HT+fNpv3Mj7CxfSYOJEqFYN3G7uhUTicEC6sDitXWJzkQ0+jCoK8m9RrBwFV3Sp0U+fEO+Eh0OjRnUJClpMvnyF+e23rWzfvhmn08mYMR/w448r+e67NWTKlFl7XvaHF0gsJcIUxDnUuCfC8kWrkJhjTmm+iD4Xl+TGgE6vw89Dndw4scumT489JITZ06ZRu3Fj3v50EqNGjSIIH2fxXrTZO429FnA2sObIod+ZhYMvr0m5Vqa3imaLNIdDQoiJNRFs9/D9N99w//59Vi1ZQiYR58AQXVv7zpQJjy1I36/ResJC8n6vM0oRr4esgmVUW7HZfMHMjXSz0ZRdGxpJ3GGxeK3l5DrrKBmv5VOIk1GjPqNRoxosWTKVjh178/vvp8idO4KDB3fQqlUtzO542r3WlPPnjzHys8/gs88ACA0N5f59VUE2fVgYDkcch7y6XADr1y8mPv5LHA4Tffv25JdfthISEkp09H0OHz7Mxo0/MnjwELZLyo+7dv3C7Nnf075qQXA6ea1JEzbv2cO8JUuYNKkzixYNpmOHDgwfPpyQkBBwONi1Pwi3GypWbMrhw7/RtWsDZs7cRYECL2p9L2gQ3xQxkTatFbNN8Yl8o6MhWzafUz3AdP48OJ2YpIjyMoV/9dixp674/TQh+yJ9HCQljwEDBmi+Q8qXL8/MmTM5e/Ys3bt3B+Ddd9/lwoULLFiwAFAtfKZMmcKAAQPo0qULu3btYs6cOZo1D0C/fv2oXLkyY8aMoXHjxqxevZqNGzeyc+fORJdrMpl48803GTlyJPnz5yd//vyMHDmSkJAQ2ngtB5MDxYsXZ8aMGUyfPp1Dhw5x+vRpYmJiSJ8+PSVLliS92NuSiEQRKpkyZeLSpUuPVVAKkgdX7txh+OLF9GzVikZVqz7t6gCQKlUqmjVrjdsN5cuXZMCAN3G7Yf/+32jWrDG1a9di7dqfyJw588Mz+5ehRrVqfPTRaN577x3q169HzUpPPuCby+Vi/IQJvPD889SsVu2ZCltRpUp1Xn+9M6NGvUfBgsXInz8v9+/fp2TJMlqa19u3p32HjuzcuRO3283+PbsZ8M47ADRp0hxFUWjbtj2TJ0/UnnG5XPzww0patmzGgAHvU7Lk8+TMmZesWSO4efMOI0cOo1GjRsyZM5tr11RLoezZc3P//j1Vng/Y7Xbq16xJ/Zo12fHXdb7+ehZfTJ3Kwd9/Z93332uLqdPppHz5+sycORSAoUOb8/XX5594312+fp1IORbVM4jk0FFJyuvWsmVLbty4wUcffcSlS5coWrQo69atI2fOnABcunSJs+Kgj8rpWLduHf379+eLL74gS5YsTJ48WfOhAlChQgWWLl3Ke++9x/vvv0/evHlZtmyZLujkw8oFeOedd4iJiaFnz57cunWLcuXKsWHDhmTxoWKEyWSiRIkSlChRInnzTYwflRMnTlC4cGFijh7FbLX6s8qF5roM+ThmVAgVx3GjtqYRgZR3jfmDL43RkkY+6hmfNQZvk8uXLRTkdsiKw4LXG8irnZy3CFvsdusDEBo5Km63z0GUwMWLfn27f/NmyowcyZqRIzUX4Vgs3M9XAkWB4Nhb2rV4eyqcTr17DSM7XlTPCCPDSjRXVEUMp9EfTvr0vqYB/H34T6pUq8bNW7fIny8fK5YsoXCJkpr4R3RnkMWll1OIQoyOWWSOioCROxdIaRn0wQNFOkXxD1EgOsrLyXKHh1OxTh2cbjd7hNdHRSHGafUrwux1BKZ1VFiYpiyp1csbH8cVksrHLXI6cVmCiI6GzZt/5JVX6rJy5RqavFwPABc+3xqiuXIzZRGoqJPclaJ5ojrit8nt4tZds1Zdp9OnZCvryGfK5OWKyN7cRJ+KzCMidMqeAKbYGF/GslWUeJfEZFEUdaLabNx2u2nWsiU7du7ko+HDeXfoUPbtO0yhQoVVjpvi8smsAKKjOR8VRWSGDJjv3UNRFAZ99hmfzpyJjJ7du/PFxIl4bD5dA9PVKz4NYuDKvXtcOHKE6atXc+T0aXbu3s1LRYuycvx4MubLp3XKnfDshIXB1vVrqdmoEWPGTKB69erMnLmOuXPfx+VS22o2m2na9A2+/nomS5f+RpEipXXSRvEeCZ367Nk82iDeig3WmHFaMNTYWOItqsM3q+LyDX50NG27dqVgyZK8//77PGtYvHgxn38+jbVrH+wNNjE4deoEFSoUTglK+C9CojgqOXLkwO12c+78eXIJky1Z/i42YKfTFyVWvIlitZN3L2G6ERKiX7xkwkX8TijQniwmMYqAFEVbNLV7YkUQ5UVH+ztkEvnJ9pXimpEgC0QYid1BnuDREg9eViISZctRUY0iKNFGSWRUqnx57OPHM/rbb2nYuTOe9BlUaw6vSMdjT8P16+CMhfTe7DJl8u2TwjpDFCmqbCRgjLSAEBnJ940WOIrisyAR+eUt8BxHfv+dZd98wwcffsiEL6YydepMv64GMxaLGRSft09V9GNGsQVp5eqiCAsEImQDISFdKrnfIyJ8pjDeeijR0fTo0IH2PXpw/uxZsmXLBvjC98h9kjZ9pK46t2+DLQRsEb4AeRaLas5qvnzB1wFOJ0qevFgssHr1anLmzE2VKg2IcZj8miryME7b8HBfU4KUeF9CyRuqyxaMzab3sJzGdh/sUt9kUieFx2L1OTh0q3U0EvUiOrJWD8yY3S6fIpLoGPD3litPMkGoKwqhThNr1v5IjRrVeHeoypWoXbsyTZq0YtiwcZhMLq5cOU3pEoVV5djoaLJZLBAXp4pLgIisWQHo2LELFouFefNm0bhJK2LcQVik19YZEamb2+k8HjKVKgXAmTMOduzYRrduTfjw219o27YWFy+q6mPcVZtXvXJlXihblkGD+pMnVy5OGkTi48evJD4+lq+/nsmHH3ZjzpxdWCwWHA5VsiubPbvdcOWqCYslWGdcpqYxeedUMHjH3Wp368b2xJkz1JdO5M8akkv0kwhd6RT8w3iAFqwPVquVggUK8Mfffz/p+qTgITCZTNSsXp2f9+zhizlznnZ1EoW0adPSo1s3mjdvwbZtW592dZKEl8qVw2QysWjZsideVlCQnTNnTvHHHwefeFn/VlitVpYs+Y68eQsAUKZMOebMmcKLL+Ylf/60lC1bnDz587M0gfF49+23uXLlNlOmzGDixC+4di2KSpWqPLRc2Q+JxWKhYsWalC5dgcOHfwuY3mQysdyrd3Dy9GmqVXuVsLDU1K79Clu2XKFatZcpX74WAEeO7OOll2wcPfq7ThE3OeB2u/nf339T9AnH/Po3Q5gnJ8cnBf8uJIpQAShVujQHTp9WXYgL/r7QVM+SRT3OhYer/0NC1G+hSZeQpQIE5lrIn0CnYLdb9VpmNBcRR1zZ5Cc2Vv9J6HqgjzB5EGzmhPJKjOmR14mYnzWIEG/IJ8uHvEHfff01fTp2pO/QoZw6eeKBhleBLHpkCYv4lqtpvCY3V1Rf/BYnQmGgIOtS6154t5sXy5Tm2LFjxN6/jZV4nXFDkM2D2R2vurn3Fhhk82BGtdox41K5AAmZBhn77kF40KokN16aB3nSp6dx3bqsXbtWcwonO8UzTm95+hqtbXRFSuZXggHRtm17AE6fPhmwioriH3NKQBiJaG0QJjvedpij72F2xOhNeqKjfaY+wtzn9m1MUff0pnEBTLVMznj1gwcTHt8YyQ0W/xPqKDmdw4HVHYdVcZEre2oG9O8LwE8/qSHiL148T2xsLG907EjunDnp0q0bTVq35octW8DtJjoqiitXVHFOmjSpCAoyERt7m5iYW9oclUWg4v0woc61YJuZ6Hv3OH3qFJkzmzh79hd27NjAxYvHyJbNQZEikD2Li7Nn99OnT1tatGrF7s2bAShfvhaff76MX3+9zcKFq8ibNyNhYZA5cxo+//xrKlSojsfjoUOHslSrFoTLdUVbLkXYCqGcLEuZBWPZ2P3xWPGEpyY+JDV/XblJfHw8hQsXfvDc/3+M5DZPTsG/B4kS/QCULVuWDRt+4tLtYGy2YOxeKYZsVSlgdsT4hN1CbCFsXY0zQeyGsvmHUQwinhFhzsU1wa+VF7306dVvWTMe/P8bRU1ynWQWdUKEkvxtJL7ke8Jyx5ifLKoQ5QXakUTdJf0XEzBq8mRWfP89XTp2ZNnKbaQfqmp5c/UqIQtX4XbrDYoyZfJtnmFhPprOGM9FdL3GGpcWTKP1LfjyETSpUXLmcIDbolqknL10i7CwMMy21MRIwRzV/E0oXpNaUZZfrCSjSM6IhKg1fUEJ97Ocxjg+isKLlSox7MMPiQlLjcNh04gCI50kVzU83NeHJme8t4PwzVthVoz6ZXK7OHtWNbN97rnS2nW5OooCOBzYbEE6HRTN6aBRp8coshSWboHmLfjSypZx3mdditXPabTbDUFSDCyPLUgVGcn6KxKhIjtv1PrEaFbm/e7ZqhX1qlZl+cqV/Lp3L9GxsWzctIk58+Zpyb/9/nu+/f573urdm3FTpgBQunRp9u/fr6V54YUXmDFjJp988jErVqwgLCyM8+fOEZ46Qk0gRNaKQjCQM1UquH2L3r3U9+ro0b8oVy43Gzbs5ff/xVGlygvkzp0Hi8XC2oEDadeuGwsXzuTmzUtkzJhZO8OJLuzRozm9ejXn0KHD9OnTkx07tlGxYiFeeqkyc+eu1s5Zovs1v3+KftoKkZ8wIxfi202b9lCsWHHNtPVZRXJwQ54h3fUnhuPHj3PixAkqV65McHDwYzuYSzShUrlyZT74YJjX2dHjuylOweMhNDSUWaNH07BTJ7Zv30TTp12hRODnn7dToEDhZPOI+E/j9JkzpEqVCrP5yc7/HDlyAXD48CEKF05cwK//z8idKxeDBgzQdu3z58+zZccOzp2/wJ3bt/h6+XLSpU3Lmh98juH+kkyTQRU/lipVUvtfqFDhRFk9DBk0iN8OHCBdhpxMmDCSsmXzYLeryqybNm0jNjaWggXzkC5dRjweD5UrZ2Hv3ttA6oD5FSlShFWr1vHSS2X5++8jrFv3HfHx8ZhMj0dg/PrrNqpUebho6/8znqZ5cgpU3Lhxg5YtW7J582ZMJhPHjh0jT548dO7cmYiICMaNG5ekfBNNqJQoUQKTycSRIweoUKGs+rDFn0FisXiVIQVPNTzc5xddPhELRVTjMT2QlY9RY1NmIxuvC0RF+bgogbQRjSID+Ttacl8t52tU/nvKqF+lCmVLlOCzzz6kSaH8KgGQKZPOWElAdKuodiDGQSCJiKxoKB/AjeIkwRgw+mkRXbZixWJ+/HEtX3655IEGXA9jijwVeDsjZ/bsREdHc+dOHCEhIbqpapRsgI8jpCgm1d+Okftn7CwvChV6jnz5CrJ48RxatGjsE/Vocw+IjVXjy3gj5mjTUTb9AX95k3jvjFzNQKJWOZiP97rZYvH5fpERHat1hkl+Xob3/TYZ33mjfEu+JhTuJTlatkyZaNeihZZ8zNtvg6Jw9PhxTl+6xMz58/lm9WoANvz4I7hc1K5fH4AaNWryySejeOGFsl5FYQ+6yIbyIIaE0LJVK1q2asWtu2aqVavNli3rOHr0b+rXb0b27Jlxu6F9++5Mn/6ZlsXzz0cQF+fEbDar3GXJctBqgVu3rvH3376ouWFhCiaTyuRyOHzGf6LZRr9HiqJnslossGvXFiZPnuA/Ls8QksuFfgpHJeno378/FouFs2fP6sSQLVu2pH///kkmVBK9LZjNZmrWrMXGjeuSVFAKkh8mk4kPBwxg166dfH/u3NOuToI4duwo/fp1pVWrdjRv3vJpVyfJeLV5c2JjY1m06MsnXtbrr3fnxx/XcO7c2Sde1v8XFMiXj9o1arBw1izGjv2MunXrUrJkSUwmE5GRkfTv/xbr1v1A2bJldc/FxMQwaeZMdvz66wPzz5MnHytWLOXKlUtUrVpLuz5s2HiaNWtL1qw+7ldMTEygLADImTMnu3f/RqlSqmhv5crlSWmuhuPHj3Lhwlmq/kv8Kj0tpOioPH1s2LCBMWPGaJaRAvnz53+sIIiJ5qgAvPLKy3z22SS6dv3AT8VDL243A2YUxXvaU4KxRfjS2mw+GazZ6fX0KZT/FEUfNc14xJcDdQnIwlth9itOY7rWSkoUcmUCkeGSR1MwRER+kN7K47AEHvRsIL2MHDmo17YtlecsoP/pc1RYto5Tp6yUObQN7t5Vmc8lS4LTyf1Y3yIq653IFtoiGJ3oNvHCygdrWZUoEGdEcFXE8243TJ48gdSpI5g0aRoulwmTyb+pgcyjXW4Tihw8MoFAkn66LA9DYsZInKqF/pSikCdfPjJFRnLjxiVCQlCVTd1u3DYfm18EqQRUhW+80bnDw0FRiEP14aHYgrBaYnUOS0yxMeBwEBGRmiJF8gBq5F2LBX9Ont3OmQsXiI5xkyWLmhZHlFpfWZdLvJRGlph4p4SrVPFeyIMqrhv6S4vyK90SAfV0LCU52KO0+rvc6vPqax6MYsEXjFGkE5NHft+N3CjxW5j9e8u2h4Qw8K0BDOz/Jjgc1KxShcunToHNhgvVm7A5VvVi6/F4mPr1Sga+9x4A3bv3IUeOPFy8eJ6+vTqTP29eACIizKxYsYp9+/YAPt16hwPu3w/mjTdm8sYbcOjQzxQtmp2bN8O875MqJgoJ8ekkO52QKlVpPvnkK9asWUi+fC/odI3EeyiabfSIAL6lMX16+O67NVSrVoMwox7eM4jk4Kj8C5jl/1ncv39f9dJswPXr1x8a1PFBeCRCpX79+rzxxhs4HCfJl09dHMXeL14mo+KlUPwS66IcV0dNH0REhFdcJDTPZP8q4lteSAMpwIrCb970LVyBCBqjyMfI8jY8IzYe1QW7J+FNzntdS/ekYNg4TB4Pn08cS6myZZk1/kO6v/0xOIqoN8PCuHI3mMjwO7IurrZ3GVnKshWPXJTxlCETqSEh6piK/VYef6cTjh07wdKlX9Gr1wBSpQrV7vkph6L2taI8uv7KE+9zL3b8/DMXL12iUKHncDq9QhenE5u8PzidmBRFdXomz12vRy+5H3VRlyXFVVW/XH2hgoKCveOgbrBuoR/miSVXbpX4dMTEqEqUZ28HFk3KRItMrIvDgfw+yVrARgd53m8xQhrZKJx+GGWD8m/pvTN77wXbJFFqrNRXRjGQyCfQdaMSbiBxspiwsbGYQ0LUFrjdRMXG0vjVV9m8dSsAERERTJ/+ufbonRsXWTBrljo2cbEM6P+mtxstpEqlKgeGhKjEfr58alFly/qCIAqDPvE+hYf7JHNOJ2TMWIQXXhgppEwBlyEjwSLWWkGTpE0LP/ywgq5dO/CsI8WPytNH5cqVWbBgASNGjABUrr/b7Wbs2LFUq1Ytyfk+0vE/Xbp01KlTl6VLFyW5wBQkP4oXL85bAwbwwdixHDv27/J10759c6xWK717D3jaVXksOBwOXu/QgYrly9OsWfMnXp7buzsFUjz2eDyM+Phj7f+OHY/vjfNZwdWrV3G73Xg8Hpq1acPmrVuZOnU6+/bu5dq1m8TEOClS5DkA6gvPz8CGjRs5f+ECDRo0wel0anGFnjaOHz/G//63nxaSzs6ziuQS/aQQKknH2LFjmTFjBvXq1cPhcPDOO+9QtGhRtm/fzpgxY5Kc7yPLKdq1a8uSxQuwuGKxEo8p+j7m6HsEO+8RrMRhJR4r8apPDHc8QUo86SJcfsFAZT1Vp1P1QupSrL4TmHCvLcwo5SO7kC8EspeVjyTCNNrISQkks3hEfp/gsjzqvSeFD4cNw+FwsHrll2q/nT0LV6/icMC5u6k5f16N3mrk0Bu7UXSbfE9wWbyBeQO6xZG58+Ljdrv5889D9OnzFmnTRiSqHUnljDzp/v5p40ZOnTrFlAkTCAoy68QxOiabd7XzeXT15/7p+ly8AJIjG0WBW7duoygKoaGptCTCtc/ff//JiE8+IU2aNACcPnlSDRJq1IY2cifkjGQlW3FMN3JjjM/L1wK9L4E4laJtRoVe2SmI0f+QuG4Uy8oiq4TamQC3aPvOnVhSpyYyUyYaNarPlGnT2LBxIx9/9BE9OnWgTLFiWExutm/fzOHDf9KhTRtaNWmiPb90+XIKFChCmjSRAPz441rt3QgL8/cnlCrMg9XiwW5XRXomh+obRqQPCfF90kR4CLJ5iI6+6RfxXO5W8f6J57JncbHi6y+pX68+adOm9R+PZwwpDt+ePooUKcKhQ4d44YUXqFWrFvfv36dp06YcOHCAvF4xalLwSKIfgMaNG9O7V2+WfbuTatVqAlaNc+2OTth/m+y2XV5HQBXl+8RaKkM5IsIbpVhJg8XL5hQ0iskZ71vQwMc3lVnXRmsd0IuOZH6q4M0a4sV4DDoRgTbDB22QxntiE06SqELyP2GSfFaItgWHhtK5cxfGT5pEkWJlqV27KVFRkHP/ajW2DHA/XwlC716C6GjisuWVHwf0EjMfsaFeE8SJxEXXnpfHOTpadqqlkC5delwu/ZtvlJ75FoZ/kdmybM4EbN62jezZc5D3uRe4fVu9ZbenBhvYvPU3R9/zPeN2+8I4AISE4FHM2OS2y3I1sUkDQbZYXFG3cLvdOJ0OLBa71r+XL1+hY8cOKIrC/r17yZ0vHzFxcXo/QbJeh+yPyLgCC/f6oq1is3O7/X2oGH/LeRkjowYQj3owafNKF0lZFg0Zn5cOFC63CbcT3G51XRABzs1G2TPofysK67dsoVHz5rhcLl5v354vFyzgxx9/pHGjRgx5731wu4h3m3HFe3jttTaULl2WL2Yt4L7HTGwsmOI9/LhxM7Vrv0L27Kq47a23utOwYUusVpPfMqO2U70eZPPg8Zozy3pgcnOD7bBn7z7KlXuB2bMX8Oqr7XS0nJhvMvFiscCtW27mzJnL7Dmz/fr7WUVyiH5SlGkfD5kyZeLDDz9M1jwfmaMSFBTEG507M2/elGStSAoeHxMnTqR+/fq0adOM3r07cOfOraddJbJly8GFC/9ei6TEYv0PP1C5ctV/xAeMy+Vi3qJFVK1aDbuX0Dh58gQTJoyhSpXiXLx4kT17fmPwkCEAXLhw4YnX6b8Ij8fDjHnzqN+kCXVr1SLqzh3mz53LnJkzeat/f94dNEiX3mQyUaxYCY4fP8q6dWu160uXLuDSpQvUr9+MLl0G0Lp1Z0JDw0hEPNdE49dfdwFw48b1RLftyy+nEGQPpm7duslWj/8ykoujkmKenHTMmzePr7/+2u/6119/zZdfJt1a8pE5KgA9e/Ygf/78nD59lKJFC/iJD4IsBra3xYLLbdI4zvIt2bOpuG50rSAra6rPW7HZrFhC1NNZnNOslm8LQrGD2e310ClYvzILWfJpoCOdxek2kBtWCeJUGOj3Ax4D9BwWozWRn3VREhAaEszyZcuYN/9LBvR/k82b1jGiVi3eqFABs91OaKFCXLNkxp4RcKg6kCLSgXyIVZTA9Yh3mrSxEV0qOVb1c9/hdoPZrGhWPjKHRu67B0neEtOvAkntw4dxuKKiojhy5AgDBgwKaO1kxqVnG4oEYuJ6G2DCq0ArH5O990QnXL56lYEjR3Lozz/Zvn0HigJxcS6qVSvPtWvXaN78VUYM/4CCRZ7j5KlTAHRu187X4Xa7v0dYo/hJfMsDZhT7GGGc6A8asACDZcLLK3U+hLcewMJIlkqBNEeFV1vQt01RuHT5MlmKqErlQUFBrFqyBKs3gGGnVq185m0O1erQYlO5p19/vYI33uhAy5ZNWbHiW8qWLc+IEYNp3rwljRqpyoDnz5+gcOHihIcrOiasmMdWdxya+967Xn83FguKLdhPz98aew+iFdJoLOV4ndEW+IvK//jjALVqlcZuD2bEiBEoiXk5ngGkOHx7+hg9ejTTp0/3u54xY0a6du3K66+/nqR8k0SoZM+enZYtWzNx4qd89tls7SUSqiNRmL2/VQLC7eNq6yLOyjSDsAKVze/ktdG4xvo42majUQI2m1X7DrJ59Ludcac0so2lNCbQNhqxCRo3VWPWxnVa/i9vhoHEQgnpthg3UVkkZbxn8njo9Hp7ateuzbvvDqbbwoXMOXaMnzbuIPz0aTJ47dvjbaoFTqowj65MmXCSicog4rAqCk6vqE+GsG4Q/SBbD92/H0Xq8BAdoSLuB1pfk6AupG9/Egi9QM9ofaKYiXOqhHdoaKhWfzkwsBJiRlHMmGUzWfARKbLpvYiuK4tL3G7cadPywUcfMX7SJKxWK/NnzuSlF54H4lk8dxrXrl1j65o1VClXDi5e5MbvBzl48CADBwwgT+bMCZvZi/rIc1zsrrK4SBA56OemlqWWtVnrF0gg5pCxHmJQA4hjjfNdvENOJzgNRkd2uyF6thQ5WF5MPCYTjdu21fI88PPPWIUXWqluLq/7BHmdiYiIYMGCr3jxxRdp2vRlypQqhcPhYNL4sQRb4olzW4mOjiFt2iBtrstNBIhXVDNMq8WDR4787Y4HRSHOafYtQ7ZUOJ1QuVZzBgw4Rf36r3Hzpn9XOZ1w9+49hg7ty9dfzwdU66Pu3bv59/8zjOTQL0nRUUk6zpw5Q+7c/t60c+bMydmzZ5Ocb5JJ8XffHcSqVQs5d+50kgtPwZND1qxZWbDgK777bh2/7d9PxYovcEX2wPkPIDY2lvPnz2lKn/9VpEqVCpPJxNmzSXdY9CC4XC569evHyDFjGNCnD6ePHKFdmzba/f1//EGRggWp8pLP9HX77t3Ex8fTrXPnJ1Kn/zIWLF7M3v37Gf3hh+zdvp3ChQo90vOpUqVix45d1K9bF5fLxTeLF5MlSxYAoqOjOXXqOIUKJW/wv4iICN577xMyZ86aYJply+ZrREqBAsUYMGBAiu8UCSlWP08fGTNm5NChQ37Xf//9d9KlS5fkfJPEUQEoVKgQzZu/ymeffcCECQs0xoSw6jH66ADfoUoc/mQOhDjkycGExTWRTlbiDKQXKyC4M7GxYLerTGebzawFfdNgrIRohHB0RQKnywAwclkC6R0KHyFGzkpiuQA6Z2IPed7kduFRzDRsWI89v/xCpWrVmLd1K4O9ZgPWjBkhPB243WqOcj8oCihmHYdLNCJYicNjC9L5dDBKPEB97tKlG9y7d4/SpUv76Uvq+0XPkQqExIqAnoRPFavVSps2bfj005F0794Fmy3cz02IBqPIxcjuM7DgnE4nLbp149sNG5g9bRpvtGunV/4GbFYrMbGxupdlxrJlPF+mDPmEv3UZgWSSkhhWly7At0nidjyKaNOvDlI7E5OJPPay9ZiuC0W/Co9nhjKWrVpFh27deK1FC97u1w9FdngnQXBTRLlmRfXhY8KDy20iXYiV71euVBN4XwSXJYirV89w8+Z1cufOG/CdF/PcZtNzYU2xqiv9eC9HMpAOsdx2mYssULlybVq0eAObLYh165YyYED/gP34rCK5XOincFSSjlatWtG3b19SpUpF5cqVAdi2bRv9+vWjVatWSc43yYQKwMcff0ThwoXp23cgzz1XXLsuNjGj7oogLowhRIQo3+32mfrJLGAB2XJIvidvcEaWqfh9967Pa64wsbXZzJgVgz6NYbc0OeO1RsheUr2icL/F1cjhDoSEiI2EREMJiWYC5qeY/TbqEmVeoF69+qxcvZrBnTurFYyIwOr1zsnNmz65nZc6NHkXeKuigEWBWDRqURbfiUU5Tbi3Hx0ObsWqVg7Xrt1Qu9QTpFObEONmFP88TPfHOM6BEKh/HkccJPL54INhLFq0iO3btlK33ss6tr/G/rf42PyKBcyK5FJU3DAoKXR6803WbNrEt4sW0bhRI32nejPPEBrK+YsXcUdFoVgs/HX1Kj9u2cKXc+ZAWBgemypq8CPC5d+y9U8AyOLEB9EVRiI8oGWbNHgi30BzO9A7It7rhIhYRTGrc1yIqVwudu/dy7RZs/jz8GF+O3CA1q++yldffulTfBaTT/SpxYLZWx/V+7GvToI4c9nUOWxWpMOBG3LnzkuLFi0ZOLAv+fMXp3z5Sn6SPlGkfMBSFDU/txN27drJn38eomPHboSGmnUuG4RoS3jvBV9/lCpVkFmzZvLSS2UYMmQIqVMHDnz4rCLF4dvTx8cff8yZM2eoUaMGFu8L4Xa7ad++PSNHjkxyvo+lhZUrVy569OjJ0KFvJqsGfAqSH/XrN2Dfvn3cuHnzHytz2rRxZM6clUqVqv5jZT4p5MuXj3z58vHdd98la77rtm2j52uv0bhBg4D3o6OjmfzVV9SuWFFTmpw8dy6RGTPS8tVXk7Uu/yX8efgwLdu2JSJzZspXrcqGjRspkC8fy776ikXz5j0x6yyTycS8eQtxu9188snQJOXxwQdD6Nu3FzNmfPHIzy5YMIf79+/Qu3evJJX9/x0yk/xxPilIGmw2G8uWLeOvv/5i0aJFrFy5khMnTjB37lxssub5I+Kx1cWHDx/G8eNHWLt2ueQ/w/9kBP7+2uQ04gQie+MWCpky61dcNzodEx+Zona7fe77BScnNtbnOCsqCmIcZlyYfRkKeYdUmEcx4/FyKuSJbGTCBPofKH0gPKrDskfhEigKVK9eA4/Hw7ZfflEv3rypWj2Io5wQ0MrxlWTBregXt9vP954uFo2ikCZEtaTYs2cHr7zSUovxYDzki7E3WnmJ+8b/icGTcvxmMpl49dWWLFu+nDt3bgWUoAhoHAdjP16/rm+0w8ELxYvz219/6dOJ5xwOuvbuzcWrVxn15pvgcHDn9m0WrFhBt7Ztdf3q51tHZkkZPYc9ADIn1MgR1frCwP0LmInbjcdi1dILPGx85DJljpu4vnLlSurUqknZChXY99tvtG7RgjUrVnD6r79Y/OWXvNqsmUqkiLbKcknDSymLtoztkuthbKvNZqFKleqEhYUG5KYY2yC6RKxNhQurOjOffvoJ8fHxWrlmZ5w2B8yKR+OuiPyiom7y4YfvMmnSRM1sPQU+pOio/HtQoEABWrRoQcOGDcmZM+dj5/dYoh+A8PBwxowZy6BB/alXrw7h4RF+5ptGdrHY3GTnkWJ9Nsa8EOnlNd8o9jaKhIzEgZyX0IGR5cOqbo1JdR4lKiJZSZgQmvx6504ycZRY2b2xPjL82OjS5iNY6AmJNBIUBXmRM2d20qZNy1+XLmkDEOcwcfu2lUih5yCoxJs3fS43RWOlhd7qvK/GuZF2khinkPmb8XhcLF48j3PnzpArV3ad8YvhMT/Rmfz9oDY+CA/T43kUM2Y5Te/evZk0aSLjx4/jww8/1mgA0QbZAiTIcc83UcPD1W8h1xRQFMIyZGD9ihV4goMxmUyalYiiAB43337/PW8PGEDRRi/jcsOMcZOJczjoOuAtjRBwO0Gx6J0TmiSZiSCyURSd4zUBtxvwXhObo7yJP4oOldYB+Oa6LMYQtxOimXwiHvye2b59O82bNwNg8NtvM+zdd9UNW05sXHzkOYxB7ORHYOr10UTdjeuNwwHbtm0G4M8//0fhwkX91oBAhxZRtddf78bs2bO4evUqe/f+xosvvqj2uzhxCk9vioIZ39i+//4gXnihHI0aNQrcec84UsyTnz5cLhfz589n06ZNWrgKGZs3b05Svo9NqAC0a/caixYtZNCgt5g2bU5yZJmCJ4B8efNy/MSJJ5b/7du3ee+9QXz77Qpu3rxJiRKl6Nat9xMr759GpkyZKFWqVLJa/4R7dVYCiSrcbjcxMTHk8noW9ng8zJ8/k0aNXtGsUJ4VeDwexo37DIBlCxfy6quvPtUdJX/+Qhw79hdRUfce+dlSpcowf/5Szpw5TpkyZRL1zE8//cTy5cv4448//hGng/9FpCjTPn3069eP+fPn06BBA4oWLZpsczVZCBWTycSsWTMpWrQozZu3oEaNujqxj9GvmvgIJTKZG27kaBpP3sLninzNbtf7tTCeyIRbd9n/hXyqF8q1YMJms2K3W7XDjTglWiXHcoJFKHMAAol3HnRy9LNmCNBmufHCikfGo1q45Mufn2PHjmn/3W7VnYeLYMxRd/Rai0IO5436m6C8S1G8m8hIJk4cj9vtpnvnzhQvXZayZZ/HbrcYm+InDpTHy79fTH79I1fDiMRytgLhQZwWcc/hcGCz2fzEkn51C3SkNiR2xcfz44YNqqmrzaazElHnl4UsmTNz/tw5TI44ft61iyNH/mTs2AmydEgrRjC+wMfFMEtlyvnL7RTWLnIDTPKABWIVKIp/P0mD4vL6W0lILJbQu2FUnhWciJkzZ7JmzRoWL1jgI1KMnW/kpsgFoue0JWaeyE0XfS36u3377nz44UAKFCimy9M4v43lifa83v5VjbslK+xqyvvSQnbv9i26du3C6NFjkoWN/v8VKcq0Tx9Lly5l+fLl1K9fP1nzfWwdFYEcOXIwfvwEOnfuwO3bV3V6KMZ1TpbXgj7YltvtI2Dk5+RFwKgfIeuuJHRNiJXEs3IdoqJUYsbhUL+jolTpR1QU3I82qQETMesIHXnhkj9y++T4arIKgviI+3LMNlkMprHME1IWkJAYgqVAgYL8ffSollew+z5373rZ/TJlGR6e8Bsvy74ALBbGjB3L++8PpU3r1vz2yy+MHDqUVi2akS93DoIsLp3oJ9DHqMphjGEnL/yBREWBqmdEIGd64lpiLIREynTp0nHjxnVMeBIcFkXBf0JKOlAej4ely5dTpGRJzp8/z7vvDtE2LeMnJjaWS5cvs2PXLvq92Z/ixUtQo0ZNPxFnoL4Eb4wcd8KWY7o+SUjuYiwsEOTCvemMxGcgesdYTIBsAFiyZCG1atakdUImjoGIFC/kdj6qBZg8L2XxTf36DXE6nezcuUkr3rheieeNxLdsuuxHpMgPe7979+1L/vz5U5y7JQKB3qGkfFKQNNhsNvLly5fs+SYboQLwxhudqFSpEp07d0qxAvoXomDBgly7do0bN24kW563bt3i41Gj6N+vH5MnTgzolfD/E3LkyMkpr+v6pGLI++/Tun178ufLx77du3nttbYJpu3SqRPzFiygcrVqxMTEMGnSlGeO9b9ixdfs3LmTdP+iCMHp0qmehW/cuPZEy1m0eDHrf/iBBQsWkOIq/8FIUaZ9+njrrbeYNGlSsu//ySL6ETCZTMycOZOSJUsyYcJYBgx4J+AhTeisGv0liAOo8DYO6n2ZxS5TvCJfoz8L8dtoAQSBAy0braYEV1ncF2UKsZSi6MOkGOsr0jxIpCGftAKxx8V9wVXRsevd7oDKtQKBfIkAlC5RHIC9//sfdevUAUUh6iakCZEiUQu35IKlZQzZKvx7374NisJfBw5w//592tWv7+tYw4JqdsRgtlgID7dqbZWjLxv7Qf4tK0+LdCY8mHGDW3Po7nvQC/kE/Sin6YeJf4oXL87s2bOId7oAS8KcAtF3stMZ7wRfuHQpmTJl4ptV6wD9/JHhdsPwEZ9Su15D7ty5S/36DXC59KIw0T+CcSPKt9m8bRBlyxPUZtP6RdzyYPKJewIhEFtU7huL3oGa8TtB8abUDjlL2aFemzaqGXZ46tS+RibC6kVWnBXlGd+nhDg7xv9yrDGLBcaMmYDFYqF27XoBmTlGTopAsF2aV96BN4kKKQouzFp5R44coUevXixatIjMmTM/tL0pSB5uSApHJenYuXMnW7ZsYf369Tz33HNYrVbd/ZXCieIjIlkJFYA0adLwzTffUKVKFcq9UIbq1atrwezA9wILvRJ5QxLiEyGqkQMVWr2O2cwWRWdFIERFIl+Rn9Ei00gwycSNXLbWMRa9Er58TeQjPOCKNMbNVt5gxYaSgLhfx3aU6yhJWLwwoXitOIRFQmKRJ38hMmTIwM+//ELdOnW4H2smJARuRAWRTgyIcQOIjfXJzMTmqyiqcsvt2xTIl4+goCB2/vYbpapU8TXS+5wHk+o8zqvTYPZuivKmKi8MRiLR6dT56dJ0icwBGh5IZ+dh1lAJ3UuIYMmbNy8ul4sTx49RsFBh1TJLUXSbotMJwaKvQkK0QfQoZqKjndy/H03Tpi0BfwI2kMjrhRcqq8979PNJ0JSin+R3S2uDxarVEbdb9chq6G8fTH7zTfZSq6Uy9H1irLECEStyG8VvI3EvY8oXU9XyDLGuEoqbJZCQCDnQASHQ4caoe/L7738yduwI3nrrPbJkyaq7ZyS85bLtdmmOytSp9G32EuF3b9+ladMm9O7dJ8XKJ5FI0VF5+oiIiKBJkybJnm+yEyoAZcuWZdLESbRs1Yo9u3eTLXsevTv2FDwVmEwmChUsqEXdTQ6kS5OGHNmzc+bcuWTL89+MihUrkjp1akaNHs38+Y8etnzPnt3cunWTVq0SFvekwIeLFy8CMHPmLK+ny6cvUl6+fCFBQUG89VbSHL7pEIB6c7vdtO/QgezZsjNixEePX8YzghSrn6ePefPmPZF8nwihAtC5S2d+P3SIho0a8cu2baROlw6rRVVOFUqrModCWOXILF+ZoxDn1Lv4ltmtVotP1CErEgoYRS7ilO50+kRBbre/OEfm2AtGgqijovieBX29EypX/m0UZ4j/MqfByH0xcmTkyLVGzkEgp1yKYsLhcGhvdGiIh+hok8qxsNvVj+y5VvbsJioRHu4bPLudv0+d4szZs2RMl04VBxkCOZnkSnu5DCYgSHGrrvkVhXinr+4i2r0YQyM3C3wnZq193sRazCIMp/4HKFoa+y7QPbkfQ0JC+PTTsXTr1pV33nmX54oU1J6X/ajEK8E4YiHU5h3MqChOnDpFty6vkzdvPqpUeQEr8VrdjBY/4rfUJA1ymJtAzRMe43WRw70ZmaVu8XjjOYFeSVy2xAroIt+PFaG3RktIjCdVww9GEbD4feuWqgMirF0CKQUbOShizMR6EAhGLgj4i3qN7ynAmjVrmDTpUwYPHoLd7u9pU4jh5LGTp6I2l2RzR9DNg0FDhnL4yBF27dqF2azv2xQkjBQ/Kv8OOJ1Otm7dyokTJ2jTpg2pUqXi4sWLhIeHJzmI5iMIDh4dEyaMJ2fOnLRo0wZHvCpfCbXFExLii/snOKBigZIJASOb1rj4iXQut+qJ0uR2YcalLRSBZMRWi0czRxa6L6I+YWF6Iw2ZkEpI50XeJBKyaJH1LOT6i3wSsnSQyxH3RNpAFisyAt0z4aFGzVqsWbeOe/fu4XKbtHbedwapmUdE+FZXuRPkj9SpC1asIFVoKL26dPFXSpAHwNuxwsuvvJJbFZffOButLOQxEBuQy+1to5EYeog87GF9Fyi9jHbt2pE6dWoWL16ku27clLXfbjf34+Ko27QpJrOZ9evXY/U68RJtkNsnb3LyhhnIIipQ+eKerm/kF8b7kcWuMgJZornd/g7dAD+TeSMCiXYCpUnoHdi8eQuKovDcc889sByZMBffgUSLCf03vmcykSKur169lrZtm9GoUWP69x8ecJrJ89VIpIj3FtB1utDv8WBi1qxZzJ07h++///6xos0+i0hRpn36OHPmDMWKFaNx48b06tWLa9fUg8ann37KwIEDk5zvEyVULBYLS5cu5dq1a3Ts0AGjlzrwESsJ4WE6GI+io5ECaNGiBffu3ePQH38kS37bfv2VahUqEBoamiz5/Rdgt9tp0eJVFi5cgCuRq9o7773H+YsXWbv2+ydivvf/FbNmzaB16zZP3cHd/v2/06nTq9St24DFi5clG6fDY7FqhNW3337LgAH9WbVqFfnz50+W/J81GA88Sf2kIGno168fZcuW5datWwQHB2vXmzRpwqZNm5Kc7xPf5sPDw/nhhx/Ys3cPb771Fp74eKzuOM1vit2OjgMiG0rILPBAPlLkk1+8W43Z48KMKTYGq+JSP8RrH0ATMxg5JoLTIj6yzxXZJ0x0tM/niogdJE5OgkMji4rAnxgzMiqCbB6siosgJR6rxYPV4vFjSxsZBjLHRvjKMMm8ArdLVaKU3zqnk/x5cpM6dWpWrl6N2Rmn9b/dDtjteOzBqqJs+vSqmEfWKHa7cWEmPiwNcfbUbPz7FD/v3Uv9Zi2JD0+HJ1Nm9ZmICPUjMvd2oEcxa6fneLeZOKeZeLfKYQlS4glS4jE74zA74whW4giyuAiyuLRsNAVPPFosFL+IwTJrIoFVSO4nkZ/xWiDI97t3787Zs2f5dvWagEUJMWI8VoYM+4Sps2YxacIEcuXKp7bfaSIeK4qC5pNFnjdGxpC4L/pChpH7Ic+5OIfJd0E6NgoX+fJ7ZyzTyOnQOFjSyynmmckZr+sfOW9jewL9F20X4acsFrhz5xZ//fUXNWvWeuAmEhcXx+XLl1m4cCGvvdaGQoULkylzZjp0aM+xYye0tshTREZC3DwhQvvll700bVqTQoUK8eWXizCZrNraFR6ufkJCfHUXn0ChRNxudNwtkzMeYmPZumED7dq1ZdGiRVSuXDnBOZiChJHCUXn62LlzJ++9955fAMKcOXNy4cKFJOf7j/AjIiMj2bBhA9+sXs3Q4cPxeDyY3fG6BdK4EAmLINmRmpHlLeTBMqFjVjzqCiKoHQG3G7MzDqvFuyE549UF1rvpeTBhcrsIsnm0jdsYEBH0Hm7lDULU0WjNYqATtKCIfmIcxaw97MGkE2Eb2eeBxAMgbSSiwkZ2k8VCaHAw/fr0YdrMmdy+e9eP/W9yu3w24kYZgMOBOfY+VuIJsnno3r0T5cuXp33717Q84t1mlZXtJUx0Yh70fSMvDgmyxgwiCqcTYmJNxDtNantF/vJkSmjH9/42in48BlIlEIz3M2fOCqiszgBVVsfV42LQoEGMGvUho0aOpFvXrn7EhyAA5LE2LpxiTgUSJYhrCanh+OmpeCEICkFAB5prxjYBPgsiw/ySxRdy/eR6Pui/eJfl5z755BOsVis1atTU1UXtIyerv1tDq9atyZwlC5mzZKFd+/b8/fff1KlTl/r1G7Bw4VcULpyPkydP4vF42L//IPHxLr8+lJsiz7X4+BgmTZrAyy9XJm/efHz//UYslhC/Q4R8oAoktpPbalY8enGZ280vu3fzcosWTJ40mcaNGwcegBQ8FEKZNoWj8vTgdrsDcpnPnz9PqlSpkpzvE1OmNSJ37txs3ryZKlWqYDabGTF8OFYlnnisAdMLrsGD9CCNC0aCiR5TPvT/zWKpdatWfPTxx+w/cIByL9VO1DPR0dEEh4ZqzsauX7/OiRMnGPLuuygSMfGs4Pz58wBky5YNUGPRHD16jBs3bmO1mtmwYSMrVy7ljz9+Z9SoCQwe1C9lBUwknE4n48aNZfz4cYwZ8ylZsmQhNjaWM2fOYLPZcLvdDB78NqtWraJQoUJ079aNkiVLUrFiRbJkyaLp/JQv/xJdu77Bzp3bKVGiCHFxcWzevJOKFV/yK9M4NKdPn6Rdu5c5evQvunTpyujR47Hb7QmKqR+mGqUoKtfWSAjv3rOHeo0bM3rUaDq90elRuyoFElLMk58+atWqxcSJE5k5cyagWppGRUUxbNiwx3Kr/48RKqB6Rt2yZQtVq1bF7Xbz8YgRWM0u4jHrTiLidGcUnQSKCyMoYIsFvahDdr6BZL0hH0El8tkkZWhWFBTFxxqPjtYvQrIoSC5fvCRGQxnjaU0msBRFOqV6L4p6Blt8LBotAq6UgWbB4XbjUXwEn5/PC3kVjo0lX7Zs2Gw2Dh85QvVq1YhxqrGN4t1m1YJKbpj3+QKlS3Ph4kVmTJlCzZo1WbBgASEhITSsWVMVtXkbLXMp1H71iVJMbhdWi1DsVAiy4SvHIZlcGDSPFcWqccusFlVsovUdhvoaISaUNL4mw4CYjBNKHuxAAwlkzKh6Jp00aSKHDx/mm2++5n//+5+u6GrVavHTTzupWLECcQ5wu33xb+SqymJCMTUDKW7L1RMcN/G8mM5i2ov8VF87Zv95gNp3Qd70VsWf6g/sS0bKR3pRTaIvpffNyI00Qm6XHLV5zqzpDB06hNfbtaNZ0ya88/YApk2fTkxMjPZsaGgoq775hlcEB0Kqk0lRMCsK0ffvAtC5c0ftuQoVygfsU/ndXLPmO3r1ak/69BnYv/93ChZ8TrsnLyuK4hMPGZcVgfv3b7Fo0SLatHyVdOnSaf2E08kvv/5K/SZN+Pjjj+nZq2fgTkrBIyE5zgIp54mkY/z48VSvXp0iRYoQGxtLmzZtOHbsGOnTp2fJkiVJzvcfJVQAChcuzNatW6lVqxZ3o6KYNHkyVotH5zHS6KwNfIuy0CmRr/sIGHNg75put877o5/9p4BkoykWu2ALBEcomnm0vIEktADLFivy/mDkDgmRU7zbDAY2vmzW68KMgqpvoF4y609wXiJGbOBy/fw8joaFYYmNJVNkJJeuXgOLBZt0W83DDPZQzO54rT/SpEnDhYsX6da7t5a2a8eOZMyYUReW3mRU0MFnpaN4Wd4aGSV3ppEgkBZ0s93il5egP1SC0qx+JLNWPxNmY74CAShfwZp3u8HnHM2M7CgtS5YcpE+fnl9++Zm9e/fQuHET3n//QzJlysKNG9fInj0nJbyegI1FGjdwoyRFFu3J74OhW3TXxP9AYggVJq3/9VclQs+wy7o1v796LoCO8JHGzWgBlFg2usWiJ4qeK1oUgG+/+45FS5ZgNpvp0qUbL7/cmKiou4SGhlKs6HOqt9YHsFW3bN2q+7916y+A4keYiD5zuVxMnvwZH330Lg0avML8+XOJiIgA9GMiprfRyaNIJ6N58+Zs2bKZqKgo3n3nbS2Tn7Zto2mLFowZPZqevXo9vJNS8FCkmCc/fWTNmpWDBw+ydOlSfvvtN9xuN2+88QavvfaaTrn2UfGPEyqgEis7duygZs2a3OvQgVlz5mC1WnUeZxOC7Ln2n0SQxaXz5fJfR+ZMmbh4MfHKTYf27eOz8eN5Z+hQXm/blgb16tHsGfaYaTKZOH/+Gvv2/UbGjOnIlSsXkDA9lILEo0qVKny7ahWbt2wlR46cvPFGV0JDQ3XEV0B/LgbMnDmL1atXa/9ffLF8gmnv3LlDx44t2bJlAwMGDGLo0E8ID/cnfmQi5WG4cuUKW7ZsBtD5j1j17be0bd+e6dOm0659u4dnlIJEIbkcvqWEqUsa4uPjKViwIGvXrqVjx4507Njx4Q8lEk+FUAFVZ2XHjh3Uq1ePRo0a8fXXX5MqNFR3KgukeAg+Loo4bconG13IerFrGOU0DzpZBzqyer+DcGILCdJuJXSYk1n38kHVeHgXnB6rFBbAx003+VVd6LiKdPJJXFH8nVv5ytNzWkwWC7FxcRw5fJh4p0knO9d1g8QCMrnd9O3bl5WrV7Ni1SqmffEFiuCeyEcQWQPUWzmVo+MLo2C1SEfTQMeXQJwuL89dtZDxcd+Mp3YxJ0QawQ1QvBZHRq6CSVEMbTdrfSufosV94++SJcvomHSBIEuaAuUhpzOKB42OBI2cFjm9LIIINN+MUq2AlfTCo+i5fMZkglMnuFaC62esv3FsjNfkNsgODOs3eIWGjV5JkPmZ8EVf/dKkyUBMjJPUqUMoUaKUX53EVL179xovv1yLc+dO8+23G2jUqKZ3DdHHQxLFyc7xAlVD/B8zeoR2rWe3rqAofD5lCu+++y5Llizh5ZdfTrD+KUgaUjgqTw9Wq5W4uLgnEjT1qREqAFmyZGHHjh00a9qUKpUr8/1336ns3ABvvlnx6WQYPU7K8nqfOMDLojaevB6wYms+DeSVzMCTNznjsXqfj0MNsieH7QgUw0bIsWWrBt2mKW1KxmoZN0ujgzk5P6OIwLgxaMEKLVYURWH3nj1qGkmuL2LxKIqq36BZRDkcBJnNdGzThh4DBuCJiQGTCd2uLsu75Iq53ZgtFszesoU5taIAkm6NGYNFiZHK8zbEKunCyP0gIG8gct8ZPfnqHIS53Vr8IItFzVv2hBsQAYheQWgHqpPclISUxI0EiFEsJHthDUSoGNsciFYHb1+LAgSkSptANx981/V9IfSrxDwR33J7HrahC8gcVVFnuZ/keR1Qf0YaB3EAWLlyJQ6Hg9GjP8XlimP06FEUKFCEChUqsnjxAg4e3MfPP+8EPGzZspOSJYsi4mjpRYxqvsF2D2bJ8tLjJcCNxNxXX33FlC++0K5lzpaNV5s2Zdk337Bx40ZefPFFUpC8SFGmffro06cPY8aMYfbs2d6QF8mDp0qogOpn5ft16+japSvPly/P6iVLKFPey6INtBIj/Gjguw5YxX+FwMfghHYzCSZHnF5T1ujmWlFUqsPLCQjCASEhmnmpgBzXTyx2ctgAASNXRDRZUXwLsFnxLeBGppCRIDHqz4j8fdX3bQSD3x1Oy5avsHz5NzRt2owgd5yPA6LlYSY2KorJU6ZgNps5f+YMC5ct4/nSpQkRwfaMttKBhPkS50QQRD5Oh7zZKHqODMK7qpcbYjHrNmoBmTEj96WsfyDarz8VywqfPh0U/37WK4bq6uzH0pH0W/DnhMh5G+gvv/oH4kCYvWXbbHpCLVB+CRExKsEWgE0iQeZsym2RdYTUe2bD4wmfpgJx/BJCIG6ZsV2CWwjeNskdpijEOUyYTOo8atasseqN2bsLBQUFoSgKL774Es2bN6dv3wEUKJBHI1JkiHc2yOICp69w4RdIXqaOHj3K+PHjmD17JlUrV2br9u0ARN27x48bN7Jr164Uh39PCCmxfp4+du/ezaZNm9iwYQPFihXzcwT6r4menBTYbDbmzZ/Hp59+SpX69Zk7cyavtmhh1JR9CO86Acgn80cht5P6HDpJRaKRlKY9Dho2fJnGjZvQr18PmjZtlmC6K1euMGjIEADy5clDk0aN+HDw4H+qmilIwUMhc8qMaNy4Cb/8so8pUybicDjYs+dXLl68yDvvDKF7935ERqZO1MYUZHHpKCSPJkr0pfnmmxW0bNlC81q7dft2zGYzGTNkoEiRIiz/+mvSpk37OE1NwQOQwlF5+oiIiKBZs4T3k6TiX0GogKqcOGjQIIoWLUqbNm3Yt3s3I4cPV9lH4kgjiIZAVIDxZB9o1w/kKtLAK9ed1r2LkRBPuN2A3aoFQRSnfzNgtii4MPsxcET2drueOWMsWi+6UsUPohyZnS6LewSzQhYLCMQ7TX7dJneD222iWbNmrF69ikuXrpA5cyRBzhjdcd7tcnHl5i0aN27MsWPH+H3fPix2uz5AE6jBCOUjsNFzl9z33oqYtbFCLxORWUX4zudmt1vjeJi8eVhBK8ti94lcjOIPmQsj+sjIkZD71Nt8P+6EnK9sTSWbjifEuJPHwGhaLPsLksV3OnN6pLnpdvvMXBVF5SZ6OYlCFCGgcYA0031F5QoY3w/Dbm2SyjVrBwX1nhnJNB5Dp8n5BeLUGDgugTgm8uMPExcZRVHyuAQRp6aJv0/fvn3ImCE9MTEx5MiZD6s1iCCbB5f3LOLjpOh1UrR33UDMCF2pY8fO8MknH9KgQWOGDfsAUK2HQkJC6NquHV8uW0bTZs2YMGECVmtgn1EpSD6kcFSeLv5z0ZOTigYNGrBnzx6aNW3K3v37WTJnDpkiI/XhleWVXeZ8gF7ekRgWhbwbSWIPbZGW5OEiW6G7YZSvmN1OdQP26lAYWfpGayW5aKEoKxM6brfJL2KwrFBr3Ntl0Y6/krEvb+GTpmrVegQFBbFgwVe89dZAgiz6nWHhV1/RoXNnQFWUunb7DpnTSwq0sjxB3qwCEYTinuizhFaDhHYu8d8gSjImNT4SiIiTs3rY88b7PkLSP2J1QggkBpK7wkik+J7RmxSrdTb5TNcNjTASKQImPHoCMJDsOJCcyXhP/i9TYIjAoFJSSQT2oKzl68b3JdBYGtMEjO4M2kCtXL2aZi1a6NLs3XuQsqWKAopWN2HaL78rYoz9gjEqCjdv3WXcuM8ZOfJ9ABYs8C3QbZo2JTJjRmZ+9RVTPp9Ch44dAjc8BcmKFI7KvwP/uejJSUXBggXZvWcPWbJnp3SVKmzetk1v7iJ/PwgPI42TIGsRj7jcJt+OlUwk+KOKix4XadOmpXHjZgwb9jatWr1CdHS07n6Z0qW13w0aNCBTpkz/bAVT8J9CcokukyufS1eu0PfNN6lcuYomcmncuAmlSxTRuE8Pg1EZPy4+nqnTZpAvXx6NSBHIkjkzPyxbxs3bt1mzcSO//PJLCpHyDyLFhf7Tx38yevLjIDQ0lIWLFvHBB8N4uU0bhnz8MfExMb5IgN5jj15Uo+CxBeGxWLVPIIjghS58cWm0461RMxH/oHVmxaOd5jyKGY8tSOWi2IK0eolAc/JBNtAJUUi2gmwegmweXVA2t9sXGyjOYdJoNZE2yObRiY6MjAo53I3MjBD6wqGWOLp0UTkma9euZuqcxbrjb9EiRZg/ezagRnZ1i2OmxDVxuU3E2NNAWJgaiNBb+XhLMPGWYOIU9ROvqOPiUqzaPY89WJWJiU6wWHApVt/HEpTgf+1Zb8eanXGY3fEEWVxYLR51dOWghYYBsFp84yj6W/7YbL5Ac8F2jxaETnSPMdaT2+2vzCznJ18zK+rYWS0eXVgiOR/jwimHXhJxjoyDb8LjZyTldkvpBeSImuIjN0hUQPw2vhfG304nZne8Gj9L/rjVt0x+bwJ9RCBOOW5XIAs40YdaQEqjBZLETfGYzVSuVp0LFy6wffs2bt68yWejRrFq+VIU9JaDMsfLYlEtoqwWde54MOHCzKE/z9F/4EfkzJWHXr16cOvWTQDq16vH/j17cMTEMG/6dF7v04fU6TOwb98+ihcv7t+AFDwxJFdQwidtnnzr1i3atWtH6tSpSZ06Ne3ateP27dsPaZuH4cOHkyVLFoKDg6latSp//vmnLk1cXBx9+vQhffr0hIaG8vLLL2uhPhJb9u+//07r1q3Jnj07wcHBFC5cmEmTJiW6bf/Z6MmPA5PJRPce3dm9ezdrf/yRSnXrcvzUKfWmN4yxMI90IbyeGmTWAbxxaqaZeEU5eIPnyRSCcXE21g199F3BItbKc7u1oIeCaJFhpN5dbnUzEYukTFDIm5jDoQ8+aLV4ZLpBt2HKZQbab1yWIGpUrUR4eDgAQ4b051602fewolC2TBkAZs2YgVnuW2+ldJIeafN6mPmtaJMxEKAgHoxikkD9L+ts+HWoODF7v0XwwkABCOUNK9BeLExVA8GYNtB9efw0xU+nGsFYJmJEO2UCM5B0TeSlC0DpvWFyu3SEl3jOjMufmhIwViJQ5ydUoUAfb+EiKKWxz40fMfflPgxwXtC1WzwXqM9dipXLV65z/Pgx7dqe3bt5a9AgsNo0NwRGCZZmvq+YiXOY+Pv4Xd555zOef/4lSpTIzcSJH3HlyiUAGjZsyK87d/L9mjUUzpOHwYMG0ey11xg5chRLli4hderUAedLCp4skoOb8qQdvrVp04aDBw/yww8/8MMPP3Dw4EHatXuw479PP/2U8ePHM2XKFPbu3UumTJmoVasW9+7d09K8+eabrFq1iqVLl7Jz506ioqJo2LChLkjgw8r+7bffyJAhAwsXLuTPP/9k6NChvPvuu0yZMiVRbXtS0ZP/dToqgfDcc8+xe/duBg0aRMmKFRkzciQ9unRRHY55ZdFmSS9EUfQbmUf2p+JdeM3ek7ZMyAhTWGwG/yuBWCES5Pg2alLJaR0+okZ2ymZUMRC/XZKrdnHal6Vd8saoKCaduEgwhcS3uKYoPmVeMFhJRMexZMk3NGhQi/j4eKKjo0kVFuxrl1W1td6z7zfe6NJVDUsvbV6iXXFOr5mqLTSAroWPG2AUb/nq6XNwF6ib/blSYpO2aq7zRXlOSddH6O0IJ3CBfaIEFgHIYyWgKVd6EVBHQjTK4dVZcnuVh72/tbTeOahIyriyTpSB7tLNF3FfU2qVOsiE06esbKRuZIhnjCb4gnNmvJbQ83I5unoEQIB6BfL3bFZ8abRDAPp4XbJOlhYvy+nE7HaTOSIVZ48dw2a3kz5zNhQF4nUEvEnXTJPbpa0Ff/xxhpEjx/Ddd18SE+MTh9rtdtq3acNLFSrQ7rXXMJlM7Nu9m9c7dyYkJJS9e/dSqFChQK1OwT+A/4IL/SNHjvDDDz/w66+/Uq5cOQBmzZpF+fLl+fvvvylYsKDfMx6Ph4kTJzJ06FCaNm0KwJdffklkZCSLFy+mW7du3Llzhzlz5vDVV19Rs2ZNABYuXEj27NnZuHEjderUSVTZnTp10pWdJ08edu3axcqVK+kthU9JCE8qevK/mqMiIzg4mMmTJ7NmzRrGjh9P7YYNOXPqlG6xlU9JOiU4BBHiv7BqogEDtPQirbxIS7+NG19yydf/SVSrVp18+YpQqVIN1T+KhPfeU02Ty5Yt+zSqloL/TwhEPD0kbUJEis4JnUSkyARV9uzZiYyMfKQqdu3alRIlcrFs2TRMJhNmsxmr1cqAfv24fOoUM6ZOpX3btsTHx/PBRx9RuWZNWrVuza5fd6UQKU8ZySX6Efvs3bt3dZ+4uP9r78zjoirbPv6dGTZxQcAVMdxFURFNMpdUTAMX1N5ssyc100p7ytLMbFEyNdPyabVen7IssddWldJUXFLDncUFQQUtEBQRd2EY5rx/DOdw5nDOzICUqOf7+cxnmDn3euZw7t+5ruu+76LrbmNCQgI+Pj6SUADo3r07Pj4+/PHHH6p5MjMzyc3NZeDAsp3uPT096dOnj5Rn3759FBcX26UJCAigQ4cOUprK1A227SVcnVYv7p4sUlW7J990w2q/fv1ISUmheYsWdOjalfc//JASMYrKbJbEisWCnTlZMhnLXUGlT7lqM0JEk79qLIvsJqqsQ82NIGCQzPJya4Z4vxb99GrWBAMC7sYSKWZCESJit+eI/AlR7sKQ7RmI1WqLdxHbXuRWEzc3I0FBrUhOTmThwnkUmcsGgdat2+Dm5saxY8c4duyYfWWl71LMhbHMt2/A1qcaXoIU4yG6JJT9VD70a7lRlJ4JlaYASLEO4ktep3J3Z2U5SpeDeP7EV7HFIL3Ufvtii8EWQ+Pmbv9jKQdpuVVKvus3ZRY4k1GQRVOVuQTl/Ze7tTT9ZGonUO6mEd9FX6MYjCMPsNH6EdTKUvlbcHNHMJb2pNTVI7pclS95GvGc2v0/ln5vschmNInmJrnrycMW0yQOQPJmm4y2cyn/n8zPv8B//7tEdj2UMGrUKNIOH+bdBQvw8fUFIGHnTrp0786quDh27NjB66+/XqWrcOpUjqoMpi0pKZHiOMTXvHnzrruNubm5to1cFTRo0IDc3FzNPEA50d2wYUPpWG5uLh4eHviWXqNaaSpad0JCAitXruSpp55y0jMbixYtYuvWrXa7Jzdr1ozs7Gzmz5/vUhlq3JT/XXXq1GHJkiWMGjWKCRMmEPt//8eSTz+1Ba9ZLBgA99K7ktKyYofMuiJPYzKi+uSmtmy32rgg349GrMbevF+2h4itCfYxGso6raXuIJPRtiKpmhiSt8fRPVMuZEyWIkxGI4KbO1OnPktU1GrmzZvFSy9Nx8PDgMFcxOw3Z+Hl5cnChQv47LNPyc4+Ra0aXvZ+JjUfltJPgepDb7lzqHR3OELL4CV3e8nXSClrkuhmsp92LnlnZO4qeVuUBjmlmCrXbsVS/yLKHb7V4qhsrbQfhJVL08vrtLkybLtIU9pWO0uE0WivapWBTOJFI86hV548eRrlD6Z0DclPZulnQ+m7SZZfvv6MvB6T4voxyaqTu8XE6cO2bKWuR1mZtmBeMLmJZdtfMOKO6gIGLFYT/v4+ZB47xhdfLaNZs2bcf//91PWpI13nl65cYcbrr/PFF1/w2muvMXXqVH1tlGpGVU1PNplMFBQU2H3v6empmWfWrFnExMQ4LHfPnj0AqnvhCILgdI8c5XFX8ijTVKTuQ4cOMWzYMN544w0GDBjgsB6RgICAW2f35Kqib9++JCcn8+abb9K9Z0+emjCBmNdftwWHll6xBvkNUwu1kVF0DSHIbobiIYP01Ku1joOaL12ceSEOIibZYCmWL0+jaAolVtsAKz4BijEvSuHiygBvsYAFTzyxzc7o338Ar776Fu+9N48tW84zYIAvnh4eeJrNvBkzCz8/P154YTLZ2dm0adPGZgVQrmciH83lQgabFDMaTZpjmphd2RflOZCfK2UetX5X1BWntM6oHXOWX1wbRfx9lKJCTQhr9VXtCzWLktUKV64UsWXLZi5cOMfDDz+Ih4dbmVgRfy+xgfJCSgOHJOGgFJpKC4rWDyCippQVik9u2bKLB1MRMWrnSFms+LfRSFl/1U6aXICVtt2KSQqmDWrRkpiYmDIrl8WCIAh8GxvL1OnTadu2LUlJSbRu3bp8Y3RuKFW9hL44ycAVnn32WR5++GGHaZo1a0ZKSgqnT58udywvL0/TTSkuC5Gbm2vbC6+UM2fOSHkaNWqE2WymoKDAzqpy5swZevToIaVxte7Dhw8TERHB+PHjee211xz2q0uXLsTHx+Pr68ubb77J1KlTq3z35ArexqsfNWrUYN68eezbt4/klBTadujA8thYBFEhavkR1NBIp5y1Y7VqbIqGcmVb8clNkD5WNY7GkIryyCNjMJncmT//CQRF6HtKSgqtWrWiTZs219Fanb+T6dOnMGJEFGPGjGLt2rU3phFqF7mGSLneapTXuli1VtxZOZGCLXhdbn2S8pcWfujQISIGDmTKyy+z4J0FxMfH6yKlmnIjpyfXq1eP4OBghy8vLy/uvvtuLly4wO7du6W8u3bt4sKFC5KgUNK8eXMaNWrEhg0bpO/MZjNbt26V8nTt2hV3d3e7NDk5ORw8eFBK42rdhw4dol+/fowePZo5c+Y47XtqaipXrlwBICYmhsuXL7tyyirETW1RkdOuXTvi4+NZuXIlL774Ih9/+imL3nmHu8LDtf0JWjdVFbOEaBGQJ5FvaifPLv9eNPOXiRWDal4194doOVGujAsGu3UklJYZZfO1um61wjWLu20TRSvccUcTPv74K0aPHsbYsS+wbNlC3EunHaWmplJSUiJ7GC+9wZdeQcVFRZgtFmrWrl3mctNQZrZ1MMo+ywMm5TE8yhgQNdQsSHLhpva97QyW3+VXzaKjZmFx1bKilldpbFCzypX9XuoDupqlwWq1rT1kNBoZP34CgwZF2l0rUueVLh/RmoLiujSayrYIkFsU5W5MB1YQu87I1LS8r3a/Xek1o7RcyvsnL0rLLSf1VXnRl02VK2urpRiTW9lFIZ+xdfbsWWbOns0XS5fyzDPPsGr16go9YevcGKrCovJ3Tk9u164dkZGRjB8/ns8++wywBXAPGTLEbsZPcHAw8+bNY8SIERgMBiZPnszcuXNp3bo1rVu3Zu7cuXh7e/Poo48C4OPjw7hx45gyZQr+/v74+fkxdepUOnbsKM0CcqVuUaQMHDiQF198UYpdMZlM1K9fX7VPnTt3ZuzYsfTq1QtBEFi4cKHmCrRvvPFGpc7bLSNUwOZ/e+ihhxg8eDDvzH+HiMhIhg8bxrw5c7jjjjtsiRz5CRxd5cayOBaT3Ta72N0Y7SYmq6gY2+7Bto9qy+zL3+XTrZXNE91ASmzrkGgMBooyxBu8uKS+hwcMGxbNrFkfMWvWs/j4NODdd2fg7e1OUNNADh48QFLSXrrd2dWu8HHjxvFF6R4PP//4I8OGD0dcU0YtUFku0soGc7HN5Y9poSYE1MSfennlRYAyr9xNJX8Y13KxKYWOWkgHiO49W9yRoz6qHbOVZf/bix6dt9+ezzvvzJfylg3mZULXaPTEKF9M2eLo+tC2fEh9sGtw+TzS5GMH/VQKRi2Xj/x3VPu/cBjPWhovJAosycWlwGyx8NHHHzN7zhx69exJYmKiPpvnJuFmmJ4MsHz5cp577jlphk50dHS5dUrS0tK4cOGC9HnatGlcu3aNiRMnUlBQwF133cX69evtpvwuWrQINzc3HnzwQa5du0b//v358ssvpU0yXan7u+++Iy8vj+XLl7N8+XLp+6CgIE6cOKHany+//JKZM2cSFxeHwWBg7dq1qsHlBoOh0kLFICht/LcQWVlZzHhlBt//8D0TJ07klWnT8Pf3Lxc/UQ5XAj3kqK2wpvxsVA/sdeR/dxYOoHyiFFE+patpM+UgLw6sVqtNuEyePJl169YQENCKGTNm0K5dM9q2bQbAN98sZ9Sjj0gZW7ZpQ0ZGBgCTJk7ko48+0gxiVoozORUdtNWOa1lTnOEsn3zg13I5yNuhFCla8TMVPRfK31qe3hWrk1Y7lPVqiRetfMr6nLVDrRy14/J/U/m1qhSRaptzav0PyPNLDwXWElasWMHrb7xBrVq1eO+996QnUZ3qT2xsLBMnLqZr123XXdbVq8fZt68dZnnwuY5LGI1GzdlF11VulZZWzQgMDGTZ18vYsWMHhw4dokXr1rw1dy5XLl1yvEdPRYM95MvCylGoCjUzvyMqopeqwuQpZ9as95g0aQ67d69n+PC+kkgBmDRpIuvWrZM+/xIXx4J33mHD+vV2c+h1bi4qcg1VVAg6u5ZvlEgRBIFff4kjrEsXXn3tNWbOnEliYqIuUm5CqnodFR3X6NKlizRDaubMmZXeeNARt7RFRcmWLVuYPv0VMjMzmDLlJZ5++plSv759OskSoDQ7aJk0ZI/PdrMY1O6QpYhTUuXixRXd5EqshKMnVDlqK8iKzRb/af/3f5cwbdoEKZ2fnz9hYZ2Jj4/Hx8eHf0+axPPPPUe9evXsK1dBKxZDHoMgFuGq+0fLvePI6qE8rtZkR7Ekyt9A3nalZUPePnm/nPWxMlYMbVeR83KdnQ9XylSzamn9HvKyXLFmOWqfWIaay0jpLhL/NhgENmxYz1tvxXD8+DFeffU1nn76KYdTUHWqL7GxsTz99GI6drx+i0ph4XEOHNAtKq5So0YNjh49SmBgICaTiZycnCq3qNxWQgVsT1Br165l5sxZnDx5ghdffImnn55YTrDIb3wSaoJFfgdUCBawn0GgdkfWGvzkqD1pKtEy7zsy5asNEvJuia6Oy5fNfPnlV0yfbhMsXl5eFBYWSuV9+OFHTJo0qXyjNFCLL9AajJyJN6WgcFXYyJ+slcdAsc2AAmUQq1Yf1OpVCha139oVwSGiZcRTuxbkMTbK+tUElFaZakJNq05HrjK1a89RXqURVEwr/63ks/HEv+X9FgSBDRt+Y84cm0CZMmUqzz476W95CtT55xCFSkhI1QiVQ4d0oeIqd999N7Vq1aJXr17ExMQwderUKg+mve2EioggCKxbt46ZM2eRmZnBpEnP8cwzk5wuFazlY1dbuEprdNGK01B7+nTFxK426MrzuvJUK74rn0DFsm0mUYHt2/9g27YtbNwYR1raIV54YQrjxj1N48YN7cpzJjS0+u9IaFTkSb+ilhhH6ZTuAmVQLTgOwFMKYK12uGJFUYoER2LLVYuGVtuUVMbKo5ZPTQzJy1EKQPGYI4uNs7aUlJSwatXPLFjwNidPnmDq1JeYNGmiLlBuEWx73iwmOLhqhEpami5UXCUtLY2ZM2dy/Phx9u/fT/v27TWDaffv31+pOm5boSJie8LawPz589m1axdPPvkU//73CwQGBmrmcXZzV7XGqNXtwJoif1d7wnXVvK7WPmdiQDk4y8sR3+XLkovrvqmtti7/21G9joSL1uDjaLBzVr6WYHDmLpO3S21AdQVXXB0VERCu1nc96dSuUUf9UFqanNWhZklx5bw6ulYBioqKiI39hvfee4fCwmu8+OIUxo9/kpo1azovXOemITY2lgkTFtO27fULlaKi46Sn60KlMujBtH8TBoOBgQMHEh8fz6ZNm/jzzxOEhLRi7Nh/sX//PtU8jtw04neuBM2qLQSnZhZ35B7Qcvk4at/1DnxVVYZO9aGyIsVZnhslUvLy8pg37y2Cg5vzwQfv8uqrMzh27BiTJz+vi5RblBu54JuODavVWuUiBW6xdVSul/DwcH788QfS09N5//0PGDCgD507d+Hf/57M4MHDcHcvm4/u7OZt+87gUHAoUbOmKN0Nam4AZblq/2hqFgTlTV7ZD2WwrVb75Fv+yMtWxkI4m2il7JfcuqPWT0cuL60nbK2+Kvuk1i75d8o2KtvnyMqldCWpHVeeO2Vbtdwnyjq0jlUWV60nakJaeV61XD2uihzleTIa4cCBg3z88ft8++039OzZiyVLlhAVFYVRV9a3BddzbVdlGbcTq1evJioqCnd3d1avXu0wbXR0dKXquO1dP44oKCjgv//9nI8++hCrVeCJJyYwZsyT0t4LclxxB1UErRu+loVEbRCXvysHRkfWF3kerUW0tCw6jgSHmgvL1b5U5ubhyjlXa5OWmFEKIGU+tXfl38ryXMUVV5Ar153yenBWJqivnqssT+u8qYlFR6LDkZDVul7MZjOrV//EkiWL2bNnF48+OooXXphMhw4dtDulc0sRGxvLk08uJijo+l0/ZvNx/vpLd/24itzd4+iBwGAwUFLJud+6UHEBi8VCXFwcn3yymK1btzBkyDDGj3+Ge+7piyCUXyG2qkUL2N/EXbHOyPPJ37XaoWUVkFtXlE/pcmuPVp8rK1bUjrnSZ62ndlfQOleuiISKCBVH5Tg67opAUaaRx0q5tJO48juNhihnPsmL0LJyaVWrda6cxZ+cPHmCzz//X5Yt+5xatWrz9NNPM3bsmLKp8jq3DaJQadq0aoRKdrYuVKoTuuvHBdzc3Bg+fDjDhw/n2LFjfPrpZzz22Eh8fOry+ONjefzx0QQEqAffujK4Ks3gagO1ck05Z5YRtTHGFcuEWjvA3r2jrNvRZrny9l69ehmTyeRwu2+1NjpyY2iJGnlZauvFOELLReXI2qJWhvxdrRxnbVEbtJV/yxHbUm4dIMTvNSrXupi00lmtkn3FZCzbEgKjfRnKRde0RJwjl5BcIFutUFhYyOrVP/HVV1+wfftWBg0azNdff829996ru3duc6pqCX19wbfqh/6fXUFatWrFwoULyM7OZv78t9m5cwdt27YgOjqK779fidlcaGc9UL5ElCZz+SZrcqGhZsFQK89gLbG9EDAZBdzdBGl9CTGtuJ+Pm1vZap5abVQ7rmy7s3FB7JfZDKtWxVGnTm18fOqQ/edJu7bKy1fWpWYVUWuTK+fcWTq1djiqQ75MvtpLPC63YmjpBOX5ln8vPyb+rUwvftYSKXYXmZYCUqZXmvHUTqTiBNi2yjQ4tt4oUF6b8u/BtjhbYuJepkx5lhYtGjNnzizuu28AJ0+e5Oeff2LgwIG6SNHRg2lvMFarlS+++IIhQ4bQoUMHOnbsSHR0NMuWLeN6HTf6f3cl8fT05IEHHmDt2l/JyMjgnnt6M2vWqwQGNmTChHFs3rxJ1R+nNGfLxwktV4daWiXiSrfKBCaj4LIZXq2tVZEmJuYVRo4cCtjcaB6lO/bqOMfVOBJwMCXeakUQr0WlL05LESvTlVJSUkJicnLZjUfDgqJcydeRS0xpRRHJyMhg7tzZdOoUTGRkBGbzNX755RfS0o7w8svTaNy4seMTonNbIQj2+rqyLz0YouIIgkB0dDRPPvkk2dnZdOzYkZCQEE6ePMmYMWMYMWLEdZWvx6hUIYIgsGfPHpYt+4aVK7/Fw8ODBx98hJEjHyQs7E4MBvtdYh2Z/tUGJbWHWzWrfUX2FNKKD3DmOlJzASnTi9aUwMA6XL58CYDf1q2Tdu5ULnzniltGK61aG1wVaI4EgCttctQW0ZBhsUBWVjbffruChITfOXXqL0JCOvGf/yzG29vbLr3S5SEeU+vbtm1bMRigb98+5dp0/vw54uLWsHz5MrZv38aGDZvo3r07iYn7WL9+PYmJ+/H29mb5N98AUJCfT8bx4zQJDOTCpUs0aNCAI2np5ObmcvnyFbZu3cLnn/8XgH37kggNDbXrs7R1hNFYzu2jdp7Uvs/JyeHnn39g5cpY9u/fS2RkFI89NoqhQ4c6dBnq3N7ExsYyZsxi/P2vP0bFYjnOhQt6jEpFWLp0Kc8//zyrVq2iX79+dsc2bdrE8OHD+eijj3j88ccrVb4eo1KFGAwGwsPDCQ8PZ9Gid9m4cSOxsSuIjLwXX19f7r//AR54YCTh4eEYDOWDcNVwVYAoTf5OZUppwSZZ+Saj8/VflO4prePi4HzpUrEkUgCOpqcz8N57wWgsdf3Yvhdw7Xwo61F0R/M7+aCvdh61rBHy86O1V5GaoAO4cqWEpKQk9u/fy8aNv7JlSzxWq5Xu3XuRk5PNgQNJ3HlnF6KjR7B372769Oln291bpf02EbybX3/9lYsXL5CTc4oTJzLZt28vAKNHj+bq1avUrl0Hq7WEnJwcNm/ejNlsxs3NDYvFQt++vfHw8MBsNuPj4yNtI59/9ixXrlwhYedOl6Pyu3btDMDDDz/Mim++QTLOaogUsT9qFqKcnGx++ukHfvjhO3bt2kmPHj0ZPfpf/PLLGrvzoaPjjIo87PydZdxurFixghkzZpQTKQARERFMnz6d5cuXV1qo6BaVf4CioiI2bNjAypXfsXr1Knx8fBg6dDhDh0bTp889uLu7u1SOy6Z/jVHcmQhRzhARkQ/IrmyiKB6zWODqVYiO7scff2wBYMqUl5gw4Slatmyp1kTNsrRQ5pOe6hUHHW1b4My6pdYW0Y995EgqCQk7+J//eRhv71rk5p7m119Xs2tXAvHxv3D27BkMBgN3392b8PAePP/8y9SuXZcLF85x773hZGYeL1dHZuYZ6tevj9EICQk7+OqrL9i0aQNZWX/h5+eHv389mjQJxM/Pj927d+Hj40Pt2rU5fToXAH9/f2rWrMmQIcMYOfIh3N3deffdd7BarQQFNSc0NIy77gonNzeXUaMe4vLlyzRv3or+/e+jXbv25OefwcenLmfOnKZ162ACAgKpWbMmy5YtJS0tlcaNA5g9+zUAwsLu5OWXX2fQoOhy8TLi+VI7x+npaaxZs4o1a1axd+9uevXqzYMPjmTEiBGq0/91dBwRGxvL6NGLqVPn+i0qJSXHuXpVt6hUhEaNGrFu3To6d+6sejwxMZGoqChyc3MrVb4uVP5hzGYzGzdu5OefVxEXt4arV68SFTWI6OhhREVF4uPj43JZToMVtUZfV6JgZenUdqNV7lSrzCoOUIWFcO+9d7N37067dPfc04eFC9+jS5cuLllS1LqitDapJlYRaWrupnPnznHkSCrt24dgsZjJysqiqKiIs2fP4u/vT6dOnfH29sZqBbPZwtatm/n99618+OG70gaN4eHd2b17JyaTiXbtOtCnz71ERg6iVas2BAUFKpuE2VzI0qWfIwiQnX2KBQvmAvD++4s5cyaX33/fzLZtv9OqVSsGDRpKZGQU/fpF4O5u0jxnSmuRUiTIf78Sq8HO1aTmWlL+nuLnadMm88kn70vpL10y4+npbpdHXq8glLBzZwJr1qxmzZpV/PnnSfr3v5dhw6IZNmwYDRuW7RWlo1NRYmNjefzxxdSuXTVCpbBQFyoVwcPDg5MnT2rGjZ06dYrmzZtTVFRUqfJ1oXIDsVqt7N27l1WrVrNq1SrS0o7QvXsP7rsvivvuiyQ0NBSTyT6uRQ07K4KzxGWVO2+gogxni35B2U624qyPEquB2bPfIibmdSlNnTp1qFHDm7y8M4we/QSzZ8+hUaMGTpstDsKqliOZIFHG0hQXF5Obm0tq6iE8Pb1o2bIVOTmn8PX1Z+fOP9i8eSO//rqGgoICAMlVIsfLy4v27TtQVFREZuZxrl69St26vjz44L/o1asfb7/9BpcvX+S5517gkUcew9/fXzOWSN7spUuXMn78E/b9NBioX78+oaGdmTDhKYYPH+Gyq1DJ9Zix1dx7ckvJZ599wvPP23bNjomZy5QpL9vNvjlzJpcNG35j/fp1xMevx2g0MnjwEIYNi2bAgAH6hoA6VUZsbCz/+tdivL2vX6hYrccpLtaFSkUwmUzk5uZSv3591eOnT58mICBAX/DtVuDEiRP89ttvrF27jvj4jdSqVYsBA+5jwID7iIjoJ5nE7aahYr+1fYWsKK6OYoq8K7/7noceepCmTZvSvHkLOnToQEzMbHx9fQGbq6tGDU87YdH1zjvtds40Go20bduWM2fO4O7uzmeffc7gwYNU40hcXqSsNLNoKQCb9WPgwL788ccOze61bx/CwIGR1KtXn5UrV3DPPX1p3boNrVsHExzcnt27d7Fixdf4+vrh4eFB8+bN6dOnL6GhXRAEg1S10iqhcfokXn/9DebMmS19DgoKYsqUqYwbN04zcFTLklVVaM0yUlpqCgsLee+9Rbz22gzpu4MH08nO/ouNGzewfv06DhxI4c47u3HffZEMGhRJt27dMJnKtqHQ0akqRKHi5VU1QqWkRBcqFcFoNBIVFYWnp6fq8aKiItatW6cLlVsNs9lMQkICv/66jo0b15OUlERwcDD9+kXQr18E99zTBz8/v3KixQ55gIAcrZHTauXs2bM88eSTNGrYkDN5ebRu1Yru3bsTPWwYxcXFXLp0CS8vL+qWihKR9u1DeOONN1m8+CO2bt0M2AItwzp3xsPDg7fmzCE/P79clWvWxPHBBx+wYcN6Hn74ERYvXiy5v1wSKMqRtTSY02KBuLg1TJs2hczMDCZPfhFBEAgJ6USdOnUwm81cu3aFoUOHSQLL1WqUMRhi1fJ3JWrCMjIykvXrf6NLly68GRMj7UnjaqCvI5RThR0d16yrtHMWs5njmZmkpaezI2En27dvZ+/ePZjNZry8vGja9A68vb05ciSVevXqERHRn0GDohgwYIAeDKvzjxAbG8tjjy3G3f36hYogHAd0oVIRxo4d61K6pUuXVqp8XajcJJw7d47ff/+d+PhNbN68idTUVDp27ETv3r3p1asXPXv2JLBJgC2xk+hT0cohvlsFKDYX8cr06exPTGTr7787bEunTp1ISUlx2ua77upOcnKSFMMhx9/fn6FDh/P++4uoVasWX3/9DWPGPE509DB+/PFnsamAgyBheSLsA2atVmjSpAF5eXls25bA3Xd3d9hWR9OaXclTGQRBoKSkBLfSVc4qMq3878CAwLXCIlJSUtizZw+7du3iyJEjHDp0kGvXrgHg5+dHo0aNMRgMZGZm4O3tTb9+EfTvH0FERAStWrWym4avo/NPEBsby6hRizEaq0aouLnpQqU6oU9Pvknw8/OTlvEHyM3NZevWrWzfvoP5898mOTmZO+64g549e9G7V0+6h4cTEhKCm8rcWUOp5UGMIXniiTEsW/aVlKRv337k5Z2hqKgIi8XCtWuFXLp0kYYNG9KmTVt8ff0cCpUln37Kk2PG2KoD8i9c4EhaOu3bdyAnJ4eUlCQGD4rCp3ZtWwbBSkQ/2zogq1evkjcVo9HJHjV2XbNy+PARMjIyiItbQ15eHmFhXQgP7wZU7UJ3WlTENWM0gNHNBA7yOOu3K3m02iIIAulpR9jxRwIJCQns3r2Lw4cPS+KpffsQ/P396dYtnLNn80hPT8fb25uOHTvSu3cvevfuTYcOHfRVYXWqCblYrZeA2tdZzlGKi6uiPTpVhW5RuUW4dOkSO3fuZNu27fzxxw52796NxWKhS5cu3HnnndwVHk63bt1o2bKl3RNvSkoKoSpTyi5cMEvTprXcG1arlVOnTpGaeoiaNW2BkTt37mDUqFE0adJECqwVUU4RNhohLKwzycnJ0ndxcb8QGTnILg3Yx99cvHwZD08vPD09pfIyMk7wwAPDSUmxldW4cQBPPTWR55+fTM2aNcstmFad0ZomXtkyRKxWKwcPHmTr1q3Eb9rE9u3byc/Px2Aw0LZtW4KCmuHp6cH58xdIT08jLy+PkJAQevToSe/evejVqxd33HFHpfulo/N3cf78eXx9HwDOAnGA+t5rzvkOGAvMRRCeq6rm6VwnulC5RbFaraSlpZWa8Hezd+8ekpKSqFmzJmFhYXTq1InOoaE0btyY+yIjy+X3rlGDsLAwBvbvT8/u3WnQsCH+fn741auHl5dX+diXiiyEIoslWbhwIdOmvSQdGvfEEyxZskTdfWC1YrFYcPfyAmDkyJG89dYcjh49ypAhg6lVqxazZsVw//33ExQUVGUuCGfCQTOwuYpwFm9SLr0gkJWVRVZWFqdPnyY7O5v1GzawevVqwDarqW3bttSrVw+r1UpWVhaZmZm0bNmSbt26EV4qasPCwqhZs2aV9UNH5++kuLgYD49ngLXYxEpYBXILwHxgLmvWxDJkyJC/o4k6lUQXKrcRRUVFHDhwgMTERJKSkkhJSSE5OZnCwkLatWvHlStXOH68/AJkcgwGA4GBgbRq1YqQkA5069aNgQMHSutgqC2xL0dtTxerFb77biWjRj0EQNOmTRkyZCgdOnSkdes2NGxYT1qu/asvv2R0qVupadOm/PXXXyxYsJCXXpoqlefm5sbevfvo1KmT475UoZi4URQUFHD48GEOHjzIgQMHSE5J4cCBA9Kqs2CLyPfy8iqd4mzk6tWrBAcHExoaSufOnQkNDaVr16564KvOTY8gCBiN7wBzgOXAUBdyFQM2gbN/fxxhYRURODr/BLpQuc2xWq2cOHGC5ORkEhOTOHToIKmpqRw9ehSj0YiPjw9BQUF0Dg3F39+fGjVqcPHiRZKSk9m0aZNdWYsXf0rLli1p3749AY0buWzREC0GhYWFbNmyhTVr1rBpUzzHjh1Tnc5Wv3598vLypM/9+/dn8+bNWGXq55VXZjBnzhyH9d5sQuXatWvs27ePvXv3sj8xkT179nDkyBHAJkbq1asnzZjKy8vj/PnzBAQE0K5de9q3b0/nzqGEhoYSEhJis4rp6NyifP/994wcOQaYCzhy4ZwHHgDy+euvNQQGVtZlpPN3ogsVHVWKi4s5fvw4R44cITU1VXqlp6dz8eJF6tevj7u7O/n5+dJqg0aj0U4sANx///307NGDoKAgGjZsSFBQEAEBAarraSjdKiWWYo4ePcqePXuI37SJ1NQj/PXXn5w9e9ZuQbagoCBOnjwJwMcff0KPHj3o1KmTU6FUnYVKQUEBGzdu5MyZMyQnJ7Nt+3bS09OxWq14enpSt25dLBYL58+fx2g00rx5c9q1a0dwcDvatQsu/TuYOnXq3Oiu6OjcEHbt2kX37tHAQ8AiQHnPyQQGAy24dOlbfQHCaowuVHQqhCAIFBQUkJGRIb2OHTtGZmYmGRkZ/PnnnwiCgKenJyaTCavVSmFhIc4us4iICFb9/LN0s3AURFpYWEhSUhLvv/8fTCYTy5Z9jSAIkmvDVW60UDGbzeTk5JCdnW33Wvfbb2RmZiIIAkVFRZSUlFC3bl2aN29OmzZtaNmyJS1btqRFixa0aNHCFrisL6Smo1OOzMxMWrSwiRFYQdmMoJ1ANPAwFssi/f+nmqMLFZ0qpbi4mFOnTpGdnS29Z2VlcfLkSU6cOElWVhZnz+ZRXFyMyWTC3d1dukmIbgl/Pz/8/f3Lvby9vfHy8pJm/Hh5emAwGCq02SJUTcCrIAhYLBYKCwspKiqiqKiIwsJCzp07x7lz58jPz5deZ/PzVb+/ePEiRqORRo0a0aRJE5o0aUJAQBMCA5tIn8VX7drXO+VSR+f2pPyMoAT0mT03F7pQ0fnHEQSB8+fPk5eXZzdw55cO6GfP5nPuXPnvr169Wq4sDw8PPD09pZeXl5fTz2Ieo9FIUVERZrPZTmyIfzv7rPzXcXd3x9fXF39//9Jdjv3x87OJrHr1/O2+F18NGjSQFnzT0dH5eyibEfQTUKzP7LnJ0IWKzk2DIAh2oqKiwkL5uaSkxCVh4+pnfeEzHZ3qiyAIfPfddwQHBzudEahTvdCFio6Ojo6Ojk61RX8E1NHR0dHR0am26EJFR0dHR0dHp9qiCxUdHR0dHR2daosuVHR0dHR0dHSqLbpQ0dHR0dHR0am26EJFR0dHR0dHp9qiCxUdHR0dHR2daosuVHR0dHR0dHSqLf8Pk31nxJOVzU0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# set up figure\n", + "fig = plt.figure(figsize=(6, 8))\n", + "gs = GridSpec(3, 2, width_ratios=[1, 0.1], hspace=0.2)\n", + "\n", + "# specify the projection\n", + "proj = ccrs.Mollweide()\n", + "\n", + "# set up plots for each model\n", + "axpr_1 = plt.subplot(gs[0, 0], projection=proj)\n", + "axpr_2 = plt.subplot(gs[1, 0], projection=proj)\n", + "axdiff = plt.subplot(gs[2, 0], projection=proj)\n", + "\n", + "# axes where the colorbar will go \n", + "axcb_pr = plt.subplot(gs[:2, 1]) \n", + "axcb_diff = plt.subplot(gs[2, 1])\n", + "axcb_pr.axis(\"off\")\n", + "axcb_diff.axis(\"off\")\n", + "\n", + "# plot the precipitation for both models\n", + "for i, ax in enumerate([axpr_1, axpr_2]):\n", + " ds_rg = rg_list[i]\n", + " pcm = ax.pcolormesh(ds_rg.lon, ds_rg.lat, ds_rg.pr.isel(time=0), norm=mcolors.LogNorm(vmin=1e-7, vmax=3e-4),\n", + " transform=ccrs.PlateCarree()\n", + " )\n", + " ax.set_title(ds_rg.parent_source_id)\n", + " ax.add_feature(cfeature.COASTLINE)\n", + " \n", + "# now plot the difference\n", + "pcmd = axdiff.pcolormesh(pr_diff.lon, pr_diff.lat, pr_diff.pr.isel(time=0), cmap=\"bwr\", vmin=-3e-4, vmax=3e-4,\n", + " transform=ccrs.PlateCarree()\n", + " )\n", + "axdiff.set_title(\"{a} - {b}\".format(a=rg_list[0].parent_source_id, b=rg_list[1].parent_source_id))\n", + "axdiff.add_feature(cfeature.COASTLINE)\n", + "\n", + "# set the precipitation colorbar\n", + "axcb_pr_ins = inset_axes(axcb_pr, width=\"50%\", height=\"75%\", loc=\"center\")\n", + "cbar_pr = plt.colorbar(pcm, cax=axcb_pr_ins, orientation=\"vertical\", extend=\"both\")\n", + "cbar_pr.set_label(\"{n} ({u})\".format(n=rg_list[0].pr.long_name, u=rg_list[0].pr.units))\n", + "\n", + "# set the difference colorbar\n", + "axcb_diff_ins = inset_axes(axcb_diff, width=\"50%\", height=\"100%\", loc=\"center\")\n", + "cbar_diff = plt.colorbar(pcmd, cax=axcb_diff_ins, orientation=\"vertical\", extend=\"both\")\n", + "cbar_diff.set_label(\"Difference ({u})\".format(u=pr_diff.pr.units))\n", + "\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "a77d6b7b-5729-4ba3-9e72-6f960dbe3253", + "metadata": { + "tags": [] + }, + "source": [ + "## Example 2: Coarsen the output for one model" + ] + }, + { + "cell_type": "markdown", + "id": "919dd269-6a7a-48d9-a477-f1e76ed48d11", + "metadata": {}, + "source": [ + "We can also use `Rooki` to regrid the data from one model onto a coarser grid. In this case, it may make more sense to use a conservative regridding method, which will conserve the physical fluxes between grid cells, rather than the nearest neighbors method we used in Example 1. " + ] + }, + { + "cell_type": "markdown", + "id": "d32f8ab0-05ef-41a6-a599-f4a289103c2e", + "metadata": {}, + "source": [ + "### Get the data using intake-esgf and Rooki again" + ] + }, + { + "cell_type": "markdown", + "id": "81cdf527-cec0-4353-98d7-29cc3effa014", + "metadata": {}, + "source": [ + "In this example, we'll look at the annual mean near-surface air temperature for CESM2 in 2010. " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "d64f5c8d-6355-4225-b5c8-8f2c344fa241", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "35ea5b74257f4e4e90d23343a3a95719", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " Searching indices: 0%| |0/2 [ ?index/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "['CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amon.tas.gn.v20190308']" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cat = ESGFCatalog()\n", + "cat.search(\n", + " activity_id='CMIP',\n", + " experiment_id=[\"historical\",],\n", + " variable_id=[\"tas\"],\n", + " member_id='r1i1p1f1',\n", + " grid_label='gn',\n", + " table_id=\"Amon\",\n", + " source_id = [ \"CESM2\"]\n", + " )\n", + "\n", + "dsets = [separate_dataset_id(dataset) for dataset in list(cat.df.id.values)]\n", + "dsets\n" + ] + }, + { + "cell_type": "markdown", + "id": "a647dc7d-e107-49ef-87de-08dbf9024cd2", + "metadata": {}, + "source": [ + "First, get the dataset with the original grid:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "9c70d292-6e0e-43dd-b64e-5b143e38590e", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading to /tmp/metalink_tl49gcjj/tas_Amon_CESM2_historical_r1i1p1f1_gn_20100101-20100101_avg-year.nc.\n" + ] + } + ], + "source": [ + "wf = ops.AverageByTime(\n", + " ops.Subset(\n", + " ops.Input('tas', [dsets[0]]),\n", + " time='2010/2010'\n", + " )\n", + ")\n", + "\n", + "resp = wf.orchestrate()\n", + "\n", + "if resp.ok:\n", + " ds_og = resp.datasets()[0]\n", + "else:\n", + " print(resp.status)\n" + ] + }, + { + "cell_type": "markdown", + "id": "138de51a-727e-4f47-8876-eccbfc6d74bd", + "metadata": {}, + "source": [ + "Use the `.grid` attribute to get information on the native grid:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "b43c0357-ef9e-469d-b2e7-1635d0387ee5", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'native 0.9x1.25 finite volume grid (192x288 latxlon)'" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds_og.grid" + ] + }, + { + "cell_type": "markdown", + "id": "a52f11e3-a17f-4a74-849e-a4219de6a2c9", + "metadata": {}, + "source": [ + "The native grid is 0.9°x1.25°, so let's try coarsening to a 1.25°x1.25° grid using the conservative method:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "710606ac-1c41-4b27-b2c4-2ae4957357ea", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading to /tmp/metalink_a8ws0b5a/tas_Amon_CESM2_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.\n" + ] + } + ], + "source": [ + "wf = ops.AverageByTime(\n", + " ops.Regrid(\n", + " ops.Subset(\n", + " ops.Input('tas', [dsets[0]]),\n", + " time='2010/2010'\n", + " ),\n", + " method='conservative',\n", + " grid='1pt25deg'\n", + " )\n", + ")\n", + "\n", + "resp = wf.orchestrate()\n", + "\n", + "if resp.ok:\n", + " ds_125 = resp.datasets()[0]\n", + "else:\n", + " print(resp.status)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "f51dd55a-a419-4a24-bc2f-4bdaeb435318", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'Global 1.25 degree grid with one cell centered at 0E,0N. As used by ERA-40.'" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds_125.grid" + ] + }, + { + "cell_type": "markdown", + "id": "a8556572-54a6-42b0-94d8-cc562d40ccd3", + "metadata": {}, + "source": [ + "We can also make it even coarser by regridding to a 2.5°x2.5° grid:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "71a84338-90cf-49ec-b120-8f071213cf3e", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading to /tmp/metalink_1utsadgb/tas_Amon_CESM2_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.\n" + ] + } + ], + "source": [ + "wf = ops.AverageByTime(\n", + " ops.Regrid(\n", + " ops.Subset(\n", + " ops.Input('tas', [dsets[0]]),\n", + " time='2010/2010'\n", + " ),\n", + " method='conservative',\n", + " grid='2pt5deg'\n", + " )\n", + ")\n", + "\n", + "resp = wf.orchestrate()\n", + "\n", + "if resp.ok:\n", + " ds_25 = resp.datasets()[0]\n", + "else:\n", + " print(resp.status)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "412c50c9-0a30-4f28-8c97-c8a3d957de51", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'Global 2.5 degree grid with one cell centered at 1.25E,1.25N.'" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds_25.grid" + ] + }, + { + "cell_type": "markdown", + "id": "087503d7-e4ac-42f8-82a6-770a92795780", + "metadata": {}, + "source": [ + "### Plot each dataset to look at the coarsened grids" + ] + }, + { + "cell_type": "markdown", + "id": "020b10a4-95ff-4ecf-a203-32db9f3beaf9", + "metadata": {}, + "source": [ + "Make a quick plot first:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "96f1af51-6836-436f-a09f-1d6375614f98", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAHFCAYAAAAExnZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZxcRbn2U3X6dPfMZCYhewIhBNmEBC8GBJHLIiQBFQx4LwpeFkFRiSCyKXIxcDUEQVnkuiEYQISwCIKiCFwJiuAVolwJIPJhkAAJgZBlkpme7j5V3x+1nKo65/Qy0zOTkHp+v066z6ntrFPvU8/7voRzzuHh4eHh4eHh4VEXdLgH4OHh4eHh4eGxpcBPnDw8PDw8PDw8GoSfOHl4eHh4eHh4NAg/cfLw8PDw8PDwaBB+4uTh4eHh4eHh0SD8xMnDw8PDw8PDo0H4iZOHh4eHh4eHR4PwEycPDw8PDw8PjwbhJ04eHh4eHh4eHg3CT5w8WorHH38cF198MdatW5fYd/DBB+Pggw8e8jENBf7+97/j3HPPxcyZMzFq1CiMHj0aH/jAB3DXXXelll+9ejVOPvlkjB07Fu3t7Xj/+9+P//mf/0mU++Uvf4kTTzwRM2bMQBiGIIRkjqFSqeCSSy7BDjvsgEKhgN122w3XXnttU8cxGOOqhWuvvRa77bYbCoUCpk2bhksuuQSVSsUq8+qrr+Kss87CQQcdhFGjRoEQghtvvLGpfv7xj3/gmGOOwahRozBixAjMmjULf/7zn1PLLl68GP/yL/+CYrGIyZMn46yzzsLGjRu3+r48PDwkuIdHC3HFFVdwAHz58uWJfc8++yx/9tlnh35QQ4Brr72W77bbbnzBggX8wQcf5L/61a/4SSedxAHwSy65xCpbKpX49OnT+XbbbcdvueUW/uCDD/KPfvSjPJfL8SVLllhlTznlFL7zzjvzY489ls+cOZPXemQ//elP80KhwC+//HL+yCOP8K985SucEMIXLFjQ0DEM1riy8I1vfIMTQvgFF1zAH3nkEX755ZfzfD7PP/OZz1jlHnnkET527Fh+2GGH8eOOO44D4IsWLWq4n9WrV/PJkyfzPfbYg//sZz/j999/Pz/ggAN4Z2cn/9vf/maVveWWWzgA/ulPf5r/9re/5T/4wQ/4yJEj+axZs7bqvjw8PGL4iZNHS1Fr4vROxptvvskZY4ntH/7wh3l7ezsvlUp623e/+10OgD/++ON6W6VS4bvvvjt/3/veZ9WPokh/nzdvXuYEZdmyZZwQwi+99FJr+2c+8xne1tbG16xZU/cYBmNcWXjrrbd4sVjkp512mrV9wYIFnBBiTbDNvp588smmJ07nnXceD8OQv/zyy3rb+vXr+dixY/mxxx6rt1WrVT5p0iQ+e/Zsq/5Pf/pTDoD/6le/2mr78vDwiOEnTh4tw/z58zmAxOeRRx7hnHN+0EEH8YMOOkiXX758OQfAL7/8cn7ZZZfxqVOn8mKxyA866CD+wgsv8HK5zL/85S/zSZMm8a6uLj537lz+xhtvJPpdvHgx32+//Xh7ezvv6Ojgs2fP5n/+85+H6Khr45JLLuEA+Ouvv663HXbYYXzXXXdNlL300ks5AP7qq6+mtlVrgvKNb3yDA+ArV660tj/++OMcAP/pT39ad6yDMa4sKAbkiSeesLa//vrrHEAmS9afidNOO+3E58yZk9h+2mmn8ba2Nl6pVDjnnD/22GMcAL/tttuscuVymY8YMSLBhG1NfXl4eMTwGiePluHTn/40zjjjDADA3XffjSeeeAJPPPEE3vve99as993vfhd/+MMf8N3vfhfXX389/va3v+HII4/EqaeeijfffBM//vGPcfnll+Phhx/Gpz/9aavupZdeiuOOOw6777477rjjDvzkJz9Bd3c3/vVf/xXPPfdc3TFXq9WGPpzzfp2TRx55BOPGjcP48eP1tmXLlmHPPfdMlFXbnn322ab7WbZsGcaNG4eJEyemtrls2bKG2mj1uGr1BQAzZsywtk+aNAljx45taLyNoLe3Fy+99FLmcfX29uIf//iHNSa3bBiG2G233RJjIoRYmr13Sl8eHh61kRvuAXi8c7Dddtth++23BwDstdde2GGHHRqqN2rUKPz85z8HpWIe/9Zbb+Gss87CbrvthnvvvVeX+9vf/oarr74aGzZsQFdXF1asWIH58+fjC1/4Ar7zne/ocrNmzcLOO++MSy65BLfffntmvy+//DKmTZvW0BgfeeSRpoXt119/PZYsWYJrrrkGQRDo7WvWrMHo0aMT5dW2NWvWNNVPrTY7OjqQz+cbanMwxlWrr0KhgI6OjtT+WtXX2rVrwTlv6LjU/1llX375ZWtbEATWdX2n9OXh4VEbfuLkMez40Ic+pCdNAPDud78bAPDhD3/YKqe2v/LKK5g+fTp+85vfoFqt4sQTT0S1WtXlisUiDjroIDzyyCM1+508eTKefPLJhsa46667NlRO4de//jXmzZuHf/u3f9MsnIlaXmj99VBrpE3OOaIosvblcrlEuVaNy7wugJgAqHYG4xz0pz13X1ZZd7t7bO+Uvjw8PGrDT5w8hh2uJZzP52tuL5VKAIA33ngDALDPPvuktmtOxtKQz+fxL//yLw2N0bT26+E3v/kNjjnmGMyaNQs//elPE3+YxowZk8qovP322wDSmYF6GDNmDJ5++unE9k2bNqFcLus2b7rpJnzqU5+yyqhlyMEYVxiG1u9Fixbh5JNPxpgxY1AqldDT04P29vZEfzNnzmy6rzRss802IIQ0dFxjxowBIBiaCRMmJMrWO/53al8eHh42/MTJY4vF2LFjAQB33XUXpk6d2nT9wViq+81vfoO5c+fioIMOws9+9jM92TMxY8YMPPPMM4ntatv06dMbGpPb5uLFi7Fq1SpL5+S2eeSRR2aybIMxLrcvdb6VtumZZ57Bvvvuq/evWrUKb731Vr/6SkNbWxt22mmnzONqa2vDjjvumBjT7rvvrstVq1X87W9/w3HHHbdV9uXh4WHDT5w8WopCoQBAiFcHG3PmzEEul8NLL72Ej33sY03Xb/VS3YMPPoi5c+figAMOwM9//nN9LlwcffTROP300/G///u/etJQrVZxyy23YN9998XkyZMbPwiJj370o/jP//xP3HTTTfjyl7+st994441oa2vD4YcfDkCwD4qBGIpx7b333qnbDz/8cBSLRdx4443WxOnGG28EIQRz585tuq8sHH300bj66quxYsUKTJkyBQDQ3d2Nu+++G0cddZReqtx3330xadIk3Hjjjfj4xz+u6991113YuHEjjjnmmK22Lw8PDwPD6dLn8c7DI488wgHwz372s/zxxx/nTz75JN+wYQPnPDscwRVXXJHaxp133mltX7RoEQfAn3zySb3t0ksv5blcjn/2s5/l99xzD1+yZAm//fbb+TnnnMO/9rWvDd6BOvj973/P29ra+A477MB/+9vf8ieeeML6rF+/XpctlUp8jz324FOmTOE//elP+UMPPcSPPvro1ECTL7/8Mr/zzjv5nXfeyQ8//HB9Xu68807rPHAeB8C84oor+JIlS/hXv/rVpgNgDsa4sqACYH71q1/lS5Ys4VdccQUvFAqp7vGq7W9+85scAJ83b57eVg+rV6/mkyZN4jNmzOD33HMP/9WvfsUPPPBA3tnZyZ9//nmr7E9+8hMOgJ922mn8kUce4ddddx0fNWpUaqDIIAj4Bz/4wXdcXx4eHrXhJ04eLccFF1zAJ0+ezCmlDcVxGsjEiXPOf/7zn/NDDjmEd3V18UKhwKdOncr/7d/+jT/88MODcnxpyIphpT7qHCisWrWKn3jiiXz06NG8WCzy/fbbjz/00EOJdtUxp31OOukkq2y5XObz58/n22+/Pc/n83yXXXbh3/nOd5o6jsEYVy1cc801fJddduH5fJ5vv/32fP78+bxcLifK1Tq3jeD//b//x+fOncu7urp4e3s7P/TQQ/nSpUtTy9566618zz335Pl8nk+cOJGfeeaZvLu7O3VM5v38TunLw8OjNgjn/QxQ4+Hh4eHh4eGxlcEHwPTw8PDw8PDwaBB+4uTh4eHh4eHh0SD8xMnDw8PDw8PDo0H4iZOHh4eHh4eHR4PwEycPDw8PDw8PjwbhJ04eHh4eHh4eHg3CRw53wBjD66+/js7OTp/80sPDw8OjJjjn6O7uxuTJk+vmx+wvSqUSyuVyS9rK5/MoFostaWtrhZ84OXj99dd1+gIPDw8PD49GsGLFCmy33XYtb7dUKmHa1BFYtTpqSXsTJ07E8uXL/eRpAPATJwednZ0AgKkXfA3U31geHh4eHjXASiX8c+F/6b8drUa5XMaq1RGWL52Krs6BMVobuhmmzfwnyuWynzgNAH7i5EAtz9G2AmgxPUmrxyCD+yVSj2HGOzGfwtbyWJEhvniyv8GWdnR10gFPnDxaAz9x8vDw8PDw2MwRcYZogHPCiLPWDGYrh584ZYATT3wMteHWdMdb+wUaTLwTGZdhxnA9T/ox2Ryu6WA8soN8Yuu9ZobqNcTAwQZ4EQda30PA834eHh4eHh4eHg3CM05ZINg6NAE1DJBWWlKDYhS2qlHPXCUxlKdkeCQpg4/NxLgftOPtzz3ijKXhR69WObeRJg94S3n8GRgGutA28BY8AD9x8vDw8PDw2OwRcY6ID2wWPND6HgJ+4tQIthCLpCG4z81Ajq2JZ7DVVl1LrehhE3Nt4RjIRW3RKW/5pWthe4NyW22ut2oTt4J522SeI7c9nqybWSetUEZHDd3C9cq8k/4+eDQEP3Hy8PDw8PDYzOHF4ZsP/MQpC4bGaUBsSSuskVZa561kmAbb0mqh/mrYPZq2UNQ8b1k7h+CgW3Y9B9jOgMbRaN2053YI7ufBembMQ2mIQTI3pWzTbZCUbVmNqdhL9TRXaeNrpMwggIEj8hOnzQLeq87Dw8PDw8PDo0F4xikDOo5TljUxlExCTY+SxptJte6aMUDIEOs2GjnH76SQT0M9xgbOXa3zlq1P4fVPeD9jC7X8/hvsGEe12jX3kYztzrZBY04H0O5AxpR1lzTC/KgyJKUMcePwJdiodKFVzVvX2a7K+ThOWx/8xCkLFDYf18TboZEHqWUvwGYe2lTRpFumwSZaKs42vjazfOHUzSzTSmwJE7BGUe9YGr0XkHLdzA01Z1+N92c2NZxLdTX77u+4jHpNH1tG+dR26rVdc2nWLpM5zmaOxZk86utLAMKQeM6tey6K++AE4IH4zfLiN0mZOHFl/FntZdzI9ZYAU/YPJrxX3eYDP3Hy8PDw8PDYzMHkZ6BteAwcfuKUBcIBwvtHwzbAggzL0lGG+Uccqw9A9gAbYXqy6lidZhRtcDkxs/us5Y/BwpbEQDVrbDbBBjXMPqVVSOuvTp8DinnYT6O7EYalP/02NPYG65JIMjUw2BvJzNAqQCtyX2Dv4wHAgng7XGYl7RlM+yvMkRCzE2ZcL4PFV1IIPV5qVGNyOzPqMQBq3MzpI4rPBWGiLS774jlnWc+UYMjv8f1EQOTBcgCpbJNVlwPUszhbG/zEycPDw8PDYzNH1AKvuoHW9xDwE6cMcKSLw1MZkf4ILoaBcsrSPKQb/xksQX8E243UadQt2WTseBq70UBfWysG4tLehGNBQ/EHG2GhBtBn7TAKjbXZUFv91Az1V6OlWRWl76k6+7ixjyWlZpZGkQBRMd6XNW7CJKMj+6JVweIopoiZWlAqmCutIaJSc6TKmGwUEduDPlm1bLNYnBisEQF43mbENFtGHfbLYJ4AAJGtd+LGeJXeSeujjLHrMZq/KayTysng+RW4iLj4DLQNj4HDhyPw8PDw8PDw8GgQnnHKAA84eKBMF2dno6xGzdl9M8KdgfYlixBY5lMiIKbJ4Ej3E9uLhNexvl3/4H6gFhPBkK6rGGifA8DmEuagXwzGIOnUGq2ebK4BIVWDXpRNhVFo0rOvYdTRaDVyzUgE67kMSgbr4vYhWVjN0jhmMY1geZOxfPaYFZsDCF2U+eqodgBRPm5LMVKqvunST5itcVKsmNpnv3Ps4yHGOeIMQDVFZyS/8wBg8q8Zy4nfJjtnsnC0YpdleaS+6xO6LNlgqtZpCODF4ZsPPOPk4eHh4eGxmYOBIBrghzU5y/v+97+PPffcE11dXejq6sL73/9+/PrXv9b7Oee4+OKLMXnyZLS1teHggw/Gs88+a7XR19eHM844A2PHjkVHRweOOuoovPrqqy05J8MFP3HKgorjFAAIePzJcft3IL0qKBfWEjM/RHyUJWV+SEo/dACfwPlklo3HywMOTo1PwMGkdw3LcWGxOjovpZNI/RhtKa/EzI9C1vY0EOPjnk91ztPOdSNj7+dnc8GgHwsZwKdW/QaPQbRR535qZBwZ/SSOM2VcTaNOnZrtGu8JwmPmhoU16ig6wTkGGkm2yXgWWEGwMvojvdBUP4RBeKPlgEon0LcNUB4lPtV2yXoZz5j2YpPHpNuR2qigT3xoHxCUxYdWpKef+kQAZeKjL6t8ronz0e9QIvs23gmESR2Wur7GcbIQiApC2xUVAVaQKwskHrt5LAjie0xrrnS/xvvuHYrtttsOl112GZ566ik89dRT+OAHP4iPfvSjenJ0+eWX48orr8R///d/48knn8TEiRMxa9YsdHd36zbOOuss3HPPPVi8eDEee+wxbNy4ER/5yEcQRVFWt5s9/MTJw8PDw8NjMwfjrfk0gyOPPBIf+tCHsMsuu2CXXXbBggULMGLECPzxj38E5xxXX301LrzwQhxzzDGYPn06brrpJvT09ODWW28FAKxfvx433HADvv3tb+Owww7DXnvthVtuuQXPPPMMHn744UE4S0MDr3HKgmSTBHsCJwqtffdxJndSgFRIbNklgqzAWi+3NAjNiFQaMH8bijmj2rG28bSviX4T7fPMog0NsFagaa19URafKuRqIpSFmtpfnfFszhiisWurvYWom1i6Xp9K45LRBsl61hLtkPRxOO3H7dn7dRNuN7UYoxqo9/zo/e79rNiOlPa1/s84BhIJbzVAan9o8rvuj8ftRm2wPOFI1RgTN1gfON8V62OMnyC53zzutGefqPGTeDsnADHGxI3xxJViUOkFyAOpyVJlTO2mwTTp3waDZHpWc1nXWi0AdGypwYZabhtoGwCwYcMGa3uhUEChUKhdN4pw5513YtOmTXj/+9+P5cuXY9WqVZg9e7bVzkEHHYTHH38cn/3sZ7F06VJUKhWrzOTJkzF9+nQ8/vjjmDNnzoCOZ7jgGScPDw8PD4+tCFOmTMHIkSP1Z+HChZlln3nmGYwYMQKFQgGf+9zncM8992D33XfHqlWrAAATJkywyk+YMEHvW7VqFfL5PLbZZpvMMlsiPOOUhRwHchyEcDm9jFkPYlgdhHBwg7nhBQJeUWYdAQkck8oAyfyRAp75I9Ucz0xJxJPfSco23a7LRpkWutlvmjVeY8iJ3TWOPyt2FnHGyuU4ANsK3mww3KxXI/dYq8ZYhyky0e8uee327Yj4Gc+MwyxlMk8Z/dUlilOYK9VPasR+p7hKVms9ahmMjetFBy51PYW4T+VJp7U6Eoo0Vx575vg4lUSLjDpOIiQ8XF3PON20Gl/WeyeFlHeKWds5S5ZLQB43N73sJIvkJvHV58yNaG7uVweny5oMOAfPDY2vWisZpxUrVqCrq0tvr8U27brrrnj66aexbt06/OxnP8NJJ52ERx99VO8nxB4T5zyxzUUjZTZneMbJw8PDw8NjMwfjpCUfANpLTn1qTZzy+Tx22mkn7L333li4cCHe85734JprrsHEiRMBIMEcrV69WrNQEydORLlcxtq1azPLbInYYiZOO+ywAwghic+8efMAACeffHJi33777df/Dg2vOUIZaM78cOt3Lh+JTyFCrlBFrqMiPiMqoIUqaD7SHxKy9E+OgQQ1PjmW9ObTH2Z85Jhz8hMYH6r+F1oBIj0CLc8606NEMWvmR3nn6f3xx2rHsJQTnirNfGogwTYYwzG/kzTPHHvoMZod30CPpT/H3sr+TRgelwM+1npeoEZZdW/oT8p9k3rvZLRn6lYa8tBzzyky6hGnquvFCed7szDayrwv4dz3BNoTlrufnPAiU5+oYP9mIUeUFx+W52AFjqgoPnDOOyd2O1FR6KCiNvm9INvPy3JqTO61M84fnGfQ9B6E8d16fs1yMj6TysFHy/IjtU0sJ9mmHAdhBER5ObvvMRoPihv3Plce09pTmYPnuI7xx4136VBgoKEIWsFYAYIt6uvrw7Rp0zBx4kQ89NBDel+5XMajjz6K/fffHwAwc+ZMhGFolVm5ciWWLVumy2yJ2GKW6p588knLfXHZsmWYNWsW/v3f/11vO/zww7Fo0SL9O59Pi/Dm4eHh4eHhUQ9f/epXccQRR2DKlCno7u7G4sWLsWTJEjzwwAMghOCss87CpZdeip133hk777wzLr30UrS3t+P4448HAIwcORKnnnoqzjnnHIwZMwajR4/GueeeixkzZuCwww4b5qPrP7aYidO4ceOs35dddhne9a534aCDDtLbCoWCpg8HCkKZ/AirQpl/hHAR0dbwvCCGaUjgyoKMGT53fsPWIrn7TNOSc0B7l7l6CasPntIWif/j8bEILYIRr5mR2MqNiIyLZLSTJehIM2IIT4xTH1INYUqm3krt02KMjLoZcgPCUvo0IgErq9HUSTWMmuxQhrbGZCiy2hi4cZg+hgzYt8zQC8SSnmbZz4rYYFZOaYeklEv+THTsennpx0Vq/rhZTjFPquE6p63maU0br35m7TK6iDNWtz3FFAGShTL0OeY509HGc2J/alRxE8axCuZHNGbGZgIgvPGMXHGWl6ViktxnwSxnXkv3lUbS93GIa6Jy4LGIGFqm+JlXdc04TJzGZQQbxa26hCAesPoeDJXGiSIa4CJRs5GT3njjDZxwwglYuXIlRo4ciT333BMPPPAAZs2aBQA4//zz0dvbi9NPPx1r167FvvvuiwcffBCdnZ26jauuugq5XA7HHnssent7ceihh+LGG29EEAyRO+IgYIuZOJkol8u45ZZbcPbZZ1sCsyVLlmD8+PEYNWoUDjroICxYsADjx48fxpF6eHh4eHgMHNzQKA2kjWZwww031NxPCMHFF1+Miy++OLNMsVjEtddei2uvvbapvjdnbJETp5///OdYt24dTj75ZL3tiCOOwL//+79j6tSpWL58OS666CJ88IMfxNKlS2sK3/r6+tDX16d/q/gWNOCgOaFvIiRmlQjlwtAwWSbNRqX3kcUqWd8TdYhtTXKS2Q7hSMY0Mf639hEgYZ4pA8pkdADbm7BZmJZlYnvSTM60OhlJbqsF0zvGpv4ab8NFvXdNAw3W9NZKFG6y/ybHM8B3b7+YsLpxmMwyPGVnjXpuB9xsw9pYo352UeP5kZ6csi/NTppsVwb5kBYyLTEe6/muMVaeMX7nmdO6LEvXpb4710QzPO6Nao8/DTwHEDlgViCgfQSBjB1FAsE+EclAUYPyILLfzMttHI8isNX55SR+33KpV9I5/Ih9HQgVei5AlgncHJwG62QwTop90u91rX9S73vx21x98Ng6sEVOnG644QYcccQRmDx5st728Y9/XH+fPn069t57b0ydOhX3338/jjnmmMy2Fi5ciEsuuWRQx+vh4eHh4TEQtDIcgcfAsMVNnP75z3/i4Ycfxt13312z3KRJkzB16lS8+OKLNctdcMEFOPvss/XvDRs2YMqUKaC5CEEuEhYF4aCOxommME7ud4UsetTcrijYNFaJcwJumKOCjeLxPs5jeYR2A1LCDNjsU5rWxzSHzfX7ekhosozvrjWbUTeTaTLbMZiIhJVcC2m6itrDaR5p17sZzZNZyTz3zQyoPxqmzLaaqNModVeLrai7IWMgmbRQxhCc3bFGKEP7ZjwTJDLaSIuZRtO/Z+rwEg3ADmzewGnVw6ghedGMk9YixT9MXZ8uy53KJpMGXpt1Uqcr5CKnntxAIaRMqivzu6hgsEPuGGD/diVPqk+Wk958RoyqKA+bOVLQ3oLc2qa1Y8qTDpJJMlh3orNIqN8QF3So4jhxiigRrKvZNlo0mK0cW9zEadGiRRg/fjw+/OEP1yy3Zs0arFixApMmTapZrpFQ8x4eHh4eHh4ewBY2cWKMYdGiRTjppJOQy8VD37hxIy6++GJ87GMfw6RJk/Dyyy/jq1/9KsaOHYujjz66X30FAUMQsATDJH5zS8+UxT4ppDFOzDHxlAFkskxqP5P6Jr0Pth6EcLMPLqUBcVnlN8dBbLONS0NdeZdR08RUA7LHbh9eehl3d3I7ydSCuM0R1+Q0CzWoE0poZ9y26sHRn9hwNGHEjmhew1GyrhdZQ2iV95uyuC3thysMql+/6X31wJ0vPH1zel1H96SGk3YPJ+ryuKxkaTkV2+P6KSxYjWNN1fA0AJOMVONo5LInvP4AcOn9xnIAeOwxlkpyOvSOfo+45Zx7muVjdopIjaKO+E1hay4dxyrTQ9HSfRFYHq8qxhcAER1dxmzS7dJ4DCKmlXrHcYthUrovHrgsk9hHCI81TFLPpN7xVGmehohxYiBgA/SqY/3VrHpY2KImTg8//DBeeeUVnHLKKdb2IAjwzDPP4Oabb8a6deswadIkHHLIIbj99tstt0gPDw8PD48tEV7jtPlgi5o4zZ49GzxFy9DW1obf/OY3Le0rF3CDcYoZJkq4xSpR8IQ3nWKgtOuoUV4NPyDCgoi3S0tQM09xDjwKACR9n2aflFEkWSSmczoRw2iT1pVhMRMSG3XZrjrqK8lyuklnZVzNhIkGtUqZJEyTTAupNZZ6cJmErK4ZhKtPFmOW2rahL6uFfr7vamuUUsqZJyrz3KfsayLGV+JWMIjLzMta7/ykHWiG7om77dXQ1nBOQNUP5eGpGRMeMyOqIfP0OW3WYmrMPgkz9qlxOEQDN8s2AVWeVgEeEKN9Ea8ui0xLbyxjO4dmbVgg2HRm1NExnYjtZeeO03zsdAR5yVAxijgXnaFvAsR5pxUiIqDLPi1NmBubScXqk5WJoXESMfvE6KmrcQJAqcjs4LF1YYuaOA0l1FKdmiipl2ctYTh13pSKhY6F30RPlrjxYrbLJMeiEgnrCZn7pjf+4nA5VdKuurCX7Uz3WT2hMqlzs01zk1rSy/QrN+um7U+fgCXq9hO1lkESol5zCSKrMXu9MH2Zj6fsc5YXGjpf6nct4XgWsmYhtaqlTZicuqmTI7e+IWZvdIlPzSstJwjjC886Z2kTOxNul/1cFhNlzRPEwWj83V1mJipQLAAwYxnPvcdrQT276pmjKUtW7tAaNDxqTs54PInhlICFPDsQbA1DJc0mUuJrVgCido6gh8p+ACr7oFWZASWK6ym1ACfxGFU9nb4F0CJvtY/loPUOtExQ7YhPHKkSQIYjAJWpUgKu21GBjtUg1HdK7aU6AvEupmq/MqqHKgBmS8ThfqmuFfATJw8PDw8Pj80cQuM0MCtzoPU9BPzEKQN5GiEIouTSXMpvExTcujkjRrUlGTGiLYZqRFGpJkPOm20HTmC1rKixipGyt6lv3CBABDOlghcQyoVoMzVyZwrr4oYyIE7ZRp5JxVw1Ck7SGTHZPzcsVNRrOo01yqrkiuPTjs1hmxJ6+npjcVm3rOCD/QywV4sgTC3sIuV8m+W5sbzhskr1wlqoFDjcWvqSzGlKXavNNHBYomPudpw1jrTDptxxkTfoW2645avxasbJYJ/EIKzx1YViSDhiRw3z/BjdxnXcwacwVC6LA+MxVKdaLm/paxpwK6Bkot+MsauCmmEKOViRozpCdJzrMdfqFIMf98MU+yTHbS4dWoyTOS6HhGEhkNtEUB0hakedkX6GRFJeHrNTAZPb7OU4wGCU5LEF1P5NCBBQBpprNpFJ/8BakHLFi8NbgyHK6+zh4eHh4eHhseXDM04ZyAURckFkBb8ElBg8m3FinOjQAhUWoBIFKFXEaa5UgxRmKNsCiKRV7hJCZmgC8ZvEhqdklExJuLLbuGrMZV600tTdx2N9VC2NE9GtmxvS4WqCUtuS4LAsbkurJBkbdf4S2g9X0mTq0lxmqOZwXOYpScO4SV61ToSgJlsG7lrQzrHUHlgmXMbLHbr5O/NcyITPDYnGlS7EOvcZ5bl9j5m3XCJ1RT2hOkcc0DVxfo3xpJx7re3JuBdNVolYwWSNAXMunkWtgYKtf3LvV2fsVjlzFzcKcCSZ3rRxqrLOI2y65ZuOIUS9Q6xnyxhLROz7MeWaW/eG2UfAUR0pWBhSJeAhA5G0EssH8bERYod1yWpf7ozyQFQ0ujQCk+Z6AJ4TFaptHOWxkaVrIsZYacC0xolKcbgZbiahYTIYJnPFIZB/G0izCv1+wmucNh/4iZOHh4eHh8dmDgbq4zhtJvATpwyENEKORnGws4z/XVQZRR8T4oCNfXlUowBM6zliE8q0ZLIQB8NM325tczcY1rYuz2Ntk65kMDqiH0PT4+orDL1RwnXcGhJPbnP1Uo1AsVymi2AdtiqVIXH7T2ujHvOQca3sMAc1xpbWn6sZ6ifTlBl/1NUFqeufkuKCRCTJ9pnVCYm1Vu7Y3bGZ97bLlqq+lX6GZ55aa8xp5zahj9Lj4Fa/OjWGO07za4IRUs8eN1z/5QnLuk4cts4qwZbaxfWzVINRir1Z7TppY00LEcHNdCIJNjdulwM6WKVVBpChAUjsjes+EyYjRe3zw0IGkuNAJf6Dry8plYyjEcjSYkedc8YDIJJJHqqdkaaoeCgZJBXEknAnMXs8VpdhopRp7ZJZF0CmR7X5N4EQDgRDo3Hy2HzgJ04eHh4eHh6bOSJOEDUbgy6lDY+Bw0+cMhBKjRMgLAtX55SGKqdgnKBcFadVJOCN9yvrBkjXNnFOLM85t0yt5WkzVYvpZWfWIZRJjYbcB6Hh0V524M6RkTjhJSPgDiuS8FyKa6VsNEzbehVUGUoABkujoazKtDYSDEta/7D1K+4YMjVJjcLVZtSCoYnhIJYOo26wRHNXklRK7kAKS5hgWYx+0liKjDGkOmWq8yn1JbGMTrIWKUxSrLkx9lkHZ7dPLOargQuWwYomvFLNZ8Y6XxxwnmmXobHuHx5TepzZ5cXzlNaJo40CrLhOPGV/1j3PFZuTcg25HqOxz4hUSTi05yMicY1ZKPcFPHlfmAl1Cdd1SYUClOmUJyg7DLI7XtkHD0S7SsdEq0C1HaiMrQAAgrYqaC7pCQcgoUtNY5ESnnEOq5TVDjUYKN12VhTPFiNqgVdd5JfqWgLvVefh4eHh4eHh0SA845SBHGXIGZaIxTg5Fl5VhhZmnKBUDVGO4vhMYv1cWEaEcCs2k2npikS+HKQm45TUSimGSnn+mKlYAIDkuKWhEB55iv1RdeN9Zjs8QmwdKs8Uy5vPNRmNZrNolyZ0PGIshtVODCvYQW22Kasj+zxYX506FpNAzO/GBoe1Sj0FaSyP0wxX3kaGpiRBMLjtuIwZYkawER2WYgpirYpbEdY5SY8tpTQlbtoKbghbBGOTxrimpqdxGSlzu3uNTDaLO+Xh9EnsbXqfqpdC7wo2l1nHYnq9cR4/a/opzNAfcWrvM6+peS9r3ZF5zwHWtcliBTXblMlCEqtdy3uOIz4HkklT7A8nBDzHYrNbRuMGIPREND4Y0p0Dp7HXr8l6uvcxNxL1shBgRQaWj5lBtEUIi4JxyuVEZgcA0vvZYYoQx9OLmM0PmO/vgDDNOgHi/5zhJZfmQe3+LaBDpHFinIIN0KuOea+6lsBPnDw8PDw8PDZz+KW6zQd+4pSBgHDkCKvrRcd4HAa/EgWoRjQuSwFKWOyFAZ7QOClriHPIGB1ct5vsM96nEVFQyiw2SrFX6rf2WpH/xM1yqcOKTV0eGYwX5bbhXYuF4Q5fkKVNyWgrDZwpT55YE8FraF7qtsmd/82x1qkbe0sZ50c1JQlGEkFoRAwj2e7H7jJ1bIBke2LGCAHPJNNS66ewT+Y+Oz5OfK+a54HrhKbGgElcx7w3ubLoFTkZcB2JWXk3RVE8qFRNFNJZKMsT1aIniFPOboezOJYZZ4JZSdUxyfuGGBctMQ61SzEa5rPFiH2+1fmTTFQiBlQGo2OytBb7RGVUNnO8LuPoslkma2owg0lP2OxGDHmW/q1YJZ7jOlmuHqPSHgZcR+MGAJZjwqOuLDYQRmLWmMkhyLJRXuS1AwA2soJ8ZxlhLtaZAtAsU0gj/S4NKLP0SIptqkjmv+qwT5HBWjMSIKQRQskaBUSsNKg+0977rsaV1304Pd5p8BMnDw8PDw+PzRwMA/eKG5pQne98+IlTBrTGybEmlDWjWB/GidY0VVgg1svl7RkQ20tDWUYKnBO9Ph4xCsKZ4X2U/YAEzho7k550ok2hk4q1U7DZJxgSDVnP1DjpB0sxJ2bMHwJtJXPLehaakEzDK+1hd/UmZl3FninGK41BcRmgWlaf239CL+LsS3NT0/3xmA2A0G5ovQ+B0LtkaDhMVoy7+6zxwjonhBG7j0YNXOPc6UMhPNammMdKYGtrDP2K+l97MQXM8ZSzNR5uRnkAoIbnkSBbnPOqK6cdRPpPy2uVUSuGUqLNjHPGObWkSDqydFpONOd+IZDnMuWZEEwKtyObm7e8+VtppXQ75gAlTWTcU1xtlxv0VzcOk9FE4rt7TkxNlRqvUZYHPPaMC7hmJAGABBxEMkE0ZAhyTGuGAKDcFyJS91GJxh536v2iugwE0wQAbSNLaCtUNPsTyHexes/lTCZfebs574BCUAUgNKibyjIAFGUyf6j4GdIIbfmKLpunUd1VBhecDs10pDUBML0/WCvgJ04eHh4eHh6bOVqTcsVPnFoBP3HKQI7Y3hUKDARVRrUnXSnKoVQVwUeULklZ28pCCmm8Tq+YKmWdVuWNHFBmMUU1CRRjHyOCgdIMEwSLxOTQqdwma4q2rV+GFWqQEVy2SZznTMWjITBiRZmslP0lbriW8ZbQJyktCSxLPZWlyWg3W8uRUVdZvaamxyhj6bkUmHHseldMX6R5v2lr23XEcbVHxpgyx5wFrY+BHcnZZdNqsP6cw8o/F4QMNDAYJ6RrknTTRpwc03JnkiVKjX5vMKfmNnVInBlMKks7YfFxEZOlQXacJh0t33gYGCio8oQ1okpb3nSqHxiRxQ2vOuXZp58fxSjp598YB89goGRBDsSee5CsU5B8N3FwoasydxHYHpAuu2qeExUZHWo8BqtFua1poogjdQcMQShu6FyOIcxFoNT2TOvpa0uMV3ctNYKsyBB2SMapUEFbWNHMlcoRarJB1nfjoibyh1KCYi5mn0z9qPKcrqdrqoWhYpw8Nh/4iZOHh4eHh8dmDgZiGMH9b8Nj4PATpwy4lodihspRgO5yAT2VPACb/VHWdWBYL6GxZg5AWzba8jEojQCwGCmWYVGb+wJl8WoLX1rlypPOiA3FpatM3IehzYA0OpWDFFfHFo9d9BOPKTbEXYvebrcusoo5OgzCkMIypOhC1NZmDEdlXCdYHxG3x9LPqDFQbo9J98ftn+qHYdELjyunK5MpMsYEU4eWIRfTnpMmq+QwTgmpl6WlgXUdSCBokCAvNSZhFN/XtL5VnoiPpPsk+j50oZgAZrAy+rtkm0zvRhEPKqVzeSwWW5oRc0wxQW4+Rx2PicZegKaOUPwvy7jnTdU3mDXu6I+IOQYG7YUnzpHB0KZo+KxrbB0TEboqd5dLMach4EAuzhzAIyIEkqp+jmvmigQcoNC6piCMEEj9WxAwUMqQC0zGCah2lAEA5U0BqDpHVQIEQLVDsj/b9mBEWx8AoC2sSM85mwlKy+CQFV8p7bu6n7IyQaTd1+Z7OG0/T1mZGAz4pbrNB/4senh4eHh4eHg0CM84ZYASpnUOjMeaprdL7ShXA2vmHpDYKjIjzwaUIe9EldXWDZUWtjQPNYOkPXhiK0fRqyYbZbJIJv1KRfhv7ZUn2Cm1l8vo4HF5cz/nXFNOSitlImahFPukLFJi7ZNdpUaCbtybyqok/jNduWC3k6huMkPmAVhlSPq+lMZ0ei1GLP0TD4wxuMdksAiJNikSsXIytUh1DoEFAC+K+4xQJDRnxBiCeY1M7QykbiVol5GZw0iEAdJeTekZ5NPg5vcyITyaso5NsgHydyUKrKj31GAxOOdgEbGeEx7JmGhOdHkzkrkYEwwWRrI7DltIUo5BxDWLo2DH4qa4nMkwMUZs/2/3GVEIJJuqn31jPFw+dzXOtx5qPW2O+UwY8cbk4GMtEyBihxmMpyoivgCEMs0c0YBbkbcDGmuOCAHCXBVUxmfqncTQu7JD1CsQgBEdH6o9rKIgtUj5oGp5NZsxmhQS+xoo6z6HtAG2iNYhzhtpoxVoTQBMz5W0An7i5OHh4eHhsZmD1ZBvNNOGx8DhJ04ZMNfTWYohp6zQkDLkJKukYouYHhquZ562fBjAiB0PylpLp8zQMckI45bmRfyIGLVsCMU+UW0N2+wTDOmCyhlmsleKDVAxzInTNjEsyVjjwYWWyihra54MXZQbddfUmsSFbFh6FHtjQkflEFI1wdOs0NSLbXxN0Z+4Oitjv2YuHBZExcGxhp9hFbvsmcVA5BlQYDYbpA+PWHGlVCTwnMz3BQDVPvEKCItV5HKRyDSPOOaYmVXeOgcpsLPGpxYBpZHFkHJOdCRn1Z++BymBqSagks1QKLZXdFvViKK3Ly+PKQArBxaDY2qVQAz2TI6BIP34KLVjUllx2EjKbWboywLCwdSzR6hgAh1WVo1PP3CqCUOHyI2yaXqlpv4WxiSxfW9YzxYsj0qDYot/S9ZJtGXrwNz7hhBuMEkRClOr+rg3bmzTzZrxlLI0TWnapSymyS6b8R6uATdCeBoY0jI8eLzT4SdOHh4eHh4emzlYC5bqfADM1sBPnDJAEGfYpkb+ory0iBTyQVXrmNLiieScGB85Qw9VZTTWL5EkDassmSqjIoaJJqsMK0fmqYs1Ujxd9wQARB5PfJCJqOPqhohY0ow140xZVjCXHkzagnb1UYaVntABEft/u0OnDIdrBKbpqNQYzM5SPfwsiszZaDA4luaEpFZK7pK747hXAAJA8UGEQ2g7ZDRmHRvHOoa4HWJcD86hvehIIUpEutYaJy46oqHM7xWK+DrmONsM9sncp5iCNKs7jU3Ksrqz2CmuGVMCUGqVV/uCfDW+r2W8nUIYMxKBkUuScQLe1iu+Q+QpUxH9N/UWEEVxtGhK7TEp5lUMwB63qfMixm1ogkldIDGoQEK4ZGXk9WUczIhDxVPYnjT2lah7L6HXSx+LVSTlOmmPQEnmmZeHE8T3kaUDs/vUx2eA6ufFHQO3In5TwpGX7BPjBCMKZV3W9aKrhURGh5R3r8kypWWAaLTtmuDZ76BWg3EKNkCvuIHW9xDwZ9HDw8PDw8MjgYULF2KfffZBZ2cnxo8fj7lz5+KFF16wyrzxxhs4+eSTMXnyZLS3t+Pwww/Hiy++aJXp6+vDGWecgbFjx6KjowNHHXUUXn311aE8lJbCM051QIVJoZmiUYUSeqqhtkracxVtvaQFF3MtG7NMjjLtrcc4QY6whAcdEFtAyn6yDGbpuKPy1wm2yf6tumSciLhPxnjdqONxxN/knNrMewfElrZuH4a1bYLHZRK7NEtVSx/DdVmXOcqKNE0QW/+cpVuFpocfV5aY4d1kHlsmOMn2ZiIchCqtimQf1PEC4hRLNojmWOz5laJjcceRptdRx6T6VCc3nxcWfpiL6uqWsnRKaVZ4ptaphsVOzPsSQEABIPY8ZdzMs0jirPWUWQyTYnOzmAMWEv1sdeb7sLa3Td+vkcn8WF6n6eNV50HpvixPPk5AiOM6Z5wDxdwyCI2iYgM54eDq+XE9+0z2icjtGY5btbwb40LGV92H0DPyGveYxYiZBVKur6nHdLVILtQ1C2hSd9RMnrhakcMpsfOMuvdJVvu1POQUW2PGgnL7HkxEIIgGGMCy2fqPPvoo5s2bh3322QfVahUXXnghZs+ejeeeew4dHR3gnGPu3LkIwxD33nsvurq6cOWVV+Kwww7TZQDgrLPOwi9+8QssXrwYY8aMwTnnnIOPfOQjWLp0KYIgGNAxDQf8xCkD1sPPgZxMm5KjEYpBxSqrHigKrgNlJtpQcGhvHfofzAmIWWNwhMMMgEnNiLKG2BtQfxjSl/Eyg2eKo0pMUszkwuYfjHgl0O5Xf68xEalFc6slv3gyZHSWWcf8rgZGrEG4qVsSy3gsXqfgzLkexrIJl8EvtbieQJxLvdxjjIdycNgiZOSZkbbCECE790zaH8fsJTDodDuEAIFMgQEAucBOMu2+8GtNlLKWZhoZU+ofqaylPWPiRDjRf1xVIFn3j2VWoEMgNnbyNEIhV9UTqU3lgl7G66vkQFj8jKhUKXryRiECUupjjP/gMxlPQr32zYm9um8D/TpgIhGxCv7ICSDfKWoJT79ueNynvjfVkl/U5CKBe+/o+5g7InSnHDfLEmu/Eo43NGlrAI1MltS1rlU23pecNCWX9tInSEFKu5HxfiizAFUmrngxqAypMHw4luoeeOAB6/eiRYswfvx4LF26FAceeCBefPFF/PGPf8SyZcuwxx57AAC+973vYfz48bjtttvw6U9/GuvXr8cNN9yAn/zkJzjssMMAALfccgumTJmChx9+GHPmzBnQMQ0H/FKdh4eHh4fHZo4IMevU/4/Ahg0brE9fX19DY1i/fj0AYPTo0QCg6xWLRV0mCALk83k89thjAIClS5eiUqlg9uzZuszkyZMxffp0PP744wM8K8MDzzhlwAyACVDLOneX5JghUKWGdaJYKrtdWYfbySZ1WzoIILcF3jUsGwbBHumyBgOVXLaLLWTLyoYgAdSIA2qHYVDpLUzL01oetETmYr+5LFMv/YpZNhbq2v+by45p4Pofu7pgAsylEYBFFLHo3KjHiWaSZCtyyS1uK+7QTqhKOCwzXDNQ6gfh4PKJIzkuhNtBLDy2gy4mBctiux32QTEbcWoSQ9hMgFwQhxhwxd4DYZjS2KVUFiCDUXSXFxXM5RuXTbIYhxpLL2msRI4zMPnw5YMIpaq4EBuJYJ+qkoFiLOmkwa3nJG7TXWpKLvuZZQGTxTXIHgSUWwmMLeaKOwwpYRYjJrZnrbHVADHr20u/UE3y9CoizIbTo/GsMcTsWRqD0yqY94IpBm8kLEGtcSXuWf3OBsos/pMpHG2GjnFqJaZMmWL9nj9/Pi6++OKadTjnOPvss3HAAQdg+vTpAIDddtsNU6dOxQUXXIAf/vCH6OjowJVXXolVq1Zh5cqVAIBVq1Yhn89jm222sdqbMGECVq1a1bqDGkL4iZOHh4eHh8dmjlYu1a1YsQJdXV16e6FQqFv3C1/4Av76179qJgkAwjDEz372M5x66qkYPXo0giDAYYcdhiOOOKJue5zHMQa3NPiJUwYCwg2rxBUxxt8Zp9oyUykCagnCza0ARU62XU1bNdVWJhLslOmGnUhiaeicqEVX2GMxg2iKsrHlGEHoS7RlaxAwoh+bfXGDcLrhCLIYhgSzYSQpNfUiaUgVhpssmBKrIynotVgmx9VfiqniflSyXHcXAaz3GIcVNoAwgKubRQVSNATgVhiBOoJqYn43BMsAEEXEZtoUkxGIZKumBZ7FMjXLMDXj3p11/dz9iYCHaSxSQgRcu3zqPsZBZRiIiFPkIoa+qvzNCJhMwO3WVa71OcdlXrN9yA42C7nPFL7rPRzgxA71odLGqMTGLgNlaqDi8BMOTZT22tH9SgpZ3Y9pl0jXd1Ps8Mz7VQQ0paCSbVfOKnEIFPs9YN4b5rssjY1vBklGMn6Hm2xT2n1rlmWcGswVQzGoWKsCQ4lWJvnt6uqyJk71cMYZZ+C+++7D7373O2y33XbWvpkzZ+Lpp5/G+vXrUS6XMW7cOOy7777Ye++9AQATJ05EuVzG2rVrLdZp9erV2H///Qd0PMMFr3Hy8PDw8PDwSIBzji984Qu4++678dvf/hbTpk3LLDty5EiMGzcOL774Ip566il89KMfBSAmVmEY4qGHHtJlV65ciWXLlm2xEyfPODWA2uv0zGKg8oRZdKrpKWetiROxRc1da1ovmgVJghoedtaoMtiawGRfVDWqvOMIGA/kLlEvcLxPdEoX47tKuaJAnPGYlqXSgdS0JmX1iCXZKVNvYrZLCLfYKvPw4uOVlmMgGbPIZONkOwGQOOHuWE0WwR0441aSWW2pB9JKV5ffTGnhHr7UN5mpPswgjO65i9y6sl4oU6ioa+jWJTUYmv4wTP0JT5AayLCGVqoRhilLB6WQlx56ALAN7UUpymEjEUsVlShA1YlPkNQ8yS/yOplaPz0MIhNqGwwUDUxvWFMXRGydmmSg9D6kMFBGKANisEZ2qiP7uDknoLmYCeIRDCbZ1jxZGieS8r/Lbhl9cM5jZoQxoe8y2TlFwsLYhoGFIGgUQUq9WiEIqPE+Dwi3Qsao/UOV5JeDZKxeNNdGM5g3bx5uvfVW3Hvvvejs7NSapJEjR6KtrQ0AcOedd2LcuHHYfvvt8cwzz+CLX/wi5s6dq8XgI0eOxKmnnopzzjkHY8aMwejRo3HuuedixowZ2stuS4OfOHl4eHh4eGzmaOVSXaP4/ve/DwA4+OCDre2LFi3CySefDECwR2effTbeeOMNTJo0CSeeeCIuuugiq/xVV12FXC6HY489Fr29vTj00ENx4403bpExnAA/ccoERbZFY876Q8cCiThxLBA7rpOGJjWkXkKu6adqndy6LkhstanULTkr1ow7fgHNPimGJ6Wsq91LSx4MOJauY0nalmns1ZcGO8glsfQ85j7GCCIjpk2QYzpAoRi3kbyY2NopQhg4C+IYTQFixklb7zEzWFOjQwxjnUlmQHs8GVa51DSZ9VQd0W+sz9Ltyq9pqVDsMcUJbQmJ05IEAUNIo0TAyyymqRYDBaTFfWoNw5S5D8l9DTFOKeyUizwRzEuVUxRRRTUX30tuTKOc4VEZcYqKjOPDwIQW0kh2G1JTH2NrmkwGyoRim8x4UGawTtGX+M3VM2tqiFh8v5lxwrjD2AY54/7j3A7mybnzDMNmRM3nwHge1RjqaXzNWHLusdfTwAHZTGR/USsdiwLjBFUe6PdiQDhCGunfjFNHC/vOA3cfhhSceeaZOPPMM2uWKRaLuPbaa3Httde2amjDCj9x8vDw8PDw2MzBeDJURn/a8Bg4/MQpAzXXrh2607LEE/eloxFSUcaV3kWW1zGfjOLMMOPq3fDMsGwZiK5bS/+kPPCg0r4Y1jOPaLoHFonbUOyTSN0SDzw9uWj22Amx2S7l5RdwLtNjqDbiF0cUUfDI8ESKCKKAIgxlwmXKYl2Qo/eqRgEIBUigBsUT1rSp7yAEFhuUaSETIpkirsfEnWTJcZ+w2DS7GZtVMrVJaV51+bCKSlXwFbkgjhQeEJaoCzTOMg2EYcpOaZHNBjUbmykrpYYZQboechBsZFe+z6ibRyVK8qJEXlt1TSvVABHlyMv9YRAhVNHAQRJR0AFYDFTcsNJDQZYBIqVviyjcKP1mXDQOI60PsyN800BGJTc1d4oR45IZNSswpHvXARbjRKj0CDXuK51AOWAIqMuIxjA9X2uhEXYp1lsmyzYaY8ntJwDXaUko4aCcW/cTJVxHDldB3IYu5QpFNEB/roHW9xDwZ9HDw8PDw8PDo0F4xikDIeEIpUWRTIxox/kwkSORtc2KsQSCQGorBMNCLWYDSI82ntaXyySZDFOVxbFHXC8M0wuPgdjxUiJkTqUTXleWNZ0s60ZVTh6LZI6Y7VXIEGs2qpEdT4dzgqgaD5BQCM8gAKwaANXY+ygsVPUYclJbFDmWN9UmfmwFu0lcs5IIA4KpsE4v52CExB5PNGYnCBXRx00WKdE+sb+aDJGl3SLO9aCCdQJEFGrF/gUpue9ctqkWy9RIfrqs7bW0TG4/jdRJZZxSWCbxPZk8NguURBZ72pXvA5OxiADnniEy3yNVzKW4V6skZpEV4xQQJmKoKYYW9jJLxKitKXK0dOoQ1P2otU6MJpJta/aJ2H0Iz8z4maGUWxo+5aEHSC89Et/PhBpkFBe/1TMSBCIhtanBi+8129PQvW7JPIy19XD9ZXPM/HT1mMfA6cP6TaPEfpa4v4bGq84v1W0+8BMnDw8PDw+PzRwMVDsJDKQNj4Fji5k4XXzxxbjkkkusbWauG845LrnkElx33XVYu3Yt9t13X3z3u9/VGZubBZEaJ8apte4NyND38nfESWxdgVv70lgfU8sj1syNNnl6dHCxn2gz1LVezei2DMRijWrmuJMWjMoaDwBEepol4pWkREM3c92lWTJpmhqdg09Z9ACqjGqNDuNEf48qMqaUitQccJ13TXvYqaZlSCwVm6laCYBQjSOOU6XGRU2LGq4mI+lhZObf07nfqB0VhctTz/V1oqDSk4lQyXJRox9i5ztzmS6TlXL1TuZ43UjILtPUiKZJXd96nnVZ25tlmGq1MVAdU704TmnlVb5JMKAYVBFJV7pSNbRYp4Ayfc0CQlGOgpgNMgK6qSwClp7Q+J8SrlktN46RdQ24ygMp3zcEoNxgmQzPTcGcxcel9EQklO0ax8yVXkvdczSqybSajFhAbR0TpTG7o3R1tXIOurBiMzWgbdL1YNZjNeua72izbIDs+0iUTyJ0fvMmxjwQRJykej4324bHwLFFTT/32GMPrFy5Un+eeeYZve/yyy/HlVdeif/+7//Gk08+iYkTJ2LWrFno7u4exhF7eHh4eHh4vJOwxTBOAJDL5TBx4sTEds45rr76alx44YU45phjAAA33XQTJkyYgFtvvRWf/exnm+4rtn7sSOBVFiR0Qyqui6gXWy5JbVSt/qyMTkjLrWTGDzG922CwQ6Zew23HRS2Wq8ooQme7Wa5q5PNS8WrMMZiePwy2pRkQpg81ku0olqlSCcCkJoNHQncRFpVmh+mIyowRVA1NE6TnW6zhIGBRzGqlaSliLyH7OEW0ZsVsCVbL8jCkytJm1nbGiCDSZHMUTDtg6ojexjDMuFMB5Uk9jREfyI3jlPR4s/ebx1OPZTLPRT12IG17s/qluvWb0DFlla01/lTIojkaoT1X0ZvDIEJvVXAMKuaQZivk9YlMT1modpgYj7wuVedZo5xbLHHiOQykFpJRBACo8jQlXDAPmiU2PNrcQ0rx5DOd6NzcjnDuB3Wf54Io4Z1pMpsm1Plp9J7LYpmUvsllo0w20fV2c+N3qXsksPaJsi7T1AhbFcN4x3OCqIYutZXwGqfNB1sU4/Tiiy9i8uTJmDZtGj7xiU/gH//4BwBg+fLlWLVqlQ7xDohszwcddBAef/zxmm329fVhw4YN1sfDw8PDw2NzAudUGrv9//ABRh73ENhiGKd9990XN998M3bZZRe88cYb+MY3voH9998fzz77rNY5TZgwwaozYcIE/POf/6zZ7sKFCxPaKSA5u491CAyMB8gRZWUEMFNbVVmQsIyrLDtWtm012SyTbW0zUMTxlhQsFgqQFm6Umf/JzkAumCoqx0cJR1nGr8kpK85hIszM4FVOrTbVvioT0ZW1VcxJrAOgzNJh5IIIeU60pqRSCQTTBAhBRy62XsNcFOtCWOB4JXHtuQYAQS7STJKK56SiMVsslfwvCGLL07ruzL4PqGGJK8s61okAhHPdD5yYTZyTOKg4J8gZsXAojSOxK2bDZKOIYWmL9uJDr2Xhu9uzvOay4is1pGeqw/Q04i2X1tZAGabmvJ0M786gqr1bqyzQDFSZBeithJpZbctVUAiqmnGOGLXOac7U+XCuWad4o2REkM0EUCo0gWauR2p4zZpwmXA3ZpSrf0rLA2l6b5paucB4F7iskhv9O80bLpOBchgnl1FKME6OrgmI31VxGyyh+zPvH9dLjpLa0b8patxHhL6jI4dvLnjppZewaNEivPTSS7jmmmswfvx4PPDAA5gyZUq/dcwDwRYz/TziiCPwsY99TCcGvP/++wGIJTkFN50B5zyxzcUFF1yA9evX68+KFStaP3gPDw8PD48BIAJpyWdLw6OPPooZM2bgf//3f3H33Xdj48aNAIC//vWvmD9//rCMaYthnFx0dHRgxowZePHFFzF37lwAwKpVqzBp0iRdZvXq1QkWykWhUEChUEhsty0hpj0p+lhOsi3SynSYqarh4ZanVYSEIQxibziFiBOUojAuS5iOGyX6T3qJUMlyCTbM0VUYdZvJoB3xOMIudbzz0mKhqH7LJAB1sshXHRrYZanSkCMMubBsHWtJWrqVkrg9lWVMKQeVTEAUURDKtRcdIC1hxRxRriNoK20HMzLMiwjHcbwj09KmiBmdKKKoRjGTkAuYjgsVty3rquMMkhYqIRzVKND59QjhCIL4Guco0/GAFIPnskyAHUXcOm5j/App3mW1LH93W9pvt71adWu1V0sHVSuPWKOxm5pnAeL6ecKs58s8PvNeVp6n+j6nJDFek3XKcWZH+HfiqaU9J1VGAZMlhmBpAxp7iJrMkogPJSsrxlLpIWGyTDyhq1LtAeI8m7q5XBDreHIuk+cMO6DMevbN85Z2P6TrltI1TSZz5LJPruec2Ycem+NVJ86PyU5le2kqWPG4WuDp1igYH7hGiTX7WGwG+MpXvoJvfOMbOPvss9HZ2am3H3LIIbjmmmuGZUxbDOPkoq+vD88//zwmTZqEadOmYeLEiXjooYf0/nK5jEcffRT777//MI7Sw8PDw8PDo7945plncPTRRye2jxs3DmvWrBmGEW1BjNO5556LI488Ettvvz1Wr16Nb3zjG9iwYQNOOukkEEJw1lln4dJLL8XOO++MnXfeGZdeeina29tx/PHH96s/lfW6wlwWhaG7WkQ5EqeuFOUSGphiIKI452kVbUE5YbEAgrmqskCzNFUWoJCratYpzWLS/ZieXJyCGhZyGhWbqZ+QlqDqs8IpqkasqDTrnvF4fFUSa7eEViq2+PJ1PE3i46aIGNUW7TYdPWDtYrwb+wro3ljUTFG5Emi2h1JmecMpLzqVCy4IYus5R5nMTyfLc8Ec1fJa08fFCCiNI6EXclWLcYoY1Ran9royzpuO98WoON+y7bZCRcf6Adx4TkkNk4KpK1G/3Zg5zeiYGvVoq1t2QO30n2FKY5b6FW3aZU2IkTtSvgIYJygGVX1vF4MKqpyiFAk+uhwFCdZVIU+rjg4wsDSCVUat3JT6WAhHlRmMDWzPPlUfEPdElVKtA3S1R2qbW0/1Y50Oh8UMjec5S5dk7c/IXJA4vhSWKa2dHI0yNU5KD+rq4AIk7xe9L4NlSntXBw4LFVL7fczIUHnV0USmiv60saVh1KhRWLlyJaZNm2Zt/8tf/oJtt912WMa0xUycXn31VRx33HF46623MG7cOOy333744x//iKlTpwIAzj//fPT29uL000/XATAffPBBi9rz8PDw8PDYEsFAmpJhZLWxpeH444/Hl7/8Zdx5550ghIAxhj/84Q8499xzceKJJw7LmLaYidPixYtr7ieE4OKLL8bFF1/ckv7U2jXj1GJxuqtFrOtrsxgThXwQIU8j7ZFToFUUpKUJCMulIrVRVdiedsraKki2yrWCGCd21GkDjBMdSl9priyWSsd8Esdi6ixCwhApi4/HOqu0B0xH/QaQ4wTMsEKZtHZVP0DMKuUIs3LwVVmAkmTsyiRAiROE0mor5mKLviMsI6AMG3uFBq1qZKwnBMiFUZwLTsZxSjtHhChdSJJh0sdmWNcqVo7+TRkKOXFdCmFVW98Rpwgosyx8VUdBexZShiiiaCsID622sGJZ9RQ8wSalISsau7m/UWao1exSY/nnsvPI1RpDGsPkep3WQhpDYyHDEg9ppOVPZYio4u25PgDi+e6N8igzcS9XOdXvA/e481RqgwxmU3mzVjlN6KfMsZr73N9mX5RwhJygIp+TtGfY7SPrvJjsTkAZcjTWZyWYIWQzULU0ObUYJsUoZWmcQsML2fWUS/PAbJRhctmlxH7L8xkiZh6tZh5jK7G1Rg5fsGABTj75ZGy77bbgnGP33XdHFEU4/vjj8Z//+Z/DMqYtZuI01FBizT6Ws15APdU8AGBUvgRAUsjyoe2QL1SFUD/kBpUrn8MIRNSVSk41ySqQOPiemmQxObGIaWYzAJtI8VLRglDbPdacBChhoClCF2NQIlWqJ1FlKYI3y7nnx/5NUeHxxKnMArTLF0pbEB9TbxSiFOX0H5gcYRgRlrWINucs24xt34S8XMbrq+Z0kEi9tFYUbZshAgARXkBNcAgx06skBdbMeSFxDuOPBkdAIhRkEl01sRV9ifYrJHZHF+0nJxBRFCDMRWgLxXhDGllLbMyYPIoxGEsqxmRXnR93AtXqyVEj7dSbFGW228AECUguw6VNlNKWVnT9jCW7gPCaibstyKVwAMgHVWsMfSyHUhTqe9lMDsycyU2O5SwDIicOSH6PLIcP5lx7U1ReZTSRcsl8dhgn2vBQ7y1zfArufaOWzM3lbdVuVmgAayKVca7Vkn+WIeZee3cSHvfJMidLtcTeoq3kRKneBCluy6jrJgMmIshpNERLdVsjOOd4/fXX8aMf/Qhf//rX8ec//xmMMey1117Yeeedh21cfuLk4eHh4eGxmWNr1DhxzrHzzjvj2Wefxc4774wdd9xxuIcEwE+cMhFShpAy9DGxCKZuuGJQQXuujG2L60Q5gwkq0gooYeiJxNJSL8ujwgMdEDFnWCYFWrXqqu/mEptiICLH+TFybv4KD9Ab5eO2A4e5UsuC1L7gSvweW1tG7mwqxtgIlLVsBnWocGodmzp/m6I8eqqhcc6qcXoKCKteL0swYT2PKvYCEOJbUwhbYYFelnBF3eZvdwkt5yxHRowCsh3FTOklScqQz1XRJoMgukxV2lKEaTWrFDH5IEIhqGqWKR9ElgWbCI6ImCEI4LIyyaUSt+9Gf2eWy2CVxLZ0az2LdajXRiPMkttOGpvUVMBL9w+I5XBhXwcriTeIXppTDiIuGwQAlItnwGwrT6va0YHCSRFCYscLBqKD5pppWwCgSkWbKnQFYIc8SLsf9f3uME6mkJ0SDhpEui1TBK/q5rWMgFusVz3GyfrthEBw792sIMBuqpQcjYzrUp89Cmosz4m+spL81i4bEJZZt9Vwmcb+trElgVKKnXfeGWvWrBlWhsnFljX99PDw8PDw8NhqcPnll+O8887DsmXLhnsoGp5xqoO2oGIxL21BGV25EkbmevS2Phbq7wE4OoOS/r2hWkQfU6c51CxSSBlCElm6lmxNSfYauhKGb5SMU0+1gPZcH0aFgqVRzJZqM6FzoLZgUPXbTiXDkqH9sNoigquqsFjjFBKmdSS9UV5bOuUoZx1bTzVEbzXUwu9iroLOvNCKKetXWb4UHGVpieele7Lp0m0FFbQ0S8ItO+e47WumgFDNBFUikSpGac8U21Q0tE2xG7JwI1dWaQQZ/M+wUjXDRJh2HjDPs26TEc0MKCFuraCB7vdUVqfJpLe1hNuNtFeL8anFKjXSv5uUNa3/5mCyNFS3H8FmRBg30hpJJsi8LnnD+UM8izGj1FMNdTqWHGMoS50TIBiTvHyvKGZFM6BGUNqEngkASFILqGAG4FX1dTlnO6sSm1mlEUaE8tkz9ERu+qdaMEOjmP2niZLT2nWvryv6DrXuygjl0UDQyrjPxpklNf7IeMdQwrX2NCAMEafoGxrCCbwFXnV8C2OcAOA//uM/0NPTg/e85z3I5/Noa2uz9r/99ttDPiY/cfLw8PDw8NjMkSUNaLaNLQ1XX331cA8hAT9xysCmaohKNY9x+Y1oD/q05ROGijEwzAxpYPVEBen9IcqMzPWgPejDmoqIJbWxmkcfV7oIadHJuqHjmeF6zrn7tEVKhCePYph6qgWsK7ejpyoUR8Wggq6cYMA6cn2p/UROqg8g3YozEdKYLeuJ8thQzWNDtQhAWL3lKKfZIZUcFQB6KvlEgMcqE2lNACBiBKH0ousK+jAi7LOsRxVsUCHHbVZKMVDlKND9A3YiUJMZAIR1yg23O86hE5yGVIWYSOpItLeSbCugwpOv3dBDud5Pph7IHIMKrgjYOq801GWO+hMAMqPtLBapdlLU+m1kMgI1Qgw06jmVBlZTlWDUrRFIFnB1QuJ6FqXXaI5G1n4GAl6J2Snzvkvo2Yz+AsIB5RnHqdQ/KXY3GS7E1DDRFPGv6a1n9m9qk3KUoRhU0BGU9bFkea01A6V/NM9nlrej6iv+bl9vl2VK8zJObbOJ58Ftqy/KY0NVMBzKa9jUbgJAXzU7ibvHwHHSSScN9xAS8BMnDw8PDw+PzRxbo1cdALzyyis192+//fZDNJIYfuKUgY5cBYWc8JQrkipCYnuYmeyFtlIC4eGm2Ski9UVht6iDDs3KiLrxTRzKeFB2ImAjPgyowQLZqieTHSoGFZSNdA4mQ5OjEdpp2bLUIk7j1gzLNqS1Y5MIL0CZhoRWUeEUGyXLVWUUG8oFrC8JS62vktOMEgFQyFcwoiAs21GFXitmTJVRK2VNwYidY+pCNlaKKLMgjjVDhEZDHXcxqGivJ8AOTqjOaTlSiZpt76dcwHS8prz0NDI1JVXETFOVUe3ZF1CGrnxfZrqZ1MTN8tjagzhWVphiQQ+FN0wzOpb07dn1XZah0TZqJWBtigXhbmLarD8gzNI8MRIn+GaEoeroy9wUK4p9qrIAORIHTs0RJlhQKC0f0WWpo99ihkcqnPPk3gcRJ1qD2cdyFnmm2ijLbVVup4cqBtU4rhRh6Mj16bZCyrQXsMnuNAorES6SHqNqfPWWjmydWxybzdIRttCrzb0vQyOgccTEUpnyeARNrhQMJrbWpboddtgBJCUdkUIUDX0cLT9x8vDw8PDw8Ngs8Ze//MX6XalU8Je//AVXXnklFixYMCxj8hOnDEzIr0cxn0NIopoWl/D8iKPZVniAOOEuRZFUtI6pEuS0R0aBVlGkFcPjLbY2AaDEQvQy4Sm3sZpHlQfaAjTTuADC0uyuCCZrXbnN0l3kaaStyIBwzWyJ30Ir1ajFZiUTdjxnQsLQLvURPcijVA3R2yds9YhRhDmpW2orYWJHN7rCdN1VhQfaomMgyJHIYmBGyD4AaB2XeZxqSx/LAZI1EtoPw/OIUYDH1izncVykMBdZaV+Et5HjOWXG4iFGAuCgimJQqck4KZgR3YE4cjwA7Tlk7s+yFOtR71lanUZQS4uShmaYqNoaqcZTYjQMl2EyGSgSJ2oW/cX3OSVcs80i0SzTcZzUc6R/ExbHX5JenOq65YPIipif5/F9rfRE7jtAtZl2jaMUrVRIGIIgPl8qZZRuC7FnaY5GyBGGNvk8jciVkZPvOgDJ90SNd0Tde7DG/iwmNeI08V4y31XWs4S0SPD9g3vPF2gFIwJ7/FVDO+nGVBtMbK256t7znvcktu29996YPHkyrrjiChxzzDFDPiY/cfLw8PDw8NjMsbUu1WVhl112wZNPPjksffuJUwYKpIIi4alr2LbeKF5jD8BEIl8jgW9AGEKpIWoP+nRMp/agjHZatiylPhaiR8Zj2hgVdNkqDxBxgopkoNZX2rTVo7Q7yoNM5apS2qY8jbRV2RX0IjRiUgXgaKdlzYIBNvMVgSS8nJj8XeEBNkpvk3WVdqyvtGFjRYzv7VI71m5s15G6x3VtxOiiiHs1Kt+LzrBkxZayz3scd0pZssqbpY/l9HFvrBasCORVLsKiZ3twMeR0gru0/QLtuQpGhH1aS6WgPZNAoJJ65kKhzRpdEB6NxaCCQlDVzKBribtjyxFxbQFh8ato7ya7BdiR41MTwdbwGBuqpJ5ZDFI9b7d6UZ6zytVjSV2Wg8L2eLMYKM5SNE+yfU7180Pl+2BdpV3+Zg47xHVeRibjQRUNjdPGSt7S2cUJayOLRU4k6bZGFSfz1tt07DI7iTcFRQXQ972l3ZPx3ZTHbUgihLRqedI1zDiS+sxmFiuV7b2oGD+bWcpkNRsZZ41x6HZcjRM41Os8JJFYUaBizH08FM/6ECX53VonThs2bLB+c86xcuVKXHzxxcMWTbyhidN73/vepholhOC+++7Dtttu269BeXh4eHh4eHiMGjUqIQ7nnGPKlClYvHjxsIypoYnT008/jXPOOQcjRoyoW5Zzjssuuwx9fX0DHtxwQkT1JtrzzESA7PxEaevyeamRCCiDctER0bWroIatVCGBZn9MrVSORKCg2KQYKBbEEX8JQy4QUakBEb/IzaemmKsKD1BEJY4IDC49/6pyf3w7hDJyuGn5BYhjPpVYiI0yJ193tYC3+9rw+vqRAIBN64XeqjBCWOrFXAUT2oRnYRutaC8V+7yZGiRxDjZUi9hQKVrZ3UvSU25tbzs2lfLaXm0vlrFNWw9GFYQFXQwqliccAwGTYze1HoBgq5Qn36h8D9qCWHsWRz1X2gpovRQlFYuZUlHmG9H6qPg2iqFoo2UUacUq7+rIsvap9tIQpXiPtdrqrO1N1zzjpOumPEuNjylK0XM4LJMCofo3A3XYM6afyZFBr8ghSdW9EVoRtkVp0WeFBcjTqr4HVS7CiqGB0ro6lUXA8BhL864FzHhOcp/hsaaj98t9FR4ADPq+D2mEjkC8lwu0ihFBn77nCobeshG491CYUU6zpUbbljexVdZkBJ14cymR49Paq4s6TKXLsoUkfp4ZqSIC0ZkiKBMMJHWe28HC1so4PfLII9ZvSinGjRuHnXbaCbnc8CyaNdzreeedh/HjxzdU9tvf/na/B+Th4eHh4eFhY2udOBFCsP/++ycmSdVqFb/73e9w4IEHDvmYGpo4LV++HOPGjWu40eeeew6TJ0/u96A2ByjGCUBNK6WWdah1PMqKIQztVLAwfUzmrZO7KOEyXpSKnWJGDyaghOmovm1BRetoFDuirOK3yx3YUClakbS7Zewo5clX0NoK8bskLagKD/T3kFbRTsuJ+FVxrr2qpY+osgD/rI4GAPCK1Cb1idurp5LXXn9thYq02s3I6AQ9UpO1ttyO1b2C2VzT0wHOhTYDgNaLACKmSrUSgEsPt0olQKUaYFNZsGDbtPVgdKEn9RopbzhlDFPO0Z6TOrBcyRpbH2OAGVcHADVYppAwrcHKyZgvWZa7GbeGEYq+iGKEZADaA9u7UDCSMn6MFWGc6nMuzp2y6ON+zGMNjYhfaWVrodGXbDPZ5mu2g+Z0THXhMhFWexkaJ84SrJP6TsGxTbgJvVKH2Cvv2c5cOrtuerR2VwuWdoki1k8WSMWKxA8AZizqkERxTDdCLI+zAqr62WecgNKYtQ4RgZGYIWujFc1wjsz1oEiqKEi2JE+qmYxemidW1KCqKK1NlsFChintNuJFqc5FQ2NqQuMUQDCBRak9jDhFhQeoEHF+24M+tNOyjtX1TsTChQtx9913429/+xva2tqw//7745vf/CZ23XVXXWbjxo34yle+gp///OdYs2YNdthhB5x55pn4/Oc/r8v09fXh3HPPxW233Ybe3l4ceuih+N73voftttuu7hgOOeQQrFy5MkHcrF+/HocccsiwxHFq6O6fOnVqzQBULqZMmYIg8GHoPTw8PDw8WgHh4kIG9Gk2cMKjjz6KefPm4Y9//CMeeughVKtVzJ49G5s2bdJlvvSlL+GBBx7ALbfcgueffx5f+tKXcMYZZ+Dee+/VZc466yzcc889WLx4MR577DFs3LgRH/nIRxqa9HDOU+cfa9asQUdHR5NH1Br0a4Fw3bp1+NOf/oTVq1eDMdsiOPHEE1sysM0VZmwTDcPjyswjl7CYObX1TrAjzxZoBSNzwkOLkjhmSYmFYJxodsJst0ArlmfcNrkevFnu1LqmTVFeMwcbqkVQwrFNTjAxFRqgwnOa0eiOijqyeYFWgVDoOgDo9iP55IUkwkjZTpGGWFUaqb3olGSEVUSdNRs6wOUYNrblMarQqy3fCguwoVLEm73iAXhrwwj09QpLnjMCGjDkCpK5a+9FW15azG0lBJSjryL1W9UAESPolb8DWtS6pWJQAeNUR3kWGqdIa5WqnGotSkgZKJj2XhohmahIey6lRECW5zoAR4FWMxknkStMnJO+KAdKGNrlNS0SRxtFophdgsE6OR57aayU3afNgNaKqWPVA0FQx1aqpTlqhi2qFSNIt9fAK79uLB/z2BVLodhEpXky9E7qt/IM7GF5dBKGLvmMRiCWZxoQPyfrKsLjVDFMOcIwIixr71dKuGY2FdvkxnQzobWPLIeQVmxmhMfvCZNhVHkx2ySr1JHr04x3Jy3ZceRSmB31DCgT2Lx3aA09lJV3L6XdWsyQGn895imtDZUBoSZTWucWMftRXpSa3SMV9PFQ9x2AoUgrFgM9mBiOpboHHnjA+r1o0SKMHz8eS5cu1UtkTzzxBE466SQcfPDBAIDTTjsNP/zhD/HUU0/hox/9KNavX48bbrgBP/nJT3DYYYcBAG655RZMmTIFDz/8MObMmZPat4rPRAjBySefjEIhjtsXRRH++te/Yv/992/qeFqFpidOv/jFL/DJT34SmzZtQmdnpzUTJIS84ydOHh4eHh4eWzJcF/9CoWBNTLKwfv16AMDo0aP1tgMOOAD33XcfTjnlFEyePBlLlizB3//+d1xzzTUAgKVLl6JSqWD27Nm6zuTJkzF9+nQ8/vjjmROnkSOFsxHnHJ2dnWhra9P78vk89ttvP3zmM59p8Ihbi6YnTueccw5OOeUUXHrppWhvbx+MMW0WCIjhOceptqJKPLRzw9GKttaUV1ota9vUO6V5640MBIszMujRVqaKTq6j5oKjxGWcJqmLUpbjuFw3xobdWF3pAgCs6uvCJp1DLsAmqbUABLuiYgepfpQV3BvlZb9xJvASz6FHetL1srzw4IGIr/RWqV0bc0F7BZwRzTiVuwtY1SPGu6atA+1tfdoLMOIUG3sKqJTEueOVACrINwk4GAtQrop+1kYEpaIYb5iLQAhHLogtX0o41Dw+YlTHlaoyqiM5q3I5wkANHZjSougM7IaXldgmO7G0ROr6VXW74n5IZ0cqCNBbFWOqcIpxYY9mAFSEeiC2pk0tiPI+cr2UtNdjiinNOEXgMAONsDtuG1mo1VazUccbabNuXfm/GnNQi43Teq84/6PY7sR0cnLclViIEZJhUqzwNjmxbBGAoZsV5Rhib1ZARJXvypeM+GoxS6H0Tlo/aOgKlS5OP4dBlNDC9fC8rBeJGHKGbtKMD1agVc1wAoJByTv3h8nkBIr90VHV06+NG0csTaTRCFtVj6my+0i+P/U+kmSk1DuvGS9PnRHCZKHA0UH79Hfz/8FGKxmnKVOmWNvnz5+Piy++uGZdzjnOPvtsHHDAAZg+fbre/p3vfAef+cxnsN122yGXy4FSiuuvvx4HHHAAAGDVqlXI5/PYZpttrPYmTJiAVatWZfa3aNEiACJX3bnnnjtsy3JpaHri9Nprr+HMM898R0+aPDw8PDw8Nie0cuK0YsUKdHV16e2NsE1f+MIX8Ne//hWPPfaYtf073/kO/vjHP+K+++7D1KlT8bvf/Q6nn346Jk2apJfm0pClXXIxf/78umWGGk1PnObMmYOnnnoKO+6442CMZ7NBiYUgLIcSF95vSpuUJ1WUWGixSrEHTlUzFCa0VsBgmSg4YOih0qBirAhtCrHiLCkoazW2ghg6aJ/+HXGqvYAA22pU7IqyQkMSochEn92kqM8DIPLPbYyKWFkSD9vGSiHWa8i4SFPHvC3OAqPYUCpi3UYxua5szAMbpRapJ4d1+TzM54VzaCsZBCBU/uCQDI+MoF0OsCmS5y9gIGZZCN0YpSryOUElEuPLUYYirWorX3k7medCaa4U86Ss30jp1Yx8hAo6QjNVXjZlEdfFjL7uxOBRMaxGBT0YG3Zrjx1LG+cwTybc+0WxUglGCrB0UgqWXqoGXNYmDZsD45TGiAUkso8xwS4ZZSHZEJN5cmM8OVCMz2jJNKlnLSSRPv8bSRF9xus1RyJ0BBydkq0ScZSkVypVrHFVt2Ox1gQIefp1iAg1mGkGxojBXInYUMpzrmjEbGunZeSNPgFx76h3l3le0xgcEwEc1ipNB5gWf6kOU1VPj6eYq9T8a+7tl3Id0+BmhHBXD0JSTY57oN6fw4Curi5r4lQPZ5xxBu677z787ne/szzhent78dWvfhX33HMPPvzhDwMA9txzTzz99NP41re+hcMOOwwTJ05EuVzG2rVrLdZp9erVDWuU7rrrLtxxxx145ZVXUC6XrX1//vOfGz6OVqGhidN9992nv3/4wx/Geeedh+eeew4zZsxAGNqhz4466qjWjtDDw8PDw2Mrx3CIwznnOOOMM3DPPfdgyZIlmDZtmrW/UqmgUqmAUmcyGQTacWzmzJkIwxAPPfQQjj32WADAypUrsWzZMlx++eV1x/Cd73wHF154IU466STce++9+NSnPoWXXnoJTz75JObNm9fU8bQKDU2c5s6dm9j2X//1X4lthJBhiakwGOhlBXAmPJ+KpGJYlVWUaD4zB1i93Fw65ginDXslVXiAyNBZlXnOiAckmRH5uyitVzWO0bkRWJdrl8ckJrm1Yrl0o02Pz7TkSizEukobNlYEpbuxEnvrtecqmNKxDtPa3tLll/eOxbPBRADAG9UusIqcYFcJSDVulwccxMjoDgKAGPSTKBX/lF+jSiC8+IwiLEe09x4hQEClV1FYQZ5GOraVYpvM7PQjDNbNjRZvxUVKYZTaSdnap6z1PiMHoPBC7MUkuk7/NpkF05NP1Uq7PzQbpRkheT6gmExT/0IS1nBkxapPohGmCWieGWokHk9/kBnDJ8WDLnWbW54wZEYYl1DnqFPqERXD0077LLZnbbUDa6tCl1HhIkq/YhxHBH36uVNsk9K7JSOmMyPqPbMYj+6oaHjGEYAa8eOIHYcoJBHa5XusSIW+STNMCabNPuYEi16DDUrzxkxjrFwNlQs7InuNuzZtLInrm13dGpPFyHOr75BEKLHQyu1Z4QF6o6HxquM8fr8NpI1mMG/ePNx6662499570dnZqTVJI0eORFtbG7q6unDQQQfhvPPOQ1tbG6ZOnYpHH30UN998M6688kpd9tRTT8U555yDMWPGYPTo0Tj33HMxY8aMmkt5Ct/73vdw3XXX4bjjjsNNN92E888/HzvuuCO+9rWv4e23327+JLQADU2c3JADWwNypIqQmC+1WFQZkD7rYS9JcWZAuLVd/TZfTglB+ABpXhWUrWg8D0UZUA8Apubf1C+g1/q2wduVDh24r53m0J4r62VIKlOwqHEFQEzz0wr6WA60KF4mXWGoha7tuTJ2aX8D09tW6P6nFd7US2OP9e2IDaX4VuMB18w5yTGx3Jb6YuPWZMmEWqLTS35ETpaC5PnMEYa8sTTHQERQSxovW6hlUVXGTEsDxO7glts4tfsKwBCBos8IFWAKh92JkpsYN0uMa/7RUEtLrsC2UbfvzCCHSjzbVBiB1ohi+zOpco8tmcTX2Jm2VJc1ibKW7UTLekmW2PdCNyvKRNni3dBB+xBChuggZT1hEegAlfcAIJfF9dJc1bo37ECYaixGIFPjGrbTMko8TggcgOv7UjkcqPY6g14tBqdu2igu0gnFk/eoZoLotAl5LaQtAcZtNdBGygRWwxmma5SqMDGNIO35iJ1/AvSwfOy8IZMq9w1RNG4Vi2mgbTSD73//+wCgQw0oLFq0CCeffDIAYPHixbjgggvwyU9+Em+//TamTp2KBQsW4HOf+5wuf9VVVyGXy+HYY4/VATBvvPHGhuI9vvLKK3pJr62tDd3dIn3XCSecgP322w///d//3dQxtQJNa5xuvvlmfPzjH0+IycrlMhYvXuzDEXh4eHh4eLwDwHl942jixInaAy4LxWIR1157La699tqmxzBx4kSsWbMGU6dOxdSpU/HHP/4R73nPe7B8+fKGxjcYaHri9KlPfQqHH354Ivx5d3c3PvWpT71jJk6dQQltQU4zTq51FskFlYBwhNIdPQBDBTnbpde0yjnTTJBJ9zaCgDCE2j2W6wCaaQLKCs9p2n9bsg6j5JJCJy3hOWyLDTL9yUaZgkWhg/ahUwpWIwgma3QQC2BHBj1YH4llPzNY5oigD5PCtRgXbBRlSQXjgk3oGCUs8TLL4Xfld4nv3VIYLs9LEDJjaU6AOL+5DHvAecwwEcpAabxURwgHQRxYNKAMoQxVMCLsw6iw1zg/oj0lBFeibgU77YKb9DMp4jWt1BIPdUqGSblug8HjDTMrrhjXFN9GMv2OQiNBCrPcvCNHANwsBkMUmxS/pw8s1R09K4yAXs5tjGXSgnFdzjxPLtNCNIsTcYoO+dx10D5UeE6HFwGUeJzo7+reSAthETsjMOs3ACHhNoLuKmaLEYKQ2+EKQlJFl3ymKZjFLlvn1lkVF33H32sulSF5j2aWIyybWar1N7CWuNtlo9zum0gCnLZMqtAdFVHioeXQ0U4i5N7BATA3B3zwgx/EL37xC7z3ve/Fqaeeii996Uu466678NRTT+kgmUONpidOWS6Er776qg5Y5eHh4eHh4dE6DIfGaXPAddddp+VCn/vc5zB69Gg89thjOPLII63lwKFEwxOnvfbaC4QQEEJw6KGHWpmKoyjC8uXLcfjhhw/KIIcDOaVJgRCHm6kMTIumwgMdJqDEiWCgpFUn1sDT2SelcclinqgM5y/6yKHCA231MRDNPmUtWeehkvEyjILUYBTKKPEQz0eT9djFmn3cyGjJGk3MrUeJh+ikgqnppCV0Br3ojIT1+na1w9BOlDA+twFdUiRdkMe5e341AKC8zTPYJAM//uX17dDXE4LLsAJRmYKGDFRqk0wWCRBMEpOnnjEi9qt9lMdJU+V3lRA4pAwj82Ks27atxza5TTq0woZq0TrvBSP1hNIt2FZ7hAKkVc8dd29Sta5ryKv6nLnu3i5qaTooWKYexGWjTAu/FhsF9C9thhhP/yjxgbJSWWMHxPjT2DQRXiCFfUrTPQGCVcoKWeCwUZZ2hlNQwrCJCdmCqYOMBdqi/IighJDYOizzPnJF3+o6ugEq9fHIZjppSZftYQUUSMV6b3TSXotlSksVJY9GHn+yOyCbqUyDqZVKRZZeqdbf9JTbT6c+cbV29RioGjAZJtVuDxPvLko4QkSalS+SCiJQBPSd4RC1OaJarWLBggU45ZRTdNDOY489VnvnDRcanjgpz7qnn34ac+bMwYgRI/S+fD6PHXbYAR/72MdaPkAPDw8PD4+tHVvjUl0ul8MVV1yBk046abiHYqHhidP8+fMRRRGmTp2KOXPmYNKkSYM5rmGH8HQRupS8wRowEO09VQ+UMKmHipNCagZCMgfKkivzwPLKyxtBLddUQ5HA09BSKCvKTSir+irpYJlVFOUa/LighN0Kr2NjJLRJK8sjUWGBtqI3copOKqypMbmNKPKKHm9eWstFySoVaR5jQ+Hd0EH70ElLmmnKEyI8f6Rwb7f8G5g1+jkAwsPtubcnYN0GoZWK+gKwim35ah0T4eAgWvMUBLamCTCpZw5iJEbuyPdh2/Z1AIBt82tRoBX0Scapj+XAIuowR0oPxBIO+ybLFBA7MGkAZutQjPdSQLjt7u2gGc8l834zrWKRVgWp5dLcvQeSNsNEvbAbgwFKWPI8ZrmimySEYp+y3O1NVimFeUrTj5lQjAQQp0sJIbzYytoDz076mydVi70SGjh5j4Glpvswj0dfW2O/YrwCfc8xnZJJbHeYmRT2SSfKrUHT1NQp6fbSNzPQJEOk6zTuOZfWh8tAae/UBu5Vc0zq/BVpBWUeoCBfSAUZliZ+Fwi2MSupd6uxtS7VHXbYYViyZIn24tsc0JTGKQgCfO5zn8Pzzz8/WOPx8PDw8PDw8AAAHHHEEbjggguwbNkyzJw5M5GzbjiCbjctDp8xYwb+8Y9/JCKIvtNQJBUUZfBLBiKSZyIZcyYgHIHWUGQknVRpMZz0BkojAQAdUiujrKTIiPmUJxEYraRavCGposJzlsVU5oH2/CjxHIpGuoZRtBfvLr6mfyvdj/qukpSO4yL9gtJvlRFJjYTop52WMY4KxmlcsAGjaB/yRFl4IuqMYkI6EOFfiq+I/sduwvZt07CsU+islq8djY0bi+BMBvQERZAT54RzAoKYZQooQz6UDFgQoVQJUVUpWAgHpbHGaURY1p50wvLPWR5NNNeHkTmxv0hijROIsLbVeXEtazcZqxlEEKih6ckwspXnUj2vpSxr3LX+07RRWYyUVQYDs5oHK8ClO94Ei5bKRFBL/6Q98FJ0TxHkM+gyTTXStGR5XYoE4FJzRzhG0R5EgWinhxXQzYr6uaSu3tFkoxEzIO795LLdxQxWEgA6INgRpc90A7tagT4T/dTWMlFENVmpzF0pzwFzmCIT6jq795e+brXabjDNitu+9nYkZXTSCCUq3gUhIhnfTjJaIKiQHKpDyDgNdKltS2ScPv/5zwOADqhpYriCbjd+Z0ksWLAA5557Ln75y19i5cqV2LBhg/Xx8PDw8PDwaC04hPphQJ/hPoh+gDGW+RmuTCVNM07Kc+6oo46ywhKoMAXvlJQrI2kvOihFiYdSixDHUAJiS9Bkjdy7Uln+pmVk6pTM9Bx5xzNDMF3U+q2S8b4dxcJ8kfYjZkgoFd6ASltRpFWUjXYiUIyiIrbMrsWVeLPaibJklRgnOv5TkVRQ4qFup53AjoRMBdMEAJODXs02QZ+pGCEBJgbCiuukb2Bc0I1d2kTo/ifa3oUXN4zDhpKMLVUqWJGaCeEIpCddmIswpl3ElRrfthEbykW81Sto22pEQQhQkP0UgyqqSl8StYESFkf/phHaSVlHRQfi66lYNqVjUh5TWjtF+xJxnOwYOzzdEq9j6KVG/rY84OLtST2SHUOnVlTn4dAmDQSZEadJHOEacGIHOXGbdOToWronN9ZTSpoWNw1NHGVeeV8VsEEythNz3ciDoCI1g2+SCD1RAWHOjrEkxkdBDW84934yIeK5pb9j3e0BuBUhPJCJxTWsptM8OJWOKiuWlkA6M9WY51zEk0nR4xaSeqhGGSjGaVMsaNo7Wuk9ddwmcEQgKPFQ/x5Fe3RsPo/BR6lUQrFYHO5hND9xeuSRRwZjHB4eHh4eHh4ZYCAgQ5xyZXNAFEW49NJL8YMf/ABvvPEG/v73v2PHHXfERRddhB122AGnnnrqkI+p6YnTQQcdNBjj2OxQoFUUKQWTUasV8xIQpi2ONChPDEBYQUVStix+5aHntlFioRXFW/h2xd4dnbQXnUZOrDerXan9a+vSsr6UtoeJ+E5yODvQNZp9ApL5q/I80sevtue1R0kvxkiLbBTNocRj/56oBiHcQYAdwk0YH7wMAJicW4t/do7F33qF5mlFzzZ4u094IFVl3zkZDbwr34dpHWvE2AtvYmV5FF7JjwYAvNXXgSqjaM+Jc9ie60NF1u+Oita5LdAKioa3kYjcrM4bR570aa0XIBgFbX3SiuE5FWtHTKRb4s0zPVkJbGvF1EmLoVNLv1TLqy85nsEn+rPGk/DkqqVnqccimfUbZZ7SxgRuMRURp/q+6WB9CEmsW+qgfQhp1WLO3OtkMhtZaIYxtJgmY8wamexTstc0KCYqwXCmJDA39WYWMm6/TCYqS7c0gNhN5riKtGIx6+61iDh1chBCJwsfbGytXnULFizATTfdhMsvvxyf+cxn9PYZM2bgqquu2jImTgCwbt063HDDDXj++edBCMHuu++OU045xUcO9/Dw8PDwGAQwTkC2sjhOgMiPe9111+HQQw+1IoXvueee+Nvf/jYsY2p64vTUU09hzpw5aGtrw/ve9z5wznHllVdiwYIFePDBB/He9753MMY55MgjQh4cAS2J9XMmdUDS2y3OZF61PHzKPLCi/YYksliBRFZ32Y7yXrPiiSiWB1V0kLK+6UfRXq2VWFEdgzyJ0BkIDzHl+VEx4jgp66uIKBHjZnJuY+wJBBisEUHJsK6UjiNmryK0S+1RBQwMNtMUgKDM47hO6qgDQhCCoChpmU66Hu8K12H3gvD0WzVipGbT3o46UGE5fR5GBCWMy3XL9oWWS+kLcjRCT7WAMQUR+bw9iK1CFWcnpKZXI7GsX+3FBMEoqmtWJBV0BiXNWBVJOREXJzNWU0osoFrI8mKiBmPkUu1prFQtbUcaQ7U5oWZ+tKw4TEBz+iXA0DDVrkOR1Fe5epi0810kVQRGpO5xuQ1YE43A+kiwqe08sPIYAvG1CUml3xHX09gqmsIUMk6y2ScXmWxUBvvTAAMFxDHxrLLawy5d85fGQqXGhqoRE8r0Xja3AUAnKRnvdmbHcANHO63oXJcVHohsBUPEOG2teO2117DTTjsltjPGUKlUUmoMPpr2qvvSl76Eo446Ci+//DLuvvtu3HPPPVi+fDk+8pGP4KyzzhqEIQosXLgQ++yzDzo7OzF+/HjMnTsXL7zwglXm5JNP1mlh1Ge//fYbtDF5eHh4eHgMBQbsURfHJN6isMcee+D3v/99Yvudd96JvfbaaxhG1E/G6Uc/+pGVqy6Xy+H888/H3nvv3dLBmXj00Ucxb9487LPPPqhWq7jwwgsxe/ZsPPfcc1ZArMMPPxyLFi3Sv/P5fFpzdSH0CUARHCUeoCRP1SYu2lOMTsSJtpKKpCKsECg9kLCcVJwnkZsuPm95EmFDFGtpyjzQ0cIrPKct0A5aBiXc0iqNkvmSAvImIk51nKkQERhobM0all4ZVOoyuN7HeMxiUBKX7yBAB2HoJKIfwSgRMNkcJUAkv7uapgAicniQwmZQrXWIPedCwlGU/UwOetEjc9xVZN64NZG4viUeokd6uY0ONqLMA4wPhWff+mobCrSKbXKxZkt70ZEIIbUjKFNHM6NZKckQKquzQCpWvq8iqRp6qDpxZJq0S1yvrTRvJpe5UvcITdExpQlBB5o7rtWoGYG6ER2T3pdSL4t5AlK85zLqOPUsjzeZWcDUFarj2cTy6KJ9+nnqpH0Yl9ug77NuVjS86CJUeA49XNzbRVLJ1DmlsUf1kMpAulqhWs02y/4YjUVI8fLU92xSB5XFlkagNdqxt9eMTi7h7rfzSxrvCcotL98AHEzFcVLXf4g8VbdWjdP8+fNxwgkn4LXXXgNjDHfffTdeeOEF3HzzzfjlL385LGNqeuLU1dWFV155Bbvttpu1fcWKFejs7GzZwFw88MAD1u9FixZh/PjxWLp0KQ488EC9vVAoYOLEiYM2Dg8PDw8PD4+hwZFHHonbb78dl156KQgh+NrXvob3vve9+MUvfoFZs2YNy5ianjh9/OMfx6mnnopvfetb2H///UEIwWOPPYbzzjsPxx133GCMMRXr168HAIwePdravmTJEowfPx6jRo3CQQcdhAULFmD8+PGZ7fT19aGvL85qroJ4FghDkQiLqcwD7QVXYiE2sYLlpaViKJUQWhaLGXlblVP6CMYpQCKth9rECsgbEb6LpKwtspBUZR40tbZO0SEZkFG0D5t4GEcvBxLWox0Vl2OUtLY2cYDxWFdiR0GOo+OK8Yrv2pOGx1HEVeuBYZpH5hgIhzLbK5whILbVQ0H0seYJQV5pPlBFhQMRhDW4LgJ6IKzyt6MR6JKsGwBMyq+3PBPfrnagIDVN7UEf2mmsTTJzD4qxxhoMKvPNhfKoRgU9VnkKlp6xHkiJvty41igNqkStqOK1Yu00oqtqZjyDgZoRqBvRMel9KQxRIyySwzypKOOKLY1AE2xeYDCO1NAxmTnLunkRY0ivvi55HmHb3Fqsj0SOxrerIzQjCoh3g3qPdOZ7UXTu0Vr3Ui0vvGy4jF3y+jMdM8nxLKvJItl6v+bqpuugRDtJLVSjDFQ95InQkALiGhYdDWNEFNMvGKdQvp8oV+9nzzgNNubMmYM5c+YM9zA0mp44fetb3wIhBCeeeCKqVemWHYb4/Oc/j8suu6zlA0wD5xxnn302DjjgAEyfPl1vP+KII/Dv//7vmDp1KpYvX46LLroIH/zgB7F06VIUCoXUthYuXIhLLrlkSMbt4eHh4eHRH2ytXnUKTz31lPbkf/e7342ZM2cO21gI5/2Ti/X09OCll14C5xw77bQT2tvbWz22TMybNw/3338/HnvsMWy33XaZ5VauXImpU6di8eLFOOaYY1LLpDFOU6ZMwVPPTsCITqGx2cRDvC0txU2sIPRH2qKKrY0SD6UXlmBISixESCJtWar8dEAcNVgxUqruqGCT3B/nmOqSuielb6hwqq2cImEocYqSEf3bBCVcxG4CUCSR1BOpfHhK6yR+t5MAPZL1KnOudU2iT1UntkKVRVYgHHlCEBJVliMC16wTQ8ye5J2+XYQgmpGqyFuzW57il6uj0C4twwoCBOBac/Z6ZRvJ6Ik6fSzU550Shk5a0tnjO2gfKjxnxObicTZ6GQlcac2U5knpT8YFG/S5d/OGDeSllBWdOVGuCWaobv67FqHRsWfWzzgml4kyz7Wqk3aMZr5HIPaKs+vHuRHdMdQLEmgyIwFhhiYmjttUpBWMCzZilIzEX+GCrX25Ihjyf5THa71TAI4KDzAyEPq8qfm3MDG3QbepymSOp0HdU9r9mXXt0rRnWfe320ba9cy6FzP7b/CeEG30/z4PwNBOyvodK7St6XGvKIA+TjRDr96JG7sZ9t1jFdavX4+urvT4egPBhg0bMHLkSOx661cQtKcTAI0i6unDC8dfNmhjHQy8+uqrOO644/CHP/wBo0aNAiBCIu2///647bbbMGXKlCEfU7/vuPb2dsyYMQN77rnnkE6azjjjDNx333145JFHak6aAGDSpEmYOnUqXnzxxcwyhUIBXV1d1sfDw8PDw2NzwtbqVXfKKaegUqng+eefx9tvv423334bzz//PDjnwxL8EujHUt2mTZtw2WWX4X/+53+wevVqMGav7/7jH/9o2eBMcM5xxhln4J577sGSJUswbdq0unXWrFmDFStWYNKkSU33Z+l5YFiVhCMglThnkhEThJKYqTBh5j1T1lEIYSmp31Raq8qaLZKKtXaeZVUG4OggkbYG1Xq8aSmpdigB2g19UUgoKIj2EgGAEUTcEn0kwibGasScNtgo2V8ofxcIRYUzVIws4kpwsonXtp5DAkTG0y2YKXl+wbXWbPvceqyO2rVFXiAVUBrXKwYVbZ2WZe45HYuJVlBERWtKQhJZOqZ2UraiLkeEaA1Z6OSms7QXTWRjd0HBG2Ks6uUPs8o2oPVohbapVgsNsV5ZGhGHBbLPtSqT7Es9k7p8Slkz113ESaw9BLW0Yeb5MfMZqn4CMF3Xek+AocKp9kJVGB+IOGTrgnb0sW0ACI9O89528x9arEfKe8B9nlyvNnWvuHUTsZwA651nb6ep9dP6S48kXt8Dz+q/AR1UZjRyZLNQmlnWmsoIo4ISiubzLtsNZZmK8f4pWHH2OCop53CwICY+A9U4tWgwQ4jf//73ePzxx7HrrrvqbbvuuiuuvfZafOADHxiWMTU9cfr0pz+NRx99FCeccAImTZpkJfodTMybNw+33nor7r33XnR2dmLVKpEkduTIkWhra8PGjRtx8cUX42Mf+xgmTZqEl19+GV/96lcxduxYHH300UMyRg8PDw8PD4/WYfvtt08NdFmtVrHtttsOw4j6MXH69a9/jfvvv3/IZ3rf//73AQAHH3ywtX3RokU4+eSTEQQBnnnmGdx8881Yt24dJk2ahEMOOQS33357v8IkhDK+kLIYld6ok/YK7YyOLMz1dya9w9x1eMVsME51vBAGCnCGQGp2IkJRpJU4FxxM3Q23NEV5wlBWzJXsqizt5Dwii41QdcUxCPZGaYgoCEJQy8st4q5VKbfXYTiCBhgQ3QdiKy2sUS0CR8Xw+nO92TpoGaUoNH7HOeaEdSgetk5aEp6JRJ0HEV09oEonVrXiXlFD86TGWUyJi5XEwLxrTE+uerAs7wFYoY3EjhoIlJdabdj7U1kHrWlyWIa0+E1A7dx1TtmAGBGr5XNusshxOaUJtPVwarvwuJQOM/K8lnQsMSY9ssT2ibn16FOeuuVtJMuUzia5TE/WPagj2RvHScFRlOMtWRkMSF0GyrwXrPyIiiUnyXuwPx54uo2UGFC6fxUh3ziGNPYpbbwuTE/IdlpGp/EM9HGi360MTHvSiTGI95waQQ/noGToou9vrV51l19+Oc444wx897vfxcyZM0EIwVNPPYUvfvGL+Na3vjUsY2p64rTNNtskQgAMBepp2Nva2vCb3/xmiEbj4eHh4eExdOCok4u5wTa2NJx88sno6enBvvvuqwNvV6tV5HI5nHLKKTjllFN02bfffntIxtT0xOnrX/86vva1r+Gmm24aUlH4UINKhqeiooLLmEBFVME40XqEtLg+yhIrkipWR52acSpSIwcVB0BorJVyLCQRUTveViTMiqmkUOIEHQSW5xxgW2vKS6SDUkScW9G7QxIrOhjiGEslxizrqx7KnGuvOgaOEue6pmkZCkYuiUCzDAQlrqxLtU98GUV7sYbF91yEOGJ6nkSIQNFJS3qfOqfttE9EYzZ0DCGpahZReEbFOpU0Kz8txoyLRnVK9RA4rGHd8qQxlqoRtIrJslAvzo1zaqOUCFTxc9OA7sltkyTZJDfHn8l+MCOOE+CwTk5+Q2pGDrc0TjzBnpjbiqSiGdEirSAC0V6ga6ojMIr2yHJV/S6Kx2DEEoJgSUyY7wdK4ndBu3EcfZxY95hioMxrXo99Mu+5NPbJbCONPQJcBsm4BhnsU3bdxqcEAWE6B2cXKSNP4ryaBcJRNlh286mi0ltY3RtU9psbMo3T1sk4XX311cM9hASanjh9+9vfxksvvYQJEyZghx12QBiG1v4///nPLRvccILKj3hJMR0QMQ+GEuKAmABgp/IwXiCEYEywEd2kTbbJrJcONYJaqiCXoZHaI2+md4DxciDx0qHa0CkndutYiJCwRF1AuPeHKZq0igxBwMBR0bQ+afiPN+NAhRBsYko0KwSVepmTxJOoQOrE1egqXCzXqf3uUqGJIol0oDqR/oXo8xCSKorGuS/zQKdnKaKSEO2LBKyqbmQsc3C9v1G4S6MDRZpot4FaA+43gQGI3RXqHUvaUo4O32GkvlGi3bTlO6O3+Ktx67rLhZSYARqdpUpu9+Gm5jAnSqpt9Vyay20hqabeC/r+IkyPQYS8yKFbpl+q8LHaGNshfEsv8ymEhGsnj1KN58VdQjLPckh4yoQ1+3lPncRkiLKbWgKsM4lyA2lm1W0GIaLEPanCpHSzuC+VkkpNUnV4FuOci4C9W95kZEvCSSedNNxDSKDpidPcuXMHYRgeHh4eHh4emdha1+okVq9enerJv+eeew75WJqeOM2fP7+hcrfddhuOOuooKwHvloo8WEJwadLKpvVi0tSdtAzKucWSmG61IoijdHNHJNO1xMyWGYitaFg1wvKRrrJcLJMVjTAEJZ6DCiRQJFFNLqKPV3VbYomNyXZpA4Jwx7LU2+MULeJYY7YsAAGkGy9kuZDwOHQBT7anQIk4pwoRiBaFFmlFJjhWY86jYqS+SWM90phC09o0YQb+rLVtIMhyG6+FLFHuQPpX6G/y0qwlHBO1xq23OUxLomwiybLJQDnpb5ykzpbY2WGjVPnkuGxXdpMNE9uZtc0NKWAu1XXSMibn1gIQaX3erHbiTVm2j4VYIQNlTs6tRZFXY2cUyc6q58VdpjOPwYV5fVWqJR3EFhzdPNBOJmbKF3fJNuvZMM9RrWW8ZtinWst3tY6v1njdMYWEaKa7nXL0MLOce3yx1KCWY8ugoAVLddgCl+qWLl2Kk046ScduMkEIQRTVCpozOGh64tQoPvvZz2LffffFjjvuOFhdeHh4eHh4eLyD8alPfQq77LILbrjhBkyYMGHIQiDVwqBNnPqZyWWzQUDEJ9TWpAHCMEommF0ndQkmFGskEuqWtdanDCM1CqNg3ExuG0mdTlXXVRZNIEMIhHIUPTzSYmolVlSsUUgYNrFQW6ghmD6GCByUQ++rcKUjkOPjHD06PUXj1psLFULAFHerPkqSHYtZBSLKy/31OA5T61AkVUROChYdvI70oqiZvqT7dGCwUGbIBvcYKbHZM3P/QFie9KS89dtz6/VHU5Ul+m7V8TQSkLDWuEOIZ4DWCGOQyj5Y2qNkcE8zWS+ro5VJExu7DJMo52qe7Hsq4WQguy2CYWJOBMPsYSUUSVk7NqyJRuh0LCpZMNXPs3h+lLapDGrpGRsFle+2QL8LBMtc1BpLFr+3HK1bLQYqTf80EPYpSzxujcfRQblw65kBRikR2k+twQRBO43ZfIrkO8lkmpQWdijQisjfW+Kf5eXLl+Puu+/GTjvtNNxD0RielOgeHh4eHh4eDUN51Q30s6Xh0EMPxf/93/8N9zAsDBrjtKUjAEEAkkhGK7zCOJi0Q4rU9p4xtUnKMlExT8vc0A5QoBTFp1+kXMnS4hAUEFihAyqWRRfX6aQMm7hI9wCIFCxKT1QkgvFhPGZtTJZGBevLPifZrIyJSLNh8f+xDgTO/7HHios0Vkb1JepFWscUgKGTlvVxh4Rpy3gda9NlzPGbuib3vJvHJFzF5YgzrlGzqNfGQBi/em0M1PMvjbGqpXsR+9MZiLS2TY1TJpxDSGOgaqWnqX2nJ1klu93sdChm4FSXyXTb75Djy1OGdlrRz8KoYBNWV7sAiNAE44KNyKvk2wiQR6yFZJwk0iy5aV7Me9ncVyEEffJQIhAr/Emlxh9Ydf/Uug/qBc9Ma6eR4Jl6XwNMlO4/43rF9aHDsBRBdaLzOCBtUn8JxAnJg81g6eidjOuvvx4nnXQSli1bhunTpyc8+Y866qghH5OfOHl4eHh4eGzu4GTg4u4tkHF6/PHH8dhjj+HXv/51Yt9wicP9Ul0G1Nq1itGhNE8VLmIUqeSZeRkTJADXbJO57m2mIukgEfIQMZZca81cp49TpBD5oQhJAAoi0qQQigrnqKiAbLqcYMnyhpZDeQRSImKU9EhvuUjGWdrEA5Q4tdIxmHC9gaxzRAwvpBQ2inESJx+WfQYkedOZ9mJknNt6CAlHJy2jk5Y1W2cmTg5lYMtRtBclHup9JhtQj21S+62EzKQ1n1owx1br04o2GmnLPj888anVd3If059abdcaY0CY9REJslnqJ0TU/Eem4RGpekQfeRJ7vqqPCFQbyVhgTI8zLU2Ke83Ve6JAOIqEYdvcBmyb24CJQTe2Dddi23AtRgU9EImERZvdrIBXqtugm+XRzfLW81JGuics4/HH3Z52vRLMXca+WvdBdlvJa591H9Uck3P9a36MNlLvLcnoFyQPWSBUf0JC0Ely6CQ5FAlBkRC0kwDtpB5n2XoojdNAP81g4cKF2GeffdDZ2Ynx48dj7ty5eOGFF6wyhJDUzxVXXKHL9PX14YwzzsDYsWPR0dGBo446Cq+++mpDYzjzzDNxwgknYOXKlWCMWZ/hmDQBgzhxmjp1aoJS8/Dw8PDw8Ngy8Oijj2LevHn44x//iIceegjVahWzZ8/Gpk2bdJmVK1danx//+McghOBjH/uYLnPWWWfhnnvuweLFi/HYY49h48aN+MhHPtLQxGfNmjX40pe+hAkTJgzKMfYHTS/VrVixAoQQbLfddgCAP/3pT7j11lux++6747TTTtPlli1b1rpRDiMU61Q2dEGmpSYsz1grY85EIy492eRvxVipdsxYKRQMeUSx9wwBQh1VnNqpUSTTBIgI36MMU5ZxYVFVmLi0m3gOgTH2opMepnZMlqQF2AyUBVnhBEXtkUQGI8Y1AMFAdSGOmWVqZSIQrIuE1mlMsCkzRUMagxYSrjUm/fFgykIt1sllB7LQCs1Ts22la8/sulmpO9z6LutUKwZU3Yjq/YwkXS/OT1zO0TolmMok69roMxQiTqPCCEORdMsK3dqzU9XvYQWslvVG0R4dZVzplDpkOpFmn9csD7e0cvX0c61I3WKif9H0k20qVlDpuQTr5+rxxO8KmIjvpN5dRrynYQHHkAfAfOCBB6zfixYtwvjx47F06VIceOCBAICJEydaZe69914ccsghOhTR+vXrccMNN+AnP/kJDjvsMADALbfcgilTpuDhhx/GnDlzao7hmGOOwSOPPIJ3vetdzQ1+ENH0xOn444/HaaedhhNOOAGrVq3CrFmzsMcee+CWW27BqlWr8LWvfW0wxunh4eHh4bHVopW56jZs2GBtLxQKKBQKdeuvX78eADB69OjU/W+88Qbuv/9+3HTTTXrb0qVLUalUMHv2bL1t8uTJmD59Oh5//PG6E6dddtkFF1xwAR577DHMmDEjsZJ15pln1h13q9H0xGnZsmV43/veBwC44447MH36dPzhD3/Agw8+iM997nPvmImT8paIZIwPnY+IczBHp6MsoSIRXng6fhER1ouVKFLFcSFVy3IrkqrMiRfrmxRycu2dxhndNHP1ZlREkfRiJJE3k9RRpSFUiYIN69W1Hmt5AZlwdUC16lQ41dZ0BC69UeSRtMiAi63X5ItFMG0VbOIF+ZsitOI41W/fZerifpMHUCuieKP5/xoZE9A4M5U1HheNjK+R42qGgTLbyIpWnpYDzUUziV6zkNZ/LWYpbX96nWRfqidXL6F0T2YZyPfP6KDHYlMDwnTezE08jw5SRjGoZo6rUdT3kqy9v17SX7NOrWue1l6jyLqWVGrKAMiYcgRMvXcJRYmrZNDJPkNCdVlVZkhZqBZ1NWXKFOv3/PnzcfHFF9fumnOcffbZOOCAAzB9+vTUMjfddBM6OztxzDHH6G2rVq1CPp/HNttsY5WdMGECVq1aVXes119/PUaMGIFHH30Ujz76qLWPELJlTJwqlYqemT788MPaFXC33XbDypUrWzs6Dw8PDw8Pj5ZixYoV6Orq0r8bYZu+8IUv4K9//Ssee+yxzDI//vGP8clPfhLFYjIwtAvOeUNRwJcvX163zFCj6YnTHnvsgR/84Af48Ic/jIceeghf//rXAQCvv/46xowZ0/IBDjcCg2kSvyFn/cpCiVmTCBwVHsdvUmyTaoOCIJTWTChzZ8U53GzPEQboSOEBoaCgOnZUH69iHRNWZjcrosRL2DYQN+oIABHfiBLvFX0a1pWbn8rVa6UefxNMk205c5TkljICbToHtNrSHE+mloRxWCySeWxFUtUDZJwkst6ntWmiUQYoq34j+xQaZaWA5sYF1Geo+ju+ZhgIezy1mah6rEQr0KjGKats1jlr9tqYcI82ZrUZtg26LVZTx19j2XkZB4qBMFCNsE/pbQ7smmddV5Nlj1k/6f3LudY4MbniEOl3v2Cmhkvn1Mqluq6uLmviVA9nnHEG7rvvPvzud7/T+mYXv//97/HCCy/g9ttvt7ZPnDgR5XIZa9eutVin1atXY//99294DOVyGcuXL8e73vUu5HLDG0mpaa+6b37zm/jhD3+Igw8+GMcddxze8573AADuu+8+vYTn4eHh4eHh0ULwFn2a6ZJzfOELX8Ddd9+N3/72t5g2bVpm2RtuuAEzZ87UcwKFmTNnIgxDPPTQQ3rbypUrsWzZsoYmTj09PTj11FPR3t6OPfbYA6+88goAoW267LLLmjugFqHpadvBBx+Mt956Cxs2bLBmj6eddhra29tbOrjNBdSJIM6QPuNU2p3QoB8LCPSaeASutVIdsDUzRRVvhKg+4+jgFR4hJOJ/AHibVbEmGgUA2MDa0M02osJjD72QUHTSquzT1EMkWaGYQatvRdayoNN0Gqq+Gd1YQbF0aZZ1M4xLPDZbr2RGPs6DAQQoGcfZrMfgQPRKzaKVnnIu6rEgjWimGjkXtXRM9niS5RrRQ7UKzTBLjezrD8vUDK+i3hGhMQaq9Xe9Ohdmo6jnPdfovlrXvxH2Kau/Ru/vxj0j02OLqXe00jeJbenveTdS+Ds5cvi8efNw66234t5770VnZ6fWJI0cORJtbW263IYNG3DnnXfi29/+dqKNkSNH4tRTT8U555yDMWPGYPTo0Tj33HMxY8YM7WVXCxdccAH+7//+D0uWLMHhhx+utx922GGYP38+vvKVr7TgSJtDv/guzjmWLl2Kl156Cccffzw6OzuRz+ffsRMnDw8PDw+P4QUBBmysNVf/+9//PgBBmJhYtGgRTj75ZP178eLF4JzjuOOOS23nqquuQi6Xw7HHHove3l4ceuihuPHGGxEE9QOJ/vznP8ftt9+O/fbbz9JE7b777njppZeaOp5WoemJ0z//+U8cfvjheOWVV9DX14dZs2ahs7MTl19+OUqlEn7wgx8MxjiHFQxcW4UlTlDicUbygsESMcR55VQ9IM51FILq+zZChKJhaxZdTx3HiunjFXQzEZ9lHQvxZiTWp3tYHt1BERt5j+6jRzJU4je32J3A0mSRRPTgLLiWdCNMgNJWbSJ23JRKg+xOI9amjrvEuaXfYohz74U0Qp6bXnQ2O1XzuOX/jbICpoWaZbHCKTMQNMvI1Dun/Y0t1SjDVGu8quxAc+k1g/4wjS6aYZmaZQibub7FlNx8tfRXjNseoCHhmqlt5rqZ+7P0b83G/mq03zQ04/UYQTD7Fa4YJzvuHszVBm4/04GjgRp09GOpLbWNZoo3eGynnXaaFcfRRbFYxLXXXotrr722uQEAePPNNzF+/PjE9k2bNjUkLh8MNK1x+uIXv4i9994ba9eutai6o48+Gv/zP//T0sF5eHh4eHh4bL3YZ599cP/99+vfarL0ox/9CO9///uHZUxNM06PPfYY/vCHPyCfz1vbp06ditdee61lAxtuKEtCWRgWk8AJSiq2EoniBECEg3KAKUZDWlnKO64CplkokV8uZqsCEEsbRWXeOQBgYOjhVfRoqyiHSFpnJRZiE8+jj28EAPSBWbGjGGDps5pBmiXdqAVoaqdUzCogjoelxkQxcNZFjcuN9q20HwE4QAhG0T7ZN7HYqTSkabbgjLW2V2FjVkmzlstgM1S1GJH+6KOa6W+w9Uy1MJC+G42l1R/9U9b1UH2abVL5zFVU3kmS9LAzWdaAAJuYKMvA0UmrmnGq8DhekWJwGjlHWcxTI1HJazGNLhtVj5WspWE0z1nEgW7O9HNoaiMpBGOvnrkKuPSSlhu4yupQcyitwzAwTsOJD37wg7j77ruxcOFCHH744XjuuedQrVZxzTXX4Nlnn8UTTzyRiOs0VGiaccpKrPfqq6+is7OzJYPy8PDw8PDwMMBJaz5bCJYsWYJyuYz9998ff/jDH9DT04N3vetdePDBBzFhwgQ88cQTmDlz5rCMrWnGadasWbj66qtx3XXXARC02caNGzF//nx86EMfavkAhwsVcFSkPkh4sYgbrkg4eiBjEwEo8ghBnemnstxqxQBROZOCFGuswhm6GcMqmWttEytYcYhKLMSqKCfLBiiSKtppzLZ0y7x1EQg6aTXT+qqFZtiZwGnTjWTuMmBZrFMzWqf0scT9uB6L9diiWu2rsdaKED5YGGhW7nqMVSMapCz0Rx/V6LkbqAfjcLJZCs1Eee9Pm5QIJmZDJIIZdtAyApLuRaayIZi6qB5GsCoaIeqSMiD3tZMIHUTof1TZesdTT/Ok0Hgk/ea1aI1cc+b8T0nMOkVK02SwdAxA4NTxGHzMmDHDSuMy3Gh64nTVVVfhkEMOwe67745SqYTjjz8eL774IsaOHYvbbrttMMbo4eHh4eGxVYPzWBUykDa2JHR3d9eNQt5MIM9WoemJ0+TJk/H000/jtttuw5///GcwxnDqqafik5/8pCUW39IR8djiYByWFqmdRijKeB8FYuemA+L4S4pBcmNAAcAmDgDEikjOHAtJawxAEIGgImO0dLMiepjQmEWgiEB1/JZNrIANALp4CQDQTivaWgtr5HNLQzMsU2p92U3B0AlEaD4/XUNsQYp3hevh5rbXDHtj5tZT568iM7abDJvLttVDq3L1NYpaxzwQNspFMl5T/Tr98drbWtCIl5s6f0Udw40iMq6qWScg9rZNPNSMNgC0BxV0SsYpT4ij82w81lq9uGxDEeUcaJxZNzVOJR4IRk5rWJPx34TH9TvXq264scsuu2TuUylb0qRDg41+xXFqa2vDKaecglNOOaXV49nsQAH0caKT6rZTjiKBFb6yT1O7BCHhCHmcQBJGUsgSZ+hhomwZFIzHVHlARPLbtIeQSeHzmqgDALAu6rASmpZYqCdVHVIAXSRV+b/94mzWzdg8D/WQNWmwgmxy+w/0QJeeqP6fJ/7w15oIZPVrhmswt5lQL9dNPEQHqVjBCJtFsxOtRtDfyVgrQyc0Gp7A6n+Q5BeDsUSWhsEKiOqiXmDKDlJJHU8EgrK8d3sYASVcC8lXVbsQEIYxdBMA8d4oGsYIc9pRRgNgpzdyUx254x2OoLHNhFIxU9goY1S9o6l6fxrGbgjavz+i/UErNEpbkMYJAO666y6MHj16uIeRQL+u+U9+8hP88Ic/xD/+8Q888cQTmDp1Kq666irsuOOO+OhHP9rqMXp4eHh4eHhsZfjABz6QGsNpuNH0xOn73/8+vva1r+Gss87CN77xDU2TbbPNNrj66qvfMROnIiEoEgIGoIKYZVgn3XeV4LnEg0SaA8X2VGiEIiIrAGUsrBQWn/rdw4DIsPJUcDX1PSRAJxXLbxEomLQU10ft6OMhqBzPKNqHAFxbWWbIAzGOuM+BLsU1A3sMpuXJ+91XWr1GWJF6YvZ6COXSZxHV1OWP4Uaj42iWmWr0OtW6Bq1OcjyU2FzGlZYySCGo83wrt/7V0QjkSaTfXW9UR2Jq+BY6aVmXjcOfUFQ41Uv+qo5KwtuBajIsgu4vOb6042kUDTPkWex3nfoh4Xp5MwSzlzu52q8YZwCI0MuHRiZOuPgMtA2PgaPpv1nXXnstfvSjH+HCCy+0MhTvvffeeOaZZ1o6OA8PDw8PDw8MS5Lf4cTUqVMbSskyHGiacVq+fDn22muvxPZCoYBNmza1ZFCbA0qcI1SMD6BTpQRcWBwbuBBnr4vaUJSaAgaqmR+5AaCRtnKs4GpSX9AtrbdOWhZ1ZZ9meNEAIhzCu8J1ok+2CW9Kt+FNrIDOoBcd0lJsJ8wWKxvBMJVIPTMNQwPnpVUwx1DPXstiltyUJhRAt9QnFJ3gf+nJOpPbIg5UDAvY1S8JvZYSi4o+mhKZ17Cu+xuotL+ox0y1SivVrD3enzAUVn/9GHd/+xoKFmowEkxXEKA7KqKbCUF4iYXokGw1IM5hRV7JTTxEhVMEmoEKEYEglErPgHK0m8FmmxxfKwTi9fRxzfShGOUOVPSxAxDPu+GWRglQ5hzlLc1VbQvB8uXLh3sImWj6b+W0adPw9NNPJ7b/+te/xu67796KMXl4eHh4eHiY2MoCYG7OaJpxOu+88zBv3jyUSiVwzvGnP/0Jt912GxYuXIjrr79+MMY47BCzS8kagTq6FoYSD/X3CIHWOFHCwTjQLfcDsYdGrBNQbJRKy8L1/x3GPR4SipFKt0Qq2MQEw9QZ9GIU7UGH7DPvuOWbARvTLP9WskyNMhSt6rPE42tRIMKrTluHiD0KU4PjZbw/KiB4OyroazhSunan1jW8a6z9/WQD+lvPRauYq6xz1AwT1Szb1ChT0Qir1B9Wptk6aYlpWwEz4ONgBP+MOEU3a0N3JGLkjMt1a288BfUsMU4QcaoZKAqGDaxdM+0dKGs2XQWMrOVl1wq0kmHKrEuEjlFdY5fFjkA08z0k2ArDEWyuaHri9KlPfQrVahXnn38+enp6cPzxx2PbbbfFNddcg0984hODMUYPDw8PDw8Pj80CTU2cqtUqfvrTn+LII4/EZz7zGbz11ltgjG2W7oIDhauhUf+3EwYGoAuC8WGE6PQrFfl/SaY4qRCKkDDtfQJAxwgBbHakzPJgBhcTkiqY9KILidjTQcX+IqEYFYh9PTyPIqloC4xCsFUmezEUa/Bp8Y9a2bYLJgNRrpFB+ybmehCAI5QsE+NEp6VpxItOjf3tqIAyD3RC4GbH1SrWaCBwx9AqBqrR69uIBd4IizJQVqkZpqYZ5mhIvOta9CyZnrtAnCqqxENsYgW0S23klHANQsJQlk+L8MwVgwgRSU++mMEdE2y0+rHOifG+MeM9NT/2xssOViDNDhIh63IPeVDWrZBxqlQqmD17Nn74wx/WDIY51Ghq1SSXy+Hzn/88+vrEH5WxY8e+IydNHh4eHh4emxW2Mq86AAjDEMuWLQNJyQwxnGh6qW7ffffFX/7yF0ydOnUwxrPZwfXcUtBxkkikNU6RZJBCkh4CPgDXFp/6reM6gSIC0W2UDWZKxWYKdERyqtMhTAy6QQk3vL/sG0wkK64ft6k/SGh7Gri3G2EtGmmHQsTSUuklulkOHaQaJxROY4NqaHa6eWyJA7XiwJBMBmdzYJvSoMbVLPPUSi3TQBmmevVr7a/HJjXKIEUtUOeljSUtgW1WEomgWUWN07Riw7ujNuRJFduGbwMQXr2ZWQUIQ4nH77ciLaOTRFZMOn1cxK5bK+aUwmBFjPd4Z+DEE0/EDTfcgMsuu2y4h6LR9MTp9NNPxznnnINXX30VM2fOREdHh7V/zz33bNngPDw8PDw8PLBVplwBgHK5jOuvvx4PPfQQ9t5778Sc48orrxzyMTU9cfr4xz8OADjzzDP1NkLIsCbcG2zUsvFMKzQgdslUby6jNYZkcC+lk6rwnGaYuhkXLBYT7EpA43aV15eZVyqU3h6inRqDHwD6GyW7VdG1RZ4orrVmG3geZcPj0T33tXRNPZyihwmmqcwD5DMYw3qIHG3ZlohWe8xlsTn9ZZcaY67Sy2TVbZRJahVzlahXp1075pl4PyiWqj6DFV+lCBTdXHjRlXiIcbkNGEV745Iym4EoazNFoeNRZo3fKOvGcWKcICJEx0YS28yxZhx0kxiueFpDia01cviyZcvw3ve+FwDw97//3dpXawmv2Rx3hBD8+c9/bmg1rV8BMD08PDw8PDyGEFuhOBwAHnnkkX7VW7duHa6++mqMHDmyblnOOU4//fSGiZ+mJ05bgrbpe9/7Hq644gqsXLkSe+yxB66++mr867/+66D1Z1o7VrRqwhGAWVaYad1SwvWNHEHEgFI6Amp54oUo8wCbZDzxTbys2xwdVBGCICQy5go4KpzLPEpApkvIOwAUdt64tP1A/QjhJR5YmjIKpuPSqPbjHHtmDK9km5tLvjoTjWqb6rFNjaprauuNmqvXX+1SelvpzFKz7Vj7eW22irVAF1WB/T4AYuba7F8x3orBCsAtVrvEQ7xZ7QIAdNJebJ97W8crq8em5RF7l7maLNObtcKpxUBFIKAgVgT+gbBMgxETKgvuODPZ03fwO3ZLxyc+8YmGHdjOOOOMhttteuJ03333pW4nhKBYLGKnnXbCtGnTmm22Zbj99ttx1lln4Xvf+x4+8IEP4Ic//CGOOOIIPPfcc9h+++2HbVweHh4eHh4e9XHMMcfgxhtvRFdXF4455piaZe++++7U7Yw150jR3d3dcNmmJ05z587VmiYTps7pgAMOwM9//nNss802zTY/YFx55ZU49dRT8elPfxoAcPXVV+M3v/kNvv/972PhwoUNt8NAMpkkEwGYztmkrEtX69Sw1w6nuo2Ixx52KguU0j+9Xt4GowKRF7CdrkNIzDZMtqk+srwG6481/j5QlqVRXU1aP2rsRcLQw4I4dlONGEsReCZ70kH70EEqcdRx2U5aeVehFpBsdme4tE9DxTbVu8ezmIJm9UzN6JeaYZhqjqOfrFIzups05shuy77bFONk9s0ctjqSbam2V1VHYhMrAAB2zq9CO61Y5yKNSdIgyNQPmocZEoai4S0corXR4JtBf3RPlp4sYzzD5QVI0AKNU0tGMvgYOXKk1i81stSWhddeew3bbrttzTI//elP8clPfrKpdpueOD300EO48MILsWDBArzvfe8DAPzpT3/Cf/7nf+Kiiy7CyJEj8dnPfhbnnnsubrjhhmabHxDK5TKWLl2Kr3zlK9b22bNn4/HHH0+t09fXp+NSAcCGDRsGdYweHh4eHh4e2Vi0aFHq92Yxa9Ys/OEPf8gkcW699VZ86lOfGvyJ0xe/+EVcd9112H///fW2Qw89FMViEaeddhqeffZZXH311TjllFOabXrAeOuttxBFESZMmGBtnzBhAlatWpVaZ+HChbjkkkvqtp1lvQTgsYUorYFQ50hjCAmzIoRrbQKo8Dgx4jgxEK21CRDnwOugfQgRoSQ9v9ZF7dqanpzbgA7CUJEeeD2cY6jtCsVWNMo89TfCeK16SmcRR2aPNPsUIJ3xqRjWtooHlUekI7WrPhni6x+A12Xo1DgrRp9FMjwed7XiTlnl6kR+N3MepvfDa1r4ykp3rfh69ZLtpHuTpbVjPmtuG2n1RdnkWEwGqB77VG9MJrLaaqSPkCpNUXLMip0KwDULBQBrohH6nIyRjHVaDClV1/weppXjMQOlrq96PvpkceXpauauy0Kzee0Gw5Mu9fo7z487xiHTXW2l4QjSsHbtWtxyyy244YYb8PTTT2eWGz9+PA4//HD89re/TYQxWLx4MU4++WR885vfbLr/pldpXnrpJXR1dSW2d3V14R//+AcAYOedd8Zbb73V9GBaBddFUS0hpuGCCy7A+vXr9WfFihVDMUQPDw8PD4/GsRVGDnfx8MMP47jjjsPkyZNx+eWX46CDDqpZ/pe//CWiKMJHP/pRVCpxEus77rgDJ554Ii699FJ86UtfanocTTNOM2fOxHnnnYebb74Z48aNAwC8+eabOP/887HPPvsAAF588UVst912TQ9moBg7diyCIEiwS6tXr06wUAqFQgGFQiGxnXHxaWY9m4EiJLF3l7C0bA+TLN0FBUMEigrPybYYOmWuOuEdQ7XlW6QV3Y9grbiONFxPMzKYsUgGK1ddI6BQFr7mijLLBiComDoMwlA0yhcJ0+xZhQPrWIiSvC5jaAmFOkIDxU90s5wezzjaBxCeqQ0bTDaq0cjh5njSrqV556ZrvuJKWfdhGquQVc+9V819LlPCauZESxktybAZ693DKfqjrDrMiCvmIgJJ1TJlwWWhelhet+OW0951bhYBHqAzEHGb1LvJPI9ZY3XfgYpJo8TeBsTMpNpXBLOuN+Oxp2qFk0TbWcykiyHJF+j0NdxxnLZWvPLKK1i0aBEWLVqEjRs3Yu3atbjjjjvwsY99rG7dESNG4Ne//jUOPPBAfOITn8Bdd92Fu+66C//xH/+Br3/96zj33HP7NaamGacbbrgBy5cvx3bbbYeddtoJO++8M7bbbju8/PLLuP766wEAGzduxEUXXdSvAQ0E+XweM2fOxEMPPWRtf+ihh6ylRQ8PDw8Pjy0KWxnjdMcdd2D27Nl497vfjWXLluGaa67B66+/Dkop3v3udzfczrhx4/Dggw/iqaeewmGHHYb/+I//wPz58/HlL3+532NrmnHadddd8fzzz+M3v/kN/v73v4Nzjt122w2zZs0CpWIeNnfu3H4PaKA4++yzccIJJ2DvvffG+9//flx33XV45ZVX8LnPfa5f7dVbm6eEI5Br/RUkvWOyrJQ0zx4R88mMLB6XMfPYFUlFlysjQIkPLFq7afcOPOrM8IES6GjrFU6tGEyuxigkQIdkmSKQml5f3ayoPZUoSY/fZI1D/t9Jq+hhQm/CICzskryGjBMUSRSPEVy3W4t9UqxRfxiqRtrVZRs8RhPmfVSLacl6lhgfgFVf63SkNBkY197aTupEEk8bXhZzVPNQaj9pyXHV99TVXrgZGqmQROgKSna77nVPibfk6r8Uc52l+wvr6OWUtjACATgfNi+1ZjHczNPWFjn8+OOPx/nnn4+f/exn6Ozs7Fcbf/3rX/X3K664AieeeCKOPvpoHHnkkda+ZlPFNT1xAoSG6PDDD8fBBx+MQqGwWWUu/vjHP441a9bgv/7rv7By5UpMnz4dv/rVr7aIwJ0eHh4eHh4ewCmnnILvfe97ePTRR3HCCSfg4x//eNMhjv7lX/7FCpXEOccdd9yBO++8U4dU6k+quKYnTowxLFiwAD/4wQ/wxhtv4O9//zt23HFHXHTRRdhhhx1w6qmnNttky3H66afj9NNPb2mbWfmV8mCoGLnNyjyO/h0Rqi1boLGcWKpMkZRRlrqadlKGUEFRXSaU5SucNpX7qZ7OybWdtyQGKgBHh9R+lXhgsYVuVO8ARJtfoaERq4AkjrmTllDhybyCQOx1Vw9vRkVsYEX0cKGnC0kVHaSsdWwdpIqCzkaf9MBzGaGBME9pSGunVpR0oDEWCqjPRClLvta9m8VG1WIB4naT+xhPryeeD5fdcaL9O+1k9Z1giQwmyI0EDtgxmWrpuxJ9Ge26Uayp0U6eVNFO+vRxmKy32595LdQ7wy1jRgM3j6bCieWxmjlu2a75nKo+BjMad61z2Qib1Eh8v0FBK5batiDG6brrrsM111yDO+64Az/+8Y9x1llnYc6cOeCcNxzccrBSxDU9cfrGN76Bm266CZdffjk+85nP6O0zZszAVVddtVlMnIYSlAAdMt3HJrlNPVh5RImH1HxZWZMYwlBEFWMCEb2UmmEO4D6szHC1b/5JaIZyrnV7DvWkqpFHRb3wQ8ShCdpJlPqH35wsxMtkyT8OnbSKirEc6oZfUOfBHV8AjqIxqd5EGMpy6a7EQkSU6mtRIhUdxmIULSM0lu5MqKTN+twPYpiDepO3WuEnzEnVQJb1dBspfTU7maonLs+q0+xEKrOdjCW9tDRLblDNRoT3aeMrkrJ2JAlJpBNYB+DW8qZrULnGmLtfOLrEYzPHVDHDrEgBetp1KhJmlc1zZgXztY9pYPd4w0GIm5xURU6g5EHFVjZxAoC2tjacdNJJOOmkk/Diiy/ixz/+MZ566il84AMfwIc//GH827/9W2Zk8b/+9a+YPn26lhDVw7PPPotdd90VuVz9aVHTf/tuvvlmXHfddfjkJz+JIIit8D333BN/+9vfmm3Ow8PDw8PDow6Uxmmgn2awcOFC7LPPPujs7MT48eMxd+5cvPDCC4lyzz//PI466iiMHDkSnZ2d2G+//fDKK6/o/X19fTjjjDMwduxYdHR04KijjsKrr77a1Fh23nlnLFy4ECtWrMAtt9yCnp4eHHfccZnl99prL6xZs6bh9t///vdbY66Fphmn1157DTvttFNiO2PMipOwpcO1JFxrzLSATZYDAKicj26SASzHyOWYdSwOe6AsuHYqztm6qAgAOummGdagwnM2zU+Ytk5DEvU7zEAyYGBzbTSXCWhoEDN4gBrhQOj0gADgdgDALKYljXlS9SiJQMkmjKE9AIANrIASD/USoBnUdBTtwfhgI9qpwQ5IKBdualn/xtiGIKyBi7QwB1nnSDFR/VnWc+9X8xk0GZKserVYG5M5ylrCitsxmeBkcM1a7WQF2HQF3er5dpmntPADuj8n3EnEKUrIWUzWOtYOABhFezXDmdW2XjbjMeuUBpM1Uu2Yx8440eyWey+HhKOo32VAyRCOh4Tr5cAe2Uczz3KrmaCs9oYyNMJQ49FHH8W8efOwzz77oFqt4sILL8Ts2bPx3HPP6YCSL730Eg444ACceuqpuOSSSzBy5Eg8//zzKBaLup2zzjoLv/jFL7B48WKMGTMG55xzDj7ykY9g6dKlFgHTCCilOPLII3HkkUdi9erVmeU457jooovQ3t7eULvlcrnhMTQ9cdpjjz3w+9//PiG2vvPOO7HXXns125yHh4eHh4dHPQxD5PAHHnjA+r1o0SKMHz8eS5cuxYEHHggAuPDCC/GhD30Il19+uS6344476u/r16/HDTfcgJ/85Cc47LDDAAC33HILpkyZgocffhhz5szp79Fg/PjxmfsOPPDAVHYsC+9///vR1tbWUNmmJ07z58/HCSecgNdeew2MMdx999144YUXcPPNN+OXv/xls81ttqi1dp2VQiAPBgaCTSw+rRUEKPGKLMt1+pWQiNADZjqWkFS1FVhiOTuBJ4jFQuU1M9U63qcZy2lzDwaX0HDw+mLnmu01II4Gslk4IVyP9Jg6aRXdLKcDa5Z5DpsiwUi+ybvQwwsYF4i8iaNon9WOxYI4ovdU9meQLeJ6WiirrCya5a5eK8hmbcbIqOe0ncb2NKp/qsca1WOfmkntYsJ89muxTKJs+n4GijLPSecSsX1FeTQAYDTdiDFBb79c7N3z20iiZsWQBuAoawcYGRxTeWXz+L0agSAE12mLNIuVoUVsdDxZSaIHgsFoMxUt1Di5OVmzAkG7WL9+PQBg9GhxHzHGcP/99+P888/HnDlz8Je//AXTpk3DBRdcoMMSLV26FJVKBbNnz9btTJ48GdOnT8fjjz8+oIlTLSxZsmRQ2gX6oXE68sgjcfvtt+NXv/oVCCH42te+hueffx6/+MUvMGvWrMEYo4eHh4eHh0eLMGXKFIwcOVJ//n97Xx4nRXG3/1T3zOwuCyw3C4ocGq+AGtEoaFTUACZGjHlFE6OgRF8Nh4p48JpEBBE1HjEYxSt4JEZ9FaLGBMUoGFR8FcnPW2MEIQqCyLnL7sx01++P7qquqr5nZy+o5/NZmO6urvpWd09P1VPP9/udM2dO7DmUUkydOhVHH300Bg8eDMDJyrFjxw7ccMMNGD16NJ5//nn88Ic/xGmnnYalS5cCANavX49cLucLJRCVQ7ato6Q4TqNGjWq2UWJbgU3ldXp1EqOu/wPO/1nY3HuGpU9ZbznBu7oYO1FNHPZJnRV1NhphgXAGogAzMlULc2PnszZud/q+lhKArq2u66vJSRkK8IJP5tz5fDaInQnyvovpalLOT52lZImNrMsGGGQbOrv3tIFmkKcZyf6s4EWp1qOyTipaSgMV1EYY+xSX3gVIxj4FPYdRCYU9u5IxQWlYI9NNmxSFqMCVqp5JLB/FMqm6JhEFauKLovODlSVFbLW6AADqaQ7dsdPXTrCmiwayTGHvADF5ObONBQk2DC/wLNdGUaZLlL3xGtxE6IDzncgSizNXot4plr0LYITK+f5qqXdhOQNgrl27Vso5m4RtmjRpEt5++20sW7aM72NhAcaMGcNzvh1yyCF49dVXMW/evMhcclE5ZNs62lOYHg0NDQ0Njd0TtEx/ADp37iz9xQ2cJk+ejKeffhovvfSSlIe2R48eyGQyOPDAA6XyBxxwAPdQq62tRT6fx+bNm6UyUTlkVWzZsgX33Xcfpk+fjq+//hoA8NZbb+Hzzz9PdH65kYhx6tq1a+KRIetUe0ceJvIwPA2DONJXLwWbTRGHGWAzIZMUkKcmGtxwlVvsKnQzHa+qLVYVcsRCB4Mp+W0UqIk6wfOuIMzatlueaC1Litz7rhSGSUU56mgJJGHGgnQsXlwtIU4OBRqFwIt8pq2wN3EJcktVmNlwnhV27atJAV0yeW7bBqsDGlyvzA4oBLJjgJsihAazNoG6rFZin5LonoB49qk5dU9sf5jHXZyWRWWb1PKS55mPQQrWNHlslFpXADulMFeW0n6OWKi3nOTA64td0Dfj6VxYvKVS04r4+2rIx9zDBeGzBeJoPFlSYiowbCCwqMDA04yU3kq0Nc4WVl+YfUnODwJ7LpqW8Kptg1KKyZMnY+HChViyZAkGDhwoHc/lcjj88MN9IuyPP/6YO5ANHToU2WwWixcvxtixYwEA69atw7vvvisJysPw9ttv48QTT0RNTQ1Wr16N888/H926dcPChQvx2Wef4aGHHipTb5Mj0cDpN7/5Df+8adMmXHfddRg1ahSGDRsGAHjttdfw3HPPtUpiXw0NDQ0NjV0eZViqSysunzhxIh555BE89dRT6NSpE9ck1dTUcA+0yy+/HGeccQaOOeYYjBgxAosWLcIzzzzDxdk1NTWYMGECLrvsMnTv3h3dunXDtGnTMGTIEO5lF4WpU6di/PjxuOmmm6ScdSeddBJ+8pOfpOtQmZBo4DRu3Dj++Uc/+hFmzpyJSZMm8X1TpkzBHXfcgRdeeIGvc7Z3UFfjZMN0ZzcOTNjOwxfi3ZEFRdaNzltn51BpFLGl6MxuOhkN+NpyYkpUkiK22ZXcU66BZpy4PnBiWqgzUgsG6m1nttg7s9U3Y046QwyMI1Oih0pzIDIdTEQXg9ioKAbCVy9nVKnEOhkoX7yqILZEbMdjKoHu5k5stJw4KQVqeGwZIYCgc4pKpqpGOPcdVyOBt0AMqCjmCYhnn5ridRf0/AQxTEH70sIW4hGJkOMuRbNMThlZK6Qel9oMYJosGDBcRsemBq/ni0IXDMpuQBc36S9jeMQ4aGHvGFXfpGZDUNkm0UuRRQsX6xU9i0VtlE1JeF9j2b9ohins/DT3nV3nYksx9mX0qkuKu+66CwBw3HHHSfvnz5+P8ePHAwB++MMfYt68eZgzZw6mTJmC/fbbD08++SSOPvpoXv62225DJpPB2LFjsXPnTpxwwgl44IEHEsVweuONN3D33Xf79u+xxx6tJi5PLQ5/7rnncOONN/r2jxo1CldddVVZjNLQ0NDQ0NBoXbBEuHE477zzcN5554Uer6ysxNy5czF37tzUNlRWVvrCJwDARx99hJ49e6aurxxIPXDq3r07Fi5ciMsvv1za/+c//xndu3cvm2GtjTw1kaWGG9VXnIm5HAR7nsQJCqWwiTe72U4rsd2ClCCWxVSx3aS964s1AIBKo4AsLE9TRcD1TiacmE/dzB0AgGqjka/9A07sp6bMkJuLVSolmWZSW9TzVTYhTg8led8JZX1MDtMxBLA3tnKOuC8tRJbDhBOpvIvheD0xvR3g5PNirJNqc5ANBvzMTVIGKtzW9M9L0rqldprIPoUxjnGavqj8kkHHfXqegHJBnnNxLJNYdxhTJdkRoTNi2z2yTi7MtQ3dsDbXHTniRF72WCFP05lzmSr27DHPzg7ExnbbkOzn51OnDta2k6fOuzti8l/R+47ZV1AYphzP9Wi5/wYz7GkZprjYWPy8GP8pA3Yk61tWtALj1BYwZswYzJw5E48//jgAgBCCNWvW4KqrrsKPfvSjVrEp9cDp2muvxYQJE7BkyRKucVq+fDkWLVqE++67r+wGamhoaGho7O4oZziC9oSbb74Z3/ve99CrVy/s3LkTxx57LNavX49hw4Zh9uzZrWJT6oHT+PHjccABB+C3v/0tFixYAEopDjzwQLzyyis44ogjmsPGVoEN4rBC1HBmFe5+040ObrlPYI5aEuuUp54WaYtVjSwpwnZnMw00y2dQFgjy1OSxnuqKFag0vFx/laTAZ2qVRgHVaAz0BFGzs8ehrcRfKtWOyJxfwnQqLQMVNq9UZ5PidtA5pWqinMjI7oart6p0n5VsQI1SjJ2IelX2CYjWRTEkjQvVUmDegy2NSM8494rGsUyAoD+K8JgL0zH58tXFMEue7f79fbNbAACf7uyJTxp6o4tZB8DJjyhq7gCPafLqcz+4+ieRHQrTdOVgocYocg9hW/Ccy8N02XSn4gZqcE9Sh3X1MiWo77lyMkxx+QCjYMHErpOhtW2ic+fOWLZsGV588UW89dZbsG0bhx56aCJheXOhpACYRxxxBP74xz+W2xYNDQ0NDQ0NDR+OP/54HH/88a1tBoCEA6dt27ZJUUbjsH37dsltsD3C0Tg52iSTCBonCifuiLtpESLpnWxKUEcdxqlATWl2WHBnWACbsWUk/VOOWDyTeYGa3DvPhA0DFAYYA2HxOE6AHEU3CqWwPC2WhykBomK3REGNfKxmehdZm6ZEhGWz9SA/kQaaPLN7VMRr3/GY+GoSCxdRLigaeVKkzftXCsrBNgVpm/zMBWNGglkkZzuZpilIzxQUlylOx6R6yfn7FaJ5Coz15NTVK7cdXzTW4F+ZWgBA3+xmdDHq0d1loIAoHZGjwasLyOMX5pHI4pDZxLPBie/kcbQF17MYcBj3bGCvwvsXec8SMkxBWic1hpaKgtY4NSumTJmCffbZB1OmTJH233HHHfjkk0+kcEkthUS/E127dsWGDRsSV7rHHnvg008/LdkoDQ0NDQ0NDQ9M49TUv/aGJ598EkcddZRv//Dhw/HEE0+0gkUJGSdKKe677z507NgxUaWFQvtf9S3C9Bgiyrgeh33irBMAQ1C1eBnAne0ssRwPONuZO223qlAwMm5ZrwwAdDJ2wobBGag6uwK93Mi+WWL5Zkx5l9fIUQtZInMJUcyG6rWSBq2tj7LiWJuk5gmR3gGZsSuFeQpjXLIgvL5qAtTF2J/k+qb1Jkx+z9K9UcXr01Q2KEnk8DCEsWh+z7jo41FxibzPpWuakuiZkrBMKrsUFQFb1UKJ2Cu3Cf9p6IpP6p2UF5tz1eiaqcM3Kpy4OD3NHVxb18VwLt4Wm7j/m6FMdAfDwnbb/7PCNE4FSvg7yAJB3jZRaRT5tsWPGdL32YtsHsz2sfO9vqdjmIJYpbi8g1797XA00o6wadMm1NTU+PZ37twZX331VStYlHDgtNdee+Hee+9NXGltbS2y2TiiVUNDQ0NDQyMxdsMx2j777INFixZJQbcB4G9/+xsGDRrUKjYlGjitXr26mc1oe7Co4fzBieXk5axzZ0Isrg+ou07vZABvoBk+UzHdaE0djEYAzro986oz3Nx01e4xCwZAPcage2YHZ6MY7KBZsTJRUhkJMWJyHc2iQA2ujwpiP9J5lLR8jmjxipgK32AFaC4A57oFeh+Kwd2IfG4U8xTGMJkgMABk3eehQG3ugeYwKUpcIQA5t9066r/2ae4PZ8xKfLE61yh5eQvRzKaIuKekVMYqKdsUdTwsZlMQ0yQeF8tExWgKY5pURqRUhimKVYqLQdQ7tw2f1vcAAGxo7IQOmUZsLjrR6g+o/ALfyH3ptlmACcKZp002kSKEV5Ki9PxVkyJ/lpinHtMBFagh5Z9zzhG+ewJ7blEDpvAOjIv2nSYqe1Tuv6g8gkEotJQOdDfVOE2dOhWTJk3Cxo0buTj873//O2655ZZW0TcBJXrVaWhoaGhoaGg0N8477zw0NjZi9uzZmDVrFgBgwIABuOuuu3DOOee0ik164BSCAjVRoCZMQt0cT643HLGlbN+gTqwSAABxvfGY9xspIkeKHgOlaJG6m3XIu5omyz3OWJQOJM/ZqTw1AQLkAmIYWSDIInr2z2Z/DVbG1W2xKOjxeb0Tr/O3gvedrfiviaySw4gI11vyRAuoTNA9qZon8QoEsU1qJG1bOJcfIxQFgVUKynFoQ47U3NwR3X1eUzQ5iwR4s/Y4pioNO9UUhF0vxsIlYZr85cJjFTWFaVL1TGEsUxzDFMeGiOyJ+P4xiY29KjZhU8FhmDbnq7El3wH1xQpeppPpRK7vYmwCCMUWOzivGIt0zz43UAN5185KYsOgzj7AYb2325UAPH0nfwe6LL9oa5JI4aVEZU/KMEUxemnKlAO7awBMALjoootw0UUXYePGjaiqqkqst24u6IGThoaGhoZGW8duulQnorVy06nQA6cQWHD0Tc4s3Iblshs2DIAUPY0ToWDKmw6GhTyKMKkzW6o2GqV4LgZsPpNy4p3IjIgYx6nSKHqRw0mRe9EBjk6AsStZYgfO5kWNAZt91dOcTzel9jkKaTOSR5Ztgncf4GfvnDpVnZJzzRxvHI+B4t55AdcIlMYyKJWE3U+Cemoh6+qUDBCYIChwj0mhIuqwSgXlGrGrkCMEje5tbKAZKaJyEoiajaho8tI9DOhnKZ59vlx4AXbL9sU20WTEedHJZQN0SxG6pigtjcpuqMwG97ZTNE1hLFMcw5TmexTEvBxQvQ4A8KnRExsaO2FHwWGcvmjowmM8ZWHhG27EcYYssdHTzXRgUU+rZwEoUDmWU6PgScfiNDF7csRRUAFOnLvQPHwJ4jKVI/dfXFT2oJhZLaZx2o3xxBNP4PHHH8eaNWuQz+elY2+99VaL29Py6l4NDQ0NDQ2NVNhd4zj99re/xbnnnotevXph5cqV+Pa3v43u3bvj008/xUknndQqNpXEOP3jH//A3XffjX//+9944oknsMcee+Dhhx/GwIEDcfTRR5fbxlaBGNXbhg2DMRzUBpBxWCc46/OMJTJBkYOFAs8m7rAGeeFhZbNxg1CAgrNOOSIzUg1CLJRKoyhFCs+B8NhNWUIDPamygs5mo1Xp2ppBB+KN1qMYpjgPlsBjCWa/cZqMpAiLlszuBdOMOXYxhkk8x5YivkexO6LOyQRBBZ8hs4jH7j1V2rCov04x154heO9Z8GLUqBGV0yKp5iI2LlYIPG1T8Llx3oFWwPehFIgeo1FIErMpjRcdPxYSq8k5Fsw2BXnPsWc5jGmylXpkG9KxHYZyvRkL+42qL1FhFLEWXQEAm/LVPMaTTQ0UYKJfZotwHkWDa2M18b4fWWLAIjZ/5223HS9jxjgVqMn7acBy8nWy7xP13nmqnQxJYmU5x4LvZ5qYWazvUvtB0dhbav1rN12qu/POO3HPPffgxz/+MR588EFcccUVGDRoEH71q1/h66+/bhWbUg+cnnzySZx99tk466yzsHLlSjQ2Ou7027dvx/XXX4+//vWvZTeyNWDD+0JZMGGylxxseYlNCE0QRtmyAG/qYMQgVAhz4PzQsy/2dlrJA2dW0gJ6mjtQTQpufV77LGmm+gO03R301dtZbLI6urYHDzbSDJKiBkdRg6KmCJ3DBK7B7bhpckD5S48laRbT3UgDEwp52YpSHp5Ava4diLdkmoWBLJd0O2ik3lVQheUQtg3XTds77hlQR3PIUos/N6LIvdwhINSFW1+IB6G9qPAPzvHgt7L64y6L+P3PRdLBVJowBmnF4EmCXAbWG7Kk5A/C6F+eK2WwFPR9jLpnUATi4jl7VWzik8X/1HfFFw1y0MHKKuf9s4e53a3buQF5ClQb4ncUsN1gmSz0ALNTDOZbTyuQJUX+nrNgoJLIwZMjhdslCMDDEiaXKs536mwh7KYDpzVr1mD48OEAgKqqKmzf7jx/Z599No488kjccccdLW5T6rfwddddh3nz5uHee++VglwOHz68VdYaNTQ0NDQ0NHZN1NbWYtOmTQCA/v37Y/ny5QCAVatWgQaw+i2B1IzTRx99hGOOOca3v3PnztiyZUs5bGoTKNAMMjTjzcooWwLy2CfAdSV2l2c2WB14CAHAmbU6gtEAtkUMoAkALtvExJMNdhZ1dgW3pZIUYBqMMSnGMjhsxrzJrsaXRWfm2DOz3Z1xWVIZEVEiTCCcVWrKEl6a5QabBrtEMxh8KUx0aXZDMPClOXeZji+r2YrYX7A9gM0TkSUGCu6zYQPIUyqFLMjzeuXzTCKnZMlTypNDO3UZQpBTdfmg+cSoaoiHqGPqUl1UcAuJNQux3wsBEXw8SvSeBFHPe1QqD142lLWIZn28csnuWxDbFMUyRSW7tWHK101cJiW28H4DQAzsUbEZgMM4MXyVr0aXbD1nrmvNHcgKCbfVZTVLCLvhBLH02nESn3tMcEEIGMxsYv/bMPjSu++6xAS1DBPlO9vJluY8IXkwExi1rzmwu4YjOP744/HMM8/g0EMPxYQJE3DppZfiiSeewJtvvonTTjutVWxKPXDq06cPPvnkEwwYMEDav2zZslYLf66hoaGhobFLYzddqrvnnntg284A+sILL0S3bt2wbNky/OAHP8CFF17YKjalHjj993//Ny6++GL8/ve/ByEEX3zxBV577TVMmzYNv/rVr5rDxlaBDeL8UROGINw1ie0JxAFJ4fK13RG15la+zdyTxXAEom7FElgFyxVgMsbJgsHZqywpokBNVLKAcZKGIfqbUKAZriHIkqI0gxPt5J9D2KGoRJlR5znnRrBRzajZYdfWuX9ugmaABzT1ApcaMN3PKsNkgsKA6G5NJTGoDYqCkFbFBgJfTgUakBiXUB4gswAiMQV5aiLLHAIC6itFM5ZEvB+nIZPri2aORIQxWWrQUn9d4UxVqcJyv1g8nG2KZFLLFKA0NgxIwPcz2maVEXP+N2FLITrUy2fCRhezHgDQIZNHg5V16zeww6pAvcuAWyCoFN4IJpEdIcQnKBcQ/oSd2WBnYRBbEscXqFOeaZ2SJOh1ykWHHIhDknAQdki9TQ2touHHaaedhgceeACdO3fGH/7wB5xxxhnIZJzf3LFjx2Ls2LGtal/qgdMVV1yBrVu3YsSIEWhoaMAxxxyDiooKTJs2zZeET0NDQ0NDQ6MM2I0Yp7/85S+oq6tD586dce6552L06NHo1atXa5vFUVI4gtmzZ+Pqq6/G+++/D9u2ceCBB7Z6CPRyQwz/L+plHAbK4EyT7JHDQgR4IQXEgG85As8tV5m9FOCkeGGzmhyxkHUTAJuw0YHk+blRXklBs/BKN1BdNmBOrwbtY0jLMAWxSlEz6VK98+IgMmoiS2jCdhI0A65nkcH1RzlYsFxGKQsbBvHCOVQbBg9s6dRJYXOGibrel8xu5zoVQl5OhhD2gJXL8vvlJSLOUksKVJoXdF0qI5RqVp3guoaFeQhCEHsJRGudADWRa7RXXRRTFdaOz5PMZ1+0ZiyKgY26hmlDA0QhitUID5fAPALDWWMxrIpP/wTvHVGdacS2ghPGpNKUPd1UFtap24Gj1RM8T4klhSMA5Oemwc7ya5ollpR+BRHsZ5o0KkH6piRedKxsmIcja7ec9z0Ku5PGaf/998f06dMxYsQIUErx+OOPo3PnzoFlWyNfXcmRwzt06IDDDjusnLZoaGhoaGho7OaYN28epk6dimeffRaEEPziF78AIf4BKiGk7Q6c0ijXFyxYULIxbRHqernpxgRis4wsETynYGCD1Qm93DgnNgweqwSARJOyYJfqunmlG6DSAOXr/DlioZIU+ewwKB6UZy9xEm4KbXUw8rwek9ih2ow0LJMvXk0CT6OgNrzyTdNB8XQqENkZdr0cTZPHGhI3wTFjFG1keT0UnQiQJTLTwYJdilqOAqina4JzvWzqadAKyjXIwkYl9y5y7lMj02ER8CCntvuCEJkmURcipuZJy87lqZlKxxQFK4QNUqGyoHGslhXDGDl1hpdJywCk9SRNogmMOyaC6R3TIAnTFPg9FzwDDa7XhJDCiWkwKYq2W9ZQ34HU5yXKdH8spZDIrJqwOcMOgMeKaqBZNNhZ/jxWkgKqXZbdBpGerjiGu9Qgl6UEH1U1Zy2mcdqNluqGDx/Oww4YhoGPP/64/S3V1dR4gdAopVi4cCFqamo447RixQps2bKl1VwDNTQ0NDQ0dmXsTkt1DMViEeeccw4PtN1WkGjgNH/+fP75yiuvxNixYzFv3jyYprsebVn4+c9/HroG2R7BkvwG7Qcgjdyz7gSEeWax2ZtFiRO1OmBWkyOMCWERdp2ZF9MYiLFPGNskpoeQdCCUSAlrbQrUMe88StDJ2Bncx6CZWYksU+J4T4GxdELYqSbodwxiS95EIIaUYsWJW+PeL2rwWFwVxAkjXk9lBQ2vi8j7Ci7LxJCHgXoeCVnWj1UbXrqbHGzpPPGzeK/VvjEvpah7pkK9hywWlhp/J4ipCUt9kQZxmicGMe5WaBl4LKIKMd1OUL2BtqVgRsO+G2Hxg5oDPmY3gg0LukbsSjhsk+EFrKcyg2kQGw2W8/OQMWzYlHhaSfZ+C/KepF78OoClWCFefDqa5TYz5onp+SqNAmcSDdBULBPQ8t5t2puu+ZHJZPDkk09ixowZrW2KhNR3/ve//z2mTZvGB00AYJompk6dit///vdlNU5DQ0NDQ0MD3lJdU//aGU444QQsWbKktc2QkFocXiwW8cEHH2C//faT9n/wwQc8SNWuhNAozSyas6JbsmHIOdHU+jjD5OZwUsau3AuPgg9rK0kRoECe52EL0Clxzy4Ci3iztQLN8JkiEO5t4tgSHY1XtTcyj1RMbBl+TpIkmgkjLotRvy3q3QcbrsaJe8EYTpJmgYHKUcbkAPWUCjNmWbNhQPH6okCDoEXKC7G4RI1SjlhooBmYcO5FnhhSPZYSx6mBZvn5Yg5Dti0inDWJiS6fgClJyhalQZg+KUlU+Mjo5AHiUafedPPDMAavqTobtUypUN9Jnk6HSNviPh+Y1xr3NJXvi0EoZ84NQlFhFNHd1W4CDtuq6pxEsH7mqfN9qKdODKgGOyt9LzqZDZwRF5/rsGc3+P0Qo0mL0YOlidvUUh50gdiNNE4iTjrpJEyfPh3vvvsuhg4diurqaun4Kaec0uI2pR44nXvuuTjvvPPwySef4MgjjwQALF++HDfccAPOPffcshsIAKtXr8asWbPw4osvYv369ejbty9++tOf4uqrr0Yu56WpCFLd33XXXa0WXVRDQ0NDQ6McIECTh22tOOwrGRdddBEA4NZbb/UdI4TAsppjeheN1AOnm2++GbW1tbjtttuwbt06AE4aliuuuAKXXXZZ2Q0EgA8//BC2bePuu+/GPvvsg3fffRfnn38+6urqcPPNN0tl58+fj9GjR/NtUdieBjYlgZ4rHFwT4M2eCnCidHtsEvFiCCFYNyXOZsQo3xYMIb9TnutxAm2Bxww48Yq82Vsnc6c0kywlEq/YZiRjlTIHVNi5YfXHwVbYP6aVMV0vQ6++IoCM7L3lNl8QdGTsf9E7zqTeTNwERYEanAksUAMFmuEzapnRITCogbzrrZejFkwh35eoC7EpQZ6aXpwYavpi94jaIxukZCajNXQapdjqeINGIzTHXBOn2UnZj6DvRpw3F9sfxqqmYV789foZKA6ucWJxnRy9E3v/7LSE+HNGERVGkWuRCpTAIIBNPRZW9Cx1yriMN0xstyux3a5yjlODM+DdjB3IEgs55nWcoI9JYs455aKiw/vfRXGedM5+4tsXpoXVKB/a4kpW6oGTYRi44oorcMUVV2Dbtm0A0Oyi8NGjR0uDoUGDBuGjjz7CXXfd5Rs4denSBbW1tc1qj4aGhoaGRotiN12qa4soOQAm0PwDpihs3boV3bp18+2fNGkSfvazn2HgwIGYMGECLrjgAhhG+IygsbFRcnVkg0ERkd51gPQwNtAsNlrOdWExmRjEyN1OpHCBnaDOzKXedpYe89S7NZWkgGrIdXl2yBoc21XRsO1qkvd7A0VGRg6eIYdpNpxj0dF4/XUpGo0Y75hSdAWGaIurCeMaKOqwTTm32jzNYJvtRkkmRccbToo7IzBOoDLb47JDgHPvbRDp3jHmLwsLNrzchCD+OE/My4ixTXVubjBT8SEWY1KxGEClMkflzOyeVIuWFGK/k+iUouI/xcWuUnVXSViEcmprgs4Pa0c6R/DM9eoN9qyzqCHEMnPYJrVm9gxuLVTxOE4ZYkuR7BuoiSzs0KvdQDMouN+BLVYHfG115ExWByPPYzWxWHZNYZacsslZuXLEbYqqvzmxO4YjAICZM2dGHm+NHLmpB04DBw4M1BIxfPrpp00yKAn+/e9/Y+7cubjllluk/bNmzcIJJ5yAqqoq/P3vf8dll12Gr776Cr/4xS9C65ozZw6uvfba5jZZQ0NDQ0OjXWHOnDlYsGABPvzwQ1RVVWH48OG48cYbJeew8ePH48EHH5TOO+KII3gAS8AhKKZNm4Y//elP2LlzJ0444QTceeed2HPPPWNtWLhwobRdKBSwatUqZDIZ7L333u1j4HTJJZdI24VCAStXrsSiRYtw+eWXp6prxowZsYOWN954Q0rt8sUXX2D06NE4/fTT8bOf/UwqKw6QDjnkEADOaDVq4DR9+nRMnTqVb2/btg39+vVzPbHCZywSeCwUADZQRxymwDBcViDAW8SJOEv4zKzeziFPM5xxKgieJ93N7TyXGoMvl5VqZ0QcmnLEZoqbTfvritcQqPYEzTrjZnmeniw6v6Ap1GO6WjTAmS2r8ZcKMIVIyHZAPwkvx2bWPhBI8WwsEB4pnPXL00YZrsbNiwcm9rvBruRZ7EGc65SGOUrDDLWmfsNKOTs2I5jJqOtjpIzcnYT5CNP4Jf1OhH0vQ7184Wef7ICo1v7vm6vXcxkl1s7XjR2Qcd9fGcNC1vCeVec7YnmepkLcsTxM5KkpsLA5bLeqeI480cM32J50rJJos4qgd7VflyZ42gbYFPQ+UvWGUfekrGiFpbqlS5di4sSJOPzww1EsFnH11Vdj5MiReP/99yXvttGjR0vxHkWnLcAZNzzzzDN49NFH0b17d1x22WU4+eSTsWLFCim0URBWrlzp27dt2zaMHz8eP/zhD9N1qExIPXC6+OKLA/f/7ne/w5tvvpmqrkmTJuHMM8+MLDNgwAD++YsvvsCIESMwbNgw3HPPPbH1H3nkkdi2bRu+/PJL9O7dO7BMRUUFKioqUtmtoaGhoaHR4mjhpbZFixZJ2/Pnz0evXr2wYsUKHHPMMXx/RUVFqLZ469atuP/++/Hwww/jxBNPBAD84Q9/QL9+/fDCCy9g1KhRqe3q3LkzZs6ciZNPPhlnn3126vObiiZpnESwWAviqDMOPXr0QI8ePRKV/fzzzzFixAgMHToU8+fPj9QtMaxcuRKVlZXo0qVLYpuCEKev4MfdiNTbrUp+rJLkhYjIHlieJsY45WkGO6xKzjhZ1EAno4EfC5uZxUWNZnV555Ue/TtNvie1fOyMOkr7kSbaeIBGy4kcbgsRsw0wzzrnHJu7BdUReabE82pFMBKi/qsg6JsMYntMFb9GYt0Zno/Q0TV599TRLrlGEQMNdobbUxDK8muf4holRdr4R+VqtxSYsCNZpQIFZz385zaNMUjCTJfivcX2B0ULV2M3RbUdphE0hfMZT9roMqY2JeiSc94/Hc08akwv+4AT/Zsgyz3yvO+oBQIn/jdjt4nL4HqsAr8GJPx9IfY1CMk0b8nYq7RedJ4N7dG534Gq5U1KIGzduhUAfPriJUuWoFevXujSpQuOPfZYzJ49m+eWW7FiBQqFAkaOHMnL9+3bF4MHD8arr75a0sAJALZs2cLtaWmUbeD0xBNPBIq1y4EvvvgCxx13HPbaay/cfPPN2LhxIz/GRrnPPPMM1q9fj2HDhqGqqgovvfQSrr76alxwwQWaUdLQ0NDQaNcopzi8X79+0v5rrrkmNq0JpRRTp07F0UcfjcGDB/P9J510Ek4//XT0798fq1atwi9/+Uscf/zxWLFiBSoqKrB+/Xrkcjl07dpVqq93795Yv359rM2//e1vfXasW7cODz/8sORt35JIPXD61re+JYnDKaVYv349Nm7ciDvvvLOsxjE8//zz+OSTT/DJJ5/4xGTUjSWSzWZx5513YurUqbBtG4MGDcLMmTMxceLEJrUdvE4uzzTE/FmiNsq0bVSaea57yRKLz24a7Czq7QpBh0OcfVaOl+Xxgog8mxY1OGk8zuJyO6WJ/B3lHRSlG0gzi4tq0znuvw9iri2mkWFxjrjnFLFRoBnPL4gAcJkirkEKiVeVD4huHRaTJwfP06tATGRhoSBGfw/pD89CL3pAuShQE3nBG1OMERZkT1MQxRyV24MuDvy+hvhyReW3YzDD2IsIb7y0iGJdnbaSa2nE+jxGJ5zdCsqlF1Yvi0YvsnBZYmFdsQsAoNIsomelEym8S7be09S5KNAMLOq/bo63sIkGmpP6KzKjFs+64H921T5J/UnJZIbHxop7Dya7F2xfOT1TI1FGjdPatWslr/gk5MKkSZPw9ttvY9myZdL+M844g38ePHgwDjvsMPTv3x/PPvssTjvttHBTKI10NGO47bbbpG3DMNCzZ0+MGzcO06dPjz2/OZB64DRmzBips6wTxx13HPbff/+yGscwfvx4jB8/PrKMGutJQ0NDQ0NDw4/OnTunCic0efJkPP3003j55ZdjPeH69OmD/v3741//+hcAZ1Uon89j8+bNEuu0YcMGDB8+PLbtVatWJbazpZB64NTWshQ3F2xqKExClFeHcox6rFLB8NiBSqPA6yzQDCwYKNjOsXq7Ajss5w8AumbqhZx3tsQyFSDqBdLNdqJ0S05f4liegJlgAMOk2qYyTUlYpqAYNVGsky1MxwxpP/Op82btprAt1rPdqkJW8XYT21QZJ5PQcN0KKFg8qQLNoCB83VhMnfBo14YURZ5prbZYHeTr4J4epjMrFVGMUtwMuzmjkTelf2HMUhKdYPq2gr4n6ZgNwM80ReWlY9tRnnTe82a4uj+3PuLo6r7KdwQAdMntREfTibfUJ7cFlSTP2VhHYUcB4T0k9iUvZkCgTk5G5rUn5ZOE+o4Nf7ckQVLmJzhGVPp70dJojThOlFJMnjwZCxcuxJIlSzBw4MDYczZt2oS1a9eiT58+AIChQ4cim81i8eLFGDt2LABg3bp1ePfdd3HTTTel7sNnn32Guro67L///om0zs2B1AMn0zSxbt06Lvxi2LRpE3r16tUqeWOaA04QxNJeqPw8msEWqwMPHmdSOU2GTT339O1WJXZYFfzLmTUsdMvs4OULQtoNhyYv/WVfasLdNIErU9PdIYPUJPu9Nj0YyoDKAJGWe9Q0JWyAYwthAYL6KS5/GKBOcE1hGVIMjmlRAwU3xUqBWK6jAOV1FmxT+iERl6EaaFbqI/sh2mFVwgCFlWXLHezaeEsh/uuS7OXCklSHodRkwmnQnIOuMDuNiD5HBc5MYmtoypSI71rQREL9HoSlVlG/g8GDJvbZ4M+rTZ3BOZvIdcvV8YETS8LLnkGTUHlyQb2BPZ8QCt+hDkajFIYgSbqZJAPPUpDkfkQJwIOWxMu1NB6LVghHMHHiRDzyyCN46qmn0KlTJ65JqqmpQVVVFXbs2IEZM2bgRz/6Efr06YPVq1fjf/7nf9CjRw8eKqCmpgYTJkzAZZddhu7du6Nbt26YNm0ahgwZwr3sgvDggw9i8+bNUgikCy64APfffz8AYL/99sNzzz3n02u1BFLfcUqDr3xjY6MvdoOGhoaGhoZG08EYp6b+pcFdd92FrVu34rjjjkOfPn3432OPPQbAIVLeeecdjBkzBvvuuy/GjRuHfffdF6+99ho6derE67nttttw6qmnYuzYsTjqqKPQoUMHPPPMM5ExnObNmyflml20aBHmz5+Phx56CG+88Qa6dOnSasGrEzNOTNlOCMF9992Hjh078mOWZeHll19uNo1TayLtbEJ1ebZg8FQr261KgTUy0WhneeiCnW4YgirTmZl1zdQhJwSlE2d1KkNTKpJQ40nTQEQFrkyz9BC0T00bEdauCIMK6SUAl3FiSUkJX75jEFNuOIJPb2lRFJb7kz0LtlDCBf28XiaAJQ77xNrMEQt5aioBAb30OwaxOfNVoBlsd1PCFGwTWcPyuXQnWS6NQ9wSRFL2JEldpaCp7t9hNqnpVqQ2U4b7KKX9tMLvKPYJ8C+Lh9ZPbdiuXtURdGeRNZx3jkEoemQdcbhJKOrsCv5sVZKCFJBXXFZ22peZrw6Gl9JKtMOiBGFiebEfpaLU+5LUQUVMBL6rIowoYaiqqsJzzz0XW09lZSXmzp2LuXPnJm77448/loJfP/XUUzjllFNw1llnAQCuv/56nHvuuYnrKycSD5yYsp1Sinnz5kkjxVwuhwEDBmDevHnlt1BDQ0NDQ2N3x26W5Hfnzp2SgP3VV1/Feeedx7cHDRqUKJxBcyDxwIkp20eMGIEFCxb4YjLsakgqDjeVJ5GxBeycAjWRc/UADTTLA1wyTYE4u+lgFtDdneX1zGz32nbLMhffMDEyQ5jLtq+PKfQsQbO/KGYJiBZ9e/tlVimQeQoJvRA1o7SE8gaoo01y7wtjn2QdlCwcZ9ozJlBX73MQHB2aV2eWWFzfZsGASb3kvDwUhXCrRL1TnVXBbShQE/Wu04BBKLpm6vi9M2FJM/eoYKdNRdj1ThKwNO6cpiKOgRXDU/jODbhOjDlMw9ilYcTiXPCjnCKi0qqofbGVdD3MRoNQWDBgUMbCUh78koExcU7olBy/JoYhp6gRU0fZcMKqsLKVpCC9Z2zhHsQFwpX2l/F5ibpPaUOgqL8TzYrdbODUv39/rFixAv3798dXX32F9957D0cffTQ/vn79emkpryWRWhz+0ksvNYcdGhoaGhoaGhoAgHPOOQcTJ07Ee++9hxdffBH7778/hg4dyo+/+uqrUiDOlkSigdPUqVMxa9YsVFdXSwlxg3DrrbeWxbDWhoVka9eBQRjdGYhBbIcpcmdyjXaWz+osasCmhGsKsnDYib7ZLW49NmeW8nDSs7CZWyEgCKMM77gRMcWIYiTS6FaiPE+c4+EMk7jPtz8igF9Ym6JehadYIdRhd8Q+CdsFeOybARv1NOfXWYVcxwI1Q2fJBWQ4w9TByPuOZ0mRu2cwDz2xTtbHHVYlGt2UKxVGkadpYWXF/4F4JpAhStujIpghCQ+lIJcrbUZeTu2IFfGdCWRe3dsdlqYltK4S+poq5IbCwgLh+sIwtkn8zM61CQGo5+FWtE0h8XXW0T+5Wk0peKxiQ971qmPBLVm9QWWDQpME2RqH5kotFHdfWJmW8iNvjXAErYkrr7wS9fX1WLBgAWpra/G///u/0vFXXnkFP/7xj1vFtkQDp5UrV6JQcF7Wb731VqJonxoaGhoaGhplwm62VGcYBmbNmoVZs2YFHlcHUi2JRAMncXluyZIlzWVLm0KatWtxVirqYdj59dTRpzTYWa55MUBhGjYqXK+qDkYelaSgxPJxNE0ssas4Q4uakameXaUgVWLdkJlY2PFyzaCD7LRFto3rVGSPNxsERoDmCQAgMIRSvUy3Rg3fjDkK3BOSGsgaRS/pL4sTZnu25uBq4eys5DlZb+V4PT3MHf7rIsTrSZOE1FbSlEQ9N0mehyTpifz1pmMLmsODqQC/VpGDmolZp6ZqXaIS9ib1Yg2OARXscemUcVNWwUKBmii6cZwKhucpx/RL7N3lxKCTmVbRW9gWPFodr1S1zRhvv4D+l4I0z0pUO2H1tHgcJw38/Oc/x8yZM9GjR49WtSP1HT/vvPOwfft23/66ujpJ8a6hoaGhoaFRHhBKy/LXnvGHP/wB27Zta20z0ovDH3zwQdxwww1ScCvAcR186KGH8Pvf/75sxrUmLOpPXZAEBrH5DEVkFwAgaxS9KOKgMIjNt3OkKEUpbqBZia0QI4fHznCU70ZanUZYG3Ezr6iyPtYpIcPk1BWi04iLO8R0KrABYnhJf132iXvdUQNiNCXR25GxMOxelBpLqJFmfJHFTYPyNCwGbJ92rcGd6av7HQ2JvB18reI9zaR6hTpV/VMp3kZBSMIClKQTasKs30miHQEqspgRMZ/KxDzEebT6jod6r8pMU1CE7oywy6bE0zxRA/W2w5Qz71Cbay79Pxve9yPe0zbOwzYKLaGXi2sjKqVNs2I3W6oLQlxcqZZC4oHTtm3bQCkFpRTbt29HZWUlP2ZZFv7617/60rBoaGhoaGhoaJQCy7KwbNkyHHTQQW0qBFLigVOXLl1ACAEhBPvuu6/vOCGk1cKfNwcoiC/XExCSu0opI8ZxMkE582QQW/lsSzN7Z9Yms0zO/kyi/G1AiFYjxKNInT3HzrQiZm2BrFNEfJm0s2anDjl2TND5gTodYsCmXnwrG6bjxRZ1jlJvUz1/AMCyDdnrD8TTvAnPBsPmQjUAYIdVga6ZetcO4jIDwVHko3QyfobJ9LXpeREakc9HGk+woOOyHfEz9rQxqZKyAE6i5TgvVQE03GO13HGzgOjvCRAdQyuIafJpAtl3ABQ7rArkLecnocoscI1T1vS86ZyydoJ3BWtb3q8m7m5pZtKxKfl5Se4pbaHI4bubVx3gpHQZNWoUPvjgA3Tt2jVQJtQaSDxweumll0ApxfHHH48nn3wS3bp148dyuRz69++Pvn37NouRGhoaGhoauzV206W6IUOG4NNPP8XAgQNb2xSOxAOnY489FoATQbxfv34wjF3bk6BgmzBs/0zUpqafoRBn5upsJoBJYBC1KmIeOradJmcbtztgX2iG9zQz7Yg2geCZWVD5UmbMXn0BcWh8M3LvM2NMPGbJO9+Ep3ECDWed/F57Qcxa/IzTJBQ2VfRctoGCyxyxeF4M9VYOG/NePsiuGWaPwXVRAGOgkulE1FhGzjUIBsvvJz67SVnPKD2bv51kz03guU3MXefUke470BpIynaGfV/k+E1yGfbeabQz2FLowPcbwvejQE3H85Sdq0TIF58RzlKGMJBxMd1UJH4WSmR9mqpPsilBwU6vIS0FuyPjBACzZ8/GtGnTMGvWLAwdOhTV1dXScTEtS0shtTi8f//+AID6+nqsWbMG+bwc2O+ggw4qj2UaGhoaGhoauzVGjx4NADjllFOkGJKUUhBCYFktFYLUQ+qB08aNG3Huuefib3/7W+Dx1uhEc8CCER5fhKozDKGcoJlgGgibl5LjBfnbJIGsUpocbUGIizQexEg1NUdX0ijjUaxSYPkUXjg+hkXwyHDiMjHtD5UobJPQWDvSIoz1KrqMU30xx3PVWZSgrljB+1phFL2YVCDSjD8szk8U2P22Ee4lVrCdqOfseJgWKs6GNIxSmucoybm7EqLzSoZ5u4azPHzbjUhftE3UF3PIuMxnlZmXzhG/SwU7I91XA5Q/UzwCmvBchemakuTDlGyNecZLeQbKkQOv3HkXQ7GbLtW1xTRvqQdOl1xyCTZv3ozly5djxIgRWLhwIb788ktcd911uOWWW5rDRg0NDQ0Njd0au+tSHZMJtSWkHji9+OKLeOqpp3D44YfDMAz0798f3/3ud9G5c2fMmTMH3//+95vDzhZHkZowJQ8a0RtKjk4teo6Isx6DUBSol/MJ1Iz0xEmSi01F3CwrSRTx+Nx30QizIakeKPT8WE+t5J5bAHj0bwAANbxrI8Uvom787vB2S4WTx9D5bBA71MPJpo5HW5es40lXYXgxvgp2xs2tl56F5EyTwIiy88RIz4Cjeam3c9zrryazU2KnbCXOWRqvSalcSm/FuNhdXvu7LgMVGxE+5nsj1sHK7qQGitTgeRCzhnyvDWKjYAvaOmoILGq4ximIGQ175yXpYxJ2pxTmKelzFYSibwVCoznQluRBqQdOdXV1PF5Tt27dsHHjRuy7774YMmQI3nrrrbIbqKGhoaGhsdtjN12qa4vyoNQDp/322w8fffQRBgwYgEMOOQR33303BgwYgHnz5qFPnz7NYWOroGAbMGxvFmKEJDZWtR9FkY1SZiJpc4GVomvwQWnSLCNXG2dDUiYJiIpKnoxVCtbSqDGulDI8srh3TVS2qamQWBpJFxIdf0vUNTmsJpvBu3UlnJFLcaMY08T1Un4WirVTb+ew08qiIluU9oufm8KWJn3eo56xNMzCrpxPLDq+WvR3kN3D+mIFbEpQ5PkRs8i4bKNFDEkHKbJNrA2bEKVeyOUD8juW+pw49cdF9y6dcUzLWBXslnu22uNSW1PRFuVBJWmc1q1bBwC45pprMGrUKPzxj39ELpfDAw88UG77NDQ0NDQ0NHZTtEV5UOqB01lnncU/f+tb38Lq1avx4YcfYq+99mr1jMXlRJGaMETtjzvS9zNM4SglR1wQyjlbTsuoqLqWNGjKTDjwmE9HEx4lO7ju0EMc5bhnIqunxgninpZUaUvtCjXA5u3FAA1a0lmxqMcDZE2eCc+zkNXJZv0mocgKuRQBP9MUxh6ERX53zo1nlSI1Tk2INJ20jdZAnBaxJN1Ogu8Su/Z520TeNpFxdUw7rSx/11VnGmES27v/Sr45ADAEj1WRwVWzL/hz1cU/H6KdgX0p4V0ShbTPUotpnCh1/ppaRztDW5QHNfkXuUOHDjj00EN3qUGThoaGhoZGWwLzqmvqX3sDkwcB4PKgzz//vFXlQYkYp6lTpyau8NZbby3ZmLaEom0ERg5vCmNTKtJmuS8rSpy1xXq4JZjVRc8y4722SoomTA2f52MaGISGMlsGsZWIy4LmSZkJ5kG4xgQo+qY4pWg4WPRy7iFKDM4+2ZT4vCurM438uhYU5iqIYUoa9V0t6+0rXfsWV08UmiPHXFqo9z8p0ufwk8sX3XecTZ0ciA1Flo+uUr6Omej762npDEBgp1jdUc9IVC49EWnZxqTPmAjH2zXd81O0d43YhW0VbVEelGjgtHLlykSVkRABdXtEo50BFdxvvfQdCkUdN2gp0zJbZLvUKKvoOynK6fIdKvqOdE1PHtogqg0VaQeihrQ0J7cvLVtQOYyFuFynBghssLKoNAte/YpJpfTFpsRZqnMHQSa8QJ9F28SWQhU6ZRsAOOJ0mxKAsDQbdmR6HED+MY1OLJsuzETYeU6bTRuAh6ElxeTqgLqciOtHURngMJG3s2zH0kARaWCthjIwiA3DcFMHwZKecycJNQl8NsLSJrE2/X1JtyQX5TAS+j5NknBaKZNvoZQru6tXXVuUByUaOLXFyJ0aGhoaGhq7C4gtp0UttY72inw+j1WrVmHvvffGoYce2qq2pBaH7y6wYEizsdCZSGu5OQvtGkLQRlVkWqoINmnS2+ZAGItQKpuU1uakiV/ZNVKX5kJDECjMlAHqCxHAjylMEV/WgDxbj7NPTJXBAnCyuou2iQILgGjlfOfbMHjfioi+JmEMU7mCmDbVMSCqzTQo57Ke5yjQOomGbSHFE1uq47YRiozwDBaoyZf1GAMVeL2VXTYMWErdYSlgop6bqOseHxbFL0a3le+R4TKrUcv0YTbolCvNi/r6ekyePBkPPvggAODjjz/GoEGDMGXKFPTt2xdXXXVVi9u06wY30dDQ0NDQ0GjXmD59Ov7f//t/WLJkCSorK/n+E088EY899lir2KQZpxAUbRMkQBzemghKccDgrdGXqbEE9YgzueYQqJfCIiVhBEphHIKueZieSdUyeeXF+mzYIIFpXwAgIyTYtamBAq/DH3zSZytkJozX47bHUmc02hnkBR1ftZDYtWibcoqaFPAndY1mlUJn8glYpbQauNCyTQqYmH7+ye5/+vPKRxmIAS+L1IBlG7DdVCsGoQKjStBoZ6RrVKQmCraseQqyMcjpQGWW5ECqMc9K4jAcREiy7mc5RaZNtDnqPRZ2n4st9Duxu+aq+/Of/4zHHnsMRx55pKSjPvDAA/Hvf/+7VWzSAycNDQ0NDY22jt00jtPGjRt5HCcRdXV1reaQpgdOIcjbJmjATKKcM76k8M2yJOaCMRay5kk6P+HMNokbfmhdAW78aa5VWgYpycyznHqsqLr4zBz+mbekG1E87JzzZDZILMdmuAVAur9pwlM4IQi8pL5FStBoOV/7HcUKrmPpkMlL/bRBfPq9pPczSKuSlFVK6l3ZXB6VaepsCtLq6LzzymmDpz3KW8FaO+d/A0Uqs0I29TSgRdv0NENSGA2PUQrTIQXpj1g9qq1h54V5PIfB0Qx6GifmberAjH3OVVsKbWxlYlfD4YcfjmeffRaTJ08G4Hnv33vvvRg2bFir2KQHThoaGhoaGm0cu+tS3Zw5czB69Gi8//77KBaLuP322/Hee+/htddew9KlS1vFJj1wCkHRNkAikjeWMvtOc15UHWI9TZ0Ry7OtdImIwzRXKnNSik1R23H709ZfKsLuQdB+g1Cfh51NCQzhGoqaJImtSsGWqJ56aqwomxpc12QQiowhsAMg0UyIyHQm9D5KwiglYZOCyoXVF1Y2sFwTvOSai42KigsWe26K71yRGmhw2UfGQga1W/DpjBy2iWl7itRA0XLK5K0MMoaVyru31GdC9YhL0pZaRvUmdOqLZs7V8sWWSvK7m3rVDR8+HK+88gpuvvlm7L333nj++edx6KGH4rXXXsOQIUNaxSY9cNLQ0NDQ0NBosxgyZAgPR9AWoAdOISjYRqDGCXBnIAln3yrKNUttLv1OKXGgVOaJsVhR9UbZELa/bGlVyoRwrzp/v0OvkWu/+AwZCgsYh9C4UW6dhmInY5kysCSbVdbB30552NKkjFISJiKuzqhzkqAlWM2037lIVjhAZxdYjhIUbQN1BSd+V76YQda0OHtiG6IOSPZAs0FQtE2ucVJZm7zt6YSSeKMmOdZc7zubx6QSvp9CGiLRuzCsnpZinFpjqW7OnDlYsGABPvzwQ1RVVWH48OG48cYbsd9++wWW/+///m/cc889uO2223DJJZfw/Y2NjZg2bRr+9Kc/YefOnTjhhBNw5513Ys8992xCb1oPOo6ThoaGhoZGWwfzqmvqXwosXboUEydOxPLly7F48WIUi0WMHDkSdXV1vrJ//vOf8frrr6Nv376+Y5dccgkWLlyIRx99FMuWLcOOHTtw8sknw7LC8/wZhgHTNCP/MpnW4X404xSCom0ACWYSSfVBzYm07YbN3lSWqFR9haOzISVpNeIYipaYkcYhdAaawKtOnNmK10hlqaJYTJ/XpKJLEiOai/GCguwupvE2C/LmRPpr31yec3FlmuMZKUedSTw2k5SPK6veM/HeW5TAsA2PcaIEeZeBNMwCZ2acY4bE0hRtI1UfWpo1jKsvSOcEANTdRwT2TP1OAy2ocWoFLFq0SNqeP38+evXqhRUrVuCYY47h+z///HNMmjQJzz33HL7//e9L52zduhX3338/Hn74YZx44okAgD/84Q/o168fXnjhBYwaNSqw7YULF4ba9eqrr2Lu3LmgrRReQQ+cNDQ0NDQ02jjaglfd1q1bAQDdunXj+2zbxtlnn43LL78c3/zmN33nrFixAoVCASNHjuT7+vbti8GDB+PVV18NHTiNGTPGt+/DDz/E9OnT8cwzz+Css87CrFmzmtahEtFuBk4DBgzAZ599Ju278sorccMNN/DtNWvWYOLEiXjxxRdRVVWFn/zkJ7j55puRy/nzcMWhEBLHSYUBKs1IgpBU65PUo61c+eii2gjbF8Y0iDMxdWaWNv9TqXqnqP1BKJUhTKpBCfKqkzROCNaBqWydWnfQNQu6L6KHnVomrC8+1qzMbjil3u+4smnLJLGrqUjN2KZhlwLuSxoPXsYS7cxnAXjsStA5YnR51k6RBrNMqmYoqM5SNE5Rx5qqvaPie0Vg1oIYpyC0VOTwcnrVbdu2TdpdUVGBioqK6FMpxdSpU3H00Udj8ODBfP+NN96ITCaDKVOmBJ63fv165HI5dO3aVdrfu3dvrF+/PpHZX3zxBa655ho8+OCDGDVqFP75z39KNrQ02s3ACQBmzpyJ888/n2937NiRf7YsC9///vfRs2dPLFu2DJs2bcK4ceNAKcXcuXNbw1wNDQ0NDY2yoJyMU79+/aT911xzDWbMmBF57qRJk/D2229j2bJlfN+KFStw++2346233kodxZtSGnvO1q1bcf3112Pu3Lk45JBD8Pe//x3f+c53UrXTHGhXA6dOnTqhtrY28Njzzz+P999/H2vXruXitFtuuQXjx4/H7Nmz0blz51RtFSwTNCCargpb0KNYCR5qsYw6a7TgzW6iEDTzai72JGl5Va8j5bpKoV2Is0c9TqNmqDEsQtL18ST3RGo34v6EaeJ8eijFtqi4XUG6C7V+INjrL4ntYSg1llncsTQamJbUtjV3m6l0QjGso1hf0H13POMMWILOiRCKjJurLmMIufSoX2cosko29UfiFtuK0wCFfYeTsoBB791SWW5K/YyTiKB3QdFqf5HD165dK/0mxrFNkydPxtNPP42XX35Z8oT7xz/+gQ0bNmCvvfbi+yzLwmWXXYbf/OY3WL16NWpra5HP57F582aJddqwYQOGDx8e2uZNN92EG2+8EbW1tfjTn/4UuHTXWmhXA6cbb7wRs2bNQr9+/XD66afj8ssv58twr732GgYPHiwp+keNGoXGxkasWLECI0aMCKyzsbERjY2NfFulMDU0NDQ0NFodNnX+mloHgM6dOyciEyilmDx5MhYuXIglS5Zg4MCB0vGzzz6bC74ZRo0ahbPPPhvnnnsuAGDo0KHIZrNYvHgxxo4dCwBYt24d3n33Xdx0002hbV911VWoqqrCPvvsgwcffDA0jtOCBQti+1FutJuB08UXX4xDDz0UXbt2xf/93/9h+vTpWLVqFe677z4Azjpq7969pXO6du2KXC4XuY46Z84cXHvttb79tu1kCwccJkiFOLuLYiSiZuVBDFPYTClOayJGaA6zJ4qdKQdEG+wYb8Ow2XUaG5vKQITNaH32luhdKIJdG/W6xEUfZ5+jtC5h5wbFjlKRlvELszEOSVmkpHqnctnZGowVa7cc1y/Ku1FlfNWyNiWoyBQBAEXLkJ6zom1w9klkkwL/j2GUqcBIJe1XU95VJEQHGFV3kObJsV24fqCAUC9bZbJ34cjhEydOxCOPPIKnnnoKnTp14r+lNTU1qKqqQvfu3dG9e3fpnGw2i9raWh7rqaamBhMmTMBll12G7t27o1u3bpg2bRqGDBniG3SJOOecc1otiW8cWnXgNGPGjMBBi4g33ngDhx12GC699FK+76CDDkLXrl3xX//1X7jxxhv5jQu6yHHrqNOnT8fUqVP59rZt23zrvxoaGhoaGrsb7rrrLgDAcccdJ+2fP38+xo8fn7ie2267DZlMBmPHjuUBMB944AGYZvgy5wMPPFCCxS2DVh04TZo0CWeeeWZkmQEDBgTuP/LIIwEAn3zyCbp3747a2lq8/vrrUpnNmzejUCj4mCgRYd4EFkgk0yBLUILLERLMVgHe7E9lh2gIkxU1g2oqQ5IEQbPZyNk69eyyaLgHXhQoJZFsXtystBQ2wSDUl18ttcYpismSZraUPx8kgGFKwkaFsQlAMk1TlN1xLEdJ3msxzFFSxikVM1nG+Gpx7bL7mMQ+9TmLqi8Mcd5rcV68WdN5Apm2R4wcrmqTVI1U4H5F46SyTYyBCquXIS3jJF2nFOcG2cLe7TZkWy31e02ddn37mwkEZRCHpyxfSpyk1atX+/ZVVlZi7ty5u4yjVqsOnHr06IEePXqUdO7KlSsBAH369AEADBs2DLNnz8a6dev4vueffx4VFRUYOnRoeQzW0NDQ0NBoDZQQ+TuwDo0mo11onF577TUsX74cI0aMQE1NDd544w1ceumlOOWUU7iaf+TIkTjwwANx9tln49e//jW+/vprTJs2Deeff35qjzoAjr4pYu2aBgz9VU2Jup4szoq855e4x2S2gwjsRJwWoqkMSRTCZn5JZssF4fqJugEVBqGBNqtty9cv3dwpaeylwGuZQF+SBGrdksZNYegM0ECmJIiti/OqK8X7rVyed0nOD4upI5VJyIYFodyxqCJRbrY3QtumQnp3uFAZqTBPS9PVMxXcmERFasmZAAIYprDnRWSVVH2U6LXGtoPqCAKlnq7IfzCceRMRzG4JxxWWSWSgVBDitGvtwpHDNYLRLgZOFRUVeOyxx3DttdeisbER/fv3x/nnn48rrriClzFNE88++yx+/vOf46ijjpICYGpoaGhoaLRntIXI4RoO2sXA6dBDD8Xy5ctjy+211174y1/+UpY2bZuA2BGz7ihPEsnzQnxSCZ8xWVA880DlGZWgT0jNKEXM3MoReycOaXQDgNOfZKxA6TZFasQQpGtyP0QwOUlYN68+RcsWcA2Y3skgVIoPxmwMa1NlpsK86tTPYpmw7aYiiddUFJsUykBF6g9lbZx4XZOgKcymqHEqJ/OrIjKOk8i+CM+QRQl/VlSW0jRsWIIncV0hhwqzKNcrth/CFAVpmtj+wLIhjE7o9zVBzKa476Vad5jmylkZi3rO3PIRvxNlRSt41WkEQ3OMGhoaGhoaGhoJ0S4Yp9ZAnMYpCQxCpRkLIZTPUoirZ2LMhgHAJnLEaE+zoFScUK8ThDj2KukMOw0zIcZCsWwjYIYpXIcIRqRcOfrUelSvGEfXFHJuFDsVhThbJe8dWffFGKhAewI0WKInDCFyDsE02qXmiPuVhF1qKuPknOg/HhWPrVSvrMh2A7RozYlAjRPk749B5bIiCKGg7jsvX/R+GrKGFfjshLGGSe+pGicpqO6o7z+DBX+/VfvCILJLQecl0WC1lMaJUArSRHF3U8/XcKAHTiGwbUQu1UWBfYHFgREAaflN2Om0B8IHTz7QdAJXX7tRSPkjkfR7J74MRUEoo7XDBpSqOVFLOqXCRvgyChN8quDLcykHWUlsCYJFCUy27BMgno9axpV+LEEjl/ni7CgVcUtpYWXDfqjU565c9noTGf+yZhiSDNiD6kmztBuHyGXAkMGGuFSnHmNgInHYBr8XFjWkwbgq+JaaDhjwiPvDzmNl/Od5n8OuX9Syur+N4Haj7Ax75/G+2rHNlge2+9fUOjSaDD1w0tDQ0NDQaOPQjFPbgR44hcCmBCStMDRgnyP49s/W/OSuyxQECHoBh+lIJTZ1i5bTFTtslh8lrmTHI2ecTRKihx+LY92CZtxB15gtqwa3Eb4cE8hOCYhbSigKSy+meq6y7YU1kNkGlWVQERXyIa5sGiRZBlSfG5W1jKpPRdyyrsggiqyh+jyJtzfNb07oMnu5EMGKBtnh2CIv6wYxmWzbNGz+mSXxTRo6IKpcnOu/Wi7JM5d2LBCfciW8fNC5zZ3KSqPtQQ+cNDQ0NDQ02jq0V12bgR44hUBiSaIeNnFGCqbXIeohyKXCmCdZjxAlCk8qNE3NVIUgzSyNXbskM8imztbCehZUqz+9TVCZYHvCrneSOp1yEQcV+FkP4kvFw5gExigG2a2KzP3tKGxEVAci7U1+ThwDodYXpjPh37EwwXCMTTITE8HCNOMPVbkDc8Y6LQSwkWHaOUDWK1lSMNuQ+uG/T0A4c5hGmC2Wbwri9EpR+3zq1BA9V7NBRw5vM9DhCDQ0NDQ0NDQ0EkIzTmGwCWgSrzpFw0RFrkOZxYtsFEBBiBCkEPAFzRMnB+rMUJ4xx9mYnqkC4nQM4ufgNAWUzyiFWaRwjm9nYDulzeZ8TITC+Ih6j6gWuM4jQVBTBkNhh4AgFsnf6bC+ii7bznlem4yJIiEX0dHYBbM8qsdnuRA3qY0KQKiylKXoS9Kn71E9YcvzfYlNlVQGz8Bo7zrXjoj0LGLKJ8cm4XRBaxb4bCa8NFHMtFRdBMMUpTtKgtDvVppzwjzyWigAJqE6cnhbgR44aWhoaGhotHXopbo2Az1wCoFtJ5tJSJomAomB4uyTmIZBOFec6fJZeIhXXVQKhyhmSkVTYsmEzRB93lC2M8cN0ohRpaxXJnx2mRQ+5i2A+fG2wxik6EpVzySiHoNK3sgzekN4FuIQlbhXfG4YCxVgrsNIcYZJnbbHmlAyovoXpXNSGabwmD/O/4Fsa5JnPOR75h7kn5ryfSn13FSeeAlYrkTMlnKamgql1BQyUaxSXMLdqHMD71qi+57MziB7ws5psZQrGm0GeuCkoaGhoaHRxkFs56+pdWg0HXrgFAIaoXGSY7sQgVHyM1CSrokgEfsEhGiYEmiVkmo+wlAKU8A0TqJ+idrEzyoBAJvJqjPLMP1ASkh9DWKLpB1B56s7ZIZH1TQFtSfuI0o5WauUHJyp420HM1lq3Sr71WxxhRQkmakHbUdpnNK2EwVfdP8E3600urQ0NvjrLP3cOJbLx0hGaIea4gEbxxQmqT/Miy3oYLD+Laj9kD4k7FtgnS2W5Fcv1bUVaK86DQ0NDQ0NDY2E0IxTCKIYJ59rgkxBeHUQ6j8kky+yRibE80dMDMwQm7dJRIqZYpz3SqiHnMAO2DZxmCVbPg4Eb/uCYQV9Tmp/mJ4joklfY0GMEhG2ffdUZXtkxpFXEMZUBZkTZp3CVLK6grz+orz9wuxoCtKwld45/vPjtCxNBVHaSBqLK/4upbBBYbmSIo1Gzt8mjWR8gGhPtqRI6v1II455kdyD7fF7vMXYHdOXpjCHLcc4oelfCE04lQV64KShoaGhodHGoXPVkdwUyQAAP2dJREFUtR3ogVMImE4nEL4pv3AeRJaCgIoxdwBJM0OIx5AQQt3jEc1EzIrC4gXFIUpXEKQpCJoBOgySzDBRW6R4FLpH+sxYhoBjwnEVMc5QAScEFJfpPqms754R8Ry1bAArpbTJ2Z8QLVKobkq1OZCVDGazwvRVvnOlfaFNB9gSdSy8orTPXJI6VUReQ7Ua1WMsgNVrDqRh+0RNVhNajC0RFzcr9LwE9QUVVN8nqh5SPBZWT+J4S0kR1pkweVST7kkKaI1Tm4HWOGloaGhoaGhoJIRmnMIgxnHyeaKIOwK0MRKT4ZUQZ/iUEEUfQ3wMhMhGSS1F6JhSef4oLJJPQ6DO+MQZofJZ6ih17JEmNwEsE+8OFS5DBOMQuV0uDzz1HiqMDhXvGWH3SSyrMllqq+FsVRBTlawf4oaXa413iQQ8o+r+9M1KiPSAiiqolE2qY/HB99z7ywZ9NzxmUdY8lTwvT3MRI3RWvmpbgNUo9R5Gs4sBZcKYpAQsUvII5hHXq9SbG3ZeS2qcmhpOQBNOZYEeOGloaGhoaLRxaI1T24EeOIUhYeTwIL2TFzEcEIf4VIlWTYnMFsjHxTo9XZSved/EzG+zT4skMENOvCWFOWKfXeaI1yFsk5CZomRbkhmr6ilCScK61TqTzkRZBfwfqUJfNYRILBNx93kbap0J4eqm+CMm6Kg4ExlWn7SfKmwV8TFMQc+SUzRYYyU1lUCH4/e8DD/m7Awv7+yIb8NvX8zFJ8HfDaeO6FPlwul+eKKun/TdD9SficfFg6lMCEZMNwK1RwozbRdMX13EtEEMxfY0ujWfXfH6pXCBVQsxQTpy+G4HPXDS0NDQ0NBo66Aogzi8LJbs9tADpxBQi4BaSWYSxD8LlXQkCqshaioIIKkpwvQnARGpkwb+EWMmURZfifXLJiCWqk0S6/DYH/V/dlzcGTnBC5GFhdYZUE7cR2zleKDuK9lxJ/0cu8ZOWSrdC8j0QETcn0RMmIgQXRQ1BMaJCPa7zxBVtsXjVDwvTFMVtC3ZFW22D6mZhNLK+s4tMRS6FF093ZmRm1HtRFYT+d0JYpqb/gsY6Q0mMNPUdt8ZlutLtNMAsQlgugUqbe/3nKjeyCKbrbYRZVwMKxl3fkAdzYVkvxPlaIiWYeCkR07lgPaq09DQ0NDQ0NBICM04hYBYLhuTrHTIbtVLishMASBNNWXNA+SZJkEynYOqTbK9z8QigAUYlrdNLPCKiUVATcVmlWkS9FCeeUwH5B5ibAmRT5HMD9E5KeF0fH1lSSqNAoFRAOwMa9P5E8sRyzufmkp9gv2kKLRBANv07oXE/Hi1e3bDfzjQQ1AoL9oQeiMNyvtDDfApDjWY3k2xT2KnPMNUL0AqnAvReyyRniqoI1EnBxSN3Z/wOxfFuCjPbnDzZWAJgqoIveXhrDTfFdonEv6KCTon6t0QdojKzzRjpwGHUSEWgbHD1TSZFHal7b0rqPA8Fg2pHq+B+OsdeUsDGae2oS1K/jvRRNhour5NJ/ktC/TASUNDQ0NDo41De9W1HeiBUxgs9w8ofWbjoyJE8on4y/g0TMo6fwyx5RRyCwpaIGJ7s0kjT5Cpd7Yz9YDR6DVT6AxQw51lmi6LI8qYRPMo+OyFtc/tM4jEABFRd6PabDs6Ks4OBeifOJNERcbJsTtTELpOALPB+Ww2emwUANAMUKwC7xuxASPvbGfrACvnfC5WA8h618Q2/feJ2QAKGEWnPg7baZvbzpkh9zxWbwb+54PrRJzOcMbJFNog7vXgbB6R2T2Dehtsv8h8qvKTCN2c38OQygWjvhZJ388lswYkmqIoWztxZiTViJFwHROP0yY+ZFFteh+p8G+8DQJ8p7jvDNtjqhmTYjQayOwwYFW5rRkAyRtAVhIJyk2W8vscqXlKcn6Ke1zGHI38d6K5oTVObQZ64BSCsKW6yO+bb3QQfVh6AbKBUpT7ctiGsDRHbDaocV96Be8zsZ2BBfthN/KAWfDsMnd6gwI75yxZSU3azgCE2esNfpRBQVbptyGHGBCX0Yw8YFjCwMl2bQZg2M4ymlEU2hd/W5TBnJ3zBkNmgUrLf9QArKz7o5BxBi58QEa8fpuNXh2AN8gSB2zsM1vm5AM0w7HfZPYX4RtcEtsz2DYJHxBRw7tuVs4dLLn12hkARe9aquJ1WSxO+HIeGyhRcZAuDJb4MyfUw/tNEOCMoAyYWn2lpAkGlPr7EbZsyzcTLCEGHIh2rIhbjnO/3zEDMwlBqY4oEZ5tAqPB+YJk6okzaGK3v0ik5fU28CCUgPLZ3GJLdRptBnrgpKGhoaGh0dahGac2Az1wCgGxiDOziiunLpOJ/yuiTqLM6MWlk9hAfuKsxlAatglnaTJ1BGajvPTFWaQMkGkUlrPyFMTyGJPMTgKj6NHxdiZclCqCsSXFSsVc1jchdICZB7LbPfuI5TAznGWyBKbIBowi9Rgni8Jg59nUWzKDcD0lw4TPxFuGtE3nM2N47AwRROZEWgoDgcOCWU5lRlGwnbFH0o2lkuicnedcA0Eq7DJHdsY518oRWBXesWKlx0BR02HTuO0mIMYY9PfdZRMM1m+1nLf+KgnmBeaKh2AQ3fYjGNPA4y2Bll6ui20v4XKbckp00YACCUThXne9A+r7SlzGhy0wTsJ7g1hwWGXh/UYo5LADPvY83K6SkOKyN6lcoHdKiA3se74LhyOYM2cOFixYgA8//BBVVVUYPnw4brzxRuy33368zIwZM/Doo49i7dq1yOVyGDp0KGbPno0jjjiCl2lsbMS0adPwpz/9CTt37sQJJ5yAO++8E3vuuWfT+tNK0OEINDQ0NDQ0NHxYunQpJk6ciOXLl2Px4sUoFosYOXIk6urqeJl9990Xd9xxB9555x0sW7YMAwYMwMiRI7Fx40Ze5pJLLsHChQvx6KOPYtmyZdixYwdOPvlkWFZLCcTKC0Kp5u5EbNu2DTU1NRh47fUwKl0KJShxbsAkg7AZW4i3tuguz2f7ql5EcLcXRdeiCJkaXhtMWJ1xn2OzEcg0AEbeZUiE55K6Wh6z4B7LU08TBVl/Q13GgdnM9DjUFUtbWY8tKXZwmSO3rWKV88fF4YKmycwDmZ2A2eAxOEaRwih4zAyzwzmPggisjVF0LpC433dtA+AwPIR/pibhfaEZ4um53BQran189m17rBcU1supzNtnFG3ZRvWZMQjsjNOQnSGwc559xSoC29Vk2Rnwz1YFYIvicFeDxe9TRharM5G/Y7xiqvD8cXZKeB59oRiIcJ5aXxp9TQq0EY/z1kUcs5cmMC6vxGWbhPdIZrvhPUc5ypmUzE7n/VLs4ByzKsFZJ589Afo7n41lQuizEbQ/5rqEBrEN+wyPrbMbGrDqmv/B1q1b0blz5+iGSgD7TTphv8uQMSuaVFfRasTfP7qlZFs3btyIXr16YenSpTjmmGMi7X3hhRdwwgknYOvWrejZsycefvhhnHHGGQCAL774Av369cNf//pXjBo1qkl9ag1oxklDQ0NDQ6ONg4UjaOof4AxuxL/GxsZENmzduhUA0K1bt8Dj+Xwe99xzD2pqanDwwQcDAFasWIFCoYCRI0fycn379sXgwYPx6quvNuWStBq0xikERiNg8hl2xHRFPESVyZ8dxYQIOhR3U/RUEwNTGpbr7VXw12tnnP0Z97k3GyjMvKNfAhw2hzM2TLfA9DoWBSlSEMvmx0VQg4AyDU7WcJiZrEc7WC5DwnRKTJNTrHK95VxtklH0PNUyjRRmnsJsdG0oODZwLVCReswXdT57jBMFKTLBlh0YzC0oTgklxJkiGIa3bRIh9IL42QieTnDth6jBohLDBPcYsT1WTMl4K9dpGPzZohkDNMvYJwPZOsIZPTtLYFU4x6wKR4/FwySwqgV2jzMDFc4zxfRRknYLjteiyGJSAhBBD0VsIrNLQqLjQFYhcJvw+lIjmcQu8LwmoyV4eGZnyrZEmZpYT2pvfOWEYgcKs8H9TgvereZOhylmrDELj8G1fkIdauJy72DIc9CUexVXVwjLFbhaIH4WtFs+Rhnw3stF93NDtJltEf369ZO2r7nmGsyYMSPyHEoppk6diqOPPhqDBw+Wjv3lL3/BmWeeifr6evTp0weLFy9Gjx49AADr169HLpdD165dpXN69+6N9evXN70zrQA9cNLQ0NDQ0GjrKKM4fO3atdJSXUVF/BLgpEmT8Pbbb2PZsmW+YyNGjMA///lPfPXVV7j33nsxduxYvP766+jVq1eEKVTO5dqOoAdOcaBuXB4xJhCRPU7YZ2pCDovPnnExkKGyli7O6KX4RkK8IKPgenO5DI5ZoJ7XnFsP0wg5XmgUpCCwSrbA5li2n8FhLI4BQQdkOCyIzagtwLY9SsLME85qAY4ey3IZJ7PRCa7JWCWz4Nln5h3Gycjbbt9sWa9kU87YOPGhbJllYi8Om7E/3nk+dsfdJsSdBrMvqWlw1skxwuB6J84ChTGFrF3WhkXlbfV/YcZKKJXZS5OAMBbMIkDB+WyYBNT0bKKmAZuxUVmH9WNsFPPOE1mLTKNzrKELcWJkCQE7ieWxU1YlUKh2D7mxraRnVtHgibb7WA8VymyffyWSvCdLZKfCIMUcS4JSf5tCtI2x+0K8tYAAZigwwbTLEon3Szoe3rb0HhGf1SKBnXPasrMEdt5joDL1rq4xiPFlbYbcD5WdikTM9YusS3lAach5vuqpzOz7NE5EWSVQUj01K2ya8kEOqQNA586dU2mcJk+ejKeffhovv/xyoCdcdXU19tlnH+yzzz448sgj8Y1vfAP3338/pk+fjtraWuTzeWzevFlinTZs2IDhw4c3rT+tBK1x0tDQ0NDQ0PCBUopJkyZhwYIFePHFFzFw4MDE5zHd1NChQ5HNZrF48WJ+fN26dXj33Xfb7cBJM04hqNwEmBUO02M2UiHOkJsElutcIDA67sxd0J848ZCcz3ZGYDJsmTli+hOJHeB6J8q9zwA3/lJRYI1sj9lwNEGCNxcFZ2yIZTmfGSMisiVwtD5MB4SMs59pnBwbCe+bVeF53BkWhZUjMBhx1SjrrowChdnoHDQbKYyizRknUrQde4veNhjjRF0myvK2PdttgIoMVIyeCJAYJ2KYgMlzwoAIn4FoXZvEMIntxtHohMjUdBGSDezZIIYBahicEaOGwYs5TCABzXh6KDFGFTUA02WuiOWwU1xP5jKWVoVbdidguLHK8p2dWTmLVq4mMKZQJrsKyxXQWWmLx4eKOiVJgQQz7qAA/okn6kqy2yZBYnuoVL14/YhFZO/WomCOoksLCg8eHkUegemO+DEbPKsADEalu3Wa3nk8ybSYRFtMDh7FtCnsUwR55j834T0QzJbrCGDbfG0y3ScrJmQnMNyVBnEVwLBcr1YAcOPXGcl01U1HK8RxmjhxIh555BE89dRT6NSpE9ck1dTUoKqqCnV1dZg9ezZOOeUU9OnTB5s2bcKdd96J//znPzj99NN52QkTJuCyyy5D9+7d0a1bN0ybNg1DhgzBiSee2LT+tBL0wElDQ0NDQ6PNowwDp5QzgrvuugsAcNxxx0n758+fj/Hjx8M0TXz44Yd48MEH8dVXX6F79+44/PDD8Y9//APf/OY3efnbbrsNmUwGY8eO5QEwH3jgAZimkternUAPnEJQtclGJmu7+iJPk8MYJu75FeR1wWA4zIW3Ju55KRGbwswLTIvtMFLcs0pgrXg8I8ZsiToly+ZaIAAeS8OZGJF9ctkb8ctHCGc9iAVQIvQrC9nzLCP0hVLP+4QwVs7ZNopOrCOua2q0YTa4jJPbZ6Pg9rvgsmBuIDSJYbJt57PtTvlUdodSiZ3iDFAcWEwn9qUV9U/u/8RQaQs2/RbqD2K5VEaAbRty/d5xw2vPkBkwpnEiUj2GxAzSjOHooTgjRUDzrg6twYCdJQKTQdHYxeQMaLFKiFYuUkvwE0o+0qIUT7CEiNa+BNBJKduK09YQKuQrVDQtaSDFyXKTMRN24QTtkpmHxDCLNnImKkQHpeokxf+p4bXL6hK9KIkt5KNkues420I8TSXLRMAY5bzChCk6INWrTrwOXAMVhhTHpATkMUwVvzSCtyAAHhNP1CmZQh5NMw/pOhhFKj8PFLDyKb8MpaIVGKe4MI+VlZVYsGBBbD2VlZWYO3cu5s6dm6r9top2oXFasmQJiLvMof698cYbvFzQ8Xnz5rWi5RoaGhoaGhq7EtoF4zR8+HCsW7dO2vfLX/4SL7zwAg477DBp//z58zF69Gi+XVNTU1Kb2TqHcXLiCnk6Ju4Fxjy9qMf2iFGiY8EZEm+XKXpdCR5u0jmsHca0MJ2SpP1RZiY8LhITQjFxkqpDEZgXHhfIa5NprQCXgWKzV+LM0jiLZFGeZw4AjLwNk3nR5V1NU96piBRtkIIFFJnYS7C9WJQZMsuSGSebglLhAqoMUFKI19kgIMTg9RJi+K5TZD0q6yQwRRKzxctZXjmRlTJNTw9FCJBxLjY1KQhMUPbgWAQgFESNCwbn3mXqbORrnK/5ztoMitWi5s5jIOwMPE86dj4VJu/qrD4IQTP9Um6HWGWs5inhPuW4mHdNPYdYnq4FSpR+2Ij0uGSgZsDXN+g7DUFjI3jRil67Yn5ExnJI9osaIkNgldzyLNK9bYIzjCy2F5frsDYUT17AOV/UalJDsEewKRCKxkmKzcXZuJDzAiBppASGjfWVH7M9pkjy/mOEelawx/auESnK8efMRi8Lg5kHMg3Ue8+59RYLLZQ2xA6iHkupQ6OpaBcDp1wuh9raWr5dKBTw9NNPY9KkSb44EF26dJHKamhoaGhotHtQ25v8NqUOjSajXQycVDz99NP46quvMH78eN+xSZMm4Wc/+xkGDhyICRMm4IILLoBhhK9INjY2SuHmt23bBgDI7igik2H0isq82Dz6NrGVzz62B3I06xiNjDcbC5hyBdVjU+fLYNnysTDmRWQ5TENqh2QEUsoigCHProhNeTwhs5FyjzsedZrNzG1HT8PzyhWFeoqWo2tyZ2mcbRJZJdGLrlj02DWRYVKvnah1SghqB7xEKJUlG8SLteQYLLJTsiceY6v4rNAgMkOmni/WAQgeToZzDZgrnWk6HniAwzYZFDBcBiprwM6ZsHOuNi5n8IjuxSoDVg7Id3K27YzDNKjRwt2K3Z2CbSIzIxwLY4FC2aUmTHJ9nnwJ6vZ51VGFIRFgFODzXAvMN+m2JemNAnRJPE8gY2+49kxmAyWvWZYJgG1bbuy4AFtYrDc5jhzl/ZT6rzBB1CCcabGzkHIaMuYqMD6d6z3G4rQR6rIy7OtjBDwTJNlnySMuog7VK5Oqx5T7Z+Rlpklky6R+Fl2Gj8fIAzI7PYbJKHh5NA3LzcSgejQXW4hx0mgzaJcDp/vvvx+jRo3yhY2fNWsWTjjhBFRVVeHvf/87LrvsMnz11Vf4xS9+EVrXnDlzcO211za3yRoaGhoaGqWjFcThGsFo1YHTjBkzYgctb7zxhqRj+s9//oPnnnsOjz/+uK+sOEA65JBDAAAzZ86MHDhNnz4dU6dO5dvbtm1Dv379HGaJOA+qE+9EYJVULzbF00vyYhPXlMUHn1JZswP415+j4hKpbEsUqyWCeZQBbkAqgRWxbJAii+PkeLoR1/OMZgwYjcSLsE28/G4QPQfBZslKzjmmCbMoSLHobRct2XNO1TQVLY9lsuQYT2GMUShEtsfH/Dl10SANgEHAdWFs261PYqNM0/FKZMctuAwUAFCZgWL2WJa8LR0TNGlhdI57H9i9sE1wxsnKAfmOnuecnfVm3oDLxAjsiS/PGBA860+hdwqKmxNWf2R1CnuiRq02xOj+FkAznveUpBECY0/dz0VXjxTA4Kg2ih5q3CbxuCmwSlTe5qyWeF1C2DSRZWK2ijooKXacrVwLwUTGxIjfTVG/47BeVOobDegLe2ZYXDamuxKZNwY7Cy/uk9tvUX8ksnucbQphpJJ644mx7wBXr6RcXzUaOL/ftj+XJrtGTNPplQ34DtqI9qwuJ7TGqc2gVQdOkyZNwplnnhlZZsCAAdL2/Pnz0b17d5xyyimx9R955JHYtm0bvvzyS/Tu3TuwTEVFRaI8PRoaGhoaGhoarTpw6tGjB8+gnASUUsyfPx/nnHMOstlsbPmVK1eisrISXbp0KdlGxjZxVknVLLnsimtg8OxDjT0EeGyTrRwT4i8lYZGoKvYLYq0YM+PT5BQdRomxHqbplSkazjF3m7h6KMnrLwpiNN4grz8eq8mSmSSBhaOWJWuZLMtjmeJiNlGbs0e+mEwpwM+VvPeYVyJAbdtjnWzbuV5c+6G0K9rL2CclfpTTFpWPFYvgX1XDdiKKM0/OogVZwmc4Gig4zJOZ9zyIiCHfNqLOllUPKAEqUyBFqA5AlDddlB6GFBUGwRDOITJzpMYSkhimBr9eh0eAdr0+vYrg87IT2QVPO0QhxmLjbJKkGfMokqBrJrap1i8dU5gpj9WW2SpCBUYp4J4Q240TBYAalLORLI6Tr7/uM+t4mkXdRLER76NRZHZ418HOeKyVmK+TKGyYar96nAjtSp9dDzrVMy4oC4N0Ldm26FVng68YOHVQ+dmQYsmFXZxmgl6qazNoVxqnF198EatWrcKECRN8x5555hmsX78ew4YNQ1VVFV566SVcffXVuOCCCzSjpKGhoaHRvkFRhoFTWSzZ7dGuBk73338/hg8fjgMOOMB3LJvN4s4778TUqVNh2zYGDRqEmTNnYuLEiaU1pjJAaR5YNX+amtss6pywYyrLZCt2iXofpS4qsjkCiGGAmjZnNohpyp5chuWxHiy6uKj1oQL7w/rLtkPZMuUcSj1mifc1RMfE8tPx5gVWwCDB+iS4zJUKEkyZsXpCWaqguE6qNonN2oN0UWK5MA87dky89uy+GMp57gzZcD0lCfUiG5uVxGUVXM2Tm3vRFzkZLrsgzMxV3Uiho+CR5WpYfB55IkIYCUqUc8ViFMjUezocKjIOrlcaFRgoNWq2GltI1BuJ2zRDvNyO1GUVfHGJCD8epksiQh0AY5w8SkRkS9TchyrrIdYj7ovaz2wwhOc+38mLIs/OY8SRE5+KerYrdRmWUDiKEQuAxCIROLnvAIA4+RD5NSrKTJ3q0ehriskx3ThjRGSV2Gf2v/LM8eugMGuSxo0xeqJmjD0LVI7hx2LZeUwmlbNIaOw2aFcDp0ceeST02OjRo6XAlxoaGhoaGrsM9FJdm0G7Gji1JORZiah3oOkfYJWRYUgZ6ToyhhHTBbHPomZB8uwTGBtiOLnsWN4zSp1I1ACIacvsRlBcqaA+ss9hMZdc+0K1SoI2SbU3svlSQqmIdQvsEAnyouM57BSmSrwurgciIQHsECFyzCb1uirRyx3GiVFHhhc5PGOAmiYo83bMmbAqTNhZl1WqNHisLTvj6HG4ViVPpMjSxPKiu6veW1zb4Z6a+Sr8OaXKJZG0Kq4miEcrzxKZZRBvr8oqiZdLjOYdZIOoIVLYHtt0DkmeaSKzRonkZSUyEJJ3VgAbJzFStp+F8zwRleuXktGB9A6S2zTdyNZ2hiBbT9HQxdMhilHIaQbgkeIU7zxR4xNoX5y3qqD7EvVHlP3j1mu6zKZzHlyPUG+bPw9EfhZ87B6BHPWeQLpPPNYUvH1OR92CwvMn6t2I8mwQW4jbZFHXE9XdLuW3oCmwy+DCF+SJrJEaeuAUB/bSkMSkVKD6xTcM+1IKAmobwhKMOIAwABP+wJVRCHSHDRmIMPf6QlSdFgi1nQEU4CzlqSlCGFRheRTU5cMo+9zPpQyWJIjJcpV9vE51eS7sHGk7QQBM0xAOC+cbhpxIWPzfIDyIJd8Wy5gGKK+f8IESMoYzeGLhBzJO8mW7wh38mgT5js6xYgfnf+ZqzQYf/MUvDZQgLdUB8mBEHRxFLR/J9VDnd5X9cOYpqEHkdkTXdaVNmwVZNeEXWKsIWEZzNoT+wLnF/BFjImmhDAG8UBu2F5SWuv0WgzFKq0Niv933hiFui2UDlsqi4NXLftXZ/XeSNXNQILfdKWPliCzGFu43H1CzgYiwDMY6x8OqEOK/3+LgmHopf2Arzwpxnjf2DPJQAbxPlAfWtDNEXvYi3n0wikKoA/eYeG1IQb72viVWtTx3FIC0VGsUlaW4IhUGl1R2DqLKPW9uaMapzSDON0pDQ0NDQ0NDQ8OFZpzCwIJZBo3QCXHYIrcYS5VBbBswhUG9TXgQTWdb+Eyok5aBkQ6iiz7gurUrPtPCLFi1hy+3+QTggmg6gMlxlrj8ayDUOTmcwQH8gmcVYUuEAuPE6iWGaJvJy0WJvkWoy2vqeSyQp9hmIBTxNT8viHUKEoGLaWxMIdMrE40zlslwl+5Mj8mTQj2YJmjGvadZky+/0YyBYqUJOycwTibhs+tiBwKrwj1mOklKqdJ1yoTPhrwkJbMKJFQY7ST/Fdy0GdGqPK4ipCeFUHkZTiRdDdndny0lsmUbxkBw9kkkW9THUT0mHpdYD4WNEvoKQryvrO0yNBKr5NVLFcaJgIAl8GHLVxLDx22hAddaZbK9a+JUxZaPvGUyO+PYyMIPmAXnGRDZNE9sT2CbRGIfxbQvTigIwu2hYvBW5Tqz54HbTghPYcLrEs9h9ppQluMoX3LmjJbKFgrXTwxiahao5FQQKrS3Q4JaCvdYYpyU74WzPMfqpeVhgZJCM05tBnrgpKGhoaGh0dahI4e3GeiBUwhUN1M1rYovwCPfEDUwFNQm3mSLaZ4YTMEv26aQ0p+wbdYmISB8ukk9ZomdwwIiZjJQNUWET5lMSHointE3hH2htie6JgYASz5HTGORkBni5VUGCN42q8fgs88U9QosmC+kgI918jNmJEjL5dN7CUyTyFAF6ZnEkAJEZphEdoqahLNaXADuMk52zgB1GScra4Bm5dQ3RpEKM2a5T8Vq71VrFiDDoRWd8xgbEqYTUQIBEuqxXF6QRnZcKavqeQSNiSTkJuDPuliv0757qujur5wbxkb5GIgIqGlARPZJ1WaxYIoSeySKq225Xfn6qteTNQY5zAIzgl0TW7ARDivCdUAF9zowNhwuC8OeMYM34TiCMDsRcA+Fa2BzRiiYDQIUe0X9E3F1aiJzJHw2ik5qIOkauf8TS3BsUJ9HkeGksl5LFbizkBO8Xlsoy8JwCImS+Xuf6ZmC7hnbVsTlGrsH9MBJQ0NDQ0OjjYNS258pooQ6NJoOPXAKAWm0nGS0QYEww9imuDQgrAw/WWCYDOJO7dzKDf6PN+MUvNUIYzIs98ukpOwgIlvFZqC2M10NZaB8FyGAiQphpyKDRiasgx/2yZFK97IDEKvFIiKjpIYbUGEQWdMkgqVc4RXHXw8axE4R4tx6kXBztT4mbNg2ASm6LEKGwMoSrnkCBTINLmNXAKwKL8kvVTQlgBBsMtA4yVDJJVxNRCvP2ol0zKffkdoIYWu9Zt1jIawGZy8EplFZ0WBH1PMjIbQrutVJHmMUoJR4t41SnxbHM9D5hyebpfCCUQZcfDUFjHcB/aZ7LJyrD3PbcMI+EJmlY+8CIpQXzQy6LoTpkYIZJ6PopXLh15691iwKo+AxNZSA65hoxksH5JT1grOaeeom32VMUbgOjD+Pql5POO6dR/2ecUp4F4+xopxV5FA9qimFYYmCrmZEkt+XJHVoNBnaq05DQ0NDQ0NDIyE04xQCo77RcYAKSh+ieoWFgTETYWWDRv9qKpVYQwmIbYBKgiNPLyMGxySG4bBOTB9DKQDTY3jak3AwhrUCEJ0aRYAvUa+vHjGaIhXlWG4FwnWzbU/rZAtMIHVFL2JuCpsGT10oddkIJuwBkPEoAdMisJnHnQ2QIgUtOMcdTynX7LyNYpWBQrUbr8p2GICGru65BngMHZYGRY3Bw5kDN3mrbCd4PYTC8y4VtTK2X48iMUKUBLArbvMBaUnkAgH7RPOCWCP1WAx8mh+RvWABEgX75eCJAgtnKdui/omdZ/v7G8jQKc+x10+nMNe/KRVQQQfmsEZU3lbTn/B6HQaRmk5dXLPEHkmDeCxnEQ7DJKZBEWy2swBtCH7PENtjQL10Jt62fH1pJIska8ioxCJJDJN4nntcPOa0ZfuPCecaVj6wP2WH5O7ZlDo0mgo9cNLQ0NDQ0GjrsMugRNcap7JAD5zCUMg76UdELzcRiUbuSnwkX1JXEl1vkjbcaOXMS01KAAwobIntlFPq5R54ZsA0vE3MUFSKB8HsWFKNFRCurVH7KzFG7kfm0eiyfVK7lHrJlDMZue4AlozNdh3vRdczkhKXxXEZHOJ4ZwJwookbhOtjnJQVnpedKXqXZRyPu9x272VpFigy9c52scpAviNjoygyDd4s3TYJrJwXldoXC8rw0qiwbV4mkEWT/w9iaaRygEQLkaDjAiIjmUe049NDqZN65ZjkaWt7f962wDBZMhsleX5JXmA0wA6FEQn7GhKPYWIxsKS4WOLjR+DJJpUo7aAu+yRonTw2ymmfPYOiZomd6zFDTj8lnRC7AJATTLOqw64JP+6e7lxP731MpPMUBipAi8TtkdgpiiCWyXee26Zf70oBu4UYJ402Az1w0tDQ0NDQaOvQS3VtBnrgFIai5bh5iLOLcsNCNNuh6m2C2CiFeSHEADXs4FyQqscYi/0kxjcK6SdNmxyyHNcrjeYqCdsU4cEV1j9iGHIOP0DQjwEUFghjxFwvJn5cugbEoclZUBy4+iemPyOewIgS4ngSWp4einlJUkKc3HWsDcNloRhTIOSxY2wEZ6BYvB+3cKaBIltX5GVJUWYKDIt6WiohqjTNEhQrDFD37WHkKTKNVEosXaz0zqOG50lVrCCwc3LsHlGLFJYrz1aOwYaUTBYBnyNzl4n1CEwRy6XGdWIFKjFKErvianB4fQLDxDU4gkce4do1cB0Ot0dkNIV4UYFsCuBFkje8OHGUuJ+l51zoK9PVufuJ72LQwI+hSX4D2NhEejUGWzmmsFhyfZRff1ZWYo2CmCKRtRO/35QC3KNReb+L+ifOXInXxZavhU0Bu2W86qhtgzZxqU6HIygP9MBJQ0NDQ0OjrUMzTm0GeuAUBpsimLaJOkeZjUTF8VFZiSDGI+whT/LwBzIwbPrunu+L3h2OwBkjQxgblZS9Cqs7jWYpLZLep7g6gs5l/RMZPkukLeBFHBd1TxbTNAmed+x/wzvmMFKC7YYh57njkaINeZswbyh2XLA55BoYeds9V96fFeOKqSAEZj3TRhE5Lx11WBIWd4oaxMmnBkd/Ze70ng27woDlMlXck4sxQa6OhuWyg+RlxdggQbdiQIr15OVLI7K2j+UnY4yEJdRDFW0PA2NHbGWfyIqI+hzhHL5pGNwOfp+4rYL2SHEPFL3LDNufc9IH/kwp14MdVjzTnH2QmLbA+EbsEI/6nuDdpTJOYeWCtpVXSOC1jWOkAJlhYmWlYwpTxfaLZduTN7JGWaAHThoaGhoaGm0dtrj+XCI041QW6IFTGFgk57gHTV07F8G2o1iJoPJJbGNlGSsjevsILEbgmnYSJkedRQX1gdsQ4EYlxjBSQOKic7Pqo3RV5XgBsNmxao/P+zEiGrhB+DUmtisE4vdEuAZqZHJV3yZGDnfrlY95NhD1GASCQq0zqC4XEuNg+I+H1qeeb/jL+eoWWS/EMJii3kfI7ScxV1xvFMJWpCSLk9oTxJiE1pHiGSWwwu8NUL5QxRHXJZQRK4fOM2m7YYhkvEPsS8JkBcXkUzVMUVDZweYELWEVJLAOjaZCRw7X0NDQ0NDQ0EgIzTiFQY3hkQSlamWSnB+hj0i9xl7qmnya6xHHKiXw0iMpNFipkZD1SnNPObvHoiYTwRWNt5sk4nwE68PriWHJwvYJ+yN7FsVKBp2vxqgKOz+JnU39HgUhKRsUyzALxwPY3pIQcK2kPeXU0DTFq6otsxVpcoTGIW0/W+iyUJt6eQdLraMt38N2BD1w0tDQ0NDQaOugNpq+VKfDEZQDeuAUBtt9SFtrhN5Eb43IeB2lzpTLyQQ0J5uUBM3ksUficugJsY5CoT5zVtC9TOBBFYSm9LuU+98c7FEckrKJSRHWh3K9G5JoKdsT0sZ8a+9I4s2osUtBD5w0NDQ0NDTaOPRSXduBHjiFoRSNU9J6WwCxzAcQmAJOo4XQWrFfkrYbxEyV8uy2xou6KYxHazBkGu0bLfWM66W6NgM9cFLARuTF5krcmOZLpgOrabQadtMBhB44aaQE+61objaniEKThehFFOILacRCD5wUbNq0CQCwZNPDrWyJhoaGhkZ7wfbt21FTU1P2enO5HGpra7Fs/V/LUl9tbS1yuVx8QY1QEKoXPSVs2bIFXbt2xZo1a5rlS9Da2LZtG/r164e1a9eic+fOrW1OWaH71j6h+9Y+ofvmgFKK7du3o2/fvjDK7ZjgoqGhAfl8eVZBcrkcKisry1LX7grNOClgD35NTc0u9zIQ0blz5122f7pv7RO6b+0Tum9o9kl2ZWWlHuy0IejI4RoaGhoaGhoaCaEHThoaGhoaGhoaCaEHTgoqKipwzTXXoKKiorVNaRbsyv3TfWuf0H1rn9B909hdocXhGhoaGhoaGhoJoRknDQ0NDQ0NDY2E0AMnDQ0NDQ0NDY2E0AMnDQ0NDQ0NDY2E0AMnDQ0NDQ0NDY2E0AMnBXfeeScGDhyIyspKDB06FP/4xz9a26TUmDFjBggh0l9tbS0/TinFjBkz0LdvX1RVVeG4447De++914oWh+Pll1/GD37wA/Tt2xeEEPz5z3+WjifpS2NjIyZPnowePXqguroap5xyCv7zn/+0YC+CEde38ePH++7jkUceKZVpq32bM2cODj/8cHTq1Am9evXCqaeeio8++kgq017vXZK+tdd7d9ddd+Gggw7igR+HDRuGv/3tb/x4e71nQHzf2us902h56IGTgMceewyXXHIJrr76aqxcuRLf+c53cNJJJ2HNmjWtbVpqfPOb38S6dev43zvvvMOP3XTTTbj11ltxxx134I033kBtbS2++93vYvv27a1ocTDq6upw8MEH44477gg8nqQvl1xyCRYuXIhHH30Uy5Ytw44dO3DyySfDsqyW6kYg4voGAKNHj5bu41//Kueraqt9W7p0KSZOnIjly5dj8eLFKBaLGDlyJOrq6niZ9nrvkvQNaJ/3bs8998QNN9yAN998E2+++SaOP/54jBkzhg+O2us9A+L7BrTPe6bRCqAaHN/+9rfphRdeKO3bf//96VVXXdVKFpWGa665hh588MGBx2zbprW1tfSGG27g+xoaGmhNTQ2dN29eC1lYGgDQhQsX8u0kfdmyZQvNZrP00Ucf5WU+//xzahgGXbRoUYvZHge1b5RSOm7cODpmzJjQc9pL3yildMOGDRQAXbp0KaV017p3at8o3bXuXdeuXel99923S90zBtY3Snete6bRvNCMk4t8Po8VK1Zg5MiR0v6RI0fi1VdfbSWrSse//vUv9O3bFwMHDsSZZ56JTz/9FACwatUqrF+/XupnRUUFjj322HbXzyR9WbFiBQqFglSmb9++GDx4cLvo75IlS9CrVy/su+++OP/887FhwwZ+rD31bevWrQCAbt26Adi17p3aN4b2fu8sy8Kjjz6Kuro6DBs2bJe6Z2rfGNr7PdNoGegkvy6++uorWJaF3r17S/t79+6N9evXt5JVpeGII47AQw89hH333RdffvklrrvuOgwfPhzvvfce70tQPz/77LPWMLdkJOnL+vXrkcvl0LVrV1+Ztn5fTzrpJJx++uno378/Vq1ahV/+8pc4/vjjsWLFClRUVLSbvlFKMXXqVBx99NEYPHgwgF3n3gX1DWjf9+6dd97BsGHD0NDQgI4dO2LhwoU48MAD+eCgPd+zsL4B7fueabQs9MBJASFE2qaU+va1dZx00kn885AhQzBs2DDsvffeePDBB7nYcVfoJ0MpfWkP/T3jjDP458GDB+Owww5D//798eyzz+K0004LPa+t9W3SpEl4++23sWzZMt+x9n7vwvrWnu/dfvvth3/+85/YsmULnnzySYwbNw5Lly7lx9vzPQvr24EHHtiu75lGy0Iv1bno0aMHTNP0zRw2bNjgm2G1N1RXV2PIkCH417/+xb3rdoV+JulLbW0t8vk8Nm/eHFqmvaBPnz7o378//vWvfwFoH32bPHkynn76abz00kvYc889+f5d4d6F9S0I7ene5XI57LPPPjjssMMwZ84cHHzwwbj99tt3iXsW1rcgtKd7ptGy0AMnF7lcDkOHDsXixYul/YsXL8bw4cNbyaryoLGxER988AH69OmDgQMHora2VupnPp/H0qVL210/k/Rl6NChyGazUpl169bh3XffbXf93bRpE9auXYs+ffoAaNt9o5Ri0qRJWLBgAV588UUMHDhQOt6e711c34LQnu6dCkopGhsb2/U9CwPrWxDa8z3TaGa0uBy9DePRRx+l2WyW3n///fT999+nl1xyCa2urqarV69ubdNS4bLLLqNLliyhn376KV2+fDk9+eSTaadOnXg/brjhBlpTU0MXLFhA33nnHfrjH/+Y9unTh27btq2VLfdj+/btdOXKlXTlypUUAL311lvpypUr6WeffUYpTdaXCy+8kO655570hRdeoG+99RY9/vjj6cEHH0yLxWJrdYtSGt237du308suu4y++uqrdNWqVfSll16iw4YNo3vssUe76NtFF11Ea2pq6JIlS+i6dev4X319PS/TXu9dXN/a872bPn06ffnll+mqVavo22+/Tf/nf/6HGoZBn3/+eUpp+71nlEb3rT3fM42Whx44Kfjd735H+/fvT3O5HD300EMlF+P2gjPOOIP26dOHZrNZ2rdvX3raaafR9957jx+3bZtec801tLa2llZUVNBjjjmGvvPOO61ocTheeuklCsD3N27cOEppsr7s3LmTTpo0iXbr1o1WVVXRk08+ma5Zs6YVeiMjqm/19fV05MiRtGfPnjSbzdK99tqLjhs3zmd3W+1bUL8A0Pnz5/My7fXexfWtPd+78847j7//evbsSU844QQ+aKK0/d4zSqP71p7vmUbLg1BKacvxWxoaGhoaGhoa7Rda46ShoaGhoaGhkRB64KShoaGhoaGhkRB64KShoaGhoaGhkRB64KShoaGhoaGhkRB64KShoaGhoaGhkRB64KShoaGhoaGhkRB64KShoaGhoaGhkRB64KSxy+G4447DJZdcsku1O378eJx66qlNqmPAgAEghIAQgi1btoSWe+CBB9ClS5cmtaURjvHjx/P78Oc//7m1zdHQ0EgJPXDS0CgTFixYgFmzZvHtAQMG4De/+U3rGRSAmTNnYt26daipqWltU3Z5LFmyJHCQevvtt2PdunWtY5SGhkaTkWltAzQ0dhV069attU2IRadOnXiW+9ZGoVBANpttbTNaHDU1NXrgqqHRjqEZJ41dHps3b8Y555yDrl27okOHDjjppJPwr3/9ix9nS1PPPfccDjjgAHTs2BGjR4+WWIFisYgpU6agS5cu6N69O6688kqMGzdOWj4Tl+qOO+44fPbZZ7j00kv5sgwAzJgxA4cccohk329+8xsMGDCAb1uWhalTp/K2rrjiCqiZkSiluOmmmzBo0CBUVVXh4IMPxhNPPFHS9XnggQew1157oUOHDvjhD3+ITZs2+co888wzGDp0KCorKzFo0CBce+21KBaL/PiHH36Io48+GpWVlTjwwAPxwgsvSEtRq1evBiEEjz/+OI477jhUVlbiD3/4AwBg/vz5OOCAA1BZWYn9998fd955p9T2559/jjPOOANdu3ZF9+7dMWbMGKxevZofX7JkCb797W+juroaXbp0wVFHHYXPPvssUd/j+nXrrbdiyJAhqK6uRr9+/fDzn/8cO3bs4Mc/++wz/OAHP0DXrl1RXV2Nb37zm/jrX/+K1atXY8SIEQCArl27ghCC8ePHJ7JJQ0OjbUMPnDR2eYwfPx5vvvkmnn76abz22muglOJ73/seCoUCL1NfX4+bb74ZDz/8MF5++WWsWbMG06ZN48dvvPFG/PGPf8T8+fPxyiuvYNu2bZH6lAULFmDPPffkS2NplmZuueUW/P73v8f999+PZcuW4euvv8bChQulMr/4xS8wf/583HXXXXjvvfdw6aWX4qc//SmWLl2a/MIAeP3113Heeefh5z//Of75z39ixIgRuO6666Qyzz33HH76059iypQpeP/993H33XfjgQcewOzZswEAtm3j1FNPRYcOHfD666/jnnvuwdVXXx3Y3pVXXokpU6bggw8+wKhRo3Dvvffi6quvxuzZs/HBBx/g+uuvxy9/+Us8+OCDAJz7MmLECHTs2BEvv/wyli1bxge2+XwexWIRp556Ko499li8/fbbeO2113DBBRfwgWoU4voFAIZh4Le//S3effddPPjgg3jxxRdxxRVX8OMTJ05EY2MjXn75Zbzzzju48cYb0bFjR/Tr1w9PPvkkAOCjjz7CunXrcPvtt6e6NxoaGm0UrZpiWEOjGXDsscfSiy++mFJK6ccff0wB0FdeeYUf/+qrr2hVVRV9/PHHKaWUzp8/nwKgn3zyCS/zu9/9jvbu3Ztv9+7dm/7617/m28Vike611150zJgxge1SSmn//v3pbbfdJtl2zTXX0IMPPljad9ttt9H+/fvz7T59+tAbbriBbxcKBbrnnnvytnbs2EErKyvpq6++KtUzYcIE+uMf/zj0ugTZ8+Mf/5iOHj1a2nfGGWfQmpoavv2d73yHXn/99VKZhx9+mPbp04dSSunf/vY3mslk6Lp16/jxxYsXUwB04cKFlFJKV61aRQHQ3/zmN1I9/fr1o4888oi0b9asWXTYsGGUUkrvv/9+ut9++1HbtvnxxsZGWlVVRZ977jm6adMmCoAuWbIktN9hiOtXEB5//HHavXt3vj1kyBA6Y8aMwLIvvfQSBUA3b94ceFy8PhoaGu0HWuOksUvjgw8+QCaTwRFHHMH3de/eHfvttx8++OADvq9Dhw7Ye++9+XafPn2wYcMGAMDWrVvx5Zdf4tvf/jY/bpomhg4dCtu2y2rv1q1bsW7dOgwbNozvy2QyOOyww/hy3fvvv4+GhgZ897vflc7N5/P41re+laq9Dz74AD/84Q+lfcOGDcOiRYv49ooVK/DGG29ITIxlWWhoaEB9fT0++ugj9OvXT9JOiddKxGGHHcY/b9y4EWvXrsWECRNw/vnn8/3FYpFrgFasWIFPPvkEnTp1kuppaGjAv//9b4wcORLjx4/HqFGj8N3vfhcnnngixo4diz59+sT2Pa5fHTp0wEsvvYTrr78e77//PrZt24ZisYiGhgbU1dWhuroaU6ZMwUUXXYTnn38eJ554In70ox/hoIMOim1bQ0Oj/UIPnDR2aVBFGyTuF5dzVJEyIcR3rrr8E1Z3FAzD8J0nLhkmARusPfvss9hjjz2kYxUVFanqStIH27Zx7bXX4rTTTvMdq6ys9F3LKFRXV0v1AsC9994rDWwBZ2DKygwdOhR//OMffXX17NkTgKORmjJlChYtWoTHHnsMv/jFL7B48WIceeSRTerXZ599hu9973u48MILMWvWLHTr1g3Lli3DhAkT+D372c9+hlGjRuHZZ5/F888/jzlz5uCWW27B5MmTE10PDQ2N9gc9cNLYpXHggQeiWCzi9ddfx/DhwwEAmzZtwscff4wDDjggUR01NTXo3bs3/u///g/f+c53ADjMxMqVK31CbxG5XA6WZUn7evbsifXr10uDjX/+859SW3369MHy5ctxzDHHAHAYmBUrVuDQQw/lfaqoqMCaNWtw7LHHJupDGA488EAsX75c2qduH3roofjoo4+wzz77BNax//77Y82aNfjyyy/Ru3dvAMAbb7wR23bv3r2xxx574NNPP8VZZ50VWObQQw/FY489hl69eqFz586hdX3rW9/Ct771LUyfPh3Dhg3DI488EjtwiuvXm2++iWKxiFtuuQWG4chBH3/8cV+5fv364cILL8SFF16I6dOn495778XkyZORy+UAwPcMaGhotG/ogZPGLo1vfOMbGDNmDM4//3zcfffd6NSpE6666irsscceGDNmTOJ6Jk+ejDlz5mCfffbB/vvvj7lz52Lz5s2RTMuAAQPw8ssv48wzz0RFRQV69OiB4447Dhs3bsRNN92E//qv/8KiRYvwt7/9TRoUXHzxxbjhhhvwjW98AwcccABuvfVWKRZQp06dMG3aNFx66aWwbRtHH300tm3bhldffRUdO3bEuHHjEvdrypQpGD58OG666SaceuqpeP7556VlOgD41a9+hZNPPhn9+vXD6aefDsMw8Pbbb+Odd97Bddddh+9+97vYe++9MW7cONx0003Yvn07F4fHMVEzZszAlClT0LlzZ5x00klobGzEm2++ic2bN2Pq1Kk466yz8Otf/xpjxozBzJkzseeee2LNmjVYsGABLr/8chQKBdxzzz045ZRT0LdvX3z00Uf4+OOPcc4558T2Pa5fe++9N4rFIubOnYsf/OAHeOWVVzBv3jypjksuuQQnnXQS9t13X2zevBkvvvgiH5D3798fhBD85S9/wfe+9z1UVVWhY8eOie+NhoZGG0Wrqas0NJoJqkj766+/pmeffTatqamhVVVVdNSoUfTjjz/mx+fPny+JoSmldOHChVT8ehQKBTpp0iTauXNn2rVrV3rllVfS008/nZ555pmh7b722mv0oIMOohUVFVJdd911F+3Xrx+trq6m55xzDp09e7YkDi8UCvTiiy+mnTt3pl26dKFTp06l55xzjiREt22b3n777XS//faj2WyW9uzZk44aNYouXbo09LoEicMpdQTYe+65J62qqqI/+MEP6M033+y7HosWLaLDhw+nVVVVtHPnzvTb3/42veeee/jxDz74gB511FE0l8vR/fffnz7zzDMUAF20aBGl1BOHr1y50tf+H//4R3rIIYfQXC5Hu3btSo855hi6YMECfnzdunX0nHPOoT169KAVFRV00KBB9Pzzz6dbt26l69evp6eeeirt06cPzeVytH///vRXv/oVtSwr9Dqk6dett95K+/Tpw5+bhx56SBJ8T5o0ie699960oqKC9uzZk5599tn0q6++4ufPnDmT1tbWUkIIHTdunNQ2tDhcQ6NdglBaglBDQ2M3h23bOOCAAzB27FgpWnhbxoABA3DJJZe0SDqaV155BUcffTQ++eQTSXSv4YEQgoULFzY5lY6GhkbLQsdx0tBIgM8++wz33nsvPv74Y7zzzju46KKLsGrVKvzkJz9pbdNS4corr0THjh2xdevWsta7cOFCLF68GKtXr8YLL7yACy64AEcddZQeNAXgwgsv1Et2GhrtGJpx0tBIgLVr1+LMM8/Eu+++C0opBg8ejBtuuIELuNsDPvvsM+4NNmjQIC54LgceeughzJo1C2vXrkWPHj1w4okn4pZbbkH37t3L1kZafPOb3wyNIH733XeHCtKbGxs2bMC2bdsAOGEvRE9DDQ2Ntg89cNLQ0NglIQ4UVfTu3dsXG0pDQ0MjCfTASUNDQ0NDQ0MjIbTGSUNDQ0NDQ0MjIfTASUNDQ0NDQ0MjIfTASUNDQ0NDQ0MjIfTASUNDQ0NDQ0MjIfTASUNDQ0NDQ0MjIfTASUNDQ0NDQ0MjIfTASUNDQ0NDQ0MjIfTASUNDQ0NDQ0MjIf4/mGE/IM6Qws0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAHFCAYAAAAExnZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZwUxd3/P1U9PTO7y+4iNyiiRhMPMFH0QYk/8QI0iffz6KOJgmBMImKIV2KMQZMgiolnEo3RB2/xjprEA58ABo8nivooXvFRjKggyrns7uzMdNXvj+qqrurp7pnZnT2Qer9eIzvd1VXVx7RV3++3Pl/COeewWCwWi8VisZSF9nYHLBaLxWKxWLYU7MDJYrFYLBaLpULswMlisVgsFoulQuzAyWKxWCwWi6VC7MDJYrFYLBaLpULswMlisVgsFoulQuzAyWKxWCwWi6VC7MDJYrFYLBaLpULswMlisVgsFoulQuzAyVJTnnvuOVxyySXYsGFDyb6DDjoIBx10UI/3qSf45z//ifPOOw9jx45F//79MWDAAHz961/HAw88EFl+zZo1mDp1KgYNGoT6+nrsv//++O///u+Scn/+859x6qmnYsyYMXBdF4SQ2D4UCgVceuml2GGHHZDJZLDrrrvi+uuvr+o8uqNfSVx//fXYddddkclksOOOO+LSSy9FoVAwynz00UeYNWsWJkyYgP79+4MQgltvvbWqdt5//30cd9xx6N+/P/r164eJEyfi5Zdfjiy7YMECfO1rX0M2m8WIESMwa9YsbN68eatvy2Kx+HCLpYZceeWVHABfsWJFyb433niDv/HGGz3fqR7g+uuv57vuuiufM2cOf+qpp/hf//pXPmXKFA6AX3rppUbZXC7HR48ezbfbbjt+55138qeeeoofffTRPJVK8cWLFxtlp02bxnfZZRd+wgkn8LFjx/Kkn+zpp5/OM5kMnzdvHl+0aBH/yU9+wgkhfM6cORWdQ3f1K45f/epXnBDCL7zwQr5o0SI+b948nk6n+Xe/+12j3KJFi/igQYP4YYcdxk866SQOgM+fP7/idtasWcNHjBjB99hjD/7ggw/yv/zlL/yAAw7gjY2N/O233zbK3nnnnRwAP/300/nf/vY3fuONN/Lm5mY+ceLErboti8USYAdOlpqSNHD6IvPZZ59xxljJ9m9+85u8vr6e53I5te13v/sdB8Cfe+45ta1QKPDdd9+d/9u//ZtxvOd56u8ZM2bEDlCWL1/OCSH8sssuM7Z/97vf5XV1dXzt2rVlz6E7+hXH559/zrPZLD/jjDOM7XPmzOGEEGOArbf14osvVj1wOv/887nruvyDDz5Q2zZu3MgHDRrETzjhBLWtWCzy4cOH80mTJhnH33XXXRwA/+tf/7rVtmWxWALswMlSM2bPns0BlHwWLVrEOed8woQJfMKECar8ihUrOAA+b948fvnll/NRo0bxbDbLJ0yYwN955x2ez+f5j3/8Yz58+HDe1NTEjznmGP7pp5+WtLtgwQK+33778fr6et7Q0MAnTZrEX3755R4662QuvfRSDoB/8sknatthhx3Gv/KVr5SUveyyyzgA/tFHH0XWlTRA+dWvfsUB8FWrVhnbn3vuOQ6A33XXXWX72h39ikNaQJ5//nlj+yeffMIBxFrJOjNw2nnnnfnkyZNLtp9xxhm8rq6OFwoFzjnnS5cu5QD4PffcY5TL5/O8X79+JZawrakti8USYGOcLDXj9NNPx8yZMwEADz30EJ5//nk8//zz2HvvvROP+93vfodnn30Wv/vd73DzzTfj7bffxpFHHonp06fjs88+w3/9139h3rx5ePrpp3H66acbx1522WU46aSTsPvuu+O+++7DHXfcgZaWFvy///f/8Oabb5btc7FYrOjDOe/UNVm0aBEGDx6MIUOGqG3Lly/HnnvuWVJWbnvjjTeqbmf58uUYPHgwhg0bFlnn8uXLK6qj1v1KagsAxowZY2wfPnw4Bg0aVFF/K6G9vR3vvfde7Hm1t7fj/fffN/oULuu6LnbdddeSPhFCjJi9L0pbFoslmVRvd8DyxWG77bbD9ttvDwDYa6+9sMMOO1R0XP/+/fGnP/0JlIpx/Oeff45Zs2Zh1113xSOPPKLKvf3227jmmmuwadMmNDU1YeXKlZg9ezbOOussXHfddarcxIkTscsuu+DSSy/FvffeG9vuBx98gB133LGiPi5atKjqwPabb74ZixcvxrXXXgvHcdT2tWvXYsCAASXl5ba1a9dW1U5SnQ0NDUin0xXV2R39Smork8mgoaEhsr1atbV+/Xpwzis6L/lvXNkPPvjA2OY4jnFfvyhtWSyWZOzAydLrfOMb31CDJgDYbbfdAADf/OY3jXJy+4cffojRo0fjySefRLFYxKmnnopisajKZbNZTJgwAYsWLUpsd8SIEXjxxRcr6uNXvvKVispJHn/8ccyYMQP//u//rqxwOkmr0Dq7Qq2SOjnn8DzP2JdKpUrK1apf+n0BxABA1tMd16Az9YX3xZUNbw+f2xelLYvFkowdOFl6nfBMOJ1OJ27P5XIAgE8//RQAsO+++0bWqw/Gokin0/ja175WUR/12X45nnzySRx33HGYOHEi7rrrrpL/MQ0cODDSorJu3ToA0ZaBcgwcOBCvvvpqyfbW1lbk83lV52233YbTTjvNKCPdkN3RL9d1je/z58/H1KlTMXDgQORyObS1taG+vr6kvbFjx1bdVhTbbLMNCCEVndfAgQMBCAvN0KFDS8qWO/8valsWi8XEDpwsWyyDBg0CADzwwAMYNWpU1cd3h6vuySefxDHHHIMJEybgwQcfVIM9nTFjxuD1118v2S63jR49uqI+hetcsGABVq9ebcQ5hes88sgjY61s3dGvcFvyesvYptdffx3jxo1T+1evXo3PP/+8U21FUVdXh5133jn2vOrq6rDTTjuV9Gn33XdX5YrFIt5++22cdNJJW2VbFovFxA6cLDUlk8kAEMGr3c3kyZORSqXw3nvv4fjjj6/6+Fq76p566ikcc8wxOOCAA/CnP/1JXYswxx57LM4880z8z//8jxo0FItF3HnnnRg3bhxGjBhR+Un4HH300fjZz36G2267DT/+8Y/V9ltvvRV1dXU4/PDDAQjrg7RA9ES/9tlnn8jthx9+OLLZLG699VZj4HTrrbeCEIJjjjmm6rbiOPbYY3HNNddg5cqVGDlyJACgpaUFDz30EI466ijlqhw3bhyGDx+OW2+9FSeeeKI6/oEHHsDmzZtx3HHHbbVtWSwWjd5c0mf54rFo0SIOgH/ve9/jzz33HH/xxRf5pk2bOOfxcgRXXnllZB3333+/sX3+/PkcAH/xxRfVtssuu4ynUin+ve99jz/88MN88eLF/N577+Xnnnsu//nPf959Jxri73//O6+rq+M77LAD/9vf/saff/5547Nx40ZVNpfL8T322IOPHDmS33XXXXzhwoX82GOPjRSa/OCDD/j999/P77//fn744Yer63L//fcb14HzQADzyiuv5IsXL+Y//elPqxbA7I5+xSEFMH/605/yxYsX8yuvvJJnMpnI5fGy7iuuuIID4DNmzFDbyrFmzRo+fPhwPmbMGP7www/zv/71r/zAAw/kjY2N/K233jLK3nHHHRwAP+OMM/iiRYv4TTfdxPv37x8pFOk4Dj/kkEO+cG1ZLJZk7MDJUnMuvPBCPmLECE4prUjHqSsDJ845/9Of/sQPPvhg3tTUxDOZDB81ahT/93//d/700093y/lFEadhJT/yGkhWr17NTz31VD5gwACezWb5fvvtxxcuXFhSrzznqM+UKVOMsvl8ns+ePZtvv/32PJ1O8y9/+cv8uuuuq+o8uqNfSVx77bX8y1/+Mk+n03z77bfns2fP5vl8vqRc0rWthP/7v//jxxxzDG9qauL19fX80EMP5cuWLYsse/fdd/M999yTp9NpPmzYMH722WfzlpaWyD7pz/MXpS2LxZIM4byTAjUWi8VisVgsWxlWANNisVgsFoulQuzAyWKxWCwWi6VC7MDJYrFYLBaLpULswMlisVgsFoulQuzAyWKxWCwWi6VC7MDJYrFYLBaLpUKscngIxhg++eQTNDY22uSXFovFYkmEc46WlhaMGDGibH7MzpLL5ZDP52tSVzqdRjabrUldWyt24BTik08+UekLLBaLxWKphJUrV2K77bareb25XA47juqH1Wu8mtQ3bNgwrFixwg6euoAdOIVobGwEAIz66cWg9sHqGtxa7CwWyxYEqV4PmuVy+Ndlv1T/76g1+Xweq9d4WLFsFJoau2bR2tTCsOPYfyGfz9uBUxewA6cQ0j1Hs1k7cOoqduBksVi2JDoxcFKHdnNoR1Mj7fLAyVIb7MCpk/T1MUEXfv+1ozs70ddvgKV6+sIza+kaPfmz7BMvuZ7D4wxeF0/Z46w2ndnKsQMni8VisVj6OAwcrIuzi64ebxHYgVMMnMQYNbYEQwfvGwaZbp0QdrXyvnCBLIJefJf3uNEiqj2SsK+n6erPIuIcOvVTq+SYcMWdvJldfRXYV8nWhx04WSwWi8XSx2Fg6Kqjres1WAA7cLJYLBaLpc/jcQ6Pd80s2dXjLQI7cIqDaJ8tjXJ97q7fTqje7jZhd8nNspUFlnYLtbjBNboNNb2dPd2natvri49uwqMQt6vs4xOxP/mYpE5EX7SKHuFO9NPyxcYOnCwWi8Vi6ePY4PC+gx04xcCp+ESyJcwwkn4f1U/MKqMngly1umtl0armnG0gqHa9ki5cN1+ovmJh6utWpb5sWO1U/HfCgh2jrPY3J9rOcH2hC13y2Jb7HretG2Dg8OzAqU9g1bQsFovFYrFYKsRanCwWi8Vi6eNYV13fwQ6c4igXHN7XbOAlNu1Kj0uuJq5cIhF11ORy8ei6Y8tWWrQrpvYvquuuCi9c5L0lFfpU9V197CcVR83ccwn7u/R76Uq9lbj4w2UijunUNQpp55V7hNR+/73AHf+rDLPQvHNhN17wXRbi6h+1L/xvVD9IQkhHjbGr6voOduBksVgsFksfh/mfrtZh6Tp24BQH5QDl3ah624l6E9vsQnLKqEPjLFidbKbksGquqwpG1g6P60dE2W5jS7M2ddFqGHd8WQtU1M2KNCFU1l7s4dWcXyee47LPXCfb7Ey/DWuLXhcTH0BcI8Kh/m9JPIAW/X00KA8Iaw2ngdUm8V6E+xDTR1WPZikuCeAmol+qv/pvnMH8PfOgfyQ8AuDBOXEHhiVIftfbJXp/CMDlBhIEjHOYx8myZv/F/ycsWxd24GSxWCwWSx/Hq8Gquq4ebxHYgZPFYrFYLH0cj4tPV+uwdB0rRxADJ0GQofFxeOknFfpElXE4ONU+cWU6+4nqa8zHCHwnQUJj/QPCoz9U+5DSuiI/iNkWtV3/yDao/0kK0qykvlp/9Gcl7jomkHRcZ+tMpMLz6fTxCc9TSf/jni/d/1Nlf6u6XlWce7hbZqPJx4Jrn4g6KwnWJky4s4gH0IJwt9GC/8kDTkfwoR1iG80DqXbAadf2Fc32OQW8jPiwlP9u8Psq2yMeQAp+HX59qZyoi8iPZ/6tXHPyHqQA5ooPd7RPSCuPFrRzyYnvyvXIzWP0uphfP0/5H0dzzxFxPC1qn0LQX1qE6fYjXHsH+u1p30UQuvY+J52OXtgiuOGGG7DnnnuiqakJTU1N2H///fH444+r/ZxzXHLJJRgxYgTq6upw0EEH4Y033jDq6OjowMyZMzFo0CA0NDTgqKOOwkcffdTTp1JT7MDJYrFYLJY+DqvRpxq22247XH755XjppZfw0ksv4ZBDDsHRRx+tBkfz5s3DVVddhd/+9rd48cUXMWzYMEycOBEtLS2qjlmzZuHhhx/GggULsHTpUmzevBnf+ta34Hle5y9GL0M4t+sTdTZt2oTm5maM/M0vQeuyERaShMvFQtOPcKByOGgSCd9rRWTgd/h70Hhc0GklJM6ey5lKKlGh5trsMOoNELZkVdH81ki3Kmp0Zdm7T3lrTIU3tUw9Je1UE8Sd+MxX2W7EsURaf7QAbxX0HdVGlDQA0/71LxlzhaUm3BcZqE28IBAbMK1Dymotj2Gh/uiWNBY6Tx5RNqrvJLSJmsHZnEBN++Xf8ny441uJZCC5fv38CvWyLMXNuvQ+kOCgsEyB/M7ac1h5/s+wceNGNDU1odbI/ye9/OZQ9Gvsmq1jcwvD3rt/2qW+DhgwAFdeeSWmTZuGESNGYNasWfjxj38MQFiXhg4diiuuuALf+973sHHjRgwePBh33HEHTjzxRADAJ598gpEjR+Kvf/0rJk+e3KXz6S2sxclisVgsFksinudhwYIFaG1txf77748VK1Zg9erVmDRpkiqTyWQwYcIEPPfccwCAZcuWoVAoGGVGjBiB0aNHqzJbIjY43GKxWCyWPg7j4tPVOgBhxdLJZDLIZDKRx7z++uvYf//9kcvl0K9fPzz88MPYfffd1cBn6NChRvmhQ4fiX//6FwBg9erVSKfT2GabbUrKrF69umsn04vYgVMcKQ6kRACgrvsBoMTGzpm02QKkqLnrwp4EPcCZcBU8GVVnIhW4KCoKZlUusGAj52XKxtXPy3SrKzpTyieAQG/FgRF0W+K60NwS/qFbnruum/sbeT1q5b7z64697XrbMWU4id8nK6/osUq6+aHnlmiaQ+G+8ahzirtHsp5Ouv10V5dRRKpjR/xOCYN4x+j1MMAp+FU5gbvNy4i/ZTvc/490QXhpzdUlXWqay8/Qh9KD3zmiXXdaX8P7YtHeu7rLTv6rrkF4EYBctyI1qxzNNRd2v9HQ8QSGLpNeryirnYysK9Uz0S4eCLwuvhTk8SNHjjS2z549G5dccknkMV/5ylfw6quvYsOGDXjwwQcxZcoULFmyRO0noczLnPOSbWEqKdOXsQMni8VisVi2IlauXGnEOMVZmwAgnU5j5513BgDss88+ePHFF3HttdequKbVq1dj+PDhqvyaNWuUFWrYsGHI5/NYv369YXVas2YNxo8fX9Nz6knswCkOlwEuEzMebZZBCAeh+hTKhDMC7slIQ5SxGnCQyMhxScJ0ttLl0Tw8G4j4khQcHrZKcfOrKhPR1UqCXyvBDNg0DzRnzMRQSQ6rDhuT0qRl6p3sZ9m6upNatVVNPRVcm4qsWqEysRadiPbCloY4SOzO0O8juWuGhapia1dExUaAd0RZ1YZc0h+2ikV1OByxykUQuJf1v/rL+OXfUfIe1AuOlRYmRv3tejC4ruodsiIZ1qiI/YaVOOm2hK81Deo16mEA9z/6eapz1S1CnIA7mkVJXjN9m2ZR4vq7PmRx4r51ihd7JpFJLS1OUl6gM3DO0dHRgR133BHDhg3DwoULsddeewEA8vk8lixZgiuuuAIAMHbsWLiui4ULF+KEE04AAKxatQrLly/HvHnzunQuvYkdOFksFovF0sdhnIB1Md6g2uN/+tOf4ogjjsDIkSPR0tKCBQsWYPHixXjiiSdACMGsWbNw2WWXYZdddsEuu+yCyy67DPX19Tj55JMBAM3NzZg+fTrOPfdcDBw4EAMGDMB5552HMWPG4LDDDuvSufQmduBksVgsFksfp5YWp0r59NNPccopp2DVqlVobm7GnnvuiSeeeAITJ04EAFxwwQVob2/HmWeeifXr12PcuHF46qmn0NjYqOq4+uqrkUqlcMIJJ6C9vR2HHnoobr31VjiOE9dsn2eL0XHaYYcdVKS+zplnnonf/e53mDp1Km677TZj37hx4/DCCy9U1Y7ScfrDbNC6LAjlvnvOL0D875rrLtGjxonh1uLhEX+SK02rxywTriNin9pGSsuF3GxcN7OrQHeSHLyZ5NOIPIfkH2ylysyByZ+YrtBQAKvhHijXHQJDwbjLbq9Kji/rE+oGulW4qQYkPNeJ21A+2LrqY6P6FX6meBl3U5LrsIwbO9Ydl0RUOSqCwgERJC3dVuGEtTzk5jNccbK/uktf806FdaaoVBCX+7zgfPR65d+RmlS6O8z/bug4aa5GLvf758lcgKUDVx1LaXUTqEwL8vpItXC1XwaHE38/1a4ZDd790m3H2nNY+YNLul3HacnybWui4zRh9Mfd1tethS3G4vTiiy8aSqPLly/HxIkT8R//8R9q2+GHH4758+er7+l0ukf7aLFYLBZLd+CBwuui9OKWq9Xdt9hiBk6DBw82vl9++eX40pe+hAkTJqhtmUwGw4YN6+muWSwWi8XSrfAaxDiVeCssnWKLGTjp5PN53HnnnTjnnHMMLYjFixdjyJAh6N+/PyZMmIA5c+ZgyJAhiXV1dHSgo6NDfZfCYE6KgboMhIqVdYQE5lvqu+sk8u8oWYo4N134AeZR20PHRtbl/yv3Ef+PYD8v/bHo4ijG6hQiXHR625WuPgvvK3FFmavyghOJd88o90CEKb8SfSBVtb6KRzte36+6F3Velb5rEvwvanWQvL61fn9V4Yarybuzk3Ukr0iLeUaimtddtuFDKnDR6e2Xbc5XDSS89PfJjb4krAiEed2N48KdKOP+S0wRE3a/EYCr9CKaiyrsCpPbSFA23ASPW9FKgueaeADNE1BfO0ol1PVNHVRz6wGlLsHwORH9u+5elKvsAJWOxTg3BtUHAPDSPCjrBJ0PkvkG+5VrznfjyTCNYDU1N74Tp2dW1Vn6DltkypU//elP2LBhA6ZOnaq2HXHEEbjrrrvwt7/9Db/5zW/w4osv4pBDDjEGRVHMnTsXzc3N6hMWBrNYLBaLpbeRweFd/Vi6zhYTHK4zefJkpNNpPPbYY7FlVq1ahVGjRmHBggU47rjjYstFWZxGjhyJnW7/KZz6rLIu6VYlanzXLU/J/Q5f6SgLFDO2BfuMsvqxPMIaxagR8B0uqwe7ghGlf6KsIZVgzJDDAelJZc1jkoJrw1aFxDaS2gzXFy4annWXHBiqL9YKp81iK4BEXcNqqaWlKcpaV01b5ayQlVBpoHUFSvZdQX/2pLVEJaztQnLhpCD2OEXtrsT0hwOqg6BobgZYa8HRQcP637yy0yYA8QhohyhM8yJYXFp/ZLC4/JsyBJpPUh8qaLLkPIwgbj8Y3PO1qpgW0uplggq4ppiurG56ADiBZmXSFgJR7lucgrIkFBxOKQdry+H9qXO6PTj88dd2REMXg8NbWxiO2HOFDQ7vIlucq+5f//oXnn76aTz00EOJ5YYPH45Ro0bh3XffTSyXlKPHYrFYLBaLRWeLGzjNnz8fQ4YMwTe/+c3EcmvXrsXKlSsNKXiLxWKxWLZEGAhYF6NrWFdNsRYAW9jAiTGG+fPnY8qUKUilgq5v3rwZl1xyCY4//ngMHz4cH3zwAX76059i0KBBOPbYYzvVlpticFJeWVcdAFDtYQy76+IcoQwyqDs4gHGi55dU++RqCsN1J8v4biSi7QNlmvuMqE5wRkDANTeeGajMHV4aFB7jTiIl+0InGPddd9GVoVMJkOMO0a6Zof9UthOoPHCXEGHO78zLqZo+ARVfk06757TFEEnHxJeJ87+W6Q8QEywcPpBH/VOmjgralkXlc8q0GyNdtlr6oRLXXWf+v5S0HoP7bqaY32VZ76n2vBL9teAQP1A6eK9BW4dhuKcJhMsSIVd0zL3klCu3GWHivSU9cDR0DJNth/sdEW9tBIBr+lQsLT5yn3T5qZQrDsBk2hWHm645/2/pjiMyrQp8t5y+z3fNqceBcFDC4aV6ZpF/bwhgWqLZogZOTz/9ND788ENMmzbN2O44Dl5//XXcfvvt2LBhA4YPH46DDz4Y9957r6FgarFYLBaLxdIVtqiB06RJkxAVy15XV4cnn3yypm25Kc+wOEmrkrQ4SQzLU8z0j4UsRwBAOVdWJx2lFMDNuh3CtQByqOsgrU/hpfXyMjEGqETClAurk5xtyTb1oFRJeJk39wvGmTD0GWqS9cmvo2xAdrhv4SpJcrlwkyV9jWuoJPtqkjkg1JCc3etT6EoneFHWniRzUbkLkHR4OSuTLFPueM0qVdJWuK4kygR+RxZKeBa7HCjOg4eZc4Cz4H4YFhzuW3G9kAUq9hwqiyvn3PxNEs3oVXJ8xHL+ksdHP0b2XcoCeP7vnAqrjAyM5uHjKpDaUEURWLJYGvDqAKfdb6cAEN9SRIsAKWqJhQkChUZiXgfuB4PLgHDRX/8SuICXDvpLC4CX4cGacab1n3JwR5MYcLgRAJ5kYQp7Hxw/qwRN9VCSX07hhSXeq66jMyZRS5gtauBksVgsFsvWiIhx6pqrravHWwR24GSxWCwWSx+H1SDlig0Orw124BRDxikilXJUAGDYJUcjHkBZRrnUQFDwHBQ98bB7nMLztZIYo2p7VB2AMAVXAtHdFoSDIwjkpFS46wDfZee76wBhljYst0SPDg3Z+3VXnCofKhsOoo3tcIU/Xg5xLhEuQBJqsrQNGKdAEOHa0fqhB6KbnjouK0jsp1GdfunKnaruTgn3pysCPuXaK9nOS92tYY+lfizlxjUDAcLJT2Pb41AK9VxzQ6n2tOc+sk5VVuugsXgi3F6CWzPGLWhceqo2i7r1dnjgepKuO7kzSbOp7Hbd5ad5gkqE9rVXCIk6f92Nqt1f6XJU3lYG0AIJ6nO4cotFugmNek23LOeAkxMVcQdgdR6YKwo77RQ07997X9+JF/1DPfG+kv0hzLwMIshbO3fNbUc9PVicg3iBWjjPeoY2EyFcuOgAUIeDUCZccvBddfJUfFedDMGQbjr5TDqUgYLDSxVh2bqwAyeLxWKxWPo4Nsap72AHTjGkU8LiRBFhbYoJCGd+8HfBf7jb8y4KzEGhKKZCjAUK4HqQYRxejJJ3SZ67qFmzHiwuLWGACHCVweFSngDBLNkIbNa+Jv7eSixP/raQ3EG4SHJd8GfaXFknjKXf0lIRzjkVF3TOy52EVrQk2JVH7id+BK1aOq3WXGvHRljL9L4ZK9k7E0hexbFRj5sezKzXURJsr1vAHATX3+8PoVowLgLrUPgZ58w3TckZfjXv8QhLEi9zfQEEys9qg/496kRDj4p6/jjMlRiioLJ86M9YKJC8tFnNuptkmeJC6TpKXqPkkKjnQgtuNhYFSCu0YdLR+uppAfKA0BEId0KXrAhZTr1+XlBvminzEHe5TP2nDtKHAiqVYzjonYgg8GK9+OpleWD5U7IDXLWBrKeeMUpMuQFCGagT7KN+PlL9O4AS6Rnx/wIYFihKOIpOz8gRMFCr49RH2CJz1VksFovFYrH0BtbiZLFYLBZLH8fjBF5nc1pqdVi6jh04xeBSDynqKdec4Z6LMXcWQVFkFPmiuKwdxRQ8LeGu0gVBqfp42N3GokzxWj16eUK4UV6vl3HTPQiKwKZPpetBNhAOLCVqg1QANlxjUQIu0Cz6RhCuWaaEcIAwINwDTAuA1fRYSmR8pJsuxvdTKjxtbkjS/ol715RIPun9KIcWlAugxB1TqotU2raxm0dsD7vJUOo+SmgivgCHeI6Uy0LuCwJs1bPgJ0VVzy71n139XHX3q95QkgvLby8IHi/X+XAZHrENwfOu94EGF9dwx6ljtN+e7mILueO45uZTbj+9ezHXhDAYLsnSZy7hmada9/RzlXpN8jIoN2RQpUz6TfzfHUvJqGhuJA82lLjlcyHPU3rsHO3GxT3LDsD9/yPJBMQqITATbrr8QH9DfVHpJxGpp6QvKtCCvIHgnSiDveO+O6F3PSFmcDgQuOpkGAd1eiY43KvBqjrPuupqgnXVWSwWi8VisVSItTjFkHE8uE4xmF0kBIQXGVV/txfSyPkWJ0I4UlrgoFSaBQKrlZ6zTs9HR2HGaYsy+t/E+DdQJzf3kxQzrVeca8eaZcGJUknmnKgAUtkhoufMgvk3j/k72BhjEkiIDhYzXQQGCIpgGTtCVqfwcnWjolC/ZfkKrErhnSVxxYSDE2nRiymD8t+JnrTLtxTo+bTCgdslubwi2pZz7tj+6I+FDO6W20IB1YY1z4/vVofrQcLwZ/tyWTllWgXi39JcfvHPAE+6lgno1h7D4qr6rP2pPzvh30QIEi7DCaApi6vfDCemVUn2Ryn+650NWdg0y654TIlxvzlg3tQY66S02iRG4Mt3gd6+3z+i5eTTm+TwLUjaEn+V845y8ezIPrWlgAKNNvaFrJ8sHeSX8+o4WJaJwHK/Dep6yGSFdSflMPVule9VJ/SOlotrklaiyeNcVReD41/scu9++Xexh+QIGKdgXVxVx+yquppgB04Wi8VisfRxrKuu72BddRaLxWKxWCwVYi1OMaQdT5lv45L3Ar6rzjefdngpME7g0MCuLrU/AF9pNlSXdKPJIPJqcwl5vptQxa/6weDKe8A5iObW09WspduBa2XVWJr5pni1LxSUrtv2OQm5g6LOIWGmUxLpLavhACOBi4UDcII2wwrJFaPFqUYeHxUwrF2HsJq6dD1xYrpUkrSFwkG+hsq47+lQLiaHBxpRcecZcS2Uq1NvQwvkNfV3uBnY7gd1K5cRDdxuxOGGG1lpAvmPDnVYcM+I/9yENMliXWFxgc4l2mWh7eHnIaIao44Il6Y4B6H5owcax3k3CBfnxUnwm1AK1f4+457qrqmQ+7xkYYahV6a5xUKB9aIj2jlxhJ5lnuyG1lyChvZauIsODxZppIQ7juvaSI7v3kox8ZGaStkiih0OeMFRlRIvCBwnDMErxwUK2/gus+Y8GuryyLjCDSYTrctsCg5l6j2rgrRDz458NxaYg7yvpedxaoREpBzhpsumCuI7ZUiFXHVxqKBxGvabdw8MXV8V1zM9/eJjB04Wi8VisfRxaiOAaZ1MtcAOnCwWi8Vi6ePUJuWKHTjVAjtwiiFFApNtmCKnaiVdzkuhwxOXseA5huaTNB+71FPfJdJtIN181NdiCq+Si8Iw6ftm4uA4AOBKgyXstuOa+JB03SlXEyPg/jkzYrrfuNS34aXnwFV6hPDSpNhTMNGXKml/Ev8/0Wk1ot17FaXwSFpkFPNeIXoftL85Q+CqcXjsCja1XdPGiUvGqjyX6nIG96yia6q5IktSboRXWZW48kKdlrpjLoOj6eaUc2MQ7TdACESaFvheKd0dFHUPI34nHKYuknRJx/mhSlbKhbprupxDK/A4Uy5h3W2nuwXlocTh6jcR7p+xClVLxQJArV6V20SKEa1Psk7/P8ptK9168jklEfUYFwLKpRbebl4PiHeG+p1r/SG+m8713zUO9123flmHgfr7Uq6HlMOMcIW8k0JuM1V1Ef2eaefiZTmc/h0AgMZ+OdS5BVVPijDDHUfDf2s3OPxsFjlF0RWNFJkYfMjyruMhRRnS1Cupt1J4D7nqLH0HO3CyWCwWi6WPw0CqjoGNqsPSdezAKYaUrxwOCP0MaRlqK7poLaSRKwjBEd1qQIgIWlSaIIQhFQoIV9ofTAQphoN+5YPNEmblhhq4MkT4QZNE1EFJUI8eOK7/W6L9RIjaRmhpECrXgiq5pscjg2BLrAfcPDaJqKBgzokIUo4MqA03EB08XCm6hFJUhlvT6hVYD4hmHQAPKRSFjWieFuiOCOuALBuhvxOpDK4fI4PmdYuZb20ytK5ClYRPlaQCKwKhHI5vSXAcppKf6npkUej7orTI4p4FzomxAMFjRHtGI4KiYy+GbDzoT2k/AgtelCVLt6wGgeKm5SlQ8jfPT9WjBYdzmeBbWnQcPXBcBpKHnivZpLZyQBjIQhZD9dV/C1QSQBy+lg4XizH08whZnIiu1US4Uu52XAbHDw53Ux4cxwzcdlOBll17kYAUAxMooUCxQdSb3n4zGutyAICMW0QmpKMXzt4Qfq/G6S2l4RkWKQYSa6GiET/KsHZSuAyhPaQcbl11fQZ7FS0Wi8VisVgqxFqcLBaLxWLp49RGANPaSmqBHTjFoJt+GQ/cWi35DPLFlNLTcAhXZmmp0ySDwaUmSFSwIaUcRU61Nvz6IvoiXXPSjUcMV53/NwnKOiKUVuwnRHONyGTAvvmba0G2/nlK16FuqVdwzdtjeMm44bqLcpuREr9VeUjINaKniymtx/TPVBUkbujeRBcsdZ2IL6b2jnn+hm5PSMdI6ODEeFWitsWcD09xcJeDuFJMKXQML62OaK4T7okXKXGE9o6bEW4HhzLlegZMd1fU8xx23cUlwmYgxj3UNXVK3X+aS5GIIG1ZhnMCSovqWMYoikVxLl7B8c9Lcy3p2lO6646bKWA4N9161Nd10nvDtefScEsiuE2cEXBKwOR9JzBFdLipiUaotp9rv6+wSzqM9tvXNsYWNxYp6P1hRLjrNG0maEHPRP1HVEIoV6476gSuOuq/Ax3NxZYiDE69cMFlMwVsytYBAAoeBe9wVKfqs4FuU8YploY5RLjnIv+F+V38He0XryQQnBLP/B52+1UZTN5ZGCeJi4YqrcPSdezw02KxWCwWi6VCrMUpBgKuzVwYqC8J7FIPHqXKMpRxiobCuL40lhKOVGipqm5hooyrGQBD/GxCzTSYXNILTfFXKoUHFjDdAkV4MEMGQhYoEsgXAMICVfTPjEdEV+vWKbU8XHWFG+XM40rPqTSQPOLcdVVjAJyFLFcJRCV5TT5ANQrdTGOopYsNmmWpNPhZr4trFifiV6tUqjnE7D4lCyB62TjkMnFZt3ZjASDLhFK3fmwoIFkF8aZEOT3xNPOfKRnQKwOhdUkNwJxlR54zKrNEAeb98BiJCFj126QcnJuJXF3NAuY6QdBvkVOlFF30KPKeo86tI58KLD9+/6MkD1R/dYsT4SooXgmEh05JtkOUjoSwcnFwscgC4l4wFkTq60l0ZdA41xog2nNSYq3U+1BWFiLuOJQm7fa3ixOPMFUieCbkRxI8L+HFAeKd6PiJcNOpIhoG5wGI91reC2zsDem8Ya0PW5t0wnIEeplgOzPKx9UV3l8NFBysh/S4WQ1cdVYAszbYq2ixWCwWSx+HcVqTTzXMnTsX++67LxobGzFkyBAcc8wxeOedd4wyn376KaZOnYoRI0agvr4ehx9+ON59912jTEdHB2bOnIlBgwahoaEBRx11FD766KMuX5Pewg6cLBaLxWKxlLBkyRLMmDEDL7zwAhYuXIhisYhJkyahtbUVgPBMHHPMMXj//ffxyCOP4JVXXsGoUaNw2GGHqTIAMGvWLDz88MNYsGABli5dis2bN+Nb3/oWPM+La7pPY111MeiBiCkwwNfqGJBtR97Lq31p6pUEeMsgblmH3K7/DSISCUsF8iKjhrlYd92p7dJloLnMKOG+yndgVzdcD6HthEOZ90Xi3tB+PxCSRboHdF2dUheY0oAKmcKjXWXc+MfsQ7TZXNeRUucX44rQVaV1zZ7IehkBlzMxZlaaaMCPcy9qbotAZZqDOIDugYHDgbR/T1OBmyzOFVbSDko1ivT7QigAwpDJiASmbsoDIaVuOEmUO46G3C5xhF0d5crKZyUVWg3BOVEuN7Hfd90QZiTJjnKL6+jJt4uMYlMuq1yCRS9w6zFmusjVtYvQotJdnHr5OBer7IfeDtcU/dVj6Sf4DrvuVBuUlLjr1LekBzTq8dT+KEmKTELPHtf+1dz/POyOC7URDuI2FL9DbvBsqhCr1RSmRC08JnCckng3X7j+uKBxACrAXU+sy/wkwVF1dTceCLwuClhWe/wTTzxhfJ8/fz6GDBmCZcuW4cADD8S7776LF154AcuXL8cee+wBAPj973+PIUOG4J577sHpp5+OjRs34pZbbsEdd9yBww47DABw5513YuTIkXj66acxefLkLp1Tb2AtThaLxWKx9HFq6arbtGmT8eno6KioDxs3bgQADBgwAADUcdlsVpVxHAfpdBpLly4FACxbtgyFQgGTJk1SZUaMGIHRo0fjueee6/qF6QWsxSkGMWuRsxGKNAlmvvVOtHQ94wRF5qgZTkrlP9LrFf8WmeN/l2WZsdxUn5lFos/oOAHVCxMY0gUSYXEyvzsIZv8cXLNAUb+MVi3haqRtyhjItqIDbhPnZVUspebJNfmSCOqLofBsWqB8K5OcxWtB3AAAplu2iJiF67NLWY9HSmJzOSFmWd0aRKFyv4FykBQHkcu4HQ4SWkhAtJl5uL6wRUedi74onnCkUkwpN6cclhjknWQ1qjTwO6psVcG4BEaeM8f/DcpgYd1yEacUrazBkMr/BFmnqH4T7QVX5ZdsL7jwPAqPScuQ6G2wgIIbVkxakqdPsxJHyXBw7ffEoPKy6Ysr4Hi+1TNoJxxEzrUgc+NyljVPxkR/S0V+zQIuzzeyFg4tYL3UMpokp6Lnx0xS7e4s8lmQ7+tKZAmcuGc36h3jn6fHCXKeq8416xSQol6i1aqWeKjeYhRVBwCMHDnS2D579mxccsklicdyznHOOefggAMOwOjRowEAu+66K0aNGoULL7wQf/jDH9DQ0ICrrroKq1evxqpVqwAAq1evRjqdxjbbbGPUN3ToUKxevbpL59Nb2IGTxWKxWCxbEStXrkRTU5P6nslkyh5z1lln4bXXXlOWJABwXRcPPvggpk+fjgEDBsBxHBx22GE44ogjytYnNNO6NhDsLezAyWKxWCyWPk5nVsVF1QEATU1NxsCpHDNnzsSjjz6KZ555Btttt52xb+zYsXj11VexceNG5PN5DB48GOPGjcM+++wDABg2bBjy+TzWr19vWJ3WrFmD8ePHd+l8egs7cIrB0dRvHeKpAEEaGiCHgwWpw6PNvTDdeynqgXEqAs8BFH0nmBFozs3jwrolslz4OxC4COJceHpZGSjLOQmUw32dljgNJMaDoOso9XJTJyc+WDzs7tFlkmRZXS3aLFtab6lGlfASMKYdz4WbDdp3PdBb11+SdWmy0YE7g4YDbInp/uCBawbEV1p2gk4RKp4X1cnQdZDnRygPPCkh/RxCAM8LnjgR8O93z2FIu0U4UpsJIVXshMDvcsHelbjjoo6LIs7lpn+P1+qJcseU1iFd4YBY0JH3XeUOZcgXU0pPiDEGzw/WljjUrFu6D2Wgvb5gQv6+5O9BPYPEA6eme9tICEyIdg+D374MIufyN0q5eK7UM2YqkBtE/XSVTDtKNMmSIKEA+PB3vXqPU/GDA+BQAKEFMkmEy+n3uyQ4PGZhgDwuyUUX97xGut38H7EH4odwJJ5Ct9EbSX4555g5cyYefvhhLF68GDvuuGNs2ebmZgDAu+++i5deegm//OUvAYiBleu6WLhwIU444QQAwKpVq7B8+XLMmzevk2fSu9iBk8VisVgslhJmzJiBu+++G4888ggaGxtVTFJzczPq6kTqnPvvvx+DBw/G9ttvj9dffx0//OEPccwxx6hg8ObmZkyfPh3nnnsuBg4ciAEDBuC8887DmDFj1Cq7LQ07cIqBgscGMepWG0fLY+RxAodwZZ0qMatqkxwhI6DJEzCAEXNptG59igpGBxBYeRDMZI0g1bDlQK8fol7qL7P2GAXjjl+ttLYFs2szUDwqB55fbzhgOmQ1SpIckGVEf8xylHIlk8D8ANqwJUYu6Wcs2Cfag5JzACEgjJvB4bLTcnl/yOIUpTQtc3Wpc2O+aUrlHNP6T2EEf5NIZWbVPWFl0mbXyvpEzO/yXGVlhEDlDUu7RaQcVmIhSQr6LmdZEqeSfEzccXH7Eq1FMb/BRItTnCVCs4hKRX9pfWotpAEA+WIKBUYrUpuX19KJeDZkOyqXnm6JghlILhcvxFqjOAHTLEOlUga6iVb7U7NcqUvgaL9DFlwTUS75HSMrI5T7VlWutur9FVY2Ke/BAFAV8M+0+igX341sCp0MFk8K0KaElViawuXj2tXvk0M4sk7BeK87ofvfnXAk/H+gijqq4YYbbgAAHHTQQcb2+fPnY+rUqQCE9eicc87Bp59+iuHDh+PUU0/FxRdfbJS/+uqrkUqlcMIJJ6C9vR2HHnoobr31VjhO1HKCvo8dOFksFovF0sfpLVddOc4++2ycffbZiWWy2Syuv/56XH/99VW131exOk4Wi8VisVgsFWItTjGYOk4hYkbtlHAwkMigcrE/5L7jUGZrGSyuXG7ENPmHXXhxCYGLjJa4/MIBl0xzCegq5EwLvlQxpNKsTrgf7Cr1WrjSVdLPGQjM4dWYlcOJX0X/HCPYmXOt7x4F84IgXuowUIcrl4ChOUVNDSiuFJxFWU6ICnaNdCGSsFyO7rPUfSPC/aH0o3TNHel+0x+dUHC2rttkqC1r2kFBgtXgmohkuHK/CAgH4LvpzGOByoPCK3HJhY9J2ha1vVwi1/DfsdpNES69uN+vHtybIlRoRPnHt4KDeClDvVzH4wQFP7C8wERwuUw87FAGxwm0o0ylfdNFV5IoWPutCPV0vzwTi0+kJ1m67rgqyzU18tDCC3DjGSR+oHbUPpVoOOa9oic/Fs9xtOaYUb6PEpX814kIFvdAjPd1inhIEaDIA/dSOKSjOykJw+hkHZauYwdOFovFYrH0cTxQeF10EnX1eIvADpxicAmHGzFjFcqtCYGIMK1K4aByGUwuLFFUzVaKoKDEi50R6HUybem/Xrdsr8ioae0JLUHXc+oJtXMtT5uaTDmRQcRyN9MsVeHJZVIAcvj8lBSCYaXSlnczqupinIB5QY4xIFDMLhZTIISDpX2V7BRTQdIqiNXvRtFzQB0Grsw/MRYkuSnOehKxJJsxopaOM/iyB34dRAsQT1IFl39GB4dzI9+csIZ5ytJGKYfrK9Y7NPo+xN0bU1W8Nlakcu1Ue3ySKnRQlsXuKy3rgXIGmhJlU5RhUz6Ddj9YXCxQMPvA/X89RlD0gt8lIRyuXFRBmRko7v/WzABwLfA4dE2YbxYrMvF7ZVqOu3DwuIrDDtUpCgi5CkA8G4a0B9VU0RkFZ8GiEF2AXn7XZS5IyAqqW0cdqgVjh94FSfRk7rewpSlWhoAGi3+irFKxx1q+0NiBk8VisVgsfRzrqus72IGTxWKxWCx9HAYK1kVXW1ePtwi2mIHTJZdcgksvvdTYpicJ5Jzj0ksvxU033YT169dj3Lhx+N3vfoc99tijU+051EOKUi2Q2nzg5HfdJVZNkKDQ/wiCx9OEiTojJgTU38dCpv+gL8HfReYEatRl+hR21eWZA8f/26VeosI317SlwgGw4WN0E7x0ZRSlGi+jKDKKQlE4AYseVa6FYsFPhOy73JwUC+qkAPO04GtGwAngFYLATbkr5R+vXIuEg1IYZviS6667QkLIQPKwG0KqRXMtOTSXQeeUG64StS1CA0gGgDtawDqNaROAcCn7j6fuxtNdKPK7rMPvXck+STn3WaUB4dW65coFf0epQUfWU0UiWQainhGxSCO45/lQoLjreHD9APCC5yDvOWq/R7jyZacdz3SL+9YC/bcifwP6fZfIbdLlJ4PFPf89wFjpc8lDFgm1cCJi4YNawKC+80TtMsN17Lvjop5JuRjBKQkeD8rKeyOfz7hFALr6d4lyuLGPlTwromygFl5OKTz6efYi/wdJecg1p79HuhGPE2OxUWfrsHSdLWr4uccee2DVqlXq8/rrr6t98+bNw1VXXYXf/va3ePHFFzFs2DBMnDgRLS0tvdhji8VisVgsXyS2GIsTAKRSKQwbNqxkO+cc11xzDS666CIcd9xxAIDbbrsNQ4cOxd13343vfe97Pd1Vi8VisVhqho1x6jtsUQOnd999FyNGjEAmk8G4ceNw2WWXYaeddsKKFSuwevVqlRsHADKZDCZMmIDnnnsuceDU0dGBjo4O9X3Tpk2R5TwjpYlpqJPmzwJ3SlZYOIQr3ZcwpbL/wfcSXSTClGssbG41tUZYxe5D5aojvkuMcBSJ6YKMc3kUOVUuPt0dAQRuCJU6hRPDdE8007nrCHeldEXk8yl4ef96MbHyx0n5bhSHKQmtYtERmknSZaF0kkrdEYyFkw4Hx8jz0let6WXC7g9CdK0o85p4TOhiSQ2uksSooT6knOCapBwPRU/ThyEcNKIdee3Cujnl3HOqzhj3XJROUtT3uO3VuOQ6r+VU6ppLcslVutpJ11dLgaGf24G0747Lew5ynnhNFplQbpZtpp0i0sxR901PwJyS7iP/Psm0SYaGGot4JiXyOP8Yx19l5/mr7DxNjCp8bPh/joyxisoZCaJDz5+jaV2FU/dEpe2Juj9ynyTKTRd2xZW46oykv4GbLey6A8yEvnpZR/uutiW4c2l4FbV22RgoGO2ZVXWc09I0Xp2ow9J1tpirOG7cONx+++148skn8cc//hGrV6/G+PHjsXbtWhXnNHToUOMYPQYqjrlz56K5uVl9Ro4c2W3nYLFYLBaLpTree+89/OxnP8NJJ52ENWvWAACeeOIJvPHGG73Sny3G4nTEEUeov8eMGYP9998fX/rSl3Dbbbdhv/32AyASz+pwzku2hbnwwgtxzjnnqO+bNm0yBk9K78OPtIxSw9ZnAXmWUrOiFPVAEejqyCTA8u9wWdeYBbGSmVzQXsjqpR1XbRJIjxMUSRAYW/StY2GLU1h1vMgp8jAtafKYIqOAF6if6yZmSoQ6saqXeiCuaQmR9j+vw6w/5WgJlVk4kF5Ym2QguanjJGbTSjOKEaE0Hgp2BUqDpIueA6IF4qYcs14g0JRKOfHKy6LPBMzvAyEcKcdTM3yXeslWpNBsX0ef4UdakRKsTNVYhtT2GA2lSgLG4ywRxr6YoO9KrVEAIi0IUW3KZ1bXV0vBQ9r/zRYdinr/N5FnDjb7+k6ASBDMUETetzjpyYMZCNLUK/3daFZaVZaXKv3L44qMimTc0orp/35c/RxC1tESVXIavXgjKqG4xCHMsD45lCEqwFu/hoC4xg5lJecd1U6UNle5YPCwlSkoyyItTOE2pbVJvdfVMXEq8wkW+x52e3kgyvPRlTq2NJYsWYIjjjgCX//61/HMM89gzpw5GDJkCF577TXcfPPNeOCBB3q8T1uMxSlMQ0MDxowZg3fffVfFPYWtS2vWrCmxQoXJZDJoamoyPhaLxWKx9CUYN1dndu7T22dRPT/5yU/wq1/9CgsXLkQ6HUxcDj74YDz//PO90qctduDU0dGBt956C8OHD8eOO+6IYcOGYeHChWp/Pp/HkiVLMH78+F7spcVisVgsls7y+uuv49hjjy3ZPnjwYKxdu7YXerQFuerOO+88HHnkkdh+++2xZs0a/OpXv8KmTZswZcoUEEIwa9YsXHbZZdhll12wyy674LLLLkN9fT1OPvnkTrXn+AGDXokZnaKlmFEurZyXMtxQlHBkHZFkNeMU0ZDqiHQbdHgpbOJUabkwTpFyCnB9l4FhXg4dH6XFEac3BZQ3zzIq+lvkjgpk190Foj/SreBrLHGKrGO2mZfHUgLmX4Mwsk5ZVrr1aLoAAGhI58EaRb2t+TRaWrPKFVYoOoHejsPgOQys6J8vL3VF6O43xiiYnG45HG7KM3Rp9GMouHI/iDqpchNmUoGODyDcfyohK0jILRbcK84JUHRA/OuYTRfgau4PhzI4XuDeiHLHxV3PuGDcqODdcn+XC/I2ylbiqot165W6RsoFfMctnojud4WB4YhOkcRkX3gQFM04QT83r9x4WaeAIqdoK4pZcN5z1O9Zlpf1ZZ2CubiCOdpvX2ipRbl+UpQZ+6KeDf04j1Plkg6XLQ0GNxc9cE6MZ0b/29X0raSLMfY50Fxu5dxZscHhEQHfKc3FFuWaU+63iDQq4fep7porcVOG3Hax7joiFgR5pGd0nFgNgsO7enxv0L9/f6xatQo77rijsf2VV17Btttu2yt92mIGTh999BFOOukkfP755xg8eDD2228/vPDCCxg1ahQA4IILLkB7ezvOPPNMJYD51FNPobGxsZd7brFYLBZL12AgVcewRtWxpXHyySfjxz/+Me6//34QQsAYw7PPPovzzjsPp556aq/0aYsZOC1YsCBxPyEEl1xyCS655JKatCdVWjtYypg1tRQz2FzIlAQxAkB9Ko8UYUj5M9I6WkCGFtUMhhKOAheWlg6kxCzJr9ulHlzioc4pRPZHnwXpFhLGCTxoM9II76unzVYZp4YFyiWeOoYSjpQ/ewrPTMIzeMbNRMIeJ0hrgeX6NRNBsuL4InOQ84LQ1vCy4zT11Iy2OZ3DereAllxGHKst13cog+sGAdXEV+WWrbopT1mnCOHgVFiZJHrAdTi4lRCA8sAalXKKanl6NlVQlizGCTglhgq6vI6qPn9bgVFQylDn9yGdKiJFWGQwd5ioIF5dfdnYXkGwd3JgduXB4tVIAZSTLzD7kCDLUWH9YfQErWELbFRybar+pepLilOkSVH9Rik4mOcGgdycqkDxFGVgnCDN/aTThCFNC0FwMziobm0OyYhIhFyI/vs2pT8YJ+rZpOAoctM6paMroEdZMD3tN+8QZliWUiHrDSWBKnqUrIDe/zjCz2M4+Du8z/UX24jvTC2miVL/LrVIxgWLJyeEdsLPWei5dYkHSqPf2bVma1UOnzNnDqZOnYptt90WnHPsvvvu8DwPJ598Mn72s5/1Sp+2mIGTxWKxWCyWrQfOOT755BP88Y9/xC9/+Uu8/PLLYIxhr732wi677NJr/bIDJ4vFYrFY+jhbY4wT5xy77LIL3njjDeyyyy7YaaedertLAOzAKRYZHB4Oumacoj5VwJCMyIGXop4yC9fRPAAod1yROyhyJ9Ab0pJDpqiHOhTgOHn1PUOLKjg8Sv8kbDYW/RQmeNkm4wQuZcrl5oCh4OstFeAgKnEllQHpnKi+Frij+iLb1wkHzAOA5wTbiixQUdf1qTawOmwumlo4WVo01Jj1urfJtCPjB5oXmGNo1hQ8R5medZ0jdb00l5p+DiTkapB1ib9h6OC41EM65SGbEub4lKYSrJb4+sHhXAv01vskqXMLStMrRYUrRJYRLhbz/krNHyek3RQOog23VS5oO1afKcYtVrKvSjdcdIB5ZYHeSXo8cfWVQ/9fh/ofSYwHg/Ggf9Kd1uEriTMQEeTt36ciC9Ty5fPEtN9EinrKNU8JR0q6ifzAa90Np/dLd5OJNgPVfhAzWDsVTkALTTtK64u+AEKWSSEIsE5TTy1yke2mQq4x2cckzbngOpZe4Ch3XLCPGcl5ZRvyvuvv3bAGU7XB3lHvVb1fcWVl8vW442tNOASis3VsSVBKscsuu2Dt2rW9amEKs2UNPy0Wi8VisWw1zJs3D+effz6WL1/e211RWItTGfql8siQYClxk5tDP0d8JNLaA/jB1v5MrI2l0eal0VoUwc0eiLLiuJShn9MRKT8g9mtL3qVFh0sLBDP2MU5UGy3FDLJOAU2pnGpHWp8ypBi5RFkPKJezuAyKkf1S5bRZnAeKInfUTNwDUbMxAGjX9m0uZlQALSCWcHd4KRX4nU0V0JgW2uFpRwSKN/nfiyyQb0gR05pkqJYjsAZJKOGGtUg/tsioshIVPMcIos26BdSlCmoJum6pkvn6VJC5H0TrROSuyqYK4nyUSrvZf7Ag6F8GFoctZfq5VBNsbW5Lnh13pt6oOuNyf5WTDYizKsWVS8oxFodnPBfC2iPvuLKeSuV8wsB4sOihyPR8ggxpWjT6pj9zbUVXPfeUcOQ8F2lf+oOCq7+lZUXPRRlYuM2VVIwTpGlYQiFo3+wf98uXLpdnIMh7gQU3TT2kHQ/9UuK3Zlp0eFXPTZQ1Oi5/Zrn7H7Y46u/LagO7o9ovd0xBk2jxQOFAVx1n8DhFR88YnMBrsKqOb2EWJwD4zne+g7a2Nnz1q19FOp1GXV2dsX/dunU93ic7cLJYLBaLpY8Tngx2to4tjWuuuaa3u1CCHThZLBaLxWLpk0yZMqW3u1CCHTjFkPdSgJfC4HQL6p0OTY22pSTYUJqP21gajFP1fZtUK/o5OWws1gMANhWzQRC3R0XAo8P9OgolAZs6JUre0txMGFziocE3sbd6aWzI16PNd92laVHta0rlkKFBwKc0NatZiNZ0VAClpwVCiuTFoq4O5mJtPoN1BXGeReagreiqhKh5L4V80Q9QZw4o4YYuEiXcSOAbBKgWDQ0oh3C0+xpQeS+FIqdGWUq4clXomjrSZaH0dhiNDbSkhINr/XGpp9wY+r0AAOaJOooqSJajzi2gPhWt6xJWQtbdLYwSpP1g3FQXgk2rCZKOIsn1leTiiGs3yo1SLrA78pgKA4HjMN220Xpnfknxj+ZiUgHKEUHvlHCkpfvI7SjRBmvzf24pIhXAxfObdQqGK0yUkXpMVCXuZojW7tGfHenWl78t1T//fRK4pB3j/ZLSkvGmCEPWKah3hUs8uGqRQ7JLLIqwrlzUOVTiZg3rL8l3q0NYVS63su3ElPeYizYm3mNS009XKKeEoaPoRB5ba7bGVXUA8OGHHybu33777XuoJwF24GSxWCwWSx9na3XV7bDDDiAkvt+e1zMpb3TswCmGYdn1yGZdZEkRLikmzrZcCAuDQxkKPLikDhiytADXDWZJ632rjJQekBYgab2RM4ICd5BjYnba7rmGPIBLmTETK3AHLcUsACDnuSU/jqIKbqXGTE397ReXViX5d5gMLUTOWMIzvyKnWN9Rh41tIoivUHRA/dlrXaaAAXVt6J8Wwev1qbxhBStwM1A9RTxDIVgG1LaSDNqKaWP5dIYW1ZLrAnNQdPRAcary40kLlC5HoKwK1EO9lo8sRRmyjhkAnGfRPxuHMDS5HaqPJdcpYUm/S5i6DlGz36SZYrlchLUibCmKoxpV7yirQzV5xOLKhX8DDhHBvQp92T6JurbS2kLgkuC+UI8HzxF4icUxsOB46tkBtJxzKuicoxFaILZ+bQlT99QBhwei9ofvtWFJoxxuyELFOEVeW7yiSwqkCFNSH3W0gIxTVFYvl3jqHeB2IhebF3pek4Kaw2WjkO8qR+u/2hdxbeKe1ajfStJzXe90mErspDS3YTWWOEv1vPLKK8b3QqGAV155BVdddRXmzJnTK32yAyeLxWKxWPo4W2uuuq9+9asl2/bZZx+MGDECV155JY477rge75MdOFksFovF0sfZWl11cXz5y1/Giy++2Ctt24FTDE1ODnVOMdY1INFdWg5hcLlnuAR0M3ez067M0llaQL2vNC7J8ZRyz232MujwXUIyqLOV+cluOVVB0NJVIAOhi5wiTT3lPsgSjgbHDw532pGlBWWudomnXAFRME5LTOKe72tu8zLYWBSuuE3FLNbnG7AhL9yF69rqsak9q0zYAxtbMSDbBgDon25Ho5sz9VgID7kXfHcbFzoz8jp0sJQ6r035LDYXAlddPzePJjenEiwDpiIxC2sPafLgRaInai6gX6pDuTDCQa1F5oD6SV7TtIi05yJF2sW1dgqocwqxgaZR7iRp9u/vtilXne4y1a8HEHI3IflFGB8A3T2EA7eNfUnuugrdb1Hu46hEzaKsWc7jFBSBKr/c70FsDxZIUHhaALCLwJ3eQDgytIhNvltc1EWhe3pkWam0nUoFgdUbvKz6neruX+m2l7+J8D2WfTa+a2X0JN66ppx4NwRaTSmHqQTFGVpEinro578bsrQgEtbKhRgVaDcZ1yCBpPdLpWXD/Ylyr8nU4Umu60p+EXrdGcLgpHxtO1r0g/VFLR0sJd6hPZTkd2sdOG3atMn4zjnHqlWrcMkll/SamnhFA6e99967qkoJIXj00Uex7bbbdqpTFovFYrFYLP379y8JDuecY+TIkViwYEGv9KmigdOrr76Kc889F/369StblnOOyy+/HB0dHV3uXG+SJkWkSWlOJ0nsUljCjBm0Q5iaKTuEGXmeRLC1bk0ILR2WM0U/l5W09lBOVACyVPiV6rZtxbRYpq/lQGv1hKWqzikgSwvIasGuWVJQM9wO5qoZq0s8ZKl5D3XV7A7iGjn5NhfS+HDdNgCA9k1ZgANug5iJudTDgIxvcXLblJUpinbPVYHuGzrq0FZ01T4ZYAsAG3N12NyWUftc10NTXQ79s8L6Iy1HCq25FGGG9EKKMCUhsE26FRkaLAZo91xjZuw45nLvrBMEzDekOoxl3El4XKhQN7h+f2keWW3mqs+awzPzcoG3ccG2PTXbTA4GL39tyuUIi6w3YptnBPF66jo5JNinrE0yQJyzErkC+Xc/Kiy20gLaUsz6khmyDW3BBnOQdQrKAppnKRQZVe2mtMUAYYtTODOA6AMxvuvI++qBwuVMWaCkVdqjRLXTLyWs3P2cHOppHhn/mXOJhzSJXtQQdT0NtMcqylqm9zF8XFz5KJKs/3o9STWWs46ZVi0h9eL6UiT1tAMeqJInEO/IAnKp5OtWK7ZWi9OiRYuM75RSDB48GDvvvDNSqd5xmlXc6vnnn48hQ4ZUVPY3v/lNpztksVgsFovFZGsdOBFCMH78+JJBUrFYxDPPPIMDDzywx/tU0XB/xYoVGDx4cMWVvvnmmxg1alSnO2WxWCwWi6V3mTt3Lvbdd180NjZiyJAhOOaYY/DOO+8YZTZv3oyzzjoL2223Herq6rDbbrvhhhtuMMp0dHRg5syZGDRoEBoaGnDUUUfho48+qqgPBx98cGQ+uo0bN+Lggw/u/Ml1gYosTtUOgkaOHNmpzvQlhOncH52HzLtht0HYhG3qJDFl6qfgaPDdX3meggNmBLFSwlFIBU4HaX6WOkz9/SBk3WRd7whzu3SbbSzW4/N8P2Wuz7OUUtveUKiDA4Z+fgLgLIoowFHttHhZbPbdehlaRHOqTQWwy9mOdMNkaAGD3M0AgH5OB1oKWS1hLQFnQCEnHq/PNvcD8Y/L1bmoT3UY2k2txQw25EWg+aetjdjUJlx1xSIFIYDrirJNdR1I+2bxTKqIQtpBQSqSFxxsQhYdRdFmUyYHWudrPDnFktmaHkTOQJD1g2brHBEkK+9ZnWO6U/WAecYpMgi0pxyI4OFMjI6THrzrwQElDI1+suh6mg8li9WeKZLsuhP1JatLA+X1cjq7VLlWCs6RyYIr1I7S0RP0AsF1kL8sjwfK3H7Lga6T5rITdQSlCtxBvdOhEmgzTo0AayBw620qZIXuk1Krd/yA8GDBgnTpysDsYMFEOBk1VedUYCnD5a+fn0hIy1Dwz5QRAgqiAsL7OR2od8TveZtUK7KkEGjDRbjpwosLVPB6wnPkygD88LOku/N01XOYGlFxrrsoN53pnjPribOsOIQlugf1dqRSeZYU/DYYOnjguq9P5ZElBaX4391wdF1OoNpf05IlSzBjxgzsu+++KBaLuOiiizBp0iS8+eabaGhoAAD86Ec/wqJFi3DnnXdihx12wFNPPYUzzzwTI0aMwNFHHw0AmDVrFh577DEsWLAAAwcOxLnnnotvfetbWLZsGRwnWXmdcx4pgLl27VrVh56mUw7CDRs24B//+AfWrFkDxswH+tRTT61JxywWi8VisQh6w1X3xBNPGN/nz5+PIUOGYNmyZcpF9vzzz2PKlCk46KCDAABnnHEG/vCHP+Cll17C0UcfjY0bN+KWW27BHXfcgcMOOwwAcOedd2LkyJF4+umnMXny5Mi2pT4TIQRTp05FJhPEtHqeh9deew3jx4+v6nxqRdUDp8ceewzf/va30draisbGRmMkSAixAyeLxWKxWPow4SX+mUzGGJjEsXHjRgDAgAED1LYDDjgAjz76KKZNm4YRI0Zg8eLF+Oc//4lrr70WALBs2TIUCgVMmjRJHTNixAiMHj0azz33XOzAqbm5GYCwODU2NqKurk7tS6fT2G+//fDd7363wjOuLVUPnM4991xMmzYNl112Gerr67ujT32KqFUtevoTaWYHhKncQUQiUvmdQLn9sqRQqj0DhgFOKwBggNNqmJSFW09L++GndkmTIjIkSBiK9Fq0ZLL4tCAeutX5JrQUhOur3UtjLYAOP9Foyl8VYvTVr2ezlxGzE1e2z5HjKWz2V7y1sbRatdPBUtiQzyLliP7xxg54HoWXF/tbN9RhxSZx3EfZbVCXzcNN+WZ/RtGWSyu3Hi9SgPnXhYp0MHJfoZBCOu2nqEl5cBymXIBFjxqr/nJFF5sK4kWQ9ZOfynQTKZm4lwa6PnW+CyNDhXZXgcvrIe6bvC66u1KtevTdbw7h6Od0RLqnPE5RgIMOL+UfSzEwvRnNjlhtGE5r4YXSgBgzxYjVSJHuu5B5u5IEn51J31LOnVZt4uHOuOcAzUXnf1cuOuKVnFfYbeeoR46bq+w0CtxBB3OxjSt+o7rbS9TJ0MLEc54inlp9BwBFp4D+mXb1m6lPdaj3gki9VFDnrad4Es9i4E5npFhyPdUqL4jnRrpOXcqQQeA6ztKCsYqu0cmVuOj0Z8SLuQ9Jel1horTE9Gc97PYLu+7i6yWxq+xEMnLte6gPYbdeGFmvXBFN1XcOF576zcoyPMY1X2tqaXEKh9PMnj0bl1xySeKxnHOcc845OOCAAzB69Gi1/brrrsN3v/tdbLfddkilUqCU4uabb8YBBxwAAFi9ejXS6TS22WYbo76hQ4di9erVse3Nnz8fgMhVd9555/WaWy6KqgdOH3/8Mc4+++ytYtBksVgsFktfoJYDp5UrV6KpqUltr8TadNZZZ+G1117D0qVLje3XXXcdXnjhBTz66KMYNWoUnnnmGZx55pkYPny4cs1FERe7FGb27Nlly/Q0VQ+cJk+ejJdeegk77bRTd/Snz9DKMmAsBcaJmKkRmciXI8fcQJtJn/UQU2k6rIhNYeoHgdMS64Q+G9NnOh4nKoGwbqmi4EhrlqMsyWOg04IBqc3+sQz/YgMBmAl0ZVsu8VQAuEuKaPPVyVs837LkB4szEKwv1GN1TliyNhfSKtlp1imin5vHPsNXAhDaUZ/nGvDRhv7iWm7MAq2+1WhzCnk3A0gLGQGM3w7hwtKk438t5h14RXEOOSLKUq2s5zCk5d+UoL0oLWsM2VRRBYDLZKZKHZp4KoA2Swug4GrmWzIjDgWV62V06yMgLBThpMnbuGK2Wk/zaHbaIrV7wu0ykJLgWn1m7oECWrvy5ejq+wGjTFA2POPvHNValaIop9KfhFAAD2CcwlFK3AQU0RYoSpgIvpbXgTAApsp4GHnPGlNBYD8g7n+WBRbczcWssgalqIdm2q6sSnVOHs2pdlWfHoSsJ9gFgCwKsQHZOe6q/jBwgAKOSmAsLExSt80lRfWeyJACsiRv6Kl5nKh2xfUsDVIX1y+yKzF4icHY5axXcer3ejhxyeIcTbNLlGVlF0aostp1p+DR3oPQb7HSuvsSTU1NxsCpHDNnzsSjjz6KZ555Btttt53a3t7ejp/+9Kd4+OGH8c1vfhMAsOeee+LVV1/Fr3/9axx22GEYNmwY8vk81q9fb1id1qxZU3GM0gMPPID77rsPH374IfJ5M+PGyy+/XPF51IqKBk6PPvqo+vub3/wmzj//fLz55psYM2YMXNd81R511FG17aHFYrFYLFs5vREczjnHzJkz8fDDD2Px4sXYcccdjf2FQgGFQgGUhlaeO45aODZ27Fi4rouFCxfihBNOAACsWrUKy5cvx7x588r24brrrsNFF12EKVOm4JFHHsFpp52G9957Dy+++CJmzJhR1fnUiooGTsccc0zJtl/84hcl2wgh8LzKfNQWi8VisVgqg3MC3sWBU7XHz5gxA3fffTceeeQRNDY2qpik5uZm1NXVoampCRMmTMD555+Puro6jBo1CkuWLMHtt9+Oq666SpWdPn06zj33XAwcOBADBgzAeeedhzFjxiS68iS///3vcdNNN+Gkk07CbbfdhgsuuAA77bQTfv7zn0fqO/UEFQ2cwpIDWwO6blGGFNBfCwjMkrwyP4vgzeAyhlOJhN115r7KrqueuBMQgeFy5sAICemZCK0oaZ7PpQOL4OeFfmgtBr7sLC2gn5NT2lK6Ho+eekV+Z5wqdxfjBCn/uahP5bFzw2fYre4T/5giPsoPxAtp4c79X28E2n0XGymYMxPilLrmZMA350T9reDaP6EZGOeA52vjeJzC89OzUMJR7+SVdpMKnvXPrc4pKD2lOJeTdFOEE6HqyO0dLLjmsl6XlKbVoGCRqWdEktmQmySUODqshWMsNJAJbGWfw249HRLvkipHUmqVSumqe071RU/UC1OvR7rpdNedoc2mX2tOQ66e6CBxQCbJZirAur/Tiv7+4o56mscGpx5rCsIdsrFYB4dwpIin9ksXn0x9lNUCt9V56AtLIs6bMQLm+7o9QuFyzdVPmOECFOmWpFveK3n/COecfK/pAdwyVU1l96o0GDva5SfqTD7WCQVyR71LKWGlLr2w+6zCvuvvwCBVVrCtjWWCQH0u3r051kPB4SBd1nGq9ngpZCmlBiTz58/H1KlTAQALFizAhRdeiG9/+9tYt24dRo0ahTlz5uD73/++Kn/11VcjlUrhhBNOQHt7Ow499FDceuutZTWcAODDDz9ULr26ujq0tLQAAE455RTst99++O1vf1vVOdWCqmOcbr/9dpx44oklwWT5fB4LFiywcgQWi8VisXwB4Lz85GjYsGFqBVwc2WwW119/Pa6//vqq+zBs2DCsXbsWo0aNwqhRo/DCCy/gq1/9KlasWFFR/7qDqgdOp512Gg4//PCSvHUtLS047bTTvjADp0Ynhzon5c/Y8kYCTIcEViaKYGbromhYnxTa0uY0xOwvx93IwMhAZVwPUhQzKn3psKNZVkQQsj+T8BOYNlJh6fhy+lNs664HAKwsDMRb7SOwqSiXTGfVrBkQM1JpIQGAAk+ppbcNtAND3Y1YVxSJnlu8rKqnn9OB3eo+wS7pT0VZUsCX3TXYKbMGANDsfhV/J8L61N6SFXHhUkHZZSAxFicJ9y1HnAeB5IQyERhOgmMo4UrmwCFMBXL3T7djQLpVOy8xy5EB4WJZtqnarFuTKGHqGKEOLo5Lk2KJarY+oxtEWwy5BwcsMYg6Kfg2vDS8ZBYfs+w7arl35KwzZKUKU5UCeCflBKohvBw9agm6HuBtKEZHBY5DKnqLYHEYweIBFNxQ6magSGsWogZp0XHE70oF6mvWRvk9oxZ0FMxl79pzErbIOYQjr1mgXeKoJLTyXaA/cy7xlEXZJcXY5f4MoWtknHP54Gf9+QtbiUTfTGugsc+wHMZbp8SxpcfINo2FOCErVHm7RoDeB91j0MYyaGMZ1Mvk54QiSzpAt0A5gi2JQw45BI899hj23ntvTJ8+HT/60Y/wwAMP4KWXXlIimT1N1QOnuCWEH330kRKsslgsFovFUjt6I8apL3DTTTepcKHvf//7GDBgAJYuXYojjzzScAf2JBUPnPbaay8QQkAIwaGHHmpkKvY8DytWrMDhhx/eLZ20WCwWi8WydVEsFjFnzhxMmzZNiXaecMIJanVeb1HxwEmurHv11VcxefJk9OvXT+1Lp9PYYYcdcPzxx9e8g71FBkVkCYdLimigHaayMwfgu80KPKXMyTnuIk085VLzQEVQqpE40neL+S47aXKW5mBdu0ma2FtZBizk/ZDlKBEBxiVB6b7rIUvzGEBEPYOdVrjEw2tt4gHsYCm0eNkggShPYVBKSPGPTK9DjrnKLN1AO9CftyrX3bpiP7SkhKuukeawbWo9BiqXAAAwNFLhuqsf+A80ucIF+OynO+Lzjf1Q7PATkRYoaIqJIHEAlHLDdUcIB/MvPecIdJtI4J6TxzmUKfXyjFvE0HqhZfWlhs/Qz8mpoO31xQal4A2IQN3wPdNdJZRwFWDrgWp6O0Vx7bV7Ia+Hvj+JJBeGKhOhqeOEXBWdUXkup+pcDdWoSXeFIHhZIF2LVNex8t14gTaTmbg3KnBcueR8N56eILhUJyjY5xAPrb72WaPTrq5DljARjK3cZkKzS19UIu931HMin6mo+5HWjAYObVd/yzABV3s3NTrtyj2XDtVlqKnL6xiRpDdSCb/EVRav4g2YyZLDz5107UUFfuu6UjoUrKwbL6ne0na0oHDt98w4RcFXN3OJUA1vdIJk6x6ooe3WnWyNrrpUKoUrr7wSU6ZM6e2uGFQ8cJo9ezY8z8OoUaMwefJkDB8+vDv7ZbFYLBaLxWdrddUddthhWLx4sVrF1xeoKsbJcRx8//vfx1tvvdVd/ekz1NMO1FNHBQDrs04KHhliGTVrZDCtF7KMJ2cr8C0dhKoZjCwrZ44OXBSE7QOAORvM0oIx8xJLViny/pzc40TV00A8FcANAP+XGyrK+8e3sKyyMA1MbQalpYGx0tpSTzuURMMAZzMGOG3IkiBXGANUAPgO7kZ8o/lVAMC26fV4uXl7vL9JqJl/tklYn7jnyytwombthHAhSeBbmRzC4fgWpZTjoeg5YEwqQAsVcdfvc3M6h5H1Iih+uLvBv46injaSBnUYmlOi/xlaMIL/ZZCtuE8iyFhZB+Bpy8aL/n0ynwaHRszQY4Kuacx7LC7YNmppeJRFCpAWkdK6wzPyztIVKYFqibMiKOuPbpEIBXZL65NhkeBa37UckkpVXKsjLqBfbs/5uR8LPKXyH1LC0R9t6g27utBsqHyH5QDCAeG6bEX4OuvWF1e7v9KKrX/PkoKyOBnPDKfQpRbC+fzCwdQlVrfQsxO3zD0q4FyeT6klL0kp3CuxHMVZo0qMrxF5B6P6I/oQXO8sFW/dHBfq7xQMaV9WRNLC6lDspJXWUhlHHHEELrzwQixfvhxjx44tyVnXG6LbVQeHjxkzBu+//36JgqjFYrFYLJbugdfAVbclWpx+8IMfAIAS1NTpLdHtqpPszJkzB+eddx7+/Oc/Y9WqVdi0aZPxsVgsFovFUls4RJxnlz69fRKdgDEW++mtTCVVW5zkyrmjjjrKkCWQMgVflJQrzbQdDZSioFxeZrJWOfIvIAjGDOudeJqbThzLgyBk37wvzcwycFO6IqgW3EoJQz3pUMHiGzzTVOmBKm0Xl1B4ICqhr9Cckn0VQbMjU2sBAA31HVhb7Gckq5WuuiwpIAcXOU0Fu4F2QFq1+zttGOiI4OuRqXY4vh6OjuPXmyUcu7pC7XVbZzn2rvsA720jdMD+0bIjVmweiI25OgBAa0caRc8/b8p9F5xoNO14GFAv3GtDspuxIV+Hdbl6cW6eA0o46lyho9OUzin3VY67vsK7uEYZWkQ9yasg7jQpqiTOAMAIVYlSc8xVCvLyGoRddUm6RfLaVqOD5IHGusGiNHXCCuYKUureAKIT+SYlYi1tr+dddPJehrWudBee7r5joEYAuaEGzlHitjPcPprOE9Vc2RJd60v/fW/ysmj0g7UH01bltgOADbQen+cb0c/XSWugHcE5gcLVft+iXemeLr3WuhaTfu89kFI1e7CSoHAAgO+SMkMQTFjIlafjhVxziUl3y2iHmfVEu/FE+ZhnlIeuUajexAUSPPSOBlO/7/60DQ44POT8fdx/twYafv1pW48Fh1uAXC6HbDbb292ofuC0aNGi7uiHxWKxWCyWGBgISA+nXOkLeJ6Hyy67DDfeeCM+/fRT/POf/8ROO+2Eiy++GDvssAOmT5/e432qeuA0YcKE7uhHn6Oe5oXFiTtilqFdqlae1pYLF5X1CDCX/HpcWG70XHP6bF0PBs9zp2RmKGebDaQDjSSHrK9Q25+2Ya0n5CCkNSWwWJUGkhZ8Wfos8eAShiZ/ZtvfyWFkKkiSGJ69Fngem5D1jy3AQSCR0IAODPOX5TaSFApg8Px2wvM7BwSub50c4ADNdDN28i1QY7If4bMB/fBuxzAAwMqOgVibF1aknCeuq7T2NLvtGJkV/R2a2oRPi01YmRsAAPg014RcMYX+Gb9PqZy67uuLDUqlGRBBn7qSswjU5do94epYKUUgc5BlqRlsG2vtgbQAVI4XWhKuk2S5SrIWVaL6DCBWUbo3SAqMjwuKZ6HgbyOYWP6/QpMuUNfT/w0GquIsVmU8jAwkdjTLUQsTltNG2oE0PJWPboCzGetov2DRgWbpoOpd4j+PiH4PlEO+hUpzKOrPtnzGuK+orucxDFuRwsHkWp3a3yUB3VH9jbAgxVqigFhrVJQlKhxUHhVIbtSjqYGH89HVkw5NbkTen+D6UVC4vjq8sEQXwSIWg3QHW+uqujlz5uC2227DvHnz8N3vfldtHzNmDK6++uotY+AEABs2bMAtt9yCt956C4QQ7L777pg2bZpVDrdYLBaLpRtgnIBsZTpOgMiPe9NNN+HQQw81lML33HNPvP32273Sp6qDw1966SV86UtfwtVXX41169bh888/x1VXXYUvfelLePnll7ujjxaLxWKxWLZCPv74Y+y8884l2xljKBQKEUd0P1VbnH70ox/hqKOOwh//+EeVdqVYLOL000/HrFmz8Mwzz9S8kwAwd+5cPPTQQ3j77bdRV1eH8ePH44orrsBXvvIVVWbq1Km47bbbjOPGjRuHF154oer2ssRDlnBkiYcCp5ApYltZBh6nke4R6ZaTJvc0kcHZgcPGMwIuOQp+AlsZECwDE3WTdAPJKzcdADTSPLJkAwBgbShQPEsKhtmacQLPd5N5IEiDqe8AkKVFM6Gt6hvg8QL6awGrsg5AuANc5Rrh8DhXhn2l4xSqU/xN4BIKGd5XnypipLMOu7jCBddSn0ILE3s3+f9K94fuOmh02uEQhqzSuuLY7KUxOC0C1inhanYlr6Wuv6IHhFItcBwExv1q8PWqsr55PkuKmrp7sl6TuA5VBF3HuITKufxoQobwaoLSextdw0xt069nWOcnrMWktsttZuC4ofmku3wIU8c4xNR5CrsGTc0fbmguiQUdmh4Z5UhzsW+I04IWtw6fFPoDEJppA/zFFWniocBTSg9KuJLNRSi0jAK9Tlzwvvid69esjP6RfmxI5yn5uKjA7pjnMEbfrNThL+uJKR7OrBB6VsIB4mH9NOmea6JBwu8ol2cDisj79eaQQhoe0j20WEKujOtqHVsae+yxB/7+979j1KhRxvb7778fe+21V6/0qeqB00svvWQMmgAhi37BBRdgn332qWnndJYsWYIZM2Zg3333RbFYxEUXXYRJkybhzTffNASxDj/8cMyfP199T6fT3dYni8VisVh6gq01xmn27Nk45ZRT8PHHH4MxhoceegjvvPMObr/9dvz5z3/ulT5VPXBqamrChx9+iF133dXYvnLlSjQ2NtasY2GeeOIJ4/v8+fMxZMgQLFu2DAceeKDanslkMGzYsG7rh8VisVgslp7hyCOPxL333ovLLrsMhBD8/Oc/x957743HHnsMEydO7JU+VT1wOvHEEzF9+nT8+te/xvjx40EIwdKlS3H++efjpJNO6o4+RrJx40YAwIABA4ztixcvxpAhQ9C/f39MmDABc+bMwZAhQ2Lr6ejoQEdH4I6SIp4ZwpAlwk2S40SZ0dt4BjnmKj0mAEqSP8fFKjtp9gWHn+pB2Efz3FGmfLnyRyJcfIErwCFMW/VVRBqBqZxxgga//WxqE3LcCbkDg9Vewp0Q2GddwtFIZL+5YX4v0WEigAuZIoaUJBr2/O8FmRRT32eYuUlgI/abc7R2XULR379GjaQI5rswPLSgwIG1fhLVDV4dNjBft4mnMMDZrK5RgTtoY2m1iqnFy6rUJxlaQKNmgg+nSAm70ygY6n1tlkbartLuiGOLyo0SRq5SMlNXdN6MH6yyi4chftWXqqcPLkGOXB2VkGA27MYTq9L0pL+esVIqasWdvnIu7LaTSYJVguCIq07BjfvpEKHhpVIjae60TSyLRppX2ygpYAf3M6WLts5rQIf/TmGgyDFXvWMa3DyyxNcOilxdFu9v0V3U+jaF9qeD0LNKEHneUccahH8PkeVi6u1GF16lvz0XHvr7K4TT8JA1XPpQ7z1KfO0uVW/RD1mwq+q6m8mTJ2Py5Mm93Q1F1QOnX//61yCE4NRTT0WxKF4YruviBz/4AS6//PKadzAKzjnOOeccHHDAARg9erTafsQRR+A//uM/MGrUKKxYsQIXX3wxDjnkECxbtgyZTCayrrlz5+LSSy/tkX5bLBaLxdIZttZVdZKXXnpJreTfbbfdMHbs2F7rC+G8c+FibW1teO+998A5x84774z6+vpa9y2WGTNm4C9/+QuWLl2K7bbbLrbcqlWrMGrUKCxYsADHHXdcZJkoi9PIkSPx8ptD0a+RgnGglaewwQ9QbmF18DgxZsDy7wJPCWVpP5A4x9NwSVEpzXo8UJ1VCuIy0JC5aKAdSs06SwpKmykbsnIUOFXf6wlDByfI+RYnmdxXn21llaWFI0s43LBeix8snoGDDkgLDkeecxSUlStK50U8OhnCkSUi6BsAmB8sntN0nfSg8yRcENUfGXDe6j+hHxSalTUvTTzkuYM239q3utgfOeYqC0WepwwrXCPNKQ2qetqBAneMe6EsAxA6Pg3+PaR+ouacX7Y/bVcB6YB5TapR306ikpdbZ61IccmGa001QfGS8DmF+8oSrrVeVrata/l4oIYCuH68Xi44Nr7/jqa/5JDACuVqCWDTpIgBThv6U6n5I87v42ITAOD9/BBs9OrVeTNO0ewnzd4pswbDHGH51i3Hsf0JmXjCemxRf4cJP3NRZeOe74qOjbmecc9JdXV0fjDgEg+NtAMN/ntFWJBKF8sA4t1V0C61tMJvbmHYZ49PsXHjRjQ1NXW6L3Fs2rQJzc3N+MrdP4FTH20AqBSvrQPvnHx5t/W1O/joo49w0kkn4dlnn0X//v0BCEmk8ePH45577sHIkSN7vE+dfovW19djzJgx2HPPPXt00DRz5kw8+uijWLRoUeKgCQCGDx+OUaNG4d13340tk8lk0NTUZHwsFovFYulLdDlPXQ1W5fUG06ZNQ6FQwFtvvYV169Zh3bp1eOutt8A57xXxS6ATrrrW1lZcfvnl+O///m+sWbMGjJn+3ffff79mndPhnGPmzJl4+OGHsXjxYuy4445lj1m7di1WrlyJ4cOHd0ufLBaLxWLpCcTAp6sxTjXqTA/y97//Hc8995whPfSVr3wF119/Pb7+9a/3Sp+qHjidfvrpWLJkCU455RQMHz7cSPTbncyYMQN33303HnnkETQ2NmL16tUAgObmZtTV1WHz5s245JJLcPzxx2P48OH44IMP8NOf/hSDBg3Cscce26W2HXCVBiFL8oAWRGlozoBGpq6QwYR5uEqnSR3jP8hZWkCWBu65tJYSJBzgrQdUOgSoJxytnrgPaQTHSKTp2QVHllBQpcVE1N+iLoJ6/5HIwYMHT5mmE838oe8uKDyEA7D9f2Wgpdb/pHrznENGfqaJp0z7A5w2bGBplZbFJR5cx1PBt2bCVGZc2ywpCM0t362ZJQXjvunXXib2zHJZtpgYbJtEpe618DWJC1SOI8nVVy6QPIlq3INxgbnJrsIyqTuMYxMSu4Z0nMQ2M5FvXOC4nmQ7jJ6WB9BSrmhu3rTvxnV9/TeZYFv+fgf6qXty7nrV5ueFRl/vLaXqN7TVwr9/lLrngrJmGcPVFFoMIq6FqRPFQv3Vy0Wlc9KPVUR1LTYIPHpz+FnwYKbbAfTFE9WPBoJ0Vnn0p3m1CIYB6p65Ee7RrPb/uzznYARIVaGxZame7bffPlLoslgsYtttt+2FHnVi4PT444/jL3/5S4+P9G644QYAwEEHHWRsnz9/PqZOnQrHcfD666/j9ttvx4YNGzB8+HAcfPDBuPfee7tVJsFisVgslu5ma11VN2/ePMycORO/+93vMHbsWBBC8NJLL+GHP/whfv3rX/dKn6oeOG2zzTYlEgA9QbkY9rq6Ojz55JM1a08sPeYq8FAqd2dRBNPkCaiWYFcd689A0szDWq/BCEKWgeN5f1vamCEyI+Gnviw2HLAoZ0UikTBRweJRKrZyNtVA5azan2WCwCWOsjoxcDD/+A7OkONEtZOESIIczIoZOAqGBEKofOhWCsuX/zchKimxlDSQ9fan7SpIn/HShMniHE2lc0AEg2dJIUjo6S8hlzPWsIWpRMIBMO6FQRXvoU5biSIsWUnWn3IB+GY9lYc5Vjqzr8TiFdV/mcQ1kBgItadbWhG2XpWqiFcqXQCUJkMOP7N6feGFBMoCBa7qc+HBAUdB9tFPCC1/p/1pGzZQERu6mWb9pNrCqrnWa1SLRBr85NqmBSr4TQNQCzjCCCtR+HcovndwUrJfv3Y6jJeWi7JAie20xAIVdbyqI9aKpMlFIMYC1kkZAPn7B4D+tAONBFD2DH0RDDffuw7EO0m+Px0itkU9K90BR6K4e8V1bGlMnToVbW1tGDdunJGtJJVKYdq0aZg2bZoqu27durhqakrVA6df/vKX+PnPf47bbrutR4PCLRaLxWLZWtlaLU7XXHNNb3ehhKoHTr/5zW/w3nvvYejQodhhhx3guq6x3yb6tVgsFovFUgumTJnS210ooeqB0zHHHNMN3eh7uER8PAAuGLIq6BrIcYq85+slaYlmKTFdS2nqgYIpt54sL9GThspkoUEAs4esVjYbCsLPa2ZyBqC/r3S9zkuBEq5cdpQErhuPc6WRpNPBi349XKmAt3IkuunCpvMCBzw/MWqaEBS04zPgqg8OCEC4CjpnHADhyl3oca5cdNKlJ50oQs27XbWpu5lEYtTA/VbgjlJ0B0TyTh1KuJEgWL93ScrMSdehKwrdDil1RSQRdpt1VtiuVgHtRp3aIXGuQL3/eiJbBxw5LhNfBy4eaqiB+cS47ii8EvXxkgS9Yddcmesg6xFtlbrmxHZNRRwcLvFK3FbyfBpoXi0UGZDajBavDi2eSGq9omOwctvtml4FSgrKZSQDvuX7IFfFMindseUSXnJnCpxEJhWuxPUWJP8uDSCPOl6eS7iOEvdb6PRi3bgVIt2r0mUqg+mltp0eckCJ+QwGC2X8e0HEcWFdvG5ja/XV+axZsyZyJf+ee+7Z432peuA0e/bsisrdc889OOqoo4wEvBaLxWKxWDpBDVx12AJddcuWLcOUKVOUdpMOIQSe1/mVwp2l6oFTpXzve9/DuHHjsNNOO3VXE92KA+J/OJzQ7IyBoYFKdfBUrKpvPfXgknZ4ENYOsTxZzCRzcJHXlK1FgHIR9f4sNEuYCjp0QOASAleqjHMPaamuDWGhkbMelzC0cldZjhpJUVluZDCjsuiAo8B1RXKGNi5nV+WDhmnMb9CDueyZAdoScRFcKfsgW9eDyfXgcX1u4YCrHHJS1iAIzO9Amnjw/OtS4A5c7gd8E2bco0DpOQgWD89gw+em5+nT9+nbOzsLrgnd9T7s5CnFWSCC/cHzFbZuuPAtuNoz6BBW0hcKU3laDzx3tHIepyoPnlFfBeiWMX1xQbCfGdsDy6UpKSD2BfU5KGIHdy0AoM1pwVqvAeu8fgCAFq8O64ri71Y3jUbkNcubsDbJ30sHJ7G/w3K4miXY40BOsw7pi0w8EDOnZQ9YoNTxuoWeBzISncXxg/TD/ZKW+CyCeyRtnLJkWELF8bMcRFnxLbXjtNNOw5e//GXccsstGDp0aI9JICXRbQOnTmZysVgsFovFEqIWyt9b4v+WV6xYgYceegg777xzb3dF0TOJqywWi8VisXQauaquq58tjUMPPRT/+7//29vdMOg2i9OWDvU/YY0OYZ7loH5AtcdoiUleBnJmCYFHmAoqzGk6LpRz5L06I2FolhSDoG4EeksZQpEljhHQKl1xsmlpTm6kDK0elEuwwD3lxkkDyHHd9G0eW9CSF8cR5Y5yQm43obHEUfDrcsEDwzgX11QFEPNSXackY7xqnxA0oKCG/i6naKR55WKUit8A0MrSYJzEajWFNXLC2wpaEmWXMMN901k3SRSddftF6vF0kbCidDXE6fbo9Sa58NwIlxggXHElweoRzcS58DqD7hoKu/fCCXhNXbFSPTD9GJcAA4nQHGsiefSn7Uq7qeA6+MxPBvxZsQkDaZs6vsAp2ghTrsg8KNLcDHTW0a+X/psQcPXMlXuG4lxx+vlLuuq687tWSid1m0S7pjvY/O0HGRTqienW1VsMdOVkWIQ4jvZUcPhWys0334wpU6Zg+fLlGD16dMlK/qOOOqrH+2QHThaLxWKx9HU46Xpwd5XHz507Fw899BDefvtt1NXVYfz48bjiiiuMvHFxMUfz5s3D+eefDwDo6OjAeeedh3vuuQft7e049NBD8fvf/x7bbbdd2T4899xzWLp0KR5//PGSfV+44PAtHRX0x8WsQ8428pyjAKJmallSLFkqrC/H1gOh6wlTKr9tLFr5Vp81Zoi02FCk4MDRcm/lmJitysBwGaBIuehTi7YUX9LC5IxeXwpe2ZLzqOBpM0g2QJ6VrFefzab961qIcbZXOqeUQfsORJD+JqQN+QYHHFk5u3cYNnhZ1Z+wGnN4ph4+L0qglKaz2r6uWnnC170z1itp3asFYetEZ4+NC/6Nqjd8DQyLBImwfoa6pVuTzP7XxjoBIHJhQVRZs5xpzQz/XoDAmu0Sjgwvop5uBCAsnAOpn9OOu0a9G1gdNrB6DHY2ARC/dSW9wFEiRaITl6cOSH6O5Pak56NaC5Q8puL8d0DVCxWi6pBB+3KfkJ0RFn1AyKGov0MWJmnll4t0Cl0MVK+W3ohxWrJkCWbMmIF9990XxWIRF110ESZNmoQ333xTrZhftWqVcczjjz+O6dOn4/jjj1fbZs2ahcceewwLFizAwIEDce655+Jb3/oWli1bBsdxkMTZZ5+NU045BRdffDGGDh1a3Ql0E902cBo1alSJSc1isVgsFsuWwRNPPGF8nz9/PoYMGYJly5bhwAMPBAAMGzbMKPPII4/g4IMPVivqN27ciFtuuQV33HEHDjvsMADAnXfeiZEjR+Lpp5/G5MmTE/uwdu1a/OhHP+ozgyagE8HhK1euxEcffaS+/+Mf/8CsWbNw0003GeWWL1+OkSNHdr2HFovFYrFs7fAafQBs2rTJ+HR0lOb4jGLjRmEVjctX++mnn+Ivf/kLpk+frrYtW7YMhUIBkyZNUttGjBiB0aNH47nnnivb5nHHHYdFixZV1L+eomqL08knn4wzzjgDp5xyClavXo2JEydijz32wJ133onVq1fj5z//eXf0s9cQ7joRQAjIJI8cULofTCXcDCdXlQkhddVvxoOA0gbklYnbJQxZ4qm6soRoweEpuCS4VRRM6bis81IY6njI+OGiHcRD2k+WCohgUk+zcUfqFWn22yRzvG76T3LlSO2TQHGXaIlRo+mq0Vua4KW7jnEt0JsLhedWlgEAZJ0i4myhul6Ovk0m+Y1yuXS+z8n1VOJC7ax7rzP90Sl1sVXuuhF9iFaP1o+Ncrcp3aGIJ6nSJMRJJLnigNJziQv+FmWT2zL01bTnygVH1pFK9zmR1Nu/Jo00h1aeVtkIHHDkIFXEXWRJAf39RNfVXA/Z17hnI3xuXbn/icrhSW+CKNet0Yf4Y8MuVfmecH29Po/LdzhR72gWvvfa/wPUuYCXlOsuapmrLmzUmD17Ni655JIyx3Kcc845OOCAAzB69OjIMrfddhsaGxtx3HHHqW2rV69GOp3GNttsY5QdOnQoVq9eXbbPX/7yl3HhhRdi6dKlGDNmTIkn6+yzzy5bR62peuC0fPly/Nu//RsA4L777sPo0aPx7LPP4qmnnsL3v//9L9zAyWKxWCyWPkGNxmgrV65EU1OT+p7JZMoec9ZZZ+G1117D0qVLY8v813/9F7797W8jm82WrY9zXpGY5c0334x+/fphyZIlWLJkibGPELJlDJwKhYK6yE8//bRaCrjrrruWBIltyejLTCkhalbhgYsgzAgrkwwEl5YiESgeFHBBkfNlDBpIAa1wVT0yyFyvjyprlHmbOngRG5iwMK3x+qGRbsAQRzyo9WDweBtyvMM/lqlgcGmFqWbmqPqS8HyH54EOgfEDz3EnWN4ODw3doPzqEhaa5Zr7s6SoOirylhUjpQeiEGrN0bPZrgihlbOy1Tr4XFKNlaoa61SlweUeSLLMQQWnLXPsVZpLr9JrGR1QnBw0bR6fXCbqefF4qbU6XE5aovvTArJkvVF/TkmPmO8J3epaKUnlK5HLCKyFXbdAhY8vF/Af/+4yt6cNVXdTTsDTrO8UxLAoyXI9ZWHqTpqamoyBUzlmzpyJRx99FM8880zsSri///3veOedd3Dvvfca24cNG4Z8Po/169cbVqc1a9Zg/PjxZdtesWJFxf3sKap+7++xxx648cYb8fe//x0LFy7E4YcfDgD45JNPMHDgwJp30GKxWCyWrZ3eEMDknOOss87CQw89hL/97W/YcccdY8vecsstGDt2LL761a8a28eOHQvXdbFw4UK1bdWqVVi+fHlFAydJPp/HO++8g2KxWNU5dAdVD5yuuOIK/OEPf8BBBx2Ek046SV2kRx99VLnwLBaLxWKx1JAaBodXyowZM3DnnXfi7rvvRmNjI1avXo3Vq1ejvb3dKLdp0ybcf//9OP3000vqaG5uxvTp03Huuefiv//7v/HKK6/gO9/5DsaMGaNW2SXR1taG6dOno76+HnvssQc+/PBDACK26fLLL6/uhGpE1a66gw46CJ9//jk2bdpkmN3OOOMM1NfX17RzfZUCSBAQruk0CbVxYuiAZImjzL8MHA3UH6sypjSIACDju+mkm8/R3IMFXoRDKDq4SAD8KStiZVGsatjgNaC/047h/j4KApdQDHB8ZXP9h0JMl0CBC/M2q9ClU87tYLgtSeBeaOUUjjSBE9McHq6r2iBxPQBc76NQQZeuTg7AU2rqifVVsb2rAe3d6eYDOufq64y2lHThVNJeJSrnciFBRcHxnXSblO1D0uKHCq5J3PH6fdPvf1g9P7ZtCD04vT6X+EmRSVtFybnVsaE2KYl3zVISf95JLrw4152+L85tm6T/Vdq/ylysMtmyagOm6y3HE8QU/ePCSuFfZOXwG264AYD4/77O/PnzMXXqVPV9wYIF4JzjpJNOiqzn6quvRiqVwgknnKAEMG+99dayGk4AcOGFF+J///d/sXjxYuXhAoDDDjsMs2fPxk9+8pPqT6yLdErHiXOOZcuW4b333sPJJ5+MxsZGpNPprWbgZLFYLBZLz0KALg/SqnfVVcIZZ5yBM844I3Z/NpvF9ddfj+uvv76q9gHgT3/6E+69917st99+RjD57rvvjvfee6/q+mpB1QOnf/3rXzj88MPx4YcfoqOjAxMnTkRjYyPmzZuHXC6HG2+8sTv6abFYLBbL1ksnXG2RdWxhfPbZZxgyZEjJ9tbW1opW5XUHVQ+cfvjDH2KfffbB//7v/xrB4Mcee2ykf3NLJWo1BSDcWzlOlY4SwJSLSpjNtdV4ESZduS1NxNIzeawDYpju9WMZODpYHpv9FXkbWBobPCF33+JlscGrw+bUJnVcgTO4yuUX6I543HQtAnKFU/x1iF2pEi4XUUegSVU0Uq4kITWgKkVPMCxT3gC+e053IRGgnhaCdrTVhUnODaUbVOELR78OUaul4qi0fkl3ufkqdbcZfekGd16lZTtDJfV2NXlzJatVa52wQ678TLp+RkJyArT67msHHPWEoc13j+VhJi/Xtd7C18ZwfYWajErXEtWXqDLVJpiuZPVjaRoajjbNPZczVtWZv195bsGKapvgtyfYd9998Ze//AUzZ84EEOTG++Mf/4j999+/V/pU9cBp6dKlePbZZ5FOm7nQRo0ahY8//rhmHbNYLBaLxeKzlVmcDjnkEDz00EOYO3cuDj/8cLz55psoFou49tpr8cYbb+D5558v0XXqKaoeODHGIrMRf/TRR2hsbKxJp/oCBc5R4FzpMrlEBhoD4FDaKVnCEA5vi7JUASIpJNOsHHowuNAKCmqSGiKiLx428gI+84RiagvLKE2TAneQ4y5We77GCBd91QNI2/yAUQ8EDZGay6VEatTElY2YdDkggD9jTHOmZnphi1KURaczgeKUIGSxEwH3wXduJITV2ynpe9T5aP3U+8W0esLHVWptqrZsEpVYriq1VsVd/84ojFdqwall0uJK6KplqVIq1ZuqBW1MvCcYKSILL/IcXSJUs3ULS44TrPFEnGqWFoX2GYAG4iFLzLLlNMLiLE9Jx3b1vleqQWf0haPEAs9C76LAahaymnMO2pOuIk7Ep6t1bCEsXrwY+Xwe48ePx7PPPotf//rX+NKXvoSnnnoKe++9N55//nmMGTOmV/pW9cBp4sSJuOaaa1RuOkIINm/ejNmzZ+Mb3/hGzTtosVgsFotl62XMmDG47bbbersbiqoHTldffTUOPvhg7L777sjlcjj55JPx7rvvYtCgQbjnnnu6o48Wi8VisWzVcG6EmnW6ji2JlpaWsulbqlFArxVVD5xGjBiBV199Fffccw9efvllMMYwffp0fPvb30ZdXV139LFX8CDcdB6HFgguXFANxAN8t49LAveIJ4OTfTcZBTG0SBg4clzsy3GxT7qT0sRM18L89mW9BQ5sYOL6rvX6qYS1oi4XLUzEnMm0C41UJAlt0AKzVeoV7TzLJeuNI8m1pLSo/H/rKVfXiIWC05OoLgBaBmwGW8Juq0oC2svhEKERBYh/XcINLSEn5Iao9FxrRWddflEuvs4GoFf6fJX0ocxChS2BpCS53UGUG0q62Dz4Wmba/y0DzTYOEK7CDNayLFpZBmn/vdZACuhPzZADV3NXJ6gdlfQryW0XRyXB5JW2H3VsbLJxHrSd4w6y8LQV/OL9Huj2EX9RTw89tFtZjBMgEvzGIXPdRYUOdTed0nGqq6vDtGnTMG3atFr3x2KxWCwWS5itLMYJAB544AEMGDCgt7tRQqcGTnfccQf+8Ic/4P3338fzzz+PUaNG4eqrr8ZOO+2Eo48+utZ97BVcELgg/pJdoMWfRotl7AE5TpDzg68ZJ2ghHGl/zl1PA1kAQFiu2liw3BcAwOX8nIOCgUUEG1JfqiDHRdBngaeQ9ZfWt7As2lgGnt+H/lRI4Wf9mWNGSxwcDmwWdVdGV4OXVR98K57sR1eW1ev1OvBnwp2QDRDHE9W/SvE0BfnYdnpxuXI151Lt/U26zuXuaS2CzqPoiQDsnrYoVYujLYKIuh7yvbPBc0EJV0rjKwsDMcDZjAFOGwCx6EXO4/P+71XWJ1X5w5bsOJKsT0nnUQ3VSKokPZ8u4cirxTQUOQ448HOj+RIy6hwIh6vJ1lhqz9e//vVIDafepur/b91www0455xzcMQRR2D9+vXKTLbNNtvgmmuuqXX/LBaLxWLZ6iG8Nh9L16l64HT99dfjj3/8Iy666CKkUoHBap999sHrr79e085ZLBaLxWJBryT57U1GjRpVUS673qBqV92KFSuw1157lWzPZDJobW2tSaf6AgzSPM3hAigQqZMkAiyljtMmloEjFXs5RZp4yMkkpaxQkpDTaIMTbIII6m7wVZ6k60d38YEADZTiS6l1AIANtBVrmVAOb2Np1NMONFCRMLiZFs1ku7oiORFm5op0nLrg9ejpgGiJQ6BcoSJoO76c8T2st6V13424Dso9R5jvGomup7eppj/V3rOk56OcuzTp+eusmnZX3HSddb/1pDZTbNLghL4nubs2sDrkeQot/oKTFi+Lke5aQ31c3sc25iCvBSgUOBXhAkSEC9TTglgwg1INtmpU5qPOpTOLBTq74EXul+figCPHnUCzD57vrvPhHG3w0MZrrQFvAcRYo69StcVpxx13xKuvvlqy/fHHH8fuu+9eiz5ZLBaLxWLRkcHhXf1YukzVFqfzzz8fM2bMQC6XA+cc//jHP3DPPfdg7ty5uPnmm7ujj71CnnPktWW80spQUKqxQVkpAQCIPHb1JO9vp2jz/1X1EClHII6RcgU5OChwqvIzpcHQKA/jHA4hGOqbLZtpB6g/HSzwFPrTNjRSEcCYJSSkZk1Q8M/Di7E21Uq1ulKcUIB9Z/A40MEJPP/61avrKmrOgxuz4HJWJkkbI9jAMmj0LXguYSVlAwsTT6xLp9oZStwcNqqeWsx3486hu62Hlfa9EutOpZajai1FPWlZ6m7U+4ansbbYDwX/9zLCXY/+tMO4hjKQPO+/m3TyPPgFu9xDTv0WOFzCO3XNqrEulQse78qiE3ls1rcoy3ORQfC6Va2aBSldZiuUI+irVD1wOu2001AsFnHBBRegra0NJ598Mrbddltce+21+M///M/u6KPFYrFYLBZLn6CqgXmxWMRtt92GI488Ev/617+wZs0arF69GitXrsT06dO7q48Wi8VisWzdbGXB4QBQKBRw8MEH45///Gdvd8WgKotTKpXCD37wA7z11lsAgEGDBnVLp/oiytXju73qqdRKySu3W6Cz5Os6gcCDZ5iVpSvJAVNmcgBoZWkwbRxLwZDjHaothzPUE6mbQjGQin0FZxOypKhciQ6hYHoyTs3lqLvwtkQMdxLhAIdSTAfNI0uYcoUCCcl3I9wIrf4lW8uy8Dgtq00TV0+trm819cSqIHexD1VpWpUpWklfyrl3yrniyh1fmbuvmoD67nPhhV1RrFOur8B9Boj+yndVK8uAgWBwahMAYNvUBlUm3Ic0PP9dJvZlSRFZpxjpLvP0xSgI1PU7S2e0vWr5GxSZHaL70OPv0q3QVee6LpYvXw7Sk8mUK6Dqez9u3Di88sor3dEXi8VisVgsFsWpp56KW265pbe7YVB1jNOZZ56Jc889Fx999BHGjh2LhoYGY/+ee+5Zs871JcIzan0m5GmBkw64+u76AdtRx4m8XLxkhitnhB6omqZ7yPuWFGHlqgdTy+RHOFIpPKhHHw3nOK9J8HA5arn0vdK6MoSrIO7AkucHcFZgZZL9yHGCDb7lKsdduCEr4ZYKRfVWp0qtTF21MCVZa5IsS0nHJdfZuePMcsnzzGqsVeUo+P/SGGuNAykbQCO3A4DHhbq3tFZ5INjERMLUFi+L/k4bhqU2AhCZBnQ1cFFXILvhwQP12xL58DxNSZyqvx1dWdtv0+G85rICSXTn+65XLfZbYcoVAMjn87j55puxcOFC7LPPPiVjjquuuqrH+1T1wOnEE08EAJx99tlqGyGkVxPuWSwWi8XyRaYWyt9bonL48uXLsffeewNASaxTkguv2hx3hBC8/PLLGDVqVNmynRLAtFgsFovF0oNshTFOALBo0aJOHbdhwwZcc801aG5uLluWc44zzzyzYsNP1QOnSkZjvc3vf/97XHnllVi1ahX22GMPXHPNNfh//+//VVWHVA4HKklaGpiwKZhSEnfASszNZvAlAwhVfxe4o0zvHqcoEOF+amFZUDCs8/e5pIgsEW7AwU4BWULhyuPAUQBHjvfdX0jYbRZ2DyW5i/RjHSLclmJ7qXZMkqK3B46cb7ZuY4FOjQOOtOaGcJVrtbRP0YmByRYVgN+XXXNRx9TKHZfkdivnckt0F/LK7z5L6AOVVzTi2jiEGe43nQKoGUaghQNsYll8UtwGADAgtRlfcj9Tiym8UH3h95ZLGFztt2b0VUts7oEECcxlH0DUseHtSfQ1/Szh9izF6ob3Xf7zP/+z4iTBM2fOrLjeqgdOjz76aOR2Qgiy2Sx23nln7LjjjtVWWzPuvfdezJo1C7///e/x9a9/HX/4wx9wxBFH4M0338T222/fa/2yWCwWi8VSnuOOOw633normpqacNxxxyWWfeihhyK3M1bdkLalpaXislUPnI455hgV06SjxzkdcMAB+NOf/oRtttmm2uq7zFVXXYXp06fj9NNPBwBcc801ePLJJ3HDDTdg7ty5Pd4fi8VisVi6CkENYpxq0pPup7m5WcUvVeJqi+Pjjz/Gtttum1jmrrvuwre//e2q6q164LRw4UJcdNFFmDNnDv7t3/4NAPCPf/wDP/vZz3DxxRejubkZ3/ve93Deeef1+BLCfD6PZcuW4Sc/+YmxfdKkSXjuuecij+no6EBHR4f6vmnTppIySeNWkWJAuM08TuGEtYQiVs5JdHeBx6lwz2npW5TOE/EAULRysfJrbWEAmpwcAKCBrIFLuVp908FZ1W466YapZWLf7krhUdKO34wLDo8HboJsxF0Lp0ow6vHrzdIcssQLEvn6bUa5quJcgbJlPWVPmvS8C68WLoRapJOo1k0XV75aN118PaV3orOr7uJcc0luuHJ1iv3xSYkYp3D91aR55pS05UmXGmHwOFF9/KS4DXJMaM3tkl5trIwD4lexOeAiDCHcZR7oRMl9FBxZMBR44PrT3ejhVXu9kZy5GvRzjutrZzS2LMnMnz8/8u9qmThxIp599tlYI87dd9+N0047reqBU9Xv8h/+8Ie46qqrcOihh6KxsRGNjY049NBD8etf/xrnn38+vv71r+Oaa67BwoULq626y3z++efwPA9Dhw41tg8dOhSrV6+OPGbu3Llobm5Wn5EjR/ZEVy0Wi8ViqRyb5Fexfv16XH/99fja176WWG7IkCE4/PDD0draWrJvwYIFmDp1Kq644oqq26964PTee++hqampZHtTUxPef/99AMAuu+yCzz//vOrO1IrwEkXpQoziwgsvxMaNG9Vn5cqVAKTqN0mc/UotJp0oHRRKeKweC+NEzXYZCHLMRY658DgBBQcFhwsvCBaFmM3muSM+/p4OzpS1qbOzuFomq/TAIz/dBYVIwlngFAVOwXj5BJwFTlDg4h420jwaaR5Z4onknkRYlDwObGAO1jEX65iLAojaF4dMEN3CHWxkKWxkKXh+YGncpzuo5MftgBifkv2k9BPXlvyUtsHVp+Q4EnzKlde3RwUo65+k8mLRRvCJOj6pHr0+h7DID0XpJ+lcqtEs8kCC51y3WvvvJNligadQ4Cn1vcXLop52oJ52oIEUlDXIOB/tu7wvLhGJe8P91e+d3JYlXDwH2rFhq418TsLtV3INGA8+PYHeXk+1GUtn0qtEfbZgnn76aZx00kkYMWIE5s2bhwkTJiSW//Of/wzP83D00UejUCio7ffddx9OPfVUXHbZZfjRj35UdT+qdtWNHTsW559/Pm6//XYMHjwYAPDZZ5/hggsuwL777gsAePfdd7HddttV3ZmuMmjQIDiOU2JdWrNmTYkVSpLJZJDJZHqiexaLxWKxWKrgww8/xPz58zF//nxs3rwZ69evx3333Yfjjz++7LH9+vXD448/jgMPPBD/+Z//iQceeAAPPPAAvvOd7+CXv/wlzjvvvE71qWqL0y233IIVK1Zgu+22w84774xddtkF2223HT744APcfPPNAIDNmzfj4osv7lSHukI6ncbYsWNL3IQLFy7E+PHje7w/FovFYrHUhK3M4nTfffdh0qRJ2G233bB8+XJce+21+OSTT0ApxW677VZxPYMHD8ZTTz2Fl156CYcddhi+853vYPbs2fjxj3/c6b5VbXH6yle+grfeegtPPvkk/vnPf4Jzjl133RUTJ04EpWIcdswxx3S6Q13lnHPOwSmnnIJ99tkH+++/P2666SZ8+OGH+P73v9/pOkv0gULuOD0YPM8dpP3UKGHPhzClB2NVPSDVIcx4qMMBrAxUBXlmSQFpItoocIoc97Tjkt105RL9lgRNb0Eucf1e5EHh+vchxzmyhBi6XGlCIJ1kuhMlnKSUQUskDKA/CoBRPv5N1EA8tPpBvjnfLdjqJ4IW+wsqAaoL7vcp6KNOnDuv3MynvAaZSSVB/XHPhHx2kttMeHNHuNOpVj7sKjH0iko0vEr3mXXpQdGm6J0RMG24mcwzk/VFBZY7ocBr0Q5L1HkKFi+UDyzXF5GE28nL9EPEvLsu8TAwtVm0lRBiIPab28Lpe0QPudFvVRcBCjG3mXGg4N9nxgGQ6DQvUe+xWrjKyr0fy7kLw33oTCqZzrK1KYeffPLJuOCCC/Dggw+isbGxU3W89tpr6u8rr7wSp556Ko499lgceeSRxr5qU8VVPXACRAzR4YcfjoMOOgiZTKZPZS4+8cQTsXbtWvziF7/AqlWrMHr0aPz1r3/dIoQ7LRaLxWKxANOmTcPvf/97LFmyBKeccgpOPPHEqiWOvva1rxlSSZxz3Hfffbj//vuVpFJnUsVVPXBijGHOnDm48cYb8emnn+Kf//wndtppJ1x88cXYYYcdMH369GqrrDlnnnkmzjzzzG6r30iGSYAG3wqRg4NCxDLiuKXOYakCl3jI0oL/d5Ag2CEMTAsEpdpMUqiNa2UrCbCU7ZctmRxc3V3WqM4GqVMAWf/aFDhBTlnoGDxww5oSWJ1Cbasg2UAVvD/tUMriUWWT+isVlVtYChtYHVpYndpXTzrQRHN+H4vI+lbEDOGRfYvqXzX3Moqk43QLQ7nEyx544vPQVWuUWIiRdGiVD01MXYyThN9QlPo1jVz4EVsPiV8KIK1R4UBy0bKZSDxoP6SIzmmwPJ5TZZkGgCwtoIHkjToMq1LC9dUt1UnPXIFLi1i8lT5stZFlXT+wXJxXqP0uWEqqWSyTVDbqfvZo0HgtXG1bkMXppptuwrXXXov77rsP//Vf/4VZs2Zh8uTJ4JxXLG7ZXSniqn7f/upXv8Ktt96KefPmIZ0OXBhjxoxRMU4Wi8VisVhqyFYW4wQAdXV1mDJlCpYsWYLXX38du+++O4YOHYqvf/3rOPnkk2NVwwHhphs5ciRGjRpV9gMAb7zxBorFYmx9OlUPnG6//XbcdNNN+Pa3vw3HCawre+65J95+++1qq7NYLBaLxVIGGePU1U81zJ07F/vuuy8aGxsxZMgQHHPMMXjnnXdKyr311ls46qij0NzcjMbGRuy333748MMP1f6Ojg7MnDkTgwYNQkNDA4466ih89NFHVfVll112wdy5c7Fy5UrceeedaGtrw0knnRRbfq+99sLatWsrrn///fc3+pxE1a66jz/+GDvvvHPJdsaYoZOwpRM2wcaZsR1wZfaXir0yiDQPB+BAk28e38QDC5100dX7rrkWloYLD/1pm2hPSxbsceoHLcskm8HfLvHAeOeCFKOMndWMpGup+1QrlOI3geEuiHI1hV0PUeVkImHm34tInSJ5/8OBo4AK/m5AEQ5tU66SVp6Gxyk2sSwAYK3m4u1P2zCQ5tSxepsF6SZWGkOmyy7q/DpL3PFRbSW58rrixpNtRblJdLdK+PnXf7tRibbjkm+H3W5mEHlUPSy0TbrTK3ffKVVtzY1XLllwZAJk3U0HoAAHDhiyRLxjKJjKPjAAbcqNHPQvVCExz10vHV5QoVPg8fp3kdpcflFXCypn3HTddfgaVZXqXVWrZRdVPilBe1fa2pJYsmQJZsyYgX333RfFYhEXXXQRJk2ahDfffBMNDQ0AhLbjAQccgOnTp+PSSy9Fc3Mz3nrrLWSzWVXPrFmz8Nhjj2HBggUYOHAgzj33XHzrW9/CsmXLDANMJVBKceSRR+LII4/EmjVrYstxznHxxRejvr6+onrz+XzFfah64LTHHnvg73//e0mw9f3334+99tqr2uosFovFYrGUoxbK31Ue/8QTTxjf58+fjyFDhmDZsmU48MADAQAXXXQRvvGNb2DevHmq3E477aT+3rhxI2655RbccccdOOywwwAAd955J0aOHImnn34akydP7uzZYMiQIbH7DjzwwEjrWBz7778/6urqyhdEJwZOs2fPximnnIKPP/4YjDE89NBDeOedd3D77bfjz3/+c7XV9VnyoMiDBstj/clHEBROzO8IApNzLOUfIwK6HSotRUzNSF3iiVkcD+pxiAfqB4XnWEotOab+Mua0FjDeQDv8NuOXUseRNGvrLhXrnkCfo4vrGVhs8qHgYYeUD3gW9RCAcGUP0o+pJDhc9ilDODKkiGY/kJ8hhxynyPlLx9d6DdjAxMwox1ysJf0wxBHZuvvTDsOiop9nOFhcpzusUHF1JOdzDAUwh60OYdkO3dIbUydD/HMcFUjeGxaoEvmChLyVRj2atak0D11pMHhQVi5ooGpfK8+oi8hA8X6H+B9NI8lhiNMWmUNO1SctgaS8PEBcPcy3Pjn+e4qS0nr1d6ynzoH46uKCfOg6VGoNqmR/3D2Jy0EXfiZ6zOJUw+DwcE7WSoWgN27cCAAYMGAAAOFp+stf/oILLrgAkydPxiuvvIIdd9wRF154oZIlWrZsGQqFAiZNmqTqGTFiBEaPHo3nnnuuSwOnJBYvXtwt9QKdeI8eeeSRuPfee/HXv/4VhBD8/Oc/x1tvvYXHHnsMEydO7I4+WiwWi8ViqREjR440crTOnTu37DGcc5xzzjk44IADMHr0aAAiK8fmzZtx+eWX4/DDD8dTTz2FY489FscddxyWLFkCAFi9ejXS6XSJlEBSDtm+Tqd0nCZPntxto0SLxWKxWCwmtRTAXLlypZFzthJr01lnnYXXXnsNS5cuVdukLMDRRx+tcr597Wtfw3PPPYcbb7wxMZdcUg7Zvk6nBk5bAzL5LotI5Asg0I0JBVCmwTR3ntBf+szrBwCoJ3k0+S62Vu7CJUGS0SwpIg9HuflEYKeoJ8ddtHHzwW7063E78UvqDtNytabzauqqlLC7KKwALoPFhbuAoxChfBzWTxL7EgKfq+iq4ZLyg18d33XnOJsx0BEZvAvcwSaWNRWstb5GBVobyt5Jbgnt71q47eLqqqXrDogOvI9rJ0p9ulLXXZTLyaxH1yOq7hnXyye73GjZclFuJN1Fp9ez1n//uMTD50WhwLyO9cNAp91wjUUpeMefi9m38N/yXGW2BLlwxgVX7ywZRK50obQFHQVO4YEr/bQCd+ASL1EHK6ovpf2Oum5VBpKH6ohTSa85NXTVNTU1GQOncsycOROPPvoonnnmGSMP7aBBg5BKpbD77rsb5XfbbTc1wBo2bBjy+TzWr19vWJ3WrFlTcSq0DRs24IEHHsB7772H888/HwMGDMDLL7+MoUOHYtttt634PGpFRQOnbbbZpuKR4bp167rUIYvFYrFYLL0P5xwzZ87Eww8/jMWLF2PHHXc09qfTaey7774lQdj//Oc/1QKysWPHwnVdLFy4ECeccAIAYNWqVVi+fLkRUB7Ha6+9hsMOOwzNzc344IMP8N3vfhcDBgzAww8/jH/961+4/fbba3S2lVPRwOmaa65Rf69duxa/+tWvMHnyZOy///4AgOeffx5PPvlkryT27S7ycFRAosODWQ4DNy1QnBuz2QzhYmYEwOMp1NM8Wr1AhmCDphzdwlLoT9sBAAUIy5LMM8VAkNNmnjnmIufnORvgbEbWDxTXAy11Oqtm29l64gIpO9NuZ61VJYGpFbbhacfmOS8JHA/n6eosYauJCw5GZN88JaXAUEA9LWCdJ4LF86CamjQHeLJqe4kFJ+Z6Jp1TraQMKrlu5SxQQHwAeaUSBuFnSj4LUfnvyuZ75OH+xlt/kspWYmWKszCFA8/NslpdRjA7Q4GJ98v7HUMwIrVBe4+QEsOqvH7hd0yUtUmeJ/NlA6L6J+vUrVx6PXluWqry3FEWJ48LhXZXSb50/R6J7aGcoJ1YtVbs6kq3SqmBq65ai9WMGTNw991345FHHkFjY6OKSWpublYr0M4//3yceOKJOPDAA3HwwQfjiSeewGOPPaaCs5ubmzF9+nSce+65GDhwIAYMGIDzzjsPY8aMUavskjjnnHMwdepUzJs3z8hZd8QRR+Dkk0+u7oRqREUDpylTpqi/jz/+ePziF7/AWWedpbadffbZ+O1vf4unn35a+TktFovFYrHUiBq66irlhhtuAAAcdNBBxvb58+dj6tSpAIBjjz0WN954I+bOnYuzzz4bX/nKV/Dggw/igAMOUOWvvvpqpFIpnHDCCWhvb8ehhx6KW2+9tSINpxdffBF/+MMfSrZvu+22vRZcXnWM05NPPokrrriiZPvkyZPxk5/8pCadslgsFovF0rvwCnNATps2DdOmTYvdn81mcf311+P666+vug/ZbLZEPgEA3nnnHQwePLjq+mpB1QOngQMH4uGHH8b5559vbP/Tn/6EgQMH1qxjvU2RU2Um1s3kHuFwOAOTAaiEIy1deYQA4Mr8K3V5pB4TSJDAk4Eix9NY7bvxXFIs0YDJMeGacwiHS4oqAXATzSGn6iwiDVazRJPhenpKo0R3Y1UTHF6Jiy8qoSlQRgVclSWh71p7NbjmQR9MZeYsYRjgCBX5AqfaggNRtqqZY4J9vzNuvO4mSiurpIy8TxG7o1yrlbjgKiHR9abdTd3lpPaXcc1FaTKF6w0ripfoPJX0z9w/JC3+B/R++2AMSI3ArulVAETQu8OZ8ZyFg+yp/72RAi0suJ6MBwtopDq61F8SyuWB1px+PcLvVw8keK9BtO8SmSFBLKRhaoFHvCZWSUB9GXdcUqB+JeR70FW3NSX5lRx99NH4xS9+gfvuuw8AQAjBhx9+iJ/85Cc4/vjje6VPVQ+cLr30UkyfPh2LFy9WMU4vvPACnnjiCZvk12KxWCyWbqCWcgRbEr/+9a/xjW98A0OGDEF7ezsmTJiA1atXY//998ecOXN6pU9VD5ymTp2K3XbbDddddx0eeughcM6x++6749lnn8W4ceO6o4+9QoE7KPiB2p6RN05IFEDOojjgETljBHKgaGFCOmCD12CohdeTDqS12ZcIfpQq41k0OTm1T+SqE095luSNgHSKQMZAzqQrsdJ0Zcbdk/mYopbhx5JgSqbKehStalxZXxKsNVVckgIvH3AdvsZSiT6cU0yUi7eehSUH4ixjDkk+v5LyX+CcXBI9cDlMpBUpwspk1BOyMsVboJItTHEB32bfw5aV0iducEqo0a+kA/FG27ZqIctgZxMaaAcaSJBvVP/diABwfwcRUhr5CiwzLmFopMxYsi8lB/J+Lr1AdiWFVv/dmSYeHBKf+zTyWlcQ6B11X4BSy51ethxfnAytfZOmpiYsXboUf/vb3/Dyyy+DMYa99967osDy7qJTOk7jxo3DXXfdVeu+WCwWi8VisZRwyCGH4JBDDuntbgCocNVxVGBWEi0tLZ3qjMVisVgslgh4jT5bGGeffTauu+66ku2//e1vMWvWrJ7vEKoQwFy1alViJmKdbbfdFq+++qqRIXlLI88duL6rziFEmb0pmFCv9feBeACXiXtF8KJuBs7SggrybmFZlZwXME3pTU5O0+oB2lgG/X0laTeUyFfHAylx5ejoSTUd8JJkmdXQGY2TrqK7MKIU3BPdemE3XomIq+7+9OuT16oTpxp2ZbmEoOD3wSFAjvPEq19JgD/jcUlXow9OCvJmFbgPdVRC4S3QYxe+XlEJaqO+l3MJxamBh11sYRdRlGsuNnicR7vxRPvxdzBOSwkAdsquwast2+O1tpEAgKHuJgxIbcYO7ucAgP60XYUK1FPxf9w2X3SslQeZFcJkiYdWnjIWugDBc1YAUe8gkZnBUWEPBZ5CwU+nLUIciApID84p6Vok3wtVrgJl9qBs+Ye9p5TDt9YYpwcffBCPPvpoyfbx48fj8ssvN3Qme4qKBk6cc9x8883o169fRZUWCtbra7FYLBaLpWusXbsWzc3NJdubmprw+eef90KPKhw4bb/99vjjH/9YcaXDhg2D67qd7pTFYrFYLJYQW6DFqKvsvPPOeOKJJwzRbQB4/PHHe82rVdHA6YMPPujmbvQ9OrgLhztwCEOBO8r0TMGRhqeSVgJQpmYKgjwcZd51SVF8HJHWwIWHrLZSJE9T6rs0UUtEWhWxT67G8ZRL0FMr/hzwklQJ4bQp8nsLSyHHUyrNgtRIqcYF15nVdUkug3IY2lYJ/XTAS9NShOzSjua608tTqY3ko69EK+eWinLPuf75FgxdLplOJWhDT+2S1/qWdI0d8EiXXpxLIfwsAGYKjXgncPwqxHIuxUrudmfdfZVoZ4Xdk4HeUER9EavoYl0+EWlUwi6hpNQpYfdcyYq7Cl1ycb+npN9HmAbagRHZDXivVQgIrmzfBmlaxIjMMADArnWfYNeMUGXu7zvXhMsOaGHUT8Ir2ssSTz0rLuFoQFE9dw44HBDI9cJtzFFaTTK9lO6CD7v4dN2mal1z5dLYqHoS3H+VaDoVrI5Tt3LOOefgrLPOwmeffaaCw//7v/8bv/nNb3rFTQd0clWdxWKxWCwWS3czbdo0dHR0YM6cOfjlL38JANhhhx1www034NRTT+2VPtmBUwxSxykI7vR1k/wAcFfTcZIzpgYU0cYJ6kle7KNmYLcDrvSgHHAMdDYHquJc1C1nbllSCJIFw1cxV2rJVLUZDpgOWxh0xeQWlgUQWJqcCA2kchalSq1HtQokZyifywgotS4BZnJm08IU0r7iPBQ4HgRxe9y0jjggap/jB3+72rEUxNBGCq6W2F6SeNj/N02I0oPJMRoZCN8Zkiw05dTaywXGRlmzgFIrVmTdMYrf1RIX/J4UDB7eH2VtqlSrqZxOUzkrkygXFXQebWEKW5Wi9IcqZbv0OpX095OOZmwuZPF2QSRuLXBHac6l06sxwCmihQVtUcKR9e+0SzhcrVseAiuMQzhynCPnW5c2sYxKVi7fdzkWWKDy/vuQhizpSZpMQHlrn6onRlU8LjBf7Ev+Hdjg8O7nBz/4AX7wgx/gs88+Q11dXcXx1t2FHThZLBaLxdLX2UpddTq9lZsujB04WSwWi8Vi6bM88MADuO+++/Dhhx8in88b+15++eUe748dOMVQ4CkUuBO46GSAKWgoMBxIc99kTbkKvAaALG0D40QFQequOEq4r1ESlBeJfoMpgQwAz5IisjQoJ1yFMvmlTK5p9t/VgpFbfFN4jqcCNyKS3XJxLrkkF1ylgePVJtGshHBQKRCRnBlB2pySoHou74s8ViADxaW7jgKoJym/DEcBHjwuA2MpnJCrzpFuPM5FHVyrn8Nwcch7mIdjJlyNOadyRLn7wvdPlqk26N8BT3QD6n2P6nOUm68zgerBsfH9r8RNVy4gXJapRKtJ7oty00XpMwVB59T4Hi6ntxXuQ2fZNrMeANCcasfHHf2xOieWfX+c6w+XCI2nVpbBrplP0F/ToEuDIeM/O2lCDHe1xxkKkJpP4h0mA8IL2uIZB/AT+4pE53le+r+jcLqkaq6/pLOaWXp5VTbievdUcPjW6qq77rrrcNFFF2HKlCl45JFHcNppp+G9997Diy++iBkzZvRKnzr1q/v73/+O73znO9h///3x8ccfAwDuuOMOLF26tKads1gsFovFgq1WOfz3v/89brrpJvz2t79FOp3GBRdcgIULF+Lss8/Gxo0be6VPVVucHnzwQZxyyin49re/jVdeeQUdHWIW0tLSgssuuwx//etfa97J3qAAijx34MjZoLRWgMEB0WY5gSWokedL6qHEtEKFUTNp39qkB3LLmZhLihjsbFYJOLM0sEbEzXba/JlRC0tjjdeotusWJ9H/yi1LcbP6uFlvpYGrtUggbMgzqHr14HBmBIcDLJhdEs1a5QeKx1k4ssRRViQHBC6YsjgVOEMBgZXJiwi+l5Yrxz9et0jJ69DG0nBJMfG5qYRKlqdXs4Rdh5V5A+sSuJGB7pqafWXtdZ4kZXCgOnVwoNRaEW0FMeuJsjaFg8GjgsDjLExRVrxy1idHe86lInfaf8aanTbU13Ug41u2V7QOwv+1ikwRm4p1aGFZjMmuBACM9BMFy9o8cGS0fjoEKPiB5NLSFGXFy7OUL/ciE50TZGmhpK/68ZHB9ZH7oq2G5ZImxwXoh/fpxxV6ajSylcY4ffjhhxg/fjwAoK6uTqV0O+WUU7Dffvvht7/9bY/3qWqL069+9SvceOON+OMf/2iIXI4fP75XfI0Wi8VisVi+mAwbNgxr164FAIwaNQovvPACAGDFihXgEZPTnqDqgdM777yDAw88sGR7U1MTNmzYUIs+WSwWi8Vi0ZAxTl39bGkccsgheOyxxwAA06dPx49+9CNMnDgRJ554Io499the6VPVrrrhw4fj//7v/7DDDjsY25cuXbpFJ/UNwyBM6zKwVJmauQOHcLi+i87jBB4R48/VABq1AEoAQn9Jww2ZoFVwrh9ELjVOWllGueqyhKCFZJD1FcgdXqqSHUb2dy1rwCeFbQAAI9NrQ2VKlZDDx6vvEW6AOFdcYtB5GXdCNcHP0W1HBGZDukJkoL9w2ykXEofhrtMTizL4Kt+GO0bXaQqCwZnffqGCWZDUg5J1Ca0bza3BUyXPShI9nYA5SjcrDl1PK0wBlbnrKmkvXE9ywHj5YPCkckD5QO0oN3iUazTKTcci3EuizVK3VKXaah6nwQIJmO4w+ff2GfGO+DjXH3lPPI+f5xvQkOqPYSkRTzLM2Yxs6Nks57o1XOiau4xxqhbPhMuXe+eUCwZPctElBYGX09AK3/euaGlVxVbqqrvpppvAmHjevv/972PAgAFYunQpjjzySHz/+9/vlT5Vfce/973v4Yc//CH+53/+B4QQfPLJJ7jrrrtw3nnn4cwzz+yOPlosFovFYtlKOO6447Bp0yYAwJ133gnPC9bcnnDCCbjuuutw9tlnI51O90r/qrY4XXDBBdi4cSMOPvhg5HI5HHjggchkMjjvvPNKkvBtyRS4g5Q2E6L6jEQLLE4TL7DcMIpG2qEsGQVOkeNuIEEAU45AX95c4CnD4uQQjkbS7v/N4GqLtaNm0nGzdo9TNZt04RmzzCiVZP04nZLZdQUWqeDYKItW+TF7tUutHcKMJe2mtYArC5S0PqVlaUKVirojFdn947JEBHBT7RxkDjqmWZoAkW9On4fr6uTyb6VIDtkejDoAqHut35/Y+1uFha5T11M7Rn92qgkqL2dFlIHkiWrpPFpyQvUtIldhHKXB4pVbmUqtSt1r6YsKBo+zNgXPS/R9FpbWID+cboGS1FOxeKQxlcNar58qW+SOYRlySWCF1S2nDEAbI/+/vXMPk6I49/+3umdmd1nY5c4uYeWiUVTwhiRCjIIXwETBeI5oYgSU6DFyEYFo+GEiQhA1CnpIBDVkRY1RzwkkGhMUwy2IGt3g8QLeIreYXVGCLC7s7kx3/f7oW1Xfpmd2dmcW3s/z7MN0V3V1VXfPUP1+33pfoZ7xLPst3mjmqpM5wSRphnbRWBJ+7/Vhv1XpHMKDSGdtCgoHYbXbGuFVfDmKLE5//OMf0dDQgLKyMlxzzTUYM2YMevbsme9u2WQVx2nhwoWYO3cutm3bBl3XcdJJJ+U9BDpBEARBHKkcTXGcBg4ciDlz5mDkyJHgnOOZZ55BWVmZb9185KvLOgBmhw4dcOaZZ+ayLwRBEARBHOUsX74cM2fOxPPPPw/GGG677TYw5rU2MsYKd+J02WWXRW5w1apVWXemkNC44jKJO+hgtnSnQxGkFQWfaR3RQ/0SgCG/WdIbYEgwlqnXcS43Y5pwI6KuFVclzjQUm3Gb4kyXYvqEygOcI27KgBbl6iEAsJN2hiUqdcboL0n41w2XPoKO8zuPfExmMkjSdNy3t81/Feh2cmajf6ZsZ1ZNQINmfik7MI5ODIgz2WHVkeW4JEtoQgRtHUZcLUd+dWL8qOCIM12K9K4wOUGo5QyesJM7O9fcev6SUCXJNYpMEORQK8YN8yPJVTkCeJaSRNJnn+Inu/m8DYvyYNLnWbHjmbnbj/hqHSV5rFTf51qGJpHNsYxjy0M+CzvcEcjdiH033AZ0gAlSLHTEzd+ZIiWFRtM53H0t44xLya7FO9nIOZqhSgsvNDjfCU2Igdeox9HE4/ZijE7qYfv8Glfk+Gqu8cvj8v/9iRId3O+aBSVV1l3tWudt6YKWyBxFUt3w4cPtsAOKouCDDz5of1JdeXm5/ZlzjtWrV6O8vNy2ONXU1OCLL77IaIJFEARBEEQ0jiapziKVSmHChAl2oO1CIdLEqbq62v586623Yvz48Vi+fDlU1Xgr1zQNN954Y6AG2Z7xdbTkjgVKettg8HW4tEhC9cz4LYfLJFTpOE1YomxFDA9dci4WcaDBtHQluYpSM0SC9ZYfvIzX3zIh1gtz9E7nUG7Uie4ono2Fw7LgKOJSa/Mt1w5HYFmfrK5w5606bjoZH9QdG6MVksA4VhwLkASTQlYYCwKMr5VhRTQtjCyFOHQUm5bGBHTb6mSMFd6FAz5Rjg0naMX1hhzRKdrj2BzhmEgtZ4PPEnQfC0PStVTd7SQvRSgXv3dCNb92RcIXNkRfFBHknOzXTkvQoIRamryR0QVLk22pNJ5N65q5rU8K42jWjWtv5eIsUxsBGN8RY4+8+MI6t7zoRZUWvTTyuPObx2OIMw0dzN+nUqVJWgRj9NN9HdP/foRaCX0c6DMJP+D5DrmUCSK3xGIx/O53v8O8efPy3RWJjO/4r3/9a8yePdueNAGAqqqYOXMmfv3rX+e0cwRBEARB4KjNVXf++edjw4YN+e6GRMbO4alUCtu3b8cJJ5wg7d++fbsdpIogCIIgiBxyFPk4iVx00UWYM2cO3nnnHQwZMgSlpaVS+dixY9u8TxlPnK655hpce+21+Oijj3DWWWcBAF599VXcdddduOaaa3LeQQDYuXMnFixYgHXr1qGurg69e/fG97//fcydO1cKgOXndb9s2bKsootqUODngAkAusv5USTJVY/p2InWq9im5kYegwJuyHcmzTwmSxNmM8VIIcG1NE7hVt+YFGU5zjSPBCiPJb08Z7VrjSFSWyGReYH0CTSD2omKKpriocNKzmz1U0wArEGx5QhDeuOC1MCk66JyLkhqRnmjec80KHbsLqPv7jGlnH4xR64DgGaX/CJKGiLGwgTuiqkU7JwclajRp1sTJ9ZPeKRxC8Xzv4BL1jOvUTq5D4gmd6ZzTM42mWw6wu6pR6YC8/luidK8EE+J6QB3nkdwJ+FuSnd+4xJKCiVKMzoph83+wIy2772Ouil7N+pGO408jnq9GAf1EvP8zF7A0Uk9jATTUMy8ydEB733zG6/RZvjilihRwtM5hIvnaTNncBcMaPGZ89PzlvHDH/4QALB48WJPGWNMCo7ZVmQ8cbr33ntRUVGBJUuWoLa2FoCRhuWWW27BrFmzct5BAHjvvfeg6zoeeughHHfccXjnnXdw3XXXoaGhAffee69Ut7q6GmPGjLG3Rcd2giAIgiDaD4WoZGU8cVIUBbfccgtuueUWOyR6azuFjxkzRpoMDRgwAO+//z6WLVvmmTh17twZFRUVOTu329pkv5lwK3q0bGFq0ItQlzKuRzFLwnDBtKJRiw7HDI08LoUr0LmCBr0IgPG21aga1rQE0wBFfivz9Et8+xMcjcuURuGcmTu6hjleZvpWJ+4PsiSly//l7p+F2/qQ5I7Fwcj95oQqiCNlO4wDhuN2g5kXsANPSs6tbkdccWm2ynXbygQYb9dui6NjbWRQuGJbGFVwNDPxGjE0m2WNuhxF3o8ExPAU4daLbJxX2yz/lg9+4QssfMMY+KAy3cfSpKdtPwrpnJEB/5xoUb8T/osqvJYRd1tua5P1DPsusrCsTeZ3xKphPXOfN5cipRt7E4qGYiVp/6Y0mGEq4lKoCuecjWYWBAD4Qu+Az1Kd0GxaskqVJpQpRniUOEt5rItJn0UD4vilcWdgpY7iDO4+1h1+wNgnh28RlYlW5yiV6gqRrANgAq0/YQrjwIED6Nq1q2f/1KlT8YMf/AD9+/fH5MmTcf3110NRgh/spqYmaamjNRkkCIIgiELhaAxHAADz588PLf/pT3/aRj1xyHji1L9/f19fIouPP/64RR2Kwj/+8Q8sXboU9913n7R/wYIFOP/881FSUoK//OUvmDVrFj7//HPcdtttgW0tWrQId9xxR2t3mSAIgiDaFYsWLcKqVavw3nvvoaSkBMOHD8fdd98tLQ6bNGkSVq5cKR339a9/3Q5gCRgGitmzZ+O3v/0tDh8+jPPPPx8PPvgg+vTpk7YPq1evlraTySR27NiBWCyGY489tn1MnGbMmCFtJ5NJbN26FWvWrMGPfvSjjNqaN29e2knL66+/LqV2+de//oUxY8bg8ssvxw9+8AOprjhBOu200wAYs9WwidOcOXMwc+ZMe7u+vh5VVVXQOQtNmik7Exr/6pxBE+SXMrURCnQ7GrgoJzXyhCHH6IZpvInH0ajHcUiQ6uy6agxxnpISxnpM1xHeJIKif4fFnwmS5oyycBkiE4dLv774laczi4umf6ctFQo4dEs2Mx1UnejtzNYqDuoJ6byGI7nsHB4kcSbh3E+LYsWM/g4NSaiSrBK3ojcDkuSnC4sIrG1L+tC58bmzGQ3eSsTbUmktihN+ITiQ+8V/8tbwynQApKjyIlHlP4uoElHYgoiweEFh0pDRDguNEu6W6PxkLo0rgJKyncN1c8FBk/n8/rupA4pVJ4p4B8FV4JAeh8K4vaBCETIVNENFo+5kTGjQi3BQK7HjR1nZEMTrEFWGC3tGw57NdAtRMnEGD0qw3CbkQarbuHEjpkyZgqFDhyKVSmHu3LkYNWoUtm3bJq1uGzNmjBTvUVy0BRjzhueeew5PPfUUunXrhlmzZuHiiy9GTU2NFNrIj61bt3r21dfXY9KkSfjOd76T2YByRMYTp5tuusl3/y9/+Uu88cYbGbU1depUXHnllaF1+vXrZ3/+17/+hZEjR2LYsGF4+OGH07Z/1llnob6+Hp9++il69erlW6eoqAhFRUUZ9ZsgCIIg2pw2ltrWrFkjbVdXV6Nnz56oqanBOeecY+8vKioK9C0+cOAAVqxYgccffxwXXHABAOCJJ55AVVUVXnrpJYwePTrjfpWVlWH+/Pm4+OKLcfXVV2d8fEtpkY+TiBVrQZx1pqN79+7o3r17pLqffPIJRo4ciSFDhqC6ujrUb8li69atKC4uRufOnSP3iSAIgiCOZNy+vFENCAcOHAAAj3/xhg0b0LNnT3Tu3BnnnnsuFi5caOeWq6mpQTKZxKhRo+z6vXv3xqBBg7Bly5asJk4A8MUXX9j9aWtyNnH63//9X19n7Vzwr3/9CyNGjMAxxxyDe++9F5999pldZs1yn3vuOdTV1WHYsGEoKSnB+vXrMXfuXFx//fVZWZT0gNUSoWlAzJQrmu5ILp3VQ/aKEktWAYwEl9YKOsCI4XRQL8aXqWIAhvnbHRfGSfOieOSiILKV5azzyOXpVwiJZWEm8CDzt7ftzGLfOKvWHLlGYRwqdPucRqIJ3e5fgml2ptIGFJn9lc/rF5fHaEWRxmnFwTHO68TFsVJJiBFHkhxSUlNbqrESA1uxmjigC9KHDiZJUe4+iP1uCVFT3hSGhOfgXjVnr6YT3tYVKQ2L/+q7dESRhzKVhYz93u+GGFPOL3aTdc6oKWEUcOhcgcqcJ1JhHAdSRrylGNPRvdhIVt410YCusS/tes1clb5PohXEWg1qfQ+t8SaFWGfONZD/+0kndVpjjErU2HBRXQf8VjaKLh2tTS6dw6uqqqT9t99+e9q0JpxzzJw5E2effTYGDRpk77/oootw+eWXo2/fvtixYwd+8pOf4LzzzkNNTQ2KiopQV1eHRCKBLl26SO316tULdXV1afv83//9355+1NbW4vHHH5dW27clGU+cTj/9dMk5nHOOuro6fPbZZ3jwwQdz2jmLF198ER999BE++ugjjzMZNzPVx+NxPPjgg5g5cyZ0XceAAQMwf/58TJkypVX6RBAEQRBtRg59nPbs2SOtio9iXJg6dSreeustbN68Wdp/xRVX2J8HDRqEM888E3379sXzzz+Pyy67LLgrnIcuNLNYsmSJtK0oCnr06IGJEydizpw5aY9vDTKeOI0bN04arDWIESNGYODAgTntnMWkSZMwadKk0DruWE+5IpM3HKuu9cbboBehmCXtN5Ri1mx/tmL+WG9ijTyOA6kOaEgZD3Dn+CHbkVIxE7uKiTOzecvPxKIEhDu3usujvsX5xUEx2o4S7yY4eamFZUkwkiZb8bN0yUqjMI4EUlCscwvWRU03kjRbjsSa6w1ftCi5cV8DVbp+RZITsvVGHg+IDm44i8fsdi3n8ANaB2hg6CTE54pi/WspYY65rRnzKdsEqmJkdb/YQAqXrUqi43hL4jxlE5/MjpkW4Hjs/m64vxPu5L6iU3iwY7NMnGlIsBTqmoz/TLsXN6BX0UEAwDFF+9BJOWwnr1bAvfGXhOe4mTvO4ToUKMwZvQpdioXnHo+If5Twlll3wmJkGeXpLeGe+1FgFtcolJWVZRROaNq0aXj22WexadOmtCvhKisr0bdvX3z44YcADFWoubkZ+/fvl6xOe/fuxfDhw9Oee8eOHZH72VZkPHEqtCzFBEEQBHGkk484TpxzTJs2DatXr8aGDRvQv3//tMfs27cPe/bsQWVlJQBgyJAhiMfjWLt2LcaPHw8AqK2txTvvvIN77rkn4zHs2rULDQ0NGDhwYCRf59Yg47Oqqoq9e/d69u/bty/tskKCIAiCILKA5+gvA6ZMmYInnngCTz75JDp16oS6ujrU1dXh8GEjb+GXX36J2bNn45VXXsHOnTuxYcMGXHLJJejevbsdKqC8vByTJ0/GrFmz8Je//AVbt27F97//fQwePNheZefHypUrcf/990v7rr/+egwYMACDBw/GoEGDsGfPnswGlCMytjhZPkVumpqaPLEb2jM6Vzwm8MgIkt0XWgc7lo/GHR25UTfSrRwy4wZ9mSq2ZToA6KA2obPaYPTFTmMQM7f9nYGjEiTfZBLvxOqHXJ7esdJqN0yaE693kFQXKKHacpxuSy4q51CYLkt3nDlJTJFyYjEx1Xb69uu728HWb5/thM45ksyUYqGbaSucxLMaFMMx3T7WSuNj3F9bqoNiJ0k9oJVAAYcWV8xjFPOaBcum2RIcryjg+clRCtFs5TkRvzhOFoaM55Qr4JLjuH99L1H6GXRNMl0QEfY98Gy74g/Z267nQpQwk1xFg16EJjM5b9dEA7rHDamus3oIGhTUm89ggmkeqdOW5sxn0XYG5wo6KY3OIggoQkJyxeUs7pBOUmsJfvfEN9ZVGjcCoyxYasw1+bA4LVu2DAAwYsQIaX91dTUmTZoEVVXx9ttv47HHHsMXX3yByspKjBw5Ek8//TQ6depk11+yZAlisRjGjx9vB8B89NFHQ40ty5cvx/XXX29vr1mzBtXV1Xjsscdw4oknYurUqbjjjjvwq1/9KrNB5YDIEyfLs50xhl/96lfo2LGjXaZpGjZt2tRqPk4EQRAEQbQtQYYSi5KSErzwwgtp2ykuLsbSpUuxdOnSyOf+4IMPpODXf/jDHzB27FhcddVVAIA777wT11xzTeT2cknkiZPl2c45x/Lly6WZYiKRQL9+/bB8+fLc9zBPaGAeZ8t0KGJSWQAwk7rGzQi7DbzIjsxrOYY3CtsxRUOXmBERunf8C8dB2XQUFqNH53IJeK4T7oYnJGUeC5NR12tN8rv+QdYfN4pYj+lQwKDbFicjwa9t4eEMcdPyY7Sp2tY9wLg3UZaoux3HFabb7SZYCkkt5rFeJM1yd/saFPvZaORxHNBK7LIOapN9z1TXW3vY0uqWEtV6AmTvlN4WS7tFa5TiegX3u89h1qt0hIcsiL78PswK6/5+uC29gRYTrkNnQrgAHYibz6fKuL0AQeMMh/QO9mGdlEYpnIMVzR4wnj/p+oLb1iarLQ3uUBo+487gWcuGqPcl/QIZhowViWw5ypL8Hj58WHJg37JlC6699lp7e8CAAZHCGbQGkSdOlmf7yJEjsWrVKk9MBoIgCIIgWomjbOLUt29f1NTUoG/fvvj888/x7rvv4uyzz7bL6+rqUF5enpe+ZezjtH79+tboB0EQBEEQBABgwoQJmDJlCt59912sW7cOAwcOxJAhQ+zyLVu2SIE425JIE6eZM2diwYIFKC0tlRLi+rF48eKcdCzfJLkCNYKJXhWm8JYZV5LseAyNpk58SE9IUh0AW8qJqxriSgq9YvUAgA6KI8c08yIkeUxyuBTRwaDk6FUiG2dW+9gWSA+BUkRILJp0so4lw+hgAFfta6Qy3XAWN++LwpzYMio3on0HybQK00OlErGP1nkAoJilXNGqDVnISp6qMt2WDpM8ZiwIMJ+Vg3oxDmnGwoFiJSnFcGrmqiR3pEuSHESmDtBeCSPguclAsmuJk20mcon4nXV/bdz3qLUIS87rVy8shllYnDSvNC60wxQo1ncAXPquJXXFfiYO6UU4pBfZklvc5RwuPn+WC4L13StmSSS5I1GnS2CcibSZLemeST85Lqz8SHYOzye33norDh06hFWrVqGiogL/8z//I5W//PLL+O53v5uXvkWaOG3duhXJpLFG6e9//3ukaJ8EQRAEQeSIo0yqUxQFCxYswIIFC3zL3ROptiTSxEmU5zZs2NBafSkoIi8z9VgRuGR50sDskANNetx+o+3ANMl5uJglUawkHSdlrthLfC0LhOiwHPXty+38GpUo1iOnbmZvaL6O4BGi9/ov0/a/Dgrj0MyhW87dogVK4YoTroDpdtgAFRyNelzIa+e9fuIybzH/oBvRSbaJxVGkyDGp40KOPCufnnic5Wz+ZarYHm9XpcHor/gsCG/ugdaFNESxDKV7JoIjQIf3I7P8Yy1/afOLDG5bodJYmf0sUrmyOIRZnOw6AZZFqcy8T37fEd3tHG61w4znrkkznqsY02yLp2ZF/za/P8bzqUrPvfisa1BgZdZMctV4Xs22/PqVyW9LVDJ9TsLOE9aWzhUkedtYKQngxhtvxPz589G9e/e89iPjp/Laa6/FwYMHPfsbGhokj3eCIAiCIHID4zwnf+2ZJ554AvX19fnuRuYTp5UrV9pRQ0UOHz6Mxx57LCedIgiCIAhCIA+RwwuNdHGl2orIq+rq6+vBOQfnHAcPHkRxcbFdpmka/vSnP6Fnz56t0sl8oJkReN0mcbd0Y8k1NuJnl7N4kZJ0olczHSocqc4t+VhJgAEnynRYwtsg1BY8aOlM1FHrBzmyAuHOzH6mfN0nXpFzLLNjX+nCsI1I4I5zuNWGW7oDDBlHlh3k83rHFi3hcpLL0obKdOhMgc6cZ0R0WtbAcCBlxM45pCdsJ3LASKJqyXpWFPawRL9h2AsZfB4Tv9hSQeeIkoDZr16UY6TjW8kRNyixr8dpvgUxncLIJBp72AKJdN8VTZK7VUnKP6wn0GxGDi/hSRzUjd/4DkozVDPaPuBECQ86r3xu1X5G3XWjZGZoCxk36jkCF0q0kXP40Yimadi8eTNOOeWUggqBFHni1LlzZzDGwBjD8ccf7ylnjOGOO+7IaecIgiAIgjj6VtUBRm7c0aNHY/v27ejSpYuvm1A+iDxxWr9+PTjnOO+88/C73/0OXbt2tcsSiQT69u2L3r17t0on80HKXFbrxrJAqD6WJQ+mFcEdpkDEDjHgeitzL4mPlKctApkut87WCpBuWXy00AXhb8x+ViC/fYq1CtT80VAZN5b+c6uch1pXAs+VodIt5sdLchVJ4Y3fCEfgWMAa9Tj+3VxqH9uxqMnsFzOceHnc3jbazu6ZUMLe9oNy1QWcM4pzM5B9rrtM3+yzXb4uWmFaEjU8F/iNId2z6Y34z3zrAcbvHAA06THsa3aigytMR9K0PjWBI8600N8g63dFtZ9hYYEMl61LUSznubY+tiSPYrrzpNrKOfwoW1VnMXjwYHz88cfo379/vrtiE3nidO655wIwIohXVVVBUcg8SRAEQRBtwdFocQKAhQsXYvbs2ViwYAGGDBmC0tJSqVxMy9JWZBw5vG/fvgCAQ4cOYffu3WhubpbKTznllNz0jCAIgiCIo5oxY8YAAMaOHSvFkOScgzEGTdOCDm01Mp44ffbZZ7jmmmvw5z//2bc8H4NoDZJchRJgpjccJf0ThVpxSwDYsYLsbTAndhC3EvgGR8y29wtxg/zwl6fa7tUiGznB3h8gKwQdF0Ue8mBJdOYHK+WoKFuGXa/cJZ5VpPOojNt9Ex3bNc5wWHMccIuUlP0MJV0Ssl8crHSIMnOQVJfUY1JE+mIlaV+vIOk4arLWTJ7jzCKP5+g+FeBbeZgsHJikO+S7Y92/pGY8S4cQx5fJYiRU49tRoiad3x0waFIMOW8iX+uZipvx6Zy+qWkzAzhjzF6qzfTe5zJJepvFcTpKpbpCTPOW8cRpxowZ2L9/P1599VWMHDkSq1evxqeffoqf/exnuO+++1qjjwRBEARxVHO0SnWWm1AhkfHEad26dfjDH/6AoUOHQlEU9O3bFxdeeCHKysqwaNEifPvb326NfhIEQRAEcZRSSO5BGU+cGhoa7HhNXbt2xWeffYbjjz8egwcPxt///vecdzBfpLgamOTXY1IWYwYxLpmxxdVamchBUZLohpKHN4vAVVgRV78Z+6NJcekkPD9Srm2/FYZB9ygbGcivLTGuVsrVB/EcRUrKPr5IcXpuSWgWma40U5lLZnbFlrKe3UNaAoe1BEpjTXaZ4pJbwmSWbFZR+tVz2g8fZ5BcFUTu5NdwciWZR+lvJrGz7BWr5jGHtThSXEGxEOvMTtyrx6Q4c+7kvKJzhrGKTrVlcWsVXaYplbxjaJlMl+kK2KhonKFJb6Mf26NUqitE96CMn6YTTjgB77//PgDgtNNOw0MPPYRPPvkEy5cvR2VlZc47SBAEQRCEI9dl+9ceEd2DSkpKsGbNGqxcuRJf/epX8eyzz+alT1n5ONXW1gIAbr/9dowePRq/+c1vkEgk8Oijj+a6f3mjWYsBmv/lySQWUkveONvqrTjXZJMwM6oFyt7vsXBkFn1YYXpg/C01V78w3Btp3u2Y7uec7USXtxI+Mzvhqgo9I2uk+/mzEh5bZZqrTIydJSah1iJYDcKcu7NdHGDX87Vatm1y4HS4+6gIzv9tRdhvhvt6GZYjo/4hLYFmTUUjM56z+pSTGaKj2oS4onmsQ9a9VaFDN1c7WdYp6xfSyr6QLiNAUN8zsWKHteOU5d7ypOmU5Lc1KUT3oIwnTldddZX9+fTTT8fOnTvx3nvv4Zhjjsl7xmKCIAiCOCLh3PhraRvtjEJ0D2rx9LtDhw4444wzaNJEEARBEK1ES2W69irXFaJ7UCSL08yZMyM3uHjx4qw7U0gc1mPQ9LhHailUMk2lkmsyNYGHxWyJ4ujrkR18zfwh7UTsb6b3P0yaVVxpesQ4TuJ5mk0JpYgbwp6uMMQV49gU1MwcoblXerSui3jOFFfRpMUQU6yk0xwlqpP61p16JEpyWeNcVoyn8Phczv7sFgeEtZGOlqTjCCXDn45sfmuy7bt1P1K6av6rIMUVHErF7XZ1W4JVUBpr8qRAstpQGYelzSmM+0pzfpKt37ORqWQPhDu/p2tHjFWWKda1b24r5/CjlEJ0D4o0cdq6dWukxsSongRBEARB5IijdFVdIboHRZo4FWLkztamSY+Ba7E2jcAdhvgG5denfFucohLFGhBqTQhLSpvF22qmpLvOYW+vitvqItxHOSyBgmbdFZleOG26JKmqqw+6K0K6BrNt7lyzw1oCTXrMDj9QpKSggKHJjBjtfubCHHnDLAjpLEqZ3MOgZyETi1xLn41MF3AUyu8JYPQ95bIMWU7eOmeCEzdDijuWTqPMiQaugsN6pGLQXJHtWWiS7rBnOdMFAVGt2LqPo7p1X9zf79Dzccvi1Da/vUw3/lraRnulubkZO3bswLHHHoszzjgjr32hTL0EQRAEUejwHP21Mw4dOoTJkyejQ4cOOPnkk7F7924AwPTp03HXXXflpU80cSIIgiAIoiCZM2cO/u///g8bNmxAcbETJuOCCy7A008/nZc+ZRyO4GghqccA3ZIpCtfx2o4HxDKfA7vN1Nke7/SldaMkp5NVspX4MkLoQ5AsF3Qd3EmFde44pupclY6LuSKKN7mSrIYRGitK6FqzHkOTEKusRE3aMp/7nFHurR4gh8gJXtNHfPdPDBxdtokWSTr756FF8dV8LmM+5TvJOVxXEFOcGF9iv5q0mH0fLYktKTiPl3AjDUaJmoTKuEfWs/B7FiTpTIoPlll2gEzuu3hunTNJqosiS4v9SbaVVHeU5qr7/e9/j6effhpnnXWW5Ed90kkn4R//+Ede+kQTJ4IgCIIodI7SOE6fffaZHcdJpKGhIW8L0mjiFECzroLbDrrenHWZ5J3zI9M3+OB2cqu2hjk3u9/SgyxW7jZaMtYgy0C03F15ykfG/fe7ncONt3rBCmVFDLetPsa9bdKjW5uMds02fUIe6GC2lenLVBESZviBYjP0gGVFCAvXkO5++lmeojpyRwkzEdRea0SMzvYZ8gv5kC25ski5FyDonNmLEA6l4uABISNSuopmlyVI54rtWJ7SVbudw1oCcUXOHRZ2jz0WyDQO4rly5rfOk9Ll9tyWtrA2LJK6f05TIjcMHToUzz//PKZNmwbAWb3/yCOPYNiwYXnpE02cCIIgCKLAOVqlukWLFmHMmDHYtm0bUqkUHnjgAbz77rt45ZVXsHHjxrz0iZzDCYIgCKLQOUpX1Q0fPhwvv/wyDh06hGOPPRYvvvgievXqhVdeeQVDhgzJS5/I4hRAs6aCa8Em2EKKxwK0XDpM10aUdsTjpc8Rvq3BDpjR4vxELW8Ngp3BwyVLBdyWxBRw1/XTBckvs/cbURJ0x4oSJZZiNSk5oSe5EimierokyFGceqNGes8orlMrLQ7IWq7zOS6r3w2e/e+N+N3TxfhKMOI0fZlMAAAaU3Goii44TTt9F53ArTIdzHEs5wp083OzHvM8y0FEeQai/C5Edeb2q2ONRcSWyl1Rxa3zeKS6kP8niNwwePBgrFy5Mt/dsKGJE0EQBEEUOEerVFeI0MQpgCZNhaZFW46d9dtgLp9iwQFYJKM3bS6/bWWKwgMsTi1xDpdyW2VmfWozApzBxetpEWiVE524mWGJiupY7LVsiTnxhHKzTbG+tDzb5bQb+sybjuZRycRxO9OFAunbz81zkk07Ycdk8/2Pcozf/XWX6ZyhWVNtx+ZmTUUCjrO04Tgu//egu8IROM7himtBAAv9/ke1Lvv1P1e4LWv+UcrdUcW9117nDClN8+xvFfKwqm7RokVYtWoV3nvvPZSUlGD48OG4++67ccIJJ/jW/6//+i88/PDDWLJkCWbMmGHvb2pqwuzZs/Hb3/4Whw8fxvnnn48HH3wQffr0CTy3oihpV80xxpBKpULrtAY0cSIIgiAIwsPGjRsxZcoUDB06FKlUCnPnzsWoUaOwbds2lJaWSnV///vf47XXXkPv3r097cyYMQPPPfccnnrqKXTr1g2zZs3CxRdfjJqaGqiqv9S5evXqwH5t2bIFS5cuBc9TeAWaOBEEQRBEgZMPqW7NmjXSdnV1NXr27Imamhqcc8459v5PPvkEU6dOxQsvvIBvf/vb0jEHDhzAihUr8Pjjj+OCCy4AADzxxBOoqqrCSy+9hNGjR/uee9y4cZ597733HubMmYPnnnsOV111FRYsWJDZgHJEu5k49evXD7t27ZL23XrrrVKumt27d2PKlClYt24dSkpK8L3vfQ/33nsvEolExudLSnGcglHAwXIo1QWZ4tMl+W0twqKDB/VJYVx2qvR5K8gmPpNbDsj0+CByfT1DncUFOc59XdI5kwe27XYeDohuHi1Rb4TYYRkuzcmVxNZaclxry0GBuC5jpOcwQJL3w+95EqWpFFfQ0Gz8NnKXLGXVAWBLdm7ZXJT1xPhIhuwLzzHpCJPLMiHTRS7cNS6r3B3XigXEeEq1VRynXKyKM4+vr6+XdhcVFaGoqCjt4QcOHAAAdO3a1d6n6zquvvpq/OhHP8LJJ5/sOaampgbJZBKjRo2y9/Xu3RuDBg3Cli1bAidOIv/6179w++23Y+XKlRg9ejTefPNNDBo0KO1xrUW7mTgBwPz583HdddfZ2x07drQ/a5qGb3/72+jRowc2b96Mffv2YeLEieCcY+nSpfnoLkEQBEHkhFxanKqqqqT9t99+O+bNmxd6LOccM2fOxNlnny1NWu6++27EYjFMnz7d97i6ujokEgl06dJF2t+rVy/U1dWFnvPAgQO48847sXTpUpx22mn4y1/+gm9+85uhx7QF7Wri1KlTJ1RUVPiWvfjii9i2bRv27Nlja6z33XcfJk2ahIULF6KsrCyjcyXThCOwEN9AMrE8KYxDc79xgsPPzdDdbiZhATI5Lgp+bXDOXMveg50pM+lTuv663wiB7KwH4n3IRaRnPczi5PosW4pc9UKsC1mFQEgztCgWvbBzRyWqJSnT6OC56k++yKQfURar2M7NkLcBx2JkhZbQIEfNVhiXFw6k+Vd2HJefI50z3++qm5beb6vv7t/V0HP6WJfEfWEWd4tUqo2cw3PInj17pP8To1ibpk6dirfeegubN2+299XU1OCBBx7A3//+94zTn3DOQ4+55557cPfdd6OiogK//e1vfaW7fNGuJk533303FixYgKqqKlx++eX40Y9+ZMtwr7zyCgYNGiQ5po0ePRpNTU2oqanByJEjfdtsampCU1OTve02YRIEQRBE3tG58dfSNgCUlZVlZEyYNm0ann32WWzatElaCffXv/4Ve/fuxTHHHGPv0zQNs2bNwv3334+dO3eioqICzc3N2L9/v2R12rt3L4YPHx54zh//+McoKSnBcccdh5UrVwbGcVq1alXkceSKdjNxuummm3DGGWegS5cu+Nvf/oY5c+Zgx44d+NWvfgXAMAf26tVLOqZLly5IJBKh5sBFixbhjjvuaNW+EwRBEESLyKGPU+TqnGPatGlYvXo1NmzYgP79+0vlV199te3wbTF69GhcffXVuOaaawAAQ4YMQTwex9q1azF+/HgAQG1tLd555x3cc889geeeMGFC3pL4piOvE6d58+alnbS8/vrrOPPMM3HzzTfb+0455RR06dIF//mf/4m7774b3bp1AwDfi5zOHDhnzhzMnDnT3q6vr0dVVRU0XQG09FGU093XIJO6W35TmCHT+cl9mchHCrgncnM2ZCx5Cef0kyDF9qLGAApKIiyWBXYny2sQdA8sojnw+p9bE+I6WcZ9FiBrpouDFfRMpHM4DyJdslUJn/hUaduPEIMryr5sZbVcRNYvFEQn76DyoG23jJeIGTFwUqZbguXwndKVwMUE7kS57jK3VMddUp5IUGLhbLC+U9lkQPCX6owxWmWM+f+2ai1MPFzITJkyBU8++ST+8Ic/oFOnTrYRory8HCUlJejWrZv9/69FPB5HRUWFHeupvLwckydPxqxZs9CtWzd07doVs2fPxuDBgz2TLpFHH3201cbVUvI6cZo6dSquvPLK0Dr9+vXz3X/WWWcBAD766CN069YNFRUVeO2116Q6+/fvRzKZ9FiiRKKuJiAIgiCIfMGQA+fwDOsvW7YMADBixAhpf3V1NSZNmhS5nSVLliAWi2H8+PF2AMxHH300MIZToZPXiVP37t3RvXv3rI7dunUrAKCyshIAMGzYMCxcuBC1tbX2vhdffBFFRUV5SwRIEARBEDkhD5HDswkwuXPnTs++4uJiLF269IhZ4d4ufJxeeeUVvPrqqxg5ciTKy8vx+uuv4+abb8bYsWNtp7RRo0bhpJNOwtVXX42f//zn+Pe//43Zs2fjuuuuy3hFHWCkIFA1Na0UF4afyViUgUS5g7HgFXrWipcopJOaMiVbyQuQTeKc+5vqgdaPS9WS1Urua6mF1I1C0Pobd4yYoPhgUVfT2fvcMZ5CiLqqrqWEyW8e6SZimh2/mDsihZaUuyWIkq8fYas63dfBTvKsGtewSUgzlVD9n1a/NCV+8hwAj0TnXqnmJ5GJuP/fjvJ7zDOQ9t3ti9KcdZxTJ0CCj+DSQRxZtIuJU1FREZ5++mnccccdaGpqQt++fXHdddfhlltuseuoqornn38eN954I77xjW9IATAJgiAIoj1DSX4Lh3YxcTrjjDPw6quvpq13zDHH4I9//GNOzqnrCpjesjcJ681Pfvu1HA1lSxIDB+fCG5UrKncmDt+5tDgFkYklSnxrsxwp3VHH26LPUfBapp375SYTS2AUJGukcE3Ec1iO926Lg9vZXDwuawfxVrA6ZWJRSuc4nMkz2GKH/xyQy2c8zHk/yBrFOQ+1RmmcGYtiABzSE9B0w3E87rI8+Vmc3NG33XX9LM6W9Un8zgWNi3NmXL+QS2gvvMggvpvfMyb2h4c8j/YxLfx/IjJ5WFVH+EM2RoIgCIIgiIi0C4sTQRAEQRzNMM7BWugc3tLjCQOaOAWg6QzQw+N9WASZ4K34UX5O34Ys58QzUgBoYGCmLVU0t1um58iO6hHSBGRKmGwT9F0UzeOWBGAsDPHKNfmU6sTrGii/cauuSyLjLFJMI797FyQLuo9RFd3TJz9pzuqnmHpCTOMTdo2zWQSQTXqbKHF8whyGs//dD+6re2FGLpGueSvHi3Luu7+jvA75WXU/t4xxW4LQdAUpKz6RZpSlk1mB8BQmfvutWElB5RJpYldpWSQOdz9PbmkuyvOn+fw/0Sro5l9L2yBaDE2cCIIgCKLAIYtT4UATpwAMi1NEFzDLImRuilYlodgsc6xQtsOjWYcxp7LfklqWYQRxi1xEEge8b5jpnXedem7n0KjLjHP1PQ+z1nkiJIeGkfBahdyLtoMsVm6LT5iVR+dMsiBY99M9Dr/wCe6QCfZ5Q96u3WTS13Ski9Tsrmfdcz9LRFSH9aCo1371mBBt32uFEfsc6dSu49vIGgH/3wyR0GdDqAMAMcEhPMUVcMGqkknU/jCLjd/Sf3e9oOdO/O202oraJzdhfXQf5/vctpXFiSgYaOJEEARBEIUOraorGGjiRBAEQRCFTh4ihxP+0MQpAK4zyTwdilmNQ3aiDDAyA4DkFG6XCHKO18ETgc6RftJQkKNkJk7YUc3bbrO6X3yWoHgo6XrTEonII0MElItmfmOf3wIA/3P4Of5b7XmvNQuVDN2/ac4zIB/nPqcsL4ljyX2sqUyJErE5zDk4TDYJIigZq3i8/D1zrq8ldwXJm2H4Ri9v5UsfRZL3iw0H+D8bjptBuBN3ugURYbK+32+Hu07YMc5xmf82pHuGPH1Idzwnqe5ohCZOBEEQBFHgUOTwwoEmTgFwnUV+k5CsCKIzKQu2QLnDEcB0BvZ7K7bqy+eM5vztsXBkaMEJsuz6Ldt1O4Nzn7rg8r50TqDySUPqpMkL6L4OkmUprNk0Vivdx+Lkd850OfDchFr7JKderxVLEawlovVFcVk7xX25JBNHXT9LQpB1MlvH8HR9ML6j5n7rkciFU3crhR+QIsmnudbprF5Bvx3enHJim8E5F73teNv1+wxEc9IOdBaP3B+f40MO9qvvGVNbWZxIqisYKHI4QRAEQRBERMjiRBAEQRAFDtONv5a2QbQcmjgFoGsKoAUb5KT4LvZOQ/5htoMpwCHHarJjPjEO5pILvBG0md2Om2wcflskD0WQVGxpTjekOknqFKU5twk+qgNwlCH7HO4ZNwvY73O8fe19JDnm145wvCQVBvQlirO+r9Oxu38mCvNGCg+ObB9dcsmEMDUgXVycbB3CpTYiOA27v2dhsmpbkMmiDe9ihtCWM+pHkCQmxhVL27+IkbrD5LdAp+xQZ/Kgc/rJc+mvS1RVSw/5fyKnkFRXMJBURxAEQRAEERGyOAXAdQau+ZkvzHJr020hMq1MRhlsK5RV1172bFmXhKXChiOn15Hce55M3zpdnQ8gnTWAu8skZ3DhDVI3yiynSa9zuI+5Tmo82puk57igKr5WKLel0Prs+tc6SYB1ybsttxdkHQqygvmWIdjyYluVzG3Nc85g6xSQW+tKNvkMw545z/PWArw5/YK/Z26LVdvkUXSfM/MWsrmXYeEiouSm8z82vQVJqhdgRQq1PPrVy8TilK5zGdB2zuFocV8pAGZuoIkTQRAEQRQ4lKuucKCJE0EQBEEUOuTjVDDQxCkArivgUpJf/weOs2CzvmEhFp3DRXkNgCvJJpPKPYGbAs+TbbyYKKZyp47g3G0eIx4vO3kz2ayczqzOmRyGyV2GgLIo2374yXHSZy5tc0F+40y4FYzLyqN9jL+zOBAi9UlSnXM+uRN+Y5EdwD1yYIgEyACPI3m2pIu4HFY3ilTje5xAFCfpIPnLT27PlmyvY9RThrUfVUrzIyMH7XQVfY7x+//a/dviqef3XIS1E6E/BrmV1njUZPDEEQNNnAiCIAii0OEAWhpOgAxOOYEmTgRBEARR4JCPU+FAE6cgNGb82UQw7zJurKhzHcZ9pBs75Yd7tZZbshHalk6VTbJea/WbtdpNt+Q1wQwuyGvctc0C5DfvCYOLmLvc1Z50Dr/j3eePsuIuimVekN8AJg1PitnlltEytPqLaiYY7KSyxmehDyz8/nvkQVGyC5Xr5LbC0sRkQtQVUH71nZ3uOpl1JiOZLKTpFmVbSdOHsJha0Y5za78R+wWktTYExUUyZHgGblo77ATo1moy5rTNYjqYwiPLscH9SlMn9Huf+erOMNI+D36rr4kjGpo4EQRBEEShw5ED5/Cc9OSohyZOQaSY8ZcRzPuy40om68RxguSELDkZO3vEpp2PftYH9xud21EbMOJS6QzMekPS4HwGwHQW7JRsWoICnbgli4lrLH5v2e7YTjx9VdEaxTQGJQXoqnhO2WFeTC/AFaecW8O0rFy62HejkFv+nkzuKrPqWP22d0Le5x6L3w9WkGHGskYpwdYoyeIk9JcLzxQTLVpCu5Gd19P0V+68azMjR+IM6oYaOvP0v0Ikp/Pguple80ALSBSLW1RrjNsyrTPgsPFlYxoDVG78AUDcSZIMTQHX4FngkfZ8vhWi9z2qsbFVbEMZ/z+RJbSqrmCg5QAEQRAEQRARIYsTQRAEQRQ6OlpuMqMkvzmBJk5BuKW6TEzBzLUnyMfc5bgLBFijXXZoTx2XWVxysNaZ/WVRdAaWYlAPGw2oTYDS7ByqlQBcNc3zChy5yjyH23HbcdQ2/2y5yDxWsaQx5v3CWyqUKQcwzXeo0niZsBxXSRkSmyJJVswej9Is95/HAK1IcGYFoCSNf2OHAC1hXoNigMccyZWr1j0VOmb1mRv95qpTxHSnXQgqrSUP2u0q8Eis1imcczO7D45sx5xj7XFzSeZLJ+s5J/Q+S9x9A9yO5VkQWR3IVEXw9CdiB1uqVkR0LJdOE3Jduc8+L8HHy+ePPjjfVEjC74aVcoo1KVAbmf2cc5XL3UkJsdY05r2+QemCQjsXcV8mx0c6cRa0kVRHq+oKB5o4EQRBEEShQz5OBQNNnAJQUgxKMsKbRCZLpn2iijtlplUi5FDpVAGO0ExjYILTt5KC8/bFgVgjoDQZm2qzYR2xLDNaM2yLjh6XLSl2HwSnaXdYAau+daxlMRE96SyLjNVfpdn4zFJCuWV90kzLkl0mLKN3Wb8AQI8xKCluj9uxiHFwhUGPOfV4DIJDtXmdYFqLxBdxxTiPZRlTUo51zOqn1S4YAB1Qk07/mcad/kLuM1cBXbhGWtxsL2E4vXNrOwZwxbEEesJdCBY9LliYuCJbnOwy0SIFoUzEbY1yW0fTPfZuh3o3ufj9zuRFvzX+v4hy/izDCIT+rKSxXkW1DHrCjejCiTVAbTK+ILEGBq1E+O6Zv4085iy2yAduC22+YG3lHE4UDDRxIgiCIIhChyxOBQOtqiMIgiCIQseaOLX0LwMWLVqEoUOHolOnTujZsycuvfRSvP/++1KdefPmYeDAgSgtLUWXLl1wwQUX4LXXXpPqNDU1Ydq0aejevTtKS0sxduxY/POf/2zxJckXZHEKgCUZmJqhCVaQdOTGBCdpa5cpmYhOvZISIsZCYaY52HK2VsydwjlVU36LNRgSnCh9WSZtXTXK1GZjh9psSEncJaVZ59RV5o1nJDg3WzKTHjedyU2pTisynax1b7tKExA3+2iNU0lxWypjGrf7a5VZcpeiAcyU4pjuclAVLol1XUQMZ3ezgjkuu/+mdGfUM8qkmEpclA+Fvuo+P0Lc2S/21/ODZTp585hxIi3ObOd1rjCkihl002FdV41rDPhIqGb/bNlRgeCkbzxUQTGpwJg8zpD4VRAd/IV4WBnjd0zYfSxw0l+DIC/u8P/Awv3e3T8WmbUNQJDmzEN0BqXZaYgrsiTNGpzviB4zjpMkqiDZ10cCzhpxWCFScNp7kmkf/BbEiPujuHS0UzZu3IgpU6Zg6NChSKVSmDt3LkaNGoVt27ahtLQUAHD88cfjF7/4BQYMGIDDhw9jyZIlGDVqFD766CP06NEDADBjxgw899xzeOqpp9CtWzfMmjULF198MWpqaqCqalgXChKaOBEEQRBEoZOHcARr1qyRtqurq9GzZ0/U1NTgnHPOAQB873vfk+osXrwYK1aswFtvvYXzzz8fBw4cwIoVK/D444/jggsuAAA88cQTqKqqwksvvYTRo0dnP548QROnAJRGBlWI+O3G763GWi7vDb4d0I7L4mRHtIbpWGw95NwIHWBbs8Rl7irAkobTNwCojUCsiUNJmlaPpMupWgcUy2E5yaFo3Cl3fam4ymwHbz1ufNZNC0mqmIGXOH1Xk4BuHq8VAephl5O36TCtNhn9UxstJ25uWJUES5Lj6M7NbbMspTt91cyluRFNz1xRHEuMogAKE0IvMNvywxXTCuP2sOVW/0SHbw54HNYdCxnTOaCF9E9ljtN3TIEeU8zPDHpCsa+1aI3SEoaFTAz9YPTb6UOqyPisJ2BYDuNCHZdVzl5ibo45yMIohTwwLR7ipnSp/H7cc2WdinxsC3w5MjClZdzFIGfxqOdPF5oEiOYdzt3WEwbosBfE6HFuf1aagdhhZ/FCsszsvvh7IZ5TdFZn3n2hfc+EAEtbRhaoEAuonV3AbSx2/UZrjW1jcSqEcAQHDhwAAHTt2tW3vLm5GQ8//DDKy8tx6qmnAgBqamqQTCYxatQou17v3r0xaNAgbNmyhSZOBEEQBEEUNvX19dJ2UVERioqKQo/hnGPmzJk4++yzMWjQIKnsj3/8I6688kocOnQIlZWVWLt2Lbp37w4AqKurQyKRQJcuXaRjevXqhbq6uhyMpu0h53CCIAiCKHRy6BxeVVWF8vJy+2/RokVpTz916lS89dZb+O1vf+spGzlyJN58801s2bIFY8aMwfjx47F37940w+Fg2UbVzTNkcQpASZkylxlLyDJLW/GUJHOt5f9rHWw9C6akZjvuqq4yQXKz9tnylhDbyIodpArymyJIQGK8ICVlyHSOQ7UgHWncK3dpml3OmSMBQVEM+ShhaDl6TIGeUMASlqSl2PGLLClSN6U7pdmQDmONTn8dh3QOpVkXpEQdTNOFPurOtdZ1o4+WBqg79WDJZFzYFv91O24rDFAsPYsBquLEmWJOGVeZ6Qgd8IUW5UHdkut0udx+VsLN4lyV++REClcNGU91+mTJeHrckPGkCO8uJ25L1msqNx2A7etpyIfWsVoCSJaaQ0lAjm2lwEwS7LRrP7ppHH69js3B1yGnjrxuB+qohN2mlikbDsJ19D2HKJ1F0ZaiOGOzNOXccQAHk2+TkhLiNCkMHI47ABQg1UF2JRDbl5Jip7kNkeW6CPIvd5/Mx0PCfT5PSCzduSbMlazYGq8kZyvI3TOSDt2tr2bZBoA9e/agrKzM3p3O2jRt2jQ8++yz2LRpE/r06eMpLy0txXHHHYfjjjsOZ511Fr761a9ixYoVmDNnDioqKtDc3Iz9+/dLVqe9e/di+PDhLRtPniCLE0EQBEEcRZSVlUl/QRMnzjmmTp2KVatWYd26dejfv3+k9jnnaGoylnoPGTIE8Xgca9eutctra2vxzjvvtNuJE1mcAiitBdQEoCQ51CSgNDsWHMnipENyHDYccE1rgOlcazn5GjnHmFmXQ2nmtoXJqiu+4VvtKprpNG1FxU5yKCnLCsMlh2pjW7bMsJRjsZEtOGYda5m+ogBCfjTpddHMXWeNRY/BfpVTUhx6zAmJwFKGdcyyOKlN3LY4KU06lKTxZ9TVwJKO1Qua5rI46Y5FR+ewYxxwbpSJlia35UdEGosCKAqYKligmPGZKS5rU4CTuHNOoU9hMEVIrGe0y5JC+4wZ54bpvC5YozhjUF2WQMsaZTiKM/ttm6sMetz4HDusSNHUmcahJRRo5m8k05znMaUAmhDKwHaQhbMt5QzMCNGT3FMSSEbOw7m0+AuWX6kfGZ7DY+mRHOyd66gkDQdkJlgG05/TW+A+xloMIN43u47C7ZyL9jYXFgcAdrgBj1XGWuwhOlG7++G2dgXd/5BrmrFTdxpLKGD0leneffY1EsrUJtOab1r+1aRh/det1fPM+J3UmkL6mUvyEABzypQpePLJJ/GHP/wBnTp1sn2SysvLUVJSgoaGBixcuBBjx45FZWUl9u3bhwcffBD//Oc/cfnll9t1J0+ejFmzZqFbt27o2rUrZs+ejcGDB9ur7NobNHEiCIIgiIInBxOnDHXFZcuWAQBGjBgh7a+ursakSZOgqiree+89rFy5Ep9//jm6deuGoUOH4q9//StOPvlku/6SJUsQi8Uwfvx4HD58GOeffz4effTRdhnDCaCJE0EQBEEUPnmwOPE09YuLi7Fq1aq07RQXF2Pp0qVYunRpRucvVNrFxGnDhg0YOXKkb9nf/vY3DB06FAB8PfSXLVuGG264IeNzFu/TEItrhnO1GL066YotpIkOyrJDcGD8Jquu29lZdBBWHJu53aYdH0iXP+u67JAsxhcSJSw/h2nGYOkzjHFwsbMKJEdo43zOv7YTJTOkOTH+kpKCk3C3SYfaZBQqKR0sqUNpNuzfLKUDSQ0sZWmWQn81TZbqxDLXODnXZWdxkSA9QJDOmCnVSXKadWyYo7gfblkwqC2pnlPGmAKoirDNYGl1PKaAJR3ncKaq4DFHBtRjDMzUW6zrnyoxtps7qUiWMmhWRPK4EJE8BvN+m12zPlpDFJ2H3ZfDfRly5CzL/M7lW8lLVJnPL1GsvSAEjpO8XWbJ8X5tiUqxK86WIdW5IrVb19pKSG1F1xeckq1FImJEf3thidyMebDr3EIEcK7AiUYfk3+bmCbLhUrKWORhfQaHLeNaibqD8DhjBzinp1tkEHrvfeRAqbrg+C5KiVa0dDF+GRN8ro2FNsZnNWnIddZ1UJOGy4E0ds6RSgq6LnFU0C4mTsOHD0dtba207yc/+QleeuklnHnmmdL+6upqjBkzxt4uLy9vkz4SBEEQRKuhCzPmFrVBtJR2MXFKJBKoqKiwt5PJJJ599llMnTrVY2Xq3LmzVDdbig4kEYup5tudbGHyWzJvfxYdlK3l6hbiZ8s6konp1H08YDgmi07SVr2o1hCFATHnMWBivaTjK2xYkZzo1rFDzM71ZjmUW32ylr3bDuCa46DOkrrhDJ4SLU4pZzy6JnzWgVTKGB8Eq5I1Rh9ncC7uS4doHRT3iz8uLmdx5rYgAXKYA48Vy0r4xeRj3J8BwNL7GQNSQluKCuimVRAx8LjjzM7jRsgIPW46ixcp0MyQEakSBVoCaO5oWqMScq47T04+QAqt4X6DlzbdhrmwxzhXv9WhnuRyPcnIIVgR3ChJrwVJzOHm6YJo7bHqWNdMsPZY1jtxWzqPYOWADsnapyQh5G501eWytdeI/C/3McghmyvMDiFiWxiF/khWMN2xPumq8cxYxzJu5Jz0s9ZZliDJCsR86sB5/IPCJYhfD4/ju+sQ7uq7kTFBOF6MkK8IljXT+du63mqzsZjF+qwkhSwMVu5MKcsBh2r+lrU6XEekhSjp2iBaTLsMR/Dss8/i888/x6RJkzxlU6dORffu3TF06FAsX74cepr/SJuamlBfXy/9EQRBEARB+NEuLE5uVqxYgdGjR6Oqqkrav2DBApx//vkoKSnBX/7yF8yaNQuff/45brvttsC2Fi1ahDvuuKO1u0wQBEEQ2ZMH53DCn7xOnObNm5d20vL6669Lfkz//Oc/8cILL+CZZ57x1BUnSKeddhoAYP78+aETpzlz5mDmzJn2dn19Paqqqgx5iXHb+duTXNZ2uIYU2VqS58IkNJ3LspQ78rX42W01860jyE6iOdbHIVxyhFYUwHLMVhTbCZklY2Ax1XFSN+MK2Q7vQrwqw+mVeWVJMcK2GP07pTvn1HTjOmjiNXQ+c024RppmbAeMW75G7mAtPsZVoQ4X2xGPFeM7wVQDxOvHmOHEDsNRW/Qm5tAcuU2zpDuXDGifx2kHijtst4CiAzFhLD4O21ZsJi0OpEqY7RCsJRzJAjDlGJfm4etoC3gSBPvJKL5ynUvO8m1c3Hb1ySM7CTKZeHms6PrWZ87kbVF6EqU4Iy4bc6R46/zidRU+e2IUMQgxtBw5jnFT4hKiTLujdofJgWJUbrG/zPx9kcYiNuvnxG/fAw7F3GklqPUsZrHGJjxiCgBocOK0CVKhGys7ghiBnisuqcx1/YKcx6Xn0ZKVBad48dlSxPtrSrNuKRVw7q17kYslx6lJCFkYTBcFO5I4l39vLIf+tlK/yMepYMjrxGnq1Km48sorQ+v069dP2q6urka3bt0wduzYtO2fddZZqK+vx6effopevXr51omS3JAgCIIgCALI88Spe/fudgblKHDOUV1djQkTJiAej6etv3XrVhQXF6Nz584t6CVBEARB5BmS6gqGduXjtG7dOuzYsQOTJ0/2lD333HOoq6vDsGHDUFJSgvXr12Pu3Lm4/vrrs7MoCdmkmTs+UMjDx9wPt3tbXA3nTlIr1XOnE+H+EpyfnOfqn2elmbQKTJDnVNUpU1OutCSKKfP5yEdu2UxMi+LXX0nG0x1JzqonlnHu9F8Tx6hL8hpTmCy3if0wDpbL/KS7kDKrbeaO88S5cd388IsTJZaFrbALactIN2P2J6UbTdlSk5PWQ00oplwhyDMcdgoJEVu6EC+h8FkrdlJNcFWWXILilMknEIoU//0AoB52rYYSziGtWnMfz4WVaLqRQURObuwv1QH+K9Ps5kWZzCUP2v0yL5ooZ3JmPit+K8Pgf51lqdtVL2xbvE8lQtoUbsl+3Nm2PlvSuus6eMYeFWvcKUgSG1eYLNWJcaYsWc/Vhtim3Y6Z4kmS4wLurzNuYduuy32kT1d5Sq5rf7e4Je2Z25oc06/V4cjBxCknPTnqaVcTpxUrVmD48OE48cQTPWXxeBwPPvggZs6cCV3XMWDAAMyfPx9TpkzJQ08JgiAIgjgSaVcTpyeffDKwbMyYMVLgy5YivcEAcmRu93bYW4CQrNeTpNYPd2Rs8zgphpF4vNsqI0YNt+vKr47OG54iWz4ki5NiWEn84g/54bIueaxjtsO8ZvQ1wErl56TtsST5nV6TrU6+FigBpgSZGBSvVSngOjDRcgc4Tt1WImfmWPM8MZ+sfX5WJ+ueWFaqmCpFDuexGHjceIXncQV6kQot4cRxShUJCYDhxKVhmmkBsWPYcM9bu/MmzmWriE+UjsDo3GKEbABgjrVKjzHJQV16A7YcgH0clP0Iiv9jWypiwim4YK0RrU+ceS0QumOJ8cRtEtuxLBDWeTW4nNl9nj9hl8eZPoI1wW1hYroTIV5XDetOcyfHw9+wMnqDH1ljlpKVC/96HarDf+O48PXgYrJonQNgQmRulzVcEZ4H4dl0Wxh5DJLju9vJnKsAs9qxLUPGpiLdF6MRj8XPStSuORYmRTOtSpKFSbA4ZROLryWQVFcwtKuJE0EQBEEcleg5WMKXSYBgIhCaOBEEQRBEoUMWp4KBJk5BBDmGW2UigtzCRX9QBWY6BSG4i2Uz1k17shjzCUJd8c1AyNxhnz/ozcGUAwPjEklYAUqsuESC1zBTjHhALolOSjmSBl/50OqbWz50O5ZnClPAdS7JbL6Sm++hTK7jjq8EH1kOcKQ5e5vJ8qaiyGlUAFm6E6U8Vx2uKHYqG66qduwmPa5CTyjgqrXNzG2jrpZgtlSTKmam3GA275Zh3I+18OxyhRlZOCRJw9kQE6OKMpdvwxAVSm6EuhIfTytGliXzCBKMJTda8o8ohUlhkVxSHQNcspkLUb0SUnAYaWiYcK24fL1Eqcwlm3mlMB58jUKkMLcTul98LFt9U5mdYgfMkJeK6k3pLmbId554Ttb4pXvgck1g8nZYH5jOnXO4JX0my76edDaM26lcRGmWMyY5dUMzxiNKghaKbv50uRc42BIrl66/JcFZ26I8JzqDG+lYhHRbuhXXz2q/jZ3DiYKBJk4EQRAEUeiQxalgoIlTAPabBOdyNHD3Un/G5BdaVaiiMzAmPOyi9cp6rRTfVqRy0alcN5NlcrMLuvPKZVqfLIuI4QhrnhcwLTimI7HL0mNbaCwnbGnFvv/yfb+vnduyE8WZ2239cZy1A5b2B7SdtVUJkC1LdpmPhc0K2+Cu47YwWc7eonVKtDSJDt+q4iRZBiQLExTFdAK3HMINKxMA6HEFekKxLTGW07V1u7UiJllpNAWAGTlccYch4Ex+Oxfe8K23dMkRWnAy9jpNC1YHPydk4XFiGlzmIm5fLs5lR2PpbV5Ynm595va1d1mYhPZ9LU9c2CdYeJirLS5cI+ery+02/JzH7TJd+A6bjtqi8714jTxWJ7iwopMzV7nGjfPAtNiIUcU145FyQgM4Vh2P4z13XQfusgApjhUuLOGuE01d2KcCOnN33LRw6kbiaffAbcuUYClSRYO4YEWyrKpi2ACxY55FDz4hBsQE5fbzaP3uC6EKZCui1RbaBoocXjC0yyS/BEEQBEEQ+YAsTgRBEARR4HCuy2FesmyDaDk0cQpAaUxBUZOOriwmrA2KIu5nBk3nWG6fUIXkLO6W7RTFdghnXJHqcU1zzMuqKkcdB2wnbWY5aZtfHqamkdXEL5n1OSSqdhQ80ppNuERnnYcFVPNtNyw6uMvx3df5267rkukCx+A+v9e53hMPSkyabMmtKgNXFDvBMhdyAzOdQ2nWAc10Wo8z6KojzzGNI3bYqKs2GdKdZkp13HSu1oVvfVA4K7cO446g7Y1nxGQ5RCqD7Fwsqm/iV8ktAQVJbmIvzeecQ5DM3Y+j+ziXI7m//hx8Xi5cGzEyNxeviX1dBUldkaObB0lLnq5wp9BPduS25zXz1OGMS/vFmElceI7DHOmt48Ro4KIcp2jcef7s+FCC3KUBinWfFMfhH4opNQvynNJs1FOSRnwqJWmVcY8sKkVE5xAWoMjSp3ycj4O3WFeQ6uxxSL/xolRrlCla0nvRWgO/GH3ZtEG0GJLqCIIgCIIgIkIWpwDYoUYwhTuzfMn6ksbKZGG90Yl13NYKT5TvAGuW1DlxLS5MM4J4Xsc6BUAKIcCZDnu+zF0WHM9YQqxAfibfMAtPVEJMyRlblUT8jvWzyvmFW9B1x+rEOTyv5dZ1U4T6gHyfdBieunauMA6PNcq2IjIwaI41RWfgqvlZY+AKg2KOR08pUBTY4QisfwHD+qQVKdCKHQuJkuRo7uREFteKzSImO7la+cW44HzueRoV4ViPh7D12fTVFpfhu6xVdn99fF+90bVd2yHGv+DI5sFt+i27F+t5rBfuHGmunGhyZHbuKQdg/r64r6HXWhI0FjEqtttKB4U5FinAcfhmDFwR9jPheKtdxfms604OPD3Grd12H+OHzH2aYSWSrGnCV4a7+mPXcV0TppmWIM1pR47o7kT0tiJ/u522PZYjq0wTrEiC87fVrlQm/qu7ynXL4tSENoGnexiitkG0FJo4EQRBEESho+dgCR/5OOUEkuoIgiAIgiAiQhanIJqaDXnHL+hYVHOnKxQSmEtS80OSAfXgMsFczJgCLnr5itHKRXTdcB73aw+WjBfSH4n0ztxZOTLmQu7zQ+eRnLq5T0R25pI+nQImXXcW5ZrYJ+KynCrqXaoZp8u8H4wxR4JjTIr5pChmmeUArDAnErfKwDQNapPljMsAjUM1HXB107HcQk26nnXGoMXNtoRfCq4waHHHyVdJcTlGFAO0uFNXlH30mNGWpsj1nevgEiMCbpnHQR2QD/SRAP3qGk7FglwkRJQGjBhBHodku67spCw5fAuxgazzSVKUGB+Iuwct9N2KHSRGMocgzSrOYgU9pkjqL2cw4jy5MhvYg/E4h7t1UnkzSPr0xLJyJ0mWGvGR6QT5zUZ3XRc/J25bDuThkpvGPQ7doYt99IC6sMbmctvQm/0vTK4hqa5goIkTQRAEQRQ4XNf9X24zaYOkupxAE6cgNB12KO2oGaXTzeb9lroHHS9GDvcrF95mPV8GRfAQFd96VR+LiBit2K/cPl+aa+A3drM5PytO6LVqrei2YU766RBDQ1jjURTjjTXIiqdpchRxzgVThjssgRNFnFn7hZAFdm/NMAqiBUqsK1qf7Hr2cnRrP5y6UXFbLSTThttSIVu9jPxzwvEK7EjoxlJ3wXLVpNtWCj0hWLxcfbWch5WU6AAsVNC45KDssZbYFjrIz4LZrn1sSrRWQHZCdo1fcki2+yQ7IfuGMmHyGHm6fJBMtoxZTt6qFv69kfP5pf8tCnO2BlxjSYdfXdHiFlTPve22KgXVlb6HPNyq5Pcv4FiXghYD2ZauNpqMkMWpYCAfJ4IgCIIgiIiQxYkgCIIgCh3dbVbNArI45QSaOEUhyDnYIurD2FLTttQnR4pjgkO1v2wHu66HqPJhOvkg5PowVc1o7JF1/Jb8CPhFDfcps/EbvyWxaKaka2oh4v2QQnO725XicfkkERbLpbqCdOdOSiydO+B8fuMLinAeUM6l/qTvt10/nY3bfevVkD77LdwQ2mixlBRUFlTXb/1AhD5Y18b3mxh0vcKk0qhE7a9HLsvRf76Z9juTexTUR/fvoxiTKeo58zX54BzpVxdFaYNoKSTVEQRBEARBRIQsTkHoOqTZfVvP1H3fpIP7ELpaIjQfXY7Glc4iJZLGmTLUST3bc2ZLOoucD9K90KxmhIRzvgixKzJxXI/Sv0zGEPGasrA2fcpYmnK5D5lf84xprQUIFlGi/lu7WtJeW5Hv82dCLvsaxfFbd8edaR24zj1R1zNuoz3dxwKGJk4EQRAEUehw18t81m0QLYWkOoIgCIIgiIiQxSkIv6ixrUGOJAPmirgtyUWh0kcbyCJu1KNvvp5R4LkcWf7dz0TOTt4WUlouyUJuJYjItJH8RVJd4UATJ4IgCIIodEiqKxho4uTCmpGnrPxD7cTi5IZC6xPZWZwitdxK7bYSZHEiWhHr/4rWtuakkGxx4PAUkrnpzFEOTZxc7Nu3DwCwYd/jee4JQRAE0V44ePAgysvLc95uIpFARUUFNtf9KSftVVRUIJFI5KStoxXGSfSU+OKLL9ClSxfs3r27Vb4E+aa+vh5VVVXYs2cPysrK8t2dnEJja5/Q2NonNDYDzjkOHjyI3r17Q2mlECmNjY1obm7OSVuJRALFxcU5aetohSxOLqwHv7y8/Ij7MRApKys7YsdHY2uf0NjaJzQ2tPpLdnFxMU12Coijb3kTQRAEQRBEltDEiSAIgiAIIiI0cXJRVFSE22+/HUVFRfnuSqtwJI+PxtY+obG1T2hsxNEKOYcTBEEQBEFEhCxOBEEQBEEQEaGJE0EQBEEQRERo4kQQBEEQBBERmjgRBEEQBEFEhCZOLh588EH0798fxcXFGDJkCP7617/mu0sZM2/ePDDGpL+Kigq7nHOOefPmoXfv3igpKcGIESPw7rvv5rHHwWzatAmXXHIJevfuDcYYfv/730vlUcbS1NSEadOmoXv37igtLcXYsWPxz3/+sw1H4U+6sU2aNMlzH8866yypTqGObdGiRRg6dCg6deqEnj174tJLL8X7778v1Wmv9y7K2NrrvVu2bBlOOeUUO/DjsGHD8Oc//9kub6/3DEg/tvZ6z4i2hyZOAk8//TRmzJiBuXPnYuvWrfjmN7+Jiy66CLt378531zLm5JNPRm1trf339ttv22X33HMPFi9ejF/84hd4/fXXUVFRgQsvvBAHDx7MY4/9aWhowKmnnopf/OIXvuVRxjJjxgysXr0aTz31FDZv3owvv/wSF198MTRNa6th+JJubAAwZswY6T7+6U9yvqpCHdvGjRsxZcoUvPrqq1i7di1SqRRGjRqFhoYGu057wDplNgAAEsJJREFUvXdRxga0z3vXp08f3HXXXXjjjTfwxhtv4LzzzsO4cePsyVF7vWdA+rEB7fOeEXmAEzZf+9rX+A033CDtGzhwIP/xj3+cpx5lx+23385PPfVU3zJd13lFRQW/66677H2NjY28vLycL1++vI16mB0A+OrVq+3tKGP54osveDwe50899ZRd55NPPuGKovA1a9a0Wd/T4R4b55xPnDiRjxs3LvCY9jI2zjnfu3cvB8A3btzIOT+y7p17bJwfWfeuS5cu/Fe/+tURdc8srLFxfmTdM6J1IYuTSXNzM2pqajBq1Chp/6hRo7Bly5Y89Sp7PvzwQ/Tu3Rv9+/fHlVdeiY8//hgAsGPHDtTV1UnjLCoqwrnnntvuxhllLDU1NUgmk1Kd3r17Y9CgQe1ivBs2bEDPnj1x/PHH47rrrsPevXvtsvY0tgMHDgAAunbtCuDIunfusVm093unaRqeeuopNDQ0YNiwYUfUPXOPzaK93zOibaAkvyaff/45NE1Dr169pP29evVCXV1dnnqVHV//+tfx2GOP4fjjj8enn36Kn/3sZxg+fDjeffddeyx+49y1a1c+ups1UcZSV1eHRCKBLl26eOoU+n296KKLcPnll6Nv377YsWMHfvKTn+C8885DTU0NioqK2s3YOOeYOXMmzj77bAwaNAjAkXPv/MYGtO979/bbb2PYsGFobGxEx44dsXr1apx00kn25KA937OgsQHt+54RbQtNnFwwxqRtzrlnX6Fz0UUX2Z8HDx6MYcOG4dhjj8XKlSttZ8cjYZwW2YylPYz3iiuusD8PGjQIZ555Jvr27Yvnn38el112WeBxhTa2qVOn4q233sLmzZs9Ze393gWNrT3fuxNOOAFvvvkmvvjiC/zud7/DxIkTsXHjRru8Pd+zoLGddNJJ7fqeEW0LSXUm3bt3h6qqnjeHvXv3et6w2hulpaUYPHgwPvzwQ3t13ZEwzihjqaioQHNzM/bv3x9Yp71QWVmJvn374sMPPwTQPsY2bdo0PPvss1i/fj369Olj7z8S7l3Q2PxoT/cukUjguOOOw5lnnolFixbh1FNPxQMPPHBE3LOgsfnRnu4Z0bbQxMkkkUhgyJAhWLt2rbR/7dq1GD58eJ56lRuampqwfft2VFZWon///qioqJDG2dzcjI0bN7a7cUYZy5AhQxCPx6U6tbW1eOedd9rdePft24c9e/agsrISQGGPjXOOqVOnYtWqVVi3bh369+8vlbfne5dubH60p3vnhnOOpqamdn3PgrDG5kd7vmdEK9Pm7ugFzFNPPcXj8ThfsWIF37ZtG58xYwYvLS3lO3fuzHfXMmLWrFl8w4YN/OOPP+avvvoqv/jii3mnTp3scdx11128vLycr1q1ir/99tv8u9/9Lq+srOT19fV57rmXgwcP8q1bt/KtW7dyAHzx4sV869atfNeuXZzzaGO54YYbeJ8+ffhLL73E//73v/PzzjuPn3rqqTyVSuVrWJzz8LEdPHiQz5o1i2/ZsoXv2LGDr1+/ng8bNox/5StfaRdj++EPf8jLy8v5hg0beG1trf136NAhu057vXfpxtae792cOXP4pk2b+I4dO/hbb73F/9//+39cURT+4osvcs7b7z3jPHxs7fmeEW0PTZxc/PKXv+R9+/bliUSCn3HGGdIS4/bCFVdcwSsrK3k8Hue9e/fml112GX/33Xftcl3X+e23384rKip4UVERP+ecc/jbb7+dxx4Hs379eg7A8zdx4kTOebSxHD58mE+dOpV37dqVl5SU8Isvvpjv3r07D6ORCRvboUOH+KhRo3iPHj14PB7nxxxzDJ84caKn34U6Nr9xAeDV1dV2nfZ679KNrT3fu2uvvdb+/evRowc///zz7UkT5+33nnEePrb2fM+Itodxznnb2bcIgiAIgiDaL+TjRBAEQRAEERGaOBEEQRAEQUSEJk4EQRAEQRARoYkTQRAEQRBERGjiRBAEQRAEERGaOBEEQRAEQUSEJk4EQRAEQRARoYkTccQxYsQIzJgx44g676RJk3DppZe2qI1+/fqBMQbGGL744ovAeo8++ig6d+7conMRwUyaNMm+D7///e/z3R2CIDKEJk4EkSNWrVqFBQsW2Nv9+vXD/fffn78O+TB//nzU1taivLw831054tmwYYPvJPWBBx5AbW1tfjpFEESLieW7AwRxpNC1a9d8dyEtnTp1srPc55tkMol4PJ7vbrQ55eXlNHEliHYMWZyII579+/djwoQJ6NKlCzp06ICLLroIH374oV1uSVMvvPACTjzxRHTs2BFjxoyRrAKpVArTp09H586d0a1bN9x6662YOHGiJJ+JUt2IESOwa9cu3HzzzbYsAwDz5s3DaaedJvXv/vvvR79+/extTdMwc+ZM+1y33HIL3JmROOe45557MGDAAJSUlODUU0/F//7v/2Z1fR599FEcc8wx6NChA77zne9g3759njrPPfcchgwZguLiYgwYMAB33HEHUqmUXf7ee+/h7LPPRnFxMU466SS89NJLkhS1c+dOMMbwzDPPYMSIESguLsYTTzwBAKiursaJJ56I4uJiDBw4EA8++KB07k8++QRXXHEFunTpgm7dumHcuHHYuXOnXb5hwwZ87WtfQ2lpKTp37oxvfOMb2LVrV6SxpxvX4sWLMXjwYJSWlqKqqgo33ngjvvzyS7t8165duOSSS9ClSxeUlpbi5JNPxp/+9Cfs3LkTI0eOBAB06dIFjDFMmjQpUp8IgihsaOJEHPFMmjQJb7zxBp599lm88sor4JzjW9/6FpLJpF3n0KFDuPfee/H4449j06ZN2L17N2bPnm2X33333fjNb36D6upqvPzyy6ivrw/1T1m1ahX69OljS2OZSDP33Xcffv3rX2PFihXYvHkz/v3vf2P16tVSndtuuw3V1dVYtmwZ3n33Xdx88834/ve/j40bN0a/MABee+01XHvttbjxxhvx5ptvYuTIkfjZz34m1XnhhRfw/e9/H9OnT8e2bdvw0EMP4dFHH8XChQsBALqu49JLL0WHDh3w2muv4eGHH8bcuXN9z3frrbdi+vTp2L59O0aPHo1HHnkEc+fOxcKFC7F9+3bceeed+MlPfoKVK1cCMO7LyJEj0bFjR2zatAmbN2+2J7bNzc1IpVK49NJLce655+Ktt97CK6+8guuvv96eqIaRblwAoCgK/vu//xvvvPMOVq5ciXXr1uGWW26xy6dMmYKmpiZs2rQJb7/9Nu6++2507NgRVVVV+N3vfgcAeP/991FbW4sHHnggo3tDEESBktcUwwTRCpx77rn8pptu4pxz/sEHH3AA/OWXX7bLP//8c15SUsKfeeYZzjnn1dXVHAD/6KOP7Dq//OUvea9eveztXr168Z///Of2diqV4scccwwfN26c73k557xv3758yZIlUt9uv/12fuqpp0r7lixZwvv27WtvV1ZW8rvuusveTiaTvE+fPva5vvzyS15cXMy3bNkitTN58mT+3e9+N/C6+PXnu9/9Lh8zZoy074orruDl5eX29je/+U1+5513SnUef/xxXllZyTnn/M9//jOPxWK8trbWLl+7di0HwFevXs0553zHjh0cAL///vuldqqqqviTTz4p7VuwYAEfNmwY55zzFStW8BNOOIHrum6XNzU18ZKSEv7CCy/wffv2cQB8w4YNgeMOIt24/HjmmWd4t27d7O3BgwfzefPm+dZdv349B8D379/vWy5eH4Ig2g/k40Qc0Wzfvh2xWAxf//rX7X3dunXDCSecgO3bt9v7OnTogGOPPdberqysxN69ewEABw4cwKeffoqvfe1rdrmqqhgyZAh0Xc9pfw8cOIDa2loMGzbM3heLxXDmmWfact22bdvQ2NiICy+8UDq2ubkZp59+ekbn2759O77zne9I+4YNG4Y1a9bY2zU1NXj99dclS4ymaWhsbMShQ4fw/vvvo6qqSvKdEq+VyJlnnml//uyzz7Bnzx5MnjwZ1113nb0/lUrZPkA1NTX46KOP0KlTJ6mdxsZG/OMf/8CoUaMwadIkjB49GhdeeCEuuOACjB8/HpWVlWnHnm5cHTp0wPr163HnnXdi27ZtqK+vRyqVQmNjIxoaGlBaWorp06fjhz/8IV588UVccMEF+I//+A+ccsopac9NEET7hSZOxBENd/kGiftFOcftpMwY8xzrln+C2g5DURTPcaJkGAVrsvb888/jK1/5ilRWVFSUUVtRxqDrOu644w5cdtllnrLi4mLPtQyjtLRUahcAHnnkEWliCxgTU6vOkCFD8Jvf/MbTVo8ePQAYPlLTp0/HmjVr8PTTT+O2227D2rVrcdZZZ7VoXLt27cK3vvUt3HDDDViwYAG6du2KzZs3Y/LkyfY9+8EPfoDRo0fj+eefx4svvohFixbhvvvuw7Rp0yJdD4Ig2h80cSKOaE466SSkUim89tprGD58OABg3759+OCDD3DiiSdGaqO8vBy9evXC3/72N3zzm98EYFgmtm7d6nH0FkkkEtA0TdrXo0cP1NXVSZONN998UzpXZWUlXn31VZxzzjkADAtMTU0NzjjjDHtMRUVF2L17N84999xIYwjipJNOwquvvirtc2+fccYZeP/993Hcccf5tjFw4EDs3r0bn376KXr16gUAeP3119Oeu1evXvjKV76Cjz/+GFdddZVvnTPOOANPP/00evbsibKyssC2Tj/9dJx++umYM2cOhg0bhieffDLtxCnduN544w2kUincd999UBTDHfSZZ57x1KuqqsINN9yAG264AXPmzMEjjzyCadOmIZFIAIDnGSAIon1DEyfiiOarX/0qxo0bh+uuuw4PPfQQOnXqhB//+Mf4yle+gnHjxkVuZ9q0aVi0aBGOO+44DBw4EEuXLsX+/ftDLS39+vXDpk2bcOWVV6KoqAjdu3fHiBEj8Nlnn+Gee+7Bf/7nf2LNmjX485//LE0KbrrpJtx111346le/ihNPPBGLFy+WYgF16tQJs2fPxs033wxd13H22Wejvr4eW7ZsQceOHTFx4sTI45o+fTqGDx+Oe+65B5deeilefPFFSaYDgJ/+9Ke4+OKLUVVVhcsvvxyKouCtt97C22+/jZ/97Ge48MILceyxx2LixIm45557cPDgQds5PJ0lat68eZg+fTrKyspw0UUXoampCW+88Qb279+PmTNn4qqrrsLPf/5zjBs3DvPnz0efPn2we/durFq1Cj/60Y+QTCbx8MMPY+zYsejduzfef/99fPDBB5gwYULasacb17HHHotUKoWlS5fikksuwcsvv4zly5dLbcyYMQMXXXQRjj/+eOzfvx/r1q2zJ+R9+/YFYwx//OMf8a1vfQslJSXo2LFj5HtDEESBkjfvKoJoJdxO2v/+97/51VdfzcvLy3lJSQkfPXo0/+CDD+zy6upqyRmac85Xr17Nxa9HMpnkU6dO5WVlZbxLly781ltv5Zdffjm/8sorA8/7yiuv8FNOOYUXFRVJbS1btoxXVVXx0tJSPmHCBL5w4ULJOTyZTPKbbrqJl5WV8c6dO/OZM2fyCRMmSI7ouq7zBx54gJ9wwgk8Ho/zHj168NGjR/ONGzcGXhc/53DODQfsPn368JKSEn7JJZfwe++913M91qxZw4cPH85LSkp4WVkZ/9rXvsYffvhhu3z79u38G9/4Bk8kEnzgwIH8ueee4wD4mjVrOOeOc/jWrVs95//Nb37DTzvtNJ5IJHiXLl34Oeecw1etWmWX19bW8gkTJvDu3bvzoqIiPmDAAH7dddfxAwcO8Lq6On7ppZfyyspKnkgkeN++fflPf/pTrmla4HXIZFyLFy/mlZWV9nPz2GOPSQ7fU6dO5cceeywvKiriPXr04FdffTX//PPP7ePnz5/PKyoqOGOMT5w4UTo3yDmcINoljPMsHDUI4ihH13WceOKJGD9+vBQtvJDp168fZsyY0SbpaF5++WWcffbZ+OijjySne8KBMYbVq1e3OJUOQRBtC8VxIogI7Nq1C4888gg++OADvP322/jhD3+IHTt24Hvf+16+u5YRt956Kzp27IgDBw7ktN3Vq1dj7dq12LlzJ1566SVcf/31+MY3vkGTJh9uuOEGkuwIoh1DFieCiMCePXtw5ZVX4p133gHnHIMGDcJdd91lO3C3B3bt2mWvBhswYIDt8JwLHnvsMSxYsAB79uxB9+7dccEFF+C+++5Dt27dcnaOTDn55JMDI4g/9NBDgQ7prc3evXtRX18PwAh7Ia40JAii8KGJE0EQRyTiRNFNr169PLGhCIIgokATJ4IgCIIgiIiQjxNBEARBEEREaOJEEARBEAQREZo4EQRBEARBRIQmTgRBEARBEBGhiRNBEARBEEREaOJEEARBEAQREZo4EQRBEARBRIQmTgRBEARBEBH5/zMCXh03pt0gAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAHFCAYAAAAExnZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7t0lEQVR4nOydeXgURfrHv3PnIAmEQEIkBBAUIagYWARZDjlduXR/i4qLIHgtlwiIsqwCKqCoiOIK4gEoIl7gLYIKKIIuBFwFFHYFFwQih5CEXHP174+Z7n6bqU5PTyaZhLyf55nHTnV19VvV1W1R9X3fskiSJIFhGIZhGIYxxBprAxiGYRiGYWoLPHBiGIZhGIYJEx44MQzDMAzDhAkPnBiGYRiGYcKEB04MwzAMwzBhwgMnhmEYhmGYMOGBE8MwDMMwTJjwwIlhGIZhGCZMeODEMAzDMAwTJjxwYqLK1q1bMWvWLJw5cybkXM+ePdGzZ89qt6k62L9/P6ZOnYrc3FzUr18fqampuOqqq/D2228L8x8/fhyjRo1CWloaEhIS0KVLF3z++ech+T788EPccsstaN++PRwOBywWi64NHo8Hs2fPRvPmzeFyudCmTRssWrTIVD2qwq6KWLRoEdq0aQOXy4UWLVpg9uzZ8Hg8mjy//vorJk2ahB49eqB+/fqwWCxYvny5qfscOHAA119/PerXr4969eqhb9++2LlzpzDv6tWrcfnllyMuLg6ZmZmYNGkSzp49W+fvxTBMEIlhosjjjz8uAZAOHjwYcm7Pnj3Snj17qt+oamDRokVSmzZtpDlz5kjr16+XPv74Y2nkyJESAGn27NmavGVlZVJOTo7UtGlTaeXKldL69eulIUOGSHa7Xdq0aZMm7+jRo6XWrVtLw4YNk3Jzc6WKXtnbbrtNcrlc0vz586WNGzdK999/v2SxWKQ5c+aEVYeqskuPRx55RLJYLNL06dOljRs3SvPnz5ecTqd0++23a/Jt3LhRSktLk/r06SPddNNNEgBp2bJlYd/n+PHjUmZmptSuXTvpnXfekT766COpW7duUlJSkvTTTz9p8q5cuVICIN12223SF198IS1ZskRKSUmR+vbtW6fvxTCMCg+cmKhS0cDpfObEiROS3+8PSb/22mulhIQEqaysTEn75z//KQGQtm7dqqR5PB6pbdu20h/+8AfN9T6fTzkeN26c7gBl9+7dksVikebOnatJv/3226X4+Hjp1KlThnWoCrv0OHnypBQXFyfdcccdmvQ5c+ZIFotFM8Cm99q+fbvpgdO9994rORwO6ZdfflHSCgoKpLS0NGnYsGFKmtfrlZo0aSL169dPc/1rr70mAZA+/vjjOnsvhmFUeODERI2ZM2dKAEJ+GzdulCRJknr06CH16NFDyX/w4EEJgDR//nzp0UcflbKzs6W4uDipR48e0r59+yS32y3dd999UpMmTaTk5GRp6NCh0m+//RZy39WrV0tXXnmllJCQICUmJkr9+vWTdu7cWU21rpjZs2dLAKSjR48qaX369JEuvvjikLxz586VAEi//vqrsKyKBiiPPPKIBEA6duyYJn3r1q0SAOm1114ztLUq7NJDngHZtm2bJv3o0aMSAN1ZskgGTq1atZL69+8fkn7HHXdI8fHxksfjkSRJkrZs2SIBkF5//XVNPrfbLdWrVy9kJqwu3YthGBXWODFR47bbbsOECRMAAGvWrMG2bduwbds2XHHFFRVe989//hNff/01/vnPf+LFF1/ETz/9hEGDBmHMmDE4ceIEXn75ZcyfPx+fffYZbrvtNs21c+fOxU033YS2bdvizTffxKuvvoqioiL88Y9/xN69ew1t9nq9Yf0kSYqoTTZu3IhGjRqhcePGStru3btx6aWXhuSV0/bs2WP6Prt370ajRo2QkZEhLHP37t1hlRFtuyq6FwC0b99ek96kSROkpaWFZW84lJaW4ueff9atV2lpKQ4cOKCx6dy8DocDbdq0CbHJYrFoNHvny70YhqkYe6wNYM4fmjZtimbNmgEAOnTogObNm4d1Xf369fHuu+/Cag2M40+ePIlJkyahTZs2eO+995R8P/30ExYuXIjCwkIkJyfj8OHDmDlzJsaPH49nnnlGyde3b1+0bt0as2fPxhtvvKF7319++QUtWrQIy8aNGzeaFra/+OKL2LRpE55++mnYbDYl/dSpU0hNTQ3JL6edOnXK1H0qKjMxMRFOpzOsMqvCroru5XK5kJiYKLxftO51+vRpSJIUVr3k/+rl/eWXXzRpNptN81zPl3sxDFMxPHBiYs6f/vQnZdAEAJdccgkA4Nprr9Xkk9MPHTqEnJwcfPrpp/B6vbjlllvg9XqVfHFxcejRowc2btxY4X0zMzOxffv2sGy8+OKLw8on88knn2DcuHH4v//7P2UWjlKRF1qkHmrhlClJEnw+n+ac3W4PyRctu+hzAQIDALmcqmiDSMo795xe3nPTz63b+XIvhmEqhgdOTMw591/CTqezwvSysjIAwG+//QYA6NSpk7BcOhgT4XQ6cfnll4dlI/3XvhGffvoprr/+evTt2xevvfZayP+YGjZsKJxR+f333wGIZwaMaNiwIb777ruQ9OLiYrjdbqXMFStW4NZbb9XkkZchq8Iuh8Oh+XvZsmUYNWoUGjZsiLKyMpSUlCAhISHkfrm5uabvJaJBgwawWCxh1athw4YAAjM06enpIXmN6n++3othGC08cGJqLWlpaQCAt99+G9nZ2aavr4qluk8//RRDhw5Fjx498M477yiDPUr79u3xww8/hKTLaTk5OWHZdG6Zq1evRn5+vkbndG6ZgwYN0p1lqwq7zr2X3N6ytumHH35A586dlfP5+fk4efJkRPcSER8fj1atWunWKz4+Hi1btgyxqW3btko+r9eLn376CTfddFOdvBfDMFp44MREFZfLBSAgXq1q+vfvD7vdjp9//hl//vOfTV8f7aW69evXY+jQoejWrRveffddpS3O5brrrsPYsWPx7bffKoMGr9eLlStXonPnzsjMzAy/EkGGDBmCf/zjH1ixYgXuu+8+JX358uWIj4/HgAEDAARmH+QZiOqwq2PHjsL0AQMGIC4uDsuXL9cMnJYvXw6LxYKhQ4eavpce1113HRYuXIjDhw8jKysLAFBUVIQ1a9Zg8ODBylJl586d0aRJEyxfvhw33HCDcv3bb7+Ns2fP4vrrr6+z92IYhhBLlz7m/GPjxo0SAOnOO++Utm7dKm3fvl0qLCyUJEk/HMHjjz8uLOOtt97SpC9btkwCIG3fvl1Jmzt3rmS326U777xTWrt2rbRp0ybpjTfekKZMmSI9+OCDVVfRc/jqq6+k+Ph4qXnz5tIXX3whbdu2TfMrKChQ8paVlUnt2rWTsrKypNdee03asGGDdN111wkDTf7yyy/SW2+9Jb311lvSgAEDlHZ56623NO0gSWoAzMcff1zatGmT9Pe//910AMyqsEsPOQDm3//+d2nTpk3S448/LrlcLqF7vFz2Y489JgGQxo0bp6QZcfz4calJkyZS+/btpbVr10off/yx1L17dykpKUn68ccfNXlfffVVCYB0xx13SBs3bpSWLl0q1a9fXxgo0mazSVdfffV5dy+GYSqGB05M1Jk+fbqUmZkpWa3WsOI4VWbgJEmS9O6770q9evWSkpOTJZfLJWVnZ0v/93//J3322WdVUj8RejGs5J/cBjL5+fnSLbfcIqWmpkpxcXHSlVdeKW3YsCGkXLnOot/IkSM1ed1utzRz5kypWbNmktPplC666CLpmWeeMVWPqrCrIp5++mnpoosukpxOp9SsWTNp5syZktvtDslXUduGw3//+19p6NChUnJyspSQkCD17t1bysvLE+ZdtWqVdOmll0pOp1PKyMiQJk6cKBUVFQltov35fLkXwzAVY5GkCAPUMAzDMAzD1DE4ACbDMAzDMEyY8MCJYRiGYRgmTHjgxDAMwzAMEyY8cGIYhmEYhgkTHjgxDMMwDMOECQ+cGIZhGIZhwoQjh5+D3+/H0aNHkZSUxJtfMgzDMBUiSRKKioqQmZlpuD9mpJSVlcHtdkelLKfTibi4uKiUVVfhgdM5HD16VNm+gGEYhmHC4fDhw2jatGnUyy0rK0OL7HrIP+6LSnkZGRk4ePAgD54qAQ+cziEpKQkAkP33B2DljlU1SOfZTB6HkD1vsfCzDaFaXt+qukcVPFB/WRn+N/dh5f8d0cbtdiP/uA8H87KRnFS5Ga3CIj9a5P4PbrebB06VgAdO5yAvz1nj4njgVFXwwImpJfDAKRQeOOkUXcXSjuQka6UHTkx04IETwzAMw9RwfJIfvkqO+3ySPzrG1HF44MQwDMMwNRw/JPgrOb1d2euZADxw0kGyBn4KtW11KdrvRzTLM5guj+nySCTrENbz5GMUzTWYKDRJlfWDSpYbFbtqQpehNph49FH9FOoUZtgVBed1r7EIMuk8xIjuy6tndQ4eODEMwzBMDccPPyq70Fb5EhiAB04MwzAMU+PxSRJ8UuWmKit7PROAJxkZhmEYhmHChGecGIZhGKaGw+LwmgMPnHSQbIGfoRKyOpXM0Q6gYmS6iapFsxkk3T+MMkeBqn6eNcHJQK+KlRXt0/5pVM+qbOYolm1c50qeN3OvMMoVluE3OI/IPi269kqhecIqX5THhIDdT/5vphFsk2PZDskq7qsWckOlDHJeUw+5LFvFdkULPyT4eOBUI+ClOoZhGIZhmDDhGSeGYRiGqeHwUl3NgQdODMMwDFPDYa+6mgMPnBiGYRimhuMHohDHiYkGPHDSQbJJkOySWNQYqYC40uLuyv9rQWO6oDhTAmC9oiIxU69pqNDUL0gPK1pwFOw4HzBqM6PLjdpUp/MIk0XRnM3eTwfD6hmUFbEgvLLl0ry0r5Njqy80TVMuTfcLyiKNQ8XUokaz+MgxKcMvi6H1ng8VU1t1iw+5h9UXet5PhNe6Imz5HtReag8tN5hO6+53hNobKESQRnYJUIXmPItT16g14nCv14t//OMfaNGiBeLj49GyZUs89NBD8PvVN1qSJMyaNQuZmZmIj49Hz549sWfPnhhazTAMwzCVxxf0qqvsj6k8tWbg9Nhjj2HJkiV49tln8eOPP2L+/Pl4/PHHsWjRIiXP/PnzsWDBAjz77LPYvn07MjIy0LdvXxQVFcXQcoZhGIapHD4pOj+m8tSagdO2bdswZMgQXHvttWjevDn+7//+D/369cOOHTsABGabFi5ciBkzZuD6669HTk4OVqxYgZKSEqxatSrG1jMMwzBM7WLx4sW49NJLkZycjOTkZHTp0gWffPKJcj6cVZ7y8nJMmDABaWlpSExMxODBg/Hrr79Wd1WiSq0ZOHXr1g2ff/459u/fDwD497//jS1btuBPf/oTAODgwYPIz89Hv379lGtcLhd69OiBrVu3xsRmhmEYhokG/ij9zNC0aVM8+uij2LFjB3bs2IGrr74aQ4YMUQZH4azyTJo0CWvXrsXq1auxZcsWnD17FgMHDoTPJxC11RJqjTj8vvvuQ0FBAdq0aQObzQafz4c5c+bgpptuAgDk5+cDANLT0zXXpaen43//+59uueXl5SgvL1f+LiwsrALrGYZhGCZy/LDAV0nvFb/J6wcNGqT5e86cOVi8eDG++eYbtG3bVrPKAwArVqxAeno6Vq1ahTvvvBMFBQV46aWX8Oqrr6JPnz4AgJUrVyIrKwufffYZ+vfvX6n6xIpaM3B64403sHLlSqxatQrt2rXDd999h0mTJiEzMxMjR45U8lks2o4hSVJIGmXevHmYPXt2SLo/zg/E+RUvCk0R1GWDuv54g8c+na0nqGtKJB4ZJrzy9LzntN5vltDzel53wbwWSa+w8DHllKjZ7oC6BAnK0vEukudVo7Fjjd6jrxVUsb2623no/iFIjIJnmmT0YAy8SQ13pAnDmyyid8PAOy4sRFuCkHUFbwK5HfFSE3ngSXHkvC/0WM+LTeSNp+clqNtnBJ5ytB7C7VXo50HHG0/OK9kk4XnN9izBb7OeV53yXamFwqFzJwhcLhdcLleF1/h8Prz11lsoLi5Gly5dDFd57rzzTuTl5cHj8WjyZGZmIicnB1u3bq21A6das1R377334v7778eNN96I9u3bY8SIEbjnnnswb948AEBGRgYAdeZJ5vjx4yGzUJTp06ejoKBA+R0+fLjqKsEwDMMwEeCXovMDgKysLKSkpCg/+f+jIn744QfUq1cPLpcLd911F9auXYu2bdtWuMojn8vPz4fT6USDBg1089RGas2MU0lJCaxW7TjPZrMp4QhatGiBjIwMbNiwAR06dAAAuN1ubN68GY899phuueGMtBmGYRgmlviisFQnX3/48GEkJycr6RX9P/Diiy/Gd999hzNnzuCdd97ByJEjsXnzZuW82VWecPPUZGrNwGnQoEGYM2cOmjVrhnbt2mHXrl1YsGABRo8eDSDw8CZNmoS5c+eidevWaN26NebOnYuEhAQMHz48xtYzDMMwTM1A9pILB6fTiVatWgEAOnbsiO3bt+Ppp5/GfffdByAwq9SkSRMlP13lycjIgNvtxunTpzWzTsePH0fXrl2jVZ1qp9Ys1S1atAj/93//h7Fjx+KSSy7B1KlTceedd+Lhhx9W8kybNg2TJk3C2LFj0bFjRxw5cgTr169HUlJSDC1nGIZhmMohzzhV9ldZJElCeXm5ZpVHRl7lkQdFubm5cDgcmjzHjh3D7t27a/XAqdbMOCUlJWHhwoVYuHChbh6LxYJZs2Zh1qxZlb6fxeWDxeWD1RZYCrQQMaGVCAQtAnG35Fc7p0ZLLRKtSuK82jyC6/VElcq9dfJKgrzEXosvVIAdOCFVbKPQGJ2XVFRGGOVqhKShunatQFWw5YLuLh9WQbqe6Wa+O6K80daRRvIdjHTLIAMiLjWcfiKFJulWQ9RJdfJaBOXq2iO/D3r9zABarOF1oj4JUjUq7Nb7FgTz0C1F/A4iihZsL6K/lQv5RggE31aPemwrD0236JRr0fFIl/Nr6i4QswOAJJdBVps04nGNUFzSTTv3WG5jmmbRnJePq8et3i9Z4K+kR4rZ6//+97/jmmuuQVZWFoqKirB69Wps2rQJ69atC2uVJyUlBWPGjMGUKVPQsGFDpKamYurUqWjfvr3iZVcbqTUDJ4ZhGIapq0RT4xQuv/32G0aMGIFjx44hJSUFl156KdatW4e+ffsCCKzylJaWYuzYsTh9+jQ6d+4cssrz1FNPwW63Y9iwYSgtLUXv3r2xfPly2Gx6mw/WfCySZGoO4bynsLAQKSkpyHp+JqzxcTzjpGNLWOj860b4L+RwZpz8gjrRf72acOGOdMbJFHVsxiliTMw4UfRnnMJM0ytDr9+KZpz0+lkkYRX0ZrIibIeaNONk9ZJyBaENQpBnlHVmnKjtcrqPzDh544npTpo3+jNO/tIyHL5rFgoKCsLWDZlB/n/S5t0XoF5S5dQ1Z4v86JFzpMpsrSvwjBPDMAzD1HB8sMJXSVly7Y3VXbPggRPDMAzD1HCkKGicDIPDMmHBAycdHPEe2BJssAbnq202dV7aSuawrVY1XRSWQm/5Te7AtCP7dZbt/H5ryHlozpPrgnklKp4UnA9cGLSb2iiIjHvu/dQ0g+VAvXDMBkuOFhN5NeZYxcdGK1OV/pboRZU3yltVHzEdGwxvV/FKclj3qKgsffRekooN0V3OMsAwSrieeFk+pu+TiX6mFyBduU6zNBZZWRqES8Xi8OZKsl0nK1mXM+pHthK1UewlwbQycp4s62lWC0URx6m19JtHlh+9wSU6X5z4vN9J6mmXl+pEIm8AjtB0K/n2U2mGnO73kwoxdQIeODEMwzBMDScW4nBGDA+cGIZhGKaG45Os8EmV1DjVML+Q2kqtCYDJMAzDMAwTa3jGiWEYhmFqOH5Y4K/kXIc/6vFQ6iY8cNIhIc4DW5wVtqD420aUnzarWCguwkfE2D4iKvX4A0FCaBgti47qUgoKEqk4nArCLVYq/g7k9fmoapWURe8nxzKhgnC9uFLB+5kS5OqIezURlEWXaRL1FLUG96PIbWV0vR5G8YI05w0qp5M1Ygz6n7BLWXTOa0I6V3ydps8IYu4YlmUg/A69d6hamjpWmIkNZuhZpFEhExOCMc408cJE4nHAlPBf8aXQROoP86Jzji2iV5nGW3KT68h3Q460LYunAZ04TzBIA+B3qWV4giJtv4O8/6VqXhu5B40FJYrvRAXfmphNCaH2UkG430WE7c5gXD4H/Q6S77ldPZYdgmjcPuokJP9/wCdVjzicNU41B16qYxiGYRiGCROecWIYhmGYGk50xOG8VBcNeODEMAzDMDWcgMapkpv88lJdVOCBE8MwDMPUcPxR2HKFxeHRgQdOOiS5ymCPk2ALKjY10cJ1BLneoBC82K0qF0vdqqKRisOjiSgYNRU0UlE5jYIrBUOdS6LNc6HdVFeS60xFr1Yd4bZwM2OdaNYGiRYv3Vw0tFzJqiNmNb5LhWgesd5jkwXzVMgqDswsNEFjL91otKpF5Tq6bQm0rQW22MRtbQkKai0Gm18DJHK9Rusd2cdcEx3f4HlpovqLduY1cIoIHAejTutFs/fR9gutk3CTanKs53ihMVf4boUmAVDeT0lnBwDRJr70fYOBUJy+e6Cb5tppuhypm2SgzixUHE7+byTqfx6yJ603QRANnIjAEae+lBrBtyPo7GMLFYEDgN2mXmcL1s9m8YekBY4D6V4f2dWYqRPwwIlhGIZhajiscao58MCJYRiGYWo4flg5jlMNgcMRMAzDMAzDhAnPODEMwzBMDccnWeAzEVhVrwym8vDASYd6DjccDlUIbiQIB4ASjxMAUO5VhZBWEmXc6SARaoNTpnTN2kg8LmkErCTqrxQqoPYTNayF2C4Joo9TcbhEBK6SRbVNKY7MUUo6YtbKzgYLox8DkHyheTTfAT1BsmyzbgRwgehcxx6NuFa+n09H9KtXoHw9FZXTZx/sPpKN3qziskwJxqm5tM2sgnSal9hjEVxHRbgWm05DSBL9T8XQfiB4RrpVlvsGbVN6aBDVXDdwvWyDjnicvjtKOj1PBeM08r9sr45jhiYiuUB0rkHzvELTKJqSguXq7gxA6yE/ZxJ9Gw4aTp0U4Ql0DklvdwKiGXcnqseelEClqeDbmaSGPa8Xpx7bbfLuDmpe6nZPd2+Qobs/xNm9ajWsvpA8eo5B8rHXWz3icF8UvOp8vFQXFXipjmEYhmEYJkx4xolhGIZhajh+yQp/Jb3q/OxVFxV44MQwDMMwNRxeqqs58FIdwzAMwzBMmPCMkw4Jdg8cdiKkJmLDs0EROAAUk2NZpF3PpQoXqdhQJNL2+FV1JBV5iwSNFJ+BUNzvF5dF0+Xr6H39PrGYVZnhpfpWH1UTU+sEIlo9RMJVGhHaJhZei8TCmmJF99azhz4XUbG6YuDg5TqRmTW3EEUZFwSwpmVoIrfrCN9F99XM5ovE3zriaHoPSzAas9WpGmwnxyJnCdq/rXpC/WCyX6d/0zJov5SF3qL+S88H/pALQ2jaufb4Qh+4lQidRRHQ9SLta5wsBOJwjSiaPntfaF6JLqmIhOQ63V8TZVwU4VuPYIGioOrAOVG5g6JwC+kPjjhVYO1yqMfuoKOM+6iq/Kb38KmbLMDfvFQ5zmhQBACIs3uUNCrottNjwe4OlDKf+r85jy9gj4NECE8g96DlGiE7+HjI9VWJH5X3igu/dkxF8MCJYRiGYWo40QmAyYtM0YAHTgzDMAxTw4nOlis8cIoG3IoMwzAMwzBhwjNODMMwDFPD8cOi0dpGWgZTeXjgpIPT5oXDZoU3KN4+WZqgnCt2q4pGKjJ02QKiSBeJROu0UjWwijtYrs0vluv5BeJvrybKuDXkfCA9KKK1qml2okT1CcS1tCwfUTpLREoo56UCWBopWiPWlvOaiKKth6EAWEMYEbxF5zVRpQV56SPSPBftf889T0WwcgRlq1grrDUt+Aj0ojjT2XZZtGuhkZv16h4UCYsEzwDgJAJfuz3Qb+WozOcei9CIw3WMkJcK/IJ2DByr6R4Sgd8S7GvC5wPA41Hzet22EHssJEK1KDS9Jmo3aR8bjYauIz4W2S47WVAHCk3/FR1rxOW0YJJeoQU6QeV1nBs0mYPP1m8QHR4ALMG8VBAe51QF0vT7lxh0lClsqlaoJDlOeI/MhgXKcYIjcJ1IBA6II3jrna/nCI3srSck1+QxaG15EGKxeSvMFy14qa7mUKta8ciRI/jrX/+Khg0bIiEhAZdffjny8vKU85IkYdasWcjMzER8fDx69uyJPXv2xNBihmEYhmHOJ2rNwOn06dO46qqr4HA48Mknn2Dv3r148sknUb9+fSXP/PnzsWDBAjz77LPYvn07MjIy0LdvXxQVFcXOcIZhGIapJHIAzMr+mMpTa5bqHnvsMWRlZWHZsmVKWvPmzZVjSZKwcOFCzJgxA9dffz0AYMWKFUhPT8eqVatw5513VrfJDMMwDBMV/JJFs8QdaRlM5ak1w8/3338fHTt2xF/+8hc0btwYHTp0wAsvvKCcP3jwIPLz89GvXz8lzeVyoUePHti6dWssTGYYhmEY5jyj1gycDhw4gMWLF6N169b49NNPcdddd2HixIl45ZVXAAD5+fkAgPT0dM116enpyjkR5eXlKCws1PwYhmEYpibhj8IyHQfAjA61ZqnO7/ejY8eOmDt3LgCgQ4cO2LNnDxYvXoxbbrlFyWc5x+1GkqSQNMq8efMwe/bskHQb/LBb/MrWEfVdZcq5eg51SxWnLdRrzsgbA1C9RbzEo416zfkF26hYyBYo1IOEXmezhm6jovG6I20he4VQrzuvVeytp1yvs+WF3v2ECJrH8BpU4KUnKkNvewsljZ4XbB1DvW6oK5w/1CNL45VHvISoA4sFstcSyRxHtuNxhHoE6bUJ3c7EGvRw0qu7w0m2wgh6Ptno1io6nnByN6HeR0ZeZWby6tWNenja4lRvKHnrIurFSj2uqO3y+0C3Qypxq8flHvWz5w16vVF7qO1ar0JfSF69eviD2zX5iFedZhskgbedrtcdvUcke2ZQE/U89+SsetuzCLwO9bbYof1LbrO0pGI1b9JZtSza1oItVehzterklfPYreItgURlWHX2lrEJ+i3d5sRLtsiSv8H+atrIxC9Z4a+kV5zZ6+fNm4c1a9bgp59+Qnx8PLp27YrHHnsMF198sZLnt99+w3333Yf169fjzJkz6N69OxYtWoTWrVsrecrLyzF16lS8/vrrKC0tRe/evfHcc8+hadOmlapPrKg1w88mTZqgbdu2mrRLLrkEhw4dAgBkZGQAQMjs0vHjx0NmoSjTp09HQUGB8jt8+HCULWcYhmGY2sfmzZsxbtw4fPPNN9iwYQO8Xi/69euH4uLAQFiSJAwdOhQHDhzAe++9h127diE7Oxt9+vRR8gDApEmTsHbtWqxevRpbtmzB2bNnMXDgQPh84nA9NZ1aM+N01VVXYd++fZq0/fv3Izs7GwDQokULZGRkYMOGDejQoQMAwO12Y/PmzXjsscd0y3W5XHC5XLrnGYZhGCbW+GCBr5IBLM1ev27dOs3fy5YtQ+PGjZGXl4fu3bvjP//5D7755hvs3r0b7dq1AwA899xzaNy4MV5//XXcdtttKCgowEsvvYRXX30Vffr0AQCsXLkSWVlZ+Oyzz9C/f/9K1SkW1JoZp3vuuQfffPMN5s6di//+979YtWoVli5dinHjxgEILNFNmjQJc+fOxdq1a7F7926MGjUKCQkJGD58eIytZxiGYZjIkZfqKvsDEKLrLS8PDRIqoqAgEKQ0NTUVAJTr4uLUoKY2mw1OpxNbtmwBAOTl5cHj8WgctzIzM5GTk1NrHbdqzcCpU6dOWLt2LV5//XXk5OTg4YcfxsKFC3HzzTcreaZNm4ZJkyZh7Nix6NixI44cOYL169cjKSkphpYzDMMwTOXwQZ11ivwXICsrCykpKcpv3rx5hveXJAmTJ09Gt27dkJOTAwBo06YNsrOzMX36dJw+fRputxuPPvoo8vPzcezYMQAB+YzT6USDBg005Rk5btVkas1SHQAMHDgQAwcO1D1vsVgwa9YszJo1q9L3clh9iiAV0AoPKX4dQbcwL5kmtQZFhhoRIxEeU9G4P6jU1dsmwCEQaVORrZ4Ncl6vj2xtQe4hEr7a6L3CEIqr54XmGBKOaNzIBmX7Cy8V5JL28YnsJWJhm4HxVC9ORb30eTmDAlJSFt2yxmqjW3uEpukJr/3BelCxsY0IqBPiVEcGRXCrU5aofxmdB8TOEHricKOtLkRbaQCqEFfvPD2OswQE8dSJwx+vPpcSr0M5LiiLBwCUagTj6vtAy5VFz3rfAp9ANO6z0feFbplU8dZHtB9p3jNZSO4Tv3t6WwmpaXRLFcF19BoT76xG+E6OLcEtnKykT4bTp0Tn9QTf8vMQ9ZdAunrsEIjC9YTiMj5J7Rv0+2m3yPetHnF4NDl8+DCSk5OVv8ORq4wfPx7ff/+9MpMEAA6HA++88w7GjBmD1NRU2Gw29OnTB9dcc41heUaOWzWZWjVwYhiGYZi6SDS96pKTkzUDJyMmTJiA999/H19++WWIJ1xubi6+++47FBQUwO12o1GjRujcuTM6duwIIOC45Xa7cfr0ac2s0/Hjx9G1a9dK1SdW1JqlOoZhGIapq8ib/Fb2ZwZJkjB+/HisWbMGX3zxBVq0aKGbNyUlBY0aNcJ//vMf7NixA0OGDAEQGFg5HA5s2LBByXvs2DHs3r271g6ceMaJYRiGYZgQxo0bh1WrVuG9995DUlKSoklKSUlBfHxgmfutt95Co0aN0KxZM/zwww+4++67MXToUEUMnpKSgjFjxmDKlClo2LAhUlNTMXXqVLRv317xsqtt8MCJYRiGYWo4EiwajVWkZZhh8eLFAICePXtq0pctW4ZRo0YBCMweTZ48Gb/99huaNGmCW265BQ888IAm/1NPPQW73Y5hw4YpATCXL18Om82G2ggPnHSwW3yK+C/wt3pOs84sEAbSzu3TCJbV6+RIu1aaBhKVlkTGFYmt9YTo7qDo3G8VCxb9mii4odO2mnIFwkx63mcV2yALN8N5yWVhKy3X46Uvk2oDFc96PYE8msjDRGxts1KxdTDyOtXCUhE3fZyiyMm0SQRVosJ3jWiXimSDonArFZprRNrEnKAonNbBrhGPEyeCYBe1krxxJFq4UyDKDUccHong20joq5dXL9K+SBgcjljYKDp0nM2jHCfYA8dnylV36mK3WCgrv8v0vaHt67Sr7S4SfGuj66vlyu+JpPMO+DTC62Ckcz3xuBTa//T0tzRyuCI61/muWATR6vWg773o/bZC/I2pKmyaPhPqZGDT6X+e4LfZZVWfq0hcLlWTODySpTZRGWaQwvDqmThxIiZOnFhhnri4OCxatAiLFi0ydf+aCmucGIZhGIZhwoRnnBiGYRimhuOXLIYhb8Ipg6k8PHBiGIZhmBqOD1b4KrlIVNnrmQDcigzDMAzDMGHCM046xNm8cNnUqVGPpIo1/QJhJ6AKVEVCVQDwC4SQdioe14lIrN6X5BVEAAcApywOF9h1brosci3zqd2ARkvXRM8O2k7TvERoKBKV6gmPqb0lbicAoNyt2uAmx1arWMgsi1l9JOKz367a7ohTBZ02gVDeTvS/ItFzWCJZuU3IeT+J4O0jkcplQS2tj1UkRIcq9KaCcD1xuJxOBbC0viIhuJ6oWvS8dKOFC9LNCL71RN5G5VkFQt9w8uohR5h2kn5/klxX4nEqx/IXgAq+PeQ4zq6Kzl2OQP/Tc8bw+NXvidzXaPv77MQRwhd6nV8gGA+UBXJcseDbLxSS08ji4j4l9znaJ20WcV+1mYhWb/y8Kz7WfndJ3xB8jx3E8Uevn9gR+j0WLXVZibNBVcJLdTUHHjgxDMMwTA3HDyv8lVwkquz1TAAeODEMwzBMDccnWTThbSItg6k8PPxkGIZhGIYJE55xYhiGYZgaDmucag48cNLBZpFgs0hKR9NEtiaiaC8RecrCa6dOpFkqUiz3B5qeihjjbW41ryCyrU9HEG60Y7ZeBG952rbM51DS3H61S9gFEXHdpL5U7EqF4mXeQBkicTkA2Ig58Y6AsLKciLy1Ub3V61wkIrYcOZxKsy02sZhVKZfYY6dCcntodG2vj4p31TKcDoFglNqrNqXmfjT6swyN8C2CCm41kcUFQls9QbhI/G1GcEvRc3owFIobiMYjFXzTvDYDe/WQ3w07EYdnJqjPhb4bZ73OkHLp+0CJs3mD5ao2at4XwbujfafJ94ZsS+GSAuVKOnlFQnFRJG89aJ+zkXfPbqO7KIS+WxqHBZ1dC2T0+gYtVy5Dm0aitJNj2aGFPhea1yYQjTvo+wJxn1OvV89Td36l3a0Vv8fRQpKsht/6cMpgKg+3IsMwDMMwNZaff/4Z//jHP3DTTTfh+PHjAIB169Zhz549MbGHB04MwzAMU8PxwRKVX21j8+bNaN++Pb799lusWbMGZ8+eBQB8//33mDlzZkxs4oETwzAMw9Rw/JKqc4r8F+tamOf+++/HI488gg0bNsDpVOOq9erVC9u2bYuJTTxwYhiGYRimRvLDDz/guuuuC0lv1KgRTp06FQOLWBxuiBwxvMgbp6RRwSgVL8YFI8jWIyLvZHtpSFkA8LsnEYBW0JhsL1OOteLwisWWmqjmgrEwjW5MxYWyUDKeRL716ohd5bz0eio6LSfRx73OQB7aNlQ8ftajhu322gPCytS4EiXNXV+14bezScoxFWm74gI2+5xquVQgTUXcaluSaOLENlGUdSqMdRJhbLxDfba+YJ08REhOnxsV6rqDeRKc6vV6Udple6jo10jwbdcRh1PEEZYrL/IWX1exPfo2iAXfqjjcuJ7K9TricNFyBW1rFxH70ns4g4Jv6vxxxp2gHJ8lUcZl0bgsEgeAes5y5Zi+D+7gu6O3G4DbF+qAotc3vP5Q8XI4nlSi6OVOHUG4XRANXO9ZCCNt6/QjKuiW70fTqKON9hmF2qPtO6F9xmYgCA+U4Q+xkSI/C1u1RQ6vvDi8stfHgvr16+PYsWNo0aKFJn3Xrl244IILYmJT7WtFhmEYhqlj+GGJyq+2MXz4cNx3333Iz8+HxWKB3+/H119/jalTp+KWW26JiU08cGIYhmGYGo4cObyyv9rGnDlz0KxZM1xwwQU4e/Ys2rZti+7du6Nr1674xz/+ERObeKmOYRiGYZgahyRJOHr0KF544QU8/PDD2LlzJ/x+Pzp06IDWrVvHzC4eODEMwzBMDacuapwkSULr1q2xZ88etG7dGi1btoy1SQB44GSILNimwu0Ue4kwryxGLfOr4vFCX7xyTKdJ6zsConGXRRUWUrGwET4qtvaqYms58ncSsTdeR7woCzcdVChpUwWsRlF0qSi91KoKY0uD9fcQoflZt2ojFdHK9aB1r+9SbU+o/7tyLBLJiuoDaEWyMnpRnKmw3R2Mep5AROApTrFov8wX+vroPcMGQaGt08QzpkQaiVubbiKicwTliqJ365cVhjhXEPFZTwBsBvoeKgJqolqg4nH6PN3eQP+jziH0eVIhuNw3CokjhFXgSAKo76dP039JX7cL7NX5H6BIjK0nOqfvgPxuJDvUvi4SYOtBn4toVwORA8a55Yp2S7DqCMIdFpHzh4pNx15RX9TLK3/fSvzq90rkqOPxV9w20cKPKGy5Uss0TlarFa1bt8apU6diOsN0LrVr+MkwDMMwTJ1h/vz5uPfee7F79+5Ym6LAM04MwzAMU8ORouAVJ9WyGScA+Otf/4qSkhJcdtllcDqdiI+P15z//fffda6sOnjgxDAMwzA1HDn6d2XLqG0sXLgw1iaEwAMnhmEYhmFqJCNHjoy1CSHwwIlhGIZhajh10asOAA4dOlTh+WbNmlWTJSq1duA0b948/P3vf8fdd9+tTOVJkoTZs2dj6dKlOH36NDp37ox//vOfaNeunenyUx1FiHM4kGQNeJlQLw49yqSAt009m+qZkkSOj7lTlGPZQySBeLF5/OrjOOtTvXHKg+l6nivFxKtO9rCjnmJN4gqU43rkfnreJCJEW64U+dRtaE66E5XjQ0UNAufLVLsSXaqXWma9QuU42aFuSaPaRbZ9IJ40btI+p4NbXVDvJL288pYW1AuOth/1nEqMD9iZYFfLjdPZkkbeViOReOCluYpD6gOQ7U502pxu0yNvMyHyTgqHaOyArrddiQhRnfS3sRBtv6LjAWWw7ZDRlit6yxI+S+i2JNRD1Equo1vv+GyBdI3HG7Eh1aX2E/k9pJ6ghW71fYmLJ151Vk+wPuJ2ED17n56nHKmH7NXq9ou3BEokfa6+I+ApnEDStJ5robaF0yd9Aq86M1AvOPq9Cud7HNH9aD2DhyUS9RhWv2mOoCdieTVtnFtXl+qaN28Oi0Xfbp+vavpCRdTKgdP27duxdOlSXHrppZr0+fPnY8GCBVi+fDkuuugiPPLII+jbty/27duHpKQkndIYhmEYhqmJ7Nq1S/O3x+PBrl27sGDBAsyZMycmNtW6gdPZs2dx880344UXXsAjjzyipEuShIULF2LGjBm4/vrrAQArVqxAeno6Vq1ahTvvvDNWJjMMwzBMpYjGXnO1LY4TAFx22WUhaR07dkRmZiYef/xx5f/31UmtW/AcN24crr32WvTp00eTfvDgQeTn56Nfv35KmsvlQo8ePbB169bqNpNhGIZhooa8VFfZ3/nCRRddhO3bt8fk3rVqxmn16tXYuXOnsLHy8/MBAOnp6Zr09PR0/O9//9Mts7y8HOXlqu6nsLBQNy/DMAzDxIK6qnE69//JkiTh2LFjmDVrVsyiiYc1cLriiitMFWqxWPD+++/jggsuiMgoEYcPH8bdd9+N9evXIy4uTjffuSIySZIqFJbNmzcPs2fPDklPs59FvN0uDNGvhyxepNdQYbHVpQoPRWLX33yqeLzUpwoSPUGBZTkRPJvb3kJNo2L0BKs7WK66hQQVncZZQrdqKfKrbf87EYTvPakOWAvPBITbmelnlLR2DfKV40S7aoPMGY8a1OxIidoOmm1WyEt/8mw9AIDNprZjer0i5TgtThVpO8lWGDK0TehWGY1dgTJoO2jEwCS9XnB7CroVRD27Kq4VQbfVoNfRbXxkYTYVLGvLIOJmwdS7z8R2HNFEXxBuwglBRwwsvp96Xiig1mknqySFpFPbqcDaTt6BZHvAkeFoudo/KQ5qb/BVLbOo79bv5Wofp9sgycLsOKuapme76NnSfkK/EaXBrWES7WrdGjrU9yLVrh4nWAPvZDjPSq9/KecFCxm6Qn0Tix6ib2akZdH+oifKTwi+yyk29d2k3z9ZoF7mDP2+MNGjfv36wv+vZ2VlYfXq1TGxKayB03fffYcpU6agXr16hnklScKjjz6qmcWJBnl5eTh+/Dhyc3OVNJ/Phy+//BLPPvss9u3bByAw89SkSRMlz/Hjx0NmoSjTp0/H5MmTlb8LCwuRlZUVVdsZhmEYpjLU1RmnjRs3av62Wq1o1KgRWrVqBbs9NotmYd/13nvvRePGjcPK++STT0ZskB69e/fGDz/8oEm79dZb0aZNG9x3331o2bIlMjIysGHDBnTo0AEA4Ha7sXnzZjz22GO65bpcLrhcLt3zDMMwDBNr6urAyWKxoGvXriGDJK/Xiy+//BLdu3evdpvCmts8ePAgGjVqFHahe/fuRXZ2dsRGiUhKSkJOTo7ml5iYiIYNGyInJwcWiwWTJk3C3LlzsXbtWuzevRujRo1CQkIChg8fHlVbGIZhGOZ8Z968eejUqROSkpLQuHFjDB06VFndkTl79izGjx+Ppk2bIj4+HpdccgkWL16syVNeXo4JEyYgLS0NiYmJGDx4MH799dewbOjVq5dwP7qCggL06tUr8spVgrAGTtnZ2RXqhM4lKysLNptYn1GVTJs2DZMmTcLYsWPRsWNHHDlyBOvXr+cYTgzDMEytRoIakiDSn9lYnZs3b8a4cePwzTffYMOGDfB6vejXrx+Ki1V93D333IN169Zh5cqV+PHHH3HPPfdgwoQJeO+995Q8kyZNwtq1a7F69Wps2bIFZ8+excCBA8MKXqmnUz516hQSExMFV1Q9FkmSTMc9PXPmDP71r3/h+PHj8Pu1wrpbbrklasbFgsLCQqSkpGDxzk6Ir2cXCiH1Itj6DKZB/WScaiTy1EQyFohunRZVkOgiAtYCX0CY/Z9SVddVTKKQpxJxKI0iLlPiV0XpVDwq23PSo+rcqDh896kM1YaigAjWW65OrToTVBvrxav3LS0PCFjLitX7Sn4i3LSr7RufqAqvbcGovV6fmtfpUPM2SjyrHCc7A/ejQn07eYZUrN4gKNIOR2gqT3vT50MjxVPKggJ8Kt5t4lQjusviXAq1wUhcqxfFWRthOnrRx40ii+sJbo0wE7FcD9l2Wl+9dpDfQ/q+0bamz0B2pqBoIv+TMo67kwFoo/oXE4ePC+LOKMeNnQGvIeqMQfuUyEmA1oG+syXkHrLttE+m2VUHivpE9CzaGcCM2NrMt0+/jMii45hxkDCqExWgy2J9+o0vI4408v8HSs968bcrtqOgoADJycnhGx4m8v+Trv7oLtgTKycr8RaX44trl0Rs64kTJ9C4cWNs3rxZWSLLycnBDTfcgAceeEDJl5ubiz/96U94+OGHUVBQgEaNGuHVV1/FDTfcAAA4evQosrKy8PHHH6N///7Ce8nxmd577z0MGDBAI6nx+Xz4/vvvcfHFF2PdunWm61FZTCurPvjgA9x8880oLi5GUlKSZiRosVhq/cCJYRiGYc5nznXxD1frW1AQ+MdeamqqktatWze8//77GD16NDIzM7Fp0ybs378fTz/9NICAY5fH49HEWMzMzEROTg62bt2qO3BKSQl4r0qShKSkJMTHq16pTqcTV155JW6//fYwaxxdTA+cpkyZgtGjR2Pu3LlISEioCpsYhmEYhiFEUxx+ruf4zJkzMWvWrAqvlSQJkydPRrdu3ZCTk6OkP/PMM7j99tvRtGlT2O12WK1WvPjii+jWrRuAgKe70+lEgwYNNOWlp6cr8RdFLFu2DEBgr7qpU6fGbFlOhOmB05EjRzBx4kQeNDEMwzBMNRHNgdPhw4c1S3XhzDaNHz8e33//PbZs2aJJf+aZZ/DNN9/g/fffR3Z2Nr788kuMHTsWTZo0Cdnhg2IUY1Fm5syZhnmqG9MDp/79+2PHjh1o2bJlVdjDMAzDMEwVkpycbErjNGHCBLz//vv48ssv0bRpUyW9tLQUf//737F27Vpce+21AIBLL70U3333HZ544gn06dMHGRkZcLvdOH36tGbW6fjx4+jatWtY93/77bfx5ptv4tChQ3C7tVrDnTt3hl2PaBHWwOn9999Xjq+99lrce++92Lt3L9q3bw+Hw6HJO3jw4OhaGCOK/S74/XZFQJlkLVXOUbEmFRvagse6AkSJCGaDA20rqNBcHIFWFlZqBONERJtMxJ/NHAG3TSrs/r5EnZalUZFl0WiSTa3b715V/E0FvgVBUfjxctVD0UkiX//twi9Dylh1sKOSdvqY+pK6C8m/buTI3+QfHharel/Jr54oJQJyizU0L6XUq/bLxvEBoXiiTX3hRIJwQBu9WYYKi6lQVBYy03aiz4jmlUW5tHx6XgQV3OqJa2URrN7mnSKRrBnhO0UvMriMUWTncNCLXG0mWrVsu89C04jo2RIqFLdJ4mdoFfjO0CjvjYjYOpEI/FOC79Sh8oZKWrpF1ZXQMuRvDBWfG7VlsV99h+h3ox75FshicyoOp98xUVtrI5YbtDntIwYTB3p9TuOwIChD7zqRGJ3aq3XaIemo+J2jbSJ/m/WcdsqkwDem1F89HuSxiOMkSRImTJiAtWvXYtOmTWjRooXmvMfjgcfjgdWqfU42m01xHMvNzYXD4cCGDRswbNgwAMCxY8ewe/duzJ8/39CGZ555BjNmzMDIkSPx3nvv4dZbb8XPP/+M7du3Y9y4cabqEy3CGjgNHTo0JO2hhx4KSbNYLGG5FzIMwzAMEz6SZIFUyYGT2evHjRuHVatW4b333kNSUpKiSUpJSUF8fDySk5PRo0cP3HvvvYiPj0d2djY2b96MV155BQsWLFDyjhkzBlOmTEHDhg2RmpqKqVOnon379hUu5ck899xzWLp0KW666SasWLEC06ZNQ8uWLfHggw8K4ztVB2ENnM4NOcAwDMMwTPUhx2KqbBlmkANZ9uzZU5O+bNkyjBo1CgCwevVqTJ8+HTfffDN+//13ZGdnY86cObjrrruU/E899RTsdjuGDRuG0tJS9O7dG8uXLw8r3uOhQ4eUJb34+HgUFQVmeUeMGIErr7wSzz77rKk6RQPTGqdXXnkFN9xwQ4iYzO12Y/Xq1RyOgGEYhmHOA8IJ85iRkaF4wOkRFxeHRYsWYdGiRaZtyMjIwKlTp5CdnY3s7Gx88803uOyyy3Dw4MGw7KsKTEccu/XWW5VYDpSioiLceuutUTGKYRiGYRgVWeNU2V9t4+qrr8YHH3wAABgzZgzuuece9O3bFzfccAOuu+66mNhkesZJz4Xw119/VQJWnQ+k2YqQYLcpgk8qKqQCQirSlEXCVh1hp4M0myyK1BM/UsGnHK2WXq8nLJavu9yl7gPU3HFCOd54tq1yXOCLD7lXtvOkckyFzBe7jgEAjsapXhHUhqviDyjHrqCIOPtitax/xvVUjo+cUMuQNblWOxFlWtV/RdA1eQsRJ1uCeWxEHB7vUu3NqndGOW5bL2B7gVcNoOYiwvZUuxplXH4eVJxLRdE0urPcN6g4nIpdRUJzPYSRl0mSkbjWjIhWc735fzsB0O/jkWDTEZ2LxMdGInkA8Ae/Tz6NIFw91kQJFwj8rZL4eYqup8f1rSQSt6Pi9qH9SI1Q7RWeF0HzUlE6rYecnmgJjXgOaJ0e5Lai77Thsk4Y/VMpV0eU7bdU3G+p65FPI/4mZSjPyKeTt+LdHWj/0773geMS8o0XRVsvsVWPrjcWGqeawNKlSxW50F133YXU1FRs2bIFgwYN0iwHVidhD5w6dOgAi8UCi8WC3r17a3Yq9vl8OHjwIAYMGFAlRjIMwzAMU7fwer2YM2cORo8erQTtHDZsmOKdFyvCHjjJnnXfffcd+vfvj3r1VLd1p9OJ5s2b489//nPUDWQYhmGYuk4swhHEGrvdjscffxwjR46MtSkawh44zZw5Ez6fD9nZ2ejfvz+aNGlSlXYxDMMwDBOkri7V9enTB5s2bVK8+GoCpjRONpsNd911F3788ceqsodhGIZhGAYAcM0112D69OnYvXs3cnNzQ/asi0XQbdPi8Pbt2+PAgQMhEUTPN9JthUi0WeFBaJwJOt1pJloyFSnK5cYRYaKe4NYZFB9SYSMVP9J0j2QP/lcVl9Yn4tHuiT8px4e9DYN5icDVpkYcp8QFxahxzuNKWnOH6l2ZpPmHTOCPP8YfUVLatF6tHH91QWvl+NMT7QAAR4pUxwKvT62b3aa2SZN6auRlWbB9slR9ieo51XpeEK/aRqMpy6QQkSc9lsXHVPRPxbdUHBoXFN3SKO56mBHayhgJbul14Yi8jYTi1YFICK5rl0B8LBJrA1rxt1yeX0cQTt9Z+TrteYmcF4iJyXnZcSNgo5o3wx7oq2d86p6eBeTYYaVC8EA/SrKq/ZQ6oNjC6F8iZAG5Q+O8QL8h4u+JCMMo4nqR6+XnZnD+XGTxt17Ub409ltDvo9WgXArtD/Rdp89DhGxbsa164hxKUViqq40zTn/7298AQAmoSYlV0G3TLjVz5szB1KlT8eGHH+LYsWMoLCzU/BiGYRiGiS4SAEmq5C/WlYgAv9+v+4vVTiWmZ5xkz7nBgwdrwhLIYQp4yxWGYRiGYaJNWVkZ4uLiYm2G+YHTxo0bq8IOhmEYhmF08MMCSzVvuVIT8Pl8mDt3LpYsWYLffvsN+/fvR8uWLfHAAw+gefPmGDNmTLXbZHrg1KNHj6qwg2EYhmEYHeqqV92cOXOwYsUKzJ8/H7fffruS3r59ezz11FO1Y+AEAGfOnMFLL72EH3/8ERaLBW3btsXo0aPPq8jhjWwlqGezojgotj7lU0XIbkltNpHY1UxUZSouTSDCRCeJDFzfWgpAFWgDwBm/GgWbCjPle7uJqN1B7GlMxM0Z9sAxFZ9S0Vu5QEjqIPWtb6WRh0XtoNLUrp6/KXm/cjwkKeChedSrTr/m+9R+REXaVMRZJgXa7YeSLGKDao+LRF4u8TsBaEXielG95fajIvCGtiLlOIFEYXbKolQ94auOkNkIQyGuQLAc1n0Nvpkx+9eoiQjUfoEIHNCKgW2Qo6mLHS+0ZYRGiqdCc5EYlzp50GPaVxsGo4g3d6jR83/wq32VPmO5ztpo4uq7LsKMU4qe2F0TlVsQwVtbdxqVO7RNrDp9TugMAGoDjeodWgYVyWvLCM1L+4BepHIRGueP4LcWUEX1mvYT1N1eTeJwv2SBpY7FcQIC++MuXboUvXv31kQKv/TSS/HTTz9VcGXVYfrLvmPHDlx44YV46qmn8Pvvv+PkyZNYsGABLrzwQuzcubMqbGQYhmEYpg5y5MgRtGrVKiTd7/fD4wl/W6toYnrG6Z577sHgwYPxwgsvKNuueL1e3HbbbZg0aRK+/PLLqBvJMAzDMHUZ2TOusmXUNtq1a4evvvoK2dnZmvS33noLHTp0iIlNpgdOO3bs0AyagEBY9GnTpqFjx45RNY5hGIZhmLqrcZo5cyZGjBiBI0eOwO/3Y82aNdi3bx9eeeUVfPjhhzGxyfRSXXJyMg4dOhSSfvjwYSQlJUXFKIZhGIZhmEGDBuGNN97Axx9/DIvFggcffBA//vgjPvjgA/Tt2zcmNpmecbrhhhswZswYPPHEE+jatSssFgu2bNmCe++9FzfddFNV2BgTrJbAT9YFymJkQBtlmCILIamgkQoe9a6ToeLQZBK1NsnqDsmbaT+rHJdp7iGLXdU52ThiTwIRh9qCx1RU6ZGIiJaGSwse+klSmUTLVesml+Eh1/slsYDSFhRbtnSodcy2q9HJf/er9p7waUPtA4A1QS23iAjmaVvLEYBpVHQqLnUSga8cxZmKwKmQN5E8C7mN9cTh4YieK8KMkFNjQxT+URmpsN0IMxGoNVGjg8+ICth9ApE3oIq/NZH2NYJv9Vh2otAVIZO8ch4qNNdzMpDrQZ0xLnT+phz/VJ6pHP/uDWyYnhinipSToUa+txKBtSiKuFFkca0YW5xuE6zh6DkhiKJy69ngE4jYIxWSa8sQtIPOMxRBHW0ake8C/VbKVtroe0xu6wna5jVx38pQV2ecAKB///7o379/rM1QMD1weuKJJ2CxWHDLLbfA6w2G9Hc48Le//Q2PPvpo1A1kGIZhmLpOXfWqk9mxY4fiyX/JJZcgNzc3ZraYHjg5nU48/fTTmDdvHn7++WdIkoRWrVohISHB+GKGYRiGYZgw+fXXX3HTTTfh66+/Rv369QEEQiJ17doVr7/+OrKysiouoAqIeD4+ISEB7du3x6WXXsqDJoZhGIapQiq9T10UvPJiwejRo+HxePDjjz/i999/x++//44ff/wRkiTFJPglEMGMU3FxMR599FF8/vnnOH78OPx+7frugQMHomYcwzAMwzDywKeyGqcoGVONfPXVV9i6dSsuvvhiJe3iiy/GokWLcNVVV8XEJtMDp9tuuw2bN2/GiBEj0KRJE81GvwzDMAzDMNGiWbNmwkCXXq8XF1xwQQwsimDg9Mknn+Cjjz6K2UivurBDggOSEnb/AvsZ5VxxcAsPQOuRJXu/lJDzZyR1GZN64MjeOnTLBhr6n3rSxQm8Nhya8ap63hk8JruhaDzp4oj3m8sS+vgLJNUGj2DLFeo94yH/evETjxiRj4lPx+vGJvCaodfTuicRT0OZ5DC2Uakf3P6Cei1SDxzqYSPaZsEIh3EWyFtW6HrgCYh0CxQz99BFUEQknoGA/tYdagrZOkXjxVaxlxX1rBJ5VBl53QGAQwrd2sSn2b5FLVe2h3rV0a2RaD8StVWmvVA5PuVTQ7f86k4NpAW96wAgw6bmjQPd4kW2QcVDveME/dZF31kdTzrZg067fZPOOyuFepNqPM+IdXIZtA/YLOLtWzTb3gSfF60n9cgUlVGxz3IAeSsW6u2YRG5SrOmrUki5TktoW3sE/bQqqKtedfPnz8eECRPwz3/+E7m5ubBYLNixYwfuvvtuPPHEEzGxyfSXsEGDBkhNTa0KWypk3rx56NSpE5KSktC4cWMMHToU+/bt0+SRJAmzZs1CZmYm4uPj0bNnT+zZs6fabWUYhmGYaCJF6VfbGDVqFL777jt07twZcXFxcLlc6Ny5M3bu3InRo0cjNTVV+VUXpmecHn74YTz44INYsWJFtYrCN2/ejHHjxqFTp07wer2YMWMG+vXrh7179yIxMRDfZ/78+ViwYAGWL1+Oiy66CI888gj69u2Lffv2cXBOhmEYptZSV2ecFi5cGGsTQjA9cHryySfx888/Iz09Hc2bN4fDoV2oqKqNftetW6f5e9myZWjcuDHy8vLQvXt3SJKEhQsXYsaMGbj++usBACtWrEB6ejpWrVqFO++8s0rsYhiGYRimahg5cmSsTQjB9MBp6NChVWCGeQoKApF15em5gwcPIj8/H/369VPyuFwu9OjRA1u3btUdOJWXl6O8XNX1FBYWCvMxDMMwTMyIxlpbbVyrC3L8+HGhJ/+ll15a7baYHjjNnDkzrHyvv/46Bg8erCyjRRNJkjB58mR069YNOTk5AID8/HwAQHp6uiZveno6/ve//+mWNW/ePMyePTsk3WmxwGmxIEkWZhIxop5wWBYW17erwu5USRUhlvjV2bliyRlSFhWEJ1lDtzPxa4TZdEsV9fh3f+CRUkGpdusPNW+J5AmWpd6rwE/zhgohrTozvcWkM4vE4XEWKjSXQo59VKhKmpeK8JKsqvi2KFhPWfh9LmWS2rXl7WuoEN9hCRXUA+L60W1m9OofLg7NNjQGmXXuZST+NhKrRyoedwifrHE0Yr2tO9RyVTxEimu0XQd9nlQ4LNfPASog1pFzGjQFFZ0r74BGMK4eO3QcDtQ09Xxrsv2K7BRyxNNASTvhU4XiSY4z5B6B/1LHDDOODDQvdTApl0LPG20lZNX0ZfqtEAi3DcTjIWVYQp0pbDr9T28LF7Ws0GfksNB2UK+PE9yDfo9oPeKC13mqa/UrCkt1qIVLdXl5eRg5cqQSu4lisVjg84U6nFQ1VbMhFYA777wTv/32m3HGCBg/fjy+//57vP766yHnzg2PIElShSETpk+fjoKCAuV3+PDhqNvLMAzDMIx5br31Vlx00UXYunUrDhw4gIMHDyq/WMWNND3jFC7njgyjxYQJE/D+++/jyy+/RNOmTZX0jIwMAIGZpyZNmijpx48fD5mForhcLrhcriqxlWEYhmGiQTQif9fGAJgHDx7EmjVr0KpVq1ibolBlM07RRpIkjB8/HmvWrMEXX3yBFi1aaM63aNECGRkZ2LBhg5LmdruxefNmdO3atbrNZRiGYZioIXvVVfZX2+jduzf+/e9/x9oMDVU24xRtxo0bh1WrVuG9995DUlKSomlKSUlBfHw8LBYLJk2ahLlz56J169Zo3bo15s6di4SEBAwfPjzG1jMMwzAMY5YXX3wRI0eOxO7du5GTkxPiyT948OBqt6nWDJwWL14MAOjZs6cmfdmyZRg1ahQAYNq0aSgtLcXYsWNx+vRpdO7cGevXr48ohpPLYoXLYlWEoB4iYkywisVosvDXqYnUrealImS3zxbM6yN5QwXhAFDPEhCSU3H4aRLhO45GQg6W4SaTiUVE/G2TQoWbeiJlKhSVRdGaNPFlhtBo4ao43Pg6KqyuH4wSrifyppzxu4L3lYR5HYLIv7RuJeQvPYF0JNgM/vGnJ87Vi+gsQvRszYiJw7HHMMK3jgBYCBXwa8qTI+0TJwQTEcn1dM5GbWEldZPFydr3gp4PPabOBLT/ZtjU97ehNaAFbek4qaRRR5IyIn4+6g3EzqNR9I0dHcR1pFHEhU4POus6ct20kcPFonJh5HCBeDxQBki6HDncuK86BFHjtfaGCvypMN5FHBKoUFz+NtFdEayCjiRKqxIkS+XF3SavnzdvHtasWYOffvoJ8fHx6Nq1Kx577DHNvnF6GuL58+fj3nvvBRDwXp86dSpef/11lJaWonfv3njuuec0chs9tm7dii1btuCTTz4JOXfeicOjjSRJwp88aAICjThr1iwcO3YMZWVl2Lx5s+J1xzAMwzC1FVnjVNmfGeTA09988w02bNgAr9eLfv36obi4WMlz7Ngxze/ll1+GxWLBn//8ZyXPpEmTsHbtWqxevRpbtmzB2bNnMXDgwLAGPRMnTsSIESNw7Ngx+P1+zS8WgyagCmecsrOzQ6bUGIZhGIapHRgFngZUxyyZ9957D7169ULLli0BBGIuvvTSS3j11VfRp08fAMDKlSuRlZWFzz77DP3796/QhlOnTuGee+6p0MmrujE943T48GH8+uuvyt//+te/MGnSJCxdulSTb/fu3cjKyqq8hQzDMAxT16kBm9WdG3j6XH777Td89NFHGDNmjJKWl5cHj8ejCU6dmZmJnJwcbN261fCe119/PTZu3Fg5w6OM6Rmn4cOH44477sCIESOQn5+Pvn37ol27dli5ciXy8/Px4IMPVoWdDMMwDFNnieZedefukBFOWB5R4OlzWbFiBZKSkpRtz4BAiCCn04kGDRpo8qanpytOXhVx0UUXYfr06diyZQvat28fspI1ceJEwzKijemB0+7du/GHP/wBAPDmm28iJycHX3/9NdavX4+77rrrvBk4WWEJiJiDYkG/RKMCUxGoRXMNANiIWC6BCA9BIl8nB8XdVNiYqIlKSwWLgcd02q9GyT7icyrHbR2qPalB0XSBYVhqVSjpNxKJkrx6U5QaoXPw1kUSrQONvE7E4QZmUtmn6N5GUb8BNYqzT6eeonJpfRKiKAg3g54w1ow1RgJ0ilFEcV17DAToeiJi0Xm9e9hE4owoaHKtAnv0BOOi9EjfF4osVK5P3pH6xAFFE7napmpLZIr86rfARnYfkNsy0kjxhlHyDcTj9N5G4vGQMioZcEhPtC87glCHGvq99gvu60CoYDxmROn2564GzZw5E7NmzarwGjnw9JYtW3TzvPzyy7j55psRFxdnaINRcGqZF198EfXq1cPmzZuxefNmzTmLxVI7Bk4ej0cZmX722WeKK2CbNm1w7Nix6FrHMAzDMExUOXz4MJKTk5W/jWab9AJPU7766ivs27cPb7zxhiY9IyMDbrcbp0+f1sw6HT9+PKwYiwcPHjTMU92Y1ji1a9cOS5YswVdffYUNGzZgwIABAICjR4+iYcOGUTeQYRiGYeo60QyAmZycrPnpDZyMAk9TXnrpJeTm5uKyyy7TpOfm5sLhcGiCUx87dgy7d+82FZza7XZj37598HpD94GsbkwPnB577DE8//zz6NmzJ2666Salkd5//31lCY9hGIZhmCgSA3H4uHHjsHLlSqxatUoJPJ2fn4/S0lJNvsLCQrz11lu47bbbQspISUnBmDFjMGXKFHz++efYtWsX/vrXv6J9+/aKl11FlJSUYMyYMUhISEC7du1w6NAhAAFt06OPPmquQlHC9MCpZ8+eOHnyJE6ePImXX35ZSb/jjjuwZMmSqBrHMAzDMExsWLx4MQoKCtCzZ080adJE+Z27HLd69WpIkoSbbrpJWM5TTz2FoUOHYtiwYbjqqquQkJCADz74ADabTZifMn36dPz73//Gpk2bNNqpPn36hNhRXUQUx0mSJOTl5eHnn3/G8OHDkZSUBKfTiYSEhGjbFzP8kDRCQDcRDdKIu1TQLUedpcJuikYobgtMNzpIWZqoteR+hVJgdH/Aqz6uA+5GynEjqxoeIi4otksiQ2JqOxULe4LJVASqJ4w1ElDbBBGAnZKxjFnOqycSNxrZ60VmpneWI717iEeKQ0+UKtAqaiIai4TQ1bz9k6h3hRN53QirTvsZoTzDCCOdhyUErqI2NhRAEyKJuK7Xjka+G3r9Pk4QJdtBopB7BF5XetH+y0leuR0074hAOK+xMZy2i1DkLXIiMLxG79sl+L55SNYCyaMci76VNs03OtQZqPqwoPIvgrnrpTCf3x133IE77rhD93xcXBwWLVqERYsWmbo/ALz77rt44403cOWVV2rE5G3btsXPP/9surxoYHrg9L///Q8DBgzAoUOHUF5ejr59+yIpKQnz589HWVkZzzoxDMMwTLSJQhymWDsFRsKJEyfQuHHjkPTi4uKwvPKqAtNLdXfffTc6duyI06dPIz4+Xkm/7rrr8Pnnn0fVOIZhGIZh6i6dOnXCRx99pPwtD5ZeeOEFdOnSJSY2mZ5x2rJlC77++ms4nU5NenZ2No4cORI1wxiGYRiGCVLHZpyuvvpqrFmzBvPmzcOAAQOwd+9eeL1ePP3009izZw+2bdsWEtepujA946S3sd6vv/6KpKSkqBjFMAzDMAxBskTnV0vYtGkT3G43unbtiq+//holJSW48MILsX79eqSnp2Pbtm3Izc2NiW2mZ5z69u2LhQsXKnvTWSwWnD17FjNnzsSf/vSnqBsYK8olP5ySGinWqRNd1q0ZwQeEmzYdAV45EUvL4kSHRrhI7kH+aXDCHxioHvakKWnFfjXuxv+86oA1IRg5ONlCIgjr2G5V/htGlHGRaNpAaJhgFUdYF0XfNRJgn4vIdq1YXUUWgsfpCE6N6kHxCGx3VrtINJRwBOpmoh5HIkAPpx+JxNLVLa6PlEgjcEd2r0ivIzbKj0NjtjiC93FvQHbR0Ka6mSeR6+hzKzMQDOtF6FdNiO60h+geRk4u9F2g/bpEInMJwXSRIB8AXDHS19RF2rdvjxUrVsTaDAXTA6ennnoKvXr1Qtu2bVFWVobhw4fjP//5D9LS0vD6669XhY0MwzAMU6eRpMqPOaM8Zq1yioqKDLdvoRHQqwvTA6fMzEx89913eP3117Fz5074/X6MGTMGN998s0YszjAMwzBMlKhjGicgsMGvHvJedyLpUFUTURyn+Ph4jB49GqNHj462PQzDMAzDnEs0NEq1SOMEAG+//TZSU1NjbUYIEQ2cXn31VTz//PM4cOAAtm3bhuzsbDz11FNo2bIlhgwZEm0bGYZhGIapY1x11VXCGE6xxvTAafHixXjwwQcxadIkPPLII8o0WYMGDbBw4cLzbuAkCwfLSFqZpEpni/xqWAZZkFjfqkbypdF3aVTeMinQ9B6LOs3osaqbF8aRKOKySPMC+xlSlvroZEE4AGQEowg7NEJzFSpmNxLlmhFNm7neZ2BDWEJnKTQvjQZM3UXNCNtl4aueaN9hIGI37aZaxdBnX+nnSese6Zx/hJeZiWQuEw0xt1GE72jaEElk8nNxClqK1uGwT9WDnPCqx5n20wC036sTfrU3l5HvjScooE4i351E8h0T1cNQMG4So7Yy8x7Sfh1H2q84+J2ntlNhvC8o4S8JY4eEaGCRAr/KlsFUHtPf+UWLFuGFF17AjBkzYLerL1PHjh3xww8/RNU4hmEYhmEQk01+Y0l2dnZYe9nFAtMzTgcPHkSHDh1C0l0uF4qLi6NiFMMwDMMwdZeDBw/G2gRdTM84tWjRAt99911I+ieffIK2bdtGwyaGYRiGYSh1LABmTcb0jNO9996LcePGoaysDJIk4V//+hdef/11zJs3Dy+++GJV2MgwDMMwdZs6GI6gpmJ64HTrrbfC6/Vi2rRpKCkpwfDhw3HBBRfg6aefxo033lgVNjIMwzAMw9QITA2cvF4vXnvtNQwaNAi33347Tp48Cb/fXyPdBSuLDxJ8kBSPC+rF4dfxonAHvTAKJdXTzimJg3O5g5taFPsdStpxn7pyWt+m+vHVtwbul21XvfXiLPnKcQrxxnMIvHjcxBOkqj3pwsEZha0K5NYp13FocRH3EaM6FZEyCqXAVjaydyKgXc+26njYhYtNp+6+Kgrpa7QWX1X+QEbbs4RzXyOPNCOPt3A82sx4vfkrucxB7yXyCvOEUYbVhFuUfA963zO+BOU4gXj/ylut0DbVq2+cxRuSRj2GzWyBEimV9V7V8+yl5SZZKg6sKJcRzhZRUaEOzjh5PB7069cPzz//fIXBMKsbU/3Pbrfjb3/7G8rLAy9cWlraeTloYhiGYZgaRR3zqgMAh8OB3bt3w1LD9gU0PXDv3Lkzdu3aVRW2MAzDMAzDKNxyyy146aWXYm2GBtMap7Fjx2LKlCn49ddfkZubi8TERM35Sy+9NGrGMQzDMAyDOrnlCgC43W68+OKL2LBhAzp27Bgy5liwYEG122R64HTDDTcAACZOnKikWSyWmG64xzAMwzDnM3U1cvju3btxxRVXAAD279+vOVfREp7ZPe4sFgt27tyJ7Oxsw7wRBcCsC/gkfdGf0ZYBNiJ9pWJOKraU83jIamkJEZV7fHRbF0/wGrWsdCIeT7KqecuDwnV3hGJjupVGdQjFIyUu2K4lOqJUkeCTCpLp1gln/HHKsUMgCNUTMovK1Vv71hOFV3S+qgTj4Qmzw7+36D0xuoeeKFtP8C3Kbywe1xHiC8syVi0YicON7PFJkUmabRa1NW0m+oT87Tnjiydlqdc3C26zokcceRcc5ImKROcUjxQqgg9nGyUzROrUINusdfaJrKxq316pDorDAWDjxo0RXXfmzBksXLgQKSkphnklScLYsWPDnvgxPXAKZzQWa5577jk8/vjjOHbsGNq1a4eFCxfij3/8Y6zNYhiGYRimmrjxxhvDdmCbMGFC2OWaHji9//77wnSLxYK4uDi0atUKLVq0MFts1HjjjTcwadIkPPfcc7jqqqvw/PPP45prrsHevXvRrFmzmNnFMAzDMIwx119/PZYvX47k5GRcf/31FeZds2aNMN3vNzcvWVRUFHZe0wOnoUOHKpomCtU5devWDe+++y4aNGhgtvhKs2DBAowZMwa33XYbAGDhwoX49NNPsXjxYsybN6/a7WEYhmGYymJBFDROUbGk6klJSVH0S+Estelx5MgRXHDBBRXmee2113DzzTebKtf0wGnDhg2YMWMG5syZgz/84Q8AgH/961/4xz/+gQceeAApKSm48847MXXq1Gp3IXS73cjLy8P999+vSe/Xrx+2bt0qvKa8vFyJSwUAhYWFVWojwzAMwzD6LFu2THhslr59++Lrr7/WncRZtWoVbr311qofON19991YunQpunbtqqT17t0bcXFxuOOOO7Bnzx4sXLgQo0ePNlt0pTl58iR8Ph/S09M16enp6cjPzxdeM2/ePMyePTsk3Y/wBIgOS6hoMpwoubIYlQpGy4g43Ap1MOcJPqbDXnXk7bD8phw7SSTfMoF4lIoY9SLmim2suUJx2R4aIbyEtKWD2C5H+Na0A6lPktWtHMcFnydtpyKJ5iXCf0Gb0Pb3kPOJiqBW3KbVKTSl99Lr47JtZkTiZu8hvI40KRXtigTJeu+ZnEffMUMKyUsdOsIRioeLniDcb+IeflKGHF3cSuzVK8sadBQ54UtW0i50HFeORd8ujYMFfYcEbS16xwDAI4W2r1kivU7GSPDtD6N8IycgWWldVdH3Q29XN8MRiDh9+jRWrlyJl156Cd99951uvsaNG2PAgAH44osvQsIYrF69GqNGjcJjjz1m+v6mvxA///wzkpOTQ9KTk5Nx4MABAEDr1q1x8uRJ08ZEi3NdFOUlRBHTp09HQUGB8jt8+HB1mMgwDMMw4VMHI4efy2effYabbroJmZmZmD9/Pnr06FFh/g8//BA+nw9DhgyBx6NuavTmm2/illtuwdy5c3HPPfeYtsP0jFNubi7uvfdevPLKK2jUqBEA4MSJE5g2bRo6deoEAPjPf/6Dpk2bmjamsqSlpcFms4XMLh0/fjxkFkrG5XLB5XJVh3kMwzAMw5jg0KFDWLZsGZYtW4azZ8/i9OnTePPNN/HnP//Z8Np69erhk08+Qffu3XHjjTfi7bffxttvv42//vWvePjhhzF16tSIbDI94/TSSy/h4MGDaNq0KVq1aoXWrVujadOm+OWXX/Diiy8CAM6ePYsHHnggIoMqg9PpRG5uLjZs2KBJ37Bhg2ZpkWEYhmFqFXVsxunNN99Ev379cMkll2D37t14+umncfToUVitVlxyySVhl9OoUSOsX78eO3bsQJ8+ffDXv/4VM2fOxH333RexbaZnnC6++GL8+OOP+PTTT7F//35IkoQ2bdqgb9++sFoD47ChQ4dGbFBlmTx5MkaMGIGOHTuiS5cuWLp0KQ4dOoS77rorZjYxDMMwTGWoa5HDhw8fjmnTpuGdd95BUlJSRGV8//33yvHjjz+OW265Bddddx0GDRqkOWd2qzjTAycgoCEaMGAAevbsCZfLVaN2Lr7hhhtw6tQpPPTQQzh27BhycnLw8ccfmw7c6YdFV4hKjxMt6rppMRwVlikSPNKowHEWtzBdxkFE4B5JjRZeJnlC8oaDLIAOJ6pvpCLhqobaHkdkmlSYLUvu6fRqEhUha74mgRPhRF73CNrEphHJqse/eAPRyYv96rJwfVupcpxMnn2CVXYyCEPAapijcteLBPCAVhAr6j9aEbyg3DDa1y8olwqS9QTEoujaPp1vlKh+NEq2Jlq4peL7WgWtqS9gr1hSbCQqp4Jwag+9zhlMTrSqjiZx5BtCbZOF0Hr2GvUT6kzhEQiQqRhbT4Cudd4wT6QRwCMuL9inwhGaM+YZPXo0nnvuOWzevBkjRozADTfcYDrE0eWXX64JlSRJEt5880289dZbSkilSLaKMz1w8vv9mDNnDpYsWYLffvsN+/fvR8uWLfHAAw+gefPmGDNmjNkio87YsWMxduzYWJvBMAzDMNGhjm25snTpUjz99NN488038fLLL2PSpEno378/JEkKO7hlVW0RZ/ofrI888giWL1+O+fPnw+lU3efbt2+vaJwYhmEYhokidUzjBADx8fEYOXIkNm/ejB9++AFt27ZFeno6rrrqKgwfPlw3ajgQWKbLyspCdna24Q8A9uzZA6/Xq1sexfTA6ZVXXsHSpUtx8803w2ZTJ+EvvfRS/PTTT2aLYxiGYRjGAFnjVNmfGebNm4dOnTohKSkJjRs3xtChQ7Fv376QfD/++CMGDx6MlJQUJCUl4corr8ShQ4eU8+Xl5ZgwYQLS0tKQmJiIwYMH49dffzVlS+vWrTFv3jwcPnwYK1euRElJCW666Sbd/B06dMCpU6fCLr9Lly4amyvC9FLdkSNH0KpVq5B0v9+viZPAMAzDMEztZfPmzRg3bhw6deoEr9eLGTNmoF+/fti7d68SUPLnn39Gt27dMGbMGMyePRspKSn48ccfERcXp5QzadIkfPDBB1i9ejUaNmyIKVOmYODAgcjLy9NMwISD1WrFoEGDMGjQIBw/flw3nyRJeOCBB5CQkBBWuW632zhTENMDp3bt2uGrr74KEVu/9dZb6NChg9niaiweyQKPZFHFixaxUDzOQiMOB6b5ivzqEiYVmtLoxM6g/JGKwG1WVSzsJuJvT1BeS0WeCdbwB6lGq8FUBFmdEayjjVVzTEXE2v8CxlG7neR5OwXi8UB5Ff/zjQqZM4NC8HJrmZJWSCLF/+xNVY4Tg0LxDNtZtSxig0OjRbXo1iEcbAaOHT4dEbcZUbmo/1FBuV470s+pT5hF5zqBiJv2B6OI5BpEybqPXVBTi05LkTKMomTrCcGVNE1kcbXVZGE7dUg4449Xjmn/UtpE5ztHaybboCeedgt6R5zA2QXQ9iOPoG4iofm5tokwatPKRiYHVCcEPRujTgwih69bt07z97Jly9C4cWPk5eWhe/fuAIAZM2bgT3/6E+bPn6/ka9mypXJcUFCAl156Ca+++ir69OkDAFi5ciWysrLw2WefoX///pHWBo0bN9Y91717d+HsmB5dunRBfHy8cUZEMHCaOXMmRowYgSNHjsDv92PNmjXYt28fXnnlFXz44Ydmi2MYhmEYxogaIA4vKCgAAKSmBv6h5/f78dFHH2HatGno378/du3ahRYtWmD69OlKWKK8vDx4PB7069dPKSczMxM5OTnYunVrpQZOFbFp06YqKReI4B+qgwYNwhtvvIGPP/4YFosFDz74IH788Ud88MEH6Nu3b1XYyDAMwzBMlCgsLNT86Eb3ekiShMmTJ6Nbt27IyckBENiV4+zZs3j00UcxYMAArF+/Htdddx2uv/56bN68GQCQn58Pp9MZEkqgoj1kazoRxXHq379/lY0SGYZhGIbREs0AmFlZWZr0mTNnYtasWRVeO378eHz//ffYsmWLkiaHBRgyZIiy59vll1+OrVu3YsmSJRXuJVfRHrI1nYgGTgzDMAzDVCNRXKo7fPgwkpOTlWSj/VonTJiA999/H19++aVmH9q0tDTY7Xa0bdtWk/+SSy5RBlgZGRlwu904ffq0Ztbp+PHjYW+FdubMGbz99tv4+eefce+99yI1NRU7d+5Eeno6LrjggrDKiCZhDZwaNGgQ9sjw999/r5RBNYViyQGLZFUE3VqRNxXqhgrFS8j5IiLMdBB5siz4pNHAyyQ18jiNDC6LO5OIsNgJKkqP3qg9koi91YWRIJSiEZ0KLqNRv2leWRRO08ILtRZALGJWBcsJpL+4JHV6vCER/hcHnz0V2boMngytj1HEcU2E5jAieFcWkR5AE3k8nP4r+Kd2pOJxiL5lYbSD/J5ZiS1+HbGtT47wTc7rvaeyuDucaOBylGqfjsqC5pW/J/Rb8lN5E+W4fvwB5Viuk1MiT0bnmy+LwjU2kmMPsUF1rgm9HgBKSD3odXJ51HYjhxhqg/5zEYjrddpSrwwZuc2KJTNfiJpBcnKyZuCkhyRJmDBhAtauXYtNmzahRYsWmvNOpxOdOnUKEWHv379fcSDLzc2Fw+HAhg0bMGzYMADAsWPHsHv3bo2gXI/vv/8effr0QUpKCn755RfcfvvtSE1Nxdq1a/G///0Pr7zySrjVjhphDZwWLlyoHJ86dQqPPPII+vfvjy5dugAAtm3bhk8//TQmG/syDMMwzHlPFJbqzM5YjRs3DqtWrcJ7772HpKQkRZOUkpKieKDde++9uOGGG9C9e3f06tUL69atwwcffKCIs1NSUjBmzBhMmTIFDRs2RGpqKqZOnYr27dsrXnYVMXnyZIwaNQrz58/X7Fl3zTXXYPjw4eYqFCXCGjiNHDlSOf7zn/+Mhx56COPHj1fSJk6ciGeffRafffaZss7JMAzDMEyUiIFX3eLFiwEAPXv21KQvW7YMo0aNAgBcd911WLJkCebNm4eJEyfi4osvxjvvvINu3bop+Z966inY7XYMGzYMpaWl6N27N5YvXx5WDKft27fj+eefD0m/4IILYiYuN61x+vTTT/HYY4+FpPfv3x/3339/VIxiGIZhGCa2SGEu5Y8ePRqjR4/WPR8XF4dFixZh0aJFpm2Ii4tDYWFhSPq+ffvQqFEj0+VFA9PhCBo2bIi1a9eGpL/77rto2LBhVIxiGIZhGIZQB/eqAwIeew899JCyM4nFYsGhQ4dw//33489//nNMbDI94zR79myMGTMGmzZtUjRO33zzDdatW3debfJb6nfA6rfBGpSxOi2qONdhoUJd9VgWN+b7UtSzRGDY0FasHJ/xB8LA0wjhcRZV/EgjisuicBo5XC8qsgi9CL+ismoyRhJMqyYatYpIVE7/xSCOYh1+m1Bxs15EbD3RuAjZyYA+N49G+EqjoocWrBuJW4moLSYskXYFVGXUeZsiiq64boC5tha9G3qiZ1ksrD1vDTlP82iF3RWLv/065YrK8BmI0in0u/IriVD/Xbnqkt7SEdi6or6NOKAQ0TN1gpHb2i2Jnzh935KsoZumlkjq/3ZoOxT51S06ZJvpt5a2r1/nGalpFT8XTV6dZ1TRNYAaObzUXz0uNdEMR1CbeOKJJ/CnP/0JjRs3RmlpKXr06IH8/Hx06dIFc+bMiYlNpgdOo0aNwiWXXIJnnnkGa9asgSRJaNu2Lb7++mt07ty5KmxkGIZhGKYOkpycjC1btuCLL77Azp074ff7ccUVV4QlLK8qIorj1LlzZ7z22mvRtoVhGIZhGCaEq6++GldffXWszQAQ5uy6SJhVEUVFRREZwzAMwzCMgDqqcZo4cSKeeeaZkPRnn30WkyZNqn6DEObAqUGDBjh+/HjYhV5wwQU4cOCAcUaGYRiGYQyRNU6V/dU23nnnHVx11VUh6V27dsXbb78dA4vCXKqTJAkvvvgi6tWrF1ahsvq9NlMiOQHJpkQO9xBJbRyIiJsM4d3BWMZWImN2WMURvuMs7uB/xfePs4SKKn2CyLoA4BD8M4LaRcWYFKvBW2QUOVdjWzULzMWCbx3hcDCdXkOF5FRsrbQwFcPqiUPlSNIkzWGhkZDpsw+1zUkiMxeT0yLBMk2jwliriWYXRVCnbeIx+OeoGfG3rXq7g6EgXCvyFqeL84YKi2k0a/0I34Fj6vxhJP6m5WrtoUJna0iaHiIBeZpdXQ34tqilcrzTEojy3DlJ/Qdv17hDxHYVObK93g4KNK9sZYFf/QYVkx0SKLSt5B0VrBpBvRihaN9AlC+Kxn4uPkWIX3Fbl1STOLyucurUKaSkpISkJycn4+TJkzGwKMyBU7NmzfDCCy+EXWhGRgYcDvHLwTAMwzBMBNTCGaPK0qpVK6xbt04TdBsAPvnkE7Rs2VLnqqolrIHTL7/8UsVmMAzDMAyjSwwih9cEJk+ejPHjx+PEiROKOPzzzz/Hk08+qdkOrjqJyKuOYRiGYRimqhk9ejTKy8sxZ84cPPzwwwCA5s2bY/HixbjllltiYhMPnBiGYRimhlNXA2ACwN/+9jf87W9/w4kTJxAfHx+23rqq4IETwzAMw9R06uhSHSVWe9OdCw+cdCj2uyD5Va86GxmqeyzE+8Om+pDInnAZdjXuFfXKEXmxlRFvE7rNCvVYkcul18dZxBuQyNd5yH3P+OOV4wSrWzl2SgFvED2POCPPHSOvu2rfyoU0r9aDLnDsJH451APPidCtJfT27E4gz94TvM6q53VHvOacwf9S7zq91i0OekE6dJ6xhih+CEWeihFfp1OUkRdgpDZQRP1Oz5NOPtbblkO0dQc979HZPkTxlCM9iXpnaT3zgluuaLxmqdcd3WpEsCWIgdcXhW5h0jbhqHL8c1ljAMAXZy5R0kqSncpxp7hflOMEa6CMRNLM1IIC0tZFwXrSb5Bbx3vQI3jr9L4xWm9F2dNQz6su9Hnqet0J7ifyaqSwV13V8/bbb+PNN9/EoUOH4Ha7Ned27txZ7fZU5fZSDMMwDMNEgboax+mZZ57BrbfeisaNG2PXrl34wx/+gIYNG+LAgQO45pprYmJTRAOnr776Cn/961/RpUsXHDlyBADw6quvYsuWLVE1jmEYhmEY1NnI4c899xyWLl2KZ599Fk6nE9OmTcOGDRswceJEFBQUxMQm0wOnd955B/3790d8fDx27dqF8vJyAIFtVubOnRt1AxmGYRimzlNHB06HDh1C165dAQDx8fHKlm4jRozA66+/HhObTA+cHnnkESxZsgQvvPCCJshl165dY7LWyDAMwzDM+UlGRgZOnToFAMjOzsY333wDADh48CAkKTYjQdPi8H379qF79+4h6cnJyThz5kw0bKoRlEpOwG9Xtk+h4nC3JVTYCQANrcUAjLcyAUBE56oAuNjvUo6L/HHKcSNbYITd2FaipFGxKxXcygLJX7z1VXuJgJWKw90GYkzhdhQ6QlShaDUMcbgZYasZaLs6giJ4D9kOJQ5ekjdUsE23sXEQkTcVgsvH5VIYIm75XjptUuJXn0WxPyDKjbMSG0G3b6lcmxk5LJjFBhP1N/jQGdkTqXhcry8Kt+sQCMJpHr0+KxIk62/9ESo4FgmewylXY4Ogb9DnQ9+LOKu6dVSb+GMAgLyi5kra1wWtlOMU8u3JdcmicrVtqCOEm6SXCbZ7KiNbrlCRPLXHp2wtI8bMNiq0TTwCe3yS3rMP3d5GJNQvryYnmLoajuDqq6/GBx98gCuuuAJjxozBPffcg7fffhs7duzA9ddfHxObTH+BmzRpgv/+978h6Vu2bKmy8Oe//PILxowZgxYtWiA+Ph4XXnghZs6cGaKuP3ToEAYNGoTExESkpaVh4sSJIXkYhmEYptZRR5fqli5dihkzZgAA7rrrLixfvhyXXHIJZs+ejcWLF8fEJtMzTnfeeSfuvvtuvPzyy7BYLDh69Ci2bduGqVOn4sEHH6wKG/HTTz/B7/fj+eefR6tWrbB7927cfvvtKC4uxhNPPAEA8Pl8uPbaa9GoUSNs2bIFp06dwsiRIyFJEhYtWlQldjEMwzAME12uv/56LF++HMnJyVi5ciVuuOEG2O2B4cqwYcMwbNiwmNpneuA0bdo0FBQUoFevXigrK0P37t3hcrkwderUkE34osWAAQMwYMAA5e+WLVti3759WLx4sTJwWr9+Pfbu3YvDhw8jMzMTAPDkk09i1KhRmDNnDpKTk6vENoZhGIapcupQAMwPP/wQxcXFSE5Oxq233ooBAwagcePGsTZLIaIAmHPmzMGMGTOwd+9e+P1+tG3bttpDoBcUFCA1NVX5e9u2bcjJyVEGTQDQv39/lJeXIy8vD7169RKWU15erngGAkBhYaEwH8MwDMPEirqkcWrTpg2mT5+OXr16QZIkvPnmm7qTH7HYry7iyOEJCQno2LFjNG0Jm59//hmLFi3Ck08+qaTl5+cjPT1dk69BgwZwOp3Iz8/XLWvevHmYPXt2SLpHssEu2aDEkCYdzkGjRxOxoSMoZYyzqCJHKoSk6bJIk56nyIJwAEi2BgZ2biJJ04hkDQS3iVZ1YCiKxKsXyVckwKToiTHVa4xFtKJ7RQOrFCqIjUOo+BQAbKR96gejIjuIkJwKwsuJXLUseA8Paf4yTXRo9ViOAq4X8Z1GCXcGozvT66nIlgp8zYjrhW0cxQ+p1YRInELro2ePkSi8siJ3I6cIQG1ro/ci2vgFEbH1BewVR7m2UqcJEkXcGdydINGuvgvHy5OUY/qdiwsKwWnpxX767G3kyB+0S7WxiEQRp2JrKg43cjYx8+0RvSNGgnBA/S4aCfU9MfLsOp9ZsmQJJk+ejI8++ggWiwX/+Mc/YLGEPmeLxVJzB05mlOtr1qwJO++sWbOEgxbK9u3bNQO0o0ePYsCAAfjLX/6C2267TZNX1LCSJAnTZaZPn47JkycrfxcWFiIrKyvcKjAMwzBM1VOHluq6du2qhB2wWq3Yv39/7VuqS0lJUY4lScLatWuRkpKiDGjy8vJw5swZ066B48ePx4033lhhnubNmyvHR48eRa9evdClSxcsXbpUky8jIwPffvutJu306dPweDwhM1EUl8sFl8ule55hGIZhYk1dWqqT8Xq9uOWWWzRymppAWAOnZcuWKcf33Xcfhg0bhiVLlsBmC0xl+nw+jB071rQAOy0tDWlpaWHlPXLkCHr16oXc3FwsW7YMVqt2+rVLly6YM2cOjh07hiZNmgAICMZdLhdyc3NN2cUwDMMwTGyx2+145513MGvWrFibosG0sOTll1/G1KlTlUETANhsNkyePBkvv/xyVI2TOXr0KHr27ImsrCw88cQTOHHiBPLz8zXapX79+qFt27YYMWIEdu3ahc8//xxTp07F7bffzh51DMMwTO2mjsZx6t27NzZt2hRrMzSYFod7vV78+OOPuPjiizXpP/74I/z+yMShRqxfvx7//e9/8d///hdNmzbVnJNDrttsNnz00UcYO3YsrrrqKsTHx2P48OFKuAKzuCU7bIIos/I5GVlUCQAlVlcwTRVd+jVRdFUhuBqxmAiA/UQoToa0yQhMU1KxsCqjFAtnrTTyNRE0i4TgemJXYcRiA9ElLU9PgKnJKxJu6kTqNYJGAKfRkmVBrMdCBa5qYFQaRbxMChyf8dP70nLVY9nOYvJcS4JRvwPn1TIS5fuRyO20LI9AlKrnOKCJIm5KHB5+W1Y2OrkewijjJj7m1jAy2wQCfDMRx40E3+FEqBYKyU30ZX3bguWSsqhwm9ouerdAo5MTBwjZTC+JYE/bur6tWDl2y99cUh0PuW8J+Y4d9yUF01Q5hIN8M+vb1CUY0XdKr8+K+qdulHZBu+sJwo3LFQj1q2j3gxDqkMaJcs0112D69OnYvXs3cnNzkZiYqDk/ePDgarfJ9MDp1ltvxejRo/Hf//4XV155JQDgm2++waOPPopbb7016gYCwKhRozBq1CjDfM2aNcOHH35YJTYwDMMwTKywAJX24ayezWGiy9/+9jcAwIIFC0LOWSwW+Hx6G/NUHaYHTk888QQyMjLw1FNP4dixwP5GTZo0wbRp0zBlypSoG8gwDMMwTN2kqlayKoPpgZPVasW0adMwbdo0JVgka4gYhmEYpgqpo0t1NZGIA2ACPGBiGIZhmOqgLoYjAICHHnqowvNVtUduRZgeOLVo0aLCgJIHDhyolEE1Bb9k0Y3Ie24+mRPegBDSR1STmqjdZIW5MBg9t8inRtH93aeK3lKJGFMuQytMrni1mkYpNxJ/hyPANBK7isSWeiJvYVRgAwGmWWyCCMkeItp3W8TR0j0CwadeVHO5LamIWxNJnohglWdHZp1p5GYaGVwur0RSBbXUcSCB9Cm5nuHYa4ZoCJmVsqJgj1BUbnSNzv8lIo1wLkK3bwicP/REyHJeWpaHiLg1z1ZQLn2n6XV+QV+m7wWNIi5f97snQUlLcZSq15E2+z3YF2m0e9p/C/1xyvFRTwMA2j7b0KaWSxE5Qxi1rx5GzijhfJtE30ef4BlWlSMFE2Dt2rWavz0eDw4ePAi73Y4LL7ywdgycJk2apPnb4/Fg165dWLduHe69995o2cUwDMMwjEwMlurmzZuHNWvW4KeffkJ8fDy6du2Kxx57TONVP2rUKKxYsUJzXefOnZXI30BgT9ipU6fi9ddfR2lpKXr37o3nnnsuxEtexK5du0LSCgsLMWrUKFx33XXmKhQlTA+c7r77bmH6P//5T+zYsaPSBjEMwzAMI6Cal9o2b96McePGoVOnTvB6vZgxYwb69euHvXv3asICDBgwQBMo2+l0asqZNGkSPvjgA6xevRoNGzbElClTMHDgQOTl5WliQoZLcnIyHnroIQwcOBAjRoyIvIIRUimNE0WOtUAbj2EYhmGY2sm6des0fy9btgyNGzdGXl4eunfvrqS7XC5kZGQIyygoKMBLL72EV199FX369AEArFy5EllZWfjss8/Qv3//iGw7c+YMCgoKIrq2skRt4PT2228jNTU1WsUxDMMwDBOkJojD5YHKuf+v37RpExo3boz69eujR48emDNnjrIpb15eHjweD/r166fkz8zMRE5ODrZu3Wo4cHrmmWc0f0uShGPHjuHVV1/FgAEDKlehCDE9cOrQoYNGHC5JEvLz83HixAk899xzUTUulvhhhQ9WcfTdc/LJ+PyhYkyf/azwugJfQIT5u7eeknbSox6nxqvicFk0GU7EYiNEYutwohurEYsrFrjqlasndhVFQtYX1JqIIk4jpwdF2lSMTY/pPcokZ9BGsT1U/C0LZvXa30EF6Fa5fDtJEn/FPAhcR6O8y44HAJBqV+8nR0DXa7NIEUdQDr/9oyFQjyZ6gnA9AblyXnBdOO+b0fsgjMqv826J3g2RCPzcY5G42U+us0r+kOuS7GVKWtuEo4KaAWf88SFp1J5Ccl62l7YzdXQw6rfmvm3G/TMSxxS9Z1FRWpUQRY2THEpIJpzN7iVJwuTJk9GtWzfk5OQo6ddccw3+8pe/IDs7GwcPHsQDDzyAq6++Gnl5eXC5XMjPz4fT6USDBg005aWnp2u2TdPjqaee0vxttVrRqFEjjBw5EtOnTze8viowPXAaMmSIZuAkV6Jnz55o06ZNVI1jGIZhGCa6ZGVlaf6eOXOm4Ua648ePx/fff48tW7Zo0m+44QblOCcnBx07dkR2djY++ugjXH/99brlSZJUoYe+zMGDBw3zVDemB041bZdihmEYhjnfieZS3eHDhzVxGI1mmyZMmID3338fX375paEnXJMmTZCdnY3//Oc/AICMjAy43W6cPn1aM+t0/PhxdO3a1XQd/ve//6G4uBht2rSB1RqbmW3Td7XZbDh+/HhI+qlTpyJSxzMMwzAMY4AUpR8CXmn0pzdwkiQJ48ePx5o1a/DFF1+gRYsWhmaeOnUKhw8fRpMmTQAAubm5cDgc2LBhg5Ln2LFj2L17d4UDpxUrVmDhwoWatDvuuAMtW7ZE+/btkZOTg8OHDxvaUxWYHjhJknjIW15eHuKCyDAMwzBM5ZFnnCr7M8O4ceOwcuVKrFq1CklJScjPz0d+fj5KSwNBTM+ePYupU6di27Zt+OWXX7Bp0yYMGjQIaWlpSoyllJQUjBkzBlOmTMHnn3+OXbt24a9//Svat2+veNmJWLJkCVJSUpS/161bh2XLluGVV17B9u3bUb9+fcyePdt8Q0aBsJfqZGW7xWLBiy++iHr1VCGzz+fDl19+eV5pnDySDTbJ3AyaT5Cfir9pZNwSf2CQWeBVI/U2cKiC8PokcnhRUGypJ6oUoRdp2Yzo14yQUpTHSOAaSJfzWkLSAH1RuZENVHjtsFYsDqf3sAU3lHQTEbeR+FNfHK7eoygYyV0U0RzQPi+5vN+9apwU2ZkAAJJsqoAXCBWz64mQRVB7KGbaWpQ32tGUoynAtQr+7xFJZPJwCKcdRNHA9ZwijN4Xn+DdMdN29Um08ASrWznO99Yn6eUh96XfNmpDkjU0SnixX53dMBLMR4qZHQeMxN9GAnZvLdzGJFwWL14MAOjZs6cmfdmyZRg1ahRsNht++OEHvPLKKzhz5gyaNGmCXr164Y033kBSkurQ8tRTT8Fut2PYsGFKAMzly5dXuEq1f/9+dOzYUfn7vffew+DBg3HzzTcDAObOnYtbb701irUNn7AHTrKyXZIkLFmyRFNhp9OJ5s2bY8mSJdG3kGEYhmHqOjGIHK63wiQTHx+PTz/91LCcuLg4LFq0CIsWLQr73qWlpRod1tatWzF69Gjl75YtW4bllVcVhD1wkpXtvXr1wpo1a0JcCxmGYRiGqSJiMHCKJdnZ2cjLy0N2djZOnjyJPXv2oFu3bsr5/Px8zVJedWLaq27jxo1VYQfDMAzDMAwA4JZbbsG4ceOwZ88efPHFF2jTpg1yc3OV81u3btXEk6pOwho4TZ48GQ8//DASExMxefLkCvMuWLAgKoYxDMMwDBOgJkQOr07uu+8+lJSUYM2aNcjIyMBbb72lOf/111/jpptuioltYQ2cdu3aBY8nIG7duXNnWEGrGIZhGIaJEnVsqc5qteLhhx/Gww8/LDx/7kCqOglr4ESX5zZt2lRVttQoyv12WIgXG8Wq44kkb/PhIWl6WyPIHlXNXKeUNOqBIm/9AQAlvsAx9fSKFJH3lh5GHibavCLPKh3PH5GXkMG2B+faY8ZryxF8BnoebeUW9TnLzyscrxwznj8ua9Crjny5ZO+kc+2RbThJtlmpRzzpRJ5T4WzXIaPxKtP5kBptJ2P0LPS2fTHaNifS7WIi3Y5HhN77HU2M3he9vKJtVIzeEb+OxyV1JJT7Ef1eyZ6/gLbPeATew9Tjl+ZVtpPxh7+dTDhURz8J9xmVGQiomegxduxYPPTQQ0hLS4upHaZ73+jRo1FUVBSSXlxcrFG8MwzDMAwTHSySFJVfbWblypUh++zFAtMDpxUrVijBryilpaV45ZVXomIUwzAMwzCEKEYOr60YhUeoLsJe+yksLIQkSZAkCUVFRYiLi1PO+Xw+fPzxx2jcuHGVGMkwDMMwTN3C5/Nhy5YtuPTSS2tUCKSwB07169eHxWKBxWLBRRddFHLeYrHELPw5wzAMw5zP1DWvOiCwN27//v3x448/okGDBkKZUCwIe+C0ceNGSJKEq6++Gu+88w5SU1OVc06nE9nZ2cjMzKwSI2NBud8B6IjDqciYbu3hD6ZbiYBQb5sPhyWwDQgVR9JtNegWBkbbLBgRDbGr0f2MtkvQE7Aq53UEo9otGUKvC2c7iXJLoJvbyFfDCrFQ3Mgezb1NrHTLAn8qnC2yqLO2tE/JeUt9qjg3IU7d/oL2E7lPRLs/GAmojbYBoQhFtjr2GgnuzWylUZvR63NiIX7F/VOzHQ/Na1W/MYWeQF+0W9V3oYRsjULfkbNSIC/tR7S/0HdLJDrXcxQR1iGM522mT1TFVi7lvmrqk3XMq06mffv2OHDgQFgbDFcXYQ+cevToASAQQTwrKwtWa934gDEMwzBMrKmLM04AMGfOHEydOhUPP/wwcnNzkZiYqDlPt2WpLkz7t2dnZwMASkpKcOjQIbjdbs35Sy+9NDqWMQzDMAxTpxkwYAAAYPDgwZoYkpIkwWKxwOcLXTGoakwPnE6cOIFbb70Vn3zyifB8LCrBMAzDMOc1dXSpriZu82Z64DRp0iScPn0a33zzDXr16oW1a9fit99+wyOPPIInn3yyKmxkGIZhmDpNXV2qk2VCNQnTA6cvvvgC7733Hjp16gSr1Yrs7Gz07dsXycnJmDdvHq699tqqsLPaKfU74deLHA6xuFYW/toMzuthHI25dmx1IxJNi4TdgLhO4YhH5esijSBMha1Gz0V0X/1yKy5LI6I1EGkn2tXI4jSKM8WMMNamOC9IIWnAOVGjg8L0FLsas43aG2k0a+V8GBHJNekGQny9/hUu0X63zPQpMxjZaRzBXz0u9qnPuygoDm/sUr2WaDTwMhBnFcE7KUfGBwAbibUj39vjV/9XY6afaOthrs8I85oPXWhIub92fJdrOzVJHmS6FxUXFyvxmlJTU3HixAkAAeX7zp07o2udgPLyclx++eWwWCz47rvvNOcOHTqEQYMGITExEWlpaZg4cWJIIzMMwzBMraOOBsA8ceIEBg4ciKSkJLRr1w4dOnTQ/GKB6YHTxRdfjH379gEALr/8cjz//PM4cuQIlixZgiZNmkTdwHOZNm2aMOyBz+fDtddei+LiYmzZsgWrV6/GO++8gylTplS5TQzDMAxT1cjLdZH+aiNUHhQfH49169ZhxYoVaN26Nd5///2Y2BSRxunYsWMAgJkzZ6J///547bXX4HQ6sXz58mjbp+GTTz7B+vXr8c4774SI09evX4+9e/fi8OHDysDqySefxKhRozBnzpyYuCwyDMMwDBM5NVEeZHrgdPPNNyvHHTp0wC+//IKffvoJzZo1q9Idi3/77TfcfvvtePfdd5GQkBByftu2bcjJydHMRvXv3x/l5eXIy8tDr169hOWWl5ejvFzVktSEDQQZhmEYRoMkBX6VLaOWIZIHXXTRRdUmDxJheuB0LgkJCbjiiiuiYYsukiRh1KhRuOuuu9CxY0f88ssvIXny8/ORnp6uSWvQoAGcTify8/N1y543b55wq5gijwvlHrEgV49oROgWIRJ8VtW9ookZ4bZeRF99UbmZCMoGgu5KLvzrCYFFz0gbvVx8ncheLxFuU4xE0aJo6dReWi4ty2UNRLYv03GQEDkyhCPsNor+rtdnRE4CkQilzVLZSNN6VLbP6WHG3lKf+mzPKt+6JCWN9t94myr+lvsMdZKhIm+Nw4E/kNfszgBGTiMU4+jj4e+4oOcAURFuT/UEg66rXnWyPKh58+aKPKh58+bVJg8SEdbAafLkyWEXuGDBgrDzzpo1y3B/u+3bt2Pr1q0oLCzE9OnTK8xLg2PJyEGy9Jg+fbqmfoWFhcjKyjKwnGEYhmGYqiaW8iA9who47dq1K6zCKhqgiBg/fjxuvPHGCvM0b94cjzzyCL755hu4XC7NuY4dO+Lmm2/GihUrkJGRgW+//VZz/vTp0/B4PCEzURSXyxVSLsMwDMPUKOpoAMxYyYMqIqyBU1VF7kxLSwur4s888wweeeQR5e+jR4+if//+eOONN9C5c2cAQJcuXTBnzhwcO3ZMmb5bv349XC4XcnNzq8R+hmEYhqkOLP7Ar7Jl1FbcbjcOHjyICy+8sMrlQUZUWuNUHTRr1kzzd7169QAAF154IZo2bQoA6NevH9q2bYsRI0bg8ccfx++//46pU6fi9ttvZ486hmEYpnZTR2ecSkpKMGHCBKxYsQIAsH//frRs2RITJ05EZmYm7r///mq3qVYMnMLBZrPho48+wtixY3HVVVchPj4ew4cPxxNPPBFReYXeeDg8zhohwjYSh0capVgWTUYjcnY0IyXriowNxJqRisMjRSTwNRKKW3XE4aLrSqE6J5T7wxetGvUNN4niTAW5VAAst2W5JfxPhJ4IVy9ytSivGScBvXYwFI1Xsj/UlijjRpQRcbg7KOL2kjYtJ/2ERpX3BvN6SN5ke5lyrHE+UMTh4j6g9+zNPG9Rubp5gveQ7ToXuzV0r1Wj75HHKy6LiQ7Tp0/Hv//9b2zatEnZ8BcA+vTpg5kzZ/LAKVyaN28OSeBW2axZM3z44YcxsIhhGIZhqo666lX37rvv4o033sCVV16p0VG3bdsWP//8c0xsqpUDJ4ZhGIapU9TROE4nTpxQ4jhRiouLTTukRYvqCUDBMAzDMAxjkk6dOuGjjz5S/pYHSy+88AK6dOkSE5t4xolhGIZhajh1dalu3rx5GDBgAPbu3Quv14unn34ae/bswbZt27B58+aY2MQDJx3Oepxw6EQOj5WYU4/KirvDud5IeKkRPQePoyE69xtEEw6njKpGXxBecZvoicNlcbc3wsjXRqJzNxHGOokYlkaSLkVoxHCbwfOMdpR3M9Gjq1oQHs49qopIvzci5wXaDmfK45RjOcK3X3IraaU+8fdP7pdUXF7oiVeO7QYONWacOML5Lojax+hZef3GDgly+9HyReV6PCFJVUMd9arr2rUrvv76azzxxBO48MILsX79elxxxRXYtm0b2rdvHxObeODEMAzDMEyNpX379ko4gpoAD5wYhmEYpoZTV5fqaiI8cGIYhmGYmk4d86qzWq2GXnMWiwVer7eaLFJhrzqGYRiGYUKYN28eOnXqhKSkJDRu3BhDhw7Fvn37dPPfeeedsFgsWLhwoSa9vLwcEyZMQFpaGhITEzF48GD8+uuvFd577dq1WLNmjfA3depUuFwuOByhWszqgGecdDjrccLuEW/+S0WXFhNzn0Yiz2iIziMRSkYDoRA6DCVipILQygrFoynwD6csc+JwMxHJBXkNxOGUkmqOehzp8zbKazZPJEQz4ng0Bd+a8wZ9h4qiS4jzi5yH2kjF3xRZHO722ULSzi1DhJnnHc75SNqSliWRY1oPOd1i8G56q0kcHoulus2bN2PcuHHo1KkTvF4vZsyYgX79+mHv3r1ITEzU5H333Xfx7bffIjMzM6ScSZMm4YMPPsDq1avRsGFDTJkyBQMHDkReXh5sNvE3aMiQISFpP/30E6ZPn44PPvgAN998Mx5++GFzFYoSPHBiGIZhmJpODLzq1q1bp/l72bJlaNy4MfLy8tC9e3cl/ciRIxg/fjw+/fRTXHvttZprCgoK8NJLL+HVV19Fnz59AAArV65EVlYWPvvsM/Tv39/QjqNHj2LmzJlYsWIF+vfvj++++w45OTnmKhNFeKmOYRiGYWo48oxTZX8AUFhYqPmVl5eHZUNBQQEAIDU1VUnz+/0YMWIE7r33XrRr1y7kmry8PHg8HvTr109Jy8zMRE5ODrZu3Wp4v/vuuw+tWrXCnj178Pnnn+ODDz6I6aAJ4IETwzAMw9QpsrKykJKSovzmzZtneI0kSZg8eTK6deumGbg89thjsNvtmDhxovC6/Px8OJ1ONGjQQJOenp6O/Px83fvNnz8fLVu2xIcffojXX38dW7duxR//+Mcwa1i18FIdwzAMw9R0/FLgV9kyABw+fBjJyclKsssl1vNSxo8fj++//x5btmxR0vLy8vD0009j586dpveNkySpwmvuv/9+xMfHo1WrVlixYoVuHKc1a9aYum804IGTDiUeJ2xup6EY06iv6AkXZcEhPa8nNDcjfgxHkF0R0YiwXFkiFfdKJsSlRm0ajug/ElGqnmNBZcXhes/dyEYzUZw15ZroZ0aC8GiLw0XotUOsooFXFlPOAjp5bdbQCN80qjxF9Lzoc9VE4iZ5fcF0vSj4kgmHDyMi3QFBzwY5Ej49L/ou+DzV5OIfRY1TcnKyZuBkxIQJE/D+++/jyy+/RNOmTZX0r776CsePH0ezZs2UNJ/PhylTpmDhwoX45ZdfkJGRAbfbjdOnT2tmnY4fP46uXbvq3vOWW26J2Sa+RvDAiWEYhmGYECRJwoQJE7B27Vps2rQJLVq00JwfMWKEIviW6d+/P0aMGIFbb70VAJCbmwuHw4ENGzZg2LBhAIBjx45h9+7dmD9/vu69ly9fHt3KRBEeODEMwzBMDceCKIQjMJl/3LhxWLVqFd577z0kJSUpmqSUlBTEx8ejYcOGaNiwoeYah8OBjIwMXHzxxUreMWPGYMqUKWjYsCFSU1MxdepUtG/fPmTQVVvggRPDMAzD1HRiEDl88eLFAICePXtq0pctW4ZRo0aFXc5TTz0Fu92OYcOGobS0FL1798by5ct1YzjVdHjgxDAMwzBMCFIEA7VffvklJC0uLg6LFi3CokWLomBV7OGBE8MwDMPUcHiT35oDD5x0cHvssHkiax5LGJ5yNqsUct4WBa86M1vARIKR5xpF5KECqJ42gFq3qrY7XETeYpF6TppB5GEn8noC9GwM30NPDzNb2kSKJPDI0rPByOPKTF+MhsdqZamOPm60BQ+1wW5R+5fs9VbkVt3SXTZ181RaruJVp/esEPqu6+X1+cXXifIatZ+ep6dRuVrbQvMY9TOfx1fh+agRg8jhjBgOgMkwDMMwDBMmPOPEMAzDMDUciyTBUklxeGWvZwLwwIlhGIZhajr+4K+yZTCVhgdODMMwDFPD4RmnmgMPnHRwe62wec3FmJAlhHricCoy9gf3DLISAbCPnBeJPM2ISyu79YoeVGipJ5pUxKP+8IW+ekTjPReJu422wjFKi0a5RqJTPccBo74RzjY+kWBGjE0xs80Ffd6ivhZO34nEmUIroK74GjN9sjp2jDCzfZBR36DPpdxnF6YbPQNRXqPnem65cv5I+1w4tlV0X728ojSfl6XCdQ0eODEMwzBMTYe96moMPHBiGIZhmJpODCKHM2J4jpFhGIZhGCZMeMaJYRiGYWo4HDm85sADJx18Hhskj1gcbiQWtlh1xOEkrxQUhfsl9R5UuElj0ZoRLFdkVzgYzeRK4UQAFkQLpmvrQtF4tCNVC0Sweu0gbEuLwXmSJRxngGhGqBbdT+9ekUZbNoNeFHCZSAW5kToUGGEkrtd7hiKM3peqEodX1W4C4Yj2I2kTs89VJA7XHFdsgu69jQoQC8IrLt9fXeJwXqqrMdSqpbqPPvoInTt3Rnx8PNLS0nD99ddrzh86dAiDBg1CYmIi0tLSMHHiRLjd7hhZyzAMwzDM+UatmXF65513cPvtt2Pu3Lm4+uqrIUkSfvjhB+W8z+fDtddei0aNGmHLli04deoURo4cCUmSzpsdmRmGYZi6icUf+FW2DKby1IqBk9frxd13343HH38cY8aMUdIvvvhi5Xj9+vXYu3cvDh8+jMzMTADAk08+iVGjRmHOnDlITk6udrsZhmEYJirwUl2NoVYs1e3cuRNHjhyB1WpFhw4d0KRJE1xzzTXYs2ePkmfbtm3IyclRBk0A0L9/f5SXlyMvL0+37PLychQWFmp+DMMwDMMwImrFjNOBAwcAALNmzcKCBQvQvHlzPPnkk+jRowf279+P1NRU5OfnIz09XXNdgwYN4HQ6kZ+fr1v2vHnzMHv27JB0v9cKeHTGlXrCYVkcTvWFOqJTq9Wiuebc8yLJpL4ovXL/itATYGryyP/Viwbus5JjS0herRhTkO6vWCSqa1A4CIrWe0aq4lt8Myr8V563VUdMbCDiFvUdsyjlCtJCj0Ovj6Zo3Ujoq00zFv2aEfUatZ+RwD+cvJWlqhw6KGaepziiOz02E+G/4u+Gbl5dxwBRXrFY3aissA2LEL+OE1HU4QCYNYaYzjjNmjULFoulwt+OHTvg9wcWZmfMmIE///nPyM3NxbJly2CxWPDWW28p5VkEXxtJkoTpMtOnT0dBQYHyO3z4cPQryjAMwzCVQN6rrrI/pvLEdMZp/PjxuPHGGyvM07x5cxQVFQEA2rZtq6S7XC60bNkShw4dAgBkZGTg22+/1Vx7+vRpeDyekJkoisvlgsvlirQKDMMwDFP1sMapxhDTgVNaWhrS0tIM8+Xm5sLlcmHfvn3o1q0bAMDj8eCXX35BdnY2AKBLly6YM2cOjh07hiZNmgAICMZdLhdyc3OrrhIMwzAMw9QZaoXGKTk5GXfddRdmzpyJrKwsZGdn4/HHHwcA/OUvfwEA9OvXD23btsWIESPw+OOP4/fff8fUqVNx++23s0cdwzAMU7uRAFQ2nABPOEWFWjFwAoDHH38cdrsdI0aMQGlpKTp37owvvvgCDRo0AADYbDZ89NFHGDt2LK666irEx8dj+PDheOKJJyK6n+SxQbIbi/4kg6jTQuExiKhXIDYOnNcp45zrde3SEVXKwm0AkORjmtevI8AMpmvigOgJMI1eTin02KIjJNdthmiKP+mtraEXSkQJKAmep6mg1joVoveAVRDpXE9ILuhHhn0qwijZehiJv0UNFI7o34w42ZSg21BIHn5R2gsrtsFoxwFT15mx0UTTaBw+6G4AJDq25AuVxlqsfnJM+rWyM4D4Hvp2GjgGCMXhxo0SyUqVYaT0ahKHR0OjxBqn6FBrBk4OhwNPPPFEhQOhZs2a4cMPP6xGqxiGYRiGqUvUmoETwzAMw9RZJERBHB4VS+o8PHBiGIZhmJoOe9XVGGpF5HCGYRiGYZiaAM846VFqhe640kiEqCvkDS1CJDbWvYWe+JRkVsTbXjXNSo4dZ9U62UqDl5Ne4HeIbVBurSfQpPryYHmSTUcMS0SnFp9so7hcTfP4yLGcn9pIhOtWT6g9fqc4L72fLy4Y9VxP70muE2p2ST2EG2rqPWMqQA8e+4i9tC01tlnla9TzfoHQXHNvHfG4xp7KCpL1MHQcMPFu1QR0zBUKivVsF+Y1unHlo86LxNgS/W6UqB3NQp1K7MELHWoHl0gHNhXxPSzbIixDgGFTiTIY3be0muYf/Kj8O8ib/EYFHjgxDMMwTA2HvepqDjxwYhiGYZiaDmucagyscWIYhmEYhgkTnnFiGIZhmJoOzzjVGHjgpIOt1AqrpDMhRwV6VKPpFyj3aHRogRhYTwurEULL5VJxKbnQVqYmOwuCaW6xjY4S9Q97mRRqA1G1+qlo3CankfNEvOwjonJvveBtrTo2FqnH9lIpxF6rW7XR5vYL060+QYRvHaG4/Bj9TvV5+h1qZp+L1tmiuQbQPgtbeagN9L5WLzlP7JUfnSZIu1P9w5ug3tCTEEj3xpPzcVScG1o32tYagT8VnctaX4veeUEkcx3nBt1+XVVUxz2iiLlo8hFEPdd7Lkbl0m+Uxpki8MBpX7cXkz5H+onyDbDQl0SnP0QkfEfEkf+FNoR5jZ4N2h0LBOfLqmnhhgdONQZeqmMYhmEYhgkTHjgxDMMwTE3HH6WfCebNm4dOnTohKSkJjRs3xtChQ7Fv3z5NnlmzZqFNmzZITExEgwYN0KdPH3z77beaPOXl5ZgwYQLS0tKQmJiIwYMH49dffzXZADUHHjgxDMMwTA1HDkdQ2Z8ZNm/ejHHjxuGbb77Bhg0b4PV60a9fPxQXFyt5LrroIjz77LP44YcfsGXLFjRv3hz9+vXDiRMnlDyTJk3C2rVrsXr1amzZsgVnz57FwIED4fP5RLet8bDGiWEYhmGYENatW6f5e9myZWjcuDHy8vLQvXt3AMDw4cM1eRYsWICXXnoJ33//PXr37o2CggK89NJLePXVV9GnTx8AwMqVK5GVlYXPPvsM/fv3r57KRBGecWIYhmGYmo4sDq/sD0BhYaHmV15eHpYJBQUB76PU1FThebfbjaVLlyIlJQWXXXYZACAvLw8ejwf9+vVT8mVmZiInJwdbt26tTIvEDJ5x0sFZYIGtzAJr0NtLb4sO4201xF5qous0W4aQrTtkjzRHKc1LPM+Ip5e9zB+8Rp0CtWo809R0iyd4TDzUJIe6zYI/XjXYmxA4Lq+vnncnkW0WSJ3jTgXtPauW6yxSbXAUqzbYSr2hdnnVvIqN5xzDF8zjp+5z5MGQ9oHscWZTbZec5NhOHoxN9hjScbsh91PspPclbWk0LS7ZSfs5qG0Be3wuNc1HnoUvjngHCrwAy+qTP+g/jYLm+FxqkieJmE68C2UPPI3XnaZJLMJDIQZeY2F5oJnyUjM4b7jti4l7GaHnYabxzgqcoNua6JahpFXsrRuSLirCLzgmXndW4ulqV1dm4EkWFUb6Tjgef2HaqL1Hxelm7qs1Qj2k313Zw1Dv269sjVReTS6ffqnyWw4Fv4tZWVma5JkzZ2LWrFkVXipJEiZPnoxu3bohJydHc+7DDz/EjTfeiJKSEjRp0gQbNmxAWloaACA/Px9OpxMNGjTQXJOeno78/PzK1SdG8MCJYRiGYeoQhw8fRnKyOgJ2uVwV5A4wfvx4fP/999iyZUvIuV69euG7777DyZMn8cILL2DYsGH49ttv0bhxY93yJEmCRe8fqDUcXqpjGIZhmJpOFJfqkpOTNT+jgdOECRPw/vvvY+PGjWjatGnI+cTERLRq1QpXXnklXnrpJdjtdrz00ksAgIyMDLjdbpw+fVpzzfHjx5Genh6lxqleeODEMAzDMDWeaAyazC31SZKE8ePHY82aNfjiiy/QokWLsK+TdVO5ublwOBzYsGGDcv7YsWPYvXs3unbtasqemgIv1TEMwzBMTScGkcPHjRuHVatW4b333kNSUpKiSUpJSUF8fDyKi4sxZ84cDB48GE2aNMGpU6fw3HPP4ddff8Vf/vIXJe+YMWMwZcoUNGzYEKmpqZg6dSrat2+veNnVNnjgpEPqXi/sDq8ivLaV64iXyRYbIjGwpLOGK5dhIWJjyUomAG3kuqDg2OITC6WpPfAG06lomsbKoDZagwpgl4OcJscOqjQNXGf1qNfT7VucRAgut5mdiMAdZ1XVpbXUTY49gQO3h9SBKDQ9XmG6JNfJR+rpNxHdjbS1xUaOLYJJWKuJdXi9NXtZmE7O0/V9agOCYnWblYrH1VdVilOP/cFn5ydCckeReuxNVI/LGgTKk9QkLdTpQX50VECs1wyG3+Io6hgMBMK66NkoSLeaCS1DrxdsZaMn3IbAEUQjTBaIlAFVG0y3d9JUgb6yAhv8rtDzgfKCl5PX0EYdrchNbLKTShjPQrm3jnBbVxxutI2KoK01pwVtFsgsuJVmSyX12BEUxNPvnK2MfO+DQmuvp3bGIgqHxYsXAwB69uypSV+2bBlGjRoFm82Gn376CStWrMDJkyfRsGFDdOrUCV999RXatWun5H/qqadgt9sxbNgwlJaWonfv3li+fDlsNr2PUc2GB04MwzAMU9Pxm19qE5cRPpLBDFVcXBzWrFljWE5cXBwWLVqERYsWmbp/TYUHTgzDMAxT05H8gV9ly2AqDYvDGYZhGIZhwoRnnBiGYRimphMDcTgjhgdOOrhOu2G3WxXxt0YQbiTS9uqIsamQWRY60/N6x35RhGoiKqfTr/Iatt4LQoXQcsRsjyoIt3icyrHdrSpUbcWBvC47VZRWHF1bLwK4RgheHhSKU+G3h5wn4nCJisaVepJ2MLl+Ty4MKcNCBeFEMK5JDwobLVTgSI9p+1Dlr3KaOgPQY29IWZqg004iFA8K+L3xRASepp4vbahe6YsLXkOrRoWxZdS4YF6B2DjEIBFUaE67tYlo1toTFV9Ho1zLdaJNrncsi7S1UbR1+pESoZoIs2n72EKPNWm03UU7B5BnQQXqGqFz0FFEI2AXRLPW2kvtqrghdaNvk2N7STBJ5760zvJuCX6qAdbpU6J7SzqvkwaBsF0jtBeIwzU7M9CdF0rpLgxBxyC3mqbZhcETOPZ6yY2rkhhonBgxvFTHMAzDMAwTJjzjxDAMwzA1HV6qqzHwwIlhGIZhajoSojBwiooldR5eqmMYhmEYhgkTnnHSweKTYLFISmRvGuFbFmgC0Bd0y2giWwtE43oRvqn4W4mS7QtNO/e+wfRwhNKyqNlColLLUavpeUAVRetKS8n9FLG6qA7n2i6wV1u3Koo7IooQDiL+NhCEB05YtP8951grGreG5qWR4q0CobiDRHF30WdEIorLxVHRL3n0ziL1D39JII+VRLvXFSEHn4dE6q4ndFYvEqQB8BPbJMEXR080rbmfVfvfCpHL03kFRBGzadR/KibWisbl/4oL1hVWKxnIaY1gueJ3VSRu1rQTqY87ifQNOVi94LmGpoeWq8lrIPCnonO/QCSvh99OH37oPfwOkkafm0GbaIT21DEguPOB1lmARAZ3hx6LBOGBe0ia/1Y5vFRXY6g1M0779+/HkCFDkJaWhuTkZFx11VXYuHGjJs+hQ4cwaNAgJCYmIi0tDRMnToTb7dYpkWEYhmFqCX5/dH5Mpak1A6drr70WXq8XX3zxBfLy8nD55Zdj4MCByqaDPp8P1157LYqLi7FlyxasXr0a77zzDqZMmRJjyxmGYRimksgzTpX9MZWmVgycTp48if/+97+4//77cemll6J169Z49NFHUVJSgj179gAA1q9fj71792LlypXo0KED+vTpgyeffBIvvPACCgsLY1wDhmEYhmHOB2rFwKlhw4a45JJL8Morr6C4uBherxfPP/880tPTkZubCwDYtm0bcnJykJmZqVzXv39/lJeXIy8vT7fs8vJyFBYWan4MwzAMU6PgGacaQ60Qh1ssFmzYsAFDhgxBUlISrFYr0tPTsW7dOtSvXx8AkJ+fj/T0dM11DRo0gNPpVJbzRMybNw+zZ88OvafXD4vkV0XheoJwghQU+OoKqDXqxqA60ScWFlN1o0jrqokkTcXUiqhZLLDWiLDliLdu4/GzRiAdcq9zMBB0Rxzh2wg9QbfReVoPa6jg20KF25ZQobhQBA5ohPaK+Jum2dXrJCLQlyOD++NVZawvXj3vTVSv8zsC9ngS1Pt66omFurKg1keFvAKBMM2rK7gVCI41ompNZGvB89ZEsybHVh2RsUAcrhGui6KaC8TGIQSv89PnqicOD9ZDJBg/9zq5fahwWBPNmqSL2k8Puc567eAqUA2So3brCbeN7qdpX1EGnfbVlOuTyxKXqymYtl+wGjSqt+bWpN0VETeNCK95hvQZhEZetxBxuPZ5+UPSNEJw+bl5q0k3xJHDawwxnXGaNWsWLBZLhb8dO3ZAkiSMHTsWjRs3xldffYV//etfGDJkCAYOHIhjx44p5VkEMfklSRKmy0yfPh0FBQXK7/Dhw1VSV4ZhGIZhaj8xnXEaP348brzxxgrzNG/eHF988QU+/PBDnD59GsnJyQCA5557Dhs2bMCKFStw//33IyMjA99++63m2tOnT8Pj8YTMRFFcLhdcLlflK8MwDMMwVYQk+bX7kkZYBlN5YjpwSktLQ1pammG+kpLArpJWq3aCzGq1wh9cSuvSpQvmzJmDY8eOoUmTJgACgnGXy6XooBiGYRimViJJlV9qY41TVKgV4vAuXbqgQYMGGDlyJP79739j//79uPfee3Hw4EFce+21AIB+/fqhbdu2GDFiBHbt2oXPP/8cU6dOxe23367MUjEMwzAMw1SGWiEOT0tLw7p16zBjxgxcffXV8Hg8aNeuHd577z1cdtllAACbzYaPPvoIY8eOxVVXXYX4+HgMHz4cTzzxRET3tJ0phs3qVaNf0ylOKVQgGDF6/wKgs2vBp2TRiGF1xMs2WcxO1ZihQtRAeui0bVSE23qicfm0QTRhLaYyi+9nJGwXndfDGuG/NeR7aETpNIp46CVUdGorJ84C5Hn6nIEL5YjIAOA8q5brjSd9JnhIheQ0MjO1QRaQ60bqpulywbqRsUm6v+LzEWPwCMMRXhuVK0GOnk/fIfWQCo7l50HFxDbyjDSCZPkxS4I0aJ+3clvSd6j4W/O8DITkonQq8qZR3mmEb1lgTm3URKP3ENvl7wm11yp+GLQPy22lJ9zWHsu7O+icp980Odq3ZscGmpfu9BA81jgD0Ovkb225sD5RR4qCOJxnnKJCrRg4AUDHjh3x6aefVpinWbNm+PDDD6vJIoZhGIapJvz+c9w4I4A1TlGhVizVMQzDMAzD1ARqzYwTwzAMw9RZeKmuxsADJ4ZhGIap4Uh+P6RKLtVxOILowAMnPc6WBELRGo3QzYzgKwjEWWFZQXGjbqfXiIyD0cupiNloR2wqSqXJJq4TEo7QPMIXWSRiF4rAw4GWJZdB6kbbQXOHYMRw+lwsVF1LI7oraTTkMYlk7lFF8BarO2iLVZhXIukOuzUkDXaSlx7LAmCbcTvJ32eNgNgWWhaginNpP/Q7iQCdCIt9rkC6HPE8UJh6aCVCXZ8zVACtiQItEiET2y0mHB00YmwqdCYCfUVwTO+liZYuiCothQqTQ9KD6D4X+oooEdTFzg1CMb8l1EFAD936UHsNmlVUN61DTRjXycc61xnm1RV8y89Qx9mHvrNyuk/HYEU87hafjzY841RjYI0TwzAMwzBMmPCME8MwDMPUdPxSJeJqBOEZp6jAAyeGYRiGqelIEnTXOU2VwVQWXqpjGIZhGIYJE55x0kOSzhFEVizcDrPQSpkUFpZQcbNutGt/qKhXU5RNELXbzL9YKh/0W1egHokM3GIm6reRkJ9CxKO6kdcNhOsWUbR1nWs0qRaLblpoeQb1N6qz3nlRul59De9hYKNeuWbeQyOHhGj8q9zInkgdGcItP1Kqe0YimvczU5aR44uZe/gFTiBVgOSXIFVyqU7iGaeowAMnhmEYhqnpSH5UfqmOwxFEA16qYxiGYRiGCROecWIYhmGYGg4v1dUceODEMAzDMDUdXqqrMfDA6RzkEbn33GiwURGHVw7dyOFGkXp1C4zgJarmf7FEc4sAizCssm5u4yziMM3ivP4IxOHh2CASW+sKsCsrDjdzXRWJw3Xbt5aJwyNybzBTfoRUuzg8mmXFRhwu/7+iqmdzvPBUur288BhnYgzhgdM5nDp1CgCw6dSrMbaEYRiGqS0UFRUhJSUl6uU6nU5kZGRgS/7HUSkvIyMDTqczKmXVVSwSL3pqOHPmDBo0aIBDhw5VyUsQSwoLC5GVlYXDhw8jOTk51uZEFa5b7YTrVjs5n+sGmKufJEkoKipCZmYmrGZCnpigrKwMbnd09sRzOp2Ii4uLSll1FZ5xOge546ekpJyXHwQASE5O5rrVQrhutROuW+0l3PpV9T+y4+LieLBTg+BwBAzDMAzDMGHCAyeGYRiGYZgw4YHTObhcLsycORMulyvWpkQdrlvthOtWO+G61V7O9/oxlYPF4QzDMAzDMGHCM04MwzAMwzBhwgMnhmEYhmGYMOGBE8MwDMMwTJjwwIlhGIZhGCZMeOBEeO6559CiRQvExcUhNzcXX331VaxNMs2sWbNgsVg0v4yMDOW8JEmYNWsWMjMzER8fj549e2LPnj0xtFifL7/8EoMGDUJmZiYsFgveffddzflw6lJeXo4JEyYgLS0NiYmJGDx4MH799ddqrIUYo7qNGjUq5DleeeWVmjw1tW7z5s1Dp06dkJSUhMaNG2Po0KHYt2+fJk9tfXbh1K22PrvFixfj0ksvVYI+dunSBZ988olyvrY+M8C4brX1mTGxgQdOQd544w1MmjQJM2bMwK5du/DHP/4R11xzDQ4dOhRr00zTrl07HDt2TPn98MMPyrn58+djwYIFePbZZ7F9+3ZkZGSgb9++KCoqiqHFYoqLi3HZZZfh2WefFZ4Ppy6TJk3C2rVrsXr1amzZsgVnz57FwIED4fP5qqsaQozqBgADBgzQPMePP9buVVVT67Z582aMGzcO33zzDTZs2ACv14t+/fqhuLhYyVNbn104dQNq57Nr2rQpHn30UezYsQM7duzA1VdfjSFDhiiDo9r6zADjugG185kxMUJiJEmSpD/84Q/SXXfdpUlr06aNdP/998fIosiYOXOmdNlllwnP+f1+KSMjQ3r00UeVtLKyMiklJUVasmRJNVkYGQCktWvXKn+HU5czZ85IDodDWr16tZLnyJEjktVqldatW1dtthtxbt0kSZJGjhwpDRkyRPea2lI3SZKk48ePSwCkzZs3S5J0fj27c+smSefXs2vQoIH04osvnlfPTEaumySdX8+MqXp4xgmA2+1GXl4e+vXrp0nv168ftm7dGiOrIuc///kPMjMz0aJFC9x44404cOAAAODgwYPIz8/X1NPlcqFHjx61rp7h1CUvLw8ej0eTJzMzEzk5ObWivps2bULjxo1x0UUX4fbbb8fx48eVc7WpbgUFBQCA1NRUAOfXszu3bjK1/dn5fD6sXr0axcXF6NKly3n1zM6tm0xtf2ZM9cGb/AI4efIkfD4f0tPTNenp6enIz8+PkVWR0blzZ7zyyiu46KKL8Ntvv+GRRx5B1/9v785jorrePoB/B2Vg2BEojICDoGVRRIHYgqhoVcRoQVtFqwLRatACIlqpdRcXREGpsVaJxaWaSio0WiuCkSXgUqUYUChohYE0uCGClrIMPO8fpvfHCMjYWnF4n09Cwr3nzDnnuY+Yh3sPM56euHXrlhBLZ3HK5fKeWO4/pkos9+7dg1gshrGxcYc+b3tefX19MXPmTMhkMpSXl2PdunUYP3488vPzoaWlpTaxEREiIyPh5eWFoUOHAug9uessNkC9c1dUVAQPDw80NjZCT08PqampcHJyEooDdc5ZV7EB6p0z9uZx4dSOSCRSOiaiDufedr6+vsL3zs7O8PDwgJ2dHY4cOSJsduwNcf7tn8SiDvEGBAQI3w8dOhTu7u6QyWQ4e/YsZsyY0eXr3rbYQkNDUVhYiNzc3A5t6p67rmJT59zZ29vjxo0bePLkCU6dOoWgoCBkZ2cL7eqcs65ic3JyUuucsTePH9UBMDU1RZ8+fTr85vDgwYMOv2GpG11dXTg7O+P27dvCX9f1hjhVicXCwgLNzc2ora3tso+6kEqlkMlkuH37NgD1iC0sLAynT59GZmYmrKyshPO9IXddxdYZdcqdWCzGoEGD4O7uju3bt8PFxQUJCQm9ImddxdYZdcoZe/O4cMLzHyg3NzdkZGQonc/IyICnp2cPrer1aGpqQklJCaRSKQYOHAgLCwulOJubm5Gdna12caoSi5ubGzQ1NZX6VFdX4+bNm2oXb01NDaqqqiCVSgG83bEREUJDQ5GSkoKLFy9i4MCBSu3qnLvuYuuMOuXuRUSEpqYmtc5ZV/6OrTPqnDP2Brzx7ehvqe+//540NTXp0KFDVFxcTBEREaSrq0sVFRU9vbRXsmLFCsrKyqK7d+/SlStXaOrUqaSvry/EERMTQ4aGhpSSkkJFRUU0Z84ckkqlVF9f38Mr7+jp06dUUFBABQUFBIDi4+OpoKCA5HI5EakWS0hICFlZWdGFCxfo119/pfHjx5OLiwspFIqeCouIXh7b06dPacWKFXTp0iUqLy+nzMxM8vDwIEtLS7WIbcmSJWRoaEhZWVlUXV0tfDU0NAh91DV33cWmzrlbvXo15eTkUHl5ORUWFtKXX35JGhoalJ6eTkTqmzOil8emzjljPYMLp3b27dtHMpmMxGIxubq6Kv2JsboICAggqVRKmpqa1L9/f5oxYwbdunVLaG9ra6MNGzaQhYUFaWlp0ZgxY6ioqKgHV9y1zMxMAtDhKygoiIhUi+Wvv/6i0NBQ6tevH0kkEpo6dSpVVlb2QDTKXhZbQ0MDTZo0iczMzEhTU5MGDBhAQUFBHdb9tsbWWVwAKCkpSeijrrnrLjZ1zt2CBQuE///MzMzogw8+EIomIvXNGdHLY1PnnLGeISIienP3txhjjDHG1BfvcWKMMcYYUxEXTowxxhhjKuLCiTHGGGNMRVw4McYYY4ypiAsnxhhjjDEVceHEGGOMMaYiLpwYY4wxxlTEhRPrdby9vREREdGr5g0ODoa/v/+/GsPGxgYikQgikQhPnjzpst/hw4dhZGT0r+ZiXQsODhby8OOPP/b0chhjr4gLJ8Zek5SUFERHRwvHNjY22LNnT88tqBObN29GdXU1DA0Ne3opvV5WVlanRWpCQgKqq6t7ZlGMsX+tb08vgLHeol+/fj29hG7p6+sLn3Tf01paWqCpqdnTy3jjDA0NuXBlTI3xHSfW69XW1iIwMBDGxsbQ0dGBr68vbt++LbT//Wjq/PnzcHR0hJ6eHiZPnqx0V0ChUCA8PBxGRkYwMTFBVFQUgoKClB6ftX9U5+3tDblcjuXLlwuPZQBg48aNGD58uNL69uzZAxsbG+G4tbUVkZGRwlyrVq3Ci5+MRESIjY2Fra0tJBIJXFxc8MMPP/yj63P48GEMGDAAOjo6mD59Ompqajr0OXPmDNzc3KCtrQ1bW1ts2rQJCoVCaP/tt9/g5eUFbW1tODk54cKFC0qPoioqKiASiZCcnAxvb29oa2vju+++AwAkJSXB0dER2tracHBwwNdff6009x9//IGAgAAYGxvDxMQEfn5+qKioENqzsrIwcuRI6OrqwsjICKNGjYJcLlcp9u7iio+Ph7OzM3R1dWFtbY2lS5fi2bNnQrtcLse0adNgbGwMXV1dDBkyBD///DMqKiowbtw4AICxsTFEIhGCg4NVWhNj7O3GhRPr9YKDg3H9+nWcPn0aly9fBhFhypQpaGlpEfo0NDRg165dOHbsGHJyclBZWYmVK1cK7Tt27MDx48eRlJSEvLw81NfXv3R/SkpKCqysrIRHY6/yaCYuLg7ffvstDh06hNzcXDx+/BipqalKfdauXYukpCTs378ft27dwvLlyzFv3jxkZ2erfmEAXL16FQsWLMDSpUtx48YNjBs3Dlu2bFHqc/78ecybNw/h4eEoLi7GgQMHcPjwYWzduhUA0NbWBn9/f+jo6ODq1as4ePAg1qxZ0+l8UVFRCA8PR0lJCXx8fJCYmIg1a9Zg69atKCkpwbZt27Bu3TocOXIEwPO8jBs3Dnp6esjJyUFubq5Q2DY3N0OhUMDf3x9jx45FYWEhLl++jMWLFwuF6st0FxcAaGho4KuvvsLNmzdx5MgRXLx4EatWrRLaP/vsMzQ1NSEnJwdFRUXYsWMH9PT0YG1tjVOnTgEASktLUV1djYSEhFfKDWPsLdWjHzHM2H9g7NixtGzZMiIiKisrIwCUl5cntD969IgkEgklJycTEVFSUhIBoDt37gh99u3bR+bm5sKxubk57dy5UzhWKBQ0YMAA8vPz63ReIiKZTEa7d+9WWtuGDRvIxcVF6dzu3btJJpMJx1KplGJiYoTjlpYWsrKyEuZ69uwZaWtr06VLl5TGWbhwIc2ZM6fL69LZeubMmUOTJ09WOhcQEECGhobC8ejRo2nbtm1KfY4dO0ZSqZSIiM6dO0d9+/al6upqoT0jI4MAUGpqKhERlZeXEwDas2eP0jjW1tZ04sQJpXPR0dHk4eFBRESHDh0ie3t7amtrE9qbmppIIpHQ+fPnqaamhgBQVlZWl3F3pbu4OpOcnEwmJibCsbOzM23cuLHTvpmZmQSAamtrO21vf30YY+qD9zixXq2kpAR9+/bFe++9J5wzMTGBvb09SkpKhHM6Ojqws7MTjqVSKR48eAAAqKurw/379zFy5EihvU+fPnBzc0NbW9trXW9dXR2qq6vh4eEhnOvbty/c3d2Fx3XFxcVobGzExIkTlV7b3NyMESNGvNJ8JSUlmD59utI5Dw8PpKWlCcf5+fm4du2a0p2Y1tZWNDY2oqGhAaWlpbC2tlbaO9X+WrXn7u4ufP/w4UNUVVVh4cKFWLRokXBeoVAIe4Dy8/Nx584d6OvrK43T2NiI33//HZMmTUJwcDB8fHwwceJETJgwAbNmzYJUKu029u7i0tHRQWZmJrZt24bi4mLU19dDoVCgsbERf/75J3R1dREeHo4lS5YgPT0dEyZMwEcffYRhw4Z1OzdjTH1x4cR6NXphb1D78+0f57y4SVkkEnV47YuPf7oa+2U0NDQ6vK79I0NV/F2snT17FpaWlkptWlparzSWKjG0tbVh06ZNmDFjRoc2bW3tDtfyZXR1dZXGBYDExESlwhZ4Xpj+3cfNzQ3Hjx/vMJaZmRmA53ukwsPDkZaWhpMnT2Lt2rXIyMjA+++//6/iksvlmDJlCkJCQhAdHY1+/fohNzcXCxcuFHL26aefwsfHB2fPnkV6ejq2b9+OuLg4hIWFqXQ9GGPqhwsn1qs5OTlBoVDg6tWr8PT0BADU1NSgrKwMjo6OKo1haGgIc3Nz/PLLLxg9ejSA53cmCgoKOmz0bk8sFqO1tVXpnJmZGe7du6dUbNy4cUNpLqlUiitXrmDMmDEAnt+Byc/Ph6urqxCTlpYWKisrMXbsWJVi6IqTkxOuXLmidO7FY1dXV5SWlmLQoEGdjuHg4IDKykrcv38f5ubmAIBr1651O7e5uTksLS1x9+5dzJ07t9M+rq6uOHnyJN555x0YGBh0OdaIESMwYsQIrF69Gh4eHjhx4kS3hVN3cV2/fh0KhQJxcXHQ0Hi+HTQ5OblDP2tra4SEhCAkJASrV69GYmIiwsLCIBaLAaDDvwHGmHrjwon1aoMHD4afnx8WLVqEAwcOQF9fH1988QUsLS3h5+en8jhhYWHYvn07Bg0aBAcHB+zduxe1tbUvvdNiY2ODnJwczJ49G1paWjA1NYW3tzcePnyI2NhYfPzxx0hLS8O5c+eUioJly5YhJiYGgwcPhqOjI+Lj45XeC0hfXx8rV67E8uXL0dbWBi8vL9TX1+PSpUvQ09NDUFCQynGFh4fD09MTsbGx8Pf3R3p6utJjOgBYv349pk6dCmtra8ycORMaGhooLCxEUVERtmzZgokTJ8LOzg5BQUGIjY3F06dPhc3h3d2J2rhxI8LDw2FgYABfX180NTXh+vXrqK2tRWRkJObOnYudO3fCz88PmzdvhpWVFSorK5GSkoLPP/8cLS0tOHjwID788EP0798fpaWlKCsrQ2BgYLexdxeXnZ0dFAoF9u7di2nTpiEvLw/ffPON0hgRERHw9fXFu+++i9raWly8eFEoyGUyGUQiEX766SdMmTIFEokEenp6KueGMfaW6rHdVYz9R17cpP348WOaP38+GRoakkQiIR8fHyorKxPak5KSlDZDExGlpqZS+x+PlpYWCg0NJQMDAzI2NqaoqCiaOXMmzZ49u8t5L1++TMOGDSMtLS2lsfbv30/W1takq6tLgYGBtHXrVqXN4S0tLbRs2TIyMDAgIyMjioyMpMDAQKWN6G1tbZSQkED29vakqalJZmZm5OPjQ9nZ2V1el842hxM934BtZWVFEomEpk2bRrt27epwPdLS0sjT05MkEgkZGBjQyJEj6eDBg0J7SUkJjRo1isRiMTk4ONCZM2cIAKWlpRHR/zaHFxQUdJj/+PHjNHz4cBKLxWRsbExjxoyhlJQUob26upoCAwPJ1NSUtLS0yNbWlhYtWkR1dXV079498vf3J6lUSmKxmGQyGa1fv55aW1u7vA6vEld8fDxJpVLh383Ro0eVNnyHhoaSnZ0daWlpkZmZGc2fP58ePXokvH7z5s1kYWFBIpGIgoKClOYGbw5nTC2JiP7BRg3G/p9ra2uDo6MjZs2apfRu4W8zGxsbREREvJGPo8nLy4OXlxfu3LmjtOme/Y9IJEJqauq//igdxtibxe/jxJgK5HI5EhMTUVZWhqKiIixZsgTl5eX45JNPenppryQqKgp6enqoq6t7reOmpqYiIyMDFRUVuHDhAhYvXoxRo0Zx0dSJkJAQfmTHmBrjO06MqaCqqgqzZ8/GzZs3QUQYOnQoYmJihA3c6kAulwt/DWZraytseH4djh49iujoaFRVVcHU1BQTJkxAXFwcTExMXtscr2rIkCFdvoP4gQMHutyQ/l978OAB6uvrATx/24v2f2nIGHv7ceHEGOuV2heKLzI3N+/w3lCMMaYKLpwYY4wxxlTEe5wYY4wxxlTEhRNjjDHGmIq4cGKMMcYYUxEXTowxxhhjKuLCiTHGGGNMRVw4McYYY4ypiAsnxhhjjDEVceHEGGOMMaai/wNgflxqg9CtRAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for ds in [ds_og, ds_125, ds_25]:\n", + " ds[\"tas\"].plot()\n", + " plt.show()\n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "919dc7a1-ad2a-4291-aa90-c2d622f1d433", + "metadata": {}, + "source": [ + "### Plot the coarsened datsets together using Cartopy" + ] + }, + { + "cell_type": "markdown", + "id": "e4a00e56-4b5c-47da-ae9c-ae4b1ce0686d", + "metadata": { + "tags": [] + }, + "source": [ + "Now let's zoom in on a smaller region, the continental US, to get a clear view of the difference in grid resolution. Here we can also decrease the colorbar limits to better see how the variable `tas` varies within the smaller region." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "0679c3e5-f2bc-4e50-8b4d-f0cefa54d65a", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAKeCAYAAABOGapBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd2AU1dqHn9m+m94rSei9SQeRANJBERQFRFA/qRbsFUSw4rV74VqxYUNFQVBBBESa9N4JEEjvPdky3x9LNizJHJKlhDKPrmZPm3fqvnPO77xHkmVZRkVFRUVFRUXlKkdT2waoqKioqKioqFwKVKdHRUVFRUVF5ZpAdXpUVFRUVFRUrglUp0dFRUVFRUXlmkB1elRUVFRUVFSuCVSnR0VFRUVFReWaQHV6VFRUVFRUVK4JVKdHRUVFRUVF5ZpAdXpUVFRUVFRUrgmuaKfn66+/5u23364yT5IkZsyYcUntKefPP/+kS5cuWCwWgoODGTduHGlpadWqm5+fz4MPPkhUVBRGo5FGjRoxe/Zs7Ha7R7acPHmSqVOn0qNHD/z9/ZEkic8++6za9T/++GOGDh1KXFwcZrOZBg0aMGnSJJKTkyuVjYuLQ5KkSp+JEydWa1vbtm2jR48e+Pn5IUkSb7/9NqtWrUKSJFatWlVtm8/k7Otg7969zJgxg2PHjnnU3qXi2LFjNT5XVxvx8fHEx8efs1xNj9UXX3xBSEgI+fn5rrRff/2Vu+66i5YtW6LX65EkSbH+wYMHGT58OAEBAVgsFjp16sSiRYsqlavJvVMdDh48yGOPPUa7du3w9/cnMDCQbt268cMPP1RZfuXKlfTp04fQ0FC8vb1p1aoV7777bqVnSWlpKa+//jotWrTAy8uLsLAwBgwYwLp166pll6fP2qKiImbMmOHxvQ0wY8YM4bm6EBw8eBCDwcDWrVsv6nZULhHyFcygQYPk2NjYKvPWr18vJyYmXlqDZFletWqVrNPp5JtvvlletmyZ/NVXX8lRUVFyixYt5JKSEmFdq9Uqd+rUSQ4ICJDff/99edmyZfIjjzwiS5IkP/DAAx7Zs3LlSjk4OFi+8cYb5ZEjR8qAPG/evGrXj4yMlEePHi3Pnz9fXrVqlfzBBx/I0dHRckREhJySkuJWNjY2Vu7WrZu8fv16t8/Ro0erta02bdrIDRs2lJcuXSqvX79eTk5OlnNzc+X169fLubm5NdltF2dfBwsWLJABeeXKlR61d6lISEio8bm62tizZ4+8Z8+ec5arybEqLCyUo6Ki5Ndff90t/Z577pEbNmwojxgxQm7Xrp2s9GhMSEiQAwMD5ebNm8vffvut/Ouvv8qDBg2SJUmSf/jhB7eyNbl3qsN7770nN2nSRH7ppZfkZcuWyUuXLpXHjh0rA/ILL7zgVnb58uWyRqOR4+Pj5Z9//llevny5/MADD8iA/OCDD7qVHTNmjKzRaORnn31WXrFihbxgwQK5Xbt2sk6nkzdu3HhOuwD5+eefr/H+pKene1y3nOeff17xXF1Ixo0bJ99www0XfTsqF5+r1umpLTp06CA3a9ZMtlqtrrS1a9fKgDxnzhxh3W+++UYG5B9//NEtffz48bJGo5H3799fY3vsdrvr702bNtX4hzQ1NbVSWnk7s2bNckuPjY2VBw0aVGMby9HpdPKkSZM8rl8dVKfn8qewsLBG5WtyrObMmSObTCY5OzvbLf3M+2TKlCmKP6QTJkyQTSaTfPLkSVeazWaTmzZtKtepU8etnZrcO9UhPT1ddjgcldIHDRokWywWt5eq0aNHy0ajUS4oKHAr27dvX9nX19f1vaSkRNZqtfKdd97pVi4pKalKB6kqrgWnZ/PmzTIgr1279qJvS+XicsmGt8q7Iffs2cPIkSPx8/MjLCyMe+65h9zcXLey//3vf7nhhhsIDQ3Fy8uLli1bMnv2bKxWq6tMfHw8S5Ys4fjx425DKeWc2eW6Y8cOJEnik08+qWTXb7/9hiRJbt3Thw4dYtSoUYSGhmI0GmnatCn//e9/z7mPp06dYtOmTYwZMwadTudK79q1K40aNWLhwoXC+mvXrkWSJAYMGOCWPnjwYBwOh6t+SUkJbdu2pUGDBm7HLiUlhfDwcOLj411d2BrN+Z3i0NDQSmnt2rVDq9WSmJh4Xm2X89lnnyFJEjabjblz57qdy6qGt8aNG4e3tzeHDx9m4MCBeHt7U6dOHR599FFKS0vd2j7zOvjss8+47bbbAOjZs6drO2cOi/z555/07t0bX19fLBYL3bp1Y8WKFUL709PTMRgMTJs2rVLe/v37kSSJd99915W2e/dubr75ZgICAjCZTLRp04bPP//8nMdp3LhxxMXFVUqvqotfkiTuv/9+5s2bR+PGjTGbzbRv354NGzYgyzKvv/46devWxdvbm169enH48OFK7XpyLMrZs2cPffv2xWKxEBISwpQpU1iyZEmlcxkfH0+LFi34+++/6dq1KxaLhXvuuceVd/bwVlJSEiNGjMDHxwc/Pz9uv/12UlJSqmUTwNy5cxkyZAj+/v5u6dW9T9auXUvr1q2JiopypWm1WgYMGEBiYiL//vuvK726986rr76KRqNh8eLFbmXHjRuHxWJh165dAAQHB1c5lNOxY0eKiorIyspypen1egwGA2az2a2sv78/JpPJbb81Gg1+fn5u5Xx9fdFoNG5lq0t6ejqTJ0+mWbNmeHt7ExoaSq9evVizZo2rzLFjxwgJCQHghRdecN2L48aNq9HzrSocDgezZ8+mSZMmGI1GQkNDueuuuzh58qRbufJrb9OmTXTv3h2LxUK9evV49dVXcTgcbmXbtWtH06ZN+d///lfj46FyeXHJNT3Dhw+nUaNG/Pjjjzz11FN8/fXXPPzww25ljhw5wqhRo/jyyy/59ddfuffee3n99deZMGGCq8ycOXPo1q0b4eHhrF+/3vWpitatW9O2bVvmzZtXKe+zzz4jNDSUgQMHAk7NR4cOHdi9ezdvvPEGv/76K4MGDeLBBx/khRdeEO7b7t27AWjVqlWlvFatWrnylSgrK0Oj0aDX693SjUYjADt37gTAZDLx/fffk5aW5vqBcDgcjB49GlmW+eabb9BqtcJtnQ+rV6/GbrfTvHnzSnl///03Pj4+6PV6mjVrxhtvvHFOPdKgQYNc5+7WW28VnstyrFYrN910E7179+aXX37hnnvu4a233uK1114Tbufll18GnI51+XYGDRoEwFdffUXfvn3x9fXl888/5/vvvycwMJB+/foJf+xDQkIYPHgwn3/+eaWH5bx58zAYDIwePRqAAwcO0LVrV/bs2cO7777LTz/9RLNmzRg3bhyzZ88W7nNN+fXXX/n444959dVX+eabb8jPz2fQoEE8+uijrF27lvfff58PP/yQvXv3Mnz4cGRZdtX19FgAJCcn06NHDw4cOMDcuXP54osvyM/P5/7771csf+eddzJq1CiWLl3K5MmTqyxXXFzMjTfeyLJly3jllVdYsGAB4eHh3H777dU6HidPnmTXrl307NmzWuWroqyszHU/nsnZ96gSVd07Tz75JAMGDGDs2LEcP34ccF43n3/+Oe+99x4tW7YUtrly5UpCQkLcnKyJEydSVlbGgw8+SFJSEjk5OXz55ZcsXLiQJ554wlVOr9czefJkPv/8c37++Wfy8vI4duwY9913H35+ftx3333nPihnUe58Pf/88yxZsoR58+ZRr1494uPjXQ5vREQEv//+OwD33nuv616cNm3aeT/fJk2axJNPPkmfPn1YtGgRs2bN4vfff6dr165kZGS4lU1JSWH06NHceeedLFq0iAEDBvD000/z1VdfVWo3Pj6e3377ze0+UbkCuVRdSuXdkLNnz3ZLnzx5smwymarstpVlZ7ez1WqVv/jiC1mr1cpZWVmuPNHwFmd1m7777rsyIB84cMCVlpWVJRuNRvnRRx91pfXr10+Ojo6upCG5//77ZZPJ5Lb9s5k/f74MyOvXr6+UN378eNlgMCjWlWVZfvvtt2VAXrNmjVv6tGnTZEDu27evW/p3330nA/Lbb78tT58+XdZoNPKyZcsU2/dkeOts8vLyXF35+fn5bnmTJ0+WP/30U3n16tXyzz//LI8ePVoGKnWdKwHIU6ZMcUtbuXJlpeGoch3D999/71Z24MCBcuPGjSu1eeZ1oDS8VVhYKAcGBspDhgxxS7fb7XLr1q3ljh07Cm1ftGiRDLgdf5vNJkdGRsrDhw93pd1xxx2y0WiUT5w44VZ/wIABssVikXNycmRZrnrIZuzYsVVe71V18QNyeHi42/DGzz//LANymzZt3O638utu586dF+RYPP7447IkSZX0OP369at07Hv06CED8ooVKyq106NHD7lHjx6u73PnzpUB+ZdffnErd99991Xrui6/XzZs2CAsJxreGjp0qOzv71/p2u/evbsMyC+//LJiu6J7JyMjQ46OjpY7duwob926VbZYLNW6bz766CMZkN95551KeWvXrpUjIyNlQAZkrVZb6fkry7LscDhcz4/ysjExMfK2bdvOuX1ZPvfwls1mk61Wq9y7d2/5lltucaWfa3irOs+3s6/9ffv2yYA8efJkt3IbN26UAfmZZ55xpZVfe2frlpo1ayb369evkj3lx3rfvn2K+6py+XPJe3puuukmt++tWrWipKTEbXbTtm3buOmmmwgKCkKr1aLX67nrrruw2+0cPHjQo+2OHj0ao9HoNpTxzTffUFpayt133w04h41WrFjBLbfcgsViwWazuT4DBw6kpKSEDRs2nHNbSrMJzjXLYPTo0QQGBjJ+/Hg2btxITk4O33zzjWto5Owu+BEjRjBp0iQef/xxXnzxRZ555hn69OlzTvs8paSkhGHDhnH8+HEWLFiAt7e3W/5///tf7r77bm644QZuvvlmvvrqK+6//36++uortm3bdkFtkSSJIUOGuKW1atXK9aZcU9atW0dWVhZjx451O+8Oh4P+/fuzadMmCgsLFesPGDCA8PBwt97EP/74g6SkJNfbKsBff/1F7969qVOnjlv9cePGUVRUdM4erprQs2dPvLy8XN+bNm3qsvXMa7E8vfzYne+xWL16NS1atKBZs2Zu6SNHjqyyfEBAAL169Trn/qxcuRIfH59Kz5BRo0adsy44h8ag6mGn6nL//feTm5vLXXfdxdGjR0lNTWXatGmumU5Kw2TnuneCgoL47rvv2Lp1K127diUmJuacQym//fYbU6ZM4dZbb+WBBx5wy9uyZQu33HIL7dq1Y/Hixfz11188/fTTPPfcc8yaNcut7EsvvcR//vMfZsyYwcqVK/nll19o3Lgxffr08fi+/d///sd1112HyWRCp9Oh1+tZsWIF+/btq3YbnjzfVq5cCTjvpzPp2LEjTZs2rdRLGR4eTseOHd3SlJ4j5dfNqVOnqr0PKpcfl9zpCQoKcvte3i1cXFwMwIkTJ+jevTunTp3inXfeYc2aNWzatMmlqSkvV1MCAwO56aab+OKLL1zDLZ999hkdO3Z0dTVnZmZis9l477330Ov1bp/y4a+zu0er2rfMzMxKeVlZWQQGBgptDA4OdnX5du7cmYCAAB544AHefPNNADcdQTn33HMPVqsVnU7Hgw8+eK7D4DGlpaXccsst/PPPPyxatIhOnTpVq96dd94JUC1nsSZYLJZKegOj0UhJSYlH7aWmpgLO4bWzz/1rr72GLMtumomz0el0jBkzhoULF5KTkwM4r6+IiAj69evnKpeZmUlERESl+pGRka78C8XZ15vBYBCmlx+78z0WmZmZhIWFVUqvKg2o8njUpN3w8PBq1S9/dniiUymnd+/ezJs3j7///pv69esTHh7OTz/95HIkqrpHq3vvdOrUiebNm1NSUsKkSZPcHNaz+eOPPxg2bBh9+vRh/vz5lV6opkyZQlhYGAsXLmTw4MH07NmTWbNm8dRTTzFjxgyOHj0KwL59+5g+fTovvPAC06ZNIz4+nptuuoklS5bg7+/PI488UuNj9OabbzJp0iQ6derEjz/+yIYNG9i0aRP9+/ev8fO7ps+38vtH6R47+/46+/cInM+Rquwsv248/Q1SuTzQnbvIpeXnn3+msLCQn376idjYWFf69u3bz7vtu+++mwULFrB8+XJiYmLYtGkTc+fOdeUHBASg1WoZM2YMU6ZMqbKNunXrKrbfokULAHbt2uVyksrZtWuXK19Ehw4d2Lt3L8eOHaOwsJCGDRuyZcsWAG644Qa3soWFhYwZM4ZGjRqRmprK//3f//HLL7+ccxs1pbS0lKFDh7reAnv37l3tuvLp8e/zFVRfbIKDgwF477336Ny5c5VllH60y7n77rt5/fXX+fbbb7n99ttZtGgRU6dOddMfBAUFVRmnpbwXotyOqjCZTJWE2iB2xD3hfI9FUFCQy3E6EyXBcXXjrAQFBbkJhc/V7tmU71dWVla1Ha2qGDt2LKNHj+bQoUPo9XoaNGjAK6+8giRJdO/e3a1sTe6d559/nl27dtGuXTumT5/O4MGDqVevXqVyf/zxB0OHDqVHjx78+OOPLqf1TLZv387IkSMraV86dOiAw+Fg37591KtXjx07diDLMh06dHArp9frad26NatXr67JoQGcerD4+Hi3ZyvgFhepOnjyfCt3YpKTk4mOjnbLS0pKEt5f56Lc0T+fNlRqn8vO6Sl/AJ4pFpRlmY8++qhSWSWPXIm+ffsSFRXFvHnziImJwWQyuXW5WywWevbsybZt22jVqlWVDxMRUVFRdOzYka+++orHHnvM9cDZsGEDBw4cYOrUqdVuq3yWjizLvPHGG0RGRrpmHpUzceJETpw4wb///sv+/fu59dZbeeuttyoJw8+H8rfUv/76i59++smt16I6fPHFFwCKP56XmrN7Fsvp1q0b/v7+7N27V1Fwey6aNm1Kp06dmDdvHna73W3otJzevXuzcOFCkpKSXL074DxOFotFeJzi4uJIS0sjNTXV5XSUlZXxxx9/eGSvEud7LHr06MF//vMf9u7d6zbE9e23356XXT179uT7779n0aJFbkNcX3/9dbXqN2nSBHBOlKhKhF8TdDqda1gwNzeXDz/8kJtvvtntRa0m987y5ct55ZVXeO6555g6dSpt2rTh9ttvZ+3atW7PoWXLljF06FCuv/56fv755ypF1eDs1di8eTN2u93N8SkfPi13CMqvwQ0bNtCjRw8327du3VrJcagOkiRVsmvnzp2sX7/ebVhX6V4sx5PnW/kw6VdffeXmyG3atIl9+/bx7LPP1nh/yjl69CgajYbGjRt73IZK7XPZOT19+vTBYDAwcuRInnjiCUpKSpg7dy7Z2dmVyrZs2ZKffvqJuXPn0q5dOzQaDe3bt1dsW6vVctddd/Hmm2/i6+vLsGHDKk3VfOedd7j++uvp3r07kyZNIi4ujvz8fA4fPuwaGxfx2muv0adPH2677TYmT55MWloaTz31FC1atHD7ATx+/Dj169dn7NixblPpn332WVq2bElERAQnTpzg008/ZePGjSxZssRt+unHH3/MV199xbx582jevDnNmzfn/vvv58knn6Rbt25u49TlEVvLu7Q3b97s0hTceuutrnK9e/dm9erV2Gw2V9qtt97Kb7/9xrPPPktQUJDbMJWvr6/rR+3rr7/mp59+YtCgQcTGxpKTk8OCBQv49ttvGTduHK1btxYet0tFeW/bhx9+iI+PDyaTibp16xIUFMR7773H2LFjycrK4tZbbyU0NJT09HR27NhBenp6pTfXqrjnnnuYMGECSUlJdO3atdID8vnnn+fXX3+lZ8+eTJ8+ncDAQObPn8+SJUuYPXt2pevxTG6//XamT5/OHXfcweOPP05JSUmVEXbPF29v7/M6FlOnTuXTTz9lwIABzJw5k7CwML7++mv2798PeN7rd9ddd/HWW29x11138dJLL9GwYUOWLl1abaevU6dOmM1mNmzYUEkXdPz4cTZt2gQ4nSKouG/i4uJcz5W0tDTeeOMNunXrho+PD/v372f27NloNJpKYS2qe++Uz17r0aMHzz//PBqNhu+++44bbriBJ554whV1/p9//mHo0KGEh4fzzDPPVOr9btasGb6+vgA8/PDDPPjggwwZMoQJEyZgsVhYsWIFb7zxBjfeeKPrfrz++uvp0KEDM2bMoKioiBtuuIHc3Fzee+89EhIS+PLLL6t1bM9k8ODBzJo1i+eff941i2/mzJnUrVvX7dni4+NDbGysqwcsMDCQ4OBg4uLiavR8O5PGjRszfvx43nvvPTQaDQMGDODYsWNMmzaNOnXqnNcL4YYNG2jTpg0BAQEet6FyGXCpFNPlKvv09HS39Hnz5smAnJCQ4EpbvHix3Lp1a9lkMslRUVHy448/Lv/222+VZn5kZWXJt956q+zv7y9LkuSm4kdhVsDBgwddMxSWL19epa0JCQnyPffcI0dFRcl6vV4OCQmRu3btKr/44ovV2tdly5bJnTt3lk0mkxwYGCjfddddlQKVlc/OGTt2rFv6pEmT5JiYGNlgMMjBwcHy8OHDXbNqytm5c6dsNpsr1S0pKZHbtWsnx8XFuQVfK9/fqj5nUj6b4UxEdc+cWbN+/Xq5d+/ecnh4uKzX62WLxSJ36NBBnjNnjlvANhHUYPaWl5dXpfpKs5jOvg7efvttuW7durJWq60062f16tXyoEGD5MDAQFmv18tRUVHyoEGD5AULFlRrH3Jzc2Wz2SwD8kcffVRlmV27dslDhgyR/fz8ZIPBILdu3brSzCOlgHtLly6V27RpI5vNZrlevXry+++/r7jfZx/L8jbPjkZcfozP3sfzORa7d++Wb7zxRtc9cO+998qff/65DMg7duxwlevRo4fcvHnzKts4e/aWLMvyyZMn5eHDh8ve3t6yj4+PPHz4cHndunXVnpU4ZswYuVmzZpXSy59DVX3OvM8yMzPlvn37yiEhIbJer5djYmLkBx54oNJzTZard+/YbDa5R48eclhYmJycnOxW//XXX5cBeeHChbIsV1zfSp+zZyT++OOP8vXXXy8HBwfLXl5ecvPmzeVZs2ZVCliYk5MjP/vss3LTpk1li8Uih4aGyvHx8fLSpUvPeTzL9/PMe6y0tFR+7LHH5KioKNlkMsnXXXed/PPPP1c5+/DPP/+U27ZtKxuNRtexrsnzrapr3263y6+99prcqFEjWa/Xy8HBwfKdd95ZKUK/0rVXlZ35+fmyxWKR33jjjWodE5XLF0mW1aADKioqF5/x48fzzTffkJmZWeOh4wvF5s2b6dChAxs2bKi2GF9F5ZNPPuGhhx4iMTFR7em5wlGdHhUVlQvOzJkziYyMpF69ehQUFLgCJT733HPMnDmzVm27/fbbKSws5Ndff61VO1SuDGw2G82aNWPs2LHnpQlSuTy47DQ9KioqVz56vZ7XX3+dkydPYrPZaNiwIW+++SYPPfRQbZvGG2+8wSeffEJ+fj4+Pj61bY7KZU5iYiJ33nknjz76aG2bonIBUHt6VFRUVFRUVK4JLu/gKSoqKioqKioqFwjV6VFRUVFRUVG5JrjqND0lJSWUlZXVthkqKioqKpcYg8FwXsuMqFz9XFVOT0lJCWFR0eRlXbj1i1RUVFRUrgxCgkM5kXhcdXxUFLmqnJ6ysjLysjKp/9B0NEbnRa+potMnd+82UpYtAMASGkNE15s49fdPlGQlucpEtehDRJMeleoacpWj32rsyppwWbC8kMNQ81FGXbGyHboCq8AOZUOsvnrFvNIA5UvFZhLsnEKW5BBU8TAPgSRfU6acqbUq50lK51Swy7JGOVMWnGrFbQEaQdBlYb0y5QOmsVbdqMaqXEeyC06AaEqEwEbJIWhTmKfQXg3mZpTZijiU8TfJeXuJ8m5B06B4t/zc0jSyShLxNoVQYs3nQOZKmgT3Jtr3zHX0BNsTHS8lzohaXKP2RPVE6AQ/A4JrWRGt4CIXbEsWxG6SDaJ6zu3Z7KWs2f4mZWVlqtOjoshV5fSUozGa0JY7PVXds2ekFaWf5MjP71cqUpBxAp2+8o2j0wucHslDp0fvgdOj8IMFoNNpFfNETo+sU3Z67HrRQ+fycHpEeRrBD6FW8KMlaS6h06O0LUC0coMkuO40AqdBIys4PbLA6VHyNACEzobgGHt8whWSa+D06LRGWkfdTIClDntT/iDMqwGhlvqufLtcxrHcTThyHPganeudJeZtJ9qvJTrN6R9p0fYEx1IRjfL9i8I5c9bzUKKpETk9HrQpqiPYlqwVOD1aQT3B805F5WyuSqfnXPg2aE7G379hKyl0PZRieo7Ev35rJJ0ec646i19F5Voi1LsBe/mDrak/0yyoN4GmOjhkG9vTFuNnjMCk9yWj0Ll2XYk1D6u9pMLpUVFRuWK4Jp0enbcvze6chrUoj33zXyKkdQ8Cm3Q4o4RMefgiSdAzoqKicuWTkref7acWur7vy1yJfEaPVvuwYWgNJhJzd7An7Q8aB8dj1vvWhqkqKirnyTXp9ABodHoM3gFYwuJI37Eah9VKUNNO6L18sWVmk3JoHXmph2l707NCx0eWZdUxUlG5ginvwWke3Ido75Y4ZBvpxQlsT1sMwJbUn+kQPYIo35bYHVYifZvVprkqKirnQY0GbGfMmIEkSW6f8PBwV74sy8yYMYPIyEjMZjPx8fHs2bPHrY0DBw7QrVs3oqOjK63BExcXhyRJbNiwwS196tSpxMfH13DXqsaal83x7z5g5yfPsOuTZ5AdNnzqNCb78FYO/vgWe754gd3L3iUjYTNlRTmkHlpLWXE+ZUW5ldra9e/HbFjx4gWxS0VFpXZoETGQ/k2fpo5PKyRJQqvRE+7ViPg64wHIKjnBP8c/RSNpiAtoj05jrGWLVVRUPKXGPT3Nmzfnzz//dH3XaitEZLNnz+bNN9/ks88+o1GjRrz44ov06dOHAwcOuNa4mTJlCmPGjKFDhw5MnDiR3r17061bN1cbJpOJJ598ktWrV3u8Uw4tSAp7lrV7I4XHDuDfvAM6bz8yNlbsiyEgBGNQKL4RTShIOkzukR0c2/Izx7b8DEC9gf9H1u6NxHYdjtZoITvjEACFoVokScKQLxCUCmbEyFrlniKHruo8u14kllXO05YoCyGFAlyhEFtQT0FjKNSnCiahSA6BIFakJxXtm+AukGxV1xPZIdyWQHMp2QX1BLOfEBx/0UQapfOmFcz4kmyCPJFmV3jePNTQKdXzQDsMIBndhfwGvOgT+BzrD3yItzEY2ayg4REKmT2YGSgrTygQzt4S2SHqjRZcJLJR2RaHqeobRyQsVnqeAcKZYg6dso3lbdqUJ62qqLiosdOj0+ncenfKkWWZt99+m2effZZhw4YB8PnnnxMWFsbXX3/NhAkTAMjJyaFt27a0atWKyMhIcnPde1AmTJjA3LlzWbp0KQMHDvRkn4T4t+1E/p5t5OzZVCnPFBpFYeJh8g/vqaImHF36sXMfEne7HjBag1kd3lJRuUqRJA1dm0wUT6tXUVG5Yqix03Po0CEiIyMxGo106tSJl19+mXr16pGQkEBKSgp9+/Z1lTUajfTo0YN169a5nJ6ZM2fSp08fiouLGTx4MP369XNrPy4ujokTJ/L000/Tv39/NJ5Ow1RA7xdA3PhHSfruMwoS9rvSI268lcA2XZFlGcepNIrST1KcfpKS7FRKc9IoK8ipmH56xhtVcKNObu3LsoOCrBN4B9RBEk09VVFRUbmCcTjspGXvo7QsD4dsJz17P1qNHrtso7gkB5utGJPJH53WhM1egtVahF5vQaczUVSciSzb8faKwGwOwG63UlCYgsNhBxzodRZ0ejNelhC0OhP+QQ3wD6xPYUEyxcVZIMsUFqRid1iRdHps1iKsZcW1fUhUrgBq5PR06tSJL774gkaNGpGamsqLL75I165d2bNnDykpKQCEhYW51QkLC+P48eOu7wMHDiQ9PZ28vDxCQkKq3M5zzz3HvHnzmD9/PmPGjKnpPp0Tjd5AnZvGse+dp1xpyX/+QMamv6g3eirmgDBMAWHQqJ0rX3bYsRblkX9wF4kbf3alp+5eTVD9dlgCIwHISTnAvrWfoNOb6XjzrAtuu4qKikpt4pDtpObs43DaGopKMgCnvjPAJw6d1ohRZyTQvwE6rZHSsnxstmJ0OjN6nZkyezFWWxHBQU3RaLTk5iVSXJyNLDsICmqEVmtEkjRYrYVYrUXk5J7AZivmxIm/0Wj0OBwVY1g6vQWdzows29DpvdAIYvmoqJRTo6tkwIABrr9btmxJly5dqF+/Pp9//jmdO3cGKk/xrmp2k9FoVHR4AEJCQnjssceYPn06t99+e01MrDYavYHYWydQmp2OzuJD0u/fYM3N4uiXbyLbbAQ0bEdk15tctksaLQbvAMKadacgJYHs4ztAa0Cj0XBo2UfUvWEkAZY4Tu5fAYDB7HdR7FZRUVGpTfYkLiEpewf+PrE0q3cT/t4xgIwkOXvllTQ9RxNXknhqLTqdGbM5EG+vMHx8ojCZ/LGYgvD2jUBTRfBCWZZJzthJWWk+fv6xWCzBSBodWq0BSZLO0PSUsO7P5y/afqtcHZyXa+zl5UXLli05dOgQQ4cOBSAlJYWIiAhXmbS0tEq9P9XhkUceYc6cOcyZM6fmhkm4orU6FPZQtoCpWWNMNAagQavmpCz+nrw928BuJ33narKP78QcGYtf87b4NG4JgLVMIuK2McjLTOTs3Ehg+95kbFzBwT8+OKt9A4mFO/CObUTuwR2E1uuEpK36YWDMq3lof6uX8rCfKE9XrHzKNTbPxLkiHEojfCLxsGBUUKMgLAaQBMFqZYHK2SEQkksKOk7JIajjqS5XFIhXJPwW7bdgeFjpfIuE9RqrKDS0IEskZBaJtEUoVROJh0VaX0FkdOHyGyKEwaZr3qbofArbE+gOHQaB8PisvOTkLSRl76Bpk1uJiLjOWeasOnaFZXWyC08AYLMVk59/ioLCFLRaAzarc1hKo9HhF1yf4MhWBEW2dIuIHxTQ3q0tGXDNdzi9a3aB2FlFpZzzukpKS0vZt28fERER1K1bl/DwcJYvX+7KLysrY/Xq1XTt2rXGbXt7ezNt2jReeukl8vLyzsfMaiFpdUQMHUVQt96uNFtuNvn7tnPyh3nuZSUNkX1HnJ799RfGsOhK7RWnnCDxty/Z979pJP31A9aii78PKioqKhcLu72Mg4cWEx5+HRHh19W4fovrxtKi0/8REdsFnd6M7HAQGtmWrv1m0qbb/cQ07YfdbuXQ9h/YtOxlju5aREmhuni0yoWlRj09jz32GEOGDCEmJoa0tDRefPFF8vLyGDt2LJIkMXXqVF5++WUaNmxIw4YNefnll7FYLIwaNcoj48aPH89bb73FN998Q6dOnc5d4QIQHN8f/xbtOfXLfEpOVWiR9r38GA2mPIvRHAA4h/Hi7phM4sJPKU09id4vEHtxEYaAEEpSEyu1u+frWfjXb0PdG++6JPuhcm1RnJ/O0S0/oNNbiGraC+/AOrVtksoVjs1eSl5uOkVFGRQXZ5BfkIzdUUZM9PXKdWwlFJXl47BbMRh9MBh9XMNeGo2OwJBGBIY0okGLm0k6to4jexZRkHeKkMg2hEa3JbpBD0qKskk5toGUYxtJOroWb/9oohrFExzV6lLtuspVTI2cnpMnTzJy5EgyMjIICQmhc+fObNiwgdjYWACeeOIJiouLmTx5MtnZ2XTq1Illy5a5YvTUFL1ez6xZszx2mjzFEBBM1M13UnB4D+lrluEoLgLZweH3ZxHZbwQBrZz6JY1WB5JEWM+bKU1PovD4IUpSEzFHxBHQrCOyzUrq+qU4ykoBKM1Jv6T7oXLtUJh9iry0I6e/yTTuNq42zVG5gikuyWH7vi8pLE47nSJhNPphNPrSpPFwvL3DcThsZOccITv7KHn5JyksTMVmK0U+a0FUSdJiNPnjFxBLaEQb/MMbnw5sqyGq7vUYTX4kn/iXo3sXc2TPIiw+YXj5RWCyBFK3xWAKck+RcmwDB/79EmuroUTU71bZYBWVGiDJsqeRwS4/8vLy8PPzo/4zL6M1nR4PVlokW7RY8Rl5DpsNa242iQs+wZrpfAh412uGbLdRePwgAHG3T8YrpgFSmUzBiYOcWv4d1oIcAEI69SV94zLAGdPHO6oBDmuZ+/YEwfiUEOk/BAtaC/dbFCROGEBRpEXxYABVqB6q+aLbpw3xME9pW5f6rjnH9qzFeRTlJhNWvwvZSXtpO/BpNFqdUC+jpOnRWEVBNkUXlyDrStD0iAIvXgOaHrvDypETKziRtA6QkdDQvv0ULOZgNBodxcWZ5OQkkJV9mMysA9jtZRiNfvj6RuPtHYFeZ0ant2DwDkCj1VNWmk9JcTbFRRlkZxyiqDAN/+CGNGx5C2avYDcbrGVFZKTvIy8rgeL8NIoLM7GW5ruViWzQg7otB1exb87/2awlbFw8jdzcXHx91bXRVKrmqnR66k07t9MjdAyqyHOUlZK3cytZK5eh8/GlJMk5hGWMiCb2/x5GkiQ0p2dTFp04wvH5/626bZ0ec3gMOpOXK80jp0ekJ/XwB14YUVfwgyayRck5E0V4Pof7olzLU8emhteCs45nt43HztI5z5uM0RJAaN0O7Fj2FuH1uxLe8HqMlgA0CvGilGwROSgiO4TXpODa0ogcs1IPI0B7gMjpFzpmwmtL0KbScRat9efhhAJxRHKJ9NRdHNz7M1ZrIbH1ehEd2x293kxhcSZpSdtITdpCSXE2IOHjF0VQaDOCIlpg8QmrNDvXZqp8ITgcdjb89OTp3dPSZfhrlcucNWnAWpJPWXEeGq0ejd6I3uwrDARrs5awZcFzqtOjIkQNbFBNNAYj/u27ENCmCwAn539I4ZH9yHY7mav/wFK3EV5hMUhaHZaY+oTEDyJ91RLnA+yMB59ss+IoKyXmtimuNEN+pc25UHoQ242ezWISvsULnC/RD5rdoGyL3Vx1uqh3SIjgB0Yj6sUS5XkwM0r0Q+2xYylAtG/aUvcNhjfoRsqhNaQc/geQMHoF4BvSgLB6HSnMSSIn5QDIMiavQPzDm+Af2lANpHkNcyJhFUcP/U5waAvqNeyHXm/h1Im1pCZvp7goA63WQEhEa4LDWuDnH4tO77ypZdGSEmchSRoCo1qSdWpXpSEwJfQmH/QmpzRC/JKkolJ9VKfHQ6JG/h+Fh/eR/e8/ZP69jMy/lyHp9XjVbYx33caYI506p6re9ErSTl5ia1WuJeq2vZmoJj0pyk2htDCL4rw00o5tIv3YvwD4htRDqzOSlbSH5MP/YLQEENf6JnwCY9AZvdGe36ROlcuEY8dXczThD3y8o/DyCSc0pAUBgQ3dev5Skrdy9NDvxNbrRXhke9JTd5F4fA12Wymh4a2o12QQAYEN0OoU1h2rJmXFuQSENyE/8xh+IfXPd9dUVDxGdXo8RNJo8G7UnMKjByk6egAA2Wql4OBuCg7uPrMgyA6MIVFY87JwlDpjUuQe2oFfw9a1YbrKNYDB7IvB7OvqdYpu3ofivDSMlgBnOoBDpiA7keM7F3Ng/ecAaLR6ohr1JKphD9cPXWFOEvnZifgG18XiHXrObZcW55J+YgvZyfspLcrCN7guYTEd8Atp4JrJo3IpcJ78/IJT5BecIiV5iyunTkx3ZNnBycR1hIa3wW4v49+1/wEkQiNaU6/hAIxGnxoNpxXmpaA3eKExVQRmdThsZCfv49C/X+Ow2/AOiCamxQBBKyoqFxfV6TlPtCZnV29In5soPLiXohNHzurdcf4tyQ6XwwOQ+OvneE95Ba3BeCnNVblG0enN+ATFuqVJkoRPYAyNu4zj1IG/sPhFUJSbTOK+5SQf+YeA8KaUFmWTl3H0dHkNBrMfGq0eh92G0exHRP1uSJIWrc5ASXEOmad2kpN6EI1Gi39EU3wCY8hO2ceexI8wWgIJi+tIWGwHDCZVc3GxiYuNp050V0pKcrA6Sjl1ch2pqTsASDyxBoDAoMYU5CdTnJZJXIO+RNXpgk537meSLMscO7CcE4f+dEuXJC3+YY3wD2uEw2EnNWEjJQXp+ATXI6pxPP6hDdFoBavIq6hcZK5Kp0fWVmhGPBKO1kB3oQ91LqdhiIggqFM89uIiSjNScZQUYS92fpAkihOOUJKR7Fa3KOMEXrENsVmU21fS7ojqaKzKeboi5Tc3XYlyPUkktha9DCodS8GVZxc8cz0WywqOiUjLpKTpkUWRoUXXj4dicYcw6rJynlAkf9o51xi8qNN+CABBQEizbqQeXEd+6hH0Jh/qdRuFX0Qj0g6tx2G34bCVIWk0ZBzZwoF/v3Jr0jskjrhOwwmMa4PO4HwhiJKHUJh6jLQjGzh5YAUn9i0jIKopoQ264BfRWNj7o1WI7gugVRA5i+55oTZElCecEemhvsuDZ1PNtS1mjN5mjFqJxhF1acxoko9v5NCuHwmLbk/qyc14+UbQtvsDePk5I+mfeakp9fTYbaWVHB4AWbZTmJ9KTtpB5NMXbXTrAdhsZexf+yl1Wg8kskXvSvVAOXo+VO+8OQQiZxWVcq7K2Vt1Z7yM5vTsLU8eLDURtjqsVpLmf0xRwmHqjJ6EV1yDKutlrlpG+j+/u74bQ6OoN/YRJEkSOhtKDoDnTo8gz0OnRzR93q4gBXAIJAJXgtMjrHMRnB6REFvroThdaWaRKDzBmThsVmxlRUgaLQ5rKTqTN1p91Sev/JjYyorJSNhC+pGNFGUnYbD4EVKvIyH1O2H08q9UT1tWKakiT3V6qs/pc5qdfoi9W77EbisBJCLjulCv5U2KjqdoeMumcSBJErIsk595jIKsEyQdWoPOaEHSaCjKTqpUp2mf+/ENrVtle+dyekryMijJTcM3spH74qLly1CUlbBt/rPq7C0VIVdlT8+lRKPXE3XXBBI/epes9X9V6fRkrl/p5vAAGPwChdMvVVQudzQ6PQbdaf2GybtadXQGM+GNryesUTcKsxJJO7yR5P1/c2r3n/hHNia0YVf8I5ogCeLRqNQcu91K4uGVbr0zkXFdqN/8JvJzTqLVGbH41GyNxHJBtCSBX0h9/ELq4+UfzeGt32P0CqBRz/9DZ7Sw9/d3kTRaGnQfq+jwiLCWFHDwz48pynSGCWnQ+1786zSrcTsqKqA6PRcESaPBu3krMlcuw15ciNbs5ZafvmJxpTqlWWmV0lRUrhUkScI7KAbvoBhi2w4m8/h2Ug+t5+DqTzF4BRDaoDOh9Tui1XgWzV2lApu1hJ2bPqQg95QzQdLQqOVwQqPbceLQCo4fdK6X2LzT3Xj5RpCfnUhG8k70Rh+iGsZjNPsJWnfHP6whbW55zvU989g2ABr3Go9veIMaBwJ12G1s/65i5fT6PcfhF92kZo2oqJyB6vRcIHzbdCBr1XKy1q8ipNcgtzyvhs0oPLTXLc2/RYdLaZ6KymWLVm8itEFnQup3ojAzkdTD6zi1ezmndi0jKKoV4fW74hMUp/aMekBJcQ4Hdn7vcnh0ejMNWt5CSERrjh9cxolDK4iq151TR9ewb9OXOBzO8VCjOQC7rZTUE5up1+pmwmLaizZTCVtpEUfWfk1u0j4MXgF4n9XDIzsc1erNK0g76vq7Ub9J+EZULR9QUakuV6fTo5GdH0D2YBBcqBtRaE7j74M+OITMdSvI+nc1de57CFNEFADBfQe5OT31xz2GKSTS9dZjUwjgB2BVGDWwm5RfmbQlyvus9VC3I9KNiKPpKx0w5Rp2k3KeSAskQqQXEOlGlI6JSMck1PSI3nQ9EYQj1uAoLTXhrKhQz1Nti8hG0YQd100lYbLEElsnlqjSm8k8+C/p+9aTseq/mAMiCGncleCGHV16Dp2+6otIpH/yZFmUc7XpeZRtBU2Vh1GXzwyYabOWsH/jF+SmHXKl6Y3eNL9+AhbfMBL2/s7JQ38R22IgkU17EdywM9mndmP0CsQnpB4Gky92azFHty/k0NbvsETEYvZ1D1egFJTUoYOsE3vITdoHQFlhNqlH1xHavDv2shKO/DmP/OTDtB49C52xQpxY1X5bohsQc/0I0EhYYhpgP+MBLMsy6bv/JnXHX4Q0v56QFt09Om4q1xZXp9NTS/g0a0Vp0klkmw1rdqbL6TGGRdD88TcB542qvrGqqIjRGS2EtYwnrOkN5CUfIn3/Ok5s/Imygiyi21ex/tI1jizLOOw2SgozSNy/goyT2115Gq2eiPrXE9WwBzqDheN7lnLq4CriWg4mqmEPHIDFNwyLr7umR2ewENW8N5nHt2ErFcyAqILABu0xeAdSmp/B8TXfozWYsVtLOfTHRxSmHQPAYS0Fo2BGBiBptAQ36VzJWbWXFZPw5xfkn3TGSEvbuYrAxh1rZKPKtYnq9FxA/Np1JuPPpQAYAoOrLKM6PCoq1UeSNPhFNsYvsjEnNv5MxuFNhDRxrrRdmJmGd1Cs4oyxawGH3UrCtoWkJfxbKc/iG05Uwx6E1GnrWmYkJ+0gpw6uom6rm4hscO6eEUly1qvu0hEV9SR8IurjFRpL8tblnPx3EdbiApfDA5C2by3eobGY/MMx+gYB1VsKRZZlTvy9gKK049Tr/384rKUcW/ElZflZNbJR5dpEdXouIFqvM8eirppIACoqlwVhzW4gJ3EPu354sSKtYTfqtr+lFq2qHWRZJvngao7v/NUt3Te4PjFN++AbFFflempZSXvRGbyIqH99tbZTrruRPVgRHkCj1VGv1xj2L34X2WEjuEkXMvavByB110pST5cz+oXgFRqLw1pKWWEutuJ87GXF2MtKCG1xA1Fdh1bsw4GN5BzdTlyvMfjFNOPQr3MwB0djCgj3yEaVawvV6bmAyPaKt6Hjc94AwFy3IeFDb0evC6wts1RUrgqMPoE0HfwQqXtWYw6IIHnbMkryM2rbrEtKcX46x3cuITupYqkbn+C6NI+fhNYh7kVOT9xO8tG11Gnap9o9zq6eHlF0zHPgFRqLOTCSpC2/EdLserzD61GQUiFQDqjbmuyEHZTmpgMQ2KAdOdkpOGxOsZ21uMBVNvfEXhLXLiSoSWcCGrSlND+LgqTDABz9/WOPbVS5drgqnR5Zc4Zg8ULHXhQIoyVD5Ter4oRDJLzzMk2e/Y9ykyJxpUKetlQQWVkw/C4M4CcIsnb2St5u9QRCWllRAC1YmV0genWI8kS946II0IJqkkI90Yuvpyu6iwPgCaoJRdUikbNCHYGgXSSMFl3HDsGK3KJzevbxksw+hF/v1PSUWQs4tf4Xtv/+OtbCPIKadiKy82Dx+l6CY6zxNMijwH8QC6errqhUJ+vINhJWVUTA9g6No3HfSWi0OuyI7jVAkkg+tg6/iMZEXtefM3fHJhgdtBqdN0CZSabUx90wWeHeqMr+On1HcWr1j+QmHaAsx+ncaE1eoNGQnbDDraw+JBTH4TIsEXFE3HAzlohYynRQlHychN8/wbteU7xbtmH/orcpTjnh3D2tjsKUBOUdUVE5zVXp9NQmwQNvJmPpL9R9cgYas4nCvbsxRkbVtlkqKlcdIS27YyspwFqUT0HyEdJ2rCKkRXcMPgG1bdoFpyDlqMvhCW3clfAWPTF6V7/32GG3UpCZSHiTms1wkk6vk+WwCqY4VoOMnWtw2G2Etu9NWW4GaZv+xF5SSGCLLmgNJizhsWTt30z+0d2krv8NgKC2N6D38Sd981/4NGtLwdF9aE1mgtr34Pj3c93aj+w5DK3ZixOL552XnSpXP+cV9vSVV15BkiSmTp3qShs3bhySJLl9Onfu7FbvwIEDdOvWjejoaGbOnOmWFxfnjMexYcMGt/SpU6cSHx9/PuZeGmQZyWBA6+ODRm/Ap/V1GEJqFulURUXl3EgaDZGdBhHb847TQliJlC3LKM5KPmfdKwFZljm+7ke2ff40B5b8F4BGN44ntvPwGjk81pICDv3zJbJsxz+yaY1scFidMS7ykw55JBSWZQcFJw+RtXcjxWmJnPzzW7yiG9Bo9BP4NWxDUXICGTvXcnzpZ+QfrRiyC2jekfyEvRyY9xIp//zKqaXzKc1Kx15ShK0gr9J28o7uUR0elWrhcU/Ppk2b+PDDD2nVqlWlvP79+zNvXsUFaDC4B1eZMmUKY8aMoUOHDkycOJHevXvTrVs3V77JZOLJJ59k9erVnppXa2i9vJDLynCUlqI1CQLOqKioXDDi+txFxt71ZOxaQ+b+jfhENyK0VQ986jS54mZMJm39neRty9HoDC5dC0C93mPxi2pco7Ycdhu7/3gHu7WEup1uwzesfo3q68w++EQ3JnP/BjL3b6DRzQ/iFRZXqZwsyyA7XOJpa1E+WXs3knNwKyVZKa5y4V0H4RVZD0mjIXbAXa6yuYd2oPPxJffgdnIPbid7z78Y/III6Xgjem9/kv/+Gccp5/DVqaXzK22/OOU4Yd0Gkrp2aY32T+XawyOnp6CggNGjR/PRRx/x4osvVso3Go2Ehysr6XNycmjbti2tWrUiMjKS3Nxct/wJEyYwd+5cli5dysCBAz0xsdawFxSAVovGeO1Oo1VRudTojBbC2/YmtFUPco7uIG3nao4s/QhzcDT1B41Hb67e2mCXA4XpzjWmznR4dGYfAuJagUhbdJqy4jwKMk9QnJPCyZ3ONf/qdx1FcN12NbZFo9XRYOAETm1YRNrOVTjslQ2wlRaz+5NnAWg4/CGyD28na+96kMHgH+JWNmXdElLWLanURuyge/Bt0AK/Bq2QB9zpXM7HZHE5UX6t2lOansyRL944XUPCFBZFcIeemPzDMAWF47CWqU6PyjnxyOmZMmUKgwYN4sYbb6zS6Vm1ahWhoaH4+/vTo0cPXnrpJUJDK6J5zpw5kz59+lBcXMzgwYPp16+fW/24uDgmTpzI008/Tf/+/dFcQYsP2vJy0fsHXHFvlyoqVwMarY7Ahu0IaHAdBUmHObzkA3KP7iS4edfaNu2cOOw2Tmz4ibyT+11p5sBIQpp1wz+mRbXasFtL2bvsPUoLs11poQ26EBjb5rxs841pStrOVRz+dQ5e4fUwB0bgE9uYwtTjFCZXzMQ69OM76MzeBLe8npC2PbGVFHBg/mvnbF/vVbHGmiRp0Fkqvst2O4UnD5O980zJg0xY90F4xzVG4/nEMpVrkBo7Pd9++y1bt25l06ZNVeYPGDCA2267jdjYWBISEpg2bRq9evViy5YtGE/3fgwcOJD09HTy8vIICQmpsp3nnnuOefPmMX/+fMaMGVMjG2XtGTNaFCY0CEPHe7hUgCxBaWoyhvCISpO8hDNsRMs/FFedrhEtneDhLCDhcgzCMB2CWS9KbQqXMxDM9BEsQyEJjrHo+IuUbaLlKxTtEJxP0XEUzvqqXty2GqG0PdFMJY3VM2deNENLdE+JjqViPcn5H0u9hlhCo8lLPULAded2ehz6ms90A/EMLdEqOBq7c2gnc/9Gck/so+iM2Udaoxmt0YKMg7Q9a0jbswaQle+b07NUHbYyrMX5NBn0AEbfYCSNFq3ehM2obKRoGZzyPF1gA8KKbyZn92YKU45SmHKUjL1rAQmdtw+hvYag9w1Aa/HCO6IeZblZnPr3V3J3b0ZjNOPXtC3GwFBS/voZgMDO8QTHD0Cjq7gwys64xh02K4UH9lB45AAFh/ZiL8hH5xeAT7M2+DRphd4/CHNkHeyA4/QxsV+Ee0Tl6qNGj/TExEQeeughli1bhklBr3L77be7/m7RogXt27cnNjaWJUuWMGzYMFee0WhUdHgAQkJCeOyxx5g+fbpbm5czsixTlpKMb6fL/61SReVawBJZj9xDO85d8BIjO+ykbltFypblyMj41mmCOaQOyDJeoTFVBhaE006zQi+ydNoL9A6rh3do3AW1V5Ik/Nt0Bo2G1OULMQSFYo6MI2LQ7a58gNLMNPa+8QQgo7P4ENp9AAFtuqI1OH8v/LpcT/7eHXjVb+Lm8NiLCynJTKU4MYHi40coPpGAo6wUQ2g4vs3b4teiPcawyGotUqqiIqJGTs+WLVtIS0ujXbuKsWG73c7ff//N+++/T2lpKVqt+80aERFBbGwshw4dOru5c/LII48wZ84c5syZU+O6tYW9pBitxau2zVBRUQG8IuLI2LqKsvwcDD7+tW0OAKW5mZz4cz5FqccJadGd8PZ93Rbe9DSWkMcLn56mLC+LsrwsvCLrIjsc2EuLcaAje/t6SpITKTiyD9lmdZbNTKMsM42IQSOQJA22ogIO/3eWKx+g4YTn3BwbgNK0ZPIP7CJrwyqC4/tz8puPnLZrtch2O5LegCW2HoHdeuHTrDWGYKcsQtQLqqJSE2rk9PTu3Ztdu3a5pd199900adKEJ598spLDA5CZmUliYiIRERE1Ns7b25tp06YxY8YMhgwZUuP6lxyHA+x2pCqOg4qKyqXHElEXgKLkYxh82tSqLQ5rGdmHtpK0dhE6o4WGN03BO6JerdpUTsHJwyT84Hy5NIVEUZJ+yi1fYzQR2P56TBExmCPqYCvIw2EtQ5I0lKSnkPDxbFfZoA7xhHbrX8nhsZeVcuLz93GUlQK4HB6A4PiBWBo0whgShqRVw8epXDxqdHX5+PjQooW7oM7Ly4ugoCBatGhBQUEBM2bMYPjw4URERHDs2DGeeeYZgoODueUWz9bHGT9+PG+99RbffPMNnTp18qiNS0VpchIAuoCrLziaisqViN7LB4NfEIXJCfg3alNrdhSln+TY0k+xFuTiV68FdXrdgV4nENNcYjK3r3H9fabDozVbCB8wAt/G7qFJ9H7OOEGyLLs5PI0efqnK/ZJlmZxdG3GUlWKJa0j4wNsoSU7EXlKMX8t2aAxGse5OReUCcUFdaq1Wy65du/jiiy/IyckhIiKCnj178t133+Hj43PuBqpAr9cza9YsRo0aVf1KGtn5AUUloWh1CqFoV9CHbMtwhlc314mrVEzUPauxKucp2SJ6QIjCyouEuRq7YIkNQZ5IyGkoqPp46YqUD7LdoNygaPkN4RIVylnYBeJopeMs2mcFOcY5DRHNQhEKegWIr+Wqk+2Ca0QoSBYg/EETDed4IBI++9yYo+tSmJyAzSg+xqKnodWinCdCY4OsnetJ/usnDAEhNBg2HlOwM5yHXFJ1HdGzwmEQLN8iuI5L/d2/y3Y7palJaIwmihKOkHd4F4Hx/cjbtQWNRos+IAivRk3x6+KMn1bV5ec8zhKhI0aT9v186jz4KI5QMyVa9xMq2+2k/7iA/M2bMNVvQOjou5C8vDDHBjvtRrwUTHWxF6pjYCrn5rydnlWrVrn+NpvN/PHHH+fV3rFjxyqljRw5kpEjR55Xu5cCe2EBkk6H1nT5vMGpqFzrWKLiyN27FUdZKRrtpY2flXtgO0l/LiCwdTfC429GU8tDN6XpqeRuXUf2xjVu6aboGAK79SCwWw8kvaFidfVqtGkIdjovRYcPofMPRONdMcnFXlREyhefUXIsgZBbR+DTvtNFC+dxcs67F6VdlasLdfD0AmIvLERjUIMSqqhcTpij4kB2UJx8Ap/ohufVluywU5J6EntJCbLs7EZzzpCXnH+dni6PBI6SYk798S1+jdsS0WtYrcfuKjiwm1PffeqW5t20NcH9BqH3D/R4ZpQxMhrJYCRz6SJy162hzmOPY8vKJv3nnyg9dRJJkoi49z4sDRuJ5/CfJ37X30Dmzz9etPZVrg5Up+cCITscZK/5C3PdBrVtioqKyhkYA51r3xWnJHrs9Fjzc8n89y9y92/HXphf7Xqm0Gii+t5e6w6Po6zU5fDE3vcI9sJ8LPWdS3QorZZeXSStljpTppK/YxvZq1dw4tWXXZHp/W+Ix69rN3R+fhdgL8T4tm2nOj0q50R1ei4Q2X8ud065NAgG1lVUVC45ufu2AmCpU7N1p9za2LuZrC1r8GncmqD2PdD7+FXEyzktEJTPFArKMkgSRpNfrc/mdFhLOfHZ+0h6A1G3jcMUEX3Bt2EIDSOoT3+MUdEU7tuFo6QE3y5dnb07KiqXEVel0yNzRi+qgvBYFNNCFnTBKuUU7dsLQOjNt1VvINxtgzUsj1gYKsqzC+RGJaKo0R5qBCWFYymK7CtrRYJqwbZEL9OiK10klvWgx98hOo6i6M+CPFE9T64fEIicRRGSPbwORAJokUj7fGf0OGxW0v75DZ8mrTHHxAoFsyLRd2CrbqStXoJXdH28IuLc651rUoRCvtK1Jbrm7ILjWNW9LcsyqcuXUJqeQvSUhzBGRVcSJTv0yjsg60Q7VznJ1LEZxs4VK7nbzlbuX8QOL4dOFTKrnBs1vOUFoCw9ndJTJwm/7U50XlfOwoYqKlc7+ft3YsvLITT+/BYu1hpN6Cw+5O3fhuy4cn5cC4/uJ3vzPwT2dfbCqKhc66hOzwUgf9NG0Grxalq9RQFVVFQuDUUnDmMMDscQqLzkzbmQHQ4Kjh/EYbNSdCqBstysC2jhxSV312Z0vv749+hV26aoqFwWXJXDW5cafWgY2O2UJp3EHHd5RFhVUbnWKUk5Sd7+nfi36ljjurIsU5J6ktw9W8nbtw1bQR6GgBBCeg/DGOC5A3WpcZSVYsvLIe27rwm7Y3Rtm6OiUuuoTs8FwKddezJ++oGSkydUp0dFpZZxWMvI3raetL8WYwwOI7Bzz3PWkWUZe2EBpZlpFCUeIXfPVsqy0tBavPFr2ha/JtdhDo+p9VlYNaH41DEKjh4AwNKocS1bo6JyeXBVOj2ypkIMqCQyFGk/RaLRKnW5kgSShEPjwGFQEE47lB+WoojMSpGjReEuRMJQTyL0AtgEa6gKI8gqXGFl3soHWSR61ZZ5licSm9pNynmKx0TQoDAUiUhArxFUFIhNEVxbIs53gcpK7QmuLbvCfQHiKNsiIXNV9tuLCjn2wRvY8nLw73Q9If1uQtLpKgTMp+vY8vPI27GZ0rQUrBlplGWm4ygpdrarN+DTuCVhfYfiFdcQSaNFW4xiNG0PTzc2hetOGFlcMDnU6uO+tVMffQMOO97XtcPcuRV2XdU7IIuEzHrlkyppFep5emF5eiDL0XgYtlzlmuKqdHpqA1NcXfK3bMK3Yye0Fg9j1quoqJwXBQf2YMvLIfb+JzCGhlfKL8tII3vdKvK2bwKNFmNYBIaQMLybtMDoF4oxKBR9QDAa3ZX/aAwZOYrCHdvJXb0abWgAhsgI0j/9Ep/uXQkaMay2zVNRqRWu/Dv7MiFw8BBOvfMWuWv+JrBf/9o2R0XlmkQ6vbK3LS/XzekpPnGMrLV/Ubh/D1ovb4J69sevfVe05op53trSS27uRcFRXAwaDaaYGEwxMRTu2UPu738SfOcdAOSvWYelZXPMTdUhL5VrD9XpuUAYIiKQtDqKDh1QnR4VlVrCp1krcrY24NQXH2Cu2wBTZDQliccpPpGAPjiUsCG34dO6/VXRk6PEyXfexpaRgXf79vh27YZG73QEM7761lWmaM8+1elRuSa5eu/8S4wkSQQOGEDmol+w5eZekrDrKioq7khaLdFjJ1Kwbxc5G/+h4MBedD6+RI68G6/GzZGEUR6vfOxFRdgyMgAo2LyZgi1bKgkDtb6+WFo0qw3zVFRqnavT6dHIzg/KQmCRsFjWCFRzgmjB5uuaw6JfKE5LxBLm65anJOgFkAUzQpS63IURbgWCUqFo2tOIzAIBotJ+SwJBpl2Qpy9UztPYlM+b3ahspOjcKEWrFUaqFSC67kQnThSlV3JcYEWyCIH9QpG8SIctEDlLdsHxUtTRavBu1RrvVq0rZ3oYV1B0b4ivn5rn2czOHbPl5aH19nZbCNSqK6J47wEkjQZHWRm21AxkqxVbRiYyMtZTKa6yxkZ1kcwmSnbsAyDw7mFkzfsJe14ehtbRyEan8FfSKp84rYL4GUCj8JyURM9PT6lGk3YEDzcVldNcnU5PLVF6PBEAfWRELVuioqJypXNi1gug0VD3ldcoPniQ/E3/UnRwP3LJGW9CkoTGYkYfGY5k0GJsUp+AUTdhbtkEgMIN2yjZsQ+f/tcjaSucJ1tqBoaYyEu9SyoqtY7q9FxAbDm5SAY9+qDA2jZFRUXlasDh4MSLM7Hn56P19kYfGozGy4wtJx9bcirIMo7CIkoPHcW7R0cC7xruVt2rc1u8OrdFOt0zab6uGXKpFV2gOvyucm1yXgPcr7zyCpIkMXXqVFeaLMvMmDGDyMhIzGYz8fHx7Nmzx63egQMH6NatG9HR0cycOdMtLy4uDkmS2LBhg1v61KlTiY+PPx9zLyqyLJO9cBFymdrFqqKicn5YsyuWurDn54MkYS8rw5qWQcm+w06H5wyM9WLxu7nvOdvVellUh0flmsZjp2fTpk18+OGHtGrVyi199uzZvPnmm7z//vts2rSJ8PBw+vTpQ35+vqvMlClTGDNmDL/88guLFy9m7dq1bm2YTCaefPJJT02rFYpOO3aWNq3OUVJFRUVFmaIDB0h8+SW3NEN4OJIsO4e2tFqM9ePwHdCbiOceJmbubMKfuB+tn08tWayicuXg0fBWQUEBo0eP5qOPPuLFF190pcuyzNtvv82zzz7LsGHO4Feff/45YWFhfP3110yYMAGAnJwc2rZtS6tWrYiMjCQ3N9et/QkTJjB37lyWLl3KwIEerI6slZ0fUBReygJlnFBsqhCFtHDbVjReFoLvu6PKKKYOpeilgKxTVklKOVX7pSJhpUisKRLEivLsZs/EpkptKkWjBbH405CnbIdIpC2MhCw8NwpCZpNAdCxor1qRZWuI8HoV4Uk9pZkBAILrQCRyFgbwFVzLSm0KhfyCcNmeiI5BHNHbbqz5tZXz3V9u3/UxERjqx2AJaY0xOghzi/pozMYzSjgvfJ1BOSKxRnCQlQTJAFqNICKzQpuertQhurTE9ZwbtNvViMwq58ajnp4pU6YwaNAgbrzxRrf0hIQEUlJS6Nu3opvVaDTSo0cP1q1b50qbOXMmffr0wWKxoNFo6Nevn1s7cXFxTJw4kaeffhqHQzQl5PJBMpmQDAYcJVdJhDMVFZVaIWDUYCwdWwLOGVeRsx4iaNwt+A2Kx6tDs7McHhUVlZpQY6fn22+/ZevWrbzyyiuV8lJSnNMlw8LC3NLDwsJceQADBw4kPT2dpKQkFi5ciFZbudviueeeIyEhgfnz59fUxFrBt1sX5LIykme9jTUlrbbNUVFRuUKwpmcgn9HNYYgOx9LROUxuiFFngqqoXEhq5PQkJiby0EMP8dVXX2EyKffpnr0SsSzLldKMRiMhISGKbYSEhPDYY48xffp0ysoEK0leJhjrRBMx/WE0FhOpb36ELSuntk1SUVG5jMn5bRnHHnyMU7NepexEoltexvvOlz1DXFRtmKaictVSI6dny5YtpKWl0a5dO3Q6HTqdjtWrV/Puu++i0+lcPTxn9uoApKWlVer9qQ6PPPIIxcXFzJkzp8Z1awNdgB+hU+8DZHIWLattc1RUVC4z5NPD9dm//UbOb6efEZKEoU60q0xZUkVP8ZmBCVVUVM6fGgmZe/fuza5du9zS7r77bpo0acKTTz5JvXr1CA8PZ/ny5bRt2xaAsrIyVq9ezWuvvVZj47y9vZk2bRozZsxgyJAhNa5fG+j8ffHq2IbCTTtr2xQVFZXLBEdJCbmrVpGzbDnGunUpTUgAIOY/L6MxVIQgLzl6jJS33wfAp2+3WrFVReVqpkZOj4+PDy1atHBL8/LyIigoyJU+depUXn75ZRo2bEjDhg15+eWXsVgsjBo1yiMDx48fz1tvvcU333xDp06dqlVH1lTMGpIUp8sIZhwJp5MIpibYTs8iyC9GYza5vgNovZSnFtkFs2gcBVW/6emKlc0QzTQRzfoSLnUgmJkjmjVlN1edLgrdrxFMwtAIZvPoi5RF70VV6MbKkUVLhCgtkWAQhOcXhO5XmvFyLmTRsimCGUni2WIK9UR1hHmC61g0s0u01ITgWlCcvWUTtCeaRSbIE12vNi/linaDlcIN28j67HtXWrnDA5A272NCJ92KLsgPa2oWGV9/DUD09DvxbtMAKHFrz2xUvtmMOs9mb3l8TYquOw9wCNqrzrZsVjVGmsq5ueARmZ944gmKi4uZPHky2dnZdOrUiWXLluHj41kMCb1ez6xZszx2mmoDXXAgRVu24ygucTo/Kioq1yRlx0+5OTwAIfePQx8TRdITL1Gy5ygn7p+NsX40jsJi7PmFRD098rTDo6KicqE5b6dn1apVbt8lSWLGjBnMmDHDo/aOHTtWKW3kyJGMHDnSo/ZqA6/rWpO7+A9KE45jbta4ts1RUVG5xNjz8pGMBrQ+3m7p/rcOwtzaucK5qXEstsxcDPWiKPrXGdw04rl78bmuziW3V0XlWkFVyV0EdIEBaCxmsn9eii07p7bNUVFRuYTIDgeJz71Ayvv/Qxvk75anj66Ygh44ZiD23AKKdx5CFxpAyORbMTevd4mtVVG5tlCdnouApNcRNnUijqIiUl5/H2tqem2bpKKicgmQ7XaOT30CAI3BQM6PS93y09/+2BXA1FQ/Gq9OLZBLygi57xZ8ure95PaqqFxrXJ2rrGtk5weQFcSaygJnhIJMocj5jHDuhtgIwp+6n9Q3/kfSi28QMmEY3te3qbKaMaCkynQAW5GlynRdsWf+qlUkrRLpGQWh6rEqHy+l5SYcgvD8hlyR6FXZDIdOIKQVCbgVlgMAwFz1BiWtZ0JmUch/EaIQ/WIhs+CYKAh+Re1pBPstwmEXrXEisF8wZVsW1VOso5zn0Cu3Z7co77fDq6LRkv1HXH9bs7IoOXTErazGYoLMI5ha1sVksFJQx4cCwLpnLyGdIwHwNirHJbPolfN0giUjPEUkLlbKE9XxdFsiyq9Xm+7aEzLb7XZaNDHTN96Ldz7Krm1zrgjUnp6LiM7Pl4hnHsLSqinpcxaQt+JfAOz5RTiKS5EdDrdIrCoqKlc2Z05csGdW/hFyFJVwcsZngDNoa+7a/QAYQtWVz1VqzsKFC0nNsPPx/FwyMzNr25wrgquzp+cyQmMy4n/rYIq27Sbzk1/QhweT8tInVZat+8mT6Py8LrGFKioqFwpDbBShT00k7dX/VcoLvPUGsn74G4DCbYcpyEyn9IRz6Duw/3WX1E6VKx9Zlnn95Tt5bmogS1cU8t/XGjF9tur4nAu1p+cScOYSHEoOj6TXeb7MsIqKymWDqWFd/Ib3r5RuLygm8iln6I1TL35J0gfOiMwhw7ug0QvGX1VUqmDNmjUcOGLl3tF+PDopgPc/zaW4WBDATQVQe3ouCbqgAOK+mEnp4USSZ37kSg+eOByfG65DZxAIDVRUVK44/Ab2dM7g/HKhK82eXYAxNtT1XdJp8O3YhIhxvWvDRJUrnNkvDmTiXX74eGvoG28hIkzLZ+/FMemJ1No27bLmqnR6JK2MpD3da6IUdFagmRNFZhWKfUWBYK1G9LEN8L9tIDkLnDM6Mv73I6ZmLdCGK58Gh2/VUVZL7cphl2W9spGyr7LYTxKIbB2lgojGuTW/jESRoUURpUv9lQ+ytlR0UgW2CITMSoJlrV7ZUdUJhMx6nWcOrjharXI9m03Ug1B1niQIe60V7JsIkZDZJrq2RI0qhhAXCaOVs0SRlc8UK5+N1lz1PerduRHWLVEU7D0FQPGeBPIWLHflRw9tTf0JPYAit3q+hlLFbRlEIckFOATHxBOx8rnyPGpPdN6qgU1/7QiZ9+7dy59/F/HB604nWpIkHpkYwEtvZzH+UTtaQQT6ax11eOsSY2rqjLSq8bIgmY3Y8wtr2SIVFZULhSzLZH62mIRRz5I0/X8uhwdAtjvI/MsZhDCgW2OiblF1PCqe8Z8XuzBqmA8RYRUvnHcM9aG4RGbRokW1aNnlj+r0XGIMsVFoA/0xNogl+p3n0YeH1LZJKioqF5DiXYcBsGfmuqUH9mjq+rvekzdjCvVsaR6Va5ukpCS+/imfRycGuKXr9RIP3efP7JdGqbOCBahOTy0QcPsgincfIGXme2TN/wVbdn5tm6SionIBkCSJ6DceJu7LmYQ+eIdbXsbvO7DUC6PhzBGqcFnFY955pQV9elho2shQKe//Rvuy92AZa9eurQXLrgxUp6cWsLRvRejD96KPCqNw3RbSP1K7I1VUriYkrRavzi1pM/+BijSdlqKjqVgz1JccFc/Iz8/ngy9yeWxSQJX5vj5aJtzlx+wXK88eVHFyVQqZz4zIrIQkEM3JHkZrFgVrPrtJU5MGGOrGkDLzHWyFZViLqz4VBp+qI7BaPRSUBgYqa4hEEV1zCsyKeaWiCL4lVfvVIg2kzaScWVr1vQ6Arkg5z1Z1YGsnIv2zwnUkEisb9FULWwGMOuU8reCa1WmVBaylVuXbuFSrnGdXEGMbBfaLsDuUD2RRsVExT6NXPpaiNmWtwvFSSgfsApE/FoE4XTDD0mgSREk2enPdL4/jKLWh9TKyZdCrHHv3N4L7t8HfWHUkdm+dspBZI3jIeCoStgnClXskVvZQkOxpROZyrIJ75Grhwzfq0aSBges7KYS6Bx78P38adD7G/v37adKkySW07spA7empRawnkrClZuA34IbaNkVFReUiodHr0HmbsBdVODOlabmCGioqlbFarbzzUQ6PTvJ3i/12NpHhOkbe4sN/ZnW6hNZdOahOTy2iCw8GnZa8ZWtxFCmvv6WionLl4SizcfKzVdhLrOTtPM7229925Z36bFWt2aVyZfLdd99hNEoMHeB9zrKPTvRn/k/5pKSkXALLrixUp6cW0fp4E/LAOEqPJpL21ufIZddOnAkVlaudot3HSPl+PduG/YeDT30NjoqhqaxVe7GXejaMqHLtIcsyr79yLw9P8EerPfcwYLPGRnpdb+bdV5pdAuuuLFSnp5YxN29E2KN3U5Zwksx5PyE7LvxKySoqKpeeM6MvV8XfE3+6RJaoXOksX76c5FQ7Y0f4VrvOY5MC+N8XuRQUFFxEy648aiRknjt3LnPnzuXYsWMANG/enOnTpzNgwAAAxo0bx+eff+5Wp1OnTmzYsMH1/cCBA9xzzz0cP36c8ePHM336dFdeXFwcx48fZ/369XTu3NmVPnXqVLZv386qVauqZackyS4BqqLsTyReFUXvFfgkwtAIgjaNDWIIHDeUzI9+QOvng/+tfZF0zlOjJGA1+yuLJ2WBINDPpLw2i0Wn3NNkF7RZVlR56qTLltKq/WpR1GtRhGSrILRJmeB5YDcrt6lREIuDsoBVJFa2GJSPo0EgZNYLou2KBKxGrXKbVoFIVaNwd3gqRLXalbdVWqYcZlvSCMTKdg8iAgsErRqBIFkkVraYla8Rg9L2okx0/mgkZdnFaAxaDn7wD3n7KpYIyEvIxGIvQGdyfwybtcrbEmEThDkX3b86wc3oiTj6fAXJNcVxOjK3KJL4lc7sl4Yy5R4/zObq91Pc0MVMgzg9H79Vl6nT0i+idVcWNerpiY6O5tVXX2Xz5s1s3ryZXr16cfPNN7Nnzx5Xmf79+5OcnOz6LF261K2NKVOmMGbMGH755RcWL15cKZ6AyWTiySefPI9dujLxvr4dvoPjyfv9H9Lfm489R53WqqJypZL46Uq2j3qXk7/u5sjnG9H7mogbURGBObBdHWSbTM6R7Fq0UuVKYOvWrazfVMKksf41qidJEo9ODuCtD3KwWlXpRDk1cnqGDBnCwIEDadSoEY0aNeKll17C29vbrSfHaDQSHh7u+gQGBrq1kZOTQ9u2bWnVqhWRkZHk5rrPYpgwYQIbNmyo5CxdCwTc1o/Qh++ieNch0t76/NwVVFRULktKTmRgzS7k5C+7yN2TzPp75rPn9RVozXravDSYwuNOZ8forzyVX0UF4PUXezDuDl+Cg2oe0HLYQG90OokFCxZcBMuuTDzW9Njtdr799lsKCwvp0qWLK33VqlWEhobSqFEj7rvvPtLS0tzqzZw5kz59+mCxWNBoNPTr188tPy4ujokTJ/L000/juAb1LebWTfAb3IOyY6fI/OIXZIcaTlxF5UpClmW0PmZCBrXFFO4cc43o04TYW9vg0yCY7c/+SmmGU2fhHakuRaGizPHjx/lpSSEPTxAEKBOg1Uo8PMGf11+5R12a4jQ1dnp27dqFt7c3RqORiRMnsnDhQpo1cyrEBwwYwPz58/nrr79444032LRpE7169aK0tCI+xcCBA0lPTycpKYmFCxdWuRrsc889R0JCAvPnzz+PXbty8R3UA6/rr6NgxQasGWo8DxWVKwlJksj8cxfpS7ZRkpIHQEl6PpJBR1mOU1PXeuYg7lhxpzDeiorKmy+24aZ+XtSLVdbEnYtxt/uSeMrKihUrLqBlVy41jsjcuHFjtm/fTk5ODj/++CNjx45l9erVNGvWjNtvv91VrkWLFrRv357Y2FiWLFnCsGHDXHlGo5GQEOWFNkNCQnjssceYPn26W5vXChqjAa/OrSn8ZytymTqtVUXlSiFv53GMYf7Ue/Imjr5WsbxM9vZTZG8/RZ8VDyBpne+aBrOq21NRJjs7m0++zmXFj9Hn1Y7FomHKPf7MfvFmbrxROSL/tUKNnR6DwUCDBg0AaN++PZs2beKdd97hgw8+qFQ2IiKC2NhYDh06VGPDHnnkEebMmcOcOXNqXFejldGcDkUvK8x6cdgFnVyC2SSSaIkKT6licxovZ5jxkoRU9JHBIMtImgqb/cyeBTP0NSiHuA8zKT+EfQ3K2zsmmC2TYa46kJY1W6BlsApmoZiUj7/isgQA3srOo84omNGjsG8mwewtH4XlBQAMghkmomVARIjq2RzK17nSjDBRHRGphcpDNaLZbnYPt+dQWApEK1oiRKd8/L2Mgll8gms8wlJx3/zw5NeK5YYuGI6vd8WPjq+u6utE5+EsJJtADmCVlY+xQ5QnmMknmhF2oRHZCM7jpdFcXWLdNWvWEBOlp0Mb5SUnqstdI3yZ+UYWNpsNne7qXH2qupz33suy7DZ8dSaZmZkkJiYSERFR43a9vb2ZNm0aM2bMYMiQIedr5hWHNsAPbaAfSW/+AG//CICpfiSGiEA0ZiPmYc3wri+OA6KionJpsJVY2fPRJtf37u8MxivCF0d2Dod/PkDzMS3xjfGrRQtVrjRkWcYsWIewJlyodq4GauT0PPPMMwwYMIA6deqQn5/Pt99+y6pVq/j9998pKChgxowZDB8+nIiICI4dO8YzzzxDcHAwt9xyi0fGjR8/nrfeeotvvvmGTp2urXVEdIF+RL70EGXbtjh7ghwyRXuPY03LwZqWw7Y/NhM7rhsxd3Y5Z1sqKioXj+yDGWx+8S/yT+TQcnInGo5ohUbv7K20xJoIbxNeyxaqXKnIyDg4/wk9F6KNq4UaOT2pqamMGTOG5ORk/Pz8aNWqFb///jt9+vShuLiYXbt28cUXX5CTk0NERAQ9e/bku+++w8fHsxkKer2eWbNmMWrUKI/qX+lIJgO5f21DF+iL1ttEyZFkrClZ+PXrgFlbyvHP1pLx90F8m0eCJOHXpg4hNzSubbNVVK4pVtz9AwA9PxhKUAvVwVFRuZypkdPzySefKOaZzWb++OOP8zKmPNLzmYwcOZKRI0eeV7tXKrLNjr2whJLDSW7p+f/soun8+whoH0fmhiPk7jqJvcRK8uLt6Geb8WtdRxjlVkVFxTNkWSbrn0Oc+nEzRQnpbiElVIdH5WJgFy0DcAnbuFq4KhVNGq0DjdZ5kh0Ks/I1gu4+2SEIiy8M0e+ZoyEpCEq1Jj2x7zxM6YkUirYfxqtjEzRmE1pfL3JlO7QNJKhtW4IA2e5g/62z2PX49+j8vYieMhDfzo0qTYkNMSur98OMeYp5DSzK4twAQ5Fi3hFjcNXpctXpADZZINzTCMTKRuVzqjUo55kFAlalJQYseuU6ouU8TIIlIzSC5QBESwUIEcQzUxIylwmWrhBRZlaulyuZFfPsgvvNqhMso6Fgv1Gw1IdoyQ6zXvm8hZvzsBZZWfnUSpI2JBHRMYLG97YCDWhKSml+SwO8TJXvH9GSEnqp5oJluyDKiFawVIlGIBYXi4RFttT8eXcxl6jQerh8x+WMDDguwOSZC9HG1cJV6fRcbRhjwjHGiN8iC3cl4N/nOjRmI9bkdI69tADvtnWJefgm9IFqADQVlfOhrKCM1c+tJn1XOje+dSPR3SqmEXtfhT+2KipXK+oq61cY9qIScv/YiDUtxy09/euV5CzfSt7aPdSdfjtx00ZQciydgw9+TOG+k7VjrIrKVYC91MbXvb7m1LpTxL8c7+bwqKhcXJxC5vP9R1Z7elyoTs8VRunRJNI/+ZXUL/50S49+cgTGuuF4ta6HJEn4dWpEo3f/D0NEAMdeWoA1Sw2EpqJSU2RZJnd/xcroUV2iatEalWsNGbDL8gX5qDhRnZ4rDEuLekS/PIGwe9zXLDvxwleUnkgjYuJgV5o+wJu4Z29DttrJ+HXzpTZVReWKRnbIbH1qMf8++CM+UT7cssCz0BsqKiqXD1enpkcjI50WvCoJlh2iNW881SoLvGlZJOATZFXVpLF+NHqDuyBTazGC3UHq58uIuG9ARYa3L6YGkeRtTSB41I2YtMpizaJSDSV5ZRRnl1KcW0ZxbhlRrYPwCjIRpleO5BxuUBZA55qqFrBm+VgU62Qr5oBOEG1X9C4jisRrFOQpRVdWEjifC1G0XZFY2ai58MuRKNmisSuv82MTiJxFIlU/U7GgTeV3r1K78iPKS0FMLjqOJoHIOdJUsc7d5k/3sOG/OwDoNKkV3cbVQ2/SAJV7TC0aZU2P1gMBul0gLLbKysdfK5icodOKhMzK501pIoiIixGpuVoCaA8jWV/uqELmC8vV6fRcg8TMGkvWovV4X9ewUp4+2JfCHUdJ/nAp2kg7pbkllOaWUpZXWvF3bgnWwsoOUed7m9D9gRaXYhdUVGoNa2EZe5cdweht4PCfJzj0x3EAhn7Qm+j2Yeh1yk6/iorKlYPq9FwlaPQ6god3rzIvdGwfclZsJ/u3TRQHmjH6mTD6GTH4GgloGOT8289EeLADs78Bk5+BjCN5LH9xKxs+2U9poZVufb1p0N4frV4dEVW5ujj51xH+nbbM9d0n0ovWIxtz3bhmeAUrT7VXqR7WYhvbvj5I85vq4hWiHs+aIAP2C9BLcyHauFpQnZ5rAJ2vBf9+7cn7eyfdX+5NSOuqp79HmXIq/m4TRECMN4dXJnFo5Sm2fVuM2VdHix5BtLoxmKbdAjF6qZePypVP1u4U19/1etWh/6vd0AiGg1SqjyzLzBv8K0VZpYQ3D1SdHg9Qh7cuLOqv1jVC2LgbKTl8iu1zNnHj3MHnjNgsSRKxHUOJ7RhKrydaozlynJ0r0tnxZwabFqeiM2ho0jWAlr2Cie4ei3ewYNV0FZXLmPRtzojn141tSufJrVWH5wIiSRJdprSkrMBKTGc1YrVK7XNVOj1ajQOt5nREZgXB8tmRis9EJHKWJeUHoijStyTytD3Q/TkE4k99FcJcjcVAyPBuJM7+gT8m/06H129Ga3AXRUacEVF2ydMbOLYuheFzbiC8eSB1mvtQp7kPgx6sR/qJYnauSGfXigy+nXEA5APEtvWnea9QWvQOJTi2QqSsJCrVaZUPlp9P1aLX0tQcNHl5IEk4T4Pk/FcjARJWhxZJktB6GTGE+LrVFenWTYJIvN4KYlmlaMBwDmGoIE+j8UzILIrk7BGCgMw2wbYiLcqCdpH9qSXKwTN9DcpamiBj1dHFC20GxTpR5gqxclFWCQsmrCb3UC69n76O60dFA1VHFxeJlT2JrAzKEY1FYmXRupGi55YeZRtFwmmPIiifVaXTrXVO/1UmjCjtKS4bL4LYv7aRuTDTzR3qlHUXV6XTo1I1ft2akV03kKztpyhOysU7LlCxbO7JAkpyy5g/+k/qdgtn7Atx6A0aTuzOp3G3QHrfHUPvu2PIzypj21857PkrjT/eO8yS/xwkrIEXLXqH0rx3KHJMlNDBrC6yQ2bv+A+QrdX4gZGg7mNDCOqpCrBVlNn48T4yDuXSdGAMrUfUB1SxsorK1Y7q9FxjRPVtwoEP1p1zhLf1bQ1I3vUvjfpEk7wri5cG/QsSWEsc+IYYuO+9FsS19sMn0EDH4VF0HB5FWZGNA2sz2fNXGuu+SWTFBwlYQnZR54YY6vSIJey6cLR6z9Z1QpaRrXYihrcn9MYWgOxc7FHm9N9gtWtAlkn7ZTPH3/sdrcWIX8cGF8TpUrn62Pr1IQD6z+qoXiMqly0Xoh9XXW60AtXpucaIGdKcpOUH2PDAj3Sdexte0f5Vlss5WYB3qJkhr3elrNBKwoLtpB4toun1gSx+6yhzJ+yk74RYYlv4Etk2GI1WwmDR0bJPGC37hGG3OUjYksPq34pI/Ps4B37cj97bQFDTICSNhiLb6VgwMq5gROU9sGf/H2Rkm/O29aobilf90CptLrM5HSpzbAi2l4o5/MIP+HVqQN2HB6H3U44LpHLtsXbObgA639dU1fCoXLaos7cuPKrTc42h9zHR+d1hrJ24gF2zV9D53eFVlivKKsHk69RGGLz09JsQ58qz+Or543/HWPpeAmXFDpr1DOHu/7Z1q6/VaWjQKZDiZq3o8Egnsg5mkbj6ODlHc5AkKLWeIXyWpArNjSS56wjOeAM3Rgbg1ybmnPuoNRtoOOt2ctYf4tg7S9j3yBc0mjUCU6TycJ7KtYO12MaGD/cC0HpEg1q2RkVF5VJyVTo9Gg1oTkdklhQEXMJIo6IIyQIhpzDKs4dc6CYzi71A50VQv7YkzlvFqSNlmCIDAND5V+hlIpr5s/PHo6RsTyW6bTB+2gqBZ9deZrr2aorDITOuyb8cWptBmC630rYAsk1eANRpraF167qu9L35EYo2phSKV4V3KLy0GPXuQsbwHvXwa3gne5/9kf2PfEGzZwYQ1CG2Uj2dQECshCiytUMgDBUJoEViX6NWIGT2sPNayRaN0gFGLNoVCapF+x1iKlDME2FQOF6lkvJjLUBXyPEjWQC0G1aHOhEOwCmIFomVLRrP9D4i4a5QsKyAVqN8HJWE0edCdL2KEAmgFbfloY3CbZU3eRUKmQHsF6CTRnBLX3PU6KqdO3curVq1wtfXF19fX7p06cJvv/3mypdlmRkzZhAZGYnZbCY+Pp49e/a4tXHgwAG6detGdHQ0M2fOdMuLi4tDkiQ2bNjglj516lTi4+NruGsqIgK7N8YY5seuKfMoTsyslN/6ljgC6niz65fjim1oNBLBUQa6Dw+5mKaeF+bIAFq9MxqfhqHsePIn9r72B8UpyrOMVC4OWUdynBqsy4CtC08C4BeuhllQUbnWqJHTEx0dzauvvsrmzZvZvHkzvXr14uabb3Y5NrNnz+bNN9/k/fffZ9OmTYSHh9OnTx/y8yvWq5kyZQpjxozhl19+YfHixaxdu9ZtGyaTiSeffPIC7JqKCFO4Py3eH4dcZiN3S0KlfEkjEdMhhKSdWcJ2wuuaObQ1H2vZ5SuV0/uaaf3qLTR6qBdZm47x7z1fkLsnqbbNumY4+W8y341Ywqb/7XSlFWUWs3LmBvYvPgqArdRO3sl8irOU1+i6UMS1c/ZsRrUMuOjbUlE5H2ScIuQL8VFxUqPhrSFDhrh9f+mll5g7dy4bNmygWbNmvP322zz77LMMGzYMgM8//5ywsDC+/vprJkyYAEBOTg5t27alVatWREZGkpvrPiwyYcIE5s6dy9KlSxk4cOD57JvKOdB5mTCE+pK98TBBvZrDWSNO0W2D2PFjAoWZJRBddRsjHq3DCyP2sGhuEsMfUih0GSBpJKJvbk14n6Zsf/xH9v9nOR0/HoOkilhrTHF2KbsXHsEvyouGfWKQNBK2MjvH1iZTkFpE0qYUzMFm/Or4YCuycXCp07HZ/cNBGg6sy/Yv9rJ/0RGQYf8vR0jclMbhJUdc7Xd4sB2txrRAluWLMquq5YAofn5+N9mJVcfkUVG5nPB02PJCt3G14LGmx263s2DBAgoLC+nSpQsJCQmkpKTQt29fVxmj0UiPHj1Yt26dy+mZOXMmffr0obi4mMGDB9OvXz+3duPi4pg4cSJPP/00/fv3R6NRf5QuJlGju5Hw7h+c/PxveLmeW57O6NQcaHTK5yCuuReD/i+CJR8m0efOMHyDlFfovhzQWQw0ur8nm6d8Q9rqQ4T1alzbJl1ROGwOFk5eScaBHAB+f3o94S2D0Bo0nNqSjkYrEdoimKQtqZTml6EzarGVOHVApbllfDt8caU2c0/k4V/Xj5wE5wvQpne3sPWD7dhL7XR7ugtNhjVStMcTx0in1xDW0JuTu3JqVE9FReXKp8ZOz65du+jSpQslJSV4e3uzcOFCmjVrxrp16wAICwtzKx8WFsbx4xW6kIEDB5Kenk5eXh4hIVVrQZ577jnmzZvH/PnzGTNmTE1NRKe1o9U6H7TKkYuVO/wkUURdwQP2osT6UGhSEghDRXlnE3JjS3L+PULR0TRSS1u75dmCggHYtjKHrqOUBawj7vXj1w+T2Lsilf4j3WdINTFXPYwkEnhmlyivz5Ne4K2Y52VUFqL6nBHZN7hFCIHXRZPy+y7q9GmARjCdU0nkrBRpGsAsWJFbJPY1C8TRRkk5TyQSBqdjkLgti+B6Plj8K6IVaxVsEYmVkw/kkHEgB52pwplJ2VWhCWsUH06dtgFs/7kETbiJ64bH8tsru4hq6c+pXTl0urMe4U18qdsxGK8gI7qzooLnJhexa8kpVryzD4Cdn2wj/o5Qt3tLdsgseWE7h9akYC220+72enQa2wCLv1OjE25Q1mx5a0sAaN49kH++OYmFYjRaZ9teArGyp1GXPRIrC55NdkFEeI8FyR4+tzzZ3kUVW2uU75ErFVm+MCLky0ROd1lQY6encePGbN++nZycHH788UfGjh3L6tWrXfln//BX9SZmNBoVHR6AkJAQHnvsMaZPn87tt99eUxNVaoik0VCw7xSl+aUYfSrEnSEtQqjbty7/zPyH5oZYegwPqtKx8w3QUa+pmeXfZ9FnRABa7eXflepTP5iUvw5hL7WhMZ77h6kks4iEX/aSeySTsI518AszIEkSZXmlRHePQe+lvPTBpUSWZUoLbJh8Knrcdi46weJp24hsEUC/p1tRWmjFO9BIeCNvt/PpsMvsW55Eblop190ah95c+fEQ3tSPYa93YMfPxzH66Nn7+ylXns6goemNESx8eisAz++6CYCOo+pWakcJvwgL1/9fQ7re3YD5E9dzdEMGHwz7iwk/9SLrWAGH/0llzQcHKMmz0rh3JP5RFjZ/c4TtC48x9vMeBMYqO8Vn0rR7EMs/OMap/fnUae577goqKipXBTV2egwGAw0aOGNbtG/fnk2bNvHOO++4xMcpKSlERFSIQ9LS0ir1/lSHRx55hDlz5jBnzpwa11WpGdHjbiDrn/2senoVXZ7sgm+dih+B7i90x15m539PH2P7mlzu/09dtDqJ0mIHJkuFs3Df9AieHHGUXz/P5OZ7gmtjN2pEnZtacuLnnRz8YC3NHugu7KXbN28z+z7eBIAlwoekvxPcXp28o33o/9EQTAG1u4L0riWJLJ62FYdN5vb3OhPVOpDdvyaybPYuAJJ2ZzNvdMULim+YiY6j6lKvcwg+oSb+fGsfOxYlArDirT3cMacLce2D3YY3JUmiWb8omvWLAqDz2AZ8OtLZZlyHYJr3i3Q5PeeDRisx5qOuvNByERlH8nm1/WLsVmcPSKOe4TToHk6LITHoDFo6jWvIV/es4fsH1jP2yx4YA87dKxDT0hejl5ady9NVp0flMkZSNT0XmPOO0yPLMqWlpdStW5fw8HCWL19O27bOQHVlZWWsXr2a1157rcbtent7M23aNGbMmFFJQK1yYTGF+9Noxq2cfH8JP9/xM63vbU3jWxpjCjCh0Wro+VpP/Nav4b+PJfDCqAO07OrDT3NSGPlYFDdPcDq4Tdt5cfM9Qcx7JZlm7S00bHV5R0D2jgmgyaTu7Ht3NTl7U2gzrR9eUX6VyuUeyWTfx5toNLoN9Ya1wBLug73MjrYgD4fVQUFyPmueXcniUT9x/Yx4IjpF1cLeOMk6VoDD5nTGvnvAGfZBo5OI7RBMQXoJg2a0xeitw2DRkXOyiD2/JfLXe/v58619ldoy+xv4ZuI6ZAcMer4NbYfHueX/9MQmErdmugJYBtfzYeT7HSnOtRLW2Jf+T12Ydc9umd2e5a/vpiDdOSzlF2Xm1jc7odFWBLH0DjIx4r0ufD5mNT8+spExczpgqKKX6kx0Bg2dhkWw7vtT9J0Uh74avX0qKpcaZ0Tm83dYPI2PdDVSo0HZZ555hjVr1nDs2DF27drFs88+y6pVqxg9ejSSJDF16lRefvllFi5cyO7duxk3bhwWi4VRo0Z5ZNz48ePx8/Pjm2++8ai+SvXxb1+PW76/heajmrPtg218N/A79i1w/hhKkkTXQYHM+Lox2elWfv8qHYBv/nOKXesq9BPjnopAb5R445FEivI900BcSmKHt6b9f27Gml/K2vu+ZdfsFWTtctcgHf1xN+ZQL5qN74gl3Bk0UWvQYgnxwjvSh/B2kQyePwzfGD9WP72ClM21NxU+8qwp2J3G1Oeh5f0Z88n1TFp0IzHXBRHWyI+AaC/qdg7h5plteGJNf+779gbueK8jt73ZnhFvtqdJ7wgGTmvDjY86HZclL2zHVmbHWmJnzYcH+OPVnRxdm0Z+Wgnph53nP+NoPm/0WsbK/+7n/77uTlz7C9Pb17x/NFNX9OfpLTfx1OYhPPBbP5cG50wCY7y59a1OJO3O5uM715J5/NwBD7uPrkNRrpUNP6jhC1RUzuRCxOQrLS3lgQceIDg4GC8vL2666SZOnjx5qXelEjVyelJTUxkzZgyNGzemd+/ebNy4kd9//50+ffoA8MQTTzB16lQmT55M+/btOXXqFMuWLcPHRxxhVwm9Xs+sWbMoKSnxqP61xonpn7H/1heQ7Z5FZdCZdLSb0o4Rv46g8bDGbHx9I9s/2o58Oqp1w7bezPimCTqdhN7o/OF5aexBl4Ozb0sRpcUySQllLPos48Ls1EUmuEMsXefeRsxNLcjcfooN9//Iv4//Qu7BNNLWJ5Dwy16C20ah0Sn3BJiDzPR8sy8hLUJY8eDvHFl+7NLtwGmyTxby/UMbXd8fXz+IPo+3xCtIHIDP6K0nsrk/jePDadYnkqZ9Irn1rU407hlBu9vr4h/t7LF7s8dv/G/oCv6eu5/dSxIpybfiHWyk75MtCWvsHB4qyi5jy4LjLHzq/Ie3zkar11QSPZ9NneuCGfdVD2yldj64fQ17l4udmZBYC+0GhfPnR8exll7+TrrKtYlDli7IpyZciJh8U6dOZeHChXz77bf8888/FBQUMHjwYOz22r3XJFlWWKfhCiQvLw8/Pz9a//AoWovzYW9XmL3lcChfBEp14MxFMKtqU1BPuZoQpZk5Om1lx+bAvW9jzcij3ouj8WlTtXjUrFee4RBsLnT9LcsyR+ZvYf+HG2g4rgN3P17x5r7zt2S+fWw7Fn89RTlWvloeRd2GBt6ZmclPX+Zhs0JkjI5PF0di8q36R3dXiXJMn19SWivmHU1RFsD7+SrHXYnwVp7RYzg90092yCSvOcqeuRsoPOmcPh3SJY42z/VF7+2+HxGWyu057A7+emo1mbtTeeCPfmj1la8HpRlT4PkSD+kHclgwbQ9pRwuJbePHvR9ch/a0Dke8JMa5nWNZlknan8+BNRmc2pdPx6ER+Ieb+Oml/Vw/sg5tBoQjyzL/u2crhzY6A1mOfKU5HW6OPGfb54uS/WUFZXz93H52LEtnyietadylYkbh2cc4NaGIFwZvZtDkWG57IFxxWwbBufF0qQmlPE+WdziXHSJq+oN4PtvzeIZZNYZnSgpsTOv4F7m5ufj6Xvk6rV9++YWnnruN+UuUr8vqkpFmp1+HJKxWKzqdZ6qWwMBAXn/9de655x4iIyOZOnWqS8tbWlpKWFgYr732GhMmTCA3N5eQkBC+/PJL12SkpKQk6tSpw9KlSyuFqrmUXJVrb12rRD10M8kf/IbxAiysKUkSDe5sj6TVsG/uOlZ4NaDXpAZIkkTTXqFENvMlaW8ewXFexNZ3zhTKybJjO+1TZWfauW9oEh//FovReGXEWpI0EpE96hPerS6p649Tll9KaHxjtMbq3SYarYa297Xm5zsXs/HLI3S9p+EFs60418r+1Wk06x2GRiehN2rJSSrmr/8dZstPJwmOszDx8/bUaVFZl3Q+SJJEVFNfopo6f0S0p933+7/o4Fbmlmcac3hTNjEtfYlpeWFtqClmbx13v9mc/9y2mb8+S3Rzes4mrK6F8HoWFr93nA69fYhr5nUJLVVRubTk5eW5OT1GoxGjUdwb7ElMvi1btmC1Wt3KREZG0qJFC9atW6c6PSoXBu9WdWn438loq+gF8pT6I6/DYXOw4r8byEst5ZYXWqA3apnyfVdWfnCEP987xMbV3nTpaeGh6UGEhuvIz3Vw0ygfJgxL4u1p6TzxWujFiWF0kdDoNER0d/aUldlrJnANahRIl7ENWPX+Xup3CyWs8YVxAPasSOGnabsrpVsC9Ax5qjFd76hTZc/SpSK8oTfhDas3XfxSoNFI+IYYEYS1cVGc71yocvrQ3XyyuwN6w5XhpKtcC0ge9+Cdif30y0pQUJBb+vPPP8+MGTOqrHM+MflSUlIwGAwEBARUKpOSknLe+3M+qHe3ihuFSbmU5blrqBqOac9N05qx6YdEkvY5h3UkSaLnhPpENvXliXtTmfNKFv6BWiY9FcgTrwTTpKWRp18L5rcFeTww4iRH9nm2SvWVSPwDzZAkibWfHLwg7RVml7F7WWql9N5TGvD4H/F0HxNbqw7P5Up+Vhkmr3O/17UbEOr6e9eaXEFJFZUrm8zMTHJzc12fp59+WrFseUy+DRs2MGnSJMaOHcvevXtd+dWJyXc2F2tpmZqgPilV3PhnwgKWDf6YkoxCt/To5s4eC1tZhbZBkiTu/qgDTVoZWTg/j5Ji9x6m/sN8ePGDCPJzHEyblExRwbWx7J1Wr+G62+I4tDqFgyuTPW7HYZc58Hca/x2+hoNr0l3p//dpR2bt6EfvyQ0xVuNH/VokO7mEE7vyaXr9uYd6e4ysiCtWv/Xl01uloiJzYYTM5VrU8tlY5R/R0FZ5TL727dvzyiuv0Lp1a9555x3Cw50ao7N7bM6MyRceHk5ZWRnZ2dmKZWqLq/KJqUVGe1oArNFULUAUhXMXLeMgEitLAmGop3JxrabqihqF5RGcdTxzLgrSi7DmOnt58k7moQuqmHW38ts0TAFGHHXjSCw5Y8jHDIMfiGX2vQdZsdlM887uAsJWNxbzdAMfpg45zLOTU5n6n2j8AnX4aZVFx6Fm5enGJwzKK2Pb7MrnxiYQUOpk5eOlJCQXLV0RqCtk2MOxFCXnseDhjYz/8Doad3V2K+slm2K9s9m/IYsvJ+9wS3v6lw5ENvICKpbcEC1DIVrSQLFONQTONcVTca7IFqVzoJUcbN+YBkBYKPhoK3ouqxKL+9StePPcsyqDXiMqT7cXHUeN4N1RXK/qPIfg2SQ6jnqUxdbCOC2CLE+2JxyOEQjCRYJq0Yp+5duze7hUyOXO5RKcsCYx+dq1a4der2f58uWMGDECgOTkZHbv3s3s2bPP25bzQe3pUXFhDPKi+eO9CL2hPskrDnLw4/UkLT/Ajpm/s+/nI5Rkl6KtYtpw006+aLRwaGvVzkpknJFn/xfL/q1FjO20n6ENdzO+7SY2/ZF1sXep1jB66bj73TY06BjI99P3UpCtvC5YVaz9PokfXznk+j765Sa8t68nkY3UnojqcGCTcxj2P/fs4+WRu3HYxW8dz3zRBID/PXPiotumonK5c74x+fz8/Lj33nt59NFHWbFiBdu2bePOO++kZcuW3HjjjbW6b1dlT4+KZ0iSRJ3BLZAkid2zV1RZpjS/DKOP+zpTBqOGNvH+LPogiYi6Jjr2D6g0btu6mzcfrWrMhuV5ZKZa+eadNLJTa+YIXGlotBIjZjbjnZH/8s4d/3L7i81o2rF6U2mPbMkh5YizN6xNv2A63xJxjhoqZ2LyqnDOD27Jx+GQqwxqWE7zLr5oNOBwwP7NBTRprzqXKrWPjOe9pGdSUzF0eUy+5ORk/Pz8aNWqVaWYfMXFxUyePJns7Gw6depUKSbfW2+9hU6nY8SIERQXF9O7d28+++wztNrajX6u9vSoVCKyX1Pq39URNBI+DYLp+slImg1rQERb5Rg5979Vn1bX+/Hug4f5YtbxKsv4Buroe3sg8Tf7AxAcJZ4qeTUQFG3mgS/b4xti5IP/20rmqWJh+RN78tm/LovWfSqO9V2vNbvYZl51DH+4juvvJz5vhq4aQu+7nnHGjnrhzgsjQFdRuVL55JNPOHbsGKWlpaSlpfHnn3+6HB5wviDPmDGD5ORkSkpKWL16NS1auC89YzKZeO+998jMzKSoqIjFixdTp06dszd1yVGdHpVKaHQaGt7bmQ5vDMVaUMqul5fT49lODP24b6VennKMZi0Pvd+AIRMiWP1jhnAZivAYA3UaW/jp3ZMU5Vdf43KlEhLnxa3PN8VulUk5rKxlAlj+4XH+e+8OPn7AOT192FP11XWhPMDsraNld38A6rWqXq9N39FOR9Nug4Lcq/+6VLkSkHCguSAfFSdX5fCWTmtHdzrKrmJ0ZYeywFASdIPbBXowBc0xALJApCcSTivN7tMrCLSh6mjNrnpaQdTfs4ShIddF0/zBHmx55le+ve1X6vaOod3/tUSjdT+mQdqK0OMj7vJi2ecyr921h2feiyI8ruof7Ednh/PsmGM8M2AHHXp60+sWf1p0dAaG6+iXoGjj8XxlIXNarvJyJ4XWqp01AG+98jCbQVP1j59IGFpVpF1TgAmtTiL9UC6WnlXbadJYGfNEBNuXVczUuuXuQDSaQmFkXyVBrKdoBdfj5YSSSLg8UvOkl6J5sHcuq75MZNhk5/CgKCKwyeCgx83+rP4lh38WpnPT3RVT2UXHWCsQtdtFQmYFkbbIRtEEDLuHkZVFP4iiKOHKdii3dzEF1XINJglcKagLjl54VPdPRUhYt7pcN2sgIc2C2PbJbuYPWsiR5c7hq7KCMta+vomCvIoHY0iEnpmf1uHw7hLefjqZpBNVOxQNW5p5Z1F9uvbzZd0f+cz4vxPYzyE2vZLxDjLiHWxk56psrGXKP4ThsSYm/aee67tGoz6sPCU40kDf0SH8NCeFSdfv4oXRB8+5EO7kl+sQGWdk+5pzL1hazoZluQytv4NHbjrIut9yztNqFRWVi4nq9Kick/Ab6tNzRlcGvt+LwIb+/PXcPywav4x58d+z+7sD7NzgPmTTurMXox4IZueGIsb0OMZfi6te9yoixsCkFyKY9VksxQUOvnozjZU/51CYo7w+2JXMHa+24ujOfH7/+JSwnNFUcVvabVevI3gpuOPhCALDDGSmWNmzsYCU4+LFi40mDT2HB7B/a2GlvKJ8OycOlbD173yeGXWU37/OZOFH6Xz5ujMW09E9xcy+/zjvPHaCq2hJQ5VapFzIfCE+Kk7UI6FSbaI7RtDvP/HU6xOLtdhGi5HOab7ff5BJbpZ71/Kt91UEhXvpwRTycpTfsBu2MjNwVADfz83gP4+c4q3bN5FxQqx9uRKp1yGQbreEsvanNOGPYrMzYh3t+1d5oVSVc2Py0jJ7cRPX92du2UdGkjg6eGConqJ8RyWHc/kP2dzf/xAz7j7G7o2FzJmWxLxXUzh1tJQbRwTy5uJGAKxcmM0jNx2kuPDqjBujonIlozo9KjVCZ9TS+8XrGf7lQLo92p6hn/Un6VgZUwYnsPWfQtePucVby0Mvh1OnnjOs2I+fZIuaZcqLkSzY0YQP/2yAtdTBt9P2XfR9qQ06DwkhPbGEdybs46/5ydiqGOry8tMRFOHUIC146+SlNvGqw1bm7rwEhinruwCKC+zoDVIljUn/ke7RnTv39eXe5yJ45sM47noignrNzMz50+lgJewtYc3inPO2XeVaR8JxgT4qTq5KIbNeY0d3WuirJBKWBIJAkehYJPIU9WiLLjpRdF9FIbNAkCyKyGzUKov9dIJ6NgUhbVDzMJ7+uT2fPrafZ+46QVhdM6NfaEijjv40HRbC/JGnmD45hVW/5vN/D/u7NCpVxY3w8wFvi5bc1FJyU0vJ33qMlp3dZ9408U9TtDG3yKyYl11oUcwLMin3KimtPZlbprytRI3y0gdtO+Yzeno9Nv6azjcvHWXZvCSadvFj4PhoGsZVnNPetwXw/bupHN5eiEkqQ1+dlTOrwJOIzML2LoLI+cILsd3b8wqEOx4IIfFwKWt/yyMvMZc69SuHSyg/VslHioiqa8BL5z7MajDD70ebkp5sJSBYh05/9rVso05cxXnSYBcKgZUE0CLxszAyseAaEYmjEURy9mSxS0/Pp0hQLXpGlmO7CiMyO4XMFyJOj+r0lKP29KicNwFhRh7+rBUPfNQCLz89Hz+6n4Lsih+Mm0f7cvKYlfj6R8lIFc+wWPSFs0eoXbwPMQ1NF9Xu2qLX6Aie/qYVz37XimZd/di5Kpun+2zhgb77mD7qEJ/MOkmLTt6uH9XigqvvYX6pGfNwKA+8HIlOL7Hqlxxh2aTjVqLrKvcGhUToXefmbBZ+nOn6u9/tyjMNVVRUagfV6VG5IGi0Es27BzL+nabYyhwseveYKy86ruL9dOEX4lWsj+4rJaaRiWmf1MM3UHtVC0LjWvpw18wGvPhbW8a93IA23X3wD9Hz7/Jcpo8+gs3q3Pe87KtvKm5t4OOnZfj4IL59P4NHbz3K5lX5lcrYrDLb1hZi81BAnpXmPFfdBviqM+9Uzh/5wgiZxT191xY1OhKvvPIKHTp0wMfHh9DQUIYOHcqBAwfcyowbNw5Jktw+nTt3ditz4MABunXrRnR0NDNnznTLi4uLQ5IkNmzY4JY+depU4uPja2KuSi3gH2ak+4gItv2R4UoLjdThH6ghKFTLvY+K334jY/WknCjlrx+zuK3pLua9nHSxTa51zN46rh8Wxr3TonnknTjmrGzGpJfr0OFGXyQJ/ENEgxoqNWHMI6E8O7cOmSk23nr8FPk57g7lsh9yAGjT1cuj9v/v2TAefTOK8c85V6IWhSdQUTkXshqc8IJToyOxevVqpkyZwoYNG1i+fDk2m42+fftSWOg+vbN///4kJye7PkuXLnXLnzJlCmPGjOGXX35h8eLFrF271i3fZDLx5JNPerhLKrVNRAML+VlWkk+vHSVJEo+/Ekpmmp1pk5U1OQB9b/MnKEzPu08kYrPKLPo0g8TD4mnGVxtarUSvWwPJSLLSsqu32xR2lfNDkiS69vPltW/jsNngk5dT3fJ//Sqb6/v7MHScsi7rXO33GupPcISe5BNlDG+6h+fHJVzVMahUVK4kaiRk/v33392+z5s3j9DQULZs2cINN9zgSjcajYSHhyu2k5OTQ9u2bWnVqhWRkZHk5roPeUyYMIG5c+eydOlSBg4cWBMTAafItzwis+So+mGjU4iGCmATdAWKRM4iHIJ6GoE4VEmUfLZY80wMApGzQRDJ2SQQOYs4Web+A5Fe5JxmfTzLgq8mBYBB/XUcf9CHj97LJ/9UIf7RVQuBvcJh/p/RLP85n1/m57F3eynTRx1m7IMBDL3Tl+5+yusiHS9Q7kU6kaWcl1emvAaY0nnLLlUWMhfYlPUg9czpinlBuoqAeKsWZpGwt5hXvmuAVpLRCsSmwmjBgutEsY6HQtTqiE2r3J4HNp4vsXUkeg3xZtFXOSQllPDmN3VY92cBR/eV0rmXpdqRiIsKHBgs2koL7AIc2+18Gdy2poBbGu3mwRfDGDyq4jpUmtwgjrqsnCeKDI1gf0SRnIXCaYV3Zq2HvQp2gf3VEUfbrsKIzOB5pO0L3cbVwnm9QpY7K4GB7j96q1atIjQ0lEaNGnHfffeRlub+dj9z5kz69OmDxWJBo9HQr18/t/y4uDgmTpzI008/jUOwXITK5cmSF7YDEFTXfebV3ZN88PaReOvlXP7+o1BRr6PTSQy41Zf/LYxmwT8xdO5p4e3nM4ivf5TvXz+OzXp1XxMOh8yC/6bSdYAfTdt7Nsyicm5CIpw/6Xu2lDCgySFemOwMMrhxZeXAhFVx6P/ZO8/wKKq2Ad+zfdN7hST03gQEASnSm4XXBgoiKOKLImIvCJ+IBXsD6wsoAjbAAqigFGlK7yVACC2N9L7tfD8CC0uyA9kEQsK5r2she9o8Z2Z259lznrKniMEtDjG6VwLZGTYy02z88WM2v32XhRCCrgP8WHawEf3v8gfggxdT+Plr9dANEonk8uKx0iOEYOLEiXTp0sUlu2r//v355ptv+Ouvv3j77bfZtGkTN910E8XF5wKCDRgwgLS0NE6dOsWiRYvKTDX/4osvkpCQwDfffOOpiJIqwGE7p5CY/VxXPMxeGh55yp8VSwt57qFUfp5f2pD0QsKj9Tz3ZhijJ5Yo1ks/P0X81ov3q84c3FZA8jELA4aHVLUoNZpBw/wZNMyf/nf60XvIuXxo738Xc0n9vbxLvj5PJFj48ctMvpieyltPJfHOs8mcSChJv6LVKTz+WiTvnhlz/ox0t+NJJBdy1mW9oi9p03MOj+P0PPLII+zcuZO1a9e6lN91113Ov5s3b067du2IjY1lyZIlDBkyxFlnNBoJDQ11O35oaChPPvkkL730ksuYkqubQ2vP2UiseHs3t74k0OnOLa3eNcKH334uYNsmC/ZyeGKPeCSAHf8WsnltYY1PzbBjfS7eflq5ynMZWTI/i6AwHVnpdk4eteBwCMKjdXzyayxm70t7QCz7rmSlu1MfHxbPyWDyzGiat/OibmMjteu6bpm+MKokyOTAoQGkp1g5nWyjQSv3saMkkhKUSvG8kt5b5/DoTDz66KP8/PPPrFy5klq1aqm2jYyMJDY2lvj4+HIfZ+LEiRQWFjJjxgxPxJRUAeGN/Z1/b5xziDv6ppCS7KrdFOQLeg32Zshwvwu7u0VRFN6aE0loLSPzph1lxddJJO69tG2I6sbODXk0u94brVbuw1cmQggWfJLB7e0P887zqbz3Qgprf88j4YCFB58JZd7auvgFuM9mfz6rl+Yyf2bJVtXE1yIxmjX89XMO/e8KoFGr0vZeA+4OAKBZOzMfTErh0dsS+efPmr1iKZFcjZRrpUcIwaOPPsqiRYtYtWoVderUuWif9PR0jh8/TmRkZLmF8/HxYdKkSUyZMoXBgwdfcj+9xoH+jMGuOyNhNcNirXBvM6LWz1PUDJndRUlWM8RWi6ysZqxs0rpP9GnWXFoSUP8IL+58vwMLn9mMrchOwiEbI25P5+kPatOgZckvW6/gLAoyLWhzCvhnfTFdexgxmRSEKMkqniPcGAJr4I1Pghk16BRzpx4FYOYPkbRsVxLEsE2g+5QN6QXuV01OZfm7rXN3bWw29w9Hi6/7CM8nLe4NqusbkykucnBgWwH3PxPhYrypZuyrVzFyVsMzI+eKGZuWVw5V41w3uIs+a7MJ8jMt1G2oJ26AF/2G+NKohcGpXNrFpZ/H+g3PfXVO+M9RCvMc2C0ODG4Mhsc9H0SvQd7Ub2bE1yuQDSvymPzgCZbsrY/J7PrbU6MSm8pTo2+1qL4aD7c+PIkorYaaHGrG0WfnVhPXMmRE5sqnXGdz3LhxzJ07l3nz5uHr60tycjLJyckUFhYCkJeXx5NPPsmGDRs4evQoq1atYvDgwYSEhHDbbbd5JOCYMWPw9/dn/vz5HvWXXHka9ojkyb8H0PKWGIIjdJi8FJ4ccpgZL54kJ8NGl4H+rF9roWPLFB4bm8Xtg9JpEpvMZx/nXXTsRs2NLN12zubijedOk5VRcyIWnzxSjM0iaNDSvXeYxDN0eoVxzwfzwbxIJr4cQtPWRo9X0+LqG1i6I47YenpOHLViKRb89UseB3aVHV5BURQatzKh0yk0bWPixr4lSvjApodcDPoz0mzkZtec+1kiudool9Izc+ZMsrOz6d69O5GRkc7Xt99+C4BWq2XXrl3ccsstNGzYkPvuu4+GDRuyYcMGfH19LzJ62ej1eqZOnUpR0bUVq6W6ozNquXnqdcxa14R3f2rA6Bci+fvXLB4dEE/9FmZGP3Ru5SUn24FGA6dOXNqXvX+glrUJcfzfB6FkpNm5p/cJNq6qGVnZ006VrKiF1VJPiimpenz8tHy6uBa+/ue+Rv/3zqUZKve/49zWruPMbZ+XY+eO648w6033YQ0k1x52oVTKS1JCube31DCbzfz+++8VEujo0aOlyoYOHcrQoUMrNK6k6tDpFW6+P4QbB/kz5f6jPPWfw7z3UQA3DzETEqohM8PBfXdlkHTKjsMhSmW3LgtFUeh1sw9tOpp49enTPD06hZvfPkX97lGXf0KXkYxUKxotBITUyFzANQ4vHw2T3o/g6ZElkcOPxlsuqV+nnj4s3FoPH18N2jOG/vk5DrQ68PariRs1Ek84G5G5okjvrXPIMyG5YgSG6nnju3q07ebL+LGZfD0rH5sN6jfU88L/+fH3agtzvswvV/Ta4DAdb3wRTueeXix9cROZxy6+RXY1k5dtR6NRZN6makT7rl74B5XYeNVv6j7QZVaGnSfuPcGOf0rMAbIz7Hwx/bQzx1p4LT0/ba/PqKfce7VKJJKKIX9OSq4oJi8NT70fwz/fJPL5jHy2bbby0x8h9Blgond/E29MzSWrQMPo8QGXPKZOp/DCW6HcPSid78eu4e7/dccvonq6AxfkOgiOkB/L6oSiKHz6U20SD1lo1MK90pMYb2HLukK2rDvBgDv9aNrWxHefZ5J03MqUmSUrlGZvjdyKkLigFoX7UpEu6+eokd+uBq0d/ZlUDDo3nlhqXliXw0NLjcr23jKoeGgZNO7rzGreW1r3y/YmFc+uDLtP6UINDH3An9YdzAwbnMqs/xUy/EFf3vwkhHEj0tiyvogx48uen9XN4qSPn4b/m1uPKXfuY93La3l2diOX1AAJAe4D/e1OcZ8ypbiw7ED8KpkCyC92b4+jU0kHYFBs5Jy2EBiiw3BBSH21FA/uPIZK+nngoeWhh5CqZ5daqhW1NBoejFlWH5tN4HCAonfvdVek8nWo5v2ixUHt2gq1a59VeM5du/MfWG06GJn9Wy1G9jvB2j/ymDg1mLeegb9/y8OSa8Xbt6StVuVceeqF46lHmJrnkLvrpuaFpbbNopZqRc0j7OzxLjV1iOTapkYqPZLqQZMWBnr2N7Ps5wKGP+jL6hWFbN9iYciwMhSlSyA40siDr8bxxqiDzJ6SyIhJsU57ieqC3S7QyU9lhXA4BOmnHSSdtLNxXTHLfi7kyCEbNhsEhWioW1+P3gAnjtnp3suETq9QVCho2MpE/9s8u/culbqNjKxJqFeq/LFhJ/lkUS2XQJ4SicB9jrbyUBlj1BTk16ukSunWy8SkiZlMeiKDJQsL6NTNxMj/eubpB9DyxgBGvxLH7CmJFBc6GPN6nWplH+PloyU/t/jiDSUuZKTbWbKokCWLCog/YMV6ZmHSZFLo1d/EXcO9MRoVTpx0cOiAlcJ8B8eP2vj6izxqxWhRNArzZ+fx/ewc/AK01IrT0b6Tic43eaHTX777Z/KH4fzfoykc3G3hnRfTePr1MIoKHWi1CnpD9blvJZcJoVTK9lZljFFTkEqPpErpM9CLxd/ms3p5IQ+O9+Whx/wQmop9QG+6KwyjWcOMJ45QXGjnv2+V/mV9tbJvWwEh4fJjeSk4HIJ1q4pZ9G0+q1aUhLTo0dvELf8xExmt5dhROxGRWrx9FDRa0GoU6jQyMGa8LxqNghACSzEYTSV///6bhRW/5lNUJPhhTi4/zDkXMXnBylrUrqOWc9wzeg7yoXNPL/o1TyAotOS6jxtynMP7Ldw63J+GzY0MuNN98EyJRFI+5LerpEoxmhS+/C7MpawyduY73xyCwajh44mHmf1/iYRMaFcJo15e0lOsHN5TzB3vB1e1KFc9uTkOnhybzj/rimnQWMfE5/0ZeJuZwCAtx49YeeXFLDasLdsOrWtPEx/8LwRFUTCWBPNGURS69/Ome7+S+FFFRQ7mf5HDp29lAfDif1OZsywagJXL8vl3TSFBoVruGu2Hn/+lpa5wh8msYcX+umjPfBtHxeo5vN/C4q9Lcnv1u92vWq1WSioPGZG58qmRSo9Ja0V/JtKqO6v1q8lYWaOWUsJNnU7jXjUwqhgre1rno3W/5eKlubTYJOeT7nDvXeWrcX8sk+JexmCtay6jfgP0FKWG8dkrKTw5ai/BMWUfM6PYffTjhCI3BtAq11Ovc39t1Ix2TV4l96qluPTYasamasbKnqR4uBxGx+qGwCrnsgz5HQ7BY6PSOXTAyhdzg+h8o8FptL7qzwKeeiyLgAANn/0vgFat9djtsGO7lYcfzALgyEErvmXc677nGSDjDU8/ZiI2zI9Jz+WQk2njpbHJ2GyCnVstZGaUyDX7gyxGPOzHuGcCXAznL2Vu558TrdP2XfD6p2HM/zybj6ZllNQJGzpFYcXPeUweXxK4cORjgYyaEOR6XtQejqr3gXvUDKDd2Yl4ahittgWjpvOdPcc2acgsuQTkRp+kRtP/7gD0BoXdf6ZcvHEV4+2rpU5jI3s214zo0peL48fsbN1kYfKr/oSHa/j0ozwmP5fN/UPTGXt/Jq1a6fnlt2B69jYREqolPEKLt/e5p2bjxjrefD2XR8Zmcvut6c6gq1mZDooKXR/ydw314pffgrnhRhOFhQ7sdlA0JW0CAkvG/GpmDk89WHlRlL+ekeVUeKZ+HOY0bjaazs1h3idZ2Gzlz0smqX44hFLhl5BhEJzUyJUea/65lYfqvtLjcFPnUPlVo6is2KCyQoRKP52KO7texUW+UFd2Xb7KaoiikjBVbaUh3172mFodWIvsFOWVLYst3/3KkqPATS4ljcoveJWVquI89+cxHzvZGTZ+/y6bB54NQ3NeXig1d1x9Ja/0KFfpSo/dLtiw1sKMd3MA2LfbypvTckhPdxBdS4Ofn4bnJvtx550lruO5uef6tmyt58s5gXzxWR4nTtpYv66YgjO6ZY8uaWg0kHi0pP2aDSH4nZdaIipay1OTA5zvhRBs3ljM3M/z2PJvyXfNmuWF9GiWyKyfIl1sstQeNmqJUWPqlgTdDA7VkX9mHtfdYGbZzjrk5znIybZTXCgoPu/cOTw8/2rYPVjpUUNVxotE/L/YmAV5NW+lR6BU0vaWXN84iyIulluiGlFUVERsXCypKalVLYpEIpFIrjAREeEkJBzFZDJVtSgV5qeffuKR54fz5I/XV3isnLRiXuq6FqvViu4aj4lRo2ZvMplIPJqIxVJ+GxOJRCKRVG8MBkONUHjOpzKiKcuIzOeoUUoPlCg+Ne2ml0gkEsm1R4n3VsVNMaT31jmk+ieRSCQSieSaoMat9EgkEolEUjNQKmVrSsjtLSfyTEgkEolEIrkmkCs9EolEIpFchUibnspHKj0SiUQikVylVIr3llR6nMjtLYlEIpFIJNcEUum5DKxZs4bBgwcTFRWFoigsXrzYWWe1WnnmmWdo0aIF3t7eREVFMWLECE6dOuUyRnFxMY8++ighISF4e3tz8803c+LECZc2GzZsoHXr1sTGxvL55587yzt27MjDDz/s0nbmzJkoisKXX37pUj569Gg6depUKXMDWLhwIX379iUkpCSh4/bt20uNUV3nJoRgypQpREVFYTab6d69O3v27KkWc7uQ3NxcJkyYQGxsLGazmU6dOrFp06ZyzfXAgQN07tyZWrVq8fLLLzvL7777bvr37+/SdtmyZSiKwqRJk1zKp06dSlRUlMfzuBCbzcaLL75InTp1MJvN1K1bl5dffhmH41x05uo6t7i4OBRFKfUaN25ctZ6XxD1CKNiFplJekhLkmbgM5Ofn06pVKz766KNSdQUFBWzdupVJkyaxdetWFi5cyMGDB7n55ptd2k2YMIFFixaxYMEC1q5dS15eHoMGDcJ+XqqFUaNGMWnSJObPn88bb7zBsWPHAOjRowcrV650GW/VqlXUrl27zPIePXpUytzO1nfu3JnXX3/d7RjVdW7Tp0/nnXfe4aOPPmLTpk1ERETQu3dvcnPPJTq9Wud2IQ888ADLly/n66+/ZteuXfTp04devXpx8uTJS57ruHHjGD58OD/99BO//PIL69atc85j7dq12Gzn0n5crnlcyBtvvMEnn3zCRx99xL59+5g+fTpvvvkmH374obNNdZ3bpk2bSEpKcr6WL18OwB133FGt5yWRXFGE5LICiEWLFqm2+ffffwUgEhMThRBCZGVlCb1eLxYsWOBsc/LkSaHRaMRvv/3mLIuJiRFHjhwReXl5ol27dmLPnj1CCCF+//13AYhTp04524aHh4sZM2aI6OhoZ9mxY8cEIJYvX17pc0tISBCA2LZtm0t5dZ2bw+EQERER4vXXX3eWFRUVCX9/f/HJJ59Uq7kVFBQIrVYrfv31V5fyVq1aiRdeeOGS5iqEEG3bthUbN24UFotF3HzzzWLJkiVCCCEOHDggALFhwwZn2+uvv158/PHHwmAwiPz8fCGEEMXFxcJsNovPP//co3mUxcCBA8WoUaNcyoYMGSLuvfdeIcSlXcerdW4X8thjj4l69eoJh8NRo+YlKWHx4sUisom/mLzr5gq/nljZRwDCarVW9bSqHLnScxWQnZ2NoigEBAQAsGXLFqxWK3369HG2iYqKonnz5qxfv95Z9tJLL9GkSRP8/f3p2LEjTZs2BaBz587o9XpWrVoFwN69eyksLGTUqFHk5OQQHx8PwMqVKzEYDBXaJikv1XVuCQkJJCcnu8htNBrp1q2bU+7qMjebzYbdbi8VudxsNrN27dpLmivAyy+/TO/evfHy8kKj0dC3b18AGjZsSFRUlHOFIDc3l61bt3LHHXdQr1495+rCxo0bKSwsrNRVgy5duvDnn39y8OBBAHbs2MHatWsZMGAAcGnX8Wqd2/lYLBbmzp3LqFGjUBSlxsxL4ooAub1VycgzUcUUFRXx7LPPMmzYMPz8/ABITk7GYDAQGBjo0jY8PJzk5GTn+9GjR5Oenk5aWprL8r23tzft27d3PjxXrVpFly5dMBqNdO7c2aW8Q4cOeHl5Xd5Jnkd1ndtZ2cLDw93KXV3m5uvryw033MDUqVM5deoUdruduXPn8s8//5CUlHRJcwUYMGAAaWlpnDp1ikWLFqHVap113bt3d8r7999/07BhQ0JDQ+nWrZvLPGrXrk29evU8mkdZPPPMMwwdOpTGjRuj1+tp06YNEyZMYOjQocClXcerdW7ns3jxYrKyshg5cmSNmpdEcrmRSk8VYrVaufvuu3E4HMyYMeOi7YUQKIqr66G3t3ephyyU7NGf/0XVvXt3gFJfYDfddFOF5lBZVJe5XShjWXJfyNU4t6+//hohBNHR0RiNRj744AOGDRvm8hC8lLkajUZCQ0PLnMe6deuwWq1X9Bp9++23zJ07l3nz5rF161bmzJnDW2+9xZw5c1zaVce5nc+XX35J//79SxkUV/d5SS5EwSEq5yUpQSo9VYTVauXOO+8kISGB5cuXO1d5ACIiIrBYLGRmZrr0SU1NLfVLzh09evTg4MGDnDx5ktWrV9OtWzfg3BfYsWPHSEhIuOLL1NV1bhEREQAuv5ovlLs6za1evXqsXr2avLw8jh8/zr///ovVaqVOnTqXNNdLmUd+fj6bNm1i5cqVLvPYtGkTGRkZbNiwodLvv6eeeopnn32Wu+++mxYtWjB8+HAef/xxXnvtNeDSruPFqKq5nSUxMZEVK1bwwAMPOMtqwrwkkiuBVHqqgLMKT3x8PCtWrCA4ONilvm3btuj1eqd3BkBSUhK7d+++ZDuOTp06YTQamTFjBoWFhbRt2xaAdu3akZ2dzaefforJZKJjx46VN7FLoLrO7awycL7cFouF1atXO+WujnPz9vYmMjKSzMxMfv/9d2655ZZLmuvFqFevHrVr1+bnn39m+/btzgdoZGQkcXFxvP322xQVFVX6A7SgoACNxvVrTavVOl3Wq/PczjJr1izCwsIYOHCgs6wmzEtSmpKIzJpKeUlKkBGZLwN5eXkcOnTI+T4hIYHt27cTFBREVFQUt99+O1u3buXXX3/Fbrc7f50FBQVhMBjw9/dn9OjRPPHEEwQHBxMUFMSTTz5JixYt6NWr1yXJYDab6dChAx9++CGdO3d2blvo9XpuuOEGPvzwQ+cDtrLmFhMTQ0ZGBseOHXPGHTpw4ABQ8ks0IiKiWs9twoQJvPrqqzRo0IAGDRrw6quv4uXlxbBhwwCu6rldyO+//44QgkaNGnHo0CGeeuopGjVqxP3334+iKBed66XQo0cPZsyYQf369V1WG7p168aHH35I3bp1iYmJqdA8LmTw4MFMmzaNmJgYmjVrxrZt23jnnXcYNWoUQLWeG4DD4WDWrFncd9996HTnvr6r+7wk7qmMrSm5vXUeVeY3VoNZuXKloERJd3ndd999Tlfusl4rV650jlFYWCgeeeQRERQUJMxmsxg0aJA4duxYueSYPHmyAFzcWIUQYurUqQIQU6dOrdS5CSHErFmzyqyfPHlytZ+bw+EQkydPFhEREcJoNIquXbuKXbt2uYxxtc7tQr799ltRt25dYTAYREREhBg3bpzIyspy1l/KXC/G2Xth7NixLuVff/21AMTo0aMrPI8LycnJEY899piIiYkRJpNJ1K1bV7zwwguiuLjY2aa6zk2Ic2ENDhw4UKquOs9LUprFixeL8CYB4qntt1f49fCKQdJl/QyKEEJcPpVKIpFIJBJJefnpp58Y89z9DJ/fu8Jj5Z8u5JNev2C1Wl1WCK9Fru3ZSyQSiURyFWOvhK2pyhijpiCtmyQSiUQikVwTyJUeiUQikUiuQoSQhsyVjVzpkUgkEolEck0glR6JRCKRSK5SHEJTKa/y8Nprr9G+fXt8fX0JCwvj1ltvdYYfOUtKSgojR44kKioKLy8v+vXr58wPeJbu3bujKIrL6+67767wOakIUumRSCQSieQqRKBgr4SXg/Jtb61evZpx48axceNGli9fjs1mo0+fPuTn55fIJQS33norR44c4aeffmLbtm3ExsbSq1cvZ5uzPPjggyQlJTlfn376aaWdH0+QNj0SiUQikVwD5OTkuLisG43GMgOd/vbbby7vz0YB37JlC127diU+Pp6NGzeye/dumjVrBsCMGTMICwtj/vz5LilSvLy8nGlSrgbkSo9EIpFIJFcplZlwNDg4GH9/f+frbE66i5GdnQ2UZA0AKC4uBsBkMjnbaLVaDAYDa9euden7zTffEBISQrNmzXjyySfJzc2t8DmpCHKlRyKRSCSSa4D09PRSKz0XQwjBxIkT6dKlC82bNwegcePGxMbG8txzz/Hpp5/i7e3NO++8Q3JyMklJSc6+99xzjzMv3O7du3nuuefYsWOHS444dxw9epS///6bo0ePUlBQQGhoKG3atOGGG25wUbbKi1R6JBKJRCK5SimvEbLaGH5+fuWOyPzII4+wc+dOlxUcvV7Pjz/+yOjRowkKCkKr1dKrVy/69+/v0vfBBx90/t28eXMaNGhAu3bt2Lp1K9ddd12Zx5s3bx4ffPAB//77L2FhYURHR2M2m8nIyODw4cOYTCbuuecennnmGWJjY8s1F5BKj0QikUgkVyUCym2EXBaejvHoo4/y888/s2bNGmrVquVS17ZtW7Zv3052djYWi4XQ0FA6dOhAu3bt3I533XXXodfriY+PL1Ppue6669BoNIwcOZLvvvuuVHLb4uJiNmzYwIIFC2jXrh0zZszgjjvuKNecpNIjkUgkEonEiRCCRx99lEWLFrFq1Srq1Knjtq2/vz8A8fHxbN68malTp7ptu2fPHqxWK5GRkWXWT506lYEDB7rtbzQa6d69O927d+eVV14hISHhEmd0Dqn0SCQSiURyVaJUUu6t8rUfN24c8+bN46effsLX15fk5GSgRMExm80AfP/994SGhhITE8OuXbt47LHHuPXWW+nTpw8Ahw8f5ptvvmHAgAGEhISwd+9ennjiCdq0aUPnzp3LPO7AgQOxWq3o9XpV+Xbv3k3z5s0JCQkp38SQ3lsSiUQikUjOY+bMmWRnZ9O9e3ciIyOdr2+//dbZJikpieHDh9O4cWPGjx/P8OHDmT9/vrPeYDDw559/0rdvXxo1asT48ePp06cPK1asQKvVuj320KFDEcK9lrZ792569uzp8dzkSo9EIpFIJFchJbm3Kr42Icq5vqGmdJxl/PjxjB8/3m197dq1Wb16dbmOC/DPP//w0EMP8dlnn5Wq27NnDz179qRr167lHvcsUumRSCQSieQq5VpLOPrHH3/QtWtXgoKCeP31153l+/bto2fPnnTu3JkFCxZ4PL5UeiQSiUQikVwVNGnShKVLl9KzZ0+Cg4N56qmn2L9/PzfddBMdOnTg+++/V90euxhS6ZFIJBKJ5Cqkql3Wq4r27duzePFiBg0aRH5+Pp9//jnt2rXjhx9+qJDCA1LpkUgkEolEcpVx0003MW/ePO644w769OnDwoULL+rVdSlI7y1JjWfevHm89957ZdYpisKUKVOuqDwXsnbtWh544AHatm2L0WhEURSOHj1aZtukpCRGjhxJWFgYJpOJli1b8uWXX5Zqt3DhQoYOHUr9+vUxm83ExcVxzz33EB8f75GMSUlJvPjii9xwww2EhITg5+dH27Zt+eyzz7Db7aXab9u2jVtvvZWoqCi8vLxo3LgxL7/8MgUFBS7thBB8/vnntG3bFj8/P4KDg+nWrRtLliwpt4zlOY/ns3fvXmf7zZs3u9TNnj0bRVHKfJ114y0P1eE8Sq4mKifvVnWy6QkMDCQoKIigoCBGjRoFwN9//014eLiz/GwOME+QKz2SGs+8efPYvXs3EyZMKFW3YcOGUpFGrzR//vknK1asoE2bNvj5+bFq1aoy22VnZ9OlSxcsFgvTp08nMjLSmdE4OzubiRMnOtu+8cYbRERE8MILL1C3bl2OHz/Oq6++ynXXXcfGjRudmZEvlS1btvDVV18xYsQIJk2ahF6vZ9myZTz88MNs3LiR//3vf862e/fupVOnTjRq1Ij33nuPkJAQ1qxZw8svv8yWLVv46aefnG0nT57M1KlTGTt2LK+//jpFRUV8+OGHDBo0iB9//JEhQ4ZU+nk8H7vdzqhRowgJCeHUqVNu282aNYvGjRu7lAUHB1+ybGepDudRcnVRmWkoqgPufqBWGkIiuUrIz8+/LOMOHDhQxMbGXpaxKwO73e78+8033xSASEhIKNXutddeE4DYvHmzS3mfPn2Et7e3yMzMdJalpKSU6n/y5Emh1+vF6NGjyy1jRkaGsFgspcrHjRsnAHHs2DFn2QsvvCAAcejQIZe2Y8aMEYDIyMhwlkVHR4suXbq4tCssLBT+/v7i5ptvLpeMl3oez+fNN98U0dHR4v333xeA2LRpk0v9rFmzyiz3lOpwHiVXB4sXLxaBjULEnesfqvBr8C/DBSCsVmtVT6vKqT7qn6QU+/fvZ+jQoYSHh2M0GomJiWHEiBEUFxcDJUGcbrnlFgIDAzGZTLRu3Zo5c+a4jLFq1SoURWH+/Pm88MILREVF4efnR69evThw4IBL223btjFo0CDCwsIwGo1ERUUxcOBATpw44WwjhGDGjBm0bt0as9lMYGAgt99+O0eOHHEZq3v37jRv3pw1a9bQqVMnvLy8GDVqFLfeeiuxsbE4HI5S8+3QoYNLvpaPP/6Yrl27EhYWhre3Ny1atGD69OlYrVaX4yxZsoTExESXrYmznL+9tWPHDhRFKXO7aNmyZSiKws8//+wsi4+PZ9iwYc7z0aRJEz7++GO318sdGs2lfQzXrVtHeHg4bdu2dSk/a+z322+/OcvCwsJK9Y+KiqJWrVocP37cWbZgwQIUReGjjz5yaTt58mS0Wq0zG3JgYGCZ++nXX389gMs9cLbd2fD0ZwkICECj0WAwGFzaXtjOZDI5X+XhUs/jWeLj43nppZeYMWMGfn5+5ep7ITXpPEquHgRUytaWqEbbW+VBXEI8oQuRSk81ZceOHbRv356NGzfy8ssvs2zZMl577TWKi4uxWCwcOHCATp06sWfPHj744AMWLlxI06ZNGTlyJNOnTy813vPPP09iYiJffPEFn332GfHx8QwePNhpZ5Cfn0/v3r1JSUnh448/Zvny5bz33nvExMSQm5vrHOehhx5iwoQJ9OrVi8WLFzNjxgz27NlDp06dSElJcTlmUlIS9957L8OGDWPp0qX897//ZdSoURw7doy//vrLpe3+/fv5999/uf/++51lhw8fZtiwYXz99df8+uuvjB49mjfffJOHHnrI2WbGjBl07tyZiIgINmzY4HyVRatWrWjTpg2zZs0qVTd79mzCwsIYMGAAULL10L59e3bv3s3bb7/Nr7/+ysCBAxk/fjz/93//d7HL5xEWiwWj0Viq/GzZzp07VfsfOXKExMREl62tu+++m7Fjx/LEE0847Vn++usvXnnlFZ5//nl69+6tOuZff/2FTqejYcOGzrL77ruPgIAAHn74YY4cOUJubi6//vorn376KePGjcPb29vZ9rHHHuO3337jyy+/JDMzk6SkJCZOnEh2drZq4LOKIoTggQceYNCgQdx8880XbT9o0CC0Wi1BQUEMGTKE3bt3u9Rfq+dRcvlxoFTKqzrQpEkT5s2bh8ViUW0XHx/Pww8/zBtvvFH+g1TxSpPEQ2666SYREBAgUlNTy6y/++67hdFodFkuF0KI/v37Cy8vL5GVlSWEEGLlypUCEAMGDHBp99133wlAbNiwQQghxObNmwUgFi9e7FamDRs2CEC8/fbbLuXHjx8XZrNZPP30086ybt26CUD8+eefLm2tVqsIDw8Xw4YNcyl/+umnhcFgEKdPny7z2Ha7XVitVvHVV18JrVbrsvSvtr0FiMmTJzvff/DBBwIQBw4ccJZlZGQIo9EonnjiCWdZ3759Ra1atUR2drbLeI888ogwmUwuxy8PatsyEyZMEBqNRiQmJrqUDx9esnQ9ZswYt+NarVbRvXt34efnV+qeKCoqEm3atBF16tQRe/fuFeHh4aJbt27CZrOpyvr7778LjUYjHn/88VJ1+/btE40bNxaU/FgVgBg/frxwOByl2n7yySfCaDQ62wUFBYnly5erHvtiXGx768MPPxSBgYEiOTlZCOF+G2vZsmXihRdeEL/88otYvXq1+Oijj0StWrWEt7e32L59u0vbmngeJVXH4sWLRUCjEDFk3cMVfg34+b5qsb31559/inbt2omAgABx5513iunTp4u5c+eKH374QXz++efi8ccfF+3btxfe3t7imWeeKfX9eylIpacakp+fL7RarepDLiwsrJQiI4QQ3377rQDEsmXLhBDnlJ5PPvnEpd3+/fsFIBYsWCCEECIrK0sEBgaKRo0aiZkzZ4o9e/aUGvuFF14QiqKIlJQUYbVaXV4dO3YU119/vbNtt27dRGBgYJmyP/HEE8JkMjkVM5vNJiIjI8Udd9zh0m7r1q1i8ODBIigoyOWhAIiNGzc625VH6UlPTxdGo1E899xzzrKPP/5YAGL37t1CiBJbCZ1OJx599NFS81y6dKkAxNKlS8s83sVQe1jv3btXGI1G0aVLF7F7925x+vRp8dFHHwmDwSAAMXbs2DLHdDgcYsSIEUKr1bpVWuPj44Wfn58wmUwiLCxMnDp1SlXOLVu2CH9/f9GpUydRVFTkUpeQkCDq168vOnfuLH744QexevVqMX36dOHn5ydGjRrl0vZ///ufU6FcsWKFWLp0qbj77ruFl5eX+O2331RlUEPtPB49elT4+PiIL774wllWHtudhIQE4ePjU6atTE07j5KqY/HixcK/Yai4de1/K/zq99PIaqH0nGXdunVi/PjxonXr1iIgIEAYjUYRHR0tBg0aJD788EMX+8XyIr23qiGZmZnY7XZVr6P09HQiIyNLlUdFRTnrz+dCT5SzWyaFhYVAiV3B6tWrmTZtGs8//zyZmZlERkby4IMP8uKLL6LX60lJSUEIQXh4eJky1a1b1+V9WfIBjBo1irfffpsFCxbw0EMP8fvvv5OUlOSytXXs2DFuvPFGGjVqxPvvv09cXBwmk4l///2XcePGOeUuL0FBQdx888189dVXTJ06Fa1Wy+zZs7n++uud20Lp6enYbDY+/PBDPvzwwzLHOX36tEfHV6NJkyYsWrSIhx56iObNmwMl+W3efvttHn30UaKjo0v1EWe2cebOncucOXO45ZZbyhy7fv363HjjjSxZsoSHH37Y7bWBEtuu3r1706BBA5YuXVpqy+3ZZ58lJyeH7du3O7dgunbtSkhICKNGjWLEiBF069aNzMxMxo0bxwMPPMBbb73l7N+/f3+6d+/O2LFjSUhIKPd5uhjjxo2jefPm/Oc//yErKwvA6QKel5dHdnZ2KfuY84mLi6NLly5s3LixVN21dB4lkstFp06d6NSp02UZWyo91ZCgoCC0Wq2L0eOFBAcHk5SUVKr8rFtuSEhIuY/bokULFixYgBCCnTt3Mnv2bF5++WXMZjPPPvssISEhKIrC33//rWp7cpbzDYrPp2nTplx//fXMmjWLhx56iFmzZhEVFUWfPn2cbRYvXkx+fj4LFy4kNjbWWb59+/Zyz+tC7r//fr7//nuWL19OTEwMmzZtYubMmc76wMBAtFotw4cPZ9y4cWWOUadOnQrLURb9+/cnMTGRQ4cOYbPZaNiwId999x1AqSR8ZxWeWbNm8eWXX3Lvvfe6HfeLL75gyZIlXH/99Xz00UfcdddddOjQoVS7bdu20atXL2JjY/njjz/KVA62b99O06ZNXWxOoCTKKpQY2Hfr1o0DBw5QWFjoLD+fdu3asXr1avLy8vDx8bn4iSkHu3fvJjExkcDAwFJ1PXr0wN/f36kMuUMIUabh9LV0HiVXhsrJvVUJgtQQpCFzNcRsNtOtWze+//57tysKPXv25K+//ioVe+Srr77Cy8uLjh07enx8RVFo1aoV7777LgEBAWzduhUoMfYUQnDy5EnatWtX6tWiRYtLPsb999/PP//8w9q1a/nll1+47777XMKPn1WYzlekxJkAbRdiNBrLtfLTp08foqOjmTVrFrNmzcJkMjF06FBnvZeXFz169GDbtm20bNmyzLl6EsPlUlEUhQYNGtCkSRPsdjvvv/8+rVu3dlF6hBA8+OCDzJo1i08//dRllexCdu3axfjx4xkxYgR///03LVu25K677iIzM9Ol3fbt2+nVqxe1atVi+fLlZSoNULKauGfPHvLy8lzKzxqQn12hPLvqeOGKiRCCjRs3EhgYWOqBXxksWLCAlStXuryeeeYZAD755BN+/fVX1f4JCQmsW7eu1GfoWjuPkivDtRac8HIjV3qqKe+88w5dunShQ4cOPPvss9SvX5+UlBR+/vlnPv30UyZPnsyvv/5Kjx49eOmllwgKCuKbb75hyZIlTJ8+XXX5vix+/fVXZsyYwa233krdunURQrBw4UKysrKcnimdO3dmzJgx3H///WzevJmuXbvi7e1NUlISa9eupUWLFjz88MOXdLyhQ4cyceJEhg4dSnFxMSNHjnSp7927NwaDgaFDh/L0009TVFTEzJkzSz1goGSFauHChcycOZO2bdui0Who166d22NrtVpGjBjBO++8g5+fH0OGDCl1vt5//326dOnCjTfeyMMPP0xcXBy5ubkcOnSIX375pZT3mRppaWmsXr0aKHlwQomLfGhoKKGhoXTr1s3Z9tFHH6V79+4EBwdz5MgRPvjgA06cOOHsf5bx48fz5ZdfMmrUKFq0aOHyQDQajbRp0wYo8cq78847qVOnDjNmzMBgMPDdd99x3XXXcf/997N48WIADhw4QK9evQCYNm0a8fHxLtGd69WrR2hoKAATJkzg1ltvpXfv3jz++OOEhISwceNGXnvtNZo2bUr//v0BiImJYciQIXz22WcYjUYGDBhAcXExc+bMYd26dUydOtXtamBFzmNZCv/ZyM1t27Z1uTd69epF165dadmyJX5+fuzatYvp06ejKApTp051tqtJ51EiqdFU0N5IUoXs3btX3HHHHSI4OFgYDAYRExMjRo4c6TSI3LVrlxg8eLDw9/cXBoNBtGrVSsyaNctljLOGzN9//71LeUJCggCc7ffv3y+GDh0q6tWrJ8xms/D39xfXX3+9mD17dim5/ve//4kOHToIb29vYTabRb169cSIESNcgup169ZNNGvWTHV+w4YNE4Do3LlzmfW//PKLaNWqlTCZTCI6Olo89dRTYtmyZQIQK1eudLbLyMgQt99+uwgICBCKoojzb3suMGQ+y8GDB51G0e48YBISEsSoUaNEdHS00Ov1IjQ0VHTq1Em88sorqvO6kLPXoKxXt27dXNrecsstIjIyUuj1ehERESFGjhwpjh49WmrM2NhYt2Oeb9R97733Ci8vr1KG6d9//70AxLvvviuEOGfo6+514X31119/iT59+oiIiAhhNptFw4YNxRNPPFHK+66wsFC8+eabomXLlsLX11cEBQWJjh07irlz55bpoVRZ5/FC3BkyT5gwQTRt2lT4+voKnU4noqKixL333uvi3SdEzTqPkquDxYsXC7+GoWLA6kcr/Oq5cFS1MmS+nChCeBDdRyKRSCQSyWXjp59+YsTTD9Ll87srPFZxej5/DvkfVqsVne7a3uCRNj0SiUQikVylXEvBCS/k8OHDvPjiiwwdOpTU1FQAfvvtN/bs2ePxmFLpkUguE3a7HZvN5vZVVlZtSWnkeZRcq4hrMMv6WVavXk2LFi34559/WLhwodOgf+fOnUyePNnjcaXSI5FcJurVq4der3f76tmzZ1WLWC2Q51EiufZ49tlneeWVV1i+fLlLnrkePXq4TSV0KVzbm3sSyWXkl19+cSZ/LQtfX98rKE31RZ5HyTWLqKQ4PdVwe2vXrl3MmzevVHloaGip4LrlQSo9EsllojxxiSTukedRIrn2CAgIICkpqVSg123btpUZff5SqXFKz6nTGa4ZWi/wTSsqLiIvNxeNUJxp6QMCA9FqS05FUVERBXk56PUG/PzKiGWj5ut2OZRpd8fz1OdOTUaVOnEF43yoH0ll4jXZD9HDuSmq/a6SE3YFHUiLi4oRQmCxWrCe+Z4wmkx4eXmhKeMez87Owma1AeDvH4DdbicvPw+NRoO/v39JVGZPPxuezFv19vfsPKpJ78mIqmfD03Ol1u+8Ov8AX/wDatbKX+VEZK5+Kz3Dhg3jmWee4fvvv0dRFBwOB+vWrePJJ59kxIgRHo9bo5SeoqIi4urUwZqXU9WiSCQSieQKExQQzMmkE5hMpqoWpVIQXLtKz7Rp0xg5ciTR0dEIIWjatCl2u51hw4bx4osvejxujVJ6LBYL1rwc6k54CY2x5KbXWkq3yzm4k6QlCwDwjWtK3snDCKurzYBGb6LNbZNK9dXnufcU0Vrc/y5S+8Uk9O5vSHf3qrbY4baPPs+mcjD3klh99W7rigPd3yo2s4r8mrLrFJVkMBoV8dVOpOL+lKDY3XdUu25q/dzhbs4lde77aVSckNTkUGwqc7O5PymKtew6jZvykmOp1KmtXKhdN5UxVVdD3NWp9SnjUIXWHPacWkJ+cQY31L4Xo87LWWexF5GYtYViez46rYkT2dupE9iBekE3XNrxVJdm3NTZVD4AdpVzZVO5gcrIE3auTuWBqNO6r1PcjKlVOZbW/XjC4P47Rhjc93PoS+ps9mLWbnkLi8VSY5SeaxUhBKdOneLzzz9n6tSpbN26FYfDQZs2bWjQoEGFxq5RSs9ZNEYT2rNKTxmfZ71vgPPv3KN7nX/712uJ1mjGIEyE1G2P1lD6g6PTqyg9Kg9yNUXbI6VH5ctPp/NM6RE690qPXa/2hVTJSo+aT6GHSo9GTTFQOSeK5goqPSp1anIoKntY2rKe8mf7CTdKj5tytT4ldR484C8yZqUrPWVcGl9tKNfF3MGa+BkcTF9N64ibURQNdoeVXSnLyCw6wfk3XkLmP0T7t8DHEOy5jGp1GhVFQ+1cqf1aUFV61Oo8UHrUxlNTerQq3zEqdQ41xawGICpjlaaarfQIIWjQoAF79uyhQYMG1K1bt9LGrpFKz8XwiWtI7Z5DKc5KI3XLCvQ+ATS59wWUMx9IY/ZVYusgkUguOzaHhY0JX2EXVlLy41lx5AMCzbWwOyxkFSXTPuoOfM3h7Ev9k6TcvYT7NMRbX3aSUIlEUnE0Gg0NGjQgPT29wis7pcau1NGqEUGN2xPetheKVodGb6Q42zVbeX7GCVLjN7rpLZFIago7T/xEobUkUW2z0L7UD+qEzWEhs+gkAjtmvT8GrRf1gzsDCvWDO6O4W+WQSCqVyonGXB1d1qdPn85TTz3F7t27K3Xca26lRwhBfsIBihMSEcJBaKtuZB3axoEF0/GOqIPO2w97djZ5aQkA+IbVxewfVuZYeVknyclIJKpupys5BYlEUonUC+1CVEBzIoz1nNnI6wRez960FRzL3saaxM9pE3Ub4T4N6dfw6SqWVnItUXmGzBWX5Upz7733UlBQQKtWrTAYDJjNZpf6jIwMj8Ytl9IzZcoU/u///s+lLDw8nOTkZKBEofi///s/PvvsMzIzM+nQoQMff/wxzZo1c7Y/cOAAo0aNIjExkTFjxvDSSy856+Li4khMTGTDhg107NjRWT5hwgS2b9/OqlWrPJmjC1k7NpL02/fozD6gaLAVlHh6mYIjcditWLLS8PKNcCo9u355AwCzfwSNe4+lMD0Fv6A4FEVh++r3AaTSI5FUY/zNkfibI1EsVpfypqG9CPWqy5akH9l2ahH9Gj5TRRJKJNce77333mUZt9wrPc2aNWPFihXO99rzDNOmT5/OO++8w+zZs2nYsCGvvPIKvXv35sCBA86oqePGjWP48OG0b9+esWPH0rNnTzp37uwcw2Qy8cwzz7B69WqPJyW0IM7MzH6Bkqz4lGiLxqja5B/e5ywvSk9y/u0Qdryi61Jw8oizrDA7mV2/vYctL4uAhm3Re52LBZETrUVRFPQFah5C7uXVqHgPuVuVtHq7X163ebk37NMWuTeEFLryG1QDOFT6OdzZRqsMqGaPqah5OKkZkpdl0X4GNfndjalmNK2K2nlUuQ00NpWOBvcdHSr9NNay7yE1o2+NxbOJq10bT+P0uL0GHnuRGUuVBQW25MawOKzF2Ti8StdfFDWPQoebSk/jFnnYT6hk3RZGFcNjNwbEDoP77yaHzn2d2mdUzQHg7PeWzVoNlzMuhqgcQ+ZKMYa+wtx3332XZdxyKz06nY6IiIhS5UII3nvvPV544QWGDBkCwJw5cwgPD2fevHk89NBDAGRlZdGmTRtatmxJVFQU2dnZLuM89NBDzJw5k6VLlzJgwABP5qSKb7PWRCkKp76f41Lu36I9od36U5B4mMKEQxSknEDR6hD2c09gW15WyRzitzq/YMKv7+tcEpdIJDUPk8EPs9a7qsW4KikJ8CoQwkFaxn60Gj02jY2ioiys1gJMpgB0OjM2exFWSwE6kzc6nYmCgtMIhx0fvyhM5iAcdgt5+ck4HHaEcKA3eKPTm/HyDkOnM6IzeZeyo7Ja8nE4bCgGPTZLIZbimhmf7VqN03Ps2DHV+piYGI/GLbfSEx8fT1RUFEajkQ4dOvDqq69St25dEhISSE5Opk+fPs62RqORbt26sX79eqfS8/LLL9O7d28KCwsZNGgQffv2dRk/Li6OsWPH8txzz9GvX7+SiKeVjG/TVsSNfJyjs98FQOvti72ogLz4PQS0uYGg+m2dbe3FRRSnJ1GYcoLirNPkJcZjyUx21mfs/Yew63qiOeNSWZiZzIFlHxPddiChjToikUgkNQ0hHBxP2szRE6sptpRWNrRaA1qtCYsll5LlNQW93ozVVgTCgU7vhUbRYknIPa+XgkajQ1EU7HbXpXEvn3CCwhqTm3WMwoIMEA4sxXlcNVHFJZVOXFyc6oKC3a6y7K9CuZSeDh068NVXX9GwYUNSUlJ45ZVX6NSpE3v27HHa9YSHh7v0CQ8PJzEx0fl+wIABpKWlkZOTQ2hoaJnHefHFF5k1axbffPMNw4cPL++cLglzZG18m7SmIOEghoBg8uL3kBe/B3thATqdN351m6L3DUBrNOEVVQevqDP5P/KK2Dv7/3CcCWZozcvi5OofqdX9dkBDbvIhbMUFJK7/Xio9EomkxpGefZg9hxdTbM0hNKgJgf5dAIVA/zrodSYUkwmdzoyiKAjhwG63oNUaKCrOJjV9HxZLLt7eEfj4RaKgxW4vQggHPoG10ZyJC+Rw2LBa8inIT8NmLeDYkZWkntyKX2AsfoFxaDRajOYg9HozdsWO3uAFQmHXhk+r9uRUMoJrd3tr27ZtLu+tVivbtm3jnXfeYdq0aR6PWy6lp3///s6/W7RowQ033EC9evWYM2eO0/D4Qs1MCFGqzGg0ulV4oCSL6pNPPslLL73EXXfdVR4Ry0WtW0c4Zcw9sJOTi+aQtmYZAEmrtMQMvh/fOk2Ac/PSGkzU/894Di38CI3egH+d5qTvXkfOsf0ERDXidPy/ANS5cShCOFAUDUI4uIajA0gkkhpCUXE2uw59j485nJZNhuHvW6tUG4f+3HedomjQ6UqCvO7cMYf8gtRS7fUGH8xewfgFxBAY0pCAoHpoNDqMJn+MppL8hyFRLd3KdM6mp6hCc5NcXbRq1apUWbt27YiKiuLNN990mtGUlwo9ib29vWnRogXx8fFOO5+zKz5nSU1NLbX6cylMnDiRwsJCZsyYURERLwlFUfBr3Ir6/52EPiCopNBh59hPX7DnvSeIn/WqS3tzcCQNbn8MW342+Sklq1i2/GynwgOQ8Pd8tn8zicT1P7Bt7gsU52de9nlIJBLJ5UIIwa5DP6DVGGjV8K4yFR416jcYiH9AHRSlZDVHo9ETXbsT0bU6YjT6k5q0g12bv2Tjqmkc3r+EogLPXJJrFgoOUfFXdVzpcUfDhg3ZtGmTx/0rpPQUFxezb98+IiMjqVOnDhERESxfvtxZb7FYWL16NZ06ld+l28fHh0mTJjFt2jRycq6MgZreP5C4EY8R1LoLGuN5+Xey08nYtcGlrSkwjKgut1KUdgJzaG0MfiUh6c9+oAHs1iLSDmzAYbNQlJNG1sl9SCSXA4fdRkbSXnLSj55ZWZRIKoeSrPT5pGUeICvvGI1i+6M/Lz/ZpRIc1IA27R+ic/dJNGp2O2avYJJPbcHbJ5zGze6gY/fnua7TeMKjriP55Cb+WTOd3Vu/IjVpOw6HZ/YbNQEhKudV3cjJyXF5ZWdns3//fiZNmlShKM3l2t568sknGTx4MDExMaSmpvLKK6+Qk5PDfffdh6IoTJgwgVdffZUGDRrQoEEDXn31Vby8vBg2bJhHwo0ZM4Z3332X+fPn06FDh0vuJzTnXBzdKbjCjSemYvYl9NYh6KLCyVj3F7bskhWaUyu+JzcpnrAeg5yrQb5du+CXmYglKwNLWsmvEl1AEL51m2AvKqAw6RiWjJLl3P1/fQqKQsvxb5c6piG7VNFFsRvda+5Wle8jrcW9nqvmquxQyQ+mhrvzrOaC6jC4r1NNKqrmnq32nanqVlz2mBq1RKRqbtEefvk4VD6pWgtkJh/gwPrZAEQ27Epc65sBsKvkAXPoyhZGNfGpScXlWOVYqglTVeo0Km7Iqrm+3KF2rVUTlbq/AKrXVC3nmLt5qxhvqn1uVFEZsyw38rzcJI4fX0t+QRqFBWnYbCVbRz6+0fjFNMWqNSA0CsVFOeTmnCA/Nxm7rRirNZ8iSzYOuxWD0RejVyAmryB8g+Pw9os8kwzRm5DADgTUbcm+9bPYs/MbtDojgVFN8Q9rQGD9toQ160ZW0j5Sjmxk3475GA/9QeNuD2D2c28WYXMTgkFSPQkICCjTXKZ27dosWLDA43HLpfScOHGCoUOHcvr0aUJDQ+nYsSMbN24kNjYWgKeffprCwkL++9//OoMT/vHHH84YPeVFr9czdepUj5WmihB4fWcCr+9Mzu7t5O7eRt7+XeTu2Y4tO5uQbv0QdhvZOzeTu3cbte4ajSk6lqLDh8ncuZGMLWswBIdjCAwhtHNfTv7yNQDeteqTfXgXGp3rU12XX/4vbzUlxNPEm2oPH7UYGnaVhKPuFBhPv7zVM6l71s+TJKbqcWdUxvNQ6bnYNc1LL3Hv9A2JIzc90X1jiUSF/PxUEo4sJy2tJPR/eNR1hIQ3w8srGIPRHx/fSPJzkzidtpfTqXsoyE8DQKc3o9OZ0eu9MHgHoDf4YCnKIS/rBMWFWQjhwMs3nLgWgwiMaOzs06LbfynITSX9xA5OJ+3m9LHtnP0AGcz+GL0CURQtxfnpnNj9Ow063VsVp6XKEFApKSSqYxqKlStXurzXaDSEhoZSv359dCqxpS6GIkR1XPgqm5ycHPz9/an74qtoTWcypLv7MVXOB13+of2cmPtZme0bPDkNrcmMxlKiiaau/pX0f1eW2VbRGxFnPL8kkspEqzcR22owRzb/QPOej+AbHHsRhc6DlR61AJA1eqVHTQ6V41WTlR6brYjjx9Zy/Pha9HovwsNbExbeAu+AKCyWPFKTdpCZHk9W1lHstiL0em+Cw5oQFNoIX//aGE3nfpXbL1gNdDhsZKcdYs+GLwEIqdWaRtffU1oOrYLNWkRRbhpFeafJz07CWpiNotWj1RsJrdseL//SMeLOYrMWsfnHF8nOzsbPz8+Ts3RV8dNPPzH0ybE0+WBUhceyZuSx694PsFqtFVIYriRr1qyhU6dOpeS12WysX7+erl27ejRu9Zj9VYB3/cY0fOkt8nbvROfjx7GvZ4BwENpjAJxnQ6EoCqGd+5KXGE9xygkUvQFhLYk5odEbcFiL8avfkqiutzj7GHLL/+WttrqituKh9hBRi4TsNrIy6lttdjdBbC/LSo+K/Bq1lR7V7S0346ltb6nh6UqPyjXVWgEh0OpNaHVGTh1Yxb41X+AXWgejdzAmn2D8Q+vh5R+J3VZMXuYJEAKTORCTd5BnAklqDIWFmezaOYfCwgwiI9sSV+cmQCEtbQ+Hj/xBZno8AAGBdagddyMBgfXwD4gBrftozeej0ejwD63vfH/6xPYylR4And6ET1BtfIJqE0IbZ7m7bfIazzUckblHjx4kJSURFuaa+zI7O5sePXpcmTg91zqKRoNf09YAxNz7MKf//oO0lUtJW7kMY1gkvvWa4lO3KebI2tS+eQSHPn/VqfAAOM78nX/iEAbfQGe5wYNscGqKhuoDUiXlhac2PTaTitJjKrv8iis9Htv0uBvvCm9vleOaNu4yitQj/1CQnUx28gFS8tNLot8GxVKUdxqbJd/Z1uwbRnidDoTFXY9O7+ZiSaolBYXpZOckEhhQH6PRt8zM8EXF2WzdNhONRke79uMwGv05enQlJ0+sRwgHfgGx1Gs4gLDI1hgMrlGpy3MrazQ6bhg0jU2/v4LZr/zevNcylRKRuRpub5UV7gYgPT0db2/PI6RLpcdDvGLrERP7MCnLF5P5zxqKU09RnHqK0xtWoGh1GIJKG9xp9EYc1mLsRQVY87LR+/hXgeSSmo7ZN5TYVoNK3ghw2K2kHNlIbnoifqF1CKndBo3OQGFWEuknd3J0568c2/MbgZFNMXkFERXXCaNXQIVksFkKyTp9iOKCDPyC6+LrGy3TtVxh9h1cSFaOq31XgH8dYqI7ERzUkOLiHHbu/QZF0dCk6R0cTfiT06f3I4SD2LjuREffgN7Lp8JyOOxWDu1YSPqp3dhtRYTHtq/wmJKay9n4O4qiMHLkSIzGc9sFdrudnTt3euQRfhap9FQQrbEkganG7IWjsAAAYbdRnHYuganWy4fQtjeR/PfPzrJjv8+l3n/GXVlhJdckGq2eyAY3EtngRpdyL+8QgqNbEBrTlgMb5lCUm0Z2ajzJRzYQWbcTIdGtKC7I5NSRteRlHsc/pD4BIfXQavU4HDaMpgCCI5s5xxPCQVbaIVKPbSL91O6SvEiKFiHsePlGEBFzPWG1riuJniu57LRqPoIjR1eQkrYLizUPgKzsBLKyE5xtTMZAQkKasGP7LAwGb+Lq9CQiog1GY4lNjNpqjt1uJeXkZgryT2Mw+pKVfgiD0Y/QOu3wC45DOOykJG4iKWE9RQUZ1G54E/7hDfALrnM5p13jqAyr2+pkuevvX7IYIITA19cXs9nsrDMYDHTs2JEHH3zQ4/FrpNIjdOc8TN1tJ6jeA2rZri9cITYbUfQG6j75Eo6MHHJ2baEw6Ti2nCzshYUIuw1Fp3NReADyTxwm93QiXlGxFAeU3ybGpuqW7r5Ol+/+WLpCtcznHm7nuNmWcajs0bvbEgP1vX3VrS+r+zqNWp077y0V93hVOdRsi9QWQlT6qdlbqc1NObNs7hfXlLa1p6HR6rAVF3Biz3JOHVrHiYN/AeAVVIvgeu1IP7KFzLQDZ5LwKoBA7+WPotGi1RmwFGRjtxRi8gslqnVfguLaYPDyIzvpIKfj/yVh768k7F9KUEwrQut3wDesLoqiqG75qdmgaYvLPilq43m6U1Bex4dLwq0hs0ofFWPx0sbWeuq0vpU63IrQlqSEyMs6wZE9v5CTmYjZp8RW4uTJjUTEdaBOs8Foz3iWnr1t3Bmn220WNv7yYpl1Kae2oJzJRSjsNoJiWxHe4iaObVqMuVZ9rF5l722rhWVQOydnr6ndIlcSawKzZs0CSnJvPfnkkxXayiqLGqn0XEl8GjUlfcUSTsyaSe2hYwjp1rdUGyEExYcOc3TBuejSik6HISD4SooqkbjlbMJcndGLmPa3EN26HwUZJ9GbfTH6hqAoCrEdSpadS4IfKpw+9C+F2SloNDrs1iL0Zj/8IhvgHRLjspUVEN2EwMgmWAtzOX1kE6mH/iE9YQsmv1BC63cgtE579KaKb6NI1FEUDd5+UWj1JkBBOOyAoPkNDxIQVr5gbxqtjpgWA7BbizH7hZF+Yid56YlYi/MIrN0CS2E2+adLwihkJO4g8/gehMNGYdYp/CPqX2R0yVmu5dxbkydPvizjSqWnghhCwqg16hFOfvUJp9f8QXifW0q1sefluig8AD51mqCrhP1yieRyoNUb8Q2vW2bdWYPY0AaXHjAUQG/2JbLZTUQ07UFuymFSD23kxPZlnNi+jMBazQlr0BG/8AbS9ucyUVSQyf4tc8nNOg6Aw26h+Q1j8PIvv2GxomiIbnyT831obFuEECRsW0TK4fUA+EU0ICe5xPNLOGyg0RHW4AaPZC/ISGLvT28B0GTQY3iHxng0TvWjclJIVEelB+CHH37gu+++49ixY1gsrlsYW7du9WhMqfRUAubasfi2akfewd2E9b651Jf2ofemlOrjsMhYPZJrE0VR8Iuoj19EfaxFeaQf2ULqoY3s//NTTL6hhDW4gdC67dEZpe1PZZGc+A9H9i7BfiaysrdfFE3bj8DhsLPz7xlodAbqt7wNk3fJ6nNu5nH0Bm+Mvpe+Gq0oCnGtb8a3VgOM3oF4B9fGWpjLth/+j1pt+hPVvKdHIRsS1i4g/dC5XEt6s2fBbiXViw8++IAXXniB++67j59++on777+fw4cPs2nTJsaN89weVio9lYRvkxZk/7uOvAO78W3c4qLtHRaZEVgi0Zt8iGzSjYjGXclNPUJK/HqOb1/CiR3LCI5rQ0SdTvgElS+xpcSVlJNbid/5o/O9f3A9mnccTVF+Ojs3fIrdZsFht5CwZwmKoiE38xjFhVmAQkSdDsQ2G3jJ4Qw0Gh1BMSUZ0fPTT5Cw4Vs0OgOh9cu3KniWwqwUp8JTu8OthDe98SI9ahiiclzWq+NKz4wZM/jss88YOnQoc+bM4emnn6Zu3bq89NJLZGR4noxWKj2VhLluA4yhEZz8fha1h/8Xr5i6KGesnmvd/QAnFnzhbOsd25Dat95fVaJKJFcdiqLgF14Pv/B6WAtzST38D6nxG0g7/C/eQbWJqNeJ4Nqt0epUrLYlLuTnpnBoz09kZxx2lkXX7Upck/4U5qexa8Nn6A0+XNdjDCcOrSbl2GZMXkEER7XAL6gOxYVZJO7/ncyUA7Tu8Tg6g1nlaK5kHttF/OrZAGh0RopyTzvttvJOHyPz+E5qtRrg/I50x/n1gXGtStVbi/LIPnUAr+BaGLxqZgiQa8176yzHjh1zuqabzWZyc3MBGD58OB07duSjjz7yaFyp9FQSiqKgDwqhOC2Z41/PIKz3zQR17A6Ad91GxNw2GntxIRqdHt+GLcoMFCaRSEq2L6Kb9yKq6U1kH9tLyuH1HN70HUd3/EzDjvcSENGoqkW8qnE47Bze+zNJxzY6y7RaA7GN+xFVpzMFucns2vAZBpMfzTs+iN7oQ51mA6nTbGCpsXwCa7Hr7xkU5qXiGxR7yTJ4BUZhDohEazCRl5pAQcYJfEPjSDv0DwkbvwMgtF4HTCoJRAFMfqG0G/l2md5b2Sf2k/D3fGxFeZiDomg0QIYAqUlERESQnp5ObGwssbGxbNy4kVatWpGQkEBFsmfVSKVHaAVCe+akVLKG61Axsgy4sQd5B0oS9Xm3boPdmWxTi3fj8+KZXCCWWlZxm5sfV2runZ66Rau5pWtVTJA0Wvf9HO4iCasst6qdDzV3djUUlQUCoeLi705+jxOfeub5r5pGQy1atieRqNVd7j3LQaWWNsV9GAIt3k1aULdJC4pzTpOw8muOH/wTc8MmAGjchA3w1IVcNamrh2lH1PKRufv5rZrDrIzz77DbOLl7BSkH1jptds6i1ZuJbX0zIWdWyQoKsti54VMMXgE06fYQGqM3VpX7RyglqzMWs8Di5/pDze6mn9CCxiuExnc9hSUviz3zXiEn8xi6jHinwgNgMdnR+pwbQy1K+4UhLrLit3Ns+Vf4xDTCOyKOlH9/J68o1f0A1ZTK896quCxXmptuuolffvmF6667jtGjR/P444/zww8/sHnzZmcAQ0+okUpPVWGKiXP+bTmdis6vZi63SiRXGqNfCOEtbyLhzzkcWTEbEBRnpRHZug9BZWx7XAsI4eDEjt84tfevUnVhdToQ12rwGfd0nD92Mk/txW4tomm3h9AbLx7/RFFKtA3h8EyTNPgEENaqO6nb/8IY4JpDaf93b2LwDcIUGI5/XDO8ImKxW4ux5mVjK8jFbi1CozfiE10fU3i0s58lJ4OTK7/Hv34rYvqNIGX9EjR6o4xwX8P47LPPcJy578aOHUtQUBBr165l8ODBjB071uNxpdJzmShMPIItKxNzvQbo/QMv3kEikagSWKcV9i53cHzDIsyBkRRmJZNxZOs1pfQIISjISiI9cRtJe1c6y6Ob9yK6QQ+0OjfRTIHigixO7V+JT3DsJSk8cM6mRrhdsr04Ue36k75vA1nxW2ly93PE//wxtoIcACy5GejMPhxf84Pb/saAMBoNfxYAh83Ksd+/RmM0U+umO8HhIHXrX4CCNT/bYxmvZqrCZf21115j4cKF7N+/H7PZTKdOnXjjjTdo1Ojc1nJKSgrPPPMMf/zxB1lZWXTt2pUPP/yQBg3OxXwqLi7mySefZP78+RQWFtKzZ09mzJhBrVrqzgk2m41p06YxatQoateuDcCdd97JnXfeWa55lIU0LKlMzltDzPjrd1IWLeDoW1M5NW9WFQolkdQcQhrfQOv7XqfxrY8TXL89BeknSDv4D6d2LKcoO62qxbusOOxWdi97l93L3nEqPGH1O9L29qnUatlPVeEBOL77NxzCToOOZWc4LwtFc2alR3iu9ChaLaHNb6QoK4V9C17DXlzgEtq+IPWYS/sGtz2KxlCyQhVQrzVxfe8DwG4p4tAPH1B4+hSxfYdjzcvi8KKz8c8Eh75/32MZr2ZEJb3Kw+rVqxk3bhwbN25k+fLl2Gw2+vTpQ35+SbJiIQS33norR44c4aeffmLbtm3ExsbSq1cvZxuACRMmsGjRIhYsWMDatWvJy8tj0KBBF82QrtPpePPNNz3OpK46dqWPeA2jaDQE9+xP+p/LCOjUDWGzkv3venS+flUtmkRSYzi7+hDZshfZx/eQuL7ETiR511+0+M/zGIw1L46LcDjYPP9Z5/uwBjdQq2W/S16xAchOPURIrVblSiZ7Vulx2G2X3KcsvCPqENVhEKagCI7//QPWvCwAojvdQmF6EhkH/nW2jV/0IQBRnW8hrFU3HDYrQggy9/5LcXoysQPuL6XgRHe/HVtBLin//l4hOSUl/Pbbby7vZ82aRVhYGFu2bKFr167Ex8ezceNGdu/eTbNmJfaqM2bMICwsjPnz5/PAAw+QnZ3Nl19+yddff02vXr0AmDt3LrVr12bFihX07Vs6e8H59OrVi1WrVjFy5MhKnVuFlJ7XXnuN559/nscee4z33nsPgJEjRzJnzhyXdh06dGDjxnOeBAcOHGDUqFEkJiYyZswYXnrpJWddXFwciYmJbNiwgY4dOzrLJ0yYwPbt21m1alVFRL78aLVoTCZC+5dEZg4bfHtJeUEVyiSR1EBMfiG0uP1FhMNOwt/zyD6xH0t+Vo1SeqxFuWQk7iJxU0mcHbN/OC36P3FRV+8LyUzah6UgC72pfOfmrJepvbhiX2CHl3zq/Dv2pmGk7V5LQeoxTq7/CUWrwz+uOSgKRZnJIEqSNJsCwzn213wy9m8iquut2IoLQatD0ZV+bDmsFrIP76qQjFcrlbm9lZOTg+6882c0Gl2ymLsjO7tk6zAoKAgo2bYCMJnOeZZotVoMBgNr167lgQceYMuWLVitVvr06eNsExUVRfPmzVm/fv1FlZ7+/fvz3HPPsXv3btq2bVsqB9fNN998UbnLwmOlZ9OmTXz22We0bNmyVF2/fv2cScOgJDPq+YwbN47hw4fTvn17xo4dS8+ePencubOz3mQy8cwzz7B69WpPxasytF5eOIqLETZbmR9OiURSeWj1JV/YQXVaU5Bxin2/vodfZEMimnbDL6pRtUxpUZSbjrUwm6Kc0yRs/NZZrjV40bz/xHIrPMf3/sGJPcvxCYohslG3cvUVDhsoGo5v+ZWsE3uJu+GOS46IbC8uJCthB6k717iU+9ZuRFDDdhTnpFOcfZqC1ETSD2xC7+VHcdaZLcrsNI78+hk6sw8ag4lTaxajaHUIu41jy+eVOlbSul/Q+waUa27XIsHBrhG2J0+ezJQpU1T7CCGYOHEiXbp0oXnz5gA0btyY2NhYnnvuOT799FO8vb155513SE5OJikpCYDk5GQMBgOBga42reHh4SQnJ19U1ocffhiAd955p1Sdoigeb3159FTOy8vjnnvu4fPPP+eVV14pVW80GomIiHDbPysrizZt2tCyZUuioqKcWuRZHnroIWbOnMnSpUsZMGBAueUT2vPcYN1tZnrqwqfWT3tuGdihcaA5z81SzQ1b1VXWTZZsXaHKeGqZtVXuE7Xs7FqL+4mrZT535+quUVktV9Tc2VXuWDU51Fz11bKUo3Ld3B5KbW4eZmBXNanwMF6fO3d2Nfm1Vs+UCLuajCrPcLX71X7eRfVr1Z7GzduQfWgHaTtWc/DPzzEGhRPWticBjdo6lR/VbOkqx3LnHg8XydyuOreyO+5d/JHT0Pd8mt/7EkLocCfmhfexrSifjMSdnNjzB8EN2hPT6T/YyvghZjO5n4Dd5E+9ex/n6PczyTq+h8z2nfANKQkZcP68M7avx15cSGiHnlizMjj9719k7vkHccGDya9JG07uWo7WaELRarHl56I1exF333i0vr7Y8nLJ2rERh6UYU2RtfBs0QwhB9q4t2PNzSVuzDHv+uXNjiozBGByOd2x9fOo14eAHL1Gj8MQgx904QHp6eqmVnovxyCOPsHPnTtauXess0+v1/Pjjj4wePZqgoCC0Wi29evWif//+FxdFiEv6MeLw0GPwYnik9IwbN46BAwfSq1evMpWeVatWERYWRkBAAN26dWPatGmEhZ1zV3z55Zfp3bs3hYWFDBo0qNQyV1xcHGPHjuW5556jX79+aMr5y6YqcRQWojGZ0Og9eFpKJBKP0Wh1BDZqi3+j68g/dYS0rSs5vnweOi9ffGOqR0BDW1G+047mLDovP0KbdUGjM4D14k/AE1uXkZGwDUtBNsJhQ2fyIbJ1bzQeRrM2h0UT1fM/HF/yNZm7/8Vhs2IOr43ePxB7USF5Rw+QtKLE+yrvyF4KTiagNXkTdkNfzOG1Ofrjua2tnH3byjyG1suHoOu7ovPxJaRzb5c6BQhs3ZHsPa4JJiMHDSWgRXunImsvrompfSop4eiZHwh+fn4uSs/FePTRR/n5559Zs2ZNKY+rtm3bsn37drKzs7FYLISGhtKhQwfatWsHlAQXtFgsZGZmuqz2pKamOiMtXypFRUUuW2kVodxKz4IFC9i6dSubNm0qs75///7ccccdxMbGkpCQwKRJk7jpppvYsmWLU6scMGAAaWlp5OTkEBpadkTOF198kVmzZvHNN98wfPjw8opZZVhSkjCER1a1GBLJNYuiKPhE18M7qi77Z08l99iBq1rpsRUXkpd0iNTda8hLOpcywuATSHCTTujNJQEC0/dvPG816gLlR5SsYlmL8kjatQL/6MYExrVCo9ES0uB69H5BFZLRu3Z9DIGh5BzcQc7BHQDo/YOwZp/LgaTo9GiMZqL7DcWvfgusOVmkbfqzzPH0/kEEtbsRQ0AwWi8fzFGloz0LIbCcTiH34G5y9m6lOK1kS0QfGIIxJAKfek0qNCeJe4QQPProoyxatIhVq1ZRp04dt239/UviI8XHx7N582amTp0KlChFer2e5cuXO13Nk5KS2L17N9OnT7+oDHa7nVdffZVPPvmElJQUDh48SN26dZk0aRJxcXGMHj3ao7mVS+k5fvw4jz32GH/88Ydbreuuu+5y/t28eXPatWtHbGwsS5YscYmiaDQa3So8AKGhoTz55JO89NJLLmNe7RQnJ+FVr35ViyGRXPMoioJ3VB0KTh2palHKxFqQS9KWZaTHb0aU4R1lycskadOSco/rF9mQBj1Hu6S6qehGgc7bl/rDnyBz9z8k/bUIRafHK7oO5utuROfth1/Dls4VqsJTxzixbB65h3ej9w0gsvutBDRrj8ZgIuvwdpJ++47aQ+53CTgIJWqcw1JMwcmjFByNJ3vPVmw5WSg6Pb6NWhDSpS/m6Dj0vtdOEMKSiMyVME45xxg3bhzz5s3jp59+wtfX12mD4+/vj9lckibg+++/JzQ0lJiYGHbt2sVjjz3Grbfe6jRc9vf3Z/To0TzxxBMEBwcTFBTEk08+SYsWLZzeXGpMmzaNOXPmMH36dB588EFneYsWLXj33XevjNKzZcsWUlNTadu2rbPMbrezZs0aPvroI4qLi9FqXZdmIyMjiY2NJT4+vtzCTZw4kRkzZjBjxoyLN74KEEJgTU9D36F8S3cSieTy4BVZh+xDO3HYrB5v71wOMg9t5/ia70GByOv6ElivDXovPxRF42ojdMHOhvY8e70L7SI8Tb9xMRxWC0XpyWTv20rByQSAknAc+7YR3X+oU7myZKVz5Jv3sRfmARDd5278m1yHRnvuMePftA0+dRuTnxiPISiU0xv/QtFosOZmUZRykqKUU+CwozV749u4Jb6NW+IVHYdGf3HbE0nlMXPmTAC6d+/uUj5r1iynC3lSUhITJ04kJSWFyMhIRowYwaRJk1zav/vuu+h0Ou68805ncMLZs2eX0hPK4quvvuKzzz6jZ8+eLhGYW7Zsyf79+z2eW7mUnp49e7Jrl6tb4P3330/jxo155plnypxIeno6x48fJzKy/Fs+Pj4+TJo0iSlTpjB48OBy97/iCAGKomo0K5FIrhzekXEIh53C1ON4R9WtanFw2Kwc//sHMg5sIqBOK2K63I7OdEGsHZXvD0XNErsC2C3FHFs+l/ykI9TqfgdZh7Yj7DaEBnKP7AMEGr0RY0gkIdf3JOfQbhSNxqnwHJn7HoXJ54IMRva4jcDm17scQwjB8YWzyT1Y8gwxRdSmKPk4ADofP7zrNMS/RXu84xpgCA51TcpcDXNHVRZVEZH5UhJ6jh8/nvHjx6u2MZlMfPjhh3z44YflOj7AyZMnqV+/9K6Jw+HAalXx1rkI5VJ6fH19nS5rZ/H29iY4OJjmzZuTl5fHlClT+M9//kNkZCRHjx7l+eefJyQkhNtuu80jAceMGcO7777L/Pnz6dChg0djXCns+Xlgt0sjZonkKsEUHIlGbyQ/KaFKlR4hBCnb/iRt5xrs1iJiegwluF67q8alPnXrn+Qc3QNA4u9fudSZQqMJatOZgCZtnatl4V0GwJnEqPs/+T/seSUeuFF97yaomauyc5bi9GSnwuPboDnWvBwMQaFE9rsD75j6qglHr2kqQemplDGuMM2aNePvv/8mNtbV3uv777+nTZs2Ho9bqYFktFotu3bt4quvviIrK4vIyEh69OjBt99+i6+vZwHD9Ho9U6dOZdiwYeUQRJS8UNFw1RRZNbdWlSzTxSdKfrV41W1QyjVW1S1dxVXcrSwqXxB2N5nZAYRqdnaV7M5u3GtBPTuyIbfsCejzVTKzq8ioK/AsO7uaW7pdpZ87N3i1OXuS2Rwuco+oBcRVu19V6jzxCLV5GBVeLZyAqhu52rzdfbRdyrWYo2LISzlKkPkiIQNU5PD0gazYwJafy4nf55GXeIDA5h0IadsdY1A4orjsS6cmo5p7udr9X6xiBmPDQvq+DSh6AygKwlISZ0IxGAm/6x68GzdDURRcv6aUktAgQmCIiqTwYDZhdw3DfF07CjSlZ1V0NIHUX+cDEH7/aLybNnWtr8BSztnr5ii6hpeDaiCTJ09m+PDhnDx5EofDwcKFCzlw4ABfffUVv/76q8fjVljpOT9Cstls5vffKxYG/OjRo6XKhg4dytChQys07pXAnpMDioLOP6CqRZFIJGcwR9chc9u6kvggV3jv2Zafy5FvP8BhtRBzy2j86ja7oscvC+FwkL76d9L/Xo6i1aExmbAXFlD74YkUHj6AMToGY3gkGpMZ9OranqIo+HfqQuHB/Zhiy/bwyduxg7Tvv8UQFk7E/aMwqMRwqwhZ69ddlnGrFFE1hsxXA4MHD+bbb7/l1VdfRVEUXnrpJa677jp++eUXevfuffEB3CBDBlcijuIiNEZjuSOmSiSSy4dXdByn1/+BJTMNU0DYxTtUEsJu59ivs3FYLdS9+zEM/hVzG68o9oJ8Tv34NQUJB51lwm7Dp1krfJq3whQZjSmytEfVxTDFxABwbPo0gvr2J6BXL4TDQcG+vRQeOkTOurV4NWtO2N1D0VxCMDxPyd+187KNLaka+vbte9F0FeVFKj2VSOHxo2i9fapaDIlEch7mqDgACk4kVEjpsWRnkL1vK7mH9+KwFCHO7A867XKc9jklzgwOiwVrbiZ1bh9X5QoPwPFvPqU46QRaLx8UrYbwAXfgVa8RmCv2GNB6+xBwUy+yVv1Fxu/LcNht5GzYgCM/D0WvJ7BPXwJ63IRyCR47FSFqzFiOTn7xsh6jSqjEiMzVkc2bN7Nv3z4URaFJkyYu3uOeIJWeSqI46RT5e3bh3bjql68lEsk5bGfTFlQgrH3mzo2c+v07FJ0O37rN0PnWLvEuOvMwETjOe7CIkr8VBd+YRnhHuw/sdqXI2rKe4qQT+DRpSfQdI13qKsPTPbjvAIJ69yPpf5+TtWI5AD7t2hN6x51XbOX7ajEKr2yqwnvrauDEiRMMHTqUdevWERAQAJSksOrUqRPz58+ndu3aHo0rlZ5KIv2XnwHwbV0xLVQikVQuqWuWovcLxL95O4/HMASVrBBF9b6DgObtL7mfqiH2FSLvxCFSlvxAQLtOhPXzzIv2UlA0GiJHj8FhLcJhsaDz87tsx5LUfEaNGoXVamXfvn00alQSUf3AgQOMGjWK0aNH88cff3g0rlR6KgFhs1F0/BhBPfvi26J1VYsjkUjOUJh8nNyDO4kaMLTE3drDZQ3vWnVRNFqKM1IqV8DLjCU3k8SlczBFxxDWf4hr7JvLgKIoJbkHKylPkoRrdnvr77//Zv369U6FB6BRo0Z8+OGHdO7c2eNxa6TSI5TzXEzdmK2rxvhScd0ui9ytWxAWCz6t2rh1bVXNAO4BHmcUV3NrDVA5nlq2aFWX6bKFUXWl1rmfgLus8+B5RFq7im2l23mrnWMPP1Vq8qu53Hs670qP4Kvm8q0WKkFlNcQTV/3zr1lO4l40JjM+17XFrvHcPV5TLND7B3H635UEteyMwe9cAkVPHyjuQiWo7USofX5t3qXLTm/fiMNuJWz0SGz+CmUJ69C7n4DQqUxO66ZORX7VXRbVmAGXkJW70MN4Clc5lbI1VQ23t2JiYsoMQmiz2YiOji6jx6Uh3YwqAUtqKigKWq8yvnUkEkmVIIQgP34fXrH1PLYrsWZncnrDnxz66s0S76+waHTm6vM5t5xORVgsFJ84UdWiSCTlYvr06Tz66KNs3rzZGSF68+bNPPbYY7z11lsej1sjV3quNAFdu5G9dg25O7cRcEOXqhZHIrnmseXnkrToG4pOHSP67vIlJrQX5pOzfyc5e7ZQcPwIik6PX73mRNw4CJ+4xtUmJIWw2yk6UZIaInfTJrybSSeLaofgmt3eGjlyJAUFBXTo0AGdrkRVsdls6HQ6Ro0axahRo5xtMzIyLnlcqfRUAjo/vxJ31eoYAUoiqUEIIUj/+08y/1kDikL00AfxadCkzLYOqwVLehqW9NSSV1oaloxUilKTQDjwjmtI5KCh+DZsgUGpfjYqST/MxZadSUDHGwm8bVBViyORlIv33nvvsowrlZ5KQh8YSHHSyaoWQyK5pik4Gs/plUvxv64jwTf2Ru8fWKpNcVoyGRtWkb1rCzhK7EC0Xt4YgsIwhkXh36I9fo1bofM5z/tILVXMVYrW7AVA1r/r8Lq+DbrAQLJXr8a/WzfpWVVtUKicDNbVz6bnvvvuuyzjSqWnkvC9vgMZS5fg3bAxPtKDSyKpEqyZ6QCE9bkFjeGchboQgsJjCWSs/4v8+L3ofP0J7dEfr5i6GIJD0Zq9rwr38sok/OY7CO1/K4emPsOpDz4gsH9/sletInvVKmImT5aKT3XhGt3eOktqaiqpqak4Loiz1bJlS4/Gq5FKj9AKxFnPAneeWGo3gYoXgXAznv9NPchc/ge5+3Zibt+qDJlUjqeihbtLRqrqIaQyN9XkpiqmCmrHU3WEc+N1ZPV2P2e1BKDaYvd1iorzhprzglBJxujOe8VT7zmPI8G585QBUEkGW9moJuxUqVM7/4pWJZltOe9zY8P6KMsNHPt6BkE9+mCKqk3RsaNkrv2LohPHMIRFEH7r3fi1uA5Fd25wB6C9DMlU1T437j4bDhVvQpu3SqJeY8kFyP5jJYW79+Pfvyemxg0wt25O4fbdFGcmO9tmbV1LwC19AFBUvLcUrfuLqnHrvaUyntp3awU9jBzaargcJ3HLli1buO+++9i3b5/TkPksiqJgt3v2ga2RSk9VYYyLo/DAAYTN5vKFKpFIrgyGkFCiR4zh9B+/kjT3S2e5Oa4eUfc+gHe96mOI7AnCbidr0VIAUuOPYGxQl+L4IwAUbNzmbCe/n6oR1XiVpiLcf//9NGzYkC+//JLw8PBKi7gt7/xKQlEUgm4exKm336XoaCLm+vWqWiSJ5JrEHFeX2mPGU3TqBPa8HHS+/hjPJNKs9NhEVYy9oBBhs2I7nY5DZ6f4SKJrfWaW82/vzu3QhgYh8gvw7X3jFZZUIikfCQkJLFy4kPr161fquFLpqUycS3DXqGoukVxFmKJqVbUIFSJl4beYYmLxb9cRIQRFxxPJ2b+d/B07UBQNDqsVR15eqX6mJg0xxNbG+/o2ZC9dge10iTuvPiKUrB+XASUKkKFW5BWdj8RDrtHghD179mTHjh1S6bmaKUo4iqLTYapT9QkGJRJJ9SZnyz/kbPkHYbWStXEd1tOpaMxmjDExKGYjBdt3urQPuG0gvjd2RGM+514fMuIubDf3QxvhjyM3n6K98WgD/NAFl/Zqk1x9CConEkp1jKbyxRdfcN9997F7926aN2+OXu9qBHfzzTd7NK5UeioRe1YWaLUo2krOOSGRSK4pzjfcTPt1kfNvR2EhhQcOlNlH6+fjovAAKHod+tBghMaB1t+XsCcevDwCSySVzPr161m7di3Lli0rVVcRQ+YKWfS99tprKIrChAkTnGVCCKZMmUJUVBRms5nu3buzZ88el34HDhygc+fO1KpVi5dfftmlLi4uDkVR2Lhxo0v5hAkT6N69e0XEvaxY09PJXrnKGfdDIpFIPMFhsXDi0w9cyoxRtdD6+KIYXV27jLGxhI95gLi3p+PT0fMs8pKrFFGJr2rG+PHjGT58OElJSTgcDpeXpwoPVGClZ9OmTXz22WelfOWnT5/OO++8w+zZs2nYsCGvvPIKvXv35sCBA/j6+gIwbtw4hg8fTvv27Rk7diw9e/Z0yZpqMpl45plnWL16tWfCacU5F193HutqBo0q+5/uXJhz/i1R0sImPITDXHpwu5/7A9pN7leGDFll66WqLsAe3uBqY6ol5VRzFXfnsqvqyqtSp89zPzmdiju71df95BwqSRUdRjcu60aVG0hlPI+XmdX6qVw41XvBE1nUkvGqurOrxQxQOf+28s9N7X7UWFXuAw8TvtrMKv3c3D8lY5Zdd/qbBRQddzVILj51Ao2/D8ZaEZhbN8Tcoh7G2IjzvLAs6PXuJ67RuJ+cVuNeRrV+leRMc0lcyufGrqh8AUiqHenp6Tz++OOEh4dX6rgeKT15eXncc889fP7557zyyivOciEE7733Hi+88AJDhgwBYM6cOYSHhzNv3jweeughALKysmjTpg0tW7YkKiqK7Oxsl/EfeughZs6cydKlSxkwYICnc7uiWFPTMNavg6leXFWLIpFIqjG60CDn3z7d2uPbsyO6sGA0ZiNao1xJvua4Rg2ZhwwZwsqVK6lXr3I9oT3a3ho3bhwDBw6kV69eLuUJCQkkJyfTp08fZ5nRaKRbt26sX7/eWfbyyy/Tu3dvvLy80Gg09O3b12WcuLg4xo4dy3PPPVcqCuPViqleXYoPJZC5eBmimsgskUiuPgL+05uo1x4HwNSsPobYKDRmlaVWSY1FoWRFszJe1Y2GDRvy3HPPMXLkSN5++20++OADl5enlHulZ8GCBWzdupVNmzaVqktOLon4eeFyVHh4OImJ55ZrBwwYQFpaGjk5OYSGhpZ5nBdffJFZs2bxzTffMHz48PKKecXx69oZh7CQ9dNvOAoKCBo6pNKCKUkkkpqHsNvJ37KdnOV/EfbwaHRB51Z4Ut6eBYC5RcOqEk8iqVK++OILfHx8WL16dSlTF0VRGD9+vEfjlkvpOX78OI899hh//PEHJpP7rMMXPuyFEKXKjEajW4UHIDQ0lCeffJKXXnqJu+66qzxiVgmKRoN/v5vQ+vqQ/vX3GKIj8e3WqarFkkgkVyHWjAxOTJ3mfH9+hGRhs2M/nQWAxqv6ZXeXVDLXaO6thISEyzJuuba3tmzZQmpqKm3btkWn06HT6Vi9ejUffPABOp3OucJzdsXnLKmpqR4ZI02cOJHCwkJmzJhR7r5VhU/n6/G6riV560qvhEkkkmsX6+nTnP7hRwoPH3YqPN4d2hE99UW0Z5J/OgoKSXnjcwB0ESFVJqvkKkIolfCq6kl4jsVi4cCBA9hslZMRuFxKT8+ePdm1axfbt293vtq1a8c999zD9u3bqVu3LhERESxfvtxF4NWrV9OpU/lXPXx8fJg0aRLTpk0jJyen3P2rCl1wIPbc3KoWQyKRXAUIITj1/oecmPYauevWk/zRuR9xvl07oQsMcLbL/GUZxQcTUfQ6IiaNrSKJJZKqp6CggNGjR+Pl5UWzZs04duwYUOLK/vrrr3s8brm2t3x9fWnevLlLmbe3N8HBwc7yCRMm8Oqrr9KgQQMaNGjAq6++ipeXF8OGDfNIwDFjxvDuu+8yf/58OnTocEl9zs+y7tasRs3exqHiZqpmpnOmmz2/AEWvRzjObetpTe61VIfOveGzrbjslOOGHBXXWxX3WrvaavklzK0sNCoKuNW77HI1GXVFnh1LW+T+PDpUAkYKg8r1NpftLaPoVbJPq9R5aual6rKrUidUblj3dR7eCCr91EJECJv7316Kiou5uw+jRsXNXVV8FRntJvcd7T7uO1pzkjj1zDsuZRpvM36Du5O1YBnJb36A9/VN8O3SAmtSOnl/r8evYyPiXrjjTOt8l75eBqvbY+lV0sRrVCZe2ZnPHar3j0o/Dz2Mzspos9XALOuVFWOnGq70PPfcc+zYsYNVq1bRr18/Z3mvXr2YPHkyzz77rEfjVnpE5qeffprCwkL++9//kpmZSYcOHfjjjz+cMXrKi16vZ+rUqR4rTVWBd7vW5K/fhPXEKQy1o6taHIlEcpUQOGwgfv26AJC3Yj2209kU7jpC/r/7APDr3Y7YR/uqDSGRXBMsXryYb7/9lo4dO7rYBDdt2pTDhw97PG6FlZ5Vq1a5vFcUhSlTpjBlyhSPxjt69GipsqFDhzJ06FCPxqsKzio6BTv2SKVHIrkGyVy8FENMLcxt67qUa/19nH/79WxLxverMLesR/4/ezHUCiV01ACUmpYKXlIxrtGVnrS0NMLCwkqV5+fnV8gzukJpKCRlo/XxxrfnjWQvWU7GDz+75NGRSCQ1m5yVa8n5fSWnP/8aW1qGS13xoWPO74OgITdijAsn/5+9hI29hZi3/4tGL9MhSi7gGk1D0b59e5YsWeJ8f1bR+fzzz7nhhhs8Hld+wi4TQbffjC4kmMxvF2PPyCJ4VH90Qf5VLZZEIrmMWE9nkPndTwAE33cXSZM+dKnPXb4B/8E90Ab4omi1GOtFU3wkCUWnkYmKJRLgpptuYuHChbz22mv069ePvXv3YrPZeP/999mzZw8bNmzwPEUVcqXnsuLXvTMho+6h6FACya/+D0eRzA0jkdRkrKfOhetIn/NtmW1S3//a+bfW1wuAgp1HLq9gkupLZbise2hcXhWsWrUKi8VCp06dWLduHQUFBdSrV48//viD8PBwNmzYQNu2bT0eX670XGa827dGMRpImzmLxNEvEzPjOTK+/QPsdhyFxWj9vFG8vNGFB+PTtZ2M4iyRVGNMjRtgbFCX4vjSSoy+dgTW48lYDh/HUVSMNTeLzIVrAAi6q8eVFlUiuepp0aIFc+bMqdQxa6TSo2gFyhmXdbdekGpZylU9dlUq3WQr1kedCzKW8u48iuMTy2zn3SwKQ23XII5W/7KXvK1295fOoeaC7a2SsFBt3mpuwLkqy/JuUga5yzAN6pmwbWYVt2iN+4VLoSKimiyKoWyjUq2KW7pWJdu1VjVrtWeuw2quvg67+3Nid+Mqrnb/a7SeGdmqymFRmbfKNVWsZdepuser3Ac2N+EVABxeKtfN+5wbuRYIf3o4xx78v1LtQvu3xJZdj9Rv15Ey+X0058kS3cAA5AHgY3C/ImzSuo/ZoFG5fzx1B1e9t9zUqbmsXw45zmLT10CXdSopb1Y1s+nJzc1VzfoA4HcmoGd5qZFKz9WGLjgI/1t7URyfSNGeeGd58Ji70Ab4otUUoQ8LxFCrtKW6RCKpXmhMRmLnvELifS+6lOf8G0/M4zeT+u06LEmZzoqZjwAA69JJREFUzvJ234670iJKqgvXaJyehg3d55w7m9bKblf5Aa+CVHquAIpOS8BtJRnpT3/6LfnrtwGQ9cNvRL/zLAavygmvLZFIrg4UjYbYWS+TeP9L58p0WrLX73e+928TS+Mpt6E1lx2AVCK5Vvnhhx8IOi8Bb2UilZ4rjKl5A6fSY8/IxpJ4CkMTucIjkdQUrMmnsecVYM90TZ2Tu/kQhYeSnO8jBreRCo9EUgadO3cuM0ZPZSCVniuMd4eWZHz1E743dcTUtB6G2hGoxr+XSCTVBiEEJ596p8w6r0bRFBw4CUCjmWMJrueZTYJEIvEc6bJ+hVF0OszNG5C7Yj22jGxsGdlVLZJEIqkkFEUhYtJD+HQt7VJrCPNHF+RDYK+WmGrLDOqSS0MRlfOqLsTGxqK9jDGr5EpPFRDy0F2kfbKAjP/9WPL+vv4EDCx/FnqJRHL1YWoYi6lhLCEP/gf71g0cf/cXALL+3ovGbCBkUPsqllBSfVDUPYYvlcoY4wqRkJBwWcevmUqPVpS8AMXdWpaK4bfq/eGpxny+G7ZiIPThEdizc0n7cDY5q3bg3bNrmd0MQWWnHLeaVS6divxBgflu63Qq7tRZeWa3dRade9dCpbj8i4k2L/cTKFTZ5tUWqbi6q7gjo3N/Ud25phuMKtmude5vLqPOvdG61k3Ig5I699fGYnP/q8hid1/ncJR9bdTkV0PNrbigUMV2ReVnqJokbrO7uJkXgF0lnANmlVADRvfXzWRyfy/49m2GyVtLwdHTmGNDODRtMac+XkLzD0cS4Z1bZh8vrXvXa0/d0j11I3cI9+fSE5d1NTx1Zz+LVe/+OkgkZ6mZSk81wZ6bh+XoCfyH9KpqUSQSyWUiqEtjgrqAw1aiVOXHJ+OweqZYSq5BrkGX9cuJtOm5CtAFB1S1CBKJ5DJgzTy3spq5/qDz74y/95fVXCKRXGak0lOF6KMjMLdpRvoXP5K7elNViyORSCqRwkOn2Dr0Q5IW/ss//V7n0Ks/OesOT/+lCiWTVCuuwSzrVquVHj16cPDgwYs3LidS6alCFEUh5OF78elxPRn/W0ThjgNVLZJEIqkklDMpNI599leZ9cdXxJdZLpGcz7XmvQWg1+vZvXv3ZclFWS6lZ+bMmbRs2RI/Pz/8/Py44YYbWLZsmbN+5MiRKIri8urYsaPLGAcOHKBz587UqlWLl19+2aUuLi4ORVHYuHGjS/mECRPo3r17OadWPVA0GoJG3IypeX3SZi7AciKlqkWSSCSVgKF2CIGdSsLp+zSJLlW/bfoahFtrbInk2mbEiBF8+eWXlT5uuQyZa9Wqxeuvv079+vUBmDNnDrfccgvbtm2jWbNmAPTr149Zs2Y5+xgMrl4b48aNY/jw4bRv356xY8fSs2dPOnfu7Kw3mUw888wzrF692uNJVTcUjYbQ/w4lafJHJL/yCSEP3YlXmyZVLZZEIvGQomOpKDotdcb3JbRPCwI61OfYZ3+SvGgzAIYwPyypORScysU7WgYplLjhGs29BWCxWPjiiy9Yvnw57dq1w9vb1QX3nXfKDgJ6Mcql9AwePNjl/bRp05g5cyYbN250Kj1Go5GIiAi3Y2RlZdGmTRtatmxJVFQU2dmuwfkeeughZs6cydKlSxkwYEB5xHOi0Tic2aCFo+zlMaHiVqloVJbU1DI4q9xYF1ul03ibCX9+DBmzF5P2/lz8b+5BwJBe6LRle3n4BxeqiOj+YCFe7l3W/fTuszt7qWQwPqniamrJLdtVWSlSyYiukvXcEuC2ChXvWhxeKu7Ifu7npneTMd1ocO/C7GN0fx6NKlmy1UIGqLkqu8tkD+ou6+7G9NR1ON/iXhCLTkUOFVd9NRzu+pncX2u9iuu5u2sN4GVwf4+Udb3XTZ6DNbPA+T6oeTiBTcMBCG1bC2OwFyf+yMGYl0GwwfXcGDXuZbR76HpuU0kvb69kl3VP8dTV/SxWXc3Msn6tKj27d+/muuuuAyhl21ORbS+PXdbtdjvff/89+fn53HDDDc7yVatWERYWRkBAAN26dWPatGkuOTRefvllevfuTWFhIYMGDaJv374u48bFxTF27Fiee+45+vXrh0Zz7Zgd6YL8CR1/D6lvzSZ78Z94Xd8cryYBVS2WRCIpJw0f68m+13/DUVQSOyZjdwo5hzOIuqkexgAzCQt3AxDc8PIkVZRIqjsrV668LOOWW6PYtWsXPj4+GI1Gxo4dy6JFi2jatCkA/fv355tvvuGvv/7i7bffZtOmTdx0000UF5/7JTRgwADS0tI4deoUixYtKjPc9IsvvkhCQgLffPNNBaZWPVF0OvyH9ELj40Xy5I+x5RRcvJNEIrlqEEKwZ8ovOIqsKLqSr9iO0wfQ76f7OPXXYRIW7kbRaWh5b1N0xssXbl9SM6gUQ+aqnsRVRLlXeho1asT27dvJysrixx9/5L777mP16tU0bdqUu+66y9muefPmtGvXjtjYWJYsWcKQIUOcdUajkdDQULfHCA0N5cknn+Sll15yGfNawdQwjqCRt3L6o3kIi/ulbolEcvWhKAq172rH8W83I2wlW5Ybn14KQNdPh+AV4Ycp2ItQY15ViimRXHUMGTKE2bNn4+fn56IzlMXChQs9Oka5lR6DweA0ZG7Xrh2bNm3i/fff59NPPy3VNjIyktjYWOLjy++aOXHiRGbMmMGMGTPK3bcmoAvyB8CWlYc+RBo6SiTVga2PLcCWU4TGoMMQ5I0l45wNXVjH2gQ1c2/vKJGUyTWUe8vf399pr+Pv739ZjlHhNBRCCJftq/NJT0/n+PHjREZGlntcHx8fJk2axJQpU0oZUF8TnLFlSv7kV7yax4EQmBvWQh8RhNZswLuOb9XKJ5FIXCg4nknO7lMABF0fh1+zSAoPJZO5J4WQdrXo9NY1+D0mqThVYMj82muvsXDhQvbv34/ZbKZTp0688cYbNGrUyNkmLy+PZ599lsWLF5Oenk5cXBzjx4/n4Ycfdrbp3r17KU/su+66iwULFpR53PM9v8//uzIpl9Lz/PPP079/f2rXrk1ubi4LFixg1apV/Pbbb+Tl5TFlyhT+85//EBkZydGjR3n++ecJCQnhtttu80i4MWPG8O677zJ//nw6dOjg0RjVFUOdaIJH/4ecpSvJ+/cAwiHI+Plc/CLf1nHEjO2NOSakCqWUSCQAyb/v4eAHf2II9qbRE70J7lAXgABj2QmDJZKrmdWrVzNu3Djat2+PzWbjhRdeoE+fPuzdu9fpOv7444+zcuVK5s6dS1xcHH/88Qf//e9/iYqK4pZbbnGO9eCDD7rE5DOb3SevvhiZmZnMnTuXL7/8ku3bt3s0RrmUnpSUFIYPH05SUhL+/v60bNmS3377zemNtWvXLr766iuysrKIjIykR48efPvtt/j6erYqodfrmTp1KsOGDStXP43OgUZXspfusLux1VZZ7RMqbulq/Soz6qWiKPh0a4c51h+NtwltgC95/+wFhwNhd5D96zoOvriAiOHd8W5SGwB9qB8avQ69RsX1Vuc+E3Ed79Me1SV6ubdNSMwJLLM8Jc39lp1dqGTk1ro/ycLg/sJpTe5to7zM7l1dtdqyx1RzS/c3uH/QmVSyrGtUfo6puaxrFPfzVnM51rm5Tyx2zxaA7WrZzY3uPzh2FRmtKq7uuPnu9DTLvVpYhiCj+xARy277ivzUAhoMrMcNz3RAb9YD6QB4a1XCF7hxTVe71p66ntsc7u8RT93g3fe5sh63Z13dtZqal2W9sqIpnx0jJycHne7c59toNGI0lg418dtvv7m8nzVrFmFhYWzZsoWuXbsCsGHDBu677z5n4OAxY8bw6aefsnnzZhelx8vLSzWMzaWwYsUKvvzySxYvXkxISMhF7X3UKNe3m1p0RLPZzO+//+6xIABHjx4tVTZ06FCGDh1aoXGrK46CIk689L+SID8XBAGq/9ZITn25guPv/eJcujRGB9HgnVHoffVVIK1Ecm3gsNpJWpdI1qF0hEOQn1riYdllUic02msnxIak+hEcHOzyfvLkyUyZMuWi/c7G0wsKOhdioUuXLvz888+MGjWKqKgoVq1axcGDB3n//fdd+n7zzTfMnTuX8PBw+vfvz+TJky9pIeTYsWPMmjWLWbNmkZeXR2ZmJt999x3/+c9/LmGm7qmwTY/k8qHxMlFr2gNkfLeSgh2H8e3aEkeRFZ/2jfFuXIsGb47Elp1P4ZEU7IUWEl/9gd13vUX0yO6E3dwOrUkqPxJJZZK88Rjb311L3okcTMFezpXftg+3kQqP5PJQiTY96enppVZ6LtpVCCZOnEiXLl1o3ry5s/yDDz7gwQcfpFatWuh0OjQaDV988QVdunRxtrnnnnuoU6cOERER7N69m+eee44dO3awfPlyt8f77rvv+OKLL1i3bh0DBgzg/fffp3///nh7e9OkScUzFUil5yrH3CiG6En3lVFTshSv8/fGt01dhBD4tK5D3vYETs39m/S/dlN79E34t693ZQWWSGoox1cc4p/JKwhrF80Nr/bFv17Jr2Z/g/utL4mkolTm9pafn5+L0nMpPPLII+zcuZO1a9e6lH/wwQds3LiRn3/+mdjYWNasWcN///tfIiMj6dWrF1Biz3OW5s2b06BBA9q1a8fWrVud0ZYvZNiwYTz99NP8+OOPHpvGqCGVnmpIWUkKEybPJ297AlEP9iGgdW2Of7qc+MnfEX5re6Lv74FGL4OgSSSeIIRgw/O/c3J1AjF9G9D+xZvUU9VIJDWERx99lJ9//pk1a9ZQq1YtZ3lhYSHPP/88ixYtYuDAgQC0bNmS7du389ZbbzmVngu57rrr0Ov1xMfHu1V6Ro0axYwZM1i9ejXDhw/nrrvuIjCwbNtQT5DrsdWMwv3HOHTHZFLm/+1S7te+AQCnvlyOV50wGr42jNpjepH66xYS3vxZZnOWSDzEklnAydUJALR9trtUeCRXFlFJr/IcUggeeeQRFi5cyF9//UWdOnVc6q1WK1artVSaKK1Wi0PFaH7Pnj1YrVbVMDafffYZSUlJjBkzhvnz5xMZGcktt9yCEEJ17EtFKj3VDH1kMF6t6qEL8nEpFw5B9KMDafK/R4ES76/wW9tT95lbyVy7n8w1+6pCXImkWpP+TwJ7X10GQL0hzdAa5IqppOYzbtw45s6dy7x58/D19SU5OZnk5GQKC0u2cv38/OjWrRtPPfUUq1atIiEhgdmzZ/PVV185Q9QcPnyYl19+mc2bN3P06FGWLl3KHXfcQZs2bejcubPq8c1mszPbw65du2jatCnh4eF07tyZYcOGeRyNGWro9paiFWjOuDYrbtx5HW6yr4P7zOwXq1PTpoWK66eikmXaYXftp/HxIfL5kRgMNizneWie+nI5OASaF4ehBJxbCjS2b4G50b+k/R2P6YbWmLTu3TrVXGVrGTLc1vmouOW6c6e2qrg3Zxvcx3HQ6dxr+mo/Zgwqbsxmg/tz4usmzopB6348tWzpBpUM2gaVUANqmbc9xZ3LeqHGvQG8zeH+oW/Wuz+PanVqmeCtasdzE35B7T72UcnEHWrKdf6dHp/J8Q1J7PpoO97hXtzyZgca96kFpJXqZ1JxldYr7q+pO1Rd+FVc1tXcy+0qiZvV+jk8+F2s5jrvKZfiOq9T+W6r1lRBcMKZM2cCON3RzzJr1ixGjhwJwIIFC3juuee45557yMjIIDY2lmnTpjF27FigJHvDn3/+yfvvv09eXh61a9dm4MCBTJ48ucycm+5o0KABr732GtOmTWPJkiV8+eWXDB061G1Q5ItRI5Wea5HYafeT+Nz/KDqShG+7Bi51Wh8zuev3YknPwepjoTinGEt2EcXZ5/2fU0R8fjaF2RYKsywUZhWTvDeL/lPa0vK2uKqZlERyhRFCkLYvg2WPr6bgdCF1uteix5QbCA2s+LK6RFJuKjlOzyUf9hLMISIiIlSjJteuXbtUNOaKoNFoGDx4MIMHDyY1NdXjcaTSU0PwalybJosml1kX0LsNeVviOfTgexxylL6ZNXoNBn8TPgE6zAEGzAFGLAUlKwub5sYT0z6UWnUvq/gSSZVRkJLHns/+JfG3g84ynVFLtxeup+mQsz8gZGTlimArtsuM8pJKIywszOO+Uum5BvDr2ARzw2hsWflcN6YlphBvjAEmjH5GDP4mdGYdiqIQ63VuCys3tZCfn/6Hkzsz+HTgb0Q18qZlz1Ba9gyhVhMfZ1I4iaS6s2/OFheFp88bNxLTKRK9l4xzVRms+2gnm77cxy0fdqVOl/LnYZRIKhOp9FwjhN3bk2OvzCNj/2naPtHoou19w8zcM7s7lgIbR9Ylc2r1UVbPPcFvM44SGGmkZa8SBahe28uTCVciuVJoDee+Bm+f25/QJkEqrSXlQQjBkdUlSVgjmsnzKql6pNJzjeDdsg5BgzpwdNm/hLeLpla3ONX2xzalYfDREdEkkMa9a9FroBd2q4P4TVns+us0O5ansfrrE3j562jQNYLGN0VQv1MoBi95S0mqB0IIjv12kEPf7yKwaRj/+awHerO8fysTRVEY/n2/qhajelMFhsw1mRr5CddpHWjPeNc4lLK9D9Ribah5aHnq9aVU8l3nUPF+cpdwMfS2G8j4ZSNrn11Ox6/vxys6wKW+tjnT+feCMWsQDgiK86Hns22o011Bb4AWnf1p0dmfoS/W5diePHb8mc62FafZ8csJ9EYNjTsF0rJXCC16BOMbZCDQUHZiUT+V7NNlJd4UQpDw1i9YkjPPXDsFNAooJV+snN1uUxR0fmZiH+qJ4Ty3fq2aR5XWvWeUj5sklGoeWmqeJmqeRWqJYs1a915HamOqoXXTT6tyr1pVvICMKudRLZlqttWzrMv++rIjIefb3SesPf8e37vsOJte+ReAez++nsjAHLf9TIr7uelV6uwq3k/uPLHUEnZqVbMhu0fNI8yhlkXZwzHdHusyeHadPceaGuq9VRWGzFcLWVlZ/PDDDxw+fJinnnqKoKAgtm7dSnh4ONHR0R6NWSOVHknZ6Py8iOzblFO/7sIQoP6g6T+1PUtf2ERGYh7fj/2bo4NCMZi1xP+bTcfbwuk9qhaxzX2Jbe7LwMfqkppYwM4/09mxIo15Lx4ABepe50/4jTnEdauFf+0KhhN3CDJW7kFj0hN0YyM4a5AtBMIhSv5HAYcgZ0ci8VMX0eSNoWgM8haXlM1fb+4A4KEl/fAKMgIFVSuQRCJxsnPnTnr16oW/vz9Hjx7lwQcfJCgoiEWLFpGYmMhXX33l0bjyiXCNEdm3KaeW7OLA+3/R9Jm+KG6SJOalFqL30jHuz0Ec+OME6z7cQc5pK/5hBn5+7yinDuYz8vVG6Awl/cNiveg1yoteo2qTc9rCrpWn2flnOv98vJ31724lqJ4/dbrXJrxlCIpGIT3vzANGOP9xUmg5Y0B6ntuksJX8wq3zSG9Ce7coU+azsZBy955g3zPz2f3IbGIf7oV/mzjPTpakxpK8N5P89GIMPjoCanlXtTgSiXuq6SpNRZk4cSIjR45k+vTpLjm4+vfvz7BhwzweVyo91xj+zaJo9uIA9kxbhjnKn7ojO5XZLv90Eb7hZvRmHc1viWPQEBOFeXa8A3R8/eJB1v+Ywtbf06jV2Ie+D8XSuk+os69fiIHOd0TR+Y4otqWFcWxDEkdXn2DXdwfZ8uXuCsmvD7j4A8q3aS2avn0vxz7/i/3PL6DWiK7UHtZBepxJgJKt0jlD/wLg7k9vrGJpJJKLcI3a9GzatIlPP/20VHl0dDTJyckejyuVnmuQ8B6NyN51ipM/73Sr9KAoFGYVU5xrxeirR6vX4BNYsqoz/JWG3HhnJMf35TFvyiF+eO2Qi9JzPnovPfV6xlCvZwx2q4OC04UoCsTnhHLWlEA5c7yzb/ItxvPEOFeuaDWYAoxcCj4NI2nyxjBOfrOWE3PWYEnOpO6jveV2l4ScUyWrjP5RXoQ3DqhaYSQSSZmYTCZyckrb2R04cIDQ0LKfN5eCzL11jRLYpjbWrEL2vLoMh6W0IWbbYfWxFdrZ9t3hUnWKolCnlR9d747Cy1+H2efSFAmtXoNvpDc+Ed6YwnwxhZa8jKG+GEN8/p+98w6Povoa8DvbN713Uum9dwldqiBWQIqogIKKiKKiwg9EFDsqWD+KIKDSQZpIkRLp0kMLCZDee7Jlvj8WFpZkl2QJhIR5n2eeZO+9c+be2dmZM/eeYto8nVB53NiU7o6mzc0RhXP5DF4FmUDQsIcIn9SXlG0nOT5hCXkX7I/kKVE9OL35CgD1+wUjU0i3QIn7mGsRmStiq2oMGDCA6dOno9OZDNQFQSAuLo633nqLxx57zG655frFz5s3j8aNG+Pi4oKLiwvt2rVj48aN5npRFJk2bRoBAQFotVo6d+7MyZMnLWRER0fToUMHgoKCmD59ukVdaGgogiAQFRVlUT5hwoQSOUAk7gzvh2pS762HSfrrDMk7z5Wodw1wJKStL7H/JtmU4+KppEYDJ5ttKhvv7o1o9NUzGAt1/PfiAs7N3oChsHp6etyP5KcW8OfLW0k+YZm3yqg3oi+s+JxityMv1eQ5KNnySEjcv3z66aekpKTg4+NDQUEBkZGR1KxZE2dnZ2bOnGm33HLN9QcFBfHRRx9Rs2ZNABYuXMiAAQM4cuQIDRo0YPbs2Xz++ecsWLCA2rVr88EHH9CjRw+io6PNhkjjxo1j2LBhtGrVirFjx9KtWzeLjKsajYbJkyffUc4Ok8u6yfDVYMWMQ7Dllm7D9sNeV3d7Eayo6NbKb1d389KRS+dmKObuIutyLs7FanINlktHHvW8OLLwFBm5cpwdS3cx7/yYF799dpn+TztTr2VJ5cfoUPo5seW6eiLDetTWnELry1sONhKH+jVwx2fBEOI3nebMNztRO8qo/1pXwLbLt7U6W4lbbSUVteYmDqC1kbhSa+N4cuxzY7Y2NkUZkmTqCvQoNPISdlIGnZGE4+k4emlwq+GIvtDA2Q3nuRqVgJhfxNBFXSnILOLsX1fZ8sFh1M5KnvypC9Gb49j/f2dQOSkZ8ks3PMNKD3VQFlyU1sMheClzePi5AA4uOY+now4v5Y0kow4y62EBNIJ9SrKtBKHWvjeDlTAbAErR+ndjsNP13JaLvC3sOZ7dxyrDfjIbv58qzQNq0+Pi4sLu3bv5+++/OXz4MEajkebNm9O9e/c7klsupad///4Wn2fOnMm8efOIioqifv36fPnll0yZMoVBgwYBJqXI19eXX3/9lTFjxgAmv/tmzZrRuHFjAgICyMrKspA5ZswY5s2bx59//kmfPn3uZGwSZcC5YRBXl+xG7esKQ9ws6jxquqHL16PLt34z6fucH4e2pPH9e1f4bH0d5PL711hYppAT1K8h+vxizn23m9AnmuMQ5FbZ3apy7F90lu2fH8fJS0OnVxpSs5MfsQdS2PnlCfJSC9EVXnswC1jcbOOPpfNl+9Xo8m8ohUU5On55aov5c3GujgWPbmLAFx24tDeRZoNr4RluvwJUGm5+Glz91Fw9nUOT3n4VKltCoiIReLDj9AB07dqVrl27Vpg8uxe0DQYDy5YtIy8vj3bt2hETE0NiYiI9e/Y0t1Gr1URGRrJ3715z2fTp0+nRowcODg7IZDIefvhhC7mhoaGMHTuWt99+G6NRymx8t4l4sz+Otf1J3x1dsvLaD+Xmh9StyOQCI6cEcvlcIcf35lhtdz9RY0BjlG5aYpYdquyuVDkyLuey/bPjqBwU5KYU8ud7B5kTuZ41k/4l80oeTR4L49Ev2qLQyEAE7zqWaUquX0s+ddxo0C+EfrNaM3hhV17aMYDu77agbq9gHDzUrHltD//9foGoH0+V2o+kMxkcWHCGvfNOkJ1Y/vg6oU3dOLsntfwnQEJC4p7wyiuvMGfOnBLl33zzDRMmTLBbbrldWY4fP067du0oLCzEycmJVatWUb9+fbNi4+vra9He19eX2NhY8+c+ffqQkpJCdna2VQvsd999l/nz57NkyRKGDRtW3i5KlAO5RoXax5WMqHOIYmuL5YrAVn5oPTX8NWUPnf4vGGeP0hMw1mnmgKungsM7s2n6UMW+ld8N5GoFXq1CyDlbPqPmgtQ88hOy8WhQtWYHspMK+GNCFC2eDKPJo6E224pGEV2h3mo6BrWTEv8G7iSczCi1Pu5gCkd+u4hBZ2Tk8m54hjuTn16EXK1ArpajKkWu8dq7V5PHI2jyeARGvZGjy8+z/ZOjnNkYR+NB4dRoZcqqXJSr4+jy8+z++jgIoHJUsv//ztBscC06TWhsc/n5Zhp08+HXN46TnVKEi3fZPAIlJCqFB3R5a8WKFaxdu7ZEefv27fnoo4/48ssv7ZJbbqWnTp06HD16lMzMTFasWMGIESMs7G9uXeMXRbFEmVqttuly5u3tzaRJk3j//fd56qmnyttFiXLi2jyM9H/OcH5LLLUeDjWXq5yU9P2qM2vHbmPqE6d4bmYYDdqWVGoEQaDH056snJdEj6e8qFFLc+86byceLYKJ33ya9P+u4tU0wGbb3MuZnJl/gMTdl9Dn61BolWi9HRCNIoVp+TR8thn1hze5Rz23TnZiPkdXxZKTVECnF+vh7KulOF/PNz03AbBh2hH+Wx1LUZ4eR081NTv60nRgMBoXU9qG2IOprH7rIAVZOpo8FspDLzVA7Wyp6Dq4qxm2pAtpMTmonZREb73KttmmyMYu/g4880tnPm+9BsDsDu7i51Cu9AMyhYzmQ2tTs1sQP/Zaz28v7KD9iw24sDOelHNZGHVG3EOcGfBFB5x9tRz+9Rx7550EASJfK9v3ENHalPzyfFQ6zftLmb8lJO430tLScHUtmdDaxcWF1FT7Z2nLrfSoVCqzIXPLli05cOAAX331FZMnTwYgMTERf/8bN5Hk5OQSsz9lYeLEicydO5e5c+eWe1+J8uHdqzEZ/57jr3f2cHHbZTpMaoGTj4Oprp4nj3zfneNf7OaT56MZPSsc3xA1O/9Ipc9zfviFmBScx1/yZc+GTD4dH8OsP2rj4GzdgPN+wL9bba6sO86xaRuo93Ikfl1rlRq8UF+oY/cra5ApZIT0q4dX8yBy4zIwZOaSl5BDsZ8TR+ceoCC9gCZjW6LQVF4coANLLvDvovMA/LcqlpBWXiScyjTXRzzki4O7GpVWQWZ8HtvnnGLnt6fxb+CGk5eGU5uumtse/SOG5LNZeNd0pekT4XjXvKHsCoJATlIBmXG5KLU3vud+M1tSmGmy/2r8WOgdj8fFzwG1k5KiXJ1JqbnGM0u743tTJvS2L9RH5aBg+ydHcQ92ovFjEbeX7a0mrIUb//5+RVJ6JO5vHtCZnpo1a7Jp0ybGjx9vUb5x40bCw8PtlnvHd2hRFCkqKiIsLAw/Pz+2bt1Ks2bNACguLmbnzp18/PHH5Zbr5OTEe++9x7Rp00oYUEtULIIgUHvqYzgf/Id9Xx5m+ZMbCOscROuxjXHyc8S7rgdvLajDj2/H8O3EC4Q1ciDmeD5/L0vmmz1N8fMBpVrG2z+E8UrPM6z6Pomhk2zPnlQ2glxG0xl9Of7hFv6bvomUfTGEP9MKxxB3C+Undv1pitIL6L50CI4B1x/8oTgoTJ4+oihy5tfj/Pf9ITLPp9P584ehkia6/Oq7W3yOPZBKxzF1qdMtALcgB9SOlrM2+WkF/Lc6juRz2eSmFuJTywVRhJTz2YR39CP5TCaXD6aSfDaLofMjASjIKqY4T8e6t/dTkHHD20nrruLyoVRUTkpeWNsT9+CKCWMwbtdA8lIL2fXVf+SnFdH347ZoXUsuRzUbUov0Szlsm3UYo0GkyRMRt43A3fGZYH557RhXTmYT1OD+X5aVeACpoBg7VdGQeeLEiYwfP56UlBSzIfO2bdv47LPP7F7agnIqPe+88w69e/emRo0a5OTksGzZMnbs2MGmTZsQBIEJEybw4YcfUqtWLWrVqsWHH36Ig4OD3XkyRo8ezRdffMHSpUtp06ZNmfdTKgzIr2UalxlL/7ZtZUs32MhgbjPLuo2brL3XnFW3YnlJI+/sqDMYC4vx7NbQqjzrLvDg2LkZnZrV49ySw1zaEs3lQ6m0/aw/TkFuJGi86TvLC4+GsayfdRowpcaaOvQcv24NQC4XkPsY8PSRs/K7ZFq1VdA60glnmXX3YWvE5HparUtMt/5wkstsuJ5rStZp3LW0+mQASVtOcvyrf4jfGo1bPR/qPtcGnzbB6HKLOL/sPzyaBKD2c0N/0ym/2YW8+fB6eEc4s+3N7fw9bj1DvmqFo2fpdiK23OM1NlxuZYJ1o345IgadkcNLzprLOj0bSu/X6iAze9Ppr203cPczEjg2qIS8jPgCXH016IsMTGn5N1cOp7L/68M4uCrY9NV5DPobY3AP0JARX0hBRjH/fHuKf749xZCPGlCvZtmVXluuz3JECII6n9S5VpKPtcSgz7wXyhplMds+PEzm8XienFoHtaPlLe5m1/O2PVzZEqpl+9yzvDSvIQ6yIqv9UNlw47eVSd1WVnRrdTbds23ocbb6YQt7M5/bc7y76R4vk9/7mE8Sd49Ro0ZRVFTEzJkzmTFjBmBydJo3bx7Dhw+3W265rsCkpCSGDRtGnTp16NatG//++y+bNm2iR48eALz55ptMmDCBl156iZYtW3L16lW2bNlikSysPCiVSmbMmEFhYfkfnA8ilz9fxZUvVlN0Nd1uGSpXDQ1eas9D8x5DppCx+8WV5MSY5AmCQPtnQmn1RA1z+9SYPOJjTQ+SjcuzSEs2PRzWLMoqKfw+pUavuvRcOZJWH/ZGppATNWkde15exb7X1qLLLSL8idvbidToEESf73uRezWHde8evAe9voEoivyz8BKXj5vO+dMfN6bvpLo3KTzlwz1Ai0wuoHJQ8Nz3zWnY3Yf9K66w4bNz1GrnSeSzIQA07O7Dm392ZMz/tcDxJiP3M/+k3fmg7ECukDHo3boM+7QBx7el8OXgg+Rn24hvpBDoMy6YY9vTuXi0ZLh7CYn7ArGCtirIiy++yJUrV0hKSiI7O5uLFy/ekcIDIIiiWEVPR0mys7NxdXWlyR+vI3cwvWlbm7W5KzM9Nt6Y7sVMT/x3f5K+8SARs4bh1Cik1P20SusPAR+HXIvPxVmF7H11NUUZBYz7pSVeoaYItulX8vn0YZPxenhrD7740R0nFzkzxsezY8MNGc+/6cWTY71KPVZ0kXU7inVJja3WXUgqXR6Ai5N15djXybo7vUp24y1eFEUS/4nh4m//UZxTRMPXIvFsUnLWwldburyza8/xzwd7GbW0C3713ErUV/RMT9L5HP78+DTn9qbR5skaDJhSD3kZUyvYmj26FVEUyUoqwsXH9LuKP52DXy0nFCrTsf75JZa1s6Jp2NWbwbMaoHUu3dOvNG4701NOZIKRhHO5fDXkIC0f8efx9+qY624NMmg0iEzvf5C8TD1f7GiKSlP6ubN3psdWcEJrdWUJxFfeftiiusz0FObqea/132RlZeHiUvWXK9esWcPTY8YTPnLiHcvS52Zz9ttp6HQ6FIoHO//ggz36aobfqJ44t6qFY4PgCpGnctXQ7otH2PvKan4c8S9Pf96UsBYeeAQ5MHpRG34Zf5iL+9PJz3XFyUXOQ72c2bM1D1EU6f2kKz/NTqVWIy3NOlSdcP+CIODfKRz/TiZDufI+EGr2ieDM0hOse/cQI5d0RqmpGIPuMzuSWTTuEDXbeeIWoCX+dDbOXmrO/pOCRw0HRnzdnHpdvO9aJnlBEHDzu2GsdKsNzEPDQug8rGKuu4rAv5YTNdu4kxpnO4aPTC5QXGgkJ13Hkg9jeXZ62D3qoYREGXlADZkB/vjjD3777Tfi4uIoLraMmH748GG7ZErZ9qoRMpUC5xa1yhyrpCyo3R1o99VAPEMcWPzyYQquLReEtvDgzb86o9LK+eytJM6dLKRzP2dWH43gt6gIXv6fD807OPC/F6/yz8ZsDIYq+qsrJzKFjAEftSLlfDb7F5+vEJmiKJKZWADA+X1pHFxxhfhT2UTvSqH/u/WZuKYj9bv63DWFp6qiKzSidri90unuZ5q92r4smUun8u52tyQkykWFJButgrffOXPm8Oyzz+Lj48ORI0do3bo1np6eXLx4kd69e9stV1J6JCw48c1u9k/ZiFF/Yzpf4+FA/yn1KcjScflYprlc7aig/5T6HPwnnw9fTTS11cpw9ZAjlwtMm+dPRH01M8bF8+0024lLqxM+tVwIbunFyQ2Xb6RkuAOOrr3K2hk3IhMHNnChzxt1+eB4L9o+HWJeYpK4gb7YyOUT2fiE3X6WsevwQPP/xgdEOZeQuN+ZO3cuP/zwA9988w0qlYo333yTrVu38sorr5RIX1UepLulhBlDkZ6Ly/8jcddFMk9bRiu+cs1I1q+OpVF6i0eDePl/PsRdKObyBcvpR0dnOZ8tC2H8NF/WL8lk158PjrFop3H1yLiSx8LhOynMtp7I0hYpMbm823ADK6b8Zy7Tuip4cVl7Oo4MQ1aBM3rVjQsHMsjP0tOst89t2zbrccNOzMFZWvGXuM94QI2Y4+LiaN++PQBarZacHJMd5bBhw1i6dKndcqvlL1whGFHITEaa1rJaG2w8MKy5uYP9hsy2bENsGbdaczEvzZD5OnIbBqq2jlVYKKLxdqIwJZcivUBupg6Vi4bc2HR2Tz2BTCEjwymQjALL/Zp29gKS+Xe/AedQB4s6jUxHr2GeHD9UyIevxrN9fS5efgq8Iwpo28sdJ7eSl2BdF+uzQgnZ1g0Ui3TWL+dig/VlDo0NV1dr50tm407irszDvY0W7+Vt+G7EAXbMPszgjxsB2HThv/l7y0op5vKOG+ehRgMnnvukLn7hDtzqsm3r+7aFrTHcL9i8lm1kl796yKS0f/bEAV78LILWvTyvyStlzHLo8Igne9am8cHgk8z/t2TIB2v3EQCDjd+23MYtVmnFONqWPKOd76n2usEb7cikXlku96JQDV3WH+A4PX5+fqSlpRESEkJISAhRUVE0adKEmJgY7sT/qloqPRL2oXTWEPn7s1z67QgHXlkBgMrDgeJ000PWqDeWmlbEJ1CFp5+SXWsyeKi/O2qt5c1LEARe/zyQ0Lpq/l6VxdljBaTEp5N4qZBn3qpBdSWgjjP9J9fhtykn8Qp1oOsLYaAq277z3zrLyd2ZACjVAm8saYKqgoyiHwTiL5g0c4NO5JtXzvPTcXdUausP1ec+CGXP2jSy0/TkZetxdJFujRISlUnXrl1Zt24dzZs357nnnuO1117jjz/+4ODBgwwaNMhuudLyloQFgiDg0/6GB4va3YHggY3Mn3OTSveGGfdxMOeP5fN6/2jOHMotUS+XCzz5ojffbanJ9AUmd/pGHaq+W+ntaDkwgB7jItj6zQV+GHUIXbHtWZnrbzAdH7+R1PSVHxpICk856f7MjdQ3kY9721R4ANRaOc27mK7Hn6dftdlWQuKe8oDG6fnhhx+YMmUKAGPHjmXBggXUq1eP//3vf8ybN89uuZLSI1ECxxrudP9zDD4dw8m5kIpMo+T5vYMZuuFRnP1KNwxt0sGZj1bUwsFJxtdvxtmU7xOoRKWRcWKf9dg51QVBEOg5LoKR3zbj4sEMLhy2bYD3x+xLvFBnN38tND14PQJU1G3rdg96Wr2o18YFV29TrKAR00LLtM/zU00GzTtXZ9zR9LmEhIR9DBo0iOxsk+3n4sWLMRhuLAE/+eSTzJkzh1deeQWVqoxT5qUgKT0SpaJwVNPsg76EPt2c2BVHObcx5rYu0cG1tTz9mj+JscVs/jXV6oNDo5XxyGg/1v+UyPIvrnL1fEG1f8i4B5hi3GQm2jZqdnI3PagvHDEphO/81vSu9qu6IggCQ98xzSieO1Jy5rE0fIPUuPuYlrUO76j+CrlEFeEBmulZv349eXmmsBHPPvvsHXlpWUNauJawiiAIhA9uQdbJRHbOiEKhkdPi+cbUfbQmmmtJH7Ov5iK63rDzadbJmQ793Pjh/SvoikUeH+VWquxB4/wx6EXW/pjIqrkJNGjnzHuL6pTatjrgV8sJjZOC2JM5tB3oa7VdrxcC0RUZWPfNZQBcve1/o3nQadPHgz9/dmT5J3GMmhFGbpaehm2dbSrvb3wbypSnznN4ZxYtupRt+VVXbOTqxSK8A5Q4OMuleEkSFUpFXE1V5YqsW7cub7/9Nl26dEEURX777Ter0bXtTUchKT0SNlG5aWnzzeP46hPY8b99/PvNES7+HUvrl5px8e84Tq88R8PfalG3uWnZSxAEJn4ZyuVzZ5j/wVWO787izS+DcHSxtEmRyQSeei2QAaP9WDk3gbU/JJIYW4hfSCWlKL/LCIJAk95+7Fx6lZa9vYlo7mq1nYuXpOhUBIIgMOzdEGY8fYp3B5wAYG5UM1w9rafIqNPMiR5Pe3L0H+szPblZek4dzKNlFxcEAT4YdZETUTdmk+btqIdPUOkJZyUkJKzz3XffMXHiRDZs2IAgCLz77rulvkQIgiApPTejUuhRKEwPWWt5tGQ28mvZdE+14epuy2XdXqy57NrKKK6QWw+Ip7bhnq2w4R6sctHS87OupJxOY90Lm9gwfpu57siefEKbuVu0f+nzmrzV9wQHd+TyzpAYftpgmaJAft3l3gVGveLK3rWpvPXISTRaGT2GJzLgRf9SL/Yrnu4lyq5zOtl6TJaMAgerdS4q69m1NfLS82HlGawrJqm60hPsdnqrFYmnMtjwbSyv/1+DEvWO17J8N22lYcm1sqKkbLz8VbYzedtw3bZFeXJv3Sn29tGmzDL44bZopeTNb0OYPS4WgI9HnGbG4ghcPEre+pTXXJ5r11ex5ddi1EKxxTW4d3M2M1+8TEQDDRdOWoYeCK6lIu6caenyxc6nmfVrKI3bOiK3sWxrzTXdINjrum19P3tl2nKft9oPu49l57ivfUeirBq6rMMDlYaiffv2REVFASCTyTh79iw+PrePtVUeJJseiXLhXc+Tx5c/Qr/vH+b5f4fReFgDVsy5ym+fX0avu/FgC6qlNf9//lQRu7dYt6vQOMj4eEkIjz3vSfuezvz+xRXW/5h4V8dRGcgUMjoM8iV6fxan9mZSbCVac1Atjdntf+uvyaW2kSg7zTvdUEJjowtLhFS4FbnC9BA13PIM9fK7Zm91smSspSGv+rDhYgP6j/AA4O0hlzixX0ppISFhD3q9nuHDh1NUZP2F1F4kpUei3LgEOuPf3BdBJtB6fHOefD2IdT8kMPXxU/y9LJniIiOCILDwVEsW/hVCUKiS9cttG6QFhqkYNsGbV2b64+AiZ9knl0lLsC+S8f1M+4HeeAdp+OzZk0zseICtC+JJuGAZBkAQBOq1dgJgzXfVT/m718jklrMVRYW2Z50S4orx9FOgUFruV7uJlrmbIuj6qCuvzApg8b912HCxARsuNuChPqblyjHv3wg1cObILVE8JSTKiUDF5N6qasEJFQoFK1assPDeqigkpUfijhBkAo+MCeD9pfVw9lDwf1MvMff1C4iiiEIpIyRCxYBnXDn4Tz4b/7i9Jf7F04XkZ5su9PTEitfyKxutk4L/rW3Ku783pmlXD5Z/FMO7fY7w7ctn+GtZCge3ZZJytYinXruRD6q6e7bdbVRqGasvNOGbLSZD+bNHbWdev3KhiBoRpdvkhNTW8PpnQTz8lDvu3iWXyK7G3FDU2z9c+jKnhESZqSjPrSp4C+nWrRs7duyocLnV0qZH4t5Tq5kzb82vy78b05nzynmiNqTTrp8p9H+7bo58+0EqH7+RTHGhyIBn3KzKWT0/HXdfJZ9va3LbgHJVFYVKRlhjZ56f7czQ98M5sDGVbYsS+HlrGtf1m9B6Wpzd5eRkGEi5UoxnDa1toRK3JTBcTURDLT9Ov0pxoZEWnV1KXerauzmHDr3tC5z5/f8SAAiupSYgVI2uCj5sJCTuB3r37s3bb7/NiRMnaNGiBY6OljHiHnnkEbvkluupMmvWLFq1aoWzszM+Pj4MHDiQ6OhoizYjR45EEASLrW3bthZtoqOj6dChA0FBQUyfPt2iLjQ0FEEQzMZM15kwYQKdO3cuT3clKoE2vT1o2tmV9T8mmMs8vBVct22s3dC2d5azuxyZXECpEti3IY2T+6p3klKtk4JOT/jxv3XNWHyqBfP2NGbCnHD0ehHjtZldjWP1VP7uNYIgMOmrEDx8lMweH8vHL10q0SbufNG1tvYd48X/+RNWT8MTY71u31hCoiw8oDM9L774IklJSXz++ecMHTqUgQMHmrdHH33Ubrnlupvu3LmTcePGERUVxdatW9Hr9fTs2dMcTOg6vXr1IiEhwbz9+eefFvXjxo1j2LBhrFmzhnXr1rFnzx6Leo1Gw+TJk+0ckkRl07C9K5fPFlCQa3pqOzjK6PWYC2qNQGa67TXaJm0dSYsv5pnaB/hmwgU+HH6G4qJ752VUmcgVAu4+Ktr29uCTDQ1o08sdDz8lzu7ShGxF4R+qZtbymrwwNZDDu3L4Z12GRf3CT5KQK+Cl6f52yQ8IVfPNhgi6PuqGrsjIglnxJFyqfsu0EhJ3G6PRaHW7E1ufct1NN23aZPF5/vz5+Pj4cOjQITp16mQuV6vV+Pn53bq7mczMTJo1a0bjxo0JCAgoEXVxzJgxzJs3jz///JM+ffqUp4sAKGUGFDLTSbHm8i3acD3X23CdtDeTui1sZT6Xy6y4rNtwN1ZY2QdsZxR3UJTunn07zhdaBttT1VZg0Mex54iKxt1MNg5vvO9K9H8FfDAhgS2Ha6BUlt6Pbt0UCN/5897YGzNFKz88y5jJXji5yOntddxqP7KLW1qtu5LhZrUuo9D60pGjsvScV1nF1mesMousy/P1tj5z5am44eEWH1PErlVpPP2qL1q5HrCRCd6GO7i9GdityrPXPd7Gq2ZF97EsPDXCgVP7HPlsQhx16wiE11VjMIic2J/HU6M98PUUgbL9Hqy5Wu/bls3qn1JY/VMKnfo6M3F2AJqbl9Os3C5shSew5dZtv6u49fuWPa7utlznbfbDxrHK4jpvrI5Z1nlws6zfLe7oFfK6suLh4WFRvmPHDnx8fHBzcyMyMpKZM2da+NpPnz6dHj16UFBQQL9+/Xj44Yct9g8NDWXs2LG8/fbb9OrVC5lMmt6vSmz40KSYuPjdePg7uciY+a0Xg3sksO3PfLoNsG7k+dDDTmw7X5O0JD1bV+ewcE46uzblMfJVD0J6euDsYT24XHVh8WcJuHsr6P+sd2V3pVoiCAJ+Qabr6IXesTw2yo2df+aSm2Xk2H7bhs7XyUo38H+fpdKknSORfU02QNeNzgVBoH5zLY+O8mDV/6Wza0MOuzZEs/TfWqUaQEtIWOUBitNzM7eavtzK+++/b5dcu7UJURSZOHEiHTt2pGHDhuby3r17s2TJEv7++28+++wzDhw4QNeuXS387fv06UNKSgrx8fGsWrUKubzk2/S7775LTEwMS5YsKVEncX+TdNYUzdYt0DIgYERtFe0iNXz0ThodQmO4GG3dJV0uF/AJUDL0JQ9+3RmKTAZfTU1hYrt/iT9ftodSVSUjRUfUliweHeODWiMp/HeLdt2czP9v/iOb1ETTTMGQlzys7WJB4hUd63/NYubL8ezdmsOq+ek8HBHNwxHRpCXp8PJTMuZdXzZeqEuXR0xK0RuDYyt+IBIS1ZBVq1ZZbL/99hsff/wxn332GatXr7Zbrt2vHOPHj+fYsWPs3r3bovypp54y/9+wYUNatmxJSEgIGzZsYNCgQeY6tVqNt7f1t1hvb28mTZrE+++/byFT4v4mNebGEk16bB64WdZP+8KLJ7vFQ57I5tW5vDj59g8YL18F8zeHMLDFRQAM+upt43N4Zw6iETr2davsrlRbcrMNNG6t5ZedoZw5Vsi+rbn8vTaXFyZ70aaL0+0FAFkZN+wKFn+dSt+n3QB4qLczGocbyqogCCjVpuWZwDApxYhE+aiQ5a07F3HPOXLkSImy7OxsRo4cee8Mma/z8ssvs3btWrZv305QUJDNtv7+/oSEhHDu3LlyH2fixIkUFBQwd+5ce7opUQlkXL0xC/PdU7vYtdVyVsbdU079JipCayl5dGjZ45i4echZ9FcIcoXA7j+SqnXsmmP7cgmrr8VFMmCucOJji/l7bTYvDYhj8ogrDIu8xMyXE0lL0jN3bQ2eHlu2WZ6EyzreHnkVgM+WBXP+RBFpSXq2XKzLe98G4uhsOXt9ZLfJ2aP7o6789l0qz7Q/R3ZG9bRBkZC4W7i4uDB9+nTee+89u2WUS+kRRZHx48ezcuVK/v77b8LCwm67T1paGpcvX8bfv/zeEE5OTrz33nvMnDmT7Ozq7bpcXajV0YfAhm4A6AoMTHo+hbmzMzAabygpKUkG6jdRm20qykpwhIqeowL5+5cERtfdw2ttoshOq15Rm0VR5Pi+HBq3K9tsg0TZ0etEFnyRxsxXE7l6SYeji5x+Q1z53/cBfL4smDqNyh4L6cRBy2jLvoEKLl+0fi1+tTqMyH4u1G2qJTfbSGqinjcGx9k9FokHhAc4OKE1MjMzSzg/lYdyvUqOGzeOX3/9lTVr1uDs7ExioilEvqurK1qtltzcXKZNm8Zjjz2Gv78/ly5d4p133sHLy8vu6ajRo0fzxRdfsHTpUtq0aWOXDIl7y3OLOrDzh7Ps/M40u7fg22yOHy5i0nQPImqraNVew8bVefz4eQYb/8jhyVGupKcY6DXIifA6tqf/B70eiiCDP7+7Qm6mnr8WxDPo9dB7MKp7Q/JVHelJeuq3drx9Y4lyoVAKDBjuxojXPAkIVpaa0LasdB/ojEEv8smbSbz+dByCAH7BBoxGEVkpnqEe3grenmOKsj3idW9++y6N2LNFrPgpjcee97S7HxLVnwfVe2vOnDkWn0VRJCEhgV9++YVevXrZLbdcSs+8efMASgQJnD9/PiNHjkQul3P8+HEWLVpEZmYm/v7+dOnSheXLl+PsbF9IdqVSyYwZMxgyZEiZ99Eq9CgVpkksa27kRhurnLZcz+11S7eFLZd1a5nPbbml23ZZt+6Gq7VZZ/0t9tZzKSjldB5Xj3YjamI4Go1KI/B//7vC0F4J9HvOl57Dgtm8+jQL5mQC8PUH6QAkxRbx1Q8eFIrWp/3rq69S/y0lT/QL4Nl+8Wz84QpuYjYvvO5OVx/r19gGfUOrdQlZ1qPvWgtRYDRYvw4KnK3PYCW4ulqtq6lOJOWyKZlljXCVhSu6yoY7rr3u4HI7Xv9sucfbwt5+2Ppt2EPrFteXnUpe6wYb94QSruIC9H/CieAQGS8/lYAown/78vlxRiKvTrsRmNBY2mS6At753JcPJybx44fJPPWsCwqFgMEg8tk7yYTWUfPYKPfS+2Fjct7WPc3WfkobtzSbLvLWZArWY6jYcj23Ne9ry539uou83s5rU+L+5IsvvrD4LJPJ8Pb2ZsSIEbz99tt2yy2X0nM7OwqtVsvmzZvt7gzApUuXSpQNHjyYwYMH35FciXuP2klJgx5uAHy6wZn1/5fMsi/iSYgpZOkaL776JIc27VUkxhuY91UuEbXKfjnWbqhm14VQlv2UxU+fZfLf/iIGza2Jg1vVNhRNiTc9jL38q79bfnWgSWsHnhjlyu//Z5puPxJVtiSjTdtqeexZN8LrqFBcy+p+9ZKOP3/LpteT9qXAkKimPKAu6zExMXdFruQPK3FPUKplPPqiH5O+DedkVC5vvJzB6PFOPD7YkfGvuzDwCS0LfsglObHskTblcoGhY9z4bqU/8Zd1LH/jP4yGKvjrvomcTD0KpSC5qlchRr5a+qxMaVw8U4TRKOLjr+TFt71o2fFGWAe/IAWjJ3sy7GVpuUviJiSbHgBiY2M5deoURuOdzehJd1aJe0qrHm68t6gmqSlGBvZI4dvPTQbqE992QRAEnuibwunj5TNOrtNQzbQ5Ppzfl8rGT89Uac+u/FwjWifpZ1mVcHaR8/zrHrTsoGXEy9YVoKNR+YzqHUfXiPMkXNaxaUU2T3W8xIFdJs8ulVrGkLEe5Tbwl5CoTixcuJAvv/zSomz06NGEh4fTqFEjGjZsyOXLl+2WL91dJe45EY0c2bDDh+dedGLul7mcPFaMp5ec3zZ44eIq49tPym+Z36qjln5v12fPokvs/eVSxXf6HpGdrsfTV3roVTWGj3fn88UBdOlr3esurI6awFDTdzu40yUatzKlMnljRHyVVtQl7i6CWDFbVeG7777D9Sbbx02bNjF//nwWLVrEgQMHcHNz43//+5/d8qVAIBKVgkolMH6iM9s2F/Djt7l8+b0HQTUUKFXg7GKfsXi7oSGkxuWx5auzhLXyIKCedaPh+5XcLANOrqXn+5IoP9lZBnZtKeD8mWJ0OvD2UxBWS4mDg0B6qoG2kVp0OigsMOLmrbiry4qu7nKWbA/lv38LKCwwEhyhNtedOlpIg2Zld5mXkKiunD17lpYtb+RRXLNmDY888ghDhw4F4MMPP+TZZ5+1W361VHocFDqU14wDK9p7y15seaHY8r65nji1RLnNhKPW7WJseWipZdY9hJzk1jNFO8isL0flG9Wllmca1aCEbo84s/znbE5clDHlxWRizul5abKHVW8TW54+9TXxhL3pzJQjan4cFsW7P4XRqK3pzTvN27pn125DuNW65PTS97Pl7azTW1dalDY8W1SCHgcHgcQCQwlvLVvXiEaw/p3ak8zTXm8qe5OR2n88y7q8PCPbtxZy/rSO+HgD8VcMnDyhQ6+DGsFyVGqBhHgDuTmly/QLkDPpHRdc3QQCgxWEhN64PeaJ1mffbN0vDKWck5Ztr8vS07KDhoN7Chk36ArfLvejaRstMhseU7auH6veVJTTM+0m7Ll+bHmKyexcXLB1jVw/x7bOTZWlouxxqtBMT0FBAS4uN4z59+7dy6hRo8yfw8PDzeFy7EFa3pKoVLr1c6Sw0MhTna+QlWHg57UBtOts/xuv1lHOrOU1qdvCgQ/HxHB8X+7td7qPKCowYtBXoTtUJSOKIocPFPH+m5l0bpnE5Fcy2bCukOQkI8GhCiZOdmbHvz5s3uXDuq3eHDjhe+2zNwuWefDGO858+5M7c392JyBQzqTxGbzwTDp9OiXTIDieaW9lsnFt2Tyy7OHzRX68M9vk4r7wG9Oy7tIfMlk8L4O8XAPFRdK18CAjAIIoVshWHmbNmkWrVq1wdnbGx8eHgQMHEh0dbdEmNzeX8ePHExQUhFarpV69euawNtcpKiri5ZdfxsvLC0dHRx555BGuXLli89ghISEcOnQIgNTUVE6ePEnHjh3N9YmJiRbLX+WlWs70SFQdQmqq+GaZP3EXdXTu5YijswzuMN6GWivjrbmhfDjmEv979iJvzQuFlrfdrdIpLDCye1MOg8d73b6xBNu3FvLZh9nEXNATWEPOs2OcGPi4lhpBcnZsK+Tzj3M4crCYZYvzkcsEZHJwcRF4bowTXXtqCAlV0Lb9jZnIyB5akhMNFBaKrP4jn+/n5PL7r/n8/ms+/XcV894npu+luEiksNCITCbg5Hxn741yuUDfJ51xcJYREm6aAVr2QyYZaQZ+mJ2OSiXwV7T1mUgJibvBzp07GTduHK1atUKv1zNlyhR69uzJqVOncHQ0BU597bXX2L59O4sXLyY0NJQtW7bw0ksvERAQwIABAwCYMGEC69atY9myZXh6evL666/Tr18/Dh06VGqicYDhw4czbtw4Tp48yd9//03dunVp0aKFuX7v3r0WSc7Li6T0SFQ6jVpoaNRCU6EytY5yps4P58MxMcx79wrD1jVHrry/bWVyMg3oikVCa5e+JChxgxVL85j+ViYdO6t59wNXWrdTIZMJFBeLvPFqButWFdK6nYrGnZUYjFBUKLJxfSHnoo2cP5fJv8f8SpXr42e6Rl6Z5MLYl515ZlAqp0/qSE4w8N+BQvR6+GxaOufPmJYU+z3uyOjX3fHxv7NbaZfeNyJwf7HEn69npHFoTwHFxSK6YhGlSiDhio6l32dSr4maTg87XXtBkKj2VMLy1qZNmyw+z58/Hx8fHw4dOkSnTp0A2LdvHyNGjDAHKx49ejTff/89Bw8eZMCAAWRlZfHzzz/zyy+/0L17dwAWL15MjRo1+Ouvv3j44YdLPfbkyZPJz89n5cqV+Pn58fvvv1vU79mz547i9km/Golqi0Ip8OzbAaQn6YjeYntK9X7A01eBi7uccyfu3nJKdSAzw8DMKZkMesqBufM9aNpCRdwlAzu3FfJEnxQ2bSjk4y9cWbjMg0nvuDD5XRfq1FOSkW6aQezVV0taqoEjh4r5e2uh1eOo1ALzl3vy+GAHDuwp5IXHk3jx6SSzwgOw/o88nup2lROHrcspL4IgcGiP6Rpw95SjVJnscTavzGH14mxmvZFC78Yx6KVlUIlykp2dbbEVFVm31byZ67muPDxuJOTt2LEja9eu5erVq4iiyPbt2zl79qxZmTl06BA6nY6ePXua9wkICKBhw4bs3bvX6rFkMhkzZszgyJEjbNy4kXr16lnU//777zz33HNlHvOtSDM9EtWaGrU0ODjLyU2+/xUJmUwgtI6a//bl377xA4ooihyMKkavh3Yd1cyYksVvS26cr9p1FSxd6UXDxpaGx/0f1bD9r0J2bCti+ZJ8lt+0z/sfuCATIGpfMc1bqxk68sasi6OTjKmz3Hj+DQ/SUwzI5QKnjxezaVUue3cUolBAQb7I84MSefMDDx55yhmFrbwOZWDBHFNalshejrz3pa+5/OkX3KjfVMOhPQUIMrCyOiBRzajI3FuenpaBL6dOncq0adNs7iuKIhMnTqRjx44Wy0pz5szhhRdeICgoCIVCgUwm46effjLb3yQmJqJSqXB3t4xd5evrW25D5Jdeeonp06fj5XXnS//VUulppWmCRmsyhrVmvyXa8Ga4G+9Ptm6Dgs3cSaXXyWx4VdiqU9nw7LLlqaGx4dlly+vLRShd2dCK2db7YcPoztZ340HpBtC9H1XgGVSPhsrmpffF1foPKVdZ+rKbre9TpbbuTVVPYT3FgKtYk5Bg07RybmxbAoPdbjqe9ZErsf6d2trPGrY8xWzdgG3tZ/fxbqr773Aifyw/Cbjy2JO+HNwnx6gz8NGngdRr6IWDVol/oDMqucCtp8RJDT/8BElJeeTlFXPlSg7nzqQRH5/D6WN6BJmAk4PI2ROw5++atO9YA4X8xkS4r6sc32u2k7XDYMAjkHA1h60bzrJmxSkUSjn/bneihl9DOnYNMyczteUlao33PyhiyjQj7p7XojVfOwWOGujykGkzI978rw2PVDu9VW3JtOdY9si7nczrdy0NRcBxu+Tf11Tg8lZaWhoKxY3Hvlp9+6X08ePHc+zYMXbv3m1RPmfOHKKioli7di0hISHs2rWLl156CX9/f/NyVqldEcVyJ/tdvHgxkyZNkpSeW1GpVPj5+fHOQxMquysS9x2H+P6NxZXdiTKz7rdqePO+S/zx2+n7Qt6Zkyns3HZ38gVJlA0/Pz9Uqqqdf+9u4uLiYqH03I6XX36ZtWvXsmvXLoKCgszlBQUFvPPOO6xatYq+ffsC0LhxY44ePcqnn35K9+7d8fPzo7i4mIyMDIvZnuTkZNq3b1+ufldk8M5qpfRoNBpiYmIoLi5fGgMJCQkJiaqPSqVCo6lYp4hKpYKiKZd3fk0URV5++WVWrVrFjh07CAsLs6jX6XTodDpkMkuzYLlcbs6N1aJFC5RKJVu3buXJJ58EICEhgRMnTjB79mybxzcYDOzevZvGjRuXWB67U6qV0gMmxadaXfQSEhISEhL3kHHjxvHrr7+yZs0anJ2dzTY4rq6uaLVaXFxciIyM5I033kCr1RISEsLOnTtZtGgRn3/+ubntc889x+uvv46npyceHh5MmjSJRo0a2Vz+ApPy9PDDD3P69Gnc3d3JycmpsLFVO6VHQkJCQkKi2lAJLuvXgwxed0e/zvz58xk5ciQAy5Yt4+2332bo0KGkp6cTEhLCzJkzGTt2rLn9F198gUKh4Mknn6SgoIBu3bqxYMECqzF6bqZRo0ZcvHixxCzTnSKIUqY7CQkJCQmJ+4o1a9YwZNR4GvZ97Y5lFRdkc/SP/6HT6cpl01OZbNmyhcmTJzNjxgxatGhhDop4nZtTVZSHqjF6CQkJCQkJiQeGXr16AfDII49YeHtd9/4yGOzLtSYpPRISEhISEvcrD1jC0ets3779rsiVlB4JCQkJCYn7lIoMTliViIyMvCtypTQUd4Fdu3bRv39/AgICEASB1atXm+t0Oh2TJ0+mUaNGODo6EhAQwPDhw4mPj7eQUZbstPv27aNp06aEhITw448/msvbtm3Liy++aNF23rx5CILAzz//bFH+3HPPlStmgq2xAaxcuZKHH34YLy8vBEHg6NGjJWRU1bGJosi0adMICAhAq9XSuXNnTp48WSXGdis5OTlMmDCBkJAQtFot7du358CBA+Uaa3R0NB06dCAoKIjp06eby59++ml69+5t0Xbjxo0IgsB7771nUT5jxgwCAgLsHset6PV63n33XcLCwtBqtYSHhzN9+nSzG21VHltoaCiCIJTYxo0bV6XHJSFhi/z8fM6cOcOxY8csNnuRlJ67QF5eHk2aNOGbb74pUZefn8/hw4d57733OHz4MCtXruTs2bM88sgjFu0mTJjAqlWrWLZsGbt37yY3N5d+/fpZrGOOGjWK9957j6VLl/Lxxx8TFxcHQJcuXUpMDe7YsYMaNWqUWt6lS5cKGdv1+g4dOvDRRx9ZlVFVxzZ79mw+//xzvvnmGw4cOICfnx89evSwcKe8X8d2K88//zxbt27ll19+4fjx4/Ts2ZPu3btz9erVMo913LhxDBs2jDVr1rBu3Tr27NljHsfu3bvR629E6r5b47iVjz/+mO+++45vvvmG06dPM3v2bD755BO+/vprc5uqOrYDBw6QkJBg3rZu3QrAE088UaXHJWEDUay4rYqRkpJCv379cHZ2pkGDBjRr1sxisxtR4q4CiKtWrbLZZv/+/SIgxsbGiqIoipmZmaJSqRSXLVtmbnP16lVRJpOJmzZtMpcFBweLFy9eFHNzc8WWLVuKJ0+eFEVRFDdv3iwCYnx8vLmtr6+vOHfuXDEwMNBcFhcXJwLi1q1bK3xsMTExIiAeOXLEoryqjs1oNIp+fn7iRx99ZC4rLCwUXV1dxe+++65KjS0/P1+Uy+Xi+vXrLcqbNGkiTpkypUxjFUVRbNGihRgVFSUWFxeLjzzyiLhhwwZRFEUxOjpaBMR9+/aZ27Zu3Vr89ttvRZVKJebl5YmiKIpFRUWiVqsVf/zxR7vGURp9+/YVR40aZVE2aNAg8ZlnnhFFsWzf4/06tlt59dVXxYiICNFoNFarcUmYWL16tejgHii2GfLpHW/NHn1fBESdTlfZwyozQ4YMEdu3by/u379fdHR0FLds2SL+8ssvYp06dUrcu8qDNNNzH5CVlYUgCLi5uQFlz077/vvvU69ePVxdXWnbti3169cHoEOHDiiVSnbs2AHAqVOnKCgoYNSoUWRnZ3Pu3DnAZCimUqnuaJmkvFTVscXExJCYmGjRb7VaTWRkpLnfVWVser0eg8FQIoinVqtl9+7dZRorwPTp0+nRowcODg7IZDJzduXatWsTEBBgniHIycnh8OHDPPHEE0RERJhnF6KioigoKKjQWYOOHTuybds2zp49C8B///3H7t276dOnD1C27/F+HdvNFBcXs3jxYkaNGoUgCNVmXBKWCJjscSpiq2r8/ffffPHFF7Rq1QqZTEZISAjPPPMMs2fPZtasWXbLlZSeSqawsJC33nqLIUOGmOMOlDU77XPPPUdaWhopKSkW0/eOjo60atXK/PDcsWMHHTt2RK1W06FDB4vyNm3a4ODgcHcHeRNVdWzX++br62tRfnO/q8rYnJ2dadeuHTNmzCA+Ph6DwcDixYv5999/SUhIKNNYAfr06UNKSgrx8fGsWrXKIuBY586dzf39559/qF27Nt7e3kRGRlqMo0aNGkRERNg1jtKYPHkygwcPpm7duiiVSpo1a8aECRMYPHgwULbv8X4d282sXr2azMxMc6C46jIuiVIQK2irYuTl5eHj4wOAh4cHKSkpgClo4eHDh+2WKyk9lYhOp+Ppp5/GaDQyd+7c27YXS8lO6+joWGpuki5duljcqK5H1rz1Bta1a9c7GkNFUVXGdmsfS+v3rdyPY/vll18QRZHAwEDUajVz5sxhyJAhFg/BsoxVrVbj7e1d6jj27NmDTqe7p9/R8uXLWbx4Mb/++iuHDx9m4cKFfPrppyxcuNCiXVUc2838/PPP9O7du4RBcVUfl4TEderUqUN0dDQATZs25fvvv+fq1at89913+Pv72y1XUnoqCZ1Ox5NPPklMTAxbt261iC55c3bam0lOTi7xJmeNLl26cPbsWa5evcrOnTvN7n/Xb2BxcXHExMTc82nqqjo2Pz8/AIu35lv7XZXGFhERwc6dO8nNzeXy5cvs378fnU5HWFhYmcZalnHk5eVx4MABtm/fbjGOAwcOkJ6ezr59+yr8+nvjjTd46623ePrpp2nUqBHDhg3jtddeM0+HV+WxXSc2Npa//vqL559/3lxWHcYlUTqCsWK2qsaECRNISEgAYOrUqWzatIng4GDmzJnDhx9+aLdcSempBK4rPOfOneOvv/7C09PTov7m7LTXuZ6dtqx2HO3bt0etVjN37lwKCgpo0aIFAC1btiQrK4vvv/8ejUZD27ZtK25gZaCqju26MnBzv4uLi9m5c6e531VxbI6Ojvj7+5ORkcHmzZsZMGBAmcZ6OyIiIqhRowZr167l6NGj5geov78/oaGhfPbZZxQWFlb4AzQ/P99m5ueqPLbrzJ8/Hx8fH/r27Wsuqw7jkpC4maFDh5qXb5s1a8alS5c4cOAAly9f5qmnnrJbrhSc8C6Qm5vL+fPnzZ9jYmI4evQoHh4eBAQE8Pjjj3P48GHWr1+PwWAwv515eHigUqnuKDvtdbRaLW3atOHrr7+mQ4cO5mULpVJJu3bt+Prrr80P2IoaW3BwMOnp6cTFxZnjDl2fnvTz88PPz69Kj23ChAl8+OGH1KpVi1q1avHhhx/i4ODAkCFDgDvLKny3x3YrmzdvRhRF6tSpw/nz53njjTeoU6cOzz77LIIg3HasZaFLly7MnTuXmjVrWsw2REZG8vXXXxMeHk5wcPAdjeNW+vfvz8yZMwkODqZBgwYcOXKEzz//nFGjRgFU6bEBGI1G5s+fz4gRIyxyKFX1cUlYoYra41QkxcXFxMTEEBERQfPmze9c4J07lkncyvbt20s1JRsxYoTZlbu0bfv27WYZBQUF4vjx40UPDw9Rq9WK/fr1E+Pi4srVj6lTp4qAhRurKIrijBkzRECcMWNGhY5NFEVx/vz5pdZPnTq1yo/NaDSKU6dOFf38/ES1Wi126tRJPH78uIWM+3Vst7J8+XIxPDxcVKlUop+fnzhu3DgxMzPTXF+Wsd6O69fC2LFjLcp/+eUXERCfe+65Ox7HrWRnZ4uvvvqqGBwcLGo0GjE8PFycMmWKWFRUZG5TVccmijfCGkRHR5eoq8rjkijJ6tWrRUe3QLH945/e8dayX9VzWc/LyxNHjRolyuVyUS6XixcuXBBFURRffvllcdasWXbLlbKsS0hISEhI3GesWbOGoSPH0aR7BWRZL8zm4PrpVSrL+quvvsqePXv48ssv6dWrF8eOHSM8PJy1a9cydepUjhw5YpfcqjF6CQkJCQmJB5GKmJeognMbq1evZvny5bRt29bCA7F+/fpcuHDBbrmSIbOEhISEhITEfUVKSoo5Ts/N5OXl3TZMiC0kpUdCQkJCQuI+5UGNyNyqVSs2bNhg/nxd0fnxxx9p166d3XKl5S0JCQkJCYn7lYpQWKqg0jNr1ix69erFqVOn0Ov1fPXVV5w8eZJ9+/axc+dOu+VKMz0SEhISEhIS9xXt27dnz5495OfnExERwZYtW/D19WXfvn3m+GX2IM30SEhISEhI3I9U0NJUVVzeAlOerVtTyNwp0kyPhISEhISExAOBNNMjISEhISFxv1IhLut3LuJeIZPJbuudJQgCer3eLvmS0iMhISEhIXEfIvDgLW+tWrXKat3evXv5+uuvuZOYypLSIyEhISEhIXFfMGDAgBJlZ86c4e2332bdunUMHTqUGTNm2C1fsumRkJCQkJC4X7GarbGcWxUkPj6eF154gcaNG6PX6zl69CgLFy68o6S3ktIjISEhISFxn/IgBifMyspi8uTJ1KxZk5MnT7Jt2zbWrVtHw4YN71i2tLwlISEhISEhcV8we/ZsPv74Y/z8/Fi6dGmpy113gqT0SEhISEhI3I+IgPHBSjj61ltvodVqqVmzJgsXLrQap2flypV2yZeUHgkJCQkJCYn7guHDh99RQtHbISk9EhISEhIS9ysPWO6tBQsW3FX5ktIjISEhISFxn/Kgxem520jeWxISEhISEhIPBNJMj4SEhISExP1KhaShkKZ6riPN9Eg8sPz66698+eWXpdYJgsC0adPuaX9uZffu3Tz//PO0aNECtVqNIAhcunSp1LYJCQmMHDkSHx8fNBoNjRs35ueffy7RbuXKlQwePJiaNWui1WoJDQ1l6NChnDt3zq4+JiQk8O6779KuXTu8vLxwcXGhRYsW/PDDDxgMhhLtjxw5wsCBAwkICMDBwYG6desyffp08vPzLdqJosiPP/5IixYtcHFxwdPTk8jISDZs2FDuPgqCYHWrW7euud3Zs2eZNGkSLVq0wM3NDQ8PDzp06MAff/xR/hNzjZMnT/LSSy/Rrl07HB0dEQSBHTt23Ha/pKQkPD09EQThtsf/6aefEAQBJycnu/spIfGgICk9Eg8stpSeffv28fzzz9/bDt3Ctm3b+OuvvwgODqZ9+/ZW22VlZdGxY0e2bdvG7NmzWbNmDc2bN+f555/n888/t2j78ccfk5+fz5QpU9i0aRMffPABR44coXnz5pw8ebLcfTx06BCLFi2iW7duLFq0iBUrVhAZGcmLL77ICy+8YNH21KlTtG/fnkuXLvHll1+yfv16nn76aaZPn87gwYMt2k6dOpXRo0fTunVrVqxYwYIFC1Cr1fTr16/crqr79u0rsV3/3h999FFzuy1btrBhwwYee+wxfv/9d5YsWUKtWrV44oknmD59ernPDcDBgwdZvXo1Hh4edOvWrcz7jRs3Do1Gc9t2V69eZdKkSQQEBNjVP4n7nIoKTChN9JgRxDvJ3CUhcQ/Iz8/HwcGhwuX269ePEydOWJ09qWyMRiMymem95NNPP+WNN94gJiaG0NBQi3YfffQRb7/9NgcPHqRFixbm8ocffpg9e/Zw5coV3NzcAEhOTsbHx8di//j4eEJDQxk+fDg//fRTufqYkZGBk5MTSqXSonz8+PF8++23xMXFUaNGDQDeffddZs6cyfnz54mIiDC3HTNmDD/88APp6em4u7sDEBQURFhYGP/884+5XWFhIX5+fkRGRrJmzZpy9fNWnn32WRYuXMjZs2epWbMmAKmpqebZlZvp168f27dvJz09HbVaXa7j3Pwd/vHHHzzxxBNs376dzp07W91nxYoVjBw5km+//ZYRI0bw+++/8/jjj5fatn///giCgIeHB3/88Qe5ubnl6p/E/cuaNWt4Ztg4WrZ9+Y5lFRXlsG/XTHQ6HQrFg23VIs30VEPOnDnD4MGD8fX1Ra1WExwczPDhwykqKgLgxIkTDBgwAHd3dzQaDU2bNi0RAGrHjh0IgsDSpUuZMmUKAQEBuLi40L17d6Kjoy3aHjlyhH79+uHj44NarSYgIIC+ffty5coVcxtRFJk7dy5NmzZFq9Xi7u7O448/zsWLFy1kde7cmYYNG7Jr1y7at2+Pg4MDo0aNYuDAgYSEhGA0GkuMt02bNjRv3tz8+dtvv6VTp074+Pjg6OhIo0aNmD17NjqdzuI4GzZsIDY21mK54zo3L2/9999/CIJQ6nLRxo0bEQSBtWvXmsvOnTvHkCFDzOejXr16fPvtt1a/L2tcf1jejj179uDr62uh8IDpYZ2Xl8emTZvMZbcqPAABAQEEBQVx+fJlc9myZcsQBIFvvvnGou3UqVORy+Vs3boVAHd39xIKD0Dr1q0BLK6B6+1cXV0t2rq5uSGTyVCpVBZtb22n0WjM252Qk5PD77//TmRkpFnhAfDy8io1Pkjr1q3Jz88nPT0dMClHNWrUoH379hbX1KlTp3B0dGTYsGHmsrJ+h9dJT09n3LhxzJw587b5hRYvXszOnTuZO3duuY4hIfEgIyk91Yz//vuPVq1aERUVxfTp09m4cSOzZs2iqKiI4uJioqOjad++PSdPnmTOnDmsXLmS+vXrM3LkSGbPnl1C3jvvvENsbCw//fQTP/zwA+fOnaN///5me428vDx69OhBUlIS3377LVu3buXLL78kODiYnJwcs5wxY8YwYcIEunfvzurVq5k7dy4nT56kffv2JCUlWRwzISGBZ555hiFDhvDnn3/y0ksvMWrUKOLi4vj7778t2p45c4b9+/fz7LPPmssuXLjAkCFD+OWXX1i/fj3PPfccn3zyCWPGjDG3mTt3Lh06dMDPz89i2aM0mjRpQrNmzZg/f36JugULFuDj40OfPn0A04OvVatWnDhxgs8++4z169fTt29fXnnlFf73v//d7uuzi+Li4lJnIK6XHTt2zOb+Fy9eJDY2lgYNGpjLnn76acaOHcvrr7/OwYMHAfj777/54IMPeOedd+jRo4dNmX///TcKhYLatWuby0aMGIGbmxsvvvgiFy9eJCcnh/Xr1/P9998zbtw4HB0dzW1fffVVNm3axM8//0xGRgYJCQlMnDiRrKwsXnnlldufFBssW7aMvLy8Mi9fbt++HW9vb7PC6OXlxbJlyzhw4ACTJ08GTLORTzzxBMHBwXz33Xd29+2VV14hLCyM8ePH22yXnJzMhAkT+OijjwgKCrL7eBL3OyKCWDGbxDVEiWpF165dRTc3NzE5ObnU+qefflpUq9ViXFycRXnv3r1FBwcHMTMzUxRFUdy+fbsIiH369LFo99tvv4mAuG/fPlEURfHgwYMiIK5evdpqn/bt2ycC4meffWZRfvnyZVGr1YpvvvmmuSwyMlIExG3btlm01el0oq+vrzhkyBCL8jfffFNUqVRiampqqcc2GAyiTqcTFy1aJMrlcjE9Pd1c17dvXzEkJKTU/QBx6tSp5s9z5swRATE6Otpclp6eLqrVavH11183lz388MNiUFCQmJWVZSFv/PjxokajsTh+efjkk09EQIyJiSlRN2HCBFEmk4mxsbEW5cOGDRMBcfTo0Vbl6nQ6sXPnzqKLi0uJa6KwsFBs1qyZGBYWJp46dUr09fUVIyMjRb1eb7OvmzdvFmUymfjaa6+VqDt9+rRYt25di/zPr7zyimg0Gku0/e6770S1Wm1u5+HhIW7dutXmsctCmzZtRDc3N7GgoOC2bX/88UcREL/66qsSdR9//LEIiKtWrRJHjBgharVa8dixY1Zl/f777yIgbt++vdT69evXi0qlUjx+/Lgoijd+g7///nuJto899pjYvn1783kbMWKE6OjoeNvxSFQdVq9eLTo5B4hdus+64639Q++IgKjT6Sp7WJWONNNTjcjPz2fnzp08+eSTeHt7l9rm77//plu3bmY7i+uMHDmS/Pz8ErMdjzzyiMXnxo0bAxAbGwtAzZo1cXd3Z/LkyXz33XecOnWqxDHXr1+PIAg888wz6PV68+bn50eTJk1KeLO4u7vTtWtXizKFQsEzzzzDypUrycrKAsBgMPDLL78wYMAAPD09zW2PHDnCI488gqenJ3K5HKVSyfDhwzEYDJw9e9ba6bPJ0KFDUavVFtFCly5dSlFRkXmWqbCwkG3btvHoo4/i4OBgMdY+ffpQWFhIVFSUXce3xejRo1EqlQwdOpSTJ0+SlpbGt99+y/LlywHrSyyiKPLcc8/xzz//sGjRohLXhFqt5rfffiMtLY3mzZsjiiJLly5FLpdb7cvhw4d58sknadu2LbNmzbKou3TpEv3798fT05M//viDnTt3Mnv2bBYsWFBi1mX+/Pm8+uqrjB8/nr/++os///yTnj17MmDAADZv3mzPaQJM3lT//vsvQ4cOve0y2caNGxk3bhyPP/44L79c0q7ijTfeoG/fvgwePJiFCxfy9ddf06hRI7v6lZWVxZgxY5g8efJtM0mvWLGCdevW8eOPP97VcP0S9wnGCtokAGl5q1qRkZGBwWCwOd2dlpaGv79/ifLr3h9paWkW5TcrE3BjyaSgoAAw2Wfs3LmTpk2b8s4779CgQQMCAgKYOnWq2d4hKSkJURTx9fVFqVRabFFRUaSmploco7T+AYwaNYrCwkKWLVsGwObNm0lISLBY2oqLi+Ohhx7i6tWrfPXVV/zzzz8cOHDAbFNzvd/lxcPDg0ceeYRFixaZl/YWLFhA69atzctCaWlp6PV6vv766xLjvL78detYK4J69eqxatUqYmNjadiwIV5eXnz88cd89tlnAAQGBpbYRxRFnn/+eRYvXsyCBQusZjKuWbMmDz30EIWFhQwdOtTqdwMmZbNHjx7UqlWLP//8s8SS21tvvUV2djabN2/mscceo1OnTrzxxht8+eWX/N///R87d+4ETNfxuHHjeP755/n000/p1q0bvXv3ZunSpbRq1YqxY8fae6rMdlm3W9ravHkzgwYNokePHixZsqRU5UIQBEaOHGk2sL7Zlqe8TJkyBaVSyfjx48nMzCQzM9NslJyfn09mZiaiKJKbm8u4ceN4+eWXCQgIMLctLi4GIDMzk7y8PLv7IXF/YfK+kpa3KpIH24y7muHh4YFcLrcwHr0VT09PEhISSpTHx8cDJnuF8tKoUSOWLVuGKIocO3aMBQsWMH36dLRaLW+99ZbZQPSff/6xaXtyHWtvr/Xr16d169bMnz+fMWPGMH/+fAICAujZs6e5zerVq8nLy2PlypWEhISYy48ePVrucd3Ks88+y++//87WrVsJDg7mwIEDzJs3z1zv7u6OXC5n2LBhjBs3rlQZYWFhd9yP0ujduzexsbGcP38evV5P7dq1+e233wDo1KmTRdvrCs/8+fP5+eefeeaZZ6zK/emnn9iwYQOtW7fmm2++4amnnqJNmzYl2h05coTu3bsTEhLCli1bShghg+k7qF+/voXtDkCrVq0Ak4F9ZGQk0dHRFBQUmMtvpmXLluzcuZPc3Nxyx6UpLi7ml19+oUWLFjRt2tRqu82bNzNw4EAiIyNZsWKFhYH1zSQkJDBu3DiaNm3KyZMnmTRpEnPmzClXn65z3YvQz8+vRN2IESMAkzKYmZlJUlISn332mVmpvRl3d3cGDBjA6tWr7eqHhER1R1J6qhFarZbIyEh+//13Zs6cWaoC061bN1atWkV8fLxFbI9Fixbh4OBA27Zt7T6+IAg0adKEL774ggULFnD48GHA5EX00UcfcfXqVZ588km75YNJ8XjxxRfZvXs369atY+LEiRbLLdcVppsVKfFaoLtbUavV5Zr56dmzJ4GBgcyfP5/g4GA0Go1FfBkHBwe6dOnCkSNHaNy4sdWH5d1CEARq1aoFmB7wX331FU2bNrVQekRR5IUXXmD+/Pl8//33FrNkt3L8+HFeeeUVhg8fzo8//kj79u156qmnOHLkiNm1HEzKTPfu3QkKCmLr1q0WdTcTEBDAiRMnSigs15dUr89QXr8uo6KizA/8632PiorC3d29hOJUFtauXUtqaqrNmDtbtmxh4MCBdOzYkdWrV1t1UTcYDAwePBhBENi4cSNLlixh0qRJdO7cmUGDBpW7b19++SWZmZkWZUePHuW1115j2rRpREZG4uTkhEajYfv27SX2/+ijj9i5cycbN26068VF4j7mAUs4ereRlJ5qxueff07Hjh1p06YNb731FjVr1iQpKYm1a9fy/fffM3XqVNavX0+XLl14//338fDwYMmSJWzYsIHZs2eX+oZui/Xr1zN37lwGDhxIeHg4oiiycuVKMjMzzR4+HTp0YPTo0Tz77LMcPHiQTp064ejoSEJCArt376ZRo0a8+OKLZTre4MGDmThxIoMHD6aoqIiRI0da1Pfo0QOVSsXgwYN58803KSwsZN68eWRkZJSQ1ahRI1auXMm8efNo0aIFMpmMli1bWj22XC5n+PDhfP7557i4uDBo0KAS5+urr76iY8eOPPTQQ7z44ouEhoaSk5PD+fPnWbduXQnvM1ukpKSYl3yOHz8OmOxMvL298fb2JjIy0tz25ZdfpnPnznh6enLx4kXmzJnDlStXzPtf55VXXuHnn39m1KhRNGrUyMLGSK1W06xZM8Dklffkk08SFhbG3LlzUalU/PbbbzRv3pxnn33WPJMQHR1N9+7dAZg5cybnzp2ziO4cERFhti+bMGECAwcOpEePHrz22mt4eXkRFRXFrFmzqF+/Pr179wYgODiYQYMG8cMPP6BWq+nTpw9FRUUsXLiQPXv2MGPGDLtsWX7++We0Wi1DhgwptX737t0MHDgQPz8/3nnnnRKzg/Xr18fFxQUwue7/888/bNmyBT8/P15//XV27tzJc889R7Nmzcwzevn5+fz5558A5nO9c+dOUlNTcXR0NI/Z1sxTgwYNzHF9FApFqTF+FixYgFwutxn/R0JCAsl7qzpy6tQp8YknnhA9PT1FlUolBgcHiyNHjhQLCwtFURTF48ePi/379xddXV1FlUolNmnSRJw/f76FDGueIzExMSJgbn/mzBlx8ODBYkREhKjVakVXV1exdevW4oIFC0r06//+7//ENm3aiI6OjqJWqxUjIiLE4cOHiwcPHjS3iYyMFBs0aGBzfEOGDBEBsUOHDqXWr1u3TmzSpImo0WjEwMBA8Y033hA3btxYwnMmPT1dfPzxx0U3NzdREExxS6/DLd5b1zl79qzZm8iaJ1FMTIw4atQoMTAwUFQqlaK3t7fYvn178YMPPrA5rlu5/h2UtkVGRlq0HTBggOjv7y8qlUrRz89PHDlypHjp0qUSMkNCQqzKvNmT7ZlnnhEdHBzEkydPWux/3QPpiy++EEVRFOfPn29V3s3XyXX+/vtvsWfPnqKfn5+o1WrF2rVri6+//noJ77uCggLxk08+ERs3biw6OzuLHh4eYtu2bcXFixeX6ul1O+Li4kSZTCYOHz7capupU6faHMv1a2fLli2iTCYrcX2kpaWJwcHBYqtWrcSioiJRFG/8Xm53vkvDlvfWrUjeW9WP1atXi85OAWLXyJl3vHVo95bkvXUNKSKzhISEhITEfcaaNWsY9sxLtG5eun1geSgqzmF31EdSRGYk7y0JCQkJCQmJB4QHW+WTkKgEDAYDtiZYBUGwGQtHwoR0HiUeCCpiMUZa0DEjzfRISNxjIiIiSsTxuXkrTzbuBxnpPEpUe0QQjBWzSZiQZnokJO4x69atMyd/LQ1nZ+d72Juqi3QeJSQkyouk9EhI3GPsTVUgYYl0HiUeCKTlrQql2ik9hYWF5pDsEhISEhIPDiqV6rY51SQebKqV0lNYWIi3fyC5memV3RUJCQkJiXuMl5c3ly/HVS/FR4rIXKFUK6WnuLiY3Mx0ar34PjKV9Ys+++wxEjaaklY61WyIa4MWXF2z0KKNV802hLR4pLTdLVBlGe6s0+VAXmyfNZqsqPx9zPcrPfz+7dA72Jf1Waa3azcEffl/zYpC++4A9hoDinacErnOvj7KC+y7HuUF9n0BMl35jyfo7TyRBvvGJhisn0uDUc+l9H+JSd+Pt1M4jf0fuRHtWa+nUJ9LSt4lNApH8orTOZ+xhwbePfB3rmdXX6xyLTlvuSmyYz97PdpUSvv2U9uXjsXoWL799IYidh37guLi4mqk9FRMslAp4egNqpXScx2ZSoNcbeOiv+kCyD1/gtzzJ0o0ERCR21CcrqNQ3kOlx2in0mPHw0KhtE/pEVV2Kj12+hHKBDuUHhsPQVvcU6XHzlczuR1KCIBcYafSYyz/foJoryuJnUqPjXOpkKup49sVN4cgjlxZQXLeOQJdr9kKGeVkFp4lOs2UOsRR6QHA+fS9+DrVQSXX2tWfUrH/B2DHPnYqPTI7c8nJ7VR65PbdgyTunFmzZrFy5UrOnDmDVqulffv2fPzxx9SpU8fcxloqmNmzZ/PGG28A0Llz5xKpcJ566imWLVt29zp/G6ql0nM7XGo3Jv3QLoqzMhCLCwGo2/MlXHwjKrlnEhISlYFWacqhdjx+PXlF6Xg4BCMYjJxI3oSfU10clG7E55wCQEREFO/dy47EA4wpOU4FyCmfjJ07dzJu3DhatWqFXq9nypQp9OzZk1OnTpmT/SYkJFjss3HjRp577jkee+wxi/IXXnjBIsmvVluBLwt28EAqPXKNlvCRkzAUFnD263dxb9oeZ59wizai0YBBX4xCVblfkISExN0lLuMwpxI3mz9fzfyPi2l7zZ+b+PZFEGQ4qbw4lrSeOp6RqBVOpYmSkKgWbNq0yeLz/Pnz8fHx4dChQ3Tq1AkAPz8/izZr1qyhS5cuhIdbPksdHBxKtK1MHkilB8BYXASIONduRMbRvZxLycS7ZmuUWheKC7JJPLWd3JRYWj3zCYJQ+tSzKIro9YUoFNVl/VhC4sGjQJcFQOvgoXg4BiOKIlmFCURdMtn5/XVxDl3DxuPvVBeZIMfHMdyWOAmJiqUiAgtem+jJzs62yL2lVqtRq2+/jJiVZfqNeHh4lFqflJTEhg0bWLhwYYm6JUuWsHjxYnx9fenduzdTp06t1Bha5VpInjZtGoIgWGw3a3CiKDJt2jQCAgLQarV07tyZkydPWsiIjo6mQ4cOBAUFWUx5AYSGhiIIAlFRURblEyZMoHPnzuUcWukUpSVx4eePif7qHc5+/R4FVy/hEFyL/Ix4zu1cwKlNczi/cwG5KbEAxB1cR25qHNmJ50uEvD+2+kP2bXy/QvolISFROdTx6UKvem/j4RgMmGwV3LQBdA9/BQCDqGP7pbmm+51TbWTCA/uuKFEJCKJYIRuAp6cnrq6u5m3WrFm3Pb4oikycOJGOHTvSsGHDUtssXLgQZ2dnBg0aZFE+dOhQli5dyo4dO3jvvfdYsWJFiTb3mnL/ehs0aMBff/1l/nxzbpvZs2fz+eefs2DBAmrXrs0HH3xAjx49iI6ONmt248aNY9iwYbRq1YqxY8fSrVs3OnToYJah0WiYPHlyCeOniiL7zFGK0pJwa9QauaMzaVHb0OflAKBQO+HgGYhbQF0KMhNJOf8vSWd2kXRmFwAhrR8l5fx+IjoMQaF1pijX5BoviqJVoy4JCYmqiUKmplfNNzietBGlXJrNlaj6pKWllZjpuR3jx4/n2LFj7N6922qb//u//2Po0KElvOZeeOEF8/8NGzakVq1atGzZksOHD9O8eXM7RnDnlFvpUSgUpa7PiaLIl19+yZQpU8ya3MKFC/H19eXXX39lzJgxAGRmZtKsWTMaN25MQECAedrsOmPGjGHevHn8+eef9OnTx54x2cSjeUdyY8+SeXy/RblS44xneHOyEy8Qd3AtpQU2iN2/CoDj6z4xlzk4+0kKj4RENaaRb+/K7kKVwyga0BuLUMkdzGUGow6ZoEAQBAxGHUbRgEKmtrh/mmbTRasmBQ8kFWLIbPrj4uJiofTcjpdffpm1a9eya9cugoKCSm3zzz//EB0dzfLly28rr3nz5iiVSs6dO1d1lJ5z584REBCAWq2mTZs2fPjhh4SHhxMTE0NiYiI9e/Y0t1Wr1URGRrJ3716z0jN9+nR69OhBQUEB/fr14+GHH7aQHxoaytixY3n77bfp1asXMntdOa0g1zoS+vQ4EreuIOO/fQDIlGoCmzyMV0QrZHIF+uIC8jPiKcxMIj8zwfR/dir6otwS8lzcQyw+Gw16UhOP4+lbH7lCcrmUkJConugMhVzJPUGhPhdRNJCcfx6ZTInRqKfQkAuIyAUFCrkGvaEIg6hDLihRyNUU6U33Uq3SFa3SDYOxmJyiZETRiIiIUq5BodDiqPFGIVfj4RyGt1ttsnKvUFCUgYiR3IJkDEY9MpkCvb4AnaGwck9INUIURV5++WVWrVrFjh07CAsLs9r2559/pkWLFjRp0uS2ck+ePIlOp8Pf378iu1suyqX0tGnThkWLFlG7dm2SkpL44IMPaN++PSdPniQxMREAX19fi318fX2JjY01f+7Tpw8pKSlkZ2fj7e1d6nHeffdd5s+fz5IlSxg2bFh5x3RbBJkMvx6PkXliP6LBgFFXxKV//yD2wGoaD3wLlYMbLr4RJVzYRaOBjCunOL9zgbksMe5fvAOb4uZlapuREk304aUAPNR/doX3XUJCQqIy0RuLuZzzHzFZByk25KNRuADgoQ1BKVMjF5RoFS4oZCqKDHnoZHqUMjVKuZZiQz7F+jyc1N7IBDmZBVcpMuQhihr8XOohlykRkJnayYrJK0yloCiDU+nH4dpjRCYokMnkaFRuKOUajKIBpcIBldKxEs/KXaKSXNbHjRvHr7/+ypo1a3B2djY/311dXS1czrOzs/n999/57LPPSsi4cOECS5YsoU+fPnh5eXHq1Clef/11mjVrZmHScq8pl9LTu/eNad5GjRrRrl07IiIiWLhwIW3btgVKBiwqzd5FrVZbVXgAvL29mTRpEu+//z5PPfVUeboIgM4JjLddgpdRY8wEdJkZKJycSfxjCbr0VI6tm41oNOBUqz4BTwxHsAjkpUBeszFuhZ3I/HcXMkdnZILAyUML8Os6EIegcGJ3rQfAKbwe6XVLP73qzHIPCQDRzphi8iI7fjR2/s50dkZkFu20DRX05T+e3M7UbDI7oyTbE9RQZmcYGLnWvplRmd6+L8CO2JDI7IiiDSArss+Nxd5otPZE+xaMdv5w7H2w2bG0blTYd40YNDJE0cjJgwvJyDyPl19DQmv1ROvoedv9AC4cXUniRdPsulLthKOrPxp3L9QOYWgdvXDyCEatdb2x302BTrOSzqMrysXZMxS1o1upx9HrCkle8a5dY7uvqQjvrXLKmDdvHkAJB6L58+czcuRI8+dly5YhiiKDBw8uIUOlUrFt2za++uorcnNzqVGjBn379mXq1KkWtsD3mjtyQ3B0dKRRo0acO3eOgQMHApCYmGgxdZWcnFxi9qcsTJw4kblz5zJ37tw76aJN1P6BqP0DAQgb9xap2zeREbUDDAZyzxzn7Iw3ULi649GhK+6tbmimPg8PQK7RkLZzC27NHyL98D/Eb7Jcz8y9eJrU/dtxqd2YjBP78W7TDZnSzoimEhISEvcBV2L+IT3lDA1bPouHT91y7avX3Vh+0hXlkp0aQ3FhDkX5hzHoiwBwcPHDK7AxPiEtUahuuEe7+tasmAFIlIlbPZWtMXr0aEaPHl1qXY0aNe6aQ9KdcEcGM0VFRZw+fRp/f3/CwsLw8/Nj69at5vri4mJ27txJ+/btyy3bycmJ9957j5kzZ5KdnX0n3SwTgkyGd7c++Dw80KJcn5VB8p8rLC4CQRDw6twLtX8Q6Yf/wTG41k2CbrydJO1cx7kfZ5K6byuGokJEu8PvS0hISFQuel0hl6I3ExT2ULkVHoDaLQfTrPskQhr0xsHFD6NRj8bRkzb9p9Oy97vUaf0Mjq4BXDm7g4ObZnF2zyKyky8+0PdNgYpxV5dyb92gXDM9kyZNon///gQHB5OcnMwHH3xAdnY2I0aMQBAEJkyYwIcffkitWrWoVasWH374IQ4ODgwZMsSuzo0ePZovvviCpUuX0qZNG7tklBe3lu1xbtiMhBW/kHf+jLn87PTXCRk9EY3/DQv2oCHPk/j7EvLiziFTa5Gp1KhcPSnOSEGfZ6monZ03DW1AKOFDX7kn45B4sMhPN8WZUigdCG7UGzff2pXdJYkqTkFBOtnZVyjITyE/P5Xc/CRERPyD25ZoazAUY9AXoyvOo6gwC6NBh0rthMbBA5naxRzXzcHFFwcXX4LqdCXt6nHO7F/Moc0f4xXUBK/AxtRq+RQRhkEkxx4i/uJuTv09F6XWhYC6nfGr3fHB9OqqBJue6ky5lJ4rV64wePBgUlNT8fb2pm3btkRFRRESYvJgevPNNykoKOCll14iIyODNm3asGXLFrujLyqVSmbMmGG30mQvco0Wv4FDKLxyieTNa9BlpAEQ+8PneHfvh0eHrgAYCvIpSIgjsPdgijJTyYs9R/6VC6jcvfFrOwiZWkPGkT0UJJgs8IRKXMeUqN4UZCVRlJtGEekknPtHUnok7EIURbKz4zh86DtzmVLpiNbBCwcnb8Lq9ELr6EVxUQ5pSafITLtATtYVCvPTrMqUyRQ4e4biXaMZPsEtzHaSnoGNaNTpRZJjD5J06V+unt2OXKk12fo4eOAT0Ybi/EySzkcRe2QtBl0hQQ17Wj2OhERZEMSyLt5VAbKzs3F1dSV8yofINeULJiazkSzaoNORuHIxuWeOA6D2DcBYXGRWhsKeeRUHf5PiV5iSwJX1v1CUarJ2d6nbjOwzRwAQZHK0ASEY8/LLO7Q74x5+w6K9L2LXVwXvweVoj/EtcE/PY3n7qNcVosvPwr9WJ1JiD9G8z9vIlWX/DdhrXCwZMt+yTxU2ZC4uzuXc2XUkJx8DwNk5kCZNR6FUOmAwFJNRcIWs9Bgy086RnREHgItbDZzdgnF08Ueh1KJUOqDWuCKTqyguyqGoIIO84jQyk86SmXwOBxdfajZ/AmePYItji0YDWWkx5KTGkJ+TTGFeGvnZiRgNOnObGo37EFi/q9Vx6XWFHFzxLllZWbi4uJT7vNxvrFmzhuFPj6VdrefuWFaRLpcdZ75Cp9OVK05PdeTBHn0ZkSuVBDw5grzz0aTt2oLCyZncMycAcG3Q0qzwAGi8/QnsM5SLv3wBotGs8IDph12QEIdLUB3UzrY9HkpDtDMGonAPE0Ib7bTVtntsdjwr7D0f9nhhAXYpS+U/loja0R1P34YkXtjLhUN/4BveFo2TJyqt64O5LCBRJkRR5OqVvZw/vxFBkFGnzqP4B7REFEUyM2NITvqP5ORjGAzFKJQOuHmEU7vxE3j61EWpsu4mrlI74eTij5tGhn9EB/atfpv87ESO7fiaDoM+sWgryOS4edfEzfuGwbJeIaLXFSCTK5HJFdI1LFEhSEpPGREEGU616uFUqx4ACWuWkn30ALkxZ7i6cRlOobVxDKmNwsEJrW8gAT0fJ37zbyXkiAY9RdlpRPQsv/ZeFVzWi53vtct6+fep1i7rhSI1GvTk8sktpF0+ajq+TIGLdzg+Ya3Jz0ogM8Fkq6Z2dMfNry6eNZqiEqRAmg8ioihy7tw6rl7ZR1BQe0LDuqHXFRAdvZrkpGMYDEVoNO7UCH4Iz8BGODj72qV8yGQKAmt34erZ7WXeR5DJUKqrYeyd8iLZ9FQoktJjJ/4DBuPephMZO7aReWI/mSdMaS3UPgE4hdVD41UyVcd1CjMSpXxdEneNwLpdCagdSWFuGoV5aRTkJJN4bjfnohYjkyvxCGyEXKEmPzuRi4dWEPvfOoLr98LZPRi1gzsqTcVlQBZFo/SGXkmcvbCBy1f3AuCg9cbftymB/q2RK5zMbeJid3L1yj5q1xmIk5M/MTF/kRB/EIVCQ1CNDnh718fJKcCUOkJj//eYm3kVmUyBQuWAh3+DOx7bA0UFZlmXkJSeO0LjF4jCyXLtuCg5nqLk+BsFggxEI04RDci/fAFjsSlWRerpfXjXL78rv4REWRBkcrQuPmhdfHD3r4d/rYfQFeagUDsik9342RcVZHHpyGpijq0xl/mGtiG4Xk9UGhdEUSQj6Qy5GZdx86mFi6cpHP11U0CBksFIczOvkBx3kPSk0xTlZ+LiGYpvcCu8ApsgV0ixqu4VTo434qXlF6Rw4dJWLlwyhRRxcwtHqXIkJfk4gYFtycy4wNno1ahUTtSo0ZGQ0M7I5bf/rm6YhIpkpJ5DpXbGySXAXK/XFZBw5TAxx9ejUGpw9QonpEHF51SUkCgrktJzh8jVGmRKNQG9nyI3Jprs6KMYi4tuNLgWY6IwMc6s8ABc3vMH7uFNUGik6VuJu48gyFDdFO32OmqtKzVbP03KhXAcXPzIz0og7vRmkmMP4uIVRlF+BoV5aYDA5TNbAQG5QoXRqEelcSUgvD2CIEeuUFNUkEFq/HHysxNRaVzwCmyC2sGdjMTTnDvyOxePr8E7qBn+NVrj7Fp68kKJiiPArzn+vs1M7uRGHckpxzh7YQMAmZkXAfDwrENq6ikMBh316j+Jr2+TMs3MiaKRM0eXk5JwtESdo7M/7l61TPm44o+iK87HK6gJbj618AxshEKpLSlQwioVEWNHitNzA0npuUM03gEYdUWIOh2BvZ4ioOcT6HKzMBbmYyjMR1+QjyAI5F0+T/rh3Rb7Fmal4CQpPRKVjFyhJiCiIwBu3jXxCWlJctwhslLO4+ZTC6+gJ3B2Dybl8hGMogGjvhhBkJF4KYpLJ/8EQUA0GkxGrj61CG3QF3ef2uaHZ2DEQxTmpZMUu5+kuAMkXorCyTUQv+A2+AQ0RVEOLzOJ8iEIAgqFGgVqagS2p0Zge+ISozh3dh0+Po1ITj6Oh2cd6tR5FI2mpFJsDaNRX6rCc52kq4fRFZuSigbU6oS+KJ/zh3+nqCCT4HqS27lE5SEpPXeIc82GuDZoydWNS5Gp1LjUbozKxR1c3C3aZUX/Z/HZ0ScUJ9/Qe9hTCYmyoVBqCYjoaFaEruMb2tris39Ex2tvkAKiaEQms25pr3H0IKR+L4Lr9iAz/jQJcfs5f3wVF0+txyegCX7BbXB2qyHZud1lEpKOcP7cnwAkJx8nPPxhQkI7l1uOXK6iU5+PAdMSV2F+OjmZccSe/wu9Lt9iCTX+3C7z/54BjezqtyiK5KTEkJd5Fe+wVg+OoiyKkiFzBSMpPXeIIJMR2Hsw+pws0g7/g0vtxiXaxG9dYeG6DqBwqDhjUQmJykAQBLNNjyCUzbVQkMnx9GuAp18DigoySbx8kMTLB0i8fABHZ3/8Q9viE9gMheIBeajdI4qL8zgfs5mEpEPmsvCIXtSo0ZGU5BPIFWrc3SPsMjoXBAGto6dpc/Lmwql1qLVuBEd0QalyJGrbByjVTtRr/zyOrv63F3gLBTkp/LfhY/NnrYsvbn4PUPBNe2M/VbSMakK1VHpEtYhRXb4v2aiy09VaDiDg0LAhqZvXki9monRxs2iTcXRPif0KchIp8CnfsQx2ehWr08s/Nk2GfT8SRYFdu1Hkfvs2paEv+4y8GZndLuv2XSP2uNXb7bJefO/6CPYF4xPl1/vohWd4LzyMPcm+Gk3q6X2cP7Gai2f+xKNWS7zrtUfrceMheS9DBoD9QRTvJbaCql6nuCCbE39/T1GeKZiqTKGmVqcRuPjX4tS/K0g5HwVAeIehaJw8yU2NJT3uP5RaFwIb98TBzfQd6DW3v7aEgDBq1jOl2jGKIldOmmZ5Qvs+h8w3mLxyjE2Ug0FXxIllNxSe2oPfQO3pT2m3GUOx5CUocXuqpdJTGbg0bUn6ji2kb9+C74AnLepcW3cga7+l4uPZQVrXlpAA02ypa416uNaoR3FuBqlnokzbqT04+YXjVa89bmGNkSGlcSkvuelXuHBguVnhUTm4Ed5+MM6+4cRE/U7qhQOEtnmCy4fXcXHPEsA0G+foWYP8jHhO/vkFgY164t+wG1B2hbo4L5Oz676hODcdpZM7Ws8bHl2iaESfn4PS8fZvLPlJceb/az7+ClrP8s8UVXmk5a0KRVJ6Kgi5RovS05usQ1FkHYoi6NmXcAgzRRd1b9eJ3FPHMOTmoPYLJOixkajcyh+RWUKiuqNyciegZW/8mvUg69IJUk7v4dL2xSiinPCq1Qa/hl1QqCTvn9tRlJ/FyR1zKcq9kRNL4+xN/U6jkbu6EbNvOakxhwjvMBivsBa4BzUgKyEatZMnjl7ByGRyjAY9l49s4Mp/G3ELqo9KG1jm4+clXaI4Nx0AXW4GqSd249O0C7r8bM6u+ApdbgYNRvwP5W2W+Z0CaxLx6EsIciWOfiEWdaLBQMK+DaQc3YFX4474tZVc4SVuj6T0VCDODZpQePmS6YPxxpy6ytObiDf/Z/4sL0JCQsIGMrkC94imuEc0pSAjkdRTe0k+9Q+GonxC2j1e2d277zAa9BQXZJKbfoW44xsoyssw12mcvPCv/RDeoa2RyeSc27eMtEuHiWg/BM+w5gAotc54hbe0kCmTK/Cp2YakM7sw6Mp303IPb4qDVw2KslM5v+l7ZCoN+oJczq+dhy73Wt/KMPsgCAJOgTVLlOvysrm49nuKMpIBSD+9H6+mncvVxyqDNNNToUhKTwXi0rwNKZtMQd4EtRTWX0KiItC6+1GjwyDkcjUpZ/bgVbstRr2OouwUXIPqodQ+uE4B+uICTmz/loKsxBJ1nsHN8K/1EM6eN5J7psefJC3mEBEdn8EztNlt5V/PiC4ay29kpnbxROXkjtrdl/i9a9EX5FKUkWSuj9u+FJeQ+mjcfXH0DUWmvBEMURRFDLpiBASLclOdkbi/fkVfkEfNx1+lMD2Ry3/9ir6wPBZDVQSRClJ67lxEdUFSeiqQmzO7y1SS0iMhUZH41n+I7PhoTq/7wlzmVas1oR2eqsReVQ5Gg44L+5aTHnfUXObkEYyLT038a3VEpS2ZZVwURdKuGSiXReEBk72VaV87M9zLZIT3GsXppbMw6nX4te5N4v5NgEjO5WhyLkcDINc4onb1wqjXYSjMRZefaw7s6larKSEPDzfLTD68ndzL5wh/ZDQOPkFc2fE7Dn6haNy87eqjxIOFpPRUIKLhxttQ7DezARAUCoJGvoQ2OLSSeiUhUT1Qap2p03scaef2o/UI4OqhPynKTUcURYz6YuTK6v+ikZsax7ndiyjOzzSX+dXsSFjzgbfdN+nCXlLjDhPa+rEyH+96KAJ7lR4AtZs3Dr6hJB/+C9ewRjj6h1GYnoChyOSD5RrWiKyY4+Rfm6nxbtKZtFP7MF5bUlM6upllpZ2MIjFqIz4tuuEcXIf8pDgKki8DcObX2Xb38f5FlFzWKxhJ6alABLkchas7+qwb6+miXs+VhfOo9d7HNvaUkJAoC3KFCp96pqCJXrVac2nPco7++i4GXSHuoU0J6zTEZpDEqszVE39x5dgm82e/up0IbdS/zAEdky8dxCOoET61y57z706Wt24mpPtQEv7dgL4gj7yEi2bZGs8AsmKOW7Q1FOVj1BXhHFKPoMjHULl4AJBz+SxXtv+GR4O2KJ1c+e+bieZ91G4+GG5K8yMhYQ1J6alg3Ns+RNqOzdScMgtRFClOSkDhXHKqWUJC4s7wrNkKo0GPriCbjNjjZFw6So1Wj6Aqgyt0VSP10mGzwhPS8lG8w1siV6jLHF9JX1xAfsZVXH1KGgXbQpCbHhEG3Z0pFFd3rybn8hl8mnXFJbgu8fvWIRoNKB2c0dZri2toA7IunST9dBTpZ/YD4NWwPYbiQq7uWolng/bkxV9ArnHENbwxMet+sJDv1bgjyGRc3fHHHfXzvuQOZtkqVEY14Y6iOc2aNQtBEJgwYYK5bOTIkaZIrTdtbdu2tdgvOjqaDh06EBQUxPTp0y3qQkNDEQSBqKgoi/IJEybQuXPnO+nuvUEQEI1GRFFEEATUfgHIHZ0qu1cSEtUOQRDwqduewGa90DibQkBc2rOMrCtnbsr+XXUxGPSc3vYd//46iQt7fwWgYe/X8KvdAbmi7Et5BTmpnP7nJ5DJ8Aoumy2PuQ/FpiWojMsnyE26VK59AYz6YtKjD5IdexLRaCDp0FYcfENoOHI63k06IxqN5MSdImbjz6SfvnHPdw1rRMp/uzi77FNSj+0mduti8pMvYyjMoyD1aonjZJ47Uj0VHriRiuJONsmS2YzdMz0HDhzghx9+oHHjkmkXevXqxfz5882fVSpL6/tx48YxbNgwWrVqxdixY+nWrRsdOnQw12s0GiZPnszOnTvt7V6lIdM6IOp0GIuKLAybJSQk7h7hnYeTcek/kk7t4txfP6Jx88W3fic8I1oiF6rWhPbFqN9Iubi/RHn9HuNwdC97rBwAva6Q/zZ/ilLjRJ12w3F0C6A8C1UqB1e8IlqTemE/GXHHqNXnRZwDapVoZzToMRQVmOPuFGQkkXJqN5kx/6EvzDW3qxH5hCkooSAQ0KYvRoMOBIHcK+dQODiTHXuKpENbyYo5joN/GDW6PY3SyY2ru1ZRkHwFgMR9G0oc36Arokb3p7n817JynR+JBw+77ga5ubkMHTqUH3/8kQ8++KBEvVqtxs/Pz+r+mZmZNGvWjMaNGxMQEEBWVpZF/ZgxY5g3bx5//vknffpUrYBThrwcBIVCUngkJO4hMrkCz4gWeIQ3JzfpIkkndxK79w/ij26hXu+XUTvameekEihtKUnt5IWzd1iZ9i/ITiYr6Rz5WQkkXTTNnoQ1G4h7QP1y90WQyQlv9xQObn7EHVoLpeTm0hXkcHzJVNNxuo0k4+IRMi8dQ6l1QesZSM7VaHPbyzt/L/U4wV0H4xrWEEffEPxb9zYZTituHKvu0MkUpF7l7LLPTAUyGS6h9fFp1gW1mw8KrSOG4kIuU82UHhHJkLmCsUvpGTduHH379qV79+6lKj07duzAx8cHNzc3IiMjmTlzJj4+NxJNTZ8+nR49elBQUEC/fv14+OGHLfYPDQ1l7NixvP322/Tq1QuZrOrkVNFlZqB0l6ItS0hUBoIg4OwXgbNfBAWZSZxa+zkZccfxq9epsrt2W/TF+ZzaOtci5o5HcFP86nTE0SOoTDJ0Rfmc+Psb9MX5yORKZAoVQfW64x7Q4I765uQVCsC5Dd+idvFC4+aLS1Ad8pLjyEuJNbeL2bYArWcgNdoNwrNOG/JTr1goPaUiyHDwsYy2LAgy84KMvjCf7IsnSI8+cKOB0Yh30844+pdNEay6SFnWK5pyKz3Lli3j8OHDHDhwoNT63r1788QTTxASEkJMTAzvvfceXbt25dChQ6ivBezr06cPKSkpZGdn4+1demyFd999l/nz57NkyRKGDRtW3m5WGsVJCah9H8D8MBIS9xlaN18cvYPJSbp43yo9+ZmJJJ3bQ+bVMxTn3/D6FGRKBJmMrIQzZCWcKbHfdZul635borncgIBA837vodI4gSArs3eXLZy8QwjrNoKU03vJjT9HUXYqWXGnUDq6onRwIazrcNQuXsiUajSu3uQkXODi1p/JvhKNysUTz7pt0HgFcHnHb+jzswlo/wjejSOt9k2Xn03GhSNkx54hL/4CokGPg18o3k074xrRGJWzO0qn6mewLnH3KZfSc/nyZV599VW2bNmCxsryzVNP3QgU1rBhQ1q2bElISAgbNmxg0KBB5jq1Wm1V4QHw9vZm0qRJvP/++xYyy4JRBahu28wCwWCfJizelHlbFEWKkhJwqFUH0dbklJ2G9HI7M5gbynkuAHSO9t0oFfn2nUd15p1kuS8fege7DoXe0b79BDu8fe3Nem5vdnZ7+giA0Y7vzc5nsGAo/46a0HAyj/9LnjflfvgLdoytrOffqCsiYc8G0o7tQeHgjFtEE3R5WcjkCjQe/uaggDf1ptR/jYqS43LwD0Hn747OyrGL3MrWxxJ9DgxGKSZA/DmUXt4offzwf2ak+fh6oCA2hlPfzQJA5eeP79PDcGzSCEFu+qGGdJ5KwaUYNEE1yFWYzAFkDo7oUlMpunKZwthLFF68QHFiIsjlaGvWwqNXb5yaNzd7wYpAEVB0i3GusbCazmZIMz0VSrmUnkOHDpGcnEyLFi3MZQaDgV27dvHNN99QVFSEXG75FPL39yckJIRz586Vu3MTJ05k7ty5zJ07t9z7VhairhiZlIJCQuK+wCEglNR//0KXlYbKzauyuwNAftJl4jYtRpebhX/H/ng26YjCYJ+xtaECTQcLE66iS0vGsVY9DAUFGPJykTs5k757G0Xxlym8Ysp4LqhU6FJT0KWmmPctTk4i7gvLWGQ1Xn4dQSZDlN944OafjSZ17RoMOdl49u1Pyh+/Weyj8PBEW7MmbpFdcKhXH7mDnW8oEhJWKNcvrVu3bhw/bhlI6tlnn6Vu3bpMnjy5hMIDkJaWxuXLl/H3L/+Sj5OTE++99x7Tpk2jf//+5d7/nmMwIBoMCAplZfdEQkIC0AaYbEXyr16qdKVHl5dN2vG9pBzchsYzgLAhz6F2v2breGex/+6Y3DMniF/6f6YPcjkYLDuk8vbFq/+jaIJqoPT2xZCbA9fCcuSdP0vCz9+Z2/oOHo5Tw8YlZqsMBQUk/HQjvs51hUfu5IznIwNwqFUbuaOd06nVGWmmp0Ipl9Lj7OxMw4YNLcocHR3x9PSkYcOG5ObmMm3aNB577DH8/f25dOkS77zzDl5eXjz66KN2dXD06NF88cUXLF26lDZt2tgl415ReNUUDl3pJeWAkZC4H1BoHVF7+JIffwm3Bi1vv8NdIufSaWI3/gKiEY+G7fB/6BFk8vvHlT5z/+4bH25SeFS+Afj0GYhDaE2T2cA15FotYFrSv67wKFzdCJn0DoKi5LhEvZ7M7dsAcGrREq9HBlKclIixoACH2nXMy18StyACxgoILCh5b5mp0F+dXC7n+PHjLFq0iMzMTPz9/enSpQvLly/H2dm+TMhKpZIZM2YwZMiQiuzqXUGXkQaAJqBGJfdEQkLiOtrAUPKvxlTa8RP3bSJ5/xacatSixsNDUTpWfoR2Y1ERudEnkDs4UnD5EvkXzuLT9zEyD+1Dptai9vHFqV5jHCNq25QjCAK+g4eTtHQRAaPGlKrwGAsLSVryC/nRZ3Bq3gLvQY8jUyrRhlas55UhP79C5UlUT+5Y6dmxY4f5f61Wy+bNm+9I3qVLl0qUDR48mMGDB9+R3HuBIT8fQamUbHokJO4jHALCyDy+H0NRAXK19p4eO/W/f0jevwW/dn3wbtUVoZQ4N/eS3MvnSFq7jfwLZy3Kneo1wqV5G9xad7Cyp3VU1xxSMvfswr1zN5TuHuY6XXoaCb/8jC49A//nXsChTt07G4ANrn737V2TXXlILusVzf0zv1oNMORkI1NJCo+ExP2EQ2AoIJIffwnnsHp3JMtQWEBu3FmMxYWI15cdrnkvCYJww+NLMLVN2LMOr6ad8Gnd/Y6OWxGkn4ji6lZLw2GPyB54Rva8o+Ulla8/cmcXsvfvI/fEMUJef4vi5CSSf1+KLj0NhZsbgS+NQx1QvmjS5cWr/wCSfll4V48hUfWRlJ4KQjQYyPjnbxzrlD/qqYSExN1DeS1Ld2FyvN1KT1F6Eon/rCf30hlEQ9mtjp1D6+HfsfKdMPT5OWaFJ+KtDzAU5KPyqBjDbkEmo8bLEymIuUjyiuXEfPA+iCIyjRbvRx7DqVWLezL77VDL9lJclUWa6alQJKWngkjdtBYAmVpKPyEhcT+R8d9eEAScI+yPSpxzKZqcCydxb9QW77Y9UDq5WixVideSOsr0YFqSwDQDdC3pcmWiL8zj/NKvUDg4ETpwNDKtA3JtxbqCK5xdcG7cFKWbG3lnTmMsLMClZWvUAUEWLusS5aSi0lBISo8ZSempIPIvnEPh4orPwCcquysSEhLXMBQVkBK1FbeGrdF4Wc8HeDs8Grcjccdq1J5+qJxL5vEyKTZCaampKhXRaCR+2woMBXnUGvYGKlcPiu7i8TTBoWiCQ+/iESQk7oz77CdaNSmMv0JxciLe/QZJNj0SEvcR2Wf/w1CQj0/7h2/f2AYyhRKlszsZJ/7FqCuuoN7dfbLPHyPr7FH8uzyKytXj9jtI3HeIorFCNgkT0kxPBZDz32GQyyV7HgmJ+4y8yxfR+AaidHazW4ahqIDsc8fR5+cg5mSiL8hFpawaCkRm9FHkWifc6jSr7K5ISNwXSEpPBaANDSdzzw7yL5zFsfadeYdISEhUDDkXT5N99hheLSPLva/RoCfvwhkyzxwi58JJRIMBx+CaeLfuhsqlaig8YMrxZSjIJW79QkIHPl/Z3ZEoN2LF2PRIwQnNSEpPBeBUryGCQkFxSpKk9EhIVDK6vGzS9m8n7dBOHEPr4Nmy8233MRQXUZyeTFFGMvmXL5iWxQoL0HgH4NO+F251m9/RbFFlkH3hJLmx0QB4NnuoknsjYTeS91aFUi2VHqNcBEX5vmSZnQ4W5ozdcjkGQYfe4fbHtSd7M9ifCdue/fLttPlU2ZktXW6ndaU6s/z76OxM76N3tPPGIdixn2jnBWnvvc3eodlhKmBPtnQAmbW04Tehz84idv7HiAYDnj374v5QV4xGgVu7WZQYT9bhKIqSEylOTcaQk22uU7p74NKyHe51WqLxvvFDKMtQ9XbeUXVO9u2nd7P+4776q8mjVFO/NoZONcjWXGur1dt1LLnKPrsQQWbffmI5fwNifqFdx5F4sKiWSk9loK1Vk5x9UTi1aIHCvaR3h4SExN0n7+xpjIWFhL31PxROlqlvRFGk4NJ50vdsJ//cGRQurmiCQnFt1hqVlw9KT29UXj7INaaozYqCyhhBxeEz/jkKjp0i4/e1pP+2BnVEKOm//I66bhi+k58vkRBU4j6kwnJvSYbM15GUngrCY+BArsz6iOw9e/Do16+yuyMh8UAidzBN4+VFn8KlWSsEmQzRYCD39HHS9/xNUfwVVL7++A0agnPDZtUy0aUuJQ1BoUDh6Y5Lt4fI23+EvL0H0NQKB6DoTAz5h07i2KpRJfdUokxIy1sViqT0VBAKd3cEpZL802ckpUdCopJwrNsA5yYtSF61nIx//kbtH0jRlcvoMtJwCK9F4LDROETUqfSAgXeTxI/mYMzLR9OgLs4PtcGQmwtA2sLl5jZFZ2MlpUfigURSeioIQRDwfPRRUpcuRZeWhtLTs7K7JCHxwCHIZPg9MRTXth3IitqDPicbbXAY/k8ORxNQo7K7d9fRZ2VjzDNlGy88eYbCk2dKtFHXDcexbeN73TUJOxARb+R4uxM5kveWGUnpqUA0Eabp4+KEBEnpkZCoRLQ1QtHWCAXsdwCobIrir6L08rIIeKrLzCDv+DGQCYg6HUXZyYjFOvSpaWAU0SWngEwGRiMOrZphLCyg8LhJ8XEf+jgZS/6g6MxFFL4Vk3dLQqKqISk9FUjRxRgA1MHBldwTCQmJqs6VOZ8BEDbtQ3KPHSX74H6KLseCKCIolSAIiMXFyF1dUAb4Ind2QtukPtpG9VAHBwFQcCoaQ0o6zl06IHe+4bZozM5F7lSx+bck7gIiFWSPI830XEdSeioQQ24OgkqFwsWlsrsiISFRTbj0wVREvQ65mxtKH18EhQJdcjJisSkdhiErG0NWNk6d2uLWt4fFvtr6ddBOe8P8OXjux6AqRlBKt/4qg5RwtEK5I5/FWbNmIQgCEyZMMJeJosi0adMICAhAq9XSuXNnTp48abFfdHQ0HTp0ICgoiOnTp1vUhYaGIggCUVFRFuUTJkygc+fOd9Ldu4poMJC+dp35RiQhISFhLwWxl8z/i3odcldXMBjQZ2RQfPUK4k35v2TOjjh3ewj3Qbd3oBBkMknhkXigsfvqP3DgAD/88AONG1saxM2ePZvPP/+cBQsWULt2bT744AN69OhBdHQ0zs6muBnjxo1j2LBhtGrVirFjx9KtWzc6dOhglqHRaJg8eTI7d+60t3v3nLyjRwFw6dixcjsiISFRpck5cojk5UssysTiYowFpsBBcicntBG10IRHoOnQELmTndE2JaoAIlREslAp4agZu5Se3Nxchg4dyo8//sgHH3xgLhdFkS+//JIpU6YwaNAgABYuXIivry+//vorY8aMASAzM5NmzZrRuHFjAgICyMrKspA/ZswY5s2bx59//kmfPn3sHds9Je/YcZT+/ng8OrCyuyIhIVGFyT162OKzY8PGqP0DUXh6oPTyQR0QaA4sqHeqolbaEhKVhF3LW+PGjaNv3750797dojwmJobExER69uxpLlOr1URGRrJ3715z2fTp0+nRowcODg7IZDIefvhhCzmhoaGMHTuWt99+G2MViSQpd3HGkJODPi2tsrsiISFRhfEe9ARukV1N/z/6BH7PjMS9Ww+cm7ZAE1RDiqT8ICGa3M0rYpMwUe5fz7Jlyzh8+DCzZs0qUZeYmAiAr6+vRbmvr6+5DqBPnz6kpKQQHx/PqlWrkJcSFfXdd98lJiaGJUuWlKi7H3F9qBMytZqrn39B4aXYyu6OhIREFUAURfIunUc03JixUbi6oXAzpbJRh4RWUs8k7htEY8VsEkA5l7cuX77Mq6++ypYtW9BoNFbb3RrtVBTFEmVqtRpvb2+rMry9vZk0aRLvv/8+Tz31VHm6CSqjaSsHRr2dEVq1puPInTz+v737Dm+qegM4/s1qmu69aOlg71VkykaGMkQFQQEVBwoqIgKiDEGGW/QnuAARRFDZQ5ZAGYJsZZZdoJvSvZI25/dHNCV00ARoaTmf58lDe++5N+ekIffNueecF/9Jr5Pw5XzivvsW//Ej0Pj7FnlIjottUbc2VmNbHW24iSlsHO2ld7XtOE2Gbcfprln/WubrbHsuo3spMl4WQamx4RaEjV/MjPk29gKUZYJTvW11VOTadpwqy7bjbEkwm+9duveIEILEz38k++gpAKp/+jy66v7m/efHLwfAraMWhSK52PM421ufqVdlYwJQWxltfG9Zm3A0T5vLJZueSbqfWPVpcOjQIRISEmjWrBlqtRq1Wk1ERARffPEFarXa3MNzY68OQEJCQqHen9IYPXo02dnZzJkzx+pjy4NSZ4/Pq8+hcnYkZe2W8q6OJEn3mPy0DITRSNI3y8wBj7Z6VeyrFWRzzzhx2fxzZU6XIZVOedzemjlzJs2bN8fZ2RkfHx/69u1LZGSkRRmFQlHk46OPPjKXyc3N5dVXX8XLywtHR0d69+7N1atX78jrYiurgp7OnTtz7Ngxjh49an6Eh4fz1FNPcfToUcLCwvDz82PLloILvl6vJyIigtatW1tdOScnJyZOnMj06dNJS0uz+vjyoNTZ49C0IbnnLpV3VSRJukcY4q6RMPtHrr76PtFvzCRz71EAqn7/Pn4TXzEHN+mHznHx7YUA+A17qLjTSdJdFRERwYgRI9i3bx9btmwhLy+Phx56iMzMTHOZ2NhYi8f8+fNRKBQ89thj5jKjRo1i5cqVLF26lN27d5ORkcEjjzxCfn75DcC36iaGs7Mz9evXt9jm6OiIp6enefuoUaOYMWMGNWrUoEaNGsyYMQMHBwcGDRpkUwVffPFFPvvsM37++WdatGhh0znKWn5qGko5jVSS7ntCbyBl1R+krd9h3pafko7SUYcxM5vosR/hNfxJnJt7kXM5gSufrgKg5pyX0QbKVBHSnZqyburpSUtLQ60uuOxrtVq0Wm2h4hs3brT4fcGCBfj4+HDo0CHatWsHgJ+fn0WZ1atX07FjR8LCTOmYUlNTmTdvHosWLTJPelq8eDFBQUFs3bq10ASmsnLHpwGMHTuWUaNG8corrxAeHk50dDSbN282r9FjLY1Gw7Rp08jJybnDNb177AL9McQmkJ+eeevCkiRVWvroeIuAR1PFF78pI6ny0VgA8q+nEj/jG04/N5sLE35EoVZR7cNnZcAj4ePjQzaZ5Iu82z5XBqkoUeHp6Ymrq6v5UdSEpKL8t6yMh4dHkfvj4+NZv349w4YNM287dOgQBoPBYjZ3QEAA9evXt5jNXdZue2nOHTt2WPyuUCiYMmUKU6ZMsel8ly5dKrRt4MCBDBw40KbzlQddk/ok/7oO/aXL6BrUKe/qSJJUxgwxCSidHArlt3Jq3xxtqCkvln2Dmhii47GvV53MXYcACJs+BF2YX6HzSfefli1bosORGC4RRPXbOtdlzlCVGvyd+pfF9qJ6eW4mhGD06NG0bdu20J2e/yxcuBBnZ2fz+nxgGttrZ2eHu7u7RdmbZ3OXNbngw12gdnNF5e5G0pJV6K/Glnd1JEkqQ8ZcPTFvf0rse1+hcreczqgJ8DH/7PFUL4w5uWTuPoxjvaqETn1KBjySmUKh4Nuf53KZsxhv4xZXukghmWvsT9iJi4uLxaM0Qc/IkSP5559/+Pnnn4stM3/+fJ566qkSZ3X/p6jZ3GVJBj13gUKtwm/cKyh19sR9NJecsxfLu0qSJJUBo97AlRcnAWBfK5Sk73+12J/w8XyMWaZb9Rp/bxwa1wEh8O7/IE6Nw8q8vtK97fHHH0cgSCDa5nNEcQZ/gktcIqY4r776KmvWrGH79u0EBgYWWWbXrl1ERkby/PPPW2z38/NDr9eTnGy55IKts7nvFBn03CVqDzf83noZO39f4j+aS9qWneVdJUmS7rLcyIIvOJl7Dptnad0o+1jB1F9NoKlnJ+3PU3e9blLFo1ar+WD2TKI4g7AhU3qOyCKBq2w/s/HWhW8ghGDkyJGsWLGCbdu2ERoaWmzZefPm0axZMxo1amSxvVmzZmg0GovZ3LGxsRw/ftym2dx3igx67iKlzh7fsS/j9OADJP+6juTf1gGgj44jLymZ/IwsjLkyK7skVRZqT7dblrk2x3SbQBiNpG/ZA4BD/ap3s1pSBfbcc8+RTQbJJFp97GXO4ok/NWrUsOq4ESNGsHjxYpYsWYKzszNxcXHExcWR/W/S2/+kpaXx66+/FurlAXB1dWXYsGG8+eab/PHHHxw5coSnn36aBg0aFEphVZZueyCzVDKFUonrw13I2LWftM070YYFk/j1oiLLBnw0AbW7jUsaS5JU7jQBPgR88CYx4z4ptM994MMk/7wegPQd+8m/nkp+smn9Mbe29cq0nlLF4eTkRCDViOIMHvjc+oB/GYSeaC6ye+8uq59z7ty5AHTo0MFi+4IFC3jmmWfMvy9duhQhRLETjT777DPUajX9+/cnOzubzp0788MPPxSZeqqsKIQtfWb3qLS0NFxdXQmaPRWl7tYDqizYmoZCfeuXLy8lleix00ssowkKwHfMCygdHYotY3MaChvYmoZCaWPHVVmmobhu4/WltCkGbibTUNykgqShECrb01BkHT5J4uwfTRuVSjAacWzTFKf2zYmf8Y3FMR5D+lLl8QY21VGmoSiQl5nL/kdnk5qaiouLi03Pea+Kj48nwC+AB+iMk6J0X4wvidNcI45kYX0PUWUme3rKgNrNleBvP8QQn0jMxIIlut2e6IlLt/blWDNJku4Gh6Z18RnzHAkfzwejKcgQefkoHQoSvykd7HHu/iDOnVsCck0vqXi+vr74E0wUZ6hH81uWN4p8LnOO39b8Uga1q1jkmJ4ypPH1xv2JR8y/p/y6gfzU9HKskSRJd4vaxxO70IIZL1kHjpGyYrP5d+curXHr07k8qiZVQNsiNxLPFXJE1i3LxnEFNRoefvjhMqhZxVI5e3psyLIulLZ271t3nH2jOvDbejRBfihUShTKXJTa4m9p3cgQalu+Ep2j9V3ger1tbw19gm0pzI12tsXfRjvr/275zratcGrvZP3rCOCss341cZXStvtbOXm2/d1svcltNFr/d8vKuvXaIEXJU9nYNq1tt3NULtbfqw1wT+X05BUk7ztfaJ/aWUv24ZMA+PVuQtWh9VE7XwegqnPxmdRLolZY37Y8YWPWeaNt4zCM2PbZau1tMYOo3JNCatasiSd+XOEcNWhYbDkhBFGc4YvvP0OplP0aN5OvSBnT+Hqj9vFAqdPiN+EF1F7utz5IkqQKQaFQIAxFfznxal/b/HPoy51RO1s57lC6763a8ytXuUCeKH58YRJxGNDz9NNPl2HNKg4Z9JQDz2GPoo+KIXrMJyR8vhhD7LXyrpIkSXdI3Zn9abXpLRp+NcRie9yaIziEeVP/00EoVPKjV7Je69atccKVq1wotswlIgmieqlWW74fyf955UBXJwz/ScNxbNuE3HNXSFq4pryrJEnSHaRQKHCq4UeL1aPQ+ppm2ziEeZN1IZGMSJmaRrLdDyu/5wrnikxNkSquk04KB67LxXCLI4OecmIX5Idrr/agVKBQl9+aBZIk3T0qnR3NFr1Eq01v0WjuMwBc+mZ7+VZKqtB69+6NChVxXC60L4pIAggplORTKiCDnnJkiE4gPzkNl+5tyrsqkiTdRQqFgvyMgoHw2VeSyrE2UkWmVCr57JtPCqWmyBIZJBLLrktby7F29z4Z9JQju0BfFDotycs2kvfvyqySJFUOeZm5nP1wPXkZOcSuOcz+x74w77vwP3lhkmw3ZMgQDOSSRJx522XO4ksVgoODy7Fm9z4Z9JQjpYM9fhNeID81g/gP5pOfmX3rgyRJqhAyTsWQuPUE+/t9wcWbgpzUI1HkpVu/lIEkAdjb2xNEdaI4A4Be5BLDJX4/IseH3ooMesqZNiQA3/HPkZ+STuJXSxF5tq0hI0nSvcWhWsl5ko4OX1BGNZEqo/1JO0njOmniOlc5jxueNG7cuLyrdc+zKuiZO3cuDRs2xMXFBRcXF1q1asXvv/9u3v/MM8+gUCgsHi1btrQ4R2RkJG3atCEwMJCpU6da7AsJCUGhULBv3z6L7aNGjSqU+KwysQvwweulJ8g5cZ5r36/AmC2/AUpSRWfn7kj4z6/Q+NvnaPrDC3i0scx0rU9MJz+7ci+oJ909Hh4eBBDKBU5xhXMs3by4vKtUIVgV9AQGBjJr1iwOHjzIwYMH6dSpE3369OHEiRPmMt27dyc2Ntb82LBhg8U5RowYweDBg1m9ejVr165lz549Fvvt7e0ZN27cbTSpYnJoUhuPp3qSdfAk8R8uQB+dUN5VkiTJRmc/XM+fD31I5LRVnJzwC5kXEvHu/G+mW6UC95bVAMi6KJNBSrbbeXELScShxYEuXbqUd3UqBKuCnl69etGzZ09q1qxJzZo1mT59Ok5OThY9M1qtFj8/P/PDw8PD4hwpKSk0adKEhg0bEhAQQGpqqsX+l156iX379hUKlu4HLg+1xm/8MPQxiSR8LqN2SaqolHamlBnpJ2PQX8sgcuoqIqeuQuPuSP2PB5L8lylNhZ135coGLpWtkJAQ6tCM33etRaGwMZXSfcbmMT35+fksXbqUzMxMWrVqZd6+Y8cOfHx8qFmzJi+88AIJCZY9FlOnTqVr1644ODigVCrp1q2bxf6QkBCGDx/O22+/jdFoW86cikxbPQi3Xh3Ii7tG/Kc/IvJsy7clSVL5EEKQdTkJjzY1cK5XBYCgIW0Ie+0hVPYajo9eAv/ONNZ6O5djTaXK4IQ4QNu2bcu7GhWG1Rn8jh07RqtWrcjJycHJyYmVK1dSt25dAHr06METTzxBcHAwFy9eZOLEiXTq1IlDhw6Zl8Tu2bMniYmJpKWl4e3tXeRzvPvuuyxYsICffvqJwYMH30bzKiaXHm3IT00nbeMe8lPSUXu5lXeVJEkqJYVCQfrxqxbbEjYfx6VRVbSB7ii0amq90xtdoEcxZ5Ak6W6xOuipVasWR48eJSUlheXLlzN06FAiIiKoW7cuAwYMMJerX78+4eHhBAcHs379evr162fep9Vqiw14ALy9vRkzZgyTJk2yOGdpqezyUWqt6yHJtzUbrZWZgAFulXRYoVaha1yLtI17MObkmMs7u9g2pb2ah/ULofnrUm9dqAgHnKvadFxCtG0riBr8rO8NdHCz7XX0cMqy6ThvXabVx9gpbevhU9qQdRtsz6B9LcfB6mNS1ba1Lc/Rtv+jzva5ty5UhABH69fOSt95DGd/R9qPb07ErAPm7blxqSTGHWPEgYEolAogB4gx79epbBvQbBDW/91yjbZlq7c263nBcWUzSVhvkIPCpVuz+t1vZ2dH9erVAQgPD+fAgQPMnj2bb775plBZf39/goODOXv2rNUVGz16NHPmzGHOnDlWH1sZKO1NPWM5J86jdHIAIRDOGnnfVpLuYZvetpyYgQLzraxhfzz2b8AjSVJ5sS3kv4EQgtzcor9JJSUlceXKFfz9/a0+r5OTExMnTmTKlCn06tXrdqtZ4ah93LELDuD64vVcX7wegDhPZ7R+7igdtHj0aIZzs+oyCJKke0BuSjZHPtkNgEKlYPCqXjh669BnGji1+gK1e4ehc5NZryWpvFkV9EyYMIEePXoQFBREeno6S5cuZceOHWzcuJGMjAymTJnCY489hr+/P5cuXWLChAl4eXnx6KOP2lS5F198kc8++4yff/6ZFi1a2HSOikrl4oT/lOFkHz9n2mA0Yrx4DkNSGvrYZKKmLsX9oSZUebknCpVcY1KSykvMnigOTNuGQgFd329Nze7B5i8jOjcVTYfWLecaSpL0H6uCnvj4eAYPHkxsbCyurq40bNiQjRs30rVrV7Kzszl27Bg//vgjKSkp+Pv707FjR5YtW4azs20zFDQaDdOmTWPQoEE2HV/RCSG49u1vqL3cQanEEBWDyMvH+YEaeA94kMRlu0jbexqHOoEAODUKw6vXA+Vca0mq/IQQ5GXqQaHgz7GmBVq7LXmSGrXkFxBJupdZFfTMmzev2H06nY5NmzbdVmUuXbpUaNvAgQMZOHDgbZ23olIoFNiFVCHn+Dm4IZuuIT6Vqm89hkt4DdIOnCH7XCzGbD2x321CaafGtW1dVI725VhzSaqcjIZ8zq88wdll/5AVl2GxzznYDZCJgyXpXnbbY3qku0ehUeM37lnyklLJOXMJ77bBqOw15ttZDrWq4FDLtA6IEILjfd4n+qv1xHy7Eb9nu+LZo5m89SVJd0hOcja731hHyvnrBHevie8DgaZ0Oyolfi2Dyrt6kiSVggx6KgC1pytOrRqhdix+qnVKxHFc29bFvpofhvhUYr/dyPVNh6g69jHwkIGPJN2OjKup7H1nMznXs+j8fT/caxW/5IYkSfcueTWsYAzJGcQu2Er2xXiL7cl//E3q7pMk/rKbKq/0pPqnz4NRcP7NecTtuVQ+lZWkSsCQqWfjgJ9JPZdEmw97yIBHkiowGfRUMIb4FK6t3Evib5brgVQZ+QhuHRvg+e9AZl11f6p/MgzHhqEcnLKFzGjbFhuUpPuZ0ZBP3L7L5t896viUY20kSbpdMuipYBxqB1Jr3msEvvqIxfYL434gZfsxvPu1Nm9T2tsRNLovKns1F1YcL+uqSlKFlp+bx/aXVvHXpK14NvDlkTVDyrtKkiTdJjmmpwKy83YttM2hdiBpf54idv4WAkcWBEQqBy2uNby4uvUs9Ue2LnIxQyEEedkG9Ck56NNy0KfkkJ59ndw0PUGt/HELlpmgpfvLha+28ufqwyjtVDSf2ImqD9WQqylLUiUgg55KourYx0j7KxJd9cKrXzsGuZGw/wr739mInas9+tQc9Gm5//6bgz41B5FXdM6mxkPq0Or1pne7+pJUrvRJ6UT/sh97fzeSdkaS9m/C0C4LHsclxLa8cJIk3XsqZdCjtstDZZdn1TFKG6d2G/PL7g6h3lDyn0sXXv/fcpbbw15sx6VVx0k4GI1jkBsaVx12Xs44VvNB42Jvfti52qNx0aFxtade+t98/fxhjv54irzoazTo7EPdDl44utmVXElf29p2WCluXagItiRBdLSzLQGlmzbHpuMc1NYnQvTQ2JbcVG1jolJbE4662lmfvDXT4RbvoWKobUym6qXNKHH/8RXn+XPaQfPv/o08afRGI7oN8kTrmAwkl/q5VNj2PrYlcShAjlFj9THGW2U8Lka+jYlDk6Oz2TX3FG1erIV7kFPpn8/K0Re5doZbF5Lue5Uy6JEsqbRqgvs3JerXI1Qb2gLv1mG3PKZmA0/Gb2jN8T8SOf5HAkvfOQEKCGvmTv3O3jTo7INHFV0Z1F6S7q6kCwULCrZ4oS6tXmkAgFZb+mBHKpoQgnkDtpGTZqDx4yFWBT2SdDfIoOc+Uf25VqSeiufc/H14hldFaXfrP71PiCOdhjnSaVgIaYm5nNieyLE/Elj3yVlWzzpDldrO1OtkCoACajvJ5KdShWPMN3J+ezQAXac0p27v0HKuUeWiUCjoPT0co1EQ2MizvKsjSTLouV8oNSrCng7n0JhV7HlmMa2+H4S6hNsMXz59gIuHUxj8cX0adfPDxVtLq/6BtOofSE5mHqd3XuP4tkR2LrrM5jkXcA+wp35nH9zbCvwbe6NU3/nbfumnojEkpQMKUABKBQKlqbP+v0GmCgVqFx1OtQLu+PNLlUt6fBYL+24gLyefRz5tQ/WOgeVdpUqpeju/8q6CJJnJoOc+4hkejGtdP1JPxqG/nlVi0KNzMb01Fo05zrbvo3jivTrYO6s5t+86DR/ypXEPPxr38CNPb+T8wWSOb0vkn83xpC66jNbVjpAHAwntEEhgS380utt/mwmj4OQbi0pdPujFzvg9KpOvSsXb88U/5OXk88DzdWXAI0n3CRn03Gf8u9Qi9WQcudczcQh0K7Zc/U7enNxxjS4vhnJq1zU+H7DfvG/NR2d4ZnYjarf1Qm2npFZrT2q19qTfO7X485CaixFXuLj9KpHrLqDWqghs6U9oh0CCH6yCzt22RKjCaBrEWvWlznh3qY8wChBgFIBRmIaPCtOGuOV/cXX+dpQaFV7dGqPU2DZIVKq8hBCc3hAFQKtX6pdzbSRJKisy6LnPVHm4PvE7z3PorVU0n/04rrWLnm51/WoO7v729BxVnW4jwzi8Po6EC5k06OLDkvHHmTfiKG0GBhFU34V6Hb2xd1SjUCjwqeeJTz1PWrzSmJTLaVzacZWLO66yfeo+FAoFrkHOKFQKc9Z4IQABOflqCk98Eebk8iLPNCtJ7WyP2rlgAHVRs7cCh3UiP1tP1JzNXNtyjGoT+qL1dbvNV06qTDZN/AuADmObyLFoknQfkUHPfUalVdP0gz4ceO1XTn66jVbfDiyyXEayHjudqYdEpVbSvE/BGJmBM+oTsTCKUzuvsfPHy4SFuzHyx+aFzuFW1YXGQ+rSeEhdspKyubQzmuQLN6TDUBT8E5/jcuMmUCgsyvBvNmu38Gq3bKNSoyL0jYfx7tmEC7NWc3LUQmpMeUKO85EAyE3Xc3q9qZenVvfgcq6NJEllSQY99yGVVo1/l1pEfrWL1FNxuNYpPNCwZksP9v0azald16jzoJfFvuBGrgz5tCEAo+tu4fKxtELH38zBU0fdR6sXu/9wYpCVrbg1p1oB1Pl8KGff+43IcT9R9ZVueHVtcMefR6pY4k5cB6DxUzXRuWvLuTaSJJUlq6bYzJ07l4YNG+Li4oKLiwutWrXi999/N+8XQjBlyhQCAgLQ6XR06NCBEydOWJwjMjKSNm3aEBgYyNSpUy32hYSEoFAo2Ldvn8X2UaNG0aFDByubJpXEr0ttXGr7sn/EL6SdSSi0v1F3XwJqOXFobWyJ5/EM0tGq/707CFTj6kDtmQPxaF+XS5+t58yEpaRFxpV3te4rQgiu7o0mX2/bwol3WuS/Y3l0LrYtkihJUsVlVdATGBjIrFmzOHjwIAcPHqRTp0706dPHHNh8+OGHfPrpp/zvf//jwIED+Pn50bVrV9LT083nGDFiBIMHD2b16tWsXbuWPXsss4Xb29szbty4O9A0qSRadwce+OJxUClJ/vtqof0KhYLQpm5c/icVIYpfZTagljMndySSk2HdCthlSanVEPrGw1Sf/DiGlEwOj/yZpL8ulne17htROy6z6bWt7J9dsOpx+tU0/nh5LScXHgUgOymLhCOxJEdeK/H9didU62QK0n3re9zV55Ek6d5j1e2tXr16Wfw+ffp05s6dy759+6hbty6ff/4577zzDv369QNg4cKF+Pr6smTJEl566SUAUlJSaNKkCQ0bNiQgIIDU1FSLc7700kvMnTuXDRs20LNnz9tpm3QLSjs1Dv4uxP5xBp8Hq6Pzs0wsGtbMnT0/XyUtMRdXn6JnXT3yZg0+fWwfGz4/R793a5dFtW3m3rIGbs2rceG9ZZyZ/QctfnimVIs0SpbSojM4/OMpXKo4UrN/fVR2KvQZes5tuEBmQiYxB2Jx8HLAJciZvOw8onZcBuD0ijOEdApm/9yjXPs7HoDEo3HEHbhKwqGCHsXqj9YhfGxbcpKz0bra3/FEn6EP+qO2V3H9fBohrQvnqpMkqfKyeQW5/Px8li5dSmZmJq1ateLixYvExcXx0EMPmctotVrat2/Pn3/+ad42depUunbtioODA0qlkm7dulmcNyQkhOHDh/P2229jNNqWa0cqvZoj2pEVncL5H/YV2vffxUajLX7Kt3ewAw+9EsaepVdIjrE+D1NZU6iUVHu5PbkJacRtPlne1alw8nLyWD5sC6fXXeDP2Uf5oc1i5j2wkLXDfmfvR39xdt15XAKdSTqdxPElJ7m4LYrs66acZcY8IxuGbzIHPP/RutoT1KlgJeRzK0+xtNV3rOq5mFOL/y62Lvn6fHJTrc+jplQp8arhRuyxJKuPlSSpYrP6a+6xY8do1aoVOTk5ODk5sXLlSurWrWsObHx9LadA+/r6EhUVZf69Z8+eJCYmkpaWhre3d5HP8e6777JgwQJ++uknBg8ebG0VJSt4twjBKzyY9HPXCu3zCXUAYP/KGDo8U/wsl1YDAtkw+xzHtyXi99i9PxvGMdgTjwdCSdh2moBHGpZ3de46YRSc2XwFv4aeuAY43ta5Uq6kk5l4U3ArIOVCCgAugc44+jhi52KHZy0PqvesxvaJOwnpEExqVCq1Hq2JUy1/XMPcUdsX/vjJyzZwNeIS+97bAcDJhUepPaihxQrf+fp8to3aRMLROIQQhDxUjYbDmuBS1bXU7QhrF8D+eSfJN+Sjkus4SdJ9w+qgp1atWhw9epSUlBSWL1/O0KFDiYiIMO+/ec0LIUShbVqtttiAB8Db25sxY8YwadIkBgwYYG0VsdfmodJal3HXkGfbB19+GWZZ16htGwiaaSh5wKZRrSH9XCLJCQbs3E0XxSyjHW41PGkzNJQ1H54hMwseHFYNtaaI9ursCGzozq6frzL7KR0arfWvyZVMd6uPAYjJcLl1oZs4afS4V3fn8toTaPUZaBxLfn2EEKSeSeTU+iNcP5dMlRYBOPo4AAqyk7Op2as6jj7FBxOB9tYnrtQqbcsYrcwzcC0qC59qjub/d9u+u8jvn53FydOORyfWITcjD2cvO8LC3bFzKPgIMOTk8+fPV0hNyKXt01WLTCgb3BA8Fjfn4KoY7J3U7Pyh4AuN1lFF31FV+eZZ09idCWtMK2L36NP1prNk/fsogiu0GGBHv/5dWfvhGXYtjOKXB+cx82gXog5e50TENXYtMt0ua/1kIN4hDmyfH8XGoRcZsTCcoPqFAx9nVeEeSIcOSv78Kh+Hc2eo3qzo95CDUl90HUtQltnSAZxU1v9fK2ptq9KwNut5wfPZdly+ldngczT37rhC6d5hddBjZ2dH9eqmqcfh4eEcOHCA2bNnmwcfx8XF4e9fcJ88ISGhUO9PaYwePZo5c+YwZ84cq4+VrBPyUgeu7T7DyfG/EvZaV1zqVTHv6z6mDsY8wbavznB+3zUGf9UclUZBSmwOnlUdzBfW3hPr879+O/n1y1gGjalS3FPdM0L6NiBq5TGOfbydRm93QWVX/MXq+KcRRK0+jkqrwquuJ5GrzpKTnGNaFRo4uew0j3zfA9eq1gdgd9LeJVGsnW66ZddrXC1qtfVk//Joc2CSkaRn0aiC20UaeyUPPBZIjVYeuHhrWTXjNJf/No2x27UwioEfNKBmG08c3DQobxhXE9rUndCmpiC1ySP+zH7cdGu0QVdfguqbXoP/0pjYSqFQ0HtcLXYtNNX97cZbzftaD6hC3Q7e1G7rhVKloNUTgcx97hDzRhzl9aUtcPe/9arfVes64eSu5uDvicUGPZIkVT63PYpTCEFubi6hoaH4+fmxZcsWmjRpAoBeryciIoIPPvjA6vM6OTkxceJEpkyZUmgAtXRnaVwdaPDpQM59uoljo5bg+3Aj4p5zwa+WCwqFgoffrke9h/xZ9MoB5jyxi2ptvNn/cxQtB4XwyIR6APhWd6br67VZ9dlpGrZxoX4r53JuVcl0vs40fKsTh6dtJvlEHM3e645bncLBefLxWKJWH6fuyLaEP1EVjYPpG7kQApEvyIzPZOOrW1g5aA0Pvtuaat3DyropZtlpBb1Daz+IZO0H4OCqoVkff1Ao6DaiGlpHNXYOKq5HZ3NkXSz7frnKnp8uFzqXW4A9P487BsDDY2rS4bkQi/1zhxzgwsFkHD1Mr0dgfRd6v10LY76g8cN+dBl+Z16HET89wB/fXuB0hOn2a71O3jw2qY5F77GdTsVzXzbi8yf38/0rR3h5fjOc3EvuvVOpFbQb4Me2RbH0GRWMzkkOaJek+4FCWDE/dMKECfTo0YOgoCDS09NZunQps2bNYuPGjXTt2pUPPviAmTNnsmDBAmrUqMGMGTPYsWMHkZGRODvf+iIYEhLCqFGjGDVqFAAGg4E6deoQHR1NixYt2LFjR4nHp6Wl4erqSv1f3kLlYN2iY5Xh9pbIy0cYRaEZSa4OpRtgLIyCuLVHuPT9Tow5BtoNq0bXUbXMF5hrUZkse/Mw1y5lYsgx1eXxWY1p/IipZ0cIwYxWG9FolXyyoQ6unqXvsv8xpnWpy97IlttbAU4FiymmXUjinw+3kRqZgFd4EEHd6+DfoRqKf28bHJ66iZRTCXT86Wn8HDOKPJ8h20DEpN1c2X2VBye1oXoPywt+Wd3e+ntDDMveKujJ6TepDs37VUFtV/x71GgUZCTpSU/MJd9gRKlRcHhNLI16+JEck8NPb/4DwKSd7VFplGz49CyZKXoid1/DkG050UChhNoPejFgZn0c3e78GjiqwnlKLMSdzWDOswdR2ykZ8llDQhq5AUXf3gJIjs9lQueD9Hq1Kj1fKrw4ZkW4vWXLLadKe3srI4+JD2wjNTUVFxfZeycVzap3Y3x8PIMHD6ZWrVp07tyZv/76yxzwAIwdO5ZRo0bxyiuvEB4eTnR0NJs3by5VwFMUjUbDtGnTyMnJsen4+8250d9x8okZGPW23dtWKBX492lKi+UjeeiN2uycd55VU45hzDddbLyCHXl2XgucvOzMKSp+G3+UrFTTxeHMrkSyM4ykJeWxbn7hBQ/vRS5hnrSa/Sh1R7YlPyePw+9tYuewZcTtvkjU6uPEbD2Ld3hQidOmNToNHWe0o1q3UCIm7eLkL6fKsAUmcWfSWTbWFPAoVDDrny60ejKoxIAHQKlU4OKtpUpdF6o2ciOwriu9x9cmuJEbDbr4UL2FaS2bqe0imNF5J0fXxxJzOh1DthH3KvY8/WlD6rQ3rdgtjHAq4hrL3j5+dxtbDL8aToz+rSVu/vb8b/BBdi0u3IN1I3dfLW2f8GPz/Giy7+F1piRJunOs6um5193vPT1nXv4KfUwSwZMH4dy0IOVDaXt6btTD/yRHVl9lxcS/ado3iD5TGpjHdUTuTGDRKwdwdLcjM1nPqHXt8QpxYu37x/l77RVyMo24eauZsbw2XgGl+8ZfXj09N0s+Gc+pOXu4/k8MAEE969DgzQ4oNSp8denFHgemnq7d7//JpR2XGbj+CfPspLvd03NmVyJrpp8gNzOf5o8G0HN0jTuaRDP9Wi5n/kwi+lQ6jXv44eiuYdMX53jgsSpUb+kJwA8jj3BiWyIAz81tQp32xU9UsNWtenr+k28wsubjs+xadJmhnzWkbc/i3yPX43J596FDtOvvy5PvWuZ1kz09t/9cpueTPT3SvUPeyK5Egsb0I27hVnRhd2bBtSZ9AlEoYfmEv1Eoodc79VFplFRv7UWdTr6c2haPk6cd7lVMU9vzDEZyMv+95SHg7X6nmb2lHg7OFWdKsHtdX1r/rx+pkQno03PxahpY6sXxFAoFjZ5twLkNFzj87VEeeC38jtUrNS6bI2tiqN/ND5VagYuPPXFn0tnyxRnO7L5GaHMP+k2tj1/wrQfxWsvZS0uz3gE0612wbdBHllP9+75Th1YDg/Cr7oSr752vgzVUGiV9x9fk6ok09i2PLjHo8fDT4l3Vnj8WxdK4iye1W7qVXUUlSSpzMuipRHTV/AmdemfXNWrcKxBjvmDVlGOkJ+by9P/CUamVPPVFOIdXXWHFu//w94YYmvYJ5OHx9WhUHzJS82jby52xvU8z+42LjP26Gir1nV1V925zreVj03EugS40e7kJB748RFDbQPybFk7maosL+6+zefYZNs8+Y7HdO8yRQZ83oV4X3397d8onv5Wbvz1upZg1VVYUCgX2TupSve9yMkyv2SdDj/PloZbYy0HNklRpld29GalCyDgTR3a05e2Ypn2D6P9hEyIjErjyd4rF9tAHPFnxzt8sf+dv7HQqug/25vGR/vgF2zP6yzCO7kxjVNcTnPyr5FtDlUmDp+th56ThxM93ZmxPanwOexZdKrT9iVkNeW1lW+p39bujt7Mqi9T4nFJNnW/zWEGAe/qv1BJKSpJU0cmgR7Lw94hFHH7me5KjLRePc/I0jZG6eWDskLnNqfmgN8c2xpCTbjkOpXE7F6b/Vgs3bw2fj7pIWpJtC+5VNAqlgroD6nBl91VOr4i0+TyG3Hz2/RzFJ90jiDlZMA7pzU3tmHGiB016VUGllv+Fi5IYlUVMZAZ1O9x6bFG7/gW9cdWayLEgklSZyU9MySz3WsGU7LT4ghlzQgh2fHMWJy8tvjUtZ+JptCraPluNvFwjl/8uPGC3ekNH3vwqjPw8mPn8eS4czyIpVm+eEVZZNXm+ETV7V2fPzH2c2Bht0zkuHbzOmvdPkqc3jZNyr6Jj4p9d8Ay8vVQS94Oze015tfTZ+RiNJb/X3HwLJj3sXBZ3V+slSVL5kkGPZKb1cqLu9Mfw7dmQnfPOs/ydv9k57zzfPv0n5/68Rsa13CJ7FoKbuqNSK4g6dL3I87p5a5i4sDrXEwyM73ualx88zpO1jrDt18L5vioLpVpJ6/EtCekczIaZx0i+mmnV8du/OceiVw+bfx/6dThvbe6AztW2WT73mwuHUwD4+e0TvNP1IHmGkpMXT1zZGIBVn0dRiSa0SpJ0Exn0SBbcHwjDtVFVIiMSOLL6Klu/iLQYx5OZXHgar0qtpFGvKuyaf4F18+PJzyt80Qip68BX2+sxYV41np9qWgjOWD5jbsuMQqGg9VstsHfS8P2gXVb1+GQk6cnLNV2oWwysSq0H7/wU8MrsxlQUyXH6W455qlrXCYd/x//8vb3o4F2SpIpPBj1SIV4da9NnSgM0OhWewY68vLQNPcfVpUnfwGKTifaZ3IAWA4NZNDOaL9+8VGQZtZ2Sxu1dadrBlBSyIk1lt5XOU8dzP7YlONyT38Ye4tqFkgd0X9ibyMFfLlHlhsSZj4yvc7erWel0G1Gw5s6E3xqVahbXk++aVtL+6uWyX1xSkqSyUSnnZjpo9KjtrJvNYlDZuDihjQt92cJOZVvXiFZl/WqzQb0a8HidIDa/+yeLRx9l8KpehKmUXAfILfqYZm+0pm6VLH78LBHj9XTcvIp+e7kEQr1wHcs+vUqzcBXe/hq6eZ+wuo4Ai7NaWH2M3mjb3zo337b/LsG+evqODOTUlljyoq/hVbP4suvXXODgunjz7699HkYNhySbntcaSkXJt3+Ko8K242x6LoUVt5200L6PGxGrU6gVmIvLLRb2BOj9qB3zx5p+Vl+7hpu/9e+TfBsX4jMobXtPGoT170lbFxm09bPOaPPzWXdctg2fc9L9R/b0SMXyrO7Gg2OakR6TybwuK/hj6j7yckr+YOnW3xWtvYLX+l7k3Ini04eM/iCAPL3g+c7neffZyxzZVDHSVtjKzU+L2k7J1dNF5+/6T9+3CnoolCpo1dP9blet0nrunSrYOypZ/nViqcorlQp6P2taYXrHautX0ZYk6d4ngx6pRIHhvjz+w0M0eKIGZzdG8U27X/l7qWkadlZSNhvG7CQrqSDNhYu7mo9/CSEhJo/pI65y+mjRKTCqhNrx1bpQBr3qRcwlPYvGnTLPUqqMHFw0uPtrObIpgZzM4gNHVx8tg6bVAkxjnuT6O7Zz9VTz6AverJp3jd7VjvFM61NkpJXc4/PseH9qNNRxeGfJwemNNvx0nYfDTvBw2Al++zpBDoSWpHuYDHqkW/Jr4EXLVxrx+MJu1OoRwq6PDvFj7zXMf2glF7ZfJfqQZS9NSE0twyf5EnvZwKh+l1g5v+iBoS7uaga87MXkb4Mw5BpZOiWSLd9FkRRtfa6wimDY7Ppcu5LDxjmXSizn7FWQr8yQW3kDwbLQ7yUfajUxpUm5Hp/HyQOZJQYlKrWCNj1cOftP4ffg9UQDf/2RTsTaVJ5rf4aFH8fzwWtXWPq/gp6kHz+K582+58mv5EsySFJFJYMeqdS8arjRaVILmg6tg2d1N9q80QSlWsn+b46ResVygG73AW7mn795P55rccUvTBhcQ8vDr4Xy95ZEfp9ziY/7H+LKycq3gnOVWk60fsyfg+viS1ynqEZzN/7r4Pl7d/HJUaVb09gpmbk01Pz7+y9GcS225EUyXT3U5GQZyTNY/o32/J7G1Bcu8+HrV4m/YuCXOdfYuS6NpPg8eg5yZ9nR2gCcO57NgAYnSEuWY0wk6V4jgx7JKkqVktavNeHhT9vR5Ok6DFzaA2OekaVP/c7JNefR/9szYa9T8v4PQbTo7ATA8u9Lngbc/eUQPjrQjqnbWqHRKvlu5LFbLipXETXv40dqgp6PnjjImk/Pk51R+MKodVTjW9W0YN6SD6+WdRUrnax0y94yd++S1zpKS8lDq1Nw89jih5/2ILSOaSq8o7OSJ4Z7MWFOEF+sC+PFiX44uahYuM8U+OhzBbvWyZQWknSvkUGPdFvcQ10Z8FMPQtpWYdt7f/FUq3Ps3mjqnQhv58R73wXR5TFXdv2edssF4sB0wU+OzSU5NpfIPyvfeilV6znz/Jf18Ql1YOdP0UzutJe5L/7N+UMpFkFe16dM6/LEXCh+MLhUOs5uasZ+WZW+w7wAuHqhmOmH/7p6PpfAMC1KpeV4KqVSwf/WV2PNmbr88ncdnhnrS5vuLlSrqzMv5eDiUTCbysm18i/JIEkVjQx6pNtm56Sh24w2DPr1Yeo21fHZuFgSb7iF0PNJN67F5vFIrUgunSn5gvPH95dRKKDri1UJbeJaYtmKqlEXb579pB5vr2lOp2eDSInP5fOnjzC2+S7e67aP7149hoevHVqd6b9nRqq8TXK72vZ0ZeDrPmh1CjYsSipxzE3cZT3+wdpi95e05s/CDwrSWLTv7WZTXSVJunusCnpmzpxJ8+bNcXZ2xsfHh759+xIZaZlQ8ZlnnkGhUFg8WrZsaVEmMjKSNm3aEBgYyNSpUy32hYSEoFAo2Ldvn8X2UaNG0aFDB2uqK5UxjzBXxnwSgL2DkgUfFQxu9qlScDvhYETJs2Kux+bgX8OR3m9UQ6VRVuoZXZ5VdHR/OYSxv4UzYl4jeowIoVEXL9IS9cx+/QK52aa252RW8qWry4jOUcXQt/zY+PN1XuwQyR/LC09Lz80xcmxfJga9bbdWXT1NPT0d+7rdTlUlSbpLrAp6IiIiGDFiBPv27WPLli3k5eXx0EMPkZlpmVeoe/fuxMbGmh8bNmyw2D9ixAgGDx7M6tWrWbt2LXv27LHYb29vz7hx42xsklSenF1VdOvvxv5tBcGNp68a3yoavPzU9B5S8rozvqEOJFzMYt3sC4xuFMGP4yr/6rgqjZLarT3o/FxV+r5VnTeXNuPt+TVo28cDlRpcPWW+rTvlkaFefLS8Gk5uKr6fFlNoUPO6haaFIFt1sy3b+mMveTP9p1BemBwAwLVYg5zCLkn3EKuCno0bN/LMM89Qr149GjVqxIIFC7h8+TKHDh2yKKfVavHz8zM/PDw8LPanpKTQpEkTGjZsSEBAAKmplgP+XnrpJfbt21coWJIqhpBaWjLSjObFCRUKBWM+CeBaXB5vD75c4rGtHvcnuKELm76OAuDIxgQuHr3/BoTWa+HMub8zadrRrdjUH5JtajV2YOoPodg7Kvl2aozFvm0rk+nUz41O/WxfFLJBSyecXFRERebwXNvTDGpykmzZWydJ94Tb+jT9L1i5OajZsWMHPj4+1KxZkxdeeIGEBMt1XKZOnUrXrl1xcHBAqVTSrVs3i/0hISEMHz6ct99+G6Ox8t7eqKzirpiSkt44LbvBAw68MsWXEweziTpb/LgeBxcNoxY3ZfSSprTs549SpeDLZ4+y+pPz6LPvnwvH5p8Sib+cyxOvB5R3VSolV081Lbu6sm9zGkNanCLteh6rF1zjytlcXNxLn9oh+kJuoant//mvFykz3ciAhieZNz2myHKSJJUdm4MeIQSjR4+mbdu21K9f37y9R48e/PTTT2zbto1PPvmEAwcO0KlTJ3JzCy50PXv2JDExkZiYGFauXImqiLxX7777LhcvXuSnn36ytYpSOZn/gWmxtsAwO4vtPZ50x91bxf8mxbHqh6QSx02ENnHlqem1mflnGzo/G8TW7y/zZtOdfDfyGLlZlTv4yc8zsnZeHO37eVG1lkN5V6fS8qtqen+mXMvj6eanmPd+LAAXTpZucczTR7J4scs5Hm9wisQYA9EXc5k/I5ZFH8eRZxA06+DMmvMNGD7VFLiunp/E4k/ibnFWSZLuJpsTjo4cOZJ//vmH3bt3W2wfMGCA+ef69esTHh5OcHAw69evp1+/fuZ9Wq0Wb2/vYs/v7e3NmDFjmDRpksU5pXub/oYVhHWOljG1xk7By5P9mDEymmN/ZZGfB48971ni+RxcNDz8Whg+IQ78OO4U//xxjejIDMIq6cwugHMHUkiON9B1UPH/P6Tb1+1JD/S5RpQKSIgx8PtPpiUSJs8PKdXxzm6mL2sGveC3b66Rk2Vk6/IUALo84W6eAdbzKU+qVtcyYdBFItam8PSbfne8LZIklY5NQc+rr77KmjVr2LlzJ4GBgSWW9ff3Jzg4mLNnz1r9PKNHj2bOnDnMmTPHquNctTlotNbdFrM187bRhszDaqVtt+zsbcwi7KQpeZp4UdRK23pTdmzVm39+f1Q8L02vir1DwWvbuLuORg+mcepABjovB9KMOgCa6y6WeN7mA8Bw1oWfv0/DO/UKzXWmC1Ssv5vVdVx3uZ7VxwBcSbb+uQB87a1bXXr/7lhcPVU0bSRQKDJvfcANNArb/m4qbBtsq7Qhy7qdjXVUWpNl/QZF/R/95pPr+AVo2L06jaTEfFzcoF5jO+Yu88dOa3rN9aL4zwQhBEs+jgeg79MurFt6nZnf+tOttwPBNezw8RdAwRpLk4aa3t/9BruSfCGNy+f1tH3I0ZxbLR/bcqwZSqhjcWzNsm5LRnewPTu7tfVU2fiZJd1frHpXCSEYOXIkK1asYNu2bYSGht7ymKSkJK5cuYK/v7/VlXNycmLixIlMnz6dtDS5HH9FUL+Vs/nnPeuSGdH+OFfPWd4uuB5voGUPd9r29rj58BK9/q4HNepo+GhiEu+NTmTX1qxKOTPmysFEGrdylMlG7zCjUfDNJ8m0DLnEgi/T+PbTZC6eNZCfJ3j/f77MWxWAnbZ0r/nGFens+N0UHD3/pgfuXiq2rE6neTtHfPwLz7Z7abxpYcQ6jez59oNrTBwey4Zf5GeaJJU1q4KeESNGsHjxYpYsWYKzszNxcXHExcWRnW26qGVkZDBmzBj27t3LpUuX2LFjB7169cLLy4tHH33Upgq++OKLuLq68vPPP9t0vFS2nNzUzFheCxdPNQhIT85n8sCzHPwjxVzGN0hLfFQu12L0bPghgdTrBnJyCuc6Ksqsb3xIvmbk9xWZvPV8Ahf/TLjlMRWJPtNA3InrNGwpx/LcaUYjaDQKevRzZMxUD75b4c++SyH8cTyY2vWLX4ywKE1b6sw/P9LkEknx+eSXkDbliefc+W1fKA2a2zP8bVMA9NH4BFKS5MKTklSWrAp65s6dS2pqKh06dMDf39/8WLZsGQAqlYpjx47Rp08fatasydChQ6lZsyZ79+7F2dn5FmcvmkajYdq0aeTkyOX4K4rqjRz5dm8Dnh5XheqNHAitq+PDly4w8/lzxF7Kod2jHkQezuSVdsf54f2rjO11mg61LzP348KLxd2sSlUNO05VxcXV9NZdN/kw1y+XvOBhRZIclY7IF1SvZ1/eVal01GoFz73mxuRPvXl8iAsBQbavf+RbRcO2s2F07uUImAKqP9ZkcnB3VrHHePmqUSgUBIXZ0XewaUxa3/CLFr2VFyNzibtackJUSZJsZ/XtraIezzzzDAA6nY5NmzaRkJCAXq8nKiqKH374gaCgoFI/x6VLlxg1apTFtoEDByKEYMeOHdZUVypHSqWC3i/4MmN5bd75oTpvfhXK1XM5jOtzGidXNc9MNI0F0zoosXdQolZTqp4eMCUz3fx3VeYu80OtVfH9E9v4Z3XU3WxOmUmLNV00fQPlgoT3OrVawYRPfPCtUjCuZsnXpcsX92A3UyJeBycl/63KkZKUx/Pdo/jpf0l3vK6SJJnIVc+ku06hUNCimzufrK9DzcaOTBt6Fjutkm/+bMD3fzVk8qIa+PirOX64+DVPitKkhT3P/9qJej0CWTfpMEdXXLp7jSgjGYnZKNVKXD1kssqKQKNRMuXLgtlY0RdL10vTrI0D2y9UZ8OxaqhUpnFEeXng6qEiqJrdLY6WJMlWMuiRyoy9o4oJ86vz0CBvvn33MnPGRZF4NRcPPzvemubBiaN65nyYTG5O6WcE2Tmo6Tm5CY0fC2HTzL+JPXnrW2T3Mn2GAYUCOYi5AqnXxB6/QNPMpkYtdMWWS4g10L/NRdYtNS3qeuZ4Lu+8GEN2lun97uWrZsWhavR/wboB/pIklZ4MeqQypVQpeG5yIKNmhxJ/OZfpz55Dn2ukRTsdA5515teFaXz9cYpV51QoFDw0riG+NV1Z+vKfXLtQcWfF5KQbcPaTg5grmgUbgljweyCjp/sUW+Z6Qj4JMXl8/HYCo5+6ypULevZsyWT0oKtlWFNJur/JoEcqcwqFgtYPuzP++2qkJOWxam4cSqWCNyZ70ryNjrOn9Lc+yU3UWhUD5rTGwUPL2ncPYcyrmOlLspJycPCUg5jvJCEECXF5RF82WNWLaA1HZyXVamux1xX/kVq7kT2rD4cBkJVhpOMjpnE9p/7OJTVZrjEjSWXB5hWZJel2BYTa0+YRd/7anAJj/Fi1JJ0De7IZMty21ZZ1rnY88l5TfhwawYox++k9Ixw7h4r3Fpd3tmwnhCA5yUhcTB5xV/M4sCeHLWuzSEs1BTsKBVSpqkalgqgLeXTo7oDWXkFOtqBeIzueHu6KUnn3/gCu7ip2XKxRaPvjzc+z9lj1EoMmSZJuX8W7IkiVSrOOruxceZ2RT8VxcE8OvZ904mkbgx6AKg09eGJ2K1aO3c/Kt/bz+OctUWkqzoVE46AmN0NOWbbW+TN61i7LYOPqTK4nFvTm+Aao6DPQiUbN7bHTKoiLzuPCGQO52UbiYjL552AOwWEaFEoFcz5M4dcf03FxVeIfpKZxKwd6PO6Ek7Pqro2x+mxJFd4YFI0xH2aNjmPK3AAS4wzY2cnB7JJ0N8igRypXLbq50ba3O3FnMnh7lie9Bzjd9gWmejs/Hv+8Jb+M3MtPz++i//9aY+98708BF0Jw+a8EvGtU3rxid1JujmD98gzW/pLBiaN63DyUdH/UkSYP2OPppeTYYT1aewUKpYKkxHxUSnBxVTJ8jBv2OiXjZnhZnO/E0Vy2bcgkJ1uwfFE6u7dm879ppunjny8JoGmr4gcp26pJKwe2nqnOK49dofG/Cx6OfvIqMVEGmrd3oH4zHU+/WnJ+OkmSSk8GPVK5UqoUvPZpKFXVpVvfpLRCW/rw1Pdt+WXkXtZNOsTjn7W8o+e/G9Ljs0mOSqftqw2Aij0L7W5LjM/j9aEJXIg00KqDjg++9qZtZx0aOwX/HMpl1oQkzp02oNaAMR/zWjgA9Zto+X5l4bQ49RprqdfYtDLzmKkebFybzbQ3EjDmw9ezkvh2tWltqeU/pLLh1zQ8vFWMnuaN/20scgig1iiYuybY/HuLDo6sXJjCgYgsDkRkMfBlD1RqBUIIMtKMOLvKHiBJslWlDHq87dOx01m31oVR2HYLRKmwfmCkxoZjAHQq6wf4AjiprE846q6xLtHlf2x9HW3Vzvl08TsfBO9JXnzyViyBV48SVsc0QPiku/V54ABOxNmWHftseumypecpDaBUEBVvR46wba0WD1WKTcc5Kmy7pWZvw3s504YkmQB2/yY3zcsTjBp8jYw0Iys3elGrtinoMBr1/PJTFtMnp1G7roYVG7yoW1+DUgF79+Qy9ElTYG3IzsdDlUt+viA/H+zsiu5ZHPKokgBHN0a/nsKVC7m8+uhl8vIEsbH5XE8yrSc1oN1lOnSy49v57qhUCpvblnNDMs/x77mgUeTzyw+mRLUu6lyUSgUrl6Qz821TG3o94cjEj73IMVr/EW60cf6KHtsGWxtt7Lm1NuGoQiYclUqhUgY9kvSfjr1d+WpyHId2ZpqDnnuVWqfBraY314/FAvd2XcvTlcv5nI3M48tv3UlLNTJlQiqxMflcuZzHhXP59OuvY8oMV4tgxsGh4GdXNyVjXkvm7Jk8rlzO58AxX1QqBVEX83ByVuDpVRC4dHnInq07vFmyOIv4OCNKFYDgelI+Tk6QkQE7tunp0eUav2/1uiPzYb+ckWIOeL77zdc8sLpqaEGP0s6t2eTlCTn/VpKsVCmDHkOm9d9ay7KnR9jY06NU2fZtXGPDcTka2xIhZqlt+7aVqbHtNck03vr5lErQ5xrJTDeVNWTa1mOWn2Vb/jdrni8jOoWU0wmkJtVFY2f9ezJDbdvraOt70mDDcVnCtm/++sw8Vi/P5rMPTLnWtmzMZuf2XFRKqFZDTVg1Na+OdubB9lr0uQJ9rqk3RqmAatXV/LbOk0ULMkm5bmT/Pj1xsaa6N64VB0Duvx2iv2/zwtdPhRLT8ToHBcNedLSoy4XzeSz4PpN1a3IRAs6fy6dmSDy/bvSiig23u3JEwevoH6iic08do6d4oHNQkpFu2lervh3bjgeRnyfIyRHkZAtyjda//kZKv+r5jfS2HYYR2/7e1tYzK6NiLlMhlS2FuDHbXQWXk5NDSGgI8XHx5V0VSZIkqYz5+flx8eJF7O1lT6lUtEoV9IAp8NHrbfsmL0mSJFVcdnZ2MuCRSlTpgh5JkiRJkqSiyGFwkiRJkiTdF2TQI0mSJEnSfUEGPZIkSZIk3Rdk0CNJkiRJ0n1BBj2SJEmSJN0XZNAjSZIkSdJ9QQY9d8HOnTvp1asXAQEBKBQKVq1aZd5nMBgYN24cDRo0wNHRkYCAAIYMGUJMTIzFOXJzc3n11Vfx8vLC0dGR3r17c/XqVYsye/fupXHjxgQHB/Pdd9+Zt7ds2ZKXX37ZouzcuXNRKBTMmzfPYvuwYcNo3br1HWkbwIoVK+jWrRteXl4oFAqOHj1a6BwVtW1CCKZMmUJAQAA6nY4OHTpw4sSJCtG2m6WnpzNq1CiCg4PR6XS0bt2aAwcOWNXWyMhI2rRpQ2BgIFOnTjVvf/LJJ+nRo4dF2d9//x2FQsHEiRMttk+bNo2AgACb23GzvLw83n33XUJDQ9HpdISFhTF16lSMN6xcXFHbFhISgkKhKPQYMWJEhW6XJJUpId1xGzZsEO+8845Yvny5AMTKlSvN+1JSUkSXLl3EsmXLxOnTp8XevXtFixYtRLNmzSzOMXz4cFGlShWxZcsWcfjwYdGxY0fRqFEjkZeXZy5Tu3Zt8dtvv4k9e/aIatWqiaioKCGEEOPHjxe1atWyOF///v1FUFCQeOqppyy2h4WFiQkTJtyRtgkhxI8//ijee+898d133wlAHDlypNA5KmrbZs2aJZydncXy5cvFsWPHxIABA4S/v79IS0u759t2s/79+4u6deuKiIgIcfbsWTF58mTh4uIirl69Wuq2du7cWcydO1ccPHhQhIeHi927dwshhPj666+Fk5OTMBgM5rJjx44VQUFBok2bNhb16NSpkxg0aJDN7bjZ+++/Lzw9PcW6devExYsXxa+//iqcnJzE559/bi5TUduWkJAgYmNjzY8tW7YIQGzfvr1Ct0uSypIMeu6yoi6eN9u/f78AzBe/lJQUodFoxNKlS81loqOjhVKpFBs3bjRvq1q1qrhw4YLIyMgQ4eHh4sSJE0IIITZt2iQAERMTYy7r6+sr5syZI6pUqWLedvnyZQGILVu23PG2Xbx4scigp6K2zWg0Cj8/PzFr1izztpycHOHq6iq+/vrrCtW2rKwsoVKpxLp16yy2N2rUSLzzzjulaqsQQjRr1kzs27dP6PV60bt3b7F+/XohhBCRkZECEHv37jWXfeCBB8RXX30l7OzsRGZmphBCiNzcXKHT6cR3331nUzuK8vDDD4vnnnvOYlu/fv3E008/LYQo3d/xXm3bzV5//XVRrVo1YTQaK1W7JOlukkHPXVaaoGfLli1CoVCI1NRUIYQQf/zxhwDE9evXLco1bNhQTJo0yfz7999/L7RarVCpVGLkyJHm7RkZGUKj0YglS5YIIYQ4ceKEcHFxETk5OcLZ2VmcOXNGCCHEwoULLT7Q7mTbigt6Kmrbzp8/LwBx+PBhi3K9e/cWQ4YMqVBtS0tLE4DYunWrxfaWLVuK9u3bl6qtQgixfv164ezsLNRqtejbt69Fb1ZAQICYMWOG+fnUarVISEgQderUEZs3bxZCCBERESEAce7cOZvaUZSZM2eK4OBgERkZKYQQ4ujRo8LHx8f8mlbktt0oNzdXeHp6iunTp1eqdknS3SbH9JSznJwcxo8fz6BBg3BxcQEgLi4OOzs73N3dLcr6+voSFxdn/n3YsGEkJSWRmJjIl19+ad7u6OhI8+bN2bFjBwA7duygbdu2aLVa2rRpY7G9RYsWODg43N1G3qCitu2/uvn6+hZb74rSNmdnZ1q1asW0adOIiYkhPz+fxYsX89dffxEbG1uqtgL07NmTxMREYmJiWLlyJSqVyryvQ4cO5vru2rWLmjVr4u3tTfv27S3aERQURLVq1WxqR1HGjRvHwIEDqV27NhqNhiZNmjBq1CgGDhwIlO7veK+27UarVq0iJSWFZ555plK1S5LuNhn0lCODwcCTTz6J0Whkzpw5tywvhEChUFhsc3R0LHSRBejYsaPFB1WHDh0ACn2AderU6bbacKdUlLbdXMei6n2ze7FtixYtQghBlSpV0Gq1fPHFFwwaNMjiIliatmq1Wry9vYtsx549ezAYDGX6N1q2bBmLFy9myZIlHD58mIULF/Lxxx+zcOFCi3IVsW03mjdvHj169Cg0oLiit0uS7jYZ9JQTg8FA//79uXjxIlu2bDH38gD4+fmh1+tJTk62OCYhIaHQN7nidOzYkTNnzhAdHU1ERATt27cHCj7ALl++zMWLF+nYseOda1QpVNS2+fn5AVh8a7653hWpbdWqVSMiIoKMjAyuXLnC/v37MRgMhIaGlqqtpWlHZmYmBw4cYPv27RbtOHDgANevX2fv3r13/P331ltvMX78eJ588kkaNGjA4MGDeeONN5g5cyZQur/jrZRX2/4TFRXF1q1bef75583bKkO7JKksyKCnHPwX8Jw9e5atW7fi6elpsb9Zs2ZoNBq2bNli3hYbG8vx48dLPU25devWaLVa5syZQ3Z2Ns2aNQMgPDyc1NRUvvnmG+zt7WnZsuWda1gpVNS2/RcM3FhvvV5PRESEud4VsW2Ojo74+/uTnJzMpk2b6NOnT6naeivVqlUjKCiINWvWcPToUfMF1N/fn5CQED755BNycnLu+AU0KysLpdLyY02lUpmnrFfktv1nwYIF+Pj48PDDD5u3VYZ2SVKZKL/hRJVXenq6OHLkiDhy5IgAxKeffiqOHDkioqKihMFgEL179xaBgYHi6NGjFlNQc3NzzecYPny4CAwMFFu3bhWHDx8WnTp1KjT1+VbatWsnnJ2dRffu3S22d+nSRTg7O4tOnTrd0bYJIURSUpI4cuSIWL9+vQDE0qVLxZEjR0RsbGyFb9usWbOEq6urWLFihTh27JgYOHBgkVPW78W23Wzjxo3i999/FxcuXBCbN28WjRo1Eg888IDQ6/WlbuutDBkyRDg7O4vatWtbbH/++eeFs7OzCAsLu+123Gzo0KGiSpUq5inrK1asEF5eXmLs2LHmMhW1bUIIkZ+fL6pWrSrGjRtXaF9FbpcklRUZ9NwF27dvF0Chx9ChQ82zmop6/LfehhBCZGdni5EjRwoPDw+h0+nEI488Ii5fvmxVPSZPniwAi2msQggxbdo0AYhp06bd0bYJIcSCBQuK3D958uQK3zaj0SgmT54s/Pz8hFarFe3atRPHjh2zOMe92rabLVu2TISFhQk7Ozvh5+cnRowYIVJSUsz7S9PWW/nvvTB8+HCL7YsWLRKAGDZs2G2342ZpaWni9ddfF1WrVhX29vYiLCxMvPPOOxZfKCpq24QoWNbgv9lpN6rI7ZKksqIQQoi71IkkSZIkSZJ0z5BjeiRJkiRJui/IoEeSJEmSpPuCDHokSZIkSbovyKBHkiRJkqT7ggx6JEmSJEm6L8igR5IkSZKk+4IMeiRJkiRJui/IoEeSJEmSpPuCDHokSZIkSbovyKBHkiRJkqT7ggx6JEmSJEm6L/wfrY0yajKyIKoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# set up the figure\n", + "fig = plt.figure(figsize=(6, 8))\n", + "gs = GridSpec(3, 2, width_ratios=[1, 0.1], height_ratios=[1, 1, 1], hspace=0.3, wspace=0.2)\n", + "\n", + "# specify the projection\n", + "proj = ccrs.PlateCarree()\n", + "\n", + "# set up plot axes\n", + "ax1 = plt.subplot(gs[0, 0], projection=proj)\n", + "ax2 = plt.subplot(gs[1, 0], projection=proj)\n", + "ax3 = plt.subplot(gs[2, 0], projection=proj)\n", + "axes_list = [ax1, ax2, ax3]\n", + "\n", + "# set up colorbar axis\n", + "axcb = plt.subplot(gs[:, 1])\n", + "\n", + "# loop through each dataset and its corresponding axis\n", + "for i, dset in enumerate([ds_og, ds_125, ds_25]):\n", + " plot_ds = dset.tas.isel(time=0)\n", + " ax = axes_list[i]\n", + " pcm = ax.pcolormesh(plot_ds.lon, plot_ds.lat, plot_ds, vmin=270, vmax=302.5, transform=proj)\n", + " \n", + " # add borders and coastlines\n", + " ax.add_feature(cfeature.BORDERS)\n", + " ax.coastlines()\n", + " \n", + " # limit to CONUS for this example\n", + " ax.set_xlim(-130, -60)\n", + " ax.set_ylim(22, 52)\n", + " \n", + " # add grid labels on bottom & left only\n", + " gl = ax.gridlines(color=\"None\", draw_labels=True)\n", + " gl.top_labels = False\n", + " gl.right_labels = False\n", + " \n", + " # label with the regrid type; if it fails, that means it hasn't been regridded\n", + " # (so label with the grid attribute instead)\n", + " try:\n", + " ax.set_title(dset.regrid_operation)\n", + " except:\n", + " ax.set_title(dset.grid)\n", + " \n", + "# use the same colorbar for all plots\n", + "axcb.axis(\"off\")\n", + "axcb_ins = inset_axes(axcb, width=\"50%\", height=\"75%\", loc=\"center\")\n", + "cbar = plt.colorbar(pcm, cax=axcb_ins, orientation=\"vertical\", extend=\"both\")\n", + "cbar.set_label(\"{n} ({u})\".format(n=plot_ds.long_name, u=plot_ds.units))\n", + " \n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "e57aee30-caff-4916-bb95-efa00ff15ba4", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "9f883994-e2f8-4ce9-8ca2-56fedb2e1a58", + "metadata": {}, + "source": [ + "## Summary\n", + "\n", + "`Rooki` offers a quick and easy way to regrid CMIP model data that can be located using `intake-esgf`. `Cartopy` lets us easily customize the plot to neatly display the geospatial data. " + ] + }, + { + "cell_type": "markdown", + "id": "6c9caac9-3de5-4842-90c5-e4de995c06ef", + "metadata": {}, + "source": [ + "## Resources and references\n", + "* [Regridding overview from NCAR](https://climatedataguide.ucar.edu/climate-tools/regridding-overview), including descriptions of various regridding methods\n", + "* [Rooki regridding example notebook](https://github.com/roocs/rooki/blob/master/notebooks/demo/demo-rooki-regrid-cmip6.ipynb)\n", + "* [Rooki documentation](https://rooki.readthedocs.io/en/latest/)\n", + "* [Cartopy logo image source](https://scitools.org.uk/cartopy/docs/v0.16/gallery/logo.html)\n", + "* [Rooki logo image source](https://rooki.readthedocs.io/en/latest/#)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_preview/32/_sources/notebooks/globus-compute-service-demo.ipynb b/_preview/32/_sources/notebooks/globus-compute-service-demo.ipynb new file mode 100644 index 0000000..14b8e8b --- /dev/null +++ b/_preview/32/_sources/notebooks/globus-compute-service-demo.ipynb @@ -0,0 +1,2005 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "cf2b1ef8", + "metadata": {}, + "source": [ + "# ESGF Compute Function Service Demo\n", + "\n", + "## Overview\n", + "\n", + "Prior to this demo, a globus-compute function was registered at the Argonne Leadership Computing Facility (ALCF), which has direct file-access to several petabytes of ESGF data.\n", + "![esgf-compute-diagram](images/globus-compute-esgf-demo.png)" + ] + }, + { + "cell_type": "markdown", + "id": "a74522b0-ab2d-4a1b-8077-efa0b8611fd9", + "metadata": {}, + "source": [ + "## Prerequisites\n", + "\n", + "| Concepts | Importance | Notes |\n", + "| --- | --- | --- |\n", + "| [Intro to Xarray](https://foundations.projectpythia.org/core/xarray/xarray-intro.html) | Necessary | |\n", + "| [Globus Compute Workflows](https://esgf2-us.github.io/esgf-cookbook/notebooks/enso-globus.html) | Necessary | Understanding of globus compute workflows |\n", + "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n", + "| [hvPlot with Xarray](https://hvplot.holoviz.org/user_guide/Integrations.html#multidimensional) | Helpful | Familiarity with plotting with Xarray and hvPlot |\n", + "\n", + "\n", + "\n", + "- **Time to learn**: 15 minutes" + ] + }, + { + "cell_type": "markdown", + "id": "ce6e515d-659f-4ee2-bd6b-30aa34cc8297", + "metadata": {}, + "source": [ + "## Imports\n", + "We need to import a few libraries to visualize the output of our data! The rest of the libraries are installed and run on where we defined the function (ALCF)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "2420ff07", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.4.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " var reloading = false;\n", + " var Bokeh = root.Bokeh;\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", + " root._bokeh_is_loading = css_urls.length + 0;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.0.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/panel.min.js\"];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + "\ttry {\n", + " inline_js[i].call(root, root.Bokeh);\n", + "\t} catch(e) {\n", + "\t if (!reloading) {\n", + "\t throw e;\n", + "\t }\n", + "\t}\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.4.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.0.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ] + }, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p1002" + } + }, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.4.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " var reloading = true;\n", + " var Bokeh = root.Bokeh;\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", + " root._bokeh_is_loading = css_urls.length + 0;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + "\ttry {\n", + " inline_js[i].call(root, root.Bokeh);\n", + "\t} catch(e) {\n", + "\t if (!reloading) {\n", + "\t throw e;\n", + "\t }\n", + "\t}\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.4.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = true;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Import packages to help with data visualization\n", + "import holoviews as hv\n", + "import hvplot\n", + "import hvplot.xarray\n", + "hv.extension('bokeh')\n", + "\n", + "# Import Globus tools\n", + "from globus_compute_sdk import Executor" + ] + }, + { + "cell_type": "markdown", + "id": "7b928fc8-45af-4a88-9ec6-2630bfa2e9e3", + "metadata": {}, + "source": [ + "## Remotely Execute + Access ENSO Data from CMIP6\n", + "\n", + "Within this demo, we are looking at a pre-defined, vetted function with the function ID of `49cd1ee0-2c4c-45f1-ab78-c4557fa25aa3`. For more on globus-compute function registration, please see the [globus compute with ENSO example](https://esgf2-us.github.io/esgf-cookbook/notebooks/enso-globus.html).\n", + "\n", + "For this function, it takes the `source_id` as an input, one of the facets from CMIP6.\n", + "\n", + "The result is an `xarray.Dataset`! The aggregation + computation were done on the high-performance computing cluster, only returning the much smaller dataset." + ] + }, + { + "cell_type": "markdown", + "id": "348c41c4-a5c1-4c80-8b2f-4750f3df32c0", + "metadata": {}, + "source": [ + "### Create Globus compute executor\n", + "\n", + "Make sure you only define the executor once (unless the executor becomes disconnected and needs a restart)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "3425fbff-b4ab-4f3c-a962-ada3cb7a6b79", + "metadata": {}, + "outputs": [], + "source": [ + "# Define the UUID of the pre-canned ESGF \"run_plot_enso\" function\n", + "run_plot_enso_function_uuid = \"49cd1ee0-2c4c-45f1-ab78-c4557fa25aa3\"\n", + "\n", + "# Create Globus Compute executor to run computations at ALCF\n", + "endpoint_uuid = \"cfaf0e98-2ef3-4c5a-9f11-38e306ddbc2e\"\n", + "gce = Executor(endpoint_id=endpoint_uuid)\n", + "gce.amqp_port = 443\n", + "gce" + ] + }, + { + "cell_type": "markdown", + "id": "758f5096-4cb3-4ef3-a067-81f13756de4e", + "metadata": {}, + "source": [ + "### Pass in the `source_id` of Interest\n", + "\n", + "Source IDs available:\n", + "\n", + "* ACCESS-ESM1-5\n", + "* EC-Earth3-CC\n", + "* MPI-ESM1-2-LR \n", + "* CanESM5\n", + "* MIROC6\n", + "* EC-Earth3\n", + "* CESM2\n", + "* EC-Earth3-Veg\n", + "* NorCPM1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "0e83d78d", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "encountered unknown data fields while reading a result message: {'details'}\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 77kB\n",
+       "Dimensions:            (time: 1980)\n",
+       "Coordinates:\n",
+       "  * time               (time) datetime64[ns] 16kB 1850-01-16T12:00:00 ... 201...\n",
+       "    type               (time) |S3 6kB b'sea' b'sea' b'sea' ... b'sea' b'sea'\n",
+       "    month              (time) int64 16kB 1 2 3 4 5 6 7 8 ... 5 6 7 8 9 10 11 12\n",
+       "Data variables:\n",
+       "    tos                (time) float32 8kB nan nan -0.3451 ... -1.865 nan nan\n",
+       "    tos_gt_04          (time) float32 8kB 0.4 0.4 0.4 0.4 ... 0.4 0.4 0.4 0.4\n",
+       "    tos_lt_04          (time) float32 8kB -0.4 -0.4 -0.4 ... -1.865 -0.4 -0.4\n",
+       "    el_nino_threshold  (time) float32 8kB 0.4 0.4 0.4 0.4 ... 0.4 0.4 0.4 0.4\n",
+       "    la_nina_threshold  (time) float32 8kB -0.4 -0.4 -0.4 -0.4 ... -0.4 -0.4 -0.4\n",
+       "Attributes: (12/45)\n",
+       "    Conventions:            CF-1.7 CMIP-6.2\n",
+       "    activity_id:            CMIP\n",
+       "    branch_method:          standard\n",
+       "    branch_time_in_child:   0.0\n",
+       "    branch_time_in_parent:  0.0\n",
+       "    creation_date:          2018-11-30T16:23:03Z\n",
+       "    ...                     ...\n",
+       "    variable_id:            tos\n",
+       "    variant_label:          r1i1p1f1\n",
+       "    license:                CMIP6 model data produced by MIROC is licensed un...\n",
+       "    cmor_version:           3.3.2\n",
+       "    tracking_id:            hdl:21.14100/31c7618d-6a92-400e-8874-c1fbe41abd44\n",
+       "    model:                  MIROC6
" + ], + "text/plain": [ + " Size: 77kB\n", + "Dimensions: (time: 1980)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 16kB 1850-01-16T12:00:00 ... 201...\n", + " type (time) |S3 6kB b'sea' b'sea' b'sea' ... b'sea' b'sea'\n", + " month (time) int64 16kB 1 2 3 4 5 6 7 8 ... 5 6 7 8 9 10 11 12\n", + "Data variables:\n", + " tos (time) float32 8kB nan nan -0.3451 ... -1.865 nan nan\n", + " tos_gt_04 (time) float32 8kB 0.4 0.4 0.4 0.4 ... 0.4 0.4 0.4 0.4\n", + " tos_lt_04 (time) float32 8kB -0.4 -0.4 -0.4 ... -1.865 -0.4 -0.4\n", + " el_nino_threshold (time) float32 8kB 0.4 0.4 0.4 0.4 ... 0.4 0.4 0.4 0.4\n", + " la_nina_threshold (time) float32 8kB -0.4 -0.4 -0.4 -0.4 ... -0.4 -0.4 -0.4\n", + "Attributes: (12/45)\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " activity_id: CMIP\n", + " branch_method: standard\n", + " branch_time_in_child: 0.0\n", + " branch_time_in_parent: 0.0\n", + " creation_date: 2018-11-30T16:23:03Z\n", + " ... ...\n", + " variable_id: tos\n", + " variant_label: r1i1p1f1\n", + " license: CMIP6 model data produced by MIROC is licensed un...\n", + " cmor_version: 3.3.2\n", + " tracking_id: hdl:21.14100/31c7618d-6a92-400e-8874-c1fbe41abd44\n", + " model: MIROC6" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Select the target source ID\n", + "source_id = \"MIROC6\"\n", + "\n", + "# Trigger remote computation\n", + "future = gce.submit_to_registered_function(run_plot_enso_function_uuid, {source_id})\n", + "\n", + "# Wait for result and generate plot from data returned by the Globus Compute executor\n", + "ds = future.result()\n", + "ds" + ] + }, + { + "cell_type": "markdown", + "id": "ec0d83b6", + "metadata": {}, + "source": [ + "## Visualize the Dataset Locally\n", + "Now that we have the dataset, we can use holoviz tools to create an interactive plot!" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d8ebbd15", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def plot_enso(ds):\n", + " el_nino = ds.hvplot.area(x=\"time\", y2='tos_gt_04', y='el_nino_threshold', color='red', hover=False)\n", + " el_nino_label = hv.Text(ds.isel(time=40).time.values, 2, 'El Niño').opts(text_color='red',)\n", + "\n", + " # Create the La Niña area graphs\n", + " la_nina = ds.hvplot.area(x=\"time\", y2='tos_lt_04', y='la_nina_threshold', color='blue', hover=False)\n", + " la_nina_label = hv.Text(ds.isel(time=-40).time.values, -2, 'La Niña').opts(text_color='blue')\n", + "\n", + " # Plot a timeseries of the ENSO 3.4 index\n", + " enso = ds.tos.hvplot(x='time', line_width=0.5, color='k', xlabel='Year', ylabel='ENSO 3.4 Index')\n", + "\n", + " # Combine all the plots into a single plot\n", + " return (el_nino_label * la_nina_label * el_nino * la_nina * enso).opts(title=f'{ds.attrs[\"model\"]} {ds.attrs[\"source_id\"]} \\n Ensemble Member: {ds.attrs[\"variant_label\"]}')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "4dc7f9d4", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": {}, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ], + "text/plain": [ + ":Overlay\n", + " .Text.I :Text [x,y]\n", + " .Text.II :Text [x,y]\n", + " .Area.I :Area [time] (el_nino_threshold,tos_gt_04)\n", + " .Area.II :Area [time] (la_nina_threshold,tos_lt_04)\n", + " .Curve.I :Curve [time] (tos)" + ] + }, + "execution_count": 5, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p1004" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "plot_enso(ds)" + ] + }, + { + "cell_type": "markdown", + "id": "081ca2e7-bef6-4826-ad70-09ed6cfafd2c", + "metadata": { + "tags": [] + }, + "source": [ + "### What was in the `49cd1ee0-2c4c-45f1-ab78-c4557fa25aa3` function??\n", + "Below is the exact code that was registered at ALCF. If you are interested in writing your own compute functions, please review the [Globus Compute with ENSO Notebook](https://esgf2-us.github.io/esgf-cookbook/notebooks/enso-globus.html)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "eb26972b-3ce4-4325-8962-c829348db4c4", + "metadata": { + "tags": [ + "hide-input" + ] + }, + "outputs": [], + "source": [ + "def run_plot_enso(source_id):\n", + " from intake_esgf.exceptions import NoSearchResults\n", + " import numpy as np\n", + " import matplotlib.pyplot as plt\n", + " from intake_esgf import ESGFCatalog\n", + " import xarray as xr\n", + " import cf_xarray\n", + " import warnings\n", + " warnings.filterwarnings(\"ignore\")\n", + "\n", + " # List of available source ids\n", + " valid_source_id = [\n", + " 'ACCESS-ESM1-5', 'EC-Earth3-CC', 'MPI-ESM1-2-LR', 'CanESM5',\n", + " 'MIROC6', 'EC-Earth3', 'CESM2', 'EC-Earth3-Veg', 'NorCPM1'\n", + " ]\n", + "\n", + " # Validate user input\n", + " if not isinstance(source_id, str):\n", + " raise ValueError(\"Source ID should be a string.\")\n", + " if not source_id in valid_source_id:\n", + " raise NoSearchResults(\"Please use one of the following: \"+\", \".join(valid_source_id))\n", + "\n", + " def search_esgf(source_id):\n", + "\n", + " # Search and load the ocean surface temperature (tos)\n", + " cat = ESGFCatalog(esgf1_indices=\"anl-dev\")\n", + " cat.search(\n", + " activity_id=\"CMIP\",\n", + " experiment_id=\"historical\",\n", + " variable_id=[\"tos\"],\n", + " source_id=source_id,\n", + " member_id='r1i1p1f1',\n", + " grid_label=\"gn\",\n", + " table_id=\"Omon\",\n", + " )\n", + " try:\n", + " tos_ds = cat.to_dataset_dict()[\"tos\"]\n", + " except ValueError:\n", + " print(f\"Issue with {institution_id} dataset\")\n", + "\n", + " return tos_ds\n", + "\n", + " def calculate_enso(ds):\n", + "\n", + " # Subset the El Nino 3.4 index region\n", + " dso = ds.where(\n", + " (ds.cf[\"latitude\"] < 5) & (ds.cf[\"latitude\"] > -5) & (ds.cf[\"longitude\"] > 190) & (ds.cf[\"longitude\"] < 240), drop=True\n", + " )\n", + "\n", + " # Calculate the monthly means\n", + " gb = dso.tos.groupby('time.month')\n", + "\n", + " # Subtract the monthly averages, returning the anomalies\n", + " tos_nino34_anom = gb - gb.mean(dim='time')\n", + "\n", + " # Determine the non-time dimensions and average using these\n", + " non_time_dims = set(tos_nino34_anom.dims)\n", + " non_time_dims.remove(ds.tos.cf[\"T\"].name)\n", + " weighted_average = tos_nino34_anom.weighted(ds[\"areacello\"].fillna(0)).mean(dim=list(non_time_dims))\n", + "\n", + " # Calculate the rolling average\n", + " rolling_average = weighted_average.rolling(time=5, center=True).mean()\n", + " std_dev = weighted_average.std()\n", + " return rolling_average / std_dev\n", + "\n", + " def add_enso_thresholds(da, threshold=0.4):\n", + "\n", + " # Conver the xr.DataArray into an xr.Dataset\n", + " ds = da.to_dataset()\n", + "\n", + " # Cleanup the time and use the thresholds\n", + " try:\n", + " ds[\"time\"]= ds.indexes[\"time\"].to_datetimeindex()\n", + " except:\n", + " pass\n", + " ds[\"tos_gt_04\"] = (\"time\", ds.tos.where(ds.tos >= threshold, threshold).data)\n", + " ds[\"tos_lt_04\"] = (\"time\", ds.tos.where(ds.tos <= -threshold, -threshold).data)\n", + "\n", + " # Add fields for the thresholds\n", + " ds[\"el_nino_threshold\"] = (\"time\", np.zeros_like(ds.tos) + threshold)\n", + " ds[\"la_nina_threshold\"] = (\"time\", np.zeros_like(ds.tos) - threshold)\n", + "\n", + " return ds\n", + " \n", + " ds = search_esgf(source_id)\n", + " enso_index = add_enso_thresholds(calculate_enso(ds).compute())\n", + " enso_index.attrs = ds.attrs\n", + " enso_index.attrs[\"model\"] = source_id\n", + "\n", + " return enso_index" + ] + }, + { + "cell_type": "markdown", + "id": "39798b34-8bf7-487b-a378-feb3317bba8c", + "metadata": {}, + "source": [ + "## Summary\n", + "Within this demonstration, we remotely triggered a `globus-compute` function which read, aggregated, and computed ENSO on datasets located on an HPC system. The computations were all done on the server side, with visualization being the only task done locally.\n", + "\n", + "### What's next?\n", + "Some existing questions still exist! Mainly:\n", + "- Where do define these functions? How do we ensure these are safe to run?\n", + "- How do we request \"service\" accounts on other HPC/cloud facilities?\n", + "- What other functions, outside of the typical WPS services, can we define?\n", + "- What other use-cases could this support (ex. kerchunk or zarr creation)?\n", + "\n", + "## Resources and references\n", + "- [Project Pythia CMIP6 Cookbook](https://projectpythia.org/cmip6-cookbook/)\n", + "- [Globus Compute Documentation](https://globus-compute.readthedocs.io/en/latest/)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_preview/32/_sources/notebooks/how-to-cite.md b/_preview/32/_sources/notebooks/how-to-cite.md new file mode 100644 index 0000000..01390db --- /dev/null +++ b/_preview/32/_sources/notebooks/how-to-cite.md @@ -0,0 +1,7 @@ +# How to Cite This Cookbook + +The material in this Project Pythia Cookbook is licensed for free and open consumption and reuse. All code is served under [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0), while all non-code content is licensed under [Creative Commons BY 4.0 (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/). Effectively, this means you are free to share and adapt this material so long as you give appropriate credit to the Cookbook authors and the Project Pythia community. + +The source code for the book is [released on GitHub](https://github.com/ProjectPythia/cookbook-template) and archived on Zenodo. This DOI will always resolve to the latest release of the book source: + +[![DOI](https://zenodo.org/badge/475509405.svg)](https://zenodo.org/badge/latestdoi/475509405) diff --git a/_preview/32/_sources/notebooks/intro-search.ipynb b/_preview/32/_sources/notebooks/intro-search.ipynb new file mode 100644 index 0000000..6e743d0 --- /dev/null +++ b/_preview/32/_sources/notebooks/intro-search.ipynb @@ -0,0 +1,1379 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"ESGF" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Introduction to `intake-esgf`\n", + "\n", + "## Overview\n", + "In this tutorial we will discuss the basic functionality of [intake-esgf](https://github.com/esgf2-us/intake-esgf) and describe some of what it is doing under the hood. `intake-esgf` is an `intake` and `intake-esm` *inspired* package under development in ESGF2. Please note that there is a name collison with an existing package in PyPI and conda. You will need to install the package from [source](https://github.com/esgf2-us/intake-esgf). \n", + "\n", + "## Prerequisites\n", + "\n", + "| Concepts | Importance | Notes |\n", + "| --- | --- | --- |\n", + "| [Install Package](https://github.com/esgf2-us/intake-esgf) | Necessary | `pip install git+https://github.com/esgf2-us/intake-esgf`|\n", + "| Familiar with [intake-esm](https://intake-esm.readthedocs.io/en/stable/) | Helpful | Similar interface |\n", + "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n", + "- **Time to learn**: 30 minutes\n", + "\n", + "## Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from intake_esgf import ESGFCatalog\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Populate the Catalog\n", + "\n", + "Unlike `intake-esm`, our catalogs initialize empty. This is because while `intake-esm`\n", + "loads a large file-based database into memory, we are going to populate a catalog by\n", + "searching one or many index nodes. The `ESGFCatalog` is configured by default to query\n", + "a Globus (ElasticSearch) based index which has information about holdings at the (Argonne Leadership Computing Facility (ALCF) only. We will demonstrate how this may be expanded to include other nodes later." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Perform a search() to populate the catalog.\n" + ] + } + ], + "source": [ + "cat = ESGFCatalog()\n", + "print(cat) # <-- nothing to see here yet" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " Searching indices: 0%| |0/1 [ ?index/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " Searching indices: 100%|██████████|1/1 [ 1.92s/index]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Summary information for 195 results:\n", + "mip_era [CMIP6]\n", + "activity_id [CMIP]\n", + "institution_id [CCCma]\n", + "source_id [CanESM5]\n", + "experiment_id [historical]\n", + "member_id [r28i1p2f1, r6i1p2f1, r14i1p1f1, r20i1p2f1, r2...\n", + "table_id [Lmon, Amon]\n", + "variable_id [gpp, tas, pr]\n", + "grid_label [gn]\n", + "dtype: object\n" + ] + } + ], + "source": [ + "cat.search(\n", + " experiment_id=\"historical\",\n", + " source_id=\"CanESM5\",\n", + " frequency=\"mon\",\n", + " variable_id=[\"gpp\", \"tas\", \"pr\"],\n", + ")\n", + "print(cat)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The search has populated the catalog where results are stored internally as a `pandas` dataframe, where the columns are the facets common to ESGF. Printing the catalog will display each column as well as a possibly-truncated list of unique values. We can use these to help narrow down our search. In this case, we neglected to mention a `member_id` (also known as a `variant_label`). So we can repeat our search with this additional facet. Note that searches are not cumulative and so we need to repeat the previous facets in this subsequent search. Also, while for the tutorial's sake we repeat the search here, in your own analysis codes, you could simply edit your previous search." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " Searching indices: 100%|██████████|1/1 [ 1.73s/index]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Summary information for 3 results:\n", + "mip_era [CMIP6]\n", + "activity_id [CMIP]\n", + "institution_id [CCCma]\n", + "source_id [CanESM5]\n", + "experiment_id [historical]\n", + "member_id [r1i1p1f1]\n", + "table_id [Amon, Lmon]\n", + "variable_id [tas, pr, gpp]\n", + "grid_label [gn]\n", + "dtype: object\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "cat.search(\n", + " experiment_id=\"historical\",\n", + " source_id=\"CanESM5\",\n", + " frequency=\"mon\",\n", + " variable_id=[\"gpp\", \"tas\", \"pr\"],\n", + " variant_label=\"r1i1p1f1\", # addition from the last search\n", + ")\n", + "print(cat)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Obtaining the datasets\n", + "\n", + "Now we see that our search has located 3 datasets and thus we are ready to load these into memory. Like `intake-esm`, the catalog will generate a dictionary of `xarray` datasets. Internally, the catalog is again communicating with the index node and requesting file information. This includes which file or files are part of the datasets, their local paths, download locations, and verification information. We then try to make an optimal decision in getting the data to you as quickly as we can.\n", + "\n", + "1. If you are running on a resource with direct access to the ESGF holdings (such a Jupyter notebook on nimbus.llnl.gov), then we check if the dataset files are locally available. We have a handful of locations built-in to `intake-esgf` but you can also set a location manually with `cat.set_esgf_data_root()`.\n", + "2. If a dataset has associated files that have been previously downloaded into the local cache, then we will load these files into memory.\n", + "3. If no direct file access is found, then we will queue the dataset files for download. File downloads will occur in parallel from the locations which provide you the fastest transfer speeds. Initially we will randomize the download locations, but as you use `intake-esgf`, we keep track of which servers provide you fastest transfer speeds and future downloads will prefer these locations. Once downloaded, we check file validity, and load into `xarray` containers." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " Obtaining file info: 0%| |0/3 [ ?dataset/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " Obtaining file info: 100%|██████████|3/3 [ 1.23s/dataset]\n", + "Adding cell measures: 100%|██████████|3/3 [ 3.00s/dataset]\n" + ] + } + ], + "source": [ + "dsd = cat.to_dataset_dict()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You will notice that progress bars inform you that file information is being obtained\n", + "and that downloads are taking place. As files are downloaded, they are placed into a\n", + "local cache in `${HOME}/.esgf` in a directory structure that mirrors that of the\n", + "remote storage. For future analysis which uses these datasets, `intake-esgf` will\n", + "first check this cache to see if a file already exists and use it instead of\n", + "re-downloading. Then it returns a dictionary whose keys are by default the minimal set\n", + "of facets to uniquely describe a dataset in the current search." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dict_keys(['Amon.tas', 'Amon.pr', 'Lmon.gpp'])\n" + ] + } + ], + "source": [ + "print(dsd.keys())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "During the download process, you may have also noticed that a progress bar informed\n", + "you that we were adding cell measures. If you have worked with ESGF data before, you\n", + "know that cell measure information like `areacella` is needed to take proper\n", + "area-weighted means/summations. Yet many times, model centers have not uploaded this\n", + "information uniformly in all submissions. We perform a search for each dataset being\n", + "placed in the dataset dictionary, progressively dropping dataset facets to find, if\n", + "possible, the cell measures that are *closest* to the dataset being downloaded.\n", + "Sometimes they are simply in another `variant_label`, but other times they could be in a\n", + "different `activity_id`. No matter where they are, we find them for you and add them\n", + "by default (disable with `to_dataset_dict(add_measures=False)`). \n", + "\n", + "We determine which measures need downloaded by looking in the dataset attributes. Since `tas` is an atmospheric variable, we will see that its `cell_measures = 'area: areacella'`. If you print this variable you will see that measure has been added." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:    (time: 1980, bnds: 2, lat: 64, lon: 128)\n",
+       "Coordinates:\n",
+       "  * time       (time) object 1850-01-16 12:00:00 ... 2014-12-16 12:00:00\n",
+       "  * lat        (lat) float64 -87.86 -85.1 -82.31 -79.53 ... 82.31 85.1 87.86\n",
+       "  * lon        (lon) float64 0.0 2.812 5.625 8.438 ... 348.8 351.6 354.4 357.2\n",
+       "    height     float64 ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    time_bnds  (time, bnds) object ...\n",
+       "    lat_bnds   (lat, bnds) float64 ...\n",
+       "    lon_bnds   (lon, bnds) float64 ...\n",
+       "    tas        (time, lat, lon) float32 ...\n",
+       "    areacella  (lat, lon) float32 ...\n",
+       "Attributes: (12/53)\n",
+       "    CCCma_model_hash:            3dedf95315d603326fde4f5340dc0519d80d10c0\n",
+       "    CCCma_parent_runid:          rc3-pictrl\n",
+       "    CCCma_pycmor_hash:           33c30511acc319a98240633965a04ca99c26427e\n",
+       "    CCCma_runid:                 rc3.1-his01\n",
+       "    Conventions:                 CF-1.7 CMIP-6.2\n",
+       "    YMDH_branch_time_in_child:   1850:01:01:00\n",
+       "    ...                          ...\n",
+       "    tracking_id:                 hdl:21.14100/872062df-acae-499b-aa0f-9eaca76...\n",
+       "    variable_id:                 tas\n",
+       "    variant_label:               r1i1p1f1\n",
+       "    version:                     v20190429\n",
+       "    license:                     CMIP6 model data produced by The Government ...\n",
+       "    cmor_version:                3.4.0
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 1980, bnds: 2, lat: 64, lon: 128)\n", + "Coordinates:\n", + " * time (time) object 1850-01-16 12:00:00 ... 2014-12-16 12:00:00\n", + " * lat (lat) float64 -87.86 -85.1 -82.31 -79.53 ... 82.31 85.1 87.86\n", + " * lon (lon) float64 0.0 2.812 5.625 8.438 ... 348.8 351.6 354.4 357.2\n", + " height float64 ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " time_bnds (time, bnds) object ...\n", + " lat_bnds (lat, bnds) float64 ...\n", + " lon_bnds (lon, bnds) float64 ...\n", + " tas (time, lat, lon) float32 ...\n", + " areacella (lat, lon) float32 ...\n", + "Attributes: (12/53)\n", + " CCCma_model_hash: 3dedf95315d603326fde4f5340dc0519d80d10c0\n", + " CCCma_parent_runid: rc3-pictrl\n", + " CCCma_pycmor_hash: 33c30511acc319a98240633965a04ca99c26427e\n", + " CCCma_runid: rc3.1-his01\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " YMDH_branch_time_in_child: 1850:01:01:00\n", + " ... ...\n", + " tracking_id: hdl:21.14100/872062df-acae-499b-aa0f-9eaca76...\n", + " variable_id: tas\n", + " variant_label: r1i1p1f1\n", + " version: v20190429\n", + " license: CMIP6 model data produced by The Government ...\n", + " cmor_version: 3.4.0" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dsd[\"Amon.tas\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, for `gpp` we also need the land fractions, which is detected by the presence of `area: where land` in the `cell_methods`. You will notice that both `areacella` and `sftlf` are added to `Lmon.gpp`." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:    (time: 1980, bnds: 2, lat: 64, lon: 128)\n",
+       "Coordinates:\n",
+       "  * time       (time) object 1850-01-16 12:00:00 ... 2014-12-16 12:00:00\n",
+       "  * lat        (lat) float64 -87.86 -85.1 -82.31 -79.53 ... 82.31 85.1 87.86\n",
+       "  * lon        (lon) float64 0.0 2.812 5.625 8.438 ... 348.8 351.6 354.4 357.2\n",
+       "    type       |S4 ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    time_bnds  (time, bnds) object ...\n",
+       "    lat_bnds   (lat, bnds) float64 ...\n",
+       "    lon_bnds   (lon, bnds) float64 ...\n",
+       "    gpp        (time, lat, lon) float32 ...\n",
+       "    sftlf      (lat, lon) float32 ...\n",
+       "    areacella  (lat, lon) float32 ...\n",
+       "Attributes: (12/53)\n",
+       "    CCCma_model_hash:            3dedf95315d603326fde4f5340dc0519d80d10c0\n",
+       "    CCCma_parent_runid:          rc3-pictrl\n",
+       "    CCCma_pycmor_hash:           33c30511acc319a98240633965a04ca99c26427e\n",
+       "    CCCma_runid:                 rc3.1-his01\n",
+       "    Conventions:                 CF-1.7 CMIP-6.2\n",
+       "    YMDH_branch_time_in_child:   1850:01:01:00\n",
+       "    ...                          ...\n",
+       "    tracking_id:                 hdl:21.14100/387658c8-f085-4ab8-995c-def848e...\n",
+       "    variable_id:                 gpp\n",
+       "    variant_label:               r1i1p1f1\n",
+       "    version:                     v20190429\n",
+       "    license:                     CMIP6 model data produced by The Government ...\n",
+       "    cmor_version:                3.4.0
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 1980, bnds: 2, lat: 64, lon: 128)\n", + "Coordinates:\n", + " * time (time) object 1850-01-16 12:00:00 ... 2014-12-16 12:00:00\n", + " * lat (lat) float64 -87.86 -85.1 -82.31 -79.53 ... 82.31 85.1 87.86\n", + " * lon (lon) float64 0.0 2.812 5.625 8.438 ... 348.8 351.6 354.4 357.2\n", + " type |S4 ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " time_bnds (time, bnds) object ...\n", + " lat_bnds (lat, bnds) float64 ...\n", + " lon_bnds (lon, bnds) float64 ...\n", + " gpp (time, lat, lon) float32 ...\n", + " sftlf (lat, lon) float32 ...\n", + " areacella (lat, lon) float32 ...\n", + "Attributes: (12/53)\n", + " CCCma_model_hash: 3dedf95315d603326fde4f5340dc0519d80d10c0\n", + " CCCma_parent_runid: rc3-pictrl\n", + " CCCma_pycmor_hash: 33c30511acc319a98240633965a04ca99c26427e\n", + " CCCma_runid: rc3.1-his01\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " YMDH_branch_time_in_child: 1850:01:01:00\n", + " ... ...\n", + " tracking_id: hdl:21.14100/387658c8-f085-4ab8-995c-def848e...\n", + " variable_id: gpp\n", + " variant_label: r1i1p1f1\n", + " version: v20190429\n", + " license: CMIP6 model data produced by The Government ...\n", + " cmor_version: 3.4.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dsd[\"Lmon.gpp\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simple Plotting" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAPvCAYAAAD+taX0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXgUVfb3v52t01lJWLJIAgECyCIgILLIooIiIMuMqICCKMKAIoKgDAqBHxB2URgQVBbHQZwXxY1BQdlEQFkFQUAkkAiJkS0LIVt3vX8k3X0qqZuu6q5OusP5+PTjze1bt27dulWcrvOtcwySJElgGIZhGIapAnyqegAMwzAMw9y+sCHCMAzDMEyVwYYIwzAMwzBVBhsiDMMwDMNUGWyIMAzDMAxTZbAhwjAMwzBMlcGGCMMwDMMwVQYbIgzDMAzDVBlsiDAMwzAMU2WwIcLcFiQlJcFgMODKlSu69TlixAjUr1/f7eOZO3cuPvvsM6f24wrZ2dmYM2cOunfvjujoaISEhKBly5aYP38+8vPzVfezceNGtG7dGoGBgYiNjcWECROQm5vrcLt169bBYDDYPnqeu88++0zW96FDh3Trm2EYbbAhwjBO8sYbb2Dz5s1u309VGSKpqalYunQp7r77bqxevRpffPEF/v73vyMpKQl9+/aFmuwQ//nPf/Dkk0+iffv22Lp1K2bMmIF169Zh0KBBqsfx6aefYv/+/ahRo4YLRyOnW7du2L9/P15//XXd+mQYxjn8qnoADOOtNGzYsKqH4FYSEhJw4cIFBAcH2+ruv/9+BAcHY/Lkyfjhhx/QpUsX4fZmsxmTJ09Gr1698O677wIAevTogdDQUAwdOhRbt25F7969HY6jTZs2Tj95EhEREYF7770Xp0+f1rVfhmG0w09EmNuKP//8E08++STCw8MRFRWFkSNHIisrS9ZGkiSsWLECrVu3hslkQkREBP7+97/j/PnzsnZKrpkbN27g2WefRWRkJEJCQtCnTx+cP38eBoMBSUlJmsdjMBhw8+ZNrF+/3uZG6N69u17TUSHBwcEyI8TKPffcAwBIS0urcPsDBw4gPT0dzzzzjKz+scceQ0hIiEtPk7p3744WLVpg//796NSpE0wmE+rXr4+1a9cCALZs2YK7774bQUFBaNmyJb7++mun98UwjHvhJyLMbcXf/vY3PP7443j22Wdx4sQJTJ06FQCwZs0aW5vRo0dj3bp1GD9+PObPn49r165h1qxZ6NSpE37++WdERUUp9m2xWNCvXz8cOnQISUlJuPvuu7F//348/PDDTo9n//79uP/++9GjRw+88cYbAICwsLAKj9FsNqtym/j4+MDHR/tvkR07dgAAmjdvXmG7X375BQBw1113yer9/f3RtGlT2/fOkpGRgWeeeQZTpkxB3bp1sWzZMowcORJpaWnYtGkT/vnPfyI8PByzZs3CgAEDcP78ecTGxrq0T4Zh3IDEMLcBM2bMkABICxYskNWPHTtWCgwMlCwWiyRJkrR//34JgLR48WJZu7S0NMlkMklTpkyx1Q0fPlyqV6+e7e8tW7ZIAKSVK1fKtk1OTpYASDNmzNA8HkmSpODgYGn48OGqj7VevXoSAIcfOh61/Pzzz5LJZJIGDhzosO2cOXMkAFJ6enq573r16iU1bty4wu3Xrl0rAZBSUlLKfdetWzcJgHTo0CFb3dWrVyVfX1/JZDJJly5dstUfO3ZMAiC9/fbbwn0cPHjQ4fEwDOMe+IkIc1vx6KOPyv6+6667kJ+fj8zMTERFReGrr76CwWDAsGHDUFxcbGsXHR2NVq1aYdeuXcK+d+/eDQAYPHiwrP7JJ5+0PenQOh5n+PLLL1FQUOCwndanAxcuXEDfvn0RFxeH9957T/V2BoNBU71aYmJi0LZtW9vfkZGRqFOnDurXry87tjvvvBMAcPHiRZf2xzCMe2BDhLmtqFmzpuxvo9EIALh16xaAEs2GJElCI6BBgwbCvq9evQo/Pz9ERkbK6isyKByNxxmaNWum2jWjlosXL6JHjx7w8/PDd999V+4YlbAe29WrV8vNwbVr11T1URFK2wcEBJSrDwgIAABNrxwzDFN5sCHCMIRatWrBYDDg+++/txkFFKU6KzVr1kRxcXG5f2QzMjLcMlYRDRs2VPXrf8aMGYoC2rJcvHgR3bt3hyRJ2LVrF+rWratqHC1btgQAnDhxAs2aNbPVFxcX4/Tp03jyySdV9cMwTPWGDRGGIfTt2xfz5s3DpUuXyrlYHNGtWzcsWLAAH3/8Mf7xj3/Y6jdu3OjSmIxGo6YnJHq6ZlJTU9G9e3eYzWbs2rUL9erVUz2ODh06ICYmBuvWrcPjjz9uq9+0aRNyc3M1xRJhGKb6woYIwxA6d+6M559/Hs888wwOHTqErl27Ijg4GOnp6di7dy9atmwpMzIoDz/8MDp37oxJkyYhOzsbbdu2xf79+/HBBx8A0OYKobRs2RK7du3Cl19+iZiYGISGhqJJkyYVtteDzMxM9OjRA+np6Xj//feRmZmJzMxM2/d169a1PR25ePEiGjZsiOHDh+P9998HAPj6+mLBggV46qmnMHr0aDz55JP47bffMGXKFPTs2bPCt4kYhrl9YEOEYcqwatUq3HvvvVi1ahVWrFgBi8WC2NhYdO7c2RZDQwkfHx98+eWXmDRpEubNm4fCwkJ07twZH374Ie69916nI4O+9dZbGDduHJ544gnk5eWhW7duFYpm9eLUqVO22CnDhg0r9z117UiSBLPZDLPZLGszbNgw+Pr6Yt68eVi3bh0iIyPx9NNPY86cOW4fP8Mw3oFBUqNqYxjGaTZs2IChQ4fihx9+QKdOnap6OF7DunXr8Mwzz+DcuXOoV68e/Pz0+91kNZw++OADPPvsszh48CDatWunW/8Mw6iHn4gwjI589NFHuHTpElq2bAkfHx8cOHAACxcuRNeuXdkIcZJGjRoBAP766y/UqlVLlz4///xzDBw4UJe+GIZxDX4iwjA68tVXXyEpKQnnzp3DzZs3ERMTgwEDBmD27NkOI6Iycq5evYqUlBTb361bt9btqciNGzdw7tw529/NmjVDUFCQLn0zDKMNNkQYhmEYhqkyOOkdwzAMw3gBycnJMBgMmDBhgq1OkiQkJSUhNjYWJpMJ3bt3x8mTJ6tukE7AhgjDMAzDeDgHDx7E6tWryyWRXLBgAZYsWYLly5fj4MGDiI6ORs+ePZGTk1NFI9UOGyIMwzAM48Hk5uZi6NChePfddxEREWGrlyQJS5cuxbRp0zBo0CC0aNEC69evR15eHjZs2FCFI9YGvzVTBovFgsuXLyM0NNTlpFwMwzBM1SFJEnJychAbG+t0QEERH330EUaMGKF5u4iICBw4cKBcTiSj0ShMITFu3Dj06dMHDz74IGbPnm2rT0lJQUZGBnr16iXrp1u3bti3bx9Gjx6teXxVARsiZbh8+TLi4uKqehgMwzCMTqSlpanOkaSWU6dOYWBhIbSG5mv755+YN28eVq1aJasX5X7auHEjjhw5goMHD5b7zprHqmxSyaioKK/KNs2GSBlCQ0MBAK++mgajMQw6G9Ey3Nk3Y8diqV77d/fxVPV86Y3ex8PXrR1Pvz8WFGRj/vw4231db8IBNNQ4UF+LBSNHjsSCBQtk9UpPQ9LS0vDSSy9h27ZtCAwMFPZZ9um9JEle9USfDZEyWE+e0RiGwEA2RKoDVf0PKxsiVQsbIu7DW+6PbvtH2WDQPlCLBQEBAariCh0+fBiZmZlo27atrc5sNmPPnj1Yvnw5zpw5A6DkyUhMTIytTWZmZrmnJJ4MX1IMwzAM4wxWQ0TLRwMPPPAATpw4gWPHjtk+7dq1w9ChQ3Hs2DE0aNAA0dHR2L59u22bwsJC7N6926siOfMTEQF+fiUfum4crSHR965Y9u78xeHOX77e2rcr/Yu2o+dQTd+O2mjtz9n9VFYfevbjKfupzvtUc0/Sei+01ovWtpr7sFIbHdMTKePMExENhIaGokWLFrK64OBg1KxZ01Y/YcIEzJ07F4mJiUhMTMTcuXMRFBSEIUOGuG1cesOGCMMwDMM4g5sNETVMmTIFt27dwtixY3H9+nV06NAB27Ztc5suxh2wIcIwDMMwzlLJhsiuXbtkfxsMBiQlJSm+ceMtsCHCMAzDMM7gzBMRL3qbpbJgQ0SA0QgEBop9k0o+TYorflRHbdxhgOuhXdCjD0/aj9axiM6LHm3U6E/UtNdrW2fRehyOttOKlmtHtE9X1k1hoeP21rLWc6im7GifFHfoK4qLlfu3lgMC7HVqjof2odTG7focD3DNVAfYEGEYhmEYZ2BDRBe8ZgaLi4vx+uuvIyEhASaTCQ0aNMCsWbNgISZvdchCyDAMw3gJbn5993bBa2Zl/vz5eOedd7B8+XL8+uuvWLBgARYuXIhly5bZ2lSHLIQMwzCMF8GGiMt4jWtm//796N+/P/r06QMAqF+/Pj766CMcOnQIQPkshACwfv16REVFYcOGDZqT/0RFAUFBch8k9V9ay3Rd5efbyyL/q5JftGw/jsqi7USIxkL91dR3S8uO/Mhq/Oju8Klr6U/NWPQ4TnfUq/2+bBu97nd6jMvZ9lqPp7K0LWriuDh7PYmg+xTpKCjZ2faymvuS0lhE9yG6f0f3x7JtRFHKle5tNPCoSBci2r+1Pi9PeX+6wa4ZXfCaGezSpQu+++47nD17FgDw888/Y+/evXjkkUcAOM5CKKKgoADZ2dmyD8MwDMM4hF0zuuA1T0ReffVVZGVloWnTpvD19YXZbMacOXPw5JNPAnA+C2FycjJmzpzpvoEzDMMw1RN+fVcXvMY8+/jjj/Hhhx9iw4YNOHLkCNavX49FixZh/fr1snZasxBOnToVWVlZtk9aWppbxs8wDMNUM/iJiC54zRORyZMn47XXXsMTTzwBAGjZsiUuXryI5ORkDB8+HNHR0QC0ZyE0Go2K6ZcZhmEYxiFsXLiM1xgieXl58Clzwn19fW2v7yYkJNiyELZp0waAPQvh/PnzNe+vRQsgJEQumAoKspeVxKpUlKZGIKZGAOasuE00FlqmQlBRG9qPljFprReJ++i8WLelAjTRfIoEvWrm1pFYVVRWmitRf2r2SeurInGa0jjctW1ViGJF586RcFNNHyJBpZqAZtY1T+83VORJy7RvKm+rVUu5b3rt0OvcWp+bq9wfLdNjoNcnvVfWqKFcT4+JlpUCmtHjpPWiPkJCypfp8bgFFqvqgtcYIv369cOcOXMQHx+P5s2b4+jRo1iyZAlGjhwJoMQlUx2yEDIMwzBeAhsiuuA1hsiyZcvwxhtvYOzYscjMzERsbCxGjx6N6dOn29pUhyyEDMMwjJfAhogueI0hEhoaiqVLl2Lp0qXCNtUhCyHDMAzjJbAhogteY4hUNokNzAgLM4ujfuWXlokDlkpeg2XCBDXZxWiUJFEkodLTJRBAFBXb3w5So1ERaS2ob9bZ4F5qAr3R/asJrmYtq0k0SMv0eNQkA1PSeoiCWKnRi2jViGiZcxGu6DIc3VfVzKHWfTqrhRIh0m7RdablfNHvRX2LyiK9iOh6sZZFAcJE81+njvJ+RO2VdB9UU3Hjhr2cmWkvl0ZKKNdGpO1S0oKUbWPVdFA9idL3ABAZqVxW0qVUSlgofn3XZdgQYRiGYRhn4CciusCGCMMwDMM4AxsiusCGCMMwDMM4AxsiusCGiAirc1GNE9gRIiexn2D6qSNbSZygFHQAAODrcPcU0fv4jhLQUW0H3Y76i9VoJ0TjEvnRHY1Pq+ZBi45CFItEBNXFOOq7bP9KqNFlqNGcqIlpo3Ssojg3WrUzVYFI/0HrqTbCus5F26nRFqnRlNA14uj8ipK3ifRcjpLBAXJNhVL/dKz02hYhigGiFN8DUI47QutomepfqC6EtvH3Mdv/KJ1cY/FNxwN3BTZEdIENEYZhGIZxFjZEXIYNEYZhGIZxBn4iogs8gwzDMAzjDM4kvdPw+u7KlStx1113ISwsDGFhYejYsSO2bt1q+16SJCQlJSE2NhYmkwndu3fHyZMn3XGkboWfiIgoKipxFosSryiJB6iTlDg1b1nsEUbU+Oj9BLkkfH2kCofsJxgKRSlfDiCXpYhiLVjHSP2/FOr/pajx0Yty4ChJcURxQdSgNWeIdSx0fGryiIh89CItgMi/b22jJuaFVgmT6DiUYkCI8puoicshGq+jPEFqYmFo1cuIxkWvC+u5VjNuR+umbD09JrpPilX3QM+D6FoRxQKiiGLq0LK1f9qHKP8UHVfjxvZybKy9XLeuvVyajxSA+P5jraffq8ld448iMkiFm5gouY9euPmJSN26dTFv3jw0atQIALB+/Xr0798fR48eRfPmzbFgwQIsWbIE69atQ+PGjTF79mz07NkTZ86c8aqI4vxEhGEYhmGcwZknIhro168fHnnkETRu3BiNGzfGnDlzEBISggMHDkCSJCxduhTTpk3DoEGD0KJFC6xfvx55eXnYsGGDmw7YPbAhwjAMwzDO4oQhUlhYiOzsbNmnoKCgwt2YzWZs3LgRN2/eRMeOHZGSkoKMjAz06tXL1sZoNKJbt27Yt2+fWw9Zb9gQYRiGYRhncPKJyJo1axAeHi77JCcnK+7ixIkTCAkJgdFoxJgxY7B582Y0a9YMGaWx9qOiomTto6KibN95C6wREZGbW7LItAgmatWyl4kDlEoq1MRUoE/vDCC6EKWNSWM1PmKR313UnuIopoeaWAui9iK/t6O8L47Gp3Zbisgf76gt3b+jZQPI/eEi3YujYxL1LepPpFGg/nqlvENqdDlqdCmiNo7WjhpdBkVrrBMlPYRI56FGFyKaT5EWiJaVNFhqYr7QsdA+qKaCnnOl+B4iSZwo7018vL1MdSFUL0LjftB90n6scVxEcxgeQmKEXLumPEilybh1C27FSY3IyJEjsWDBAlmd0WhUbNukSRMcO3YMN27cwCeffILhw4dj9+7dZAhy8askSeXqPB02RBiGYRjGGZwxRAwGBAQEIIxaiBUQEBBgE6u2a9cOBw8exFtvvYVXX30VAJCRkYGYmBhb+8zMzHJPSTwdds0wDMMwjDO4WayqhCRJKCgoQEJCAqKjo7F9+3bbd4WFhdi9ezc6derk8n4qE34iwjAMwzDO4sbXd//5z3+id+/eiIuLQ05ODjZu3Ihdu3bh66+/hsFgwIQJEzB37lwkJiYiMTERc+fORVBQEIYMGeK2MbkDNkQYhmEYxhncHEfkzz//xFNPPYX09HSEh4fjrrvuwtdff42ePXsCAKZMmYJbt25h7NixuH79Ojp06IBt27Z5VQwRgA0RMTdvlo+AR9VTVgUWVWJRSBYtA1Ff+jrKLla2rLTIBX34ku18AuxjFyWRUxIlVtRGqU6NQFGNuJSK1KigTST6rKiubL3W+4RSn2oCStGySOSqRoiqFFxMtJ0asaZIFCsSoDpacqKAZmoCgKkJ+uVIoKsmKBytp654kYhU6fyKAnrRshqxNp1nNcklrWMRzZWa4Haic0vr6VxYr7lmzex1mZnK46O3PCpKpeXgwPIJ6AAAucoXTLjSZDi7QCg0m6E7cLMh8v777zvYvQFJSUlISkpy2xgqAzZEGIZhGMYZONeMLnjVDF66dAnDhg1DzZo1ERQUhNatW+Pw4cO276tL3H2GYRjGC6gCsWp1xGtm5fr16+jcuTP8/f2xdetWnDp1CosXL0YNkoTAGnd/+fLlOHjwIKKjo9GzZ0/k5ORU3cAZhmGY6otWQ8TLYnxUBl7jmpk/fz7i4uKwdu1aW139+vVt5bJx94GSBEFRUVHYsGEDRo8erW2HhYUlH5GD1eooF0UAor7J7Gx7WU0GKkfZvkROclI2UO2IvYVYoxKgfilIsF9IajQaIkQBk9QkTHP0vZpxibbVIMuRjZsm5lJK6FUWUTI8Wm9dFqIfUrStLCmimixtAuGH2VLx+aWbUTe+SDtBoXPhSDtEzw+NYSXSqIiCYVHNkWj/SmtOjUZEpN0QaXS0SB3o9/QWQvcp0nw4SqJYtr21DR0rydsp1J+I9Deasw5aD0rrdo4uXEcRCV2FXTO64DUz+MUXX6Bdu3Z47LHHUKdOHbRp0wbvvvuu7Xtn4+4XFBSUi/nPMAzDMA5h14wueM2snD9/HitXrkRiYiK++eYbjBkzBuPHj8cHH3wAAE7H3U9OTpbF+4+Li3PfQTAMwzDVBzZEdMFrZsViseDuu+/G3Llz0aZNG4wePRqjRo3CypUrZe20xt2fOnUqsrKybJ+0tDS3jJ9hGIapZrAhogteoxGJiYlBM/qSO4A777wTn3zyCQAgOjoagPa4+0ajUTnZkCSV+B9FjlrrO/Ai8YDINykK2CF6Z16LRoSiJl6JyNnvIEuXSH8ii2mi4oLz9yF9U/8yLSuMl2oYRDE9btyAYhuR29lRkjSRW5r61Gl8BZr/0N+PaDdEgT8EO5CCggHIT4/RQhJ5XSNaJFeCugjOnS02jWA7Ey0HCPqmJ+CGQNShtP7IPMjCM9FJr2/PuvbXFfu6oN0pxWUBypwXglUDJRqemlgoFLpetCTDo1NOD9lRUsiy/amRn1nHJZor0S2E9u2PIvsfVCMnEtgo6T7UZBcU3R9lIhWFwboLNi5cxmtmsHPnzjhz5oys7uzZs6hXrx4AVKu4+wzDMIwXwE9EdMFrnoi8/PLL6NSpE+bOnYvBgwfjp59+wurVq7F69WoAqFZx9xmGYRgvwMnsu4wcrzFE2rdvj82bN2Pq1KmYNWsWEhISsHTpUgwdOtTWprrE3WcYhmG8AH59Vxe8xhABgL59+6Jv377C73WNu2/Vh4icsFoWn8hPKdJlOIoToiKOiAxRvRr/qdK2arQIaoJ6iJzgpL6g2K5CUZLlKMXcKFsvGi7dpVJMBYrIRS3yl8sOWZSoxlEiHQCG0kEaLWQ7UVAJNWjJ0wFo0yW5EgNCqd5RMhhAJpioXaoTAwCpVoTipsLLljQylO6XKseMgcoiCVFMHTWHT3EUDkMUO0TFEhKmsVJa5/Q6EF1bBgvJIyM6L1rPuZJGRE0fosmwHpzW9a4VNkR0wasMEYZhGIbxKNgQcRlVhog1UqkW3nnnHdShofkYhmEYpjrBT0R0QZUh8tlnn2Hw4MEwmUyOGwPYsGEDcnNz2RBhGIZhqi9siOiCatfM22+/rdqw2LRpk9MDYhiGYRivgA0RXVBliOzcuRORNFqTA7Zu3Yo77rjD6UF5BPn5gK+v4+A5VCylRiwqCmJGy1rEqqL9UETiLlGkI5EwTEndJoqQRCH7KfCxP1WjmkuqxaQiOap/s8ZIoknMRNMvEq6q0fkqCVfV6O1EwaCQL4iApUZpmJlZvq2WzGllcVasqrU/NUn3HJVF34sy7ZEgWgYiXPUnP6AKLHYJal6hXWgaFORvK/taA3PRyGEUcnINZFyy5JKk7C9TgAoWnYPsgjSIn1aBKt29TGiq0D8dkqxtvorobmrEpY6E66JMhCJRtugcWSfg1i3l7/WCX9/VBVWGSLdu3TR12qVLF6cGwzAMwzBeBT8RcRmn3pqxWCw4d+4cMjMzYSlj4Xbt2lWXgTEMwzCMR8OuGV3QbIgcOHAAQ4YMwcWLFyFJ8lwNBoMBZrNZsCXDMAzDVCPYENEFzYbImDFj0K5dO2zZsgUxMTEVZrb1agoLAX9/cVSfsLDyddSnSX2X1L8pEiyo0Ys4CkAm8qmKNCLWYyg7LoqSs1nUVjQWcgx5pPryZcUmMg0IzZ1lnVKRbEXkihYFaaJDFLWxJUYjHZqJAoBOsymAGOFXrkERNfoOJT2EGp+7mrIIUUQtpW216kLUtHGkEVGzf6oXuXDBXr5mPxfGGjUUy8hTOGaZiElwDYnmSk2AQtFCVtBL0ESEJlF/dDFeuWEv04uI7odc/7bkhqJ7jJqgfGqyATpK7inSmagRxlCsxyHSkOgFGyK6oNkQ+e2337Bp0yY0atTIHeNhGIZhGO+ADRFd0DyDHTp0wLlz59wxFoZhGIbxLrRm39XgRUhOTkb79u0RGhqKOnXqYMCAAeWy0EuShKSkJMTGxsJkMqF79+44efKk3kfpVlQ9ETl+/Lit/OKLL2LSpEnIyMhAy5Yt4e/vL2t711136TtChmEYhvFE3PxEZPfu3Rg3bhzat2+P4uJiTJs2Db169cKpU6cQHBwMAFiwYAGWLFmCdevWoXHjxpg9ezZ69uyJM2fOeE3CV1WGSOvWrWEwGGTi1JEjR9rK1u+qlVj15k1AkgDqR1aKu0F9kMQXLfOjigQQFOqPpmUln7IoSIAaH7UrWbKs/Yj6plnkBDFKIogsxa+B/SIR5cui7m3rrkQyG5HOg5ZFch1j8U2yU4VG1F9PjsdUSM7/BSJ6oTui51yNXkBJD6JVI0LR2sZRvSftR4RIoyUqK13ndA3fuGEvKy1KQF1MHdF51JLcUiSMosdDj59eXBTaRmGdyxAkGtQcU0RLElE159nRdeGhGpHCwkJk0/s8AKPRCKPRKKv7+uuvZX+vXbsWderUweHDh9G1a1dIkoSlS5di2rRptlQs69evR1RUFDZs2IDRo0drHltVoMoQSUlJcfc4GIZhGMa7cNIQWbNmDVatWiWrmzFjhsPM8VlZWQBgCzCakpKCjIwM9OrVy9bGaDSiW7du2LdvX/UyROrVq2cr79mzB506dYJfGXV1cXEx9u3bJ2vLMAzDMNUWJw2RkSNHYsGCBbK6sk9DyiJJEiZOnIguXbqgRYsWAICMjAwAQFRUlKxtVFQULl68qHlcVYXmt2Z69OiB9PT0cnlnsrKy0KNHj+rjmmEYhmEYRzhhiAQEBCCMhk9QwQsvvIDjx49j79695b4rG0bDKpXwFjQbIqIDvHr1qk08Uy0ICCj5UH8w9RM7iu9A9RK1ainvg/ZXatmW60fJ70z7Fi1m2h/149JtRf5a6hunWNvTPmJjbUWpQUNb+Y8/7E3oZUpHGxpi1xyFgswzmfOYumQs1v2qyYVDbg6Sj/IvDaOF5KGg50JJg0N95Nb8L4BcF0TXCp1DUVwYiqOYCa7oJbS219KnK+PS65isiGJg0Hq6dkVBZRxpsahvX6QFE+lFRFogJZSSHpXdTqRdURMXRqmNSE9Gj1NrjBoRIg2Mo+9F+xTlznInlfT67osvvogvvvgCe/bsQd26dW310aU5lTIyMhATE2Orz8zMLPeUxJNRfbasQhiDwYARI0bIHiOZzWYcP34cnTp10n+EDMMwDOOJuDnpnSRJePHFF7F582bs2rULCQkJsu8TEhIQHR2N7du3o02bNgBKhLC7d+/G/PnztY2rClFtiISHhwMomZjQ0FCYTPYsqgEBAbj33nsxatQo/UfIMAzDMJ6Im5+IjBs3Dhs2bMDnn3+O0NBQmyYkPDwcJpMJBoMBEyZMwNy5c5GYmIjExETMnTsXQUFBGDJkiNvGpTeqDZG1a9dCkiRIkoRly5Z5zfvJDMMwDOMW3GyIrFy5EgDQvXt3Wf3atWsxYsQIAMCUKVNw69YtjB07FtevX0eHDh2wbds2r/o3WtMMSpKEDRs22KyyqiQ5OdlmDVqpDhHmGIZhGC9Ca2RVDVh//Jf9WI0QoEQukZSUhPT0dOTn52P37t22t2q8BU2KHh8fHyQmJuLq1atITEx015gccvDgQaxevbpcFFddI8xlZZWItagYTEncRYVjVCAlEnpRQVWZgDY2qLi19H1x2f5pgCwiFhUm3aMJwOg+qdCVXiBKoly632bNbFWXfOLswyMC1bjoIvsfNLtdJhnjNUHgNEGCsVuWEl2Sia5aOlZBdDPqkTXlk3mh46L90Dm3CgDPnrXXiQLOUagoks6/mhuRI+GeK7hTWOeKcFHLtmpEjLRMrz81ke6s1w69zgIVRNOAfN2IhKtaz7n1WhDdQ6hYWhQJkF7/IuGqEqLrUISzxybaVvQ9LYvuuUrn1t1vcXKuGV3QPIMLFizA5MmT8csvv7hjPA7Jzc3F0KFD8e677yIiIsJWXzbCXIsWLbB+/Xrk5eVhw4YNVTJWhmEYphpjNUTc9ETkdkHzrAwbNgw//fQTWrVqBZPJhMjISNnH3YwbNw59+vTBgw8+KKt3FGFOREFBAbKzs2UfhmEYhnEIGyK6oPll66VLl7phGOrYuHEjjhw5goMHD5b7ztkIc8nJyZg5c6a+A2UYhmGqP25+ffd2QbMhMnz4cHeMwyFpaWl46aWXsG3bNgSKAm5Be4S5qVOnYuLEiba/s7OzERcXB/z5Z4lf2FGyKVFCJ1GiKdGiFQUmo09orP2LEuTRPmgSL1qmQY/o8dA5pWOnbeLjAQDXQ+y6kH3flvsaABBXR+CjJ5qW3zPtuh0LcYfToVw5Xb6bBg3sMWyi6FM4UaIvKq6mx0+DkdFtr1yxl616AOqXF2XOE+l/6LYUui1FS6AnEaI2rmzrCFc0Io7QmgBOpBERtaHnznqd0euZ6kLouRWtLTXBtRxlbKTrjK4hGi1QRUA/TWtBr3WjRt+hdB7V6FlE91l63Vq3Fd2H9YI1IrrgVPg5s9mMzz77DL/++isMBgOaNWuGRx99FL6+vnqPz8bhw4eRmZmJtm3bysaxZ88eLF++HGfOnAGgPcKcUsZDhmEYhlEFGyIuo9kQOXfuHB555BFcunQJTZo0gSRJOHv2LOLi4rBlyxY0bNjQcSdO8MADD+DEiROyumeeeQZNmzbFq6++igYNGlSLCHMMwzCMl8BPRHRBsyEyfvx4NGzYEAcOHLCJU69evYphw4Zh/Pjx2LJli+6DBIDQ0NBy70YHBwejZs2atvrqEGGOYRiG8RLYENEFzYbI7t27ZUYIANSsWRPz5s1D586ddR2cVnSNMBccDJhM4uRlVn+wGi2ImoVK4xFQ7QL1h1p9xyI9B9WIkFgfIEmSZP5lke+c9l+/vr3coAEAICI7zVb12MM1bOUte+zzvHaD3d0VENDEVqZSDHqY1EXeurXyUKxl4XTSuaJ+fOo7pn58UdwFpfgNtE6UgEyUAI/2LYo1404/vjt1Ie5EjS5EFFNCpEugmg4aR4a2ty600oRiAOQxReh6EsXcEemsKCJ9kXXtiJJiqunbWY2ICFfWnBbtiJox0XlWuj+q7UcP2BDRBc2GiNFoRE5OTrn63NxcBIjEd25i165dsr+tEeaSkpIqdRwMwzDMbQgbIrqgeQb79u2L559/Hj/++KMt3OyBAwcwZswYPProo+4YI8MwDMN4JlrjiPDru+XQbIi8/fbbaNiwITp27IjAwEAEBgaic+fOaNSoEd566y13jJFhGIZhPA8OaKYLml0zNWrUwOeff47ffvsNp0+fhiRJaNasGRo1auSO8VU91NevpKmg7ihRTBGKKO4B9XuK4jFYYxmIYiTQWAN03PTciPQlSu/gl8XqUz9yxF5HNCd9SFTbE+3+Zit//bW9uSgFBh0i3T1tb51qGtJBpnmhx0CPjXZC50UEbW+dU1HsApHOQ1Sm7UVUlu/elf61oCY2hCMtjBpdiChGBd2/SEdE9RjWhSbSX9E1JDqfooWuJtaHdVt6PYu0EKJjc/a8uRIvRE0bR2XReaOI9Gw0XpK1n1u3lPtgPAqn4ogAsL2ZwjAMwzC3JawR0QXNhojZbMa6devw3XffITMzE5YyVuuOHTt0GxzDMAzDeCxsiOiCZkPkpZdewrp169CnTx+0aNGiwvDpDMMwDFNtYUNEFzQbIhs3bsR///tfPPLII+4YD8MwDMN4D2yIuIxmQyQgIKD6ClMpmZmA0SgWmlmhYikqIhMFGhIhSsalJGgV7Ye2PX/eXqaBtkqDkgn7BuSit7Nn7WWreI8GV6KCv2/tGfBakjYthwywlU9cu8NWpno+qjOjyfNMAWb7H9YLnu6filXpcYoEoqJgULSe9mM9PtF2IuGgmrKzVEVAM1duts4KGkXCRTVJ1NQgukatwlUaxIwqpOlYqMhVJCIXCdcdJYATBcITXbd6nyO9hagVlbUgeilAaV48MekdexHKoXklTJo0CW+99RYkSXLHeBiGYRjGO+DXd3VB8xORvXv3YufOndi6dSuaN28Of39/2feffvqpboNjGIZhGI+FNSK64FQckYEDB7pjLAzDMAzjPbAhoguaDZG1a9eqavfDDz+gXbt2MBqNjht7In/9VeL/p75ZGtTIqg0QBVcS+W4daU4AuV+T+qCt+1IaByD3Y4sSfdGyCKp7UQq0RPumbaleZM8ee/n0aVuxJdWokMSJsuPYKwgGZU1CRo+Tzg/dv0hHICrTBGhUI6IlcJ1WXYgavYgW7YZWn76z+9HaRo/gVlqPQc38i86dNWBZaqq9jq5Vqh2ha45eW1TfQRGNi47dutZEui091k3ZNo40IpWlCxHdE+nx04BytD+lZKFqAgi6ipsNkT179mDhwoU4fPgw0tPTsXnzZgwYMMD2vSRJmDlzJlavXm1L9vqvf/0LzZs3d+u49MRtM9i7d29cunTJXd0zDMMwTNVSCRqRmzdvolWrVli+fLni9wsWLMCSJUuwfPlyHDx4ENHR0ejZs6diclpPxenIqo5gMSvDMAxTrakE10zv3r3Ru3dvxe8kScLSpUsxbdo0DBo0CACwfv16REVFYcOGDRg9erRbx6YX7NxiGIZhGGdw5omIwYDCwkJkZ2fLPgUFBZp3n5KSgoyMDPQieb6MRiO6deuGffv26XmkbsVtT0S8Hqtv0VECOlGMClHcATU+S1GSNuu2tE6ks6BQi536tEXHRseolFRMdAwiHz2N9UHLtA2dL+qDp2WrD5geM51zOi+iZGCiZHj0mGg/Slogil5aEEfopf/QIwZJZcWXcEUXIkK0LpS2pZqD48ft5dat7eU6dexlqlcSxRcRjYWidO9Rc5x6nH936D+0bCs6J6L5FJ1PR9etXjj5RGTNmjVYtWqVrG7GjBlISkrS1E9GqS4pKipKVh8VFYWLFy9qHldVwYYIwzAMwziLE4bIyJEjsWDBAlmdKy92lE21IkmSV6VfcZsh4k2TwDAMwzCacfKJSEBAAMLo249OEl36JmFGRgZiYmJs9ZmZmeWekngybtOIsFiVYRiGqdZUcWTVhIQEREdHY/v27ba6wsJC7N69G506ddJ1X+5E8xORW7duQZIkBJX69C9evIjNmzejWbNmMsGM3q8OJScn49NPP8Xp06dhMpnQqVMnzJ8/H02aNLG10fV9aoulvC82TyG+hUj/QctqYlCINAoiTYMVUcwP2oeafBxUC6IlHoPIpyuKr0Khxyzye9Pjs/rsRbqczEzl/tT4lB358dX4+fXQggDO6zJE9ZWlC1Gzf9E60xLHQg1acjeVLSvti64tmsepcWN72RrnBgCuXLGXle4balCjC1HScJXdVss5cke8EJHWxdH+RfGURLm26LbW8+nuOCKV8NZMbm4uzp07Z/s7JSUFx44dQ2RkJOLj4zFhwgTMnTsXiYmJSExMxNy5cxEUFIQhQ4a4dVx6onkG+/fvjw8++AAAcOPGDXTo0AGLFy9G//79sXLlSt0HaGX37t0YN24cDhw4gO3bt6O4uBi9evXCzZs3bW2qw/vUDMMwjJdQCU9EDh06hDZt2qBNmzYAgIkTJ6JNmzaYPn06AGDKlCmYMGECxo4di3bt2uHSpUvYtm0bQkNDdT1Ud6L5iciRI0fw5ptvAgA2bdqEqKgoHD16FJ988gmmT5+Of/zjH7oPEgC+/vpr2d9r165FnTp1cPjwYXTt2rXavE/NMAzDeBFajQuN+snu3btXKHUwGAxISkrS/MaNJ6HZPMvLy7NZWtu2bcOgQYPg4+ODe++9t1JfF8rKygIARJa+yuns+9QFBQXl3udmGIZhGIdw9l1d0DwrjRo1wmeffYa0tDR88803tn/4MzMzdVEBq0GSJEycOBFdunRBixYtAFT8PnVGBflVkpOTER4ebvvExcW5b+AMwzBM9YENEV3Q7JqZPn06hgwZgpdffhn3338/OnbsCKDk6YjVh+VuXnjhBRw/fhx79+4t953W96mnTp2KiRMn2v7Ozs4uMUYKCsoLVpUCXdWoYa+jwigqUFMKtAPIk9fRvulTGVqvJFalgcDoWERoTcynJO5UIwATCUpFY6GIklopCdDUBDSjiI6NimKVRLR6CVFFOBIm6iE4daZe6XtX+hYFmNIikBXhikBZJCJXqqNiVQoNtEfLdJ3TslKSNoq7hdB6r2mRKFXNWJQQ3RPpHNLrlt5brddwUZHjcbgCZ9/VBc2GyN///nd06dIF6enpaNWqla3+gQcewMCBA3UdnBIvvvgivvjiC+zZswd169a11Tv7PrXRaPTeDMEMwzBM1cGGiC44FdAsOjoaubm52L59O7p27QqTyYT27du7NYiZJEl48cUXsXnzZuzatQsJCQmy7+n71NYnM9b3qefPn++2cTEMwzC3MdXcEDlO0xuopFmzZvATPfFWQLMhcvXqVQwePBg7d+6EwWDAb7/9hgYNGuC5555DjRo1sHjxYq1dqmLcuHHYsGEDPv/8c4SGhtp0H+Hh4TCZTDAYDNXifWqGYRjGS7gNnoi0bt0aBoNBdZBSHx8fnD17Fg0aNFC9D82GyMsvvwx/f3+kpqbizjvvtNU//vjjePnll91miFhjlHTv3l1Wv3btWowYMQJAyfvUt27dwtixY20BzZx+nzo7G/D3F/vGrdoMkZ9XFCxJlKSOah1EugerpkSrL5z6V6mmhFqsWvzoIj8/7VuUaI4es5oLmAYysvZJ+6N9UM0NPWaRRkWNjsRR0iytfnG90SsxmpY2zupMXNknxZXgcmquHUe6IKrVOnvWXhYFF6TXBW1DNV1KiS5FgeAoWhP9ORskTi/9h6PxihLd0fsgnQt6bSvNkSdqRLww/cmPP/6I2rVrO2wnSZLtBRItaDZEtm3bhm+++UamzwCAxMREt76+q8Yaqw7vUzMMwzBewm3wRKRbt25o1KgRaqh5GQKwyTW0oNkQuXnzpi28O+XKlSss+mQYhmFuH24DQ2Tnzp2a2v/vf//TvA/NM9i1a1dbiHeg5CmExWLBwoUL0aNHD80DYBiGYRiv5TaJI5KdnQ2LgmvNbDa7HAhU8xORhQsXonv37jh06BAKCwsxZcoUnDx5EteuXcMPP/zg0mA8CqVFoxQPgfooRXoCUaItqi8RxeagPuVGjUr+T32nNBmXaDGINA9aYofQepG/mPpoRYn+tF6ISj5tpXguZfdPUaMXoH0qtVHjI3clLoOj/tX0rYf+w9X2rm5H0ap/0GtbR9+LtFWiNUTraTI8UQwMR3On4W0EAOo0T0pJ59yhBdKSXJKOleq/1By/tR93Z4G/DZ6IAMDmzZvx6quv4tixY+U8IgUFBWjfvj0WLVqEfv36OdW/5hls1qwZjh8/jvbt26Nnz564efMmBg0ahKNHj6Jhw4ZODYJhGIZhvI7bJLLqypUrMWXKFEVZRlBQEF599VUsX77c6f6djiMya9Ysp3fKMAzDMF7PbfLWzC+//IIVK1YIv+/atStef/11p/t3yjz7/vvvMWzYMHTq1AmXLl0CAPz73/9WDLnOMAzDMNWS2+SJyPXr11FcQSiDoqIiXL9+3en+NT8R+eSTT/DUU09h6NChOHLkCAoKCgAAOTk5mDt3rlOKWY8kPLzEbyvSQFh9kKLYIbRelGtCtC3dJ407UqtWyf/p4zGqEaGxCGgbNf5nLXktRNoSun9ar9WnLRqXVY8jilGiJl6ISItB+6RzZz0vauJPuILeOUD0vuF56Q20HFriYeilpxHpHkT5qKz9iO4JISHKfYjaq7n+rPvXGmdEq15KS+wW0T2E3hOVclHRbdXkxXKV6nJtVED9+vVx6NAhNG3aVPH7Q4cOoV69ek73r3kGZ8+ejXfeeQfvvvsu/P39bfWdOnXCkSNHnB4IwzAMw3gVt8kTkUGDBmHatGn4888/y32XkZGB119/HX/729+c7l/zT9UzZ86ga9eu5erDwsJwg77NwTAMwzDVmdvkrZnXXnsNn3/+ORITEzFs2DA0adIEBoMBv/76K/7zn/8gLi4Or732mtP9azZEYmJicO7cOdSvX19Wv3fvXk2x5RmGYRjGq7lNDJHQ0FD88MMPmDp1Kj7++GObHiQiIgLDhg3D3LlznUulUopmQ2T06NF46aWXsGbNGhgMBly+fBn79+/HK6+8gunTpzs9EIZhGIbxKm4TQwQoSTC7YsUK/Otf/8KVK1cgSRJq164Ngw5vAWk2RKZMmYKsrCz06NED+fn56Nq1K4xGI1555RW88MILLg/I4xApha0CUFH8fRrEiIquRIG+lESZgLIYjYq1oqPtZRrQjLrJRKJMimgsWoSrosBlIoGuVqxjUROITY1A1VkxnivBstwRDE2P/TvbnwhPFctq6cfd+xSJWK3XC71X0CfQVEx9+rRyH6IAYCLxppL4Xg1aA8o5ureoSeJI74lUuKt0n6kMI+E2eH2XYjAYVCXA04KmGTSbzdi9ezcmTZqEK1eu4KeffsKBAwfw119/4f/+7/90HRjDMAzDeDS3gVj17rvv1vRqbpcuXWxhPdSi6YmIr68vHnroIfz666+IjIxEu3btNO2MYRiGYaoNleSaWbFiBRYuXIj09HQ0b94cS5cuxX333ef2/QLAsWPH8PPPPyOSPol30N4a1kMtml0zLVu2xPnz55GQkKB1U4ZhGIapPlSCIfLxxx9jwoQJWLFiBTp37oxVq1ahd+/eOHXqFOLj4926bysPPPAAJJV5e5zRjGg2RObMmYNXXnkF//d//4e2bdsiODhY9n0Y9U16Mzk5gL+/2Ndp9dNSf60a/YFIL1Knjr1M9SU0YNm5c+X3SXUhooBedD9aNRUUpXo1F6FWTYVojqzHTfcp0uKIAspZg8IB8rmj/ShpXdRoTihqdCx63MDckcRObx1FVSbOq6hPNXoEPdDan1XHQdc+RRTETE3SR5EWzJqAT41GxB3JCLXMEb1WHQUxLCpS368zVIIhsmTJEjz77LN47rnnAABLly7FN998g5UrVyI5Odmt+waAlJQUzdvUrVtXU3vNhsjDDz8MAHj00Udllo8kSTAYDDCbzVq7ZBiGYRjvxAlDpLCwENllsqUbjUYYjcZy7Q4fPlwuRkevXr2wb98+7WN1AlcipqpFsyGyc+dOd4yDYRiGYbwKCQZI0O6KWLNmDVatWiWrmzFjBpKSkmR1V65cgdlsRlRUlKw+KioKGRkZmvfrqWg2RLp16+aOcTAMwzCM1+GMJ2/kyJFYsGCBrK7s0xBKWd2F1QNRXdBsiBw/flyx3mAwIDAwEPHx8RVOqNdgsZRfYfRvq5+S+ihF8TJEK5W2oYpkqrNR0hdcuGCvoz5iUTIoNT5iipYrS48+KkLJBy7SvIh0IVR/Y/WFA3KNiCi+ixVX/MBak/45m4xNL72GUht39q1mW3f2raaNs0ncAHUxepR0UVTPRHUhV67Yy0qJOAFA9GvZ0VpUE39GtE9Rey24oidTaqO33qcMkuTcLgICAlTpKWvVqgVfX99yTz8yMzPLPSXxZjSvltatW6NNmzblPq1bt0bTpk0RHh6O4cOHI18kIqoEVqxYgYSEBAQGBqJt27b4/vvvq2wsDMMwTPXEaoho+WghICAAbdu2xfbt22X127dvR6dOnXQ8kqpFsyGyefNmJCYmYvXq1Th27BiOHj2K1atXo0mTJtiwYQPef/997NixA6+//ro7xusQ66tO06ZNw9GjR3Hfffehd+/eSE1NrZLxMAzDMNUTdxsiADBx4kS89957WLNmDX799Ve8/PLLSE1NxZgxY/Q/IAekpaXhjz/+sP39008/YcKECVi9erVL/Tr1+u5bb72Fhx56yFZ31113oW7dunjjjTfw008/ITg4GJMmTcKiRYtcGpwzaH3VqaCgQBZ8paySmWEYhmGUcNY1o4XHH38cV69exaxZs5Ceno4WLVrgf//7X6W8zVKWIUOG4Pnnn8dTTz2FjIwM9OzZE82bN8eHH36IjIwMp/PNaTZETpw4oTgB9erVw4kTJwCUuG/S09OdGpArOPOqU3JyMmbOnFn+Cz+/ko/IH2n1k4ryq2j1tdLYICLdhzWvgijvglaNipqYChQteWf0ujqVdDl0TkTaDlEOHJqDh84z9cdfu1Z+/7Q/0T5pPXVN0v1ojTvibK4bZ/vWilZdhpZ6d/ZdUb0W1Gg+1FyXtN56L6D5ZaguhCI6t6K1KIq7Y12jVENFx03LonuYaFxq0COnk1K5EgSdWi9HlXHBZIwdOxZjx47VvqHO/PLLL7jnnnsAAP/973/RokUL/PDDD9i2bRvGjBnjtCGi+Ups2rQp5s2bh0Jycy0qKsK8efPQtGlTAMClS5eqREjjzKtOU6dORVZWlu2TlpZWGUNlGIZhvJzKcM14EkVFRbaXUb799ls8+uijAErsAlcePmh+IvKvf/0Ljz76KOrWrYu77roLBoMBx48fh9lsxldffQUAOH/+fJVab1pedVIKIsMwDMMwjqgM14wn0bx5c7zzzjvo06cPtm/fbkt2e/nyZdSsWdPpfjUbIp06dcKFCxfw4Ycf4uzZs5AkCX//+98xZMgQhIaGAgCeeuoppwfkCrfLq04MwzBM1XO7GSLz58/HwIEDsXDhQgwfPhytWrUCAHzxxRc2l40zaDZEACAkJKRKFLuOoK86DRw40Fa/fft29O/fvwpHxjAMw1Q3bjdDpHv37rhy5Qqys7MRERFhq3/++ecRRHWOGnHKEPn3v/+NVatW4fz589i/fz/q1auHN998Ew0aNKjyf/AnTpyIp556Cu3atUPHjh2xevVq51518vGxf5SwisvoWzZURCkSqIkQCS1p2SpMdSWImCvCRaUEcGr2owbRWJTGSwW6VgEvIBfl0TJ9QiYSnWpJAEj7pkGJRGmy6XipENZRwi5A3dpRoiqCm3mzcFVrG2e3UxMMzFpPhaVUZC0K3CeqF4mradmq+XN07VU0bjXHJkKPf82dDcTnIreTIQIAvr6+MiMEAOpTYbUTaDZEVq5cienTp2PChAmYPXu2LcldREQEli5dWuWGiCe96sQwDMNUX263JyIAsGnTJvz3v/9Famqq7KUVADhy5IhTfWo2F5ctW4Z3330X06ZNgx+xgNu1a2d7fbeqGTt2LC5cuICCggIcPnwYXbt2reohMQzDMNUMZ96aceb1XU/h7bffxjPPPIM6derg6NGjuOeee1CzZk2cP38evXv3drpfzYZISkoK2rRpU67eaDTi5s2bTg+EYRiGYbyJ2+313RUrVmD16tVYvnw5AgICMGXKFGzfvh3jx49HVlaW0/1qds0kJCTg2LFj5VwdW7duRbNmzZweiMdhDWjmCOr/p2Idqh0QBb2ij7VoPzSoEO3T6jMu8zjMIVqDaDnbnxq0BldTQhSgTBSASaS5oGWlIGZlx6UE1QhRzUeNGvYy1bHQcVHtihofvBa0BoNyhB4BqtS2sdarWbeispr2ojZKQexEbSlaE8CJxmVdR3Rt161rL9N7Bb0X0HsL1ZdQRDomR/oKUVl0zdFrQe/EeCKqQCNyu7lmUlNTbTluTCYTcnJyAJS8KXvvvfdi+fLlTvWr2RCZPHkyxo0bh/z8fEiShJ9++gkfffQRkpOT8d577zk1CIZhGIbxRm4nQyQ6OhpXr15FvXr1UK9ePRw4cACtWrVCSkoKJBd8TpoNkWeeeQbFxcWYMmUK8vLyMGTIENxxxx1466238MQTTzg9EIZhGIbxJm63JyL3338/vvzyS9x999149tln8fLLL2PTpk04dOgQBg0a5HS/Tr2+O2rUKIwaNQpXrlyBxWJBnTp1nB4AwzAMw3gjt5shsnr1alhKD3jMmDGIjIzE3r170a9fP5diizlliFipRROFVTf8/Ut8ro6SV1FfLPWLUuNM5F+l+g9aTzUiSv5YV3zhWv21el9lWhMDKuk11MT8cOU4leZRTZwX6q/PzLSXqa9fTZwGpTa3093OiisJ+lzRjjirNXBljEpJ5Wjd3Xfby9HR9vKOHfYynS+RRo2ipIETJc6jZdG41SR3pOgRL6aKccYQ8ea3Zv744w/ExcXZ/h48eDAGDx4MSZKQlpaG+Ph4p/pVZYi0adNGmKulLM6+R8wwDMMw3sTt9kQkISEB6enp5bwg165dQ0JCgi2umFZUGSIDBgywlfPz87FixQo0a9YMHTt2BAAcOHAAJ0+e9Ig0xQzDMAxTWdxOhogogWxubi4C6ZN8jagyRGbMmGErP/fccxg/frwt6x5tk5aW5vRAGIZhGMabuF2eiEycOBFASWb7N954Q5ZXxmw248cff0Tr1q2d7l+zRuT//b//h0OHDpWrHzZsGNq1a4c1a9Y4PRiPIjCwvEaEYtWDUN8p9cvSOBJUO0L9qCKNiCOtg1JsEUCca8IV/6o7fbPOxrpQk2tHa54MiqP8LqK51UsjoDReNX1XxR3RHWvL2ZgWamJdaN3WmbGqxZF2jK7DCxfsZaoXofecXbvsZRoXh94vHF079Hv6C1ekWxPF5aFonf+K6iqqd7WtE9wuhsjRo0cBlDwROXHiBALIv3sBAQFo1aoVXnnlFaf712yImEwm7N27F4mJibL6vXv3uvRohmEYhmG8idvFENm5cyeAkvAdb731FsKoAawDmg2RCRMm4B//+AcOHz6Me++9F0CJRmTNmjWYPn26roNjGIZhGE/ldjFErKxdu9Yt/Wo2RF577TU0aNAAb731FjZs2AAAuPPOO7Fu3ToMHjxY9wEyDMMwjKdyO72+6y6ciiNifXeYYRiGYW5XbrcnIu7CpYBm1RqrWFWEUqArkYiUClTVJIYSJduztlcTCIv68Oj+HQkxK6Iqggo5Equ6o0yxrgE1IjtRcj26Lii0jRoBrjPfezKO1pM7RKmiNkr1WoOiidAqyraOhV6358/by1QIf9ddyv2JAp05WqNqAiuqOR5RADRHZWfFxCJ8fdW3dQI2RPRB1RmNjIzElStXVHcaHx+PixcvOj0ohmEYhvF0rIaIlo87mTNnDjp16oSgoCDUoAYrITU1Ff369UNwcDBq1aqF8ePHo1BrRnedUfVE5MaNG9i6dSvCw8NVdXr16lWnI6wxDMMwjDfgaU9ECgsL8dhjj6Fjx454//33y31vNpvRp08f1K5dG3v37sXVq1cxfPhwSJKEZcuWVcGIS1Dtmhk+fLg7x8EwDMMwXoczhkhhYSGys7NldUajEUaj0aWxzJw5EwCwbt06xe+3bduGU6dOIS0tDbGxsQCAxYsXY8SIEZgzZ47ur+WqRZUhYvEkk6+yMJmAsotCyY9L/ax0YWkNukV9qtQ3S7UmGRnl90n7owmHaEJCGgxJTSIxZwNNiXBFW+KsRkQUaElUFiX7sp4LUcAxke+cthf52qlGyBHOBn/zRpwNbqVF/1G23lHSOb20C2rWq1IQO7pWjh1T7qNFC3uZBjQ7fly5H0e6NFGCTvoYX3TdULRod1yZZ6V6D9WIrFmzBqtWrZLVzZgxA0lJSfoMTMD+/fvRokULmxECAA899BAKCgpw+PBh9OjRw637F+GZKQ3LcOHCBTz77LNISEiAyWRCw4YNMWPGjHJ+LU/0fTEMwzDVE2c0IpIEjBw5EllZWbLP1KlT3T7ejIwMREVFyeoiIiIQEBCADOsP3SrAK96aOX36NCwWC1atWoVGjRrhl19+wahRo3Dz5k0sWrQIgOf6vhiGYZjqibNPRAICAlS7QZKSkmwuFxEHDx5Eu3btVPWnlLROlMyusvAKQ+Thhx/Gww8/bPu7QYMGOHPmDFauXGkzRDzV98UwDMNUTypDrPrCCy/giSeeqLBN/fr1VfUVHR2NH3/8UVZ3/fp1FBUVlXtSUpl4hSGiRFZWFiIjI21/O+v7KigoQEFBge1vm4AoMLC8RoRi9enSVUj9r6JEU9QXLPJ1UneSkmtJFGeE1ov8uCK/OEWPZGTO9lcRSom51PjcRX5x6tN2NBcizQdFjeZEFF9BzbpQ6lsrajRCno6a9aSH1kBNLBJnE7oBjhNqipJY0kfotNyli71cp469rCZhnRJ0rdL7mWidu6Kp0UOXozTPlRDG1N2GSK1atVCLav5coGPHjpgzZw7S09MRExMDoORHvNFoRNu2bXXZhzN45Z3o999/x7JlyzBmzBhbnbO+r+TkZISHh9s+cXFxbhs3wzAMU33wtDgiqampOHbsGFJTU2E2m3Hs2DEcO3YMuaUvPfTq1QvNmjXDU089haNHj+K7777DK6+8glGjRlWp18ApQ+T333/H66+/jieffBKZmZkAgK+//honT57U1E9SUhIMBkOFn0OHDsm2uXz5Mh5++GE89thjeO6552TfOeP7mjp1qkwwlJaWpukYGIZhmNsTTzNEpk+fjjZt2mDGjBnIzc1FmzZt0KZNG9u/o76+vtiyZQsCAwPRuXNnDB48GAMGDLBJHKoKza6Z3bt3o3fv3ujcuTP27NmDOXPmoE6dOjh+/Djee+89bNq0SXVfWn1fly9fRo8ePdCxY0esXr1a1s5Z35ce724zDMMwtx+eFtBs3bp1whgiVuLj4/HVV19VzoBU4lT23dmzZ2PixIkIDQ211ffo0QNvvfWWpr60+L4uXbqEHj16oG3btli7di18yvgDdfd9+fuXfy9eKWYE9Wnm5Sm3pf3QNiJfM9U00PZKeU+ov5bGDhCNxRWftrM5OPTWjqjRhYhe2xbl0qAo6TVE/nKRRkjkf6fzT0Mwi7a17t8ddzstGpHK1JM4e6xaY9o4m7+EojUujxpdllKuGbo+6LoVrWFKSIi9LFqv1vUt6o/GM6Lbab23UPTINeOo7EpuLRU4Y4hw9t3yaDZETpw4gQ0bNpSrr127Nq5evarLoMpy+fJldO/eHfHx8Vi0aBH++usv23fR0dEA5L6vhQsX4tq1ax7h+2IYhmGqL570RMRb0WyI1KhRA+np6UhISJDVHz16FHfccYduA6Ns27YN586dw7lz51C3bl3Zd1KpeWn1fY0dOxadO3eGyWTCkCFDqtz3xTAMw1RPPM01461oNkSGDBmCV199Ff/v//0/GAwGWCwW/PDDD3jllVfw9NNPu2OMGDFiBEaMGOGwnSf6vhiGYZjqCRsi+qDZMTpnzhzEx8fjjjvuQG5uLpo1a4auXbuiU6dOeP31190xRoZhGIbxODztrRlvRfMTEX9/f/znP//BrFmzcPToUVgsFrRp0waJiYnuGF/V4eNj/yhhFWaJAlRRsago6A/VrtAARDdu2Ms0kZ5VSCZKtCaqF42xKgRlor7V1CshEquKgpXRNlR0KkIp0BKFCgrVBC6jYkC6f1qmomNRIjF34oki1soU62oRZTvbt5qyaM3R+wYV+4vuOaJgZBSrcJquTxp/SY1AVSRWpbgzWKKje5Ub4Cci+uB0ZNWGDRuiYcOGeo6FYRiGYZjbDFWGyMSJE1V3uGTJEqcHwzAMwzDeBL++6zqqDJGjR4/K/j58+DDMZjOaNGkCADh79ix8fX2rNFY9wzAMw1Qm7JrRB1WGyM6dO23lJUuWIDQ0FOvXr0dERASAkgimzzzzDO677z73jLIqcKQRUaqngYNEeg3ahiTtk/lxr1yxl0W6A6W+9dB/qGnvjv2o2VbpilcT3EzUB/WHi/zbju4yWpPhqWlPg0cp6YJEuNMf7krfWrfVcmdX01ZNG0caBVG9Xmtbaf2JksvRQHhUL0K1ZUqBEMuWlQKjiQIBqrlWKM4GjtNbiyPS2egEGyL6oPnusnjxYiQnJ9uMEKAkudzs2bOxePFiXQfHMAzDMJ4KvzWjD5oNkezsbPz555/l6jMzM5GTk6PLoBiGYRjG02FDRB80GyIDBw7EM888g02bNuGPP/7AH3/8gU2bNuHZZ5/FoEGD3DFGhmEYhvFI2BBxHc0OtHfeeQevvPIKhg0bhqKiopJO/Pzw7LPPYuHChboPsMoICHAthoMo0ZQovgR9Zz8zU7kfLXFE9IrdoeX9flf61iOmCPWpi3QZFFEcESXdiegOIjoG2p763Wkbem5FPn3r2PWaK71julRmMjwreulCnEXr+teaaNLaXrRuqV5DtIZo3A+RLonu07pGtSbX0xprRY/rXAtu/pefNSL6oNkQCQoKwooVK7Bw4UL8/vvvkCQJjRo1QnBwsDvGxzAMwzAeCWff1QenJcXBwcG466679BwLwzAMw3gN/EREHzQbIj169IDBYBB+v2PHDpcGxDAMwzDeABsi+qDZEGndurXs76KiIhw7dgy//PILhg8frte4qh6jscQvKlplStoBNSuS+nFpThGqI6BxApR8unppBPTWi7iyH73zzohywIj0OqLzqKTRELUVtRHllKGIYsdY27sSr0JNfBUtfVZ1TBM1VNa/Du6INaIUA0PNfKrJtUTraXvr9SKKM6J3HhkRatpqObcV/GjWAzZE9EGzIfLmm28q1iclJSGXBmJiGIZhmGoOGyKuo9vPlmHDhmHNmjV6dccwDMMwHg3HEdEH3eLf7t+/H4GiV7wYhmEYpprBrhl90GyIlA1aJkkS0tPTcejQIbzxxhu6DYxhGIZhPBlPen33woUL+L//+z/s2LEDGRkZiI2NxbBhwzBt2jQEEO1Pamoqxo0bhx07dsBkMmHIkCFYtGiRrE1lo9kQCQsLk7014+PjgyZNmmDWrFno1auXroOrUkJCAJNJLPSz1lNRpCiglqisJEosW+9JAlEtYll37l8NIkGp3j9f1OxHJBzMzraXRcGjlG4OWoWgdJ90vYoSnCkJEyvrvDnT3lm0rAVXjkGP64yeE1GZIhKX0rVF70XWQGY0iZ4rye1EbUToHTjPem5vI7Hq6dOnYbFYsGrVKjRq1Ai//PILRo0ahZs3b2LRokUAALPZjD59+qB27drYu3cvrl69iuHDh0OSJCxbtqzKxq7ZEFm3bp0bhsEwDMMw3oenGCIPP/wwHn74YdvfDRo0wJkzZ7By5UqbIbJt2zacOnUKaWlpiI2NBVCSyHbEiBGYM2cOwqghWolo/unRoEEDXL16tVz9jRs30KBBA10GVREFBQVo3bo1DAYDjh07JvsuNTUV/fr1Q3BwMGrVqoXx48ejUPSrj2EYhmFcwFmxamFhIbKzs2WfgoIC3ceXlZWFyMhI29/79+9HixYtbEYIADz00EMoKCjA4cOHdd+/WjQbIhcuXIDZbC5XX1BQgEuXLukyqIqYMmWKbBKtWB853bx5E3v37sXGjRvxySefYNKkSW4fE8MwDHP74awhsmbNGoSHh8s+ycnJuo7t999/x7JlyzBmzBhbXUZGBqKiomTtIiIiEBAQgAya76ySUe2a+eKLL2zlb775BuHh4ba/zWYzvvvuO9SvX1/XwZVl69at2LZtGz755BNs3bpV9p2zj5wKCgpklmi21W8fHCwOPkURaUjUaEdE2gFnE71pTYAn8i9TnPXdutOnXJmJs5SeuzoKcldRmULHS9cnXXfOHpMrc6S0FtUkbtNr/56YaE+EXvoXLf3QgId03dB1RvVHokSLFGt7kf7ElYB6lRXozNngey7grEZk5MiRWLBggazOaDQqtk1KSsLMmTMr7O/gwYNo166d7e/Lly/j4YcfxmOPPYbnnntO1lYpMrokSRVGTHc3qg2RAQMGACg5iLIRVP39/VG/fn0sXrxY18FR/vzzT4waNQqfffYZghQMBEePnHr06KHYb3JyssOTzDAMwzBlcdYQCQgIUK3HeOGFF/DEE09U2IY+BLh8+TJ69OiBjh07YvXq1bJ20dHR+PHHH2V1169fR1FRUbknJZWJakPEUjrbCQkJOHjwIGrVquW2QZVFkiSMGDECY8aMQbt27XDhwoVybZx95DR16lRMnDjR9nd2djbi4uJ0GzvDMAxTfXH367u1atVS/e/tpUuX0KNHD7Rt2xZr166FT5knQh07dsScOXOQnp6OmJgYACXeBKPRiLZt22obmI5ofmsmJSVFt52rfeS0b98+ZGdnY+rUqRW2deaRk9FoFD4SYxiGYRgRnvT67uXLl9G9e3fEx8dj0aJF+Ouvv2zfRUdHAwB69eqFZs2a4amnnsLChQtx7do1vPLKKxg1alSVvTEDqDRE3n77bTz//PMIDAzE22+/XWHb8ePHq9652kdOs2fPxoEDB8oZDO3atcPQoUOxfv16/R85hYaW6EQooqRmSt9XFlp1IaL2WvYl0sVQ3BE7whO1A2r0IiIdD62nvntnAwuJ/PvWGBFl67Uk/dOqF6DorR1w5Ty7c43oPS66Puj8i5JiUpc1/UeFnmdH/9gonXvR+JypF7VRureI+lBzz7GWfX0dj8MFPMkQ2bZtG86dO4dz586hbt26su+k0scwvr6+2LJlC8aOHYvOnTvLAppVJaoMkTfffBNDhw5FYGCgMOkdUPJEQoshovaR09tvv43Zs2fb/r58+TIeeughfPzxx+jQoQMAz33kxDAMw1RPPMkQGTFiBEaMGOGwXXx8PL766iv3D0gDqgwR6o7R0zWjlvj4eNnfIaW/Hhs2bGiz/Dz1kRPDMAxTPfEkQ8Sb0fwscdasWcjLyytXf+vWLcyaNUuXQTmD9ZFTYGAgOnfujMGDB2PAgAFV/siJYRiGqb5w9l3X0SxWnTlzJsaMGVPuFdq8vDzMnDkT06dP121wIurXr2/zeVF0feRUs2b5d+61+DRd8Rc7mwND6/4daV5EiHQOIi2EK7le9JpTZ/fvbN9q5oj6+kUxXazHLOpbTR4RkeaE9kN1JDQGjqNcM67oRapCI+KOfvTu23pe6Hmj55auG5FeQqQ5ovdtuuas7fW6Ppw9fjUxd9RsqzSHbsCTkt55M5oNEdFbKD///LMslCzDMAzDVGfYNaMPqg2RiIgIGAwGGAwGNG7cWGaMmM1m5ObmykLJMgzDMEx1hg0RfVBtiCxduhSSJGHkyJGYOXOmLMR7QEAA6tevj44dO7plkAzDMAzjabAhog+qDRFrWPeEhAR06tQJ/v7+bhsUwzAMw3gDbIi4jmaNSLdu3WzlW7duoaioSPZ9tXlVNjy8JKgZRUkwpTVAmEggqkaMqAVXAg05urJoHyIhpqjsCu4Uqzo6Zq13G62J8bT0o0bQR8WNauaNihgdnS+tgkJn6/UIcucO3L1Ppfml50d0rkTJEtUEo7OuF1dExnqgZm2JykrXlpujZvMTEX3QvKLy8vLwwgsvoE6dOggJCUFERITswzAMwzC3A1ZDhF/fdQ3NhsjkyZOxY8cOrFixAkajEe+99x5mzpyJ2NhYfPDBB+4YI8MwDMN4HM4YIvz6bnk0u2a+/PJLfPDBB+jevTtGjhyJ++67D40aNUK9evXwn//8B0OHDnXHOBmGYRjGo2DXjD5oNkSuXbuGhIQEACV6kGvXrgEAunTpgn/84x/6jq4qqVmzJEGU3toNihq9gLNBx1xBj4BqFFGgM616GSWc1Vlo3daVPkSo0c4o7V/NmnQl0J3S/kV1ao6/KnROemihtPanBmcDB1Jyc+1lkRZEpBdxtBZEiRNFZVfOEcVZLZRoLNZtRYECdYQNEdfRfHU1aNAAFy5cAAA0a9YM//3vfwGUPCmpQSP+MQzDMEw1hjUi+qDZEHnmmWfw888/AwCmTp1q04q8/PLLmDx5su4DZBiGYRhPhA0RfdD83Orll1+2lXv06IHTp0/j0KFDaNiwIVq1aqXr4BiGYRjGU2GNiD647ECLj49HfHw80tLSMHLkSKxZs0aPcVU55sBgmAODZXVawmvQsgEqZNKuaB20oEc8DBW6BClA2/v7wjlS0iNojdGhVd+hRRehVSMhisHiqH+tMVpEfnQ1PnNH/n2tc6FVr6J0nh21Vdvek7QjWvRPtEwTFNLzKUp6qGbOrf2I2mrVizirUdJ6rYruPyhJQSIVmyven4uwIaIPukWmuXbtGtavX69XdwzDMAzj8fDru67jfkkxwzAMw1RD+ImIPrAhwjAMwzBOwIaIPrAhIuD69RI3qyMXuBoXKUr9lWWRt/d1OCZrG3ek4BC61BVWCJ0H6oouJK5rS55yezHKcwTY50Xp+EXz7xegXK9Ku+PopLsSU0Sk0XCku6B1hYX2shqNiCv1jtAa00TNBWM9JpGGRrR/rTmNqiJPjRqc1SjpEUdEdK4CHF9QZovyNSySNCmfUtF9ULne0bTk5Ai60wk2RPRBtSEyaNCgCr+/ceOGq2NhGIZhGK+BDRF9UP2TIDw8vMJPvXr18PTTT7tzrAzDMAzjUXhSHJFHH30U8fHxCAwMRExMDJ566ilcvnxZ1iY1NRX9+vVDcHAwatWqhfHjx6OQPmWtAlQ/EVm7dq07x6GKLVu2YNasWTh+/DiCg4PRtWtXfPrpp7bvU1NTMW7cOOzYsQMmkwlDhgzBokWLEEAfKzIMwzCMDnjaE5EePXrgn//8J2JiYnDp0iW88sor+Pvf/459+/YBAMxmM/r06YPatWtj7969uHr1KoYPHw5JkrBs2bIqG7fXaEQ++eQTjBo1CnPnzsX9998PSZJw4sQJ2/eeOsEMwzBM9cQZQ8Sdr+/SgKP16tXDa6+9hgEDBqCoqAj+/v7Ytm0bTp06hbS0NMTGxgIAFi9ejBEjRmDOnDkICwtz3+AqwCsMkeLiYrz00ktYuHAhnn32WVt9kyZNbGW9Jzg9vWKhk1Wj5Uo+MWfj/+ilQ3Q2X5ka3aRIRKZGf+joOLTGVhK3MQjqfUl9eYGsFmGvanyUy9ZxyYS1rgRXE+7fjcJNMrkiQaNMRFxcVFIQiU9dEQvrjdZFrLUfLf2RJ780oKCWaRQurXzlei0x+cq2p/cOJU22KzEJrdD8gO7A2ScihYWFyM7OltUZjUYYjdoCQVbEtWvX8J///AedOnWCv78/AGD//v1o0aKF7d9IAHjooYdQUFCAw4cPo0ePHrrtXwseKhuXc+TIEVy6dAk+Pj5o06YNYmJi0Lt3b5w8edLWxtEEiygoKEB2drbswzAMwzCOcDbXzJo1a8rpLJOTk3UZ06uvvorg4GDUrFkTqamp+Pzzz23fZWRkICoqStY+IiICAQEByMjI0GX/zuAVhsj58+cBAElJSXj99dfx1VdfISIiAt26dcO1a9cAOD/BycnJssUQFxfnvgNhGIZhqhXOGCIjR45EVlaW7DN16lTF/pOSkmAwGCr8HDp0yNZ+8uTJOHr0KLZt2wZfX188/fTTkIg/yGAo/1RSkiTF+sqiSl0zSUlJmDlzZoVtDh48CEvp2Zs2bRr+9re/ASgRz9atWxf/7//9P4wePRqAcxM8depUTJw40fZ3dnY2GyMMwzCMQ5x1zQQEBKiWC7zwwgt44oknKmxTv359W7lWrVqoVasWGjdujDvvvBNxcXE4cOAAOnbsiOjoaPz444+yba9fv46ioqJyP+Qrkyo1RNROcE6pWKNZs2a2eqPRiAYNGiA1NRUAnJ5gkV/u+vUSH6YW3YUrgcZUaRAUdClqcMWnq9SPVlmCHr5eiho9jSvaEaWyXlogNW2UxujnR/Us5TUsavcp2o/FgY5Ar3MuinlGX2wLCCjxZ/v5+Sv2reZcqEo0KcJZrYkrF6bCthIJ8qcm52FhruM2WuLmiYaqpm+t9VrWmYNpk3HzZsXfu0plvDVjNSycwfokpKCgAADQsWNHzJkzB+np6YiJiQFQoq80Go1o27atPgN2gio1RNROcNu2bWE0GnHmzBl06dIFAFBUVIQLFy6gXr16ADx3ghmGYZjqiSe9NfPTTz/hp59+QpcuXRAREYHz589j+vTpaNiwITp27AgA6NWrF5o1a4annnoKCxcuxLVr1/DKK69g1KhRVfbGDOAlGpGwsDCMGTMGM2bMwLZt23DmzBn84x//AAA89thjAOQTfPToUXz33XceMcEMwzBM9cRZsao7MJlM+PTTT/HAAw+gSZMmGDlyJFq0aIHdu3fbnvr7+vpiy5YtCAwMROfOnTF48GAMGDAAixYtct/AVOAVr+8CwMKFC+Hn54ennnoKt27dQocOHbBjxw5EREQAsE/w2LFj0blzZ1lAM4ZhGIZxB54S0Kxly5bYsWOHw3bx8fH46quvKmFE6vEaQ8Tf3x+LFi2q0LDQc4JzcgCzWZeuZLgSA0QpX5qamB75JAZAHklGRxHltFK6yNT46LXGFBAdJz0m69hFY6X1gYHltyvbN23vKBedaEyiGA1qcrup0a44ip3iaH04014JV0KXaNXx2HUx2vqQtzEo1qvDcQJKK1r1MqL9KM2pGp2FqEyveVpWyi1Iy1o1Gq60EbXXE9H9Ti88LbKqt+I1hgjDMAzDeBJsiOgDGyIMwzAM4wRsiOgDGyIMwzAM4wRsiOgDGyICsrJKtACOFpmz+VrK1ot0GdS/a4X6xWlEeppXgfpGMzOV29C+qaaiRg3lcmRkyf+Dgux1tEzHVRrwttwYr1xRHqPWnDVaUBe7wl5W0h2Izkm+IAcH7S8kxF6uU0e5XpQg2lpPz48ajQRFS4waEaL1qXWfWjQyWuPC6JUux9l+9I6XQ9GqC6HXn2gelc6jK/+oelIKICu3brl/H57y+q43w4YIwzAMwzgBPxHRBzZEGIZhGMYJ2BDRBzZEGIZhGMYJ2BDRBzZEGIZhGMYJ2BDRBzZEBBw7BhiN4kVmFYaJAg1RqEBMJDpUCtxVtt66T5FYkgpRqViNilVFAX6o6JQKVGkqIKvQkkbMFwUIo+Oi+8/IsJepcJWOnR6z3qgRqyoFfaLHIzrPFDqfdL6oQJWWaXulwGy0D3pORH3QekcB6iqqV0q06IpAVYtYVUvAN7XoLUQVCatdmSMl6H5K83wCkK9Let3QsdD5omtES3A7d4jyHSGac5EoX6l9aa43t8KGiOuwIcIwDMMwTsBPRPSBDRGGYRiGcQJPyr7rzbAhwjAMwzBOwE9E9IENEQHffFPiz6T+SJFvsjog0qXQY/7jj5L/Uw0D1ZOI+hMFMasK1AQm0wN6nGqOmfrOlTQ6NBCayP/vKCgboC4wlqishN66EFov0hOIkiVSRDojUWA0pbkTHbtIl6VH8D26rWgNibQgFDovVJfmaFxqNByiNloDzSlpl+h83rhhL4vuvTRYolJwR3ckLqWwIaIPbIgwDMMwjJOwIeI6bIgwDMMwjBPwExF9YEOEYRiGYZyADRF9YENEwIULVT2CqoP6xqnfVSkZGdV/qImvwdihvntrQkFArgexakTo9/Xr28s0vgg9L47iKwDiRINKZa1xJNSURWOx1qsZK61XkzhRpBFR0otojX8hmkM1cUdo/Weflfz/0Ucd71NrEsPLl+1lpXg1ong6rsRuoYiO2arpEGlEaFwkWqZt6L2qsmBDRB/YEGEYhmEYJ+DXd/WBDRGGYRiGcRJ+IuI6bIgwDMMwjBOwa0YfvMYQOXv2LCZPnowffvgBhYWFaNmyJWbPno0ePXrY2qSmpmLcuHHYsWMHTCYThgwZgkWLFiGAOj4Zp2ENiHNQHQeNESIqK+WPoT56azwXQB7TQhRrQqRL0IJW/YcafYEo7omjXDMUUY4UUR4nUW4WRxoVNWXR/kXxSkTlAQPK9yFCj1gwdF9qzpuaYxPl1KJjoefCqu+gOg+RRoTW6x3/RytsiOiDC7KjyqVPnz4oLi7Gjh07cPjwYbRu3Rp9+/ZFRmkWNbPZjD59+uDmzZvYu3cvNm7ciE8++QSTJk2q4pEzDMMw1RGrIaLlUxkUFBSgdevWMBgMOHbsmOy71NRU9OvXD8HBwahVqxbGjx+PQndmGlWBVzwRuXLlCs6dO4c1a9bgrrvuAgDMmzcPK1aswMmTJxEdHY1t27bh1KlTSEtLQ2xsLABg8eLFGDFiBObMmYMw+rOUUFBQgAKSojG7KqTXDMMwjNfhqU9EpkyZgtjYWPz888+yeusP9tq1a2Pv3r24evUqhg8fDkmSsGzZsioarZc8EalZsybuvPNOfPDBB7h58yaKi4uxatUqREVFoW3btgCA/fv3o0WLFjYjBAAeeughFBQU4PDhw8K+k5OTER4ebvvExcW5/XgYhmGY6oEzT0QKCwuRnZ0t+9AfxK6wdetWbNu2DYsWLSr3nfUH+4cffog2bdrgwQcfxOLFi/Huu+9W6Y9wrzBEDAYDtm/fjqNHjyI0NBSBgYF488038fXXX6NGqXM9IyMDUVFRsu0iIiIQEBBgc98oMXXqVGRlZdk+aWlp7jwUhmEYphoQGhoK4JzGrTIA5OLDDz+U/QAODw9HcnKyy2P6888/MWrUKPz73/9GkFVgRnD2B7u7qVLXTFJSEmbOnFlhm4MHD6Jt27YYO3Ys6tSpg++//x4mkwnvvfce+vbti4MHDyImJgZAicFSFkmSFOutGI1GGI1G1w6EYSAX61FPIC1TISqtp+I+JRGnSCxI7zW0DzXBtbQKMB2hNdCVmnFZUZPQT02SPDXB0KxlkRBYlCxRJAql43V0nmm9KOCaSCwqEu6qCahm7fOrr5T7eOIJ5f2LAtSJhNOihIFKAc1E5aoWqFp59tln8eqrcwDsBtBN5VZzADyChQsXYvbs2bJvXP13SJIkjBgxAmPGjEG7du1wQSEqp7M/2N1NlRoiL7zwAp6gK1yB+vXrY8eOHfjqq69w/fp1m9ZjxYoV2L59O9avX4/XXnsN0dHR+PHHH2XbXr9+HUVFReUmnmEYhmFcoWbNmgBeATANwPcAxD94S7gA4D2cOHFQ0w9gtT/Y9+3bh+zsbEydOrXCts78YHc3VWqI1KpVC7WsMawrIK/UvPYp85PHx8cHllIzvGPHjpgzZw7S09NtT0i2bdsGo9Fo05EwDMMwjF5kZ09AWNgyAP8D0MdB6yQAj6FFixaa9qH2B/vs2bNx4MCBcgZOu3btMHToUKxfv95jf7B7xVszHTt2REREBIYPH47p06fDZDLh3XffRUpKCvr0KTn5vXr1QrNmzfDUU09h4cKFuHbtGl555RWMGjVK+MYMwzAMwzhLiU7knyh5KtIbYtnlKQAf4/ffT2reh9of7G+//bbM3XP58mU89NBD+Pjjj9GhQwcAnvuD3SBJ3hH5/tChQ5g2bRoOHTqEoqIiNG/eHNOnT0fv3r1tbVJTUzF27NhyAc20+N6ys7MRHh4OIAsAGzCMvlCNgJayKFiUmmBZavQFWhKcaU0GJ+LDD9W3HTzYXlaTOE6kBREF1FLSMajRgqjRhThbVtNWawAyLedOpBVSM//OzrlIT+K8LiQbQDiysrLc9oM0Pz8fJlNjAAsAiJ5c/A1ANCTpX24ZgxIXLlxAQkICjh49itatWwMoeX23devWiIqKsv1gHzFiBAYMGFClr+96xRMRoOTx0jfffFNhm/j4eHwlUlsxDMMwjM4EBgbivfdm4Lnn3kCJweFfpsVBAF/j8mWtb9joj6+vL7Zs2YKxY8eic+fOsh/sVYnXGCIMwzAM44kMHz4czz03H8B6AM+V+fZ1AC/aXCGVRf369aHk8PDEH+xeEUeEYRiGYTwVPz8/bNz4fwBmAqB+pF0ADuDq1SlVMi5vwWs0IpUFa0QYRl+06khc0Z0o4YkhuMui9zHrgWjevGE+7bhfI2LFYrHA17ctgKcBvAxAAtAZwCOQpNfdum9vxwOXP8MwDMN4Fz4+PtiyZQ6AuQByAHwF4BxyciZU6bi8AdaIMAzDMIwOlLzF2QTAYgCfApiGEBpOmVGEDZEy2D1VnIWXYfRAq/NXb2exNzifPXGMnjgm7ZTcxytLgWAwGLBnTzK6du0O4A7k54+plP16O2yIlCEnJ6e0xFl4GUYPtP4bYDa7ZxyezO14zJVJTk5OqfbP/dx3330ApuPLL9tyHjOVsFi1DBaLBWfOnEGzZs2QlpZWLaKyZmdnIy4ujo/HA6lOxwLw8Xgy1elYAHXHI0kScnJyEBsbWy5FCOM58BORMvj4+OCOO+4AAISFhVWLC9YKH4/nUp2OBeDj8WSq07EAjo+nsp6EMM7DJiLDMAzDMFUGGyIMwzAMw1QZbIgoYDQaMWPGjGojNOLj8Vyq07EAfDyeTHU6FqD6Hc/tDItVGYZhGIapMviJCMMwDMMwVQYbIgzDMAzDVBlsiDAMwzAMU2WwIcIwDMMwTJXBhgjDMAzDMFUGGyIKrFixAgkJCQgMDETbtm3x/fffV/WQHJKUlASDwSD7REdH276XJAlJSUmIjY2FyWRC9+7dcfLkySocsZw9e/agX79+iI2NhcFgwGeffSb7Xs34CwoK8OKLL6JWrVoIDg7Go48+ij/++KMSj6IER8cyYsSIcufq3nvvlbXxlGMBgOTkZLRv3x6hoaGoU6cOBgwYgDNnzsjaeMv5UXMs3nR+Vq5cibvuussWXbRjx47YunWr7XtvOS9WHB2PN50bRj1siJTh448/xoQJEzBt2jQcPXoU9913H3r37o3U1NSqHppDmjdvjvT0dNvnxIkTtu8WLFiAJUuWYPny5Th48CCio6PRs2dPkuSvarl58yZatWqF5cuXK36vZvwTJkzA5s2bsXHjRuzduxe5ubno27cvzJWcUczRsQDAww8/LDtX//vf/2Tfe8qxAMDu3bsxbtw4HDhwANu3b0dxcTF69eqFmzdv2tp4y/lRcyyA95yfunXrYt68eTh06BAOHTqE+++/H/3797cZG95yXtQeD+A954bRgMTIuOeee6QxY8bI6po2bSq99tprVTQidcyYMUNq1aqV4ncWi0WKjo6W5s2bZ6vLz8+XwsPDpXfeeaeSRqgeANLmzZttf6sZ/40bNyR/f39p48aNtjaXLl2SfHx8pK+//rrSxl6WssciSZI0fPhwqX///sJtPPVYrGRmZkoApN27d0uS5N3np+yxSJL3n5+IiAjpvffe8+rzQrEejyR5/7lhlOEnIoTCwkIcPnwYvXr1ktX36tUL+/btq6JRqee3335DbGwsEhIS8MQTT+D8+fMAgJSUFGRkZMiOy2g0olu3bl5xXGrGf/jwYRQVFcnaxMbGokWLFh55jLt27UKdOnXQuHFjjBo1CpmZmbbvPP1YsrKyAACRkZEAvPv8lD0WK954fsxmMzZu3IibN2+iY8eOXn1egPLHY8Ubzw1TMZx9l3DlyhWYzWZERUXJ6qOiopCRkVFFo1JHhw4d8MEHH6Bx48b4888/MXv2bHTq1AknT560jV3puC5evFgVw9WEmvFnZGQgICAAERER5dp42rnr3bs3HnvsMdSrVw8pKSl44403cP/99+Pw4cMwGo0efSySJGHixIno0qULWrRoAcB7z4/SsQDed35OnDiBjh07Ij8/HyEhIdi8eTOaNWtm+4fX286L6HgA7zs3jDrYEFHAYDDI/pYkqVydp9G7d29buWXLlujYsSMaNmyI9evX28Rc3nhcFGfG74nH+Pjjj9vKLVq0QLt27VCvXj1s2bIFgwYNEm7nCcfywgsv4Pjx49i7d2+577zt/IiOxdvOT5MmTXDs2DHcuHEDn3zyCYYPH47du3fbvve28yI6nmbNmnnduWHUwa4ZQq1ateDr61vOcs7MzCz3q8LTCQ4ORsuWLfHbb7/Z3p7x1uNSM/7o6GgUFhbi+vXrwjaeSkxMDOrVq4fffvsNgOcey4svvogvvvgCO3fuRN26dW313nh+RMeihKefn4CAADRq1Ajt2rVDcnIyWrVqhbfeessrzwsgPh4lPP3cMOpgQ4QQEBCAtm3bYvv27bL67du3o1OnTlU0KucoKCjAr7/+ipiYGCQkJCA6Olp2XIWFhdi9e7dXHJea8bdt2xb+/v6yNunp6fjll188/hivXr2KtLQ0xMTEAPC8Y5EkCS+88AI+/fRT7NixAwkJCbLvven8ODoWJTz9/JRFkiQUFBR41XmpCOvxKOFt54YRUOnyWA9n48aNkr+/v/T+++9Lp06dkiZMmCAFBwdLFy5cqOqhVcikSZOkXbt2SefPn5cOHDgg9e3bVwoNDbWNe968eVJ4eLj06aefSidOnJCefPJJKSYmRsrOzq7ikZeQk5MjHT16VDp69KgEQFqyZIl09OhR6eLFi5IkqRv/mDFjpLp160rffvutdOTIEen++++XWrVqJRUXF3vMseTk5EiTJk2S9u3bJ6WkpEg7d+6UOnbsKN1xxx0eeSySJEn/+Mc/pPDwcGnXrl1Senq67ZOXl2dr4y3nx9GxeNv5mTp1qrRnzx4pJSVFOn78uPTPf/5T8vHxkbZt2yZJkvecFzXH423nhlEPGyIK/Otf/5Lq1asnBQQESHfffbfs1T5P5fHHH5diYmIkf39/KTY2Vho0aJB08uRJ2/cWi0WaMWOGFB0dLRmNRqlr167SiRMnqnDEcnbu3CkBKPcZPny4JEnqxn/r1i3phRdekCIjIyWTyST17dtXSk1N9ahjycvLk3r16iXVrl1b8vf3l+Lj46Xhw4eXG6enHIskSYrHAkBau3atrY23nB9Hx+Jt52fkyJG2e1Xt2rWlBx54wGaESJL3nBcrFR2Pt50bRj0GSZKkynv+wjAMwzAMY4c1IgzDMAzDVBlsiDAMwzAMU2WwIcIwDMMwTJXBhgjDMAzDMFUGGyIMwzAMw1QZbIgwDMMwDFNlsCHCMAzDMEyVwYYIwzAMwzBVBhsiDFMBFy5cgMFgwLFjx9zSv8FgwGeffeb09rt27YLBYIDBYMCAAQMqbNu9e3dMmDDB6X0xFWM9DzVq1KjqoTCMV8GGCOOxjBgxwuE/ru4mLi4O6enpaNGiBQD7P/w3btyo0nGV5cyZM1i3bl1VD+O2QLQu09PTsXTp0kofD8N4O2yIMEwF+Pr6Ijo6Gn5+flU9lAqpU6eOR/wSLyoqquohVBnR0dEIDw+v6mEwjNfBhgjjtezevRv33HMPjEYjYmJi8Nprr6G4uNj2fffu3TF+/HhMmTIFkZGRiI6ORlJSkqyP06dPo0uXLggMDESzZs3w7bffytwl1DVz4cIF9OjRAwAQEREBg8GAESNGAADq169f7tdw69atZfv77bff0LVrV9u+aKpyK5cuXcLjjz+OiIgI1KxZE/3798eFCxc0z83Nmzfx9NNPIyQkBDExMVi8eHG5NoWFhZgyZQruuOMOBAcHo0OHDti1a5eszbvvvou4uDgEBQVh4MCBWLJkiczgSUpKQuvWrbFmzRo0aNAARqMRkiQhKysLzz//POrUqYOwsDDcf//9+Pnnn2V9f/nll2jbti0CAwPRoEEDzJw5U3b+kpKSEB8fD6PRiNjYWIwfP17VsTs6rqtXr+LJJ59E3bp1ERQUhJYtW+Kjjz6S9bFp0ya0bNkSJpMJNWvWxIMPPoibN28iKSkJ69evx+eff25zxZSdM4ZhtOHZP/MYRsClS5fwyCOPYMSIEfjggw9w+vRpjBo1CoGBgbJ//NevX4+JEyfixx9/xP79+zFixAh07twZPXv2hMViwYABAxAfH48ff/wROTk5mDRpknCfcXFx+OSTT/C3v/0NZ86cQVhYGEwmk6rxWiwWDBo0CLVq1cKBAweQnZ1dTq+Rl5eHHj164L777sOePXvg5+eH2bNn4+GHH8bx48cREBCgen4mT56MnTt3YvPmzYiOjsY///lPHD58GK1bt7a1eeaZZ3DhwgVs3LgRsbGx2Lx5Mx5++GGcOHECiYmJ+OGHHzBmzBjMnz8fjz76KL799lu88cYb5fZ17tw5/Pe//8Unn3wCX19fAECfPn0QGRmJ//3vfwgPD8eqVavwwAMP4OzZs4iMjMQ333yDYcOG4e2338Z9992H33//Hc8//zwAYMaMGdi0aRPefPNNbNy4Ec2bN0dGRkY5Q0aEo+PKz89H27Zt8eqrryIsLAxbtmzBU089hQYNGqBDhw5IT0/Hk08+iQULFmDgwIHIycnB999/D0mS8Morr+DXX39FdnY21q5dCwCIjIxUfV4YhlGgapP/MoyY4cOHS/3791f87p///KfUpEkTyWKx2Or+9a9/SSEhIZLZbJYkSZK6desmdenSRbZd+/btpVdffVWSJEnaunWr5OfnJ6Wnp9u+3759uwRA2rx5syRJkpSSkiIBkI4ePSpJkiTt3LlTAiBdv35d1m+9evWkN998U1bXqlUracaMGZIkSdI333wj+fr6Smlpabbvt27dKtvX+++/X+6YCgoKJJPJJH3zzTeK86A0npycHCkgIEDauHGjre7q1auSyWSSXnrpJUmSJOncuXOSwWCQLl26JOvvgQcekKZOnSpJkiQ9/vjjUp8+fWTfDx06VAoPD7f9PWPGDMnf31/KzMy01X333XdSWFiYlJ+fL9u2YcOG0qpVqyRJkqT77rtPmjt3ruz7f//731JMTIwkSZK0ePFiqXHjxlJhYaHicYtQc1xKPPLII9KkSZMkSZKkw4cPSwCkCxcuKLataF2uXbtWNj8MwziGn4gwXsmvv/6Kjh07wmAw2Oo6d+6M3Nxc/PHHH4iPjwcA3HXXXbLtYmJikJmZCaBE4BkXF4fo6Gjb9/fcc4/bxhsfH4+6deva6jp27Chrc/jwYZw7dw6hoaGy+vz8fPz++++q9/X777+jsLBQ1n9kZCSaNGli+/vIkSOQJAmNGzeWbVtQUICaNWsCKJmfgQMHyr6/55578NVXX8nq6tWrh9q1a8uOIzc319aPlVu3btmO4/Dhwzh48CDmzJlj+95sNiM/Px95eXl47LHHsHTpUjRo0AAPP/wwHnnkEfTr18+hVkfNcZnNZsybNw8ff/wxLl26hIKCAhQUFCA4OBgA0KpVKzzwwANo2bIlHnroIfTq1Qt///vfERERUeG+GYZxDjZEGK9EkiSZEWKtAyCr9/f3l7UxGAywWCzCPpzFx8fHtn8rVLhZ9ruy4wRK3Ddt27bFf/7zn3Jt6T/0jlDaV1ksFgt8fX1x+PBhmzvFSkhIiK0f0RxTrP+A075jYmIUtRNWfYnFYsHMmTMxaNCgcm0CAwMRFxeHM2fOYPv27fj2228xduxYLFy4ELt37y53TrUe1+LFi/Hmm29i6dKlaNmyJYKDgzFhwgQUFhYCKBEob9++Hfv27cO2bduwbNkyTJs2DT/++CMSEhKE+2YYxjnYEGG8kmbNmuGTTz6R/WO5b98+hIaG4o477lDVR9OmTZGamoo///wTUVFRAICDBw9WuI1Vp2E2m2X1tWvXRnp6uu3v7OxspKSkyMabmpqKy5cvIzY2FgCwf/9+WR933303Pv74Y5vA01kaNWoEf39/HDhwwPZk6Pr16zh79iy6desGAGjTpg3MZjMyMzNx3333KfbTtGlT/PTTT7K6Q4cOOdz/3XffjYyMDPj5+aF+/frCNmfOnEGjRo2E/ZhMJjz66KN49NFHMW7cODRt2hQnTpzA3XffLdxGzXF9//336N+/P4YNGwagxHj57bffcOedd9raGAwGdO7cGZ07d8b06dNRr149bN68GRMnTkRAQEC5888wjPPwWzOMR5OVlYVjx47JPqmpqRg7dizS0tLw4osv4vTp0/j8888xY8YMTJw4ET4+6pZ1z5490bBhQwwfPhzHjx/HDz/8gGnTpgEo/7TCSr169WAwGPDVV1/hr7/+Qm5uLgDg/vvvx7///W98//33+OWXXzB8+HDZL/IHH3wQTZo0wdNPP42ff/4Z33//vW1fVoYOHYpatWqhf//++P7775GSkoLdu3fjpZdewh9//KF6zkJCQvDss89i8uTJ+O677/DLL79gxIgRsnlp3Lgxhg4diqeffhqffvopUlJScPDgQcyfPx//+9//AAAvvvgi/ve//2HJkiX47bffsGrVKmzdutXhU6QHH3wQHTt2xIABA/DNN9/gwoUL2LdvH15//XWbITN9+nR88MEHSEpKwsmTJ/Hrr7/i448/xuuvvw4AWLduHd5//3388ssvOH/+PP7973/DZDKhXr16Fe5bzXE1atTI9sTj119/xejRo5GRkWHr48cff8TcuXNx6NAhpKam4tNPP8Vff/1lM1Tq16+P48eP48yZM7hy5cpt/coyw+hCFWlTGMYhw4cPlwCU+wwfPlySJEnatWuX1L59eykgIECKjo6WXn31VamoqMi2fbdu3WziTCv9+/e3bS9JkvTrr79KnTt3lgICAqSmTZtKX375pQRA+vrrryVJKi9WlSRJmjVrlhQdHS0ZDAZbX1lZWdLgwYOlsLAwKS4uTlq3bp1MrCpJknTmzBmpS5cuUkBAgNS4cWPp66+/lolVJUmS0tPTpaefflqqVauWZDQapQYNGkijRo2SsrKyFOdIJJ7NycmRhg0bJgUFBUlRUVHSggULys1HYWGhNH36dKl+/fqSv7+/FB0dLQ0cOFA6fvy4rc3q1aulO+64QzKZTNKAAQOk2bNnS9HR0bbvZ8yYIbVq1arcuLKzs6UXX3xRio2Nlfz9/aW4uDhp6NChUmpqqq3N119/LXXq1EkymUxSWFiYdM8990irV6+WJEmSNm/eLHXo0EEKCwuTgoODpXvvvVf69ttvFeegLI6O6+rVq1L//v2lkJAQqU6dOtLrr78uPf300zYB6qlTp6SHHnpIql27tmQ0GqXGjRtLy5Yts/WfmZkp9ezZUwoJCZEASDt37rR9x2JVhtGOQZJUOJQZ5jbhhx9+QJcuXXDu3Dk0bNiwqofjkF27dqFHjx64fv16pQQ0GzVqFE6fPo3vv//e7fvyRtatW4cJEyZ4XORdhvFkWCPC3NZs3rwZISEhSExMxLlz5/DSSy+hc+fOXmGEUOrWrYt+/fqVC8zlKosWLULPnj0RHByMrVu3Yv369VixYoWu+6guhISEoLi4GIGBgVU9FIbxKtgQYW5rcnJyMGXKFKSlpaFWrVp48MEHFaOQeiodOnTAb7/9BsD+Voie/PTTT1iwYAFycnLQoEEDvP3223juued0349avv/+e/Tu3Vv4vVWzUxVYEyOWfVuHYZiKYdcMwzBew61bt3Dp0iXh9xW9hcMwjGfChgjDMAzDMFUGv77LMAzDMEyVwYYIwzAMwzBVBhsiDMMwDMNUGWyIMAzDMAxTZbAhwjAMwzBMlcGGCMMwDMMwVQYbIgzDMAzDVBkcWbUMFosFly9fRmhoqMMsowzDMIznIkkScnJyEBsbqzortx7439EZW9fPxIMPPlhp+/RmOKBZGf744w/ExcVV9TAYhmEYnUhLS0PdunUrZV8HDhxAx44dYQgIQ37OXwgICKiU/XozbIiUISsrCzVq1MDPp1MQGhom+86bHpB46ln10GHpjjuXin7r0H2j9IZrRZ9rRJ8VrWUsbrmGKuvC1GFdaOkiJycbrZom4MaNGwgPD3d95yrwDa0LQ1AULFkp8K19F4rSdlXKfr0Zds2UweqOCQ0NQ2gYGyJ646HD0h1vMEQMbIi43gcbItqoZEPEtk0lLchvv/0WlltXYKzfG5agOij6Yw/y8vIQFBRUKfv3VlisyjAMwzAuIkkSevUfCr86bWDwM8InvAEM/sEIT2SdiCP4iYgAiyTBIkmyX42OfjSIbG7NPzYEG2j59aX1156WHwyaf0m7t7nXosePNHc+1VC1fy8+WaKxO7p29HoK4mgsas6tO+dfNA/0+GkbSd5Isb2sKNpWA6LDt86LpRIfDX/++eeQCnPhW+uu0jEY4BdzL4oubkNWVlaluYa8EX4iwjAMwzAuYDabMejJkfCLageDr7+t3ic0DobAmqjZhJ+KVAQbIgzDMAzjAhs2bAAsxfCt2UxWbzAY4B97L8x//YzMzMwqGp3nw4YIwzAMwzhJYWEhhj/3Avyi74HBx7fc9z7BMfAJuQOxLXpVwei8A9aICLBIJR/qvTQ46W4UbqaH+1LgJFXjOnbWvyzyEVewgaaxiJo79JmrOB69XeounUKN86LcheNO9HCTa9VTVLV2xRUczblMN6ZibvXWlIjGR+t1mX/ZNSkpfqHq+CWqs7NvYKHbSuq+L9tGeK8o3afF4nh8rhLcsCfg4wufiMbCNn4xHVB4dhNSU1MRHx/v/kF5GfxEhGEYhmGcIC8vD8UZh+AXfS8MBvE/pz6mWvAJb4AGbR7WvI89e/agX79+iI2NhcFgwGeffSb7XpIkJCUlITY2FiaTCd27d8fJkyc176cq8RpDpLi4GK+//joSEhJgMpnQoEEDzJo1CxZi8laHE8IwDMN4B+GNHoQhIAQ+4QkO2/rF3APz9bM4c+aMpn3cvHkTrVq1wvLlyxW/X7BgAZYsWYLly5fj4MGDiI6ORs+ePZGTk6NpP1WJ17hm5s+fj3feeQfr169H8+bNcejQITzzzDMIDw/HSy+9BMB+QtatW4fGjRtj9uzZ6NmzJ86cOYPQ0NAqPgKGYRimunDjxg0UZx6Bf/2HVAVM8zHWgG9kEzS7ty/M139TvZ/evXujd+/eit9JkoSlS5di2rRpGDRoEABg/fr1iIqKwoYNGzB69GjV+6lKvMYQ2b9/P/r3748+ffoAAOrXr4+PPvoIhw4dAqD/CSk2W1BstsBRdBDqI3U2LkFFuDdOg71zNftRaiL0V0PmsHbYn1BrIPRTK6BCryDJv3A4Lkeoaav19GvSKLg5JKZb48tUEqI5El6XCvWq1rkA0flyHIODaiGIVk3FwvUxKLdXoy9R3E6wT+E9TxgMyb4BHaP1ubZENB0Wi7JehGYlEevJSr4pMrtPJPL+++/DEBgJnxD1OWz8otqj4Nd/4/Tp04iNjZV9ZzQaYTQaNY0hJSUFGRkZ6NXLLoQ1Go3o1q0b9u3b5zWGiNe4Zrp06YLvvvsOZ8+eBQD8/PPP2Lt3Lx555BEAjk+IiIKCAmRnZ8s+DMMwDFMRN27cgE9ghKbw8YaAEMDHH0uXLkV4eLjsk5ycrHkMGRkZAICoqChZfVRUlO07b8Brnoi8+uqryMrKQtOmTeHr6wuz2Yw5c+bgySefBFDxCbl48aKw3+TkZMycOdN9A2cYhmGqKQagApGqaJuRI0diwYIFslqtT0NkPZYxhiRJqrT8OnrgNU9EPv74Y3z44YfYsGEDjhw5gvXr12PRokVYv369rJ3WEzJ16lRkZWXZPmlpaW4ZP8MwDFPNMBi0fwAEBAQgLCxM9nHGEImOjgaAck8/MjMzy/0o92S85onI5MmT8dprr+GJJ54AALRs2RIXL15EcnIyhg8fLjshMTExtu0cnRBn/HIMwzAMA8CJJyL6kZCQgOjoaGzfvh1t2rQBUBJgbffu3Zg/f36VjUsrXmOI5OXlwcdHfsJ9fX1tr+/qfUKKLBKKzBIgC7BDyqUaKEmmVrUXfQzKAjFZPdmfLHaPo2RTApEb7c/Hx/H+qVhMLrpVfoJkbSISmYqEpQap4v4qQnEutIpMBZHoNI3LhWBpejwg1SoE1TvXl5r+LCrOqCYhsEaBqNb2jkarJnCfGrGwViG4ZPu/8v4tghuAKBgYvUdZBMO13i7o/cHPl5TJvdfXx1Buu7JYhEHMROXS/5MBmgXlYotyH/Q8W4db6PaIZgZ1J9gFcnNzce7cOdvfKSkpOHbsGCIjIxEfH48JEyZg7ty5SExMRGJiIubOnYugoCAMGTLErePSE68xRPr164c5c+YgPj4ezZs3x9GjR7FkyRKMHDkSQMk/ntXhhDAMwzBegsEZjYg2Dh06hB49etj+njhxIgBg+PDhWLduHaZMmYJbt25h7NixuH79Ojp06IBt27Z5VcgKrzFEli1bhjfeeANjx45FZmYmYmNjMXr0aEyfPt3WpjqcEIZhGMaLcPMTke7du8ufvJfbvQFJSUlISkpy6zjcidcYIqGhoVi6dCmWLl0qbFMdTgjDMAzjJTjzRMR7XmapNLzGEKlsiostKCq2yPyRNDiO1fVIjWHqO5X7UaleQ9mytQiiGylpQHwEfavRhVCEfm/qd1XYVBL56JW7swUXKlfvbJIukTBG1FxF0DlN+6RoCBBVdizCXSmM192By2T7VxqLmt0LYtjp/YNRTbAsVQHAHKAmEJiacYl0GWU2rnj/PrRe1IVWHVF5DQaN/1VYTLQYPvYv/P2UtSN0jiwKfQNyfQett46F7l+2HfnCLJhQmYTQUjIYqRKS3rn7icjtABsiDMMwDOMU7teI3A6wIcIwDMMwzmCAE09E+AlKWdgQYRiGYRin4CciesCGiID8Igv8iiwyX6cj/75M5iHQMcjjeNA2siAcyv2X705oXNP9m2Xv2itvS/3RvtQfLYh7YsUiOmZZwi5RG9paoCOhZUP5MdFbgCoZg0T9/vYtRDoah+OjugRRYBjH1WLdi4YEbDLXuSC+hHD3jsarIimhfFj2v5TiRVQ0RutaFOqcZPXKfVBk1zD9wsG0yHbpghZJrOmg5fKDkSedc7xPs0BnJtax2a8ea0whek1YVIlbyP4FWpDCYotiuUhB91FsVtaQ0HPoT25QtEwPv6hUxOfOpHcAZNFSGedhQ4RhGIZhnIWfiLgMGyIMwzAM4xTsmtEDNkQYhmEYxhkMBnGce0Y1bIgIMFskmC2SzHdbVEx9oCW+R/oefYAf9VfS+CP2ftXEHRGWSzeWBL51mZ9ZpoUgB6Yidgd1q0rkRXxbSAnB/kX5deh+aHtRLglRnICAUn+wP5ln0U1AEmh7aKwBXzIusyyvBx1L+TqK3D3s+IbkIzj/jmK9yM9t+e/LloW6DEH+EsdubsG5le3TXi422xd9kVl5bqnWh86FNceJfH4c6xUMAv2VONdMxTlY6C6F50cwn2rCzjjUC1ENk6wP5etJad2Kugbkc2q95ui5otBLjt7P8ouK7eVC+xe3SJlqV0TzaNWG0Hgh9Hwa/UX3WTqu8poTqklxCwbwExEdYEOEYRiGYZyCxap6wIYIwzAMwzgFa0T0gA0RhmEYhnEGZwKa8ROUcrAhwjAMwzBOwU9E9IANEQFS6X9UoFpABHj+papHKn6kQisq+bKK7wC74BKQC10pNKgP3b+1ORXxCYV4CiLTknpaJmI1gRhTJiIsHQA9HmEgMKGgVnks9AtfKjpUEO7KBH8CUaZFIJDzFQgkKXK9nqW0ThQsSll+KBKX0uOh4/X1URY92pKRCcS3aoJlWQTnlkLXkTzQnlKPyjsSCo5pADJBYkZZPL/STWlALSo5NMsSUSrvk65RIxE30noKFXda54u2lCeaVOyijFhY9o3yBoI5twXuo0HhqICczIZFMP9FxYJ7kUX5WigsnYCCIprYU3ncNFhZboFdrJpXbC8H+vrayiY/e5leL0qidJlAmdwe6RqmQlhRslDr1KlZ+y7hVIh3pixsiDAMwzCMU/ATET1gQ4RhGIZhnIWfiLgMGyIMwzAM4wwGfiKiB2yICLh6qxD5vgW4VWz3Rxp97L5OH5/S+iL7NmEB/rZyUIB9av39lHUJZuLfLlQIxgPI9Q1+VsenQAtBt6MaBaWgaADkvntBgi1fBd841bDIAmcJfMqyQFOia1bwo0JJgSF3BdO5tdf7CAK6yQOqOd6/n69VF0P6EMx5IQ14JzifIq2JKIidFXlywYoDcQEinUdFWpCKfemyBGxkO/n5J2Ok649sQNcI1RrQeqseQ6RFkmtERAGrqBarfN+A4/BzdEZk+xTpqQT6IwnKxy8Khma/XpSDlYnOuSxxIBmLLLgiWaNFCsEF6XxSvUg+uQ/mE60cxZ9c3HSMuSToGV0vxQrXBb0PWcj4Csi48hW0egAQRu65Vo3KzUL7vt0DxxHRAzZEGIZhGMYZ+ImILnjVDF66dAnDhg1DzZo1ERQUhNatW+Pw4cO27yVJQlJSEmJjY2EymdC9e3ecPHmyCkfMMAzDVGsMPto+KlJB3G54jSFy/fp1dO7cGf7+/ti6dStOnTqFxYsXo0aNGrY2CxYswJIlS7B8+XIcPHgQ0dHR6NmzJ3Jycqpu4AzDMEw1pdQ1o+XDlMNrXDPz589HXFwc1q5da6urX7++rSxJEpYuXYpp06Zh0KBBAID169cjKioKGzZswOjRozXtz2Ip/RBfZ06RXRBys9TvGUJ0IRGBAbZyYIDdxqP+YqqvkPvI7fvxFSxWq3+3mPjzhcua+vFpjARB0jmKP421QPUVCu/mU+2An6/yMYs0BWoS3Ul0KKXbWkilKOaIXGahHLvDTCaGnhc6XutciOKlUImCUAtCNvWV+cDtCEKqkJgS5HsVGiHRORLFaXAU6sJHpjmwfy3XyND5JGWywU2iF7hyq8BWvnrLfm3ll2oTwgLtwpyo4EBbOdjfXh9AdFvBAfaykdzZ5OvPXqbHL5pTewN7UajzIdeNn+T4N54kmHTrlqpi/jgOUSJDptGQ3YtK5lx2HyJrJZCIpOg1J4o/JNcUkfsfOQH5FvtasMZoksXLIf3JtCtkkEUGe9lP4RrNF2qIdIJdM7rgNTP4xRdfoF27dnjsscdQp04dtGnTBu+++67t+5SUFGRkZKBXr162OqPRiG7dumHfvn3CfgsKCpCdnS37MAzDMIwq+ImIy3iNIXL+/HmsXLkSiYmJ+OabbzBmzBiMHz8eH3zwAQAgIyMDABAVFSXbLioqyvadEsnJyQgPD7d94uLi3HcQDMMwTPXB+kREk0aEKYvXzIrFYsHdd9+NuXPnok2bNhg9ejRGjRqFlStXytoZylickiSVq6NMnToVWVlZtk9aWppbxs8wDMNUQ/iJiMt4jUYkJiYGzZo1k9Xdeeed+OSTTwAA0dHRAEqejMTExNjaZGZmlntKQjEajTAajeXqo0ONCAkNlMX6uElyHFj9uzSPAo0dQn2thUX27WhuDOpHl+kbaD4SBQ0C1T9QvzT1y0qCGAQUuRbCbpMa/ZW1HtZuJIEfl/qfaQwC6vcVxVoIEOhL5FoTQ7lxU41CPjk/BUSvQNsHkLwjdL6KLTTHhr29dVsa/4HGfKH5gui80f1QZFoUqlcQ3J+suqACsoZk80k3FGg3INMFKWt3KAJ5jTKiOCb0vJFjptdLNNF9BPnbr53swhK9CPX502H8lWfXllzKtpepRqRpzRBbuU6IfT+y0ClkLpS0NqI8JXQNy37k0Pg6Fnptk32KckPRc1S6X9kZFJxbOka5dKTiHCwlYyR9lo5dFNuF6nyKBXoukXYkn6zdW2bldSwpHDP9nt6fRPm6goh2KMJYotfzL7Rr+NyDocIfuoJNmDJ4zRORzp0748yZM7K6s2fPol69egCAhIQEREdHY/v27bbvCwsLsXv3bnTq1KlSx8owDMNUf0oechg0fZjyeM0TkZdffhmdOnXC3LlzMXjwYPz0009YvXo1Vq9eDaBkMUyYMAFz585FYmIiEhMTMXfuXAQFBWHIkCFVPHqGYRimWsK2hct4jSHSvn17bN68GVOnTsWsWbOQkJCApUuXYujQobY2U6ZMwa1btzB27Fhcv34dHTp0wLZt2xAaGlqFI2cYhmGqJYbyukRGO15jiABA37590bdvX+H3BoMBSUlJSEpKqrxBMQzDMLcp7G7RA68yRCoTXx8DfH0MwiBVVtFdIBHI+QhElEoBqqz7UIIKGqkAzVchGZgo6BEE+xEF9JJEojcHgZ7oWPxUZbRTTt5lFohBb92yi9usAbNCAu3LNsxkF6PRep9CKhBWDmokSxJGxhjoT8SypcdHk4WJkgtScZ+ZakjJcdKgX7Qfg6C9VYB7s9ge/MnoSwN3+ShuZxGsP7NERLmiwHSKSffsbX0EIlIIjoFeN/Sc02BktUjwsvDSIIHFZKw0+eS1fHvws9N/5imO0UQCCoYb7YEG5eJnZdGl7fgFifaoyNOHisJl7ck8C/KuOQouR+dKlIyOjosKrul6oec2iAYm8yl/fDS5nChYmUgga5Fd28riVtqn7G5ROndKAlYAKBJcK9QIKHR38DIFDOAnInqgyhCxRirVwjvvvIM6depo3o5hGIZhvAInBKhstpRHlSHy2WefYfDgwTCZTKo63bBhA3Jzc9kQYRiGYao3bFm4jGrXzNtvv63asNi0aZPTA2IYhmEYb8D6+q7GrdwyFm9GlSGyc+dOREZGqu5069atuOOOO5welCdgNkswmyWZfzWMaBCs7kuzIACQKBcVxd+PBuZR1nEo+eZlQcZkgcuUA4Ep+YIBwI8EdBIFNKNyAWuyOVHf1KdLdS4FxL9/46bdv38t3x6MiiYMrB1mDzBH5z83Px8AkF9o9wWH2mNVlQnWpBwMyUQ0PbRN9i27T50GmqMaINtuyI2HHhvVfxiJL16UXI36/UVJ/wpL/f50HoqIFuBWPgniRoJFiTQfxQJ9ix8JPa0k9REF4hIFYhMcjuw46XHQgFnWQGb+ZCC0HB9mfzIb3sh+TZ7OvGUr70+x54xKuWpfZ82igmzlmCB7P2EkS551jdBzT2JlyQJ0CS90Ul8s0l3QgHYK1xS99umav1FQaCtTXQT995BqKqwB4spSk1xz1vNfYLEfWx5Z2/RakQdcVNZuBBAdEw1MR8uyhJWlZT+FAIqAOBAaPYYQEhTPOociHZ6esEbEdVQZIt26ddPUaZcuXZwaDMMwDMN4D/zWjB449daMxWLBuXPnkJmZKQtlDABdu3bVZWAMwzAM48k455phyqLZEDlw4ACGDBmCixcvlsthYjAYYCaP0BiGYRimWsN2iMtoNkTGjBmDdu3aYcuWLYiJiam21mB2QRHM/kUyP2YhefpzNb/ET0t9nqEk6V2Eye67pHoB6l+m8QDCguzbBhKNhlLSOwqN6SDTnMiS4dkRJamjyNorNJHFLqCJviRlfzEdSyCJ7xAJuxYk2Gifo0AyX34+9gmoFWos1x/1KVN/OU0uGEjjNdBYL+SYZLnjyOCtx0TPg6QipgbVBfgS7Q6dO5pEMY/EfaBrzqrpKBTEfJEnI6N6AUFyNdk5UvbXKx0f/V4UrYFKS0Rt/ATjkiWjK/2DakhomcZRoYnzjDH2EZy9ai/TtUDXCD0mqh0KKL3+RPoCWXI3WSwaO/IYIMrniK6dInpfKB2jJIi5I9JO5BNNh0wvQfbzRxZJGJhl15rUDilpbyR6qvxi5euJNJEdQ4AvvW5AykT/Q+Y01N8eA8i/dFt6bP70vuFnv59S/Kn+jV4LpXF/qG7LLTiTP6Z6/pPpEpoNkd9++w2bNm1Co0aN3DEehmEYhvEKOKCZPmjOvtuhQwecO3fOHWNhGIZhGK/Cndl3i4uL8frrryMhIQEmkwkNGjTArFmzymkzvR1VT0SOHz9uK7/44ouYNGkSMjIy0LJlS/iTx2sAcNddd+k7QoZhGIbxRAxwq6tl/vz5eOedd7B+/Xo0b94chw4dwjPPPIPw8HC89NJL7ttxJaPKEGndujUMBoPMdzxy5Ehb2fpddRKr1go2IiTEiKs37X7Um0V2P76p1E9dO8iuc6C5TmgOEB9BTgmav4TqSIwyjYiyn9gKPScBZJ+0LdUr0L59fWi8kPLv9APKOVBEWhBRH5Rwk79iva8gfkCBLE9H+Vw71I/sS7QDJhL4gQ6lgPiMqV4nyFg+BgFg9zHnFNhjMeSSQcnjktj3I9NxkJMh23+xsn+f6j6s9TkFynEUfEWaC6qFIe1pOo4AwTxSlOM7KGtkRDEgZLmWBGOkvxSNUsm6pLFDgvyUry3aJjTUvrZig+3xQqjWIsBH+bqkcWSCLCXn1OhPtiPCiAAVGi4LyZMjy1dF9VVkXDJ9U2mnspxD5L5K9UI3SN6djBx7uW4NQU4Xwo18+zFb58hEji2/SFlD5i9YNxaihTKRfE1UFyS7L5EDDC6NY0LvYXRty/LyCHIA0ftCUOl16WdWvt/oh3tf392/fz/69++PPn36AADq16+Pjz76CIcOHXLbPqsCVYZISkqKu8fBMAzDMF6Fs6/vFhYWIjs7W1ZnNBphNBpldV26dME777yDs2fPonHjxvj555+xd+9eLF261JVhexyqDJF69erZynv27EGnTp3g5yfftLi4GPv27ZO1ZRiGYZjqi3NPRNasWYNVq1bJ6mbMmIGkpCRZ3auvvoqsrCw0bdoUvr6+MJvNmDNnDp588klXBu1xaH5rpkePHkhPTy+XdyYrKws9evSoNq4ZhmEYhqkIZ9+aGTlyJBYsWCCrK/s0BAA+/vhjfPjhh9iwYQOaN2+OY8eOYcKECYiNjcXw4cOdHbbHodkQsWpBynL16lUEBwfrMiiGYRiG8XicFKsGBAQgLCzMYbvJkyfjtddewxNPPAEAaNmyJS5evIjk5OTb0xAZNGgQgBLrb8SIETLrzWw24/jx4+jUqZP+I6wiii0Sii0SIoLsgXRqEKGlX6l4jQpUabCiazkkMRURKPoSQVVooL2/IBLQi6r7iojozdo93Q9NhkWFXjRAGO2bir5kidEEYkW5AE8q3T8NaGbffyER3+YVEiEcOZ7IEPt8hpK5o0JHaujSYyobybdkTPYyTSInb0OThxFRKA16RjRtBUTEeulGSSK1W0RMSgXKhSQo3U1ZUDL7uGmwMip4puO6ektZdGidf0kg8qP1dC6oiDDIX1muSPdP21NhprUoC5wnS9Bm789HIC6k7el59pX1SfdZPuldEBEf03ranx8ZDBUXp9+0J8OrE2QPgFbHZC8riXXlySXt0JY05pnovNBri8bXomtKKbklvfatARQBII+sz1Ailr4j3H5t0WB59LqkwuVABXE7FahSkS+9tOgxB/oL7htURE/OSwhx6csEwKVlep59ZPcqO/Q803mj91lr2e0BzeDeOCJ5eXnwKZOF0tfX9/Z8fRcAwsPDAZT8YxAaGgqTyZ65MiAgAPfeey9GjRql/wgZhmEYxhNxJrKqBvr164c5c+YgPj4ezZs3x9GjR7FkyRLZW6vVAdWGyNq1ayFJEiRJwrJlyxAaGurOcTEMwzCMR+OMRsSgwZezbNkyvPHGGxg7diwyMzMRGxuL0aNHY/r06RpH6tloiqwqSRI2bNiAjIwMd41HNcnJyTAYDJgwYYKtTpIkJCUlITY2FiaTCd27d8fJkyerbpAMwzBM9cag8aOB0NBQLF26FBcvXsStW7fw+++/Y/bs2QgIUM69461oEqv6+PggMTERV69eRWJiorvG5JCDBw9i9erV5aK4LliwAEuWLMG6devQuHFjzJ49Gz179sSZM2c0P8GpEeSP0GB/WcAqpQRvBlmwHuLz9lMOgEQ1D9RHSrULebRMAllZg5FlEz0BDXQUbrQvTppczo/4GEXGuyy4FLlaDL7l29wkY7pFxhoZYhda1Amz6yhE+hOKPAAWmWfiCrX6e+lYRYnJqG+4QJC8iwZ3E50La3Cp2sH246FjyipUPhd+RCNyJMMeLyD1Wr6tbCJJEnNJYKocUrbqKMyCIGJ0fYo0GtdJmQbOo/59fzNZx0QvYyw9d1QLQsv+BuW1RU+5KLidPGGavR9rUjuagM1EEyH6Kl9P/n4GxTLdTzCZ8zCTH2lPDqp0qmVJ1Mi6oWtetrYFy1yk46FBzKjWwaopohoSqrOpQ3RrRTSJIglQdiQt11b+48pNez/kOG+RwHyRpQkl42raXzgQXFqIIAk66TmqQYRWNHAc1fTUDLSPnQYRtJ4i4domp4fq1mhQSHperEHvRPcH3XCza+Z2QXOumQULFmDy5Mn45Zdf3DEeh+Tm5mLo0KF49913ERERYauXJAlLly7FtGnTMGjQILRo0QLr169HXl4eNmzYUCVjZRiGYaovVteMplwzbLeUQ7MhMmzYMPz0009o1aoVTCYTIiMjZR93M27cOPTp0wcPPvigrD4lJQUZGRno1auXrc5oNKJbt27Yt2+fsL+CggJkZ2fLPgzDMAzjEIN7k97dLmiOI1KVoWU3btyII0eO4ODBg+W+s+pWoqKiZPVRUVG4ePGisM/k5GTMnDlT34EyDMMwtwFsXOiBZkOkqoKopKWl4aWXXsK2bdsQGBgobFd2UYgCsFmZOnUqJk6caPs7OzsbcXFxCAn0R2igP3KI35UmSbPGL/ARxEigGgnqIxb5nWlsENo+jPhjrYmcaCwOUWIoqjPJIpoSGl+Ezgvdpzw2hL1sHS/VMIj833Q7WQwMcpw00RhtT33DVOtxI690v6Q/qhEwC2IKiKCxPui5pdQOLllrecSffuyvG7Zydj7R85CYIheJFuRsmr19bq49HkSNGvZ1HExi1ATSWAqlWgc6hzI9A0GmhSD+d1liQDLRoUbqx1eOKWONNSFLdCZb8+XjfwDydUn1AlQL4i/QEVj1IFTnQfdD62VJ0sj+adJDOhc01oxySje7XoGE8ZDpX+SJFuk1ZC/nWuzr5TqJAVJE1v8toimi8WVula5Fejw1yDEcS7frP7YduWwrB5K4PPnkvhVC7hdRNexhF0yR9sSANYJK1l+Eid5v7HNbK8i+PkP8leP/UB2PTK8miGMToKDRoueEbkfXNtV5BRvt9TVD7fu0nqNsf/u9ym2wHeIymg0RoCSA2WeffYZff/0VBoMBzZo1w6OPPirLfqo3hw8fRmZmJtq2bSsbx549e7B8+XKcOXMGQMmTkZiYGFubzMzMck9JKEqJhhiGYRjGEc4mvWPkaDZEzp07h0ceeQSXLl1CkyZNIEkSzp49i7i4OGzZsgUNGzZ0xzjxwAMP4MSJE7K6Z555Bk2bNsWrr76KBg0aIDo6Gtu3b0ebNm0AlGQ43L17N+bPn++WMTEMwzC3M+ya0QPNhsj48ePRsGFDHDhwwCZOvXr1KoYNG4bx48djy5Ytug8SKHmfukWLFrK64OBg1KxZ01Y/YcIEzJ07F4mJiUhMTMTcuXMRFBSEIUOGuGVMDMMwzO1LyRORqh6F96PZENm9e7fMCAGAmjVrYt68eejcubOug9PKlClTcOvWLYwdOxbXr19Hhw4dsG3bNqeiwBabLSgyW2Q+0BrET2p9T536NOl77DR2BX3vXRZHhPi6UUx85AE0BoK9idXXTX3HohgNFBqXg/rO5RoRmmOCDIuMPb9UA1EzhPpi7eOm8UX+LCywlUOIf5uOpYjMUTiZW1ncEzJHkcEl5UvX7LlDvvn9T1vZhzhr6wTbx1gz0O56Cyb+7TxfEqeBHAfVl+SW5sw5fc3+NtX5a/Zjo3qJc5n2eA3Xcuxtwsh80XJkCBkXicFgsZRXLxiJbiaS+PHpGqK6jNBAGpdDWUdBx+4v0G5Y+6Tr0E8QO4TOv0gvQq8nqh3xVch1Q7UwfoJcOH6+ym0ogXSdk/VHrx1atsb0oFoEevz0GqaxQGjeITPZtoBoQWhskOtEa3Xxun29WO8t9SOMim1/+v2arRxBdEaJseG2cnSofT3VMJFcUwble0tY6TVKz30gcbUH0vgzpJ5e27L7EpGFiGLd0LL1mOl2sgikpBioIgeQVc9Gz4O74CcirqPZEDEajcjJySlXn5ubW+nR3nbt2iX722AwICkpCUlJSZU6DoZhGOb2hO0Q19EcR6Rv3754/vnn8eOPP9pyzxw4cABjxozBo48+6o4xMgzDMIzHYRWrchwR19BsiLz99tto2LAhOnbsiMDAQAQGBqJz585o1KgR3nrrLXeMkWEYhmE8EqtORO2HKY9m10yNGjXw+eef47fffsPp06chSRKaNWuGRo0auWN8DMMwDOORGAwGWSwpVdu4aSzejFNxRADY3kyprgQG+MIU4CtfNAoriApRaSAqKmijCa2oKJAGqTL6EWGcQLBlXe+yRE50TKS/IKNysj7RVWAQiNiooKxGUHlBGd0ntfb/zLKL72gfNNFYRDAR0ZGd0vmyBTGDPZDa+0cu2equ5tgDh/W6s6at/DsRtF7wsbepR8R9uSSIVB2TXRhI5zwjr2TbC9ftQamu5drHFEKCSNUKs/fdPNYukDaRwExX80iiMZPyevGXBR0raUNFnvRcGX2oKJUKkW1FmUCRihFlfdJEh4LlZYWeT1GyRNkSFawtKlCVBSyzJtoTCFTlokhlIaxBsIZ9qRAayhSarQktyTHQ+SHrPzdfIeAexKJMKm4NJOe8fqR9/YWUJuajAvK957Ns5a5Na9nK9WrYt5OdF3I8MoEwWSNKgebo+ggS3M8otN5IygbZnNMAdMr11vZ+Kv5R9xOIVem92DoXVMzsLjQ/5WBLpByaDRGz2Yx169bhu+++Q2ZmJiwWeQTLHTt26DY4hmEYhvFUOKCZPmg2RF566SWsW7cOffr0QYsWLfgkMAzDMLct/E+g62g2RDZu3Ij//ve/eOSRR9wxHoZhGIbxCvhNGH3QbIgEBATcFsJUtQpnWYAgWaod5Y1FmhN/DY5Dg6CtZLD7SElRFuiJ6i8oMteszL9f8f5pgCjq861Nkv7RQG+5JBkXHVc+CQZ17PINW3nl9xfs+yrd1Zkzmba6kf3utJVrGO1BnPZesfvUaWCsGyTR3ul0ezycOuH2ZGBxxO9+q3RcOSRYW0y4/fv4CHvsHBo4jCYAo3OeEEGSjglyM8kCdpXOKQ0i5i/QCIl0CULNh2BbxdUl0hap0ZYI9CoifYdVG+In0LP4qtCCGARrWBJFwFKAaqsKSFJEup78BUkXaXI7GuhNphEjepGwgPK34p8z8mzlFjHBtnJiTXuZJpH0FyQXlCVMpLocQ3k9CB0fnTd5IEblZHQiLYhIL6KkB5GdW1Iv0xkJNGr0fmJdlyJti56wIeI6ms/SpEmT8NZbb8mEVAzDMAxzO8Kv77qO5icie/fuxc6dO7F161Y0b94c/v7+su8//fRT3QbHMAzDMEz1xqk4IgMHDnTHWBiGYRjGa+C3ZvRBsyGydu1aVe1++OEHtGvXDkaj0XFjD8RQ+h9FgoI7ykHMBaV+HbZx0ESrV4x256sidoSz+1WTjC+PaC2ySEyNjGx7rI9fMnNt5YbRYbayVWtBu754zb5dMEmuRZP1GYiv/8IVu9+d3kBiw+1aD+q6tmpD7r7D7pevZbK3DSVPBKlGgMaLoHoBX8G8BAj0JVZkiehk82xvYxBpJEg/PgJ9hSgGiFInojUs0mVQfAV6AaXYIKLEeVp1IaJ1LlrP1ngUNC4FXZ+yuDiBNFmjvT4txx7HJsjPfputH2ZfR+du2DVKdL1a1xHVWQSSWDTFZUImKCHShQSTsdA1ZyzViAQIEg3K9CKCRIN0nmkMGFnsGME9wlpUE4uGItPFKWjXFO/ZOsN2iOu4TcnTu3dvXLp0yXFDhmEYhvFCtOaZKTGo2HIpi9ORVR3BYlaGYRimusNPRFzHbYYIwzAMw1R3WCPiOmyIaEHpIY8K37msucBHrWUtC/tQIVjRes1YiO/aWhTpD+hYCkhckIJiM6m3l/NJ+SbJ+xJP4njQcnp2Ybn9xEXYv69BcrfUi7TnfaHakSB/u4++BskTU0w6PZRm16jcGVUS9yMqyL4fOtb0XLt2IL/Y3keNQPs+/QT6DvrUkGpAcoto/piSMtUZUL93oK9yvh5ZTBHqgCXyAlmyLhp4hvrpS9uI4oKIkGs6VOgFFHQvWvcpeghL50vUDY0Zklca94au2zyyVr9PvW4rBwXYJ7cN0TNR8ort6+WKXToi04XQGDRS6Tmi2o6/ckn8HTJXtYLseiWqRaJtAn3ta4fmwzIqxAah58pPcH5kWiQorzNfwfpzuC4E+h+K8J6H8vVq7smuwK/k6gMbIgzDMAzjFBxZVQ/cZojwyWEYhmGqM848EeF/GcvDYlWGYRiGcRLNP7rZEimH5td3b926hbw8eyyGixcvYunSpdi2bZusXU5ODho0aOD6CEtJTk5G+/btERoaijp16mDAgAE4c+aMrI0kSUhKSkJsbCxMJhO6d++OkydP6jYGhmEYhqFwiHfX0fxEpH///hg0aBDGjBmDGzduoEOHDvD398eVK1ewZMkS/OMf/3DHOLF7926MGzcO7du3R3FxMaZNm4ZevXrh1KlTCA4uESAuWLAAS5Yswbp169C4cWPMnj0bPXv2xJkzZxAaGqppf1Lpf5AJStUHAFPzQEiPRSkX4mkLUCbsk4xd6TBEifMschWZDZrQLiuvyFamAaMov2baFX07f063lRvH1wAAhJAgUkYi6KP9hRrtorxawfb2WSTp3l9kLDSpXf1IuzA1v7hk7D//aQ8+lV9ERKY0iRgR9GXnE4Fusf34w4mIlQaPCvJXDhIVUKr0y/W1j5smyyvyUw5uRcWvIkGrqCyRnyc+pYdKRaY+ihHPygYUEwQRg6CsoJWlVVQ0TUWMNKCVYPnJkMh00fVaJEtwV9KIBjHLyLOvSTpXs19ZaivH9+pnK0/5mz0ZY4SRrleSMI+UD1+2C6QjTX6lx2DfT6NaRJRN+qPnls5zhNEuYqXBxeg+lc6/aE3IRKy+gjUkCFZHxaqi5IqOnirI7klqTrS1rZsDmnFkVX3QbIgcOXIEb775JgBg06ZNiIqKwtGjR/HJJ59g+vTpbjNEvv76a9nfa9euRZ06dXD48GF07doVkiRh6dKlmDZtGgYNGgQAWL9+PaKiorBhwwaMHj3aLeNiGIZhbl+80Q65++67NbU3GAz44osvcMcdd7hlPJoNkby8PNvThW3btmHQoEHw8fHBvffei4sXL+o+QBFZWVkAgMjISABASkoKMjIy0KtXL1sbo9GIbt26Yd++fUJDpKCgAAUFBba/s7Oz3ThqhmEYprpgj5bqXRw7dgyTJk1CSEiIw7aSJGHevHmyfyf1RrMh0qhRI3z22WcYOHAgvvnmG7z88ssAgMzMTISFKb9HrzeSJGHixIno0qULWrRoAQDIyMgAAERFRcnaRkVFVWggJScnY+bMme4bLMMwDFNt8UZDBAAmT56MOnXqqGq7ePFit45FsyEyffp0DBkyBC+//DLuv/9+dOzYEUDJ05E2bdroPkAlXnjhBRw/fhx79+4t913ZRSFJUoULZerUqZg4caLt7+zsbMTFxcFskWC2SPKgOlJ5f7Qw0ZhOa1NJjyEO9EP0IqQN7UOkI7E4EoaQ/mkgJhq4jPpjaYAoWg4mQcSopuOW2a6pqB1sb9Onnf1RoFVrcviCPaBUCNGCRATZt6MakT9zCm3llGt2q57u/88bdg1ARIjdvx5QmoDuWq59O9m8CXQuNUPtAdXCTfZxFZC5yCcBs24W2ss0AFtwQEn7QhKsim7nX0yS5fnSIGo0oJy9HEQCWokS6dGyVQ8gStZHka05g5r1ZC/7kPZmi1WvoLyeDVQXRTQfSknPAPn6kyUmJGu3kMyRVS9yo8CuIfrrpl2jU5ckSGz1+GO2ck6OfY1kkDX340W7vqhpaYA8AGgSaf816k8DkJXqheiY1LyFSBMt0mXpR+aF6piM/sraIaU6pYBzZctq7n9ag9RZofcn2f1MqlivVBkvb3qjHZKSkoLatWurbn/q1CnExsa6bTyaDZG///3v6NKlC9LT09GqVStb/QMPPICBAwfqOjglXnzxRXzxxRfYs2cP6tata6uPjo4GUPJkJCYmxlafmZlZ7ikJxWg0em2GYIZhGKbq8FbXTL169TS1j4uLc9NISnAq+250dDRCQ0Oxfft23LpV8kuyffv2aNq0qa6Do0iShBdeeAGffvopduzYgYSEBNn3CQkJiI6Oxvbt2211hYWF2L17Nzp16uS2cTEMwzC3L9X19d2bN29iz549lbIvzU9Erl69isGDB2Pnzp0wGAz47bff0KBBAzz33HOoUaOG23xJ48aNw4YNG/D5558jNDTUpgkJDw+HyWSCwWDAhAkTMHfuXCQmJiIxMRFz585FUFAQhgwZ4pYxMQzDMLcv1fn13XPnzqFHjx4wE7e5u9BsiLz88svw9/dHamoq/j97Zx4eRbH9/e9MkplM9o1sEPYAsiMgssjiAiqIyquigIALVwQEBEQRlUU2QRZFQVFBvPci/q6KelEEriyKgEJkE5E1QICEQAjZM0lm+v1jMl2nmW4ynWTIJJwPzzyc1FRXn+qu7lS6vn3OLbeId+UHDhyIF1980WMTkeXLlwMAevbsqShftWoVhg8fDgCYPHkyCgoKMGrUKGRmZqJTp07YtGmT7hgiAFBYZINfkU2ZPEzlPXmyzKpYl9VaC7WR9Wr6fj+F1qE414AtRENA10ALiM4ggNSh+6dr53YaU4E4T/dO9QXO9mmyugISf8OXxCigsQMKizTW4okDey5cle2D50VMhTMkfkdJ6bYWi4ijcCpd1E06dUW260eL9fdIovm4cEUE48spEBqAtDSxHyvpU1xckEtZWKjQf8SGizV/NW0FAGTmif3kknZofBMLGUj0GDl1MbRtGnPExyjayzEIHYPJR33cmouMquUWX3XtiKn0nBo0dAa+GhkQ1TQH16KZAM3obE5dz0T9pnoBqvmhNj2euSRhIdXapBcIfYfzmFM9SdKZLNlOiAyQ7duaiWXfprXEuEjJEhqRpL/TZftEqqizwSjKo8mYighwiP4bkLEVEyC+p/2nuhB6Xqzkl4efL6lfon4tBpXqmJRti/77SnTMyaZS5+PO83Vah44XleFC76dUi2bT0LOpxQzJt5a4lFU2NXQeckPRPRHZtGkTNm7cqNBnAEBiYqJHX991R6xlMBgwffp0TJ8+3WN+MAzDMAzgmIRovTyguY2HfNGLM/SFFjfiSYgT3RORvLw8BAQEuJRfvnyZRZ8MwzDMTUV1fSJitVrx/PPPo1WrVqrfnzlz5oaFttA9EenevTs+++wzvPnmmwAcTyHsdjsWLFiAXr16VbqDDMMwDOONGFCOt2Z0Vj9//jxefvllbNiwAQUFBWjSpAk++eQTtG/fXl9D19C2bVskJCRg2LBhqt8fOHDAeyciCxYsQM+ePbF3714UFRVh8uTJOHz4MK5cuYJff/3VEz5WCdmFJZD8ShRr0HTd21y6pu6rWIsX2xeVqK9XlxBdRJBZPaZGFtEu0NwQ+y444mf0bCSC0AT6q8cCUCxkkR+01tFpbBCbRtyF/FJ9w5nMPOFTmohEWy9crGPXDhTr2xEBQqNBc7qk5onYHblERxIeKOrvOHtVtmuV6j4sJEbI1TyxFk91Hi0SwmT79GXh79GTGbLtR7QWUVGBsh1MtBvOWBPZ2UJDcCVT+F1C1uhprIVaIeJYhJD+0/F0JFX4S3U/4YHiyaIzl00B0eXQ80ZjjhRraItoNhq6xKkVG4TmwHHm8ilRaDFEXX+iP/DT0DzRa0GZv0TUofoG51hU6Dxo/BUNvUBmrhgLNO5LMdFCZGQIjRDdfxHRV+WVbhtVS+iMLqWLc1VM4osYyfVZOyFctqmOqUk9Ud44Woyz4xeFvqlhLVHujFkSHyL6Fk3i0tDzQ8e/HynPzBfl/z4o8jW1ry32Q6/5EJPD31iiRaGaLzpuTOS6MRNtEdVo0PFMtT5+GtolNX1HAbknZJN7Il2lN/upa56c5BJ9lkcwKO/7lU1mZia6du2KXr16YcOGDYiOjsbJkycRFhZW4bb79u2Lq1evan4fERGBoUOHVng/7qB7ItK8eXMcPHgQy5Ytg4+PD/Ly8jBgwACMHj1aEb+DYRiGYWoyBpTvrZmioiKXdCJqMa3eeustJCQkYNWqVXJZ/fr1y+OqC6+++up1v792v56k3HFEZs6cifXr1+OHH37ArFmzeBLCMAzD3FzojCHinLOsXLkSoaGhis/cuXNdmv/uu+/QoUMHPProo4iOjka7du3w0Ucf3eBOep5yTUR++eUXDBkyBF26dMH58+cBAP/85z9VQ64zDMMwTE3EUI5/APD0008jKytL8ZkyZYpL+6dOncLy5cuRmJiIjRs3YuTIkRg7diw+++wzj/QnJCQEp06d8kjb10P3ROSrr75Cnz59YLFY8Mcff8gZ+XJycjBnzpxKd5BhGIZhvBWjQd8HAEwmE0JCQhQftbdO7XY7br31VsyZMwft2rXDc889hxEjRshxtSobd8JkeALdGpFZs2bhgw8+wNChQ7F27Vq5vEuXLpg5c2alOleV7Dx7GZYgq0IwRYWWjUuDGiWSxFVUlJVfJALpZFnVhVZhZiFoKyQKwKtWITSjgaZmfnUYANB+rHj/m4pVqRAyjwTyoYJXGsSIitVoYjArEUZm5ZPEX6VBn9LyC+UyKtQ6lyUEgg1ChCgunQgHMwqFfSxDiD4z84W/VIAYFCwuzphSQemff12Uy6KIyC+IBC77Ycdp2b5w6E/ZDm/QSGwbI7JFXyaC1rNnxPHPvuJYxw2NDJXLfEnwsRJyPO1EiHz2rAiARQkngl4qbqUC4TwiQHSWm0ziHBYUkGNFzycJ1pWXLfpTRMaTLV8IJFFI7CwRXAt2m7pdE7CQDOEBxPbxdamTfpZUDRVBEQvzxPin5/zKqZNigxJxzIPrNZbtXcEi9EHL5iIYWjoR2u7Y53jKHN1HbBflL0S2VNibUSi2q0faTogQdvf6Yuz+dPKqqBMmrpdfLzvGeSoJ+Fc7UlxbdJ9UCFyPBHcrpuJXcl8yE4Eq1VOYidBZTWh9OFWM4b9Oi2CF9eLEeWtdR5yX2iEkWWXpPS8/V4iMPUH5NCLu14+Li0Pz5s0VZbfccgu++uornfv0bnRPRI4ePYru3bu7lIeEhFxXgcswDMMwNQoP54/p2rUrjh49qig7duyY7qR17jJkyBCEhISUXbGS0b00ExcXhxMnTriU79ixAw0bNqwUpxiGYRjG2zHA8dqwno8eXnzxRezevRtz5szBiRMnsGbNGqxYsQKjR4/2SH+WL1+OqKgoj7R9PXQ/EXnuuecwbtw4rFy5EgaDARcuXMCuXbswadIkvPHGG57wkWEYhmG8j3I8EdFTvWPHjli3bh2mTJmCmTNnokGDBliyZAkGDx6sb6fX8O6777pdd+zYsRXalzvonohMnjwZWVlZ6NWrFwoLC9G9e3eYzWZMmjQJY8aM8YSPVcKes7kwBSgTo2XkiLXhzXbXNc1OjSJl20LW9FOzxTru3+eEdqA1CXTUjgQa8iPrsbWDRGCweQPbAACukPXkQLN6QCt/P/WHXXlE52IlSb8ySJtUx5GaK/os9yFdlNFAWzRxXmSgGFp5RTQYl2iHam6opuVoylXRDlmD7t7EoY1pU1eseW89lCbb+74g66ZE2+DbpKNs120gztHZ0yS4mUnodYJJMDKD0bGvrMvivBXkCG1FcESYbBs1AkBlZ4htz53eD7KBsIMiSTm5VV0VepibhuDSv8gsQn8Fs7g+LKHi/PsHinNFiawltANBQUJnFBEm6vsTrQ9Nqhbk7xi7uYXqCdOKyHUTTtouIGP4Egl6d+bUZdm+mCLOZ0Nyv/jxZ/GmQvpfDi3YcqJPO/e/9bKdcE8/2V7wZFvZXrE3RbafbBsv25H+wsdeDcNkmw4zZ4K9I5dE3c0Hha+ZmUI7crE0sCIAmEnbviZxzdvJhW4iWjh6XRQTHV14qaaF6p9o3QunxXUuFF/AiVZiiaJhghgXzoCCRVQT5QHKFVlVJ/369UO/fv3KrqiDxYsXK36+dOkS8vPz5UBpV69eRUBAAKKjo71vImKz2bBjxw5MnDgRU6dOxV9//QW73Y7mzZsjKCio7AYYhmEYpgZRHXPNJCcny/aaNWuwbNkyfPLJJ2jatCkAhxZ0xIgReO65526IP7omIj4+PujTpw+OHDmCiIgIdOjQwVN+MQzDMIxXU57su97G66+/ji+//FKehABA06ZNsXjxYjzyyCMVXgZyB91i1VatWlVJwBOGYRiG8TYMOj/eRmpqKoqLXXPy2Gw2XLx4Y5aGdWtEZs+ejUmTJuHNN99E+/btERgYqPi+Kl798QQWkw/MJh/sPHBBLju5O0lUyDgHAAhqe4dc1ChW9D3/iljrvEDezc/OFvqKn8ia7n9+FGuZ/6/PLbLdNlboSLrEOpa/csjadT7RX9BkWDSmyKk08T5+OokBkkriIfxyUugYaJKwsxfFe/hBpcnockgcAbqmm54m2vjXZ+dl+9YebYSPJBlWKkn65kt8Lybr9UVkHXnaxt8cRqZI4gV/oQWguhDTLZ1ku0ETsV5+4Iv/QBUSX8J4W1fZttkcbRZkk3gEqcdlM+eMq4YGAGAQ/Qm/radsBzTqK9vWAqHLySI6EgvRBUXFOPphJXqa0FChc7BYxCXsQzQqwSTRHk0SGEgSLZpIjJqwAFEeQPRFwaXbhpH9+JP90Dg3fkZRHkD0FyYjrSNuxT4aCdCcNtUwGDUyi/m4kXFM8QerRrwmmmDPadHYOlSvQGPx0Jg3l4m2yko0Eqcza4s6JF7O7qNCO5L+y0bZbjPwUQBADInjce5/wtdmjYW2ZB+5hrb8Ju4nISTpXte6YmybfcS58CfXXE6RM9GeGDdP35EANf5KF/qXSzliDNPDTBNXFpLjRXU09JxHBzvqpxBtzWVyr2zZtJZsnz4vrpU+7cWxDbOIvmUVOq4Xq6T7V5wuboRGxNPcddddGDFihJzR12AwYO/evXjuuedw99133xAfdJ+le++9FwDQv39/xQmQJAkGg0G+cTMMwzBMTcbg4ey7N4KVK1di2LBhuO222+Dn55jAlpSUoE+fPvj4449viA+6JyJbt271hB8MwzAMU+3Q/UTEyyYutWrVwg8//IDjx4/jyJEjkCQJt9xyC5o0aXLDfNA9EenRo4cn/GAYhmGYakc1X5mRSUxMRGJiYpXsW/dE5ODBg6rlBoMB/v7+qFu3rmrynupGsc0Og82OmBjxWnJyuMgNYS/ViORmCW0H1YIUkzXi9HRRJ+uqqBNDNCW1E4QWpHmM0ADQ+BpOgv3FaaN6kRyag4SseReSuAfJWWL/u0+JtdYi4u+VHLHWfekSycFSmu+Bxsugfw3QWBy1m4mcLrSN9PNiXdyHrFfnXxSaEqSfhipRCc7G5aIGzcQ6dvKG70R/8kQ/j367Tr25LvfI9uU9v8g21WsUnCgd7yQvC41L8vj/ay/bsSFi3G8h8U2OHxGalkCydn5np7qy3ame0LpQHUVw6TGNIvEa/Ii2gsbCoHoJM1n/p+XUNmqU+1C9RmkzBoWGQzYV+ZW0bsgGjfpadSoDrdxdEiTVOlRT5bx0aFwc+r3N7loXAKKLxXVbQq6nUHJdUE3J+StCD5HS4z7ZPnLQkeTmwJVLctlbSyfK9hWiM/ngPwfE/uPCZJvmlwkh+88ncX+oXsTm5/DLahNluaRulEWM29vriPYKyL0lh+i5QqgWieyHHsdckhvJ6WPvRiKqZybJkWQm9xyzj4gdQo//pQKhKcmxOo6t0cOPHwyG8uSaYa5F90Skbdu21z3wfn5+GDhwID788EP4+6sHG/I0y5Ytw4IFC5CamooWLVpgyZIluOOOO8rekGEYhmHcxBHiXf82jBLdr++uW7cOiYmJWLFiBfbv3499+/ZhxYoVaNq0KdasWYNPPvkEW7ZswWuvveYJf8vkiy++wPjx4zF16lTs27cPd9xxB+677z6cPXu27I0ZhmEYxl0Mjrdm9HwYV8r1+u4777yDPn36yGWtW7dGnTp18Prrr+P3339HYGAgJk6ciLfffrtSnXWHRYsW4ZlnnsGzzz4LAFiyZAk2btyI5cuXY+7cuTfcH4ZhGKbmwlOLiqN7InLo0CHVFMT16tXDoUOHADiWb1JTU13qeJqioiIkJSXhlVdeUZT37t0bO3fuVN3GarXCahWaiOzsbI/6yDAMw9QMnNl3qzuFhYU4ePAg0tPTYbfbFd/179/f4/vXPRFp1qwZ5s2bhxUrVsBkcgiYiouLMW/ePDRr5hARnj9/HjExMddrxiNcvnwZNpvNZd8xMTFIS0tT3Wbu3LmYMWOGS3ndMBP8A80oKhYiwowWQlx4uZZDXJrx53657PffRN3OnRvKNhUFXr4gxJp5WULEWfCnmCjZe06S7RwiVj2R5hBMhhHBY06hiIhHBYdUiJddJOqkZgmbCmGTU2hitnTZtgSK4FolpeIymtDKYKRiRSpyJMGSroqgS3SQW4tE/5Etjgt8hBgONhLxL7BU0Ju8T/hdLCaR8PMnVYVYLy9fCFpjmreQ7Yu/7xDbFguhm40I8Gp16AIAuLRjk1xWcmyPbP9rrrApHZ98QranP3ubbGcXirYPnBPHJemcEMP2aCB8d4obqYDVjwr3iCjVj9qkji8Rt/pqiVUN6qJT501WKTiFxg/qUIEqFYtqlZNCNVMBFT9qCVS16miVO8WodpUyQClEpeLTfBJ0jrZNheA06Ft6lhhzLW6Jlu2ftm9w6cP3B8U1mZpGggyGiqBnIUQs/c+9IhDjQ61F22EkAV0gSVIXVhoALcBXlJ3OFtcn7X+gn/qvDSpWTc8T120tkbcSAWTbOiRwn3MsBBGfwi3qIl/qC026GUfuVSjtcn6ueuLCysKA6v/WzI8//oihQ4fi8uXLLt/dqNhgujUi77//PtavX486derg7rvvxj333IM6depg/fr1WL58OQDg1KlTGDVqVKU76y7XrsM5g62pMWXKFGRlZcmflJQU1XoMwzAMo6AGaETGjBmDRx99FKmpqbDb7YrPjQpQqvuJSJcuXXD69Gn861//wrFjxyBJEh555BEMGjQIwcGOJwJPPvlkpTvqDlFRUfDx8XF5+pGenq75hMZsNteI140ZhmGYG48Xzi10kZ6ejgkTJlTJKoaTcgXiDwoKwsiRIyvblwpjMpnQvn17bN68GQ8//LBcvnnzZjz44INV6BnDMAxT06gJ2XcfeeQRbNu2DY0aNSq7soco10Tkn//8Jz788EOcOnUKu3btQr169bB48WI0bNiwyn/hT5gwAU8++SQ6dOiAzp07Y8WKFTh79qzuiVOjiEAEBAUikSSeCiKBxJz6ivC+IkHd3+eF0LVulNgumKx1BgeLpy9WotE4/KfY9+U8US5FiPVQZ1K7K7ki0E8uyZoYQtZ/0/OEdmLHWaH/OJRyVbbPk4RZJUQXERgifL9y8YrYv9nk8r2ksTBPy0MiROC2PLLubM0Vvih0ISR4mIIzKsH0ssTaubGu0H/knfpb+F1b4wILFsnD6D7NFnGOnLoYhIh1dkNUHdmWTv2h2vSef34u28knReC0wGChY6lVSxzHbxavle1vb79Ltp0B82LqiKRf4eFiLTwijLQXKsprkXFWO1Qc22iiLwom6/FBZO0+kOgEnLoTmlCR2pqaE1qucaPWun87hw4dQ7Yy9BzX2jQYmUJfQBLZFdOkdnBtp0hDC5JlFdcc1Xyk5IggehYSaO5clrgWm9cSARK7NhHj73SGCG4W0NqRdDE/+ahcNqOPSNE+6t9izOVcFeP2xYfFvWjrMXHdnroitCidaotxoTi+pV2lmiM6Jq6S4GI5JBAZDdZG+3yQ3FsuWcjxInolmlwxOsjRzvlccQzNJKGiPwmKRoP70eSCtI4ziFoJKfMENUEj8t577+HRRx/FL7/8glatWsn5ZpyMHTvW4z7onogsX74cb7zxBsaPH49Zs2bJa0jh4eFYsmRJlU9EBg4ciIyMDMycOROpqalo2bIlfvjhB9U3fRiGYRimInij7kMPa9aswcaNG2GxWLBt2zZFfwwGww2ZiOgWqy5duhQfffQRpk6dCl/yl1OHDh3k13ermlGjRuH06dOwWq1ISkpC9+7dq9olhmEYpoZhgOOXqJ6Pt/Haa69h5syZyMrKwunTp5GcnCx/Tp06dUN80P1EJDk5Ge3atXMpN5vNyMvLU9mCYRiGYWog5XgTxtuenxQVFWHgwIGKkAs3Gt0TkQYNGmD//v0uSx0bNmxA8+bNK82xqqZVXCiCg0MUZa3jRHwHZ4K5w5eE/iImiK6XipOakS/Ks/PFWuut9cNk+74O42TbRNZRv/1bvNvdvTS+RL1g8WI+jcVQQta86Xr13xeEduXKVbFeXEzewS8qIkm6woTWIDJKxE7xKfXLrrEWb9TQC/iRteOsLKGL8GkoVNq5RPdSQtag87NFP/xKNTARtcR5yUgXxz+bJKur16WzaIPoZehNY/AzItFYfJhYd95zSqyvp150rME3veVuuSwqVOgyJKmtbF+6Ktb5gwLEOd/ywWeyTd/UD3h4ANS4svsnl7KUI8RW3aqCWMhYDyB2iEObQuPJWEj8h+BQMRap/onGtKBxb6heykI0KsH+YowEmRw21Z+EWcT3VGdgIvFS/BWJ0dT1BfR3hq+GjsXX4HpDthC9gsmorpehdaheq2GIuM4CTKLOLWQcn70q/oh7/S5HBtTfz4txmEy0Ve88Lv4QHLpMxB/65Cfx1+ukfiKFe0GJuLZ/vyCukYbhZByX/k81F3lFwu8sEv+G5lbJNIlrNcIizqcvOUZF5L4USPpfrNDxOP6PJvqsKIv624yh5Nqi55NqVOoZHeMyJ7tcMki3KU+uGW+biQwbNgxffPEFXn311SrzQfdZeumllzB69GgUFhZCkiT8/vvv+PzzzzF37lx8/PHHnvCRYRiGYbwOx1szVe1FxbDZbJg/fz42btyI1q1bu4hVFy1a5HEfdE9EnnrqKZSUlGDy5MnIz8/HoEGDULt2bbzzzjt4/PHHPeEjwzAMw3gl1V2seujQIVlu8eeffyq+u1F9K9dzqxEjRmDEiBG4fPky7HY7oqOjy96IYRiGYWoQ5Vqa8TK2bt1a1S6UbyLiJCoqqrL88DpCLX4ICfBTrB3T/BHO9cggfxELIDtfvC//52WxFutP9CLJIWJd9vhFse4b6C8eh9F3+VMyRJ3kMMdae22yXl9McrdIJcI/mtOE5iChcSdqR4uYBnaNeAwm4ruzji9Zi7eQNV+qUaH5OALMrnEpAOWabirRV9C1+wKyTn3hkkOvQfUn9RKEbofO3ovJungE0S7kFYo17fNX1MXVMUQjc0vt0FJfhd9bD4nIvbXChUYimsT36NtCXBtd335Rtn87lSnbhUSjk9lT6FVo7JaiEwccRonQ0EBSJqWqFAqy1e2Mc44iWpXYV6ABibuCsBhiiuMSHRcmbBJTJS7CcUwbRonjGUKiH9P4J5EkpgQdT2ZyvqiOhMY3oeOY4iymuWa08jjRJuh1o2zPoFqHXjv+JtFQZKmmpp0tXC5rd/9k2Z62UIyn7yf3lO2X/ntYttfsEUlH77xF3KPiQ4ReZ+dZEesj2OzwJYJocVKuijFHtTAxQSTmjInqcoTdJp7o2Mgv6giz2H9tojVy3mdojqRAct+gx5DeHxU5kFRyJElFntWIwFD944h4A26dpXbt2rn9iOaPP9QDPDEMwzBMTcIAQzkiq3rXzKWwsBBLly7F1q1bVbPv3ojf6W5NRB566CHZLiwsxLJly9C8eXN07ux4M2H37t04fPhwlSa6YxiGYZgbiTOOSHXm6aefxubNm/HII4/gtttuqxLNi1sTkWnTpsn2s88+i7Fjx+LNN990qcOZaxmGYZibhnIszXjX8xDg+++/xw8//ICuXbtWmQ+6J3P/+c9/MHToUJfyIUOG4KuvvqoUpxiGYRjG23GIVQ26Pt5G7dq1ERwcXKU+6FbyWCwW7NixA4mJiYryHTt2wN/fX2Or6oev0eAQTVIBFPnBKaSi4rPTWUL8uPmokPH1aiJEZ02ihYjr52MZqvtuWFsMCirWPJvpCMz1h99VuYwm44oLEsK9OqHCDkyMkO1959QTykWQYGz0YqEz1aBSQZvZlwp4xfe0PJIErgrwUx9mNDAUTTpWQhql8j9LaWCq3BIhOM0jwc8omQWinIqMqYjXKdADAGuJ+v7zix3rpTQoU/8OtWU7hATi2pUsBMrbTwr7jkZCUNuNnIujF0WwtvgIMS7OpIs6OS0SAAB5eSTpWDaRi5IDlE8ShtlIEsOiQrGtVCIE1QoKhXARZiEchbG0f3bRHkjALx8iIjURISJ9vGsOIELTUNE2DXpGBcJ1SgXV9cPF99GkjUgS6CqAnEMqSqViVa0EfFq/FJzDkopStX5/0ICCtA4dc3T/dPmdBmYLIsJM5/CrS8S6v66bI9tdHxaBp97vKhIqrpvYS7Z/OCGSQX6bJISrT3VLkG2zj+t1TkWpl7JF8MPaZHxSQohwOICk/KgbLM4zFZ3SPvtTsW7p+aLnROu8aQlU1c6Fj4dfaakJSe8WLlyIl19+GR988EGV5WTTPREZP348nn/+eSQlJeH2228H4NCIrFy5Em+88UalO8gwDMMwXkkNCGjWoUMHFBYWomHDhggICHAJaHbliua7cZWG7onIK6+8goYNG+Kdd97BmjVrAAC33HILPv30Uzz22GOV7iDDMAzDeCPOpZnqzBNPPIHz589jzpw5iImJ8V6x6rU89thjPOlgGIZhbmoMNSCOyM6dO7Fr1y60adOmynzwcLSX6o9BQ+PsXI729VH//v7mInCTmWghMoxCu9CV6AVqBYrHYXR9mQYDcy7fpuWIdf5GkWK9/MgloRHwJ3oN6mObOmSNnrRNe0E1HT7kKnNqOpSJxtSTkflqJAbTOl6Ki5mszdtU9CK0KtWoWIkuwkY0HUVkYZ4GgKNakHO5QndB9+msQx+/BpF18UByrPq3EBoJxXEhxyLcLHyMDxb1rcSvxFpiPb6gVKOSli0S91HtQk6hGAs0iBwNlkahAaPyrSS5YIFop7hYtOM8L/SvJBr8jp436het40vOP02ASBMDSmRj596LNQKE0fOvSFanEbiM2rQfPmX8BqHJSGnfNMu1NCekXDKo659oMrw8q610P2JHt9QWCfIObJgv223uE4HORsULLdLyQbfKNg0Q+PclofuIJrqwE5cc439vsngMn0MSUbZNEPsPDyD3DdI3mqSOJqajfaMBDdXOkdYyhzu/7KnOTOu+7Qmq+9JMs2bNUFBQUHZFD+LWWzMRERG4fPly2RVLqVu3Ls6cOVNupxiGYRjG2zGU45+3MW/ePEycOBHbtm1DRkYGsrOzFZ8bgVtPRK5evYoNGzYgNDS07MoAMjIyYLOp/0XGMAzDMDWBmpBr5t577wUA3HXXXYpySZJgMBhuyO9yt5dmhg0b5kk/GIZhGKZ6UY63ZrxNU1Jtkt5dG3v+ZoKuOyrWekuLg/zFIWwVGybbuSS5Wo5VrL/nEx1DENEX0HgYSedFrI/2RNMRVZrgK5/E0aB6jS9OiHgBR/6+JNsj+jeT7cRwEaMk3F9oFKiOQZkYjOo+StdxNd7vp3WV8RpkU7lGr7kwqL6tUzuj0CIQu8Qu1qIVGhGinaDlVpoYjxyLQlKeXeQ4d6FmkpSQOE71JIq4B8QuJvsPg2hHK0la41DiY+m2dHxQDVEGiRFSTPpWUKx+zVIf80iMGrotcVf9mMP1ewAoKLKr1qEJCKkWhOoF6Dg2lY4jenzoOaTnzY/YvopxSROjkTFH/KJ6DbUYFFr6F1qX9p/sUvEAnm5LNTpFxHd6XgJLY9PQ720kjkudSBFfJOWXJbI95qtDsr1012nZfqiFSECYS8YRTR7o1J21qSdiHoVbxPdUr1NEYu5YAsQRpTFdzFpaEA2NTmX8bqbH+UatgDjiiHjZzEInPXr0qGoXqkeY/NOnT+OZZ55BgwYNYLFY0KhRI0ybNg1FRUWKemfPnsUDDzyAwMBAREVFYezYsS51GIZhGKYyMJQ+EdHz8QYOHjyo6wHD4cOHUVKiHjyyMqgWb838/fffsNvt+PDDD9G4cWP8+eefGDFiBPLy8vD2228DAGw2G/r27YtatWphx44dyMjIwLBhwyBJEpYuXVrFPWAYhmFqItXxgUi7du2QlpaGWrVquVW/c+fO2L9/Pxo2bOgRf6rFROTee++VBTUA0LBhQxw9ehTLly+XJyKbNm3CX3/9hZSUFMTHxwNwhK4dPnw4Zs+ejZCQENW2GYZhGKY8GOCd+WPKQpIkvP766wgIUA/dfy2eXlmoFhMRNbKyshARIeJw7Nq1Cy1btpQnIQDQp08fWK1WJCUloVevXmrNwGq1wmoVMRrcfV3JOfboIIwicSEyckWbgWQttinRaBQQvQiNOxFmEe/60zX1EsnxKI3qOWIDxHpxYpx4qykqROT9aRkdJOoHiXK6Lq8Vg4E+SvRR0YgoYjpo5vQQdbRyQ7izputTWklz7Z4s0pcQzQPVP5SQx5EmoqOgy8tBxA6XlOGOr/Wb9k1d8QH4llBNgSin8VWoX2oNldjF2KLaiQh/EbuhWCNeCq1vh6RRLqDrtc71b+ofda9EsU/SNh23VJejiHVCYmqQ+mp5R6i2ymgVN0VlTBnSBtELmakuhY55iWp6RDtG+X/1/CYUvToSI83N5Kc+Xp1aK7Ov6APVGdETQHUZT7YXOZBGfrBLtu9oFCbb+SS+DB27zaId94UoktPnSoE4zqu2i3AMAzrVgRpa1xzphkJzR68F57nWug1IGheXVt4ZZ32t7SoL59LMjWLu3Ll49dVXMW7cOCxZsqTc7XTv3h1Hjx51u37nzp1hsVjKrlhOquVE5OTJk1i6dCkWLlwol6WlpSEmJkZRLzw8HCaTCWlpaZptzZ07FzNmzPCYrwzDMEzN5UY9ENmzZw9WrFiB1q1bV7itbdu2VdyhSqRcYtWTJ0/itddewxNPPIH0dEeWxx9//BGHDx/W1c706dNhMBiu+9m7d69imwsXLuDee+/Fo48+imeffVbxnZp62fkutBZTpkxBVlaW/ElJSdHVB4ZhGObmxADHkzM9H8Cx1HFt4DD6ZP5acnNzMXjwYHz00UcIDw/XrFdd0T0R2b59O1q1aoXffvsNX3/9NXJzHa+aHjx4ENOmTdPV1pgxY3DkyJHrflq2bCnXv3DhAnr16oXOnTtjxYoVirZiY2NdnnxkZmaiuLjY5UkJxWw2IyQkRPFhGIZhmDIxiHwzbn8ArFy5EqGhoYrP3LlzNXczevRo9O3bF3ffffeN69sNpFzZd2fNmoUJEyYgOFjoHXr16oV33nlHV1tRUVGIiooquyKA8+fPo1evXmjfvj1WrVqlyMMAONawZs+ejdTUVMTFxQFwCFjNZjPat2+vyy+GYRiGKYvyRlZ9+umnMX/+fEWZ2WxWrbt27Vr88ccf2LNnTzk8rB7onogcOnQIa9ascSmvVasWMjIyKsWpa7lw4QJ69uyJunXr4u2338alSyJYV2xsLACgd+/eaN68OZ588kksWLAAV65cwaRJkzBixIhyPeWQSj96xhgN4hMVLAZVIQkcRQWdtgKhpKKC1nsbiVeqqEhNUqlrIQmlhrcVQl2tZHBaQbfo6pWWWNW5xEXrUkGh1rFyR6CqFfRMoYxU2YGWEJaiSPRGxN8lRnUlG+2TSeWZIQ2KRn1VCB5JOT1HBWQs0MR0iqBPPvSYOm314Fd0PzTpXQlR6SkCurmh3pNU1LKSRILF0QR1VJRKkwWScptGosESMw3A5hpGmp7PfBKIy6bRt+AScV0E+QmRsT8RhZpJ0j1a7quSsJEG3FMMSS2BpEbwQxpojQYpMxtoMjh6Hh3t0ABpvqpjQtleo0ghs27XWtwLwkkwvoskYWagiQi3S+9dZ66K5Gf5RMzd+RYRFK11tPgDlJ7P/CL18UyRJHVRvPMalegxp6Jwcq3ScndErJ7EMRHRvzOTyeTW76WUlBSMGzcOmzZtgr+/f5n1qyu6l2bCwsKQmprqUr5v3z7Url1bZYuKs2nTJpw4cQJbtmxBnTp1EBcXJ3+c+Pj44Pvvv4e/vz+6du2Kxx57DA899JD8ei/DMAzDVCrlWJrRQ1JSEtLT09G+fXv4+vrC19cX27dvx7vvvgtfX98K54EpLi7GU089hVOnTlWonYqieyIyaNAgvPzyy0hLS4PBYIDdbsevv/6KSZMmYejQoZ7wEcOHD4ckSaofSt26dbF+/Xrk5+cjIyMDS5cu1XzcxTAMwzAVwRlHRM9HD3fddRcOHTqE/fv3y58OHTpg8ODB2L9/P3x8fMpu5Dr4+flh3bp1FWqjMtA9EZk9ezbq1q2L2rVrIzc3F82bN0f37t3RpUsXvPbaa57wkWEYhmG8Dt1CVZ1PRIKDg9GyZUvFJzAwEJGRkYoXOSrCww8/jG+++aZS2iovujUifn5++Pe//42ZM2di3759sNvtaNeuHRITEz3hX5UhSa7rjwq5gkHUu7YMAKJDxJOYS9nitSyq3aABiw6kZ8p2GlnH7RgvgpQ5172pFoEGpQoNEGvBuVaxpp5fLKnWN2iG4FLXIzjdlcgiOW3BqKUt0QgMpXlRliFjoJtp6U+06pgUa/FEl6Gxpq2mqaDB3/xooj+q/6FaCKIpoc3RcmpTX/xLNQ1abdOx4Ev/rrCrhyijgc7sGgvsNuqjSmI+upnWGv21TyvLquOj0j+auC9PEfxKPI42keOfWyxuZ2YfIQYKJnoRmrzQn+hFaHAxp17Cz43zrJXQzUauIUXgQHLCqL6DBrdzakoUAb9AIEOVBpQLDSAJOBPEfcNK6gT7E40G8ffPtHwAwK6/0+Wybs3F24ad6wo9Ax0TmSS4XAFZJiiyi+McbBJ2sU0cc9pnk6+jTV+NY2ukwedIskJl4ERhOwP3aY3xyqRaJGy7Do0bN8abb76JnTt3on379ggMDFR8P3bsWI/7UO6AZo0aNUKjRo0q0xeGYRiGqTYYUI7suxUU0lZ2MLKPP/4YYWFhSEpKQlJSkuI7g8HgPRORCRMmuN3gokWLyu0MwzAMw1QnbtALOh4jOTm5ql1wbyKyb98+xc9JSUmw2Wxo2rQpAODYsWPw8fHheB0MwzDMTUN5kt5588TFuVyq+ylPBXFrIrJ161bZXrRoEYKDg7F69Wo51GxmZiaeeuop3HHHHZ7xsgqw2e0osdsVg4zGDzCqLAzSJFl0fTPIXxzmrAKh/6Dn+u9LItHdz3+KCLGRPcS2LSMd6740jgV9fYuuOdP1dwtZC6c6Cqo1oP7aVXQB1F9FHAWFXkXYtI4iNgBd99ZInleWdoR6p9ToEC0GTe5G3nCja/RmP3XtBu2+UxqgiF2gkbiL6te1jiddF6exOS7lCR1RllWMkfphyvXaa9ujB04zjoXifIn902aoFoauwTv1QlRyYqdr9HQ8kTbojUx5OtXrlCUMomv9NOSItYTGFBHHjeofckxCL5VJsogG+Ypri+oYAkuvF3quaCwYrQSRNI4Q7bTNTjQtpA7tPr12nTFFtH7B0br0GqZj++6GkbJ9lYwnirXE7lLWLCFctiMsos8ZJAHeVaNoj/qYW0R1acKO9Cc6Fps4zvS+pKbLocdKocUhh1krpo7TpvdKT+HNEwt3+eSTT7B48WIcP34cAJCYmIjx48e7pFHxFLo1IgsXLsSmTZsU8e7Dw8Mxa9Ys9O7dGxMnTqxUBxmGYRjGGynPmzDexuuvv47FixfjhRdeQOfOnQE4stm/+OKLOH36NGbNmuVxH3RPRLKzs3Hx4kW0aNFCUZ6eno6cnJxKc4xhGIZhvJ0bvYxR2SxfvhwfffQRnnjiCbmsf//+aN26NV544YUbMhHR/ebRww8/jKeeegpffvklzp07h3PnzuHLL7/EM888gwEDBnjCR4ZhGIbxOgxw/BLV8/E2bDYbOnTo4FLevn17lJSUqGxR+eh+IvLBBx9g0qRJGDJkCIqLHWuFvr6+eOaZZ7BgwYJKd7CqKCqxo6hEqRFRy8ei/F59jV5rrZPGjmgVEyDbt0Q3kO24QJFfQI4BQcaGYs2ZdkBj+d0uqftI15qppoNu61z2VeZ9UBeA0DV6rVVamuqFhvGgGgS13DS0rjsxLWhOF9ocXY+WFMeFVJf7of5XD92n4hjSSlRbpNAOkFwrJB9QdpFYg7+Y69AO0fgfFl91zQ+t40f0ArTcV2NNnY4L2qZ8Ho3qupAShUaBnkRh0lsZjalh0Ih1IpXuy4fss7CE9oHsRkPbQ89AHsmBQq85evxprI38EsfxNRNfA0mMEqptoDonei3SuCT0eFpJbBRah56LolLdi1a+GhojSFJcQ+KHuuHifhJKdWmiOjIKhe6jfrgj7lGTWuJ+Q/dP9SR+pJzmwsqxUu2K2I8EoX+yEsFWEMmZFViq16GxXYptrrFVAG2NjpqOhObZ8giG6v9EZMiQIVi+fLnLG68rVqzA4MGDb4gPuiciAQEBWLZsGRYsWICTJ09CkiQ0btzYJQgKwzAMwzDezyeffIJNmzbh9ttvBwDs3r0bKSkpGDp0qCJ8h6fCc5Q7oFlgYCBat25dmb4wDMMwTLXBgOr/1syff/6JW2+9FQBw8uRJAECtWrVQq1Yt/Pnnn3I9Tz750T0R6dWr13Ud2rJlS4UcYhiGYZjqgaEcv6C9a+pCw3NUFbonIm3btlX8XFxcjP379+PPP//EsGHDKssvhmEYhvFqnGJVpmLonogsXrxYtXz69OnIzc2tsEPeQm5hCeBXopjtUi2eUzBFBVLKBGzqUAGYH4k01SgsSJQTMRYV1OWXii6psNFqUxciKkSUWkJMjWR0VOio1j+FyNVHPUCVr49621oCPGj4pQyu5dqepiqXQANAFRDhYrBFBFfSSiTo1DAqkrhpnFwq0FUkcVME49IIhqaRvCunVCHsqxCWgtjqAlXaRiERCFqLSKI1Ul+ZmM11HNFjbneNg+WooxhPwkk/he/qB48KUJ3H2kSOG/WPCmQV50pDiF2iUYcmjKOJIZ117CTgHL3OAkrEbTOAiCsLydjyIx2iAkw65AuIiJrWcR5/OoaKyXZZ+UJ8SgOtKUTx5Pqjxy4u0CLbkf4iMecVq0NQepEE1qPBCumYKCymAlXRh2Iq1qZjnp4vUq4QCPs42gkoEf2x+Ijj7E+TAvrQcQ7Vcuf9J7/Iw2JVVH+xqjdQaZO5IUOGYOXKlZXVHMMwDMN4NYZyfBhXyi1WvZZdu3bB39+/7IoMwzAMUxMoR2RVnoy4onsicm3QMkmSkJqair179+L111+vNMcYhmEYxpsxwKCIq8OUD90TkZCQEKVuwmhE06ZNMXPmTPTu3btSnatK8otsMBbZdA0xunZfQtaU6foyDS5F1+jpWi+FBgzKK9UL5JNod7Q9ZQI4YVP9gdZ6JvVFETyILBQ7k3opNCQamg+6XqulEdHS1yiCbtHkcZJroCelLke9b3Q/gSQBIdUXUB2BmtRE8bVdXfNBk87RNX8aRKtEQ2BRRM5zMAn0FOzn0LHQfuYVlx3tkPZHcf5JHRrQKtws9DJUU3C9smtRnGdJ/TwrA3Cpt+M8L36kzJ9cHnTM06MpSernU9KoQ5PEUVecOgZ6TpTB34RGg55zeg0prnmiUfIn1zk9XjQ5m3PMawXcy85XT5xJ7yGSpH4tWkyivskuyp1jSuu+kUd0RjmF5J6jocvKJVoks4amJ89XtOnU2uQV0/uNGOcBJIgfvf/QoHNmH1KnVCOSV+j5yKAsEak4uicin376qQfcYBiGYZjqhUP3wTORiqJbrNqwYUNkZGS4lF+9ehUNGzasFKeuh9VqRdu2bWEwGLB//37Fd2fPnsUDDzyAwMBAREVFYezYsSgiab8ZhmEYptIwiAy87n4YV3Q/ETl9+jRsNtdXoqxWK86fP18pTl2PyZMnIz4+HgcOHFCU22w29O3bF7Vq1cKOHTuQkZGBYcOGQZIkLF261ON+MQzDMDcXjjgiPLuoKG5PRL777jvZ3rhxI0JDQ+WfbTYbfvrpJ9SvX79SnbuWDRs2YNOmTfjqq6+wYcMGxXebNm3CX3/9hZSUFMTHxwMAFi5ciOHDh2P27NkICQlRbdNqtcJqFe/OZ2dnAwCyCotR4lsMP7KQTddsne/sKxItkXaNNDAFjdFB1mX9TepxHOj6dgmJ0+FMdlasSNAlJoW51rLfmacz8gCSdKuI+EtjLWhpQJzQ9Vp/jXVcup1JQ19CtSBGjT8b5ESDGs/xNBMUauxHKwKJXWVN266hv9HSqOQUiLXpHJLELoRoMej+6fHyIzEgnOVUF6KVaI7GC6HtBfr6kTrqMSDILhXHMdjk2NZCYt5Iihgh6ifDSI6oj4rOBwB8JJo8Tmzr7B+9wdtpe3ZyPjXqKM4X8YteOyXEFzNxwKkRod9bNAYdTVBIkxHSGBhacX/MvvScu2qqaPybPJLo7lS2iNfUyj9MtqmOhLYXKMKFKOOYkBgbzrFzPks8QY4OEuOGJrGj40+hc1HEEaHlws4nMUiofKOw2JnoUJT5K2KxqN836DFX6EWMpZqTfM8/EeenHBXH7YnIQw89BMAhdrw2gqqfnx/q16+PhQsXVqpzlIsXL2LEiBH45ptvEBAQ4PL9rl270LJlS3kSAgB9+vSB1WpFUlISevXqpdru3LlzMWPGDI/5zTAMw9RMDOCJSGXgtkbEbrfDbrejbt26SE9Pl3+22+2wWq04evQo+vXr5xEnJUnC8OHDMXLkSHTo0EG1TlpaGmJiYhRl4eHhMJlMSEtL02x7ypQpyMrKkj8pKSmV6jvDMAxTUzHo/se4olsjkpycXGk7nz59eplPI/bs2YOdO3ciOzsbU6ZMuW5dtVdTJUm6bghes9kMs9ms+T3DMAzDqGEwaL+GzriPWxORd999F//4xz/g7++Pd99997p1x44d6/bOx4wZg8cff/y6derXr49Zs2Zh9+7dLhOGDh06YPDgwVi9ejViY2Px22+/Kb7PzMxEcXGxy5MSd8gtKoG9qFiZG4au3Ze+707XK00qGpJrbUUeFY38JjTuhF1lPZbuJ9BPnEJabteIo0DR0kj4KPrs+tCM5oug69+5RMdg1DgudJ90guhP6mjlTFHTqNC1aLperKUz0dJ3+CjFHtdF0jigWvNdC4lvQOPC5BSJ46XQ7viKc+rUNNg0dDtXSCyQQqIpSAwXuYuCSFwSui2NzUA1KJfIujrV/TjROieK40KGDV27p/3Qyg3jo5ZfCOrjQyuOhVYcFZNEdFEaeZqcvtg0tBA0tg7NhUT7T/U6Zo3xTzUg9Jp37p/GnDl6NUe207KFLqVdnPqgo0dF4Tu9R/mJWvFBjhw0PqQ9Ra4bO9V2iL7ROC52jZwyWvcfqmlxdp+OCXrfoOeQ6mzoPafYJuoX+zraoTGXPAU/5ag4bk1EFi9ejMGDB8Pf318z6R3g+MWiZyISFRWFqKioMuu9++67mDVrlvzzhQsX0KdPH3zxxRfo1KkTAKBz586YPXs2UlNTERcXB8AhYDWbzWjfvr3bPjEMwzCMO5RHI8LTFlfcmojQ5ZjKXJpxl7p16yp+Dgpy/LXXqFEj1KlTBwDQu3dvNG/eHE8++SQWLFiAK1euYNKkSRgxYoTmGzMMwzAMU35Y91EZ6A5oNnPmTOTn57uUFxQUYObMmZXiVHnw8fHB999/D39/f3Tt2hWPPfYYHnroIbz99ttV5hPDMAxTc3FqRPR8eN7iiu6JyIwZM5Cbm+tSnp+ff8Neg61fvz4kSULbtm0V5XXr1sX69euRn5+PjIwMLF26lIWoDMMwjMfgt2Yqju63ZrTeQjlw4AAiIiIqxSlvoNhuR7HdrhDGEW0ZilWiy9IAPEU2dYGq1noiFdcpknpJrgIwrYBjiiBqGlNMLRGZpCkcdHXYl5SVULEeEZHRrajorlhD0FZIA50pku65BvfSEplSgaCWEFJN8AoANBcdPYxOYSJtQ0slrzgXxKaCXhoAi/oS5S8mzPT6co4dKsTNIm1czBV2DAlARQWV9PjTAH2hJlHfR8NfZykVwiqTGKoPNK1jQQON0ePopxFQT60NZaJH9WuLxF9TjDN6zOk+qTBV/t5XXRRLEx2qiVyvba8Q4niajCQxnYaM03nsUnLEk+cNhy/LdtsEsdRsJuPCV0PEq8znqH5dOJM0xgb5q/aBjgmFWJi0Tc9biYaim95n1NI/0u8NGvehQJINUUtw72xH91/aOuE4IpWD2xOR8PBwGAwGGAwGNGnSRDFIbDYbcnNzMXLkSI84yTAMwzDeCM9DKo7bE5ElS5ZAkiQ8/fTTmDFjhiLEu8lkQv369dG5c2ePOMkwDMMw3oYB2qECGPdxeyLiDOveoEEDdOnSBX5+fmVswTAMwzA1G56GVBzdGpEePXrIdkFBAYqLixXf15RXZf19feDv66OqkQAAW+mKJF0KpWvHVEOiWLvWEBhoJZKis23nvuyKdV5R1w5aV30tli6p+Sq0CKQdFV2Kw3fHiitNXOensRasCHRWqJ6ML8gs1rfp/q1k22La/9LRqliLh/qasjJwGk1iR/QK9DjSQHNEd1AE14BIWgn9rBr6B+pvqFlDx0HPl0JT47CLbernvEmkyLsUQYTZZl/1IFr0BwPpJ9WgxAVaZFtSGecU6hcdKzT4n5Eec42GaLnzUnBHi0PPPz2eygFNNCW0vpZeyKkv0NDCGBT6C6q5Uk/0p/BXIufWpl6/qLTOmasiGeeVHGHTQF+FxeJaoYnhKDSIXnGJa0JHCvWDii7oNe/rp65FKdHQf1G07i1yexqaEy2dF71XUp2X89q2qwTkq1T4LZhKQbeWJz8/H2PGjEF0dDSCgoIQHh6u+DAMwzDMzYD+TDM8a1FD90TkpZdewpYtW7Bs2TKYzWZ8/PHHmDFjBuLj4/HZZ595wkeGYRiG8UoMBn0fxhXdSzP//e9/8dlnn6Fnz554+umncccdd6Bx48aoV68e/v3vf2Pw4MGe8JNhGIZhvApemakcdE9Erly5ggYNGgBw6EGuXLkCAOjWrRuef/75yvWuCgny80Wgnx9KJLW33cW6rzuP2ugsWKEpsdPYDGWvqTqhGgUtybAiXohW1ikNtOIbqPWVrimH+ghvws0m2bYHqPuidVzoMVfrhyKhF7G11vwV684auhDaD1ru9ISeB5osrZjGHyEdMmsk7KLL8oUqsWgA9aR/dtWoC0pdBB1PtmKi1zCq95MeSOo71Ys4u6215q8Yw6SKMjGcKFeRJbi07zzWREKhOCZaaMULoeeC7l5xbRlpuZqvWtoSdf2LTWGr+6sY/3DdNipQ3J5vbxwp23HB4toqKCLJ9XzV+2klg5TGlKGaCrVrno4Vf6PrmACu0fbQA6YR4KNEx33JpqG/USQOpTGFfF2vf1+T7l9x+uCZSKWge2mmYcOGOH36NACgefPm+L//+z8AjiclYWFhlekbwzAMw3g1rBKpOLonIk899RQOHDgAAJgyZYqsFXnxxRfx0ksvVbqDDMMwDOOtsEak4uh+bvXiiy/Kdq9evfD3339j7969aNSoEdq0aVOpzjEMwzCMt8IrM5VDhRfQ6tati7p16yIlJQVPP/00Vq5cWRl+VTkmHyPMvkb4QyM2gYpega55Sor1TYJGbAKLQf19d7tKO3Q/amvrgFI7oqXF0MpHQVFb39d6v9/fx4eUu2537T4pWuu+yjwlpTEtyHYV6Q9Fq35ZbWj1TZFfiNg01IOfIu8IaUdlTV0rF0sRWegvIVqAID9xaZsNwqa+KGJqlBEvRzt6pLpfytw8VK+hHl+DXhfO+BYKyYF6VUV/ijVyGtFjp7UtcUs1dpBWjhzFg3adv5G0rl0fH4ddJ1jEc6kVIGLE0JgeBSSOiLFAPb4GjRdi14r1ITm3I+dNcetT75wiL5UvHfMuTQMAfLXuBSr3Uy3c0bw53fJ1Q1tUYXgmUmEq7SxduXIFq1evrqzmGIZhGMbL8axCZO7cuejYsSOCg4MRHR2Nhx56CEePHvVQX6qOGzBdZBiGYZiah159iF6NyPbt2zF69Gjs3r0bmzdvRklJCXr37o28vDzPdKiK8PC7TQzDMAxTcynPykxRURGys7MVZWazGWaSpgEAfvzxR8XPq1atQnR0NJKSktC9e/dy7Nk74SciDMMwDFNeDDo/AFauXInQ0FDFZ+7cuWXuKisrCwAQERFR6d2oStx+IjJgwIDrfn/16tWK+uJVmHyNMPkq52lliaS0Hrtpbacm1gKuEUCqJYbSaFtLCKq1sVZwJ632nSiCCNFEc248d9SIBaUZJImiSGrm3E7RIfX9a/lFj61WwK6yjqiWcJGK+Nz5i0kRpI1s4KciYg6wizItv7XEpfTYKmpoOKkWuI827WPUGFDUF40kZVrr5T4GV7Gq1rWiFB/TJIIkcBcVcRPxog8dTmTs2FRE0T7unEQNtBJnKg+dq4g3gNydrSSIXiFJCpldJJKO0qEQYKLCcTIuqVhY7Zi6cX7cWV5QDksy5hTte+7vYOd+rr2He2Rf5Xgm8vTTT2P+/PmKsmufhlyLJEmYMGECunXrhpYtW+repzfj9kQkNDS0zO+HDh1aYYcYhmEYpjpQ3tggJpNJd6b6MWPG4ODBg9ixY4f+HXo5bk9EVq1a5Uk/3OL777/HzJkzcfDgQQQGBqJ79+74+uuv5e/Pnj2L0aNHY8uWLbBYLBg0aBDefvttmEym67TKMAzDMOXjRry9+8ILL+C7777Dzz//jDp16tyAPd5Yqo1Y9auvvsKIESMwZ84c3HnnnZAkCYcOHZK/t9ls6Nu3L2rVqoUdO3YgIyMDw4YNgyRJWLp0aRV6zjAMw9RYPDgTkSQJL7zwAtatW4dt27bJed5qGtViIlJSUoJx48ZhwYIFeOaZZ+Typk2byvamTZvw119/ISUlBfHx8QCAhQsXYvjw4Zg9e7bux2C+Pgb46l0Y1tJ5aCS00xrBPhprxwa5jO6HJpEiwarc0Y5oRVrTwuD8Tz34mGYUI43daAfJIs2oBLXS0jZoJ+OibinUGLLlq7Fe7dyn5vF049BqaYS0uq92GGkbWsG3DApbwy8tfYWGNqAs3ZGW/oGiqZfR2rR0HCvPiPrYpvj60GtB43y6sX8fFa2Rls7InWCBWhoCevNVa54W0YR2IWaxJdXfKIPIqe7ymh1Q5xX/XdcX3SjOf/lacueaU7twtBJhVhYO/anefbhff/To0VizZg2+/fZbBAcHIy0tDYBDCmGxWMrYuvpQLd6a+eOPP3D+/HkYjUa0a9cOcXFxuO+++3D48GG5zq5du9CyZUt5EgIAffr0gdVqRVJSkmbbVqsV2dnZig/DMAzDuIMn44gsX74cWVlZ6NmzJ+Li4uTPF1984ZnOVBHVYiJy6tQpAMD06dPx2muvYf369QgPD0ePHj1w5coVAEBaWhpiYmIU24WHh8NkMsmzSDXmzp2reIUqISHBcx1hGIZhahTleHvXbSRJUv0MHz680vz3Bqp0IjJ9+nQYDIbrfvbu3Qt76bP1qVOn4v/9v/+H9u3bY9WqVTAYDPjPf/4jt6f2+FSSpOu+VjplyhRkZWXJn5SUlMrvKMMwDFPz0DsLKc9s5CagSjUiY8aMweOPP37dOvXr10dOTg4AoHnz5nK52WxGw4YNcfbsWQBAbGwsfvvtN8W2mZmZKC4udnlSQlGLZgc4kt6ZfIxlDxqNpUvNzdxYu6eJqdS0BorkbnbRYIldPXYCTXqlpaOga/0+RIRAk0Y5TS2NiNaEj+6nxKaegEs72ZbA2Q+1ZF3XtqGIV6BYO1bXP9CYInaVY1SikSzMnSR+dJ2a2kZ6HGmsDdUWla2L/QvcSQam9ybo1B0o5CS6tQjU1NCf0GOuUqiIY6Lx51N59QcqDbm051aMHkUT+v7GUz0WGnoqtx7va9yMtNqpjGOnP76I+9vqTi5Yuh9PxxEpT/4YxpUqnYhERUUhKiqqzHrt27eH2WzG0aNH0a1bNwBAcXExTp8+jXr16gEAOnfujNmzZyM1NRVxcXEAHAJWs9mM9u3be64TDMMwzE1LeeKIMEqqxVszISEhGDlyJKZNm4aEhATUq1cPCxYsAAA8+uijAIDevXujefPmePLJJ7FgwQJcuXIFkyZNwogRI3S/McMwDMMwZVGelRaet7hSLSYiALBgwQL4+vriySefREFBATp16oQtW7YgPDwcAODj44Pvv/8eo0aNQteuXRUBzRiGYRim0mHNR6VQbSYifn5+ePvtt687sahbty7Wr19fKfszGA0wGg3XxOmAqi1vo6X/oLZmTAvaEDFVlo5pXAzqH13/9fWlOTXU9RfKXWqtHbvuXwvdcQyUDqi2Y1BxwK7hiNY+aX2qoykukVTLVdfXSZlNI0aJUotTdg4YzbgfZYRMoFWNGtoazQ0UxWWfczU/9OqftFHfwFelXG8ep8rHjWNVgV9IZWlK3MpLRb5wJ76IPl2S6u51j4Xyjjm7hi5M05fSH4wejiPi2BXPRCpKtZmIMAzDMIy3wRqRisMTEYZhGIYpB7wyUznwRIRhGIZhygvPRCoMT0QYhmEYplxwHJHKgCciGjiT3hlJ9CS14F3KQE/ClrQEZeQLg4bSTbkfYdtKhZFUWKmWFA5QBiLzowHKNBL5UR+1RJfOC46KX1XyZjna01CUKkV0xHeNi1lt/VVLoKgI9KYRIM5OkqFpiV71oHX+tc651vnS8reo9KRTYa1d4wBoBR1zZw1bS3Spdl60ErrpFnFqiA71CFC1E0rS3WuIqMvZT4qWFrJCQkt5O2JriaJJK4oEiET7SkXMPgpxcxljRGfiSjdOs+axUCtSjAN3BLoKUW7p/dnDAo7y5I9hXOGJCMMwDMOUE56HVByeiDAMwzBMeeGZSIXhiQjDMAzDlBPWiFQcnohoEGz2RbC/r+YauBpaGhEtypsACvBRrVuh9Xp3/CqjDUWgNaO6FkZ38i5VP8reUCsA1HUadR+3Ijqp19daA1cm4BPlcqI/sjBeTBMHSuq2pr8axeUOUqZvl8o6GjoaZ1e1zqHSb8/9EqBjVevQ2tw55lpBxDSuXWe/ySWk0KL4+VJdhr5rnvbJRyXoWWXF/7JrDHTFMaUuOgOQqejwrkVLW6Z6nyny7K841ohUDjwRYRiGYZhywvOQisMTEYZhGIYpBwbwE5HKgCciDMMwDFNueCZSUXgiooHJ1wdmXx9FmdrMtyJDsLKlCxWivDuicTFo7AJF05WjXdGHRoATN5JxqaGZoNCNWAvuoa5HcOo+aJnJrq4L0UrKqKU/UduPO2jqXFR0Htfun6IVR8dgd22DajFsFei/co80poYod8bgoTF3NGPnSPS8Eb/IfpTxbYheQiulpMF1n75G9QtHWyNBmtaoQ9v3Ubm5acXl0UroSPFVtKd10bsWu6N50zoXavqzItP1kwlWBvxEpOLwRIRhGIZhygnPQyoOT0QYhmEYphyU560Znri4whMRhmEYhikXnGumMuCJiAZGQ+k6a2VrChRt6EPPgNcb00QLd/rhRGtdGm4UK6tU8oVdCc1p+qSzbXdiY5SVj0OxXq7I9eEaiwJQ6hiUeYREO1or6XKbOuOlUE2HXUPTYSNCCmXOkNL/yYAy+V4/59O15Vq5nuwaftnUjrkbp9yoEovD4ZfWFu7g6oCW/kOr/4pcQ9QTjWMkuRjK8URTVBnc6nPF0dKLaOULUst7o6Z9qXR4HlJheCLCMAzDMOXgOn+rMjrgiQjDMAzDlAeOrFop8ESEYRiGYcoJa0Qqjudfsq4kjh07hgcffBBRUVEICQlB165dsXXrVkWds2fP4oEHHkBgYCCioqIwduxYFBUVVZHHDMMwTI3HoPPDuFBtnoj07dsXTZo0wZYtW2CxWLBkyRL069cPJ0+eRGxsLGw2G/r27YtatWphx44dyMjIwLBhwyBJEpYuXap/hyqDRpdYtIpHnF6Bqh5RqqJvVdBNTzwKrYigV25DZ9AzrcBgaseXdtnHjcxkikBbZE80MJZW0DG1Y6H3mPvpHBhlXS9a+y+vDBQof0A3xf41BJXKfaq3rRWAraz9uLN/rfplBXpTjEM32tY8/pWuNy+7b6r6YA/fn3huUTlUi4nI5cuXceLECaxcuRKtW7cGAMybNw/Lli3D4cOHERsbi02bNuGvv/5CSkoK4uPjAQALFy7E8OHDMXv2bISEhKi2bbVaYbVa5Z+zs7M93yGGYRimRqD7DyOeubhQLZZmIiMjccstt+Czzz5DXl4eSkpK8OGHHyImJgbt27cHAOzatQstW7aUJyEA0KdPH1itViQlJWm2PXfuXISGhsqfhIQEj/eHYRiGqf4YyvGPcaVaTEQMBgM2b96Mffv2ITg4GP7+/li8eDF+/PFHhIWFAQDS0tIQExOj2C48PBwmkwlpaWmabU+ZMgVZWVnyJyUlxZNdYRiGYWoKBhFd1d0P40qVLs1Mnz4dM2bMuG6dPXv2oH379hg1ahSio6Pxyy+/wGKx4OOPP0a/fv2wZ88exMXFAVAG8XEiSZJquROz2Qyz2eyWv2XpKKrzbNdYBVdIeXUZWuvYN4qKaEG0qIx+6D2eigBgGrofZ5u61uVRDk2BDrS6qRUITitYXHnHn37tBNXrqBbr8sWdxJHuBeBTuV/q0IqVbqCvXNMt1y/cuSY0q0jX/M94NVU6ERkzZgwef/zx69apX78+tmzZgvXr1yMzM1PWeixbtgybN2/G6tWr8corryA2Nha//fabYtvMzEwUFxe7PClhGIZhmMqAn3JUnCqdiERFRSEqKqrMevn5+QAAo1G5kmQ0GmG3O+JEd+7cGbNnz0Zqaqr8hGTTpk0wm82yjoRhGIZhKgvHWzM8E6ko1UIj0rlzZ4SHh2PYsGE4cOAAjh07hpdeegnJycno27cvAKB3795o3rw5nnzySezbtw8//fQTJk2ahBEjRmi+McMwDMMw5YY1IpVCtXh9NyoqCj/++COmTp2KO++8E8XFxWjRogW+/fZbtGnTBgDg4+OD77//HqNGjULXrl1hsVgwaNAgvP322zfMT7q+Wt1myZURR6MquFF+u7V2Tk+5VGax9r5UKlWWLkXreJXVP7eOs6T5Q4Wp6vGpN16HcmNVU0FlaLQq45ec0Y37lpbOpbKpUNMcR6RaUS0mIgDQoUMHbNy48bp16tati/Xr198gjxiGYZibHp6JVJhqMxFhGIZhGG+juj399kZ4IsIwDMMw5UTvkhhPW1zhiYiH0P0+vhdR02b4VXIu3AnjoOGW+o2t7FgUWij0FW4kB9F1vCpwaHVtWpGYEpXUvqiqM49OpeddqVqqZP9V3WkNWCNSOfBEhGEYhmHKA89EKgWeiDAMwzBMueD8MZUBT0SuQSp9jp2Tc/Nm4a1pF5bXLpOVN8S93vq6o3Z74dKMG/DSTA2mnJ123sclD73/XZCfj/T0i7q2cQbhZAQ8EbmGnJwcAECTBnWr2BOGYRimMsjJyUFoaGilttm4cWPMmjULn6/5l67tQkJCUKtWrUr1pbpjkDw1Vaym2O12HD16FM2bN0dKSkqNiMqanZ2NhIQE7o8XUpP6AnB/vJma1BfAvf5IkoScnBzEx8e7pAipDIqLi3VvYzAY4OvLzwAofDSuwWg0onbt2gAcM9eacME64f54LzWpLwD3x5upSX0Byu5PZT8Jofj5+Xms7ZuJapFrhmEYhmGYmglPRBiGYRiGqTJ4IqKC2WzGtGnTYDabq9qVSoH7473UpL4A3B9vpib1Bah5/bmZYbEqwzAMwzBVBj8RYRiGYRimyuCJCMMwDMMwVQZPRBiGYRiGqTJ4IsIwDMMwTJXBExGGYRiGYaoMnoiosGzZMjRo0AD+/v5o3749fvnll6p2qUymT58Og8Gg+MTGxsrfS5KE6dOnIz4+HhaLBT179sThw4er0GMlP//8Mx544AHEx8fDYDDgm2++UXzvjv9WqxUvvPACoqKiEBgYiP79++PcuXM3sBcOyurL8OHDXc7V7bffrqjjLX0BgLlz56Jjx44IDg5GdHQ0HnroIRw9elRRp7qcH3f6Up3Oz/Lly9G6dWs5umjnzp2xYcMG+fvqcl6clNWf6nRuGPfhicg1fPHFFxg/fjymTp2Kffv24Y477sB9992Hs2fPVrVrZdKiRQukpqbKn0OHDsnfzZ8/H4sWLcJ7772HPXv2IDY2Fvfcc4+c5K+qycvLQ5s2bfDee++pfu+O/+PHj8e6deuwdu1a7NixA7m5uejXrx9sNtuN6gaAsvsCAPfee6/iXP3www+K772lLwCwfft2jB49Grt378bmzZtRUlKC3r17Iy8vT65TXc6PO30Bqs/5qVOnDubNm4e9e/di7969uPPOO/Hggw/Kk43qcl7c7Q9Qfc4NowOJRjoY5wAAiNdJREFUUXDbbbdJI0eOVJQ1a9ZMeuWVV6rII/eYNm2a1KZNG9Xv7Ha7FBsbK82bN08uKywslEJDQ6UPPvjgBnnoPgCkdevWyT+74//Vq1clPz8/ae3atXKd8+fPS0ajUfrxxx9vmO/Xcm1fJEmShg0bJj344IOa23hrX5ykp6dLAKTt27dLklS9z8+1fZGk6n9+wsPDpY8//rhanxeKsz+SVP3PDaMOPxEhFBUVISkpCb1791aU9+7dGzt37qwir9zn+PHjiI+PR4MGDfD444/j1KlTAIDk5GSkpaUp+mU2m9GjR49q0S93/E9KSkJxcbGiTnx8PFq2bOmVfdy2bRuio6PRpEkTjBgxAunp6fJ33t6XrKwsAEBERASA6n1+ru2Lk+p4fmw2G9auXYu8vDx07ty5Wp8XwLU/TqrjuWGuD2ffJVy+fBk2mw0xMTGK8piYGKSlpVWRV+7RqVMnfPbZZ2jSpAkuXryIWbNmoUuXLjh8+LDsu1q/zpw5UxXu6sId/9PS0mAymRAeHu5Sx9vO3X333YdHH30U9erVQ3JyMl5//XXceeedSEpKgtls9uq+SJKECRMmoFu3bmjZsiWA6nt+1PoCVL/zc+jQIXTu3BmFhYUICgrCunXr0Lx5c/kXb3U7L1r9AarfuWHcgyciKhgMBsXPkiS5lHkb9913n2y3atUKnTt3RqNGjbB69WpZzFUd+0Upj//e2MeBAwfKdsuWLdGhQwfUq1cP33//PQYMGKC5nTf0ZcyYMTh48CB27Njh8l11Oz9afalu56dp06bYv38/rl69iq+++grDhg3D9u3b5e+r23nR6k/z5s2r3blh3IOXZghRUVHw8fFxmTmnp6e7/FXh7QQGBqJVq1Y4fvy4/PZMde2XO/7HxsaiqKgImZmZmnW8lbi4ONSrVw/Hjx8H4L19eeGFF/Ddd99h69atqFOnjlxeHc+PVl/U8PbzYzKZ0LhxY3To0AFz585FmzZt8M4771TL8wJo90cNbz83jHvwRIRgMpnQvn17bN68WVG+efNmdOnSpYq8Kh9WqxVHjhxBXFwcGjRogNjYWEW/ioqKsH379mrRL3f8b9++Pfz8/BR1UlNT8eeff3p9HzMyMpCSkoK4uDgA3tcXSZIwZswYfP3119iyZQsaNGig+L46nZ+y+qKGt5+fa5EkCVartVqdl+vh7I8a1e3cMBrccHmsl7N27VrJz89P+uSTT6S//vpLGj9+vBQYGCidPn26ql27LhMnTpS2bdsmnTp1Stq9e7fUr18/KTg4WPZ73rx5UmhoqPT1119Lhw4dkp544gkpLi5Oys7OrmLPHeTk5Ej79u2T9u3bJwGQFi1aJO3bt086c+aMJEnu+T9y5EipTp060v/+9z/pjz/+kO68806pTZs2UklJidf0JScnR5o4caK0c+dOKTk5Wdq6davUuXNnqXbt2l7ZF0mSpOeff14KDQ2Vtm3bJqWmpsqf/Px8uU51OT9l9aW6nZ8pU6ZIP//8s5ScnCwdPHhQevXVVyWj0Sht2rRJkqTqc17c6U91OzeM+/BERIX3339fqlevnmQymaRbb71V8WqftzJw4EApLi5O8vPzk+Lj46UBAwZIhw8flr+32+3StGnTpNjYWMlsNkvdu3eXDh06VIUeK9m6dasEwOUzbNgwSZLc87+goEAaM2aMFBERIVksFqlfv37S2bNnvaov+fn5Uu/evaVatWpJfn5+Ut26daVhw4a5+OktfZEkSbUvAKRVq1bJdarL+SmrL9Xt/Dz99NPyvapWrVrSXXfdJU9CJKn6nBcn1+tPdTs3jPsYJEmSbtzzF4ZhGIZhGAFrRBiGYRiGqTJ4IsIwDMMwTJXBExGGYRiGYaoMnogwDMMwDFNl8ESEYRiGYZgqgyciDMMwDMNUGTwRYRiGYRimyuCJCMMwDMMwVQZPRBjmOpw+fRoGgwH79+/3SPsGgwHffPNNubfftm0bDAYDDAYDHnrooevW7dmzJ8aPH1/ufTHXx3kewsLCqtoVhqlW8ESE8VqGDx9e5i9XT5OQkIDU1FS0bNkSgPjFf/Xq1Sr161qOHj2KTz/9tKrduCnQGpepqalYsmTJDfeHYao7PBFhmOvg4+OD2NhY+Pr6VrUr1yU6Otor/hIvLi6uaheqjNjYWISGhla1GwxT7eCJCFNt2b59O2677TaYzWbExcXhlVdeQUlJifx9z549MXbsWEyePBkRERGIjY3F9OnTFW38/fff6NatG/z9/dG8eXP873//UyyX0KWZ06dPo1evXgCA8PBwGAwGDB8+HABQv359l7+G27Ztq9jf8ePH0b17d3lfNFW5k/Pnz2PgwIEIDw9HZGQkHnzwQZw+fVr3scnLy8PQoUMRFBSEuLg4LFy40KVOUVERJk+ejNq1ayMwMBCdOnXCtm3bFHU++ugjJCQkICAgAA8//DAWLVqkmPBMnz4dbdu2xcqVK9GwYUOYzWZIkoSsrCz84x//QHR0NEJCQnDnnXfiwIEDirb/+9//on379vD390fDhg0xY8YMxfmbPn066tatC7PZjPj4eIwdO9atvpfVr4yMDDzxxBOoU6cOAgIC0KpVK3z++eeKNr788ku0atUKFosFkZGRuPvuu5GXl4fp06dj9erV+Pbbb+WlmGuPGcMw+uCJCFMtOX/+PO6//3507NgRBw4cwPLly/HJJ59g1qxZinqrV69GYGAgfvvtN8yfPx8zZ86UJwB2ux0PPfQQAgIC8Ntvv2HFihWYOnUqAGDt2rUuyy8JCQn46quvADiWQlJTU/HOO++45a/dbseAAQPg4+OD3bt344MPPsDLL7+sqJOfn49evXohKCgIP//8M3bs2IGgoCDce++9KCoq0nV8XnrpJWzduhXr1q3Dpk2bsG3bNiQlJSnqPPXUU/j111+xdu1aHDx4EJcvX8add96J48ePAwB+/fVXjBw5EuPGjcP+/ftxzz33YPbs2QAcegjnUtCJEyewePFiJCcn4/vvvwcA9O3bF2lpafjhhx+QlJSEW2+9FXfddReuXLkCANi4cSOGDBmCsWPH4q+//sKHH36ITz/9VG7/yy+/xOLFi/Hhhx/i+PHj+Oabb9CqVSvN/hoMBnnS99RTT2HdunW4cOECDh48iEcffRT33nuv3K/CwkK0b98e69evx59//ol//OMfePLJJ/Hbb78BcCyxPPHEE3j66adx5MgRbNu2DQMGDIAkSZg0aRIee+wx3HvvvUhNTUVqaiq6dOmi69wwDHMNVZv8l2G0GTZsmPTggw+qfvfqq69KTZs2lex2u1z2/vvvS0FBQZLNZpMkSZJ69OghdevWTbFdx44dpZdfflmSJEnasGGD5OvrK6Wmpsrfb968WU4Nn5ycLCUnJ0sApH379kmSJElbt26VAEiZmZmKduvVqyctXrxYUdamTRtp2rRpkiRJ0saNGyUfHx8pJSVF/n7Dhg0SAGndunWSJEnSJ5984tInq9UqWSwWaePGjarHQc2fnJwcyWQySWvXrpXLMjIyJIvFIo0bN06SJEk6ceKEZDAYpPPnz8t1evToIQUGBkpTpkyRJEmSBg4cKPXt21exv8GDB0uhoaESAGnVqlXStGnTJD8/P+ndd9+Vj9lPP/0khYSESIWFhYptGzVqJH344YeSJEnSHXfcIc2ZM0fx/T//+U8pLi5OkiRJWrhwodSkSROpqKhItd/XAkCaNm2a3K9FixZJ9PZ21113yf1S4/7775cmTpwoSZIkJSUlSQCk06dPq9a93rhctWqVFBoa6pbPDMM48O6Fb4bR4MiRI+jcuTMMBoNc1rVrV+Tm5uLcuXOoW7cuAKB169aK7eLi4pCeng7A8VQjISEBsbGx8ve33Xabx/ytW7cu6tSpI5d17txZUScpKQknTpxAcHCworywsBAnT550e18nT55EUVGRov2IiAg0bdpU/vmPP/6AJElo0qSJXFZQUAC73S7v6+jRo3j44YcVbd92221Yv369oqxevXoKn5OSkpCbm4vIyEhFvYKCArntpKQk7NmzR34CAgA2mw2FhYXIz8/Ho48+iiVLlqBhw4a49957cf/99+OBBx4oU6vj7Ncrr7wCAAgKCgIAWK1W2R+bzYZ58+bhiy++wPnz52G1WmG1WhEYGAgAaNOmDe666y60atUKffr0Qe/evfHII48gPDz8uvtmGKZ88NIMUy2RJEkxCXGWAVCU+/n5KeoYDAbY7XbNNubOnSvbDRo0QIMGDQAAe/fuxTPPPIP+/fur+nPx4kXMmzdPsZ+zZ89i7969aNKkCSZOnIhz585h7dq1ijoAkJmZieeeew6rV6+G3W5HeHg4nnnmGezduxf79+/HsWPHMGjQIPcODDkO18Nut8PHxwdJSUnYv38/9u/fjw4dOiAxMRFPPPEEbr/9dhw4cABvv/02Xn/9ddhsNs22nb/AadtxcXF47733cPvttyMoKAjFxcWoU6cO0tLScPnyZdjtdsyYMQP79+/H008/jby8PHz99dfo27cv4uLi0KFDB/Ts2RPz58+HxWLBqFGj0L17d2RkZGDEiBGIjIyUl62OHTvm0i/nMo2zb0eOHJGX0RYuXIjFixdj8uTJ2LJlC/bv348+ffrIy18+Pj7YvHkzNmzYgObNm2Pp0qVo2rQpkpOT3T4HDMO4Dz8RYaolzZs3x1dffaWYTOzcuRPBwcGoXbu2W200a9YMZ8+excWLFxETEwPA8dewk6+//hoAMGDAADRr1gy33XYbVq5cCQDyL2YA+Ouvv1BYWIhu3bop2r969Sp+//13vPvuuzh27BimTZuGJ554Ar6+vnjkkUewa9cuAMDkyZMRGBiIhx9+GN988w2GDx+OBQsWIDs7G6tWrbpuH5yTqpKSElnoWb9+ffj6+uLXX39FfHy87MuxY8fQo0cPAEC7du1gs9mQnp6OO+64AwBgsVhw8uRJjB49Gq+88gr8/f1x5swZzJo1C5mZmXjvvfewd+9eAGJCcq34FwBuvfVWpKWl4fz587j77rsxbtw4hIaG4vTp01i0aBG6deuGtm3b4ujRo2jcuDEiIiIAAC+++CIGDhyI8ePH49ChQ5gyZQp8fX2xcuVKjB49Gs2aNcO9996LQ4cO4Y033kDHjh3x66+/4r777pP37exXt27dNCdkv/zyCx588EEMGTJEPobHjx/HLbfcItcxGAzo2rUrunbtijfeeAP16tXDunXrMGHCBJhMJsX5ZximYvBEhPFqsrKyXIKJRUREYNSoUViyZAleeOEFjBkzBkePHsW0adMwYcIEGI3uPei755570KhRIwwbNgzz589HTk6O4s2Xdu3ayXZQUBBat26N22+/Hbt378b69etx//33w2Kx4L333oPZbMbBgwfxyy+/yI/wJUnC0KFD8fjjj8Nut2Pt2rU4c+YMJkyYgJiYGFkYm5ubi6SkJERFReG3337Djh078Mwzz2DZsmXo2bMn/vjjD7z00kuKZR0n8+fPBwDUqlXL5btBgwbJT1IiIyMVx6VJkyYYPHgwhg4dioULF6Jdu3bIyclBRkYGXn/9dbzwwgu49dZb0b17d9x+++1Yvnw5ateujQ0bNrg8RbqWu+++G507d8Z//vMfvPXWW2jatCnOnz+Pv//+G7NmzcIDDzyAadOmYfbs2UhISJCXyjp06ACbzYa7774b586dQ5cuXbBmzRpMnToV//znP2EymbB3716888478hs099xzD0wmk3ws1fp1+fJlbNmyBa1atcL999+Pxo0b46uvvsLOnTsRHh6ORYsWIS0tTZ6I/Pbbb/jpp5/Qu3dvREdH47fffsOlS5fk7+vXr4+NGzfi6NGjiIyMRGhoqMuTN4ZhdFBF2hSGKZNhw4bJwlH6GTZsmCRJkrRt2zapY8eOkslkkmJjY6WXX35ZKi4ulrfv0aOHLM508uCDD8rbS5IkHTlyROratatkMpmkZs2aSf/973+vK1b9+uuvJQBSRESEZDAYpCeeeEIKCgqSnnvuOemxxx6TQkJCpISEBAmAFBISIotVJUmSjh49Kn/XoEED6ccff5QASB07dpSKi4ul4uJiKSUlRRoyZIgUFhYmAZCioqKkESNGSFlZWarH6PPPP5cASFu2bJH27Nkjf7Zv3y7dd999ktlsliIiIqRJkya5HI+ioiLpjTfekOrXry/5+flJfn5+kq+vr3Tw4EG5zooVK6SoqCgJgNS+fXtp1qxZUmxsrPz9tGnTpDZt2kirVq2Sj5kkSVJ2drb0zDPPSAEBAarncN68edKPP/4odenSRfL19ZUASK1atZJWrFghSZIkrVu3Tqpfv74EQAoICJBuv/12aeDAgRIA6fLly4pj4DxHzmN9bb9iY2Olhx9+WO5XRkaG9OCDD0pBQUFSdHS09Nprr0lDhw6VBah//fWX1KdPH6lWrVqS2WyWmjRpIi1dulTeX3p6unTPPfdIQUFBEgBp69at8ncsVmUY/fBEhGEIO3bsUExErsVms0n169eXnnjiCUmSJOmdd96RDAaD9PfffyvqAZCeffZZl+2XL18uAZD2798vSZIk/xLW+sycOfO6/v70008SAOnSpUvyZEbtU1JSUmbfe/ToITVu3Nil/MiRIxIAacmSJdKzzz7r8iaSJEkuExGbzSa1adNGqlWrlvTuu+9KW7dulX7//Xdp9+7dikmDJDkmM84+XK/NZ555RvL19XXZd0FBgUubVQVPRBhGP7w0w9zUrFu3DkFBQUhMTMSJEycwbtw41K9fXzOImNFoxOjRo/Hqq69i4cKFWLZsGe666y7FGylO0tLSNMucb3BERUWhdevWirdHKE6NhxbXW5qh9OjRw63AWxcvXlT8/Pbbb8sBzJKSkrB27VosW7aszHb+/PNPHDhwAJ9++imGDRsml584caLMbbWIjIxESUkJMjIyFG/kqB3nqiAoKAglJSXw9/evalcYplrBExHmpiYnJweTJ09GSkoKoqKicPfdd6NZs2aYMmUKCgoKVLd59tlnMX36dAwePBhHjx7FW2+9pVrvp59+UghhbTYbvvjiCzRq1EjWe/Tr1w8//PADGjVqVK7XQ5csWYIjR44AcIhNo6KiVOtd+0qwFjk5Ofjuu+/kt4N+//13/Pe//wUA7N69G++++y6effbZMttx6kjMZrOi/MMPP3TLDzV69eqF+fPnIz4+XqHJcL7tMmfOHFXx7I3CqWXy8fGpMh8YpjrCExHmpmbo0KEYOnSoosz55OCdd97BsGHD4Ofnh6ZNm8q/zMPCwjB06FAsX74c9erVwwMPPKDadlRUFO688068/vrrCAwMxLJly/D3338rXuF1Rnrt0qULxo4di6ZNm6KwsBCnT5/GDz/8gA8++EBVpOqkWbNmaNasWQWPgiAyMhLPP/88zp49iyZNmiA+Ph6FhYV4/vnn3XoSQv1q1KgRXnnlFUiShIiICPz3v/9VDWvvLr1790a3bt3w+++/Y+TIkWjZsiX++OMPfPPNN0hJScHIkSPL3XZl0Lhx4yrdP8NUV3giwjDX0LNnT0yZMgWrV6/GRx99BLvdjq1bt6Jnz55ynYEDB2L58uV4/vnnNd/S6d+/P1q0aIHXXnsNZ8+eRaNGjfDvf/8bAwcOlOvExcVh7969ePPNN7FgwQKcO3cOwcHBaNCgAe69994bHkQrNjYW77//PiZNmoRDhw4hIiICr776KmbMmKGrHT8/P/z3v//FuHHj8Nxzz8HX1xd33303/ve//8nB5vRiNBqxfv16TJgwAZ988gmKiorQtWtXbN68Gc2aNZNfA2YYpnphkCQ3oh8xDKNg4sSJWL58OVJSUlwiiAKOpYnRo0fjvffeqwLvGIZhqg/8RIRhdLB7924cO3YMy5Ytw3PPPac6CWEYhmHchyciDKODzp07IyAgAP369XPJ9MswDMPoh5dmGIZhGIapMjjpHcMwDMMwVQZPRBiGYRiGqTJ4IsIwDMMwTJXBYtVrsNvtuHDhAoKDg8vMMsowDMN4L5IkIScnB/Hx8W5n5dZDYWGhHNlXDyaTiVMBEHgicg0XLlxAQkJCVbvBMAzDVBIpKSnXjVBcHgoLC2EJDQSK7Lq3jY2NRXJyMk9GSuGJyDU4w3ifOH0MwSHu5edgGIZhvI+c7Bw0rt/E7VxLeigqKnJMQu6IBXx1PG0psSPtlzQUFRXxRKQUnohcg3M5JjgkGCEhIVXsDcMwDFNRPLrMbjLqm4iwMtMFnogwDMMwTHkxGBwfPfUZBTwRYRiGYZiKwHOLCsETEYZhGIYpL/xEpMLwRIRhGIZhyosR+nQfrBFxgSciDMMwDFNe+IlIheGJCMMwDMOUFwP0aUR4HuICT0QYhmEYprwYDY6PnvqMgmqzWlVSUoLXXnsNDRo0gMViQcOGDTFz5kzY7SKqnSRJmD59OuLj42GxWNCzZ08cPny4Cr1mGIZhajSGcnwYBdVmIvLWW2/hgw8+wHvvvYcjR45g/vz5WLBgAZYuXSrXmT9/PhYtWoT33nsPe/bsQWxsLO655x7k5ORUoecMwzBMjcWpEdHzYRRUm4nIrl278OCDD6Jv376oX78+HnnkEfTu3Rt79+4F4HgasmTJEkydOhUDBgxAy5YtsXr1auTn52PNmjVV7D3DMAzDMGpUm4lIt27d8NNPP+HYsWMAgAMHDmDHjh24//77AQDJyclIS0tD79695W3MZjN69OiBnTt3arZrtVqRnZ2t+DAMwzCMW/DSTIWpNmLVl19+GVlZWWjWrBl8fHxgs9kwe/ZsPPHEEwCAtLQ0AEBMTIxiu5iYGJw5c0az3blz52LGjBmec5xhGIapubBYtcJUmyciX3zxBf71r39hzZo1+OOPP7B69Wq8/fbbWL16taLetcmNJEm6bsKjKVOmICsrS/6kpKR4xH+GYRimBsJPRCpMtXki8tJLL+GVV17B448/DgBo1aoVzpw5g7lz52LYsGGIjY0F4HgyEhcXJ2+Xnp7u8pSEYjabYTabPes8wzAMUzPhgGYVpto8EcnPz4fRqHTXx8dHfn23QYMGiI2NxebNm+Xvi4qKsH37dnTp0uWG+CiRf4w+pHL+q0h7VdE3hmFqGM6lGT0fRkG1eSLywAMPYPbs2ahbty5atGiBffv2YdGiRXj66acBOJZkxo8fjzlz5iAxMRGJiYmYM2cOAgICMGjQoCr2nmEYhqmRcGTVClNtJiJLly7F66+/jlGjRiE9PR3x8fF47rnn8MYbb8h1Jk+ejIKCAowaNQqZmZno1KkTNm3ahODg4Cr0nGEYhqmxGKBzacZjnlRbDJIk8fNiQnZ2NkJDQ3HxSipCQkJ0bUsfvRt4tOmivMsWWsfZnfZu1DniccEwVUN2djZiIuKQlZWl+37uTtuhoaHAYw0Bk4/7GxbZgP875RGfqivV5olIdaA6/JLR+gXtju9q20qSnfyk1YakYim3NRrclytpTTG09m7QaNudyYqYp4u6RoO46eidQPGkxHvgc8FUCvz6boXhiQjDMAzDlBfWiFQYnogwDMMwTHnh13crDE9EGIZhGKa8GKEvEEa1CZpx4+CJiIc4kf23bEf515JtX4OfbNOIrwaN0RngG1hhX2xSiWxTfYMWxfYi2fYzmmTbqenQ0nkoyiHK7QodCa1F+k+KqaZDqaW+vh7DaBDD2U76bNPcv1Y74hg5tQNUw1JoK9RoT/THSM4t7YOWFob22aBo5/p3LWVdfdqVytBFaO2H9vl6kY2vt607uiE6tvTuR7HPShZLVwdYI1NJ8BORCsMTEYZhGIYpL6wRqTA8EWEYhmGY8sJPRCoMT0QYhmEYprywRqTC8ESkEjmff1a2oy2xsk3XX612oS8othfLdpHNqlo/g7Qf6BcEQKnb8CG6CKonyS6+Ktt+GroUrVh2tLSE+KjWhl2hESHxQkjbdqIXoX3zIZoGqm/wIVeqQZFfyNEm1bCU2EvIt0XEpr6I/WvpRWh9s9HfxS/FcQNtQ0D/zqH7UTuGwLX6BqqLEeXOc02PoZEcH7OP8NUm2Ygv6joTuh93tDtqOg072Y/W8aR1tOK4+GjolZxjp0QSx422R3VWVP8kafRBOc6MqnXK/htVo0Yl/XFblkajIvF/3Nmns33WijBVAU9EGIZhGKa88NJMheGJCMMwDMOUFxarVhieiDAMwzBMeeEQ7xWGJyIMwzAMU154aabC8ESknPyWvgMAEGwS2RNjLXGyfangomxnF2XJNhUU+hmF6K6ICDCtRLhKCTWFAlAKFC0+FrEfHyFiLbaJ9vJt+bLtS8StvkZh0zapuE9LdKrWHhUCGhWiSPWAXoW2AtV9moxm2VYL+kbFosogXlSUaiPl6iJKuq1R43mpUzBplITfSpGlhiiUCEppf6hAtMguzjMVtPqSceGECo7dCVym7DMRxUrqAdCMGkHknMdLIabV2Cc95kpn1M+/XSNYnbN9hcgU6vunYm13Auq5I/oUPtKxpy6E1RJ86w7iphJczK2kjDUkKJkQoKtfT1Sg7k/ueV4BL81UGJ6IMAzDMEy5MeiaeEo8E3GBJyIMwzAMU04MBn0TERgMbjzrurngiQjDMAzDlBO9EhEY3Ml4dXPBExEdnMw+Ktt1g+oDUAZUupB3TrYzrZmynV2co9qen4oWAFDqGOh6qFM7QteFqc6CaksUugCNdVe6fx+iF6G6D6oLceoUikmgKbqO76tYrxc+hpsjSB2hY8mz58q2jQQmM0CUh5sjZdtqzy/120Tqiv0oA2CpBx1T6lioBkDYdD3a2Q9lEC+q8xG+0EBoPgplvLpNdTnKPpHapf5qBp/T6KdWEj1FHYVNjkUZd1U1DUnpN6p1jEb124yynz4u5QpVBqlM9TdKT2mALlHHBjG2qL9Uo6L0xfET1Z+UFeTtWo8liY4t2nbZYTXLm4CvIlS1vsR5zSn1V65j4lqOZh2WbX9yPdULalSZ7l0Xo84nIpLBoBES8eaFJyIMwzAMU07KszTDKOGJCMMwDMOUE56IVJxqlX7n/PnzGDJkCCIjIxEQEIC2bdsiKSlJ/l6SJEyfPh3x8fGwWCzo2bMnDh8+fJ0WGYZhGKb8OCciej6MkmrzRCQzMxNdu3ZFr169sGHDBkRHR+PkyZMICwuT68yfPx+LFi3Cp59+iiZNmmDWrFm45557cPToUQQHB1fYBxrro9DqSF6XS/QfNIldm6hbZfvY1SOybdPQGuQVi1gfVBdCB21BSYGLH2YfEaNCa+2a6iWKiRaDrsfaSdyREoN6kjabocS1PfK9xTdAtgOITRPTFZQI7QzV1xTaRDJAul5dmH/epX1/H5JQjrRh8RH7BFmF1UquR48/PXe03LmtMrYHTfon6lKNimTXiGmiofVQnAuqESjdlh5zoxv6DzoSjIrYMeq6JD0otRvkWNjVkwgqKTuOSVnYteKVaMSLySPXKE0MKUFdL2KzO8pzitPlMjq2qRaIHk8fRUwd6q9o21cj0Z8aWjonijIZY+UnxrtRBPgGlWu7pqEtKtkT/ZRHrMooqTYTkbfeegsJCQlYtWqVXFa/fn3ZliQJS5YswdSpUzFgwAAAwOrVqxETE4M1a9bgueeeU23XarXCahUiz+zsbM90gGEYhqlx8NJMxak2SzPfffcdOnTogEcffRTR0dFo164dPvroI/n75ORkpKWloXfv3nKZ2WxGjx49sHPnTs12586di9DQUPmTkJDg0X4wDMMwNQdemqk41WYicurUKSxfvhyJiYnYuHEjRo4cibFjx+Kzzz4DAKSlpQEAYmJiFNvFxMTI36kxZcoUZGVlyZ+UlBTPdYJhGIapURjK8Y9RUm2WZux2Ozp06IA5c+YAANq1a4fDhw9j+fLlGDp0qFzv2tmmJEnXnYGazWaYzWbN7yk0vsT5XId2IdgktCdXrSKnzB+X9sp2sEmsf6bnX5JtE4kdQVHErCBaA2ecELp2rKURoXWojiKQrJH7aOSG8Sdr4AF+or5To0Kh8S9o7pq8kjzZLrYJXQh9LEnjmFB/Q0pz6gDK2ABOHQXdp1a+Gi2brqJr13Fda6c3D634L7QO1YUE+urTJ10tyiBtGl38o8cqyE/kOrpRaPW/kOZ0oTl1SHybyvD3ZPYx2W4Q3Fi2lTFi1HVB5/LOyja9LqhGyHn9qcXwAYACMubMJI+QIl6OkeYGEn5ZEEjKxXhRxixR+gEox6TiOrer60IUuYMU5e5rVKobKbnJsu08R7nZuVrVGS+i2jwRiYuLQ/PmzRVlt9xyC86eddxYYmNjAcDl6Ud6errLUxKGYRiGqQx4aabiVJuJSNeuXXH06FFF2bFjx1CvXj0AQIMGDRAbG4vNmzfL3xcVFWH79u3o0qXLDfWVYRiGuTlwvjWj5+MuJSUleO2119CgQQNYLBY0bNgQM2fOhN1es2KzVpulmRdffBFdunTBnDlz8Nhjj+H333/HihUrsGLFCgCOWen48eMxZ84cJCYmIjExEXPmzEFAQAAGDRpUxd4zDMMwNRGjoey0CBRJx0TkrbfewgcffIDVq1ejRYsW2Lt3L5566imEhoZi3Lhx5fDWO6k2E5GOHTti3bp1mDJlCmbOnIkGDRpgyZIlGDx4sFxn8uTJKCgowKhRo5CZmYlOnTph06ZNlRJDhGEYhmGuxZOv7+7atQsPPvgg+vbtC8ARsuLzzz/H3r17y9iyelFtJiIA0K9fP/Tr10/ze4PBgOnTp2P69OkV3tf/zm1AQHAA7k14QC47nPGXbDcKbQgASMkVie4C/UTQo8uFl2X7ivWKbBeRwGFZdhGzxM9HiNv8iQDVRERvaiJKKmijQcHMPkLQaSGCT2UALiHWMxmo6JTskwRjEiJF8T0VaNK6NIgZvfCoiI4myfP3E8LAEiIczCHHy6+0T1T8GuEfRXajfoHTxH3UR2VAM9dEd4AIHmckq5g0WJuNiDKpcDbMJISLyTnHZbtBcKKqj1o4RarUJy2xaFVDxZ2eJDH0FtnedfEX2W4UIoSrNDEjHU/BRCybTwTVVAzsDFJIv6fjmYqFrUZxzVGs5Fqk5y7MFC7b8YEJqvWd4zijUAjbqRC8kIjG/Xxo0kVx36BjW1M4SwIA+mkI572RQ1f+kG1F8ENyDAP9HC8I2G5AernyTkSujVml9uJEt27d8MEHH+DYsWNo0qQJDhw4gB07dmDJkiUVddurcGsi4gwQpocPPvgA0dHRurdjGIZhmGqDTt2Hc2nm2phV06ZNc/kj+uWXX0ZWVhaaNWsGHx8f2Gw2zJ49G0888UQFnfYu3JqIfPPNN3jsscdgsbj3F8+aNWuQm5vLExGGYRimRqP3iYizbkpKCkJCxBM6tTASX3zxBf71r39hzZo1aNGiBfbv34/x48cjPj4ew4YNq7jzXoLbSzPvvvuu2xOLL7/8stwOMQzDMEx1obwTkZCQEMVERI2XXnoJr7zyCh5//HEAQKtWrXDmzBnMnTv35puIbN26FREREWVXLGXDhg2oXbt2uZ3yBrKKslFkLcbaE/+Sy+g6bW6xI1AODWimDGhFEsPZ1JPI0WRYRrItDa5USAIpBZZqEwKInoIGQgoj2pIoop2gQcFsGpoSqnsIMYWR9tWSxAm/TWRdmvafrtFfJRoZul4d4icCl1HomrqPSmI0mvRPEYiMHE+rvVC1nCYvkxTJAElAK7Ku7NQLUD1LkV2cE9p/qr9JzRfaISup7w6KZGcG53/i2Porkvvd3HSOuUO2vzv9tWw3CWsi20F+IqAgPbe1A+vJ9hWr0GM4oec8u1gEK6QJKqkEoUQjiSPV9JzOEUG3zuSelu16QfVlO9K/FgAglFyHZ0ldRRLFIuGAXUMPQccTvf7ofaFxSDPVbb2d0zlnZJtq9DIKHfec/Jx8l20qGwN0TkR0RFbNz8+H0aiMsuHj43Nzvr7bo0cPXY1269atXM4wDMMwTHWivE9E3OGBBx7A7NmzUbduXbRo0QL79u3DokWL8PTTT5fHVa+lXG/N2O12nDhxAunp6S4zs+7du1eKYwzDMAzj7egNUqan7tKlS/H6669j1KhRSE9PR3x8PJ577jm88cYb+h31YnRPRHbv3o1BgwbhzJkzikfegGOmZ7PZNLZkGIZhmJqFJ5+IBAcHY8mSJTXudd1r0T0RGTlyJDp06IDvv/8ecXFxNTZuvq/RD35GP+SS9eBoixAW+fs61ldp4rrsIvFeuC/RLvj6abzfbxe2icQDCCG6E6MiMZtjrZCuOVt8hV4kxhIn2zSOBT1HNB4GnUZKZH3ZAPVkeE5NhfZ2JDEcRH/8/ElyO1Kf6iuMKlqQaxHxIIRGxNcg2rahhNQVNk0MSOvTtdf04ouiHXKOaHwHJ7SfPkQ3RP2m8SKkEvXEZFpEmGvpqs84uFQgkgXml+yX7ZgAIbKnY+GySehCEkOayrZTC0bPc5CfuCavWMV+soquynYm0UJFEo1WllXUoToSeiGdyjkl27klDv2ZU58EKOMPacWRodop+kci1ZnVsgi/rKR/x7OOAFDGaPFWWkXcqmq/vW+hbEdZwgAABfmuiTorG09ORG4WdE9Ejh8/ji+//BKNGzcuuzLDMAzD1GCMBoMik3KZ8ETEBd1J7zp16oQTJ054wheGYRiGqVZ4MundzYJbT0QOHjwo2y+88AImTpyItLQ0tGrVCn5+yseErVu3rlwPGYZhGMZL4aWZiuPWRKRt27YwGAyKdUf6+pDzu5okVpUkO+ySHY1DG8hlgX6Bsu18Hz+/WOSjiPAXuoxLhWIdubhExKigbVB9iQ/RF4SYhBaFah2c9a+SdWm6jh3gK9q+bE2X7doBdUW/VPLVXItShCxsQ6mOQ+tCUuZxEX7T1kxGEbuAxmXRgvbPecwDDVRDQx/qifV/GmuDxvegGhW67h6giC8iPM4rjRdTQPJ70BgxJpIjKJjoCGieEqtNXxwRpnw8c8sI1fJfUrfIdmGJ0PxYSG6cvzIPybZTD1LLEiOX0Xg1Uf5CwxNIYpRQjUh2kYg7QnNN5ZNxVEx1TET34YxRVEzGp0IrZtSInUPGWQkZ8/Teck+d+2T776t/ynZ10IaUxaR2E2V75u+zAQDWPL72qgNuTUSSk5PLrsQwDMMwNxmG0n966jNK3JqI1KsnIhD+/PPP6NKlC3x9lZuWlJRg586diroMwzAMU5PhpZmKo1us2qtXL1y5csWlPCsrC7169aoUpxiGYRimOuCciOj5MEp0v77r1IJcS0ZGBgIDA1W2YBiGYZiaiScjq94suD0RGTBgAADH7G/48OGKlMU2mw0HDx5Ely5dKt/DKsLPaILJx4SrRHRGhZ5OkeSRK8fINkJwFmYWglMtcVkWCYBGk97dV7e/bG+78D/ZLjQ4hFd/XxGvT7eMFMmqDl3ZL9sR5kjRGZIjTWt9Mock9QryoxkhRf2i0uBeNCgTTbpHhaM0KBoVyymEo5JBtb7WXwxO36lwUBMDNcUPJSQB4RXrZVXfrxChsTN5GfXJWiIEcBmkbpeGIifTxpTvZdvXSBMHimPXOqJ92f1gKgw9d2ZFYkghOg02iQSMzvHlo0h0KESudDwpBefiPNPEeHRs0wR0dhLQMN0qgpf5l/pIrxWDSmBBAMgtVhdRW0uo0FX9emoW1lK1vDrx7emvZDslJ1W2m0Q4JAIFJg5oVh1weyISGuq4UCVJQnBwMCwWoTg3mUy4/fbbMWKEumqdYRiGYWoiPBGpOG5PRFatWgVJkiBJEpYuXYrg4OCyN2IYhmGYmoxe3QdPRFzQJVaVJAlr1qxBWlqap/xxm7lz58JgMGD8+PFymSRJmD59OuLj42GxWNCzZ08cPny46pxkGIZhajQcWbXi6BKrGo1GJCYmIiMjA4mJiZ7yqUz27NmDFStWuERxnT9/PhYtWoRPP/0UTZo0waxZs3DPPffg6NGjup/glEjFKLb7KhKgdYsVbwV9cXKNyzZHr5yWbWfSJQBIDK+vuo/4wFjZziWB0b5O/j/ZjrGIhF3OAGDto9vIZXEB8bJttQvtwlVrpmyfzz8r9hmQoOpLoK8IzETXoItJIi1nsq9goiGhyfqoMIP+hSBJPqrlFC3tiloANq26xXah/6DJ+PJI8rDLhZeILTQiNDAZXce/anVoZwJIcsE+CX1V90+h2qKBjQaVWZ/xHO2iOsj2pQKR3DCQBKCjI8qpF6JjyEIC5F0qFG0UkqSIV0lyO6oFKigRepH8YlGfJqPLLBR6sUA/x1izkoBmxTbRHr0nZVuFBuKtrjNxs0GPRaR/6HVqeg5emqk4ul/fnT9/Pl566SX8+eefZVf2ALm5uRg8eDA++ugjhIeTDKeShCVLlmDq1KkYMGAAWrZsidWrVyM/Px9r1rhOGhiGYRimojiecuh5fbeqPfY+dE9EhgwZgt9//x1t2rSBxWJBRESE4uNpRo8ejb59++Luu+9WlCcnJyMtLQ29e/eWy8xmM3r06IGdO3dqtme1WpGdna34MAzDMIw7cByRiqM7jsiSJUs84IZ7rF27Fn/88Qf27Nnj8p1TtxITE6Moj4mJwZkzZzTbnDt3LmbMmFG5jjIMwzA3BQbojCPiMU+qL7onIsOGDfOEH2WSkpKCcePGYdOmTfD399esd+1sUysAm5MpU6ZgwoQJ8s/Z2dlISEjA+hN74RdgQrBJaCA2ntor2/6lIe6DSTyVpPMXZLtDHbHPW01iLTo567Rs96v3kGz/lr5DtmkyOKrdKLQVlH4v9AyZRSLKbS1/MQnzJwm9zuUKjYgviY1Ak+RpxQOhsQycMRho2zQZl1ZCPXf+AqC6DFqf6kGc68FWm1gXp7EbSjTW5ZNzTqq2p9AAkKR3RvKg8IrRobWhCcooX536QrYvFwhdDl3zZ6oWGruniGieqI7DaBDXlDPRJB0ffr7iPhBEtCU0AaU/iVFC296f9Zds5xZRvYjwxc+HxCApcozvYhJn5EqBGPMf3jUfjIPvT/wu23VChEbEGTvlRiS9Y41IxdE9EQEcAcy++eYbHDlyBAaDAc2bN0f//v3h4+NGoKlykpSUhPT0dLRvL4JA2Ww2/Pzzz3jvvfdw9OhRAI4nI3FxcXKd9PR0l6ckFLPZrAjOxjAMwzDuwhORiqN7InLixAncf//9OH/+PJo2bQpJknDs2DEkJCTg+++/R6NGjTzhJ+666y4cOnRIUfbUU0+hWbNmePnll9GwYUPExsZi8+bNaNeuHQCgqKgI27dvx1tvveURnxiGYZibG56IVBzdE5GxY8eiUaNG2L17tyxOzcjIwJAhQzB27Fh8//33ZbRQPoKDg9GypTIkcWBgICIjI+Xy8ePHY86cOUhMTERiYiLmzJmDgIAADBrEr08yDMMwlQ/nmqk4uici27dvV0xCACAyMhLz5s1D165dK9U5vUyePBkFBQUYNWoUMjMz0alTJ2zatKlcUWBfve1pBIUEoZZFLOtQvUSm1aHNOJEl8r7Muv2+MtvtEade3im6m2r5hrPfyXbtoNoAgMSQpnIZVWXQ3ClUZ9Iqop1qOdWFlJAYHMWKdXTRZ6empIjEK6Fr7lRzohf6VwLVi9B1erXvz+aelm2qC7lMcsCkF4jYITY7yfVB+tYotIFs3xF3p2wfynA8hbuYL9o7lrlUti/kimNeTNrW/Toa4zFo7iSqKbKSGCD5JSKOT4ifQ2tAtVK5JBZNIdEoBRBtURG5ni6SeCV0n1cLxbbZVnEdBRItWn5xscv3Wfmez5lSHfnknrdle8bvs2R7ePMnAAC52blYjEUe9YGfiFQc3RMRs9mMnJwcl/Lc3FyYTCaVLTzHtm3bFD8bDAZMnz4d06dPv6F+MAzDMAxTPnT/4davXz/84x//wG+//Sbnntm9ezdGjhyJ/v37l90AwzAMw9QUOMZ7hdH9ROTdd9/FsGHD0LlzZ/j5OV55KykpQf/+/fHOO+9UuoMMwzAM461429LMd999V3ala7jnnntgsVjKrughdE9EwsLC8O233+L48eP4+++/IUkSmjdvjsaNG3vCP4ZhGIbxWrxNrPrQQw/pqm8wGHD8+HE0bNjQMw65QbniiACQ30ypqTQISURISIiijAbsCjNFAgDiA+rIZdnFV2XbbBSxSWhArYSgerJNg2vRIGVbzm+S7VaRIsGdM5CSyUc9oJu/RnmJJISo/gYx66UzcxMJxkSDlJUQMaqT7GKR0O1gxgHZrh1YW7ZvCRNvOBmI6E8ZUEw9ABqV4NIaTpEqFchmk+RyGUSgSo+nD9l/PhEo5hULAWBytgj6dgcRFD/ayCF6m7zjdbkshaQByCkSvqx/aLlGfxhvoREReueVCK0bFaPmlQpXaeAyiiKIHgl0R4XrzmSJAHBLhPgjjV5zGflXZTstL1e2nWMqjARu/L++76r6cjPy+fF/ynZ0QC3ZHttmpGyHmR3352y75wMLetsTEcARTys6OrrsikC5XuaobHRPRGw2Gz799FP89NNPSE9Ph92ufKthy5YtleYcwzAMw3gz3jYRGTZsmK5lliFDhrj80X2j0T0RGTduHD799FP07dsXLVu25FeRGIZhmJsWb5uIrFq1Slf95cur/kmu7onI2rVr8X//93+4//77PeEPwzAMw1QbvE0jUh3RPRExmUw3rTDVoJI30UwSwFGb0iyspWo5heolepCAWv4kYNL1/ACACLNYL6VByfJLckm5CJLkZxRxX6iOgwY9UwZ1yir9X6yn1/KPku0fz/wk23vT/5DtRxo9ItsWH9ofdb1IAQkuRYNHOX25kH9eLssqEmvAPsTvQqIF8SN6EaPGXeBKYZZquZP53d687vdM9SPQV6yNXykUgemc10IqGWf0mgs2icfYdNzuThV6qUh/kYBtT+pR2b41VujqrhSIMdc0Mla2L+c7yoe3eMzdrtR4aPC5AQ0fId+o69yc50vrXlmZeNsTEXc4efIkRowY4TVSCt1xRCZOnIh33nlHkdGSYRiGYW5KSici7n684ZFIbm4utm/fXtVuyOh+IrJjxw5s3boVGzZsQIsWLeRYIk6+/vrrSnOOYRiGYbwZb3wi8u6713/L6vz589f9/kZTrjgiDz/8sCd8YRiGYZhqhTdORMaPH4+4uDjNtCtFRa5hGaoS3RMRdxW5v/76Kzp06ACz2Vx25RoCXS/WuzZpUKx1qscDUYMmbqPQOBrBfmK9Wjt2h5Zfgpzi7NL2xBr57rTfZDurUGhRaHK513bOk+3YoDDZTgwXMVWKbOLC+O/xvbJ9/GyabA/sdBsAoE6wWE+320X/c0lcED8jTW4m4qhkkHV5GkfkTBbRiIjQLcxNgp0kVzSULjtnEN3Iqawzst06qoVs0+ssyhIm2wF+4hp+p8ecMvdPk+4N/mEyACAtX4z9pqEtXLa5mVDTf3gL3ihWrVevHt566y089pi6zmj//v1o37695x1xE48lCb3vvvu87vEPwzAMw1QmBujTiNyIiVT79u2RlJSk7bPB4FU6z3JHVi0Lb+okwzAMw3gCb1yamTlzJvLz8zW/b968OZKTkz3uh7t4bCLCMAzDMDUdb5yING/e/Lrf+/n5oV69etetcyPhiUglUlmP3GguC4pT3+HMuQIo88Jo6T+MGu1RfYmk0aaB2Pkljhl2pvWcXJaUdky2/X3FcArzFzEamhAtiI3s50iGyMGz8a8jYtvQINkOjxDtfP/XnwCAuHCRFyaEaJB8jGKl8ejFS7IdERwobJK/4xipExcudDTMzUe9oEayfTrHkTMm0FeMm+9P7pPtC7npsl0/NF62C0tEjJ7xbcbp2v+DX4n6IQGOMTpnx1q5rMejd+lqr6bhbboQijdqRNSYN28eRo4cibCwsKpx4Dp4TCPCMAzDMIx3MGfOHFy5cqWq3VDFY09EvCF6HMMwDMN4Em9cmlHDm3WbLFZlGIZhmPJigM61GY95Um3RPREpKCiAJEkICHDkDDlz5gzWrVuH5s2bo3fv3nK9nJwcrSYYhmEYpkZQXZ6I/PXXX4iPjy+7YhWgeyLy4IMPYsCAARg5ciSuXr2KTp06wc/PD5cvX8aiRYvw/PPPe8JPzJ07F19//TX+/vtvWCwWdOnSBW+99RaaNm0q15EkCTNmzMCKFSuQmZmJTp064f3330eLFjUjGJBTsGWHEJnayYMnOsDdEXe5I3SlNAl1KLHn7H1LLosKEMLSKwUiKJMvaZsGfbpakCHbf6aLgE3NaosgZcU2EqTNIhIJ1g5xBFI7SdY5U7JF0rv6RISVny+SZNWLDJft5XcK3ykPfjdatZypOL+mbZPtrrE9q8wPd6kf3Lj0f1Hma1gj239dFuP2Yp4IhHee/PF155qnZXvLoJWy/cj6F2Sbirvz8kRwvQCLQ4B9MU2M89s+fFy2X75HRLa+mC+Cro1qyWO4KjAaHB899auChISEqtmxG+gWq/7xxx+44447AABffvklYmJicObMGXz22WdlxrevCNu3b8fo0aOxe/dubN68GSUlJejduzfy8sQvv/nz52PRokV47733sGfPHsTGxuKee+7hpzMMwzCMR9AVzEzn0xPAkRdmyJAhiIyMREBAANq2bXvdYGXh4eGIiIhw6+Mt6H4ikp+fj+Bgx58KmzZtwoABA2A0GnH77bfjzJkzZWxdfn788UfFz6tWrUJ0dDSSkpLQvXt3SJKEJUuWYOrUqRgwYAAAYPXq1YiJicGaNWvw3HPPqbZrtVphtYrX7rLJX9gMwzAMcz2MBgOMOiYXeupmZmaia9eu6NWrFzZs2IDo6GicPHnyuq/gLlmyRLYzMjIwa9Ys9OnTB507dwYA7Nq1Cxs3bsTrr7/uth+eRvdEpHHjxvjmm2/w8MMPY+PGjXjxxRcBAOnp6QgJCSlj68ojqzQ3iHNWl5ycjLS0NIVOxWw2o0ePHti5c6fmRGTu3LmYMWOG5x1mGIZhahye1Ii89dZbSEhIUOR4q1+//nW3GTZsmGz/v//3/zBz5kyMGTNGLhs7dizee+89/O9//5N/f1c1uicib7zxBgYNGoQXX3wRd955pzzL2rRpE9q1a1fpDqohSRImTJiAbt26oWXLlgCAtDTHum1MTIyirnPpSIspU6ZgwoQJ8s/Z2dlVvpZWll7DQFbUiu0iWRxNDKW3bRokTSugmpNXO7ws24v3L5HtY/kiQNh5EvQpMayhbF8kdT6//x3V9p/930uyXVhSItosfVoVRoKSCa+Bfckpsh0ZISbFH9+9QHU/lB27D4kf+pdZndGBr7H6x038931LZHvYRnG/sJO3AxuFCy1SVr7QfLRf9qhs22xixD7R9XbZ/te9i9325eVf35DtIJP7CTKrG/oTdFaN+MIIfRoHZ91rn76bzWaXJLHfffcd+vTpg0cffRTbt29H7dq1MWrUKIwYMcKtfW3cuBFvveWqi+vTpw9eeeUVHV57Ft0akUceeQRnz57F3r17sXHjRrn8rrvuwuLF7l9MFWHMmDE4ePAgPv/8c5fvrp1tSpJ03Rmo2WxGSEiI4sMwDMMw7mAoXZpx9+P8fZSQkIDQ0FD5M3fuXJe2T506heXLlyMxMREbN27EyJEjMXbsWHz22Wdu+RYZGYl169a5lH/zzTeIjIysWMcrkXL9qRIbG4vc3Fxs3rwZ3bt3h8ViQceOHW/Ia0kvvPACvvvuO/z888+oU6eOwifA8WQkLi5OLk9PT3d5SsIwDMMwlUF5l2ZSUlIUf/he+zQEAOx2Ozp06IA5c+YAANq1a4fDhw9j+fLlGDp0aJn7mjFjBp555hls27ZNXr3YvXs3fvzxR3z88cdu++xpdD8RycjIwF133YUmTZrg/vvvR2pqKgDg2WefxcSJEyvdQSeSJGHMmDH4+uuvsWXLFjRo0EDxfYMGDRAbG4vNmzfLZUVFRdi+fTu6dOniMb8YhmGYmxc9T0OosPXaJ/FqE5G4uDiXBHa33HILzp4961JXjeHDh2Pnzp0ICwvD119/ja+++gqhoaH49ddfMXz48Ar3vbLQ/UTkxRdfhJ+fH86ePYtbbrlFLh84cCBefPFFLFy4sFIddDJ69GisWbMG3377LYKDg2VNSGhoKCwWCwwGA8aPH485c+YgMTERiYmJmDNnDgICAjBo0CDd+yu0FcBk81VoJwptBaSGYzCFmsJJCYnjQWbINKGcQouhsXZO618tyrxmj9rbUahehLZXRDQl/j4iRkdZuhAtMgpFHIW84mLZLrGLWCB7Lx6U7Rfbji+zzRNpQkdiJInsfHwctt0u+hMYINbIU9NEjBJbCYlF4gYcCdhzdIruVtUuVCqr+yxSLX/iB5G4rll0Ldn+LUuEGPAhGpGl/xVL2/P+7zvZzpz3y3X3/1bXme47W43Zf3mPbEcHiDhDFnLfovdTP6NJtp26pPySXE+6CMCzYtWuXbvi6NGjirJjx47pypzbqVMn/Pvf/3a7flWgeyKyadMmbNy4UbEsAgCJiYkefX13+fLlAICePXsqyletWiXP7CZPnoyCggKMGjVKDmi2adMm+XVjhmEYhqlMyitWdYcXX3wRXbp0wZw5c/DYY4/h999/x4oVK7BixQqdXno3uicieXl5cnh3yuXLl1UfLVUW7vzFajAYMH36dEyfPt1jfjAMwzCME0/GEenYsSPWrVuHKVOmYObMmWjQoAGWLFmCwYMHl8dVr0X3RKR79+747LPP8OabbwJw/PK32+1YsGABevXqVekOMgzDMIy34ulcM/369UO/fv30ulWt0D0RWbBgAXr27Im9e/eiqKgIkydPxuHDh3HlyhX8+uuvnvCxSjiVfRxBUiBSckVsinO5IseE8x33hCDxhk6UJUq2aweKWCR+JNdKXrFYs/T3FWudVF9yuVBoJNILLsr2xXxHbI474rvLZXGW2rJdYMuXbaNdPACkOWWoLqQymHX7NNnutELkw8gtFNFqf3xE32PEbUM+VS2PfNXR7/p1xFtQebkkR4e/eCKXfvlqmfuh8R3io8WrbDGviwn1xTe3ltkOwwDacXHQQ5hdVoq/ZFu1aizb585eBKPkatFV2T6WdUK26waJeyvVvBnJPbTY7tCr5eeIe6Kn8OQTkZsF3W/NNG/eHAcPHkTHjh1xzz33IC8vDwMGDMC+ffvQqFEjT/jIMAzDMEwNpdxxRGbOvDmU2wzDMAyjhQHQFdP1Rj0PSU1NxU8//YSIiAjcfffdMJnEW0V5eXlYuHAh3njjjeu0cOPQ/UQEAH755RcMGTIEXbp0wfnz5wEA//znP7Fjx45KdY5hGIZhvJnyxhHxJHv27EHz5s0xevRoPPLII2jZsiUOHz4sf5+bm+tVOdZ0T0S++uor9OnTBxaLBX/88YecuTYnJ0eO/sYwDMMwNwNG6JyI3IBnIq+++ioGDBiAzMxMXLx4Effccw969OiBffv2eXzf5UH30sysWbPwwQcfYOjQoVi7dq1c3qVLlxq1XLPyz69hCjQjOiBILvv9wjnZds5q28cJYWmQSbzWLEm7ZDvYFCjbOUUiuFFBiVW1zsW8K7Jt8hGnqLDEIcC6JbyZXBZGAqqZjSK4l00SAb2M5QxWphd/ixCLmvyE3//4abJsr7hrfrnbzy9wHK/jyeflsnq1hXC1hAQxqxUZWmZ7lzJEMDaLv3hsWUCEtpanHYkcC1Z65wXMVC92Pi0CS9299hnZdgbrA4CWix8CAPiTMdmxqYgkHUnCJ5zNEmP4rvqtZPu2mA6y/dK2ZbKdfOqCbB+e8K1u/28kveJFJvVnNk+S7UDTn7LdKDwWalhLHCLWwtxCD3kn8PRbM+UhKSkJ77//PoxGI4KDg/H++++jXr16uOuuu7Bx40bUrVvX4z7oQfdE5OjRo+jevbtLeUhICK5evVoZPjEMwzBMtcCgc7nlRkxEAKCwUDkJmzx5MoxGI3r37o2VK1feEB/cRfdEJC4uDidOnED9+vUV5Tt27EDDhg3VN2IYhmGYGog3ilVbtmyJnTt3onXr1orySZMmQZIkPPHEEzfAC/fRrRF57rnnMG7cOPz2228wGAy4cOEC/v3vf2PSpEkYNWqUJ3xkGIZhGK/EG8WqQ4cO1Yzr9dJLL2HmzJletTyj+4nI5MmTkZWVhV69eqGwsBDdu3eH2WzGpEmTMGbMGE/4WCVczMuDn1SMlOxsuez8OaEHCQt35K9JyRZrtKFm8SgsyCT0EocviXXZnCIRgKc2yYFTbCsRNknq9o9WIkjYu/s+BQAcu3pcLmsU0kS2aXAfmgDKTvQi5U1u5w6+vqLt+mFhsv3rYeEv7ip/+7d3cGShzLwizklRkThuf7/03zLbsAxrK37IEloQQ0OhKZHS8sAwnuZ/j38i2x2WPybbxcWOMU3TWhy7KO49FqLFCiavZB66dEq2rTZxL2gYLnRkBXFizPf813DZdmpUfnrCux7ZO0n6O1m26XH51VfcW0LDxP3UZnPc82wFIhGnp/DGgGbPPvssnn32Wc3vJ0+ejMmTJ2t+f6PR9UTEZrNh+/btmDhxIi5fvozff/8du3fvxqVLl+SQ7wzDMAxzs2AwCMGqe5+q8XPevHleq+PUNRHx8fFBnz59kJWVhYCAAHTo0AG33XYbgoKCyt6YYRiGYWoY3rg0o8acOXNw5cqVsitWAbo1Iq1atcKpU6fKrsgwDMMwNRxDOT5VgTsZ7KsK3RqR2bNnY9KkSXjzzTfRvn17BAYGKr4PCQmpNOeqkpTzl+Bj8cOekV/IZXVm3C3bZy84EtD99fdpuaxWhNAZhIaJp0T5eUI7cuFihmyHhYhjFxcnEuY1jq0l2xZfETNgbtepAERCJwCwSUIjYYfQllAzwFd5jjyF5vpyD/Vid7AMbCl+CC1dD7eQYXvFirKwDG0jfvAzqtrS8auiPESsu6OEHEiG8RB7n/8/l7KmC0TGVap/oJqPY5fF/eRCxlXZvkpe3YwPEtu2jBdxN4psQjuWUeBIHtn/W/HCwXcPivgjVc3+F76Sbcu422Q7JjpCtulrsc6YQrZCcX/0FN6oEalu6J6I3HvvvQCA/v37K068JEkwGAyySIhhGIZhajrVZSLy119/IT4+vkr2XRa6JyJbt3JadIZhGIYBvDOyqhrh4eHIy1O+EegtKxi6JyI9elTgOTvDMAzD1CCM0Ce2LFem2XKSnJyMMWPGYNu2bYpIq962gqF7InLw4EHVcoPBAH9/f9StWxdms1m1TnVi2zOfuswWz037n2xbnizVHZDJbXZKpmz7x4p1WSoSshaK9/uzz18VbaeJtd6m90fL9oHL+2X79pjOAAAfgzhteSVihltM4ojUC2rk2qlqSMEXIq+E5ZEWDiOOxELR+ONCoS0x0/pkA1+qFyFCrjwSe6DQcaFa7hXxWgp+PFam3wzjpNBWINslRN8V5Hf9v0ZzibYsIEDcUw+cFbmWkk+nyrbRKMbz/S3E+A/3F/uxZoptg1Xu09nWsjVXVU3BO7+7XTc7OxsxU+I86A0AnU9EbuT7u4MHDwYArFy5EjExMVX2NKYsdE9E2rZte93O+Pn5YeDAgfjwww/h7++vWc+TLFu2DAsWLEBqaipatGiBJUuW4I477qgSXxiGYRimKjh48CCSkpLQtGnTqnbluuh+SrRu3TokJiZixYoV2L9/P/bt24cVK1agadOmWLNmDT755BNs2bIFr732mif8LZMvvvgC48ePx9SpU7Fv3z7ccccduO+++3D27Nkq8YdhGIapuXhzHJGOHTsiJSXlhu2vvJTr9d133nkHffr0kctat26NOnXq4PXXX8fvv/+OwMBATJw4EW+//XalOusOixYtwjPPPCOHt12yZAk2btyI5cuXY+7cuTfcH4ZhGKbm4s1vzXz88ccYOXIkzp8/j5YtW8LPz0/x/bVJ8aoK3RORQ4cOoV69ei7l9erVw6FDhwA4lm9SU1Nd6niaoqIiJCUl4ZVXXlGU9+7dGzt37lTdxmq1wkrWRbNJbhmGYRiGuR7e/NbMpUuXcPLkSTz11FOK/Vd7sWqzZs0wb948rFixAqbShEvFxcWYN28emjVrBgA4f/48YmJiKtdTN7h8+TJsNpvLvmNiYpCWlqa6zdy5czFjxgz9O3MGuiJBsQJrk8RpRKCany9EpEqxpLAD/IVwLK9YCNoyrUIAu+/yHwCAxDAhnLyQd062O9bqoqcH1Y6CLw8DACxPtxOF5HgqEtppkU+EqEZyLqKInkkR9KxU6HoxX+znMSKEpfcUuzjnxrpCIJi3cFfZfjE1Fpp0Mr1Q3Ie0xKpv/bEAAJDYuI5ctm+/SO525WqOqJwj7i3GMDGG/2+3EHTe1bqZsOvdLtv+vqJ+er4jQOPxTLGEPfEXsbxeWCICg73fa56q3zcrRhhg1BEvVU/divL000+jXbt2+Pzzz2uWWPX9999H//79UadOHbRu3RoGgwEHDx6EzWbD+vXrAQCnTp3CqFGjymjJc1x7sJ2zPzWmTJmCCRMmyD9nZ2cjISHBo/4xDMMwNQNvfiJy5swZfPfdd2jcuPEN22d50D0R6dKlC06fPo1//etfOHbsGCRJwiOPPIJBgwYhuDSt/ZNPPlnpjrpDVFQUfHx8XJ5+pKenaz6hMZvNNeJ1Y4ZhGObG480akTvvvBMHDhyoeRMRAAgKCsLIkSMr25cKYzKZ0L59e2zevBkPP/ywXL5582Y8+OCDVegZwzAMUxMxlP7TU/9G8cADD+DFF1/EoUOH0KpVKxexav/+/W+YL9ejXBORf/7zn/jwww9x6tQp7Nq1C/Xq1cPixYvRsGHDKv+FP2HCBDz55JPo0KEDOnfujBUrVuDs2bOVPnEq+NwhzK37Zm+5zM9PHM7QYJFoLiuHBB0rFmut8S0iVduOsFhkO9BPtBPl76j/y4Wf5bLHGw/R7Xu1h6yLI5gkqDMJbYclXgSUo8kIz54UIurgKLFGn5MrNCAgibKM/o427QrdiIZf4eLJmj1TBKOyPHuraC9U1PE3i4byLwiRdMGn+zV2wFRHAnxFAsyGwU2uU9NBm1oOTcd/S0TwyJkDB8r2mCUfiMolQpfU7y6RDO5Pkoxz/wXxhLhrHTEuG4eKv5KDSu8zZh8xPpOzhf7s78siENq8pPmy3ShMLGOfyb4g2/0b3ifbTUKboybjzUszzt97M2fOVPXDW8SquuOILF++HBMmTMB9992HzMxMuSPh4eFYsmRJZfunm4EDB2LJkiWYOXMm2rZti59//hk//PCD6ps+DMMwDFMRvDmOiN1u1/x4yyQEKMdEZOnSpfjoo48wdepU+PqKJwAdOnSQX9+takaNGoXTp0/DarUiKSkJ3bt3r2qXGIZhmBqIQX5vxv0Po0T30kxycjLatWvnUm42m10y+zEMwzBMTcYInWLVG6gRqS7onog0aNAA+/fvd1nq2LBhA5o3r9lrgWo81VvksNl5+oxs2+122Y6qFSbbmVeEFiA8UmgXiqxC9+BDBvW5HKFpSM1zvOvfKvLmO86Ugv8clm3L6A6yXb9BvGxfzc4V9UmiQVOIiJ1Qt3Yt2c7IFOeFhIBBndI6ly9dlcvMRNtxYOzXsp34Vl/ZPpdM3tzyEefTXiIeh4rVegA2sVPLOLHWryfBF1Mz6BzTDQAw9DahuVh39A/Z3jDtLdl+4oM5sv3rHnFdvPyw0OqlZKfL9meHtsq2v+8vsu3ULQSbhOYqjOQKiwwIkO1AP6FhqxMkYp1QfcnL298XvvcXdo3EoFP3wfMQF3RPRF566SWMHj0ahYWFkCQJv//+Oz7//HPMnTsXH3/8sSd8ZBiGYRivxJvfmqku6J6IPPXUUygpKcHkyZORn5+PQYMGoXbt2njnnXfw+OOPe8JHhmEYhvFKvDmOSHWhXK/vjhgxAiNGjMDly5dht9sRHR1d2X4xDMMwjNfjza/vauVOMxgMMJvNcpqWqqZcExEnUVFRleVHtWVGp9dle2vCJtn+5vg22c4sFGoAI8lv4u/rI9vxwRGyfT5H5JIINl2W7dNZVwEA0RZR92an4P29uurXmXG3bLdpXFe2LSTQD10bLyjN+/Mr0XbsfnaNatvHX/5etvt987xsp6VmyLafSewnL7dAtg8uFFoT5uYm1BQOALgn4U65LCn1pGy/8v0nsv3B06Nle9IXK0X5//4n23Hx4j4dGSJimly4kiXbztxYLevEyWXh/iIWT26RiLMTGyjau5gvtFBHM0/LdsPwcNeO1VCMpf/01L9RhIWFXXfiU6dOHQwfPhzTpk2D0Vh1b/O4NRFp166d27O4P/74o+xKDMMwDFMD8OYnIp9++immTp2K4cOH47bbboMkSdizZw9Wr16N1157DZcuXcLbb78Ns9mMV1999Yb5dS1uTUQeeugh2S4sLMSyZcvQvHlzdO7cGQCwe/duHD58uEoT3TEMwzAMI1i9ejUWLlyIxx57TC7r378/WrVqhQ8//BA//fQT6tati9mzZ3v/RGTatGmy/eyzz2Ls2LF48803XeqkpKRUrncMwzAM48V48xORXbt24YMPPnApb9euHXbt2gUA6NatG86ePXvDfFJD96LQf/7zHwwdOtSlfMiQIfjqq68qxSmGYRiGqQ7oj6t64yYiderUwSeffOJS/sknnyAhwZEnKCMjA+FVrOnRLVa1WCzYsWMHEhMTFeU7duyAPxH53Yz8efmobBeROP61SDCghBCRaO34lSuy7UuEQiFmERjIKVAFgByrFQDwy7kDctnqQ9tkmwYOemT9C7IdSISYq/ssKrMfNZlz0/5XdiUVhuS9KNuTdgiBstlHCI5nd54u24FEjd42UQT/+/juBeXaP3Pz0SBY3GNfuHWQbP/bsk62p6//XLafubuHbG/8+4hsX8kQb07Ehon7j0Qi94WHOJLe1Q8VQtQIfxFw8UyWEM2fyhLJ8CjWEhE4cOEds1Tr1ES8+YnI22+/jUcffRQbNmxAx44dYTAYsGfPHvz999/48ssvAQB79uzBQJJUsSrQPREZP348nn/+eSQlJeH2228H4NCIrFy5Em+88UalO8gwDMMw3oo3xxHp378/jh07hg8++ABHjx6FJEm477778M0336B+/foAgOeff/76jdwAdE9EXnnlFTRs2BDvvPMO1qxxvMZ4yy234NNPP1UIYhiGYRimpuPtkVXr1auHuXPn3tB96qVccUQee+wxnnQwDMMwNz1GgxFGg444IjrqloeDBw+iZcuWbscFOXz4MJo2bQpf3wqFFasQVbfnGkKxvVi2E4JjZTs+SESbLZGEXuRCjkhA5RMpBkqovwg05GsUp2X3ORHIqLg0kd7hi6KNBhFCZPT2voWyHRMYKNu//X3Kna4wpWw5v1G2LxU6gpENvKW7XGa1WWWbJvpavH+JbN9dv4VsZxeJBHzPb3lZtpffKZKXMcz1aBoqxtPoNuKa75FwULbnbvtStge2E4kTP9omEt1dJcEVafAyv9JfWiV2ca+i1A2NlG2zj9A/XS64Ktuzbp+GmxFv04i0a9cOaWlpqFWrVtmVAXTu3Bn79+9Hw4YNPerX9XBrIhIREYFjx465HUm1bt26+OWXX1wy9DIMwzBMzULf0kxF0u/OnTsXr776KsaNG4clS5ao1pEkCa+//joCyEsS16OoqKjsSh7GrYnI1atXsWHDBoSGhpZdGY7XgWw29Zk1wzAMw9QUbpRYdc+ePVixYgVat2593Xrdu3fH0aNHr1uH0rlzZ1gslnL5VFm4vTQzbNgwT/rBMAzDMNWOGyFWzc3NxeDBg/HRRx9h1qzrvxq9bds23e1XNW5NROyl2gTGFarn6B7fU7YvFQodR3r+Rdk2G0VMj9hAse5aZC+R7TpBYu328CXxzr4zkZSvUcSuoEn3/vHTZNk+dPq8bF+8lOlGT25ujmeJuAtxgfGyXTuoDgDAxyCOub+P+OuBCs9aRIh1fBtZaz+fJ84FcBBVyYs/T5XtU1evyva3JAYN43340fuGRYzPqHihRWv1/9rI9qzd4nz27yjKj1y+JNtxQSGk3HG/ovFvAotFUsYScn+i1AuJUy2/mTAa9D3lcOY9vTYzrtlshpnEkKKMHj0affv2xd13313mRKQ6UnXp9nRw+vRpPPPMM2jQoAEsFgsaNWqEadOmuaxtnT17Fg888AACAwMRFRWFsWPHesX6F8MwDFMzMRiMuj8AkJCQ8P/bu/O4KKv9D+CfAZkB2QQBB5RFNCXCsDCN0FxDzQX13tJyATX6ec0td8sCfUl2U7SrXbt2K5du9+otpUVzIXdNLXHfcINAAilEhkWH7fz+4PLMjAwwwzYz+Hn7mtfr8KzfM884fDnPec6Bs7Oz9KruEdstW7bg9OnTZv8Ibn1YxFMzV69eRXl5OdavX4+OHTvi4sWLiI6ORmFhIVauXAkAKCsrw5AhQ+Du7o6jR48iJycHkZGREEJg7dq1Jq4BERE1R3W9NZOeng4nrZG29bWGpKenY+bMmdi7d2+zHrncIhKRQYMGYdCgQdLP/v7+SE5OxscffywlInv37sXly5eRnp4OL6+Kpsv4+HhERUUhLi5O54ITERE1hLp2VnVycqr191JSUhKys7MREhIiLSsrK8Phw4fx0UcfQa1Ww1prmglLZRGJiD55eXlwdXWVfj5+/DiCgoKkJAQABg4cCLVajaSkJPTt21fvcdRqNdRqzbgQD9+3q412Juws1zzfn/NAMzeDi0KzvIXWvd78knxNuVhTLiwpksoPSjX3ZrXnMqn0Xep2qeyhNXZI3j3N2BXp7ybWXIlHSK5ac10KSwulsvZ4IE7WmqfDKvuAaPcR0WaltdxZ3koqy7TuerrZap7n92ipuae/49dvpPJQ3xEGRF9/q5+Pa5LzUOPR/g6x1voKV9q1lcoznh4nle9o9VG7mvO9VL6VmyOVW/5vPqoyrf6At/M1/Uky8jXfT9rbDPTXfAc/qhpzHJH+/fvjwoULOssmTpyIgIAALFiwoFkkIYCFJiI3b97E2rVrER+vGcArKysLbdq00dnOxcUFcrkcWVlZ1R5r+fLlWLJkSaPFSkREzZexM+oas62joyOCgoJ0ltnb26N169ZVllcnOTkZa9euxZUrVyCTyRAQEIDp06ejc+fOBsfR2OrUWfXmzZtYvHgxXnnlFWRnV/S23r17Ny5dumTUcWJjY6VssrrXqVOndPb57bffMGjQILz00kt47bXXdNbpyzSFEDVmoIsWLUJeXp70Sk9PN6oORERE5ujrr79GUFAQkpKSEBwcjCeffBKnT59GUFAQvvrqK1OHJzG6ReTQoUMYPHgwwsLCcPjwYcTFxcHDwwPnz5/Hp59+Kk0tbIhp06ZhzJgxNW5TOUMgUJGE9O3bF6Ghofjkk090tlMqlTh58qTOstzcXJSUlFRpKdFW0yNTRERENWnqId6NGSdk/vz5WLRoEZYuXaqzPCYmBgsWLMBLL71Ur1gaSp1m3122bBlmz54NR0dHaXnfvn3xt7/9zahjubm5GTxsfEZGBvr27YuQkBBs2LChyoQ+oaGhiIuLQ2ZmJjw9K55t37t3LxQKhU5HHyIiooai/Uiuods3laysLEyYMKHK8nHjxmHFihVNFkdtjE5ELly4gH//+99Vlru7uyMnJ0fPHvX322+/oU+fPvDx8cHKlSvx+++aTlRKZcVEc+Hh4QgMDMT48eOxYsUK3L17F3PnzkV0dHSTPTGj3XGxTUvNQD95as2AYo5yTSy/39cMeqZNu+Nkf78uNZ7TRdFKKo8NGCWV/Z3b6tmaFFqDkZVD/0B92h1NK/92kWtdkzKtSQzLqhnoCRBSSXsANIcWmskNnbU+C59f+VQqT3pc95YjUXWE0HyGtf/OvqXSTHT59dXDUvnytTSp7NxK81ns3Lai1fhEimZ9Qb6m07xcoekg2yego1SOCphcx8ibj8bsI1Jfffr0wZEjR9CxY0ed5UePHkWvXr2aLI7aGJ2ItGrVCpmZmWjfvr3O8jNnzqBt28b55bd3717cuHEDN27cQLt27XTWCVHxhW9tbY2dO3di6tSpCAsLg52dHV599VXp8V4iIqKGZm6z72obPnw4FixYgKSkJDz77LMAgBMnTuCrr77CkiVL8N133+lsaypGJyKvvvoqFixYgK+++goymQzl5eU4duwY5s6dq7cJqCFERUUhKiqq1u18fHywY8eORomBiIioqqabfddYU6dOBQCsW7cO69at07sOqEiOTDlRrdGJSFxcHKKiotC2bVsIIRAYGIiysjK8+uqrWLx4cWPESEREZJZkMLJFpAkTEUuZJ87oRMTGxgZffvklli5dijNnzqC8vBxPPfUUHnvsscaIz6Jo36+1s9YMLgath3JUxXlaZc3gabtuHZPKP9/8VSrb2momoYrsPLHKOXt59pPK53I0jzqzn4F+5Vr9O+RWmgsjtPp0aF/HSqXlJVJZuy+QXQvNddaemKykXDPHUbFWuUTrOCqtAe1y1cYNpEcE6PZX0v5cpqk0Ey1mF2oG7rOx0XzlW1tr+kKdvV7xnXP/vuaz+keu5jOZvexAA0Xc/JhzHxFLUecBzTp06IAOHTo0ZCxEREQWxZyfmgGAffv2YfXq1ToDms2aNQsDBgxo0jhqYlAiMnv2bIMPuGrVqjoHQ0REZEnqOuldU/joo4/w5ptv4s9//jNmzpwJoKKz6osvvohVq1Zh2rRpTRZLTQxKRM6cOaPzc1JSEsrKyqQhYq9duwZra2uO10FERI8Umcy4J2Ga8KEZLF++HKtXr9ZJOGbMmIGwsDDExcVZViJy4IDm/uCqVavg6OiITZs2wcWlYjK33NxcTJw40ayeSzYF7Xu0D8ruS2UbmabvQAsrzVsut9b0/6icdArQ/VCfTLqiOcErNZ8/uHU3o+J9FCX98YtU9nf0l8pWVlr9PrTG/aj860W7ObW6/iSVj5IDgLVM+79WMfRxstEMCJicU/18SETabhemSmVXhWZCRWuZ5rPY3tlbKrvYXZfKcm/NpIudWreWyin37gEAbqVpPofedoYNNvmoM+cWEZVKpTNzfaXw8HAsWLCgyeKojdE3q+Lj47F8+XIpCQEqJpdbtmyZziR0REREzV1t86XpezWV4cOHIyEhocryb7/9FsOGDWuyOGpjdGdVlUqFO3fu4IknntBZnp2djXytqaKJiIiaO3N+aubxxx9HXFwcDh48iNDQUAAVfUSOHTuGOXPmYM2aNdK2M2bMaLK4HmZ0IjJy5EhMnDgR8fHxOiO1zZs3D6NGjaplbyIioubDnEdW/eyzz+Di4oLLly/j8uXL0vJWrVrhs88+04nJohKRf/zjH5g7dy7GjRuHkpKKMRFatGiByZMnm9UkOqZ2OFPTr6a9k6YvgovcVSrfLtA863/uzh2pnJmlmbOnYOXxxgrxkZT461Gp3LKFZtwV/1aa6QnsWmj6iAS5BgEAHG0088KUCs38MtrjwjjJnaWyvdacMtr9hX4r1Fzz6/c084HcuPOHEbWgR1me1mdO53Op1Y/Jy95LKg977BmpfOF3TX8R95aa2+v3Hjyo2M9L0y/kuwjdkThJP9n/2kSM2b6ppKSkNNm56sPoRKRly5ZYt24dVqxYgZs3b0IIgY4dO8Le3r72nYmIiJoRc24RsRR1HtDM3t4eTz75ZEPGQkRERA2kujHAZDIZbG1t0bFjR0RERMDV1VXvdk3F6ESkb9++NWZ0+/fvr1dARERElsKcH989c+YMTp8+LY37JYTA9evXYW1tjYCAAKxbtw5z5szB0aNHERgY2GRxPczoRKRr1646P5eUlODs2bO4ePEiIiMjGyouIiIis2clk8HKiNstxmxbX5WtHRs2bICTU0V/IpVKhcmTJ6Nnz56Ijo7Gq6++ijfffBN79uxpsrgeZnQisnr1ar3LY2NjUVBQUO+AmotB3ppntOcc0cxKnF+sGdwqQ6WZVGrnyH80TWCPOO0JwDwdNJ3GUvN+k8oLQ+YbfLxPL26Wyo5yTT+pDq18pLK9TUup/MeDu1I5s/B3qezeSjO4GVFNkrI1I127+WgGNNPuRN1CawJGBxvN59LfWdMpO0+t+b52tavooL2+/wcNG+wjwJxbRFasWIHExEQpCQEAJycnxMbGIjw8HDNnzsS7776L8PDwJotJnwbrvjtu3Dh8/vnnDXU4IiIis2fOA5rl5eUhOzu7yvLff/8dqv/9IdyqVSsUF+sf/bmpNFgicvz4cdja2jbU4YiIiCyAlfQIryGvBvy1W6uIiAhMmjQJCQkJuH37NjIyMpCQkIDJkydjxIgRAICff/4ZnTp1arKY9DH61szDg5YJIZCZmYlTp07hnXfeabDAiIiIzJ05P767fv16vPnmmxgzZgxKSytu3bVo0QKRkZFSN4uAgAB8+umnTRaTPjKhPVOXAaKionTeSCsrK7i7u6Nfv34mv8/UEFQqFZydnXHnbqbOfTUiY2y8qhm1sExrYryCEs3gZvceaPoIxXTX9CNqaK/v0/R5sW2h+dtjTe/3Gu2c1Hj+dW2TVO7TtrdULhNlUtlK66/uB2UPpPKd+5pJ7X7NT5fKYx+b0OBxmgOVSoU2rp7Iy8tr8O/zyt8VCZe3wt6xZe07/E9hfhFGBo5ulJiqU1BQgFu3bkEIgQ4dOsDBwaH2nZqQ0S0iGzdubIQwiIiILI85t4hUcnBwMOtxv4y+WeXv74+cnJwqy+/duwd/f389ezQstVqNrl27QiaT4ezZszrr0tLSMGzYMNjb28PNzQ0zZswweSccIiJqvmR1+Ee6jG4RSU1NRVlZWZXlarUaGRkZevZoWPPnz4eXlxfOnTuns7ysrAxDhgyBu7s7jh49ipycHERGRkIIgbVr1zZ6XERE9OixhBYRc2dwIvLdd99J5T179sDZWTPBV1lZGfbt2wc/P78GDe5hu3btwt69e7Ft2zbs2rVLZ93evXtx+fJlpKenw8urYsKn+Ph4REVFIS4ujv09qElFBUzWu/zdE0ulcs79okY7/z8vfyKVO7dWSuXbqqqtmWRZglprRsB0tNF8D2v/gvvjgeaRTVtrzdOMPZV9tcqNFeGjpaKNw5hJ75iIPMzgRKTyUR+ZTFZlBFUbGxv4+fkhPj6+QYPTdufOHURHR+Obb75By5ZVOwYdP34cQUFBUhICAAMHDoRarUZSUhL69u1bZR+goiVHrVZLP6u0BhkjIiKqiTmPrGopDE7jysvLUV5eDh8fH2RnZ0s/l5eXQ61WIzk5GUOHDm2UIIUQiIqKwpQpU9CtWze922RlZaFNmzY6y1xcXCCXy5GVlaV3HwBYvnw5nJ2dpZe3t3eDxk5ERM0X+4jUn9GdVVNSUuDm5tYgJ4+Nja11BLpTp05h7dq1UKlUWLRoUY3H03fvTQhR4z25RYsWIS8vT3qlp6dXuy0REZE2cx5Z1VIYdGtmzZo1eP3112Fra4s1a9bUuO2MGTMMPvm0adMwZsyYGrfx8/PDsmXLcOLECSgUCp113bp1w9ixY7Fp0yYolUqcPHlSZ31ubi5KSkqqtJRoUygUVY5L1FgKSzRPcRWVlDTosXenfy+VlfaaOUj8nDStfHO6Dm7Qc1LTs2uhuTVtozWnjJVM83elm62HVHayadUkcT2qzHmuGUthUCKyevVqjB07Fra2ttVOegdUZIbGJCJubm4Gta6sWbMGy5Ytk37+7bffMHDgQGzduhU9evQAAISGhiIuLg6ZmZnw9PQEUNGBVaFQICQkxOCYiIiIDMWnZurPoEQkJSVFb7mp+Pj46PxcOSpchw4d0K5dOwBAeHg4AgMDMX78eKxYsQJ3797F3LlzER0dzSdmiIiIzJTRfUSWLl2KoqKqjx3ev38fS5cu1bNH07C2tsbOnTtha2uLsLAwvPzyyxgxYgRWrlxpspiIiKh5s6rDP9Jl9DuyZMkSFBQUVFleVFSEJUuWNEhQtfHz84MQAl27dtVZ7uPjgx07dqCoqAg5OTlYu3Yt+38QEVGjYWfV+jN6ZNXqnkI5d+4cXF1dGyQoouYqvtey2jcywrGsg1K5qFQzoZ6ypaaD9nNteoMs25V7F6Rya4WmX10Lrc6q2hRW/AOsqbCzav0ZnIi4uLhI2VynTp10kpGysjIUFBRgypQpjRIkERGRWTK2lYMtIlUYnIh8+OGHEEJg0qRJWLJkic4Q73K5HH5+fggNDW2UIImIiMwRW0Tqz+BEpHJY9/bt2+O5556DjY3+JkEiIqJHBROR+jO6j0jv3pr7zffv30fJQ4My8VHZ5k9ASGX+pzKtMGUfU4dATaBclEtlBxvNd6z2/z8rmbVULkNp0wRGFbdaeGumXox+aqaoqAjTpk2Dh4cHHBwc4OLiovMiIiJ6VHCumfozOhGZN28e9u/fj3Xr1kGhUODTTz/FkiVL4OXlhc2bNzdGjERERGaJj+/Wn9G3Zr7//nts3rwZffr0waRJk9CrVy907NgRvr6++PLLLzF27NjGiJOIiMjssI9I/RmdiNy9exft27cHUNEf5O7duwCAnj174i9/+UvDRkdmif+RiJrWEy7BUjn7fqZUdtTqL6Kw1vQRkVczjsgN1VWp3NEpoCFDfGTJYNx3Ir89qzL61oy/vz9SU1MBAIGBgfjvf/8LoKKlpFWrVg0ZGxERkVmTwchbM0akIsuXL8czzzwDR0dHeHh4YMSIEUhOTm7E2piG0YnIxIkTce7cOQDAokWLpL4ib775JubNm9fgARIREZmrxuyseujQIbzxxhs4ceIEEhMTUVpaivDwcBQWFjZijZqe0bdm3nzzTanct29fXL16FadOnUKHDh0QHBxcw55ERETNS2P2Edm9e7fOzxs2bICHhweSkpLw/PPPG3wcc2d0IvIwHx8f+Pj4ID09HZMmTcLnn3/eEHEREZEeOeo/pHJxuVoqa48j4tXSW+++7BfS8Ix9EqZyW5VKpbNcoVDUOklrXl4eADS7ed0abD7iu3fvYtOmTQ11OCIiIrNX11sz3t7ecHZ2ll7Lly+v8TxCCMyePRs9e/ZEUFBQU1StydS7RYSIiIiMk56erjMSeW2tIdOmTcP58+dx9OjRxg6tyTERISIiqqO63ppxcnIyeEqU6dOn47vvvsPhw4fRrl27OsVpzpiIEBER1VFjdlYVQmD69OlISEjAwYMHpTG8mhuDE5FRo0bVuP7evXv1jYWIiGrxeKsupg6BtDRmIvLGG2/g3//+N7799ls4OjoiKysLAODs7Aw7OzujYzVXBicizs7Ota6fMGFCvQMiIiKyFHW9NWOIjz/+GADQp08fneUbNmxAVFSUwccxdwYnIhs2bGjMOAyyc+dOLF26FOfPn4e9vT2ef/55bN++XVqflpaGN954A/v374ednR1effVVrFy5EnK53IRRExFRc9XYt2YeBRbTR2Tbtm2Ijo7Ge++9h379+kEIgQsXLkjry8rKMGTIELi7u+Po0aPIyclBZGQkhBBYu3atCSMnIqLmipPe1Z9FJCKlpaWYOXMmVqxYgcmTJ0vLO3fuLJX37t2Ly5cvIz09HV5eXgCA+Ph4REVFIS4uzuDeyURERAYz8tYMjNn2EdFgA5o1ptOnTyMjIwNWVlZ46qmn4OnpicGDB+PSpUvSNsePH0dQUJCUhADAwIEDoVarkZSUVO2x1Wo1VCqVzouIiMgwsjq8SJtFJCK3bt0CAMTGxmLx4sXYsWMHXFxc0Lt3b9y9excAkJWVhTZt2ujs5+LiArlcLvU01mf58uU6o9t5e+sfGpmIiOhhRs28a2zrySPCpIlIbGxsrRfs1KlTKC8vBwC8/fbb+NOf/oSQkBBs2LABMpkMX331lXQ8fRdYCFHjhV+0aBHy8vKkV3p6esNXlIiImqXGnH33UWHSPiLTpk3DmDFjatzGz88P+fn5AIDAwEBpuUKhgL+/P9LS0gAASqUSJ0+e1Nk3NzcXJSUlVVpKtBky0RAREZE+7KxafyZNRNzc3ODm5lbrdiEhIVAoFEhOTkbPnj0BACUlJUhNTYWvry8AIDQ0FHFxccjMzISnpyeAig6sCoUCISEhjVcJIiJ6ZDXmOCKPCot4asbJyQlTpkxBTEwMvL294evrixUrVgAAXnrpJQBAeHg4AgMDMX78eKxYsQJ3797F3LlzER0dzSdmiIioUVR0PzWmRYQeZhGJCACsWLECLVq0wPjx43H//n306NED+/fvh4uLCwDA2toaO3fuxNSpUxEWFqYzoBkREVFj4K2Z+pOJR2XoNgOpVCo4Ozvjzt1MtqQQEVkwlUqFNq6eyMvLa/Dv88rfFZd+OwtHJ0eD98tX5eMJr66NEpOlspgWESIiInPDFpH6YyJCRERUR+ysWn8WMaAZERERNU9sESEiIqoj3pqpPyYiREREdWbs/DFMRB7GRISIiKiOmIbUHxMRIiKiOmJn1fpjIkJERFRnbBOpLyYiREREdcQ0pP6YiBAREdUZU5H6YiJCRERUR+wjUn8c0IyIiIhMhi0iREREdcQBzeqPiQgREVEdMRGpP96aISIiIpNhiwgREVEdsbNq/bFFhIiIiEyGLSJERER1ZlwfEY4jUhUTESIiojrjgGb1xVszREREZDIWk4hcu3YNERERcHNzg5OTE8LCwnDgwAGdbdLS0jBs2DDY29vDzc0NM2bMQHFxsYkiJiKi5k5WhxfpsphEZMiQISgtLcX+/fuRlJSErl27YujQocjKygIAlJWVYciQISgsLMTRo0exZcsWbNu2DXPmzDFx5ERE1FxVPjVjzIt0WUQi8scff+DGjRtYuHAhnnzySTz22GN4//33UVRUhEuXLgEA9u7di8uXL+Nf//oXnnrqKQwYMADx8fH45z//CZVKZeIaEBFR88Q2kfqyiESkdevWePzxx7F582YUFhaitLQU69evR5s2bRASEgIAOH78OIKCguDl5SXtN3DgQKjVaiQlJVV7bLVaDZVKpfMiIiIyBNOQ+rOIp2ZkMhkSExMREREBR0dHWFlZoU2bNti9ezdatWoFAMjKykKbNm109nNxcYFcLpdu3+izfPlyLFmypDHDJyKiZo3pRX2YtEUkNja21ntpp06dghACU6dOhYeHB44cOYKff/4ZERERGDp0KDIzM6Xj6bv3JoSo8Z7cokWLkJeXJ73S09Mbpa5ERNT8sI9I/Zm0RWTatGkYM2ZMjdv4+flh//792LFjB3Jzc+Hk5AQAWLduHRITE7Fp0yYsXLgQSqUSJ0+e1Nk3NzcXJSUlVVpKtCkUCigUivpXhoiIiIxm0kTEzc0Nbm5utW5XVFQEALCy0m3AsbKyQnl5OQAgNDQUcXFxyMzMhKenJ4CKDqwKhULqR0JERNSQOPtu/VlEZ9XQ0FC4uLggMjIS586dw7Vr1zBv3jykpKRgyJAhAIDw8HAEBgZi/PjxOHPmDPbt24e5c+ciOjpaakUhIiJqWOyuWl8WkYi4ublh9+7dKCgoQL9+/dCtWzccPXoU3377LYKDgwEA1tbW2LlzJ2xtbREWFoaXX34ZI0aMwMqVK00cPRERNVdMQ+rPIp6aAYBu3bphz549NW7j4+ODHTt2NFFERET0qDO2Ayo7q1ZlMYkIERGR+eGkd/XFRISIiKiOmIbUHxMRIiKiOmMqUl8W0VmViIjIHDXFgGbr1q1D+/btYWtri5CQEBw5cqQRamI6TESIiIjM1NatWzFr1iy8/fbbOHPmDHr16oXBgwcjLS3N1KE1GCYiREREZmrVqlWYPHkyXnvtNTz++OP48MMP4e3tjY8//tjUoTUY9hF5iBACAJCvyjdxJEREVB+V3+OV3+uNc44Co0ZLzVcVAECVmd71TTdSXFyMpKQkLFy4UGd5eHg4fvrppzpGbH6YiDwkP7/ig9vRr5OJIyEiooaQn58PZ2fnBj2mXC6HUqnEY3X4XeHg4ABvb2+dZTExMYiNjdVZ9scff6CsrKzKfGlt2rSpcVZ5S8NE5CFeXl64fPkyAgMDkZ6e3iyGh1epVPD29mZ9zFBzqgvA+piz5lQXwLD6CCGQn58PLy+vBj+/ra0tUlJSUFxcbPS++maFr2ny1Ye3rW1WeUvDROQhVlZWaNu2LQDAycmpWfyHrcT6mK/mVBeA9TFnzakuQO31aeiWEG22trawtbVttOO7ubnB2tq6SutHdnZ2jbPKWxp2ViUiIjJDcrkcISEhSExM1FmemJiI5557zkRRNTy2iBAREZmp2bNnY/z48ejWrRtCQ0PxySefIC0tDVOmTDF1aA2GiYgeCoUCMTExNd6zsySsj/lqTnUBWB9z1pzqAjS/+lRn9OjRyMnJwdKlS5GZmYmgoCD88MMP8PX1NXVoDUYmGvO5JiIiIqIasI8IERERmQwTESIiIjIZJiJERERkMkxEiIiIyGSYiOhhiVMux8bGVplqWqlUSuuFEIiNjYWXlxfs7OzQp08fXLp0yYQR6zp8+DCGDRsGLy8vyGQyfPPNNzrrDYlfrVZj+vTpcHNzg729PYYPH47bt283YS0q1FaXqKioKtfq2Wef1dnGXOoCAMuXL8czzzwDR0dHeHh4YMSIEUhOTtbZxlKujyF1saTr8/HHH+PJJ5+UBvUKDQ3Frl27pPWWcl0q1VYfS7o2ZDgmIg+x5CmXn3jiCWRmZkqvCxcuSOs++OADrFq1Ch999BF++eUXKJVKvPDCC9LcOqZWWFiI4OBgfPTRR3rXGxL/rFmzkJCQgC1btuDo0aMoKCjA0KFDUVZW1lTVAFB7XQBg0KBBOtfqhx9+0FlvLnUBgEOHDuGNN97AiRMnkJiYiNLSUoSHh6OwsFDaxlKujyF1ASzn+rRr1w7vv/8+Tp06hVOnTqFfv36IiIiQkg1LuS6G1gewnGtDRhCko3v37mLKlCk6ywICAsTChQtNFJFhYmJiRHBwsN515eXlQqlUivfff19a9uDBA+Hs7Cz+8Y9/NFGEhgMgEhISpJ8Nif/evXvCxsZGbNmyRdomIyNDWFlZid27dzdZ7A97uC5CCBEZGSkiIiKq3cdc61IpOztbABCHDh0SQlj29Xm4LkJY/vVxcXERn376qUVfF22V9RHC8q8N6ccWES2VUy6Hh4frLLeUKZevX78OLy8vtG/fHmPGjMGtW7cAACkpKcjKytKpl0KhQO/evS2iXobEn5SUhJKSEp1tvLy8EBQUZJZ1PHjwIDw8PNCpUydER0cjOztbWmfudcnLywMAuLq6ArDs6/NwXSpZ4vUpKyvDli1bUFhYiNDQUIu+LkDV+lSyxGtDNePIqlosecrlHj16YPPmzejUqRPu3LmDZcuW4bnnnsOlS5ek2PXV69dffzVFuEYxJP6srCzI5XK4uLhU2cbcrt3gwYPx0ksvwdfXFykpKXjnnXfQr18/JCUlQaFQmHVdhBCYPXs2evbsiaCgIACWe3301QWwvOtz4cIFhIaG4sGDB3BwcEBCQgICAwOlX7yWdl2qqw9gedeGDMNERA9LnHJ58ODBUrlLly4IDQ1Fhw4dsGnTJqkzlyXWS1td4jfHOo4ePVoqBwUFoVu3bvD19cXOnTsxatSoavczh7pMmzYN58+fx9GjR6uss7TrU11dLO36dO7cGWfPnsW9e/ewbds2REZG4tChQ9J6S7su1dUnMDDQ4q4NGYa3ZrQ0pymX7e3t0aVLF1y/fl16esZS62VI/EqlEsXFxcjNza12G3Pl6ekJX19fXL9+HYD51mX69On47rvvcODAAbRr105abonXp7q66GPu10cul6Njx47o1q0bli9fjuDgYPztb3+zyOsCVF8ffcz92pBhmIhoaU5TLqvValy5cgWenp5o3749lEqlTr2Ki4tx6NAhi6iXIfGHhITAxsZGZ5vMzExcvHjR7OuYk5OD9PR0eHp6AjC/ugghMG3aNGzfvh379+9H+/btddZb0vWprS76mPv1eZgQAmq12qKuS00q66OPpV0bqkaTd481c1u2bBE2Njbis88+E5cvXxazZs0S9vb2IjU11dSh1WjOnDni4MGD4tatW+LEiRNi6NChwtHRUYr7/fffF87OzmL79u3iwoUL4pVXXhGenp5CpVKZOPIK+fn54syZM+LMmTMCgFi1apU4c+aM+PXXX4UQhsU/ZcoU0a5dO/Hjjz+K06dPi379+ong4GBRWlpqNnXJz88Xc+bMET/99JNISUkRBw4cEKGhoaJt27ZmWRchhPjLX/4inJ2dxcGDB0VmZqb0KioqkraxlOtTW10s7fosWrRIHD58WKSkpIjz58+Lt956S1hZWYm9e/cKISznuhhSH0u7NmQ4JiJ6/P3vfxe+vr5CLpeLp59+WufRPnM1evRo4enpKWxsbISXl5cYNWqUuHTpkrS+vLxcxMTECKVSKRQKhXj++efFhQsXTBixrgMHDggAVV6RkZFCCMPiv3//vpg2bZpwdXUVdnZ2YujQoSItLc2s6lJUVCTCw8OFu7u7sLGxET4+PiIyMrJKnOZSFyGE3roAEBs2bJC2sZTrU1tdLO36TJo0Sfqucnd3F/3795eSECEs57pUqqk+lnZtyHAyIYRouvYXIiIiIg32ESEiIiKTYSJCREREJsNEhIiIiEyGiQgRERGZDBMRIiIiMhkmIkRERGQyTESIiIjIZJiIEBERkckwESGqQWpqKmQyGc6ePdsox5fJZPjmm2/qvP/Bgwchk8kgk8kwYsSIGrft06cPZs2aVedzUc0qr0OrVq1MHQqRRWEiQmYrKiqq1l+ujc3b2xuZmZkICgoCoPnFf+/ePZPG9bDk5GRs3LjR1GE8Eqr7XGZmZuLDDz9s8niILB0TEaIaWFtbQ6lUokWLFqYOpUYeHh5m8Zd4SUmJqUMwGaVSCWdnZ1OHQWRxmIiQxTp06BC6d+8OhUIBT09PLFy4EKWlpdL6Pn36YMaMGZg/fz5cXV2hVCoRGxurc4yrV6+iZ8+esLW1RWBgIH788Ued2yXat2ZSU1PRt29fAICLiwtkMhmioqIAAH5+flX+Gu7atavO+a5fv47nn39eOpf2VOWVMjIyMHr0aLi4uKB169aIiIhAamqq0e9NYWEhJkyYAAcHB3h6eiI+Pr7KNsXFxZg/fz7atm0Le3t79OjRAwcPHtTZ5p///Ce8vb3RsmVLjBw5EqtWrdJJeGJjY9G1a1d8/vnn8Pf3h0KhgBACeXl5eP311+Hh4QEnJyf069cP586d0zn2999/j5CQENja2sLf3x9LlizRuX6xsbHw8fGBQqGAl5cXZsyYYVDda6tXTk4OXnnlFbRr1w4tW7ZEly5d8J///EfnGF9//TW6dOkCOzs7tG7dGgMGDEBhYSFiY2OxadMmfPvtt9KtmIffMyIyjnn/mUdUjYyMDLz44ouIiorC5s2bcfXqVURHR8PW1lbnl/+mTZswe/ZsnDx5EsePH0dUVBTCwsLwwgsvoLy8HCNGjICPjw9OnjyJ/Px8zJkzp9pzent7Y9u2bfjTn/6E5ORkODk5wc7OzqB4y8vLMWrUKLi5ueHEiRNQqVRV+msUFRWhb9++6NWrFw4fPowWLVpg2bJlGDRoEM6fPw+5XG7w+zNv3jwcOHAACQkJUCqVeOutt5CUlISuXbtK20ycOBGpqanYsmULvLy8kJCQgEGDBuHChQt47LHHcOzYMUyZMgV//etfMXz4cPz444945513qpzrxo0b+O9//4tt27bB2toaADBkyBC4urrihx9+gLOzM9avX4/+/fvj2rVrcHV1xZ49ezBu3DisWbMGvXr1ws2bN/H6668DAGJiYvD1119j9erV2LJlC5544glkZWVVSWSqU1u9Hjx4gJCQECxYsABOTk7YuXMnxo8fD39/f/To0QOZmZl45ZVX8MEHH2DkyJHIz8/HkSNHIITA3LlzceXKFahUKmzYsAEA4OrqavB1ISI9TDv5L1H1IiMjRUREhN51b731lujcubMoLy+Xlv39738XDg4OoqysTAghRO/evUXPnj119nvmmWfEggULhBBC7Nq1S7Ro0UJkZmZK6xMTEwUAkZCQIIQQIiUlRQAQZ86cEUIIceDAAQFA5Obm6hzX19dXrF69WmdZcHCwiImJEUIIsWfPHmFtbS3S09Ol9bt27dI512effValTmq1WtjZ2Yk9e/bofR/0xZOfny/kcrnYsmWLtCwnJ0fY2dmJmTNnCiGEuHHjhpDJZCIjI0PneP379xeLFi0SQggxevRoMWTIEJ31Y8eOFc7OztLPMTExwsbGRmRnZ0vL9u3bJ5ycnMSDBw909u3QoYNYv369EEKIXr16iffee09n/RdffCE8PT2FEELEx8eLTp06ieLiYr31ro4h9dLnxRdfFHPmzBFCCJGUlCQAiNTUVL3b1vS53LBhg877Q0S1Y4sIWaQrV64gNDQUMplMWhYWFoaCggLcvn0bPj4+AIAnn3xSZz9PT09kZ2cDqOjg6e3tDaVSKa3v3r17o8Xr4+ODdu3aSctCQ0N1tklKSsKNGzfg6Oios/zBgwe4efOmwee6efMmiouLdY7v6uqKzp07Sz+fPn0aQgh06tRJZ1+1Wo3WrVsDqHh/Ro4cqbO+e/fu2LFjh84yX19fuLu769SjoKBAOk6l+/fvS/VISkrCL7/8gri4OGl9WVkZHjx4gKKiIrz00kv48MMP4e/vj0GDBuHFF1/EsGHDau2rY0i9ysrK8P7772Pr1q3IyMiAWq2GWq2Gvb09ACA4OBj9+/dHly5dMHDgQISHh+PPf/4zXFxcajw3EdUNExGySEIInSSkchkAneU2NjY628hkMpSXl1d7jLqysrKSzl9Ju+Pmw+sejhOouH0TEhKCL7/8ssq22r/oa6PvXA8rLy+HtbU1kpKSpNsplRwcHKTjVPcea6v8Ba59bE9PT719Jyr7l5SXl2PJkiUYNWpUlW1sbW3h7e2N5ORkJCYm4scff8TUqVOxYsUKHDp0qMo1NbZe8fHxWL16NT788EN06dIF9vb2mDVrFoqLiwFUdFBOTEzETz/9hL1792Lt2rV4++23cfLkSbRv377acxNR3TARIYsUGBiIbdu26fyy/Omnn+Do6Ii2bdsadIyAgACkpaXhzp07aNOmDQDgl19+qXGfyn4aZWVlOsvd3d2RmZkp/axSqZCSkqITb1paGn777Td4eXkBAI4fP65zjKeffhpbt26VOnjWVceOHWFjY4MTJ05ILUO5ubm4du0aevfuDQB46qmnUFZWhuzsbPTq1UvvcQICAvDzzz/rLDt16lSt53/66aeRlZWFFi1awM/Pr9ptkpOT0bFjx2qPY2dnh+HDh2P48OF44403EBAQgAsXLuDpp5+udh9D6nXkyBFERERg3LhxACqSl+vXr+Pxxx+XtpHJZAgLC0NYWBjeffdd+Pr6IiEhAbNnz4ZcLq9y/Ymo7vjUDJm1vLw8nD17VueVlpaGqVOnIj09HdOnT8fVq1fx7bffIiYmBrNnz4aVlWEf6xdeeAEdOnRAZGQkzp8/j2PHjuHtt98GULW1opKvry9kMhl27NiB33//HQUFBQCAfv364YsvvsCRI0dw8eJFREZG6vxFPmDAAHTu3BkTJkzAuXPncOTIEelclcaOHQs3NzdERETgyJEjSElJwaFDhzBz5kzcvn3b4PfMwcEBkydPxrx587Bv3z5cvHgRUVFROu9Lp06dMHbsWEyYMAHbt29HSkoKfvnlF/z1r3/FDz/8AACYPn06fvjhB6xatQrXr1/H+vXrsWvXrlpbkQYMGIDQ0FCMGDECe/bsQWpqKn766ScsXrxYSmTeffddbN68GbGxsbh06RKuXLmCrVu3YvHixQCAjRs34rPPPsPFixdx69YtfPHFF7Czs4Ovr2+N5zakXh07dpRaPK5cuYL/+7//Q1ZWlnSMkydP4r333sOpU6eQlpaG7du34/fff5cSFT8/P5w/fx7Jycn4448/HulHlokahIn6phDVKjIyUgCo8oqMjBRCCHHw4EHxzDPPCLlcLpRKpViwYIEoKSmR9u/du7fUObNSRESEtL8QQly5ckWEhYUJuVwuAgICxPfffy8AiN27dwshqnZWFUKIpUuXCqVSKWQymXSsvLw88fLLLwsnJyfh7e0tNm7cqNNZVQghkpOTRc+ePYVcLhedOnUSu3fv1umsKoQQmZmZYsKECcLNzU0oFArh7+8voqOjRV5ent73qLrOs/n5+WLcuHGiZcuWok2bNuKDDz6o8n4UFxeLd999V/j5+QkbGxuhVCrFyJEjxfnz56VtPvnkE9G2bVthZ2cnRowYIZYtWyaUSqW0PiYmRgQHB1eJS6VSienTpwsvLy9hY2MjvL29xdixY0VaWpq0ze7du8Vzzz0n7OzshJOTk+jevbv45JNPhBBCJCQkiB49eggnJydhb28vnn32WfHjjz/qfQ8eVlu9cnJyREREhHBwcBAeHh5i8eLFYsKECVIH1MuXL4uBAwcKd3d3oVAoRKdOncTatWul42dnZ4sXXnhBODg4CADiwIED0jp2ViUynkwIA24oEz0ijh07hp49e+LGjRvo0KGDqcOp1cGDB9G3b1/k5uY2yYBm0dHRuHr1Ko4cOdLo57JEGzduxKxZs8xu5F0ic8Y+IvRIS0hIgIODAx577DHcuHEDM2fORFhYmEUkIdratWuHYcOGVRmYq75WrlyJF154Afb29ti1axc2bdqEdevWNeg5mgsHBweUlpbC1tbW1KEQWRQmIvRIy8/Px/z585Geng43NzcMGDBA7yik5qpHjx64fv06AM1TIQ3p559/xgcffID8/Hz4+/tjzZo1eO211xr8PIY6cuQIBg8eXO36yj47plA5MeLDT+sQUc14a4aILMb9+/eRkZFR7fqansIhIvPERISIiIhMho/vEhERkckwESEiIiKTYSJCREREJsNEhIiIiEyGiQgRERGZDBMRIiIiMhkmIkRERGQy/w/qANQ/fBbvEQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(figsize=(6, 12), nrows=3)\n", + "\n", + "# temperature\n", + "ds = dsd[\"Amon.tas\"][\"tas\"].mean(dim=\"time\") - 273.15 # to [C]\n", + "ds.plot(ax=axs[0], cmap=\"bwr\", vmin=-40, vmax=40, cbar_kwargs={\"label\": \"tas [C]\"})\n", + "\n", + "# precipitation\n", + "ds = dsd[\"Amon.pr\"][\"pr\"].mean(dim=\"time\") * 86400 / 999.8 * 1000 # to [mm d-1]\n", + "ds.plot(ax=axs[1], cmap=\"Blues\", vmax=10, cbar_kwargs={\"label\": \"pr [mm d-1]\"})\n", + "\n", + "# gross primary productivty\n", + "ds = dsd[\"Lmon.gpp\"][\"gpp\"].mean(dim=\"time\") * 86400 * 1000 # to [g m-2 d-1]\n", + "ds.plot(ax=axs[2], cmap=\"Greens\", cbar_kwargs={\"label\": \"gpp [g m-2 d-1]\"});" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Summary\n", + "\n", + "`intake-esgf` becomes the way that you download or locate data as well as load it into memory. It is a full specification of what your analysis is about and makes your script portable to other machines or even in use with serverside computing. We are actively developing this codebase. Let us [know](https://github.com/esgf2-us/intake-esgf/issues) what other features you would like to see." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_preview/32/_sources/notebooks/notebook-template.ipynb b/_preview/32/_sources/notebooks/notebook-template.ipynb new file mode 100644 index 0000000..dad9f26 --- /dev/null +++ b/_preview/32/_sources/notebooks/notebook-template.ipynb @@ -0,0 +1,358 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's start here! If you can directly link to an image relevant to your notebook, such as [canonical logos](https://github.com/numpy/numpy/blob/main/doc/source/_static/numpylogo.svg), do so here at the top of your notebook. You can do this with Markdown syntax,\n", + "\n", + "> `![](http://link.com/to/image.png \"image alt text\")`\n", + "\n", + "or edit this cell to see raw HTML `img` demonstration. This is preferred if you need to shrink your embedded image. **Either way be sure to include `alt` text for any embedded images to make your content more accessible.**\n", + "\n", + "\"Project" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Project Pythia Notebook Template\n", + "\n", + "Next, title your notebook appropriately with a top-level Markdown header, `#`. Do not use this level header anywhere else in the notebook. Our book build process will use this title in the navbar, table of contents, etc. Keep it short, keep it descriptive. Follow this with a `---` cell to visually distinguish the transition to the prerequisites section." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overview\n", + "If you have an introductory paragraph, lead with it here! Keep it short and tied to your material, then be sure to continue into the required list of topics below,\n", + "\n", + "1. This is a numbered list of the specific topics\n", + "1. These should map approximately to your main sections of content\n", + "1. Or each second-level, `##`, header in your notebook\n", + "1. Keep the size and scope of your notebook in check\n", + "1. And be sure to let the reader know up front the important concepts they'll be leaving with" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prerequisites\n", + "This section was inspired by [this template](https://github.com/alan-turing-institute/the-turing-way/blob/master/book/templates/chapter-template/chapter-landing-page.md) of the wonderful [The Turing Way](https://the-turing-way.netlify.app) Jupyter Book.\n", + "\n", + "Following your overview, tell your reader what concepts, packages, or other background information they'll **need** before learning your material. Tie this explicitly with links to other pages here in Foundations or to relevant external resources. Remove this body text, then populate the Markdown table, denoted in this cell with `|` vertical brackets, below, and fill out the information following. In this table, lay out prerequisite concepts by explicitly linking to other Foundations material or external resources, or describe generally helpful concepts.\n", + "\n", + "Label the importance of each concept explicitly as **helpful/necessary**.\n", + "\n", + "| Concepts | Importance | Notes |\n", + "| --- | --- | --- |\n", + "| [Intro to Cartopy](https://foundations.projectpythia.org/core/cartopy/cartopy.html) | Necessary | |\n", + "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n", + "| Project management | Helpful | |\n", + "\n", + "- **Time to learn**: estimate in minutes. For a rough idea, use 5 mins per subsection, 10 if longer; add these up for a total. Safer to round up and overestimate.\n", + "- **System requirements**:\n", + " - Populate with any system, version, or non-Python software requirements if necessary\n", + " - Otherwise use the concepts table above and the Imports section below to describe required packages as necessary\n", + " - If no extra requirements, remove the **System requirements** point altogether" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Imports\n", + "Begin your body of content with another `---` divider before continuing into this section, then remove this body text and populate the following code cell with all necessary Python imports **up-front**:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import sys" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Your first content section" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is where you begin your first section of material, loosely tied to your objectives stated up front. Tie together your notebook as a narrative, with interspersed Markdown text, images, and more as necessary," + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# as well as any and all of your code cells\n", + "print(\"Hello world!\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### A content subsection\n", + "Divide and conquer your objectives with Markdown subsections, which will populate the helpful navbar in Jupyter Lab and here on the Jupyter Book!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# some subsection code\n", + "new = \"helpful information\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Another content subsection\n", + "Keep up the good work! A note, *try to avoid using code comments as narrative*, and instead let them only exist as brief clarifications where necessary." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Your second content section\n", + "Here we can move on to our second objective, and we can demonstrate" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Subsection to the second section\n", + "\n", + "#### a quick demonstration\n", + "\n", + "##### of further and further\n", + "\n", + "###### header levels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "as well $m = a * t / h$ text! Similarly, you have access to other $\\LaTeX$ equation [**functionality**](https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Typesetting%20Equations.html) via MathJax (demo below from link),\n", + "\n", + "\\begin{align}\n", + "\\dot{x} & = \\sigma(y-x) \\\\\n", + "\\dot{y} & = \\rho x - y - xz \\\\\n", + "\\dot{z} & = -\\beta z + xy\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Check out [**any number of helpful Markdown resources**](https://www.markdownguide.org/basic-syntax/) for further customizing your notebooks and the [**Jupyter docs**](https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working%20With%20Markdown%20Cells.html) for Jupyter-specific formatting information. Don't hesitate to ask questions if you have problems getting it to look *just right*." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Last Section\n", + "\n", + "If you're comfortable, and as we briefly used for our embedded logo up top, you can embed raw html into Jupyter Markdown cells (edit to see):" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

Info

\n", + " Your relevant information here!\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Feel free to copy this around and edit or play around with yourself. Some other `admonitions` you can put in:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

Success

\n", + " We got this done after all!\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

Warning

\n", + " Be careful!\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

Danger

\n", + " Scary stuff be here.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also suggest checking out Jupyter Book's [brief demonstration](https://jupyterbook.org/content/metadata.html#jupyter-cell-tags) on adding cell tags to your cells in Jupyter Notebook, Lab, or manually. Using these cell tags can allow you to [customize](https://jupyterbook.org/interactive/hiding.html) how your code content is displayed and even [demonstrate errors](https://jupyterbook.org/content/execute.html#dealing-with-code-that-raises-errors) without altogether crashing our loyal army of machines!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Summary\n", + "Add one final `---` marking the end of your body of content, and then conclude with a brief single paragraph summarizing at a high level the key pieces that were learned and how they tied to your objectives. Look to reiterate what the most important takeaways were.\n", + "\n", + "### What's next?\n", + "Let Jupyter book tie this to the next (sequential) piece of content that people could move on to down below and in the sidebar. However, if this page uniquely enables your reader to tackle other nonsequential concepts throughout this book, or even external content, link to it here!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Resources and references\n", + "Finally, be rigorous in your citations and references as necessary. Give credit where credit is due. Also, feel free to link to relevant external material, further reading, documentation, etc. Then you're done! Give yourself a quick review, a high five, and send us a pull request. A few final notes:\n", + " - `Kernel > Restart Kernel and Run All Cells...` to confirm that your notebook will cleanly run from start to finish\n", + " - `Kernel > Restart Kernel and Clear All Outputs...` before committing your notebook, our machines will do the heavy lifting\n", + " - Take credit! Provide author contact information if you'd like; if so, consider adding information here at the bottom of your notebook\n", + " - Give credit! Attribute appropriate authorship for referenced code, information, images, etc.\n", + " - Only include what you're legally allowed: **no copyright infringement or plagiarism**\n", + " \n", + "Thank you for your contribution!" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + }, + "nbdime-conflicts": { + "local_diff": [ + { + "diff": [ + { + "diff": [ + { + "key": 0, + "op": "addrange", + "valuelist": [ + "Python 3" + ] + }, + { + "key": 0, + "length": 1, + "op": "removerange" + } + ], + "key": "display_name", + "op": "patch" + } + ], + "key": "kernelspec", + "op": "patch" + } + ], + "remote_diff": [ + { + "diff": [ + { + "diff": [ + { + "key": 0, + "op": "addrange", + "valuelist": [ + "Python3" + ] + }, + { + "key": 0, + "length": 1, + "op": "removerange" + } + ], + "key": "display_name", + "op": "patch" + } + ], + "key": "kernelspec", + "op": "patch" + } + ] + }, + "toc-autonumbering": false + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/_preview/32/_sources/notebooks/rooki.ipynb b/_preview/32/_sources/notebooks/rooki.ipynb new file mode 100644 index 0000000..0977036 --- /dev/null +++ b/_preview/32/_sources/notebooks/rooki.ipynb @@ -0,0 +1,1454 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "931a4b84-bb67-44e4-aa91-30f3d8bcc529", + "metadata": { + "tags": [] + }, + "source": [ + "# Compute Demo: Use Rooki to access CMIP6 data" + ] + }, + { + "cell_type": "markdown", + "id": "81f6c01b-1e08-463d-90d5-b9e7be5a61ac", + "metadata": { + "tags": [] + }, + "source": [ + "## Overview\n", + "\n", + "[Rooki](https://github.com/roocs/rooki) is a Python client to interact with [Rook](https://github.com/roocs/rook) data subsetting service for climate model data. This service is used in the backend by the [European Copernicus Climate Data Store](https://cds.climate.copernicus.eu) to access the CMIP6 data pool. The Rook service is deployed for load-balancing at IPSL (Paris) and DKRZ (Hamburg). The CMIP6 data pool is shared with ESGF. The provided CMIP6 subset for Copernicus is synchronized at both sites. \n", + "\n", + "*Rook* provides operators for *subsetting*, *averaging* and *regridding* to retrieve a subset of the CMIP6 data pool. These operators are implemented by the [clisops](https://github.com/roocs/clisops) Python libray and are based on [xarray](https://pypi.org/project/xarray/). The *clisops* library is developed by Ouranos (Canada), CEDA (UK) and DKRZ (Germany). \n", + "\n", + "The operators can be called remotly using the [OGC Web Processing Service](https://ogcapi.ogc.org/processes/) (WPS) standard.\n", + "\n", + "![rook 4 cds](https://github.com/atmodatcode/tgif_copernicus/raw/main/media/rook.png)\n", + "\n", + "**ROOK**: **R**emote **O**perations **O**n **K**limadaten\n", + "\n", + "* Rook: https://github.com/roocs/rook\n", + "* Rooki: https://github.com/roocs/rooki\n", + "* Clisops: https://github.com/roocs/clisops\n", + "* Rook Presentation: https://github.com/cehbrecht/talk-rook-status-kickoff-meeting-2022/blob/main/Rook_C3S2_380_2022-02-11.pdf" + ] + }, + { + "cell_type": "markdown", + "id": "31d3693d-4e01-4982-b1d0-dffcd2a13157", + "metadata": { + "tags": [] + }, + "source": [ + "## Prerequisites\n", + "\n", + "| Concepts | Importance | Notes |\n", + "| --- | --- | --- |\n", + "| [Intro to Xarray](https://foundations.projectpythia.org/core/xarray/xarray-intro.html) | Necessary | |\n", + "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n", + "| [Knowing OGC services](https://ogcapi.ogc.org/processes/) | Helpful | Understanding of the service interfaces |\n", + "\n", + "\n", + "- **Time to learn**: 15 minutes" + ] + }, + { + "cell_type": "markdown", + "id": "288086a4", + "metadata": {}, + "source": [ + "## Init Rooki" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a2339b90", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.environ['ROOK_URL'] = 'http://rook.dkrz.de/wps'\n", + "\n", + "from rooki import rooki" + ] + }, + { + "cell_type": "markdown", + "id": "d6ed87c2", + "metadata": {}, + "source": [ + "## Retrieve subset of CMIP6 data\n", + "\n", + "The CMIP6 dataset is identified by a dataset-id. An intake catalog as available to lookup the available datasets:\n", + "\n", + "https://nbviewer.org/github/roocs/rooki/blob/master/notebooks/demo/demo-intake-catalog.ipynb" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "6e071b15", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "resp = rooki.subset(\n", + " collection='c3s-cmip6.CMIP.MPI-M.MPI-ESM1-2-HR.historical.r1i1p1f1.Amon.tas.gn.v20190710',\n", + " time='2000-01-01/2000-01-31',\n", + " area='-30,-40,70,80',\n", + ")\n", + "resp.ok" + ] + }, + { + "cell_type": "markdown", + "id": "f822b3c8", + "metadata": {}, + "source": [ + "### Open Dataset with xarray" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "eacbecbd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading to /var/folders/5f/t661zdnd181ck1dv429s4p8r0000gn/T/metalink_c868rf7f/tas_Amon_MPI-ESM1-2-HR_historical_r1i1p1f1_gn_20000116-20000116.nc.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 61kB\n",
+       "Dimensions:    (time: 1, bnds: 2, lat: 129, lon: 107)\n",
+       "Coordinates:\n",
+       "  * time       (time) datetime64[ns] 8B 2000-01-16T12:00:00\n",
+       "  * lat        (lat) float64 1kB -39.74 -38.81 -37.87 ... 78.08 79.01 79.95\n",
+       "  * lon        (lon) float64 856B -30.0 -29.06 -28.12 ... 67.5 68.44 69.38\n",
+       "    height     float64 8B ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    time_bnds  (time, bnds) datetime64[ns] 16B ...\n",
+       "    lat_bnds   (lat, bnds) float64 2kB ...\n",
+       "    lon_bnds   (lon, bnds) float64 2kB ...\n",
+       "    tas        (time, lat, lon) float32 55kB ...\n",
+       "Attributes: (12/47)\n",
+       "    Conventions:            CF-1.7 CMIP-6.2\n",
+       "    activity_id:            CMIP\n",
+       "    branch_method:          standard\n",
+       "    branch_time_in_child:   0.0\n",
+       "    branch_time_in_parent:  0.0\n",
+       "    contact:                cmip6-mpi-esm@dkrz.de\n",
+       "    ...                     ...\n",
+       "    title:                  MPI-ESM1-2-HR output prepared for CMIP6\n",
+       "    variable_id:            tas\n",
+       "    variant_label:          r1i1p1f1\n",
+       "    license:                CMIP6 model data produced by MPI-M is licensed un...\n",
+       "    cmor_version:           3.5.0\n",
+       "    tracking_id:            hdl:21.14100/af75dd9f-d9c2-4e0e-a294-2bb0d5b740cf
" + ], + "text/plain": [ + " Size: 61kB\n", + "Dimensions: (time: 1, bnds: 2, lat: 129, lon: 107)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 8B 2000-01-16T12:00:00\n", + " * lat (lat) float64 1kB -39.74 -38.81 -37.87 ... 78.08 79.01 79.95\n", + " * lon (lon) float64 856B -30.0 -29.06 -28.12 ... 67.5 68.44 69.38\n", + " height float64 8B ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " time_bnds (time, bnds) datetime64[ns] 16B ...\n", + " lat_bnds (lat, bnds) float64 2kB ...\n", + " lon_bnds (lon, bnds) float64 2kB ...\n", + " tas (time, lat, lon) float32 55kB ...\n", + "Attributes: (12/47)\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " activity_id: CMIP\n", + " branch_method: standard\n", + " branch_time_in_child: 0.0\n", + " branch_time_in_parent: 0.0\n", + " contact: cmip6-mpi-esm@dkrz.de\n", + " ... ...\n", + " title: MPI-ESM1-2-HR output prepared for CMIP6\n", + " variable_id: tas\n", + " variant_label: r1i1p1f1\n", + " license: CMIP6 model data produced by MPI-M is licensed un...\n", + " cmor_version: 3.5.0\n", + " tracking_id: hdl:21.14100/af75dd9f-d9c2-4e0e-a294-2bb0d5b740cf" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds = resp.datasets()[0]\n", + "ds" + ] + }, + { + "cell_type": "markdown", + "id": "46301d38", + "metadata": {}, + "source": [ + "### Plot CMIP6 Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "05482a1d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAHFCAYAAAAExnZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADdhElEQVR4nOydeXgUVdbG3+otnYQkEJaEALIoomyKgAoyAsrmijLfoKKyuoIwCLgwjLIooKAI4oKMCigCKoKKCoIKOAjMsCmCCoooDBJRliSQrZf6/ojpvvdU+lZXupPumPN7njx0dd26dWrl9nnvOUfTdV0HwzAMwzAMY4ot1gYwDMMwDMNUFXjgxDAMwzAMEyY8cGIYhmEYhgkTHjgxDMMwDMOECQ+cGIZhGIZhwoQHTgzDMAzDMGHCAyeGYRiGYZgw4YETwzAMwzBMmPDAiWEYhmEYJkx44KRg8+bNmDRpEk6dOmVY161bN3Tr1q3SbaoM9u/fj3HjxqF9+/aoWbMm0tPTcdlll2H58uVltj927BgGDx6MOnXqICkpCZ06dcKnn35aZttPPvkEnTp1QlJSEurUqYPBgwfj2LFjhnYejweTJ09GkyZNkJCQgPPOOw9z5861dBzh2vXBBx9g4MCBaNOmDZxOJzRNs7QfAJg9ezb69euHpk2bQtM003vjvffeQ9euXZGamork5GS0atUK8+fPBwBMmjQJmqaZ/pXuY+/evRg+fDg6deqE5ORkaJqGDRs2GPZ59OhR/POf/0SnTp1Qp04dpKamon379pg/fz58Pl/Yx/rjjz+iX79+qFmzJmrUqIGePXti586dZbZdtmwZLrzwQrjdbmRlZWH06NE4ffp0XO6L0qRJE1x77bXl3r4sNE3DpEmTKtSeb775BpMmTcJPP/1Urv1Ewo4dOzBixAi0adMGKSkpyMjIQI8ePfDZZ5+F3cfp06cxevRoZGVlwe1248ILL8SyZcvC2rZbt26B5yPa1+6GG24I9N26deuo9s1UMXQmJDNnztQB6AcPHjSs27t3r753797KN6oSmDt3rn7eeefpU6dO1deuXat/9NFH+qBBg3QA+uTJk6W2hYWFeuvWrfWGDRvqixcv1teuXav37dtXdzgc+oYNG6S2GzZs0B0Oh963b1997dq1+uLFi/UGDRrorVu31gsLC6W2d9xxh56QkKDPmDFDX79+vf7www/rmqbpU6dODesYrNg1dOhQvXnz5nr//v319u3b6+V5LFq0aKFfdNFF+tChQ/W6devqXbt2Ddl2+vTpus1m04cPH66vXr1a/+STT/TnnntOnzt3rq7run748GF9y5Ytgb8VK1boAPSRI0dK35fefwsXLtTr16+vX3311fp1112nA9DXr19v2O+qVav0Ro0a6RMmTNA//PBDfe3atfr999+v22w2fciQIWEd57Fjx/SsrCy9VatW+jvvvKN/+OGHepcuXfSUlBT9u+++k9ouXrxYB6Dfcccd+meffabPmzdPT0tL03v27Bl3+yqLxo0b69dcc025ty+LLVu26IcPH65Qe95+++2Q90BFM3bsWL1Dhw76rFmz9E8//VR///339auvvloHoC9atCisPnr27KnXrFlTnzdvnv7ZZ5/pd9xxhw5Af+ONN0y37dq1q96uXTt9y5YthnskUvbt26dv2bJFb9eund6qVauo9s1ULXjgpEA1cPoz89tvv+l+v9/w/TXXXKMnJSVJg5znn39eB6Bv3rw58J3H49FbtmypX3zxxdL2HTt21Fu2bKl7PJ7Ad1988YUOQH/hhRcC3+3Zs0fXNE2fNm2atP2dd96pJyYm6sePHzc9Bit2+Xy+wOcRI0aUa+Ak9tGqVauQA6ft27frNptNf/LJJ8Pu++DBgzoAfebMmab7Vv2neeLECb24uNjwfekxHzp0yNSWBx54QHc6nfpPP/0U+C4nJ0evU6eO3r9//8B3Xq9Xr1+/vt6rVy9p+zfeeEMHoH/00Udxta+yqIiBUyRUhYHTr7/+avjO6/Xqbdu21c8++2zT7T/88EMdgL5kyRLp+549e+pZWVm61+tVbt+1a1flj5Zo0LVrVx44VXNYqgvBpEmT8MADDwBAQH4RJRAq1f3000/QNA0zZ87Ek08+iSZNmiAxMRHdunXD/v374fF48PDDDyMrKwtpaWm48cYby5So3nzzzYDkUqNGDfTu3Ru7du2qjEMOUKdOnTLlqosvvhj5+fk4ceJE4LuVK1eiRYsW6NSpU+A7h8OB2267Df/9739x5MgRAMCRI0ewbds23H777XA4HIG2nTt3xrnnnouVK1cGvnv33Xeh6zqGDBki7X/IkCEoKCjAmjVrTI8hXLsAwGaL/DEIt4/nnnsOCQkJGDlyZMT7tLrvWrVqwel0Gr6/+OKLAQD/+9//TPtYuXIlrrjiCjRu3DjwXWpqKvr164dVq1bB6/UCALZu3YqjR48aruHf/vY31KhRQ7re8bAvFWvWrMFFF12ExMREnHfeeXj11VcNbbKzs3H33XejYcOGcLlcaNq0KSZPnhywsZSypLpNmzahU6dOcLvdaNCgAR555BG8/PLL0DStTLlNZc/ChQvxt7/9DQDQvXv3wHtr4cKFEZ2DcKlXr57hO7vdjvbt2+Pw4cOm269cuRI1atQIHEMpQ4YMwS+//IL//Oc/5bIrWu9nhgF4jlNI7rjjjsB/bitWrMCWLVuwZcsWXHTRRcrtnn/+eXzxxRd4/vnn8fLLL+O7777Dddddh2HDhuG3337Dq6++ihkzZuCTTz7BHXfcIW07bdo03HLLLWjZsiXeeustvP7668jLy8Nf/vIXfPPNN6Y2e73esP50XS/XOVm/fj3q1q0rvRz37NmDtm3bGtqWfrd3795AO/F72rZ0fWnbunXrIjMzs8w+xbahCNeuyubzzz/H+eefj3feeQctWrSA3W5Hw4YN8fDDD6O4uDgmNn322WdwOBw499xzpe/pXK2CggIcOHAg5HktKCjAjz/+CCD09XY6nTjvvPMM17Ay92WFr776CmPHjsX999+P9957D23btsWwYcPw+eefB9pkZ2fj4osvxscff4xHH30Uq1evxrBhwzB9+nTceeedyv53796Nnj17Ij8/H4sWLcK8efOwc+dOTJ06tVz2XHPNNZg2bRqAkndR6XvrmmuuCWmDruthvzvKg9frxb///W+0atXKtO2ePXtw/vnnSz+uAGvPvopI3s8MU4rDvEn1pGHDhjjrrLMAAO3atUOTJk3C2q5mzZp49913A16A33//HaNHj8Z5552H9957L9Duu+++w+zZs5Gbm4vU1FQcPnwYEydOxH333Ydnn3020K5nz55o3rw5Jk+ejDfffDPkfn/66Sc0bdo0LBvXr19veWL7yy+/jA0bNmDOnDmw2+2B748fP4709HRD+9Lvjh8/Lv0bqm3pelWfycnJcLlcUttQhGtXZXPkyBH89ttvGDVqFB577DG0bNkSn376KZ544gkcPnwYb7zxRqXas3btWrz++uv4+9//jtq1a0vr7Ha7dK1PnjwJXdejcr2pJ6Uy92WF33//HV988UXgXXD55Zfj008/xZIlS3D55ZcDKPFOnzx5Env37g20u/LKK5GYmIhx48bhgQceQMuWLcvs//HHH4fdbsenn36KOnXqACgZ/LRp06Zc9tStWxfNmzcHALRs2RKXXnqp6TFu3LgR3bt3D+t8HDx4MOx3YSmTJk3CDz/8gHfffde07fHjx9GsWTPD99F6bsv7fmYYER44RZmrr75akk7OP/98ADD84iv9/tChQ2jdujU+/vhjeL1eDBw4UPpl53a70bVrV6xfv16536ysLGzbti0sG1u0aBFWu1JWr16NESNG4P/+7//KlJhUUWh0Xai24bYT1+m6bogGE3+pWrErHOgvbrvdbrkfv9+PvLw8LF26FDfffDOAEknlzJkzmD17NiZPnoxzzjnHsm3lYefOnejfvz8uvfRSTJ8+3bA+lIehIq53Ze7LChdeeGFgkAKUPI/nnnsufv7558B3H3zwAbp3746srCzpOK666iqMGzcOGzduDDlw2rhxI6644orAoAkokV779+9fZvRdOPZYpX379mG/O7Kysiz1/fLLL2Pq1KkYO3Ys+vbtG9Y20X5uRcr7fmYYER44RRn6q9flcim/LywsBAD8+uuvAICOHTuW2a/ZPBaXy4ULL7wwLBvFX/ZmfPzxx+jXrx969uyJN954w/Diql27dpm/AkvnQZUed6k3I1Rb8fzUrl0bX375paHdmTNnUFxcHGi7aNEiw7yWUhkyXLusQOcHLViwAIMHD7bUR+3atZGdnY3evXtL31911VWYPXs2du7cWSkDp127dgW8mR999BESEhJMt6lVqxY0TbN8vTMyMgxtzc5/Ze5LBfXCAUBCQgIKCgoCy7/++itWrVpV5vwxoMSrEYqybAZQ5nfh2mOVGjVqhP3uoBKaigULFuDuu+/GXXfdhZkzZ4a1TUU8tyLlfT8zjAgPnOKE0l+cy5cvlybDhktFSHUff/wxbrjhBnTt2hXvvPNO4GUi0qZNG3z99deG70u/K/21Vvrv119/jauvvtrQVvxV16ZNGyxbtgzZ2dnSPCfa53XXXRfyl3K4dlmB7ivc8y3Stm1bZGdnG74vHfBFY6K6Gbt27UKPHj3QuHFjrF27FmlpaWFtl5iYiHPOOSfkeU1MTAzILKVS09dffy15W7xeL7777jvccsstcbOvSKlTpw7atm0bcl6SyktTu3btwI8mkbLukYqiIqS6BQsW4I477sCgQYMwb968sD1Fbdq0wdKlS+H1eqVBWiTPLcNEGx44KSj9FR7Jr7lw6d27NxwOBw4cOIC//vWvlrePtlS3du1a3HDDDejSpQvefffdkB6JG2+8EcOHD8d//vMfXHLJJQBK/sNavHgxLrnkksB/Gg0aNMDFF1+MxYsXY9y4cQGv19atW7Fv3z6MHj060Gffvn3xz3/+E4sWLcJDDz0U+H7hwoVITExEnz59AJT8p1PWL3ArdlmhQ4cOlreh/PWvf8XatWuxevVqDBgwIPD9Rx99BJvNFtLjGC2+/PJL9OjRAw0bNsS6detQq1YtS9vfeOONmD17Ng4fPoxGjRoBAPLy8rBixQpcf/31gf/sLrnkEtSvXx8LFy7ETTfdFNh++fLlOH36NPr16xdX+4qEa6+9Fh999BHOPvtsy+eza9eu+Oijj/D7778Hfjz5/X68/fbb5bbH6nsr2lLdwoULcccdd+C2224LRAeGy4033oh//etfeOedd6RruWjRImRlZQWeZYaJJTxwUlD6S3bOnDkYNGgQnE4nWrRogZSUlKjvq0mTJpgyZQomTJiAH3/8EX369EGtWrXw66+/4r///S+Sk5MxefLkkNu7XK6o/McOlIRH33DDDcjMzMQ//vEPg2zWsmXLwITJoUOH4vnnn8ff/vY3PPHEE6hXrx5eeOEF7Nu3D5988om03ZNPPomePXvib3/7G4YPH45jx47h4YcfRuvWrSXJrVWrVhg2bBgmTpwIu92Ojh07Yu3atZg/fz4ef/zxsNz1Vuz6+eefA/9xHDhwAAACWdKbNGkS1nndvn17YBJybm4udF0P9NGxY8eAF3HIkCF46aWXMHz4cPz+++9o2bIlPvnkEzz//PMYPnx4ubyN+fn5+OijjwCUDESBEi/C77//juTkZFx11VUAgH379qFHjx4AgKlTp+L777/H999/H+jn7LPPRt26dQPLDocDXbt2lbKtjxs3Dq+//jquueYaTJkyBQkJCXjiiSdQWFgozcmx2+2YMWMGbr/9dtx999245ZZb8P333+PBBx9Ez549A4PfWOxL0zR07dq1zOzq5WHKlClYt24dOnfujFGjRqFFixYoLCzETz/9hI8++gjz5s1Dw4YNy9x2woQJWLVqFa688kpMmDABiYmJmDdvHs6cOQOgfB7IUq/M/PnzkZKSArfbjaZNm4b8kZGSkhK1d8fbb7+NYcOG4cILL8Tdd9+N//73v9L6du3aBQZ2U6ZMwZQpU/Dpp5+ia9euAEok6549e+Lee+9Fbm4uzjnnHCxduhRr1qzB4sWLLU0zYJgKI2YZpKoI48eP17OysnSbzSYllaOJ1kIlKVy/fr0OQH/77bel7xcsWKAD0Ldt2yZ9/+677+rdu3fXU1NT9YSEBL1x48b6//3f/+mffPJJhRxfWUycOFEHEPKPJtbLzs7WBw4cqKenp+tut1u/9NJL9XXr1pXZ99q1a/VLL71Ud7vdenp6uj5w4MAyk+YVFxfrEydO1M866yzd5XLp5557rv7ss89aOo5w7Sq9FmX9DRo0KKx9lWZWL+tvwYIFUtvjx4/rd999t56RkaE7nU793HPP1WfOnCklshQxS4BZur6sv8aNG4d1nGXZCaDMZII//PCDfsMNN+ipqal6UlKSfuWVV+o7duwo07YlS5bobdu21V0ul56ZmamPGjVKz8vLM7SrrH3l5eXpAPSbb765zD5EQiWcLCvJ4m+//aaPGjVKb9q0qe50OvX09HS9ffv2+oQJE/TTp09Lxzlx4kRp23//+9/6JZdcoickJOiZmZn6Aw88oD/55JM6AP3UqVPlsmf27Nl606ZNdbvdXua1rShUzwFIMuHS9wx9n+Tl5emjRo3SMzMzdZfLpbdt21ZfunRpWPsPlQAzWu/n0n1wAszqjabr5UzqwzAMU8X46KOPcO211+Krr74KGfIfD/Tq1Qs//fQT9u/fH2tTqhTdunWDruv49NNPYbPZojpn0O/3w+/348orr8Tx48cjzinFVF1YqmMYptqwfv163HzzzXE1aBozZgzatWuHRo0a4cSJE3jjjTewbt06vPLKK7E2rUry+eefw+l04pprrsEHH3wQtX779esXyPUUTjJP5s8Le5wYhmFiyN///ne8//77yM7OhqZpaNmyJUaPHo3bbrst1qZVOfbt24e8vDwAJckuo5na48CBAzh58iSAkqhPHjxVX3jgxDAMwzAMEyZcq45hGIZhGCZMqszAyev14p///CeaNm0aSH43ZcoU+P3+QBtd1zFp0iRkZWUFKl/HqpgrwzAMwzB/PqrMwOnJJ5/EvHnz8Nxzz+Hbb7/FjBkzMHPmTMydOzfQZsaMGZg1axaee+45bNu2DZmZmejZs2dA82YYhmEYhomEKjPH6dprr0VGRoYUafLXv/4VSUlJeP3116HrOrKysjB69OhAtumioiJkZGTgySefxN133x3Wfvx+P3755RekpKREXFCSYRiG+XOj6zry8vKQlZVVYSWTCgsLUVxcHJW+XC4X3G53VPqqrlSZdARdunTBvHnzsH//fpx77rn46quvsGnTJsyePRtASQ2l7Oxs9OrVK7BNQkICunbtis2bN4ccOBUVFaGoqCiwfOTIkZCVzBmGYRimLA4fPhwyQ3wkFBYWomnjGsg+5otKf5mZmTh48CAPniKgygycHnroIeTk5OC8886D3W6Hz+fD1KlTAwU8S4ti0qriGRkZ+Pnnn0P2O3369DJLmXQ7ewQc9pLSALroebJH4IWiHixhWafr6A8Xm7xeF5Z1+iuHtPUmBy+zn/bjoP2Gtpmu0w02qfoh29LTaMW7p2hq7De8dWWtp8cnrwttg8q+sNarEPzDznzZWexJVHesKXzLjny//EW0rge9ZyxcH79D0bHVc2ihvcHGcu7H6v1W7l2aaQbC+opqa2ldOH2Xd79RQrMgxPiKC/H1m49VSCkuACguLkb2MR8O7miM1JTIPFq5eX40bf8ziouLeeAUAVVm4PTmm29i8eLFWLJkCVq1aoUvv/wSo0ePRlZWFgYNGhRoR+U1XdeVktv48eMxZsyYwHJubi4aNWoEhz0hzgZO8he6YIfZwAlClXE/sb8qDJzM/gMKt+2fbeBk98ovd78rgoGTJ/yBk6XrEcHASeOBU3i75IFT1LEycApsU8FTO1JTbBEPnJjoUGUGTg888AAefvhh3HzzzQBKCvD+/PPPmD59OgYNGoTMzEwAJZ6n+vXrB7Y7duyYwQslkpCQECg6KVFQANhK/jPRbEJhSTsdpIQetBgGNLQ+pfigKQYsgDxQAgCfWxgMuezKtuLgiP5HZhhIqQZH9MVPjkf6j8DkJWIcpCgal3OgZL5P+j+1on0l/SdIof/BiF4mjYx1XKfJFwSbN/iZXjvDf0aq/9nIefO4Q99f9L5WXnfTwXVok6KKeOhRHKBZOh7F6aeXxtCUfqGHuY6YZLDXcI8o7DLZVvm8mI1ZxFdSBQ2iDD9kFfsxtK0gfLofvgiP16er3xFMeFSZ4Wt+fr5h4p3dbg+kI2jatCkyMzOxbt26wPri4mJs3LgRnTt3rlRbGYZhGCaa+KFH5Y+JnCrjcbruuuswdepUnHXWWWjVqhV27dqFWbNmYejQoQBK3KSjR4/GtGnT0Lx5czRv3hzTpk1DUlISBgwYEGPrGYZhGIb5M1BlBk5z587FI488guHDh+PYsWPIysrC3XffjUcffTTQ5sEHH0RBQQGGDx+OkydP4pJLLsHatWvLNWlPP50P/Q9tQ7MLuoaDnDInXXYGPmpOIoMR/7Xk4lXMYSrpLHx3sGpeiZmkZHB962V+LPMLlZvfVJrTQq9Tz4upQLktWvNVoujJ94nzmMj5T8gljak8Is5BozIrOec+4d41yHr0lCu8/37yePhciv1WoPyplHTi4Ee4lflEdPqN4TTR9YptDfeIFZtoVxbaR3I9NAvvJCUm0mO42yqnGUQRP/yIVGiLvAcGqEJ5nCqL3NxcpKWl4cpag+Cwlbzlyztwout0Bx0cif1aGzj5EoLb0jlOfjpgkyaSy92azvMR52yZzHGSBz90kEj7VW1L2vLAqWwMAyf15BdxgMMDJ3FH0dtPebE0ETuCgZPZHCdLNpnsV0W0Bk6R2BCtgZOvuBC7F/4DOTk5SE1NtdBJeJT+n3T4uwZRiaprdN6RCrO1ulBl5jgxDMMwDMPEmioj1VU2emEh9NKf0oKXSXPRn3PkZ4oYgeeUV0keJgC6M7hMvVFG74j8hU0IRdd0OTGabieeLuoxELs1idDR/GJ8Mt02dESeTjs28Qz5BRtVaQ4ASMN9M0+WtEwjCmlb6oWRbCI2RNOLZCUEPMR2AOBNko1yFCi2NfHuSJ4iK545szQUKk+jWdRZLKLqrKyD2rujksFN2/rDW1dWX3roR1gdLRZ6VZlY8QTpqnte4SkF5PskkufF0nrVvVhJ92U0Jnfz5PDowAMnhmEYholz/NDh44FTXMADpxD4Cwrh10o8OZpDmPDtk707Bq1TnOTtk08vTaome0Pkny2GrMkKj43fSeZHVdQvIJpbinpwhMM15JIy5I+Sl6V5WCbzb1SJNg39Cjb5SKJcw3wb1X5t5NpV1i9Qxa9xzS/vSCMVGTw15GVN2jZy0wImWTh2w3mz4D2UPVtmE31URqhXy14jdT4fg2NVPK80p6jyWir6Ics0FY/Ztso8ThQLXiNVqiYzT5DSM2dy3jSv2DaCgYAy5xZ5f6n+p6wsTygTN/DAiWEYhmHiHJbq4gceODEMwzBMnOPTdfgiDIKPdHumBB44RRvxxqQ3aQXdtIaUAiYyWXn7NkhmBmkrdFuDhGaSriBsrKQJMJFZDJPFHbrwmayjUpHKJkL0pFT1/WRlsq7mU8h+Vm5bq2kbJNlVvSN1WR4TI4Udm05GVklbZvKbOInbREqVJCkL582Q0s1E4pRkPgsT1k1PqRW1lLQVy/9YkTQN3dIpDiQgp9wymoV7vsKmRhD8MMYBlKcPJnI4HQHDMAzDMEyYsMeJYRiGYeIcXxSi6iLdnimBB04hsCUkwKb9kTncnRD4XksgoViJ7pDL/kTZb+xPIMuuoMNPtxPnnyF7duioO90RPWlOGWliIet4ZbmvDSikCINUQpYl+QCydGcmcaiO1/RcSEbSdartFP3ARG2gObjoAfpDt7WEISRK1dZkWdWvKYLsahIpJ50Kcl6o/GbQPkTJ02CjOpeZEgsZ8A15j8R1JrMHJFlPvRslGnmWDOdYPE3kveJNkJejllfLwrZW8l1VFj695C/SPpjIYamOYRiGYRgmTNjjxDAMwzBxDk8Ojx944BQCLdENrVSqS0oMrhA/A9ATZelOlOf8CfLpFQvzAiTpI1UAEtTOQJUcpy44axLNRlUMC6VQ/IoSJZbKqJgmy1S0pdFvQlsacUOjAs3Wh42ZxqGSrwxJH8OXuswUNU2p2dDGinBEK5jYHwtJlyaiNSYZFbPLhl5V0hlZFO9jw55DnwsqxSuTWlosRVPeIr9WEaVvep6oiV7xNWomt9EvLJRriVpSTgvJSysKPzT4Isy26edsnVGBpTqGYRiGYZgwYY8TwzAMw8Q5fr3kL9I+mMjhgVMItLRUaLaS8A49ORjm4U+UQz78biK/OYJOPEMNOUXSRyrNmdbtUvRrSW6zVB9M3VaZLNNs2V72Z8BEqiN3MJXbROnO79JDrgOglMnMI+MEm8ykOYNMGTqqTi27WnsLWpPFVFkHy+/uNyh3FbMb9X5V0lxZ60P1Y7pT0q3iGdbITnWlJqvcTWRYkMFsJCpVghhliJQTm1pMtKnaj1I2i0B+o8s2r9C4uHJGI74oSHVWt3/xxRfx4osv4qeffgIAtGrVCo8++iiuuuoqACXRuJMnT8b8+fNx8uRJXHLJJXj++efRqlWrQB9FRUUYN24cli5dioKCAlx55ZV44YUX0LBhw4iOJZawVMcwDMMwjIGGDRviiSeewPbt27F9+3ZcccUV6Nu3L/bu3QsAmDFjBmbNmoXnnnsO27ZtQ2ZmJnr27Im8vLxAH6NHj8bKlSuxbNkybNq0CadPn8a1114Ln0818o5veODEMAzDMHFOqccp0j8rXHfddbj66qtx7rnn4txzz8XUqVNRo0YNbN26FbquY/bs2ZgwYQL69euH1q1bY9GiRcjPz8eSJUsAADk5OXjllVfw9NNPo0ePHmjXrh0WL16Mr7/+Gp988klFnKZKgaW6EOjJbuj2Ev+yPykYOed3hZbmAMDvCB1WoxGBWcppVyj7gv0ukvCSRsOJspihDhxZtiskNBM5QSW/GZJ0CssGec1Q601eFmUzg1RHtxXb0n4MkXGC3Eaj5MwSSFpIBiptq5A7y9yPLfQ6JWbRVJHIfMLBG6USch+LSR9JzTvQem2qumQWwgJNo0FjFDwk1tszJMuMJDjRX/ZnAMZab3S9SqZUEc0IPHo9xJKeVG6zkHnTcG+q6vQp6iTStgYJkGaOLO85jQC/rsEf4Y0dyfY+nw9vv/02zpw5g06dOuHgwYPIzs5Gr169Am0SEhLQtWtXbN68GXfffTd27NgBj8cjtcnKykLr1q2xefNm9O7dO6LjiRU8cGIYhmGYOCeac5xyc3Ol7xMSEpCQUPZEtK+//hqdOnVCYWEhatSogZUrV6Jly5bYvHkzACAjI0Nqn5GRgZ9//hkAkJ2dDZfLhVq1ahnaZGdnR3QssYSlOoZhGIapRjRq1AhpaWmBv+nTp4ds26JFC3z55ZfYunUr7r33XgwaNAjffPNNYL1G1RBdN3xHCadNPMMepxBoXj80vcR3q3mCk9g0UlNOlSTRm6SOqhNd0kbpitamk9eXO4LNIM2pE1OKy6YSmk2xziT6zUpUnRiFZnbs6hpfJtKcKlLOTvzzCpvMM+8JHy0VBAtfbjOsMtRcI/emN7isEfmNRlNpnuB61ynS1kPaKuoFKtScPzoLfc8Xp8nLxvuvfJKtpaSidAMTCU08r2Z1FCWpTrGuxIYyTS1ZReUpVS5Qkwvit/Cz21A/T1XSzwr0faaQ+QzPlip60mTeslRespKkOh9s8EXo6yg9rMOHDyM1NTXwfShvEwC4XC6cc845AIAOHTpg27ZtmDNnDh566CEAJV6l+vXrB9ofO3Ys4IXKzMxEcXExTp48KXmdjh07hs6dO0d0LLGEPU4MwzAME+fof8xxiuSvtMB1amqq9KcaOBnt0FFUVISmTZsiMzMT69atC6wrLi7Gxo0bA4Oi9u3bw+l0Sm2OHj2KPXv2VOmBE3ucwkGqFE/WGXImKX7lk2GqJ1H4wmRyq2ECuJRfySSPk6KciaFfhbfHtGSJOGlbUfqE9luyPvTkauWkTpOfe+o8SGb7UU34VpVNIZOnbRH8JFVNgjYrN0E9HN7gQdg8oT1MgOw5shfK/TjIstSPmTeEovjlrgpcoPex2xO6LSB7cL011G1VwRSWvHyG4JDQy2Z5g8R3kJVcWCUNQq8yelKFdaqJ/CjDu2MhB5TS5gosCyN1q3htGgJ5VDb9iZNK/uMf/8BVV12FRo0aIS8vD8uWLcOGDRuwZs0aaJqG0aNHY9q0aWjevDmaN2+OadOmISkpCQMGDAAApKWlYdiwYRg7dixq166N9PR0jBs3Dm3atEGPHj1ifHTlhwdODMMwDBPnxCIB5q+//orbb78dR48eRVpaGtq2bYs1a9agZ8+eAIAHH3wQBQUFGD58eCAB5tq1a5GSkhLo45lnnoHD4UD//v0DCTAXLlwIu728xUBjj6bryrys1Y7c3FykpaWhx7lj4ChNR5AgFO5NlN0uNHO4WMjXl0DnKcnLXvY4Cev/PB4n3R4nHicf9SoFD0L7k3mczFJyiPemuccp9Lq49DhZmONkinjOTTxOqvsvXjxO0lwkk/Mkzt2zF5Fn2DA/LfjZV1yIncsmICcnR5o3FC1K/09avbspklMim11zJs+Pq9oerDBbqwvscQpBQaNUOBzukgUttOteN0ziDi576ORwk5e7ah2tnq6c8K0Y0NBJs3Qw5CNStz9BbKvIP0TtMJM0ozUYMvznqpLQ6D7p8dABT+i2KqwHi4QuuaJqSk+i7pUPUCsmg6GTwRvDMBjKl5fFSd1m/6lLuXLM3uuKgaAhCMACyvxQZL39pLov1QRpzaQ8S7H4f5GV/+MiGGiY5kGyULLE0sRyC+VNbF6yWrjWNIDAYAPZr+rejGQwZ6O5mgToj16HUHKlsiaHM/EDD5wYhmEYJs7xQ4M/wngu/595QlYlwgMnhmEYholzYjHHiSkbHjiF4HRDF+yuklIrYiVsszkb0hQHgzQXWm6zlI+I9E3zqRjmIgnL5lIdka+kUigmUp2A6TwMQrnnItEdUZukkivquUea4XhCS2iaBf+8rjw4s43JspBvySDNFcnL9iIiL5wJfnYqpDnAmgwjze+yKNUpJecITpsy8sxE3tFUUrCJTc5gbVPzeVfBSk7mc4JEm82i3ajkqbhVqYSmtMGKjWbbehTrzLZVzQ0jU3ZVNtF8ZOJ7nkpz4jqzfpk/PzxwYhiGYZg4x6fb4DP9ZWLWB4/yogEPnBiGYRgmzimZ4xSZ1Bbp9kwJPHAKgW4Pury9ottWJTWQZStRdIb9W0gbYAjtV5RCMfZjInWpnjMaaSbKYqSp4XeOoeSHYj8UVRkVRaScIS2ASpojfUeSUkAz8eXrihB2w3nyCEksiTSXcJxIdSRyTlw2Kykh3TNmqTEUba1Uuo8myuA3s0gy1f1lsp+Q/ZSBrVhcULeVVGMLEYR0W8UtbtyPQiIrC0vRZYpbXmUT3Y9SmoN8n5udN3EqhXkaDb3szxWIPwolV3hyeHTgkisMwzAMwzBhwh4nhmEYholzeI5T/MADpxDk1wP+SByuzCSsXKayBXH/uk6GXkdRRcrQyBj7GXlZbKuqywUAhXXIgyVVlQ8tzRn6phFrhsSHoculG2pkUblK7NokAaamyEhupluI8pxZFJ0ot9G2usFIVUdmSS2Dy66T8jpJ+iljWVPdB4plGompkoINmERISZKhxSguJaqs46ps7FA/w1ai7MykLklGotJpJP+/WUgCGc0abKrEtBTV+06VNb1kfegoZ+V71OzaKY7XKDlrZX+uQPywcR6nOIGlOoZhGIZhmDBhjxPDMAzDxDk+XYMvkuRmf/TBRA4PnEJQ2MADW2KJPqaUe1RRUKRwKoqptCJESBG5jSYkNNQSIzKMiEpVorILrU3nKJBtLqoh+L4TZT1Bs8t+cS3kgjWpyxBJRorV6n5RFjPZj7TeRJoj20rLZtKD4vgM0p0iotBQmNdQb064Z6gUR5MZ0t0oasEZazAKn00KNIvPBE2oalboVll3zEJRXDOUMpJq2WICTOk8miRcLC9Wiu3S9lEtCEzQVDKfyiZFIsqy1lsqECyuMnl3q14Vxs4qP6rOF4WoOh9LdVGBpTqGYRiGYZgwYY8TwzAMw8Q5ft0Gf4RRdX6OqosKPHAKgd3thS3xD+3DQgCFX5BaaMSaGKEGAEXOoN9cIzKeM0de9iaSrgqCn6msR+U40f4zDWVfve4m8ptLXm9zCDYaIuVCP4S0PpslqY6uI/KV3xf+y0Pcr3ltOrpx+V4yVIqj9uvUfuHaO3JkHYzWm1NJWwZJTZWc1SzBqiqyjOBT1Fyj9yZFvFcNkowFCc0846oChZxouC3JeVJGdUVikxVMklqW8zY2YKmmnJV6c2b2WQhKtZRglbZV2UQTbaoShVYQLNXFDyzVMQzDMAzDhAl7nBiGYRgmzvEj8qg4izEVTAh44BQKDQFXrlKeI35amyjH0USBfnLbusWV8ipPLbV/WhFUp0zk6CCRcDZ7+PIbxRAdJq9V2qRsr6ghBcgSG5XsDVF2ttCvCit56+h+dKKD+YUISt0j6zm2U/KNYCeRcnbhYtLIOBptqZSRiP+YSnWiLGYm1fkSVeFJ8qK9UIhytBg5Jt1uVhJTmtikvN8iSKRpXsMs/L6kzUykR2XEmsm2Yt+WlCyTCDyVdBdR8lK6qVkkc5hE06ZIEoWWl+gkwGSRKRrwwIlhGIZh4pzolFzhgVM04IFTCGx2P2x/eGfk7Pp0grEifw9ZLuePUVOseImsopq0rTx2i5PBpdb0Vz5Cn3PD9VDuldhgtl7wqPmJ+8bnIaVQTgUTGDlPy+vshXK/4sR+U0NUeYRMSp+oJnz7XfI6XyIJGnAojCKeRskrRt14dMI3ndCueI+rygxZ9h5YKaehyHtk9v+O6rY3BDSpvG0m5VqkfVIbQzeN7KVklgNKNTlc5amz6NmyUtpF0a21Sd0G9zRPsq7O8MCJYRiGYeIcPzT4I/qJjYi3Z0rggRPDMAzDxDks1cUPPHAKgc3hh/2PHEaSZ5hOBlfIVZTKyj2mktcoZpKalAeJdGuzUmaE2OSny4L8Y5YDSpzwbZpXS9FvRJC+bJ7gsp3M3KfSnKo0Ci1ZopMnVFxvOByT8iDStkSKM0hzYtAA3Q+R3/yOYAMbkTB0coEiUpVVUp0qnxJZtjLZWCN5qOi2BhkpdFfWfutbmRhPUUhdpqdfPG9mpWksyJKGIAfhHtJojiSTCfjS8dDzogzkUS8rzzG1SZETjfnzU6Uu+ZEjR3Dbbbehdu3aSEpKwoUXXogdO3YE1uu6jkmTJiErKwuJiYno1q0b9u7dG0OLGYZhGCZyShNgRvrHRE6VOYsnT57EZZddBqfTidWrV+Obb77B008/jZo1awbazJgxA7NmzcJzzz2Hbdu2ITMzEz179kReXl7sDGcYhmGYCPHrWlT+mMipMlLdk08+iUaNGmHBggWB75o0aRL4rOs6Zs+ejQkTJqBfv34AgEWLFiEjIwNLlizB3XffbWl/Nk0vU4qKJILNSt6gSFDZSI/JIIMZloOfzXImiRjb0pIFROpSdGblnPtI9JsozxmrKJhJgsFlGzkgVekCs1xGBjlOWPa61W0hSsP0JWiS30eU4wzSHC0T4wytixmCrcSIvCIa2qfWssSu/U56j5AdCaVrbCQXlqF8Dr0G4n1sQXLykehD0wg2MQKXnmKVzGchR5KZJGulRAndj7ipTuVOs/0q1F0/iZCUbmOb+oJQuVc2ysQmsalBbgstEZpKsqLNlfViZ+KGKuNxev/999GhQwf87W9/Q7169dCuXTv861//Cqw/ePAgsrOz0atXr8B3CQkJ6Nq1KzZv3hwLkxmGYRgmKvijINNxAszoUGXO4o8//ogXX3wRzZs3x8cff4x77rkHo0aNwmuvvQYAyM7OBgBkZGRI22VkZATWlUVRURFyc3OlP4ZhGIaJJ/y6LSp/TORUGanO7/ejQ4cOmDZtGgCgXbt22Lt3L1588UUMHDgw0E4jblNd1w3fiUyfPh2TJ082fK9pQelG5YlVRZaZIerNZv2oJDUrnmIzqU6FWWSciJ24wWlbul+xGo0hOaZiv2bnzSZE4NEklmYypWQDdeuTUjWizORLIPbSRJVk2ecStk2S9QSNlrUR5RAqR5ldSsFmKp2Alt6RouoUEXcAIETV+Zwm9tPkmUUKidaj0JzI9TAoW1T+USS1NCTptBIaZ0GutlIKxaC6aop1Zv8XqqLf6BdCXwabqHRHt7Vgo/j/tzFRq8kLrZxZbo3RlIqzTmVWaoIqSpP501NlLnn9+vXRsmVL6bvzzz8fhw4dAgBkZmYCgMG7dOzYMYMXSmT8+PHIyckJ/B0+fDjKljMMwzBMZPigReWPiZwqM3C67LLLsG/fPum7/fv3o3HjxgCApk2bIjMzE+vWrQusLy4uxsaNG9G5c+eQ/SYkJCA1NVX6YxiGYZh4gqW6+KHKSHX3338/OnfujGnTpqF///7473//i/nz52P+/PkASiS60aNHY9q0aWjevDmaN2+OadOmISkpCQMGDLC8P7tNN8hN4SDKPVakLbrOTFKzK+q1RQJNYCim6Dck/1T0Y9bWRyQbr88mfJZ9955C+TZ1uILaSmk9wVLsNiIVCbuxk7ZmCUnF62c4/05Z3/HVCma9LHbSsDmymEBsVMhiOv2FmE81tpCbGoPuxItA5TY30auU71dFRCGozEq6Nchvwjk2iUYMsVkIQxQRenRjVUSeWYQarasobGsWmaWqP6dKzmi4ziaSoCp6T4VpckmT/aqQpEeThKRm97V6R4p+6G4Fo4yvVMX9VElOHB8QscfIwiPGKKgyA6eOHTti5cqVGD9+PKZMmYKmTZti9uzZuPXWWwNtHnzwQRQUFGD48OE4efIkLrnkEqxduxYpKSkxtJxhGIZhmD8LVWbgBADXXnstrr322pDrNU3DpEmTMGnSpMozimEYhmEqmGhIbSzVRYcqNXCqTPy6ZkjSCIRTb06Ud9QtrdR6o7KhXQu/XlskNfLsqkgzC755D3lgqRxXWBDMNOgvltfpPvkAi4uC6zWSyNGVLBeKc9iDzmnzunbhv1RK6xiWItYs9Ltkh7huSMqpsKFYkSkQkCOXqNxGk1jS4xX60l2hJc0/WpS5T7qqZL/C5yIauUg2pdF7/tCNlVJXBDKRWcJISbpTJIgss2/x8plITJJcZRpWp1hHbVRIgGaqvjKBZATvEYNsbA+9zlSKLKdNZudYjPwzTf4Zg1p1XOQ3fuCzyDAMwzAMEybscWIYhmGYOEeHJgXrlLcPJnJ44BQG5ZW6qBRnU0V8kXU0uo1KdcpkjQbft5mlobGyHzEy0BBNRc8FWXYmeAOfi7xE7qESlLgpcan7iaznF/zvNKqOYkjKKUZ8KbeEJIMZIwiJjUVEiqRJIiWbyBeu0HXhdDPdQozMMkiAoTUpel506u4Xj4dKHIoEngCRTwwyXujrrpKjylyv1KBIU/E80dp0ZnKPhWgrlaynqlWnUvHK/EIRwWZ2HpVYeS/SPKiCHfRWND2+ckYJGkwy3KuKxtELXC43LNXFD3wWGYZhGIZhwoQ9TmFQ3uLXxpIeoduaeZisQL1XkaDKPaXK1eQzSbZi2FZYtpOyHX5VmXmyyktyPtlrBCeLUy8YvR4G75qqDIzcUlpvLBkDJZId9J4h11IXJtXrThMPmmq92bFXkkdfmV9J5XUxcaoa1ys2NvP2KFC1Ncs3pPRORXEitmqyu5XrbLgcZnmqFEjeHa9iXRn9KvN9WTk+K/mhDCV8hECLSnI/+HVN+T4Otw8mcnjgxDAMwzBxjg82+CIUiSLdnimBzyLDMAzDMAamT5+Ojh07IiUlBfXq1cMNN9xgKH3266+/YvDgwcjKykJSUhL69OmD77//XmpTVFSEkSNHok6dOkhOTsb111+P//3vf5V5KFGFPU4h8Pk04I8yIKoJ0lbKnaikIhotYacp/iNIoiJuSydlm7luVSNruq247PHLE6DzC13SsmpCtNMl++79TlKeRZiMTPsxyGTCej85GjpZ3yixCfIbsdEwAV/AINES2dWWIGsNfk/QLpuZ/GYXzo0h343ZbOTQbXUPyR8lTaQn/RbSUvfq3ZabCHL0aNRE4XAMkrlKuTNrq3hATHMmqS61ql86Yd1KXqfQFW/K3FYidLUfw7ZWyufQY6XbqvqKRC40XFvxHomDyeCUWEh1GzduxIgRI9CxY0d4vV5MmDABvXr1wjfffIPk5GTouo4bbrgBTqcT7733HlJTUzFr1iz06NEj0AYARo8ejVWrVmHZsmWoXbs2xo4di2uvvRY7duyA3W52Y8UfPHBiGIZhmDjHD5vhx195+rDCmjVrpOUFCxagXr162LFjBy6//HJ8//332Lp1K/bs2YNWrVoBAF544QXUq1cPS5cuxR133IGcnBy88soreP3119GjRw8AwOLFi9GoUSN88skn6N27d0THFAtYqmMYhmGYOMena1H5A4Dc3Fzpr6ioKCwbcnJyAADp6ekAENjO7XYH2tjtdrhcLmzatAkAsGPHDng8HvTq1SvQJisrC61bt8bmzZsjPzExgD1OIdAR9DyLsoaZo1MsvWFWNkVc7zTkeCq/r9jgjhUlJ0Okn3o/yvVkP2IkXUGRU15HcjNRiU2UsxykjAot+6K5g8ueInILExnDK5QwcSSoS6GoVItIZDCKKM2VbCDIiSTHk7VS8GokucokvxKKHaHXGTpWrDIrbyKfZNLUxEYLJknlNGheKityj4WIPNOcT1I0JWlqElkmr1TvR5UvytCVuF8LuaXoskYi5Qw/0RW5mIw5uKiRCpso5Y1cNBy7ItlUHMp6ZjRq1EhanjhxommNV13XMWbMGHTp0gWtW7cGAJx33nlo3Lgxxo8fj5deegnJycmYNWsWsrOzcfToUQBAdnY2XC4XatWqJfWXkZGB7Ozs6B1UJcIDJ4ZhGIaJc6I5x+nw4cNITU0NfJ+QkGC67X333Yfdu3cHPEkA4HQ68c4772DYsGFIT0+H3W5Hjx49cNVVV5n2p+s6tPLm+okxPHBiGIZhmDhH123wR5g0qjTrf2pqqjRwMmPkyJF4//338fnnn6Nhw4bSuvbt2+PLL79ETk4OiouLUbduXVxyySXo0KEDACAzMxPFxcU4efKk5HU6duwYOnfuHNHxxAoeOIXApumGCLSyMMpxQT+zg5T4oEkuIxlsq+Qg+qtEPA7qBaePoZUSK8ooNLLO0C/ZsShx2kySf4rym9FIuhi0g25nI9fH7iByqbRAy46EPnavWUkVg0wWulQNxco9Y5B7xP2aSXUWZAzR/oiikQwRa4poVjP7rUTKUcobHQa1sqosjRJBEk4zqUj6v9bs2IXjNUTvmSWmVMliFMV6swhJubHJfsrb1mxbhcz6Z0LXdYwcORIrV67Ehg0b0LRp05Bt09LSAADff/89tm/fjsceewxAycDK6XRi3bp16N+/PwDg6NGj2LNnD2bMmBGWHQcOHMCCBQtw4MABzJkzB/Xq1cOaNWvQqFGjwKT0yoQnhzMMwzBMnOODFpU/K4wYMQKLFy/GkiVLkJKSguzsbGRnZ6OgoCDQ5u2338aGDRvw448/4r333kPPnj1xww03BCaDp6WlYdiwYRg7diw+/fRT7Nq1C7fddhvatGkTiLJTsXHjRrRp0wb/+c9/sGLFCpw+fRoAsHv3bkycONHS8UQLHjgxDMMwTJzj14PznMr/Z22fL774InJyctCtWzfUr18/8Pfmm28G2hw9ehS33347zjvvPIwaNQq33347li5dKvXzzDPP4IYbbkD//v1x2WWXISkpCatWrQorh9PDDz+Mxx9/HOvWrYPLFcwH2L17d2zZssXaAUUJlurCQCVf0Ug5M5kpFAZ5rVy9/LFtBHqJSmIz1t6j0W+iTEmSPBJ/u9Mhr6fJKEUKiuTkmX5BplEl0jTDLPpNFVVniBL0KWyyULQsormSViaOmtWmE/uKIKouoraqbkyeM2MEWPjnRpKkDNFgZlqq2JZsSpsK94khkkyRnFEZoQaT+nkm2ypfPKoaeIAk8xk2pbKfeHvRIFMaWBrBPaNZSWqpWG/YVuzXopxbldDDOPmjRo3CqFGjlG3cbjfmzp2LuXPnWrbh66+/xpIlSwzf161bF8ePH7fcXzRgjxPDMAzDxDn+PyaHR/pX1ahZs2YgtYHIrl270KBBgxhYxAMnhmEYhol7/NCi8lfVGDBgAB566CFkZ2dD0zT4/X588cUXGDduHAYOHBgTm1iqC4GmBaUoUT6hMhiVq0TPJpV3qIJjU7hBfQbJLLStZtKclWSatK2qb5pIUIwirOEuVu5H5QH2kV9FCU45m16RcNuaSaOqY6fbeqn8JukJtAae3JffZwvZ1iDZqCLC6HVXl64j/ZBtrUTGqTCRQ5VJH2nbSOywgDHxpl7Wx7IRpCLdZjEJp0KqMyBMOFFGQJK+zBJRWrnuBgnNSo082kCxrSFSzh96HZXqLEV4qjCcY7JsQeJU1f+rKMTM35H0UdWYOnUqBg8ejAYNGkDXdbRs2RI+nw8DBgzAP//5z5jYxAMnhmEYhmHiDl3X8csvv+Bf//oXHnvsMezcuRN+vx/t2rVD8+bNY2YXD5wYhmEYJs6JxhylqjbHSdd1NG/eHHv37kXz5s3RrFmzWJsEgAdOIXE6fLD/EflFI+dUiJFlqtp0gCwFRZJKX5XwkmI14o4m7ZRXkoSRgh10P9RGVUSbRnQLu1Nedjs9wX6h7tcnSB5+UpuuqDj8299QqkqV1NIs0s8gl1hITKlaR+v/qaQHKp2o6o6Z2STe5+EHEJpjInnKHZOmimfW0qNmJoOrovfMbgPhdjSWUSPvDsUUALPoPRXq607amtSQE6PLbCTSTCnRGq6dtf1Kbem5sJX9uax+pW0N8id5toTj80cQ2WsFP6JQcqWKzXGy2Wxo3rw5jh8/HlMPE6VqDT8ZhmEYhqk2zJgxAw888AD27NkTa1MCsMeJYRiGYeIcPQpRcXoV8zgBwG233Yb8/HxccMEFcLlcSExMlNafOHGi0m3igVMI7DY9ILXZFaFNNNpNrFVnFoEnYpaMkSK6bE3rwikwi6JTRqUp6jeZ1cRTSSDULU7xCZIblcwKifymaktd7EYJJHRSS53Ifkp5jp5TGjUkygkGTVDRrU99npS56+ihqmQ+s+SMilp1huSAir5Mp1+oItYsyGJRxSB1qS5Y6G1pJJnh2ornzeQeUUqrFnKz0nNG5TfDtVSsMpx+hSxmJj0qcuWWEU0p2ESlOkWEoU0O5DXaFDrgtsIozf4daR9VjdmzZ8faBAM8cGIYhmEYJi4ZNGhQrE0wwAOnENg1f8DTpMrjZKcTpIX1tK1yorXFHwKiy5b+inAoPGSRuHoNE77JertwfHb6y5bmtFLYQT1OdNsCX/Dnuccr/1T3kZ+VoieF9qPyMJWsFxdCmmvA4HSg3hzqERC8C9TToMrjZOiH2kFcgrpDWHYQI2mOHq8Wuq1hP6JNZCWx0eCltDBJWO6ILJuVkLEyK13c1sRTZejVr1qp2CX1aNrJtRNuc7NyMjopSCZ6/azFhpB+DefcZFnA4IFS5Sejk7YVqw390NtatFmRS4oum+ZPs4X4XIFUx6g6ADh06JBy/VlnnVVJlgThgRPDMAzDxDnVVapr0qQJNEUGaJ+v8osF8sCJYRiGYZi4ZNeuXdKyx+PBrl27MGvWLEydOjUmNvHAKQR2mz9QQkSV+4hKdaqJ5BSbQtajGH4pCD5oaoOqLzMZTIWVHFBmeZyoHWKZFcN+yHKNhKLA52K7fAufKXLJ/Qp+dL/BrU9lPbJakZNHI+dcnCyuFcvyoVZM5KoisuwR8l+ZTEpVTab2k6fZL58KSaoz5Dki0pAmlBrR6URlhQxmyG9FoH2pcucYZwUr+jXL46SQbAyIRplMpjY+EuIFIqsiyaulaGsIPjCcC1GuDt8mjTSm2xpedb7QzwtdluQ2es+boTjFyrb0eVHcIoa4C4WMbBKjETWiUWuuquVxAoALLrjA8F2HDh2QlZWFmTNnol+/fpVuU1gDp/IYNm/ePNSrV8/ydgzDMAzDyFRXqS4U5557LrZt2xaTfYc1cHr33XfRv39/Q/6EUCxZsgSnT5/mgRPDMAzDRIHqOnDKzc2VlnVdx9GjRzFp0qSYZRMPW6p79tlnwx4ILV++vNwGxQs2TQ9IRlJuJloKwSQPUnlxECkokrIq4rZWH5xoHY9ZP2L+IrM8VDbB3azb5YmBbpdHWs4vFPUqGn0k9+v30ARL4qaKRC4AUBTc1lYgawI2ItUZJA4x14yT7IbKCy5BFrNbvDaikkJlL9qXGElHtAiD3CZG4NF1KmkOkKLujJedSEVivisadeYiJzWRTBj1htb5rMhXhm3NzqOqXzH/FdGNVOfYEE1JSzlZiChURWaanQaDdCfIo4Z7nITZasL/PDqR6mzFpF/F9bFU7cTkOvtVUXWK2QM0BxcTXWrWrGmYHK7rOho1aoRly5bFxKawBk7r169Henp62J2uXr0aDRo0KLdRDMMwDMMEqa4ep/Xr10vLNpsNdevWxTnnnAOHIzbTtMPaa9euXS112qVLl3IZwzAMwzCMkeo6cNI0DZ07dzYMkrxeLz7//HNcfvnllW5TuYZrfr8fP/zwA44dOwY/CVWKxUFUBHabPyDRiZFyhqSWlSRl0aSWfkVeCyv78ZmUaylvJJ3V82Kzh87FQfvyChFsNErESSTO0shIoIyXhlmZDlEuoeeJSD+iPEej5qis5Esi0kqCP2RbjSy7U4IRhU6HfM7y8xPk/RSQx1uI3pM+owzZRZTqqPyklJyghEb+SZ3R60Ei4/xOQaZMkHfkSpH1Hc2QaVPYI9F3PPQ8KW8M9fXRFBGGuo9EcQqXz/D/mUICNEQumoR1KSMXVWWgzBJcWogopNdDrJlG7wlLpXdoEktV5J+JVCeVXPGQdapyM+EHUjPloHv37jh69KhhqlBOTg66d+9eNfI4bd26FQMGDMDPP/9sqKulaVpMDoJhGIZh/szoiDydQHR+5lcuuq6XmQDz+PHjSE5OjoFF5Rg43XPPPejQoQM+/PBD1K9fX5nRk2EYhmGYyKluUl1pGiRN0zB48GAkJAQ96j6fD7t370bnzp1jYpvlgdP333+P5cuX45xzzqkIe+IGp80Hxx/lwFUSlDK6zWR8r/r1QLdV1b2jDwPtV/WwWEmeabAxApmS2uSzkNCTRhxKbUldNQ8tiS7uk8htfpu8rPpNoFPpVIwsoxJTAvHM1pB1AJc7GFZEZRg/WfYJck9KYqG0zp0m93vKniQtF+cFIwy1Ihr5R2QkcbdOWo8RMqKMRBMFOqkeQraVwpNMosWEa0ulOadTDs2yK6Q6Q21HInmKiU8N0rVN/Vz6hOtVcEaWTnUPub+Ea0AlTnredOEaaDSCUFVjEcTLQOsmUplPPBUm/8ka1ornxqbo16Qjg3RHpWLxUfNY2I8J4nnTTf5nFE+NrzB0O6b8pKWlASjxOKWkpEjpkFwuFy699FLceeedMbHN8sDpkksuwQ8//PCnHzgxDMMwTLxQ3TxOCxYsAFBSq27cuHExk+XKIqyB0+7duwOfR44cibFjxyI7Oxtt2rSB0yknnmnbtm10LWQYhmGYak51GziVMnHixFibYCCsgdOFF14ITdOkyeBDhw4NfC5d92eaHO6y++D4I9LLZQseU7Si6ChWb2gr7SOJdivvg+YlElmhVx5gn8qXs9BTSUokJbFIWnYKEXhUSvHR/RYH91tcLN/uPlJTjkoTNkHCcSTI93WSW5aKTguyjE5sqJlSIC0nu0gEmHAMBR75PJ08Jf/K8gpyzwm/vK5mar60XCfttLRcXCN4vMd/T5HW6XnyubGJ0qNXPk+G5JOiPEolMrPIRXE91auocifsh8prNMJQjKYE1LI5lbZVUh2F1nq0CfexniRf5wISVacVKiIxvfKyX5TUiHRqiMSk6rR4TRyK7Ktkv1TONcs2KZ0K9aMlJfw0JCA1id4TbxPD64ns1xjFKfSjirJT1KajcFBdxbN8+XK89dZbOHToEIqL5edq586dlW5PWAOngwcPVrQdDMMwDMOEoLp6nJ599llMmDABgwYNwnvvvYchQ4bgwIED2LZtG0aMGBETm8IaODVu3Djw+fPPPw+ZjGrz5s1SW4ZhGIZhIkfXNYOHszx9VDVeeOEFzJ8/H7fccgsWLVqEBx98EM2aNcOjjz6KEydOxMQmy5PD4zEZVUXgtPnh/EOicyhq1anqwlFUMpnVyLhyS3URRPqp+qU2eXyyz5xKc4WFsiTlKxLbyzYUnJajk2yCDENlCUNEkSBx6F6agJDWz5I3tguSSN1UWfZyO+QIttpJZwKfzeoK0qhAcb3TJj8/9lrytsdzgvIcjcDLyZPPcZ20M9JyTXdQMkxtIIcC5RTK2x7PTg3aly9fS0OSSymyyeKLWbwkNFqMJLlMTAnanOCSo+hcJIEqjcwUKSb3ptcXWodxEBnMboiyk/cj3jPORFmi9dSQpdQTKcGox8IjNeR+Csg9JEhofgfRo8wSh4pRnURypslNNaFrGtlHk0BSOVFc0okNNBJTlNDMykDSenpijUmNPPDKtxtdqbDf71C/J+3F4ntF2TRq+KFFnMcp0u1jwaFDhwJpBxITE5GXlwcAuP3223HppZfiueeeq3SbzHK0GojHZFQMwzAMw/z5yMzMxPHjxwGUqF9bt24FUDKFiCbhrizC9jjFczKqisBh8wc8Aw6p5Er58x6pvUTUdUK2hdqLIfdUfi+YYVsrv1CEpgaPmeFXI/0JKvyCM5SQILmMxHNlYp5U6oGcYpuTTDBOkH861k4Nemyoh4l6OFSePC+ZWaq6HklkP4ZlZ3Bi5NGcVGmdp1B+nI+dkCeAuxODz2z9tFxpnegxAwBHVvA+P/ZrmrROPx16Ijn1NJiWzxB/2ZNJz3aXfI5FLxP1zNHSQcVkkn1hUXC5MMct20BzWAkTqG1uEhRQQw5UcNhDT0r32cL/XWrIVaTIPyZOrC75gvRFywMJt5DfTiaoU8+csKkxXxRZJB4bCIELGlmnrM5iFkBAz41wCGZvX/H1ptGcT/QVJOyH5l4zINjgr6R83NV1jtMVV1yBVatW4aKLLsKwYcNw//33Y/ny5di+fXtgXFLZhD1wiudkVAzDMAzzZ6a6znGaP39+oCbuPffcg/T0dGzatAnXXXcd7rnnnpjYFPbAacGCBdB1HbquY+7cuUhJSTHfiGEYhmEYphx4vV5MnToVQ4cORaNGjQAA/fv3R//+/WNql6XJ4bquY8mSJZgwYULMB07Tp0/HP/7xD/z973/H7NmzA/ZNnjwZ8+fPx8mTJ3HJJZfg+eefR6tWrSz377J54fzD1a6aXG1FqvMqp5TRyaykJIbCHWw2QV1cbzZxWdW3mZvXihvYUL1ecJMb8tAoJnwbcsvQSamC7JKQJMte9dLypOUUJ5FhBBnDbHK+6jw6yLUtJMllThUEvbfpSfIEYrddlg9rCRO8ExzyupMFcomVE7mk5IqQx4rKfFS6S3YFz4WNSGZ+F5EehTmPuotMpk6Wz3lysnyOxRIlRUWyvJaQIG/rEfJJ5RXKcpuflDPRPWQCtZQzichVZHKv7hImYpN+TxfI184wUV7Mg0QkZ1oeRMzdRA7VICN5E4Pn1ecm9xqdyEzlUvHZIm2pVGeQ0KV+iYnkFEPMzUTPC303KErimOWLkrY1k/nEpoaKPqFlZUOpIIJ4eH4vS3UVhcPhwMyZMzFo0KBYmyJhaXK4zWZD8+bNAxO1YsW2bdswf/58Q5byGTNmYNasWXjuueewbds2ZGZmomfPnoFZ+AzDMAxTFSmV6iL9q2r06NEDGzZsiLUZEpbTEcyYMQMPPPAAXnzxRbRu3boibFJy+vRp3HrrrfjXv/6Fxx9/PPC9ruuYPXs2JkyYEJgwtmjRImRkZGDJkiW4++67K91WhmEYhmHKz1VXXYXx48djz549aN++vSF6//rrr690mywPnG677Tbk5+fjggsugMvlkiaJA6jwhFQjRozANddcgx49ekgDp4MHDyI7Oxu9evUKfJeQkICuXbti8+bNIQdORUVFKCoKyge5uSWSRYLNA5fdODqneVwsQdzXktvUsCu5Mb1QYtSaWcSduJ9oloxRRusRfc2sdIW0nrrxDZsqoupIBI7THdRhqDRXK0HOs+MikVrieaUlZAwWKcra0G1pHidaHkSFaKOLSGg0Ai8lQc7V9PuZ4AsnxR1algTkSNKM2rKMd9RTU1rWhegxGoVGt00lNhV5BfnQL8uHtESOX8jD5S8iTwQtD2KIzBTsdVApK2RTo6x3mqynuYAE2Y/cTgZJ0KbI/+Nzhd6Pn0TV6fTZItGJmvBM2J00io68KwRpUqf5rehjSSU18XVGzzGV0AWbaEQ5jchTht3RY6eb2kPLen6ax0241vYzZKpEsdzWLjw+vkJLwk250aMg1VVFj9O9994LAJg1a5ZhXazKvFkeOJXOJ4oFy5Ytw86dO7Ft2zbDuuzsbABARkaG9H1GRgZ+/vnnkH1Onz4dkydPjq6hDMMwDBNFdJRR168cfVQ1SiPq4gnLA6dYTdI6fPgw/v73v2Pt2rVwu90h29HknKESdpYyfvx4jBkzJrCcm5sbmL3PMAzDMEx8UFhYqPz/v7KwPHACShJevvvuu/j222+haRpatmyJ66+/Hna7wucdITt27MCxY8fQvn17yY7PP/8czz33HPbt2wegxPNUv379QJtjx44ZvFAiCQkJUjLPUpyaH84/5Aqa9FLEb5rhT+iT+O49frG+AWlMg1BIvQOvaluCstRLlEqs/NFZAKehBIZaujNE2Ukr5UUpWyw9Tw6S1FJIcqmKmgPUZW5My6aooh7t6m3FyDlDQlIq+wn3m5nbnkp3mSlBqZL2S6P3REnQYENd+Z7/XUi0Sa+jj8iU1GYxMpCWtTmWI0fu+sSoNCrnKKQ5AJL8a6ZWiFKRrTj0upIv5EW/ILH5zeRpcT9EtqOvHJtwKR1ERvITGckQ9ZgY7ExM7gkATiL3iuuplEWhv0e9xcF3Ei1vRMumiNfDsBfVu4BCLiaN5pMT4FKtkchxwvVwnCHSnKwwwyGo/D75tVJh+KFBq4YlV3w+H6ZNm4Z58+bh119/xf79+9GsWTM88sgjaNKkCYYNG1bpNlkWZ3/44Qecf/75GDhwIFasWIHly5fjtttuQ6tWrXDgwIGKsBEAcOWVV+Lrr7/Gl19+Gfjr0KEDbr31Vnz55Zdo1qwZMjMzsW7dusA2xcXF2Lhx458qoznDMAxT/aiuUXVTp07FwoULMWPGDLhcwV8mbdq0wcsvvxwTmywPnEaNGoWzzz4bhw8fxs6dO7Fr1y4cOnQITZs2xahRoyrCRgBASkoKWrduLf0lJyejdu3aaN26NTRNw+jRozFt2jSsXLkSe/bsweDBg5GUlIQBAwZUmF0MwzAMU9GU5nGK9M8K06dPR8eOHZGSkoJ69erhhhtuCKg7pZw+fRr33XcfGjZsiMTERJx//vl48cUXpTZFRUUYOXIk6tSpg+TkZFx//fX43//+F5YNr732GubPn49bb71VUrXatm2L7777ztLxRAvLUt3GjRuxdetWpKenB76rXbs2nnjiCVx22WVRNc4qDz74IAoKCjB8+PBAAsy1a9eWK1mnTfMHJDplXTgioYk3ppmMJ0uA6ggWikOQUqw8DAabLMh8VLKkfanOk9tJM/zJiMkN6fEok/KRVQlueT8Na54KfE51yf52U+lRgZVagRSVJGhGsZA8s9hnJ+vk5XyPHJpVU4giNEiNBokwuL4GkTjrJcv25hcH9+MlkVhnimQb0tyhIxltLnk/uS55LoNPSGrpNSQ6pdFVVJYRbKZBOPR+E6RVnxw0bKgTRy+dniDq1WqbRDnLViCfN2cekbp8ZX8GAButTUcj/QTJzU9kY53Ua3QLmTipnG4W/XmmIDjloShfTmbq98r3piYcuyriDpCT2AKy/Eb7pckzxWS5NLEu3Y9fuHbFtUg/1EbxnBbE3+TlaLFx40aMGDECHTt2hNfrxYQJE9CrVy988803gbQA999/P9avX4/FixejSZMmWLt2LYYPH46srCz07dsXADB69GisWrUKy5YtQ+3atTF27Fhce+212LFjh+kUnyNHjuCcc84xfO/3++HxqP9fqSgsD5wSEhLKTCh5+vRpyY1WGdCkWJqmYdKkSZg0aVKl2sEwDMMwFYmuRyGqzuL2a9askZYXLFiAevXqYceOHbj88ssBAFu2bMGgQYPQrVs3AMBdd92Fl156Cdu3b0ffvn2Rk5ODV155Ba+//jp69OgBAFi8eDEaNWqETz75BL1791ba0KpVK/z73/9G48aNpe/ffvtttGvXztoBRQnLUt21116Lu+66C//5z38Cteu2bt2Ke+65JyaJqBiGYRjmz0405zjl5uZKf2IuQxU5OTkAIClOXbp0wfvvv48jR45A13WsX78e+/fvDwyIduzYAY/HI+VYzMrKQuvWrbF582bTfU6cOBH33XcfnnzySfj9fqxYsQJ33nknpk2bhkcffTTs8xdNLHucnn32WQwaNAidOnWC01nijvV6vbj++usxZ86cqBsYK5yaHoiqU+GLIEpBTqZpUqtOJZPRyB6F9EMjfazWrpPbym5+mxDS4iD2NkzNkZYLffKtl1ccdPN7qQRFlkU5iMoJ9WrIkVk1BXmO2uQlUmMxqSEny67hy2tmEXiUU0VBSaqOW65V5yLhVjZ70DVtqJvoUyfedAsRbPRc0OMRozbp8dBovXNq/x74TOVCaqOLRFtSO0Tqp8rJMw9RWUaA/pJOSZElwdycYN0+3UM1G3nRLiRNdRApy0+kSB/tSziPhqSvVNYTklHqJBKuKJFIdULknFkNPI3WxBMulz+fPFt2WVLzCeeY1rGz0ag0GlVXJMjtRUSao4lEBUmNPkm0TpzhjSRKdzQ6l94iFmRw3SX061bLhbpQs1A3FOaLf2jKnYkTJ5oqNbquY8yYMejSpYtUNeTZZ5/FnXfeiYYNG8LhcMBms+Hll19Gly5dAJREurtcLtSqVUvqLyMjI5B/UcV1112HN998E9OmTYOmaXj00Udx0UUXYdWqVejZs2eYRxxdLA+catasiffeew/ff/89vvvuO+i6jpYtW5apQTIMwzAMEznRiIor3f7w4cNITQ1m6i8rJQ/lvvvuw+7du7Fp0ybp+2effRZbt27F+++/j8aNG+Pzzz/H8OHDUb9+/YA0V7Yt6hyLIr179zaV9CqTcuVxAoDmzZujefPm0bSFYRiGYZgy8OsatAgHTqWe5dTUVGngZMbIkSPx/vvv4/PPP0fDhg0D3xcUFOAf//gHVq5ciWuuuQZASbTbl19+iaeeego9evRAZmYmiouLcfLkScnrdOzYMUupgrZv3x7IHXn++edLOR0rG8sDJ5/Ph4ULF+LTTz/FsWPHDOnQP/vss6gZF49YkeYMiTOJNCRGV9EaeHYaOkNQrfcZZCUheoc4vs0SoqnWG2WY0MW33OTYazjkfusknAl8phKal8g/ok1U6qHSltj2VLEcIvXLaVIbzSM/Dj5BTqC/9AzLCI2hnB6JTnK7gloKTRhZP1mWq6QoNLssmZlJag5aPE3AKEUK9ww5xzZDctbgfmkiTSvQ/dQkUZDuur8FPlNJUJXAEwCKawXbnybRhlRKTXWGnu/x46l0afl0ofxL3ecLLaHbFdIXlRrpfeAVIgp9heQ+PSOfC7tOI/JCJ9r0nyF9FQqGKBLclnSMkBiTWsqLOhT7obdpsbyxdKpMkmVKuXILqfxJpkMIEqfZjAXH6WBbej3+TOi6jpEjR2LlypXYsGEDmjZtKq33eDzweDyw2eRzabfbA2OD9u3bw+l0Yt26dejfvz8A4OjRo9izZw9mzJhhasP//vc/3HLLLfjiiy9Qs2ZNAMCpU6fQuXNnLF26NCaVPixf8b///e9YuHAhrrnmmkD+JIZhGIZhKo5YRNWNGDECS5YswXvvvYeUlJTAnKS0tDQkJiYiNTUVXbt2xQMPPIDExEQ0btwYGzduxGuvvRYoypuWloZhw4Zh7NixqF27NtLT0zFu3Di0adNGKeWVMnToUHg8Hnz77bdo0aIFAGDfvn0YOnQohg0bhrVr11o7qChgeeC0bNkyvPXWW7j66qsrwh6GYRiGYQglA6dI5zhZa1+ayLI01UApCxYswODBgwGUjAnGjx+PW2+9FSdOnEDjxo0xdepU3HPPPYH2zzzzDBwOB/r374+CggJceeWVWLhwYVhl2v79739j8+bNgUETALRo0QJz586NWe5IywMnl8tVLSaCa0ICTCv16ETZwhixRuubVQw20rNZzSwRlcxHobX3ROnOKPGRGlm0ppmw31OFsqRmlO6Cy+kJcvRUvk+WYY7kpQU+5xFZxeORH1qfImrLEGFkD31OacJO+rKi94VDiDQzJsektd5CR/CopDjAJDGnojaiaUJPC/cXlV3Fa0tfRlR2FZfpeaKSLb03xfurhkOW4hINkmewrxyPfC8WeYm0RaLsxOSMCU7ZfqdDfX1E6H+QPldwucAh3+NFPvm+NkQNijcgvX1oclkhkahOE17SRJuKHKM0Cs0oqQkyOI0KpM8PTYgpribnn8p6dkGes+fL/bpOyZsmCIG/JMAWPsXc6cqqVRcL9DBGWpmZmViwYIGyjdvtxty5czF37lzLNpx11lllJrr0er1o0KCB5f6igeX/u8eOHYs5c+aEdUIZhmEYhomc6lqrbsaMGRg5ciS2b98eGHds374df//73/HUU0/FxCbLHqdNmzZh/fr1WL16NVq1ahXI5VTKihUromZcvCD+AqUjTSseGSuYeblUk9RVZWDMoN4qsUy7cZJw6JxQfl32LNCcWLSv40XBido0x9PpYvnnnpjX6djpGtI6D/EaeYVl6h0wzfEiHJ+D/IJOcJGJ18Kvc1p2hNpEPQ+JgmeiFvGgqc65IfiAQAMOqDdRRHW/me1HlfPJ6GUl66VJ6HRbxY8zk99tHhpQIBy7Wa6yIsHdQAMK8gtkb4/fK583hyt4bekEb80Xer90qih9d7iE3Ea0rY/Y4CN5nsRJ0bQcC31FiRVlbG55pTOBBF4Qz5CU4yq0g6lktWijnUz+Jm1paRSxL50cq91Quia43v27tAoO+VGDzSucY9KvR37NwCNU8fLJMQwVhg7T2z6sPqoagwcPRn5+Pi655BI4HCXPptfrhcPhwNChQzF06NBA2xMnTlSKTeXK43TjjTdWhC0MwzAMw5RBNPM4VSVmz54daxMMWB44mWmZpXzxxRfo0KFDWIm1GIZhGIZhKIMGDYq1CQYqLAHFVVddhS+//BLNmjWrqF1UKE6bH06TUhklRCfdPpVRqNxGoRXRJYuI7CJKNmZ5qJxa6Dw8VnJYOYj9eV650j2VD0X5La9IbptbQHLl+EPLSrQkhign0BIYNlp1XSHhUHnNTia7iufYRsuK2NVylXguThbJ0hCVLdMTgiVZHESzSSC5jOh+xMnj9B5R1Rg3k/ykidrkFNIgACeZiO2xEHjhV8p68jlW2UzXqfKt/Xo6BSo0ar54KmhQALlvbTZRBif3EzlvLrFcDrm/6H4KyH0tlUI5I0+tsBFpy1YgSNvk2Lz0nqfPj7CeSpj0vhDbGqQ5IifSYAtNKFWjuWQb/AmkdJBwEPn16SR0sl9BnqPr/PJpgyc12MDvis7/AaZUV63uD44dO1Zm7si2bdtWui0VNnDiyeMMwzAMEyWiMbm7Ckp1O3bswKBBg/Dtt98axhWapsHnK/9c4vLy5015yjAMwzBMlWbIkCE499xz8corryAjIyMukm7zwCkECZoHCWFcH18E2Zgkucrg81cjyW8WZD4q8ZlFGEn41cnKxEggD4mqo/l7aNmL4wXJgc803xKVOETpi8oWtK2ViELqJBXlElomRSU1Uug5VslT1IZCj6wR5AoyppMcO5XqspLkci2J9uLAZ5rzyWGocxGEHuvRfLnKeb6X6BgCtOxLHfcZaVkVsacqQ6SSIQHAjtDn3CCLkbYFQluDvEtzCjnkcy6lGDJIyiTXlJAziZZ9oYjXgEbcpSXKYV0pbjmxkHi8OQWyDJ5zXA4Xs50KXkv7GRqZKNukJ5FjF54Xjch6dNnpFI7BLfdTaJPfDSB5qcQcUTTSz+ciudmSBOmR5oeiUl1hsK29kOaSktv6kwTZ22RaRbSIRebweODgwYNYsWJFXOWPrKgcjAzDMAzDRInqmsfpyiuvxFdffRVrMyQqzOMUD+40hmEYhmGqLi+//DIGDRqEPXv2oHXr1obckddff32l28STw0PgtPng/KPis0+VHBChk02ayXhSMkOFVFIWckK/0P3Stn4iCdpMogL9wjH4DWUtQm/7e6EsAZwqliWCkwVJ0nKRN3QSxQR3sbTsEiQqKqXQ5JMqCc0g65GoQbFvKo/QqCcqA6igPyrEX4H0XqPJDHU9+MjaiA01EmSJ5hi5BpmJQenOLCGptN7k/hKXqTxVTCTa7ILQUWq0X9FeapNZUk4qh4oReVRyKiBtD52uGeyHJC81HLviGfCSe4+eG/GesdOklrS8ifDcmpWXcREJV5RLaYLVX0jb37RgIlotl0iwNNqNPGtiNCmVwWhknBilWoNIi0XkeT+dL0v3ouznJolo6TOdrwVlPxrpR2cpSO9J0g/9L8AmJDpFZU1O1rXIJ3dXQY/T5s2bsWnTJqxevdqwLlaTwy1LdQUFBcjPD4ZE//zzz5g9e7ahQnFeXl6VTUXAMAzDMPFE6RynSP+qGqNGjcLtt9+Oo0ePwu/3S3+xGDQB5Rg49e3bF6+99hoA4NSpU7jkkkvw9NNPo2/fvoFKygzDMAzDMJFy/Phx3H///cjIyIi1KQEsS3U7d+7EM888AwBYvnw5MjIysGvXLrzzzjt49NFHce+990bdyFjg0Hxw/uEeFyN4qJxjRIjesSi/WUFlh0Gqk2N9LO3HI3TlJMNsmuRSdHXTKDpaVZ7amCS43Gm0mF0hy9CaZFSqo5KaiEblKkVUHZ2yZycSjWpOH52Qaagqr8pKZ5OPx+sLvR8qDRWSc/5LflqwWyo5ERtEuYdKQzQCzC1E8/mp5kRtJBKIuExtOkZkPXG/NNKPbkttFPdDowALyHJ+cVDeoVIdhSY3FeVdekuofu2bvVdUk3oN8ii1Ubh+NMoxK0WWQ0U7joPIqvny/aQT6U689lTG0z1yWzG20u2UbUpyyUdAZXB6n0s2GCROvczPQBnPpZBY00+jAkk0pVOIBPT5QycNjirVNAFmv379sH79epx99tmxNiWA5YFTfn4+UlJKHqi1a9eiX79+sNlsuPTSS/Hzzz9H3UCGYRiGqe5U11p15557LsaPH49NmzahTZs2hsnho0aNqnSbLA+czjnnHLz77ru48cYb8fHHH+P+++8HUJIOPTU11WRrhmEYhmHKRRX0GEXKyy+/jBo1amDjxo3YuHGjtE7TtKoxcHr00UcxYMAA3H///bjiiivQqVMnACXep3bt2kXdwFhh0/xlR+6Y1NYyqzEXCnMJUMZEESGEP5WNJq70S9KjOgkk3VYkkbjj6TKVg0S85JyLkXKG7Zyy21z8hUXlNQo9HlESMByrQi6gRDIhk8oLVBoSoZJGIZGgRFnTkASSnEfxnLtI1JYqqs5KwlG6rVkyVjFCj0p+dFuXLtssynP5JPkqjbwUzyP9hU4tpOvFSEez5KyqjC1UOhWhzwN9Bqh0J7ZPc8pRdVmJckSbKHHSfk5pydKyZiWSlEjM/uLgOacyfgJ5hmmUoPhcUtmOnnObO3geC4vk58FHE2sK27pIYs1kcp7cQuJTr6MIP4KpKA4ePBhrEwxYHjj93//9H7p06YKjR4/iggsuCHx/5ZVX4sYbb4yqcQzDMAzDVF+prpTi4mIcPHgQZ599NhyO2BY9KVfm8MzMTKSkpGDdunUoKCj5BdOxY0ecd955UTWOYRiGYRgEJ4dH+lfFyM/Px7Bhw5CUlIRWrVrh0KFDAErmNj3xxBMxscnysO348ePo378/1q9fD03T8P3336NZs2a44447ULNmTTz99NMVYeefHpVrHlBHllEMCTsV26qSe5bYFXrbIr98+xT4ghIIlTlrOGisT2ho0kR6akRZxkFqhSUqosXM5FAqMxVpweOj8giVMcRfclReM0NKgEnkD3pf0Jp5KlQ2GiQNcm6oFCa1VZ1jcg7NllXr6H0g2kR/OVMZlvZFZUsRg2zsCvaV75DP0+lCWeajUZwq6LX1C9I2VbkN0XrCKTdEg5EIMBpR6FAkDk2yyc9ly5SjZW4HAD+Qfs8UkMSUouxKbPIkywcoXq8kksSSJvT02sKvA5ngoIlq5b5F8v3ytRSfrdopck3Fs1JOSsviuSm2F+O/IffCRMr48ePx1VdfYcOGDejTp0/g+x49emDixIl4+OGHK90myx6n+++/H06nE4cOHUJSUjD780033YQ1a9ZE1TiGYRiGYYCSFP7R+KtavPvuu3juuefQpUsXKe1Ly5YtceDAgZjYZNnjtHbtWnz88cdo2LCh9H3z5s3/VOkI7BCqppfTY2PFS2SGWYkJFeLvNTNvlMEjIJR68ComfwOyR4f+WqVV5Q3bijmgiI10crJqIrlqgrHZ5GN67NKvSuL9oJPDrU7uD7VfO62fo8DMs0U9Ez5FziSVx4Z6n6hHQ3VezSaLSyWKTLyf0j6JJ86KZyvBLnspz0n7XVpOdwa9DT/n15bWHbLVlJZPF8peF6uT40sx5AlTXB96rczua5GTxfIEb+oJTrUFJ4+3SvlFWue2y96b3wvlvsRngD6zFLlklPpaUkTPnZV7hnprHU5SqkYsA+Mik8HtoT1X/nIGBFmmmuZx+u2331CvXj3D92fOnIlZTVzLHqczZ85InqZSfv/9dyQkJJSxBcMwDMMwjHU6duyIDz/8MLBcOlj617/+FYjqr2wse5wuv/xyvPbaa3jssccAlByE3+/HzJkz0b1796gbyDAMwzDVnmrmcbriiiuwYsUKTJ8+HX369ME333wDr9eLOXPmYO/evdiyZYshr1NlYXngNHPmTHTr1g3bt29HcXExHnzwQezduxcnTpzAF198URE2xgQpj5PoDjapKh8PUJv8ViQQ4jb3SG5xtVtUKsFCVD2zbUUbVVIcABQLk9INE8kNNgX7cliQ/Oh+aJkOg5wgyFlWZTvRDjrRl8ptooxpNkGa1naRqr9HMGmbSnd+rXz9ArLUYtZWdb1U5wlQl94445UnCZ+ddCzwuVaaPEmYPltH7XLSXzFHlFn+LvE+cZJr5yJBD6LsT/MaWYGel9+KakjLCe6gJFXLKR/7hSmHpeX8ZPm8idfSTSZl+8gzcbgwPfC5wCc/W4VkmR5vDWex0Fb+L0wlodNSTqnuQmlZlHBruuR1FPHd4NEr6f8AXSv5i7SPKsKGDRtQXFyMzp0744svvsBTTz2Fs88+G2vXrsVFF12ELVu2oE2bNjGxzfLAqWXLlti9ezdeeOEF2O12nDlzBv369cOIESNQv379irCRYRiGYZhqSps2bbBo0aJYmxGgXFmkMjMzMWXKlGjbwjAMwzBMGeh6ZFUISvuoSuTl5cHtdivbxKLUW7kGTv/+97/x0ksv4ccff8Tbb7+NBg0a4PXXX0fTpk3RpUuXaNsYc0T3fLkyhoZAlKeoKzta/QLqUigU2lZcNpNSnFK+GPkJ9frVUWh2C5EpUh4nmvOF7Ee8dlTqodvSSCaRYhvtV25bpJDQ6Hmj+ZXEvqhEQ5FzPqnvRirdiVIFjUpTRTbR4/FEEP1mNceVZFMEz4gq8oxKQzneYPBLhjNXWteaRJrRfk8VJQY+q/JQAepyQLRfMZLRELFqeNZC319m8rT4vNN3gdsmy1e1HKEjzewk/9vv3hRpuXliUA49WpwmraP54VRQG6nsJ74PzJ53VS49KtGK26pyRUWVajbHCSgp8BsKXdehaRp8vkqKahSwPHB65513cPvtt+PWW2/Fzp07UVRUEraZl5eHadOm4aOPPoq6kQzDMAxTralmc5wAYPny5UhPTzdvWMlYHjg9/vjjmDdvHgYOHIhly5YFvu/cuTPLdwzDMAzDRIXLLruszBxOscbywGnfvn24/PLLDd+npqbi1KlT0bApLnBqPjj/iBayEpWmgspxkvuXlvSwIEt4iGubuq9F2YWWMzCU9EBolzSVnKhE4LQFZSYaReckUpyVc0rPhRi9Z5AlbSTiS5mgVO23VkkcKumHRvbQeQU0aZ8U8eVTy6piiQ9D0kTSViWTGcqmkGVRBiwikUuqYzdE9hFUMmax10HaytuKCQrpfUwx3JuiTGkibR0pqBn4XMeZJ62r5ZAjzeq7ZSlPvE9yPfLcDBoBJkITRlpJ5EqvM01QKiebVF+f077QufjsTnJOyTMtPqe/e2RpjkbZiXac7T4mraOJg+nz4hMmTND3lQ/hT1Og2+b7g8d+pKhmyO0AIFELHk+RQrKMJppuCJQtVx9M5FgeEdSvXx8//PCD4ftNmzahWbNmUTGKYRiGYRiBalbkt3HjxrDbw5+fW5lYHjjdfffd+Pvf/47//Oc/0DQNv/zyC9544w2MGzcOw4cPrwgbGYZhGIapRhw8eBC1a9c2bxgDLEt1Dz74IHJyctC9e3cUFhbi8ssvR0JCAsaNG4f77ruvImyMCTb4g65cC/PplNIQGe5HEkkn7odGG5W3XhZQhgQieLNtiirlAHHdExOoC10l+9GaeFT2kxM5kjpqEZwL2pdNSjooR7s5SEJMFUZJzR9yvUoyA0hCPyJpmMlXHiHCyCizht7WrJaYsladyfXwCtJksU8duahpwWtAkxma1WuTE6GqZVfRZir1uDT5Pmjuzpb7QnA+RoJNbpvnpXXtgtfWRdqaRYuqoOfca+G6i+8oP3lmc7yJUCE+42aRcceKgyHk9Vyy3OmGLH2ZSXdSW/JsqV6xbk3ej/j+srnlfrKLa4beZ2XpX9Vwcni8Ymng5PP5sGnTJowdOxYTJkzAN998A7/fj5YtW6JGjRrmHTAMwzAMY51qmI4gXrE0cLLb7ejduze+/fZbpKeno0OHDhVlF8MwDMMwTNxhWapr06YNfvzxRzRt2rQi7IlLRPcvlZwoorxjFjkmSXc02sVkW7E1jaqhEoGIk6wz2EiWxb5sJMyJyhiiDEDd607IkoBHIT0YXPNa6HNBpR8qEYhyg1lEkeFcCH35ybZukqiy0KdOXKlCPG9UOqFSnV04b6oEl4AxWswnROTpFpL/0aSV9GqYRdKJGJJp+sXro44OcygSrJoldhT7MosoFKWtnwvkORZJycXScrr9tLTcKulI4PP+gkylTeK9Sp9ZuixGi9L7lEpz9Fr67VrIdXQ/okRoM4lYo1F1NuEZp/ciRTz2o0QGoxF49UgSUlEuVcl2ZtD3jLhfemxJbvm6izbbOAFmheHxeNCrVy+89NJLymSYlY3lu27q1KkYN24cPvjgAxw9ehS5ubnSH8MwDMMwUaaaRdUBgNPpxJ49e6DRiaIxxrLHqU+fPgCA66+/XjqYWKY/ZxiGYRjmz8fAgQPxyiuv4Iknnoi1KQEsD5zWr19fEXbEHTZND7jwI4lSCxcacWeQ7ghiTJeZBJVkC7qZqZu/0OQWkKRHf/Si96g8YpfqAYb/s4jKFNTFXqSHH/1W5AvtgKXnmEZBpbqKAp+9ftl17yXnnEaPibhJ9J7NQWQkhTRB5Sq/LXT0G5VKaZLLUNsBRmmOSh4iVJqDLbTkSWVJh0Luofeen/witZJQUlXDkEZ4UlmpZmK+tJxkC94HNRxybbdcEpUm1vyjUXQJ5D4Q4/HotaLRufRdQvtWIUWWWYwWE+8Dg4ynkMUK/epn1Bj9Fjw3fiLjU+lOmmZBE2nqoaXHZOE6AsZIv2R3cH2Bt/wyvSWqaVRdcXExXn75Zaxbtw4dOnRAcnKytH7WrFmVbpPlgVPXrl0rwg6GYRiGYUJQXTOH79mzBxdddBEAYP/+/dI6lYRntcadpmnYuXMnGjdubNrW8sBp9+7dIXfqdrtx1llnISEhdNr+qoj0y0tXT5iUt6OlD0LnCTJgNulR8tCoEX91qfI0AYBPC/3r1W6Tn7pChP6lqPJCAGWUelH8WlWXTSD9EhvFCe3US2Eoz6CFnnRryBdFjq+GI/gLlP5SLybendxiuRSH6EVyES8L9ZyovHzUs6Ca9Hza45LW5eiyTWL5Exuxid5Dos10QjpdJpcHfrGsjUluJlXJGHqeDOdNuJb02rntxKMhbEtziNHgA2Oep+C2afYCad1ph3yORQweJ+plEdY7NPm5ozbRvEJyiSLiqQN9JwnPO3k5mHmgxGeaenPou66GPeiNEz3iAJBml714Ti20R4fuR+WBNvNkS9eSPGbUBmlZq6TpKTGYHD59+nSsWLEC3333HRITE9G5c2c8+eSTaNGiRaBNqMHLjBkz8MADDwAAioqKMG7cOCxduhQFBQW48sor8cILL6Bhw4amNpRX5Tp16hRmz56NtLQ007a6rmP48OFhTzWyPHC68MILlaM8p9OJm266CS+99BLc7tAvCquEcwF1XcfkyZMxf/58nDx5Epdccgmef/55tGrVKmp2MAzDMEx1YOPGjRgxYgQ6duwIr9eLCRMmoFevXvjmm28CktnRo0elbVavXo1hw4bhr3/9a+C70aNHY9WqVVi2bBlq166NsWPH4tprr8WOHTsqtKzKzTffHHaR4JEjR4bdr+WB08qVK/HQQw/hgQcewMUXXwxd17Ft2zY8/fTTmDhxIrxeLx5++GH885//xFNPPWW1+5CEcwFnzJiBWbNmYeHChTj33HPx+OOPo2fPnti3bx9SUlJM9sAwDMMwTClr1qyRlhcsWIB69ephx44duPzyywEAmZly2o333nsP3bt3D9SuzcnJwSuvvILXX38dPXr0AAAsXrwYjRo1wieffILevXsb9tuvXz8sXLgQqamp6Nevn9LGFStWlPm93x9+mhQAyMvLM2/0B5YHTlOnTsWcOXOkg23bti0aNmyIRx55BP/973+RnJyMsWPHRnXgZHYBdV3H7NmzMWHChMCJXrRoETIyMrBkyRLcfffdlvZnF0uuiNCcQnr4F8eQn8iCzGdYL3w2yxcl7setyZMeaSkRFWf8aglWnKRKJ6hSSYOeC7PjlfYjHK8hXxSZtO1EcNljIrMUafJ6UeKgEqAqdw6VXZxkv7R8Rr5QvsWYyyh8GSCRSE4Ojcp8wn1A25JJ2/mKkjKGCewWJk5QqUgTpFQ6kZzmjxIlwSRSkZ4ej6pMDJXqUskkbmlyuIVSJ4As4TR3yeVYahIJ6tuCrMDn0z752aJBDWIetBS7bK8dsuyqzLdExAJ6PURJkErmZojPsOFZo/nVhPNUxxG9NDZUjlO9K2ieKlHipNIc/b9AbOutJKlOQxTmOP3xL00dlJCQENYUm5ycHACh5w/9+uuv+PDDD7Fo0aLAdzt27AjkYyolKysLrVu3xubNm8scOKWlpQWUrXCktlAcOXIEDRo0ULZ54403cOutt1rq1/LA6euvvy5z8lTjxo3x9ddfAyiR86j7LtrQC3jw4EFkZ2dLFychIQFdu3bF5s2bQw6cioqKUFQUHExwLiqGYRjmz0yjRo2k5YkTJ2LSpEnKbXRdx5gxY9ClSxe0bt26zDaLFi1CSkqK5CXKzs6Gy+VCrVq1pLYZGRnIzs6mXQAocYyU9dkqPXv2xBdffGHYdylLlizBkCFDLA+cLCfAPO+88/DEE0+guDg4oc/j8eCJJ57AeeedB6BklJeRkWG167Ap6wKWXgC6X9XFAUrmTqWlpQX+6A3FMAzDMDGnNB1BpH8ADh8+jJycnMDf+PHjTXd/3333Yffu3Vi6dGnINq+++ipuvfXWsOY3l+Z+LA8nT57E3LlzceGFFyrb1atXD3369MGZM2cM65YtW4bBgwfjySeftLx/yx6n559/Htdffz0aNmyItm3bQtM07N69Gz6fDx988AEA4Mcff8Tw4cMtGxMupRdw06ZNhnX0QphdnPHjx2PMmDGB5dzcXDRq1Ah2zV9mZBh12ZqVYFFhJV+RCrOE/6LNNFrHZeJmLhblLJNDVUW/JZBzqWpL89KoZDwzOYH2pYJGI0nlZkx85KLkYch7RK7zGZssrdg0y49hyXYm949Kwk20y5FMCW5ZmijwBaUiVe4os/2Y5fqiEqEKMVKORs0ZIuNoRKsUVSdvazgXwnWnubAMJXHIsXv04LVMscmSWgPHSWk5zxX8z+X7QnmeyGmvfI9I9pIoNMO9qVNZSXj+SXkQK5G+BrmNRrCF2GdZWHkuKeI7i76/6PuYRkWK0OddfE/S9zx9z6iigCuMKEbVpaamIjU1NezNRo4ciffffx+ff/55yEi4f//739i3bx/efPNN6fvMzEwUFxfj5MmTkufn2LFj6Ny5syXzP/nkE7zyyit49913UadOHdP5Tx988AG6deuGvn37YvXq1XA6S+7St956CwMHDsS0adNw//33W7IBKMfAqXPnzvjpp5+wePFi7N+/H7qu4//+7/8wYMCAwATs22+/3bIh4RLqApZOUMvOzkb9+vUD3x87dkzp/QpX22UYhmGY6oSu6xg5ciRWrlyJDRs2KGvUvvLKK2jfvj0uuOAC6fv27dvD6XRi3bp16N+/P4CSSLw9e/ZgxowZpjYcOnQICxYswIIFC3D69GmcPHkSb731lhS1F4oaNWpg9erVuPzyy3HzzTdj+fLlWL58OW677TY89thjGDdunGkfZVGun7o1atTAPffcU64dlhezC9i0aVNkZmZi3bp1aNeuHYCSjKMbN24slyuOYRiGYeKGGORxGjFiBJYsWYL33nsPKSkpgWkvaWlpSEwMZsLPzc3F22+/jaefftrQR1paGoYNG4axY8eidu3aSE9Px7hx49CmTZtAlF1ZvPXWW3j55ZfxxRdf4Oqrr8acOXNw1VVXITk5Geeff37Yx1C3bl2sXbsWXbp0QY8ePbBp0yZMnDgRDz30kIUzIVOugdPrr7+Ol156CT/++CO2bNmCxo0b45lnnkGzZs3Qt2/fchujwuwCapqG0aNHY9q0aWjevDmaN2+OadOmISkpCQMGDLC8Pxv08KQ0hUvakP6ftFWVA6AYIvLE9ha83tS1bYgeIe5rpx5cb9fV50MsnWBF2gKAQiGKiMoH1K2foKhiTvEopEa7SUSkQwtuW2aEpWRjsHNqU4Emyy7GEh/+0OsMSVSjUzKBXp8EIv+IkWXFfvVrQpRDqH00+SdFPD6ze0Y8T2ZRmIbIRuGaOIk8mEAiMZPswWARei3pvZnjS5KWJQnHKfdb2ybPs2jmOhaynyJfOlkWEpJCbb/qPBqeF1qiSHiGqZxulCXJeiHi2E0kQSoR1nUEQ7/pO8cKhvuAdGW38Lio7ilD9K4Q5ehAJUXVxSBz+IsvvggA6Natm/T9ggULMHjw4MDysmXLoOs6brnlljL7eeaZZ+BwONC/f/9AAsyFCxcqczgNGDAADz74IN55551ypxMSE3bPnDkTAwcOxI033ojrrrtOWte2bVtL/VoeOL344ot49NFHMXr0aDz++OOBTJu1atXC7NmzK2zgFM4FfPDBB1FQUIDhw4cHEmCuXbuWczgxDMMwjEV0kx/Lpdx111246667Qq53u92YO3cu5s6dG/a+hw4dihdeeAEbN27E7bffjptuuilkdFwoShN2l8511nUdb731Ft5+++3AsWmaFnbG8FIsD5zmzp2Lf/3rX7jhhhukasUdOnQot14YDuFcQE3TMGnSJNOwSoZhGIapUsRAqosl8+fPx5w5c/DWW2/h1VdfxejRo9G7d2/ouh52csuDBw9WiG2WB04HDx4MzCESSUhIKDPkr6oSKqrOUINJdSdaqddmIQEkILvczWQkkSRS9dulqANVYpewT51EllDJQAsd30fd8dTN7/QH+y4kyf9UUVtW6mmZyS6Gvi0kNxVr4hkicEjCwiJn6MfOKDGFjg6jEUMuItlQCUcZ+UeWxeOh/VDEJJFU1rORRJo0EkuW34gNhpproSVNY4RU6L5oVJ0ozQFAuj34HqPXkt6bOb5EaflXTzBZH30eUpzyfZAqRN2d7z4iraPPR443uB96XqgsZlYjU4W4X1F6L2s/xoSSQbsynDnSOlqPToXZ+0w8PrNjE9uqklgatqNtDdv6y/xcoVSzgRMAJCYmYtCgQRg0aBC+//57vPrqq9i+fTsuu+wyXHPNNfi///u/kJF1u3fvRuvWrWGzhXf/7927Fy1atIDDYT4sshxL37RpU3z55ZeG71evXo2WLVta7Y5hGIZhGBNK5zhF+ldVad68OaZPn47Dhw9j8eLFyM/PDzmnCgDatWuH48ePh91/p06dcOjQobDaWvY4PfDAAxgxYgQKCwuh6zr++9//YunSpZg+fTpefvllq90xDMMwDMOEhc1mw3XXXYfrrrsOx44dC9lO13U88sgjSEpKCtlGREzqbYblgdOQIUPg9Xrx4IMPIj8/HwMGDECDBg0wZ84c3HzzzVa7i1ts8BvctYC1mmp+QzK20A4+KglYirIjbVV11Kg05zaR6sRzQG2kfRXroW8nei6KiRQh7YdIgvR4zM6NiNKNTiJu6LVVJemkEoEoa1B7KQmk1luyHpSKqAxjRV6k/dL7l9bbU9ooRocR+ZDK02KdNYdXzhhME1w6iE3iehqRR5cdQq06eqxUpqTXUjyPtNZbmr1AWhblbCpPOf3yfoqInJWvByMoab05KvO5BZtr209L6xq6Tsjb+oO56Oh9SWUweuw53uB/HKd98vVRTTWg/dLzRuU4ERqtS1Hdx9R+pcQWQfJJ+nyopi1EK1lxRAiZvyPq409EvXr1Qq67/PLLsW/fvrD76tSpk5RiQUW50hHceeeduPPOO/H777/D7/crjWcYhmEYJkKq4RynSNiwYUOF9V2+Wg9/UKdOnWjZwTAMwzAME/eENXBq165d2MX4du7cGZFB8YIT/jLruFmpTWcHlThohJQt5DozSVCZNI64wUW3OZXm3BqNyAndr4tIaMUgkXHC+TIkxzM7b8Jquh+K2BeNLLMijxprbYWOGjRIqYrjyffLCS89/tCyJAAk2sOPRrQheP3MbKJSl3g8Zskmxb5p1BlFvNa07pvfqX5viNeg2Kd+HYlyCY2Mo+eCnlNRZqojJF8Eyoo0DfZFn49kh9zWQ+Rp8dqfIkkt6zrk0k6petAmGj2ZYpPlQ5EzXrmffLt8v9Fkk6JN9J5Ic8j7SRHkOWPSylxpmZ4bv+K5pPdmeaPdAOPzU15UUYFmkXJi1CaN4KwoYpEAkymbsAZON9xwQ+BzYWEhXnjhBbRs2RKdOnUCAGzduhV79+6t0MK+DMMwDFNtqcZS3alTp7B8+XIcOHAADzzwANLT07Fz505kZGSgQYMGlW5PWAOniRMnBj7fcccdGDVqFB577DFDm8OHD0fXOoZhGIZhqi27d+9Gjx49kJaWhp9++gl33nkn0tPTsXLlSvz888947bXXKt0my3Oc3n77bWzfvt3w/W233YYOHTrg1VdfjYphscam+WErQ5604iamkSO0bpLPwvDfmOgxtB1UtkgWo4SIe92QrFGROJAGi9Hot0JFVJ3hULXQEWB+TS3riTJAIWSZgsqj4vFR+YCiqntnkPzI8YiyBq2tRyNyqCRoJUpQSnyqql8Io1wq1VEjx0rvJ1HSpVKWQRK0B5epNEeTZ1KbxOSZNDKOSjbieivSHADUcgSTWta050vraOScSDI59hSyTJNEHiyqG/ic75PvzTNOWWKzOUS5J3QUIF2m9xfdD91WPBd0nTFRZfD4zCQ0oywe+vlSJbU0vINM7mvVFAfDfsV7nkrxFiKkDe9FUfauLDdONPIwVUGP05gxYzB48GDMmDFDKp921VVXlasObTSwnAAzMTERmzZtMny/adMmuN3uMrZgGIZhGCYi9Cj9VTG2bduGu+++2/B9gwYNkJ2dHQOLyuFxGj16NO69917s2LEDl156KYCSOU6vvvoqHn300agbGCtcmg+ucqS8EH91mf2isVmaaK6q3F1MluWnI0kLXe1d6WEC4BL2S3/p+sm2qgmT9De9qoSB2URy+bzJx67a1m7WL53sKvzSpRPhDX0rJrt6NPkxU+WHotBzLmJ2Lem24nqaZ4ded5WXkiKup96pHDJBmnpHxHNhKANjwbtLPVs1iMdJtJF6mNJtcg4lcXK4mU0qz5CY0wlQe2QMXjyynOaQvWQidPI+9aiJpV9owIvK22aG0sNk4hox8/7KfZF8SzApEyUg57AzCzoR3t0KDxO1qdJKrlRT3G43cnNzDd/v27cPdevWLWOLisfywOnhhx9Gs2bNMGfOHCxZsgQAcP7552PhwoXo379/1A1kGIZhmGpPNZ0c3rdvX0yZMgVvvfUWAEDTNBw6dAgPP/ww/vrXv8bEpnLlcerfvz8PkhiGYRimkqiu6QieeuopXH311ahXrx4KCgrQtWtXZGdno1OnTpg6dWpMbIooAeafGafmhfOPu0ycnBhd+S38u1g1CZLaRCdB0gmuVmwS3dd5JD+RSkYy5KUyOVbVJE4Dwm4NE6KJpCauN5t0TvFJeZy8ZJ0scYj5fKhNhhw2NH+UOOGbnDdjbqbgMrXJbJKt6hrQtqK0lUJKklAbxfVn/PIEaGpTnk2eBykej1nuMrGtSoYsa7/iuaLnLZU8H0lCiZk8v/yKPOWXSzLQXE2qcju0BIuYX4kGVtBJ53WF3FN1SR4qejxUkhKfRXqdaR4qsRSSmSxpU6htZu9JMYbAEPhi4V1hJk+rsCJlM7EjNTUVmzZtwmeffYadO3fC7/fjoosuQo8ePWJmU1gDp/T0dOzfvz/sTOFnnXUW/v3vf6Nx48YRGccwDMMwDHPFFVfgiiuuiLUZAMIcOJ06dQqrV69GWlpaWJ0eP34cPl/5iy8yDMMwDCNQTec4jRo1Cueccw5GjRolff/cc8/hhx9+wOzZsyvdprClukGDBlWkHXGHAz6UOsstRU1YiMRTRspZiCiirm3qqldFu9FoMTeRyc4IrvwzJErIUO1dkHfMcqZQOUslW1KXutg3lQ9cNEdSmKWCAGO0W7HweJjJofl6UKKiMgs9T/RYJfnNRmUWedlvRbKlEVTi9TGRIpyKsiOqa2W3kbJCdnKdTe4DaR2RKVXRfVQiSyBtxUizZBKFauhLODx6T+QRqe53b6q0fNITlO5oHjcqY4rPk2EdWRblUFWpE8AYsVYo3JvF5HjotuJ1dxlK0ajvGfF6mcl8ImZTFqzIb2bRcPI6sq1CAlSVKHJUUlRddZ3j9M477+D99983fN+5c2c88cQT8Ttw8vs53JJhGIZhmMrl+PHjZapdqamp+P3332NgUTkSYDIMwzAMEwOqWfJLADjnnHOwZs0aw/erV69Gs2bNYmARR9WFxK75Yf9D5hGd22blMai0QvsUsRKtZ+hLeApUydkAtZs5lcgWxWQsLUoVVHKikpRPiFqjkXxUeqA2qmXL0FKkMTKGRIeJ54mWjKCSBuTjEVHJXgBg14UEnnaaKFRezvPJco94jp26LIfQBIWiHGKM1lNHlonJKen1MUaliVFo6nvTo3gmaEJMFfR4VNF79PyrZGMAqGkLbmsmDYnyNJW2jDKY/AotIAk+Rah0Jz4/9J6giUPFe8RwTxhKkoS+36i99B4RJc0UmxxNaRbt5hTOuRXJzDQCT7mW9GUlUtmCbmVI2Csm1rQwrSIiqukcpzFjxuC+++7Db7/9Fpgc/umnn+Lpp5+OiUwH8MCJYRiGYZg4ZejQoSgqKsLUqVPx2GOPAQCaNGmCF198EQMHDoyJTTxwYhiGYZg4p7pODgeAe++9F/feey9+++03JCYmokaNGjG1hwdOIXDCH3ARi5EndpN6Ryqou1oVaUJRubOtRIBQzCJWjvuThf2okzN6hGSBNPqIShy0lpUoHVGJgMou0nkjUoox8WHQZirNnSEiAL0+bkGuouuoPCLaWNt+BiqKiVxiE2S+JJssnVJJTVWLz20SLaaKGlKdYzc5p1Sak6QhEnlljPQLHZnl1tTyTooWrD9Hk1ZS6DOQIkaLaVRuk9se8Qbv+d98KdI6el/T81jTGZS6aEQePfZCIaruhC9ZWnfSIy/btOAyrU3nJv0mEClPTCxq183k3OA9RO8JVWJNilGKL///2JHUMLSCykajDWKyTJbqKotY1aajlGvgdODAASxYsAAHDhzAnDlzUK9ePaxZswaNGjVCq1atom0jwzAMwzDVlOXLl+Ott97CoUOHUFws/0DcuXNnpdtjOapu48aNaNOmDf7zn/9gxYoVOH26pLL47t27MXHixKgbyDAMwzDVnVKpLtK/qsazzz6LIUOGoF69eti1axcuvvhi1K5dGz/++COuuuqqmNhk2eP08MMP4/HHH8eYMWOQkhJ0Y3fv3h1z5syJqnGxpCSq7o/PgmvYkLhR4aY1a2vFNWwFVQQIhUp1VM4S+6KRcdSV/5svmAzQWCeNSl3yfsToJXrebDYr0iOR0IQoxzyTBJ50v6I0YUgyaDhvQs01cqxUuqMypXguqHRC9ytGYpnVdqN1yESZxqdIJkmhx0rvTTHail5XmijUoxGZUjhXhkhFcnwuhXyYQCMmISMGOtYgNtQgavVh4Zz/UJQprTMkY6V22ATZjBhBr4cUTUklM7v8q1q81rQtrSWYJkTGAfK9Se952ldte7AOnplUZ4Voym3llf3M3qnKxK6G6RDBz87KGo1UU6nuhRdewPz583HLLbdg0aJFePDBB9GsWTM8+uijOHHiRExssuxx+vrrr3HjjTcavq9bty6OHz8eFaMYhmEYhhGINIdTFc3ldOjQIXTu3BkAkJiYiLy8ksH97bffjqVLl8bEJssDp5o1a+Lo0aOG73ft2oUGDRpExSiGYRiGYZjMzMyAU6Zx48bYunUrAODgwYPQ9diMBC1LdQMGDMBDDz2Et99+G5qmwe/344svvsC4ceNillOhIrBDL9N1ayWqjrZVuYqj6bqOROaj1LWfDrnuFIkEkmygEWq28kfo5PtliU2UEKj0QC9ZoXCL5xukOnmZykxiRBtN/kdlJFFq9JPHisqHNW2ylCJue8Inh9lme+VSAzSJorwftYyULlxLaoMqaojeX3TZI147Inul2gqlZTFRKIXWkKPRYmL0EpXmkm00cSuRQ6UoKDnaLUELnTyTntMikvTVaacRh8G+T3nkJJaSjAcgw5kT+NzMdQwqRMnWIIeS62yIxFRIdbT+XJJwDQzPaAQJI43rQyemtYKZbGctIWa5zagUqms6giuuuAKrVq3CRRddhGHDhuH+++/H8uXLsX37dvTr1y8mNlkeOE2dOhWDBw9GgwYNoOs6WrZsCZ/PhwEDBuCf//xnRdjIMAzDMNWbajrHaf78+YF6uffccw/S09OxadMmXHfddbjnnntiYpPlgZPT6cQbb7yBKVOmYNeuXfD7/WjXrh2aN29eEfbFDE3Ty/VLyIrnKJLcJiLR9DCpJv5mChNHy942eOzGibDyMvWciKU5aMkI5eRk6mHSw7+laTkN+gvbSkX3M8Iv+XwyiZ5O4qalXX7zBifV03w+p71u0ldwvzRPEJ3Yn+aQJw2nCN4fs1I14n5UE2OBkpxngbbE0+O2kYnMkL1KYk4oeu+5aQ4oscyFpnYPJGihPXPU40RJEXIZNXTKk0+LTAIKfoec90mEeinFfGVnOU4SG8k9I5U+IpP+Td4jqlJCkUwAVwWhWPNOWfMaVZRnyEoQjVzyqgqORuKcfv36YeHChUhNTcXixYtx0003weEoue/79++P/v37x9S+cifAPPvss3H22WdH0xaGYRiGYcqiGnmcPvjgA5w5cwapqakYMmQI+vTpg3r16sXarABhDZzGjBkTdoezZs0qtzEMwzAMwxipTnOczjvvPIwfPx7du3eHrut46623kJqaWmbbWMytDmvgtGvXLml5x44d8Pl8aNGiBQBg//79sNvtaN++ffQtjBF2+KF26IfarmJyM5V3n4C6rIoVuZDmH8py5ErLTp+QM4mUpqA5oOiEaXHyawqZUEzlEBHa1kYmkovSAz3/hsrwpNSLSnqgZUdO+YMTgQ35ofx04rJ8Z+X4gttSaY5OKBYn2dN+KLT0hgi1sVCnbYP7pdKpUyFHG8+xvJxCbsViPbifIl2twdgtSDR2w0R5cXI1LR1EJbTg8rmuX6V1Z0hAwXEymT/PH7x+KXb53mzokmU/cYI+leboc+mUyuXQkirqe1N8/mnZF1VgiZV8cMZtoyfVUWkuWlMcDPtRrlPnCWOiy7x58zBmzBh8+OGH0DQN//znP6GVIc9rmha/A6f169cHPs+aNQspKSlYtGgRatWqBQA4efIkhgwZgr/85S8VYyXDMAzDVGeqkVTXuXPnQNoBm82G/fv3x5VUZzmP09NPP43p06cHBk0AUKtWLTz++ON4+umno2ocwzAMwzDVs+SK1+vFwIEDUVSkLupd2VieHJ6bm4tff/3VUMz32LFjgYyefwZC5XGiRDN6REQVxWGVinJtu4jDOlPKEyTLXsdJtBiVimoL24pRTSVtaURe8Ny4DPl8aC6g0FFCbrssW9CotHDXAXIeqhRy7BQqU4rRVkkkBw+VE0WprpDkFKJRW3Rb0Ua6rY9GoSkOVyX9UpnoDFlvIyVY3IL73ViKRt5WlN/oLz6fIW+TvJ9CXSyfoy43kyRE3bVwyvfICX8hbS7hcQbvVSqL1SY50WoKUp5Z2Q4xWpGeJ4pfIfMZ+lWITmb54VTPhNn7S5bBQ3YTMeJ9QqVeen8x8YfD4cA777yDSZMmxdoUCcsepxtvvBFDhgzB8uXL8b///Q//+9//sHz5cgwbNixmyagYhmEY5k+N1dIqof6qGFdeeSU2bNgQazMkLHuc5s2bh3HjxuG2226Dx1Pyy83hcGDYsGGYOXNm1A1kGIZhmGpPNZrjJHLVVVdh/Pjx2LNnD9q3b4/kZFm9uP766yvdJssDp6SkJLzwwguYOXMmDhw4AF3Xcc455xgO5s+KqjRFRRJN6c4K4n6oDSqbkmm5DIdaxhVlPypbUElQJSNRRBupvabym0ISoVE2DRynQralUgmVs36zBSOzaBkYGo1Iy8+obKJlbESJx0zusYJUnkWjJUjkY803OLmDNtKklgZpRdhPoSHxKY1cDL80DaWuPSjlNbDLCS0TSMLIM7osRqoiQGlJGfG+dpvIlOKVNHsOVfe52dQCayVKovMu9JPNrEh3ViSTaEpzthCfKxINll59IfuwwvTp07FixQp89913SExMROfOnfHkk08GIupL+fbbb/HQQw9h48aN8Pv9aNWqFd566y2cddZZAICioiKMGzcOS5cuRUFBAa688kq88MILaNiwoakN9957L4CyUx1pmgafL/ykrdGi3Nc8OTkZbdu2xQUXXFBtBk0MwzAMU13YuHEjRowYga1bt2LdunXwer3o1asXzpwJ/mA4cOAAunTpgvPOOw8bNmzAV199hUceeQRudzA1x+jRo7Fy5UosW7YMmzZtwunTp3HttdeGNejx+/0h/2IxaALK4XHq3r17mfkUSvnss88iMohhGIZhGEIMpLo1a9ZIywsWLEC9evWwY8cOXH755QCACRMm4Oqrr8aMGTMC7Zo1axb4nJOTg1deeQWvv/46evToAQBYvHgxGjVqhE8++QS9e/cu58HEDssDpwsvvFBa9ng8+PLLL7Fnzx4MGjQoWnbFHFuYteoqSkKrLCnOyn4jsckgtynwmEho0cKKbGF27G5b+MeXTKvZa6cCn4/4ZGmIRr9J9hEJkCaqpPUBxaSWtN8TkBM5+hFMzphEIhXtOpUAg8dD68vRZfq8eIRlvyEyTm6b7w8ezzEftVdu6yZScV178BeyjyQOpVGb2T4hGasmR0im2uTErnVJFCQESZrKhcaklsFlJ32PkEdAFAjNJCcatSne5y4SbRhJUl4r7wozOVGC3Acq6c7sqRPPBG1bWRJbtIhm5vDcXDl5cUJCAhISEsrYQiYnJwcAkJ6eDqDEG/Thhx/iwQcfRO/evbFr1y40bdoU48ePxw033ACgJGG2x+NBr169Av1kZWWhdevW2Lx5s+nAacqUKcr1jz76qKnd0cbywOmZZ54p8/tJkybh9OnTZa5jGIZhGCY+aNSokbQ8ceJE05B/XdcxZswYdOnSBa1btwZQkobo9OnTeOKJJ/D444/jySefxJo1a9CvXz+sX78eXbt2RXZ2Nlwul5T7EQAyMjKQnZ1tauvKlSulZY/Hg4MHD8LhcODss8+uGgOnUNx22224+OKL8dRTT0WrS4ZhGIZhgKhKdYcPH5Zqv4Xjbbrvvvuwe/dubNq0KfCd31/ix+vbty/uv/9+ACWq1ObNmzFv3jx07do1tCm6rpz2Uwot+QaUeMwGDx6MG2+80XT7iiBqA6ctW7ZIk8GqOn5dC0SjWHFniy5oM3e1iJW2kVBZde3iBStymwp6XswSFpYXWn+Oyi5OSRbzKNtSxGSHNiqhEXm0WLDDratlJJ8iMaXb5MXoEa5Jvl8t5xQL1SOpNEeh50aUDOm18/jkc54nRDL+6JWlukySxJIeb21JslULSTbhGNwalQ9lSU26dw2JHOl0gdA15iKJhLMit1lJgGkVjxQlKK+j/aquQLTqzVVq3boovXZSU1NDFs0ti5EjR+L999/H559/LkXC1alTBw6HAy1btpTan3/++YEBVmZmJoqLi3Hy5EnJ63Ts2DF07ty53PZPmTIF1157LW6//fZy9REJlgdONMmlrus4evQotm/fjkceeSRqhjEMwzAMEzt0XcfIkSOxcuVKbNiwAU2bNpXWu1wudOzYEfv27ZO+379/Pxo3bgwAaN++PZxOJ9atW4f+/fsDAI4ePYo9e/ZIE8qtcurUqcCcq8rG8sApNTVVcq/ZbDa0aNECU6ZMkSZ/MQzDMAwTHaI5OTxcRowYgSVLluC9995DSkpKYE5SWloaEhNLAiUeeOAB3HTTTbj88svRvXt3rFmzBqtWrQpk+05LS8OwYcMwduxY1K5dG+np6Rg3bhzatGkTiLJT8eyzz0rLpc6a119/HX369LF2QFHC8sBp4cKFFWBG/OGDFnA3i65wKy5mMzmhvG0jge4nkqgairXkefIyTYIXbxgkgAjspdfgjBDVRRNgUkQJitZCsxHhyK9TmS/YnibApMkyXYIkaCbviBGTVLbII+dJleiR3hPGWnViPcBC0jZ0JBmglncoYh3FAx45eu+IV5YAaf25LHtQ2qtpi9pMCOnKFppEnapqzEUi1VuBJpeNZsJVeT/kizDmzETdhkp6d8ciHcGLL74IAOjWrZv0/YIFCzB48GAAJWXY5s2bh+nTp2PUqFFo0aIF3nnnHXTp0iXQ/plnnoHD4UD//v0DCTAXLlwIu12WqMuCBqTZbDbUrVsXgwYNwvjx460dUJSw/GQ3a9YM27ZtQ+3ataXvT506hYsuugg//vhj1IwrL6WZzY8ePYpWrVph9uzZ+Mtf/hJrsxiGYRimyqDr4Y20hg4diqFDh4Zc73a7MXfuXMydO9eyDQcPHrS8TUVjOZXFTz/9VGa2zqKiIhw5ciQqRkXCm2++idGjR2PChAnYtWsX/vKXv+Cqq67CoUOHYm0awzAMw5SLUqku0r+qzs8//4xvvvkmENEXC8L2OL3//vuBzx9//DHS0tICyz6fD59++imaNGkSVePKw6xZszBs2DDccccdAIDZs2fj448/xosvvojp06eH3Y8PthBRSjShX+ixJ41uqSwsyYkW6rWZufFVEYXRlLqiRTSTl0YSMXnKH0yqSCWzZJpgUYHHT+UquS+nFro8AU2mKdqYR+rl0ZprSbZgv8aklbIrPh8y4v1F70XaV54/GLVLk1bSOn300fNowXNDr4cozQHAcW9QnjvqkXPP0MShDV0npGWn+3+Bz25ynpwakVLFOpDklz2VOAv10JKG2TOsiiy18gyYPf9yzcLoRe+q3hWVJflbqZ9XYcRAqoslixYtwsmTJzF69OjAd3fddRdeeeUVAECLFi3w8ccfG3JSVQZhD5xKs4BqmmbIEO50OtGkSRM8/fTTUTXOKsXFxdixYwcefvhh6ftevXph8+bNZW5TVFSEoqLgf040oyrDMAzDxJpYTA6PJfPmzcNdd90VWF6zZg0WLFiA1157Deeffz7uu+8+TJ48GS+//HKl2xb2wKnULda0aVNs27YNderUqTCjysvvv/8On8+HjIwM6XtVhtLp06dj8uTJYe/DLFdOedvGyjtl9ovT7NesiBXvVGVRUSVkrGAoM6KHvi9cZMJ3saFsShC/IceTN0RLc+jkag9CezgKIXtdCvXghGl6vxSTfuh9XugXJ8aHLi8DAMeEcjQnvPKk7STimct0yGHKYqkRH7GBevnyBQ9bnk/OTVfkd5C28mR+8fjpE+0n95tHF58Xuo5O9Bcnt9PSLep3R3mfgWg+w9F81iS7wpyDY7VfK16vePCe/xnZv38/OnToEFh+7733cP311+PWW28FAEybNg1DhgyJiW2W5zgdPHgwLgdNIjQbqSpD6fjx45GTkxP4O3z4cGWYyDAMwzDho0fpr4pQUFAgJencvHlzoLAwUBKoFk7JloogLI/Ts88+i7vuugtut9uQU4EyatSoqBhWHurUqQO73W44mceOHTN4oUoJt7ghwzAMw8SMajbHqXHjxtixYwcaN26M33//HXv37pVSHGRnZ0tzrSuTsAZOzzzzDG699Va43e6QRX6BEk9PLAdOLpcL7du3x7p166QaNuvWrUPfvn0t9WWHXyFWVD7WciRZeDoieJDKW4oGiJ1MprKhouRFK5NqC4kTmMpXYm4mOvnbUGrDwvWhsp8oMxsng8vL4kRtKl3R0ie0XEuuMOGbyoP0eE5Ik7ZrSutq2OW8TrUdcn4lN4J20P1QmVKcRJ9C+k0hL4U0uzzdXdyWuvNthvtAuO4mkrgox8Wq9FE0gyfioXyTlZIx5e2HKT8DBw7EiBEjsHfvXnz22Wc477zz0L59+8D6zZs3B4oNVzZhDZzEPArxmFNBZMyYMbj99tvRoUMHdOrUCfPnz8ehQ4dwzz33xNo0hmEYhikX1W1y+EMPPYT8/HysWLECmZmZePvtt6X1X3zxBW655ZaY2GY5AeaUKVMwbtw4JCUlSd8XFBRg5syZePTRR6NmXHm46aabcPz4cUyZMgVHjx5F69at8dFHHwXq5jAMwzBMlaOaSXU2mw2PPfYYHnvssTLX04FUZaLp4aYG/QO73Y6jR4+iXr160vfHjx9HvXr1ykyOWZXIzc1FWloaNu+tjxopJc52VWSZSq6ykiPJSlszKitSpqKoqHxK0dxvNPPfiNc+W4gcA4BTvmRpuVjI50OlOCptUSlPKqNiIYozlZQ3oeVOPIJNx/2yvVSqc0J+P+TpQm4mkiPJQyIKs73B+QxHiuT8Skl2WT5slfg/abmmLSip0ZxVp3xJZDl4DB6SP4lG76USKS/LcSrwOdMut3XSvFTC5TOLzFLlEaqoqC6ze1yVQ8lsWysSuhVi8X47nefHJa2ykZOTI01mjhal/yddMHAa7C63+QYKfMWF+Oq1f1SYrRXN8OHDMWXKlJgHqFmOqgsVofbVV18hPT09KkYxDMMwDBNE0/Wo/FVlFi9eHBe5FsOW6mrVqgVN06BpGs4991xp8OTz+XD69GmeR8QwDMMwFUE1k+rKwqJAVmGEPXCaPXs2dF3H0KFDMXnyZCkM0OVyoUmTJujUqVOFGBlrxIgWS9EhFrzGZlJctKJQKqs6eiTEyoZIIn8isVm8v+ra5WgwmgDTpkgS6Vck1qRQuYoiRpqJkW+A8Vip/CaSJ5STAYxJOkV5kSaMpRGFomxm9rz86iFhykJXqbYCaRXdr7gfsyS2PiKxiwk98w0lV6jNYlJL5W6UmJUdEddHIuvR6+6rJImQqb74fD5s2rQJbdu2Ra1atcw3qCTCHjiVlllp2rQpOnfuDKdTneWXYRiGYZjoUN2i6oCSOdW9e/fGt99+i1q1aiEvLy/WJgEoR1Rd165dA58LCgrg8ciTP6vihDOGYRiGiWuqqVTXpk0b/Pjjj2jatGmsTQlgeeCUn5+PBx98EG+99RaOHz9uWF/Vo+pKsUMvU6qxIt/EQ5I3MyrKLV5htakqkcrar7gftyY/Pw2EKC0AyPYFf5jQqDNag025TyLrUelOrJlnJqGJp4lG9p3RabJJIvMJx2tWr1Fsm+44o2xLz00OiZwTodF84vHSaNcicuwuPfT7jkpzRtGvYqRgK9FulIp6Z1WWDF7VIvKsUB09TgAwdepUjBs3Do899hjat2+P5GQ5cjcWzhrLA6cHHngA69evxwsvvICBAwfi+eefx5EjR/DSSy/hiSeeqAgbGYZhGIaphvTp0wcAcP3110tBaaUR/rFw1lgeOK1atQqvvfYaunXrhqFDh+Ivf/kLzjnnHDRu3BhvvPFGoHIxwzAMwzBRoppKdevXr4+1CQYsD5xOnDgR0BpTU1Nx4sQJAECXLl1w7733Rtc6psKpqHptVvupCrKmSCQJ/SKRHsQINg+oVGcWASb3LEFOv5gsk0bCUZmvUAhZM0iARH6jNtL2Ik4iW4qJN+k6swSyshwny3Y2cvDJQpJLlX2AMcloMqnjp9xWsS580bWMbRWPktm9GC1ZzKyfaCXArApRwtGiukp14rzqeMHywKlZs2b46aef0LhxY7Rs2RJvvfUWLr74YqxatQo1a9asABMZhmEYhqnO5Ofn49ChQyguln+ctG3bttJtsTxwGjJkCL766it07doV48ePxzXXXIO5c+fC6/Vi1qxZFWEjwzAMw1RvqqlU99tvv2HIkCFYvXp1meurxByn+++/P/C5e/fu+O6777B9+3acffbZuOCCC6Jq3J+NSCJLornfWNhgxp/JpW6GlXNOEz2KdeM8flluo9FhNPpNrE9H69zRmmz5wmdan81FZDLRDjO5kCbpFNtTWY9KhB5NsNG0tlvoBjSpqIvsJ1msr0duy2Jynui5EK+tlXpWdpMklqH2AZg/O8rkmnr5ZeSKemYjifyLVa3KyqIqSm2RMnr0aJw8eRJbt25F9+7dsXLlSvz66694/PHH8fTTT8fEJssDJ8pZZ52Fs846C4cPH8bQoUPx6quvRsMuhmEYhmGqOZ999hnee+89dOzYETabDY0bN0bPnj2RmpqK6dOn45prrql0myIeOJVy4sQJLFq0iAdOAlYmSMZqkmNV9/TQScFmpThURGsSdzTPKbXJLXhH3JqcfDYPcnkT6oESczWlaIXSOg/U3isJ4oESvUgqLxcA+FV+GHrayKUUJ2pTD5k4cbxkP6GvAfU40Qng1KskQj11SZp8LsTyOXSCNz1y6mVSEYlnWOW9iuRejcSTHcnzUlF5neL+XajrBg9hufqoYpw5cwb16tUDAKSnp+O3337DueeeizZt2mDnzp0xscmKN5lhGIZhmBhQGlUX6V9Vo0WLFti3bx8A4MILL8RLL72EI0eOYN68eahfv35MbIqax4lhGIZhGCaajB49GkePHgUATJw4Eb1798Ybb7wBl8uFhQsXxsQmHjhFSKzyHjElRCLNmVFeeaQiJ9yLUlBtW760Ls8mS3UgwSaiREUncVNJTYTKdqq2VEIz5IuyAJX9xGU6yZyWVKH5lcSJ5/TYqUzp8QWX3TZZDq1rl4uM1rbLpV/EMiv0mab5ospLRclrFCtym9W+o5X3rKJKrMRlaa1qGlUnJtVu164dfvrpJ3z33Xc466yzUKdOnZjYFPbAqV+/fsr1p06ditQWhmEYhmHKQPOX/EXaR1WluLgYBw8exNlnn42LLroopraEPXBKS0szXT9w4MCIDWIYhmEYhlBNPU75+fkYOXIkFi1aBADYv38/mjVrhlGjRiErKwsPP/xwpdsU9sBpwYIFFWkHY0JFlUaJFapoOLPyGSp5zmxbVT/xkO/KkkRAcgjVtedKy7k+t7QsylmqiDtAnY+pSA8dcWdWooQi7tdQyoXsp0iwmUpxVLorUkQFJhD5jW4r3gZUXkuxFUjLyTTXlOL+oxF5okDoI5ednkXxaFVRcoAxb5PYPppRZrSvisqvZLbfiuhHmfsqgraMdcaPH4+vvvoKGzZsCBT8BYAePXpg4sSJ8T1wYhiGYRgmNlTXWnXvvvsu3nzzTVx66aXQtOAotWXLljhw4EBMbOKBE8MwDMPEO9U0j9Nvv/0WyOMkcubMGWkgVZnwwClCInFPR+JyViWQqyyXOcWKTGZlW0MFd6FtRIlDrZx+k0MT7acSYEVF/jjJfpxUvoJC+iKTRJ1E9hOPx6yMiggtm0KhfamkPWOEXsVAZb9kIcFnil2W5ui1POVPkJbF60Wvh1OTi5M6hb6szNlVSXFlLYeyD6i8qLRoveuswjJa1adjx4748MMPMXLkSAAIDJb+9a9/oVOnTjGxiQdODMMwDBPnVFepbvr06ejTpw+++eYbeL1ezJkzB3v37sWWLVuwcePGmNjEmcMZhmEYJt7Ro/RXxejcuTO++OIL5Ofn4+yzz8batWuRkZGBLVu2oH379jGxiT1OFUg8RmJFgpkUV1mRfqLc41O0M+8nfOx6+BIUbesn10cl5RlkSbLsEkQdKsmcIEkgT3hrSMunxSg7ooIZkkKq6rURYckmJX2U+6H3DI2UEyPajEkrqRQpR7BJ9pok2hT7plF0tN8EoQYgPdYzuku5LNYANEintPaewl7Vs2Tsp2KeO3r+zWQvlUQYD5KZFVnfyjs1WolNmdC0adMmkI4gHuCBE8MwDMPEOdVVqotHeODEMAzDMPFONYuqs9lsplFzmqbB6w3tia4oeOD0JyAeI+WsRGJFth8L9bGIREOTPqrwkONRufL9RDbyUWmOyn6CHWbRSKLkQaWRXL9cqy7HJy/n+4KyEo2io5dLlOoMbQmqOnBG6S60JGijEV9EQlMlSTXIeiTJpWgjlUpdZD+1HacDn2mi0DxyTpOECDwAcNmC54rKfPRepRKuCvFaRzNa1yxCT7WObhsPclwkVFrNOSYsVq5cGXLd5s2bMXfuXOgxGgjywIlhGIZh4pzqJtX17dvX8N13332H8ePHY9WqVbj11lvx2GOPxcAyjqpjGIZhmPinmkbVAcAvv/yCO++8E23btoXX68WXX36JRYsW4ayzzoqJPexxCgMrCSVjlXwyXKxKYpakMAvjcCsJL5X7NKmN5pci8OR+aeSYFVe9hyzbVCkMSbdGiVCQikwiy0RySURXPk3GSM6NFP2mkMyiCZWraJ04px5aBjTWowteP4+ufnVReVFMakmPnUbVOYV4tzOQz2kxOU9ucs+LUXb02OxE1nNbkIolGYzIE/S+VklmhfR5IbeXy0IqTjPp7s+EMsqxkt7rsfA4TZ8+HStWrMB3332HxMREdO7cGU8++SRatGgRaDN48GBDxNsll1yCrVu3BpaLioowbtw4LF26FAUFBbjyyivxwgsvoGHDhsr95+TkYNq0aZg7dy4uvPBCfPrpp/jLX/5i7SAqAPY4MQzDMAxjYOPGjRgxYgS2bt2KdevWwev1olevXjhz5ozUrk+fPjh69Gjg76OPPpLWjx49GitXrsSyZcuwadMmnD59Gtdeey18vtA/nGbMmIFmzZrhgw8+wNKlS7F58+a4GDQB7HEKiR16WB6IyppQGIm3KhLvTjx6kaR9GiYjK2wg/dJfikYvkh6yLc3dYrdSM4ncMsocRMQr4fEHj+E3n5yn6RTJ40RRTfI25jYSJzmHf4+7Nfks0mMznrdge7NcUuJ6Y86n0GVTAPl4aL/Ue3XKHzyP9LwYytiQyeMiblJipaaQ4wmQf7Wa+Xmka0DvNeKBotcrzx88vp+8taV11NvWyHEq8DmZ3C9WJqVHs220iAePf0T4dfXs/XD7sMCaNWuk5QULFqBevXrYsWMHLr/88sD3CQkJyMzMLLOPnJwcvPLKK3j99dfRo0cPAMDixYvRqFEjfPLJJ+jdu3eZ2z388MNITEzEOeecg0WLFoXM47RixQpLxxQNeODEMAzDMPFONOYoRbh9Tk4OACA9PV36fsOGDahXrx5q1qyJrl27YurUqYHCvDt27IDH40GvXr0C7bOystC6dWts3rw55MBp4MCBMSviawYPnBiGYRimGpGbmystJyQkICEhIUTrEnRdx5gxY9ClSxe0bt068P1VV12Fv/3tb2jcuDEOHjyIRx55BFdccQV27NiBhIQEZGdnw+VyoVatWlJ/GRkZyM7ODrm/hQsXWj+wSoIHTiGwaWVPdozUUxouVtzKViZ8RyLNRbKfipLfDPs1keNEik0mGFvBhdBJ2AwlGQy5c0KfG1q2QzwXp3zJ0rp8vzxZnEpzTlvQRrpPKn2J29J19B4RJ1PTie9mk85V9xu1X8y3RNdRibCmXZ6DUShM2qbymuoeoVIWPRcUcfK4m3QbSeCIeJao4Go2KfuYIOkeJ2V46PXKtAf/Q7UZpF31y0++kuG/KOl5sfbuIzbEp4MiKmiIwuTwP/5t1KiR9P3EiRMxadIk5bb33Xcfdu/ejU2bNknf33TTTYHPrVu3RocOHdC4cWN8+OGH6NevX8j+dF2PW4+SGTxwYhiGYZh4J4qZww8fPozU1NTA12beppEjR+L999/H559/bhoJV79+fTRu3Bjff/89ACAzMxPFxcU4efKk5HU6duwYOnfuXN4jiSkcVccwDMMw1YjU1FTpL9TASdd13HfffVixYgU+++wzNG3a1LTv48eP4/Dhw6hfvz4AoH379nA6nVi3bl2gzdGjR7Fnz54qO3Bij1MFYi0HkjWXpSibRTPXUkQReJUUDaful0iEYh4nkwgpXznLvpTVlwjN8URlPZ8gVdC2SSTWzy3IJzRqy01kpSSHvF4VWUalO5pvSW5LS6OElq8MkXwWfjDTfpNsweNJsRVI62gUXTI5N0CwPd1WdX/RqEArZXvosVNJSiX6OQ3Rh4JNJufQo7g+1F6VjdQ+KznrzFBFFJr1K9phVjJGVaKoqsl6scjjNGLECCxZsgTvvfceUlJSAnOS0tLSkJiYiNOnT2PSpEn461//ivr16+Onn37CP/7xD9SpUwc33nhjoO2wYcMwduxY1K5dG+np6Rg3bhzatGkTiLKravDAiWEYhmHinRhE1b344osAgG7duknfL1iwAIMHD4bdbsfXX3+N1157DadOnUL9+vXRvXt3vPnmm0hJSQm0f+aZZ+BwONC/f/9AAsyFCxfCbq+YxLsVDQ+cGIZhGIYxYFZENzExER9//LFpP263G3PnzsXcuXOjZVpM4YFThFipLm4Fswi28spzVvtVyRgqecrcJiv7CS2/Gfq1YC+V5tQRhepj9QmCg1nEGrVDjNyiiRw9BnkxeIPZid89iZb0IHKbuJ5GltEkkKKkY5A4SSSMIWowRD9lLYuYyWDieaLnMM+fKC3TUimptmDyybok4o4mejwjyJinfG5pnUeTfyE7SYybaDONiKTvCtUzbFc8prRsCr1HVIlEzaIPk2xCNCXZb+j0qdYJv7CLSbkTk/etan303tXR6ccMTdehRTg5PNLtmRJ44MQwDMMw8Y4f1kacofpgIoYHTgzDMAwT57DHKX7ggVMYVJYrNlpQV72lxJUWItgiS3Kpit6jkloE0XrKKEF6nhQSoIksqbSR3D8+w8++4GNIpbozJKmlSupSSXOAHHlmlARpXTKhLhzUUiNdL+JS1Mcz2w+NlBOPj0qLZ/yyNEeTgZ7Qgokfz+hy1mSxPhsAuAQ7atrl+nJmz5JbShwqr7MSheYz1DMMdlZIjr3QLy+f8MtJLnMFuZHeI+n2fGmZRvOJmNkvXj2zCLzIam+We9OwsVJrj6l+8MCJYRiGYeKdOKhVx5TAAyeGYRiGiXeimDmciQweOEWIym1s5s4tViVNJBFTVCIQJQ4qu6iwnGjTQuScSn4z2hF+ZJwVGyKR5tQ2WaifRaOaaBJFQ603MXGlLDEZEG4LahOV5lT3BY3IA621J8pBGol2o5Fkwn5oBCG1ge5Xru0mt02xyTKZKPvlmkU5kvWilEfX0UizTPvpwGcacefT1BJUeaFHQ69cvj94nmgU3Sl/krR8xCMXUy0SIigznDnSOpo0VWWDGeK7JR6lrEjkQVVf0eyXqRrwwIlhGIZh4pxYZA5nyoYHTgzDMAwT77BUFzdUiYHTTz/9hMceewyfffYZsrOzkZWVhdtuuw0TJkyAyxWUNg4dOoQRI0bgs88+Q2JiIgYMGICnnnpKahNLVJEmVt29VuS5UPssC1UMlJUoukii0CKpIWe2XyuUV54zSo3q81aIoJTiJNJJsS38kgT0nqARVGIkGj02KqGJkX+GWntEvhLXq5J7AsaEkW4t9DmmEYSiJEUTeFKobOkUogYN0XpEqnNa+FkerfptZk9zii14Hgt98mub1h2kEYWiJE0TXlIpUky8aTV6rdzHHsX/yyORzcq7LUt11Y8qMXD67rvv4Pf78dJLL+Gcc87Bnj17cOedd+LMmTN46qmnAAA+nw/XXHMN6tati02bNuH48eMYNGgQdF3/06R5ZxiGYaonmr/kL9I+mMipEgOnPn36oE+fPoHlZs2aYd++fXjxxRcDA6e1a9fim2++weHDh5GVlQUAePrppzF48GBMnToVqampMbGdYRiGYSKGpbq4oUoMnMoiJycH6enpgeUtW7agdevWgUETAPTu3RtFRUXYsWMHunfvXmY/RUVFKCoKuu5zc3PLbFce4sWFK0boWUmGGU2sRMpZqSFHMaspV+5+I4gupMdO5VDRjkI9/BpylBRbgdIuUVIr1OWEkTQppyj7URnPrRWT5aCMVKyrpUUqi0kSJzlvVIIS7wtDZCKRBFOITOkS1tNovbokyWWyYEaxIXmpGtVdEsmPfadgU5KNSos+5bJdOOc1bXLCSyqV+izIbfRYPRbed1bkuWi9R836Ke+7MVbvVCZ2RG9CSCVy4MABzJ07F/fcc0/gu+zsbGRkZEjtatWqBZfLhezs7JB9TZ8+HWlpaYG/Ro0aVZjdDMMwDFMu9Cj9MRETU4/TpEmTMHnyZGWbbdu2oUOHDoHlX375BX369MHf/vY33HHHHVJbrYyJprqul/l9KePHj8eYMWMCy7m5uRENnqKV38PsV4xqYrly4jjJyUNzwsQj9HhEb4MVD5MZliahR9Gz5Vd4Uuh9QPN7SetMciaJXhnqoTF6cIJeCxdpS3P/0L7UNpF7U8xLRfJdUc+J6Cmqqcmek2SFFwyQzxudxEzLjNgUzy3d1oqHKZKJ5B6hKd2OnlM6+V06b2QdxSddD7W9Kg+aFY8SLU0TyWRxK+9cS6WolCWiKsfjxLXq4oeYDpzuu+8+3Hzzzco2TZo0CXz+5Zdf0L17d3Tq1Anz58+X2mVmZuI///mP9N3Jkyfh8XgMniiRhIQEJCQkhFzPMAzDMDGH5zjFDTEdONWpUwd16tQJq+2RI0fQvXt3tG/fHgsWLIDNJv/W69SpE6ZOnYqjR4+ifv36AEomjCckJKB9+/ZRt51hGIZhmOpHlZgc/ssvv6Bbt24466yz8NRTT+G3334LrMvMzAQA9OrVCy1btsTtt9+OmTNn4sSJExg3bhzuvPPOckXU+fWyXcYVKb/FAmPV8vJjk/oKLa+VtA3t6KeSDcWuyBukgtpQUdKcGaryOVR6NByfcIrp5Gm6TCWbJFH6It3SvEiiPJdEZDCKU5CK7JAnLpvJPeL9Rs8xlaBq2oOT36kU5yL3U5KNyFmCHU46IZpcD3+Iz2WhWu8xk9uF1WYlVwqFc5NH8jTRa5dAJuCnCyVkkgzBBaGP3UyWVB17NOW3aBEtaS5m6IgswqC0DyZiqsTAae3atfjhhx/www8/oGHDhtI6/Q/Xo91ux4cffojhw4fjsssukxJgMgzDMExVhuc4xQ9VYuA0ePBgDB482LTdWWedhQ8++KDiDWIYhmEYplpSJQZOscAHrUx3bSRRG1aiaqzsx1qeIxObLEQ9xQM2Yi+VusRzY5RkKiei0BDlSCMb/cFlKrepjs+s7Ai9L+ySpEai3Wzycro9GLVGZTFVJKbLULol/Hve7HqI924+yXdVSPZr02V5MV2YE+kk+/GQc1ykq2Tk8J9LKlep+1KfN3HZPNeX3FeqEFXniiBvEyVachaV8cz6Va2PXqSclSkAlYSOKEwOj4ol1R4eODEMwzBMvMNRdXFD/CfxYRiGYRiGiRPY4xSCUFIdxUz6kteFLr2hSvIYzn7DtcEMVfSYQWZRlP/wE8lJVSqE7pdKDVai36xAI/uoVGQlkk4ss2IssVL+3ydUuhOlOrrOCVlSo/eUU7jj3DZ1UsuattACRJ4/tKxkjMSiZVTkcyHuV5XcE5Dv+TO6HFnm8xNZkhy76nj8xOZiC7/KqcxkJs+F3FaRpJeSZJNlyBS7XGqH3n/iOabSnE8hk9FrSUuqqCLlrMmU5W9rJs1Fa8qDaj96ZUVL+0GDIMvXBxMxPHBiGIZhmDiHo+riBx44MQzDMEy8w3Oc4gYeOIWgUHfA8YfLW1X7zay2mArRjexXRNGY9hMn9eZEO2yG8A21FClJeXRTjUpooc8NjUKLxbkxk+YMEpqi1hsMSS7FZJlUOqHnVD6RLiEBZipJaplCTK6hBSO3qJQFW2h77eS+LSQRamdCbgnYSVsqRRYLy3n+xJDrAKM0nO7PDS6QYz3jJ/uNQEYSpS8rtegodNtksXYgfR8JCS4BoxwqJiil0lwkCTyV7yg9tJxrRkRTDaIUKWdFAozLZJlMhcIDJ4ZhGIaJd9jjFDfwwIlhGIZh4h0eOMUNPHAKQZHfAccfkTqqiLBoSUE05ieS5IzRdB2LkoFRlqB11Sommi8SRFkskgSeVo7NLEJSJRlQqZGmuPRowWOg/VBpiybILLaJ28rHY5RWxXVy2zRNnXhTxKnJd7aPyGJiDbZCksiRJno8408IfP7NmxJyHWA89hShbp8fcg0/ei5EicpYWy96UVxWEuCq2tKISDcxQdzWSmScKglnybahj9UTco11KioyLpLpEOL72aNXWgpMJk7ggRPDMAzDxDucjiBu4IETwzAMw8Q5nI4gfuCBUwg8sMHzh7RDJRARK3KVSg6JJpFIZhTR5U7tN0YChnaTm0lxlVU3rrz7jERKtJLc1FBDjkh3ScKmVI6iy98WZknLtsTQPzftyJeX7UH5IYFInE4t9PNQpNO6dvI9QyUnUT6hNdeoVJcvyHF5PjmqLs/nJvuRj/WU0D5Z85C2oZ/LYotRs2ZJPEWkyCyL9dpUqORFK/sxk7bKmzCyIlFG1SnkNrNtKeL/CYUxOlYmdvDAiWEYhmHiHZ4c/v/t3XtUVOX6B/DvcJnhTgLCQNy9kWGZeDkGpqaCRSp2TlbLC7TK8iQoS0sr+wWdVVmW6clu2vKgWSc8K6WyRMWOEqaSYaamkpoEIkR5OIAXhss8vz88jnvvYfaezQzOIM9nLVbOvrz73e/smd55n/fiNLjiZMElow4wqu9MrKYVQ7rkR1eRy5NSHoTnKi1RItRVy6QA4l+60rmLbFneRI605ceeLVCugqIym99K5v3xcBG3nLS2i5/XC5JWmN/b/Ez/1ko6bUuXYPGiax2odTItTIC4c2yTpMXpktH6VgopaRkL52qSdqKXloV0WRLh+yed56hdY7kVTE0rCyCei8ps/isbyLWGmLXi2WkeJKU56rpqaScp2e8ZO+ZBrtzMBniIlj66XkuuEKCiRdNiGsxmzjFzImOMMcZYN8AtTowxxpiz41Cd0+CKkwWdDdV1ljT0ICUNSak5V56ae7T+WLn82kq+E7pMZ1eFBlY1TfdyoTs14TazdBWOFc6L5OPabDEPAHDJqBW9rmm5yfRvX5fLon03uYiPvSRYksXDVTJPjeS7txWWl/SwhXRZlZrWXqZ/N7SJ93m5ikNz3i7iuZo8NJZnFpLOHyVHKVwlfGakIUA11CzzpDSLkJq0hBQ7hyt0tpYj7rCuNHDEfuFea5l1HJebs+q61UXsUHG6TgOUbnRccWKMMcacHbc4OQ3u48QYY4wxZiVucbLgEmlBRtuKR26pFjMqfwiIRrjJzDMFqBtV5yoJL3R2dJxSs729RhSaN6mrGa0jH3oQ7VMIv8mGD5VGYomWhZG/jvCZ8pAubOEmnovJ3Sge4WYQzPN0xhAs2icdlSZ+f8Tp+kpG4MndnYv08ZH84m0WvActkuf4v+1eotd1rddGBV5oE4cWleZPctcIy1i6xIoNyxtJzxVeR8VnR+m5VfVdItHayfnVlOY5kj/XfuE1NWEzs7RkRuBae15H1xR+TzZfryVXjASbQ208qs4uuOLEGGOMOTsyXvmzNQ1mMw7VMcYYY8zM0qVLMWzYMPj6+iI4OBhpaWkoLy+3ePwTTzwBjUaDlStXirYbDAZkZWUhKCgI3t7emDx5Ms6ePdvFue863OJkQSu5wu1/oYPOTqroSpbDLICNkyjaNJJOlJL4ZRe15ErvVS7/apamsSXcppi27Ag9+424FKYlDTnJTbwnDeNJR465uoj3C0fkGSTLs0iXMBGmJZ0sswWWlyxRmjRROoLtIl0Luf2n3Ue0T5pHYfjQx008ii7A7aL4tesFWHJRMtqwVcV7qRhSUxGCFqalOGml4LGQfj7UfBeoHcEmOlfy3kqXyBFfR/5+1HwW5Sa5lV5HflLezofxzQjegsuSSV+7jAM6hxcXF2Pu3LkYNmwY2trasGTJEiQnJ+PYsWPw9vYWHfvZZ5+htLQUYWFhZulkZ2djy5YtyM/PR2BgIBYuXIj77rsPZWVlcHW9fqPX7YUrTowxxpizc0Afp23btole5+XlITg4GGVlZbjrrrtM26urq5GZmYnt27cjNTVVdE5DQwPWrl2LDRs2YPz48QCAjz76CBEREdi5cydSUlI6eTOOw6E6xhhjrAdpbGwU/RkMBuWTcKUSBAABAQGmbUajETNnzsTTTz+NW2+91eycsrIytLa2Ijk52bQtLCwM8fHx2Lt3r4134hjc4mSBPUJ1ZiEASWVfbjSVIpkfDmrCBVJyo5PsueJ5q2QElZpV5YWU8mSvtevUjMhRO5mp6Hg1nTc18iPwpGXqLpwqUXI7DZIRbL3dGk3/biZxyOxiuzjUJQofKoSjL5FO9LpRsJ7eJaN4n3QUVy/3a+E4Xxfx5J+xujrRa2nYskmQ9kXJdaTkQl9KI75cBO+fmtC8mskjpVwUnhlVE1PKfJ6UQnVqRrvZElIzykyeKRcqtiU8KKe5vfuF6iIiIkSbc3JykJubq3AqYcGCBUhKSkJ8fLxp+2uvvQY3NzfMmzevw/Nqa2uh1WrRq1cv0faQkBDU1tZ24iYcjytOjDHGmLMj2KHidOU/VVVV8PO7Nr2HTif/YwIAMjMzcfjwYezZs8e0raysDH//+99x8OBBaDTqflgTkepznAWH6hhjjLEexM/PT/SnVHHKysrCF198gV27diE8PNy0vaSkBHV1dYiMjISbmxvc3Nzw66+/YuHChYiOjgYA6PV6tLS0oL6+XpRmXV0dQkJC7H5v1wO3OFnQRm6mpmhpyMBaXbleW2cphZFcZX7RdLYcAPHIqw4JRw1J8ihXjrbkSTZkpnCs9Lqi+zMLQ8qXebvgeLPQj9y50hCNRv55E4XyFIpNGGYSjnwDgGbJaDe50VVS0kkuheE5aahOyt/12vp6N7uLv4TNQnPkIX4tGTUoZFbGgrdS6TNs/v4I7k/hkRemba+QshJbwmlKaznKrdcoex2VXQDkJrU0WztQlCfL+9QS3mtzu+V1EO3KAaPqiAhZWVkoKCjA7t27ERMTI9o/c+ZMU4fvq1JSUjBz5kw88sgjAICEhAS4u7ujqKgI06ZNAwDU1NTg6NGjWLZsmQ034zhccWKMMcacndEI2LriglHd+XPnzsU///lPfP755/D19TX1SfL394enpycCAwMRGBgoOsfd3R16vR4DBgwwHfvoo49i4cKFCAwMREBAAJ566ikMGjTIrNLVXXDFiTHGGHN2Dmhxeu+99wAAY8aMEW3Py8tDRkaG1emsWLECbm5umDZtGi5fvoxx48Zh3bp13XIOJ4ArTha1kitcTaPqrjXxqlrvyAlDdVK2TKSpalJLpRChTKhLTTjOlvCb0pp/clplRpa5qMi/tNFfGjoV3Y/ZOnDyo+pE6SqMwBOOPJOG4i4ZLY+qc9fIr9slN7GgryAUB5hP9CjcL13rULquXZNRHJoT51EyCkryvgvvV5pfpclZ1Y3Iszw6zH4T3MrnwWy/TIhNGlIzH8FmOSwmR23ITO77WNX6edL3o5Ojhltu4PXfqBMVtYqKCrNtHh4eWLVqFVatWmWHXDkeV5wYY4wxZ+eAFifWMa44McYYY87OATOHs45xxcmCZqMb8L/RQ3JN6l1FTbOxLSNybJksU0oY7jELNdgQBrOJzHXVvJdqQidG6ag6G54Zo5qwn0LoTpSOwoSjwlFo0slKpc+bLc+Qh8u14KR0ZJxZSE2YP0koTho+bJGEF4V5VArZiEdtdd08M7Kf2y76/5uqrgYqR6Gp6dKgZp0+2fCbDRPgyq9FaX05Gbgu0uNwxYkxxhhzckRGkJqVBSykwWzHFScLWoxu0BjNi0dp9Xd7sWWZBFvyJNuhWKGVQrj0Q2eXUAGU8y9q2VJo7bCl9UB4HWmrS1ctayMl/TUunEFJ2pFcqWO8sAO+O8StOdJO3cL7VWphErYaSTttK5F7pqRLowjneZIuAyNl0xw9dpwbrKuuo0Zny0Jp3iab0lKxtIscaTpd9b0pV4Yt7depyYnI9lAb93GyC+cf9sUYY4wx5iS4xYkxxhhzdmSHzuHc4mQXXHGywEDuQAfhAHuGxdQ0oduyHIj4WOvDYFJKy6YozdVk7XVVhepUhL2U3juzexe8lF6nDdZ3djcLX6n47pKG0NoFy6oodViXzjnk7mK5s7X03oXhOMVwqPD5U/g4SEM2BsF7IO3QbTBb2qXzAwzkPxP2WXrDLF0VoS1bBp0oPQeijtgO6uxuS0dsVcvEmH3Gu2q5pmvntnZhmYovagRsnd+L+zjZBYfqGGOMMcasxC1OjDHGmLPjUJ3T4IqTBS3tbkD7leKxJfRlLfWrsFt/ruhYpeZpyedKGO5pUThXaTkK2XM72QRtHmKynAelpnmjUSF0ZyVpHtTcm/Sa0jCGi0xTuzSs5+5iefkTaVlIw2DC50SxHAS7pelIR7/JhZXVrHSvxJYRYWrCZtdrvrXOXtPs3OsUZFAKi3fVqEc1ZSPNQ2dHDbZdpznqyGgE2Riq4+kI7IMrTowxxpiz4xYnp8F9nBhjjDHGrMQtTha0kgaa/zXlGlUtD2B9c6/ciDCzpu4OJuM07VMaHSZzrJQt51qbjvK58s3JwvfDbJJHG65rHl6wfB050jxIQ5jStESjBKW/CCXhtnaZ0XzSMtfB8ig6aZjCIBM6kZtIU0oaqjNbrkUmPCLdp2aZG3utdK94HYXfmvZaxkNOq9F+v3evx6gzpesopmWniULlPt9m11R4foR5ar1e678ZCbDh+w0AtzjZCVecGGOMMWdHBNi6tihXnOyCQ3WMMcYYY1biFicLDEY30P/CY6pGrakIEVgOpHSQrtkII5nrqPhRYctoPlk2/bBRM0pFfKwtIUIpYRm7aCSj22Ru0CgN1ZmFuiShVeGvQOlIOKP1ZSG33tyVtK790yDJg5qRZHIhNKWQmTTUJRyRJA2lSEOebhrLowSlpCOdhGnbEs6VsueEuOJ0Or/mXVdNyqumm4LZiDUbwvx2K1OlUbWdXKuuTcVn1BZkJJCNzy5xi5NddLsWJ4PBgMGDB0Oj0eDQoUOifZWVlZg0aRK8vb0RFBSEefPmoaWlxTEZZYwxxuyFjPb5Yzbrdi1OixYtQlhYGH788UfR9vb2dqSmpqJ3797Ys2cPzp8/j/T0dBARVq1a5aDcMsYYY+xG0q0qToWFhdixYwc2bdqEwsJC0b4dO3bg2LFjqKqqQlhYGABg+fLlyMjIwMsvvww/Pz9V12ojV7h00ARrS3Ov+bE2jDS5Ts3XkBttJReukoajbJ1/pAsohfXEoTrrR8aZjXKUvJaGaIXntpqNLLO+3KTn+riJW1tbZUJdcs+TNORnkBnhqZSumkkHpaE5nWCtPaVwjjSPwtCdNF13yXspnpRTXf6F4SppumrC3nLfDdJ07DWRIyA/Klgp/GaUKTc14SxbQnVqzrWlnERr1XGorsfpNqG63377DbNnz8aGDRvg5eVltn/fvn2Ij483VZoAICUlBQaDAWVlZRbTNRgMaGxsFP0xxhhjToVDdU6jW7Q4EREyMjIwZ84cDB06FBUVFWbH1NbWIiQkRLStV69e0Gq1qK2ttZj20qVL8eKLL5ptb73Ycd8o6mktTjK4xcm6tDQK9y4sG1vmpTJKWlIMbq2i1+2dbnES56lFxbw10kPVtI5I70fYcV6pZaHFKM6zsMVJmq70V7y4xUmSJxUtTtLlMW64FifJdaintjj97/8VXd2a04ZWmycOb0Or8kFMkUMrTrm5uR1WWoQOHDiAvXv3orGxEc8++6zssRqN+QeBiDrcftWzzz6LBQsWmF5XV1dj4MCBKJi8USH3jDHG2BVNTU3w9/e3e7parRZ6vR57arfaJT29Xg+tVmuXtHoqh1acMjMz8dBDD8keEx0djZdeegn79++HTqcT7Rs6dCimT5+O9evXQ6/Xo7S0VLS/vr4era2tZi1RQjqdTpSuj48Pqqqq4OvrK1vhcqTGxkZERESgqqpKdd+tno7LrvO47GzD5dd5zlx2RISmpiZRNxF78vDwwJkzZ+w2Qlyr1cLDw8MuafVUGuoGvcUqKytFfY/OnTuHlJQUfPrppxgxYgTCw8NRWFiI++67D2fPnkVoaCgAYOPGjUhPT0ddXZ3Tfdhs0djYCH9/fzQ0NNxQ93U9cNl1Hpedbbj8Oo/LjjmTbtHHKTIyUvTax8cHANCnTx+Eh4cDAJKTkzFw4EDMnDkTr7/+Ov7zn//gqaeewuzZs/mDxhhjjDG76Daj6pS4urriq6++goeHBxITEzFt2jSkpaXhjTfecHTWGGOMMXaD6BYtTlLR0dEdjmCIjIzEl19+6YAcXV86nQ45OTlmfb6YMi67zuOysw2XX+dx2TFn0i36ODHGGGOMOYMbJlTHGGOMMdbVuOLEGGOMMWYlrjgxxhhjjFmJK06MMcYYY1biilM3UlFRgUcffRQxMTHw9PREnz59kJOTYzajbGVlJSZNmgRvb28EBQVh3rx5dpt1trt79913ERMTAw8PDyQkJKCkpMTRWXI6S5cuxbBhw+Dr64vg4GCkpaWhvLxcdAwRITc3F2FhYfD09MSYMWPw008/OSjHzmnp0qXQaDTIzs42beNyk1ddXY0ZM2YgMDAQXl5eGDx4sGiRdi4/5gy44tSNnDhxAkajEatXr8ZPP/2EFStW4P3338dzzz1nOqa9vR2pqam4ePEi9uzZg/z8fGzatAkLFy50YM6dw8aNG5GdnY0lS5bghx9+wKhRo3DPPfegsrLS0VlzKsXFxZg7dy7279+PoqIitLW1ITk5GRcvXjQds2zZMrz55pt4++23ceDAAej1ekyYMAFNTU0OzLnzOHDgANasWYPbbrtNtJ3LzbL6+nokJibC3d0dhYWFOHbsGJYvX46bbrrJdAyXH3MKxLq1ZcuWUUxMjOn11q1bycXFhaqrq03bPvnkE9LpdNTQ0OCILDqN4cOH05w5c0Tb4uLi6JlnnnFQjrqHuro6AkDFxcVERGQ0Gkmv19Orr75qOqa5uZn8/f3p/fffd1Q2nUZTUxP169ePioqKaPTo0TR//nwi4nJTsnjxYkpKSrK4n8uPOQtucermGhoaEBAQYHq9b98+xMfHixacTElJgcFgEDV59zQtLS0oKytDcnKyaHtycjL27t3roFx1Dw0NDQBges7OnDmD2tpaUVnqdDqMHj2ayxLA3LlzkZqaivHjx4u2c7nJ++KLLzB06FA88MADCA4Oxh133IEPPvjAtJ/LjzkLrjh1Y6dPn8aqVaswZ84c07ba2lqEhISIjuvVqxe0Wi1qa2uvdxadxh9//IH29nazsgkJCenR5aKEiLBgwQIkJSUhPj4eAEzlxWVpLj8/HwcPHsTSpUvN9nG5yfvll1/w3nvvoV+/fti+fTvmzJmDefPm4cMPPwTA5cecB1ecnEBubi40Go3s3/fffy8659y5c5g4cSIeeOABPPbYY6J9Go3G7BpE1OH2nkZaBlwu8jIzM3H48GF88sknZvu4LMWqqqowf/58fPTRR/Dw8LB4HJdbx4xGI4YMGYJXXnkFd9xxB5544gnMnj0b7733nug4Lj/maN1yrbobTWZmJh566CHZY6Kjo03/PnfuHMaOHYuRI0dizZo1ouP0ej1KS0tF2+rr69Ha2mr2S60nCQoKgqurq9kv07q6uh5dLnKysrLwxRdf4JtvvkF4eLhpu16vB3ClBSA0NNS0vaeXZVlZGerq6pCQkGDa1t7ejm+++QZvv/22aWQil1vHQkNDMXDgQNG2W265BZs2bQLAzx1zHtzi5ASCgoIQFxcn+3f1F2x1dTXGjBmDIUOGIC8vDy4u4rdw5MiROHr0KGpqakzbduzYAZ1OJ/pC72m0Wi0SEhJQVFQk2l5UVIQ777zTQblyTkSEzMxMbN68Gf/+978RExMj2h8TEwO9Xi8qy5aWFhQXF/foshw3bhyOHDmCQ4cOmf6GDh2K6dOn49ChQ4iNjeVyk5GYmGg27cXPP/+MqKgoAPzcMSfiwI7pTKXq6mrq27cv3X333XT27Fmqqakx/V3V1tZG8fHxNG7cODp48CDt3LmTwsPDKTMz04E5dw75+fnk7u5Oa9eupWPHjlF2djZ5e3tTRUWFo7PmVP7617+Sv78/7d69W/SMXbp0yXTMq6++Sv7+/rR582Y6cuQIPfzwwxQaGkqNjY0OzLnzEY6qI+Jyk/Pdd9+Rm5sbvfzyy3Ty5En6+OOPycvLiz766CPTMVx+zBlwxakbycvLIwAd/gn9+uuvlJqaSp6enhQQEECZmZnU3NzsoFw7l3feeYeioqJIq9XSkCFDTEPs2TWWnrG8vDzTMUajkXJyckiv15NOp6O77rqLjhw54rhMOylpxYnLTd6WLVsoPj6edDodxcXF0Zo1a0T7ufyYM9AQETmmrYsxxhhjrHvhPk6MMcYYY1biihNjjDHGmJW44sQYY4wxZiWuODHGGGOMWYkrTowxxhhjVuKKE2OMMcaYlbjixBhjjDFmJa44MWZnFRUV0Gg0OHToUJekr9Fo8Nlnn3X6/N27d5sWj05LS5M9dsyYMcjOzu70tZi8q+/DTTfd5OisMMasxBUndkPJyMhQrAx0tYiICNTU1CA+Ph7AtYrKf//7X4fmS6q8vBzr1q1zdDZ6BEvPZU1NDVauXHnd88MY6zyuODFmZ66urtDr9XBzc3N0VmQFBwc7RUtHa2uro7PgMHq9Hv7+/o7OBmNMBa44sR6luLgYw4cPh06nQ2hoKJ555hm0tbWZ9o8ZMwbz5s3DokWLEBAQAL1ej9zcXFEaJ06cQFJSEjw8PDBw4EDs3LlTFD4ThuoqKiowduxYAECvXr2g0WiQkZEBAIiOjjZrbRg8eLDoeidPnsRdd91lupZwZfirqqur8eCDD6JXr14IDAzElClTUFFRobpsLl68iFmzZsHHxwehoaFYvny52TEtLS1YtGgRbr75Znh7e2PEiBHYvXu36JgPPvgAERER8PLywtSpU/Hmm2+KKmi5ubkYPHgw/vGPfyA2NhY6nQ5EhIaGBjz++OMIDg6Gn58f7r77bvz444+itLds2YKEhAR4eHggNjYWL774ouj9y83NRWRkJHQ6HcLCwjBv3jyr7l3pvs6fP4+HH34Y4eHh8PLywqBBg/DJJ5+I0vj0008xaNAgeHp6IjAwEOPHj8fFixeRm5uL9evX4/PPPzeF5qRlxhjrPpz7JzFjdlRdXY17770XGRkZ+PDDD3HixAnMnj0bHh4eosrK+vXrsWDBApSWlmLfvn3IyMhAYmIiJkyYAKPRiLS0NERGRqK0tBRNTU1YuHChxWtGRERg06ZN+POf/4zy8nL4+fnB09PTqvwajUbcf//9CAoKwv79+9HY2GjW3+jSpUsYO3YsRo0ahW+++QZubm546aWXMHHiRBw+fBhardbq8nn66aexa9cuFBQUQK/X47nnnkNZWRkGDx5sOuaRRx5BRUUF8vPzERYWhoKCAkycOBFHjhxBv3798O2332LOnDl47bXXMHnyZOzcuRP/93//Z3atU6dO4V//+hc2bdoEV1dXAEBqaioCAgKwdetW+Pv7Y/Xq1Rg3bhx+/vlnBAQEYPv27ZgxYwbeeustjBo1CqdPn8bjjz8OAMjJycGnn36KFStWID8/H7feeitqa2vNKl6WKN1Xc3MzEhISsHjxYvj5+eGrr77CzJkzERsbixEjRqCmpgYPP/wwli1bhqlTp6KpqQklJSUgIjz11FM4fvw4GhsbkZeXBwAICAiw+n1hjDkZx64xzJh9paen05QpUzrc99xzz9GAAQPIaDSatr3zzjvk4+ND7e3tRHRlNfukpCTRecOGDaPFixcTEVFhYSG5ublRTU2NaX9RUREBoIKCAiIiOnPmDAGgH374gYiIdu3aRQCovr5elG5UVBStWLFCtO3222+nnJwcIiLavn07ubq6UlVVlWl/YWGh6Fpr1641uyeDwUCenp60ffv2Dsuho/w0NTWRVqul/Px807bz58+Tp6cnzZ8/n4iITp06RRqNhqqrq0XpjRs3jp599lkiInrwwQcpNTVVtH/69Onk7+9vep2Tk0Pu7u5UV1dn2vb111+Tn58fNTc3i87t06cPrV69moiIRo0aRa+88opo/4YNGyg0NJSIiJYvX079+/enlpaWDu/bEmvuqyP33nsvLVy4kIiIysrKCABVVFR0eKzcc5mXlycqH8aYc+MWJ9ZjHD9+HCNHjoRGozFtS0xMxIULF3D27FlERkYCAG677TbReaGhoairqwNwpUN1REQE9Hq9af/w4cO7LL+RkZEIDw83bRs5cqTomLKyMpw6dQq+vr6i7c3NzTh9+rTV1zp9+jRaWlpE6QcEBGDAgAGm1wcPHgQRoX///qJzDQYDAgMDAVwpn6lTp4r2Dx8+HF9++aVoW1RUFHr37i26jwsXLpjSuery5cum+ygrK8OBAwfw8ssvm/a3t7ejubkZly5dwgMPPICVK1ciNjYWEydOxL333otJkyYp9jWz5r7a29vx6quvYuPGjaiurobBYIDBYIC3tzcA4Pbbb8e4ceMwaNAgpKSkIDk5GX/5y1/Qq1cv2WszxrofrjixHoOIRJWmq9sAiLa7u7uLjtFoNDAajRbT6CwXFxfT9a8SdpSW7pPmE7gSzktISMDHH39sdqywYqKko2tJGY1GuLq6oqyszBReu8rHx8eUjqUyFrpa4RCmHRoa2mHfn6v9o4xGI1588UXcf//9Zsd4eHggIiIC5eXlKCoqws6dO/Hkk0/i9ddfR3Fxsdl7qva+li9fjhUrVmDlypUYNGgQvL29kZ2djZaWFgBXBgQUFRVh79692LFjB1atWoUlS5agtLQUMTExFq/NGOt+uOLEeoyBAwdi06ZNov+57927F76+vrj55putSiMuLg6VlZX47bffEBISAgA4cOCA7DlX+xm1t7eLtvfu3Rs1NTWm142NjThz5owov5WVlTh37hzCwsIAAPv27ROlMWTIEGzcuNHUobqz+vbtC3d3d+zfv9/U8lZfX4+ff/4Zo0ePBgDccccdaG9vR11dHUaNGtVhOnFxcfjuu+9E277//nvF6w8ZMgS1tbVwc3NDdHS0xWPKy8vRt29fi+l4enpi8uTJmDx5MubOnYu4uDgcOXIEQ4YMsXiONfdVUlKCKVOmYMaMGQCuVLZOnjyJW265xXSMRqNBYmIiEhMT8cILLyAqKgoFBQVYsGABtFqt2fvPGOueeFQdu+E0NDTg0KFDor/Kyko8+eSTqKqqQlZWFk6cOIHPP/8cOTk5WLBgAVxcrPsoTJgwAX369EF6ejoOHz6Mb7/9FkuWLAFg3hp0VVRUFDQaDb788kv8/vvvuHDhAgDg7rvvxoYNG1BSUoKjR48iPT1d1OIxfvx4DBgwALNmzcKPP/6IkpIS07Wumj59OoKCgjBlyhSUlJTgzJkzKC4uxvz583H27Fmry8zHxwePPvoonn76aXz99dc4evQoMjIyROXSv39/TJ8+HbNmzcLmzZtx5swZHDhwAK+99hq2bt0KAMjKysLWrVvx5ptv4uTJk1i9ejUKCwsVW+nGjx+PkSNHIi0tDdu3b0dFRQX27t2L559/3lTxeuGFF/Dhhx8iNzcXP/30E44fP46NGzfi+eefBwCsW7cOa9euxdGjR/HLL79gw4YN8PT0RFRUlOy1rbmvvn37mlqUjh8/jieeeAK1tbWmNEpLS/HKK6/g+++/R2VlJTZv3ozff//dVLGKjo7G4cOHUV5ejj/++KNHT8HAWLfnoL5VjHWJ9PR0AmD2l56eTkREu3fvpmHDhpFWqyW9Xk+LFy+m1tZW0/mjR482dYa+asqUKabziYiOHz9OiYmJpNVqKS4ujrZs2UIAaNu2bURk3jmciOhvf/sb6fV60mg0prQaGhpo2rRp5OfnRxEREbRu3TpR53AiovLyckpKSiKtVkv9+/enbdu2iTqHExHV1NTQrFmzKCgoiHQ6HcXGxtLs2bOpoaGhwzKy1Fm9qamJZsyYQV5eXhQSEkLLli0zK4+WlhZ64YUXKDo6mtzd3Umv19PUqVPp8OHDpmPWrFlDN998M3l6elJaWhq99NJLpNfrTftzcnLo9ttvN8tXY2MjZWVlUVhYGLm7u1NERARNnz6dKisrTcds27aN7rzzTvL09CQ/Pz8aPnw4rVmzhoiICgoKaMSIEeTn50fe3t70pz/9iXbu3NlhGUgp3df58+dpypQp5OPjQ8HBwfT888/TrFmzTB2+jx07RikpKdS7d2/S6XTUv39/WrVqlSn9uro6mjBhAvn4+BAA2rVrl2kfdw5nrHvREFnRuYExZtG3336LpKQknDp1Cn369HF0dhTt3r0bY8eORX19/XWZAHP27Nk4ceIESkpKuvxa3dG6deuQnZ3tdDPLM8Y6xn2cGFOpoKAAPj4+6NevH06dOoX58+cjMTGxW1SahMLDwzFp0iSziRxt9cYbb2DChAnw9vZGYWEh1q9fj3fffdeu17hR+Pj4oK2tDR4eHo7OCmPMSlxxYkylpqYmLFq0CFVVVQgKCsL48eM7nGXbWY0YMQInT54EcG3UmD199913WLZsGZqamhAbG4u33noLjz32mN2vY62SkhLcc889Fvdf7XPmCFcXgpaO5mOMOS8O1THGbmiXL19GdXW1xf1yo/QYY0yKK06MMcYYY1bi6QgYY4wxxqzEFSfGGGOMMStxxYkxxhhjzEpccWKMMcYYsxJXnBhjjDHGrMQVJ8YYY4wxK3HFiTHGGGPMSlxxYowxxhiz0v8DFo0RzbM4NVcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ds.tas.isel(time=0).plot()" + ] + }, + { + "cell_type": "markdown", + "id": "94409343", + "metadata": {}, + "source": [ + "### Show Provenance\n", + "\n", + "A provenance document is generated remotely to document the operation steps.\n", + "The provenance uses the [W3C PROV](https://www.w3.org/TR/prov-overview/Overview.html) standard." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "11af235a", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABuUAAAMeCAYAAAAKwQkSAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd3yV9d3/8ffJ3pvsBHICCSQsAQWrFUqp3ndVFPf6OVDEQgVXvW9tnR0Kt61araMuFLUo4ERRi7MqSxSBBAgZhCwg42SRnXP9/jjkkE2QJFdIXs/Hg4fknCvX9bnGuVqu9/l+vhbDMAwBAAAAAAAAAAAA6DMuZhcAAAAAAAAAAAAADHaEcgAAAAAAAAAAAEAfI5QDAAAAAAAAAAAA+pib2QUAR2Oz2ZSRkaEDBw4oMTFRI0eOlKenp9llAQAAAAAAAAAA9BihHAaE+vp6ZWVlaffu3crIyFBGRoZ270rX7t0ZKikta7Osq6uLhsfHKSkpWUnJo5WcnKykpCQlJSUpLi5OFovFpL0AAAAAAAAAAADonMUwDMPsIjB02Gw2paWlKT09XdnZ2crOzlLaju3anZGp5uZmSVJwoK9SEocp1RqqhLhgWWODlWIdJmtcsIqKq5SWWaz07GLl5NmUXVChHZnF2l9cIUny8HBXbEy0UlLHKjV1rKxWq6xWq8aOHavIyEgzdx0AAAAAAAAAAAxhhHLodeXl5crKyjocumU7Qri07crI2KOq6kOSpKAAHyXGhcoaEyBrbJDGJA5T6shwJY8IlZ+PxzFv01ZZp+x8m7LzbUrLPKid2SXKzq/UzuwDqqltkCQFBwXKak2QNXGUUlJSlJqaKqvVqjFjxsjHx6dXjwEAAAAAAAAAAEBrhHL4SRobG5WXl3ckdEtPV3ZWprKzs5Szd58Mw5C7m6viooJljQ1UijVMKSOHyRrrGPmWEBPUb20mCw9WKT27WNn5NuXk2ZSWXar0rBLtLSiV3e64/KMiwx0j6xJHymq1OkO7ESNGyMXFpV/qBAAAAAAAAAAAgxehHLpls9naBm+H201m7MlUU1P37SaTE0Ll5jpwA62GxmblH6js0A5z+56DOlBSKUny9PRQTHRUm3aYKSkpGjdunAIDA03eAwAAAAAAAAAAcKIglIPq6+uVmZnZap63bKXt2KZt27Y72016ebrLGheqVGtom3aTScND5e977O0mB7qu2mGmZx1QbV3bdpgpqeOcrTBbQjtvb2+T9wAAAAAAAAAAAAwkhHJDRFNTk/bt29dunrcdXbabtMa0BG/D+r3d5EDW1GzXvqIKZ2CXnlms9OxSZeeXO9thurm5Kj4uVlZroqyJI9vMX0c7TAAAAAAAAAAAhiZCuUGms3aT2VmZSkvfqbq6ekmOdpOOFpMhShkZ7pznLTVxmLw83UzegxNXfUOzMveVtZu/rkTbMw6qsrpWkqMdZqJ1hFLHjneEdodH1o0fP14BAQEm7wEAAAAAAAAAAOgrhHInoM7bTW7X9u3bVVlVLUny9HBXYnyoUhNDZY0JUkKcY5638UkRCvDzNHkPhp6WdphpmQe1M6tY2QXlys6vVFrmftXVN0rquh1mamqqvLy8TN4DAAAAAAAAAABwPAjlBqju2k3uzc2T3W53tEmk3eQJrbt2mDn5pTKM7tthJiQkcJ4BAAAAAAAAADgBEMqZrKt2k+k7d6m2tk5SS7vJEKVYg9u0m0xJHCZv2k0OWp23wyzV9owD7dphJhxuh2l1tsOcMGGC/P39Td4DAAAAAAAAAADQglCuH3TVbnLHjh2qqKyS1HW7yXFJEQqk3STa6Xk7TKtSUsc6R9alpKQoOTlZbm6EuQAAAAAAAAAA9CdCuV5UWFjYIXhLT0/rUbvJEdFBcnGhDSGOT2OTXXn7u2+H6e7uprjYGFmtI5WSmtpm/jraYQIAAAAAAAAA0DcI5Y5RS7vJIy0n05Sdlamdu3arpsbRUrCl3aQ1xv9w8BZOu0mYrqK6Xpn7yloFdgeVnl2mjL0lqjrkaJUaGOCvkSMTZU0c5RxZl5qaqqSkJNphAgAAAAAAAABwHAjlOtHQ0KD8/PxW87xlKzsrUzt2bNf+A8WSJA93N8VGBinFGqLUxGFKiHPM8zZuVIQiQn1N3gPg2Ngq65SWeVDp2cXKybMpu6BcaVmlythbrKamZkmOdpgpKWM6zF83evRoubq6mrwHAAAAAAAAAAAMbEM6lDtau0lJigoPVGriMFljAp3zvKWOHEa7SQwJrdthpmUWH56/rqLH7TCtVqvZuwAAAAAAAAAAwIAw5EK5JUuWaPkry5SZla36+gZJ0rAQfyWNCFXy8GCNGhGqpOGhSh4RqsS4EHl6MAII6Iytsk4Ze0uVkVuqjL0lysgtU0ZuuTL2Fqu2zvHZCg4KVFJSkh597HGdeuqpJlcMAAAAAAAAAIB5htwEZz/88IMsDWV69t5fK3lEmJJGhCo4wMvssoATTnCAl6aOj9HU8TFtXjcMQ3n7K5WRW6pdOSVa9Je1KiwsNKlKAAAAAAAAAAAGhiEXyknSqOGhunr2BLPLAAYli8Wi+KhAxUcFasbJI7ToL2tlsdDqFQAAAAAAAAAwtLmYXUB/IxwA+k9Lc1w+dwAAAAAAAACAoW7IjZSzWCwyNKSm0RuQSmw1uuuxdXpr3U7NnXOSThkfq5raRn309R69/0WGGpuateH1eTppTKQ+37RXv3vkEyXGBSstq1jpWcW6c+5pevjWWc71FRys0oxrX9L4pAjNmTVGuYUVemz5epWW1+r7lfM1cXRkn9V316PrtOTFbzQlNVqP/O5M2SrrlJNv07J3tipvf4VuvmKq7pr38zbzE/Z2vQNVy5SVhHIAAAAAAAAAgKFuaIZyZHKmKi2v1cSLnpGvt7s2vD5Po4aHON+75rwJWvVJui773SrV1DWqpq5Rqz5J0/rXb5C7m4vsdkMX3vKGHln2rf4w/wz5+XhIkm5f+rGCA7y1+rFL26zr1CueV2Fx1TGFXMdSnyRNGeuYU21KarTOmDzcuewt/2+anlqxWYseWquPvsnUZy9eIx8v916vdyBjpBwAAAAAAAAAAA5Dsn0loZy55j/wvgoPVunJ35/dJvBqcdGZKbrhgkk6VNug7HybHr71V3J3c1yqLi4WXfCrFLm6tD2P63/Mk6tr2+AnNiJA/3fHmSo8WNVn9UmSm1vXH6MFl52s/73+dG3aXqA/PfNVn9Q7kDFSDgAAAAAAAAAAB0K5QeBg2SGt/TpTTc12rf73Tq3bkO18r6yiVm9/ukt/e2W9Pvo6U3X1TR1+vyfLVFbXa+Un6Xpk2bf69/rsNsewvqFZr67Zpn/8a7O+2LxXmfvKnO9l59v0yns/ym53/MK6Ddl6a91OTRwdqV+dau1yn35z2cny9fbQ2JHh8vf1aPPentxSXXRmSpvXQ4N8tHFbgf65akubZc+fOVpJI0K73E57x1pfT9x948/l5+Ohv778rTNw6616B7qWy4RQDgAAAAAAAAAw1A3RUG7wpHK/e+QTxc78m/627Fvd+dd/66YH39dV//OWJOnf67N1/qIVign31+wZyXr1/W2afMmzSsssdv5+T5b55oc8XX3324qPDNT5M0fr6rve0pzFKyRJjU12zbjuJQ0L9tVNl07R5xtz9OTrm5y/e+8Tn+va37+jzTsKJUlr/7NHknTSUdozTkiO0GknxXV4fdP2Am34MV8vPHhem9dvu+ZUSdJND6zRjfe/r9LyWkmSl6dbm5aSR3O89XXGx8tdv5yaoMYmu37Ytb9X6x3oGCkHAAAAAAAAAIDD0AzlzC6iF/3fHWcqJNBbm9MKtfDyU7Tnw0V6468Xq9hWo8vuWKl7fzNdp4yL0cj4EL380By5uFh0xZ2r1NRs79Eytso6XXP323ry97/W1PGOZa6/YJLe/2K3Smw12rgtXzuzS/SrU61ydbHo3gUzFOTv5azvd3NP05LbfqVJKVGSpL0F5ZKkhNjgY9rPvYXlmv/A+zrjmpe0bkO2rrhztZqa7c73rzpnvJ64+9fy8nTT86u/15jZT2r5+9uO+Xj+1PqOxhrnWN/ObEfY2Vv1DnTMKQcAAAAAAAAAgMPQDOUG0Ug5SQoJ9NaEpAglxgUryN9L06cM14tv/yBbZZ1OOyneuZyri0XXzTlJ2/cc1Kcbcnq0zLMrv1NMuL9iIwKcy9z7m+na/vYChQX7yM/HQ5XV9brh3vdUXdMgVxeLbrp0inPZCckR+t11P3POCefm6vhvTW3jMe1jbESAltz2K7335OWKjwrUO5/t0jNvftdmmYWXn6ztby/QL6cmqMRWo2vuflu/eXCNs3VmT/zU+o7G3c1VkuTp4dar9Q50jJQDAAAAAAAAAMBhiIZyZlfR+1qHPZKUtuegLJYjIVOL8UkRkqQdmQd7tMyPu/YrPNS3zfse7q5KSRwmSZo4OlI3XjRZy97dqpTZ/9C7n+9WZJhfl3WmjAyXJO3ZV3pM++fm6qIgfy+d+bNEfffGjQoN8ta69dkdlkuMC9a/n79az9x3jlxdLHp25Rb9Y8XmHm/np9Z3NEXFjrnkJiRHtHn9eOsd6Fo+ay4uQ+5WAwAAAAAAAABAG0PuSflgDeXas1gcgUhLGNRiWLAjYAvw9ezRMvtLqrWvqKLbbT1z3zn65/3n6lBtg+YsWqE/PvtVl8tOPDxXW+s5645VWLCPzpmepIbGZkmOeeZq6tqObLvxosl66p5zJEkvv7O1x+vujfraMwzp80175enhqgnJkb1a70DHSDkAAAAAAAAAAByGaCg3+FO5saMcI7LW/5jf5vWS8hpJjvCpJ8uMjA/R9+lFyshtO3LMVlmnbRkHlJ5VrIrqet1w4SRlfLBIs6ZZ9cBTX6jEVtNpXedMT9LklCjtyinRf77f1+0+VNc0dPv+pDGOeery9lfq6Te+6/D+FWePk8Ui2Y/hfPdmfS3+tXa78g9U6t7fzFCgn2ev1jvQtewJoRwAAAAAAAAAYKgboqGc2VX0LsMwOgSN119wkkKDvLX8vR/bvP7ZhmyddVqiTh4b3aNlrjxnvJrthi7/3SrtLSyXJO0rqtCdf/1EoxPClLe/Uh9+tUeSFBrkrb/f/d+y2w1VHqqX5Bhx9vfXNqqp2S7JMWfds/efKx8vd11z19sdwj5Jqqlr1O3/97G2ZRxQY5NdWXm2Nu8fqm3UtowDWnTVVEnSyPgQPfj0F9qRebDNcnsLymUYjqCtp461PklqarJ3ub4vNu/Vb//0oU4ZF6PfXfezXq93oGOkHAAAAAAAAAAADm5HX2RwsVgsGkyZXG19k4ptNWpobFZTs905P1xIoLfe/OsluuLOVXrwmS81/+IpWv9jnr7fWaQXHjyvx8vMOHmE/mfuaVry4jeynvW4IkJ95e7mqjVPXSEPd1dJ0r1PfqZpE2IVFxmgdz7bpct/PVbW2GBJ0kPP/Uevf7hdp4yL0bTxsZIcI9x+fOs3uuHedzV+ztP6f+eO15SxMZKk73YUqLS8Vn+46QxNGhOl1z7Yrv/3v2/pv04fqVuvPlV2u6H/bMnV8w+cp/AQR5vNxLhgVR1q0Ixrl+nuG3+un02MU+HBKt3zxGc6d0aS/jD/jGM6psdSnyRt3lHgeC+tUN9uzdOh2kblH6jUqo/T9O3WPM294CT98eaZznPT2/UOZC1ZMaEcAAAAAAAAAGCosxhDoZdjKzfeeKNydnyuT/55pdml9Ion/7VJpeW1kqToYf46b2ayM6ySHG0mP9+Uo9zCCk1IjtAZU4Y7w6FjWea7tEJ980OeQgK9NeeXo+Xn4yFJyj9QqR17Duq7tEL5eLtrVHyozpmepJYMJnNfmf7z/T5dPXuCXF3aBjOG4Xh/W8YBZeaVKSTAW9MmxGrcqHDnMna7oU++zVJaVrHCQ3w1dmS4ThoT2eE4vPzujxoeHajsfJtKy2vl6eGqKanR+tnEuJ98bHtS3/Orv1fBwbZz8nl6uCoxLkRJw0OVNCJU3p4ds+++qHcgKquoVdjpS7Vu3Tr98pe/NLscAAAAAAAAAABMM+RCufnz5ytr22f693ODI5RDzxwoPaRVn6Qfdbl5F01yjgDE8Sstr9Wwny/Vp59+qpkzZ5pdDgAAAAAAAAAAphma7SuHVg4JSU3NdpWU1xx1OS6N3sWccgAAAAAAAAAAOAzNUM7sItDvYsL9dd9vpptdxpDT8lkjlAMAAAAAAAAADHUuR19kcGGkHNB/GCkHAAAAAAAAAIDDEA3lzK4CGBpaPmuEcgAAAAAAAACAoY5QDkCfYaQcAAAAAAAAAAAOQzSUI5UD+gMj5QAAAAAAAAAAcBiaoZzZRQBDBCPlAAAAAAAAAABwGJqhHCPlgH7R8kkjlAMAAAAAAAAADHVDNJQzuwpgaGCkHAAAAAAAAAAADm5mF9DfXFxctGl7nkJPf8TsUoBBz263m10CAAAAAAAAAAADwpAL5S6++GKNHj3a7DLQA3FxcaqpqVFpaanZpfwkkQENig+uU0OTi+qbLKpvclFDs4vqD//c8vehMHIzMTHR7BIAAAAAAAAAADCVxWCCNQxQX3/9tRITExUVFWV2KT+ZcfBz6eCX3S/k4iG5ekouXpKrt+TmI7n6SK5esoRPl1w8+6dYAAAAAAAAAADQZ4bcSDmcGGpra9Xc3Cw/Pz+zSzkulvBfSG6+MgrXSuoi/7Y3OP6oqvVvSt4xBHIAAAAAAAAAAAwSLmYXAHSmublZgYGB8vX1NbuU4xdyiizxl0gWV8li6dnvWCRL2LS+rQsAAAAAAAAAAPQb2lcC/eVQjoy9r0tqlgx798u6+sgy+nZHkAcAAAAAAAAAAE54jJQD+otvgizW6xwtKbsN21xlCT2FQA4AAAAAAAAAgEGEkXJAf2uwychZJjVVS0ZzJwtYJI9AWYKnSCGTJVfv/q4QAAAAAAAAAAD0MkI5wAxN1TJyXpHqSyW1CuYsrpJfouQRLNl+kGSRgsbKEjpV8gw3q1oAAAAAAAAAAHCcCOUAszTXych9TaotaDPHnCVxnuQdI9nrpfIdMko3SPXFkk+8I5wLGCNZ6DwLAAAAAAAAAMCJhFAOMJO9UUbeSqk6U5Jd8oyUZeRN7RYypOocRzhXlSF5BMsSPFkKmSS5+phRNQAAAAAAAAAAOEaEcoDZDLuMwvck21ZZYudIQRO6XrahTIbte6lsi2RvlAJTZQn7meQV0X/1AgAAAAAAAACAY0YohwHnwIED8vf3l4/PUBoFZkjFX0thp0oWt6Mv7mxtuVGqP0hrSwAAAAAAAAAABjhCOQwohmHo66+/1qhRoxQZGWl2OSeAw60tbVukyp2Sq68UMlmW0FNobQkAAAAAAAAAwADSgyE5QP+pra2V3W6Xr6+v2aWcICySn1UWP+uR1palG2UUf324teWpkhfhJgAAAAAAAAAAZmOkHAaU4uJi7dy5U6effrpcXGjD+JMYTVJFmoySb6W6A5J3tKO1ZeBYyeJqdnUAAAAAAAAAAAxJhHIYUHJyclRSUqKTTz7Z7FIGh5p9jnnnKnc62lkGT5Ql5BTJPcDsygAAAAAAAAAAGFJoX4kB5dChQ/Lz8zO7jMHDJ14Wn3ipqUpG2RapdJOMkvVSwGhZQqdJPnFmVwgAAAAAAAAAwJDASDkMKBs2bFB0dLTi4+PNLmVwcra2XC/V7Xe0tgyeLAVPkCxk9AAAAAAAAAAA9BWewmPAaGpqUn19PSPl+pLFTQqaIEvQBKm2UEbpRhlFH0oHPz/c2vJkyT3Q7CoBAAAAAAAAABh0GCmHAaOpqUmFhYWKjIyUh4eH2eUMHS2tLcs2S811jtaWwZMlP6vZlQEAAAAAAAAAMGgQygFwMJqkyt0ySjdINXmSd5QswVOkoPGSi7vZ1QEAAAAAAAAAcEIjlAPQUW2hDNsWyfaj5OopBZ8kS8gUyT3I7MoAAAAAAAAAADghEcoB6FpTtWTbKqNsk9RYJfmPkiV0muSXIMlidnUAAAAAAAAAAJwwCOUAHJ3RLFXucoyeq86WPMMcI+eCJ0kuzP8HAAAAAAAAAMDREMoBODYtrS3Lt0kWVylogiyhp0oetLYEAAAAAAAAAKArhHIAfpqmQ5LtBxllm6XGSskvQZbQqZJ/kmhtCQAAAAAAAABAW4RyAI6PYZeq98go3Xi4tWWoLCEn09oSAAAAAAAAAIBWCOUwIOTk5MjHx0cRERFml4LjUbffMXKufJskFylorCyh0yTPYWZXBgAAAAAAAACAqQjlMCBs2LBBMTExiouLM7sU9IbmOql8q4zSDVJDBa0tAQAAAAAAAABDnpvZBQBNTU2qr6+Xr6+v2aWgt7h6SaHTHEFcdY6M0g0ycv8leYTIEjxJCpksuXqbXSUAAAAAAAAAAP2GUA6mq66uliT5+fmZXAl6n0Xys8riZ5XqS2SUbZZR/JVU/J/DrS2nSp7hZhcJAAAAAAAAAECfI5SD6aqrq+Xu7i4PDw+zS0Ff8gyTJeq/pYiZUvkOGaXrZZRtkXziHeFcwBjJ4mJ2lQAAAAAAAAAA9AmegMN0hw4dYpTcUOLiKYVMlmXUQllGXC25esnIWyljzxNS8ddSc63ZFXbJMAydf/756o2pOAsKChQXF6fq6mpVVVXp7rvv1kUXXdQLVR7dd999p/PPP1+vvvqqJMco1QsvvFCLFy9WYGCgfvazn2nBggWaNGmSbr755n6pCQAAAAAAAAAGO0I5mK66upr55Iakw60th18hS9LNUmCqjJKvZez6q4z8t6W6A2YX2MHHH3+s9957Tx9//HGH97766qtuf24vKipKL7/8svz8/OTv76/k5GQVFBT8pLqOtq32pkyZorKyMtXX18swDC1cuFCrV6/W448/rpCQEJ199tl66qmntH79egUHB/+kmgAAAAAAAAAAbRHKwVSGYaimpoaRckOdR6gsEbNkSb7V0eKytlBG5tMysl+UKtIkw252hZKk9957T/Pnz9ejjz7a5vV169bpf/7nf7r8uTMuLi6aOXOm82cvL6+fVFNPttUZT09PSY7P4C233NLlMvPnz/9JdQEAAAAAAAAA2iKUg6ksFosmTpyokJAQs0vBQOBsbblAlhFXS+7+MvJXy9j9qIyDX0jNNUddxdy5cxUZGan8/Hy99957cnV11ZNPPilJ+uSTT3T++eerqKhId911l1atWqVLLrlE27dvlyTt2bNHjz76qF599VVde+21bdabmZkpq9WqW2+9VevWrVNaWpokyW63a/Xq1SooKNDjjz8um83W5uf9+/froYce0vTp0/XUU08pKipKRUVFWrZsmcaMGaPc3FznNux2u26//XbFx8dr1qxZKiwsVH19vebPn6+TTjpJkiOE8/X11QcffNBh2xUVFWpubtbf/vY33XvvvZo+fbrWrVsnyRG+LV26VM8++6weeughZWVlOQ65i4uioqK6PJ4RERH6y1/+omXLlum+++7T/PnzVVVV1aPTCQAAAAAAAAA4glAOpvP395e7u7vZZWBAOdzaMu5iWUb9VgqeIJVulLHrb4dbW+7v8jcfeughVVVVyc3NTbNnz9Z//dd/ycXFcaurrKzUfffdpw8//FDNzc266KKLNGXKFD399NOSpOXLl8vHx0dXXXWVLrzwwjbrfeGFFzR37lwlJSXprLPO0mOPPSbJEWrNmjVLERERWrx4sYKDg9v8HBkZqYkTJ+r777/XOeeco88//1zh4eG6/PLLtWvXrjbbyM3N1V133aX09HQ1NDTotttuk6enp/77v//bucysWbOUkJDQ6bYDAwP1yCOPaOLEiXrwwQf1m9/8RldddZUMw9Dzzz+vvLw8zZ8/X3fddZd8fHx6dCb+9re/qaCgQNdee60eeOABZ10AAAAAAAAAgGPjZnYBANAtjxBZImZJw86QyrfLKNskI/MZyTtaltCpUuBYyeLqXDwiIkLnnHOOXnnlFd12221qbm7WCy+8oAULFujHH3/URRddpJNOOkkVFRXasmWLKioqnCO/zjvvPJ111llKT0/X/fff71xndXW11q5d6/zZMAy9+uqr+stf/qJhw4YddRd8fHwUFham+Ph452uurq4dlktISFBYWJgkaeHChVq0aJEkx4jS1tr/3NqqVatkGIZz9N9dd92l2tpavfLKK23aVHY3Oq611atXa+HChc6f58yZo7lz5+q5557r0e8DAAAAAAAAABwI5QCcGFw8HK0tQyZLNftklG6UUfCutH+dFDxBlpBTJPcASdJNN92k+fPnKyIiQkuXLtUFF1ygN954Q6NGjZIkbdq0ScuXL9cTTzyhr7/+Wvv27ZMkTZw4UZs3b9bChQs1adIkbdiwQREREXr55Zf1wgsvaPLkyZKkpqYmDR8+XM8884zuueeePtnd6OhoZ0B3LEpKSjRr1ixNmTLF+dqhQ4dUUlKihoaGn1RLYWGh8+8hISE9HmUHAAAAAAAAADiC9pUATjw+8Y7Wlsm3SiGTpbLvZWQ8LiNvpVSTp1/84hdycXHRF198ofHjx2vevHm64447dPHFF0uSHn30UQUGBkqSioqK1NjYKElatmyZEhIS9OGHH2r8+PHauHGj7Ha7Pv74Y2cgJ0lubm668sor9dRTT6m+vl7+/v6y2WySpMbGxg4/G4Yhu93eZhcMw2jz3/Z/37p1q2644QZJUnh4uIqKitTU1KSSkhIVFBSotrZWkjps67TTTtPixYtVUlKi2tpavfTSS87XX3zxRTU3N0uSKioqVFPTcY6+pqYm5zKSdMkll+jtt992/rx9+3ZdeeWVPTxRAAAAAAAAAIAWrve37tEGACcSF09ZfEfIEjZVFo8QqSpDKv6PVJUhF+9wXXDJ1YqOjlFSUpIaGhp05plnSnK0f3z44Ye1e/duTZw4UcuXL1dSUpIyMzO1cuVK1dbWytXVVVdeeaXuueceffvtt5oxY4bCw8MlSTabTWvXrtUXX3yhgwcP6vLLL9eKFSu0Y8cOTZkyRVarVcuXL9eOHTuUkpKiF198UZ999pnGjh2rlJQU2e12rVq1SqtWrVJUVJSmTp0qX19fffbZZ8rNzVVGRobsdrt++9vfymKxKDY2Vt99953+/Oc/q7KyUn5+fqqvr9cZZ5yhyDGWuYQAACAASURBVMhI57amTJmis846S2vXrtUdd9yhjz76SNdff70SEhJ06qmn6v3339fjjz+uHTt2qKamRm5ubpo6daq8vb1VV1en119/Xa+99ppqamqUmpqquLg4TZ06Vfn5+Vq7dq2Ki4u1f/9+3X333XJzY6A1AAAAAAAAABwLi9F6aAYAnOhqC2WUbpQqdkiu3lLwxDatLQEAAAAAAAAAMAOhHIDBqalKRtkWqWyz1FwnBYyWJXiy5Gc1uzIAAAAAAAAAwBBEKAfT7N69W4ZhaPTo0WaXgsHMaJIqd8so3SDV5EneUbIET5GCxksu7mZXBwAAAAAAAAAYIgjlYJotW7YoKChIiYmJZpeCoaJNa0svKfgkWUJOltwDza4MAAAAAAAAADDIEcrBFIZh6Ouvv1ZSUpIiIiLMLgdDTVO1ZNsqo2yT1Fgl+Y+SJXQarS0BAAAAAAAAAH3GzewCMDTV1NTIbrfL19fX7FIwFLn5ScNOlyXsVKlylwzbFhl7X5G8Ih0j52htCQAAAAAAAADoZYRyMMWhQ4dksVgI5WAui6sUmCpLYKqjtaVti4z9H0kH/i0FTZAl9FTJI8jsKgEAAAAAAAAAgwChHExRXV0tHx8fWSwWs0sBHLyjZfGOlsJnSrYfZJRtllG6SfJLkCV0quSfJInrFQAAAAAAAADw0zCnHEyxfft2ubu7a/To0WaXAnTOsEvVe2SUbpSqsyXPUEdry+BJkouH2dUBAAAAAAAAAE4wjJSDKerr6xUURFtADGAWF8k/WRb/ZKmuSEbZdzIOfCod+FwKGitL6DTJc5jZVQIAAAAAAAAAThCMlINpDMOgfSVOLM11UvlWGaUbpIYKWlsCAAAAAAAAAHqMUA4AjpkhVWUcaW3pESJL8CQpZLLk6m12cQAAAAAAAACAAYhQDgCOR32JjLLNku0HSZbDrS2nSp7hZlcGAAAAAAAAABhACOUAoDfY66XyHTJK10v1JZKfVZbgyVLAGMf8dAAAAAAAAACAIY1QDgB6lSFV5zjmnavKoLUlAAAAAAAAAEASoRwA9J2GUhm2H6Sy7yR7kxSYKkvYzySvCLMrAwAAAAAAAAD0M0I5AOhrztaWG6T6Yskn3jHvHK0tAQAAAAAAAGDIIJRDv6qvr5dhGPLy8jK7FMAEh1tb2rZIlTslV18pZLIsoadIrj5mFwcAAAAAAAAA6EOEcuhX2dnZstlsmjx5stmlAOZqKJNh+14q2yLZGw+3tjxV8oo0uzIAAAAAAAAAQB8glEO/2rZtmzw8PDR69GizSwEGBnuDVL5dRtlGqe6g5B3taG0ZOFayuJpdHQAAAAAAAACglxDKoV+tX79ecXFxio2NNbsUYOCp2SejdGPb1pYhJ0tuvmZXBgAAAAAAAAA4Tm5mF4Cho7GxUQ0NDfL1JWAAOuUTL4tPvNRY6WhtWbpJRvF/pIDRsoROk3zizK4QAAAAAAAAAPATEcqh31RXV0uS/Pz8TK4EGODcA2QJnyENO12qSJNR8q2M7BccrS2DJ0vBEyQLt28AAAAAAAAAOJHwVBf9prq6Wh4eHnJ3dze7FODEYHGTgibIEjRBqi2UUbpRRtEH0sHPpeCJsoScIrkHmF0lAAAAAAAAAKAHmFMO/WbXrl1qbGzUuHHjzC4FOHE1Vcko2yKVbZaa6xytLYMnS35WsysDAAAAAAAAAHSjQyhXX1+vyspKs+rBIFZcXCxXV1eFhISYXQoGgNDQULm4uJhdxonLaJIqd8so3SDV5B1pbRk0XnJhNCoAAAAAAAAADDQdQrni4mKlp6ebVQ+AIcLf318TJ04kmOsNh1tbqmKH5OolBZ8kS8jJknug2ZUBAAAAAAAAAA7rMpSbPn26WTUBGOS+/PJLubm5ydfXV+PGjZOrq6vZJQ0OTdWSbauMsk2Ov/uNlCV0Gq0tAQAAAAAAAGAAYIgKAFPEx8erpqZG27dvV3Nzs9nlDA5uftKw02VJWixL7IVSc52Mva/IyHxGKtsi2RvNrhAAAAAAAAAAhixCOQCm8PLy0vjx4wnm+oLFVQpMlcU6V5bEGyWfGBn7P5Kx+68yitZKDeVmVwgAAAAAAAAAQw6hHADT+Pn5Ecz1Ne9oWaLPlSXpFlnCTpcqd8nIeFzG3lekqt2SjKOuAgAAAAAAAABw/AjlAJiKYK6fuPkeaW05/DJJkpH7Lxl7/iGVbpDsDSYXCAAAAAAAAACDG6EcANMRzPUji4vknyzLiKtlGTlf8h0u48CnMnb9VUbh+1J9idkVAgAAAAAAAMCg5GZ2AQCGpsrKyg6vxcXFad++fdq6dasmTpwoV1dXEyobQryiZIk+V4r4lVS+VUbJBhll30t+CbKETpX8kyRZzK4SAAAAAAAAAAYFQjkA/S42Nlb5+fldvl9dXa2ysjINGzasH6sawly9pNBpjiCuKkNG6UYZuf+SPEJlCT5JCpniWOYEdPDgQeXk5Cg7O1s5OTnKycmRJCUkJCghIUFWq1UJCQkKDw83uVIAODHV1tZq7969ys3NVW5urvbu3au8vDyFhoZqxIgRGj58uPNPWFiY2eUCAAAAAGAqi2EYRusXiouLlZ6erunTp5tVE4Ah7ssvv1RKSgqhnJnqS2SUbZZsP0iySEFjZQmdJnkOrHNSXV3tDNuOhG/ZysnOUk5Org7V1EiS3N1cFRcVrISYIEl25RRUKK+oXI1Njlapvj7eShgxXAnWRCVYE51hXcsfPz8/E/cSAMxTVVXlDNtah2+5e3OUm5urAweLncsGBfhoeEyI4sL9ZKuqVU5+hYqKK9Tyzw1fH2+NGB6vEQlWDR+R0CG0i4yMNGs3AQAAAADoF4RyAAYcQrkBpLnO0dqydKPUYJP8rLIET5YCxjjmp+tjjY2NysvLU3Z2tgoLC1VUVKTs7GxlZ2UqOztLOXv3OR/2Bgf6yhobImtsgKwxQUqIC5Y11vEnPipQbq4d67VV1ik73+b8k5NnU3ZBhbLzy7W3oFR2++F1BwXKak2QNXGkrNZERUVFKTo6WlarVWPGjJGPj0+fHwsA6Au1tbVH7q3OP1kqLMhXUVFRh/ts1DB/RQ/z7XCftcYGKzig46jqhsZm5R+oVOHBKhWVVHe41+4rsqnp8BckPDzcFRsT7bjPRsc477Mtf4YPH05rawAAAADACe2EDuUMw5Ddbu+Tf5z35brRNzhngweh3EBkSNU5Mko3SFUZkkeILMGTpJDJkqv3ca3ZZrO1exh8JHTbl5fvfFjr5emu6PBAWWMDOzwMThoeKn9fj97YUaf6hmYVHKxsF9iVKzu/Ull5pSqvrHEueyS0G9XmAbLVatWIESPk4tL3ASYAdMZms7X9UsPh0C07K1NZWdkqrzgyx2vrLzdEhfkpKtzfeZ8dGR+iQD/Pvqmxiy9IFBZXa29BmWpqGyRJ7u5uiouNcXwxIiauw/02Pj5ebm505wcAAAAADFwnbCj30ksv6fe//73+/e9/KzU1tdNlqqqq9NBDDykjI0OrVq3q1XX3l+bmZj399NP66quvFBERoeDgYO3bt0+5ubn6/PPPTa1NkgoKCjRt2jTt3LmzT9u7He04tD9n/VVXd/UuX75c8+bNU2pqqn7961/LYrEoIyNDl112mS688MI+2e6zzz6rNWvWaMSIEfr+++8VFhamd999t0+21ZcI5Qa4hlIZth+ksu8kwy4FjZMl5BTJK6LTxevq6lRYWNhhFEZ2VqZ2785Q9aG2LSatsUGyxgQqIS5YUWF+ij78UDghJkgWi6U/97RbLQ+RHaM/qlqN/KjQzuwDzofIrUd+OEbaHXmAnJiYqKCgIJP3BMCJrPUXG46Eb4577J49maqsqnYu235EceQwf+c9ti++3NBb2od2RQerVFRySNn5FdqdU6zqmjrnsl19SSIqKkoJCQmMbAYAAAAAmOqEDeUMw5C3t7e2bNnSbXD28ssv65lnntH69et7fd39Yfbs2fLw8NCrr74qLy9HS6C0tDTNnj1bWVlZptYmSXa7XV988YVmzpzZp9s52nFof876oq6vvvpKZ5xxxjH9Tnx8vG688Ub94Q9/kCQdPHhQZ5xxhsaMGaO33nqr24DhWLeXkZGhadOmqaioSJ6eniooKNBVV13lDG9/Sv1mIZQ7QRxubWkv2SRLY5l2lCdrfXrVkYfDBfkqKipUdk6u81ecD4RjAmSNbTvabXh0kFxdBk7odry6a42ZW1im5ma7JMcD5KioSEXHxDqCu1YPkUePHi1fX1+T9wSAmdqPJnYEb4Udvtggtb7HHv4yw+F7bFSYvxJig+Tj5W7invSd1vfbwoNV2l9c5fySxJ7cElVW1zqXbR/atW5HnJyczByiAAAAAIA+dcL2d7FYLHJ3P/qDhZYApy/W3deef/55ffrpp8rJyWmzH6mpqVqwYIGJlR3h4uLS54FcT45D+3PW23WtW7dO99xzzzGFu5Lk6uraJngLDw/XmjVrlJKSoueff17z5s3rte3l5eXJZrMpLS1NkyZNUkxMjG666abjqh9o0V2Lybz8fM2amqAN2/JVW9/sbDGZGhOkc6aOkjX2FFljg5U8IlR+PgNzFEZfCA7w0uSUKE1OierwXsscS20Du/3a8s1uvf9OlYoOVhxZTzetMZlfCTjxdX5/zVJhYb725u5TTY0jUGoZTRw1zE/RYT6aNTFY886dedS5M4eC7u63kiO0axnVfOSem651azZ00454pKKiotvMazdq1CgFBAT0124BAAAAAAahXg3lHnzwQX322Wc666yztGLFCrm7u+v1119XXFycHnvsMX300Ue69NJL9cc//lGbNm3S8uXLFR0drZycHO3fv1+PPPKI/vSnP2np0qXavHmzpkyZojfeeEMrV67UU089pSlTpuiTTz7R6NGjO2y7qKhIf//73zV58mS9+eabuueeezRu3DhJjtFct99+u1auXKmkpCS98sorio6OVnNzsx5//HGVl5fryy+/1D333KNZs2b15iE5Lh988IHGjx+v8PDwDu/dfvvtkqSmpiYtXbq0w3F0d3fX0qVLOz0fSUlJne77aaed1uE8fffdd/rXv/6lVatWafHixXr66afV1NSkr776Sm5ublq2bJmWLFmijz76SMOHD5dhGHryySfl4+OjHTt2KDIyUrfccosWLVqkTZs26YcfftC6det03nnn6c0339TZZ5+tPXv2aM2aNRo2bJjWrVunZcuWHfNxaK99XU8++aSeeeYZLVmyRK+++qq2bdumlStXatWqVXrrrbd0xhln6O9//3un11FqaqpWr16tgoICPf7447r22mvl5+f3k6+dkSNHavz48Xr//fd1zjnn9Gh7NTU1XV7fLU4//XSlpqZq1qxZWrp0qa6//npdeumlstvtHdbn6+vb6XXj5ubW4RrYvHmz3nzzzQH7OUHv6G7OoV27MnSoxvHA0sPdTbGRQc4Wk788/0joZo0NVnDAsX8RYijycHd1HrPO1NU3qbC4ql1ot1Pr1mxo06qtq9aYrUd+ADBPY2Oj8vLyOt5fO5k3s/X9NSrMR5NPDVPCJaMG7Wji/hQc4KXgAC+ljux8BH5tfZOKOrnnbsn6TmuKq5WTX6qW5iLdjW62Wq0KDu78vg4AAAAAgNTL7SvXrFmjq666SmlpaYqOjtZll10mm82mTz75RGvXrtUll1yitLQ01dTU6O2331Z+fr7+8Y9/SJKuu+46ubm56emnn9aoUaP05JNP6uyzz9YLL7ygmTNnasSIEVq2bJkuu+wyeXt7S5L8/f21YcMGpaam6oUXXtDu3bu1dOlSLV26VHv37tVTTz2lN954Q4sXL9aOHTvk5eWlX//614qOjtaKFSu0ZMkSnXzyyZo5c6ZWrFihW265RUVFRbJYLG3WbZbRo0crOTm52znBli5dqtzc3A7H8bnnnuv2fHS17x999FGb8zRq1Cht3rxZs2bN0s6dOxUXF6eRI0fq+eef14wZM1RfXy8vLy/t3btXw4cP12OPPSYXFxctWrRIeXl5uuaaa/Tpp5/q3Xff1QMPPKAffvhBkjR27FgtWbJEZ599tu69917FxMRo/vz5ev/993Xuuece83GQ2l4P7evKysrSyJEjlZeXp9jYWF188cVqbGzU22+/rUOHDikoKEg2m01vvvlmp9fR6tWr9fDDD2vz5s2S1O2101pCQoJuuOEG/f73v2/z+jXXXKMff/xRN998c4+219X13V5paanuuOMOvfzyy5o6dareeOMNxcfHd1hfd9dN+8/qW2+9pWnTph11X3sT7St7X0NDg/Lz8zud1y0rK1vlFZXOZbtqf2aNDdaI6CC58FDYdD1tjenl5anoqEhZrSNlTWz78DgpKUn+/v4m7wlwYquvr1dBQUG7+dyOhG65+/Kcn0dPD3fFRAQ6v9QQOezInJncXwe2zr4oUVhcpaKSGmXnl2tvQansdsc/qY7cdzv/skRCQsKAmh8VAAAAANC/enWknLe3t4YNG6aYmBhJ0oIFC3TOOedIknx8fBQWFqb4+HhJ0jvvvKOFCxc6f3fOnDmaO3eunnvuOS1atEhPP/20zj77bOXl5SkhIUGSIzjoyvXXX6+Kigpt2bJFFRUVqqqqcr6XkJCgsLAwSdLChQu1aNEiSdKqVatkGIa2b98uSbrrrrtUW1s7YCaAj4uLU05OTrfLrF69usvj2N356G7fW58nyXFevb29FRcXJ8lxPLOysjRjxgx5enq2qee1117T8uXLnfV/9tlnktTh4UPrn8877zydddZZSk9P1/333/+TjkN77etqaXsZGxsrSRo+fLjq6+tlsVjk5+cnNzc3FRcXd3sdtXa8105WVpaSk5N7vL2eLhcaGqqXXnpJ1113nS677DLNmDFDaWlpHZbr7rppfw28/fbbcnFxGbCfExzRXYvJvbl5stsPz2HWErrFBui0MX66aPqRkW5jrGGDds6hwaS7Vm2NTXbl7a9oN79SubK3f6Z1a9/qMOKjq9aY8fHxcnM7YbtcA72irq5OhYWFHed0KyzocG/18nR3tu+1xgQ5RxJHhTnCt4SYIMKYE5SXp1u3o5vrG5pVcLCy3X23wnnf7fzLEkdCu9ajm0eMGCEXl6HZhhQAAAAAhoI+fdrWEgp1pbCw0Pn3kJAQ50P+uXPn6v7779dbb72lk08+uUfbammH+cQTT+jrr7/Wvn37Ol0uOjraGdCVlJRo1qxZmjJlivP9Q4cO9Wh7/WHWrFm69957lZ+f7wyTOtPVcWyv9fnoq31vaYHX0mLUMAw1NTV1+zsTJ07U5s2btXDhQk2aNEkbNmxQRESE8/2eHodj0VlIaBhGj6+j4zl+FRUV2rp1q2688cYeb68ny7322mu68sorJUlnnHGG3nzzTf385z93jk5sr6fXzUD/nAwlnYVuhYUFKiosUPrOXaqtdbQ0PDIao+2DYWtssEbGhyjQz/MoW8KJzN3N5Se0xnTMrbQnt0SV1Yfnr3J3U1xsjGNOpZjYDqEdoz0wGNTW1rZr2+sYRVxYkK+ioiLl7N13JMQO9FXUMH9FD/PtcG9tCd4wNHl6dN+SuGUeUce8dtVH7r2HQ7t9RTZnG1NPTw/FREfJak1UVHRMmzntmEsUAAAAAE58vR7K1dXVyTAMWSwWffrpp86QwDAM5zeJJemSSy7Rm2++qf/93/+VJG3fvt25bGBgoK6++mrdd999+vHHH52///rrr+vCCy90jnoyDMP5oOTRRx9VYmKiJMf8co2Njc5tte7QuXXrVt1www2SpNNOO02LFy/Wu+++K19fX61YsUJz5szpsG6z3HrrrVqxYoXmzZun1atXO0OTmpoavfLKK5o7d263x1Hq+nx0te/tz5OkDsehubnZ+Vr7//7yl7/UnXfeqdWrVys4OFjPPfecFixYoPDwcBUVFampqUnl5eUqKChQba3jwe+yZct0/fXX68MPP9R5552njRs3avbs2cd0HDw8PNqcs67+23qfWu/n0a4jf39/2Ww2SY75Ybq7dro6Vi3nY/bs2frFL36hq6++WpdffnmPttfd9d1i586devXVV3XVVVdJcsw36Ovrq+TkZFVXV7dZX3fXTftj09N9xfFr3QatfYvJzMwsVVQeGSEZHOgja2yorDH+mjUxWPPOnUULNPTI0UZ8dNoaM/8HrdzwufYV2tTU3PHBcesWbVarVaNGjVJAQEB/7hbQqe7my8zOzpGtvMK5bMso4qgwb6VG++ucqXyhAb3jaPOINjbZVVx2yBnYOe+9mfu0ZX219haUqaa2wbGuw3OJRkVFKTomjlHOAAAAAHCC6fV/sVVWVmrJkiXy9vZWVVWV7rvvPtXU1GjVqlXKz8/X6tWrdeGFF+qWW25RRUWF7rzzTk2cOFE2m61N68Lf/va3SkhIcLZvKS8v15133qlJkyZpzJgxeuWVV3To0CGtXLlSiYmJuuiii7R48WIVFxdr2rRpev311/XBBx9oypQpCgoK0p///GdFRETIxcVFixcvliQ98sgjuvbaa2W1WjV27Fj94x//UFBQUId1t8xh1988PDz07bff6k9/+pMuuOACxcXFacSIEfLw8NCCBQvk4eFx1OPY2fnoat89PDw6nCfJ0eqwvLxcn3/+uSIiIrRjxw6tW7dOl156qdauXStJeuONN3Tbbbfp4Ycf1g033KBx48ZpwoQJ+uc//ylvb29NmzZN06dP16RJkzRnzhzNnDlTW7Zs0ezZs7V//37dfPPNmjFjhiZNmqQzzzzzmI9D63OWkJCgDz74wFnXLbfcohUrVkiS3nvvPU2aNEnffPONDh06pKysLO3cuVP19fVas2aN5syZo9tuu63DdfTzn/9cPj4+Wrhwof7whz90ee20aG5u1uuvv66ioiKtXr3a2SozIyND8+bN0xVXXCFJXV637bfX1XJnn322c5tJSUlaunSpNm/eLG9vb/3444965513FBoaqmnTprVZX1fXTWef1aPtK3qusbFRxcXFHUdlHG4x2X5ERkuLyVkTgzTv3OnOB3rxUYFyc6W1FfpGd60xpS5Cu8OjPVrPq3SkNeZIR3DXal4lq9Vq2v+2YnBpGUHcNnjr6ssMbe+rkb861TmnW9LwUPn7epi4JxjK3N1cFB3ur+hw/2O69xYe3KZ16Ru0O6dY1TV1zmW7ak0cFRWlhIQEWpADAAAAgIksRrshRMXFxUpPT9f06dOPeWWffvqpbrrpJu3Zs6fXCsRPx/nAierLL79USkpKt+1vB6ru5nXbl5fvbE/Vfu6hhLhgZ+g2Kj5EAYzIwAmo/bxKjtaY5crOr1TmvhJVVNU6l+1uPjvmVEKL9vdUR/hWqOysTGVk7FFV9ZF2ys7QLSZA1ljHfTUqzBF0jE4Ik68382Vi8God2jnmtKtSdkGFsvMr2rQmljq//7bMa5ecnCw/Pz8T9wQAAAAABrdeHSnX2Nh41PnD0H84H0Dvq6urU2FhYactJls/IHZ3c1VcVLCssUGKCvPR5F/EKiFunDN4S4gJYj4uDDpHm1ep/UiPooNVKirZqXVrNmhn9gFne7buWmMmJiYyWncQ6XSuzIICFRUVaNeuDB2qqZHkuKeGhfgpepi/rDEBh9v2/oIRxMBhPR3l7JjXrqrNfKJZeaUqr6w5sq5WI52joqLbzGtHe2IAAAAAOD69OlLu4osv1jfffKMnnnhCF1xwAQ+cTVRaWqqbbrqJ84ETkpkj5RobG5WXl9dxZEZhQdctJluNyuABMfDTddoas6BC2fnlnbbGjIqOUXR0TJvQbvTo0fL19TV5TyAdvWVv69HDHu5uio0Mcn6RIXqYf5t76vDoILkyVybQZ2rrm1RUXNXJSOcKFRZXaX9x5ZH//9PNPZgvTgAAAABA93o1lAOA3tDXoVx3LSZz9+WpudkuqfsWk8kjQuXnw/xDQH9paGxW/oHOW2Nm55fKVtHZKI+OrTGHDx8uV1dXE/dk8GhoaFB+fn7HOd06uZ96ergr5v+zd9/hUVX5H8ffk94ISSCVJIQktNBCERQQEEFdEMTfsmJZWLChWABB10VUQFGRtVdARbGLShVUmqEjLRBKKAGSUBLSSCV15vdHNiMhFQhMyuf1PD6PM3PuuZ+5M7kk93vPOd6NCfZ3I7hZY3w8XczruQX7uxPk54aVim4itVZuXiGnLyranU7K5ExyTpkbJxwc7PHz9Sl3tLOvry++vr66WVBERERERBosFeVEpNa5mkW5FStWMHjwYKD4InFQMw9aNGtMi2auBDUrnlayxf8uEru7OtT4/kXk6igZZXf8ZBrHT53jxKk0jp/K4PipdE6cSiUvvwCAX375hUGDBlk4bf0wZMjtLF/+CwCNGznR3M+N5r6utGjWmEC/xjT3daO5X2OC/Nxo6u5k4bQicjWdzyvk+Mk0Ys+kE3v6HHGn04k9k86J05mcOJ1WaqTd+fPncXDQ71giIiIiItIw1eiaciIitV3JndnRyx+nZaCH7tQWqScqW0/JZDJxJC6VNre/r5/5GmQwGLjjptbMnzkMt0a6wC7SkDna2xAW4klYSPk3VOXlF7Fg6R7GTl+m87CIiIiIiDRoWvBIRBqUkgtBvk0b6aJQA1VQaLR0BLnGDAYDPk1cALCy0q8+NcVgMODiZKeCnIhUyd7OGk+P4hGzOg+LiIiIiEhDppFyItKglBTiLpq5V+q5uDPpfPbzbn7ddJSuYb58MHXwNdnvqi3HWP7HIRzsbWgV1JR/3dEJG+vqXYxMy8hl9mebePbB3ri62Jd6zWSCL5ZG8vumGAqLjAzu04pRQztRnTrzlWSqy0p+4lWMrzkGgwGdSuuWwiIjf2w/wYr1R7C1sWLWUwMtHemqOBKbyoff/Ym9nQ1N3JwYPSwcz2pOoVpYZGT+okjaBjeld5fAGuv7SjLVFyVrzuk8LCIiIiIiDVn9vwonl2Tr1q1Mnz6dl19+mZdeeok//vjjrhUgDwAAIABJREFUmu07NTWVkSNHkpubWyv7k/rBXJSzcA65tgJ8GnPf7R35M+rUNSsivLlgC+NfXcnLT97MaxMHsu9IIiOf/ZkiY+UBsnLy+eDb7bQc9C6vfbqxzMg+kwlG/ednog4n0qtzIFk5+YyZuphX5m24apnqg5JCvC4G1xwrKyuMqsrVKQWFRgoLjbz79TbiEzIsHeeq2LQ7nuvvnceYOzvz2sQBhAZ6cNOYz0lKy6l0O6PRxE+rDnLdiLmMnb6MxJTsGuv7crerb0pOFzoPi4iIiIhIQ1ani3InT560dIR65ZVXXuE///kPTz75JFOnTmXixInMnj2byZMnX5P929vb06JFC2xsLn8A54XfiZroT+qfkgtBxgZQhJC/GAzQsrkH9nbW12R/MfFpPPvmamaOv5lGznYYDPDKhAEsjzjMpz/vqnTb3LxCxt7VlbtubVfu60v/OMTYu7rxxtO38tg91/HLh/fRpa0v366IumqZ6gON0Kh5BoOVRh3XMY72NtzWO7TejtAyGk2Mfm4RI4d0omMrbwDuvLkN3k2cmfDaykq3PZ9XyC09Q3j2wRtrtO8ryVTflJwvNH2liIiIiIg0ZHX2L6L4+HgefvhhS8eoN7Zu3coLL7zAO++8g7u7OwAuLi58/PHHfPDBByxfvvyqZ3B2dmbGjBmXXUS7+Dtxpf1J/aTpKxu2a1WQ+eTHnRhNJvpdF2R+ztHehhs6BfDx9zsq3bapuxM21lYVrtMV3tqn1JRqBgOEt/EhyM/tqmWqDzRCo+Zp+sq6q77+HPy+OYaY+DT692hR6vn+PYL5adVBzqaWHf1WwtnRlkbOFa+ReLl9X0mm+kbTCIuIiIiIiNTwmnIrV64kIiKCAQMGMHfuXAIDA5k+fTqOjo6sWbOGNWvWcOuttzJnzhzmzJnDtm3bOH36NCdPniQ4OJh7772Xl156ibVr1/L222/TqVMnli9fzu+//87LL7/M448/zuuvv46XlxeTJk1i3759vPPOO/zzn//klVdeISoqijfeeIMOHTqwdu1alixZwuzZs1mzZk25uZydnQFYsmQJO3fuJDExkeeffx5/f/+aPCyX7VodTx8fH7744gt8fX3p2LFjqQwBAQG0a9eOefPmMWjQoHL3GxUVxfbt2zlz5gxt2rShefPm9OnTh2+//RYnJyf27NnDU089hZubG4sXL2b9+vWMGjWKWbNmERwczCuvvALA+vXr+fbbb3nxxRfx8fHh008/JS4uDj8/Pw4cOMCxY8dYuHAh1tbWZfpu3Lhxqe/E6NGj2bNnT6n+AH7//fcyx8hkMlWaS+qXv4pyFg5yDZzLzOXbFfto6u5EkJ8b7329jeG3hDH0ptaYTPD1L3uJiUsl7kw6IYEePHZPdxpfsHZZddoALPz9ADv3nyYpNZvOYb48PLwrdrbFI9J+3XiUP7afwKepC3kFRQzu05L2oV5A8VSKWTn5vPBI32uat8Tps5m8/eVWdh88w+39WjOkXyuC/d0rPabZ5wuY9sE6dh44QxM3R6aNu4l2oZ5kZOXxwvvriD19jteeGsju6AQCfRrj7lr64m6n1t688cUWTp3NpJlXo2p+kqU192tc6nFBoZEd+0/z9rO3Vbrd1cxUF2j6yppXXJRrACfTCxQUGvll/WGijyfzr6HhvDpvA95NXXju4eLRVet3xrJu23HOpmbj6mzPv4aF06ZF01J9VKfN9n2n+XnVAc5l5tLEzYkn/9kDL4/i31sPnUjh05920czblezz+XQN8+PWXiFAcQHo+5X7eHfKIJwdbc39bdgVxy8RhwG4ITygzPtKy8hl3o87KSg0En8mncF9WzGkX6tq587KyWfx2mjiEzIYMyycD779k/1Hk+jdNZDx/7weaytDldmr8vEPO/jh1/0APH1/L/7WOxSAt7/cyrI/DvH0mF7sjk4AoFNrn1LbdmrtTX5BEau2HOO+wR2qtb+LXW7fVzNTXdPQzhciIiIiIiLlqdGRcocPH+ajjz4iMzOTGTNmsG7dOp544gkKCgqIjo7mww8/JD8/n379+rF8+XLmzZvH6NGjefbZZ5kzZw6zZ8/miSeeYNeuXRQWFgJgNBoZMWIEtra25os/VlZWjBgxAm9vb8aPH0+TJk148skn+eOPP3B1dQUgMzOTwYMHY2VlVWEuKC7InTt3jhkzZtC2bVtuv/32mjwkV+RaHU+AAwcOEBQUVG6O0NBQoqOjy93vmTNnePjhh5k4cSKDBg3i0UcfBWDevHmsW7eO4cOHY21tzauvvorBYMDKyopPP/2U5ORk3nzzTebNm0dUVPGUa02bNuXjjz8mLy8PAB8fH6ZPn87IkSNZtmwZgwYNwsHBody+L/5ONG7cuEx/S5YsKfcYVZVL6peSKZMawoWhh15cymMv/8IvEYf5fPFutuyJ5/tf92E0mhj6+DecOHWOF8f14+MXh3AwJokOwz7kcGwKQLXaAPzz3z+TkZXHaxMH8NIT/Zn0+m88Mr14ZO3myHiee3cNr00cwISR15OSlsOh439t+86XW3nriy0UGU0cO5l2TfJeyL2xIwdiknhhXD/G/7NHlQU5KB5J8fT9vdi+7xTJaTm0C/UEwNXFnvYtveh/fTCtg5oQfTwZN9eyoy0a/28ERtyZ9Op8hFXKPl/A/VMXc2PXQG7s2rzSttcqU21V8hOvadNqjsFgaHDrc077YB1/n/A9K9Yf4bVPNnDgWBIffvcnAK99upH/zt/Msw/eyAdTBxPo50bXf8zh59UHzdtXp83HP+xg3o87mfFEfz58/naWrjtE75GfUVhkJD0rj4EPLmDS6J6M/2cPOrX2MRfbAL5evpf5iyM5eCzJ/NynP+9m5pz1vDiuH69NHMDxk2kkpmSZXy8sMnLjqM8oMpp47uEbmTDqeoY9+S2rthyrVu68/CJenbeBf01ZxLe/RPHMG6twdXGgyGhk8uzfGfPcYoAqs1flkbu6kZNbwObIePp3/2vU2e19W+Hu6shtvUM5dDwZoMy5zq0GznOX2/fVzFTXGI0m3RghIiIiIiINXo1emWrfvj1eXl7ceeedtGnThhdeeIGlS5dib29Px44dcXd359Zbb+WRRx7hs88+49ZbbwXAxsaGsWPH8sEHH+Dm5saDDz7InDlzANi5cye9evXC0dHRPJqrPM2bN2f48OG8++67AGzYsIEBAwZgY2NTYS6At956i1OnTvHOO++Qnp5OixYtyMrKKncf19q1PJ5NmjQhPb38iwJJSUl4eHiUu9+4uDhSUoovePfu3Rs7OzvatWvHyJEjmT17NidOnKCgoIAzZ84AEBQUhL29PQMHDsTPz48OHTqwfft2AMLCwkrtd/DgwQBMmTKF5s2b88gjjwBU2PfFLu7v3XffLfcYVZVL6hfzSDkL57gWZj01EIBTiRl8MHUwB5Y+zmcvDePjH3awfd9pnn2wNwC2NlbMnT6UzOw8xr30C0C12sxfHElKeg4P/F9nAPy8GvHP2ztyMjEDKB4l52BnYx6VOGl0T/ILisz51n9xP9u/fxhrKwPB/u5XPe+FMrPzeXTGct76923ceMFUkNXh5eHM/Xd2ZtPueBKS//r3YtXmGP41tBP5BUXEJ6Tj6lx2hF5JASw+4covwq7eeoy/PfIV363cxwffbufvE76vsO21ylSbaaRczbOysmpw63POHH8z/t6uRB1OZOb4m1n9ySiilz1B1JGzPP/uWl5+sr957cpHR3Tjxq7NeWTGclLTz1erzcFjybw8Zz1v/fs2bG2sMBhg4r9uIDM7j6ycfHbsP03KuRzz9oP7tCQ44K8bCt6bMoht3z5Et3Z+ACQkZzH+1ZW8PmkgjvbFE2Q8eV8PnB3tzNucTMzgQEySeQrcNi2a4t3Ehd83HQWoMnf2+Xxmjr+ZZl6uWFsb+OKVO3l6TE8Wv3sPt/YK4avle9l39GyV2avjmft7kV9QxPILinmL10bz6N3XAXA0LhWDARo52ZXaruQ8d/IKznOX2/fVzFTXmEy6MUJEREREROSq/lUUFBSEtbX1Xzu74I+w5ORkzp8/b37cvHlzMjMzAXj88cf5/vvv2b9/P82bV37n/4UmT57MJ598wunTp3F3d6/wj74Lcx0/fpy77rqL8ePH8+KLL7Jo0SJcXFwu6X1eK1fzeN5www0cOXLEPKLuQpGRkXTv3r3c/fbq1YuWLVsyf/58IiIiuOOOO/Dx8SEzM5O33noLFxcXvLy8KnxP1tbWlY5Y2rJlC5999hmffvqp+UJqdfu+WGXH6FJzSd3VkNaUK7no2vd/a4jZ2lhhb2fNdyv30TqoCTbWf/0sO9rbMOzmNqzddpzU9PPVavPpT7vo0y2o1D4/fekOfp83EoC2wZ5s2XOSEZMXkpiSjXcTZ+66rZ25bXO/xoQGelyzvCVS088z6NGveOHRvrRs/tf+L8UjI66jsMjIl8v2AhRP5+Zij6uLPXa21rg42VFYZCyzXUFhcVGyiZvTZe33QgOuD2b9F2PY/dMjtGrehKXrDvH75phy216rTLWZ1pSreQ11TTlnRzu6tfPD5X9FlkbOdiz8bT8mICzEs1Tbuwe1Jzkthz+2n6hWm6+X76V9qFepqSfHDAvnzB+TcWvkQMtADwqLjNw05nN2HSy+KemJ+3qY27q62HNdez/z488W7cbKykDHVt7m56ysDObsAEF+bhz/bQJ3/609AGu3HScnt4D0rOKZBqqTG8DB3gZfz0aU/IgZDMXnSoAtkSerzF4dQ29qjZ9XI+Yv2m1+bsPOWPPIuSZujphMUHRRsbgmznOX2/fVzFTXmDChU7CIiIiIiDR0NV6Uu/BC99atW7nlllvKbdenTx/Wrl1rfnzq1CkGDBgAQIsWLejfvz//+te/GDFihLnNyZMnzf9va2tbqsAC0KVLF6677jqGDx/O8OHDq5WrVatWzJ492/zaxo0bS+3H0q7V8Xz88cfx8fHhvffeK9Xv8uXLsbKyYurUqeXu19nZmQceeICQkBB8fX356quvAJg+fTouLi40bdqU/Pz8Cgsg5T1f8lxeXh73338/M2fOJDg4GKPRyOHDhyvsu7zvxIX9VXaMqpNL6oeGtKZciYuLENHHk8nNL1uADw4oLlAdjk2pss2hEylEHUk0j7woz91/a8+jI7rx4+8HaHP7e3y+JNK8rtC1znvhFJZH4lLYsuckn/60q8osFWkb3JQbuwSaLwx/vTyKkUM7mV8PDfQgPSu3zHbpGcXPtQ5qctn7vlj7UC9+nzcSG2srtu87XWG7a5mpNtJIuZpXPH1lAzqZXqC885TRaCo1Ghgg5KLzVFVt9hxKqPS8GujbmLnThnLwWDI97p7HU6//VunvLAeOJpmnSaxMc7/GLFi6h4deXEpGdl6pomB1clekbXDxmnMp6TmXnL08NtZWPHBnZ37bdJRTZzPZfTCBru38zIWekhs90jNLn+vO/e881+oKznOX2/fVzFTXmEw6B4uIiIiIiNR4Ue7kyZN88MEHrF27lrVr1zJr1iwAjhw5QmJiIklJxWtczJgxg/T0dObOncvu3btZtWoVb731lrmfJ598kp49e+LsXLyofWpqKgEBAURGRgLQtWtXTpw4wfTp04mNjTVv95///AeA1q1bVyvXzJkz+emnn+jYsSMDBw7k9OnT+Pv71/RhuWzX6ng6OjqyadMmtm7dysyZM1mzZg1vvvkmc+bMYcOGDXh6epa73+joaKZNm8Y333zDggULmDt3LufOncPf35/333+fyZMnk5CQwMaNG/n111+JiYkhOzubjIwM8vLyiI2NJS4uDigukgGcOHECKC7sWVlZcdtttxEdHc1///tfMjMzK+z74u/Exf1VdowqyyX1S0MaKVeRpm5OxCdklHm+ZGqtAJ/GVbbx93aloNBoXiunPAYDfDB1MEveuwd3V0fun7qE2fM3WyRvgE9j83M9OvjzzJhezPpsE2u2Hb/kPCUe+kdXoo8ns2XPSTZHxnFjl79GIrdq3oTElOwy2ySkZOHkYEszL9fL3m95An0bExLgXunF92udqbbRSLma11BHypWn6f9GO118Hrr4PFVVm4JCI9GVnFcB/nVHJ3b+MJZenQN5+8utDHviuwrbZubkkZiSVennlF9QxO3jvmHH/lPMnTaUYf3bYH3BrAjVyV0Re9viAmPo/wp4l5K9Ivf/XxdMwIKle/hq+R7+NTTc/FrL5sUFroSU0lPRlzxuHdT0kvd3pX1fzUx1jcmkNeVERERERERqvCgXEBDAqFGj8PLy4ttvv8XPz4+cnBxatmzJypUriY6OBsDd3Z01a9bQv39/HB0dmTNnDn5+f023c9NNN/Hyyy+bH3t4eHD48GE6dSoeidCsWTOOHDnCuHHjSk3J6OPjw5gxY6qVC6B79+6cOHGCzz77jO+++4677rqrpg/JFblWxxPAz8+P77//nieeeAI3NzfGjBnDsmXLaNOmDUC5+y053u3bt8fFxYWjR48yZcoUnn/+edauXcuLL77I7NmzWbZsGbfccgtNmzZl5cqVHD16lFOnTvHJJ5/Qv39/MjMzOX78OH/88QcGg4GCggKGDh3Khx9+yOnTp0lMTKRHjx60a9euwr4v/E4EBASU6a+yY1RRruzsshewpW4ruRjU0NZBulD3Ds1ISM4i6sjZUs+fTMigRTM3mnk1qrJNgI8rbYOb8u3KfaScKz1CdeHvB8g+X8A3K6IAGNKvFVGLx9G3W3Pe/2abRfI282pU6vlpj/WjQ0svRv3nZ86mXt7P+fCBYbi7OvD0f3+nc1vfUlNyDb2pDclpORw6UXoEyabd8Qzu0/KqTN+Vmn6enuEBFb5uiUy1iVEj5WqcinJ/ua5DM4AyU8jGJ2RgbWXg+o7+1WrTLtSTQydSWLXlWKk2+48msWP/aTbuiiM+IYN2oZ788floJo/uyYoNRzh2Mq3cXK2aN6Gg0EjEjhNlXiu5OWX+4khWbDjChJE3mM8DF964Up3cFYmJT8XO1pobwgMuOXtFmvs15taeIcxftJuzKdk09/urKHh731ZYWRnYtDu+1Dabd8fj6+lCeBufS9rXhS6376uZqa4xGlWUExERERERqdGinMlkwmQy0ahRI9q3b29ee8zJyYm+ffvSt29fbrzxRnN7g8FAaGgobdq0KXf9N1fX0nftt2zZstQfcr6+vuYRXOfPn8dkMvHVV19x7733VitXCRcXF7p160aTJrVr+phrfTwvbNe1a1fc3d1LPV/efkeNGsXo0aN5/PHHmTp1Kq+//jo9ehSvD9K6dWsaNWqElZUVHTp0wMrKij59+tC3b1+6dOlCcHCwub9GjRrRu3dv82NbW1uuv/568+OS/xwcHCrsG/76TlhZWZXpr7JjVFGukpGFUn+YR8pZOMe1UFJ4vHgdsRfH9cPB3oaPvttufq6wyMiiNQeZPfmWareZOOoGMrLy6DdmPr9uPMq+o2d57dONxJ4+h7OjLfsOnzVPp+jsaMvdgzrg7upo7m/aB38wafZv1yxvyT5MJhN2ttZ8+dr/kZp+npHP/kxBYdm11qriYG/DqKGd2Lr3JKMumLoSYPgtYbQNbspXy/aYn9t54Awx8an856Hi82eR0cR9//6JuT/uLLf/kvWGjBdVPbbvO81Pqw6WKix//UsU9w7uQOe2PhX2XZ1M9Zmmr6x5VlZWDfIGB6PRVOY8NXJIR9qHevHpT7tKTfP44+/7GXf3dYQEuFerzbi7u2Nna82ISQv5fEkk0ceTWbB0D298vplu7fzIPl/Adyv3mbd94O9dsLYy0MjZHoBFa6L5+4TvzevBlbz+zBurzM/tP5pEyrkcjsalkpNbwJmzxevrrt8Zi8kEETtiSUrL4VxmLrl5hdXKXSI5LafUcfn0512Mu/s6mnk1qjL7pXjoH105GpfKoD6tSj3v7+3KmGHhfL18r7lgnJmdz5K10Tz3cB9sbYp/95v12SbGvfRLuX1XdO693L6ru11DYDJR4ZrfIiIiIiIiDUWN/lX0448/Eh8fz/79+2uy22q5/fbbcXd3p3Xr1qUKKdnZ2RbNdSXqQu6QkBAGDRrEo48+ytixY5k2bRo333yzpWOJVKjkYlBDmL5yWcQhANZtO15q2sIWzdxY99lo1mw7xvhXV/LDb/v515RFvPzkzfzfgLbVbnPf4I68OK4f0ceSGfTo13QZPofMrDwm/auneV/3P7+Y3zbF8NumGH5edYAPpg42v/bV8r0sWLqHov+tVXQ18xYWGVm15Rj5BUXsOniGhOQs2od6MfqOcFZtOcbwid9XOWVceR4a3pVBN7bE37v0TQ+2Nlb8Omck63fE8uonG/ly2V6efGUF384ebh4VkXIuh4W/HWDhr6XP8Uajibgz6az78wQAi9YcJDfvr/XyFq85yD+e+oEu/5jDq59sZNZnmzCZTLzx9K3mNuX1XZ1M9VnJj7wuCNec4jXlGpbt+04Tn5BO1JFEDh5LNhclbayt+G3uSHyaunDnk9/x/a/7eeaNVfh6NuKNZ26tdpuQAHd+eOMfGAxw/9QlhA39gJ9XHzS/DvDaJxv4fEkkmyPjmTlnPW8/+zc83YunmPwl4jCL1kRz/H+jz9q0aMoXr95J9PFkmg98i94jP2Phb/vxaOyIrY01Xy3fy4i/tcetkQMPPL+EsKHvk5SazZB+rfh59UFGTVlUrdwl4hPS+b/x3/PeN39y/9QlNGnsxOuTBlYr+6W4vW8rOrT04s6b25R57b0pg2jVvAkPvbiUn1Yd5J6nf+TB4V0Zd/d15jbf/hLFV8v3cj6v9FqkqennWbK2eDaIFesPk5mdXyN9V2e7hsCECQO6MUJERERERBo2g+miK9NJSUkcOHCAvn37WiqTiDRwERERhIWFmUfC1qStW7dyww03ELtqIgE+9XsNrYgdsaUe9+4SiLVV6YthsafTycrJp21wU6ysyr9QVlWbrJx8Dp1IIdjfHXfXv9Y0y8zOJze/kAMxSTja29ChlTeO9jbm11PTz1NkNOHp7sTps5kciUu9ankTU7LLFN16dGjGtqhT5se2NlaVTv9YkbSM3FLv+2InEzNIOXeetsFNsbO1LvVafEIGTdwccXKwNT+Xmn6+zDScTg62XNf+rymJk9JyOHHqHMH+7jRxc6Q85fVdnUz1VdyZdIJueZutW7eaR3TLlRk9ejRJx7ew/IN7LB3lmrn4vNo+1KvMz2Bq+nliT6fTNrgpDhec8y6lTWGRkf1Hk/Bo7Fjq36qc3AJMJth98AwAbYM9S+0/v6CIk4kZBPuXnu0gv6CIAzFJ+Hu70tTdiVNnM0tN63suM5cTp87RvqUXNtZW5BcUcehECmEhnqXOw5XlbjX4PUIDPfh29nCOxKbQpkVTXP637lx1sl+qqs695zJziYlPo2WgB64upUfjpWflcT63AJ+mLubnjEYTG3aVXU+4Z3hAmdFsl9p3dbZrCOYvjuTJV38nKzun6sYiIiIiIiL1lIpyIlLrXM2i3LZt27j++us58fsEAn0bV72BNBiL10bzzS9RlbYJ8nMrNepD6o7Y0+m0uPVttm3bRvfu3S0dp14YM2YMiTGb+eXDhlOUk4qVFOVWfHTfJW13JDaV595dU2W7z2cOK/cmA6k7Plu0mwmzVpOZpTWbRURERESk4Sr/9l0RkXrKvKZcQ5tzTao0rH8bhvUvOxWa1A8mtKZcTbOystK5VMyKiowUFV36+pw+TV147J6qC+X2dvqzpa7TmnIiIiIiIiIqyolIA2MuyjW4lZBEGraS4pGKcjXHYDA0iPU5pXK5eYX8vOYg8QkZ5OYXEnXkLC0DPSqcuvNijZzt6Nut+VVOKbWB0WjSOVhERERERBo8FeVEpEHRSDmRhqmkeKQLwjXHYDBg1Lm0wXOwt+HeQR24d1AHS0eRWs6EinIiIiIiIiKaP6SWS05Otuj+Dx06RFpaWoWPq5KRkUFeXt4VZTAajezcudP8OC8vj/j4+Cvqs77SsanaX0U5XUkWaUg0Uq7maaSciFwKk0nnYBERERERkatSlMvNzWXSpEkEBgZeje4bjBtvvJHp06dbNMOIESMwGo0VPq7M119/jZeXFydPnrzs/WdkZDB+/Hhuu+0283M//vgjd91112X3WZ/p2FStZC0To4Z3iDQoJT/zWs+o5hQX5SydQkTqCpNJI+VERERERESuypUpBwcHhg0bVq27p6OiooiIiLgaMeq8nj17VvhaVlYWn3/+eYWPa8K+ffvw8fGhSZMm5T6uyn333UdhYeEVZXB1dWXUqFFl+v3jjz+uqN8LXY1jZyk1fWzqI01fKdIwlawjqQvCNcfKykoj5USk2kwmsLLSOVhERERERBq2Gi/KZWZmsnv37nKLMZmZmURGRlJQUABAbGwsd955J1u2bCE6OtrcLjk5md27d5Ofn29+Lj8/n5SUFBISEkhJSTE/l5iYSF5eHnv37qWoqAiAM2fOcOTIkVL7Pnz4MAkJCeapFDMyMkhKSqq0TUnmnTt3mvcJxVM4RkREkJKSQkpKChEREezatavSrBe/98rea4mSu/nz8/OJjIwkOzsbKB6JePfdd/Prr7+ydevWMo+h+E7UM2fOkJeXR2RkJOfPny/Vd2JiIkeOHCE3NxeAoqIiTpw4UarNDz/8wIgRIyp8XFBQwJ49e8jIyCi1XUFBAZGRkaSnp5e5+Hnxfi9WXp/ljWq4ePTdyZMnMZlM7N+/n6ysLKD4mO/Zs6fUBcO8vDx2795NZmYmUPZYljh//jy7du0iPT293JxVvf+9e/cSFxdX6vmqPpOK9pmQkEBOTo758zGZTJw6dYrCwsJy+7n42FycMzExkYiICGJiYigqKiIiIoKIiIhSIyCr+pwuzlqdPmsLc1EOXUgWaUg0fWXNMxgMOpOKSLUZjRopJyIiIiIiUqNFuR9//JHZs2eTn5/Pxx9/XOq17777jgULFlBY48tdAAAgAElEQVRYWEj79u1Zu3Yttra2ADg7O+Pk5ATA559/zuLFi1m3bh0dO3YkISGB7du3ExISwvTp07n//vuZMmUKMTExdOnShcmTJ/PWW28xZcoUhg0bxieffMK7775L//79+e233wAYPXo0BQUFLFq0yDwiaurUqTz00EPmfOW1mT9/Pm+99RZWVlaMGzfOPJVkUFAQ99xzDxs3bsTDw4MtW7YwduxYgHKzlvfeK3qvF4uJieH5559n6tSp3HTTTUBxkc7FxQV7e3tcXV3LPD59+jR9+/blnnvuYcKECUycOJHWrVsTGxsLwMyZM9m5cycnT55k0qRJACxZsoTOnTuXKmAtWrSIYcOGlfs4KiqKadOmUVhYyH333cerr74KwIEDBxg3bhyFhYW888475kJpRfu9UEV9XigzM5Nx48YxYMAAANLT07n77ru58847eeedd/joo49o27YtCxcu5I033uDBBx9k6tSpAMyZM4fp06djY2PDjTfeyIkTJ8ocO4Bt27bxxhtvcPDgQXr06FHuyLOKsm7fvp1HH30Uo9HIF198wZAhQ8jNza3yMylvnydPnuTmm2/mgQceYMKECQwdOpTU1FQGDx7Mfffdx2uvvcZzzz3H4MGDyz02FeX08vLivffe4/3338fa2hpbW1v69etnLu5V9TmVl7WqPmsTjZQTaZhK/n3TBeGaYzAYNBWwiFSbCRXlREREREREbGqqo+TkZB599FHi4uJwdHTkwQcfZPPmzUDxyJ1XXnmFvXv3AjBr1izs7Ozw8/PD0dGR4OBgAgMDiYuLY/78+cyYMQMAo9HIvHnzeP755wkKCsLX15d3333XvB5B9+7d8fPz49lnnyU+Pp7AwEA++ugj/P39sbe3Z9myZfTv35/Vq1fz3HPP8eijjxIZGQnAyy+/bB6dVlBQUKbNyZMnmTBhAmfOnMHJyYl58+bRrFkzBg4cSM+ePfH29gaKL0i1bNnSfByuu+66Ulnj4+MZPHhwmfde2Xu9kKenJ7NmzSI7Oxs3NzcSEhLw8fHB09MTBwcHwsLCzO0ufNyrVy8OHz7MRx99hMlk4qabbuLNN9/knXfeYd26dbRt25ZBgwbh7u4OwB133EG3bt3MfyhHRkYSGBhofv3ix/fddx8rVqzA39+f1157jT///BOABx98kJkzZ9KtWzc6dOhQak288vZ7oYr6vFCjRo0YPnw4K1euBKBx48YMGjSIuXPnMmHCBABWrlxJXl4e06ZNo1+/fjz++OPMnDmTjIwM7rzzTjp06EBAQAAbNmxg5MiRZY7dY489xqxZs7CxsaFjx4689NJL9OvXr1pZR48ezXvvvUd4eDjh4eH06dOHN998kylTplT6mZS3zzVr1tCzZ0/+/PNP5s6da/7eDxgwgLVr1zJ16lTS09Np0qQJqampeHh4lDo2FeU0GAwEBASY27Ru3brUe6vqc6ro+FTWZ21S8h3ftDuO+ISKR0KKSP0Sd0Y/7zXNysqK1PQcVm89ZukoIlIHHD6eoqKciIiIiIg0eDVWlNu8eTNBQUE4OjoCmEe+AWzatImOHTuaH184+upCW7Zswc/PDzc3NwAWLlyIh4dHcVAbG/z8/IC/LqqXjMgBzO1K9u/o6Eh6ejq2trY8++yzdO3alccee8xcJCoZFQWU2+aXX37Bw8PD/D5cXV3p2LEjW7durXStt4uzbt68udz3/v3331f4Xi9UktPZ2RkXFxcSExPx8fGpdP8lGUr6MxgMDB482Dzi64UXXuAf//gHX3/9Ne+//775WAYGBpq3/+GHH7jrrrvKfZyYmEhqair+/v4AtGvXjnbt2pGRkcGWLVvo3r07APb29qWmnixvvyUq6rM81tbWZR6XfA+g+Ltw8fcAYPLkyaxatYp9+/ZRUFBQ7pShiYmJpKen07RpUwCee+457OzsqpU1LS2NAwcOEBISYm574403mqfFrOgzqWyfFX3vS95f48aNMRgMpKWl4eHhUerYXMoxvVBVn1NVx6e2K/lOPvjCUgsnkaulbdu2JCcnl5miWATKnxJZLo/BYCDqcAK3PPSlpaNIHdKuXbtSU7xLw+Lj423pCCIiIiIiIhZVY0U5o9HIqVOnzKN5Su3ExoadO3diNBrNF8NOnjxpLhZcOGViTEwMnTp1Mj8+fvz4FeUqLCxk5MiR9OnTh7Fjx/LAAw/w5ZdfVtnm4Ycf5tSpU2RlZeHi4gIUF+9KMl/IVMk8eBW995p4rxfvt7IcGRkZhIaGAhAWFkZUVBTPPPMMN9xwAzExMWUKXYsXLzaPdLz4sY2NDQkJCaU+w5MnT5qPU3x8PG3atCmTobL9VtRnecf7cj3yyCPceeedtG/fHgcHh1KvXXjs4uPj8ff3p0mTJubHhYWF2NjYVJrVx8cHe3t7Dh06RPPmzYGKvzNQ+jOpaJ9XorrH9OLvTVXfj+pkrey7aGlt2rQhNTXV0jHkKsrPzyc3N7fUzRf1wQcffMCCBQvw8vIiICAAf39/fH198fPzM/9/eTd3SGn17XthSa+99lqpEfFStaKiIgoLCykoKKCwsJDCwkLy8/MpKiqioKCAoqIi/P39zTff1Dcmk4lz587h5uamEVMNlG6MEBERERGRhq7GinJ9+/YlPz+fN998kyeeeIJt27aRlpbGsWPHGDhwII899hijRo1izJgx7N69m+uvv958EfHIkSPm9bPGjh3L2LFjGT16NJGRkXTq1IkWLVpQWFhIXl5eqX0WFBSYL/4XFBQAkJuba35sNBrJzs5m/vz5TJgwgS+//JIxY8YA8NNPP5GcnMzYsWPLbdOrVy+6dOnC/PnzeeKJJ0hNTeX8+fPccccdQPGF/dWrV9OxY0d+/fVXkpKSzBcZLsxa0Xuv7L2WKCwsNK/JZTKZyMvLw2g0AuDr68uff/5JSkoKTk5OZR4DxMXFmftZtWqVuRj5/vvvM23aND7//HNCQ0PJzc0lNjaWuXPn8vbbb7Njxw5CQ0PNo/guftykSRMGDhzIsGHDmD59OufOnSMnJ4eHHnqI/v37M3XqVBYsWEBUVBRFRUXs2rWL4ODgcve7bds2tm7dypQpUyrsMy8vz/z5lryfC9equ/B7UPL44u8BwNKlS+nYsSP79+8nNjaWlJQU0tPTSx07V1dXunbtyrBhw5gxYwZpaWlkZWUxatQo1q5dW2XWJ554grlz53LLLbdgMpnYvHkz7733njlbeZ+Jt7d3hfss73ufn59f6ntvNBrNx+PCY1PZ59SmTRvmz59PfHw8S5YsAeDw4cN07ty5ys+poqyV9VmbWFtblzstp0htV7I+Zsk0x3Z2dhQVFZU6H9rZ2eHj44O/vz+hoaEEBATQrFkzAgICCAkJoW3bthbJLvWTk5NTqZkRpLjodvbsWfLz883/5eXlmX+XufimlZICRcnNWx07dqRx48aWiH7N6OYBERERERERacisp02bNu3CJ3JyckhKSiIoKOiSOnJ0dORvf/sbP/30E0uWLKFr166EhITQrl07mjVrxtChQ9m8eTMbN25k2LBh9O3bFwB/f3+WLFlCaGgobdu25dZbbyUiIoKIiAj69u3LgAED2LFjB5s3byY/P5927drh5uZGTEwMq1atwmg00q1bN1auXElaWho2NjY0b96cZcuWcf78ecLDw1m5ciVxcXGkpqby+OOP4+7uTmRkJOnp6Vx//fUYjUa++eabUm08PDwYMWIEf/zxB0eOHGHfvn288sorNGrUCIBOnTqxdu1aIiMjueeee3B2diYkJIQTJ06Uyurt7V3ue3dycir3vV7ou+++Iycnh65du7Jhwwbi4+NxcHDg+uuvJzAwkI0bN5KXl0f37t3LPF63bh0xMTFkZWWxceNGnnzySfPUhRs2bGDDhg2kpKRw7733EhoaypkzZ9i4cSNDhw5l1apV9O7d27wu2MWPoXgNuvj4eH799VeCgoJ4+OGHARgyZAi7d+/m888/JygoCA8PD3r06EFQUFC5+42Ojub48eP079+/3D4zMzP55ptvyM3NxdPTE29vb5YuXcq5c+fw8/PDw8ODRYsWkZmZSadOnYiLi2Pbtm0AhIeHs2zZMs6dO0fLli3p27cvy5Ytw8PDg1tvvZXVq1dz8803ExYWVurYDR06lMOHD7NixQrc3d156KGHsLKyqjIrFBdh09PTiYiI4ODBgzz44IPmi+CVfSbl7fPUqVMsXbqUrKwsgoODadasGenp6fz8889kZ2fTuXNnNm3aREJCAs7OzrRs2bLUsQkJCakwZ+vWrYmPj+enn37i/vvvJz8/n5YtW1brc6ro+FTW56WKjY3F09MTZ2fnS95WpD7r06cPtra2rF27lqKiojIX+IuKikhPTyc+Pp59+/axdetWVqxYwddff42DgwO33HKLhZKLNAxWVlYcPHiQ5ORksrOzyc7ONo+EK0/Jz7C1tTXh4eEaySkiIiIiIiJSzxlMF13RS0pK4sCBA+aimdRNzz//PAkJCcybN8/SUeR/9JlUX0REBGFhYXh6elo6ikitNHPmTPPIueqwtbXlxIkT5jUqReTqSUhI4NChQ9VqazAYsLKyolOnTuYbv0RERERERESk/tKk/vVUZmYmWVlZlo4hF9BnIiI15bnnnuP111+vVls7OzseeOABFeRErhFvb2/s7OyqbGcwGLCxsaFz584qyImIiIiIiIg0ECrK1UMlU3M2atSIrVu3WjqOoM9ERGre008/zezZs6tsV1hYyKRJk65BIhGB4mKbv78/BoOh0jY2NjaEh4drqmYRERERERGRBsTG0gGk5oWHhzN//nxLx5AL6DMRkath8uTJQHGBrjw2Nja4u7tz8OBBQkNDr2U0kQYrNzeXnJycMms+ljAYDNjZ2dGpUyccHR2vcToRERERERERsSSNlBMRkTovKyuL/Px8S8ewiMmTJ/Pf//633NcKCwtp06YNQ4cOpW/fvqxfv/4apxNpOHJycoiOjubPP/8kIyMDDw+PMqPlrKyssLOzIzw8XAU5iqf2LigosHQMERERERERkWtGRTkREanzDh8+zPHjxy0dw2ImTZpUpjBna2vLsGHDWL9+PVu2bMHV1ZW+ffvSu3dvIiIiLJRUpP4pKcbt2LGDzMxMWrduTbdu3WjdunWpdgaDAXt7ezp37oyDg4OF0tYeJpOJqKgoEhISLB1FRERERERE5JpRUU5EROq0nJwcMjMz8fb2tnQUi5o0aRKzZs0yPy4oKGDq1KkAXH/99SxbtowNGzZgZ2dHv379GDhwIDt27LBUXJE6Lzs721yMy8rKMhfjvL29zVNUent7Y2VlhcFgwMnJic6dO2Nvb2/p6LWCwWDA09NTRTkRERERERFpUFSUExGROi0hIQEHBwfc3NwsHcXinnnmGV5//XUABgwYQNeuXUu93rt3b9auXcuqVatIT0+ne/fuDBkyhN27d1sirkidVFKM27lzp7kY17VrV3Mx7kIBAQEYjUacnZ0JDw/H1tbWQqlrJ29vb/ONFSIiIiIiIiINgY2lA4iIiFyJs2fP4uPjY+kYtcbTTz+NwWCgR48eFbYZMGAAAwYMYPXq1fz73/+mW7du/P3vf+ell14qM+WeiBTLzs4mPj6exMREnJ2dad26dZUjdJ2cnGjRogV+fn7Y2OjX7ou5urri5OREYmIijRo1snQcERERERERkavOYDKZTBc+kZSUxIEDByyVR0QEgLCwMDw9PS0dQ2q51NRUoqKi6N69O46OjpaOUycZjUYWLlzI9OnTOXLkCKNGjWLGjBk0a9bM0tFEaoXc3FxOnDhhLsY1b95c/z7VoLi4OOLj47nhhhuwstIkHiIiIiIiIlK/lSnK5eXlkZGRYak8IiJA8d3zWndHqnLw4EHy8vIIDw+3dJQ6r6ioiK+//poXXniBpKQknnrqKZ555hmNXpEGKz8/n9jYWM6cOYOjoyMtWrSgadOmlo5V7+Tl5bFt2zbCwsJ0fEVERERERKTeK1OUExERqQsKCwvZsmULoaGh+Pr6WjpOvZGfn89HH33EtGnTsLa25umnn2bixInY2dlZOprINVFUVMTp06eJjY3FxsaG5s2b4+PjU2a9OKk5e/fuxdramnbt2lk6ioiIiIiIiMhVpaKciIjUSSaTieTkZNzd3bVW01WQmprK66+/zttvv01QUBAvvfQS//jHPywdS+SqMZlMJCQkcOLECYxGI4GBgTRr1kxTKl4DmZmZABqZKyIiIiIiIvWeinIiIiJSobi4OKZOncpXX31Fjx49+O9//0uvXr0sHUukRiUlJXHs2DHy8vLw8/MjKChIxX4RERERERERqXG69VdEREQqFBgYyIIFC9i2bRt2dnbceOON3HXXXRw7dszS0USuWFpaGjt37uTAgQM0atSI7t27ExoaqoKciIiIiIiIiFwVGiknIiIi1bZ69WomTJjAkSNHGD16NC+//DKenp6WjiVySTIzMzl27Bjnzp3D3d2dkJAQnJ2dLR1LREREREREROo5FeVERETkkhQUFPDxxx8zY8YMjEYj06dP59FHH8Xa2trS0UQqlZeXx/Hjx0lMTMTV1ZXg4GAaN25s6VgiIiIiIiIi0kCoKCciIiKXJT09nVdeeYW3336btm3b8v7779O7d29LxxIpw2g0Eh8fT1xcHPb29oSEhNCkSRNLxxIRERERERGRBkZFOREREbkiR48eZfz48axYsYLbb7+dDz/8kICAAEvHEgEgJSWFo0ePkp+fT0BAAIGBgVhZaVllEREREREREbn2VJQTEZE6o6ioiKysLE03V0stW7aM8ePHc/bsWSZPnsyUKVOws7OzdCxpoHJycoiJiSE1NRVPT09CQkKwt7e3dCypQlFREZmZmbi5uVk6ioiIiIiIiEiN023CIiJSZyQnJ7Nnzx4KCgosHUXKMWTIEPbv38/kyZOZNWsWHTp04LfffrN0LGlgCgsLOXbsGDt27CA/P5/w8HDCwsJUkKsjkpKSiIqKorCw0NJRRERERERERGqcinIiIlJnJCQk0KRJE2xtbS0dRSrg6OjItGnT2LdvH61ateK2225jyJAhxMbGWjqaNACJiYn8+eefJCQkEBISQpcuXTSyto7x9PQEiotzIiIiIiIiIvWNinIiIlIn5OXlkZ6ejre3t6WjSDWEhISwbNkyVq1axdGjRwkLC2PatGnk5eVZOprUQ5mZmezatYtDhw7h5eVF9+7dadasGQaDwdLR5BJZW1vTtGlTEhISLB1FREREREREpMapKCciInVCYmIiNjY2NGnSxNJR5BIMGDCAPXv28Morr/DGG2/QoUMHVq5caelYUk/k5eVx4MABdu3ahY2NDd26dSM0NBQbGxtLR5Mr4OPjQ0ZGBjk5OZaOIiIiIiIiIlKjVJQTEZE6ITExES8vL418qYPs7OwYP348UVFRtG/fnkGDBnH33XdrJIxcNpPJxKlTp9i+fTtZWVm0b9+ejh074uTkZOloUgPc3d2xt7cnMTHR0lFEREREREREapSKciIiUuuVjJjw8fGxdBS5AkFBQfz888+sWLGCbdu2ERYWxieffILJZLJ0NKlDsrKyiIyMJCYmBh8fH7p27aoRtPWQt7c3iYmJOj+IiIiIiIhIvaKinIiI1HoJCQk4Ozvj4uJi6ShSA/72t79x4MABHn74YR555BH69OnDwYMHLR1Lajmj0cixY8fYtWsXBoOBrl27EhoairW1taWjyVXg4+NDXl4e586ds3QUERERERERkRpjMOn2UxERqeWys7MpKCjAzc3N0lGkhu3Zs4eHHnqIyMhInnrqKaZPn469vb2lY0ktk5KSwpEjRygqKiI4OBhfX19LR5Jr4OzZs3h4eGiNQBEREREREak3VJQTERERiyosLOTtt9/mxRdfJDg4mPnz59OtWzdLx5JaoKCggKNHj3L27Fm8vb0JCQnB1tbW0rFERERERERERC6Lpq8UERERi7KxsWHy5MlERUXh5eXFDTfcwJQpU8jLy7N0NLGgpKQktm/fzrlz52jXrh1t2rRRQU5ERERERERE6jSNlBMREZFaw2QyMW/ePCZPnkxAQADz58+ne/fulo4l11B+fj5Hjx4lKSkJb29vQkNDNX2hiIiIiIiIiNQLGiknIiIitYbBYODhhx8mKioKPz8/evbsyfjx48nJybF0NLkGkpKS2LFjB5mZmXTs2JE2bdqoICciIiIiIiIi9YZGyomIiEitZDKZmDt3Lk8//TT+/v4sWLBAa83VUwUFBRw+fJjk5GR8fX0JCQnB2tra0rFERERERERERGqURsqJiIhIrWQwGBg7dmypUXMvvfQShYWFlo4mNSg5OZnt27eTlZVFeHg4rVq1UkFOREREREREROoljZQTEZFaKSMjAycnJ01dJ8Bfa81NnDiR9u3b8+WXX9KqVStLx5IrUFRURExMDGfOnMHb25uWLVuqGCcVysnJwcrKCgcHB0tHEREREREREblsGiknIiK1jslkYt++fZw+fdrSUaSWKFlrbseOHRQVFREeHs4777yD7i2qm9LS0ti+fTvJycm0a9eONm3aqCAnlTp48CBxcXGWjiEiIiIiIiJyRVSUExGRWiclJYWCggK8vLwsHUVqmbZt27J582YmTpzIpEmTuP3220lISLB0LKkmo9HI0aNH2bt3L66urlx33XU0bdrU0rGkDvD29ubs2bMYjUZLRxERERERERG5bCrKiYhIrZOYmIi7u7umKZNy2dnZMXPmTCIiIoiOjqZTp078+uuvlo4lVcjJyWH37t0kJCTQpk0bwsLCsLW1tXQsqSO8vb0xGo0kJydbOoqIiIiIiIjIZVNRTkREapWCggJSU1Px9va2dBSp5Xr16kVkZCS33HILgwYNYvz48eTn51s6lpQjMTGRXbt2YTAY6Nq1a5U/3xkZGZc9IupKtpXay9bWFg8PDxITEy0dRUREREREROSyqSgnIiK1ytmzZzEYDJrSTqqlUaNGfPnll3z++ed89tln9OzZkyNHjlg6lvxPUVERBw8eJDo6Gh8fHzp37oyjo2OV23zyyScUFhZe1v4ud1up/by9vUlNTSUvL8/SUUREREREREQui/W0adOmWTqEiIhIiaNHj+Lm5oanp6elo0gd0qlTJ4YPH87ChQt57bXXCAgIoGPHjpaO1aBlZmayd+9ecnJyaNeuHc2aNcNgMJRpt3v3bs6cOcPu3bvx9vZm27ZtbNiwAUdHR5ycnGjUqBF79+4lMTGR7du34+LiQqNGjTh16hSrV6/G0dGRxYsX4+bmxt69e8tse/r0aTZt2sTmzZtxcXHBw8Oj3G3d3NwscJTkUjg5OXH69GlsbGxo3LixpeOIiIiIiIiIXDKNlBMRkVojJyeHzMxMTV0pl6VVq1Zs2bKFMWPGMGrUKO6//37Onz9v6VgNUkmRzcHBgW7duuHh4VFuu5iYGKKjo+nSpQuhoaFkZ2dz3XXXAdC3b198fX05c+YMCxcupGPHjrRq1Yovv/wSgMLCQlavXs2xY8cIDw/H3t6+zLZpaWls2rSJ2267jf79+/Puu++SkZFR7rZS+xkMBjw9PUlISLB0FBEREREREZHLYmPpACIiIiXs7e1p27atRqzIZbO3t+edd95hwIABjB49ml27drFw4UJatmxp6WgNQlFREYcOHSI5OZmgoCACAwMrbd+0aVN27NhB06ZN6devH1ZWVuTm5pZq4+Pjw8SJE8nKyiI3N5f09HQAmjdvDhSPkmzSpAkA2dnZpbbdvHkzubm5rFu3DpPJRFhYGCkpKbRo0aLMtlI3+Pv7ayS1iIiIiIiI1FkaKSciIrWGtbU1Xl5elo4h9cCQIUOIjIzEwcGBrl27snDhQktHqvdycnLYtWsX586do0OHDlUW5AAaN27MpEmT2LFjB6+++ippaWll2hiNRjZu3EhmZma5I+7KmxKzRHJyMsHBwdx0003079+fsWPHmgtyVW0rtZOjo6Nu3BAREREREZE6S0U5ERERqZcCAgKIiIhgzJgxjBgxgvHjx1NQUGDpWPVSYmIiu3btwtbWlm7duuHu7l6t7WJiYvD09OTZZ5+lZcuWrF+/Hiur4l9P8/PzgeI152JjY/H19aWoqKjS/i7e1tvbm/Xr15sfp6amcuzYsct6jyIiIiIiIiIiV0pFOREREam3SqazXLBgAZ9++ik333wzp0+ftnSsesNoNHL48GGio6Px8/OjU6dO2NnZVXv77OxsFi1aRFpaGi4uLoSFheHo6Iivry8///wzx44dw9XVlaNHj/L1119z7NgxsrKyWLduHUlJSQCcOnXK3N/F2/bp0wej0ci0adN477332LBhA8HBweVuKyIiIiIiIiJytRlMJpPJ0iFERERErra9e/cyfPhwsrKy+Omnn7jhhhssHalOy8/PZ//+/WRn/z97dx4f09X4D/wzkz2yrxISsSWRkNhpCVVteYii1hYlSkWrlkdbqg8aWq29sW+trZZGLam1RYgiQYqQVUISWQlJJvs65/eHn/mKzERCkgk+79freT2vO/fecz7n3Jt7dc7cc/Pg7OwMCwuLapdRVFQEmUyG7OxsNGnSBFpaWoqyZTKZ4t1hWVlZkEgkMDY2xr1792BqaoqkpCTFk3N2dnbQ1dVVuq9cLkdKSgr09PQU74+7c+eO0n2JiIiIiIiIiGoTB+WIiIjotZGdnY1Ro0bh5MmTWLduHcaPH6/uSC+l3NxchIeHQyKRoHXr1tDX11d3JCIiIiIiIiKieo/TVxIREdFrw8jICH/++Sd8fHwwYcIETJo0ie+Zq6b09HRcu3YNenp6aN++PQfkiIiIiIiIiIiqiE/KERGRWhUXF6O4uBgGBgbqjkKvGT8/P3h5eaFjx474448/FNMdkmrx8fFISEiAjY0NWrZsCYlEou5I9BoTQiArKwumpqbqjkJERERERERUJXxSjoiI1ColJQU3b1pIgpcAACAASURBVN4EfyNCdW348OG4ePEi7t69izfeeANhYWHqjlRvlZWVISwsDImJiXB2doajoyMH5EjtsrOzcePGDeTl5ak7ChEREREREVGVcFCOiIjU6t69e7C2tuYX/KQW7u7uCA4Oho2NDd58802cOHFC3ZHqnaKiIly/fh05OTlwd3eHtbW1uiMRAQCMjY2hp6eHtLQ0dUchIiIiIiIiqhIOyhERkdpkZWWhsLCQX/KTWllbW+P06dMYPHgwBgwYgE2bNqk7Ur2Rl5eHa9euQS6Xo127djAyMlJ3JKJyrKyscP/+fT5tTURERERERC8FDsoREZHapKWlwdDQEA0aNFB3FHrNaWtrY/v27Vi2bBm8vb0xbdo0yOVydcdSq8zMTFy/fh16enpo164ddHV11R2JqIKGDRuiuLgYmZmZ6o5CRERERERE9Eya6g5ARESvp7KyMjx48ABNmzZVdxQihWnTpsHGxgZjx45FcnIydu7cCT09PXXHqnNpaWm4desWLCws4OzsDKmUv+Oi+klXVxfGxsZIS0uDmZmZuuMQERERERERVYrfsBARkVo8ePAAcrkcVlZW6o5CVM7w4cNx6tQpBAYG4u2338b9+/fVHalOxcXFITo6Gvb29nBxceGAHNV7DRs2xMOHD1FaWqruKERERERERESV4rcsRESkFmlpaTA3N4eWlpa6oxBV0K1bN5w7dw737t2Dh4cH4uPj1R2p1gkhcOvWLSQmJsLJyQkODg7qjkRUJZaWlgCA9PR0NSchIiIiIiIiqpxE8K3oRESkBtnZ2ZBKpTAwMFB3FCKV7t27h759+yI9PR1//fUXXF1d1R2pVgghEBkZiYcPH6JVq1awsLBQdySiann48CEMDAygo6Oj7ihEREREREREKnFQjoiIiKgSMpkMAwYMQFhYGI4cOYI333xT3ZFqlFwuR3h4OGQyGVxdXWFqaqruSEREREREREREryROX0lERERUCWNjY5w8eRK9evXCe++9hxMnTqg7Uo0pLS3FjRs3kJ2dDTc3Nw7IERERERERERHVIg7KERERET2Djo4O/Pz8MGLECAwcOBB79+5Vd6QXVlJSgtDQUBQUFKBt27YwMjJSdyQiIiIiIiIioleaproDEBEREb0MNDQ0sGXLFhgaGmLUqFHIzc3FhAkT1B3ruRQXFyM0NBRCCLRr1w66urrqjkRERERERERE9MrjoBwRERFRFUkkEvz8888wMTHBp59+irKyMkyaNEndsarlyQG5tm3bQltbW92RiIiIiIiIiIheCxyUIyIiIqqm7777Dnp6epg8eTKKi4vxxRdfqDtSlZSUlODGjRsQQsDd3Z0DckREREREREREdYiDckREVGeysrJgZGQEqZSvNKWX36xZsyCVSjFt2jQIITB16lR1R6rU43fIyeVyuLu7Q0dHR92RiGpFUVERSkpKYGBgoO4oREREREREROVwUI6IiOpEcXExbty4gVatWsHS0lLdcYhqxFdffQWpVIrp06dDLpdj+vTp6o6kFAfk6HVy+/ZtlJSUwN3dXd1RiIiIiIiIiMrhoBwREdWJe/fuQUNDA+bm5uqOQlSjZs6cCQD473//CyEEZsyYoeZE5XFAjl431tbWCAsLQ2FhIXR1ddUdh4iIiIiIiEiBg3JERFQn7t27B0tLS05dSa+kmTNnQiqVYubMmTAwMMDEiRPVHQkAUFZWhrCwMJSVlaFt27YckKPXgpmZGbS1tXHv3j00adJE3XGIiIiIiIiIFDgoR0REtS43Nxd5eXlwdHRUdxSiWjNjxgzk5OTA29sbhoaGGDlypFrzCCEQERGBgoICDsjRa0UikcDKyoqDckRERERERFTvcFCOiIhqXVpaGvT09GBkZKTuKES1at68ecjNzcXHH38MQ0ND9O/fX21ZIiMjIZPJ4O7uDn19fbXlIFIHa2trJCUlQSaTwdjYWN1xiIiIiIiIiAAAnEOMiIhqlRAC6enpaNiwobqjENWJxYsXY9y4cRg2bBjOnj2rlgyxsbF48OABXF1dYWhoqJYMROpkYGAAAwMD3Lt3T91RiIiIiIiIiBQ4KEdERLXq4cOHKC4uhpWVlbqjENUJiUSC9evX4/3338fAgQMREhJSp/XHx8cjJSUFrVq1gqmpaZ3WTVSfWFtb4/79+5DL5eqOQkRERERERAQAkAghhLpDEL1s0tPTERERoe4YRERUCzQ0NNC2bVsYGBi8UDnFxcUYNGgQrly5guDgYDRv3ryGEqqWmpqKW7duwdHRETY2NlXaJyIiAunp6bWcjIiI6psmTZrAwcFB3TGIiIiIiF4rHJQjeg6PB+VcXFzUHYWIiGpQdnY2kpKSoKWlBTc3txcemMvPz0ePHj2Ql5eHoKAgmJiY1FDSimQyGUJDQ2Fvb1+tL1kjIiJQVFSExo0b11o2IiKqXx7/wLB58+a8/hMRERER1SFNdQcgeplZWlqqOwIREdUCAwMDhIaGws3N7YXeyaavr48///wTnTt3xujRo3H48GFIJJIaTPpIcXExIiIiYG5u/lxPPejo6PCeRkT0mrG2tsbt27chl8thb2+v7jhERERERK8FvlOOiIiI6CmtW7eGoaEhbty4gZycnBcqy9bWFgcOHMDJkyexbNmyGkpY3q1btyCVSuHs7Fwr5RMR0avH3NwczZs3R1xcHO7evavuOERERERErwUOyhERERE9RSqV1ujAXOfOnfH999/j22+/RWhoaA2lfCQtLQ0ZGRlo1aoVNDQ0arRsIiJ6tTVu3JgDc0REREREdYiDckRERERK1PTA3MyZM9G5c2dMnDgRZWVlNZKxtLQUd+7cQaNGjWBkZFQjZRIR0euFA3NERERERHWHg3JEREREKtTkwJxUKsWWLVtw48YNrF27tkbyxcXFQSKRoEmTJjVSHhERvZ44MEdEREREVDc4KEdERERUiZocmHN2dsZXX32FOXPmID4+/oVy5ebmIjU1Fc2aNYOmpuYLlUVERMSBOSIiIiKi2icRQgh1hyB62aSnpyMiIgI9e/ZUdxQiIqpB2dnZiIiIQFFRkcptNDQ00L179+euo7CwEG3btoWrqyv279//3OVcv34dANC2bdvnLgMAIiIiAAAuLi4vVA4REb08rl27huzs7Eq3cXNzg6mpaR0lIiIiIiJ6PfBn1URERET/n5GREVxcXFQOymVnZyMpKemF6tDV1cWKFSvg6emJS5cuoUuXLtUuIysrCzKZDO3atXuhLERE9HpycXGpdFAuIiICpaWldZiIiIiIiOj1wEE5IiIioicYGRnVeh39+vVDjx498L///Q8nT56s9v4JCQkwNTWtk6xERPTq0dHRgaWlpbpjEBERERG9dvhOOSIiIiI1+P7773Hq1CkEBARUa7/s7GxkZWXB3t6+lpIREREREREREVFt4JNyRK+wPXv2wN/fH99//z1atGihdJvCwkL8+eefiI2NxZw5c2q07LqwadMm7NmzBxYWFmjevDkKCgrg5uaGsWPHQlPz+S5x+fn52LFjB06ePPlC73siIqpM9+7d0adPH8yZMwfBwcFV3u/u3bswMjKCiYlJLaarX+Li4rB161YAwIIFC1RuFxkZiT/++AOenp5VntqzqmXXtoiICPj6+uLWrVtwd3eHvr4+NDU14e7ujg8++AASiaTCPhcvXoSGhobSKVALCgqwefNmyGQyaGhoQEdHB59++ikMDQ0RHh6OZcuWIT4+Hp06dUJJSQmMjY3x2WefwcrKCsXFxVi+fDni4uJQUlICPT09eHt7w83NrS66goiIiIiIiOiVxSfliF5hgwYNwv79+1W+GwkANDU1cfv2bRw+fLjGy64Ln376KW7cuIFOnTrhp59+wg8//IDNmzdjyJAhz12mvr4+3Nzc8Pfff9dgUiKiihYsWIBLly5V+Wm5goICPHz48LV7Sq5p06aQy+WIjIysdDtzc3OsXbsW9+/fr/Gya5uLiws6duyIc+fOYcWKFVi0aBE+//xz7Nu3Dx4eHoiPj6+wz/Lly7F06dIKn9+9exft27eHra0t5s6dizlz5qBNmzZo3749wsLC4OrqijZt2uDq1atYsmQJVqxYAT09PTg5OSE+Ph7z5s1DWloaNm3aBF9fX9y9excxMTF10AtERERERERErzYOyhG9wvT09KCrq1vpNpqammjWrFmtlF1XtLW1oaGhAQAwMDDAwIEDcezYMQghnrtMY2PjmopHRKRS586d0aNHD6xcubJK26empkJHRwdmZma1nKz+MTU1feY2VlZWVdruecquC9ra2pBKpZBKH/0T3draGjt27IBEIoGXl1e5bRMTE6GlpYVDhw5VGLDz9vaGi4sLhg4dqvjsvffeQ58+feDl5QW5XA4dHR1FPRKJBFOmTEFWVhaOHz+Of/75R/G0uZGREbZv344HDx7UYsuJiIiIiIiIXg8clCOqY8ePH8fs2bNx6tQpDB8+HF9++SXy8vIgl8tx8uRJzJ49G2fOnMHIkSMhk8nw999/Y9u2bfj++++xe/duAMDChQvRq1cvhIaGAgCOHDmCqVOnIjs7Gx9//DHS0tKU1l1SUoIdO3bgjz/+wNy5c5GZmVluvZ+fH4YMGYLvv/8epaWlis/9/f0xb948TJo0CUlJSbXUMzUnKCgILi4uiqm+lPXhY5Wteyw2NhaDBg3Crl271P5kIBG9embMmIGjR48+80ktIQTS0tJgY2OjdCrDupaUlITFixfj6NGjmD17NoYMGaJ4wjglJQXLli3D8ePHMW3aNPz666/Izs7GunXrsHnzZnz77bdISUlBVFQUPD09MWvWLBQXF0Mmk2HChAkIDg7G77//jjVr1qis/9q1a/Dz88PKlSsrTDV8//59TJ06FSNHjkRISIji8wcPHmDZsmWYOHGiYsrK+k5bWxuTJ0/G2bNnERUVpfh8y5Yt+Pnnn9G9e3esWrVK8fm9e/dw/Phx9OvXr0JZffv2RUhIiOLfD096fH9v06YNevbsidWrV2PZsmUoLS2Fubk5Jk6cWAutIyIiIiIiInq98J1yRHXs1q1bWL9+Pbp06YIFCxZg1KhRyMjIwPr16xEVFYV169ahV69eeOutt3DkyBEcOnQI+/btQ2lpKXr37o3k5GR88cUXii/KAEAul2PEiBHQ0tKCRCJR+YTY5s2bceXKFWzduhVhYWH48ccfsWTJEgDA7du3oa+vjy+++AJeXl7IycnB4sWL4e/vj6ysLCxYsAA///wzPD09cf369Trrr6o6f/48CgoKcOHCBZiZmcHf3x/AowHF3377rUIffvXVV5Wue6ysrAyHDh3C0qVL0bJlS3U1j4heYe+//z4cHR2xatUqrF+/XuV2Dx48QGlpKRo2bFiH6VTT0NDAli1b0LFjR3z33XcICAiAp6cnIiMjoaenh82bN6NTp0749NNPkZWVhd69e2Pr1q1o3bo1Tp48ic6dOyMsLAwdOnTA1atXoa2tDW1tbZibm6Nr165ISEio9InnPn364MqVK7C2toaFhQXeffddGBkZAQACAwMxdepU7Ny5E2+//TZiY2NhZmaGadOmYfv27SgtLYWDgwNMTU0xaNCguuqy59axY0cAj/4N4ezsjMLCQshkMjRs2BBTp06Fl5cXfHx8YGhoiIiICACAg4NDhXIevwP28eBeSUkJjh49ipSUFKxduxbz589H9+7d0bVrVxQWFmL27NnYvn07tmzZovS9dURERERERERUPXxSjqiOtW7dGlZWVhg8eDCcnZ0xb948/Pnnn9DR0YGbmxtMTU3Rp08feHt749dff0WfPn0APJpmctKkSVi7di1MTEwwYcIEbNy4EQDw77//olu3btDT08P27dthY2OjtO4xY8Zg6dKliI+PR0lJCVJTUxXrmjVrBk9PT7z11luYPXs2fv/9dwDAypUrkZycDF9fX8hkMjRt2hS5ubm13EvV17ZtW0ilUgQFBeG7775TfBm5atUqpX34rHXAowG5ESNGYOjQoRyQI6JaI5VKMWXKFOzYsQNZWVkqt0tLS4OZmRl0dHTqMJ1qNjY2aNiwITw9PeHk5ITJkyfD1dUVx48fh62tLWxtbdG7d2/06NEDpqamSE1NRevWrQEA7777LvT19XHo0CFMmTIFZ86cQWJiIq5evYpu3boBAEaMGIEvvvhCZf2XLl2ChYUFEhISIJVKkZ6erlg3dOhQuLm5YfHixTAyMsKxY8dw/vx5JCYmYu3atdi4cSP+85//vDRTMj5+sv3x/X337t2wtLTEX3/9BR0dHcjlcvzyyy8AHr1XDwBkMlmFch730ePpTyUSCYyNjdG+fXucPXsW3333HYBH98QVK1bgypUr0NbWRs+ePREYGFirbSQiIiIiIiJ6HXBQjkjNHBwcFO9DA6B4vwvw6KmIgoICxXKTJk2Qk5MDAJgyZQp+//13hIeHo0mTJlWqKycnBytXroSBgQGsrKzKrXtyKrRWrVopnk6Ii4vD8OHDMW3aNMyfPx8HDx6EgYFB9RtaywwMDPDNN9+ge/fuGDx4sGLgsLI+rGwd8OgpEFNTU8yePbuOWkFEr6sxY8YAAPbu3at0fUlJCTIzM2FtbV2XsapN1T3t6est8H/XXEtLSwwfPhybNm3C8ePH0b9//yrVderUKZw+fRpOTk7l6gT+754mlUrh6OgIIQTi4uJgb2+PadOmYdq0adi6dSsmTJjwIs2tMyEhITAyMlIMap47dw7du3eHrq4uDAwMMGrUKKxatQpyuRzOzs4wNTVVPDH3pOvXr0NLSwvt2rUD8GjwrXv37ujQoQNMTEwAPJr6My4uDgDQrl07nDt3Ds2bN8fSpUvrqLVEREREREREry4OyhGpwZPTcQUHB+O9995Tul2PHj0QEBCgWE5OTsY777wDAGjatCnefvttjB07FiNGjFBsU9k733x8fGBgYAALCwsUFxernBYsOTkZnp6eAABHR8dyX8SdP3++3r1XTggBIQQkEgl27NiBnJwceHl5Aai8Dytb99iqVasQHh6OFStW1EFLiOh1ZWxsjA8++AC//vqr0vXp6emQSCSKJ5zqkyfvJf/++y/efvvtCtt07twZeXl55d5llpaWhl69egEApk2bhs2bN8PAwEAxwJaXl6fyycGkpCTMnDlTca8qKSlReU/LzMxE79694ejoiMOHDyumbiwuLsahQ4eeo8W1R1kbYmJi4OPjgxUrVkBPTw+BgYHo0KEDevbsqfjf7NmzERcXh0OHDkFbWxuLFi3Chg0byj3ZXlZWhl27dmHOnDmwsrKCXC5XWp+uri6+/PJLxXKDBg3QqlUrWFhY1E6jiYiIiIiIiF4jfKcckRokJSVh7dq1aNWqFQICArBy5UoAj754u3fvHtLT02FpaYkFCxZgyJAh2LRpEzp16oSTJ08qtgWAqVOn4uDBg2jQoAEAICMjA3Z2drh27Rratm2L+Ph45Ofn486dO3B1dUXjxo2xZs0aPHz4EEIInD9/HidOnIC9vT2SkpJw9OhR6OjoIDg4GIsWLQIA/PDDD+jXrx+CgoJgbW2NiRMnonv37hXKVpeEhARkZmbi5s2bKCoqgpmZGfz8/ODh4YFZs2Zhzpw5GDVqlNI+rKx/ExMTUVRUhOLiYvj5+aFt27YwNjaGl5dXuacZiYhqyvjx4/H2228jNDQU7u7u5dalp6fD3Ny8whNh9cGOHTtgY2ODixcv4ssvv4STkxPy8/ORkpKCsLAwCCHQqFEjbN68GV9//TV++uknBAcHY9KkSYonv9zd3eHm5lbuRybffPMN7t69i0OHDkEulyMyMhJJSUkoKSmBkZERNDQ0MHToULzxxhto2LAhFi1ahNWrV8PZ2Rn79++HsbExzp8/jzlz5sDe3h729vYYOHAgOnfujDfeeAMGBgbYuXNnhbK1tLTU0o+lpaW4ceMGSktL4e/vD4lEgmvXriEgIACrV6/GiBEjUFBQgG+//RZff/11uX2trKxgbW2N77//Hm+99Ra8vb2hp6eHMWPG4OOPP4aWlhZ27NiBYcOGYfr06SgpKcHNmzeRk5ODmJiYclM0GxkZ4cKFCxg1ahTGjh2L69evIyYmBocPH67rLiEiIiIiIiJ65UiEqp8VE5FK6enpiIiIQM+ePau97+nTp+Ht7Y2rV68iISEBLi4ukEqlyM/Px5UrVwA8mm7Lw8MDwKNfzd++fRulpaVwdHSsMCCUnZ0NIyMjxXJMTAxatGgBiUSCf/75B3K5HMCjpxT09PQQHR0NW1tbNGjQAOHh4XB1dYVUKkVRURGioqJgYmJSYTrM3NxcREVFoWnTpop31Sgrm4joVfci1/9nEUKgZcuWGDhwIJYvX674vKSkBEFBQWjVqhUsLS1rvN7H0xy6uLhUe18PDw9MmjQJHTp0gJWVleIeERERoXh/WbNmzWBnZwfg0TTKt27dQvPmzRXTJT4mk8lgbGysWM7KykJxcTGsrKyQmJiIO3fuAACsra3h7OyM3NxcJCcnw8nJCSkpKZBIJIp3rqWmpiI1NRWtWrWqcH+KjY1Ffn4+2rRpA4lEorRsIqLXXWBgIFxcXGrlvkNERERE9DrjoBzRc3iRL2VPnToFb29vxMbG1kIyIiKqTbU5KAcAc+fOxbZt25CQkKD4Eca9e/cQHR2Nbt261cqTci8yKNe9e3d4e3tj9OjRNR2LiIjUiINyRERERES1g3OwEdWxP/74A4mJiQgPD1d3FCIiqmeGDx+OpKQkXLx4UfHZw4cPYWJiUu+mrgwODkZUVBQuXryI7OxsdcchIiIiIiIiIqr3OChHVMc2bNiAoqIitb6HjYiI6qc2bdrAxcUF+/btA/BoSsvMzEyYmZmpOVlFXbt2xYMHD7Bu3bpy0ygTEREREREREZFyHJQjIiIiqkeGDh2KgwcPAnj0DrbS0tJ6OShHRERERERERETVw0E5IiIionqkf//+SExMxM2bNyGTyaClpQV9fX11xyIiIiIiIiIiohfEQTkiIiKieqRjx46wsrLC8ePHkZ2dDWNjY3VHIiIiIiIiIiKiGsBBOSIiIqJ6RCqVok+fPjhx4gRkMhkH5YiIiIiIiIiIXhEclCMiIiKqZ/7zn//g7t27KCkp4aAcEREREREREdErgoNyRERVJITAqFGj8MUXX2DHjh3w8PDAm2++WaV9L1y4gJ9++gmLFy/GwIEDaznpsxUUFMDZ2RmFhYXqjkJESnTs2BGdO3eGXC7n3ynViqCgILz55pvYsmUL5s2bB319ffz9999V2nfKlCk4f/48HB0dce3atVpO+mxLlizBsmXL1B2DiIiIiIiI6Jk4KEf0iluzZo26I7wyLl++jGPHjmHVqlX4+OOPcebMGdja2lZpXx8fH/Ts2ROzZs3Cvn37AKj32OzevRtpaWnYuXNnrdbD84+o+pKTk5GSkgJvb29oaGggIiICycnJ6o6ldjdv3kRgYKC6Y7wyFixYgOHDh2PChAlYsGABdu/ejZSUlGfud/HiRcTExKB79+4ICwtDu3bt1HpsysrKsGvXLqxevRplZWW1Vg/PPyIiIiIiIqoJGt9999136g5B9LLJz89Heno6HBwcnmv/5ORkGBoaIjIyEhKJBPr6+op1qampaNCgAaKjo2FhYQEhBO7cuYPU1FSYm5tDKpUiMDAQCQkJKCkpgbm5OUJDQxEdHY1GjRohPj4eZmZmAICFCxfil19+QZs2bWBhYYGgoCAkJCSgoKAAlpaWuHnzJqKiomBnZwepVFppLrlcjrCwMJSUlMDIyOiF+q+m1VV/JicnY82aNXBwcEDbtm0hlUrh4OCARo0aAYDSsgHg3Llz2LBhAxwdHSGEgL29fblj07BhQ1y8eBHx8fHQ0dHB7du3ER0djZSUFNjZ2SEyMhKRkZFo0qQJhBAIDw+HXC6HgYGBynY+63ht3LgR77//PjZu3IjPP/+8wvrw8HDk5eXB1NRU8ZmqMhMTE2FsbIyoqCgIIdCgQQMAqNBGTU3NFznMRPXCi17/qyIsLAxyubzcZzk5ObCzs6uV+tLT0wEAlpaW1d63qKgIMpkMxcXFiImJgaWlJSQSCQCguLgYWVlZyM7ORlFREfT19ZGTk4OwsDDo6OhAX18fCQkJCA0NRUJCAmxtbZGbm4tLly6hpKQEWlpayM7ORoMGDZCQkIB+/frBysoKFhYWyMrKws2bN5GQkABra2sUFhYiODgYZWVlMDMzqzQXADx48ADR0dEwNzeHhoZGzXRkDair/gSAXbt24fz58xg5ciR0dXXh7OyMkpISxT3t6bIB4O7du9i7dy8iIiLg6OgIQ0NDPHjwoNyxyc/Px/Xr15GamgpDQ0NcunQJCQkJ0NbWhqamJi5evAipVApjY2NkZmbi1q1b5Y6DsnZWdrz8/f3Rs2dP7N+/H82bN4erq2u59VlZWYiIiICRkRG0tbUVnysrs7CwEFlZWSgrK0NkZCSsra0hkUgqnH8WFha1cPSJ6peEhARYWloqrhlERERERFQz+KQcUR2bMmUKOnfujC+//BILFiyAg4MDjh07hoKCAsyYMQNdunTBokWL0KtXL4SGhmL06NFITU1FeHg43njjDcTExEAmk+Gtt95SDIwUFBQgMDAQOTk5aNGiBa5fvw65XA49PT1oaGjAxMQE2traiIiIwHvvvYemTZsCAEpLS3HmzBmUlJSozAUAGRkZmD17NqKjo/Hhhx/Wqymi6qo/AaBLly748MMP4eXlhdGjRyMtLQ2dO3cGADx8+FBp2QBgbGyMkpIS6OnpwdDQsMKxkUqlCA0NxahRo2BtbQ0zMzN4enoqpqyTy+U4duwYQkJCMHToUGhpaWHixInw9/dX2s4bN25UerzOnTuHnj17YsKECYiLiys3XZlcLsewYcOQkpKC5cuXo0WLFpg7d67Sc0Aul+Pbb79Fx44dsXLlSqxYsQJOTk7Izs5W2kYiejYhBEpL7mNmHAAAIABJREFUSyt8XlpaCiGEGhKpdvnyZTRt2hQzZ87EjBkzMGzYMLzzzjsoKyvDlStX0Lx5c/j4+GD8+PGYM2cOtm7dipUrV0IqleKzzz6Dj48PrKysMGfOHOzduxfa2towNjbG5s2bYW5ujv/973+YOHEiAEBLSwsA0KBBA+jr68PMzAze3t4ICAhQXFu3bt0KMzOzSnMBwLZt23Do0CGcOXMGbm5uSEtLU1sfPqku+xN49KRcfHw82rRpg99//x0A0KlTJwBQWjYA6OjoQENDAxKJBCYmJtDS0qpwbMzNzTFmzBjcvHkTxsbGOHjwIObPn4+GDRtCT08P27dvh56eHsaOHYuTJ08iOTkZ3bt3h1wuV9rOZx2vv/76C4MHD8aECROwcuXKcusCAgLw9ddfIycnB05OTvjoo49w5swZpWVGRUXB2dkZs2fPxtKlSzF69GgsXLgQQMXzj4iIiIiIiOi5CSKqtvv374uzZ88+174nTpwQDRs2FMXFxUIIIebNmyfc3NyEEEKcOnVKGBsbi/z8fCGXy8Vnn30m5s6dq9h37ty54t133xVCCPHGG2+ITZs2CSGEWLp0qcjKyhJCCHHnzh3F9n/88Yfo2LGjYrm0tFQ0a9ZM7Nu3TwghxI8//ihSUlKemcvb21usX79enD17Vvzwww9CV1dXFBUVPVf7a1pd9qcQQsjlcrFt2zZhaWkpjI2NxfHjx4UQotKyhRCicePG4vz584rlp49Nfn6+MDU1FTdv3hRCCDF48GBFeevXrxdJSUni+PHj4pdffhFCCLFs2TIxfvx4pe181vH6/PPPFcsTJkwQffv2VawLCAgQrq6uQgghUlNThVQqFQ8ePFBZ5r///iuMjY1FSUmJEEKIdu3aiYMHDyptI9Gr4EWu/1V15coVERgYKM6ePSvOnj0rAgMDRUhISK3VFx4eLsLDw59r365du4pVq1YJIYTIzMwUxsbG4sCBA0IIIbp37y4WLVokhBDi7t27wsjISOTl5QkhhJDJZMLAwEBcuHBB/PXXX8LOzk6UlpaKnJwcsXjxYsU26enpirpat24tjhw5olj+9ddfRevWrYUQQhQUFIhZs2Y9M1dCQoLo0aOHom9btmwpFixY8Fxtrw112Z+Pyxk8eLAAIAYNGiTy8vJEYmKiyrKFEGLLli3inXfeKVfO08fmp59+EkOGDBFCCBEaGir09fVFdna2KC4uFj4+PkIIIT755BMhk8mEXC4XRkZG4u7duxXaGR8fX+nxunnzpli9erViWw0NDREcHKxY36NHD8W/eby9vcUXX3xR6TkwYMAAsXTpUiGEEP7+/sLd3V1lG4ledWfPnhX3799XdwwiIiIiolcOH10gqmOampowMDBQ/Ora09MTsbGxinWmpqbQ09ODRCLB+fPn0bx5c8W+Hh4eCA4OBgBMnz4d69atQ1lZGQoKCmBsbAwAiqfglNHQ0MCMGTOwfPlyAI+egLOxsXlmrrNnz6JVq1YwMTFB//79ERwcXG4aMHWqy/6Uy+WQSCQYO3YsoqKi4O7ujqFDhyI9Pb3Ssqvi8VMDv/zyCzIzM2FgYIBt27ahrKwMycnJaNSoEfr27YvWrVsjJCREMb2ZsnZWdrwSExMRHh6O+fPn45tvvkFpaSn++usvREZGAgAaNmyI6OhoZGVlwcLCAra2tmjQoIHKMjU0NKClpaWYmtLc3BwPHz6s3kEkonKcnJwUTyM9/jtzdHRUdyylNDU1FVP8mpiYoFu3buWuwY/fuxkSEgIzMzPFU0ZGRkZwc3NDcHAw3nvvPRgaGuLo0aPw8/PDhx9+qNimsmkCR40ahYyMDPz99984cuQIhgwZ8sxcQUFBsLW1hYmJCUxMTLBv3z6MGzeuxvvledVVf4r//9SlnZ0dDhw4gN27d+Po0aPw8fHBlStXVJZdVV5eXjhx4gTS09Nx9OhRvPnmm9i7dy8OHTqEQYMGAQB8fX1x/vx5xMTEQCKRlLunPW5ncHBwpcfrl19+QUxMDL755hts2LABTZs2Lfe0nI2NDYKCggAADg4OimVVZWpoaEBPTw8A72dERERERERUOzgoR6Rm2dnZaNGihdJ1FhYWiI6OVixraWmhcePGAIAPPvgADx8+xPz58+Hp6amyfPHUdGfjx4/HrVu3sGnTJsU0VVXJlZubC3d3d7i7u8PJyQkPHjyoUvvqWm325w8//KCYVs7MzAybNm1CXl4ebt++XWnZqjx9bCZNmoSdO3di3bp1WLZsGZo0aYI5c+agR48eAIDdu3fj4MGD6Nixo+JLW1VUHa/169dj+/bt+PHHH/Hjjz9i69atcHNzw88//wwAaNWqFXx9feHj44PNmzfjwIED0NXVrbTM6rSRiJ7N0NAQXbp0wf79+7F//3506dIFhoaG6o5VJaquwRYWFkhOTkZubq7isyevk9OmTcO6desU79JU5clrira2NqZOnYrly5cjNDS0yve027dvK65l7u7uSqcLrS9qqz8TEhKwdetWxfKHH36IIUOGIDQ09Jllq/LksbGyssKAAQOwZs0alJWVYfbs2diyZQtCQ0Ph5uaGsrIyeHh4oFu3bs8ccFZ1vDIyMlBWVgZfX1/FPW3p0qXYv38/EhMTAQCbNm1CREQEtm7dCgMDA3z55ZeVlvksvKcRERERERHRi+KgHJEaZGZmIicnBwBw4MABfPXVVwAevTOoqKhIsd2MGTOwZ88exRdjp06dwuzZswE8+iX5559/joCAALRr1w4AUFhYiIkTJ+L+/fsAHv1CPCkpCXl5eUhNTQUA6OvrY9q0aZg3bx7ef//9KuX64IMPMGHCBBw4cAABAQHw9fWFtbV1rfTN86ir/pRKpZg+fbrivURBQUFo1qwZ3N3dKy37cZYnv/RTdmycnZ3Rpk0bPHz4EFZWVpg4cSIOHDiAd955BwBw+PBhJCQkIDExEdeuXUNWVhYyMzMrtFPV8crOzsbNmzdhb29frv8+/PBD7Ny5E/fv34dMJsO///6LWbNmwcvLS/Elt6oyi4uLy31JWVhYqOgfZW0koqrR1NREamoqUlNTFU+i1ld3794FAKSmpkImkyl+2PDktalbt25o3769YiAoIyMDBQUFGDhwIABgzJgxCAkJKTewtn//fmzcuFGxbGNjg5iYGCQlJSk+8/b2xpUrV2Bubl6lXL1798atW7cwadIkBAUFYf369fXu+lQX/Wlvb4+5c+ciLCwMAFBcXIyrV6/igw8+eGbZT9/PANXHZtmyZfjkk0/w9ttv4+HDh3B2dgYAxMbGIjQ0FHfu3MHZs2dRVFSE5ORkFBcXl2tnZcdr3bp1FX5E079/f+jr6yt+aLJp0yZMnz4dQ4YMgbe3N7S0tCot88l72pP3M1VtJCIiIiIiIqouje++++47dYcgetnk5+cjPT0dDg4O1d43Li4Ohw4dgomJCYKCguDu7o6RI0ciPz9fMahjaGgIFxcXODo6ok2bNvDz80NycjJatGiBYcOGKcpq1aoVmjdvjpYtWwJ49GXS40EcQ0NDNGzYEElJSbh48SL69+8PDQ0NAECTJk2QkZGh+IKtslwA0LNnT8jlcvj7+yMzMxPTpk1DgwYNXqAHa05d9mdJSQkiIyMREBCAM2fOICkpCVu2bIGZmVmlZZ84cQLR0dHQ1tZGixYtKj02jRo1wqBBg2BoaAgnJyfY2dnB1dUVANCyZUucP38eqamp+OSTT3Du3Dk0btwY//zzT7l2KjteOjo6WLJkCTIyMuDi4gIrKysAjwY0z58/j9LSUiQkJMDV1RUrVqzA4sWLMW/ePGzYsAE2NjaYMmWK0nNg7969kMlkaNKkCQoKCnDu3DlIpVJ069YN9vb2SttI9DJ7ket/de3btw8Ayl2nakN6ejoAwNLSstr7bt26FRKJBImJiQgJCYGvry8MDQ0REhKCixcvori4GK6urjA1NcWIESNw9uxZxMTEICwsDIsWLVI8AailpQVbW1sMHjxYMd3u9evXIZPJ0LVrVwBA48aN4e/vjxYtWqBJkyYAAF1dXcTExGDKlCnlniZUlUtfXx99+vRBYGAgAgMD0bNnT8UPH+qDuurPx3VcvHgR169fx65duzBu3Dh4eXlBIpGoLDslJQVHjhxBdnY2GjdurDgOyo6Ng4MDGjVqBA8PD0gkElhbW2PIkCHQ1NSEhYUFNDQ0cOjQIfTs2RO2tra4ceMGTE1NERwcrGinra2t0uN18+ZNbNu2DQ0aNECnTp0U95dLly4hPj4e9+7dQ7NmzXDnzh3MnTsXCxcuhI+PDy5cuIAxY8bA09OzQpmxsbEICAgAALRv3x4HDx5ETk4OnJ2d0bhxY6VtJHqVJSQkwNLSst78m5+IiIiI6FUhEZyHhaja0tPTERERgZ49e1Z739OnT8Pb2xsxMTG1kKxq9u7dCycnJ8UTYfUl1/N4WXPXV7t27YK9vT08PDwAPBqAWLlyJb799ls1JyOqH17k+l9dw4cPBwD4+fnVaj0REREAABcXl2rv6+HhAW9vb4waNaqmY1XZrFmzsHjx4nKf1Ydcz+NlzV0f5eTkYMGCBViyZAkkEgnkcjn+/fdfpKamVpgpgIgqCgwMhIuLy3P9YIOIiIiIiFSr3/MhEb2CcnJyyr2npS6tW7cOhYWFiI2NVTwFVx9yvYiXNXd9tXLlSnh5ecHR0RFyuRwhISFwc3NTdywiqqfUdQ2Oi4vDpk2bkJ+fjw8//LDe5HpRL2vu+igwMBBnzpxBaGgoWrRogVu3biEkJAQjRoxQdzQiIiIiIiJ6jfGdckR1LCAgAG+99RYOHDiAun5QtbS0FFevXsW8efPKff7w4UO15noRL2vu+mr79u24e/cuJkyYgB9//BGNGjXCgAED1B2LiOqh/fv3w8XFBYmJiYiNja3TujU1NRETE4O2bdsqpresD7lexMuau77q168fJk2ahCVLlmDixIm4cOECvLy8YGZmpu5oRERERERE9Brj9JVEz6Eupy8jIqL6g9NXEhHR64DTVxIRERER1Q4+KUdERERERERERERERERUyzgoR0RERERERERERERERFTLOChHREREREREREREREREVMs4KEdERFRFpaWlL0WZRERE9YkQAmVlZeqOQUREREREpHYclCNSk8LCQvz444/o1auXuqO8tC5fvoz+/fvj8OHDasuQn58PZ2dnCCGULqsyY8YM/PDDD0rXPW+7zp49i969e+P06dPV2q+mVbUPXqYMV69exRtvvAFfX98aqzMuLg7Dhw/H6NGjayTj86qN41XVMh88eIDPP/8cmzdvxvTp05GQkKBy2xs3buCDDz7A5cuXy30eHh6Ofv36wcbGBu+++y4yMzNfuC6qvpSUFHz22WeYPn26uqO8tBYsWIABAwaoNYOPjw9++eUXlcvKJCcnw87ODrm5uRXWFRUVPVe7cnJyMGfOHAwdOrRa+9WGqvSBOjKEhIRg0KBB+O233+pFnsps3boVjRo1QlRUVC2merbaOJZVLXPnzp2YP38+Vq9ejeXLl6vcrqioCKtXr8b48eOfu4yqbkdEREREROrBQTkiNdHV1UWXLl0QGxv7zG0zMjIQFhZWB6leLp07d0ZKSgqKi4uVrn+632qjH48cOYL+/ftDIpEoXVZl8uTJGDNmjNJsz2qXKm+99Rbu3Lmj9ievqtoHL1OG9u3bw8rKqkbrbNq0Kdq1a6f2JweezF1TfyNV7YuZM2eib9++mDhxIj799FP0799f6UCeTCZDSUkJjh8/Xm69XC7H4cOH4e/vjzt37iAjI0Pll6NVrYuej62tLSwsLPDw4cNnbhscHFzt69vrwN3dHfHx8SrXnzt3rtLlmnDgwAEMGjRI5bIyNjY22L59OwwMDCpk09HReWa7lDE0NISTkxOSk5OrtV9tqEofqCNDx44dkZGRgaKionqRpzLjxo1DRkZGLSaqmidz19TfT1X6Ijo6GuvXr4ePjw+++OILXLp0CX5+fkq3jY2NRVxcHFJTU5+rjOrURURERERE6sFBOSI10tHReeY2RUVF+Oijj/hUhwq6urpKP3+632qrH3///XcMHz5c5bIqjo6OsLOzU5lNVbue5Xn3q0lV7YOXLYO2tnaN1/msMuvC49w1+TdSlb5ITEzEnj178M477wAAXFxckJ2djYCAgArbGhsbo0OHDuW+9AeAsrIyzJw5E1paWtDT00OnTp3g7Oz8QnXR86vKPS0xMRHDhw9HSUlJHSR6uVR2/T516hRmzZqlcrkm3Lx5E7a2tjA3N1e6rIpUKsXbb7+tMtvLfD+rah+oK0NV/ubqMo8qEokEWlpatZjq2Z7MXVN/P1Xti6VLl5b7G+nbty9Wr16tdFtXV1c0b978ucuoTl1ERERERKQemuoOQPS6iYyMxK5du9CoUaMK07CFhYXhxIkTMDExwbFjx7BkyRJkZ2cjNDQU/v7+0NTURJ8+fXDp0iWcOXMG4eHhkEql2LRpE27cuAEfHx/07NkT/v7+6Nq1KyZPnoyvvvoKLi4u0NLSwv79+zFy5Ei0b98ee/fuRWBgII4dO4ZWrVrh559/hoODA27cuAEXFxcMHToUPj4+SExMxJYtWwBA6TZXr17F4cOHYWtri9OnT8PLywt9+vRBaGgoPDw8sHPnTrz55pv473//i6ioKFy5cgVXrlypkHXcuHEV2t6iRQulbX36S6jbt29j4sSJOHLkCBYtWgQvLy+Eh4eX6zdLS8tyy6amppg/fz7eeOMNXLt2DcHBwfj000/h4+Ojsq1P90dubi7Cw8PRuXNnpcvx8fH4+eefYW9vj8OHD6Njx47o168fmjZtivnz50NfXx/r16+vkLVPnz4q21VZvz52+fJl/Pjjj4iKisL8+fMxefLkZ55nLVq0UHksb9++XeXz6Mk+UHacP/roI6V1AFBZf2WZlR2n2srwWFlZGUaPHg07OzuMHj0abm5uz6xz2LBhzzyPAag83x//f2pqKu7fv48VK1aoPE9VlfGsvrp27VqF81BVvarO7V69epUrMyoqCn369EGHDh2wd+9eFBQUYMCAAViyZAkyMzNhbm4OPT09Rfvt7e1x7do19O7dW9UltJwnv+S9cOEC5HI5PD09K2wXFhb2wnWRcv7+/oiOjoaWlhZOnTqFxo0bK9b9+eefSExMRG5uLm7duoU1a9bg/PnzSExMxNq1a9G/f3+4urpi3759iImJwblz5/DOO+/gyy+/xJ49e7BixQpMmTIFCxcuxPLly2FkZISvv/4akydPRlhYGP7880+sXr0a8fHx8Pf3R05OjmL63uXLl8PR0RGnTp3C7Nmz0bRpU/Tu3Rsff/wxxo4di8LCQqXb7NmzB/fv34dUKsW5c+ewaNEitGzZElu3bsX48eORlZWFpKQkjBkzBr1798bSpUuVZpVIJBXarqenp7StTxJCYM2aNdi7dy+KiooQGBgIXV1d7N+/H8nJyfD19cXHH39cbnnkyJHYuHEjAgIC0KdPH+zduxdaWlrYvXs3HB0dERMTgyNHjsDS0hKnTp3Ctm3bkJmZCXd3d/z999+KgWw/P79yg+lPL69YsQISiQQhISHQ0NBAkyZNsHDhQmzbtg2LFy/GiRMnYGdnVy7buHHjVLZLQ0MDU6dOxeXLl3Ht2jWcOnUKAwcOhJ+fH/r37w/g0dOwM2fOxL59++Do6IgdO3bA1ta2Qn/p6+sjLCwMDRs2xKxZs1BaWoolS5bA1tYWcXFxSEtLw7Jly2BoaIg1a9Zgw4YNWLx4MX777TfcuHED+/btwx9//IEDBw6gR48eWLVqVbk+KCgowM8//4wTJ05gxIgRWLhwIS5fvoydO3cqraOy+lVlVnacnj4OQggsXboUxsbGyMjIwO3btxV9kZqailWrVqFDhw7w8/PD3Llz0aZNG5VZtLS0sGTJkmqdN8/qkytXrsDPzw9ZWVkIDAzE3LlzFT+GeFJZWRl8fX0rbKeqDcqyqCrjWbnlcnmFczQ/P19pvZWd908fm1mzZmHJkiW4cuUKOnbsiN9//x379u3Dnj17cPPmTXTq1EnR/sf3n+qoahk1URcREREREdUyQUTVdv/+fXH27Nlq71dYWCiaN28u7t+/L4QQYt++faJx48ZCCCFkMplo166dKC0tFUIIMW/ePLFr1y4hhBCtW7cWR44cEUIIkZWVJYYPH64o08nJSaxbt04IIUTnzp3F1KlTRV5enrhz544QQojRo0eLCRMmCCGECAsLE1KpVFy5ckUIIcTMmTPFV199JYqLi0Xz5s1FQUGBKCsrE0ePHhVCCHH9+nVx7tw5IYRQuo1MJhM2NjYiLS1NCCHE7du3RYMGDURsbKwQQgh3d3dx6NAhRVs7duyoyP1k1uvXrytte2Vtfaxr165i/vz5Qggh9u7dK7p27apY92S/KVvu0KGD+PLLLxVt1dTUFBcuXKhSfwghxK5duxT7K1sePHiw8PPzE0IIMWLECPG///1PsW727Nli3LhxKrNV1q7K+tXZ2VksXLhQCCGEv7+/kEqlIiwsTLFe1Xn2rGNZlfNIWR88fZxV1VFZ/aoyqzpOtZFBCCGGDh0qli1bJvbs2SPOnDkjnlRZndeuXVN5Hi9btkwMHTpUCFH537azs7O4f/++kMvlokGDBiItLU1p+1WVUdW+evo8VFavEJWf20+XuWXLFsU5WlZWJubNmyeEEGLjxo2iRYsW5fqxT58+5fZ9moWFhQgODq7w+blz58SIESOERCJRnP9Pep66VHne6//zGDZsmBg2bFit1xMeHi7Cw8OrvV9ERIRo166dYvnzzz8Xo0ePFkIIcfnyZUV2uVwuPD09RWRkpHjw4IEAIHJzc4UQQly8eFFxrUtJSRESiUSEh4eL/Px8AUAcOHBAJCUliYyMDCGEEI0bNxY7d+4UQgixZs0aYWdnJ2QymRDi0TX96NGj4vTp02LkyJFCCCGio6NFdHS0EEKIw4cPi7i4OCGEULpNUFCQaN26taI927ZtE87OzqK0tFRkZmYKACIrK0vR1sfnz9NZ//rrL6VtV9XWx06cOCFsbGxESkqKEEKIVq1aiRMnTgghhPjjjz/KXeufXj58+LAwNjYWSUlJQi6Xi+HDh4t3331XCCHE3LlzxYYNG4QQQvz555+KXL/++qvIz89XlOHq6qro56eXr1+/LlxcXIQQQkRGRgptbW2Rl5cnhHj0bxsAIj4+Xmm2ytp18OBB0bZt23J1Pr4G7d27V1hbW4v09HSRk5MjPDw8xIgRI8STVq5cKXx9fYUQQty9e1f06tVLyOVysXjxYvHZZ58pths3bpziHhYbGysAiMTERCHEo2v7wIEDhVwuFzk5OUJDQ0NkZ2dX6INjx44JAwMDkZCQICIjI8WiRYtU1lFZ/aoyKztOT2fYtGmTmDJlSrl1W7ZsEUI8utY+vhcvXrxYTJ48+ZlZqnvePKtPfvjhB3H69GkhhBB79uwR1tbWQi6XCyGEMDAwUPx75KefflK6nao2KMuiqoyq5H76HFVVb2Xn/dNllpSUCAcHB8X5u2XLFsW/xW1sbMRvv/2m2C8oKKjcdfBpa9asEX379i33WVXLqG5dlTl79qziv1mIiIiIiKjmcPpKojp0/vx56OnpwdLSEsCj97A89s8//8DR0REaGhoAHr04/qOPPlJaxr179+Dr6wtfX19MnjwZTk5OAAB9fX20b98e+vr6aNq0KYBH0z89fnKhSZMmkMvlinUWFhZIS0uDlpYWunbtig4dOuDvv/9Gv379ADx6v42HhwcAKN3mwoUL0NXVhbW1NQCgWbNmcHR0xPHjxwGg3Puknn631JNZk5KSlLa9srY+6fGvmZ2cnBAVFVXFowHo6emhbdu2irZ2794dQUFBVeoP4NEUfSNGjFC5nJ2djZiYGACP3hOXm5urWFeVablUtauyfgWg+IX0+++/D0dHx3LvTVF1nj3rWFblPFLWB08e55SUFJV1VFa/qsyqjlNtZHhsz549OHHiBN56661yfV5ZncnJyVU6jys73yMjI5Gamopbt25BKpUiNzdXaftVlVHVvnqasnqBys/tp8scPXo07t69i5CQEBw/fhwDBgwAANjZ2SE/P79cfXl5eXBwcFCZRxUPDw/s3bsXmzZtwtq1ayusr8m66P/s3r0b3bp1Uyw/eU/z8/NTTKEmkUhw+PBhpVOLHjhwAElJSfD19YWfnx9WrlwJTU1NxVON7du3R6NGjWBqagrg0bXo8dS/TZo0gbGxMYyMjAD837WoS5cuuHr1Kvr37w+5XA5HR0cAgKenp+KYK9vm4MGD5Z4wGTx4MKKiohAZGVnhWvvk8tNZT548qbTtqtr6JHNzc0U/Ojo6Vvme9vjfFo0aNYJEIsFnn32GoKAgAMDAgQPx7bffYtq0aejevbsil5eXlyL7tWvX4ODgoOjnp5dzcnKQkJCAkpISODs7Q09PD4WFhQCqNoWiqnZV1q/Ao3dvWlhYwMDAAJ9//jnO/D/27js8qir/4/h7SjKTXoDQe5EuooJURbChi4hl1y6WlV1A1EXYteL+1HUtIMWGLoqIBWk2UHoA6SiKdJBqQk1Inz6/P4YZMslMMoEEUD+v55knmTv3nnbP3Jm533vOXbw46PWpU6dy5ZVXAr73+aJFizAYDMyYMYPOnTsH1rvhhhuYNWsWcPLzt/hnWv369TEYDMTHx2M2mzly5EipNoiNjaV69eo0aNCAli1bMnv27LB5lJV/uDKH2k8ly/DBBx8Eff4Uf8/dd999PPHEE6xfv56cnBzy8vLKLUtF+015bTJr1izWrFnD2LFjOXToEP/6178oKiqipOnTp4dcL1wdQpUlXBqRlLukcPmW1e9Lpmk2m3nooYd48803Ad9Uvf7vSSU/gwoKCqhWrRpxcXEhyxNKpGlURl4iIiIiIlK1NH2lyBl09OhRHA5HyNeys7PJyMgIWuZwOEqbeeizAAAgAElEQVTdc+ro0aPEx8czbNiwwLKCgoKI8g918svr9QIwefJkJk6cyO23387IkSMZMWJEqe1LrtOuXTsOHTqE2+0OBExSU1OJjY2NqDx+4epe0bqGClBVRPGAaXntkZuby/bt27noootCPgff9GmDBw+mdu3a7N+//5TvX3I69apTpw7Vq1cPPA/X1kDE+zJcPwrVBiWVlUe418p6b5TcT4MGDaqSMvj17duXjz76iKlTp3L77bcDofd9cZH247LWGzhwIMOHD+e8884LlA1K99OaNWuGTeNU2ipcvuH6dqi2sFgsPPjgg7zxxhs0btyYp556CvDdNycrKyvoOJeRkUGrVq3Clqc8t9xyC88//3yp5VWRl/j6rMfjCflaWceakmm0adOmUj/TrFYr33//PU888QSdOnXiiy++KBVID7UOEFTmxMREzGZzpX6mVaSup3PsL/551qFDB9auXcvgwYPp2LEjq1atClx84Ffe1JVdu3blgQceYNiwYbRq1Yr//ve/pKamnlLZTrVeJT/P4GRb+wO+Xq8Xl8sFBO/Lsr6bhOtHJdsglLLyCPdauDKH2k8ly1DW90j/dJrjx49n+fLl7Nu3L6JyFldevymvTY4ePUqfPn2CPgPCfd6FWi9cHUKVJVwap1LucPmW1e9DpXnvvfcyatQoZs6cGRTgb9euHb/++mvgeUZGBq1btw5bnlAiTaMy8hIRERERkaqlkXIiZ1CnTp3YvXs36enpABw/fjxwNWuPHj1Ys2YNEydOxOl0smrVKr766isAEhISyM7Oxul00qVLF+bPn89HH32Ex+Nh06ZNLFiwAPCd2Cl5gtQfdCv+v38d//OcnBxmzZrF3/72N+bPn88nn3wC+O7DtGrVqrDrdO/eneTkZL799lvAd4+QzMzMwCictLQ09u/fD8CPP/4YdLV08bKGq3tZdfXzeDy43e5A/sXrW7zdQj0HAmVyOBxs3LiRvn37RtQes2fP5vrrrw+kU/I5+E6EvPTSSwwcOJAxY8ZQq1atoHKXVday6lVWuxbfrw6Hg9zcXK666iqWLVvG1q1bw7Z1efsykn4Uqg2K7+ey8ijrtXBlDrWfqqoM/nSSkpL45JNPGDJkCBs2bIio3uW9Z/3tF269bdu28fHHH9OwYUNycnIoKirC6XSGrH+4NCJtq+L9MFy+EL5vh0oT4G9/+xszZsygYcOGgWUNGjTg2muvZcmSJYDvHopGo5FLL70UINBni/O/J4q3c2ZmZuD5smXLuPfee4Oeb926tdy85NR069aN2bNnc+TIESD4M613796Be8g5HA6mTp3Kzp07iYmJwWQyBfpZt27dePnll9mwYQMej4c5c+YE3ServM+04q/7X5s7dy75+fm89tprjBo1KhBw++abbwLHzlDr3HTTTSxbtoysrCzAN1L04osvpnHjxsTExBAfH8/+/ftxOBxs2bKl1LHXX5ZwdY+krsX7ePFjv/+9CeB0Oks9B7DZbIH1Fy5cGLhw4P3336dx48bMmTOH9u3bs3r1arxeL1OnTg2M+vn888+D3rsln3u9XqpVq8a4ceMYOnQoDz74YKl2D1fWsuqVlpZGZmYmLpeLo0eP8uuvv5b6ruC3YcMG7r//fgoKCvjoo48CbT1ixAj27t1Lbm4uo0ePxuVyccsttwRGg4HvPlv+9iiepv95qH4Uqg2Kr1dWHmW9Fq7MofZTyTJ069aNSZMmBdozJycn8J4bM2YMSUlJgO/+cv5+UVZZoGL9prw26datG8OGDePo0aMUFRXx3nvvBcpR/PMu3Hrh6hCqLOHSiKTcJftouHzL6vcl0wRISkrirrvu4plnnuGaa64JLB82bBjz588PPJ83bx73338/QFB/9iv5WVeRNMpaT0REREREzg2mUaNGjTrbhRD5rSksLOTIkSMVnvosJSWFBg0aMGLECJYtW8axY8dwOp3UqlWLiy++mPPOO49nnnmGF198kerVqzNo0CAA7HY748ePp2bNmvTo0YNatWrx5JNPMnr0aNxuN0OHDmXdunWMHTuW/Px8unbtSnJyMrt27eLVV18lLy+PPn36MHPmTL788kvS0tJo1qwZY8aMYdeuXfTq1Yt///vfFBYWcvDgQfr370/z5s15/fXXWbRoEf3798fhcPDII48ErdO2bVv69OnDhAkTyMnJYdGiRQwdOjQw+iQtLY1nn32WBQsW0L59e3bt2kXr1q05ePBgUFkbNmwYsu7VqlULWVe/H374gfHjx+N0OunVqxdvvvkmS5cupWfPnjRq1Cio3Vq3bl3q+Xvvvce+ffs4duwYs2bN4sknn6Rly5Yh61qyPZ544gmGDBkSmDqq5HOAl19+mVGjRvHxxx/z8ccfk5mZSffu3dm/fz9vvPEGO3fupGfPnqSlpQWVzf9/uHqFa9d69eqRl5fH4sWLycjIID09nccff5y6desycuRIjh07xp/+9KeQbW2xWMLuy0j70bJly3jqqacCbVCyT6alpYXNo6z8k5OTQ5Y51H56//33g/ZDZZVh06ZNjB8/Hrvdzq233sqePXt45plnaNiwIR9//HGZeTZt2jRkP967dy+vvPIK27Zt47LLLqN169Yh10tOTmbp0qW8+eabWK1W7HY7y5cvp0+fPowcOTKo/pdccknINCJpq5LHmq5du4bM99prrw0EMkr27SeffLJUmuA7AXr48GEeeughoqKiAst79OjBpEmTOHjwIDNnzuTVV18NjODx99mePXtSVFTEjBkz+PDDD6levTpt27YlPj6evLw8Lr/8ctLT0/F6vRgMBu6///7AyJfiaZSVV0Wc6vH/VHz22WcA3HzzzVWajz+o5h8hE6m2bduSkZHBk08+yfr168nPz8flctG+fXsuu+wycnNzGTFiBJMmTeK6666jR48eREVFsWPHDj755BPatGnD1Vdfzb59+xg+fDiTJ0+mc+fO9OnThw8++IDZs2eTkJDAxRdfjMViYfny5YwbN46aNWvSoUMH3nrrLRYtWkSvXr0oKChg9OjRGAwGGjZsyJgxY7Db7Rw/fpy7776b1NRUHnjgARISErjgggv45Zdf+M9//hO0Trt27WjRogUTJkwgLy+P7777jhdffJHExERMJhNms5kRI0bw008/0aJFCzIzM+natSuzZs0KKmvHjh1D1r19+/Yh6+o3duxYFi5cSK9evcjNzeXll1/G6XTSt29f6tWrx5QpU/j555+56KKLaNKkSdDzI0eO8MEHH2AwGFi/fj1ZWVk8/fTTmM1m5s6dy2effUZRUREmk4m7776b/Px8brjhBvr168fevXvZuHEjAwcOBHzHsOLPwRfIHjhwIB988AEffvghixYtonHjxtSsWZPp06czffp0ateuTefOnalVq1agbO3atWPy5Mlh69W0aVPWrVvH888/T25uLvHx8djtdnr27El8fDyLFi1i7969bN++HY/Hw5AhQ9i8eTP33nsvDzzwAJdffjlLly5l+PDhLFy4kEcffTRQjgMHDjB37lyOHDnCwYMHefzxxzEajbzzzjvMnz+fjh07EhcXx6uvvsrOnTu58sorWbFiBVOmTCErKwur1RoI8hcWFjJ27FgWLVpE27Ztad26ddg8zGZzma917949ZJlL7qc2bdqwZcuWoP3QpUsXvvzyS8aOHcvPP/9MYWFhIL+YmBhefPFFtm3bRocOHZgyZQotWrTgjjvuCFuW3bt3R9xvSpYnVJt07dqVuXPnMnz4cL755hvuu+8+GjduzAcffMC0adOoUaMGl1xyCZdeemnI9QwGQ8g67Ny5s1Qf7tmzZ8g0ImnHGjVqBL1/EhISQuZrNBpD9vtff/211HvEr2nTpsTFxdG1a9fAMv9nzbx581i/fj0xMTGBEbObNm0K9GeLxcL27dsZPXo0mzZtokuXLoHpeiNNw79+qPUqau/evdSoUUNTX4qIiIiIVDKDt+TloiJSriNHjrB582aNsviN69GjB4MGDQq6YryyeDwexo4dy3XXXUd2djYFBQVs2LCBdu3aBZ2EFfmt+aP37TN5/PdPjTZt2rQqzWfz5s0AmuLsN2zhwoUMGjQocK/HyrZhwwZ27NhBq1atOH78OLm5uSxcuJBXX321SvKTM6Oq+81v3R+936enp9O6desKX7AhIiIiIiJl0z3lROQPy+l0Bu49U9nmz5/P4sWLefjhhwP3p3E4HGdkdI1IVVLfFjn3VOXnGfimoJ0wYQJt27YFfFOVHjt2rMrykzOjqvvNb536vYiIiIiIVAUF5UTkD2nGjBkcOnSIBQsW0K1bN5o1a1ap6V988cUkJCTQpk0bmjRpQlpaGo888kil5yNypqlvi5xbjh07xv/+9z/sdjszZsxgwIABgSlcK8vQoUMZOnQoTqeTRo0a0b17d/72t79Vah5yZp2JfvNbp34vIiIiIiJVQdNXipwCTV8pIvLHpOkrRUTkj0DTV4qIiIiIVA3j2S6AiIiIiIiIiIiIiIiIyO+dgnIiIiIiIiIiIiIiIiIiVUxBOREREREREREREREREZEqpqCciIiIiIiIiIiIiIiISBVTUE5ERERERERERERERESkipnPdgFEfss2b958tosgIiJnkN1uP9tFqBK5ubn6TBMRERERERERqWIKyomcAovFQo0aNc52MURE5Az7PR7/ExMTz3YRRETkHFOjRg0sFsvZLoaIiIiIyO+OgnIipyAxMZHWrVuf7WKIiIictnr16p3tIoiIiIiIiIiI/CHonnIiIiIiIiIiIiIiIiIiVUxBOREREREREREREREREZEqpqCciIiIiIiIiIiIiIiISBVTUE5ERERERERERERERESkiikoJyIiIiIiIiIiIiIiIlLFFJQTERERERERERERERERqWIKyomIiIiIiIiIiIiIiIhUMQXlRERERERERERERERERKqYgnIiIiIiIiIiIiIiIiIiVUxBOREREREREREREREREZEqpqCciIiIiIiIiIiIiIiISBVTUE5ERERERERERERERESkiikoJyIiIiIiIiIiIiIiIlLFFJQTERERERERERERERERqWIKyomIiIiIiIiIiIiIiIhUMQXlRERERERERERERERERKqYgnIiIiIiIiIiIiIiIiIiVUxBOREREREREREREREREZEqpqCciIiIiIiIiIiIiIiISBVTUE5ERERERERERERERESkiikoJyIiIiIiIiIiIiIiIlLFFJQTERERERERERERERERqWIKyomIiIiIiIiIiIiIiIhUMQXlRERERERERERERERERKqYgnIiIiIiIiIiIiIiIiIiVUxBOREREREREREREREREZEqpqCciIiIyB/I66+/znXXXceUKVO45557MBqN2O32M16OjIwMrrzySu68804A8vPzGTBgAMnJycybN4+PP/6Ybt26cd999+F2u894+UREREREREREKpv5bBdARERERM4Mj8fDyJEjWb58OR06dODOO+8kOTmZzMxMGjVqxP/+9z9uu+02YmJiKpx2RbetU6cOPXr0YPv27QDEx8fTvn17Nm7cyJVXXgnAFVdcQVpaGv369eP666+vcJlERERERERERM4lGiknIiIico7KyckhPT2dLVu2sGfPHtLT00lPT6ewsJDMzEzS09PJzc0FYM+ePYEAl5/H4+Gnn37i+PHjuFwuvF4vAOPGjcPj8QAwYsQIzGYz8+fPZ8iQIaSnp3Pw4MFAGqHSzcrKwm63s2PHDhwOR9htd+/ezZYtWwL5+mVmZrJp0yYMBkPQ8pLPXS4XJpOJwsJC1q1bR3p6OitXrgRg//79pKenc+zYsQq3q4iIiIiIiIjI2aCgnIiIiMg5yuv10qtXL0wmE7Vq1WLEiBEsXLiQ2NhY0tLSGDt2LG63m169epGbm8uUKVN47LHHADh06BAPPvggVquVxx57jF27dmEymXjllVd4//336dq1K+vXr6dOnTrUq1ePpKQkbDYbSUlJREdHk5OTEzLdyZMnU7t2bV577TVuuukmZsyYUWpbgOeee45Vq1bxyiuv0L9//0Bg7vHHH2fBggVkZGQwc+bMUnW22WysXbuW6dOnc//999O/f39uvPFGoqKiuOKKK7DZbADUrVuXcePGkZKSciZ2hYiIiIiIiIjIaVNQTkREROQclZyczFVXXcW8efOwWq3cfvvtLFmyBIAtW7bwl7/8hby8PC688ELat29P//79A4GuHTt2sHnzZmrXrs2LL75IXFwcAIMGDWL58uUUFRXRqVMnnnvuOQCaNm0KQPv27UlNTSUnJydkunfccQcOh4OePXuyYcMGbr311lLbfvrppxw4cIA6deowYMAAvvjiC5YvX868efP47rvvuPPOO7niiiu45pprStXZ5XKxfft29u/fz/HjxzGbzRw/fpzzzz+fW2+9lRkzZgCwcuVK/vKXv2A06uusiIiIiIiIiPw26CyGiIiIyDls0KBBvPvuu4BvKslffvmFbdu2MXPmTG644QYaNGjAkCFDWLJkCZmZmTgcDgC6du1K48aNad68OV9//TX16tULTFnpHyU3dOhQnnrqKebOnVsq33DpmkwmwHdPuJLTTfotWbKE5s2bk5ycTL169diwYQNt27blm2++oVOnToH1YmNjS20bHx/P7bffziOPPMLChQtZvXo1f//73wEYPnw477//PtnZ2XzzzTf069fvVJtVREREREREROSMM5/tAoiIiIhIeNdddx2DBw9mzJgxXH755cTFxTF27FgaNmxIVFQUO3fuZNCgQSxYsIANGzYEtsvKyuLDDz9k9uzZDB48GKfTicVioXPnzjRv3hyz2cxrr73GtGnT+PHHHwPBMv80k+HSLUvxe8cdPHiQ888/P/B89+7deDweMjIyIq67xWKhdevWbN26FYB27drRo0cPJkyYgNlsxmKxRJyWiIiIiIiIiMjZpqCciIiIyDnMZDLxwAMPMGXKFL7//nvatm1LixYt2LFjBwALFy5k//797N+/n/T0dAoKCjh8+DArV66kYcOG9O/fn6NHj7Jnzx6uvvpq7rrrLubOnUtycjI7d+4kJyeHa6+9lsTERGJjY9mxYwc1atQIm261atUAsNvtgTKW3HbAgAH07duXunXr0qlTJ9LT0xk4cCADBgzgqquuYunSpXTs2JGffvqJzMxMjh07RrVq1bDb7TidzkC6W7Zs4bvvvuORRx4JLPvXv/7FFVdcwbJly87QHhARERERERERqRymUaNGjTrbhRARERGRYJ999hkAN998M+eddx7t2rWjWbNmJCcn07BhQy699FIAmjRpwi+//MJ3333Hgw8+yJ49e3A6nTRv3pzJkydz7NgxoqOjue+++0hJSeGHH34gPT2dtWvXMmfOHMaNG0fHjh0xmUykpKQwc+ZMevXqRYcOHUKmu3XrVrKysvB4PLRv3x6LxVJq2wsuuICWLVvy1VdfsWnTJgYOHEiTJk1o2LAhbdq0YeLEiaxdu5YuXbrQsmVL2rRpw08//cT8+fMxm81s3bqVb7/9lnnz5jFs2DAGDx4cmCqzYcOGrFixgpEjR561fSMiIiIiIiIicioM3uLzDImIiIjIOeGWW24BYNq0aWe5JOeWAwcOMGvWLIYOHXq2iyIiIiIiIiIiUiGavlJEREREznnz589n9erVbNu2jddff/1sF0dEREREREREpMKMZ7sAIiIiIiLlMRqNrF+/nsGDB5OYmHi2iyMiIiIiIiIiUmEaKSciIiIi57zevXvTu3fvs10MEREREREREZFTppFyIiIiIiIiIiIiIiIiIlVMQTkRERERERERERERERGRKqagnIiIiIiIiIiIiIiIiEgVU1BOREREREREREREREREpIopKCciIiIiIiIiIiIiIiJSxRSUExEREREREREREREREaliCsqJiIiIiIiIiIiIiIiIVDEF5URERERERERERERERESqmIJyIiIiIiIiIiIiIiIiIlVMQTkRERERERERERERERGRKqagnIiIiIiIiIiIiIiIiEgVU1BOREREREREREREREREpIopKCciIiIiIiIiIiIiIiJSxRSUExEREREREREREREREaliCsqJiIiIiIiIiIiIiIiIVDEF5URERERERERERERERESqmIJyIiIiIiIiIiIiIiIiIlVMQTkRERERERERERERERGRKqagnIiIiIiIiIiIiIiIiEgVU1BOREREREREREREREREpIopKCciIiIiIiIiIiIiIiJSxQxer9d7tgshIiK/HytXwujRZ7sUIr99+/ZNBaBBg9vPcklEfvsefRS6dDnbpRARkcrmcrlwuVyllnu9Xmw2W8htHA4HHo+n1HK3243D4Qi5jd1uJ9TpM5fLhdPpDLlNuPzDKSutUxGuzKfC4/Fgt9srJS0/i8WC0Vg5YwUMBgMWi6VS0gKIiorCbDZXaBur1VqhtMoqc7i2MZlMREVFhc3fYDCUWm42mytcFxERqVo6KouISKXavx+mT4eLuuqaD5HTYr4NgD0Zei+JnI51KwzcfLOCciLy++XxeIKCSU6nMyhQVTw4UzJYdTrbut3uoCBS6W2LSmxbFHZb/zKHI1yAK3Sw7GwzGMBiCR1YsliMVDTmFGUGk6kSCoavbGHiRKfEZPIQJh5UYU4n2Ioqb/Iumw0qa8iB2w3O0nHeMnk8YLeXDvSCb/m5OBzCFxQMvUOjo6MwleiIUVHBy6zWmEAQ0JdWTOA1s9kcFDwsva21xLaWsNtGR0cHBSiLb2s0GomOjo54WxGRc4WCciIiUiUGjwz9o0RERORMGnh9JZ3dFJE/JKfTidvtDgpIFR+dZbPZ8Hq9QUEm/7LiAS+73Y7H48Hr9QZGHDkcDtxu94ltCk/k5whK289uDx7dVVVBKpPJQFTUydE20dHGoCCR1WIAfBEGo9GAxXIy2mA2ezGbTz5PiPelF9i2WIDIaARLdOlRPeGCSL4gQenlRiMUOycfxGLxlbEkk8kX/AolJqb0+gBRUZUXLPvt+sM3QDkq1j5uty84GUpRUegontPl264kj8dLuIGMDocvaBgqf4cj9G92m610YnaHNyid4gNB3W4vxQeZFhUayHeffC/Z7QY8Hn+dDNjs3mLbBpfD6fTidldNFNNqPXmwMBqNWCzRxV7zHXx8gb3oE8tiAd8IRX/wz2KxYDAYTmzvCyb6g38GgyGQjj8QWXxZ8VGL/uBiWaMfReT3S0E5ERERERERETmn+KcY9Ae4iv/1B7v80w36A2KRBc4cgDcQJPN4/KOzvIHAly9wdurTCEZH+0ZI+YJWvlEaUVFgMvpHL/kCWyeDWF6SkzhxgpbAaCRL9MmgUsmgkMViDrzmG6118jWTCaKLBbxKjr6yWg34Z7krua2InBkmU/hAr+8YUREVXf9cEz6gabefHAXp9YLNFhzQKz6q0eHwBgUti2/rC1x6im3rwXliY4/Hi91RAPgCpW63f3TviXRsUJBvAAzYbF68XnC7DYG87XYPHo8v+Bku0BkJiyXqRMDPcCJgaCA6Ogqj0YjRaAosi4qKxmQyYzAYywz4+QOD0dHRgb9GozHwevG/JUcdikjVUlBORERERERERMLyj+7y31fKHwTz3wPLP5qseKCs7ICa7cR69kDwzJeeG6fThdsd2UlN/9SBJpMhEITyj+TyBaZ861ksXgwGL9FRBuLjfMuiozkZODuxnj/w5TtJ6YuMmc2+B/hGcQUCZ2Z/2r40yhqxFab0FVlZROQPqeRFA+FGs/qcreNq6aCif4Ri8VGM/pGOxQN+LpfvAf5pWD0nRlH6pvu1O3xp+AJ+J9N2u714PAayswzFlkHxkYi+IKW3QlOomkxGoqLMmM2+EXwnA3uWE3+t5Qb2/AFAf6DQf19Ff1r+eyb6Rx2K/BEpKCciIiIiIiLyG2ez2QLBLZvNhsPhwOl04nA4sNvtgeCZzWYr9b/b7cLhsBcLqLmx2ewnThxGPk2i2WzAbDacmPLQ4At8Gfwjs7xYrR5MRi8pySeDWCYTREedHCEWFWU6cTLQ95rFYjgx1aEvCBcTY9DoLhEROaedvEjDQGxsyVfPTiDKP3KwqMg32s/u8N8P0RuYTtXlAqfTg9Ppwe124nCenJ7U4yEwUvB4tgGv1zdy0OMxFFvPi8vle0TKao0+EdiLLhHYs2Ay+aYTtVpjAkFCq9Ua+N9isRAdHU1UVBTR0dGB18xmc2AUoci5SEE5ERERERERkTPEP/ViqOCY0+nEbreXEVArCowus9tt2O0OnE5XYAqucKKjjURF+YJllmh/8AusVg8xVi9RUYbAiDB/gMw/ksxqjTox5eLJqReNRoiOOjlNYvHRZOEZAGNlNaOIiIhUgP9iltLTo1ZNkNA/Fah/WlGHMziw5xsZCDab58RIwKIT6+UHRhD6AoVejmcbcDoNOJ2+YKLD4cXp9JY7XWhUlImoKDMWSzQWiwWz2Ux0tAWrNZaoqOiQgT2LxRIyAGi1WgNTgIqcLgXlRERERERERMrgD5b5HzabLeh5ydd8UzE6KSoqxOn0Bc58wTYnHk/4q8f90zFaLMZAgMxq9QXQzGY3KcmGEwE135SL0dGcCLZFYbH4/o+KAquFk+uVOaJMJ5ZERESk8p28AKhqg4B2uy9453R6sRX73273TevpdLpxOIqwO4pwOr04nb7RgkWFkOs0YLP5AoZOpy/YV950n0aj/3tXNFFRvmk5Y2JiMZujiIqyYLVasVgsIR8lX4vy30RW/nAUlBMREREREZHfLbfbjc1mw2azUVRUFPi/+ONkUM2G3V4UeF5UZMNud+INc3YmOtp4IogGlmgDFosXi8XjC4rFG6hdy3fvMX9wzGIxB52kioqCKPPJwJup9G1pilEATURERKQ43/crCA72nV7gzz+dZ1GRF9eJ/2023zSeLhfY7R7sdpsvyOcCmy0rEPDLzjJitxa6oWQAACAASURBVBuwO3yBQbvdE3ZEn8FgwGKJIiameLAuBovFGhTIK/mIiYkJ/G8q+8ujnKMUlBMREREREZFzmtvtpqioiKKiIgoLC0MG2HzPi7DZir/uCDm1o9FowGo1YrX6RpxZrWCxeImxQnKS7z5mJ5ebfM8txZf7AnAGQ6iTPjo5IiIiIvJbZTL5HsGj/E410GfC6/Vit/vuwWd3+O7j5wvY+Ubm2WyF2B2FxZZDfp5vFJ/d4QsI+qb5LH2RWFSUCavVUixQF4vVGhMUuCv+f2xsLDExvtcV0Dt7FJQTERERERGRM8blcgUCav6/eXl55OXlFVtWSFFRwYnnNgoKbKVGq5nNvsBaTIzhxHSNXsxmL8lJEFPLN/osxmrAajX71rESWDc+3kDIeFqFVM09WERERETk98Ng8H0PPRnkO7XvkC6Xb/SezX7ir83/10GRzR547nIayC4yUVTEiXU95OeXvkjNbPYH9KwnAnlxgSBeQkIC8fHxgYCe/298fHyYi9KkIhSUExERERERkVPmcDgoKCgIPAoLC8nPzw/8X1CQR35+HoWFhRQW2kpd5WsyGYiJMRJjNRAbCzExXuJivdSobiA2xkBMDMTG+gJrMVaIifEF13Rxr4iIiIj8UZjNkJBgICEBKhbYM+F2m3z30iuCIhsUFnpPPHdQWGSnsPA4RUUGco4byMyAIpuXoiIPbnfw93aj0UBsrJW4uDji4uKJi0sgNjaWuLg44uPjA//7H9HR0ZXZBL8bCsqJiIiIiIhIELfbTX5+Prm5uRQUFJT4m3/iUUBBQSEulzto2+hoI/HxJuJiITbWQ3IS1KtrIDYGYmNNxMYafI8TATf9VhcRERERqTomk2+miPh4/5LIgnoOBxQVQWGRl8JC/8NJYdFx8vOzKSjwcjzbSEEh5OeXvn+e2WwiLi6G+Pg4YmN9QbzExETi4uKC/sbHx/+hptNUUE5EREREROQPwuv1kpeXR05ODrm5ueTn5wemjszPzyMvL4f8/AKKiuxB28XGmoiPN5IQD/HxHqpXg/g4A3FxRmJjjcTFQXyckdhY31W8JxnPaP1ERERERKRyREf7HklJBsoP5JlwuaCwEPILPBQU+P4vKLCRX1BEYeFR8nIh41cD+QUeCguDA3gxMdHEx8eRkJBIQkIy8fHxgWk0ExMTSU5O/t1Mn6mgnIiIiIiIyO+Ey+UiLy+P7OxssrOzTwTb8snOPkp2djY5OXlB00darUYSEowkxHuJj/dSu5aBhHgDCQlRxMf7polMSjSUGM2mQJuIiIiIiAQzmyExERITy/u9YMLt9k2jabNDXp6XvDyP7yLB/Fzy8g6wb6+R/ALIyXGV+P0STUpKCikp1UhISCAhIeHE85RAIO9cp6CciIiIiIjIb4TX6yU3N5esrCyys7PJysoiK+sYWVlHOX48B7vdGVg3JsZEYoKBpCQv1VKhSSMDiYkmkpONJCX6pq8xKr4mIiIiIiJnmMl08h55NaqHH/3m8USTnw/Hczzk5HjJzfWQk3uUnJyj7NltICfXg812ctSdxRJFcnISqanVSU2tRmpqKqmpqaSkpJCYmHhOjLRTUE5EREREROQcU1RUxOHDhzl8+HBQ4C07Owe32/ejMzraSGqKidRUD82bGUhJNpCYGEVSooHkZANRUWe5EiIiIiIiIqfBaCw2+q5+qDVMOByQk+MlJ9dLbi5kHz9OVlY2u3buZG32yXvdmUxGUlISTwTsqlOtWjVq1KhBzZo1sVqtZ6xOCsqJiIiIiIicJS6XiyNHjnDo0KETfzM5fPgQeXmFgG96yWqpJlJS3LRuZSA1xUhqqonUFANxcf6rPDXcTURERERE/piio6FGDQM1aoQaBWeioACysj1kZUFWdh5ZWbns27uHDRtOjrJLSIglLa0mNWvWJi0tjbS0NGrUqIHZXPkhNAXlREREREREzgCv18uxY8fYv38/+/fv58CBvRw9mo3X68VsNlCjupm0NA9NOhlIS4sirYaBxEQF3kRERERERE5VXBzExRmpXw+Cf1eZyM2Fw0c8HD7s4PCRfez+5QBr1rhwubwYDAaqV0+hfv1G1K9fn3r16lGtWrXTngJTQTkRERH5TXG5HACYzdG/q7wqWobjWRnk5RylXqO2GAw6WV8Rajs5U7xeLxkZGezatYv9+/dx4MB+bDYHUVFG6tQ2cl4L6HWpmbQaBlJTDfh+26lPioiIiBSXkZHLkaMFtGtbC6Px7N8PSkR+P/xTYzZrenKZ1xtNVpaXw0e8ZGTmsn//T2zcuAGn04PVGn0iQNeAxo0bU69evQoH6RSUExEROYP27FzPj+u+5td9m/n7iE/OdnECKlKuosJcvv38Nez2AqKjY+jU7WbqNmxT4XSKcznt7Ny2iswDW2l/4TVUq9EAAI/HzYQXb6aoICewrtfr4bH/mxdxOrM+GsX2TctCrn/9rU/Tsu2lp5RXOPt2/8iP675m55YVPPL0V4HlRw7tZsFXEziUsYO0Wk258vphVE9rFLRtJGWw2/L5cOLDtGp3GV9NfxFbUT4vvrmZaEtsuWU7cmg3094fyeCR0ypUp2NH9rF0/iTcLidFRbl07Hw9bTr0qVAaJVWkr0SSfyTtW9G2q4x6Hz64izXLppGXe4yExGr06DOQpJRap5VPuPdLWXlVxbFn848LOXZkHz36DCz1WiT7oyL1Liuvc43H42HPnj1s3bqVrVs3kZdXSFKSmQb1vfS61ED9+tHUTDNgVOxNKtHu3dmMm/AdO3Yco2nTVB4Z1p1GjVLOdrHC2rnzGO9OWsvj/+xFYqLllNOx212sXLWPrVuP0Pea82jQILncbRYs3MnSZbv56aeDpKbG0LZNLdq2rQlAYaETk8nArNmb2L07G4BPP76VtLT4sOk99PCXbNx4EKPRwJVXNGfokK6sWLmXWbM3sXnzYQDq1k2k7zXnkZRk5YMpP3D4cD4AJpOBmJgoWrSoTutWNbnpxrYkJZW+n8mXX2057TItXrIrorwXLNwZsuy33dohZF6VUbbY2NI3wDyX6zxj5s98/MmPHDvmm2Y4KsqEyWTA6/X1Sb8pk2+hXr0kALKyChn92nK+/z6DuLgoatdOJCHBQvduDbnm6vOqpB0XLNzJvn3HuXfgRWHTKWnHjqO8/c4atm8/SsuWNXj4oW7UqZNY5jYLFu7kw6k/sHfvcQBatKjOwHsu5JLODbDZXIyfsIJ583fgcnkwmQxc0ac5zZpV47PpGzl06OS+MZmMNG6cSovm1RlwQ5tyj2GbNh/i8883s3TZHr6ZE/77QWUdb05HVZTB6XSz/Lu9VK8eS7u2tcrfoAzh+kp55T6VPlaR/AHy8x089PAX9LqsKS+8uJj8fAfbNv8j0N9PtwzPPb+Ix4b3xGLRKfJzUSTHpNxcO6NfW0ZBgYOYmChuubk9bdvUDJleWf1l165jfDrtJ44eK6R6tVjuHXgRtWolVCivp0fNZ9myPSHzfubp3lx2aZOIy1OReknlMxigWjUD1aoZaNXSt8zjMXHwkIf9+z0c+HUP69fvYfHixcTEWGjatBlt2rSlefPmmEymctPXEUdEROQMcjpspM+bhDUm/I/syuDxuDEay/8i4BdpufLzjvHvf1xC3xtHcNlVD3D08B5e+OdlDB75KU3P61zh+rlcDpbO+x/p896l97WD6dT9FuLiT/4A/37V5xw9tJuEpLTAsq6X3Y7JFBVROkWFOSz8+g0aNu1AUkrtwPpFBTn8uG4Odeq1rHBe5dbJaWfF4qkUFZ4MrO3cupKZHz7FBZdcT0xMIgu+nsCa7z7jufE/Ep9QrUJl+Gzy48TEJNC11x00an4h8z4fizmq/B/3Xq+XSePuJ/PXbRWqz77dP/LmS7cy4rl5pFSrR37uUf7z+OVcdf3D9Lzi3gqlVVykfSWS/CNt34q0XWXUe+fWVUwafz//fGERiUlprEz/iOdH9uAfo+ZQs07zCudT1vulvLwq89iza9tq5s58mfWrZtP72sH0KFXv8vdHpPUuL69zSU5ODqtWreLHH3+gqMhOrZpmLrwAWrb0BeFEqsqKlXt58ql59L++DYmJVsZPWMG0zzby848PU61a+RdsnA1z5m7jvy+lc23flvTo3qjC2zscbt7931reeXcNQwZ35c+3tCclJabMbXbvzmbw0M9Zt/4AL714DffcdSGJiRZWrtrHsEe+ZOvWI7z8374M/0cPLuxYl7oN/gPAW2+v5umneodM85dfspjw+kq8Xi/33XsRI0f4LvTp07sZPbo3okat58jLs7Pxx4cDJ9ISEixc2msi57evzQ/rh5KTY2fhop0MHzGHEf+cy5ef30XXLg2D8vnTda1Ou0zX9m0ZUd5llT2UyihbVaVbVXW+cUBbrFYz1/WbTMcL6rBuzZDAFfJOp5uNPx/ipls+JD/fN9tBVlYhF1w0nmuuPo/Rr1yL2+Nh3PgVjJ+wghdfuJprrj6vUttx1ep9vPTyUmbN3sSQwV3C1qOkBQt38rfBs2nbpib79x/ny6+28M67a1i3eghNm1YLu12f3s1o2qQaTZq/hMVi5usv7wkETKxWM48N70lGZi6vjf2OIYO7BMpbt24iXbq9SaNGKWzb/A/cbg/rv/+V4Y/NYeS/5jLp3Zu4844LwuZrs7n48KMNHDlSUGa9TuV443Z7MJkq7+qZ0z3mlbRs+R6efmY+S9J/4d2JN55yUK68vhKu3KfaxyqaP8A/H/+GhAQLd95xARddWJcxY5djsZgqpQzHjhXy/H8WU79+Mnff1fGU63G2VHY/PddEckw6dqyQiy+ZwD9HXMZfH+jEnj3Z9LjsbT779DYu6dwgkFZ5/WXlqn3ce/900hf9lbS0eKZ+tIGuPd7k2zn30rx59Yjyysmx8fobq7igQ21q1z4ZOMzJsfH1nK20apkWcXkirZecWUYj1KltpE5t6Hxi2dGjJnbsdLN9xzamTduExRLNBRdcSOfOnUlKSgqf1pkpsoiIiAA0b92Nug1aV2keXq+XKW8NqdA2kZbr0/dGYI2J57KrHgCgelojLr3qPt546S94PO4K1a8gP4v/PtGbNcunMfzZb+h5xb1BATmA9Hnv8s8XFvPYv78NPLpdflfE6axZ/hnDn53LY/+ex18fmRx4XNTtRpq1vITE5JoVyisSTVp0okHj84OWbVjzFcOf/YYrrhtK/9ue4b5hk8jJPsiWnxZXuL6rl08jOdUXYKxTrxX3DH4rogDsorlvkp93rML1+eKT/6NNhz6kVKsHQHxidXpeMZCFX79e4bSKi7SvRJJ/pO1bkbY73Xp7vR4mvzGICzr9icQTQdYul95GavV6TH3n4QrnU1Y/jySvyjz2VE9ryF1/C98OkeyPSOtdXl7nArfbzaJFixg3bixbtqylWxc3Dw2O5sEHTFza06SAnFS5L7/ayrxv7uOhoV159pk+vD/pZg4ezGPR4l1nu2hhDRnche1b/nFKJ6ezsgrp1fsdPp32E/O+uY/77r2o3IBcQYGDK6/5Hz9vOsi61UO45+4LadIklerV4/jTda34Yd1DXNixLoWFviBKnTqJ1KgRh9Fo4M23V+NwuEOm++bbq+jcqT4ADRsEf4exWMzUqBF34rWTI/jqnDhRl5BgwWAwkJxs5cYBbfnow7+QlVXIwPumh8yrMsoUad7hyh5OZZTtt1bnxo1SAUhMtAZNWRUVZaLjBXUYNrQbLrcHgAmvr+TQoXxeH9+Pli1r0KZ1Td5+8wZGPOYLVlVmfQEaNUzhzdf7l1uH4txuD6PHLOf7tUOZNeNOflj/EBPG9eP4cRtPPj2/3O3r1fO1c7VqsSFHPjaonxz0F6BuHd/JyurV4oiONhETE0X3bo2YPfNOPB4vDz38RdDIw5Iu7FiXjhfUKbdsFT3eeL1e/j7k84jWjdTpHPNC6dG9Ef954arTTqe8vhKu3KfSx04lf4BPp/0UeB+3apXGxLcGYDIZK6UMk95bFxjN+VtTFf30XBLpMWn4iDkkxFv46wOdAGjUKIUH7ruYW/7yEe4Tx2Aou695PF4eHDSLfn9qFRihfPttHahfL5mHHv4y4rymfbaRb+cOZMG8+5ky+ZbA46Yb29LlkgbUrHny4sjy+m+k9ZKzr3p1A10uMXH3nSYeHhpN964eNm1aw/jx41i8eDFud+jPcgXlREREzrDTvSFseWZ8+BQ//1D+j+eSyitXUWEOq9I/plX74Kt2W7fvTdbR/fy49uuI0gHwuF28Oqovx47sY/DIaSQk1Si1zs6tqzicuYuVS6ZyMMzorvLS6dT9Zho1u7DUdutXzqJj5+srlFdFFG8Dh6OIq65/GKPp5AQFDZv4pkMqPp1fJGWw2/LJzz1a4fIcObSbX/duom3Hiv94P3JoNxn7Nwctyz1+GC/eCqdVUiR9pbz8I23firbd6db7l+1rObD3Z+o1ahe0vO0FV7Lx+2/5dd/miPMpr59HmldlHXuSUmoRGxf6hGWk+yPS9i0rr3OB1+tl+vRprF79HVdfaeKhwWa6dTWRkqJAnJwZRUVOHn24O2bzyZ/2F3TwnaQ+l6evNBoNgSvPK8Ll8nB13/fYuy+b6dNuDwRRyvPIP75i585jPPVE75BTXFqtZl4bcx2FRc7Asrp1Erm2b0sOHsxj2mc/ldrGZnMxZ+42br6pXaBOJfmXFX8t3KG4c6f6WCxmtm8/Sm6uPeQ6p1umiuQdquxlqYz2qop0q6rOJlPZ6zxwfydanOjj27YfxW53sW9fTtA6zzzVp9S+rox2rFUrgeTk0tOglmXZ8j08+kh3EhJOziAw+O9daN68OuvWHyh3+/LaLtTr4datVSuB+vWTOH7cFpjOM5xIvttU9HjzxFPzmDd/R8TrR+JUj3llKb6vTlV5fSVcuU+lj51K/vn5Do4eDT0S8nTL4PV6mT7jZ26/rQPrv/+Vlav2nXJaZ0NV9NNzSSTHpJwcGx99vIHevZsFbdu7dzP278/hq6+3BpaV1V/WrN3Pxp8P0r5d7aDlV13ZnG++3c6mzYciyuuWm9tx0YX1SqU/c9Ym+l/fJmhZWeWpSL3k3JKYaKBbVxPDhpi5oreRVauWM2PGdLze0ucQNH2liIicdbu2rWbFkg+5/f4xzJn5Mgd/3c49g9/CHGXhyKHdrEr/iMKCHJwOGxd07hfyXlLlrXM8O5PFc9+mqCAHl9tJr6sfpP6JE9iFBceZ9/lYoq2xeNwuklJqBe5bdOTQbmZ9NIrrbhpJnfqty1x/zfJppM97l7j4VP4+4hOKCnNZtuA9flj9BXUatObOB8cHlSkv5wjp895lz871NG5+EVdd/0hgKr2yygSwf/dPLFvwHkeP7KVJ84u56vpHiIq2suTbicz/chwGg5H3JjxI7botuPqGf1Rof4Qr16/7tuByOWjQuH3Q+v7nG9Z+zQWd+0VUv69nvsTuHeu4f9ikkAE5gAVfjefwwV18OHEYAOdffC33/P1NklNPXhFbXjoxsaWnC7DbCtj0w3z+fM9/K5RXWY4c2s13Cz/A6bSRUq0ubvfJk3rR0TFERwdfwb9l4xLaX3h1UMCwvDJ8t+gDNv24EIC1K2ZwKHMXNWs3pe+NI8osm9frZcaHT3Hng+P4avp/Q64Trj8BtD6/N9/MHs38L8dxxZ8ewm7LZ/2q2dxw6zNBaZT1HitPWX2lvPwjad9TabtI6x2u7TIP+H4slQwoVa/ZCIA9u9ZTt0HriPIpr59Hmlck7e1xu1ix5EOyjh7gePZBatdtQZ/rhkYc0Iu0v0favue6jIwMtm7dzr33RFG/nq53/K1YtXofUz78gbFj/sRLL6ezbftRJr51AxaLmd27s5n60Q8cz7Fhs7m4vl8rrujTPGj7SNbJzMzjzbdXkZNjw+n0MOjBzrRv55te7PhxG2PGLicuNhqXy02tWgmBe4ns3p3N06Pm86+Rl9G6dVq56cXERBETEzwqZfGSXVxz9XlcdGHdwLKy8ixLuHydTjeLl/zCjJk/8+ILV7Nm7X6mfrSBhAQLj/2jJ40apfD5F5v54sstOBxu/u/ZK0oFCTf+fJC42GiaNEnF7fawaPEuZszcxIRx/Rg/YQXLlu+hWbNqjHzs0sA0nP99KZ216w7w/qSbIw7I/fprLu+8uxar1cw9d4efnqx7t0Y4ncFXnw97qBtffrWFseNWcMftwdPofTrtJ24c0BaLJfLpwstSUODAbnfRqFFKmfecqooyRZp3eaqqvc7lOofy7bztXHRhvUC/bXme77P7pls+5Ksv7qF2bd89imJjo3jqictLbX8m+53fxRfVIy4uutTyRg1TOH68qFLzKo/d7iIjIw+AtLTI3ucul4cJr69k6bLdNGqUwrPP9Ak6mV/8eAPhj4lvT1zN2HHfYTQaeODBmZzXogbD/+GbPLu8Y39Zny2hygBlf1a4XB6mfPgDBw7kkHkwj/NaVOehoV0rfJFVeeUqT6hylyXS43l5Jn/wPQsW7gRg+oyf2bnrGM2aVitz2tuKmDd/Bz16NOLWv5zP1I82MH7CCrpcEjwtYGV81pXVb+x2FwsW7mTGzJ/53zs3MvmD7/nq6600aZLKqKf7hBx1CoTtp+X1mVP5LnD8uI0Jr69gz95sUlNjufOOCwLTpZ5q+Zcu281zzy/G6XRz1ZXN+efIywBYuGgXL/xnMVde0Zwhg7uUe0zavOUwDoeb89sHB9P8z7/6eivX9yt/ppCtW48AlAqS+ffl+vW/kptrP6W8CgoczJu/g5f/e0255fCrrHrJ2WM0QudOJmrXNvDe5K1kZmZSp07wuSX9chQRkbNq6fxJvPZ//Vjy7TvMnf0qmb9uY+XSjzl6eA+bf1zIuOdvoHvvu/nzwJfo2usOXv/vLXw2+V+B7SNZZ/eOdUwcfRe9r/07tz0wBqPByHOPdSXjwBYA3nz5Nuo3OZ++Ax6j2+V3sWzBe4Ftt25cwsolU/lp3dzAsnDrd+p+Cw57ETu3rgIgJjaRK/sNIz/vGHt3fR9Ub4e9kA8nDsNWlI/JHMX0KU/yyqhrAlfQlFWmDWu/Yvmiyfz53pe488HxLPn2HV5++kq8Xi+XXfVXWrXvRUJidQYOebvCAbmyynXw19An/i3WeIwmM1lH90WUjsfjZtEcX9A1JjaJiWPuZtwLA/hy2vPYbfmBNO7++xv884XF/HngS6TVasqPa7/m38O7Bu7VFmk6JW38/luq12wcuKdXJHmVZc+u7xn/nxvp1vsubr77PzRp0Ykf180Ju/6Wnxbz5bQX+PPAl4J+VJdXhm6X38Vt948GoOMl1zNwyNvlBuQAlnzzNhd3u4m4+NA/pMvqTwA33P4sTc/rzEfvPsr/xt3H26/eyZ8HvkTnnn8JpFHee6ws5b0XIsm/vPY9lbaLJN+y2s7r9Z3Yzcs5HJSufz8cObg7onwi6eeR5hVJe3/w1hBWL/uUfn9+kjseeI25s0Yz66NRZbZVWcL194ru13OVv04hLn6Uc9T/Jq3jun6TmfjOGl55dSlbtx3ho483sGdPNgsW7uT6Gz7gnrsv5JWX+nLnHRdw0y1TGfmvk98BIlln7boD3HHXpwz5exfGjvkTRqOBS7q+wZYtvvfoX277mA7n12bEYz25+64LmfTeusC2i5fs4sOpPzBn7raI0ytu0eJdPPfCYl55qW/Qe66sPMMpK9/Va/bzf88tYuI7a3jm2QVs2nSYW25uz5y52xh433T+77lFZGTkckP/NqxavY/b7/w0kO53K/bSq/c7tO8wlh82ZADw3vvrueOuaUx6bx3DHvmSnFwb9eol8eroZXTp/iZFRU7cbg9vvLUKi8VMUpKVO++eRv8BU3ju+UWBe3eFkr70FwCaNEklKqrsQEavy5oEPe99eVPatqnJuvUHWLFyb9BrE99Zw6C/dqayvPDiEgCGDu5a5npVUaZI8y5PVbXXuVznUN6f/D0228lpF4cO6UqzZtX4/ocM2p7/GhPfWRP43A0V6DiT/c4v1MlvgF92Z/Gn61pVen7huFweHh3+NU6nmwfuv5jU1PIDOC6Xm8dGzsFqNdPrsiaMn7CCR4f7ZvAIdbyB8MfEB//amct7NaV69TjeeXtAICBX3rG/rM+WcGUo79j+9yGz+eTTH3nqycsZ99qfeGX0Mp4etaBC7VlWucoTrtzlieR4Hom77+rIa6OvA6D/9a155+0BlRaQA3jzrdX89f5OXNixLp0urs/0GT+TmZkXtM7pfNZB+f3muxV7GfHPubz3/noeHf41hYVOWraswegxy3ny6Xlhyx6un5bXZyr6XaCgwEHnrq/Ts2djxo/tx9Klu7mo0wQu7TWRR/7x1SmXv2ePxnToUJsl6b9wSbFAaO/Lm5Kba+fhYd0iOiaFC6bFx0djNhvZt+94mfXz83h8x+PDh4NHZfqPP7/szjrlvL75djuNG6dUaKRsZdVLzr6yfiMqKCciImdVzyvupf1F1+Bxu2jeqhsPPPw+r089QmqNBkya8Fd6Xnlf4J5DTVp04tobRzBn5sts27QMh6Oo3HWcDhsTx9zNjXc8F7jXUq9rBhEVHUNO1kHcbiebNizAYvF94UqpVpeLut4YKF+3y+/iif8u44p+DwGUu35i8smr2v0s1tJXeBYV5nLv0IncdNfz/O2xj7mk561s+3kpa7+bXmYedls+H73zCANu/zcmUxQp1erS7fK72LFlBZs2VOxHWihlletQpu/eNNbYxFLbxcQkknXkQETp7Nv9I8ezMkhKqUV+3lGuHTCCjp37MWfmK4x6tDMOh+/Kt5jYJM5r04Or+z/Kf97czJX9hpF97AAzp/pG0kSaTknfr5pNx0uuD1pWXl7heL1eJr8+iB59BlKjZmPA1wdbtetVal27LZ9PJj3GW6/czqGMHTz7aGd2bDl5/4JTLUNZjh7ew55dP3DhJaHnq4+kP0VHx/DYv7+lfqN2LF84mYwDW6lVNWSCtAAAIABJREFULKBZ3nusPGX1lUjyL16Xstq3osrLt7y284+s3boxPShdk8l3xaj/XHl5+UTSzyPNC8pv700bFgSmmTSazLRo3Y2N6+dSUeXtj0j367mudu3atGrVkqkfu1m12k2YWwbIOeS+ey/6f/buOzyqKuEf+PdOn8ykd0JCSEKAUKQJoUkxomgCCuJaVldXXHXX1XV/q+++usV3dV3L2hV774C0hCYBEWlKb6GEkkY66ZPpM78/bmaSSaYFAhPg+3meeZKZufeec+/cuTNzv/ecg+tnDoTFYsPEicn47JNbUFfzDyQlhWH+777D/HuvRN++YivrcWMT8dfHp+KFFzdh00+noNebfU5jMFhw528W4t/PzHCOS/LgA+OgVstRUdkMs9mKdfmFzqvHExJCcPPc9lbFv7lrFLb89AAeeVgMCnwtz6GlxYT/99hK3HbHNygsrMWYcW9iy1bxZL6vMt3xVe6kicm4ee5QAMCtvxqOPz86Cdk3DMK994zBxh9PYsKEfnjwgUxk3zAIv717DLZuK3Z20zdxQj88+qdJLuXNv/dKzLhmAKxWG576Rxae+kcWXn81B8/8awYKC2vx4Uc7sXdfBcrLmxAXp0VtrQ7/8/gUzJ6VgRf+uwljxr3p8USv4yRr34Suref98fAfJwIAXnu9/Ri2c1cZEhND0adP1+9E/jpVVId//l8+/vTnPIwZ+yY++XQXXn81B39+dJLPec+1TudS9vmu2/la7vla5737yjHt6vcx7er3MWXae0gb+F988+0+l2nCwlT4aeP9uOH6Qaira8X9Dy7F5CnvorDQc7fa52s7dseu3afR3GzEQ38Y7/c8NTU65/boeHtzwTaP85RXNOHv/1yH++5fguTU57F7dzneffsmvPv2TX6VaTJZ8Zc/X4UH7h+HPz40AVdPT8O6fLFbP3fHm+4eE/059nv6bBk4MNptHfw5tq/LP+5sqSOTSTBpYjJWr+5eN/ve6uWLu3r7w5/jeaCVljZCrzcjPV0MSh58YBzMZiveff9nl+nO5bPOn/1m+rRUXD9zIADg/vvG4fcPZuKZf83A5EnJyM8/3u318rbPnM13gTff2oa6Oj0mT0qGWi3Hiy9cD5PJij/8PhOvvJR9TvV/9JFJUCik+G7JQedjO3eV4brr0j224ux8TDp+QhwvPSSkazeQISEqlJb5vsAWgLNngo0/nnR53HEhjwDhrMtauqxr15W+9NR6UeBYrcC27VZ8+bUFGRmDER8f32UahnJERBRwSqUGEokU6Rnil36VOhjHD2/Dmepi9E0a6jKtoxXFzq3f+TXNsYLNqK0uQkr6WOfzCUkZePPLagwePg1SqRyx8Wl496U78cvmRQCArOyHnNNKJFKkDRrvPLnta3p/hYbHQalqH+jX0aLtyIGNXss4emgzWprr8NUHf8bHb96Pj9+8H8Un9yAmPg01lSe6XY/u1EsbLF7Ja7N2HXDdajVDE9J+pa+35ZypFk8SZt3wB1x1zb1I6DcEk66+G7fc/RwqTx/FxjXvdlm+RCLFbfe+hJT0sTh26CcAOKvlWCwm7N2x0mU8OX/K8uTE0e0oOrEbAwZPdHlc7Sa4VKq0uPW3L+LVT8uQM+8JmM0GLPzEfWut7tTBE7vdjsWfPYl5d/3b4zT+7k/rVy5ASvo45NzyJKorTuCZxyehrFj8AeXrPeaLt33Fn/IdurN9/eWtXF/bLnXgOKQNysQvWxbh+BHxRJTZZMCm/I8AiGG7P+X4s593pyxf2/tvL2zG7fNfASB2i1lVXojW1qZubzt/Xg9/XtfeThAEzJ17M8aPn4z8DTa89qYFm7dY0djIpnO9mUajgFQqweRJyQDEcXm2bitBcXEDhg6NdZn2tluvACB2neXPND9tPoWionqMG5vofH5IRizOVP8d06elQi6XIi0tEnfc+a1zvKg/PtR+wlsqlWDC+H7OE0G+lueg1Srw0os3oKLsCTz5xDQYDBY89rjYattXme74U65KJZ40Cw1tP2kUGyt2yxcX136ciYoSL06qqmoPEd11X6ZSyaBQSF26pXzg/nGQSARs2y5ue0Bs2TT/3isxdEgs7rl7NF54biaOHq3BO+/+3GWZHcuqqvLcit6bX98xApGRQViy9CBKS8UTYQve3t6toMKdqEgNZlwzALfdegW++eo2nC75X/zxIf9abZ1rnc6l7PNdt/O13PO1zsOHxWPNqnvabyvvwdgrE7tMFxcXjLwVv8Gib+9AbKwWW7YWY8Lkd7B3X4Xb5Z6v7dgd/3wqHx99MBfh4WrfE7eJiFBj8cI7utzuvqvrGM8OwcFKXHdtOvLXH0dVVQteeH4mfnffWL+7aQwKUiAhof27d0JCiEuLl87Hm+4eE/059gPuP1s81cGfY+y2zQ/itVdyAIgtZwoLa9HYZPCyJdzzVi9f/O1qsjNfx/NAe++DX3Df/PbfLr+6ZTjCw9V4971fYDK5XmF1tp91/u43KpV4nsHRra24fC1qPIyl5423feZsvgvs3lMOpVLqfC9OnpSM4GCly3HrbOsfHx+MG2cPwZdf7YXRKJ5f+PyLPbjnN56PFZ2PSZFtLdkslq5XxZnNVufzvmSOS8L4zCQsXLTf2TrZYLDgw492ABCPKWdTlslkRd7KI7hxdve6muyp9aILr7HRjp82W/DqG2as/8GGiROnYO7cm91+nnFMOSIi6h06fUhVtHWVaDa7/vCIjE6CRCpD5eljfk1TGrUPcrnK64+6Bx77Cq/8Kxtvv3gbfsr/CPf96ROEhMX22PT+6NN3EARBgob6Cq9llJccQnBoNO55qGvgdD50rNew0dcBQJcuHW02Kwz6ZsQnDPRrOY6xqzp3gzl6/E347O0/4FThLo/LGZU5G9+veB0Azmo5h/f/AKVK4zK2lT9lnSrciYWf/I/L83N+/TTKSwva6uD/1feCIMGcX/8LzU012Lz+U9jtNgiC++ukOtbBE091Kys+gFGZN0Ib4rmrDH/2p/y8N7Htx6/wf6/shEQqQ9qgTLz13C144z834z8LDqH0lPf3mKf6DRjs/kRY5/eCr/IlEteuyLqzfb3VzVe5/my7P/7vd/hkwYP47z9nIjF5GOISBkImE7tiGTR0il/r5+9+7k9Z/mzv0PA4FBZsweYNn6JfykiER/VFa0mBx/l98fR6dPd17c2kUimmTp2KUaNG4eeff8bW7buwYaMRiX1lGJgOpKVJEBPdvfFf6PzrfMg6ckTsLqxjl3MAkJQUBplMgmPHav2aZt++SqhUMq/fO7756jZcn/0JfnXb1/jwo5347JNbEBurdTutP8vrSCIR8My/ZqCmRodPPt0Fm80OiUTwWOaOnWV4/H9cW8M+8/SMbpfbsXxPj5nM3W9KGh6uRmysFmfOtDrH0AoLcw0I5tw0BA/+YRl27jrtdhmOE6KFx2tht9u7vU5qtRz3zR+L557fiAXvbMfjf7kKR47UYNLE5G6vT0fBwUpMnNDvrOY91zqdTdme9pXOyzlf26u3rrNEIri06khLi8QfHxoPqdT9fnbz3KG4enoqsmd9iq3binHPbxdhz66Hu0x3vrajv6/jhx/tRNbVabjh+kHdmlcqlbgNcrRa913RAUCwVnxtvv7yVkye8i5+ddtX2LPzYY/HRV8kEsHZPagn3TkO+3Psd/D38OLPMTYuLhibtxThk093YdTIBPTtG4rGgu6Hct2p1/nU8XgeSGazFR98uAMp/SPwVocWnIIgoLKyGYu/O4DbbxvhdRn+fNZ1Z7/prLufUw6+9pnu7PcAMHpUAhYtPoDjx88gLS0S5rZ16zzW2dnW//7fjcXCRfuxbHkB5tw0BBUVzR7HLnR3TEpLiwQANDYaXaa1Wm1objZi4ED/u4xc+t2duP/Bpbh25kcYPiweAwdGQaEQv3dMnZKCgrZuZbtT1oYfTkCjUbiM8euPnlwvOv+qa+woLLTh6DE7SsusUKuVGDlyNDIzMxEcHOxxPoZyRETUKwW3BQl1taUujwuCBEqlBhFRiX5NY7WaoW9tRGN9JULD49yW1S9lBP795n4s/OSv+Cn/Yzz92ET847/bEBzqvluP7k7vD7lCBZVa6wy2PJVhNhtQV1MCg74ZKrXnD/ie0rFejq7lGutduyRsaqgCAMQlpPu1nPi+A13mcwgJjYFUKneOj+WORhuO2Hjx6tGzWc7u7cswctwsv34odCwrJDS6S5eXYeFxOHlMvCq/sa4SMXGpXZbhzaBhU7Fz6xKPgVHnOnjiqW7ffvwYykuP4NMFDzofN5n0sFpM+MPtUejbbyiGjrzG5/60eulLGDNhLiRS8Wvj8NEzMfvWv2PRZ0+g6Pgun+8xT/XzpPN7wVf5HVvodeTP9vVWN1/l+vNeDAmLxcNPLIHNZnXW43/uT0dK+ljExKf5VY6/+7k/ZbnTeXuv+PYZ7N+1Go/9ay2UKi2OH93ucd7u6Px6nO3r2puFhITgmmuuwfTp03HixAkcOnQIW7Ydw7r1BgQHS5GUCPRNEJCYKEF8nAAJ+yzpVRxXuJeWuo7TIZEI0GgUSEwM9Wsas9mKxkYDKiubERfn/tgwckQfHNr/Jzz+19X46ONdyJy4AL9s+4NLiwIHf5bnzrSpKfhuyUHnSUJPZcZEa7tcwR0fF3zW5Z4PSqUMaWmRGNTW3VrHFncAEBOjhVwudY4J01nG4FiEhanQ0GDAkSM1GDy4a1fjvvzhwUz896VNeO/9XxCklmP+vVd2f0V62IWuk6d95ULWrTevc0e/vmOk8//i4gYcKqhydvEGiOHE6pX3IKn/c9i7rwJVVS1uT4yfj/X1Z502bylCaVkDnvpHVrfnPReZ45LwzL9m4K9PrMFtd3yNdWvvhVR6fj4su3Mc9ufY313+HGOffmYDVq0+inVr74VWq+gVLczOleN4HkhLlx3CXXeOxL+eusbl8T17yzF+4tt4481tPkM5f5yP/cYXX/tMd/Z7QOzWc8vWItx6+9f41/9dg+/XFeK++VfiV7cM75H6TpuagrS0SHz08U6oVDLMynE/fqWnY1J62zhtlZWu3wscLeMHpvt/fiY2VotlS+6E1WpzfndKTX8R48YmIi0tEhaLrdtlLV12CLNnZXQ7ZO3J9aKeZbUCFZU2lJXZUVpmR2kZ0NxsRVCQCmlp6Zg0eQhSU1Mhlfq+wJQ/BYmIqFdKThsNQZDg4J51Lo8b9M3QtzYiPWOiX9P0SRL7785f+ZbLNCZjK3ZsWQyLxYSdW5dAo43APQ+9h0eeXIba6iLs3ZHntl6+phcgwGp1HdPEavE9mHWrrgH61iYMGZHltYzYPumwWEzYsOptl/ltNiu+X/Gq8763YKs7OtYrvu8gxPVJ7zJOl+P+8FEz/VpOdGx/xMSloui4a0s2k0kPq9WMxGTPfduXnNqPISPFH1DdXY7dbsPu7cu9dl3pqazImH64Judhl1t0XAri+ohB5KF967vM7+sK3ZamWgzImOh1mo518MRT3e584C088uRSPPzEEudtzPg5CNKE4+EnluC2+S/7tT/ZbFbIFa792Q8b3fZaC4LP95in+nnScV/xp3xP/Nm+3urmq1x/34uA2B2pIAjYsGoBaquLccd9r7pM762c7u7n3spyp+P2rjx9FEu/egpXXXNvexeXPvZjf3V+Pc72db0YSKVSpKen46abbsJf/vI45s+fjyuvnAKzJQU/bZHhg49M+M8LJnz8qRX5GywoOGxDba0dtp45bNNZGjM6ARKJgO/XFbo83txsRGOjAZMmJvs1zZAhYqusN95yHT+ptdWMRYsPwGSy4rslBxEREYQP3puLFcvuQlFRPXLzDrutl6/leVJb2+psUeOtzH79wvDIwxNdbikpEWddbk8zGCw4fboJU6ekoH//CKSmRnZpEafXm2E2WzF8mPsLPoKC5Hj+P+Lx5dnnNnot7+df2i/0Mnbowqxv31DMuWko6upa8eaCbc7ux4DuHybP5bB6rnU6l7I97Ss9VTdPevM6+/LgH5ZBo5Hjf59Y4zyh6xASosSQjFjI5VKEhbV/Hp6v7ejvOu0/UImlyw51Ofl96lS913l91cfd8+6+Kz/+2FWYcc0A/LDxJP72j3VdZ+oB/hyHO4b8/hz7u8vXMfbo0Rr846l1mH/vlc5Whr5+W/R2HY/ngfT6G1vx27vHQKmUudwyxyVh9KgEbP+5BDt3lflekA/nY7/prON+6muf6e73D0BsYXxN1gA89c8shIer8cRfp+KlF28453o7CIKA++4di/z1x7Hg7e2Yc9PQLtN4OyYNGhSN9PQo5xi6Do77M2d67snHE6lUAkEQ8NaC7SgubsBrr4rdgXa3LJvNjmXLC7rddeXZlEXnh80G1NbaUXDYhnXrLfj4Uwuee9GEDz8246ctUlis/TF27FTMnz8ff/nL47jpppuQnp7uVyAHMJQjIqJewG63wW6zuXxpjIlLxZQZ87Fv5yrnmEoAsGPLYiT1vwLjp97h1zRXjJ6JuISBWLn4eSz96imcLj6E/btW4/1X70HGFdMBux0/5X/snPeKK29AaHgcgrTiAMkVZUfw6tOzUHxij6OyXqePiE5CU0MVDreNz3Rg91rU15WjrvY0bLb2H9nWTuOy/ZT/MUZn3oiMK672WsaIsdkIi+iD7774O9blvYG62lIcPrAR7750JzKuEL+oarThaGqshtHQgoa6cpiM/ncR4rVeAGb96kkc3PM9mhtrnNNs/eELXDnxZiT0G+LXcgRBgrl3Po19O1ehusO4ZYf3bYA2JApTr/sdqiuO48v3/+QSRFRXHMepwh24/qbHAMCv5XRUeHgrzGYDBg1z7crPn7I8GTLyGkTH9kd+3pvOsbAM+mYUn9iDlqZaNNSVw2o148fvP0BtdZFzPrPJgJ83L8Tt81/uVh3MJrH7Eaul67h+nfVLGYGBQ69yuUVGJ0EmV2Dg0KuQnDrKr/1pxJU3YN+OPJegt7ryBCKiEpGUPNz3e8wHX/ucr/L92b7d3Xb+lOvPtuuo8PBWfPPx47h9/ssurcB8ldPd/dxbWYD37V1fV9E2/xbY7XbUVJ5E0YndaNU1wG63w2I2dliOeLFB5wsA/H09fK1352W6K+tiIAgCEhISMHnyZNx22+147LH/wUMPPYTs7NmIjrkChcfD8N1SC956x4Rnnzfh3fetWLLMgs1bLDhWaENDw8V9Aq63stnssNnsLt87UlMjcd/8sVi56qhz7DIAWLT4AEZcEY9f3zHCr2munzkQAwdG47nnN+IfT63DwUNVWLX6KH5zz0JcPT0VdrsdH3280zlv9g2DEBcX7Bwf5ciRGmTP+hS795QDgM/lmc1WvP/BDhQV1TuXaTBY8O3C/Xj15WwA8FmmO77KBQCr1d62/Pb5rFbxfWo2t79fHScNO548dHSB1TmoMJttaGxs72rr0892YdjQWMydMwQSiYB/Pz0DK1cdwYkTZ5zTrN9wAlFRGtz/O/F4t3rNUdw453PU1LSPZ+O4sv+LL/fg/z22EjqdyaXcqqoWzP/dd85uxurr9Sgvb3LZRx55WOx2+e7fjIJaLXc+3toqHqP0hq4XYTmWp9e3P9fa9n9rq6nL9A7u1qEn6uRP2d7q7klP1O1iW2d927Sd92GHhYv248iRGkRFaVBTq8MfH1nh8h6oqmrBwUOVuOP2Ec7uL3tqvwPa34OeWpC6c+LEGTz5t7X47T1jcPRoDY4ercGRIzX4bslBLFnqfcxXxzbztO0c27/j8+7mEQQBn396C+LigvH8Cz+6BAbu9hGz2eo8njiYTFaX16Xz8cbXMTE8XI3q6ha0tJhQXt6E+PgQn8d+wP1ni6c6+DrGlleILWQ2bymC3W7HyZN12LX7NBoaDLDb7TAaLW5fY3fbyFu9xLp53lc8Hat9zed43tPx3N/lON6TZjdja/ma19222La9BE1NRgwc6L6l0dw5Yij08iubnY+d7WedP98ZOi6r4/JNJovzcU/r0nk/Pd72uehpnzEYLF73e3dlfPDhDqxZewxpqZEYPCjG7feGs62/w92/GQWZTILk5HAEBcldnvPnmPT3J6dj7ffHXJb9+Rd7MO/mYRg6xHWIEX+Pi1u2FuMvj6/Cqy9nu4z72J2ytmwthsFg9hpCe6tPd8qic2O329HQABwrtGHzFguWLLPg3fetePZ5E956x4Tvllpw/EQYomNGIDt7Nh566CE89thfcdttd2DSpElISEg4qy5npU899dRTPb86RER0uTp0CFi8GLjxNv9+AJ6pKcHa5a+gob4CicnDEROf6hxLaOiILLTqGpC76FkoFEE4cvBHHD34Ix587CtnKw5f0wgSCYaOyMLhAz9g59bvsGH1Oygt2o877nsVUTHJsNms+OiN+bBazFCpg/FT/kdQa0KRffNfIQgCDuxag1VLXkR830FIHZjpc/rY+FTs2LIYP6x+G1t++AIJSRmwmI1oaaqF2aRHesYkSCRS7NuxEmVFB9DUWI0dWxZD11KP3zy4ABKpzGsZMpkc6RkTcWD3WvyyeSG+X/EajhVsxpw7/s958l0ikWL7j19h6w9fQiqVYfBw38GIYz5v9QKAxOThUKo0yF30LJTKIGxY9Q7MZgN++8f3IJer/F5OQtIQaLRh+PbjxyCRSlFWfAA/fv8B7vvTJ4iOS0FleSG+ev9RbFz7Hupqy1B0fBfKSwtw9+/fgULZPk6Fr+V09P2K1xEWEY+xk+a5PO5vWZ62WfqQq7B3Ry5WL/kv9u1YicLDW6BUaWC1WWA2GxEdm4y3X7gNa5e/ivozZSgvPYyTR39Gzi1PIjq2v991MJsM2L7pa+zftQZ2mxXDRs0Q9/FufAEs2LcBJaf24bob/wwAkEp970+Dh03F8SPbsWndR5DLlTh2aBO2bvwCv33ofURE9fX5HvO1/XztK77Kb2mqxRvPzvW6fc9m2/kq159tBwA2qwVrlr+MJV/8A3c+8AYmZ93drXIA//dzX2X52t5h4XHYuzMPB3d/jx/XfgCJRIYBGROwe/sy7N2Rh5HjZkEdFAKTsRU///Qt9v6SC6OhFVdOnAuFUg1BEPx6PfxdbwBey/LX8m8kmDcPGDLE97QXQlBQEOLi4pCeno4rrxyLSZMmYfDgwejbNxFKZTgaGmU4fsKInbsM+PkXK7Ztt+PwYQGniqyoqLShsdEOkwmQSgQolYFem4tPSUkDXn5lMyoqmjF8eDxSUyOd3aNdk5WGhgYD/v3sBgQFybHxx1PY+OMpfPPVbdBqlX5NI5EIuCYrDRt+OInF3x3E2+9sx/79FXjt1VlITg6H1WrDb+d/B5PZiuBgJT76aCdCQ1X4379OhSAIWL3mGF548UcMHhSDzMwkn8urrW3FjXM/x8uvbkZZWSMOH67B9p9L8Lcnp6N/f/GCIV9luuOrXL3ejAVvb8eBA5VITYnA6FEJMJmseOvt7djf9tjYK/vCaLTi3fd+xt59FUjpH4mxYxNhNFrwyae78dPmIkRFaTBtagoUCily8w5j794K7NtXgdLSBqxdV4gNP5zAd4t+DY1GvOp/6JBYhIep8ZfHVkEqFXDgQBXe/+AXfPbJLc4WO2++tQ2ffb4bs2YNRlKSOB6nIAi4ee4wDB4Ug/c/3IEX/rsJmzadwrr8Qrzw4ib8sqMU//x7FkaMiEdJSQNefGkTNm48CY1GgfQBUW1djYVhzZpjeP4/MxEWpobVasOBg5V44cVNOF3ehPo6PcaPT0JsjBa1ta1YueoIPv5EvNhGrZYjNSUCLS0mvP7GFvyyowy1Z1oxalQfxMZooVK5jizSeR16ok7l5c1+lV1To3Nb99BQ19bNHd9T51o3QRAuqnUuK2vEa29swY6dZaiqboHRZMXevRXYvKUIK1cdwTP//gEvvbwZv717DKZc1R/LVxRg9ZpjWLrsECoqm/HDxpN46OHlyMkejDdemwWFQtpj2xEQA7tvvt2PFbmHoWs1Yd7cYVCr5V4/OysrmzEt6338/EspFry9HW8u2IY3F2zDWwu2YdHig3jrjdmIiHD/vbi6ugUffrQT6/KPQ683IykxDP36hUGtlsNms+PAwSq88OImlJc3oaHBgDFj+sJuAxa8sx1btxajvl6PK4bHIz4uGCqVDBqNAiNH9MEXX+7B8hWH0bdvKAYMiMK77/3sso9UVjbjP89vRHl5E7KuTkNiYiiqq3X4z/MbUVXVgmlTUxEbo+1yvJFIBK/HRKlUgi+/2ovPv9wNmUyC6dNTfR77vX226PXmLnVQqWRej7HxccHIyzuCtd8fw3sf/AKpTIKJE/ph6bJDyM07jBnXpOPrb/dh00+nEB2twdXT06BQSN2+jzzVy9e+4q7ejjG2fO1j/hzPfS3HYLDgq6/3YvWao7BZ7bh2Rjq0WoXf+3nnbXHyZB1+c/dCNDQacPX0tC5dxtbW6vDjplPYvLkIBQXVSEoMQ2pKJN557+ez+qxzfI5622+qq1vw6mtbUFRUjyEZsRg6JBbHj5/BC//9EeXlzZg6JQXJyeFuP9c676d33D7S6z6TfcMg/OnPeR73e3dl/PxLKV57fSveXLANz7/wI57+9wa88+7PqKhsxqSJyWho0J91/R00GgUOHqzCHx8ajz59Qrp9TBo+PB4ajaJtGyuw4J3tMBjM+OC9uS7Hen+OixaLDS+9/BP+9o91eOuN2bjn7jEudfW3LAB47fUt6BMfglvmue/q01d9ulMW+ae5GaissuPUKTsKDluxa7cVW7YKWLfeiq3bLDh4yIa6eg2UqkQkJg7EqFGjMWXKFFx33XUYOzYT6enpiIuLQ1CQ93NE/hLsF3v7ZyIi6lUWLgR+9Svg4+Xur2br7PiRbS7dO4ZHJXQZm8tk0qOi9AiiYpOhaWuR1pk/01RXHIfVakFcQrpzXCO73Q6joQWV5YUw6lsQGZPUJUioLD+G2PgBEATBr+mNBh0qTh9FTFwKgjRVcpFIAAAgAElEQVRhaKivQFh418GQG+sr0VBXgYSkDMjk7WdW/SnDbreh4vRRwG5HXJ90Z4DRcV0VyiCERfRxuy288VSvjixmI06XHkZoeKzbdfN3OVarGeWlRxCkCUVkdFKX5yrKjkKhUCE6LsXr2GDeluNQcmoftMERiIhK7PJcd8pyx263o/L0UchkCkTHpaChrtxl29usFlSUHYVUJkNMXGqX18ufOlSUHUFTQ7XLY/1SR3ZrbMGaqlNorK9C2qDMTvX3vj8BQEvzGdRUnkJIaDQiopPcnthx9x7zhz/7irfyfW3fc9l2vtbb27Zbl/cGyksK0C91FCZNv8vjuvlTDuB9P+9OWd62t8ViwuniQ4hLGOC8+OF0SQGiY5OdAXHxiT0w6F3HOOiTONg5rqY/+7u/6+2rLH/cM1uKb78FbrnF71l6BaPRiOrqalRXV6Ourg51dWdQV1eL+vpGmM3ileNyuQTh4VJEhNsQEQGEhQoIDRUQFiYgJFiAyv355Mva1m3FLle2900IQWqq6/g2er0Zh4/UoH9yuMfWZP5Mc/z4GVgsNqSnRznHJ7Hb7WhpMeFYYS1aWkzolxSG5GTX7y3HjtViwIDILu8Hd8sDxJNIR47WQC6TIDU1EjKZ6/HXnzK9cVfuwUNVOHOmvSV+WmokGhsNqKltv6K7X1IYjEYLKtvGQAGAlP4RaGwyuMwbEaHGsKFxuO/+Jfjiyz1orHsKBw9VoU98sMexlsxmKw4fqUFYqKrLCT6LxYbi4vour2tHra1mHD5SDZVKhv7JES5X5+/ZW46mpvaWwfFxwUhPF8d36Tj2l9FowfafXcc1BoDxmUk4fvyMy7YA4AwbOq67Yzt1fj06r0NP1OlYYa1fZRcUVLute8fWAh31RN0UCulFvc6eDMmIQVSUBidOnEH//hEoK2tEXb0eZrMVA9OjERLS/hncU9sRAHbvKUdzs2v9MgbHeBw3ChCDxhMn69w+p1BIMT7T/fdrADh8uBrVnVrAJPYNRUpKBMxmK7Zu6zoWWkiIsss27J8c7vJ+7rgew4bGIiRE5bKP7NhZ5mwxCIjdBR48VOVsXeWunIgINYYOifV5TDx+/AyCguQuIQHg+djv7bOl8/HScczrWJa7Y7vJZMXBQ1VIHxDl7I7wUEEV+ieL+1JFh/GmgoOVGDWyT5f3ka/PPG/7ird6+9rH/D2ee1vOkSM1qKpucXlu1Mg+CA5W+lWHztti/4FK1NfrAYgXnkyelOwy7/HjZ3C6vMnlMbVaBr2+fX/qzmddxzHjPO03nY89w4fF4cTJM9Dp2vfryZOSYbPZ3X6udd5Pve0zarXM637v7rPz519K8cMPJzBiRB9UVjajpcWE5mYjftlRinFjEzErJ+Oc6u9QX6/v8l2qu8cko9GCgsPViIsNRnx89/Y1QOzW9FBBFUaPSsBv7hrlbMHsjq+yAGDvvgpERgR5HDvQ3+O0P2WRyGAAmprtaGiwo7HRjoZGO+rqgLo6AXX1VlgsYgQml0sRERGG8PAoREREIiIiAjExMYiJiYHyAl7xyFCOiIh6VHdDOTr/3nnp1z7Htbt+zmPoP2CM12mIiC5GF2so501zc3NbUFeH+vr6tv9r0NDQCL2+/Qe+QiFBaIgEYWFASIgdoSFiaBcaKiAkGAgJEeDnsAdE553jJK6+5elAV4WIiM4Bj+cXv9LSRkyZ/i4Kj/zFpXUlIAZFL/53E/72pH898hCdK6sVaGqyo6kZYuDWYGv7H2hsFNDYZIPJ1H4BglqtRFhYKCIiohEREYGIiAiEh4cjIiICwcG9I9xke0ciIqJL3AP/74tAV4GIiHpQcHAwgoOD0a9fvy7PWSwWNDc3o76+Hs3NzWhpaUF9fT3q68+gpLQRjY3NMJnaL9SQyQQEB0uh1dgRHGxHcLCAYK0ArRbi/8ECQkMEKBRdiiLqUVarzTl2DxERXbx4PL/4rVl7DGVlTfj5l1JMGN/+ffPMmVa88tpm/G7+WC9zE/nHagVaW+1o0QHNzXbx1mJHSwvQ3CyItxYbdDqrc9xCqVQCtVqF4OBghIdHIn1guPO3kSN4u5At3s4WQzkiIiIiIqJLhEwmQ3h4OMLD3XdPaLfbodPp0NjYiObmZjQ1NaGlpaUtwGvGqaJG6HQ66HR6l/nUaim0WgmCtYBWa0VQkABNEKDVShAUBAQFAVqNAI1GgFzutmgij37YeBKbfiqC2WxFbt5hXDW5v8fxvIiIqPfi8fzScNONGfj8i92YOPkdpKZGIjZGi6YmAzIzk/D3J6d36TqayMFsBnQ6oEVnQ2sr0NoKtLTYoGttC+BaBDQ3Ay06QK937WFLo1FBowlCSEgYtNoQxMWHQKPRICQkBMHBwQgNDYVWq/VQ8sWFoRwREREREdFlQhAEaLVanz9obTZbh7CuBU1NTdDpdG1/W1BX34KWlhbodHrnGHcOcrkEQUESaDUCgoLs0Gjs0GgATZDQFuAJUKuBILX4V63uOoYiXV6USik+fH+u835VVQtP4hIRXYR4PL80REVpsGnj/Th6tAYnTtYhJkaDwYNioNGw64TLjV5vh14PtDr+ttrFoE0n/tXpgNZWoe2+3WUcS0Acw02jUUOr1SIoSIvQsGAkJoVAq9UiODjY5a9E4v+49Bc7hnJERERERETkQiKRICQkBCEhIT6nNZvNaG1tRUtLC1pbW6HT6Vzut+haUFXd3Pa4ARaLa4gnCGJLvKAgAWoVoFbbERQEMbBTiSGeM8hzTiNAxl+zl4yOXWMREdHFi8fzS8vAgdEYODA60NWgHmCxtAVsBjFYaw/YxMfE+4BeL2kL4OzQ69u7jXSQyaQIClJBo9FAowmGRqNFVHQQtFotNBoNgoKCEBTUfl/GL+xucasQERERERHRWZPL5QgNDUVoaKhf01ssFuj1ehgMhi5/m5ub0dzcjFa9HmfqdDAY9NDrDdDpDLB3PisAcUw8lUqAWi1ApRQDPVVbaKdSAWqV4Hq/bTqNRsBldDEuEREREV3kHMGawdj219Dhr6HjfQn0esBgFKDX22Aw2GCxuPseLYVKpYRarYZKpYZaHYSYWLHVmviYqstfrVYLQWAvF+eKoRwRERERERFdMDKZzDkgu7/sdjtaW1uh1+udN4PB4Ly139ejqbkV1TWOx4wwGs1ul6lSSaBSSaBUAEoloFTa225igKdSAkql0PZc+1+VElCpxPsM9oiIiIjIG5sNMBoBg0EM1IxGO4wufwGDUQzVxMeEthtgNAEGgxisuaNUyjsEayqoVEEI0qgREanq8JjKGaw5bkFBQQzXAoihHBEREREREfVqgiC0dZOj6fa8drvdQ4DXfjMajW03A3T1YrjX/pi5S5ebDmJLPYkY2ikEqFR2KBR2yOWAoi3sk8sBuUwM+uRyQC4XAz2FQvxfIXdMJ0AuP9ctRURERETnwmwGzGYxMDO1/W8yieGZ2WyH2QwYDIDZ0mE6kzifySTAYBBgNAFGo+dWaoDYUk2plEOpVEKpVEKlUkOpVCFIo0J4hOMxVZdgreN9BmsXJ4ZyREREREREdMkSBMF5VfDZslqtzpCua5BndHnOZDLBbDZD12qE0aiH2WyG2WyGXm+AxWL1GPA5qFQSyOUSMbxTAAqF0BbyWaFU2p3hncoZ5LkJ/ORom0e8z/M1REREdKmx29EWiIlBmcnsJjgz22E2iy3UXMI2kwCzWYDJZIfRJLRP56FFmoNMJoVMJoVarYRcLodcLodSqYJCoYBcoYJGq4BKpXIGbR1vjiDNcV8qlV6gLUW9DUM5IiIiIiIiIi+kUqlz4PpzZbfbYTQaneGdyWSC0WjsEN7pYbFYYDabXUI+k8mEpmYDzGZT23N6mM3idJ666HSQyQTI5ZK2wE9suadUiq36pFIbVCpxjD2FApBKAYVcgEwGyGRiuCeTCVAoxO46VSoBgiCGgoIAl3mJiIiIALHlmM0mdtlotwMGI2CziYGYzSY+b7GI4ZnFIt5MZjusVtd5xftid45ms9g6Ta8XW595aoHmoFTK24IzGVQqVdv/CiiVamiDxVBNoVA4n5PJZFCr1R3CNqUYtrVNp1Qq2TKNegRDOSIiIiIiIqILRBAE55XSPclTyGcwGJz/uwsDLRYL6huMsFotMJlMsFjMbaGgBRaLBSaTGTab95NeDlKp2HLPEQLK5YC0Q9gnttqzQqVybAcx6FMqBEiljgCwvStPqdQxr9hqUAwB2+clIiIi/xgMji6921qYmQCrVeyW0Wptb0VmsYj/W63iNDabveu8RsEZnlmtgrMbRzFks8Nq9e97g0QiQKGQQyaTQi6XQSYTbwqFAlKp+FcmV0Kj7RqOOYKz9rCtvRtIxzKIeiuGckREREREREQXOYVCAYVCcVbj7vnDaDTCbrdDr9c7W/vZbDYYjUZYrVaYzWZnCz+z2Qyr1QqTyeTs+tMxtp/dbkdDY2vbvIZO84o3q9V711EOggAolRJIpQIUCvHKdZVSAGB3BnritrFBIhFP/imV4mOO0E8QBKjaHnO0DgTaWwR2bAXoCAgFAVAq2pcjk7WVzaCQiIggBmBAe0swQAy47Pb2IAxobxFmt4utwsR5xBsgti6z2+3O0AxAW0sze1trM4lzOVYrAAgwGO1tj4nhmNFog92/jAxSqQRyucwZkCkUCkgkEiiVKkgkEqhUQZBIBIRHiGOZObpgFEM0qTMck8lkkMvlkEqlUCqVbctQOrsUd8xLdLliKEdEREREREREXjlOnvV0Cz9PTCaTM/Sz2WzOQM/x1xEGOoI/s9nsfB4ALBaLc/w+xzxmixWtejMAO4xGA2w2G+x2G4xGEwC7s3WgOI/prOvuaDEIACqVtC3cs0MhFwNDRVvLQEGwQ6kUAFjbWhiibR7xr0wmQN7hrE3HTS+RoG1ex7TtgSIgPieRdJi3w7lPMcRsv+8IKImIepOOQRTgCJ7a0yWDsf05mw0wGtuf6xhsAeJztg7XezhCM0DsDtHRDWJ7mCa2/BLnBez29pZhgDh2mc0mtHXHKE7XnRZi7qhUcgCCs9UYIECplEMQJJBIpG2fw0Jb2CWDVCZBuFb8YHC0MBOXIwZmjlDMEZg5QjHH8yqVyhmWSSQStiwjuoAYyhERERERERFRr+I4OXihQkBP3IV7NpsNprYzs45Q0BEUAnC2/HPM41iOue3ssqPloCN0BABdqxE2m7UtWNR3KVt8vP0MtNVqcy6vpymVEjiGzBG7DG1P96RSuASFjq5JHVSq9rPePoNDhWtw6JjH03lhpVJs7diZo+tTdxzdnXYmkwEyD0GkWu1+vCCGl9RTOgdGHen17kMdi9X9PI4uBd1xdEHYmWNcL3ccLbdcpweMpu4EXu1v7I5BFiAGYB3rZDC0t+ISu0X0r6V0d8nlMkil7fVSqdrHBnMNtMRWXBKJFAqFeDVDSKgYWnVs3eVoDSbO0x6MydsORo4AzBGKAXC2OnMEYp3LJqLLB9/1RER0Xrz1vMT3REREREREvVjn1ge9laPLUAdHgAjAJUQEXANCoL1VIgCX1obu5u0YOALtAaO7ec0WC1r17fOaTMYudXS3HhZL1xRBDD3dh5Dr1q3D8ePHoVKpoFarnWM2KpVKl78db47HpD2Qsjm6UXVHoZCcdZCnkKNLaHm2lEq720Cz++xQqc6+JRAAGAwCgHOvixgs9cQ6iaGT6SwzbjF0ch8kdafbwAtNbIHlLrCWOoOljjoe/8Sgqb35rVwujv/lEBauci67czeFHYMroD2oclCr1c7/O7fe6hiEieugdCmncx3drQcRUW/AUI6IiHpUYiJw881AT/zQIqKLk0ZjRJ8+TWhqUqKpSQW9nl2hUOAk3yx+NhERXcoc4/g49OYAsaelpKTgrrvuct6XSqWQSqUQBMHZItHioVmSSqXC/Pnz8fjjj0Mmkzm7RHWnYwDZkbd53AWP/ugcnJ6LzoHtuXC0DPXEEa7YOje16kCjlfZYN3k9Gbx0Dnz85W1sLEe3gT0xj7fuBR3dD3bGYIqIqHcS7O6+URARERERnYOTJ0+itLQUQPuJh6CgoC5XqqtUKp4sICIiorNWW1uLmJgYt4GZJ4IgIDg4GB9++CFuFq8opB5QUFAAAMjIyAhwTYiIiHovtpQjIiIioh6XkpICm82G06dPO7uzMhgMzi5mOp44cwwwrlarnd1OxcTEcLBxIiIi8ikqKgojRozAnj17/JpeIpFg8uTJ+OKLL9C3b9/zXDsiIiIiVxzwh4iIiIjOi7S0NMTHx7uMV2G327tcyW6z2aDX61FXV4fTp0+jpKSEA54TERGR36ZNm+az5b1jLKtnn30WGzZsYCBHREREAcGzHURERER03qSnpwMAKisr/e5Wql+/fm7HxSAiIiICxHHctm/fjlWrVmHVqlXYt2+f1+8ZMpkMKSkp+PbbbzFixIgLWFMiIiIiVzzbQURERETnVXp6OmJiYvyaVi6XIz4+/jzXiIiIiC42tbW1WLRoEe666y7ExMRg0qRJ+PrrrzF27Fh8/fXXCAkJ6TKPVCqFIAh48MEHsX//fgZyREREFHBsKUdERETUC1VUVADAJRNQDRw4EHa7HTU1NV6vZGcrOSIiIgLE7q337NmD/Px85ObmYtu2bZBIJBg3bhwef/xxZGVlYfTo0c7ply1bhsWLF8NisQAQL/QJCQnB559/jpkzZwZqNYiIiIhcMJQjIiIi6oXq6+sBXDqhnCAIGDRoEKxWK+rq6twGc4IgoKamBhqNBmFhYQGoJREREQVSXV0d1q9fj/z8fOTl5aG8vByxsbGYMWMGHnnkEcyYMQOhoaFu573++uuxcOFC5/3Zs2fjvffeQ3h4+IWqPhEREZFPDOWIiIiI6IIQBAFDhgzBwYMHUV9f3yWYS0hIgE6nw759+xAaGop+/frxRBoREdEl7tChQ8jLy0N+fj5+/PFH2Gw2jBgxAvfddx9ycnIwatQoCILgczkzZsyA3W5HUFAQ3nnnHdx5550XoPbUkVwuD3QViIiIej3B7q3/ICIiIiIKiIKCAgBARkZGgGvS8+x2Ow4cOICGhgZnMCeXy5GZmQmJRILGxkYUFxejvr6e4RwREdElRqfTYcOGDcjLy8OqVatQVlaG6OhoTJ06FdnZ2Zg1a9ZZt5h/5JFH8OijjyI5OblnK01ERETUQxjKEREREfVCl3IoB4jjxOzfvx9NTU2w2+1ITU1F3759XaZpbGxEaWkpzpw5w3COiIjoInby5Enk5uYiLy8PmzZtgsViwciRI5GVlYXs7GxMmDCBY8oSERHRZYGhHBEREVEvdKmHcgBgtVqxb98+GAwGZys5dxjOERERXVz0ej22bNmC3NxcLF++HMXFxYiMjMT06dORlZWFWbNmIS4uLtDVJCIiIrrgGMoRERER9UKXQygHiMFcQ0MDIiMjfU7bOZxLTEz0az4iIiI6/06ePIn8/Hzk5uYiPz8fBoMBGRkZyMnJQVZWFqZOnQqZTBboahIREREFFEM5IiIiol7ocgnlzgbDOSIiosAzGAzYvHmzM4grKCiARqPBtGnTkJOTgxtuuAEJCQmBriYRERFRr8JQjoiIiKgXqq+vBwB20+gFwzkiIqILq6ioCN9//z3y8/OxZs0aNDc3IyUlBdnZ2cjJycFVV10FhUIR6GoSERER9VoM5YiIiIjootbU1ISSkhKGc0RERD3MarVi27ZtyMvLQ35+Pnbt2oWgoCBMmDAB2dnZmDNnDhITEwNdTSIiIqKLBkM5IiIiIrokMJwjIiI6d+Xl5Vi5ciVWr16N/Px8NDc3Y/Dgwbj++usxc+ZMTJ48ma3hyC2TyQQA3D+IiIi8YChHRERERJeUjuFcSEgIkpKSGM4RERF5YLfbsWvXLuTl5SEvLw+7d++GWq3GtGnTnEFc//79A11NughwTGQiIiLfGMoRERER0SWJ4RwREZF7er0eW7ZsQW5uLpYsWYKysjLExMTg2muvRU5ODmbOnAmtVhvoatJFhqEcERGRbwzliIiIiOiSxnCOiIgIqKqqwtq1a5GXl4fVq1ejpaUFGRkZyMnJQXZ2NiZOnAhBEAJdTbqIMZQjIiLyjaEcEREREV0WGM4REdHlxGazYc+ePcjNzXXplnL69OnOIK5Pnz6BriZdQhjKERER+cZQjoiIiIguKwzniIjoUtXa2or169cjLy8Pubm5qKioQHJyMmbMmIHs7GzMmDEDSqUy0NWkSxRDOSIiIt8YyhERERH1QhUVFQCA+Pj4ANfk0sVwjoiILgWnTp3CunXrkJubi3Xr1sFsNmPkyJHIzs5GTk4ORo0axW4p6YJgKEdEROSbLNAVICIiIqKu6uvrATCUO59CQkIwdOhQZzh38OBBhnNERNTrWa1W7N2719kt5a5du6DRaDBt2jS8/vrrmDVrFuLi4gJdTSIiIiJyg6EcEREREV3WHOFcS0sLwzkiIuqVdDodNmzYgLy8PCxfvhxVVVVISUlBVlYW/vnPf+Laa6+FQqEIdDXpMieXywNdBSIiol6P3VcSERER9ULs/idwHOFcTU0NwzkiIgqYkydPOlvDbdq0CVarFZmZmcjJyUFWVhZGjx4d6CoSERERUTcxlCMiIiLqhRjKBV7HcE6r1SIpKQnR0dGBrhYREV2irFYrtm3bhry8POTm5qKgoAARERG4+uqrkZ2djVmzZiEsLCzQ1SQiIiKic8BQjoiIiKgXYijXezCcIyKi8+XMmTPYsGEDcnNzkZubi4aGBqSkpCA7Oxs5OTmYMmUKuwQkIiIiuoRIAl0BIiIiIqLeTKvVIiMjA6NHj4ZarUZBQQF27dqFmpqagNWpvr4eDz/8MIxGY49MR0REF87Jkyfx2muv4ZprrkF8fDxuv/12nDx5En/9619x+PBhnDhxAq+99hqysrIYyBERERFdYthSjoiIiKgXYku53kun06G4uPiCt5zbuHEjpk6d6rxvsVggk8l8ztd5us7LISKi88tisWD79u3Iy8vDsmXLcPToUURFRWHatGnIzs7G7NmzERoaGuhqEhEREdEF4PtXPBERERFdcPHx8YGuAnmg0WiQkZHhDOcKCgrOKpyz2+2oqKiAVqtFSEiIy3PV1dVQKBTOsYNWrVqFHTt2ICEhAcnJyZDL5dDpdAgKCkJRUREAIDQ0FDExMSgrK4Ner0dKSgqkUqlzOrlc7rKcpKQklJSUAACCg4MRFxeH8vJy6HQ6pKamQiJhpxpERGertrYWq1atQl5eHtauXYumpiZkZGTgxhtvRFZWFqZOnerXhRVEREREdGnhL20iIiKiXig8PBzh4eGBrgZ54QjnxowZ4+zWcufOnX51a1lcXIz3338fUqkUX375Jfbv3w8AMBqNWLRoEZqamrBp0yYsWLAAdrsdCoUCEokEarUagiBgy5YteOKJJ9Dc3Ay9Xo9XXnkFKpUKAGA2m1FYWAipVOoyXeflSKVSVFRU4I033kBkZCQAwGq14tixYwzkiIjOwsGDB/Hss88iMzMTsbGxeOCBB6DT6fD888+jpKQEhw4dwnPPPYesrCwGckRERESXKf7aJiIiIiI6Bx3DuaCgIL/COZ1Oh6FDhyI2NhYDBgxwhnLLly9HcnIy0tLScO2116Jfv34AgMjISCgUCvTt2xcymQwTJkyAoxf64cOHIyUlBQcOHAAAnDhxAtOmTQMAl+kEQeiynEmTJiEsLAwHDx4EIHabOmnSpPOzoYiILjEWiwU//PAD/vznPyM1NRXDhg3D66+/jmHDhmHp0qWora3FypUr8cADDyAxMTHQ1SU670wmE0wmU6CrQURE1Kvx0iwiIiIioh7grltLjUaDfv36denWMiMjA0VFRSguLobBYIDFYgEAHDlyxBmoKZVK3HDDDW7LEgTB5f60adOwdu1ajB8/HiaTCWq12u10nUkkEkyfPh35+fkYOXIkWltbOa4REZEXra2tWL9+PfLy8rB8+XJUVVUhJSUF2dnZyMnJYbeUdFk7fvw4AI6JTERE5A2/KRIRERER9SB/wrkdO3agvLwcs2fPxokTJ5zzSiQSFBcXO6czGAzO5xwt3twZOXIklixZgry8PIwcOdJr/TovZ8KECVi5ciU2b97sbJlHRETtqqursWbNGixatAjr1q2DxWJBZmYmHn30UcyaNQuDBw8OdBWJiIiI6CLBUI6IiIiI6DzwFs45upqsr69HaWkp9Ho9WltbMXbsWCxcuBAWiwVarRZFRUXIzs5GaGgoGhoaYDKZoNfrERwcDACw2WwAxDBvypQp2L9/P2bNmuWsg+N5x9/OywkNDYVCocC0adOQl5eHZ5555kJuIiKiXuvQoUPIy8tDbm4utm7dCrVajenTp+P111/H7NmzERsbG+gqEhEREdFFSPrUU089FehKEBERERFdqhQKBaKjoxEdHY3W1lYUFxdDo9GgpqYGOp0OEydORGFhIWJiYjB69GgoFAocOHAAFosF1157LWQyGUJCQtDQ0IATJ05gyJAhOHDgAFpaWiCRSJCYmAiJRIK4uDhERUUhJiYGgNgibt++fS7ThYWFOZczdOhQSCTiENMRERFobW3F8OHDA7mpiIgCxmq1YuvWrViwYAF+//vf45lnnsG+fftw5ZVX4umnn8Z7772HO++8E6NHj4ZWqw10dYl6Jcd4up277SYiIqJ2gt1bPzhERERERNSjdDodSktLUVVV5XHMuQtt586diI2NRWJiYkDrQUR0Iel0OmzYsAGLFi1Cbm4uGhoakJGRgZycHGRnZ2PixIk+x+YkonYFBQUAOKYcERGRNwzliIiIiHqhiooKAEB8fHyAa0LnS28I5zZt2gSz2YyamhrceuutF7RsIqJAKCoqwooVK7BixQps2rQJADBlyhTMmjULOTk5SE5ODmwFiS5iDOWIiIh845hyRERERL1QfX09AIZylzKNRoNBgwYhMTERpaWlzjHnEhMTL9hYRXYZhNoAACAASURBVFarFaWlpZgzZ84FKY+IKBD27duHZcuWYfny5dizZw9CQ0Mxc+ZMfPbZZ7juuusQFhYW6CoSERER0WWCLeWIiIiIeiFeaXz5cbScq66uRlBQ0AUN54iILiU2mw1bt25FXl4eli1bhqNHjyI6OhrXXXcd5s2bh2uvvRYKhSLQ1SS65BQWFgIABgwYEOCaEBER9V4M5YiIiIh6IYZyly+Gc0RE3WcwGLB582bk5uZi4cKFqKysREpKCrKzszFv3jxMmDABEokk0NUkIiIiosscQzkiIiKiXoihHLkL52JiYiAIQqCrRkTUK9TX1yM/Px+5ublYtmwZmpubkZGRgXnz5uGWW27hZygRERER9ToM5YiIiIh6IYZy5MBwjoioXWlpKVavXo3c3Fx8//33sFqtyMzMxLx583DzzTcjISEh0FUkIiIiIvKIoRwRERFRL8RQjjpjOEdEl6uTJ08iNzcXixYtwtatW6FWqzF9+nTMmzcPs2fPRmhoaKCrSERERETkF4ZyRERERL0QQznypLW1FSUlJQzniOiSZbPZsGfPHuTm5uLbb7/FkSNHEBUVhZkzZ2LevHmYMWMGlEploKtJRERERNRtDOWIiIiIeqH6+noAQHh4eIBrQr1Vx3BOrVYjKSmJ4RwRXbSMRiPWr1+PpUuXYsWKFaiurkZ6ejpuvPFG3HjjjRg3bhwkEkmgq0lEREREdE4YyhERERERXcQYzhHRxUqn02H16tVYunQpVq5ciaamJowZM8YZxLG1OBERERFdahjKERERERFdAhjOEdHFoKGhAevWrUNubi6WLl2K1tZWjB8/Hjk5OZg7dy7S0tICXUUiOksmkwkAoFAoAlwTIiKi3ouhHBERERHRJYThHBH1NmfOnMHKlSuxaNEifP/997BarcjMzMS8efNwyy23ID4+PtBVJKIewDGRiYiIfGMoR0RERER0CWI4R0SBVFpaitWrVyM3Nxdr1qyBTCZDVlYW5s2bh1mzZiEsLCzQVSSiHsZQjoiIyDeGckRERERElzCDwYCSkhJUVlYynCOi8+rUqVNYsWIFFi1ahK1bt0KtVmP69OmYN28ebrrpJgQHBwe6ikR0HjGUIyIi8o2hHBERERHRZaBjOKdUKpGUlIS4uDiGc0R0Tg4dOoRFixYhLy8Pu3btQmRkJK6//nrMmzcPM2bMgFKpDHQViegCYShHRETkG0M5IiIiIqLLCMM5IjpXjiDum2++wdGjR5GYmIiZM2ciOzsb1113HeRyeaCrSEQBwFCOiIjIN4ZyRERERL1QRUUFACA+Pj7ANaFLFcM5IvKX1WrFpk2bsHjxYixbtgzl5eVIT0/HnDlzMGfOHIwZM4bHDiJiKEdEROQHWaArQERERERd1dfXA2AoR+ePSqVCeno6kpKSUFJSgsLCQpSUlDCcIyIAYhC3ceNGLF68GEuXLkVVVRWGDx+O+++/H3PmzMHQoUMDXUUiIiIioosOQzkiIiIiossYwzkicrBardi2bRsWLVqEhQsXorKyEhkZGXjggQdw6623YtCgQYGuIhH1Yuy6loiIyDd2X0lERETUC7H7HwoUdmtJdHnpGMR9++23qKqqQkZGBubNm4fbbvv/7N17XM73//jxR7qolBwm0kmRU1TO5jTHOTNnwmyMYWyY+c5+YzOfDRsbNnPanCPkMMVmwmpy3HyklFBKB6RIpfPh/fvDt/e3dF0pp4s877fbbut6H16v5/v1Priu63m9Xi83GjRooO8QhRBCCCGEKDMkKSeEEEII8QKSpJzQN0nOCVF2FUzE7dixg9u3b6uJuFGjRlG/fn19hyiEEEIIIUSZJEk5IYQQQogXkCTlxItCknNClA3FJeJGjx5NvXr19B2iEEIIIYQQZZ4k5YQQQgghXkCSlBMvGknOCfHyyczM5Pjx43h7e+Ph4UF8fLyaiBszZgyOjo76DlEIIYQQQohXiiTlhBBCCCFeQJKUEy8qSc4J8WLLzMzk8OHDeHp64uXlRVJSkiTihBBCCCGEeEFIUk4IIYR4geUnZsSrJysrC4AKFSroORLxLJQvX566detSrlw5fYfy2CQ5J8SLIysriz///JMdO3bg7e1Namoq7dq1Y+jQoQwZMgQbGxt9hyiEEEIIIYRAknJCCCHEC83Pzw9zc3OMjIz0HYoQ4inJzMwkOTmZKlWq4Ozs/FIn5uBBci4mJoabN29SoUIFSc4J8Zzk5uZy7NgxduzYwb59+0hKSqJdu3YMHz6cIUOGYGVlpe8QhRBCCCGEEA+RpJwQQgjxAvPz88PJyQkLCwt9hyKEeEri4+MJCQmhfPnyVKxYEWdnZwwNDfUd1hOT5JwQz8e5c+fYsmULu3bt4tatW+rQlGPHjqVOnTr6Dk8I8QqTkR6EEEKIR9PoOwAhhBBCCCFeRS4uLgQGBhIUFFQmEnPGxsY4OjpiY2NDTEwMYWFhREVFYWNjQ61atV76HoFC6FNwcDCenp64u7sTHh6Ok5MTkyZNws3NjQYNGug7PCGEACAsLAyQOZGFEEKI4khSTgghhBBCCD0wMzMrc4k5KJqcu3btGjExMZKcE6KUQkJC2LVrFzt27ODy5cvY2dkxcOBAhg0bRocOHfQdnhBCCCGEEOIxSFJOCCGEEEIIPSmriTmQ5JwQjyMqKop9+/bh6enJiRMnsLa2ZsiQIfz666+0b99ehoMVQgghhBDiJSdJOSGEEEIIIfSoLCfm4P+Sc7a2tkRHR0tyToiHxMbGsnv3bjw9PTl58iRVq1alb9++fPrpp/Tp06dMPQ+EEEIIIYR41UlSTgghhBBCCD0r64k5ACMjI0nOCfG/EhMT2b17N+7u7vj7+2Nubs7AgQOZN28e3bp1Q6ORj+pCCCGEEEKURfJOXwghhBBCCD0ICQkpsszMzIykpCQCAgJo0aKFHqJ69rQl56Kjo7G1tZXknCjTMjMz+f3333F3d+fgwYOUK1eOAQMGsHfvXnr16oWRkZG+QxRCCCGEEEI8Y5KUE0IIIYQQ4jmysLCgbt26JCcnF1mn0WgwNTUlJSVFD5E9X5KcE6+Kc+fOsWXLFjw8PLhz5w5t27blxx9/ZOTIkZibm+s7PCGEEEIIIcRzJEk5IYQQQgghnjMbGxud6+Lj47X2oiurJDknyqLQ0FB27NjBtm3bCAsLw8nJiQ8++IB33nkHBwcHfYcnhBDPRPny5fUdghBCCPHCk6ScEEIIIYQQQu8kOSdednfv3mX37t1s2bKFkydPYmVlxZAhQxg7dmyZHY5WCCEKqlevnr5DEEIIIV54kpQTQgghxBO7ffs26enp1K5du9jt4uPjqV69OgYGBk+97Jfd47SNEGWRJOfEyyQjIwNvb2+2bNnCn3/+iUajoV+/fuzfv5/evXuj0chHbiGEEEIIIcT/kU+0QgghhHgiJ06cwNXVlQMHDhS73Q8//IClpSVZWVlPveyX3eO0jRBlXX5yrnXr1lSvXp1r165x9uxZYmNjycvL03d44hWWl5eHv78/kyZNokaNGri5uZGRkcGvv/5KfHw8u3bton///pKQE0IIIYQQQhQhSTkhhBBCPJH27dvTvHnzR27n5uZW6i/SS1r2y+5x2kaX9evXk56e/lTKEuJFIMk58aIICAjg448/xsbGho4dOxIYGMjChQu5desWPj4+jB07FlNTU32HKYQQQgghhHiByU/3hBBCiDIqISEBc3Nzbt26RXZ2NnXr1lXX3b17F1NTU6KioqhduzYVKlTg1q1b3Lhxg0aNGmFiYsKFCxe4d+8eFStWpFWrVly/fp3IyEicnJzIzMzEwsICIyMjAK3DyUVGRpKVlUX9+vULbaMoCuHh4VSsWJFatWoV2iciIoKMjAwaNmyoDuP4sg5Vl5eXx8WLF7Gzs8PMzIxz586RkZFBhw4diIyMJCYmBltbW+rUqfPItnm4rPzeFw+3l4+PD9OmTcPa2pqmTZtiaWmpl2MX4lnIT87Z2dkRExMjw1qK5yIuLo7t27ezadMmAgMDcXR05P3332f06NEyd5IQQgghhBCi1OSTqxBCCFEGbdiwASsrK7744gvmzp1L69at+eKLLwDYvHkztWrVYvny5QwdOpQ9e/bw4Ycf4ufnR3p6Ot27d8fb25uqVavy1ltvce3aNQCsrKxYsWIF1apVo0+fPqxevVpr3UlJSXTp0oXk5GS2bt3K7NmzC62fP38+M2fOxNHRsVAZX3/9NadPn2bp0qUMHDgQRVGeUes8e3FxcUyaNAljY2Nmz56tJto6d+7M/fv3sbGxYenSpUXaUFvbaCsLtLdX5cqVycjIoHLlylSoUOG5H7cQz0OFChWoU6cObdq0oUaNGtJzTjx1mZmZeHt7M3z4cGxtbfnqq69wdXXFx8eHK1euMH/+fEnICSGEEEIIIR6LJOWEEEKIMmj06NFkZ2czevRotmzZwu7du1m0aBHx8fGMGTOGrKws3njjDQICAtBoNFy4cIERI0bQvn17/vOf/zB27FiqV6/OBx98gJeXFwAnT55k6tSpGBoacujQIaZMmaK17qSkJFq0aIGLiwsDBw5k7969hdbnl7lmzRo++eQTUlNT2blzJzExMVhZWTF48GC8vLzw9/d/5u30rFy9epWQkBBq1arF4sWLMTU1xc7OTl1vZGSEvb19kf20tY22snS1V35vSBcXF6pVq/a8DlcIvchPzr3++utqcu7MmTNER0dLck48lnPnzjF9+nRsbGwYOHAgiYmJ/Prrr8TGxrJlyxa6d++u9uIWQgghhBBCiMchSTkhhBCiDMof3jA/MdOlSxeMjIyIjIzE0NAQeNDzzcDAoFAyBx7M45aUlERoaChTp05l//793L59G19fX7p27arumz905cPs7OyYNm0avr6+3Lx5k6ysrELra9asCcDAgQNJS0sjIiICX19f6tWrR5UqVbCxsSEgIIAmTZo83UZ5jtq1a4eDgwP16tXj4MGD2NjYlGg/bW2jrayy1l5CPIny5curybmaNWsSGRkpyTlRYrGxsaxYsQJXV1datmzJ4cOHmTp1KteuXZN54oQQopSysrKKvPcXQgghRGEyp5wQQgjxCkhLSyMvL486deoUWVe9enX++ecf9bVGo8HQ0BBra2tq1qzJgAED+O6776hbt26JegiEhYUxefJkjhw5QkBAgM7tTExMCvUYu3XrFq6urur6iIgIqlatWoqjfHHcvXsXd3d3fvvtN6ZOnUp2djZDhw4ttE1xw3MWbBttZYH29jI3N39k2UKUVfnJOVtbW6Kjo4mMjFTnnLO2tpY554QqIyMDb29vtmzZwqFDhzAzM2P48OH8/PPPdOjQQd/hCSHESyssLAwAJycnPUcihBBCvLgkKSeEEEKUYVFRUVhbW3Pw4EFGjRrFa6+9Rm5uLvBgzhyA8ePHs2zZMgIDA3FxceHYsWO8/fbbaq+t6dOn07VrV2JiYtRyv/rqK7p370779u3VsvKTRUePHiU6Opro6Gj8/PxITU3l9u3b6r7p6ekYGRnx+++/M2vWLMzMzBg8eDB9+vTB2tqa1q1b4+fnx7hx44qU/bI4ceIEtWvXZuDAgSQkJBAZGUmlSpWwtrbm0KFDODo68t///hdbW1v1PID2tjl69GiRsnS1l7m5ORUrVuTq1atYWFiUuIeeEGWJJOeELufOnWPdunXs2LGD1NRUunTpwvr16xk2bBgmJib6Dk8IIYQQQgjxCjCcP3/+fH0HIYQQQgjtrl+/joWFRamHzlIUhQULFuDo6Mj58+dJTU1l/vz5lCtXDg8PD+7evUteXh4uLi5Ur16doUOHsm3bNmJjY0lKSmLu3LnqF9c2NjbY2try+uuvq+UfOnQIe3t7HBwcOHPmDCdOnMDAwICmTZvi4uLCtWvXOHHiBJMmTSIyMpLs7Gw6duyoJqXCw8MpX748H374IQB169alYcOGHDhwgODgYMaNG0edOnWKlF2pUqWn17jP0P3799m8eTN37tyhQoUKvPfeexgZGeHs7MzWrVvJy8uje/fuVKtWjYYNG2JhYaGzbbSV1ahRI63tZWhoSNWqVdm7dy9dunShcuXKem4J8TjS0tKIj4/XOu+gKLn8+8HKyoq8vDyio6O5ceMGAJUqVZK5wV4R0dHRrFmzhnHjxrF48WLS09OZNm0aW7duZcqUKbi6ulK+fHl9hymEEGVCfHw8ABYWFnqORAghhHhxGSgyvpEQQgjxwvLz88PJyanUH2xzc3PRaDTExMRgbW39jKITQjwL8fHxhISE0KlTJ32HUqZkZ2cTHR1NbGwshoaG0nOuDEtNTWX37t1s2LCB48ePU7NmTUaNGsW7776Ls7OzvsMTQogyKyQkBJDhK4UQQojiyPCVQgghRBmUkpICPOhlJYQQQoa1fBWcPHmSDRs2sGvXLjIzM+nfvz/e3t707NkTjUY++gohhBBCCCH0Tz6ZCCGEEGXQypUrGTlyJD4+PlhYWFCtWjV9hySEEC8ESc6VLTdv3mTXrl1s2LCBwMBAnJyc+Pzzzxk3bhw1atTQd3hCCCGEEEIIUYgk5YQQQogyaO7cufoOQQghXmiSnHt55ebm8tdff7Fu3Tp+++03KlasyIgRI/j555/p0KGDvsMTQgghhBBCCJ0kKSeEEEIIIYR4ZUly7uVx6dIlNm/ezMaNG0lISKBr1678+uuvDB06lIoVK+o7vJdS/vxPQgjxNOQPoS/PFiFESZUvX566devKe27xSpGknBBCCCGEEOKVJ8m5F1NSUhI7d+5ky5YtnDhxAltbW8aNG8ekSZNwcHDQd3gvvfj4eMzNzTEyMtJ3KEKIMqBSpUr6DkEI8RLJzMwkPj6etLQ0nJ2d5f22eGVIUk4IIYQQQggh/lfB5FxsbCzXr1+X5NxzlpeXx8mTJ9m6dSvu7u7k5eXRv39/fHx86NatGwYGBvoOsUyxsbHBwsJC32EIIYQQ4hUTHx9PSEgIqampBAYG4uzsjKGhob7DEuKZk6ScEEIIIYQQQjykfPny2NvbY21tLcm55yQqKooNGzawceNGoqKiaNeuHStWrGD48OGYm5vrOzwhhBBCCPEMuLi4EBgYSFBQkCTmxCtBknJCCCGEEEL1xx9/MG7cOIyNjRkzZgwAqampeHl5sXXrVtq1a6eXuFq1asWSJUvo3LmzXuoXry5dyTkrKytsbW3lS4MnlJWVhbe3N7/++iuHDx/GwsKCd955h3HjxtGwYUN9hyeEEEIIIZ4xMzMzScyJV4ok5YQQQgjxxE6fPk3z5s2pUKGCvkMRT6h37960atUKY2Njvv76a3X52LFjuX///nOL4+Fr6qeffsLZ2fm51S/Ewx5OzsXExHDjxg1Jzj2mK1euqL3iEhIS6Nq1Kzt27GDgwIGUL19e3+EJIYQQQojnSBJz4lUiY64IIYQQ4olER0czfPhwsrOz9R2KeEo0mqK/26pVqxYdO3Z8LvVru6Zef/11Klas+FzqF6I4+cm5Nm3aYGVlRUxMDGfOnCEyMpLc3Fx9h/dCy8jIwNPTkzfffJOGDRvi7u7OuHHjCA8Px8fHh2HDhklCTgghhBDiFZWfmEtLSyMoKEjeW4syS5JyQgghRBm0bds2mjdvzurVq+ncuTN2dnZ4eXkB4OHhQatWrdi8eTOOjo7s378fDw8PVqxYwU8//cSwYcO4evUq3t7eaDQali5dCkB4eDgtWrTg1q1bdOvWjc2bNwPg7+9PdHQ0P//8M8HBwaxfvx4DAwPWrl0LPJgjqE2bNsTHxxcbF4CnpycLFy6kV69ear0vo2fd/tq2Bzh48CCurq5s374dNzc3ateuzeXLl9W4dLVvwfOpzdWrV9X158+fx8HBgQEDBnDjxg0aN27Mvn37ii3fy8uLn3/+mW+//Zb33nuP9PR0Nm7ciIGBAUlJSQQHB9O8eXNmz54NFL2mTp48SefOndm6data5uO2gRBPiyTnSi44OJg5c+ZgY2PDmDFjMDY2ZufOnVy/fp3Fixdjb2+v7xCFEEIIIcQLQBJz4lUgw1cKIYQQZdBbb73FmDFjsLOzw9fXl1WrVvHOO+8QExPDwIEDGTVqFObm5vj5+REYGMjcuXMJCgoCwNzcnAEDBnDx4kXc3NyIi4sDIDc3lxkzZmBpacnMmTNp0qQJAD169ABg6tSpmJqa0rhxY7Zt20ZiYiIAmZmZjBkzBgsLi2LjCgwMJDg4mPnz5zNu3Disra3p06cPTk5OemjBJ/Ms2z8yMpKFCxdq3b5Pnz4MGzYMExMTPDw8mDBhAh4eHsyfP59Tp07pbN+C5zNfYGAgs2fPRlEUQkNDadWqFQDNmjXD3d2dQYMG4e7uzsaNG2ndurXO8lNTU3F3d2fXrl0oisKAAQO4fv06gwYNYvz48QA0bty40Fx1D19T8OA6UhQFeDC05eO0gRDPwsPDWsbGxsqwlkBycjI7duxg3bp1nDt3jgYNGjB79mzGjRtHjRo19B2eEEIIIYR4QYSEhBRZZmZmRlJSEgEBAbRo0UIPUQnx7EhPOSGEEKIMMjExAaBp06YATJw4kdTUVEJDQ9V1zZs3x9raGl9fXzXhAjBo0CBCQ0O5dOkSM2fOZOPGjWRkZLB3716GDRsGQL9+/Yrt2TB79mxWrlxJdnY2e/bswc3N7ZFx7d27l5iYGFasWMGuXbtYtmyZ1mEUXwbPsv337dunc3sDAwOMjIyoX78+AA4ODoSHhwMU277azqeLiwtLlixh6dKleHt7q2UCtG/fnhEjRvD777/TunXrYsvftWsXXbt2BcDAwABvb28aNmyIgYFBofoefv0wY2Nj9e/HbQMhnqX85Fzr1q2xsrIiNjb2lew5d+7cOSZNmoSVlRXTp0+nTp06+Pj4cOnSJT799FNJyAkhhBBCCAAsLCyoW7eu1nUajQZTU9PnOq+5EM/Ly/lNlxBCCCFKpVy5chgZGWFhYaF1/Y0bN9S/zc3N0Wg0VKxYkSZNmuDk5MTWrVspV65cocRIcXr16kWVKlXYsWMHKSkpVK9e/ZFxJSQk0LhxY6ZPn66uT01NLcVRvriedvvr2r44T9K+BgYGuLm5ERUVhZ2dHQCmpqZcunSJAwcO0K9fP53lJyYmFooXICsrq0T1Fudx2kCI56G4nnM2NjYv7Y8NipOYmIinpycrV64kKCgIJycn5s2bx8SJE6lWrZq+wxNCCCGEEC8oGxsbnevi4+O19qIT4mUnPeWEEEKIMiw9PR2As2fP0rRpUzWhApCXlwfA0KFDOX78OHfv3gXg0qVLtGrVCgcHBwCmT5/OJ598wuDBg9V9Dx06RHR0NPCgV5ihoSGJiYlkZ2cDD5I4n376KZ9++ilt2rQpUVzt27dnyZIlBAQEkJeXx++///7S93B6Fu3/qO3zh3iEB0Ne5r8urn0Lnk+AnJycQuUAJCUl8d133wGwadMmBgwYwI8//siUKVNITk7WWX63bt1YuXIl/v7+ZGVlsW3bNsLCwjAxMcHMzIzo6GiysrK4dOmS2l7arqm8vDw1psdtAyGeJ209586ePUtkZCQ5OTn6Du+J5eXlceTIEYYPH46lpSWzZ8+mbdu2nDt3juDgYD799FNJyAkhhBBCCCHEQ8rezzSFEEIIoVq9ejX29vZcu3aNHTt2ALBlyxYANmzYwP/8z//QqlUrNm3axMcff0y3bt2IiIhg9+7d6nCCAwcO5OjRozg6Oqrlfvvtt4wdO5Zx48ZRsWJF3NzcmDBhAl9//TUtW7YEYNSoUSxZsoTevXuXKK53332X8+fP06VLF2rWrMkXX3xBnz59nmn7PGvPov2L2/7IkSMkJSXh5eWFhYUFR48eJSEhgaioqGLbt+D5PHLkCP/++y+KojBv3jzKly9PfHw8Xl5eTJkyhcOHD7Np0yb+/PNPnJycmDVrFqNGjWLt2rVay3d2diYoKIhBgwZRpUoVli5dqs4TOG/ePAYNGkSHDh1o2bIl169fV3sUFbymypUrx9WrV/nzzz/p06fPY7dBwaSoEM9LWes5Fxsbi7u7O2vXriUiIoIWLVrw008/MXr0aHUOSCGettDQUKysrDA3Ny92u9u3b5d6iNSSlp0vMzOT4OBgatWqRa1atUpV15PKzMzk9u3b2Nralmo/Pz8/bty4QceOHYvtkRAXF0dsbCz169fHzMyM2NhYjIyMCA4OBqBhw4bUrFmzyH5BQUHcvXsXAwMDXFxcuHDhgrquXLly6g+R4EFP+3r16lG5cmV1WUJCQqnqaNKkiTqv7MNl3rt3r1D91atXp3Hjxo9d1xtvvKGXOIvrHVK1alVcXFyABz+kCgoKwsDAADs7O9LT00t9zgoeY/5x6hrlIl9mZiYhISHY2NjoHAkify6ofHXr1sXGxoazZ8+qP8SqWLEijo6OBAYGqtsZGRlRt25dneU+Ks7HvU9K40nryMvL4/z586WeJ+vhYy4ujpKcx5LUkS8uLo6EhAScnJzUzymlqSMuLk7rtSi0K+4ey83NJSQkBEtLS533ibZzk/9DSAcHhyL/5ukqMzIykuvXrxfatk6dOkWuOW31lSROIV5ZihBCCCFeWL6+vsrt27dLvV9OTo4CKDExMc8gqpJJSUlRvvzyy0LLXoS4nodX5TjFs3H79m3F19dX32GIZyQrK0uJiIhQ/P39lRMnTigRERFKdna2vsMqVk5OjuLj46MMGzZM0Wg0StWqVZX3339fCQwM1Hdo4gk97vuM52n9+vUKoFy8eFHnNsnJycrbb7+tvP7660+97IJCQkKUIUOGKEOHDlXMzc2VrVu3lqq+J+Xu7l6qY4yJiVF69+6tbNy4sdjtTpw4obRt21b55JNPlO3btysLFixQXFxclJEjRyq5ubnKn3/+qQDKqFGjiux7//59pUqVKkqVKlWUqKgoJTc3Vzl37pwCKFOnTlXu37+vbNy4UQGUZcuWKR4eHkrPnj2VoUOHKvHx8Yqilt9yEgAAIABJREFUKKWuIycnR2eZcXFxhepPT08vVFZp63qSfZ8kzpycHGXNmjUKoPz444/KkSNHlEOHDimrV69W3nrrLUVRFCUhIUFp06aNsnTpUmXlypWKra2t8tlnnz32MR47dkxp2bKlsnjx4iL7FHT+/HnFxcVFadKkiVK+fHll1apVWrfLzc1V/vjjDwVQFi5cqGRlZSmKoih37txRmjRpori6uioJCQlKbm6usnXrVnW7ffv2Ke+8847Srl075cqVK0XKjY2NVTp06KBMmzZNa72lvU8ex5PUkZSUpEybNk2pXr16iffRdW60xVHS81jSOhRFUZYvX67s27dPGTJkiPLDDz+Uuo4zZ84offv2LVU8r7Li7rH79+8rffv2Vf7++29lyZIlyoIFCwrtq+vcBAUFKW+//bZy4sQJZerUqcovv/xSojJ79OihtGnTRuncubPSuXNnxdLSUjlw4MAj63tUnCUln4tEWSVJOSGEEOIF9rhflqWnpyuAEhkZ+QyiKt61a9eU48ePK59//rkSERHxwsT1PL0qxymeDfnw+Wp4GZJzly9fVj799FOlRo0aSrly5ZTu3bsru3btUjIzM/UdmnhKXoaknKIoSsWKFR+ZONu+fftjfUlekrLzbdq0Sf37+++/V3r27Fnq+p5URkZGiba7d++e4uDgoOzYsaPY7YKCghQTExPl+PHjhZaHhIQow4cPVxRFURITExVbW1tFo9Eo0dHRhbZbvXq10qFDB6Vx48aFlhsZGalf+gYFBSmAEhAQoCjKg+eftbW18tFHH6nbl7aOR5VZsP6HPc7x6CPO8+fPa00aHzx4UFEURVm8eLGaoFMURYmKilITVaWNMy8vT0lPT1f69+//yETLvHnz1ATb6tWrFSMjoyJJxXzx8fEKoPzxxx+Flr/11lvKkCFD1NeXLl1SAOXff/9VlzVr1kwZMWKE1nL/53/+R2dSTlEefZ+kpKQ8Mln9KCW9F7U5e/ZsiZNyjzo3BeMozXksaR2ZmZlKtWrVFEV5kGjNzs4udR0ffPCBUq5cOSU0NLTEMT0LT+O8Pw/F3WNz5sxRlixZom7r7OysnDlzRlGU4s9ju3btFB8fH0VRHlwzVapUUT+r6yrz9u3byrFjxwqV07ZtW/WaK66+4uIsDflcJMoqmVNOCCGEKIP+85//YGlpibu7uzrv1vNy+PBh+vfvj62tLfb29i9MXM/Tq3KcQojHlz+sZZs2bV6oOecyMjJwd3fnjTfeoEGDBnh4ePDBBx8QERGBj48Pw4YNo0KFCnqLT7w4YmNjURSFkJAQEhISCq27efMmeXl5hIaGAg/m+gwPDyc4OJjc3FzgwZCKfn5+XL16FYALFy7g5+dHdnZ2kTlly5Ur/NWFoihcvHiRW7duFdkmLy+PoKAgUlJSCu2TvzwmJqbYsvNlZ2dz4cIFkpOT1WXvvPOO+reJiQlDhgwptE9cXBxXr14lIyNDa5m6ygWIiYlBURSCg4O5f/8+ACkpKVy4cKHQ3KgF41cUhZs3b5KZmUlAQIA6JCDA119/TdWqVWnXrh0XLlxQ52h92NSpU+nevTsdOnQotLxRo0aMHj0aeDBX8NChQ7GwsODHH38stN3Jkydp3769OpxdPgMDA3XZw+vKly+PtbV1oXNU2joeVWbB+h/2OMejrzgf9t///rfQ8O4+Pj7qUJW2tra8/fbbjx2nsbExRkZGWmPJl5uby7vvvkv58uUBGD16NDk5OTqvL13XwMPHre1YTU1NSUpK0lpu/n2blZVFQEAAqamphdY/fJ8XvDczMjIYOXIkhw4d4vTp0+o22dnZBAYGEhUVVaS+W7dukZaWRmRkpM46dN3bmZmZnD9/vtD1ruu5o62+R52bgnEUt21xzwtd+yUnJ+Pl5cX9+/fx8/MjLCwMjUZTomslX1xcHK+99ho9evQoci0WPIaSPP90nSNFUYiNjSUnJ6fIseXTdd61nZ/8uIt7nmdmZvLf//6X+Pj4UseSlJSk/huYv7+fnx///PPPI++x9evX0759e7WsDh06sGnTJkD3eUxPT+fUqVPqUP5GRkY4OTmxZ8+eYsu0sLCgS5cu6vLQ0FBq166tll/c9VZcnEIIkKScEEIIUQZ988033Lx5k88//5xq1ao917onTZpEYmIikyZNeqHiep5eleMUQjw5jUaDvb09r7/+Ora2tsTGxnLmzJnnnpwLDQ1l5syZWFtbM378eGrUqMEff/xBREQEX375pczJKAqZNm0arVu35pNPPmHBggXY29vz+++/k56ezsyZM2nTpg0LFy6kS5cuXLhwgTFjxnDz5k2Cg4Np27YtV69eJSkpic6dO6vz2qSnp+Pn50dKSgqOjo6F5qIq6N9//2Xo0KGUL1+eiRMnsn//fnVdcnIyEydO5MMPP6R27drqF693795lzpw5XL58GTc3N5YuXVrs8QUFBTF//nxycnIYPXo0ixYtUtfl5eWxZ88eNm3aRLdu3dTl33zzDefOnSMmJoZZs2aVuNykpCRGjhzJoEGDWLFiBatXr6ZRo0Z4enry/fffM2HCBObOnUtKSgoffPAB3bt3B+DGjRt06tQJNzc3ZsyYwcyZM2nQoIE694+HhwfVqlVj165dfPfdd7i6unL79u1C8eTk5HD27Fl1PuCHDRgwQP3byMiIadOmsW7dOvXL6yNHjtCzZ0+dSSVdTpw4waVLlwolOZ+0Dl1l6vIkdT3POAH++ecf/Pz8OHz4MLNnz1aXT5w4EQcHB1q1asWCBQvIzMykdevWTyVOXQwNDalTp476+sKFC7Rv355KlSoVu19gYKCahPDz8yuSyC8oIyODVatWERQUxMcff6xzu/DwcObNm8fcuXPVxMHD9wkUvTezsrIwMzPDyMhIff78888/TJkyhby8PDZv3kz//v3JyMggJiaGbt268d577zFjxgwGDBigtQ5dz4y1a9fy1VdfodFo6NixY6Gknjba6tNFWxy6POp5oYuhoSFGRkbk5uZSpUoVTExMHlnXw3799VcmTJjARx99xKZNm0hMTFTXlfT5B7rP0d27d+nbty+jR49m8eLFfP755/Tt27dIHNrOu67z86jn+a1btxgxYgQZGRkMHjyYLl26sGHDhhLHYm5urs7XnT/X2qlTp0hLSyv2HktISCA+Pr7Q3Kk1atRQf9yiS35is+APWapVq8b169dLVebu3bsZPHhwsXUBjx2nEK8SScoJIYQQQgghhJ4ZGhpia2vL66+/jp2d3XNJzmVmZuLp6cmbb76Jk5MTnp6eTJw4kfDwcHbv3k2vXr0e+Wt+8Wrq378/eXl5LF68mB07djBr1iw+++wzTExM6NevH8nJycyaNYsbN26wbt066tatS4cOHRg+fDi9evVi6tSpDBgwgLZt2+Ll5QWAv78/06dPp1q1aly7do2mTZtqrTshIYG+ffvSoEEDOnfurO4PD67pX375BV9fXwYNGsSnn34KwOeff06dOnWwsLCgd+/ezJs3j6ysLJ3HN3r0aKZMmUKLFi1YvHgxlpaW6rro6Giys7PJyMigW7duajl//fUXGRkZdOnShYkTJwJw584d9b/s7Gyt5VauXJk+ffpgZGTEjBkzWLlyJRUqVCAzM5P58+ezZMkS9u/fT6VKlRg6dKgah5WVFe3bt+e1115j9erVHDt2jDp16vDDDz+QmZlJbGwsc+fOZdasWWzbto1q1aqxYsWKQsd5584dMjIyMDY2LtF5nzx5MtnZ2WzYsAEAT09Phg8fXqJ9AVasWMH06dPZsmULhw8fplOnTk9cR0nKfPg8PI3jeZ5xpqWlcf/+fVJSUkhLS1OXV6tWjbNnzzJjxgy+/vprmjVrxrVr154oTm10xQWwc+dOVq9e/cht7969y61bt9T/dPU+Wr16NZaWlhw4cICrV6/y5ptv6ozLwsKCb7/9lp07d3L+/Hlu3bpV5D6Bovemubk5FhYW1KhRAycnJwDeffddRo0aRdOmTZk3bx5JSUn88MMP2NjY0K5dO3Jycli3bh0XLlzQWoeuZ0ZycjKDBg3C2dkZW1tbjh8/Xmxba6tPF21x6FLc86I4pqamODk5YWBggKurK7a2tiWqL192djY3b97Ezs6OXr16YW1tzbp169T1JX3+ge5zVK1aNbp3746ZmRlz585l+/bt/P3330VGK9F23nWdH23P84JWr16tnqtp06Zx584dxo8fX+JYDAwMmDt3LtHR0Vy5cgV4cJ9rey4UvMfye44W7JlmbGys9i7UpWLFinTv3p01a9aoxx0eHk6VKlVKVaa3tze9e/cutq4niVOIV4lG3wEIIYQQQgghhHggPzlnZWXFjRs3iIqKIiYmBisrK+zs7NBonvwj3NWrV1m/fj0bNmzgzp07dO3alZ07dzJ48GAMDQ2fwlGIsk6j0WBmZqYOr9WvXz+195lGo6Fq1apqjwp/f/9CvV06duzI8uXLAZgxYwaLFi1i/PjxpKenU7lyZQAcHBx01t2rVy/Onj3Lv//+S1JSUqHkmoWFhZpIHjRoEO+++y4Avr6+jBw5kipVqtC3b1/69u1bbE+hu3fvYmNjA0Djxo1p3Lixuq527drUrl2bAQMGULNmTUJDQ3FxceGLL75g2LBhbNu2jZUrVwIwYsQIdbjOWbNm6SzX0NBQbUt4kGzJbz8TExP1C86H70+NRqP2yDcwMKBv3774+vpiZGSEmZlZoedFx44d1eFE89WsWZMqVaqoXwo/SrVq1Rg3bhzLly+nd+/e2NvbF4r7UaZPn46rq+tTraMkZRY8D9999x3169d/4uN5HnHmDxXcqVMn9VopmCDOy8ujYsWKLFy4kJEjR9KrVy/c3Nw4c+bMY8dZkrhatWoFwP79++nYsaOa4NC2bX6Pn86dO9OzZ091ux07dmita8qUKfTo0YPRo0cTEhKiNUmRL7+3k6mpKWZmZsTFxWFpaVnkPtF2bxaUmJhISEgIdevWVZd17NhR7Wmr0WiwsrIC/m+YzYJ1xMXF6by3P/nkE3x8fLh48SLZ2dnF/hggn7b6dCnNv9m6nhfP0u7du0lMTOSzzz4DHgyxunLlSmbNmqU+n0ry/HvUOTI0NFT3qVy5MgYGBiQmJj5yxBJd5+dR10ytWrU4cOAAAPb29tSqVUtdV9JYqlatyttvv82aNWuYPHkyjRo1KlLPw/dY7dq10Wg0hYbaTEpKUp9pxfHw8GDBggVMnjyZpk2bcvv2bTp16lTiMq9evYqlpSVmZmaPrOtJ4hTiVSE/exRCCCGEEEKIF0zBnnO1a9fm5s2bnD59mmvXrj1Wz7msrCy1V1yDBg1wd3dn/PjxheaKk4SceFzJyck4OjpqXVe9enUuX76svi5fvrz65fXgwYO5c+cOX375Jf369StRXdu3b2ffvn20bNmy2C9czczMqFevnvr6/v37uLq64urqSoMGDYodPu/WrVuF5ml6eO4oeNDzwNHRUf3y3MnJiaCgICpVqkTbtm3Jzc3lyJEj/PXXX/z111+0bdu2ROU+iYLnoVmzZoXm5tNoNGq7F+Tm5sbBgwe5d+9ekXX5X1AriqIOfzZjxgyioqIYPXq01h4kj+tZ1lHwPLRq1eqJ6nqecWrTvn17UlNTOX/+PF999ZW63MXFhS+//JLAwEA1xqcVp7a4AgICyMzMVHvd5feKK8kxPMrw4cOZNGkSw4cPfyr3iLZ7E/5vSL9KlSphZGSk8zn1KBqNRue9PXnyZPLy8mjSpEmJe6Q+L8U9t5+W33//nW3btrFo0SIWLVqEh4cHcXFxeHp6lqqcJz1HBRWco07X+dF1zeSbNGkSTZs2Zfny5Zw6dYrNmzeXOg6Ajz76iM2bN7N9+/Yic5Rqu8c0Gg2tWrUiLCxM3S4sLExnz/KCXnvtNVasWMGaNWswNzfHxcWFLl26lLhMT0/PEg1dCTxRnEK8KiQpJ4QQQgghhBAvqCdNzoWFhTFnzhxsbW0ZOXIk8GAopMjISBYvXixzxYnHlpiYqP4Kfu/evepcVzk5OWRmZqrbzZw5Ew8PD3XYqiNHjjBnzhzgwRd3U6dO5dixYzRr1gx4MJ/UxIkT1fnP8vLyyMnJUb/09/b25vr160RHR3P+/Hnu3bunzlGUnp6u1nvw4EG+/PJL4EHyb8KECezdu5djx46xYsUKatasWaTsfG+++SYDBw7k4MGDbNu2jT/++AOAPXv2cPPmTQAuXrxIt27dqF69OgArV66kRo0abNq0CY1GU2R4vtdee01nudnZ2YW+KM4fHjP/77y8PLVtH/5yOCoqSl3n4+PDtGnTAJgzZw4bNmxQ9z1z5gzvv/8+AMeOHWPhwoUALF68GFtbW95++23i4uLUsry8vPjtt98AuHfvnjr8mqOjIwMGDKBp06bqsaenpxc63ry8PLKzs9XrIH/dw21SMI7S1qGrTG31P6y0dekrzvx9CvauysnJYfr06RgbG3P69Gm2b9+urjt9+jSDBg3CwMCg1HHmS0tLK3KNPSw0NJR169ZRs2ZN/Pz8OHjwIOvXr9e6bf49+fAxpqenF1qW/3f+/3/44Qfs7OwYPHiwGmfB85CTk6OWrSgKmZmZOu8TbfdmrVq1CAsLU4fZ/PDDD9VhFRVF4eTJk0yfPl0t7+H4C9ZR3L3t5eVFeHg4wcHBXL9+nTt37pCUlERmZmah587Dx6btmtB2brQ9E3RtC7qfFyWpo+AzSte2BY/D39+/yHCXNWrUoFu3bnz//ffqspI8/zQaTbHnKCsrSy0jf5/82ArGVPC8p6en6zw/2q6ZguWcPn0aBwcHxo4dy9SpUwv1YC1pLAANGzakdevWZGVlqT1jofh77PPPP2fnzp3Ag+FiQ0JC1F7hxZ2bfMHBwSxbtozdu3erPctLUuZvv/1G//79tZaprb6SlCnEq8xw/vz58/UdhBBCCCG0u379OhYWFpiamuo7FL3z8PDgm2++oWnTpo8ciuRRDh48SGBgIKtWrcLGxoaaNWs+pSgf+OOPP/joo4/YuXMnISEhHDt2DG9vb77//ntatGhRaNLrfCdPnmTx4sWkpaUVGiZLvHrS0tKIj4/H3t5e36GIF0i5cuWoXLky1tbWGBoaEhsbS0xMDDk5OVSqVIly5cqRl5eHgYEBWVlZ7N27lxkzZvDxxx9z7do13nnnHdzd3fnwww9p3LixzBUngMd/nxEREcFvv/1GlSpVOHXqFK6urowcOZK0tDQ1AVepUiWcnJyoX78+zs7O7Nq1i9jYWBwdHRk2bJhaVqNGjahbt67aqy3/+u3evTuVKlVi27ZtxMfHU6FCBZo2bUqjRo3w9/fn5s2bvPfee/z999/Ur1+fdu3akZyczIkTJ7h8+TJvvPEGXbp0AR4M/5eXl8f+/ftJTExk+vTpmJqaFik7fwi1t956i+joaA4dOoS9vb2azDpy5Ahr1qwhIyODihUrMmHCBPU4jh8/zvHjx7lz5w6jRo3S2gNFW7mJiYns27ePlJQUXF1diYqKUocfbNq0Kd7e3ty7d48aNWqoSUgrKyvq1q3LX3/9RXh4OPfv38ff35+PPvpIfQ9Rr149qlevzv79+7l8+TIjRoxQE5+hoaFERETQtWtXjIyMGD9+PJmZmWzdupUjR44QHBxMs2bN6N69O7du3eKXX34hLCwMa2trateujb29PZ06daJGjRqcPn2aw4cPo9FoMDExwdrami1btpCSkkJ2djYmJib4+PhgYGBAZmYmjo6O6jCl+XE4OTmVqg5LS0u2bt2qtczExMRC9dva2hb6wry0x9OkSRO9xBkXF8fWrVsxNDQkLCyMCxcucPjwYdauXUtSUhIfffQRiYmJBAQEcPr0afbs2YODgwOLFi3izp07pT5GePBe9Pjx4xgYGKjXz8Oys7OZNWsW165dw9fXF19fX06ePMn7779f5P30vXv32Lhxo5pAa9iwIVWqVOHw4cOcOXMGRVGoUaMGVapUYevWrcCDZF2DBg2oWrUqb775Jn/++SehoaG0aNGCqKgoIiIiaNSoEQcOHCAtLY0WLVpw/PhxoqOjMTY2plGjRnh5eRW6T7Tdm3Z2dvj7+5OZmUnr1q158803SUpKws/Pj0uXLjFhwgQaNWpEdHQ0Xl5e3L9/nzp16mBtbU1SUlKROnQ9M+rUqYO3tzfVqlWjZ8+eHDlyhNatW+Pl5UVGRgYWFhbUr19fvcbq1atXpD5d50ZbHMWdx+KeF7r2S01NZe/evaSlpWFiYoKDgwMVKlTQWUf+cTRp0kRNvDVv3lwd8jAsLIzAwEBSU1PJycnBwcGhRM+/evXqMX78eK3nKCkpib1795KamkqzZs04ceIEt27dwtTUlJYtWxZ63j183rWdn27dunH+/Pki10zBcsLDw/l//+//8e233/LFF1+wd+9e2rVrh4mJSYljyWdjY0OPHj3UZ8Oj7rH69etjYGDAiRMn8Pf35z//+Y96nRR3/sPDw9m8eTNHjhxh1apVhT6PPqrMu3fvcuXKlSK9+Yqr71FllpR8LhJllYHy8E8dhBBCCPHC8PPzw8nJCQsLC32Honfp6emYm5sTEBDwREmrVatWUbVqVdzc3Dh16hQJCQk6f/X3JHr37k3FihXZs2ePuszLy4sqVarwxhtvaN2nQ4cOuLm5MXXq1Kcej3h5xMfHP3IeFSFycnKIiYkhNjaWChUqkJWVRU5ODkZGRowYMYLY2Fj69OnD+++/T+/evWVoSqHV477POHr0KJMnT+bq1avPKDJREvPmzVOTTEIIURx5Xjw9n332GbNnz1Z/KJqQkIC7uzszZszQc2S63bx5k5o1a750P8qSz0WirHryWcKFEEIIIZ4DExOTpzIXw/r169m0aRMAbdu2feLydDE2Ni7yoadnz57FTvBetWrVZxaPEKJs0Wg02NvbY2JiQmhoqLo8KyuLSZMm4ebmhoODgx4jFGVZSkqKOhyl0B85D0KIkpLnxdORkpLCmjVr6NatG61btyYuLo4zZ87QuXNnfYdWrFq1auk7BCFEAZKUE0IIIcogHx8fjh49Ss+ePVm7di1r167lzJkz3Lhxg5iYGOrUqcOoUaPU7Q8fPqxz3d9//01YWBi3b9+mffv2dOzYkZSUFA4cOEBubi7R0dF89tlnpKenM2nSJL777jssLS3Jzs7Gw8ODihUrcuHCBT7++GPMzc05fPgwfn5+dO/enXXr1mFnZ8dXX32FsbGxznUFh9XKyclh1qxZBAUF8f333+Ps7MyxY8fYv38/P/zwQ7G9QTZu3Mjly5fZtGkTlpaWBAQEkJGRwZ49e9i5cydr1qxhwoQJ1KtXj0WLFrFgwQKcnZ3Zv38/586dIy4ujnnz5mFjY6O1DYoTHx/PH3/8wdixY9m/fz8GBgacO3eOoUOH4uzsrHWfPXv2kJeXR2hoqDpkSVBQEN7e3ly5coUJEybQoUOHkl4WQogyKDExEQMDA3X+EkVR6NChA+bm5nqOTJRlx44do3Pnzuzdu1edw0o8XwEBASQlJVGpUiVOnz7N66+/ru+QhBAvKHlePD2VKlXCw8OD3bt389NPP+Hq6sqUKVMk6SWEKBVJygkhhBBlUGhoKKtWraJLly507tyZAwcO8Ntvv+Hp6UlOTg7dunUjNjaW2bNns3//ftzd3bWuO3z4MEePHuXbb7/l33//pUePHty5c4cVK1ZQr1493Nzc+Omnn9R6C34x/Msvv/DPP/+wceNGLl68yKJFi1i4cCFXrlxh9erVtGnThgULFjB69Gju3r3LunXrdK7bsGGDWodGo+Gjjz6iXr166pfOKSkp9O3b95HDs40bN46PP/6YsWPH4urqyrZt21i+fDkAI0aMwNvbG19fX27cuMGiRYto2LAh+/fv5969eyxYsIDly5fTr18/AgICdLZBQYGBgcyePZucnBwOHTrEnDlzCAkJYebMmVy7dg1zc3Pee+89zp49W2Rff39/jhw5wurVq/nrr79ISEggKyuL9evXs3z5cgICAmjbti0RERGF5iARQgghnrUff/xR3yG88po2bcrGjRv1HYYQ4iUgz4unq1evXvTq1UvfYQghXmIv10CyQgghhCgRFxcXqlatSs+ePZk8eTIbNmygZ8+ewIOk1qRJk/j555+BB1+s6Vq3ePFihg0bBkDLli25ceMGBgYGNG7cmNmzZ7Nv3z51InMTExM2b96s/krw7bffZsmSJURGRpKdnc3NmzfRaDQ0adKEGjVqMGjQIBo2bMgXX3yBl5dXseseVrt2bYYOHap+KXj8+HG6d+9e6nZ6eDjMFStWcODAATIyMmjYsCEAy5YtIzY2lhUrVpCUlISDgwP379/X2gbazsOSJUtYtmwZhw8fBqBhw4b4+voSHx9PUlISN2/e1Lpv3bp12bFjB0uWLKFt27bUr1+f9evXk5yczIoVK/D19aVXr15ERkaW+riFEGVH9erVeXiacI1GQ+XKlfUUkRBCCCGEEEIIXSQpJ4QQQpRRBeczS0hIID09XX1du3ZtUlJSHrnu2rVrhXqf5SexBg0axLJly5gyZQojRowotH++lJQUli1bhpmZGTVq1NAZp729vc4ebsWt++STT/j111+5ceMGVatWfSqTVletWpXWrVvj7u5ORkYGABEREQwfPpzp06fz5Zdfsm/fPszMzErUBgXZ2toyfPhwcnNzWbduHbdv38be3l7n9rVq1eLvv//Gw8ODZs2aER0dTUREBO3atWP69OnMmDGDffv2yfAzQrziqlevjqOjI7dv38bb2xszMzOcnZ3RaGRQFCGEEEIIIYR40UhSTgghhHgFvPHGGxw7dkx9HRsbq/YsK26ds7MzS5cuJS8vD4CDBw+SlJSEj48PQ4YM4cqVK8TExHD06FEAYmJi1HK++uorzMzMqF69OllZWYV6chT8+/Tp0/To0aNE6wpq3rw5rVq1YujQoQwdOrT0jfK/dRWsb+VTelrPAAAgAElEQVTKlSxevBgrKyu++uorAOrXr8+SJUvUbfz9/YmJidHZBvny8vKK9F4xMTFh9+7d/PPPPzRu3LhIuxTk7+9PvXr1+Pfff+nUqROrVq2ifv36rFq1itTUVACioqI4derUYx27EKLssLa2RlEUvv/+e1q0aEGlSpX0HZIQQgghhBBCCC0kKSeEEEKUQVevXiUuLo74+HgAFixYQFJSEuvWreP8+fP4+PiwbNmyR65bvHgxfn5+1K9fny5dupCVlUXlypU5dOgQGzZs4N69ezRq1IiWLVty9+5dbG1tCQgIAMDGxoaVK1fyySefcOvWLfz9/Tl06BDwIHn3888/c+zYMY4dO8a3336rxq5rXWRkJGlpaVy7dk3d9rPPPgOgQYMGJWqX+Ph4kpOTuXr1qlpXbGwsaWlpnDp1iri4OBo1asTKlStZunQphw8f5ptvvmHPnj24uLjw5ptvcuPGDWxsbLS2Qb7k5GTCwsIICwtTex3mq1WrFsePH+f999/n1KlTxMfH8+OPP5Kenk5ERAQREREA3Llzh9mzZxMdHY2FhQW9evXigw8+IDc3lwYNGtCzZ09Wr15N27ZtS3TsQgghhBBCCCGEEEK/DBRdP88WQgghhN75+fnh5OSEhYVFqfeDB0NYduzYEXjQKyw8PJycnBzq169faLjH4tZlZGQQEhKCvb091apVAyApKYnw8HDy8vJo0aIFBgYGwINkoKOjo/r68uXLWFlZYWpqSnBwMI0bN+avv/5i8uTJ/Pe//+X69es4OTmp9R09elTnuuPHj6s99lq3bo2JiQnBwcGcPHmSiRMnlqhdzp07x/379wFo0qQJFy9eBB4M/3bnzh2MjY1p3bo1kZGRXL9+HYC2bduSlZVFaGgoDg4OvPbaa8W2gRBPKj4+npCQEDp16qTvUMRLZNeuXYwYMUJn71shtHnc9xnixXXs2DHef/997t27x4QJEyhfvjwRERG4uLgwY8YMKlSooO8QhRBCiBKRz0WirJKJBoQQQogySNubVgMDAxwdHbVuX9w6Y2NjmjdvXmhZ5cqViywDqFevXqHXBXuwOTs7A/83ZGSlSpVo0qRJoe2LW5efXARIT09HURTc3d2ZO3euujw0NJR58+ZpPY7JkyfTrVu3Qst0vbm3t7cvNN9bhQoVCvWEA91tIIQQQoin6/Tp0zRv3lwSSiXQtWtX2rVrx40bN1i8eDEAWVlZjB07FhcXF3x9fbG0tNS5v7S1EEIIIcSzJUk5IYQQQjw3qamp7N69m+joaLXnXEnWPaxfv36cO3eO5cuXY2pqqi5v2LAhnp6ez/QYhBBCCPH8REdHM3z4cC5duiSJohIyNDQs1IO/QoUKbNq0iebNmzNr1iy2bdumdT9payGEEEKIZ0/mlBNCCCHEc2NqasqaNWvIzMwsknQrbt3Djh49yr1793j33XefYbRCCCGE0Gbbtm00b96c1atX07lzZ+zs7PDy8gLAw8ODVq1asXnzZhwdHdm/fz8eHh6sWLGCn376iWHDhnH16lW8vb3RaDQsXboUgPDwcFq0aMGtW7fo1q0bmzdvBsDf35/o6Gh+/vlngoODWb9+PQYGBqxduxaAqKgo2rRpQ3x8fLFxAXh6erJw4UJ69eql1quP49O2PcDBgwdxdXVl+/btuLm5Ubt2bS5fvvzI+Au2ly7Gxsb06dOHAwcOkJOTw5w5c/Dy8mLy5Ml4eHhobWtd2wkhhBBCiMcnPeWEEEIIIYQQQghRYm+99RZjxozBzs4OX19fVq1axTvvvENMTAwDBw5k1KhRmJub4+fnR2BgIHPnziUoKAgAc3NzBgwYwMWLF3FzcyMuLg6A3NxcZsyYgaWlJTNnzlSHse7RowcAU6dOxdTUlMaNG7Nt2zYSExMByMzMZMyYMVhYWBQbV2BgIMHBwcyfP59x48ZhbW1Nnz59cHJyeq7HFxkZycKFC7Vu36dPH4YNG4aJiQkeHh5MmDABDw8P5s+fz6lTp3TGX7C9itO4cWOSk5P5559/8Pf3Z/HixVhaWvLuu+/i5uZWpK0vXbqkdTshhBBCCPH4pKecEEIIIYQQQgghSszExASApk2bAjBx4kRSU1MJDQ1V1zVv3hxra2t8fX1p1aqVuu+gQYMIDQ3l0qVLzJw5k40bN5KRkcHevXsZNmwY8GCY6oJzuz5s9uzZrFy5kuzsbPbs2aMmioqLa+/evcTExLBixQp27drFsmXL+P/s3Xd4FOXexvF7S3Y3lQRCFwhFhABBxFhARUQREBARRVRUBMTej90jiuWgvHZExaMicMBQVFBABSU0CwihI50ECBBCIHVLdvf9Y8mSkB5YgvD9XNdeZGeeeeY3k+yQ7L3PM2ZzyZ9TDuTxffPNN6W2NxgMslqtatmypSSpadOm2rZtmySVWX9556vAtm3bVLt2bV166aVauHChVqxYodTUVGVlZZXYvnXr1hVqBwAAgIpjpBwAAAAAAKgyo9Eoq9Wq2rVrl7h+7969/q8jIiJkNpsVEhKitm3bKjY2VhMnTpTRaJTNZqvQ/nr06KHIyEhNnTpVWVlZio6OLreugwcPqk2bNnrkkUf863Nycqrl+EprX5YTqb9AYmKievfurYyMDA0bNkwTJkxQUFBQqe0r2g4AAAAVx0g5AAAAAABQaXl5eZKkP//8U+eff74aN27sX+fxeCRJAwYM0OLFi3Xo0CFJ0saNGxUfH6+mTZtKkh555BE9+eST6t+/v3/befPmKSUlRZJv1JrJZFJGRoZcLpckyWAw6Omnn9bTTz+tiy++uEJ1de7cWW+99ZaSkpLk8Xg0Z84c/yi0U3l85bX3er3+fbjdbv/zsuovfL6O367AU089peTkZI0ZM0YJCQnav3+/wsLClJqa6j+vx5/r0toBAACg6gjlAAAATpHdu3dr1apVys/PL7YuLS1Na9as8b/JV1nr16+vUp+JiYlFHosXL65SXXv37tXy5ctL/NT+iR4bAOD0NG7cOH3wwQdKSEjQ1KlTJUlfffWVJOnzzz9XVlaW4uPj9eWXX+rxxx/XxIkTNW3aNE2fPl0Gg0GS1K9fP912221q0aKFv9/Ro0dr/vz5kqSQkBANGjRIw4YN0+rVq/1tbr31VkVHR6tnz54Vquuuu+7SgAED1LVrV8XGxurw4cOKi4s75cdXVvv58+fryJEjmjVrlg4cOKAFCxZo1apVSk5OLrP+wudr0aJFWrp0qZKSkvTCCy/o3//+t4YMGaLw8HCtX79eNWvWVNeuXXXw4EH17t1bDodDZrNZb7zxRrFzXVo7AAAAVJ3Be/zHpwAAwGkjMTFRsbGxpU6XhH+O1157TevWrdPatWtlsVi0dOlS/31pJk6cqNWrV+vmm2/W66+/rvfee09NmjSpcN9//vmnrr/+eqWmpvqXVaTPhQsX6q677lJMTIwMBoPsdrvy8/O1fPnyStX11FNPqXHjxoqLi9Mbb7yhV199VR07djwpx3Y2SktL04YNG9SlS5fqLgX/IAkJCRo4cGCx0TFAWar6e4bb7ZbZbNbu3bvVsGHDAFVXtuzsbI0ZM0YjR4486XWdDscHAMDZjr+LcKbinnIAAAABtnbtWvXs2VPPP/+8HA6HzjnnHK1evVqXXHKJDhw4oBdffFFbt26V2WzWHXfcofvuu09z5sypUN+5ubmaMGFCkdF3Fe0zPT1d27Ztk8lkkiTNmDFDmzdvrlQfe/fu1eTJk7Vnzx5J0o4dO/TVV1+pY8eOJ3xsAIDTU8E0hiWN/A60HTt2aM+ePZo3b56GDRsWkLqq8/gAAABwZmP6SgAAgABr166dLrjgAkmSyWRSmzZt1L59e0nS9OnTdd5558ls9n1W6rLLLtO8efO0f//+CvU9duxY3XvvvUWWVbTPG2+80R/ISdK0adN0ww03VKqPmjVrKiMjQzNmzJDkG7XXrVu3k3JsAIDT06hRo1SvXj1NmjTJf2+0U+Wnn35Snz591KhRI8XExASkruo8PgAAAJzZCOUAADgDTZgwQVarVaNHj1b79u01ZcoUPfTQQ/r666+1dOlSde7cWbNnz/a3L2vdqFGjNHPmTM2aNUvNmzfXvn37tH//fg0fPlybN2/W8OHD9ffff0uS4uLi9O6770qSjhw5oq5du2rNmjV68cUX9a9//avU2l599VVNmTJFQ4cO1fXXXy+v11vq9v9ke/fu1W233aZu3br5p67csGGD6tSp428THR0tSdq6dWu5/f3000+6+OKLFRERUWR5Vfq02+3asWOHWrVqVak+bDabPvvsM916663q06ePOnfurL59+57wsQEATl+vvfaaUlNT9fzzz6tmzZqndN8jRoxQRkaGRowYEbC6qvP4AAAAcGYjlAMA4Ax0++23y+l06oorrlBSUpLMZrNWr16tgQMHqnPnzho1apTuuOMO5ebmatq0aaWumzFjhlJSUtS/f3/17dtX999/v7xer7Zs2aINGzaofv36+s9//qPQ0FBJ0rx583TfffdJ8oVyHTt2VFxcnPr166eZM2eWWJvRaNTu3bvVoEED9e/fX7NmzdKSJUtK3f6fIC8vT+np6UpPT9eRI0f8y9etW6fmzZvr5Zdf1qeffirJd56sVqu/jdFolMViUXZ2dpl9pqena926dbriiiuK7b+ifRY2d+5cde/evUp9dOvWTTfffLOWL1+uL774Qjk5OVWuAwAAAAAA4EzFPeUAADgDFUxJ2KBBAxkMBi1ZskTNmzf3r+/cubOOHDmiTZs2lblu/vz5uuiii/zrnnjiCUlS3bp11bRpU5177rl68803dccdd/j3V6Bx48Z68MEHtXDhQmVnZ8vpdJZY28KFC3XuuecqMjJSkZGRSkpKUuPGjRUVFVXi9v8EM2bM0H//+19JUmxsrMaOHStJ6t69u7p3767g4GDNmzdP99xzj5o3b66NGzf6t3U4HHI4HGrZsmWZfRqNRvXu3VuJiYnat2+fXC6XEhMTFRcXV+E+C5s+fbqefPJJ//OK9uF2u9WzZ0/9/PPPcjgc6tGjhx544AF9+eWXVaoDAAAAAADgTEUoBwDAWSA6OlrLly/3PzebzTKZTGrYsGGZ68xms5YvX65hw4b51+/Zs0dWq1WTJk3St99+qwceeEAul0tDhw4tss+tW7fq3nvv1fz585WUlFRmffv27fPfY02SduzYofT09Apvf7q5/fbbdfvtt5e6vl27djpw4IAkqVOnTkWmC926dauioqLUpEmTMvt88cUXNX36dElSTk6O7Ha7Jk2apEcffbTCfRZwOBxat26dOnTo4F9W0T5Wr14tt9utWrVqSZI+/vhjDRo0qFJ9AAAAAAAAnA2YvhIAgDOQ2+2W5AtbJOnuu+/Wpk2btGbNGknSL7/8osGDB6tu3bplrrv11lv1xRdf6NVXX9WCBQv07LPPymq1aunSpUpKSlK/fv308ssva+fOnZKkl19+WUuXLpUkLViwQCkpKUpJSVFiYqJycnJ04MCBYrX1799f7777rt59910tW7ZMb7zxhoKDg0vd/p9o+/btmjdvnrxeryTfNJ8Fow67d++uoKAg/335EhIS9NRTT8loNCorK0vPP/+8du/eXazPUaNGafz48Ro/frzeeusthYeHa/z48WrTpk2l+/zxxx919dVXF+m/on00bdpUe/bs0Z49eyRJaWlpuvzyy8vtAwAAAAAA4GxjGjly5MjqLgIAAJRs165dql27tv+ebRU1ZcoUHTp0SB6PR3FxcYqOjtaAAQM0efJk7dmzR0eOHNELL7wgo9GoiIiIUtc1atRI8fHxmjt3rjZv3qxHH31UDRs2VHZ2tiZMmKD09HRZLBYNHTpUFotF8+bNU0xMjJo2bapmzZpp+/btWrp0qUaMGKGdO3fK5XJp06ZNRWpr3bq1WrVqpe+//17r16/XkCFD1KxZs1K3v+CCCwJ0tgPn8OHDeuedd/TXX38pKytLd999d5GpPvv376+vv/5aGzduVHh4uB5++GEZDAalp6fr008/VVpamrp06VJq/06nU0lJSbrllluq1OcPP/yg3r17F6mpon306NFDPXr00OTJk7Vlyxbt3r1bI0eO9N9LrrQ+ULrc3FylpaUpJiamukvBP8j69es1ffp08ecdKqOqv2cAAAAEGn8X4Uxl8BZ8ZBsAAJx2EhMTFRsbq9q1a1d3KagmK1euVF5enjp37nxa9RmIuuCTlpamDRs2lBnEAsdLSEjQwIEDxZ93qIzExERFRET4P0gBAABwunA4HMrMzOTvIpxxuKccAADAacztdp/04Otk9BmIugAApxYf+gEAAKcrq9XK7yo4IxHKAQAAnMbi4+NPyz4DURcA4NSKjY2t7hIAAACAs4qxugsAAAAAAAAAAAAAznSEcgAAAAAAAAAAAECAEcoBAAAAAAAAAAAAAUYoBwAAAAAAAAAAAAQYoRwAAAAAAAAAAAAQYIRyAADglImPj9fChQuru4xTIiEhQeeee65q1qypBx98UG6327/ur7/+0sMPP6zx48frySeflMPhOOF1xyuv7ffff6/OnTuXexwn0k9iYqIGDx58Rp2Pb7/9VldccYVq1qyphx56qNj6ivYDAAAAAADOPoRyAAAgYH7//Xc5nU7/8w8++EDx8fHVWNGpsXr1am3dulW///67vv32W02ePFmffPKJJMnpdOrOO+/USy+9pOHDh6tZs2Z67LHHTmjd8cprm5ycrMzMTK1cubLM4zjRfr7++mvdfPPNZ8z52L59u7KysrRo0SKtWrVK48eP14oVKyrdDwAAAAAAODsRygEAgIBISUnRzTffLJfL5V92ySWXKCQkpBqrOjUyMjL03HPPqVatWrriiis0ePBgbdq0SZJvxFhkZKRq1aolSerRo4cmTJigrKysKq87XnltGzdurPbt25d7HCfSj9vt1vz589W9e/cz5nzUq1fPP/KvSZMmio2NVZMmTfzrK9oPAAAAAAA4OxHKAQBwBpoyZYri4+M1YcIEtWjRQt99952mTJmi9957Tx988IFuuukmbdmypUj70tbNmjVLY8eO1ejRozV06FDl5eXJbrfrtdde07Rp0zRixAjt2LFDktStWzdNmDBBkrRkyRKlpKRo7NixWr9+vZYtW6Yrr7xSEydOlCT9+uuvio+P1+eff67HH39cLVq00Ny5czVu3Dj16NFDnTt3lt1ulyRNmzZNr7/+unr06KExY8acqtNYZVdeeWWR56mpqerUqZMkae3atWrUqJF/XaNGjZSbm6u///67yuuOV5m2ZTmRfhYuXKhLL71UVqv1jDkfhQPl999/XyNGjFDt2rUr1QcAAAAAADh7mau7AAAAcPL169dPt956qyIiIpSYmKg1a9bohRde0Nq1ayVJERER6tu3r9atW6fly5fr9ddfL3HdypUrNWnSJCUkJMjr9apv377atWuX9u7dq3Xr1un5559X+/bt/aPhHnvsMbVt21aS1L17d0nSAw88oNDQUEmSw+GQ1+uVJHXt2lX79u2TxWLR22+/rebNm2vEiBFat26d7rvvPl144YX65ZdfFBUVpfXr12vkyJEaMmSIGjZsqF69eik2NvaUntOqysrKUnZ2tm688UZJvhGEYWFh/vVBQUGyWq3av39/ldcdrzJty3Ii/RRMXXm8f/L5KPDll18qISFBf/zxh1q2bKmuXbtWqR8AAAAAAHB2YaQcAABnoODgYEnSBRdcoIYNG2rhwoVF7uV2ww03aNOmTdq4caO++eabUtclJCToqquukiQZDAbNnj1brVq10sUXX6yVK1fquuuuk8fjUcuWLSVJvXv3VkxMTKl12Wy2Ys8LRjA1adJENWrUUEREhCQpOjpa+/bt08yZM7V792699957SkhI0DvvvCOz+Z/zuaKXXnpJH3/8sYKCgiQdG6VVwO12y+FwKCYmpsrrPv30U7Vr107t2rXTbbfdVmbbspysfvLz8/Xrr7/qmmuuOaPOR4G77rpLixcv1qBBg/Tpp5+W2QcAAAAAAECBf847WgAA4ITs3bvX/3VERITMZrN/Or7S1mVkZBRZJ0lOp1M2m00rV67U888/r4suukizZs0qNkVhZRkMhmLPvV6vDh48qDZt2uiRRx7xr8vJyTmhfZ0qU6dO1eDBg4vcd6xdu3b6448//M/37t2roKAgtWjRosrr2rRpo3vuuce/btKkSaW2Lcs999xzUvpZsGCBLr/8clksljPqfBRmMBh00003acaMGWX2AQAAAAAAUICRcgAAnME8Ho8kacCAAVq8eLEOHTokSdq4caPi4+PVtGnTMtd169ZNH374oZYsWSKn06nJkydr69atmjt3rrKzs/Xuu+9q5MiRmjVrliRp3rx5SklJkeQbrWcymZSRkeGf3tLj8finr5RU7OuCeguv69y5s9566y0lJSXJ4/Fozpw52rZtW6BO2Ukza9YsNW3aVB06dJAkLV68WDt37tRNN92k3bt368iRI5Kkn376SbfffrusVmuV1x2vIm3dbne5x1DVfkqauvJMOB95eXnKyMjwP1+yZInuuuuuIm0q0g8AAAAAADg7MVIOAIAz0FdffSVJ+vzzz/XUU08pPj5eX375pR5//HF169ZNO3bs0PTp02UwGMpcd8stt2jt2rW64YYbFBkZqTFjxig2NlbJycl6+OGH1adPH7lcLt1///2SpNGjR+uOO+7QkCFDFBISokGDBmnYsGF69dVXZTQatWXLFv3444/q1auXNm/erOTkZP34449q27atvv/+e23dulVLlixRrVq1tH79etWpU0dvv/22Vq1apa5du6pu3br697//rV69elXn6S3XnDlzdOONNyo/P9+/LD4+Xn/++ack38itUaNGqXXr1lq1apXeffddSZLVaq3SuuOV1/bAgQOaOHGi7Ha7pk+frp49e/rv+3ei/VgsFi1atEiffPLJGXc+kpKSdPvtt2vAgAG6+OKL1bt3b11++eWV7gcAAAAAAJydDN7CH1EHAACnlcTERMXGxqp27drVXQqAUyQtLU0bNmxQly5dqrsU/IMkJCRo4MCB4s87AAAAADh9MX0lAAAAAAAAAAAAEGCEcgAAAAAAAAAAAECAEcoBAAAAAAAAAAAAAUYoBwAAAAAAAAAAAAQYoRwAAAAAAAAAAAAQYIRyAAAAAAAAAAAAQIARygEAAAAAAAAAAAABRigHAAAAAAAAAAAABJi5ugsAAABl2717t9LS0qq7DACniMPhqO4SAAAAAABAABDKAQBwGqtdu3Z1lwDgFLNarbz2AQAAAAA4AxHKAQBwGouNja3uEgAAAAAAAACcBNxTDgAAAAAAAAAAAAgwQjkAAAAAAAAAAAAgwAjlAAAAAAAAAAAAgAAjlAMAAAAAAAAAAAACjFAOAAAAAAAAAAAACDBCOQAAAAAAAAAAACDACOUAAAAAAAAAAACAACOUAwAAAAAAAAAAAAKMUA4AAAAAAAAAAAAIMEI5AAAAAAAAAAAAIMAI5QAAAAAAAAAAAIAAI5QDAAAAAAAAAAAAAoxQDgAAAAAAAAAAAAgwQjkAAAAAAAAAAAAgwAjlAAAAAAAAAAAAgAAjlAMAAAAAAAAAAAACjFAOAAAAAAAAAAAACDBCOQAAAAAAAAAAACDACOUAAAAAAAAAAACAACOUAwAAAAAAAAAAAAKMUA4AAAAAAAAAAAAIMEI5AAAAAAAAAAAAIMAI5QAAAAAAAAAAAIAAI5QDAAAAAAAAAAAAAoxQDgAAAAAAAAAAAAgwQjkAAAAAAAAAAAAgwAjlAAAAAADFOBwOPf744zIYDJo5c6a+/vprPfbYY7r00kv1888/V7nf4cOH69lnnz2h2ux2u5544gk1btzY//zOO+9USEiIfvzxRy1YsEBz5szRM888o9dee+2E9gUAAAAAJ4u5ugsAAAAAAJx+rFar4uLiZDab1b9/f0nSwIEDtWzZMl111VUaM2aMHnzwwUr3+9FHH8lkMp1QbTabTf369VNCQoL/eYcOHTRnzhxde+21/na9evXSnDlzTmhfAAAAAHCyMFIOAAAAAM4QiYmJ+u2333T48GElJiYqMTFRe/fuVV5enhITE5WcnCxJysjI0OrVq+VyuYpsv3nzZu3bt08Oh0OSZDAYiu2jU6dOeu655/Tss8/qyJEj/uUHDx7UqlWr5HQ6/cucTqfS09O1b98+paenS5KMRqOSk5O1a9cuf41Op1NHjhxRYmKitmzZUmp/kpSVlaVVq1YpPz+/yPKSal25cqV69epVYh1ZWVn666+//M8L17x//345HA6tWbNGbrdbkpSamuqvDQAAAACqgpFyAAAAAHCGGDx4sF544QVdcskl+uabb5SUlKRffvlFRqNREyZM0OjRo3XnnXfquuuuU1hYmO655x799ttvMhqNuuuuu/Svf/1L33zzjYxGo0aMGFHqfrp06aKXXnpJa9eu1WWXXaYvv/xS+fn5yszM1KBBg7Rw4UKlpKSof//+uuGGG7R161Y1atRIzz77rAYPHqwWLVroo48+0q233qq4uDh16dJFFotF48eP1/vvv19if/Xq1dP06dO1Zs0aXXfddfr444+L1eVyuZSYmCiv16vU1FQtW7ZMbre7WB2XXHKJUlJS1KdPH91///2KjY3VSy+9pG3btun6669Xhw4d1KZNGy1ZskQGg0HXX3+9tm3bpkmTJumzzz4rMhoPAAAAACqKUA4AAAAAzhAPPPCAfvrpJ91zzz26++67demllyonJ0c2m00xMTGqXbu2goKC1KNHD4WHh2vQoEHas2eP6tWrp/nz5+v555/Xfffdp6SkpDL3c84550iSDh8+rOTkZH3xxRd65ZVXJEkej0fjx4/Xiy++qJiYGNWvX1/vv/++vF6vDAaDunbtqpSUFAUHB+ull17SsGHD5Ha7lZeXp7i4OGVnZ5fY33333af77rtPycnJCg4O1kE3HgIAACAASURBVLBhw7Rs2bIidXm9XmVnZ8vr9SozM1P5+fmKj48vUkdKSoratm2r1NRUhYSEaPz48WrYsKGuueYaderUSRdddJEaNGigZ555RikpKWrcuLHGjRunc845R1arVbNnzyaUAwAAAFAlhHIAAAAAcIYYMmSIRo0apbS0NP3www/q1KmTpk6dqsjISPXr10+S9N577ykxMVEtWrSQwWCQ0+lUUFCQnnnmGXXs2FEPPPCAXn755TL3s2bNGklS+/bttWzZMjVo0ECRkZGSpGnTpqlmzZqSJLPZrAYNGkg6Nr1k4fvJde/eXeHh4frhhx908OBBDRo0qNT+li1bppiYGAUHB0uSQkJCitVlsVh03XXX+Z8vXbq0WB0rVqxQzZo1/dtHREQoLi5Ov//+uzp16iSTyaSgoCBJ8h9HwT6Dg4OLTNkJAAAAAJXBPeUAAAAA4AxRp04d9enTRx9++KHcbreeeeYZffbZZ1q9erXi4uLkdrt1+eWXq3PnzmrZsqV/u/z8fA0ePFhLlizRwoULNXTo0DL3k5CQoO7du6tRo0aSpG3btql9+/b+x/H3eyvLI488oo8++kh79+4tsz+Px6M9e/bI6/VWuO/OnTsXWxYdHa09e/YoOzvbvywoKMg/+g8AAAAAAoVQDgAAAADOIPfee6/GjBmjoUOH6qqrrlJ6erpatWolSdq6datWr16t7du3a+HChXI4HNqzZ48yMjL0xRdfKC4uThMnTtTOnTslSQ6HQx6PRx6PR5KUk5OjJ598UmvXrtVnn30mSerWrZs2b96sESNG6LffftO4ceOUmpoqyRf2ORyOIvXl5+fL7Xb7nw8ePFgrVqxQfHx8mf116dJFTqdTb7/9tpxOp/744w9lZGRo+/btkiS73V5sX4X3WbCuc+fOuuCCC/TFF19Ikg4dOqS8vDxdf/31knz3pSsI/lwul7/vgucF5wIAAAAAKss0cuTIkdVdBAAAAACg6tavX6/p06dr5MiRiomJUcOGDXX55ZfLYDCobt26uvHGG2U2mxUdHS2TyaRvv/1WXbp0UYMGDbRmzRpdddVVmjp1qpKTk3Xo0CE9+OCDOnDggL755huFhYVp3bp1WrJkiRYtWqTzzz9fY8eO9U8vGRISomuvvVaJiYlKTExUly5ddPXVV2vFihVatmyZnE6n2rRpo8jISCUnJ+vHH39UTk6OWrdurTp16igoKEgNGjTQDTfcIIPBUGp/wcHB6tmzp2bMmKHvvvtOHTt2VPPmzdWmTRvt379fs2bNUkhIiDwej1q3bi2z2Xe3huPriIqK0sCBA7Vw4UJt2bJF69at0+uvv67w8HBt27ZNP//8szwejy688ELNnTtXGRkZMpvNatKkiWbPnq28vDx17NhRUVFR1fktBwAAAPAPZPBWZu4PAAAAAMBpJyEhQQMHDqzU1I4AAAAAgFOL6SsBAAAAAAAAAACAACOUAwAAAAAAAAAAAAKMUA4AAAAAAAAAAAAIMEI5AAAAAAAAAAAAIMAI5QAAAAAAAAAAAIAAI5QDAAAAAAAAAAAAAoxQDgAAAAAAAAAAAAgwQjkAAAAAAAAAAAAgwAjlAAAAAAAAAAAAgAAjlAMAAAAAAAAAAAACjFAOAAAAAAAAAAAACDBCOQAAAAAAAAAAACDACOUAAAAAAAAAAACAACOUAwAAAAAAAAAAAAKMUA4AAAAAAAAAAAAIMEI5AAAAAAAAAAAAIMAI5QAAAAAAAAAAAIAAI5QDAAAAAAAAAAAAAoxQDgAAAAAAAAAAAAgwQjkAAAAAAAAAAAAgwAjlAAAAAAAAAAAAgAAjlAMAAAAAAAAAAAACjFAOAAAAAAAAAAAACDBCOQAAAAAAAAAAACDAzNVdAAAAAIAzW35+vvLz84stdzgc8ng8xZbb7fZiy9xut5xO5wn17fV65XA4Klx3afVVhsfjKbHuyiqvlqSkJNWtW1fTpk0rs5+goCCZzSf+Z6DNZjvhPipTi9FolMViqXAfFotFRmPRz6AaDIYS6zaZTAoKCqpw31arVQaDoUJ1AwAAAEBhBq/X663uIgAAAICzWeFgyePxFAmOHA6HCn5ld7lc/nbHB0yFQ5uK9pefny+Xy1Wov7xC7ewl9lfAbj/WTwFfH66qnoaTKijIKJOp+HKbzaiK5ikGg2QtngNVoRavzOYTC3EMBq+s1hP7083jkZzOE58sxemU3O4T68PrlRyVyCrz8yWXq3go6XR65fFU/5+0BoNBVmvxYM9sLh74FQ71fMGfb70veDwWGtpsNn87s9nsDwiNRqOsVmuJ/ZnNZv/+fDUVbVcQVBbu7/iwsqRAEwAAAMDJQSgHAACAs0pBwFQ4rCoYmeV0OuV2u+V2u+VyueT1ev3rCsKsgmCs8Agou91+dJ1Tbne+8vNd/u0L9uHb37EUwuFwFQu1ToTFYlTB++gmk0EWy7EQyGYt3E7+sMpo9MpiOVZDcPCxbYKCjrUzmQyyHJc3WCxSSe/b22wqNorIaPS1P57ZLAUFFQ+rLEHF+/YFB8X7KK1vnN1KGGwpt9urkgYtuvJLDhkdDhUL/Lxe3/Lj5ed75Sohj3a5ivbt9XplL7S90+kLS331+ULGY8dgLNKuoB+321dzgby8Y2Gly+WV233yritms0lms+9C4HsN+i4mhUcu2mzBMhgMCgqyyGQy+4PBwqFgQSBYEAYWDhYLAkGLxSKTyeQfuVg4LGR0IgAAAM4UhHIAAACoFna73T8locvlktvtLrYsPz/fH4YVjAQrPVTzyul0HA3V8guFar42TqerSiNqbDaTJK8sFqNMJoNMJinI7Bu5ZLMZJHlltRpkMLgVFGSQ2Vw0KAq2FQrHCoVKVquhUIjmC8Gk4uFT4YDKZFLRsO3EZxAEcIbyjYw89jwv79j1r3AQeXxYWTjQdLl8gePx/bndktPlLdLe4fDK4/GNaszPN8jjMcjh8EoyyH70X6fTI7fbt0+Xq/LX44KQ0GQyymIJkmSQzWaRZDga6pllMpkVFGSRwWAsFuoVTEla8LBarTKZTLJarf4wsSActNlspU5tCgAAAFQVoRwAAACKKBgBVjgUc7vdcjgc/kDs+GUul8s/yswXrOXL5XL6Q7JjYZtLLle+3O7y79NlNhtkNhtktfpGgAWZfaGUL5iSJK9sNt+vsgUBl9ksfyhmPRpeFQRXFovBv31QkG9qQtvRwMxq8T0vKVQDAARG4ZGHBSMT892+YM/j0dFQ71jw5xsx6PWNFnT5trcfbeNw+J67XN6j2xvkdPqu8XlHZ+Z1unz9+tp45XB4VJF3RIKCzDKZjAoOtvlHCRZMPWqzhfhH/gUFBfkDvcLLCgJAo9EXFBYOBQuWAQAA4OxAKAcAAPAPVhCQOZ1O2e12OZ1O/3OHw1Hk68JtPB638vJy5fH4RqU5nQUj1Sp2kyer1SSj0Xd/LrNZMpsKgjGvbDaPTCavLBaDf4rDYJvBH3QFBfkCN5vtaHhmNchs8oVpVqtvqsRCt0ECACBgCoLBgjDPcXRKUbv9WPhXEAba7cdGCRZMTepb5pXTaZDLZfCFfU6D3G6vHA5f+Fcw2rAsJpNRQUFmWSzmIiP1LBargoIsslhsslgsstl8/1qtVv+/BQ+LxVKkDfcGBAAAOP0QygEAAJxivhDM6Q/LCoKygofdbveHaMfa5MnptBdq4yjznmRGo++eYjab0ReOBRlktXpltXpktepooHZ01FlQofAsuHh4Zj16DzKr1eAfiQYAACrONxKwUNiXf2zKT3/Y5zwW9uXZvf4pQ33BoC/4s9sNcjgLnvtG+5XGbDbJYjHLai0I6qxHHzbZbLYiQZ7FYlFwcHCR51ar1R/wmQpuMgoAAIATQigHAABQCXa7vdzHsVFpeXI48vwj0XzhWukj0UwmgywWo2w2o6wW+UeaWSz5stl8oZgvYPONKLPZCtb7/rVZC9oQnAEAcLZwOHzhndPplcPpG9Hne+4L/pxOye4oCPJ8yxwOgxwOg5yugjZe2e2lB3y++/iZZbMVHpVnlcUSrODgYH+AV9aD+/MBAAAQygEAgLOQ3W5Xbm6u8vLyij2OhWt5hR522e2lB2oFQZrNajgannlksXhls/mmYSwYiWax+EaiFXxtsfhGoRWEa3wIHQAAVKeCMM8X8PlG9hVeZrdLDqe3SOhntxvlcBhkd3hlt/vCPbe7+FtNRqNBNptVwcEFQV2wbLaQIsFdcHCwQkJCFBwcXORBoAcAAM4UhHIAAOAfy+12Kzc3t8gjLy/vuMAtV3l5OUeX2ZWX5yg25aPRKIWEmGSzGWSzSjab9+jDF7LZrAYFBx/9uuBhLXjum+4RAAAAPi6XjgZ0OhrW6ejj+GW+UC8vzzeaLy/PU+KIPbPZpOBga6HALqxYgFfwdUhIiEJDQxUcHFwNRw4AAFA2QjkAAHDaKAjZ7Ha7f9RaVlaWsrKyji7LVXZ2prKyMpWXZ1dOjr1YwGY2G2SzHQ3RrF6Fh0vh4b4ALfhoyFYQsPnaSGFhBhkM1XTQAAAAKCI/X8rL8x4N6rzKzpaysrzKOxrq5eV5ZbebCoV5XmVn5xfrx2azKDw8TDZbsIKDQ2Wz2RQeHq7w8HD/yLzw8HCFhYUpNDRURj5pBQAAAoxQDgAABFxubq6ys7OLPLKyspSTk6PMzMPKyclWVla2HA5Xke1MJoNCQkwKCZZCQ70KDZVCQnT0uUGhoYajz31f84FoAACAs5PbLeXlSTm5XuXmStnZHuXmSrl5Bc+l3FyDcvOk3FyvcnPdRbY3GAwKDbUpLCxM4eE1FBoa5g/sCj/Cw8OZThMAAFQZoRwAAKiy/Px8HTlyRJmZmcc9jignJ0tZWdnKycmV231sGiKTyaDQUJMiwg0KDfUoPFwKCzUoLMw3Yq0gZAsL892PDQAAADjZvF4pJ8frD+mys73KyZGyc6SsLI9ycgzKzPSFfDk5RafUtFjMCg8PVWhoqMLDIxUeHqEaNWooIiJCERG+r8PCwmRgKgYAAHAcQjkAAFAij8ejzMxMZWRkKDMzs1D4dkSZmYeVmZmlvDyHv73ZbFB4uEkR4UZFRLgVFiaFhxkUGuqbPjIszKAwRrMBAADgH8bj8QV4vsDOF95lZXmVk+tVZqZXWVkGHcmUcnLcKniXzWCQwsJCFBlZQ+HhkYqIqKEaNWooPDxckZGRioqKUkhISPUeGAAAOOUI5QAAOIvZ7XZlZGQc90hXRsYhHTmSJY/H92uCyWRQRIRJYaFehYd7FRVlUHiY4WjY5gvfIiO5LxsAAADObna7lHHYq6ws38P3tZSdbVTGYenIkfxCv2MbFRERrqiomkcfUf5HzZo1ZWXaCAAAzjiEcgAAnOHy8/N18ODBIo/09ANKT8+Qy5UvSTIapRo1zIqKlCIjPYqKNCoqyqDISCkq0ig+xAsAAACcOI9Hysz0hXWHD0sZhz3KyPDq8GGjMg57lZNz7F53oaE21aoVrejoOoqOjvY/IiMjmRoTAIB/KEI5AADOEPn5+Tpw4IBSU1N18OBBpaUdUHp6mg4fzpIkGY0GRUWZFV3Lo+hoqVZN49HQzaCICIOMxmo+AAAAAOAs53LpaGDn1aFDXqUf8urgQelgupSd7QvsTCajoqOjVKtWHUVH11bdunVVr149RUVFEdYBAHCaI5QDAOAfyOl0at++fUpNTVVqaqr27dujtLR0eTxeWSxG1Y42KTrarehaBkVHGxVdy6CaNQneAAAAgH8qh0M6mO45GtJ5dfCgVwfTDTp0yC2PxyurNUj16tVT/foNVb9+fdWvX1+1atWSkT8CAAA4bRDKAQDwD5Cbm6tdu3Zp586d2rFjqw4ezJDX61VwsEn16xlUv75X9eoaVL+eUTVrcm83AAAA4GyRny/tP+BVaqpHqfs8Sk016kCaW263V0FBZp1zTkM1adJUTZs2VcOGDWUymaq7ZAAAzlqEcgAAnIY8Ho+2bdumrVu3aufO7Tpw4KAMBqleXbNiYrxq3Mio+vWMqlGjuisFAODskZnp0OYtaWoTW1fBwUHVXQ4AlMrjkQ6kebV3r0e7kr3auUvKzHTLbDapUaNzFBPTTK1atVKdOnWqu1QAAM4qhHIAAJwmvF6vdu/erbVr12rdujXKy3Oofj1fCBfTxKgmjY2yWqu7SuCYGTPXqXnzWjq/ff3qLqXKViXt1dSvV+vPP3dLkp595kp1v+bcUtt//sUKTZy0SpJ04YUNde89Fysn16WPP/lDGzcekCSZTAYZjUY1b15T57Wsrev7xqpp0yht3HhAUxPWaNGiHZKkkJAgXdu9pYbefaFCQy3F9vXn8hT99/MV2rz5oL/foCDfJ9udTt80VZL0xOOXq/d1rSRJ+fkefTr+T/08f4u8Xik6OkQtmteSyWTUv5684qQcb/PmtYq0+fvvNE39eo1e+ne3sk51EZmZDr3/wVKt+GuP6tUL15C7OuriixqVuc2mTWn67PPl+uuvPZJ8x3bTgHa6+aY4SdLk/yVpxsx1ysjI89d7WecY/fTzFm3Y4PveGAy++/A0aBChludG66qrmuvSSxpXuG5J2rcvS7Nmb9Q3367Xe+/0UcuW0SW2y8tz6ZVXf9Hg2zooNrZ63vAMVA1r1u7T/v1Zuubq0n92qqK0n6XyjqMqP4OV2X+B5174Uec0rKH5C7Zq7ry/tWjhCMVfeM5JreFUqMjrz+Px6rP/LteGjQdktZp0VdfmurZ7y2prU6Ai57mi3wuv16vVa/ZpxYrdatOmbrnXAs6bT2XPG04vGRle7dzl0c5dXu3YKWVluVWnTrTi4s5Xu3btFBERUd0lAgBwxiOUAwCgmrndbiUlJWnp0kXKyMhUndomtWsrtWtrUo0azEOJknk8XhkMkqEa5yqNv3is2ratqy/+O6DaajhZzov9P23efFBdr2ymX+YPL7GNx+NVi/Pe0o4dGWrRopa2bHrSv87hyFdU9CvKy3Mp/cCLstmCtCppr1548SctXrJT773TWw/cf6kkqXuPz/Xz/C364L2+evCBS8us68gRu2rVGSW326PD6S+pRg2bv5aUlCN68OHvdF2vVrp3xMWSpL79vlJmpl2jXumuJo0jNX3GOj3/4o+6skszzf1hyEk7Xknateuwxo77TW+/s0StW9XW2tWPlnOWffbuzdQ1Pf6rZk1rKjvbqaXLdsnt9mjq/wbppgHtyt0+pvlo7dp1WAt+HqarujYvsu67WRvUr/9EtW1T11+P0+lWdN1RyspyaPPGJ9S0aU1t25au1974VRMnrdI9wy/SJ+NuqFDtkrRzZ4aefnaeEqat0bo1j6pNbN0S261Zu0/tO7ynV0ZeoxdfuKpCfZ/s13VVaijLtm3penPMIn06/k/dflsHTZxw80mosvyfpdKOo6o/g5XdvyRNn7FOo15doNWrHlFurkuPPDZbzz59pUwm40mp4VSpyOvP6/XqhhsnKTzcqglf3CSn060rr/pUt9/WwX/NOpVtpIp9jyrz8zB33t96ZdQvuuaaFhpy54Vq2jSK8xaA84bTm9frVcpur9au82j9Bq/sdq+aNYtRly5d1ahR2R+UAQAAVcedXgEAqEb79+/XJ5+M09y5P6hF8xzdN8Ki+0aYdVlnM4EcyvT6G78qOflIte1/+YrdWvHXbk2ZuloHD+ZUWx0nS0yTKEVFBevXhdu1dt2+EtvMnfe36tYJlyQ1bhRZZJ3ValbNmsGSpBo1bAoJCVLnTk0069s7FBUVrMee+EHJyYclSY0a+eadbdKkaB8lqVHDVqTfAkajQU2aROrVUd2Vn++RJC1avEOzv9+oV0d11+WXxahx40g9/thlmp5wm1JTs07q8UqSxWLSm//pqXPPrVVsXVleenm+vp5yq2Z/d6d+XTBcy5bcK6vVrIcfnV2h7Rs28J2/RucUn7+3cePIIv8W1Fm7dqgkqUGDCJnNRp13Xm19+flNatumrj4d/6f++DOlwvXHxETpmqtblNsurl09bdn0pJ579soK932yX9dVqaEszZvX0rix/U76tI3l/SyVdhxV/Rms7P4l6euE1WrQwDeCJCQkSOM/6a9mzWqetBpOlYq8/r6auEqzv9+od/7vOhmNBtlsZr05uqcefnS2/v477ZS3kSr2PapIG4/HqwcfnqVh98zUR2Ov1ysjr6lQsMR5q9p5w+nNYDCocSOjrutp1pOPBemWm83KdyXr888/13fffSun01ndJQIAcEYilAMAoJocOnRIX375uUKCD+uh+y3q1cOsOrUJ4lC+OXP/1shXFlRrDeM+/l2PPNxZDke+xn+2vFprORmMRoOGDY2XJL33/tIS23w07nf/CASjsfhrtaTRTeHhVnU4v4FcLreSVqcW2bakPkpiMpX+K3tcu3oafHsHSdLff/umudy6Nb1Im+t6tSo2xeLJON769X2BXWSN4IochiTfNIRNY6LUts2x0WUXdjxHt992vvbty9KePZnl9lHW+SttXWltO3ZsKElatWpvhY9BqvhIthYtapX5/SssUK/rytRQEUajocTpVk9ERX6WSjqOqvwMVnX/O3ZkVHnb00VFX3/jPv5d7ePqKzo61N/u0ksay2Yz6+NP/zjlbaSKneeKtHniXz/o40/+0NT/DVKH8xuU2q4wzlvVzhv+WYxGqeW5Rt11h1mDBgZpy5Z1SkiYKibXAgDg5COUAwCgmixfvlzhYW4Nvs2sGsUHfOAU2r79kF56eb7Wb9ivrxPW6JZbp2jTJt8nzXNynPq/txfrhX//pGH3zNB/P1/hv5dXgYq0cTjy9c67S/TkU3N097Dpmv39Rv86t9ujsR/9ppdfWaDRbybqjf8slN2eL8l3j7B77p2pb7/bIMk3Qm3YPTPkdnv09LNzNXzETH8/v/y6TS/8+yf96+k5eua5eTp82F6hfVRWRkaetmxJ1+g3eig6OlTjPvldbrenWLtVSXv14ks/K3HRDv39d5oeemSWbr19qhYt3uFf/8S/ftCNN03Sgl+2Fdu+rPPq9Xr15/IUPfXMXK1Zu0+Ji3borrun6c4h07RzZ8lvnpdn6JALFRZm0eT/JRUb/bdjR4Zycpw6//zK3z/v0KFcSVL7uJN77729ezOVuGiHfwRdq1a1JUlPPjVHy37bVaTtf17vUWz7QB1vWSwWkx5/7PJiy2OaRMlgMBQZDXgqbN9+SJJUt25Ylfv45tv1uv2OrzX4zoQiI1QkKTU1S38uPzYKr7TXYVmv6/KuL2Vdv0qqQSr7eiSVfS2pqvLqLE9Jx1GeNWv36eln52rTpjTN/Mb3fbrn3pn+gLwifv8jWcNHzNT2HYe0dt0+DR8xU8NHzCx2jT9RHo9X4z7+XQ8/Olv3P/idfpizyb/uZF3vKvL683i8Wr0mVe2Pu1doUJBJsa3r6PsfNp3SNifTkqU79d77yzT49g66/LKYCm/Heav8eavMz2x51yOcei3PNeq2QSZt27ZDe/bsqe5yAAA44xDKAQBQzfgAavVatHiH+g+YpFdGLdCXE/7SwsTtmvfjZi1avEO7dx9R/CVj1bFjQ736Sne98VoPvfPuEl151adyOHyBVkXaHDliV7drPlPnzk005s1e6tWzlfr2+0oTvlopSXprzCJt3nJQL/27mx5/7DLN/n6jcnJ8UwYlJx/W+M+W67P/+kajxV94jp44+ubg6Dd6avwn/SVJ/5uSpJsG/k/PPn2l3hrdSzt3ZqjP9RP8x1nWPirrywl/6c47LpDVatbdQzoqJeWIPzQssGXLQY37+He9+tovGvvRb5o4eZV6XNtShw/b1X/AJH007nfNmfO3rrn6XLlcHvW5foKOHDn2xn9553XTpjSNfjNRb41ZpLfGLNKCX7bqwo7n6MefNuvGmyZV6bgiI4N15x0dZbfn69PxfxZZN+6T3/33hKuMufP+1spVe9Wnd+sKTVdZGbNmbywysuzyy2I04Ma2Sk/PVZeun+qJf/2g7Gzf97hZs5rFtg/E8ZbHZDLKZjMXW759xyF1vbKZwsJO7gisskz+X5KWLtultm3qqlfP86rUx9iPfte6dfvVp3dr/bpwm/re8JW8Xq927MjQ0OEz1CjmP5o4aZW/fWmvw9Je1+W9Dsq6fpVWQ3nXo/KuJVVRVp3lKe04KrLPu4ZM05tvLdLr//lVv/y6Tee1rK1vvt2gy674WKvXVCyYu+Tixhr/SX81bBCh1q3qaPwn/TX+k/4VHulaUXfclaC0tBy9905vWSwm9e47QRde9KGuufa/2rDxwEm53lXk9bdr12HZ7fmKjCwekEdG2pSSckQ7d2acsjYnc5TOh2N/k9fr1YUdG+qhR2apd98JevzJH/zhfGk4b5U/bxX9P7q86xGqD3+fAAAQOIRyAABUk4suukjZOWZNnJyvjAz+8q0uV1zeVA8/1EmSVCPCpnFj+2n3rmd1z/CL9PiTP6jVebV1ZZdmkqTatUM1/tP+Wrxkp958a5EkVajNw4/OVu/rWumi+EaSpL59WqtVq9pKSfHdY+yHOX8rJMQXRgQFmfTYo5f5R7E1a1ZTK1c8pIkTbi7zOH6ev1XR0SH+aeW6XtlMS5buVFaWo9x9VIbX69WUqas16Jb2kqQRwy+WwWDQBx8uK9Lu3HOj/aHO+e3r69VXuuu6Xq303LNXKj09V6n7svT8c13V49qWevaZK5WX51LiomNv0Jd3Xlu3rqO7h1woSercqYleGXmNHnzgUt034hKtXLXXPzqtsh5+sJMMBoM++vh3uVxuSZLdnq8ff9ysG/q1qVAfL770s555bp56952gm2/5n4YPi9f0hNuqVE9hXbuNV9du43XlVZ+qQ8f3df+D3xVrM2XyID35hC/cefudJWoT945+/GlzqX2ejOM9UU6nW7Nmb9QrL19Tqe1uG/y1/5wUPIYNn1nmNq+98aseemSW2nd4TyNfma9nnr5Svy29X1Zr8TfcK+Kaq1voxReu0sCbnWETtwAAIABJREFU4/Tg/Zdq8+aD2rXrsJo2jdLbY64rNoK0sq/D8l4HZV2/SquhvOtRedeSqiirzvKUdhwV2WfBNajf9W304ft99eILV2nWt3coJ8epUa/+UvkDCZA//kzR5P8l6YYb2shgMOi1Ud0VEWHVRRc10s8/DlWb2LoBud5JxV9/W7f5psGNiCge+NSoYZPDka/ffk8+ZW3S0k7ePUt/mLNJZrNR2dlODbnrQj304KWaM/dvtb/gPa1ZW/K9NUvDeSv7vFX0/+jyrkeoHhs3eTR5ilstWjRTw4YNq7scAADOOIRyAABUk6ioKN11192yO6I09mOXvp+Tr7Q0wrnqUPDm85VX+t74DguzyOHI18xv1qtt27pF2l56SWM1aRKpadPXVqiN3Z6vyf9LUpejb6pLvqmwNq57XC88f5UkKTa2jt58K1GvjFoghyNfA25sqwYNwv3tO5zfQFFRZd+v6MP3+2pJ4r2SpIMHc/xv2mVmOiq0j4r65dftuuiiRv5z1qxZTV3b/VwlLtpR7M0529Ggo/CUhHXr+KYJrFdousDoWiGSpP37syWpQudVkmy2IEnH7ocjHZuGsKpvSLZsGa0e17bUnj2ZmjFznSQpYdoa3TSgnczmiv3q3KvneerTu7XeGt1TB1Jf0CfjbpDFYqpSPYXNmzPk6ONuzZtzt4YPiy/Wxmw26q3RvbTizwfV8YKGSk4+rOv6TCh11MHJON4T9c67S3T3kAvVuVOTSm33wft9NT3htiKPt97sWeY211x9rpKTD2vN2n0aOuRCvTaq+wmNzit8r76GDX3zEB9I8/0c16hhK3YOK/M6rOjroKTrV4Hja6jI9ai8a0lVlVVneUo6lxVRMLqpYcMI/7JLL2ms89vX9x/X6WDlSt/0cMFHr2mhoRZdcXlTJSUdu9dhIK53UvHXX61avnuU5ecXD0FdLo9MJqOaN695ytpERp6ce/UdOpSr7GynelzbUk8/1UUXdGiga7u31DfTb1dOjksv/vunSvXHeSv/vJX3M1uR6xFOHa9X2rzFo8+/zFfCdJdatYrTzTffUuF7qAIAgIqr2kdCAQDASVGnTh2NGHGfVq9ercWLE/XXyiNqdI5ZbWKl1q1Miogovw+cPIXfeNi6LV1ut6fEUSzNm9XSst92VajNuvX75HZ7FBwcVOp+//N6D61du08vvTxfk6ck6asvb9bFFzWqVO2hoRalpeXolVcXKLpWqJo0iTrp+5CkcR//ro2bDqhrt/H+ZclHP9H+4dhl+vTj/mVuX9KUbwXLnE7feazIeS3NyXjv6JGHO2nuvL/13vvLdMvA9vrsv8srNdLt0ksay2SqeIDgcrnVvcfnRZYNuLFtsekjC4/mstnC9OTjl2vDxgMl9tk+rr7++O1+Pfr4/7d33/FRVIvfx79bkt00kpAEpEoTISBNUUBE7Pio18u18POxYwEr1quCWJ97vf5AUECxwBUVsWG7KlioCuhVUboUqaEEEgipm63z/LHZJZvsbgosoXzer9e+kp05M3Pm7MyI+80550tNevlH3Xn3Z7rg/A5q3rz6Q+Vgz/dgzmnFylytWr1bb715VZ23bZyeoIyKQDegpvD69N4tNe3fV6l7r5f0+BPf6YwzWuucge2iblNbges42pBfdbkP63of1OaL09o8j2p6lhysI+EL3s6dm+iPtasbuhpBp57q74my8PvN6tAhQ5I/XKk6Z1hVB9uU4e6/9hVD3VYeTjhg/36H2rRJV+dOTQ5bmUPxBw2SFB/vf35WDas6d26iTp2y9OvSHQf13Dqe260uKl+ztXkeIbYMQ9qx09CaP7xatVoqLvb3jrv11nPpIQcAQAwRygEA0MDMZrN69uypHj16aPPmzVq27HfNX7hOX3/rVNMmVrVpY6htG7NObG2WvfpIRYiRzIq/es/JKay2LiXFppYtU2tVxu32/yX72rV71CPCF6zp6Qn6YeEwjRu/SM/8v7k657w3NPurm3X2gLa1ru+s2et0592f6ZtZQ3XyyVma+u9fD/kxdu4s0p49Jfrtl3tCljudXrU76X/17oxlev65i2sMRmpSm3aNpQsvOEmdOmXpp/9u0yuTf1KbNulq0iS55g3ryWw26a+XZ4csO+WUE2rc7qSTMnXSSQd6ar0y+SfdeUef4HuLxayJL/1Fq1fv1vwFm/TDoi0acnW3avuJxfnW5px27y7Riy8t0pTXQ+fnqm971FZ6eoLee/caDTz3dV1z7Xv6/dd7Q3pyxFJd7sNY3Ae1eR7V9Cw5FthsVnVon9HQ1Qg6vXcrjX78XD3+xLdKTIxTQYFDVqtZ//rnoJgdM9L9l5pqV9OmycrNLa62Te7uEp3cMfOwljlUkpPj1bJlarBHdmUtmjdSQYHjoJ5bx3O71Vdtnkc49PbuNbRlq09bthraslUqKfGqceNU9ejRTT179lR6+qH9QwwAAFAdoRwAAEcIk8mkdu3aqV27dvJ6vdq8ebM2btyoLVs26edf8iQZwZCudSuzTmhqUnp6w/c4OFY1bZqs1q3TNG/+Rnk8vpCh03Jy9qv/mW1qVabTyVkym02a9PKPGnJ1t5BeItPeWqqbbjxVM95bpv97TQ89/NAADf5rF5018DVN/fcvNQZmPt+BLjm33v6xzju3g04+OUuSf+63yup7jMpeefUnXXdtz2rzb9lsVt1046l6YdwPmvrvX4NzmtVXbdr1UPN4fMGhwEwmk+69u5/uvPtz3XvfF1qyaHiwXLReUFXbvLYsFrNG3HtmvbaV/NdRmzbpeu/95br0kk5q3TotZH3fvidq/oJNIUHboTjfaGo6p8LCcj026mu9OO6ykOspJ6dQzZqlRN02WjtHWlV1+Zn9TtTTT56vUaO/1ZBrZmjenNsOy3CdtbkPA/d1LO6D2jyPanqWHAs2btwbHEbzSNG3T2ud2Dpdbdumq/dpLUMC9kOtpvvv8r9k6z9f/BGyzZ49JdqwIV/3Vdybh7PMoXL+eR00a/a6avdTUZFT3U454aCfW8dru9VXbZ5HODher7Qnz9DOnT5t3eYP4YqLvYqLs6h169Y644x2Oumkk9S0adOadwYAAA4Z5pQDAOAIZLFY1KFDB1100UUaNuwOPfzww7r66iE6sc2p2rQ5TR997NGEl116fqxbb73j0bdzPFq5yqe8PKPeX6IfzwJfgledn+X55wZpz56S4FxbkvTnn3u1fkO+nnnqglqVSU9P0M03narFS7bqqiEz9N+fc/TjT9t0+/BP1K5iuKsPPlyh0lKXJKlDhwwNPLtdsLeZ0+nRVUPe1TvTfw/uP7Bu0+Z9cru92rhxr/bsKdWvS7errMytggKH5sz9U5K0v9Ch8nJP1GPURnGxU6+9/rOu+FvXsOsDyye+vERut1eS5PX627XyNRlYFvgLeelA+1cOGWvT9l6vr9r+Xa7QY9fWnj0lwbnAJOmG63spLc2uU3u10Om9DwwvWFbmb0OHw11tH2Vl7pCfkQSGI3Q4qg9LGE7gWIHzrWz1mt168uk5OuP0VmrVKlVXXPVuyNxfPp+hefM2qnPnJurbp3Vw+aE43wC32ytfHR485eUe3TT0I914w6natatI69blad26PC1YuEljx31fYzgWqIsjzLCOkeob3KbS8kcfGajzzm2vHxZt0aMjv651/SUFr/HK1/GBa8+/zOcz5PUaIc+VaPdh1ft627b9tboPIj2/wtWhpueR2+2t8VkSOP/K92ttRKtnQKRrKVxb1ma7gPz8A3OurV2bp2XLd2nkowPrtJ9ypyf4udenDtGsXrNb94z4Qj17NleH9hlq1ap6L8hD9byrzf338IMDtH//gc9ekqa/u0xt26brxht6SdJhLVNZbdo5UpmnnjhfhYXleu/95cFl+fmlWrFyl0aNPId2O4h227y5QJdd/lbIsLo1XbO1+fcRas/lknK2G/r5F6/+86VHr73h1T+fd+r1KS59851UWtZKvXufraFDh+rRR0fquutuUP/+/QnkAABoAPSUAwDgKJCQkKBOnTqpU6dOkiS3263c3Fzl5uZq165d2rxlu37+xT//UFycWZkZZmVmGsrMkDIzzcrMNCmjsUmWQzPFyDGlsLA8+KXWF1/+oVN7tVBycrwk6X+GdJfD4dGDD3+l7dsLlZWVpI8/WaXvFwwLfmlamzLjxl6qffsc+viTVfr4k1XKyEjUK5Mu14Cz/L1j9u4t0/+97n09+shAbd68Tzt3FmnCi5dJknJzS/TxJ6vldvt0/XU9JfmHG0xNtevywW/r6qtO0aQJl+uWoafp9Td+VovW/9SFF3TU8GFn6IMPV+iii/+taf++KuoxalJQ4NADD32lvXvL9N+fc3T+eR1C5qtxONzBoa22bduvBx+epcdHnqOF32+SJP2waIuuu7ankpPjNXeev60Xfr9Jt93aWzabVQsWbq5Ytlk333SakpPja2xXh8Ot7+ZskCTNmfunzj+vg5xOj779zr/s089W66STMhQXF/2i37evTLO/Xq+Vq3br+f9dqH88e6Hat89QUlK8br2lt7p3OzCk1ubNBZoy9RdJ0m+/79S3321Q/zPbyO326rPP1wSH8ZowcYluvunUavO3lZS4tGLlLi1Y6G+Xt95eqi7ZTdSxY2bYOegKChz6/D9rgvMGDbvjU3U6uYnMZpMKi8q1Zs1ufTVrnfr2aa2EhDh16JChzz5fo05dXtC1/7eHGqcn6osv/1B8vEX/+fQG2e3WQ3K+iYn++X/cbq9WrMzV2nV5cjo9WrkqV507NYkaqnk8Pl39PzP0xZd/6LPP11RbP/WNKyJuW1Li0uIlW7R6jX8evcmv/qS/P3S2TjzR3zNwy5YCvTltqSTp51+269vvNqh7t2Za+P0m7dxZJEl6+ZWfdNutvdW8eSOZzSZNf3uIuveaoBfG/SCbzap77+6npk2jD91ZWurSwu/91+w336xXl+wmcrt9mr9goyRp/vxN6tWzhebN3yjDMPTLL9u1e3eJmjZNjnofhruva7oPoj2/PB6fvv1uQ7U61PQ8ivYsmfrGFfL5DBUWlmvVqlzl5hbrhBNqHvozWj2l6NdSpPOoabvKnv1/87Rg4SY1b9ZIn362WvPm3Bpyf0bbj9fr09Lfdmjr1v3at8+hVat3q9PJWcFj1Oc+qKq83KPdu4t1au+JwWWJiXEa/NcuenL0eWrZMvWQPO9qe/916JChr2cN1d8fma2cnELt3+/QzI9X6svPb1JSUvxhL1Pbdq6pzIknpunrWTdr2B2fatu2/erYMVNvv/Ob/j3lyuD1T7vVr92WLd+pL79aqzNOb6V+fU+s9X+ja3oeoTqHQ8rfayg/31D+Xp/y86X8vSYVFHhkGJLdHq9mzZqpXfsW6nfmCWrWrJkyMjKOiPk8AQCAn8k4FscjAQDgOOT1erVnzx7l5uYqPz9feXl7lJ+fp/37i2QYhkwmKS3NWhHUGcpobFJamknpaSalph6/gd2aNXuUV6kXRXJyvE7tFTq5vdfr09p1eUpJtlUbGrAuZXbvLtHOXUXq3KmJ7PYDfxtVXOzU7t0l2rGzSI0bJyi7c5OQkGbr1v1q2jQ5ZJu8vFLt3VumTp2ygstWrd6tzIzE4JfkmzcXKCkpTk2aJNd4jGi2bduvzVsKgu979WyulBRb8H1+fmkwKAlISLCG9ATLzExUelqCNvy5N7gsNdWuZiekaO26vOCyxo0TdErXA8NhRWrXnTuLQvbVulWavF6fdlSEL5J0Stematw4Meq5bd5coG05+0PqHegpVlDgUFJSfDCA/O/POcGeQgGdO2XJ5fJq46Z9IctTU+3V5sipWueAPme0qjYkaLi6RdKieSN16JChXbuKlZpqV0mJU3n5pSoqcqptm/SQ0ORQnG9gGMxNm/YpZ3vofGfNm6WEzHNXVUmJS0t/2xFx/em9WyohIS7sul27irV+Q37IspQUm3r1bC5J+uXX7dV6KTZqZAvpOSj5e4tVHnKt8nm0aplaYw+NDRvytXPXgbmcOrTPUEmJU7mV5lyqelyz2aSz+rep8T4Md19Lke+DaM+v7dsLQ67LQB0CIj2PpMjPEkn6Y21eSNmz+rcJmVsrnJqes9GupWjnUdM1+O6MZbruhg/04+I7lNrILovFrI5h5tuKtp/c3GKtWx963bVr2zj4Rxf1uQ+q2r27RGPHfa9L/k8nbd9eqOJip0pKXNq8pUA7dhRq8st/PSTPu7refz6foXXr8hQXZ1H79o3Dfql/uMrUpp1r+1kYhqFNm/bJ6fTq5JPD/1FEZbSbX03ttmFDvtq3z5DZbKrzf6OjPY+OR06nVLDf0P79hgoKAuGbSfl7DZWV+XsgxsVZlJnZWBkZTZWVlaWsrCw1a9ZMaWnh/w0KAACOHIRyAAAc47xer/bu3av8/Hzt3btXeXl5ys/frX37CuR0+r/ANpmkRo2sSk+T0tJ8Sk8zKz3dpLQ0KT3NrOToHUdwFPvHP+dr2fKdUctc8n86HZVzuxzL54bY4JqpuyO5zQKh3E9L7tQZp7eqeYNDrLZtM2HiEr357ytDeqoGjH7yOz379AWH7Fhcu0DD83qlwkLjQPBWEb7t329RwX6vHI4DQ/WmpCQqMzNLGRlZyszMDL4aNWpE7zcAAI5S/AkSAADHOIvFoiZNmqhJkybV1pWXl6ugoEDFxcUqLi5WQUGBCgr2au36vcrP3xecP8diMSkhwayUZCk93VBKikkpySalp5uUnCylJPt73fHdwNHnL3/prP6Ves+E07JFo6jrj1TH8rkhNrhm6u5IbrPAnFbh5mM8HGrTNg6HW78v26m5czeq2yknBL9kdzo9mvbW0pDejQd7LK5dIPa8XqmszFBJqVRQYKi42FBxiaGCAqm42KySUmn/fndwrj2r1aKUlGSlpzdWs+aNld0lXenp/ldGRobi4+OjHxAAABx16CkHAADCMgwjGNQVFhaqqKhIRUVFKizcr6KiQhUXF6u01BEsb7GYlJJiUaMUsxo18ig52aTkJH9ol5xsUkqKSUmJJiUmGvxlLwAgpv74Y48efmS2vpq1ViMfO6dW8wU2BMMwdOfdn+uNKb8oMzNRbds0Vnm5W82bN9Ljo85V3z6tG7qKAOQP20pLpeISQyXBl1RSaqi4WCoqkopLpJISb3Abs9mklJQkpaY2UqNGjdWoUaPgKy0tTenp6bLb7Q14VgAAoCEQygEAgHrzeDwqLi6uCOv8wV1xcbEKCwtVWlpcEdyVyeMJ/YIiKcmi5CSTUlIMJSX5goFdSopJiYlSYoJJSUkmJSQQ4AEA6q7qPHaV5088EuXmFmvlqlzZbFZld26izMykhq4ScMzz92qTSssMlZYGXv7grbRUKi5WMHirPKSkJNlscUpJSVJSUrIaNUpXSkqKGjVqpNTUVKWkpCg1NVVJSUn8OxYAAFRDKAcAAGKuvLy8IqArDflZUlKikpIilZT4l5WWlodsZzJJiYmWipBOSkoylJTkD+0SE6WkJFPI+8REhtAEAAA4Hnk8/qEjyxxSSYnh/71Mld5LZWVmlZYZKinxyeUKDdosFrOSkhKUkpKipKQUJSenVPyeFPIzOTlZViuzwQAAgPohlAMAAEeUQIDncDhUXl4uh8OhkpKSSstKVVxcpOLiEpWVlcvnC/2njNVqkt1uVkKCSXaboYQEQ3a7lJDgnwcvOdn/e2CZ3eYP98zmBjphAAAAhPB4FJyPrbxccjgqfpYH3kvl5Wb/T6dJDodPJSWeavux2+OVkpIsuz1BCQkHQrWEhATZ7XalpPiDN7vdruTkZHq2AQCAmCOUAwAARy3DMFRWVqbS0lKVlZXJ4XDI4XCE/O5wlKmsrKTSe6e8Xl+1fSUkmJWQYJbdZpLdbshu9wXDO/8yVbwOLAust1ga4OQBAACOUC6XKoVo/iDtwE+p3Fk5XDNVLJMcjuo92CQpPt6qhAS7EhISlJiYpISEpIrfE5WQkBDySkxMVHJysmw2WwOcOQAAQHSEcgAA4LjjcrkqhXQHQrzy8vJg7zz/72UqLw/02CtXeblL4f7pdKB3nll2m2SzGYqP98lul2w2k+LjTYqPk2y2wKtiWbxkt0nx8f5ljIQEAAAaktMpOZ2GXC7J5fYHZy5XpWUuf3jmchnBZU6n2R+sOf1zr5WX+xTumyar1SK7PT7YS81uT5TdHvjdXi1cq/yy8BdQAADgGEEoBwAAUAculytMeBf6cjqdcjqdKi93yOUql8vlqtjOKafTHTbYk/xz6NlsZtnt5oogz6T4eH+vPVtFeBcfL9ni/T30AsFefLy/B58tPnQZAAA4thmGIafTJKfTH6IFArRAmOZyGRVBmuEvE1xmksMhudymiveGnM7qPdQCrFaL4uOtstniZbfbFR9vq3jZg6FauNeBAM5OsAYAACBCOQAAgMPO4/HI5XJVBHcHQrtA4Od0OkOWORwOuVzOipdLTme5ysudcrncYYfiDPCHe/6AzxZvks1myGbzKS7OUFycP7yzWPxDcVosUlycv8ee2azgsJyBXn5ms38OvkA5AABQe+XlktfrD8TcHv/v/mX+0Mztljwef5jm80lOlyG3O1DO/7s/cDNV9FSTXC6f3O7IX+nEx1sVHx+n+Pg42Ww22e0JwSAtPt4frtlsNsXHxys+Pr6ijD34vnIZ5loDAAA4NAjlAAAAjmJerzcY5gWCvkgBX6AHn9vtltvtksvllNfrVXm5o2I/brlcbvl8Nf/zMC7OLItFSkiwyGw2FB9nUlycZLVKdrshs9knm82/LBD8mc3+4Tvj4vxDddpsksViks3m385qCV0GAECs+XyqCMUMeTyS0+UPypxOyePxv5zO0GVujz9ICwRmXq/kdpsqlvlDM3/YZsjl8skX+e9nguLiLLJYLEpIsMlsNgdDMYvFKrs9UXFxoUFZIEQL/Kz8e6AMAAAAjjyEcgAAAKimvLw8GPi53W55vV45HP7wzu12y+VyVQR61cv5l3nkcjnldrvk8XhUXl4un88np9Mlt9sTtYdfgMViUlycSTabWWazFGf1B3z+Hnz+Mna7fz/+Xn8HevKZTP4gUPIHfSbTgTDQbK68vcm/LrhvU6V1h7xZAQCV+MMs/xCM5eX+ZS63PyjzeIyKdf5QTPL/9PmMYFgW6FEm6cD2Ln9I5t+3WZLkcITu2x/A+YdrrM03IvHxVlksFtntNlksFsXFxSk+3laxLFFWq7ViWXzFMnulcqHL4uPjFRcXVxHAJQQDOAAAABwfCOUAAADQIA4Edc4qgd6BkM/j8cjpdFbMmeOUz+eTx+ORx+MJbiupoowvGAL6fP59+I/j3762YWBV8fH+UNBqNSsuziSTyZAt3iTJCA73abVKVqsv2BtQqhQGWiWr1R8Q+sv515vNoT0CA+WlAwGiVDHXYKXvawNBYtX9AUBlTqeCgZPHo+Awh4bh7w1WuVygh3Qg7JL8ywJhWNX9OV1GRXAWCMeMkODMMEwVwzFKPp9JLrd/XXm5PwRzuw15vXX/KiI+3iqz2Syr1aK4OKtMJrNstnhJJtls8TKbLbJa42S1xslstshW8ZANDL8YFxcnq9UafNls/mDNZrNFDdYAAACAQ4VQDgAAAMeVQG8/f88Mf9cKl8sVDPwC6yoHfpHCwMD2gQDRHwb61zkcZSH7DvweCAa9Xp/cbs8hOy+TSbLZzMH3drv5QHhnqRwGqkoY6AsbBlbuUSj5ex5WnVIoXG9C//6rzz0UKUAM9HKsyh5mCNOqQWYAcx2iskCPqcqqBkwBXq8U7jYM9LaqqnIwFWAY/iEMw+7bHbosMPRhYLvQ0MsIDnPo8Zjk8Zgq7b9SOVfVsM1XaX91/8ODaOz2Aw+B+Hh/7y5JwZ5e/p5ftoqyiRXl4oPr4uLiZDKZgkMpVg3HKvcSs9vtwXUH9n1gHQAAAHAsIJQDAAAAjgDllb51DwwPKh0IEQMcgXHYFBr4BXoY1mV/lYNJfzmnfD5vpf05w+5PUnA40qo8Hq88njBpRgOIizOFD/wqBZa1VTnYrC9/AHmw+/D3yKyryiFPfQXm0DoYTpchw6hbPSoHT6H1qd1cXYeDzeYPnyrzh1GhKXLVoQrt9oTgdnFx/vnDJIUEUv5yB0KpQOgVbn8JCQnB3wPhVl32R88wAAAAILYI5QAAAADEXOUAsbLy8nJV/V+Syj0VKwv0ZKwqMPzpwew7msq9I+vL5/OFhKb1Een8JX8PpJSUFOXn50fcPtAT6WAcbI8ls9kcHFKwLtuEm3MrMNxgVfHx8TKHSS7Dnb/JZApbn0j7rhx0AQAAAEBdEcoBAAAAwFHOMAx5vV5ZmWQQAAAAAI5YhHIAAAAAAAAAAABAjNVjNgIAAAAAAAAAAAAAdUEoBwAAAAAAAAAAAMQYoRwAAAAAAAAAAAAQY4RyAAAAAAAAAAAAQIwRygEAAAAAAAAAAAAxRigHAAAAAAAAAAAAxBihHAAAAAAc5fLz87V48eKGrgYAAAAAIApCOQAAAAA4yhmGIY/H09DVAAAAAABEQSgHAAAAAAAAAAAAxBihHAAAAAAAAAAAABBjhHIAAAAAAAAAAABAjBHKAQAAAAAAAAAAADFGKAcAAAAAAAAAAADEGKEcAAAAAAAAAAAAEGMmwzCMhq4EAAAAAKD+DMOQ1+uV1Wpt6KoAAAAAACIglAMAAAAAAAAAAABijOErAQAAAAAAAAAAgBgjlAMAAAAAAAAAAABijFAOAAAAAAAAAAAAiDFCOQAAAAAAAAAAACDGCOUAAAAAAAAAAACAGCOUAwAAAAAAAAAAAGKMUA4AAAAAjnL5+flavHhxQ1cDAAAAABAFoRwAAAAAHOUMw5DH42noagAAAAAAoiCUAwAAAAAAAAAAAGKMUA4AAAAAAAAAAACIMUI5AAAAAAAAAAAAIMYI5QAAAAAAAAAAAIAYI5QDAAAAAAAAAAAAYoxQDgAAAAAAAAAqiBc0AAAeCUlEQVQAAIgxk2EYRkNXAgAAAABQf4ZhyOv1ymq1NnRVAAAAAAAREMoBAAAAAAAAAAAAMcbwlQAAAAAAAAAAAECMEcoBAAAAAAAAAAAAMUYoBwAAAAAAAAAAAMQYoRwAAAAAAAAAAAAQY4RyAAAAAAAAAAAAQIwRygEAAAAAAAAAAAAxRigHAAAAAEe5/Px8LV68uKGrAQAAAACIglAOAAAAAI5yhmHI4/E0dDUAAAAAAFEQygEAAAAAAAAAAAAxRigHAAAAAAAAAAAAxBihHAAAAAAAAAAAABBjhHIAAAAAAAAAAABAjBHKAQAAAAAAAAAAADFmbegKAAAA4NDIy8tr6CoAaCBFRUWSeA4Ax7Lk5GQlJCQ0dDUAAABwEEyGYRgNXQkAAAAcvIULFzZ0FQAAQIxYLBb16NFDycnJDV0VAAAA1BM95QAAAI4h2dnZysrKauhqAACAQ2j16tUqKirS8uXL1a1bN6WkpDR0lQAAAFAPzCkHAAAAAABwBDOZTGrUqJFSUlK0YsUKFRcXN3SVAAAAUA+EcgAAAAAAAEc4k8mkrl27EswBAAAcxQjlAAAAAAAAjgJms5lgDgAA4ChGKAcAAAAAAHCUIJgDAAA4ehHKAQAAAAAAHEUI5gAAAI5O1oauAAAAAAAAAKJzOp3Ky8sLWXbCCSfI7XZr+fLl6t69u1JSUhqodgAAAKgNQjkAAAAAAIAjWMuWLfX7779rzZo1Ecvk5OQoOzv7MNYKAAAAdUUoBwAAAAAAcARr1KiRzj777Ijro4V1AAAAOHIwpxwAAAAAAAAAAAAQY4RyAAAAOKwMw5DX6z3q9g3gAO411MTj8WjZsmVavnx5Q1flsDjezhcAAAD1QygHAACAw+bNN99UixYttHbt2ohliouLNXLkSF155ZWHfN+xYhiG/vrXv8owjMN+7EjcbremT5+uxMRE9enTJ2yZm2++WSaTSY8//rj27t2rV199VWazWQMGDNDf//53DRkyRPfff78KCgr0/vvvKzMzU23atNEXX3wRsh+Xy6VJkybJZDLp7LPP1ujRozVq1CgNGzZMWVlZwXKvvfaaLrvsMt1zzz0688wzdfnll9e5nvv375ckOZ1OTZw4UUOHDo3aDj6fT6NGjVLTpk3VqlUrTZkyJWLZ6dOnKyEhQT179tSPP/4oSVq+fLnOOeccmc1mvfbaayovL9frr78ui8Wi3r1769FHH9XQoUN1/fXXa8uWLVHrEqj3M888o8suuyzs+h07dqhVq1YqKSmpcV/1dbDHONh7LdJnF65etf2ca3uMwHHGjx+vG2+8UQ8//HC9j3Go1XStvvPOO3ryySc1ceJEvfDCCzFfF61damqz9957T9ddd53cbre6d+/O+QIAAAABBgAAAI4JCxYsMPbs2dPQ1YjK5/MZNpvNWLVqVdRy06ZNM/r06XPI9r1w4cI67auuZs+ebZhMJmP27NkxPU599O3b15BkLFq0KGR5Xl6ekZ2dbUgydu/eHVyenp5uvPjii4ZhGIbX6zXOPPNMY9CgQYZhGMYFF1xgXHPNNRGPlZycbEyaNClk2YQJEwyfz2esW7fOSE9PN8rLyw3DMIzt27cbAwcOrHc9V61aZdx///3BukUydepU4+OPPzb2799vTJ482TCbzcbKlSsjlu/cubPx97//PWTZCy+8YDRu3DhkWVZWljF27Njg+yFDhhjdunWLWpeAzz77zOjatWvYdV6v15g7d26N+ziYa7q2x4iktvdxJJE+u3D1qu3nXNtjGIZhXHPNNcaCBQuM8vJyY+nSpfU+xqEW7Vpdu3at0bdv32DZq666yvjggw9its4wordhtHXPP/+8cdZZZxlut5vzPYxWr15trF69ukHrAAAAgJrRUw4AAACHjclkUlxcXI3l7Hb7Idv3nDlz9Mgjj9R5f3Xxn//8R8OGDdP48eNjepz66Natm04//XSNGzcuZPkbb7yhW2+9VZJksViCyyv/bjabddZZZ2nZsmXBdZXXV2W1WkPeu1wuXXfddTKZTMrJyVFBQYFWr14tSWrRooWGDx9e73p26dJF7du3r/H827Vrp7/97W9KTU3V8OHD1aVLF61fvz5ieYvFIrPZXKtllXXr1k1r1qypVW/JaNe32WzWueeeG3X7g72ma3OMaGp7H0cS6bMLV6/afs61PYYk/fbbb7Lb7bLZbOrVq1e9j3GoRbtWx4wZE9I2gwYN0sSJE2O2TorehpHWLV++XCNHjtSUKVOqPQ+O9/MFAAAAJIavBAAAOO4988wzGjhwoJ577jl1795dp512mtavXy+Hw6HnnntOZ599tl555RU1a9ZMOTk5+uc//6lp06bpySef1LBhw1RcXKxHHnlEJpNJv/76qyTpgw8+0JVXXqk9e/aodevWEYe527Vrlx577DHNnDlTV199tVauXBlc5/P59OCDD6p169Y6//zztXPnTkmS1+vVuHHj9MQTT+jss8/WnDlzop7fxx9/rB07duill15SYWFhxGNu2LBB48eP1/Tp03XTTTfVuv3+/PNPtWvXTvfff7/mzJkTDJ0CJk2apK5du+qrr77SNddcoy5dumjNmjV65pln1KNHD917772S/PMRhWtbn8+nsWPHqk+fPnrvvfc0YMAA9evXTx6Pp1b1M5lMevDBB/XZZ59p48aNwWNt3LhR2dnZUbc1DEOLFy/WRRddVOv2CPD5fJo5c6ZWrFghSerfv7+6dOmi888/X1OmTJFhGBoyZMghqWc0AwcODDmf3bt3q2/fvvXeXziFhYX66KOPdMkll8hkMtVqG8MwNGnSJPXv31+9e/dWWVmZJGnatGnq3Lmztm7dKqn6denz+apd05GunXD38K5du6odwzAMTZw4UVOnTtX999+v559/XlL0+7M2Ih0/kqr1iqS8vDzic6smEyZMUG5urmbMmKFp06bV6XyqGjdunMaPH69rr71WN9xwg0aPHn1Q92u0a3XlypVq1apVcH3r1q31+++/x2xdfU2ZMkVpaWmaNm2aLrzwQp1//vnKyck5rs+3pmsi0v0HAACAYxOhHAAAwHGuV69eWrZsmW644QYtW7ZM7du31913362EhAT16NFDv/32my699FLNnz9f06dP144dO3TTTTfp6aeflsvl0gMPPKB//OMfatOmjXbv3i1JKikp0ZgxY5SVlaWnn35aJ554Ythjz5o1S16vV1deeaVOO+00TZ48Obhu69ateuyxx7RmzZrgcSRp7Nix6tGjh5555hndcccduu6666L2Tjr//PPVtGlTjRgxQqmpqRGP+c477ygxMVHXXXedrrjiilq339SpUzV06FB17NhRF110kV588cWQ9RdffLFWr16t7t2767333lN2drZGjhyp0aNHa9GiRXrllVdUXFyscePGhW1bs9ms/v37a9WqVerfv7++//577dmzR4sWLap1Ha+44gq1atUqWLdPPvlEV111VcTyX375pR588EFdcsklys7ODvlcavLpp5/q4Ycf1oMPPqixY8cGl9tsNi1cuFCXX365br/9dvXr10/btm07qHrW1eLFi3XttdeqWbNmUct9/fXXuuOOO4KvDz/8MGK5wYMHq3fv3rrzzjv10Ucf1bou+/bt0xVXXKFFixaptLRUP/zwgyTpmmuuCQmxq16XZrO52jUd6doJdw83adKk2jFeeuklGYahW265RQ888IC++eYbGYYR9f6sjUjHj6RqvSKx2+0Rn1s1uffee5WSkqKrr766TuF7VcuXLw+GKKNHj9YHH3ygxx577JDcr1L1azUnJ0fJycnB9cnJySotLVVpaWlM1tXXihUrdP311+uf//ynvv32W2VlZWnEiBHH9fnWdE1Euv8AAABwbCKUAwAAOM4lJCQoKytLLVq0kMlk0p133qkff/xRkpSYmKjMzEy1bt1anTp10meffaYzzjgjuO3gwYP16aefymq16t577w1+aZ+Tk6O2bdvKZDLp5ptvVkJCQthj33LLLRo1apSWLl2qwsJCFRcXB9e1bdtWmZmZSk5O1l133aX58+dLkmbOnKmff/5ZL730knbv3q3HHntMDoej1ucb6ZiXX365Ro0apREjRqh///612ldJSYlmz56tMWPG6LHHHpNhGJo+fbry8vKCZQJDFbZs2VKSdOKJJ6pVq1YymUxKTk6W1WpVXl6ePv7447BtK/k/o4SEhGAvj7Zt2wZ7k9WGxWLRiBEj9Oabb6qgoEDffvutLrzwwojlL730Ur3wwguaNWuWXn311bCf32233aZTTjlFp5xySkgQOXjwYI0ZM0bjx4/Xhx9+GLJtRkaG3nzzTS1YsEBbt27VwIEDQz67utYznEj1Kisr05tvvhnSCyVS2UGDBmny5MnB19VXXx32WIMGDdKwYcO0adMmtWjRok5DOmZkZAQDiI4dOwbDKJvNFlKuNtdltGun6j1ssViqHePdd98NtnOrVq00b948mUymqPdnbYU7fiRV6xVNtOfW4VBcXKytW7fK7XarU6dOSkhIUHl5ebBuB3O/hrtWW7VqFexNKUmlpaXKyMhQUlJSTNbVl8Vi0QknnBB8/z//8z9avHixpLrdm8fC+VYW7ZqIdP8BAADg2MSg5wAAAAgR+LI7ksAwkpLUuHFjJSYmSpKGDh2qp556Sp988ol69+5dq2P9/PPPeueddzRx4kQtWrSoWs+pgObNmyszM1OSlJ+fr/PPP1+nnXZacH1dejpEOmaPHj30yy+/6K677lKvXr30008/qWnTplH39dZbb2nq1Kk69dRTJfmHWzzxxBP16quvavTo0WG3qfplq8lkCvaKiNS2h8Ktt96qp556SsOHD9e555570F/6vvHGGzWW6dChgyRp27Zt+uGHH3TttddKkgYMGKAPP/xQZ511ln7//Xf169fvkNUzXL0Cw8ONHTs2JDirzTnUZNCgQXr00Ud17bXX6pdffgmec11EO8dw12U4B3PtFBQUaOfOnerUqZMkf3t5PB79/vvvtbo/jwQ1PbcOtX79+um2227TiBEj1LlzZz3//PNq3LjxQe830rV6yimnaMeOHcH3O3fuDA7rGot19ZWdnR0yRGlaWppSUlIk1e3ePBbOt7Yi3X8HM28jAAAAjlz0lAMAAIDKy8uDwdDcuXOD4YlhGPL5fMFyV199dbAHjuSfoydQNjU1VTfccIOefPJJXXzxxcHt33333WAPksCywLHGjx+v1NRUSf75q9xud0i5gGXLlunWW2+VJJ155pkaMWKE8vPz5XA49Oabbwa3q7zvgJSUFBUUFEiS3G53xGNOmzZNbdu21axZs9StWzf997//jdpmPp9P33zzTTCQkySr1aprr71Wr7zyipxOZ7XzCNemgfXR2rbqPrxeb62HN9u3b1+wHW677TbNmTNH119/vSQF5zTyer3B8h6PJ+R91eNGWhfYtmq9VqxYoQ8//FB//PGHpk+fHlI2KSlJJ598cr3qGe59JBMmTNDNN9+s9PR0eb1evf/++xHbL9z5h1tWuS2efvpp9ejRQ4MHD65VQOzz+UL2V/nzrPoz3HVZ9Zqu6dqpfL2FO8Z5552nv//979q6dauKioo0btw4eTyeGu/P2lyD4Y4fOOdwZSv/jFZWivzcqmk7n89XrU61vZYq1zUjI0MTJkzQPffco2HDhlU7j8r7ru39GulaHTFihL777rtguW+//Tb4TIzFusp1jyTcuttvv12zZs0K3rNr167V4MGDj8vzLS0t1YwZMyRFvyYi3X8AAAA4Nlmeeuqppxq6EgAAADh4W7duVVZWVp2H4tq8ebPefvttmUwmLV26VPv27dMTTzwhl8ull156SfPmzVPXrl2VnZ2tM844Q9u3b9fs2bOVl5en3NxcjRw5UlarfwCG9u3bKykpKdjzaf/+/Ro8eLD+8pe/KCsrS2+//bY+/PBDZWVlqU+fPoqLi9O//vUvrVu3Tj169NA777yjjh07qlu3bpo3b562bt2q9evXy+fz6e6775bJZFK/fv00e/ZsPfTQQ/r66691yy23qG3btmH3LUlZWVl65513tGrVKp122mlKSUkJe8w///xTH330kRwOhywWi2688cbgeVXl8Xj02GOPacmSJRo4cGBwnqyCggLNnj1bCxYs0J49e3Tuuedq2rRp+u6779SrVy8lJSXphRde0J9//qkLL7xQS5Ys0TvvvKN27drprrvu0s6dO8O27csvv6w5c+borLPOksPh0P/+7//KMAxdfPHFio+PD1tHl8uladOmady4cWrVqpW6deum7Oxsmc1mXXTRRdq0aZNeeuklrVq1SklJSerWrZtmzJihDz/8UC6XS927dw+Ze+3TTz/VlClTtHv3bnXq1CmkR5jL5dLUqVP1ySefKC8vT7t27dL8+fP11ltv6eGHH9aoUaMkSWPGjNHatWu1cOFCffzxx5owYYI6duxYp3r27NlTdrtd69ev17hx47R69Wr17ds3OCxcVSNHjtTjjz+usWPH6umnn9Yzzzyjdu3ahR0W87333tO0adNUWFioXr16qUWLFlq1apXGjx+v9evXq3nz5urSpYveffddvf/++3I4HOrZs6eaN2+uQYMGady4cZozZ45OP/30iL22nE6nJk2apLlz5+qcc85RUVGRxowZI7fbrUGDBumLL77QzJkz1axZM51xxhn65ptvql2XzZo1C7mmzzvvvLD3Zbh72OfzaebMmSHHGDBggL7//ns99NBDmjt3rh544AE1a9ZMJpMp7L3y008/hb3XqiorK6t2fElhP7tw9bJYLBE/50jPrcA9G2m7r7/+WlOnTlXjxo3VtWtXpaSk1Ppaqmzjxo26+eab9fbbb2v69OmaN2+e2rZtq2bNmtXrfq3pWg302v3222+1dOlSJSQkBOcui8W6aG0YbV3Tpk2VmpqqadOmae/evdqyZYtGjx4d9ho51s939erVGjp0qG677TZNmTIl4jVxzjnnhL3/6iowbPLh7DEKAACAujMZzCAMAABwTFi4cKGys7Pr/IXc3LlzNXz4cG3YsCFGNQOAQ6uhn1vLli3Thg0b1LlzZ+3fv19FRUWaO3euXnjhhQapD7BmzRpJOughOQEAABBbzCkHAABwnHO73QyVFcbatWsjzgs3fPhwnXfeeYe5RtUdDXU8Hh1Pn0tDnWusn1s1ndfjjz+uSZMmqWvXrpL8vYL37t17UPs8lq4LAAAAAOHRUw4AAOAYUd+ecldddZUWL16siRMn6m9/+5tMJlOMaggAB2/v3r0aPnx4gz63ZsyYoUmTJsntdqtNmzbq37+/7rjjjqjDUwKxRE85AACAowOhHAAAwDGivqEcAAA4uhHKAQAAHB3MDV0BAAAAAAAAAAAA4FhHKAcAAAAAAAAAAADEGKEcAAAAAAAAAAAAEGOEcgAAAAAAAAAAAECMWRu6AgAAAADCmzdvnl566SU5HA716tVLcXFxiouL04UXXqg+ffo0dPUAAAAAAEAd0FMOAAAAh1Vubq68Xm9DV+OocO655yo5OVlut1v/+te/9Oyzz2rw4MEaNmyYhg4dKqfTGXV72hoAAAAAgCMHoRwAAAAOG7fbrSFDhqi8vLyhq3LUiI+Pl9V6YICLU045Rf/5z3/05Zdf6rnnnou4HW0NAAAAAMCRxfLUU0891dCVAAAAwMHbunWrsrKylJSUVKftfvvtN40ZM0ZpaWl64oknNHPmTHXv3l2NGzfWihUrNHbsWKWlpemRRx5Ry5YtVVZWpg8++EA//fST5s+fr9NOO02zZ8/W8OHDZTKZ1KNHD23cuFF33nmn+vfvr+eee05Wq1Vt2rTR5MmT9eqrryo1NVVpaWn66quv9MADD8hut6tr167atm2b7r77bp111llat25dxHpJ0sqVKzV16lRNnTpVmZmZat26dYOc365du6qVt1qt+u9//6sxY8aoRYsWevrpp/XBBx9owIABSkxMjFr/UaNGBdtLkj7//HMVFRXphhtuCJ5TWlqaNmzYoHfffVcPPfSQPv/8c61fv14zZsxQZmammjZtWq2tmzRpErYcAODol5eXJ0nKyspq4JoAAAAgGnrKAQAAHOd8Pp/Gjx+vBQsW6PHHH1dcXJwuvvhieb1euVwujR07VosXL9bf/vY3FRQU6NJLL9Xtt9+ue+65R8XFxbryyit12WWXyefzKT8/X5I/NOrVq5dOOOEEmUwmGYYhSbrmmmskSXfddZe6dOmiG2+8UTt37pTL5ZIkJSYmql27dsrKyopar5ycHE2dOlUjR47UfffdpwsuuEC5ubmH/fzcbnfY8pLUrl07TZ48WXPnztU//vEP5ebmasaMGZIUtf6V2yua0047Tbt379aPP/6o+++/X3/5y190zjnn6JZbbgnb1mvWrAlbDgAAAAAAHB4mozb/xw8AAIAj3sKFC5WdnV3nv5L3er2yWq3avn27WrRooYKCAmVkZGjFihXq2rWrTCaTNm3apLZt2+rZZ5/VunXrNH36dEnSzp071aJFC23evFkrV67UQw89pLVr1+rll1/W1VdfrSZNmoQca+/evcrMzFRJSUmwR9/rr7+u1157TUuXLtWrr76qc889Vx07doxar5kzZ2rbtm3q3r27DMPQwoUL9cgjj6hPnz6H9fxee+21iOXbtGmj9PR0LVq0SF26dNEzzzyjP//8U2+//baeeuqpWtf/5ptv1vbt2/Xdd9+FLH/++ef17LPPav/+/dq5c6cSEhK0ZMkS3X333crJyanW1j6fT9u3b69WDgBw9FuzZo0kKTs7u4FrAgAAgGjoKQcAAIAQ6enpSk1NlcViCS4zm/3/bMzPz5fD4Qgub968uaxWq4qLi3XJJZfI6/Vq7ty5KigoqBbIRXLDDTdo+/btWrBggbZu3aqOHTvWWK/NmzerX79+GjFihO677z59+umnYQOtWJ9ftPJVWSyWYA+4g6l/wK+//qq+ffvKMAy9/vrr2rNnT3DIy3C8Xm+tygEAAAAAgNgglAMAAIAkBQOjdevWKS0tTSeddFK1MgMGDNAPP/wgt9stSdqzZ49OOOEEderUSWazWffcc4/uuOMOnXPOOcFtdu/eHSxvtVolKSTIstvtuueee/Too4+qffv2tapXx44d9corr6i0tFSStG3bNv3444+H/fyilY90fElR61+5vapuF/DJJ59o1qxZevHFFzVz5kz98ssv6tKli1wuV7B81baOVA4AAAAAABwehHIAAACQJI0ZM0bff/+9xowZo7feektWq1V//vmnJGnlypWSpCuuuEJDhgzRfffdp1WrVmns2LGaMWOG4uLiJElDhw5VkyZN1L9//+B+L7jgAr388suSpNTUVHXp0kUPPfSQlixZEixzzz33aOPGjbrqqqtqVa8777xTXq9XJ598si666CJNnjxZffv2PeznF618Xl6eiouLtXPnThmGofXr12vHjh3yer1R61+5vUpLS7V+/Xpt2bJFc+bM0cyZM3XXXXdpypQpWrBggbp06aJmzZrphx9+0O23364ff/xReXl5mjBhQrW2jlQOAAAAAAAcHswpBwAAcIw42DnlNm/erMLCQnXs2FEJCQmSpCVLlgR7bfXq1UspKSmSpNzcXO3atUvZ2dmy2Wwh+yssLFRqamrwfU5OjjIzM4P7LCsr065du0J6xfl8Pj300EMaN25creolSR6PR6tXr1ZqamqNwzbG8vwilV++fLn2798vk8mkzp07B+f76dChg1q0aBGx/pXb67fffgsZCrNx48bq0KFDSDtI0o4dO2Q2m9WsWTOtW7dOLVu2VFJSUrW2jlQOAHB0Y045AACAowOhHAAAwDGivqGcx+NRXFyccnJy1LJlyxjVLvKxDcPQzJkz1aZNm5DeboeqXg15fgAAHA6EcgAAAEcHhq8EAAA4zk2bNk2SNH/+fDmdzsN67Oeee06pqalasGBBteEnD1W9GvL8AAAAAAAAAugpBwAAcIyob085AABwdKOnHAAAwNGBnnIAAAAAAAAAAABAjBHKAQAAAAAAAAAAADFGKAcAAAAAAAAAAADEGKEcAAAAAAAAAAAAEGOEcgAAAAAAAAAAAECMWRu6AgAAADh0ioqKGroKAADgMHM6nbLZbA1dDQAAANSAUA4AAOAYsn379oauAgAAaABZWVkNXQUAAADUwGQYhtHQlQAAAAAAAAAAAACOZcwpBwAAAAAAAAAAAMQYoRwAAAAAAAAAAAAQY4RyAAAAAAAAAAAAQIxZJX3U0JUAAAAAAAAAAAAAjmX/H8tbzM7PkoCpAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "Image(resp.provenance_image())" + ] + }, + { + "cell_type": "markdown", + "id": "cd84aa80-e69b-4cbb-840f-30c036355e60", + "metadata": {}, + "source": [ + "## Run workflow with subset and average operator\n", + "\n", + "Instead of running a single operator one can also chain several operators in a workflow." + ] + }, + { + "cell_type": "markdown", + "id": "c6de09be-9e01-4a80-a38b-0a865cffd62d", + "metadata": { + "tags": [] + }, + "source": [ + "### Use rooki operators to create a workflow " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "e59a5ea7-7682-4080-918c-1bdfba54be08", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from rooki import operators as ops" + ] + }, + { + "cell_type": "markdown", + "id": "8c77562a-16b9-415f-9261-639ff11f92ce", + "metadata": { + "tags": [] + }, + "source": [ + "### Define the workflow \n", + "\n", + "... internally the workflow tree is a json document" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "1ce774a5-62d2-4651-8458-7cf34c4cac67", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "tas = ops.Input(\n", + " 'tas', ['c3s-cmip6.CMIP.MPI-M.MPI-ESM1-2-HR.historical.r1i1p1f1.Amon.tas.gn.v20190710']\n", + ")\n", + "\n", + "wf = ops.Subset(\n", + " tas, \n", + " time=\"2000/2000\",\n", + " time_components=\"month:jan,feb,mar\",\n", + " area='-30,-40,70,80', \n", + ")\n", + "\n", + "wf = ops.WeightedAverage(wf)" + ] + }, + { + "cell_type": "markdown", + "id": "1936ac5e-d18d-4353-8465-4d971ac52139", + "metadata": { + "tags": [] + }, + "source": [ + "### Optional: look at the workflow json document\n", + "\n", + "... *only* to give some insight" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "e2c704a2-29eb-463f-ab40-41c3a5dae859", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\n", + " \"inputs\": {\n", + " \"tas\": [\n", + " \"c3s-cmip6.CMIP.MPI-M.MPI-ESM1-2-HR.historical.r1i1p1f1.Amon.tas.gn.v20190710\"\n", + " ]\n", + " },\n", + " \"steps\": {\n", + " \"subset_tas_1\": {\n", + " \"run\": \"subset\",\n", + " \"in\": {\n", + " \"collection\": \"inputs/tas\",\n", + " \"time\": \"2000/2000\",\n", + " \"time_components\": \"month:jan,feb,mar\",\n", + " \"area\": \"-30,-40,70,80\"\n", + " }\n", + " },\n", + " \"weighted_average_tas_1\": {\n", + " \"run\": \"weighted_average\",\n", + " \"in\": {\n", + " \"collection\": \"subset_tas_1/output\"\n", + " }\n", + " }\n", + " },\n", + " \"outputs\": {\n", + " \"output\": \"weighted_average_tas_1/output\"\n", + " }\n", + "}\n" + ] + } + ], + "source": [ + "import json\n", + "print(json.dumps(wf._tree(), indent=4))" + ] + }, + { + "cell_type": "markdown", + "id": "582e0978-d2eb-4d9a-bed4-41475f35d3d1", + "metadata": { + "tags": [] + }, + "source": [ + "### Submit workflow job " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "1835a033-6a9e-4846-96dd-f755950920c4", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "resp = wf.orchestrate()\n", + "resp.ok" + ] + }, + { + "cell_type": "markdown", + "id": "a0d61b51-3d07-45f6-8af1-197a91db0f6b", + "metadata": { + "tags": [] + }, + "source": [ + "### Open as xarray dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "76d43934-e545-431d-83c4-8954aeddfa44", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading to /var/folders/5f/t661zdnd181ck1dv429s4p8r0000gn/T/metalink_zmvs568p/tas_Amon_MPI-ESM1-2-HR_historical_r1i1p1f1_gn_20000116-20000316_w-avg.nc.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 88B\n",
+       "Dimensions:   (bnds: 2, time: 3)\n",
+       "Coordinates:\n",
+       "    height    float64 8B ...\n",
+       "  * time      (time) datetime64[ns] 24B 2000-01-16T12:00:00 ... 2000-03-16T12...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    lat_bnds  (bnds) float64 16B ...\n",
+       "    lon_bnds  (bnds) float64 16B ...\n",
+       "    tas       (time) float64 24B ...\n",
+       "Attributes: (12/47)\n",
+       "    Conventions:            CF-1.7 CMIP-6.2\n",
+       "    activity_id:            CMIP\n",
+       "    branch_method:          standard\n",
+       "    branch_time_in_child:   0.0\n",
+       "    branch_time_in_parent:  0.0\n",
+       "    contact:                cmip6-mpi-esm@dkrz.de\n",
+       "    ...                     ...\n",
+       "    title:                  MPI-ESM1-2-HR output prepared for CMIP6\n",
+       "    variable_id:            tas\n",
+       "    variant_label:          r1i1p1f1\n",
+       "    license:                CMIP6 model data produced by MPI-M is licensed un...\n",
+       "    cmor_version:           3.5.0\n",
+       "    tracking_id:            hdl:21.14100/af75dd9f-d9c2-4e0e-a294-2bb0d5b740cf
" + ], + "text/plain": [ + " Size: 88B\n", + "Dimensions: (bnds: 2, time: 3)\n", + "Coordinates:\n", + " height float64 8B ...\n", + " * time (time) datetime64[ns] 24B 2000-01-16T12:00:00 ... 2000-03-16T12...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " lat_bnds (bnds) float64 16B ...\n", + " lon_bnds (bnds) float64 16B ...\n", + " tas (time) float64 24B ...\n", + "Attributes: (12/47)\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " activity_id: CMIP\n", + " branch_method: standard\n", + " branch_time_in_child: 0.0\n", + " branch_time_in_parent: 0.0\n", + " contact: cmip6-mpi-esm@dkrz.de\n", + " ... ...\n", + " title: MPI-ESM1-2-HR output prepared for CMIP6\n", + " variable_id: tas\n", + " variant_label: r1i1p1f1\n", + " license: CMIP6 model data produced by MPI-M is licensed un...\n", + " cmor_version: 3.5.0\n", + " tracking_id: hdl:21.14100/af75dd9f-d9c2-4e0e-a294-2bb0d5b740cf" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds = resp.datasets()[0]\n", + "ds" + ] + }, + { + "cell_type": "markdown", + "id": "faafcbc6-9f3d-40b7-b001-43e77aace961", + "metadata": { + "tags": [] + }, + "source": [ + "### Plot dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "903a4e7e-9512-493f-b3bd-ade6b6b4d68c", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAHFCAYAAADBtOziAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABl80lEQVR4nO3deVhU9f4H8Pew74PsIIj7Ci5sKppLEunPfQk1ZRFbLJfUzKIybVHLypbb1dQEtHLBfcm8WQrmgoCKiispCirIJovszJzfH+TkBCoDM5wB3q/nmec2Z75z5n3wHubDOZ/zPRJBEAQQERERkVrpiB2AiIiIqClikUVERESkASyyiIiIiDSARRYRERGRBrDIIiIiItIAFllEREREGsAii4iIiEgDWGQRERERaQCLLCIiIiINYJFFRFpjyZIlkEgkyM7OVts6Q0JC0Lp1a43nWbZsGXbv3l2nz6mPgoICLF26FIMGDYKDgwPMzMzg7u6Ozz77DKWlpbVez5YtW9CzZ08YGRnByckJc+fOxYMHDzSYnKjpY5FFRE3aokWLsGvXLo1/jlhFVmpqKr7++mt4eHhg7dq12Lt3LyZMmIAlS5ZgxIgRqM2d037++WdMnjwZ3t7e+PXXX7F48WJERkZi3LhxDbAFRE2XntgBiIg0qV27dmJH0Kg2bdrg5s2bMDU1VSx79tlnYWpqirfeegvHjx9H//79H/t+mUyGt956C/7+/li3bh0AYPDgwTA3N8eUKVPw66+/YtiwYRrfDqKmiEeyiEjr3Lt3D5MnT4ZUKoW9vT1CQ0ORn5+vNEYQBKxatQo9e/aEsbExWrRogQkTJuDGjRtK42o6XZiXl4fp06fDysoKZmZmGD58OG7cuAGJRIIlS5aonEcikaCoqAgbNmyARCKBRCLBoEGD1PXjeCJTU1OlAushHx8fAEBaWtoT3x8bG4v09HRMmzZNafkLL7wAMzOzBjkKSNRU8UgWEWmd8ePHY+LEiZg+fTouXLiAsLAwAEB4eLhizKuvvorIyEjMmTMHn332GXJzc/HRRx/B19cX586dg729fY3rlsvlGDlyJBISErBkyRJ4eHjg5MmTGDp0aJ3znDx5Es8++ywGDx6MRYsWAQAsLCyeuI0ymaxWp/J0dHSgo6P638OHDx8GAHTr1u2J45KSkgAA3bt3V1qur6+Pzp07K14nojoQiIi0xOLFiwUAwooVK5SWv/7664KRkZEgl8sFQRCEkydPCgCEL7/8UmlcWlqaYGxsLCxcuFCxLDg4WHB1dVU8/+WXXwQAwurVq5Xeu3z5cgGAsHjxYpXzCIIgmJqaCsHBwbXeVldXVwHAUx+P5qmtc+fOCcbGxsLYsWOfOnbp0qUCACE9Pb3aa/7+/kLHjh1V/nwiqsIjWUSkdUaNGqX0vHv37igtLUVmZibs7e2xf/9+SCQSTJ06FZWVlYpxDg4O6NGjB6Kjox+77piYGABAQECA0vLJkycrjlCpmqcu9u3bh7KysqeOc3JyUmm9N2/exIgRI+Di4oIffvih1u+TSCQqLSeip2ORRURax9raWum5oaEhAKCkpARAVY+UIAiPLXDatm372HXn5ORAT08PVlZWSsufVCw9LU9ddO3atdanC2vr1q1bGDx4MPT09PDHH39U28aaPNy2nJycaj+D3NzcWq2DiGrGIouIGh0bGxtIJBL8+eefioLnUTUte8ja2hqVlZXVCoiMjAyNZH2cdu3a4datW08dt3jx4hqb8f/t1q1bGDRoEARBQHR0NJydnWuVw93dHQBw4cIFdO3aVbG8srISV65cweTJk2u1HiKqjkUWETU6I0aMwKeffoo7d+5UO+33NAMHDsSKFSuwdetWvPbaa4rlW7ZsqVcmQ0NDlY5sqfN0YWpqKgYNGgSZTIbo6Gi4urrWOkfv3r3h6OiIyMhITJw4UbF8+/btePDgAefKIqoHFllE1Oj069cPr7zyCqZNm4aEhAQMGDAApqamSE9Px7Fjx+Du7q5UQD1q6NCh6NevH958800UFBTA09MTJ0+exMaNGwGodnruUe7u7oiOjsa+ffvg6OgIc3NzdOrU6Ynj1SEzMxODBw9Geno61q9fj8zMTGRmZiped3Z2VhzVunXrFtq1a4fg4GCsX78eAKCrq4sVK1YgMDAQr776KiZPnozk5GQsXLgQzz333BOvuiSiJ2ORRUSN0po1a9CnTx+sWbMGq1atglwuh5OTE/r166eYI6omOjo62LdvH9588018+umnKC8vR79+/fDTTz+hT58+sLS0rFOeb775BjNnzsSkSZNQXFyMgQMHPrEBX10uXbqkmBts6tSp1V5/9HSjIAiQyWSQyWRKY6ZOnQpdXV18+umniIyMhJWVFYKCgrB06VKN5ydqyiRCbToviYiauE2bNmHKlCk4fvw4fH19xY5DRE0AiywianY2b96MO3fuwN3dHTo6OoiNjcXnn3+OXr16KaZ4ICKqL54uJKJmx9zcHFu2bMEnn3yCoqIiODo6IiQkBJ988onY0YioCeGRLCIiIiIN4A2iiYiIiDSARRYRERGRBrDIIiIiItIANr6LRC6X4+7duzA3N+cNWImIiBoJQRBQWFgIJyenp05ezCJLJHfv3oWLi4vYMYiIiKgO0tLSnnqPUBZZIjE3NwdQ9Y9kYWEhchoiIiKqjYKCAri4uCi+x5+ERZZIHp4itLCwYJFFRETUyNSm1YeN70REREQawCKLiIiISANYZBERERFpAIssIiIiIg1gkUVERESkASyyiIiIiDSARRYRERGRBrDIIiIiItIAFllEREREGsAii4iIiEgDWGQRERERaQCLLCIiIiINYJFFRERETc6J69koLK0QNQOLLCIiImpSTl7PQUh4PCatjUVecbloOVhkERERUZNx6W4BXtmYgHKZHC4tTGBupC9aFhZZRERE1CSk5RYjOCIOhWWV8Gljha8n9YSujkS0PCyyiIiIqNHLeVCGoPA4ZBWWobODOdYFecFIX1fUTCyyiIiIqFErKqvEtMh4pGQXoaWlMTaE+kBqLN5pwodYZBEREVGjVV4px4yfTuP87XxYmRrgx+k+sLcwEjsWgEZeZC1fvhze3t4wNzeHnZ0dxowZg6tXryqNuXfvHkJCQuDk5AQTExMMHToUycnJSmPWrl2LQYMGwcLCAhKJBHl5eU/97CVLlkAikSg9HBwc1Ll5RERE9ARyuYC3tp/Dn8nZMNbXRXiIN9ramokdS6FRF1kxMTGYOXMmYmNjcejQIVRWVsLf3x9FRUUAAEEQMGbMGNy4cQN79uzB2bNn4erqCj8/P8UYACguLsbQoUPx7rvvqvT53bp1Q3p6uuJx4cIFtW4fERER1UwQBCw9cBl7Eu9CT0eC1VM90NPFUuxYSvTEDlAfBw8eVHoeEREBOzs7nD59GgMGDEBycjJiY2ORlJSEbt26AQBWrVoFOzs7bN68GS+99BIAYO7cuQCA6OholT5fT0+PR6+IiIhEsPboDaw/lgIA+PyF7hjUyU7kRNU16iNZ/5afnw8AsLKyAgCUlZUBAIyM/jk3q6urCwMDAxw7dqzen5ecnAwnJye0adMGkyZNwo0bNx47tqysDAUFBUoPIiIiUt2O07ex/NcrAID3/q8LxvZyFjlRzZpMkSUIAubPn4/+/fvDzc0NANC5c2e4uroiLCwM9+/fR3l5OT799FNkZGQgPT29Xp/Xu3dvbNy4Ef/73/+wbt06ZGRkwNfXFzk5OTWOX758OaRSqeLh4uJSr88nIiJqjo5czcTCHecBAK8MaIuXB7QVOdHjNZkia9asWTh//jw2b96sWKavr48dO3bg2rVrsLKygomJCaKjozFs2DDo6tZv7oxhw4Zh/PjxcHd3h5+fH3755RcAwIYNG2ocHxYWhvz8fMUjLS2tXp9PRETU3JxNvY/XfzoDmVzA2F4t8c7QzmJHeqJG3ZP10OzZs7F3714cPXoUzs7Khww9PT2RmJiI/Px8lJeXw9bWFr1794aXl5daM5iamsLd3b3alYsPGRoawtDQUK2fSURE1Fz8lfkAoZHxKKmQYWBHW6yY0B06Is7mXhuN+kiWIAiYNWsWdu7cicOHD6NNmzaPHSuVSmFra4vk5GQkJCRg9OjRas1SVlaGy5cvw9HRUa3rJSIiau4y8ksRHB6H+8UV6OEsxaopHtDX1f4SRvsTPsHMmTPx008/YdOmTTA3N0dGRgYyMjJQUlKiGLNt2zZER0crpnF47rnnMGbMGPj7+yvGZGRkIDExEX/99RcA4MKFC0hMTERubq5izJAhQ/Ddd98pni9YsAAxMTFISUnBqVOnMGHCBBQUFCA4OLgBtpyIiKh5yC+pQHB4HO7klaCtjSnCQ7xhatg4TsQ1jpSPsXr1agDAoEGDlJZHREQgJCQEAJCeno758+fj3r17cHR0RFBQEBYtWqQ0/vvvv8eHH36oeD5gwIBq67l+/Tqys7MVY27fvo3JkycjOzsbtra26NOnD2JjY+Hq6qrmrSQiImqeSitkeHlDAq7eK4SduSE2hPrA2qzxtN5IBEEQxA7RHBUUFEAqlSI/Px8WFhZixyEiItIqMrmA1346jd8u3YO5oR6iZvRFF0fxvy9V+f5u1KcLiYiIqOkRBAHv707Cb5fuwUBPB+uCvbSiwFIViywiIiLSKl//nozNcanQkQDfTuqJPm2txY5UJyyyiIiISGv8GHsL3/xRNR3SR6PdMNSt8V61zyKLiIiItMKvF9LxwZ4kAMAbQzpgap/GfTEZiywiIiIS3cnrOXhjSyIEAXixdyvM9esgdqR6Y5FFREREorp0twCvbExAuUyOod0c8PFoN0gk2j2be22wyCIiIiLRpOUWIzgiDoVllfBpY4WvJ/WErpbfLqe2WGQRERGRKHIelCEoPA5ZhWXo7GCOdUFeMNLXFTuW2rDIIiIiogZXVFaJ0Mh4pGQXoaWlMTaE+kBqrC92LLVikUVEREQNqrxSjhk/nca52/loYaKPjdN9YG9hJHYstWORRURERA1GLhewcPs5/JmcDWN9XYSHeKOdrZnYsTSCRRYRERE1mOW/XsbuxLvQ05Fg9VQP9GrVQuxIGsMii4iIiBrE2qPXse7PFADAigndMaiTnciJNItFFhEREWnczjO3sezAFQDAu//XGeM8nEVOpHkssoiIiEijjlzNxMLt5wEALz/TBq8MaCdyoobBIouIiIg05mzqfbz+0xlUygWM6emEsGFdxI7UYFhkERERkUZcz3qA0Mh4lFTIMKCjLVZM6AGdJjKbe22wyCIiIiK1u1dQiqD1cbhfXIEezlKsnuIBA73mVXY0r60lIiIijcsvqUBweBzu5JWgjY0pwkO8YWqoJ3asBscii4iIiNSmtEKGlzcm4EpGIezMDbEx1AfWZoZixxIFiywiIiJSC5lcwBtbziIuJRfmhnrYEOoDFysTsWOJhkUWERER1ZsgCHh/dxL+d/EeDPR0sC7YC10cLcSOJSoWWURERFRvX/+ejM1xqZBIgG8m9kSfttZiRxIdiywiIiKql59ib+GbP5IBAB+PdsMwd0eRE2kHFllERERUZweT0rFoTxIA4I0hHTC1j6vIibQHiywiIiKqk9gbOZizJRGCAEz2aYW5fh3EjqRVWGQRERGRyi7dLcDLGxJQXinH893s8ckYN0gkzWc299pgkUVEREQqScstRnBEHArLKuHT2grfTOoF3WZ0u5zaYpFFREREtZbzoAzB4XHIKixDZwdzrAv2gpG+rtixtBKLLCIiIqqVorJKhEbG40Z2EVpaGmNDqA+kxvpix9JaLLKIiIjoqSpkcrz28xmcu52PFib62BDqA3sLI7FjaTUWWURERPREcrmAhdvP4+i1LBjr6yI8xBvt7czEjqX1WGQRERHRE3168Ap2nb0DPR0JVk31QK9WLcSO1CiwyCIiIqLHWnv0OtYevQEA+Gx8dwzuZCdyosaDRRYRERHVaOeZ21h24AoAIGxYZ4z3dBY5UePCIouIiIiqib6aiYXbzwMAXurfBq8MaCtyosaHRRYREREpSUzLw2s/nUGlXMCYnk549/+6cDb3OmCRRURERArXsx4gNDIeJRUyPNPBBism9IAOZ3OvExZZREREBAC4V1CKoPVxyC0qRw9nKb6f6gkDPZYKdcWfHBERESG/pALB4XG4k1eCNjamCA/xhqmhntixGjUWWURERM1caYUML29MwJWMQtiaG2JjqA+szQzFjtXoscgiIiJqxmRyAXO3JCIuJRfmhnrYMM0HLlYmYsdqElhkERERNVOCIGDRniQcvJgBA10drA3yQlcnC7FjNRkssoiIiJqpb/5IxqZTqZBIgG8m9UTfdtZiR2pSWGQRERE1Qz+fuoWvf08GAHw02g3D3B1FTtT0sMgiIiJqZg4mZWDR7iQAwJwhHRDYx1XkRE0TiywiIqJm5NSNHMzZchZyAZjs0wrz/DqIHanJYpFFRETUTFxOL8BLGxNQXimHf1d7fDy6G2+Xo0EssoiIiJqBtNxiBIfHobC0Ej6trfDt5F7Q02UZoEn86RIRETVxuUXlCA6PQ2ZhGTrZm2NdkBeM9HXFjtXk1anIun79Ot5//31MnjwZmZmZAICDBw/i4sWLag1HRERE9VNcXolpkfG4kV2ElpbG2BDqA6mJvtixmgWVi6yYmBi4u7vj1KlT2LlzJx48eAAAOH/+PBYvXqz2gERERFQ3FTI5XvvpDM6l5aGFiT42hPrAQWokdqxmQ+Ui65133sEnn3yCQ4cOwcDAQLF88ODBOHnypFrDERERUd3I5QIWbj+PmGtZMNbXRXiIN9rbmYkdq1lRuci6cOECxo4dW225ra0tcnJy1BKKiIiI6ufTg1ew6+wd6OpIsGqqB3q1aiF2pGZH5SLL0tIS6enp1ZafPXsWLVu2VEsoIiIiqrt1R29g7dEbAIAV47tjcCc7kRM1TyoXWS+++CLefvttZGRkQCKRQC6X4/jx41iwYAGCgoI0kZGIiIhqadfZ21h64DIAIGxYZ4z3dBY5UfOlcpG1dOlStGrVCi1btsSDBw/QtWtXDBgwAL6+vnj//fc1kZGIiIhqIeZaFt7adh4AML1/G7wyoK3IiZo3iSAIQm0HC4KA1NRU2NraIiMjA2fOnIFcLkevXr3QoQOn5VdFQUEBpFIp8vPzYWFhIXYcIiJq5M6l5WHyulgUl8swuqcTvgroCR0dzuaubqp8f+upsmJBENChQwdcvHgRHTp0QNu2rJCJiIjEdiPrAaZFxqO4XIZnOtjg8wk9WGBpAZVOF+ro6KBDhw68ipCIiEhL3CsoReD6OOQWlaO7sxSrp3rCQI83dNEGKv8rrFixAm+99RaSkpI0kYeIiIhqqaC0AsHhcbiTV4LW1iYID/GGmaFKJ6lIg1QusqZOnYq4uDj06NEDxsbGsLKyUno0pOXLl8Pb2xvm5uaws7PDmDFjcPXqVaUx9+7dQ0hICJycnGBiYoKhQ4ciOTlZaczatWsxaNAgWFhYQCKRIC8vr1afv2rVKrRp0wZGRkbw9PTEn3/+qa5NIyIieqLSChle3pCAKxmFsDU3xI/Te8PGzFDsWPQIlcvdr7/+WgMx6iYmJgYzZ86Et7c3Kisr8d5778Hf3x+XLl2CqakpBEHAmDFjoK+vjz179sDCwgIrV66En5+fYgwAFBcXY+jQoRg6dCjCwsJq9dlbt27F3LlzsWrVKvTr1w9r1qzBsGHDcOnSJbRq1UqTm01ERM2cTC5g7pZEnErJhbmhHiKnecPFykTsWPQvKl1dqO2ysrJgZ2eHmJgYDBgwANeuXUOnTp2QlJSEbt26AQBkMhns7Ozw2Wef4aWXXlJ6f3R0NAYPHoz79+/D0tLyiZ/Vu3dveHh4YPXq1YplXbp0wZgxY7B8+fKnZuXVhUREVBeCIOD93Un4+VQqDHR1sCHUB33bWYsdq9nQ2NWFAJCamvrE18U8ipOfnw8AitOWZWVlAAAjo39uhqmrqwsDAwMcO3asWpFVW+Xl5Th9+jTeeecdpeX+/v44ceJEje8pKytT5AGq/pGIiIhU9e0ff+HnU6mQSICvJ/VkgaXFVC6yWrduDYnk8ZeFymSyegWqK0EQMH/+fPTv3x9ubm4AgM6dO8PV1RVhYWFYs2YNTE1NsXLlSmRkZNR4a6Days7Ohkwmg729vdJye3t7ZGRk1Pie5cuX48MPP6zzZxIREW06lYqvfr8GAPhoVDf8n7ujyInoSVQuss6ePav0vKKiAmfPnsXKlSuxdOlStQVT1axZs3D+/HkcO3ZMsUxfXx87duzA9OnTYWVlBV1dXfj5+WHYsGFq+cx/F5uCIDy2AA0LC8P8+fMVzwsKCuDi4qKWHERE1PQdTMrA+7svAADmPNsegX1bixuInkrlIqtHjx7Vlnl5ecHJyQmff/45xo0bp5Zgqpg9ezb27t2Lo0ePwtlZ+R5Nnp6eSExMRH5+PsrLy2Fra4vevXvDy8urzp9nY2MDXV3daketMjMzqx3desjQ0BCGhrzqg4iIVHfqRg7mbDkLuQBM9nHBvOc6ih2JakFts5V17NgR8fHx6lpdrQiCgFmzZmHnzp04fPgw2rRp89ixUqkUtra2SE5ORkJCAkaPHl3nzzUwMICnpycOHTqktPzQoUPw9fWt83qJiIj+7UpGAV7amIDySjme62qPj0e7PbFth7SHykey/t2wLQgC0tPTsWTJkga/f+HMmTOxadMm7NmzB+bm5oojS1KpFMbGxgCAbdu2wdbWFq1atcKFCxfwxhtvYMyYMfD391esJyMjAxkZGfjrr78AABcuXIC5uTlatWqlaKIfMmQIxo4di1mzZgEA5s+fj8DAQHh5eaFv375Yu3YtUlNTMWPGjIb8ERARURN2+34xgsPjUFhaCe/WLfCfyb2gp8vZ3BsLlYssS0vLGnuRXFxcsGXLFrUFq42H0ycMGjRIaXlERARCQkIAAOnp6Zg/fz7u3bsHR0dHBAUFYdGiRUrjv//+e6Wm9AEDBlRbz/Xr15Gdna0YM3HiROTk5OCjjz5Ceno63NzccODAAbi6uqp5K4mIqDnKLSpHUHgc7hWUoZO9OX4I8oaRvq7YsUgFKs+TFRMTo/RcR0cHtra2aN++PfT0OJV/bXGeLCIiepzi8kpMXncK59Ly0NLSGDte84WD1OjpbySN0+g8WRKJBL6+vtUKqsrKShw9elRxFIiIiIhUVyGT4/Wfz+BcWh4sTfSxIdSHBVYjpfKJ3cGDByM3N7fa8vz8fAwePFgtoYiIiJojuVzA29vPI/pqFoz0dRAe4o32dmZix6I6UrnIetxcUDk5OYp7ARIREZHqPjt4BTvP3oGujgSrp3jCo1ULsSNRPdT6dOHD+a8kEglCQkKU5nySyWQ4f/48py8gIiKqox/+vIE1R28AAD4b3x2DO9uJnIjqq9ZFllQqBVB1JMvc3FwxRQJQNW9Unz598PLLL6s/IRERURO3++wdfPLLZQDAO8M6Y4Kn81PeQY1BrYusiIgIAFX3LlywYAFPDRIREanB0WtZWLDtHAAgtF8bvDqgrciJSF1UnsKB1INTOBAR0bm0PExeF4vichlG9XDC1xN7QkeHs7lrM41O4QAA27dvR1RUFFJTU1FeXq702pkzZ+qySiIiomblRtYDTIuMR3G5DM90sMEXL/RggdXEqHx14bfffotp06bBzs4OZ8+ehY+PD6ytrXHjxg0MGzZMExmJiIialMyCUgSFxyG3qBzuLaVYPdUTBnq8XU5To/K/6KpVq7B27Vp89913MDAwwMKFC3Ho0CHMmTMH+fn5mshIRETUZBSUViA4Ih6375egtbUJIqZ5w8yQd0xpilQuslJTUxVTNRgbG6OwsBAAEBgYiM2bN6s3HRERURNSWiHDKxsTcDm9ADZmhtgY2hs2ZoZPfyM1SioXWQ4ODsjJyQEAuLq6IjY2FgCQkpIC9tATERHVTCYXMG9rImJv5MLMUA8bQr3RytpE7FikQSoXWc8++yz27dsHAJg+fTrmzZuH5557DhMnTsTYsWPVHpCIiKixEwQBS/ZexK9JGTDQ1cHaIE90c5KKHYs0TOUpHORyOeRyueIG0VFRUTh27Bjat2+PGTNmwMDAQCNBmxpO4UBE1Hx8+0cyVh66BokE+G6yB4Z3dxQ7EtWRKt/fKhVZlZWVWLp0KUJDQ+Hi4lLvoM0ZiywiouZh06lUvLvrAgDg49HdENi3tbiBqF5U+f5W6XShnp4ePv/8c8hksnoFJCIiag7+dzED7++uKrBmP9ueBVYzo3JPlp+fH6KjozUQhYiIqOmIS8nF7M1nIReASd4umP9cR7EjUQNTeWKOYcOGISwsDElJSfD09Kx2D8NRo0apLRwREVFjdCWjAC9tiEd5pRx+XezxyRg3SCSczb25UbnxXUfn8Qe/JBIJTyXWEnuyiIiaptv3izF+9QncKyiDd+sW+HF6bxjp64odi9REo/culMvldQ5GRETUlOUWlSMoPA73CsrQ0d4MPwR5s8Bqxup1o6TS0lJ15SAiImrUissrERoZjxtZRXCSGmFDqA+kJvpixyIRqVxkyWQyfPzxx2jZsiXMzMxw48YNAMCiRYuwfv16tQckIiLSdhUyOV7/+QwS0/JgaaKPjdN94Cg1FjsWiUzlImvp0qWIjIzEihUrlCYedXd3xw8//KDWcERERNpOEAS8veM8oq9mwUhfB+Eh3mhvZy52LNICKhdZGzduxNq1azFlyhTo6v5znrl79+64cuWKWsMRERFpu08PXsHOM3egqyPBqike8GjVQuxIpCVULrLu3LmD9u3bV1sul8tRUVGhllBERESNwQ9/3sCamKq2mU/HuePZzvYiJyJtonKR1a1bN/z555/Vlm/btg29evVSSygiIiJtt/vsHXzyy2UAwNtDO+MFL95ujpSpPIXD4sWLERgYiDt37kAul2Pnzp24evUqNm7ciP3792siIxERkVY5ei0LC7adAwBM69caMwa2FTkRaSOVj2SNHDkSW7duxYEDByCRSPDBBx/g8uXL2LdvH5577jlNZCQiItIa59LyMOOn06iUCxjVwwmLhnflbO5UI5VnfCf14IzvRESNT0p2EcavPoHconL0b2+D8BBvGOjVa8pJamQ0OuP7QwkJCbh8+TIkEgm6dOkCT0/Puq6KiIhI62UWlCIo/BRyi8rh3lKK7wM9WWDRE6lcZN2+fRuTJ0/G8ePHYWlpCQDIy8uDr68vNm/eDBcXNv4REVHTUlBageCIeKTllqC1tQkipnnDzLDOxymomVC5BA8NDUVFRQUuX76M3Nxc5Obm4vLlyxAEAdOnT9dERiIiItGUVsjwysYEXE4vgI2ZITaG9oaNmaHYsagRULkM//PPP3HixAl06tRJsaxTp074z3/+g379+qk1HBERkZhkcgHzoxIReyMXZoZ6iJzmjVbWJmLHokZC5SNZrVq1qnHS0crKSrRs2VItoYiIiMQmCAKW7L2IAxcyYKCrg7WBnnBrKRU7FjUiKhdZK1aswOzZs5GQkICHFyYmJCTgjTfewBdffKH2gERERGL47vBf+DH2FiQS4KuJPeHb3kbsSNTIqDyFQ4sWLVBcXIzKykro6VWdbXz436ampkpjc3Nz1Ze0ieEUDkRE2mtzXCrCdl4AAHw4qhuCfVuLG4i0hkancPj666/rmouIiEjr/XYxA+/tqiqwZg1uzwKL6kzlIis4OFgTOYiIiEQXl5KL2ZvPQi4AE71c8KZ/R7EjUSNW50k+MjMzkZmZCblcrrS8e/fu9Q5FRETU0K5mFOKlDfEoq5TDr4s9lo514+1yqF5ULrJOnz6N4OBgxdxYj5JIJJDJZGoLR0RE1BBu3y9GUPgpFJRWwsu1Bf4zuRf0dDmbO9WPykXWtGnT0LFjR6xfvx729vas8omIqFG7X1SOoPA43CsoQ0d7M/wQ7AVjA12xY1EToHKRlZKSgp07d6J9+/aayENERNRgissrMS0yHjeyiuAkNcKGUB9YmhiIHYuaCJWPhQ4ZMgTnzp3TRBYiIqIGUyGTY+bPZ5CYlgdLE31snO4DR6mx2LGoCVH5SNYPP/yA4OBgJCUlwc3NDfr6+kqvjxo1Sm3hiIiINEEQBLyz4wKOXM2Ckb4O1gd7o72dudixqIlRucg6ceIEjh07hl9//bXaa2x8JyKixuCzg1ex48xt6OpI8N8XPeDp2kLsSNQEqXy6cM6cOQgMDER6ejrkcrnSgwUWERFpu/XHUvB9zHUAwPJx7hjSxV7kRNRUqVxk5eTkYN68ebC35/8piYiocdmTeAcf778EAFg4tBMCvFxETkRNmcpF1rhx43DkyBFNZCEiItKYP5OzsGBb1YVb0/q1xmsD24mciJo6lXuyOnbsiLCwMBw7dgzu7u7VGt/nzJmjtnBERETqcP52Hmb8eBoVMgEjezhh0fCunOeRNE4i/Hva9qdo06bN41cmkeDGjRv1DtUcqHIXbyIiqruU7CJMWH0COUXl6N/eButDvGCox8lGqW5U+f6u02SkREREjUFmYSmCwk8hp6gcbi0t8H2gJwssajB1vjFTeXk5rl69isrKSnXmISIiUouC0goEh8cjLbcErtYmiAjxgZmhyscWiOpM5SKruLgY06dPh4mJCbp164bU1FQAVb1Yn376qdoDEhERqaqsUoZXNibgcnoBbMwMsTHUB7bmhmLHomZG5SIrLCwM586dQ3R0NIyMjBTL/fz8sHXrVrWGIyIiUpVMLmDe1kTE3siFmaEeIqd5w9XaVOxY1AypfNx09+7d2Lp1K/r06aN0ZUbXrl1x/fp1tYYjIiJShSAI+HDfRRy4kAEDXR2sDfSEW0up2LGomVL5SFZWVhbs7OyqLS8qKuLlsEREJKr/HvkLG0/egkQCrJzYA77tbcSORM2YykWWt7c3fvnlF8Xzh4XVunXr0LdvX/UlIyIiUsGWuFR88ds1AMDiEV0xoruTyImouav16cJnn30WO3fuxPLlyzF06FBcunQJlZWV+Oabb3Dx4kWcPHkSMTExmsxKRERUo98uZuDdXRcAADMHt0NIv8fP6UjUUGp9JCs6Ohrl5eXw9fXF8ePHUVxcjHbt2uG3336Dvb09Tp48CU9PT01mJSIiqib+Zi5mbz4LuQAEeDljgX8nsSMRAahD4zsAuLu7Y8OGDerOQkREpJKrGYWYHhmPsko5/LrYYdlYd/YHk9ZQqcgqLCxUmrahJrxFDBERNYQ7eSUIDo9DQWklPF1b4D+TPaCnW+c5tonUTqX/N3bs2BEtWrSo8WFpaYkWLVpoKmeNli9fDm9vb5ibm8POzg5jxozB1atXlcbcu3cPISEhcHJygomJCYYOHYrk5GSlMWVlZZg9ezZsbGxgamqKUaNG4fbt20/87CVLlkAikSg9HBwc1L6NRERU3f2icgStP4WMglJ0sDPD+mAvGBvwdjmkXVQ6krV9+3ZYWVlpKovKYmJiMHPmTHh7e6OyshLvvfce/P39cenSJZiamkIQBIwZMwb6+vrYs2cPLCwssHLlSvj5+SnGAMDcuXOxb98+bNmyBdbW1njzzTcxYsQInD59Grq6j99pu3Xrht9//13x/EljiYhIPYrLKxG6IR7Xs4rgKDXChlAfWJoYiB2LqBqJIAhCbQbq6OggIyOjxjmytMXDObxiYmIwYMAAXLt2DZ06dUJSUhK6desGAJDJZLCzs8Nnn32Gl156Cfn5+bC1tcWPP/6IiRMnAgDu3r0LFxcXHDhwAM8//3yNn7VkyRLs3r0biYmJdcqqyl28iYioSoVMjld/PI3DVzIhNdbH9hl90cHeXOxY1Iyo8v3dpE5e5+fnA4DiaFtZWRkAKPWR6erqwsDAAMeOHQMAnD59GhUVFfD391eMcXJygpubG06cOPHEz0tOToaTkxPatGmDSZMm4caNG2rdHiIi+ocgCHhnxwUcvpIJI30dhId4s8AirVbrIsvV1VWrT4cJgoD58+ejf//+cHNzAwB07twZrq6uCAsLw/3791FeXo5PP/0UGRkZSE9PBwBkZGTAwMCgWj+Zvb09MjIyHvt5vXv3xsaNG/G///0P69atQ0ZGBnx9fZGTk1Pj+LKyMhQUFCg9iIio9lb87yp2nLkNXR0J/vuiBzxdG7YPmEhVtS6yUlJSYG1trcks9TJr1iycP38emzdvVizT19fHjh07cO3aNVhZWcHExATR0dEYNmzYUwtGQRCeeBnwsGHDMH78eLi7u8PPz08xC/7jprZYvnw5pFKp4uHi4lKHrSQiap7Cj6VgdXTV/XGXj3PHkC72Iicieromcbpw9uzZ2Lt3L44cOQJnZ2el1zw9PZGYmIi8vDykp6fj4MGDyMnJQZs2VbMBOzg4oLy8HPfv31d6X2ZmJuzta78Tm5qawt3dvdqViw+FhYUhPz9f8UhLS1NxK4mImqe95+7io/2XAABvPd8JAV78I5Uah0ZdZAmCgFmzZmHnzp04fPiwonCqiVQqha2tLZKTk5GQkIDRo0cDqCrC9PX1cejQIcXY9PR0JCUlwdfXt9ZZysrKcPnyZTg6Otb4uqGhISwsLJQeRET0ZH8mZ+HNqEQAQIhva7w+qJ24gYhUUKcZ37XFzJkzsWnTJuzZswfm5uaKHiqpVApjY2MAwLZt22Bra4tWrVrhwoULeOONNzBmzBhFo7tUKsX06dPx5ptvwtraGlZWVliwYIHiNOBDQ4YMwdixYzFr1iwAwIIFCzBy5Ei0atUKmZmZ+OSTT1BQUIDg4OAG/ikQETVNF27nY8aPp1EhEzCiuyM+GNGVs7lTo6LSkayKigoMHjwY165d01QelaxevRr5+fkYNGgQHB0dFY+tW7cqxqSnpyMwMBCdO3fGnDlzEBgYqNS3BQBfffUVxowZg4CAAPTr1w8mJibYt2+fUt/W9evXkZ2drXh++/ZtTJ48GZ06dcK4ceNgYGCA2NhYuLq6an7DiYiauJTsIoRExKGoXIZ+7a3xZUAP6OiwwKLGpdbzZD1ka2uLEydOoEOHDprK1CxwniwiopplFpZi/OoTSMstgVtLC2x+uQ/MjfTFjkUEQMPzZAUFBWH9+vV1DkdERPQ4haUVCAmPR1puCVytTRAR4sMCixotlXuyysvL8cMPP+DQoUPw8vJS3JrmoZUrV6otHBERNR9llTK8+uNpXEovgI2ZATaG+sDW3FDsWER1pnKRlZSUBA8PDwCo1pv1tIZEVe97KJFIcObMGfY5ERE1cTK5gPlbz+HE9RyYGugicpoPXK1Nn/5GIi2mcpF15MiROn9YXl4evv76a0il0qeOFQQBr7/+OmQyWZ0/j4iItJ8gCPho30X8ciEd+roSrA3yglvLp39PEGm7Bp/CYdKkSbW+yfTs2bM1nIaIiMS2Kvo6Npy8BYkEWBnQE/3a24gdiUgtalVkjRs3DpGRkbCwsMC4ceOeOHbnzp2PfU0ul6sUrrCwUKXxRETUuGyJS8Xn/7sKAFg8oitG9nASORGR+tTq6kKpVKrot3r0/ns1PZ7mzp07Tx3z888/1yYWERE1Yocu3cO7uy4AAGYOboeQfo+/awdRY6TyPFn11bVrVxw/fhwtWtR89/RNmzYhJCQE5eXlDRmrwXGeLCJqzhJu5mLKD6dQVilHgJczPhvfnbO5U6Og0XmyanL//n385z//Qc+ePZ861s7ODkOHDkVRUVG117Zs2YKQkBB89tln6ohFRERa6Nq9QoRGxqOsUo4hne2wbKw7CyxqkupVZP3++++YPHkynJycsGLFCgwcOPCp79m/fz9kMhlGjx6NiooKxfKoqCgEBQVh2bJlmDdvXn1iERGRlrqbV4Lg8DgUlFbCo5UlvnvRA3q6avl7n0jrqHx1YWpqKiIiIhAREYEHDx7g/v37iIqKwvjx42v1fjMzM/z6668YMGAAJk2ahO3bt2P79u2YOnUqPv74YyxYsEDljSAiIu13v6gcQeFxSM8vRXs7M4SHeMPYQPfpbyRqpGr950NUVBT8/f3RpUsXJCUl4ZtvvsHdu3eho6ODLl26qPShtra2+O2335CQkAA/Pz9MnToVixcvxttvv63yBhARkfYrKZchdEM8/sp8AEepETaG+sDSxEDsWEQaVesjWS+++CIWLlyIHTt2wNzcvM4feP78ecV/f/755wgKCsLYsWMxcuRIpde6d+9e588gIiLtUSGTY+amMzibmgepsT42hvrAydJY7FhEGlfrqwtfeeUVREVFoVu3bggMDMTEiRPRokUL6Ovr49y5c+jatWutPlBHRwcSiQSCICj+F0C1/27qM73z6kIiag4EQcDC7eex7fRtGOnr4OeXesPTVbVbrBFpE1W+v2t9JGvt2rX45ptvEBUVhfDwcMydOxfPP/88BEFQaZLRlJSUWo8lIqLG7fP/XcW207ehqyPBd5M9WGBRs1LnebKSk5MRHh6OjRs34sGDBxg+fDgmTJjwxBnhz58/Dzc3N+jo1K4V7OLFi+jUqRP09Br87j8axyNZRNTURRxPwYf7LgEAVozvjgBvF5ETEdWfKt/f9Z6MVC6X45dffsH69evx66+/oqys7LFjdXV1kZGRAVtb21qt28LCAomJiWjbtm19ImolFllE1JTtPXcXb2w5C0EA3nq+E2YObi92JCK10MjpwsfR0dHByJEjMXLkSGRmZj5xrCAIWLRoEUxMTGq17qY+6zsRUVN0LDkbb0YlQhCAEN/WeH1QO7EjEYlCrefh7Ozsnvj6gAEDcPXq1Vqvr2/fvjA25hUoRESNxYXb+Xj1xwRUyAQM7+6ID0Z05Wzu1Gw1aLNTdHR0Q34cERE1oJvZRZgWGYeichn6tbfGyoAe0NFhgUXNF+9lQERE9ZZZWIqg8DhkPyhHNycLfD/VE4Z6nM2dmjcWWUREVC+FpRWYFhGP1NxitLIyQeQ0H5gb6Ysdi0h0dSqy8vLy8MMPPyAsLAy5ubkAgDNnzuDOnTtqDUdERNqtrFKGV388jYt3C2BjZoCNoT6wNTcUOxaRVlC5J+v8+fPw8/ODVCrFzZs38fLLL8PKygq7du3CrVu3sHHjRk3kJCIiLSOXC5gfdQ4nrufA1EAXkdN80NrGVOxYRFpD5SNZ8+fPR0hICJKTk2FkZKRYPmzYMBw9elSt4YiISDsJgoAP913EL+fToa8rwZpAL7i1lIodi0irqFxkxcfH49VXX622vGXLlsjIyFBLKCIi0m6roq9jw8lbkEiAlQE90b+DjdiRiLSOykWWkZERCgoKqi2/evVqrWdyJyKixmtrfCo+/1/VnIcfjOiKkT2cRE5EpJ1ULrJGjx6Njz76CBUVFQAAiUSC1NRUvPPOOxg/frzaAxIRkfb4/dI9hO28AAB4fVA7TOvXRuRERNpL5SLriy++QFZWFuzs7FBSUoKBAweiffv2MDc3x9KlSzWRkYiItMDpW7mYuekM5ALwgqcz3nq+k9iRiLSaylcXWlhY4NixYzh8+DDOnDkDuVwODw8P+Pn5aSIfERFpgWv3ChEamYCySjmGdLbD8nHuvF0O0VNIBEEQxA7RHKlyF28iIjHdzSvB+NUnkJ5fCo9Wlvj5pT4wNuBs7tQ8qfL9rfLpwjlz5uDbb7+ttvy7777D3LlzVV0dERFpsbzicgSFxyE9vxTt7cwQHuLNAouollQusnbs2IF+/fpVW+7r64vt27erJRQREYmvpFyG0Mh4/JX5AI5SI2wM9YGliYHYsYgaDZWLrJycHEil1Secs7CwQHZ2tlpCERGRuCplcszadAZnUvNgYaSHDaE+cLI0FjsWUaOicpHVvn17HDx4sNryX3/9FW3btlVLKCIiEo8gCHh31wX8cSUThno6CA/xRkd7c7FjETU6Kl9dOH/+fMyaNQtZWVl49tlnAQB//PEHvvzyS3z99dfqzkdERA3si9+uIirhNnQkwHcvesCrtZXYkYgaJZWLrNDQUJSVlWHp0qX4+OOPAQCtW7fG6tWrERQUpPaARETUcCKOp+C/R64DAJaPc8dzXe1FTkTUeNVrCoesrCwYGxvDzMxMnZmaBU7hQETaZt+5u5iz5SwEAXjr+U6YObi92JGItI4q398qH8l6FO9VSETUNBxLzsb8qEQIAhDc1xWvD2ondiSiRq9ORdb27dsRFRWF1NRUlJeXK7125swZtQQjIqKGkXQnH6/+mIAKmYDh3R3xwchunM2dSA1Uvrrw22+/xbRp02BnZ4ezZ8/Cx8cH1tbWuHHjBoYNG6aJjEREpCG3cooQEhGHonIZfNtZY2VAD+jqsMAiUgeVi6xVq1Zh7dq1+O6772BgYICFCxfi0KFDmDNnDvLz8zWRkYiINCCrsAyB6+OQ/aAcXR0tsCbQE4Z6nM2dSF1ULrJSU1Ph6+sLADA2NkZhYSEAIDAwEJs3b1ZvOiIi0ojC0gqERMQhNbcYraxMEBnqDXMjfbFjETUpKhdZDg4OyMnJAQC4uroiNjYWAJCSkgLea5qISPuVVcow46fTuHi3ADZmBtgY6gM7cyOxYxE1OSoXWc8++yz27dsHAJg+fTrmzZuH5557DhMnTsTYsWPVHpCIiNRHLhcwP+ocjv+VA1MDXUSE+KC1janYsYiaJJXnyZLL5ZDL5dDTq7owMSoqCseOHUP79u0xY8YMGBjw5qG1wXmyiKihCYKAD/ddQuSJm9DXlSAixAf9O9iIHYuoUVHl+7tWR7LGjRuHgoICAMBPP/0EmUymeC0gIADffvst5syZwwKLiEiLrYq+jsgTNwEAXwb0ZIFFpGG1KrL279+PoqIiAMC0adN4FSERUSMTlZCGz/93FQDwwYiuGNXDSeRERE1frSYj7dy5M8LCwjB48GAIgoCoqKjHHiLj/QuJiLTL75fuIWznBQDAa4PaIbR/G5ETETUPterJOnHiBObPn4/r168jNzcX5ubmNc4GLJFIkJubq5GgTQ17soioIZy+lYsX151CWaUcL3g6Y8WE7pzNnageVPn+VrnxXUdHBxkZGbCzs6tXyOaORRYRaVryvUJM+P4k8ksq8GxnO6wN9ISersoXlRPRI9Te+P5QZWUlgoKCUFZWVq+ARESkWXfzShAUHof8kgr0amWJ/77owQKLqIGptMfp6elhx44dSlcXEhGRdskrLkdweBzS80vR3s4M4cHeMDbg7XKIGprKf9YMGTIE0dHRGohCRET1VVIuw/QNCUjOfAAHCyNsCPVBC1NOr0MkhlpdXfioYcOGISwsDElJSfD09ISpqfJMwaNGjVJbOCIiqr1KmRyzN5/B6Vv3YWGkh43TfdDS0ljsWETNVp0a3x+7MomEpxJriY3vRKROgiDg7R3nEZVwG4Z6Ovjppd7wbm0ldiyiJkeV72+Vj2TJ5fI6ByMiIs344reriEq4DR0J8N2LHiywiLQALzUhImrkIo+n4L9HrgMAlo11x3Nd7UVORERAHY5kffTRR098/YMPPqhzGCIiUs3+83fx4f5LAIAF/h0xyaeVyImI6CGVi6xdu3YpPa+oqEBKSgr09PTQrl07FllERA3k+F/ZmLc1EYIABPV1xczB7cWORESPULnIOnv2bLVlBQUFCAkJwdixY9USioiInizpTj5e/fE0KmQChrs7YvHIbrxdDpGWUUtPloWFBT766CMsWrRIHaurteXLl8Pb2xvm5uaws7PDmDFjcPXqVaUx9+7dQ0hICJycnGBiYoKhQ4ciOTlZaUxZWRlmz54NGxsbmJqaYtSoUbh9+/ZTP3/VqlVo06YNjIyM4OnpiT///FOt20dEVJNbOUUIiYjHg7JK+LazxsqJPaCrwwKLSNuorfE9Ly8P+fn56lpdrcTExGDmzJmIjY3FoUOHUFlZCX9/fxQVFQGouqR5zJgxuHHjBvbs2YOzZ8/C1dUVfn5+ijEAMHfuXOzatQtbtmzBsWPH8ODBA4wYMeKJ01Fs3boVc+fOxXvvvYezZ8/imWeewbBhw5Camqrx7Sai5iursAxB4XHIflCGro4WWBPoCUM9zuZOpI1Unifr22+/VXouCALS09Px448/YsCAAdi8ebNaA6oiKysLdnZ2iImJwYABA3Dt2jV06tQJSUlJ6NatGwBAJpPBzs4On332GV566SXk5+fD1tYWP/74IyZOnAgAuHv3LlxcXHDgwAE8//zzNX5W79694eHhgdWrVyuWdenSBWPGjMHy5cufmpXzZBGRqh6UVWLS2pNIulMAFytj7HjNF3bmRmLHImpWNDpP1ldffaX0XEdHB7a2tggODkZYWJiqq1Orh0fSrKyq5od5eCNrI6N/fgnp6urCwMAAx44dw0svvYTTp0+joqIC/v7+ijFOTk5wc3PDiRMnaiyyysvLcfr0abzzzjtKy/39/XHixAm1bxcRUVmlDK/+mICkOwWwNjXAj6G9WWARaTmVi6yUlBRN5Kg3QRAwf/589O/fH25ubgCAzp07w9XVFWFhYVizZg1MTU2xcuVKZGRkID09HQCQkZEBAwMDtGjRQml99vb2yMjIqPGzsrOzIZPJYG9vX+v3lJWVKYo+oKoSJiKqDblcwJtR53D8rxyYGugicpoPWtuYPv2NRCSqevdk3bp1C5cuXRJ9JvhZs2bh/PnzSqcr9fX1sWPHDly7dg1WVlYwMTFBdHQ0hg0bBl3dJ/cwCILw1Ct1/v36k96zfPlySKVSxcPFxaWWW0ZEzZkgCPho/yXsP58OfV0Jvg/0hLuzVOxYRFQLtS6yNmzYgK+//lpp2SuvvIK2bdvC3d0dbm5uSEtLU3e+Wpk9ezb27t2LI0eOwNnZWek1T09PJCYmIi8vD+np6Th48CBycnLQpk0bAICDgwPKy8tx//59pfdlZmZWO1L1kI2NDXR1dasdtXrSe8LCwpCfn694iPWzIqLGZXXMdUSeuAkA+OKFHnimg624gYio1mpdZH3//feQSv/56+ngwYOIiIjAxo0bER8fD0tLS3z44YcaCfk4giBg1qxZ2LlzJw4fPqwonGoilUpha2uL5ORkJCQkYPTo0QCqijB9fX0cOnRIMTY9PR1JSUnw9fWtcV0GBgbw9PRUeg8AHDp06LHvMTQ0hIWFhdKDiOhJohLSsOJg1bQ0H4zoitE9W4qciIhUUeuerGvXrsHLy0vxfM+ePRg1ahSmTJkCAFi2bBmmTZum/oRPMHPmTGzatAl79uyBubm54siSVCqFsbExAGDbtm2wtbVFq1atcOHCBbzxxhsYM2aMotFdKpVi+vTpePPNN2FtbQ0rKyssWLAA7u7u8PPzU3zWkCFDMHbsWMyaNQsAMH/+fAQGBsLLywt9+/bF2rVrkZqaihkzZjToz4CImqY/Lt9D2M4LAIAZA9shtP/j/4gkIu1U6yKrpKRE6ejLiRMnEBoaqnjetm3bxzZ9a8rD6RMGDRqktDwiIgIhISEAqo5KzZ8/H/fu3YOjoyOCgoKqTZr61VdfQU9PDwEBASgpKcGQIUMQGRmp1Ld1/fp1ZGdnK55PnDgROTk5+Oijj5Ceng43NzccOHAArq6umtlYImo2Tt+6j5mbzkAmFzDewxlvD+0kdiQiqoNaz5PVpUsXLF26FOPGjUN2djYcHBxw6tQpeHp6AgDi4uIwatSoBi+0GivOk0VENUm+V4gJ359EfkkFBneyxdogL+jrqm3eaCKqJ43MkxUUFISZM2fi4sWLOHz4MDp37qwosICqI1sPp04gIiLVpeeXICg8DvklFejVyhL/neLBAouoEat1kfX222+juLgYO3fuhIODA7Zt26b0+vHjxzF58mS1ByQiag7yissRtD4O6fmlaGdrivBgb5gYqDyVIRFpEZVvq0PqwdOFRPRQSbkMgetPIeHWfThYGGHH675oaWksdiwiqoEq39/1Og79+uuvKzWDExGRaiplcszefAYJt+7DwkgPG0J9WGARNRH1KrJ++ukn3h6GiKiOBEHAe7uS8PvlTBjq6WB9iDc6OZiLHYuI1KReRRbPNBIR1d2Xv13D1oQ06EiA/0zuBe/WVmJHIiI1UqnIkslkiImJqXYLGiIiUs2GEzfx3ZG/AADLxrrDv5uDyImISN1UKrJ0dXXx/PPPIy8vDwBQWFiItm3baiIXEVGTtf/8XSzZdxEA8OZzHTHJp5XIiYhIE1Q+Xeju7o4bN25oIgsRUZN34q9szN96DoIABPV1xaxn24sdiYg0ROUia+nSpViwYAH279+P9PR0FBQUKD2IiKhmSXfy8cqPp1Euk+P/3B2weGQ3SCQSsWMRkYaoPE+Wjs4/ddmjvxwEQYBEIoFMJlNfuiaM82QRNS+pOcUYt/oEsh+UoW9ba0SGesNQT/fpbyQiraKR2+o8dOTIkToHIyJqjrIKyxAYfgrZD8rQxdECa4I8WWARNQMqF1kDBw7URA4ioibpQVklpkXG4VZOMVysjLFhmjcsjPTFjkVEDaDON8YqLi5GamoqysvLlZZ379693qGIiJqC8ko5Zvx4Gkl3CmBtaoCNob1hZ2EkdiwiaiAqF1lZWVmYNm0afv311xpfZ08WEREglwt4c9s5HPsrGyYGuoiY5o02NqZixyKiBqTy1YVz587F/fv3ERsbC2NjYxw8eBAbNmxAhw4dsHfvXk1kJCJqVARBwMe/XMK+c3ehryvBmkBPdHe2FDsWETUwlY9kHT58GHv27IG3tzd0dHTg6uqK5557DhYWFli+fDmGDx+uiZxERFpPLhcQm5KDn0+l4pfz6QCAL17ogWc62IqcjIjEoHKRVVRUBDs7OwCAlZUVsrKy0LFjR7i7u+PMmTNqD0hEpO3u5pVgx+nb2Hb6NlJzixXLF43oitE9W4qYjIjEpHKR1alTJ1y9ehWtW7dGz549sWbNGrRu3Rrff/89HB0dNZGRiEjrlFXK8PulTEQlpOFochYezjhobqiHkT2dMMnbhacIiZo5lYusuXPnIj296jD44sWL8fzzz+Pnn3+GgYEBIiMj1Z2PiEirXMkowNb4NOw+ewf3iysUy/u0tUKAlwuGuTnC2IBzYBFRHWZ8/7fi4mJcuXIFrVq1go2NjbpyNXmc8Z2o8SgorcDexLvYlpCGc7fzFcsdLIwwwdMZEzyd0ZpXDhI1Cxqd8f2h8vJypKSkoF27dvDw8KjraoiItJJcLuBUSi6iEtJw4EI6yirlAAB9XQn8utgjwNsFAzrYQleH9x4kopqpXGQVFxdj9uzZ2LBhAwDg2rVraNu2LebMmQMnJye88847ag9JRNRQ0vOrmtijEpSb2DvamyHAywVje7WEtZmhiAmJqLFQucgKCwvDuXPnEB0djaFDhyqW+/n5YfHixSyyiKjRKa+U4/fL96qa2K9lQf6vJvYALxf0cJZCIuFRKyKqPZWLrN27d2Pr1q3o06eP0i+crl274vr162oNR0SkSVczCqua2BPvILfon1uE9W5jhYnebGInovqp0211Hs6T9aiioiL+lUdEWq+gtAL7zt1FVLxyE7u9hSEmeDrjBU8XNrETkVqoXGR5e3vjl19+wezZswFAUVitW7cOffv2VW86IiI1EAQBsTdysS0hDQeS0lFaUdXErqdT1cQ+0dsFz3SwgZ6uyncaIyJ6LJWLrOXLl2Po0KG4dOkSKisr8c033+DixYs4efIkYmJiNJGRiKhOMvJLsePMbUQlpOFWzj9N7B3szDDRm03sRKRZKhdZvr6+OH78OL744gu0a9cOv/32Gzw8PHDy5Em4u7trIiMRUa2VV8rxx99N7DGPNLGbGephZA8nBHg5o6eLJdsbiEjj6j0ZKdUNJyMlUq9r96qa2HedVW5i92ljhYleLhjm7gATgzpPDUhEBKCBJiMlIhJbQWkF9p9Lx9aENJxLy1MstzP/u4ndywVt2MRORCKpdZGlo6Pz1MPrEokElZWV9Q5FRPQ4gqA8E/u/m9gDvJ0xoIMtm9iJSHS1LrJ27dr12NdOnDiB//znP+CZRyLSlIdN7NsS0nCzhib2Mb1awoZN7ESkRWpdZI0ePbrasitXriAsLAz79u3DlClT8PHHH6s1HBE1b+WVchy+cg9b42tqYnfEC14u6MUmdiLSUnXqybp79y4WL16MDRs24Pnnn0diYiLc3NzUnY2ImqnkR5rYcx5tYm9thQBvF/wfm9iJqBFQ6bdUfn4+li1bhv/85z/o2bMn/vjjDzzzzDOaykZEzUhhaQX2n0/H1vg0JP6riX28pzNe8HRGW1sz8QISEamo1kXWihUr8Nlnn8HBwQGbN2+u8fQhEZEqBEFAXEouttbQxP5sZztM9HbBwI5sYieixqnW82Tp6OjA2NgYfn5+0NV9/A1Td+7cqbZwTRnnyaLm7F5BKbafrt7E3t7ODBO9qprYbc3ZxE5E2kcj82QFBQWxuZSI6qyqiT0TUQlpiL6aqWhiNzXQrZqJ3ZtN7ETUtNS6yIqMjNRgDCJqqpLvFSIqIQ07zyg3sXu3boEALxcM7+7IJnYiapL4m42I1K6wtAK/nK+aif1sap5iua25IcZ7OCPAi03sRNT0scgiIrUQBAHxN+8jKiENv5xPR0mFDMA/TewBXi4Y1IlN7ETUfLDIIqJ6uVfwcCb220jJLlIsb2drioneLhjby5lN7ETULLHIIiKVVcj+bmKPT0P0tSzI/u5iNzXQxYjuTgjwdoZHqxZsYieiZo1FFhHV2l+ZhYhKuI2dZ24j+8E/Texeri0Q4O2C4e6OMDXkrxUiIoBFFhE9xYOySuw/dxdRCWk480gTu42ZIcZ7tkSAlwvasYmdiKgaFllEVI0gCEi4dR9b45Wb2HX/1cSuzyZ2IqLHYpFFRAqZBaXYceYOtiWk4cYjTextbU0x0csFYz1aws7cSMSERESNB4ssombuYRP7toQ0HLn6TxO7iYEuRnR3xERvFzaxExHVAYssombqr8wHf8/EXkMT+98zsbOJnYio7vgblKgZeVBWiV/O30VUwm2cvnVfsdzGzBDjPVriBS8XtLdjEzsRkTqwyCJq4gRBwOmHTewX0lFc/k8T++BOdgjwcsbgznZsYiciUjMWWURNVGZhKXaeuYOohDTcyHqkid3GFAHeLhjXqyXsLNjETkSkKSyyiJqQCpkcR65kIirhNo5czVRqYh/uXtXE7unKJnYioobAIouoCfgr8wG2JaRhx5k7yH5Qplju6doCAV7OGN7dCWZsYicialD8rUvUSBWVVeKX8+nYmpD2ryZ2A4z3cMYLXs5ob2cuYkIiouaNRRZRI/KwiT0qIQ37z/+7id0WAV4ubGInItISLLKIGoHMwlLs+ruJ/fq/mthf8HLBeA82sRMRaRsWWURaqlImx5GrWYhKSMPhK/80sRvr62L43zOxe7GJnYhIa7HIItIy17MezsR+B1mF/zSxe7SyRICXC0b0YBM7EVFjwN/URFqgqKwSv1xIR1R8GhL+1cQ+zsMZL3g6o4M9m9iJiBoTFllEIhEEAWdS7yMq/jb2n7+Lor+b2HUkqJqJ3dsFz7KJnYio0WrUv72XL18Ob29vmJubw87ODmPGjMHVq1eVxjx48ACzZs2Cs7MzjI2N0aVLF6xevVppzPXr1zF27FjY2trCwsICAQEBuHfv3hM/e8mSJZBIJEoPBwcHtW8jNT1ZhWVYE3MdfitjMH71SWxNSENRuQxtbEyxcGgnnAwbgvUh3ni+mwMLLCKiRqxRH8mKiYnBzJkz4e3tjcrKSrz33nvw9/fHpUuXYGpqCgCYN28ejhw5gp9++gmtW7fGb7/9htdffx1OTk4YPXo0ioqK4O/vjx49euDw4cMAgEWLFmHkyJGIjY2Fjs7jv+S6deuG33//XfFcV1dXsxtMjValTI7oq1nYmpCGI1cyUflIE/v//T0Tu3drNrETETUljbrIOnjwoNLziIgI2NnZ4fTp0xgwYAAA4OTJkwgODsagQYMAAK+88grWrFmDhIQEjB49GsePH8fNmzdx9uxZWFhYKNZjZWWFw4cPw8/P77Gfr6enx6NX9EQ3sh4gKuE2dpy5rdTE3uthE3t3R5gb6YuYkIiINKVRF1n/lp+fDwCwsrJSLOvfvz/27t2L0NBQODk5ITo6GteuXcM333wDACgrK4NEIoGhoaHiPUZGRtDR0cGxY8eeWGQlJyfDyckJhoaG6N27N5YtW4a2bdvWOLasrAxlZf98yRYUFNRrW0l7FZVV4sCFdEQlpCH+5j9N7NamBhjn0RIveLmgI5vYiYiavCZTZAmCgPnz56N///5wc3NTLP/222/x8ssvw9nZGXp6etDR0cEPP/yA/v37AwD69OkDU1NTvP3221i2bBkEQcDbb78NuVyO9PT0x35e7969sXHjRnTs2BH37t3DJ598Al9fX1y8eBHW1tbVxi9fvhwffvih+jectEJVE3seouLTqjWxD+pkhwCvqiZ2Az32WBERNRcSQRAEsUOow8yZM/HLL7/g2LFjcHZ2Viz/4osvsG7dOnzxxRdwdXXF0aNHERYWhl27dimOUv3222947bXXkJKSAh0dHUyePBmXLl1C7969sWrVqlp9flFREdq1a4eFCxdi/vz51V6v6UiWi4sL8vPzFacpqfHJKizDrrO3EZVwG39lPlAsb21tghe8XDDB0xn2nImdiKjJKCgogFQqrdX3d5M4kjV79mzs3bsXR48eVSqwSkpK8O6772LXrl0YPnw4AKB79+5ITEzEF198oSiy/P39cf36dWRnZ0NPTw+WlpZwcHBAmzZtap3B1NQU7u7uSE5OrvF1Q0NDpVOS1HhVyuSIuZaFrfFVM7H/u4k9wMsZPm2s2MRORNTMNeoiSxAEzJ49G7t27UJ0dHS1oqiiogIVFRXVrhDU1dWFXC6vtj4bGxsAwOHDh5GZmYlRo0bVOktZWRkuX76MZ555pg5bQo3BjawH2Hb6Nnacvo3MR5rYe7pYYqI3m9iJiEhZoy6yZs6ciU2bNmHPnj0wNzdHRkYGAEAqlcLY2BgWFhYYOHAg3nrrLRgbG8PV1RUxMTHYuHEjVq5cqVhPREQEunTpAltbW5w8eRJvvPEG5s2bh06dOinGDBkyBGPHjsWsWbMAAAsWLMDIkSPRqlUrZGZm4pNPPkFBQQGCg4Mb9odAGlVcXokDFzIQFZ+GuJu5iuVWpgYY16slArzZxE5ERDVr1EXWw0lFH07P8FBERARCQkIAAFu2bEFYWBimTJmC3NxcuLq6YunSpZgxY4Zi/NWrVxEWFobc3Fy0bt0a7733HubNm6e0zoenEx+6ffs2Jk+ejOzsbNja2qJPnz6IjY2Fq6urZjaWGowgCDiblodtCWnYdy4dD8oqAVQ1sQ/saIuJ3i54trM9m9iJiOiJmkzje2OjSuMcNYzsB2XYdeYOohLSkPxIE7urtQkCvFww3sMZDlI2sRMRNWfNrvGdqK4qZXIcTa5qYv/j8j9N7Eb6On83sbugN5vYiYioDlhkUbOUkl2EbQlp2HHmNu4V/NPE3sPFEgFezhjZwwkWbGInIqJ6YJFFzYaiiT0hDXEpyk3sY3u1RICXCzo5sImdiIjUg0UWNWmCICAxLQ9RNTSxD+hoi4leLhjShU3sRESkfiyyqEnKflCG3Wermtiv3funib2VlQkCvJwx3tMZjlJjERMSEVFTxyKLmoyHTexR8bfx++V7yk3sbo544e8mdh0dNrETEZHmsciiRu9mdhGiampid5YiwNuFTexERCQKFlnUKJWUy3DgQjqiEtJw6pEm9hYm+hjbyxkB3s7o7MD5x4iISDwssqjREAQB527nY2t8Gvadu6toYpdIgAEdqmZiH9LFDoZ6uiInJSIiYpFFjUDOgzLsqqGJ3cXKGAGeLhjv6QwnSzaxExGRdmGRRVpJJhdw9FoWohLS8Pvle6iQVTWxG+pVzcT+gpcz+rSxZhM7ERFpLRZZpFVu5fzdxH76DjIKShXLuztLEeBV1cQuNWYTOxERaT8WWSS6knIZfk1Kx9b46k3sY/6eib2LI5vYiYiocWGRRaJ42MQelZCGfYl3UfivJvYALxf4dWUTOxERNV4ssqhB5RaVVzWxx6fh6r1CxXIXK2O84OmCCWxiJyKiJoJFFmmcTC7gaHIWtiWk4dAl5Sb2YW4OCPByQZ+2bGInIqKmhUUWacytnCJsS7iN7advKzWxu7esmol9FJvYiYioCWORRWpVUi7DwYtVTeyxN/5pYrc00ceYnlVN7F2d2MRORERNH4ssqjdBEHD+7yb2vf9qYn+mgy0CvJzxXFd7NrETEVGzwiKL6uxhE/u2hDRcyfinid25hTECvKpmYm/JJnYiImqmWGSRSmRyAX8mV83E/mgTu8HfTewT2cROREQEgEUW1VJqTjG2nU7D9tO3kZ7/TxO7W0sLTPRywageLSE1YRM7ERHRQyyy6LFKK2Q4mJSBrfFpOHkjR7FcaqyPsb1a4gUvZ3RzkoqYkIiISHuxyCIlgiDgwp18bI1Pw95zd1FY+k8Te//2NgjwcsFzXe1hpM8mdiIioidhkUUAgPsPZ2L/VxN7S8uHTewt4dzCRMSEREREjQuLrGZMJhdw7K9sRMVXNbGXy+QAqprYh3armondtx2b2ImIiOqCRVYzlJZbjG0JVU3sd//VxB7gVTUTu6WJgYgJiYiIGj8WWc3Ewyb2qIQ0nLjOJnYiIiJNY5HVhAmCgKQ7BdiakIo9idWb2F/wcoE/m9iJiIg0gkVWE3S/qBy7E+9ga3z1JvYXvJwxwdOZTexEREQaxiKriTnxVzZCIuKVmtif71Y1Ezub2ImIiBoOi6wmpruLJfR0JWhvZ4GJ3i4Y3ZNN7ERERGJgkdXEmBnq4Y83B8JRyhszExERiUlH7ACkfiywiIiIxMcii4iIiEgDWGQRERERaQCLLCIiIiINYJFFREREpAEssoiIiIg0gEUWERERkQawyCIiIiLSABZZRERERBrAIouIiIhIA1hkEREREWkAiywiIiIiDWCRRURERKQBLLKIiIiINEBP7ADNlSAIAICCggKRkxAREVFtPfzefvg9/iQsskRSWFgIAHBxcRE5CREREamqsLAQUqn0iWMkQm1KMVI7uVyOu3fvwtzcHBKJ5KnjCwoK4OLigrS0NFhYWDRAQs1qatujSU3xZ8Vt0n5NbXuepiluL7dJMwRBQGFhIZycnKCj8+SuKx7JEomOjg6cnZ1Vfp+FhUWT2VmAprc9mtQUf1bcJu3X1LbnaZri9nKb1O9pR7AeYuM7ERERkQawyCIiIiLSABZZjYShoSEWL14MQ0NDsaOoRVPbHk1qij8rbpP2a2rb8zRNcXu5TeJj4zsRERGRBvBIFhEREZEGsMgiIiIi0gAWWUREREQawCKLqBGSSCTYvXu32DGIiOgJWGRpkaNHj2LkyJFwcnKq8Us0JCQEEolE6dGnTx9xwtbC8uXL4e3tDXNzc9jZ2WHMmDG4evWq4vWKigq8/fbbcHd3h6mpKZycnBAUFIS7d++KmLrh1PTvKZFI8Ndff4kdTa1WrVqFNm3awMjICJ6envjzzz8Vrz148ACzZs2Cs7MzjI2N0aVLF6xevVrEtE/GfbTx7aMP/01mzJhR7bXXX38dEokEISEhDR9Mzbifaed+xiJLixQVFaFHjx747rvvHjtm6NChSE9PVzwOHDjQgAlVExMTg5kzZyI2NhaHDh1CZWUl/P39UVRUBAAoLi7GmTNnsGjRIpw5cwY7d+7EtWvXMGrUKJGTN5x//3ump6ejTZs2YsdSm61bt2Lu3Ll47733cPbsWTzzzDMYNmwYUlNTAQDz5s3DwYMH8dNPP+Hy5cuYN28eZs+ejT179oicvGbcRxvnPuri4oItW7agpKREsay0tBSbN29Gq1at6rXuioqK+sarN+5nWryfCaSVAAi7du1SWhYcHCyMHj1alDzqkJmZKQAQYmJiHjsmLi5OACDcunWrAZOJ40n/nnv37hU8PDwEQ0NDoU2bNsKSJUuEiooKxesAhFWrVglDhw4VjIyMhNatWwtRUVENlLz2fHx8hBkzZigt69y5s/DOO+8IgiAI3bp1Ez766COl1z08PIT333+/wTLWFffRxrGPPvw3cXd3F3766SfF8p9//llwd3cXRo8eLQQHBwuCIAi//vqr0K9fP0EqlQpWVlbC8OHDhb/++kvxnpSUFAGAsHXrVmHgwIGCoaGhEB4e3tCbVA33M+3FI1mNTHR0NOzs7NCxY0e8/PLLyMzMFDtSreXn5wMArKysnjhGIpHA0tKygVJpn//973+YOnUq5syZg0uXLmHNmjWIjIzE0qVLlcYtWrQI48ePx7lz5zB16lRMnjwZly9fFil1deXl5Th9+jT8/f2Vlvv7++PEiRMAgP79+2Pv3r24c+cOBEHAkSNHcO3aNTz//PNiRFYL7qPaadq0aYiIiFA8Dw8PR2hoqNKYoqIizJ8/H/Hx8fjjjz+go6ODsWPHQi6XK417++23MWfOHFy+fFn0/69yP9Py/UzsKo9qhhqq9y1btgj79+8XLly4IOzdu1fo0aOH0K1bN6G0tFSckCqQy+XCyJEjhf79+z92TElJieDp6SlMmTKlAZOJJzg4WNDV1RVMTU0VjwkTJgjPPPOMsGzZMqWxP/74o+Do6Kh4DqDaX669e/cWXnvttQbJXht37twRAAjHjx9XWr506VKhY8eOgiAIQllZmRAUFCQAEPT09AQDAwNh48aNYsRVGffRxuHhUY+srCzB0NBQSElJEW7evCkYGRkJWVlZSkey/u3hkb0LFy4IgvDPkayvv/66Abfgybifafd+pidWcUeqmzhxouK/3dzc4OXlBVdXV/zyyy8YN26ciMmebtasWTh//jyOHTtW4+sVFRWYNGkS5HI5Vq1a1cDpxDN48GClBlRTU1O0b98e8fHxSkeuZDIZSktLUVxcDBMTEwBA3759ldbVt29fJCYmNkhuVUgkEqXngiAoln377beIjY3F3r174erqiqNHj+L111+Ho6Mj/Pz8xIhbL9xHtZeNjQ2GDx+ODRs2QBAEDB8+HDY2Nkpjrl+/jkWLFiE2NhbZ2dmKI1ipqalwc3NTjPPy8mrQ7LXB/Uw79zMWWY2Yo6MjXF1dkZycLHaUJ5o9ezb27t2Lo0ePwtnZudrrFRUVCAgIQEpKCg4fPgwLCwsRUorjYVH1KLlcjg8//LDGXxZGRkZPXN+/f9GKycbGBrq6usjIyFBanpmZCXt7e5SUlODdd9/Frl27MHz4cABA9+7dkZiYiC+++KJR/vL/N+6j2iU0NBSzZs0CAPz3v/+t9vrIkSPh4uKCdevWwcnJCXK5HG5ubigvL1caZ2pq2iB5a4P7mXbvZ+zJasRycnKQlpYGR0dHsaPUSBAEzJo1Czt37sThw4drvGru4S/v5ORk/P7777C2thYhqXbx8PDA1atX0b59+2oPHZ1/dtnY2Fil98XGxqJz584NHfexDAwM4OnpiUOHDiktP3ToEHx9fVFRUYGKigqlbQIAXV3daj0wjRX3Ue0ydOhQlJeXo7y8vFo/Uk5ODi5fvoz3338fQ4YMQZcuXXD//n2RktYe9zPt3s94JEuLPHjwQGmOpJSUFCQmJsLKygpWVlZYsmQJxo8fD0dHR9y8eRPvvvsubGxsMHbsWBFTP97MmTOxadMm7NmzB+bm5oq/tKRSKYyNjVFZWYkJEybgzJkz2L9/P2QymWKMlZUVDAwMxIwvmg8++AAjRoyAi4sLXnjhBejo6OD8+fO4cOECPvnkE8W4bdu2wcvLC/3798fPP/+MuLg4rF+/XsTk1c2fPx+BgYHw8vJC3759sXbtWqSmpmLGjBmwsLDAwIED8dZbb8HY2Biurq6IiYnBxo0bsXLlSrGj14j7aOPeR3V1dRUXh+jq6iq91qJFC1hbW2Pt2rVwdHREamoq3nnnHTFiqoz7mRbvZ6J2hJGSI0eOCACqPYKDg4Xi4mLB399fsLW1FfT19YVWrVoJwcHBQmpqqtixH6umbQEgRERECILwTxNpTY8jR46Imr0hPOky5IMHDwq+vr6CsbGxYGFhIfj4+Ahr165VvA5A+O9//ys899xzgqGhoeDq6ips3ry5gZKr5r///a/g6uoqGBgYCB4eHkrTA6SnpwshISGCk5OTYGRkJHTq1En48ssvBblcLmLix+M+2vj20add7v9o4/uhQ4eELl26CIaGhkL37t2F6Ohopcbrhz+Ps2fPajy3qrifaed+JhEEQdBUAUdERETUXLEni4iIiEgDWGQRERERaQCLLCIiIiINYJFFREREpAEssoiIiIg0gEUWERERkQawyCIiIiLSABZZREQqiI6OhkQiQV5enthRiESxfPlyeHt7w9zcHHZ2dhgzZgyuXr2qNEYQBCxZsgROTk4wNjbGoEGDcPHiRaUxZWVlmD17NmxsbGBqaopRo0bh9u3bSmPu37+PwMBASKVSSKVSBAYGPnXfe7iPtmjRAqWlpUqvxcXFQSKRNNh9XllkERE9waBBgzB37lzFc19fX6Snp0MqlYoXikhEMTExmDlzJmJjY3Ho0CFUVlbC398fRUVFijErVqzAypUr8d133yE+Ph4ODg547rnnUFhYqBgzd+5c7Nq1C1u2bMGxY8fw4MEDjBgxAjKZTDHmxRdfRGJiIg4ePIiDBw8iMTERgYGBtcppbm6OXbt2KS0LDw9Hq1at6vkTQLWbhj+WyDPOExFptYEDBwpvvPGG2DGItFZmZqYAQHErH7lcLjg4OAiffvqpYkxpaakglUqF77//XhAEQcjLyxP09fWFLVu2KMbcuXNH0NHREQ4ePCgIgiBcunRJACDExsYqxpw8eVIAIFy5cuWxeR7eluf9998X/Pz8FMuLi4sFqVQqLFq0SHi0/MnOzhYmTZoktGzZUjA2Nhbc3NyETZs2Ka1z4MCBwsyZM4V58+YJ1tbWwoABA2r1s+GRLCKixwgJCUFMTAy++eYbxSmGyMhIpdOFkZGRsLS0xP79+9GpUyeYmJhgwoQJKCoqwoYNG9C6dWu0aNECs2fPVvoLvby8HAsXLkTLli1hamqK3r17Izo6WpwNJaqH/Px8AFU3DQeqbuickZEBf39/xRhDQ0MMHDgQJ06cAACcPn0aFRUVSmOcnJzg5uamGHPy5ElIpVL07t1bMaZPnz6QSqWKMU8SGBiIP//8E6mpqQCAHTt2oHXr1vDw8FAaV1paCk9PT+zfvx9JSUl45ZVXEBgYiFOnTimN27BhA/T09HD8+HGsWbOmVj8bvVqNIiJqhr755htcu3YNbm5u+OijjwCgWl8JABQXF+Pbb7/Fli1bUFhYiHHjxmHcuHGwtLTEgQMHcOPGDYwfPx79+/fHxIkTAQDTpk3DzZs3sWXLFjg5OWHXrl0YOnQoLly4gA4dOjTodhLVlSAImD9/Pvr37w83NzcAQEZGBgDA3t5eaay9vT1u3bqlGGNgYIAWLVpUG/Pw/RkZGbCzs6v2mXZ2dooxT2JnZ4dhw4YhMjISH3zwAcLDwxEaGlptXMuWLbFgwQLF89mzZ+PgwYPYtm2bUoHXvn17rFix4qmf+ygeySIiegypVAoDAwOYmJjAwcEBDg4O0NXVrTauoqICq1evRq9evTBgwABMmDABx44dw/r169G1a1eMGDECgwcPxpEjRwAA169fx+bNm7Ft2zY888wzaNeuHRYsWID+/fsjIiKioTeTqM5mzZqF8+fPY/PmzdVe+3dzuSAIT204//eYmsY/OqZbt24wMzODmZkZhg0bVm1saGgoIiMjcePGDZw8eRJTpkypNkYmk2Hp0qXo3r07rK2tYWZmht9++01xBOwhLy+vJ2avCY9kERHVk4mJCdq1a6d4bm9vj9atW8PMzExpWWZmJgDgzJkzEAQBHTt2VFpPWVkZrK2tGyY0UT3Nnj0be/fuxdGjR+Hs7KxY7uDgAKDqSJSjo6NieWZmpuLoloODA8rLy3H//n2lo1mZmZnw9fVVjLl37161z83KylKs58CBA6ioqAAAGBsbVxv7f//3f3j11Vcxffp0jBw5ssb968svv8RXX32Fr7/+Gu7u7jA1NcXcuXOrNbebmprW7gfzCBZZRET1pK+vr/RcIpHUuEwulwMA5HI5dHV1cfr06WpHxh4tzIi0kSAImD17Nnbt2oXo6Gi0adNG6fU2bdrAwcEBhw4dQq9evQBU9SDGxMTgs88+AwB4enpCX18fhw4dQkBAAAAgPT0dSUlJilNyffv2RX5+PuLi4uDj4wMAOHXqFPLz8xWFmKur6xOz6urqIjAwECtWrMCvv/5a45g///wTo0ePxtSpUwFU7Z/Jycno0qVLXX48SlhkERE9gYGBgVLDujr06tULMpkMmZmZeOaZZ9S6biJNmzlzJjZt2oQ9e/bA3Nxc0R8llUphbGwMiUSCuXPnYtmyZejQoQM6dOiAZcuWwcTEBC+++KJi7PTp0/Hmm2/C2toaVlZWWLBgAdzd3eHn5wcA6NKlC4YOHYqXX35Z0Wj+yiuvYMSIEejUqVOt83788cd46623HnuUuH379tixYwdOnDiBFi1aYOXKlcjIyGCRRUSkaa1bt8apU6dw8+ZNmJmZKY5G1UfHjh0xZcoUBAUF4csvv0SvXr2QnZ2Nw4cPw93dHf/3f/+nhuREmrF69WoAVXPIPSoiIgIhISEAgIULF6KkpASvv/467t+/j969e+O3336Dubm5YvxXX30FPT09BAQEoKSkBEOGDEFkZKTS0d2ff/4Zc+bMUVyFOGrUKHz33Xcq5TUwMICNjc1jX1+0aBFSUlLw/PPPw8TEBK+88grGjBmjuGqyPiSCIAj1XgsRURN17do1BAcH49y5cygpKUFERASmTZuG+/fvw9LSEpGRkZg7d67SLNRLlizB7t27kZiYqFgWEhKCvLw87N69G0BVs/wnn3yCjRs34s6dO7C2tkbfvn3x4Ycfwt3dvWE3kog0gkUWERERkQZwCgciIiIiDWCRRURERKQBLLKIiIiINIBFFhEREZEGsMgiIiIi0gAWWUREREQawCKLiIiISANYZBERERFpAIssIiIiIg1gkUVERESkASyyiIiIiDSARRYRERGRBvw/ne+HpVUORJ0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ds.tas.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "299b72a5-5ac5-4b52-a1d6-bfa45cb7aa04", + "metadata": { + "tags": [] + }, + "source": [ + "### Show provenance" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "2777d062-6c09-41c4-8918-1da03e8db4b4", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACxAAAAP/CAYAAADqKMvvAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde3zcdZ3v8dcvk/ulufXepG0mJW2T0hZaKKgrLKKuLioIut5WXbxUZRXve8AVL+esrK6KHF2EXVEEr8ciKygIIqAitNyhTWhDOr2l6SVNpk3TJJPL/M4f06ak5dJC21/avJ6Pxzwy85vv/Ob9m0t5DPPOJ0EYhiGSJEmSJEmSJEmSJEmSJEmSxoLGrKgTSJIkSZIkSZIkSZIkSZIkSTp2LBBLkiRJkiRJkiRJkiRJkiRJY4gFYkmSJEmSJEmSJEmSJEmSJGkMyY46gPRikskkzc3NbNu2jdraWmbNmkVeXl7UsSRJkiRJkiRJkiRJkiRJko5LFog1KqRSKdauXcuaNWtobm6mubmZNaubWLOmmR0dnSPWxmJZzJheTV3dbOpmz2H27NnU1dVRV1dHdXU1QRBEdBSSJEmSJEmSJEmSJEmSJEmjXxCGYRh1CI0dyWSSxsZGmpqaSCQSJBJraVy1kjXNLQwNDQFQXlpEfe0EGuKV1FSXE68qpz4+gXh1OVvad9PY0k5Top11m5IkNu9iVUs7W9t3AZCbm0PVtKnUN8yjoWEe8XiceDzOvHnzmDx5cpSHLkmSJEmSJEmSJEmSJEmSNBo0WiDWEbdz507Wrl27tyCcyBSGG1fS3PwMu7v3AFA2rpDa6kri08YRrypjbu0EGmZNZPbMSooLcw/7PpNdfSRakyRakzS2bOfpxA4SrV08ndhGT28/AOVlpcTjNcRrT6K+vp6Ghgbi8Thz586lsLDwiD4GkiRJkiRJkiRJkiRJkiRJo5QFYr00AwMDbNq0aX9BuKmJxNoWEom1rFu/kTAMycmOUT2lnHhVKfXx8dTPmkC8KjNRuGZaGUEQHJOsbdt305RoJ9GaZN2mJI2JDprW7mD95g7S6czLf8rkiZmJxbWziMfjwwXjmTNnkpWVdUxySpIkSZIkSZIkSZIkSZIkHQMWiPXCksnkyJJwYi2Nq1bS/EwLg4NDAJSXFlFfO4GGeCU11ZmCcH18ArNrKsmOjd7ybf/AEK3bumhsaacp0c66TUkSm3ex8pntbNvRBUBeXi7Tpk6hvmFepmC8t1x88sknU1paGvERSJIkSZIkSZIkSZIkSZIkHTYLxIJUKkVLS8vegnAiUxhe9RRPPbWS3d17AMjPyyFeXUlDvJJ4VRlzayfQMGsidTMqKSnKjfgIjrxkVx+J1iSJ1iSNLdt5OrGDRGsXTWu30dvXD0B5WSnxeA31DSfT0NBAPB4fLhgXFBREfASSJEmSJEmSJEmSJEmSJEnPyQLxWDE4OMjGjRv3F4QbG2lqXEUisZZ16zcShiE52TGqp5QTryolPm1fSXgC8apyaqaVEQRB1IcRucGhNBu37BouFze1tNOU6CDRupP1mztIp0Oys2NMr64iHq8lXjuL+vr64YLxzJkzycoavVOZJUmSJEmSJEmSJEmSJEnSCc8C8YkmmUzuLwg3NZFIrCWxtoXGpqfp60sBUF5aRLyqnPp4BfWzJhKvKideVU5D7QTy87IjPoLjV6p/iJaNnTQl2km0Jlm3KUljYgcrm7fT1d0LQF5eLrXxmTTMm58pGO+dWDx//nzGjRsX8RFIkiRJkiRJkiRJkiRJkqQxwALx8SiVStHS0rK3ILx3ovCqlaxcuZKu3d0A5OXmUDu9kobaSuLTyqipLqc+PoH5dZMYV5wX8RGMPcmuPhKtSRpbtvP02nYSm3eSaO2isWUrfakBAMrLSonHa6hvOHl4YnE8HqehoYH8/PyIj0CSJEmSJEmSJEmSJEmSJJ0gLBCPVoODg2zcuHF/QbixkabGVSQSa1m/YRPpdJrs7BjTp5QTryolPq2MubUTaJg1gXhVOTXTygiCIOrD0IsYHEqzccsuEq1JEq1JmlraaUp0kGjdybrWDsIwzDzP1VWZicW1s6ivrx8uGNfU1Pg8S5IkSZIkSZIkSZIkSZKkw2GBOGrJZHJ/QbipiURiLYm1LTQ9vZre3j4AykuLiFdVUB8vp37WROJV5cSryqmvnUBBXnbER6CjJdU/RMvGTpoS7SRak6zblKQx0cHK5m10dfcCkJeXS228hoZ584cnFtfX17NgwQJKSkoiPgJJkiRJkiRJkiRJkiRJkjQKWSA+FlKpFC0tLXsLwnsnCq9ayapVq9jVtRuAvNwcaqdX0lBbSXxaGTXV5dTHJ3By3SRKi/MiPgKNNsmuPhKtSRpbtvP02nYSm3eSaO2isWUrfakBAMrLSjOF4oZ5wxOL6+vrmT17NtnZFs8lSZIkSZIkSZIkSZIkSRqjLBAfSW1tbQeVhJuaGlm/YRPpdJrs7BjTp5QTryolPq2MubUTaJg1gXhVOTOnlpGVFUR9CDrODQym2bR1F4nWJInWJE0t7TQlOki07mRdawdhGJKTk0111TTi8VnUNzQMl4vj8Tg1NTUEga9DSZIkSZIkSZIkSZIkSZJOYBaID1cymdxfEG5spKmpkcTaFp5evYaenl4AykuLiFdVEJ9WsrckPJF4VTn1tRMoyHPyq6KxqztFy8bOZ5WLt9OU6KR5/Q527+kDoHRcCbNm1RKvPWl4YnFDQwN1dXWUlJREfASSJEmSJEmSJEmSJEmSJOkIsED8XPr7+2ltbd1bEN47UXhtC6tWrWTrtnYAcnOyqZpcRn28gobaCdRUlxOvKufkkyYxqbIo4iOQDk+yq4/Glu00JdpZtylJYvNOGtd20Ly+ncHBIQDKy0qpr59Lw7z5wxOL6+vrmTNnDrFYLOIjkCRJkiRJkiRJkiRJkiRJh2hsF4jb2tr2F4QTCRpXraSpqZH1GzaRTqcBmDKxlIbaCcSnlVJTXU59fAINsyYwc2oZWVlBxEcgHV0Dg2k2bd1FojVJY0s7T69tJ7F5F4nWnaxr7SAMQ3JysqmumkY8Pov6hgYaGhqGC8bxeDzqQ5AkSZIkSZIkSZIkSZIkSSONvQLx17/+dW668QZa1iZIpfoBmFBRQt3MSmbPKOekmZXUzahk9sxKaqsryMt1sqr0XJJdfTSv76B5QwfN63fQvKGT5g07aV7fTm9f5r1VXlZKXV0dV33nas4888yIE0uSJEmSJEmSJEmSJEmSJKAxO+oEx9rjjz9O0N/JdVe8kdkzx1M3s5LycflRx5KOO+Xj8lkyfxpL5k8bsT0MQzZt7aJ5Qwer1+3gE1+7g7a2tohSSpIkSZIkSZIkSZIkSZKkA425AjHASTMqee+bF0QdQzohBUHA9CmlTJ9SytmnzeQTX7uDIAiijiVJkiRJkiRJkiRJkiRJkvbKijrAsWaRUTp2wjDz0/edJEmSJEmSJEmSJEmSJEmjx5ibQBwEASFh1DHGvB3JHi77zt38+u6nufiCUzh9fhU9vQP8/v5nuO2+ZgYGh1j+sw9xytzJ3PvQej73zbuorS6ncW07TWvb+fzFr+TfP3Xu8P42b9/N2e//EfPrJnHBuXPZ0LaL79z0IB07e3nsV0tZOGfyUct32VV38/Uf/pXFDVP55udeR7Krj3WtSW74nyfYtHUXH3/XEi770N+Qlxs7anlHq3Bvg9gCsSRJkiRJkiRJkiRJkiRJo8fYLBDbH45Ux85eFl50LUUFOSz/2Yc4aUbF8HXve8sClt3VxDs+t4yevgF6+gZYdlcjD/7sg+RkZ5FOh1z4yV/yzRse4F+XvpriwlwAPvONOykfV8DN3/mHEfs6810/oK1992EVcg8nH8DiedMyPxum8upFM4bXfvIfz+CaXzzMJ668g9//tYV7fvg+CvNzjnje0cwJxJIkSZIkSZIkSZIkSZIkjT5ZUQc41iwQR2/pV26jbftuvveFvx9Rzt3notfV88G3nsqe3n4SrUn+/VOvJSc781LNygp462vriWWNfB4ffHITsdjIkmrVpHH8x2dfR9v23UctH0B29vO/jT72jtP4Xx94FQ+t3Mz/ufbPRyXvaOYEYkmSJEmSJEmSJEmSJEmSRh8LxCeA7Z17uOP+FgaH0tz8h6e5e3li+LrOXb3c8sfVfPvGB/n9/S30pQYPuv2hrOnqTvGru5r45g0P8IcHEyMew1T/ED/57VP8588f5r6H19OysXP4ukRrkhtvfZJ0OnODu5cn+PXdT7NwzmRee2b8eY/po+84jaKCXObNmkhJUe6I657Z0MFFr6sfsb2yrJAVT23mv5Y9OmLt+efMoW5m5fPez4EON9+huPzDf0NxYS7f+vEDw+XgI5V3tNv3MrFALEmSJEmSJEmSJEmSJEnS6DFGC8QnToP4c9+8i6pzvs23b3iAz3/rD3zkq7fxnn/5NQB/eDDB+Z/4BdMmlvDms2fzk9ueYtHbr6OxpX349oey5q+Pb+K9l9/C9MmlnH/OHN572a+54NJfADAwmObsf/oRE8qL+Mg/LObeFev43s8eGr7tFd+9l/d/4X94eFUbAHf85RkATpkz+QWPa8HsSbzylOqDtj+0cjPLn2zl+q++ZcT2T7/vTAA+8pXf8uEv30bHzl4A8vOyefWiGYf2YB6BfM+lMD+H1yypYWAwzeOrtx7RvKOdE4glSZIkSZIkSZIkSZIkSRp9xmaBOOoQR9B/fPZ1VJQW8HBjG5e883Seuf0T/PJbb6M92cM7PvsrrvjoWZx+8jRmTa/gx1deQFZWwLs+v4zBofQhrUl29fG+y2/he194I0vmZ9Z84K2nctt9a9iR7GHFU608ndjBa8+ME8sKuOJjZ1NWkj+c73MXv5Kvf/q1nFo/BYD1m3cCUFNVfljHub5tJ0u/chuvft+PuHt5gnd9/mYGh9LD17/nvPl89/I3kp+XzQ9ufoy5b/4eN9321GE/ni8134uJV2f293QiU8w+UnlHu31dfQvEkiRJkiRJkiRJkiRJkiSNHmOzQHwCTSAGqCgtYEHdJGqryykryeesxTP44S2Pk+zq45WnTB9eF8sK+KcLTmHlM9v54/J1h7Tmul89wrSJJVRNGje85oqPnsXKWz7G+PJCigtz6epO8cErbqW7p59YVsBH/mHx8NoFsyfxuX96BTnZmZdadizzs6d34LCOsWrSOL7+6ddy6/feyfQppfzPPau59v89MmLNJe88jZW3fIzXLKlhR7KH911+Cx/96m9Jpw/9+X6p+V5MTnYMgLzc7COad7RzArEkSZIkSZIkSZIkSZIkSaPPGC0QR53iyHt2MRWg8ZntBMH+Quw+8+smAbCqZfshrXly9VYmVhaNuD43J0Z97QQAFs6ZzIcvWsQNv3mC+jf/J7+5dw2Txxc/b876WRMBeGZjx2EdX3Ysi7KSfF73iloe+eWHqSwr4O4HEwetq60u5w8/eC/Xfuk8YlkB1/3qUf7zFw8f8v281HwvZkv7biBTqH62l5t3tNv3XsvKGnP/1EiSJEmSJEmSJEmSJEmSNGqNuVbfiVogPlAQZMqb+4qr+0woz5SBxxXlHdKarTu62bhl1wve17VfOo//+vKb2NPbzwWf+AX/+7o/P+/ahXMmA9DY0n7Yx7TP+PJCzjurjv6BIQAeWrmZnr6RE4M/fNEirvnieQD8+H+eOOR9H4l8BwpDuPeh9eTlxlgwe/IRzTvaOYFYkiRJkiRJkiRJkiRJkqTRZ4wWiE/8BvG8kzKTbh98snXE9h07e4BMUfZQ1syaXsFjTVto3jByIm+yq4+nmrfRtLadXd0pPnjhqTT/7hOce0acr1xzHzuSPc+Z67yz6lhUP4XV63bwl8c2vuAxdPf0v+D1p86dAsCmrV18/5ePHHT9u/7+ZIIA0ofxfB/JfPv8/I6VtG7r4oqPnk1pcd4RzTva7TsSC8SSJEmSJEmSJEmSJEmSJI0eY7RAHHWKIysMw4NK0R946ylUlhVw061Pjth+z/IEr39lLafNm3pIa9593nyG0iHv/Nwy1rftBGDjll18/lt3MadmPJu2dnH7n58BoLKsgP97+RtIp0O69qSAzCTf//vTFQwOpQGIZQVc9+U3UZifw/suu+WgYjJAT98An/mPO3mqeRsDg2nWbkqOuH5P7wBPNW/jE+9ZAsCs6RV89fv3sapl+4h16zfvJAwzpeBDdbj5AAYH08+7v/seXs8//5/bOf3kaXzun15xxPOOdk4gliRJkiRJkiRJkiRJkiRp9MmOOsCxFgQBJ1J/uDc1SHuyh/6BIQaH0mTHMp3witIC/t+33s67Pr+Mr177J5a+bTEPPrmJx57ewvVffcshrzn7tJn8y8Wv5Os//Cvx11/NpMoicrJj/Paad5GbEwPgiu/dwxkLqqiePI7/uWc173zjPOJV5QBc+d9/4We3r+T0k6dxxvwqIDM5+Mlff5QPXvEb5l/wff7xTfNZPG8aAI+s2kzHzl7+9SOv5tS5U/jp71byj//r1/zdq2bxqfeeSTod8pdHN/CDr7yFiRVFANRWl7N7Tz9nv/8GLv/w3/CKhdW0bd/NF797D286u45/Xfrqw3pMDycfwMOrNmeua2zjgSc2sad3gNZtXSy7s5EHntjExW89hf/98XOGn5sjnXc029drt0AsSZIkSZIkSZIkSZIkSdLoEYQHjq49wX34wx9m3ap7ueu/3h11lCPiez9/iI6dvQBMnVDCW86ZPVysBUh29XHvQ+vY0LaLBbMn8erFM4aLrIez5pHGNv76+CYqSgu44DVzKC7MBaB1WxerntnOI41tFBbkcNL0Ss47q459fdGWjZ385bGNvPfNC4hljSyRhmHm+qeat9GyqZOKcQWcsaCKk0+aOLwmnQ6564G1NK5tZ2JFEfNmTeSUuZMPehx+/JsnmTG1lERrko6dveTlxljcMJVXLKx+yY/toeT7wc2PsXn77hG3y8uNUVtdQd2MSupmVlKQd3BP/2jkHY06d/Uy/lXf4O677+Y1r3lN1HEkSZIkSZIkSZIkSZIkSRI0jrkC8dKlS1n71D384b9PjAKxDs22jj0su6vpRdd96KJThycr6+Xr2NnLhL/5Bn/84x8555xzoo4jSZIkSZIkSZIkSZIkSZKg8eDRqCe4IAgYY51pAYNDaXbs7HnRdb40jqx977UgCF5kpSRJkiRJkiRJkiRJkiRJOlbGZoE46hA65qZNLOFLHz0r6hhjzr73mgViSZIkSZIkSZIkSZIkSZJGj6yoAxxrTiCWjh0nEEuSJEmSJEmSJEmSJEmSNPqM0QJx1CmksWHfe80CsSRJkiRJkiRJkiRJkiRJo4cFYklHjROIJUmSJEmSJEmSJEmSJEkafcZogdgGsXQsOIFYkiRJkiRJkiRJkiRJkqTRZ2wWiKMOIY0RTiCWJEmSJEmSJEmSJEmSJGn0GZsFYicQS8fEvneaBWJJkiRJkiRJkiRJkiRJkkaPMVogjjqFNDY4gViSJEmSJEmSJEmSJEmSpNEnO+oAx1pWVhYPrdxE5au+GXUU6YSXTqejjiBJkiRJkiRJkiRJkiRJkg4w5grEb3vb25gzZ07UMXQIqqur6enpoaOjI+ooL8nkcf1ML++jfzCL1GBAajCL/qEsUnsv7zs/FiZi19bWRh1BkiRJkiRJkiRJkiRJkiTtFYThWKgv6nh0//33U1tby5QpU6KO8pKF2++F7X964UVZuRDLg6x8iBVAdiHECiGWTzDxLMjKOzZhJUmSJEmSJEmSJEmSJEnSWNA45iYQ6/jQ29vL0NAQxcXFUUd5WYKJfwvZRYRtdwDP09VP92dO7H72LaFgmuVhSZIkSZIkSZIkSZIkSZJ0xGVFHUB6LkNDQ5SWllJUVBR1lJev4nSC6W+HIAZBcGi3CSAYf8bRzSVJkiRJkiRJkiRJkiRJksakIAzD5xmLKumI2rOOcP3PgCEI0y+8NlZIMOczmdKxJEmSJEmSJEmSJEmSJEnSkdPoBGLpWCmqIYj/E2TlvUgxOEZQebrlYUmSJEmSJEmSJEmSJEmSdFRYIJaOpYKpBLUfhuziFygIpwl3PgHt98NQ7zGNJ0mSJEmSJEmSJEmSJEmSTnxBGIZh1CGkMWewm3DdjZDqAIb2bw9iUFwLueWQfBwIoGweQeUSyJsYVVpJkiRJkiRJkiRJkiRJknTiaLRALEVlqI9ww0+hdzOE6eHNQe2HoGAapFOwcxVhx3JItUPh9EyReNxcCBweLkmSJEmSJEmSJEmSJEmSXhILxFKk0gOEm34F3S1AGvImE8z6yAGLQuhelykS726G3HKC8kVQcSrECqNILUmSJEmSJEmSJEmSJEmSjl8WiKXIhWnCtlsh+QRB1QVQtuD51/Z3EiYfg85HIT0ApQ0E418B+ZOOXV5JkiRJkiRJkiRJkiRJknQ8s0Cs0Wfbtm2UlJRQWDiWpuuG0H4/jD8TguwXX55Owc5VhB0rILUdCqcTVC6BcXMhyDr6cSVJkiRJkiRJkiRJkiRJ0vHKArFGlzAMuf/++znppJOYPHly1HGOAyF0ryNMPgpdT0OsCCoWEVSeDrGxVMCWJEmSJEmSJEmSJEmSJEmHqPEQRp1Kx05vby/pdJqioqKooxwnAiiOExTHob+TMPkYdKwgbL8fShsIxp8J+RaxJUmSJEmSJEmSJEmSJEnSfhaINars2bOHIAgsEL8UuRUEk86FiWfDrkbCHQ8QtlwLBVMJKpdA6TwIYlGnlCRJkiRJkiRJkiRJkiRJEbNArFGlu7ubgoICsrKyoo5y/AqyoWwBQdkC6NlI2LGCcPNvYOsfoHwhQcXpkDMu6pSSJEmSJEmSJEmSJEmSJCkiFog1quzZs4fi4uKoY5w4CqcTFE6Hwd2EnY9Cx0OEOx6EcXMIKs+AwuqoE0qSJEmSJEmSJEmSJEmSpGMsCMMwjDqEtM/y5cuZOnUq06dPjzrKiSkchF2NmRJx31YomEpQvgjKF2QmF0uSJEmSJEmSJEmSJEmSpBNdo41BjRqDg4OkUiknEB9NQTaULSAoWwC9bYQdKwi33A7b74XyhQQVp0FOadQpJUmSJEmSJEmSJEmSJEnSUeQEYo0ag4ODtLW1MXnyZHJzc6OOM3YM7ibsfBQ6H4ahPhg3JzOVuDgedTJJkiRJkiRJkiRJkiRJknTkNVoglpQRDkLXGsKO5dCzCQqmEJQvhrL5kJUTdTpJkiRJkiRJkiRJkiRJknRkWCCW9Bx62wiTj0LySYjlQfkpBBWLIacs6mSSJEmSJEmSJEmSJEmSJOnlsUAs6QUMdkPyCcLOh2BgN5ScRFB5BhTXAEHU6SRJkiRJkiRJkiRJkiRJ0uGzQCzpEIRD0LU6M5W4OwF54zMTictPhazcqNNJkiRJkiRJkiRJkiRJkqRDZ4FY0mHqbcsUiXc+BUEMyhYQVJ4JuWVRJ5MkSZIkSZIkSZIkSZIkSS/OArGkl2hwDyQfJ+x8GAa6oLiGoHIJlNQBQdTpJEmSJEmSJEmSJEmSJEnSc7NALOllCtPQ/QxhxwroTkBeJUHFaVB+KmTlRp1OkiRJkiRJkiRJkiRJkiSNZIFYo8O6desoLCxk0qRJUUfRy9G3NTOReOdTQBaUzSOoPAPyJkSdTJIkSZIkSZIkSZIkSZIkZVgg1uiwfPlypk2bRnV1ddRRdCQM9cHOJwg7lkP/LiiuIahcAiV1QBB1OkmSJEmSJEmSJEmSJEmSxrLG7KgTSIODg6RSKYqKiqKOoiMllg+VZ2RKw93rCDuWE274OeRWEJSfChWLIFYQdUpJkiRJkiRJkiRJkiRJksYkC8SKXHd3NwDFxcURJ9GRF0BxnKA4DqkdhJ0PE7b/Gdr/AmXzMgXjvIlRh5QkSZIkSZIkSZIkSZIkaUyxQKzIdXd3k5OTQ25ubtRRdDTljSeY8gaYdA7sXEXY8SBh56NQOD1TJB43F4KsqFNKkiRJkiRJkiRJkiRJknTCs62nyO3Zs8fpw2NJVh5ULCI46RKCme+FWD7hpl8RPvNdaL8fhnqjTvi8wjDk/PPPJwzDl72vzZs3U11dTXd3N7t37+byyy/noosuOgIpX9wjjzzC+eefz09+8hMgM/37wgsv5NJLL6W0tJRXvOIVfOxjH+PUU0/l4x//+DHJJEmSJEmSJEmSJEmSJEk6diwQK3Ld3d0UFRVFHUPHXADFcYIZ7yKo+ziUNhDuuJ9w9bcIW2+Bvm1RBzzInXfeya233sqdd9550HV//vOfX/DygaZMmcKPf/xjiouLKSkpYfbs2WzevPkl5Xqx+zrQ4sWL6ezsJJVKEYYhl1xyCTfffDNXX301FRUV/P3f/z3XXHMNDz74IOXl5S8pkyRJkiRJkiRJkiRJkiRp9LJArEiFYUhPT48TiMe63EqCSecSzP4UwZQ3QG8bYcv3CRM/hF2NEKajTgjArbfeytKlS7nqqqtGbL/77rv5l3/5l+e9/FyysrI455xzhi/n5+e/pEyHcl/PJS8vD8i8Bz/5yU8+75qlS5e+pFySJEmSJEmSJEmSJEmSpNHLArEiFQQBCxcupKKiIuooGg2y8qBiEcFJHyOY+V7IKSFsvZlwzVWE2++DoZ4X3cXFF1/M5MmTaW1t5dZbbyUWi/G9730PgLvuuovzzz+fLVu2cNlll7Fs2TLe/va3s3LlSgCeeeYZrrrqKn7yk5/w/ve/f8R+W1paiMfjfOpTn+Luu++msbERgHQ6zc0338zmzZu5+uqrSSaTIy5v3bqVK6+8krPOOotrrrmGKVOmsGXLFm644Qbmzp3Lhg0bhu8jnU7zmc98hunTp3PuuefS1tZGKpVi6dKlnHLKKUCmMFxUVMTvfve7g+57165dDA0N8e1vf5srrriCs846i7vvvhvIFIW/8Y1vcN1113HllVeydu3azEOelcWUKVOe9/GcNGkSX/va17jhhhv40pe+xNKlS9m9e/chPZ2SJEmSJEmSJEmSJEmSpNHJArEiV1JSQk5OTtQxNKoEUBwnqH4bwUn/DOULoGMF4epvE7beAn1bn/eWV155Jbt37yY7O5s3v/nN/N3f/R1ZWZl/6rq6uvjSl77E7bffztDQEBdddBGLFy/m+649GacAACAASURBVN//PgA33XQThYWFvOc97+HCCy8csd/rr7+eiy++mLq6Ol7/+tfzne98B8gUcM8991wmTZrEpZdeSnl5+YjLkydPZuHChTz22GOcd9553HvvvUycOJF3vvOdrF69esR9bNiwgcsuu4ympib6+/v59Kc/TV5eHm94wxuG15x77rnU1NQ8532XlpbyzW9+k4ULF/LVr36Vj370o7znPe8hDEN+8IMfsGnTJpYuXcpll11GYWHhIT0T3/72t9m8eTPvf//7+cpXvjKcS5IkSZIkSZIkSZIkSZJ0/MqOOoAkvaDcCoJJ58KEV8POlYSdDxG2XAsFUwkql0DpPAhiw8snTZrEeeedx4033sinP/1phoaGuP766/nYxz7Gk08+yUUXXcQpp5zCrl27ePTRR9m1a9fwRN23vOUtvP71r6epqYkvf/nLw/vs7u7mjjvuGL4chiE/+clP+NrXvsaECRNe9BAKCwsZP34806dPH94Wi8UOWldTU8P48eMBuOSSS/jEJz4BZCZ1P9uBl59t2bJlhGE4PFX5sssuo7e3lxtvvJFPfvKTw+teaOrws918881ccsklw5cvuOACLr74Yv77v//7kG4vSZIkSZIkSZIkSZIkSRp9LBBLOj5k5ULFIoKKRdCzkbBjBeHm38DWu6F8AUHF6ZAzDoCPfOQjLF26lEmTJvGNb3yDt771rfzyl7/kpJNOAuChhx7ipptu4rvf/S73338/GzduBGDhwoU8/PDDXHLJJZx66qksX76cSZMm8eMf/5jrr7+eRYsWATA4OMiMGTO49tpr+eIXv3hUDnfq1KnDZeLDsWPHDs4991wWL148vG3Pnj3s2LGD/v7+l5Slra1t+HxFRcUhTy+WJEmSJEmSJEmSJEmSJI1OWVEHkKTDVjidoPptBLM/BRWLoPMxwuarCTf9Cno28bd/+7dkZWVx3333MX/+fD70oQ/x2c9+lre97W0AXHXVVZSWlgKwZcsWBgYGALjhhhuoqanh9ttvZ/78+axYsYJ0Os2dd945XB4GyM7O5t3vfjfXXHMNqVSKkpISkskkAAMDAwddDsOQdDo94hDCMBzx88DzTzzxBB/84AcBmDhxIlu2bGFwcJAdO3awefNment7AQ66r1e+8pVceuml7Nixg97eXn70ox8Nb//hD3/I0NAQALt27aKnp+egh3ZwcHB4DcDb3/52brnlluHLK1eu5N3vfvchPlGSJEmSJEmSJEmSJEmSpNEo9uUvf/nLUYeQpJckK4+gaCbB+CUEuRWwuxna/wK7m8kqmMhb3/5epk6dRl1dHf39/bzuda8DIAgC/v3f/501a9awcOFCbrrpJurq6mhpaeFXv/oVvb29xGIx3v3ud/PFL36RBx54gLPPPpuJEycCkEwmueOOO7jvvvvYvn0773znO/nFL37BqlWrWLx4MfF4nJtuuolVq1ZRX1/PD3/4Q+655x7mzZtHfX096XSaZcuWsWzZMqZMmcKSJUsoKirinnvuYcOGDTQ3N5NOp/nnf/5ngiCgqqqKRx55hH/7t3+jq6uL4uJiUqkUr371q5k8efLwfS1evJjXv/713HHHHXz2s5/l97//PR/4wAeoqanhzDPP5LbbbuPqq69m1apV9PT0kJ2dzZIlSygoKKCvr4+f/exn/PSnP6Wnp4eGhgaqq6tZsmQJra2t3HHHHbS3t7N161Yuv/xysrMdYC9JkiRJkiRJkiRJkiRJx6n2IHz2yEtJOt71thF2rIBdqyBWAOULCSpOh5xxUSeTJEmSJEmSJEmSJEmSJGk0aLRALOnENLibsPNR6HwYhvpg3ByC8kVQHI86mSRJkiRJkiRJkiRJkiRJUbJArOisWbOGMAyZM2dO1FF0IgsHoWsNYcdy6NkEBVMIyhdD2XzIyok6nSRJkiRJkiRJkiRJkiRJx1pjdtQJNHZ1d3dTVlYWdQyd6IJsKG0gKG2A3jbCjhWEW26H7fdA+SkEFadBTmnUKSVJkiRJkiRJkiRJkiRJOmYsECsSYRjS09NDVVVV1FE0lhRMJai6ACa/FpJPEHY+RNj+Vyg5iaDyDCiOR51QkiRJkiRJkiRJkiRJkqSjzgKxItHT00M6naaoqCjqKBqLsothwqsIxp8JXasJk48Srr8R8idnJhKXzYesnKhTSpIkSZIkSZIkSZIkSZJ0VFggViT27NlDEAQWiBWtIAalDQSlDdDblikSb/09bPsDlC0gqDwTcsuiTilJkiRJkiRJkiRJkiRJ0hFlgViR6O7uprCwkCAIoo4iZRRMJSiYChPPgeTjhJ0PE3Y8BMU1BJVLoKQO8PUqSZIkSZIkSZIkSZIkSTr+WSBWJPbs2UNxcXHUMaSDZRfBhFcRjH8FdD9D2LGCcMPPIa+SoOI0KD8VsnKjTilJkiRJkiRJkiRJkiRJ0ktmgViRSKVSlJWVRR1Den5BFpTMJiiZDX1bCDsfIdz2R9h2L5TNI6g8A/ImRJ1SkiRJkiRJkiRJkiRJkqTDFoRhGEYdQmNTGIYEQRB1DOnQDfXBzicIO5ZD/y4oriGoXAIldYCvZUmSJEmSJEmSJEmSJEnScaHRArEkHbYQdjcTdqyA7gTkVhCUnwoViyBWEHU4SZIkSZIkSZIkSZIkSZJeiAViSXpZUjsIOx+G5ONAAGXzMlOJ8yZGnUySJEmSJEmSJEmSJEmSpOdigViSjoh0CnauIux4EFI7oDhOUL4Ixs2FICvqdJIkSZIkSZIkSZIkSZIk7WOBWJKOrBC61xF2LIfdzZBbQVB+KlQsglhB1OEkSZIkSZIkSZIkSZIkSbJALElHTX8HYfJx6HwE0oNQ2kAw/hWQPynqZJIkSZIkSZIkSZIkSZKkscsCsSQddekU7FyVmUqcaofC6QSVS2DcXAiyok4nSZIkSZIkSZIkSZIkSRpbLBDr2EqlUoRhSH5+ftRRpAiE0L2OMPkodD0NsSKoWERQeTrECqMOJ0mSJEmSJEmSJEmSJEkaGywQ69hKJBIkk0kWLVoUdRQpWv2dhMnHoPNRSA9AaQPB+DMhf3LUySRJkiRJkiRJkiRJkiRJJzYLxDq2nnrqKXJzc5kzZ07UUaTRId0PO1cSdq6Avu1QMJWgcgmUzoMgFnU6SZIkSZIkSZIkSZIkSdKJpzE76gQaW/bs2UNFRUXUMaTRIysXKhYRVCyCno2EHSsIN/8Gtt69d/tpkF0UdUpJkiRJkiRJkiRJkiRJ0gnEArGOmYGBAfr7+ykqsgwpPafC6QSF02GgizD5GHQ8RNj+Fxg3h6DyDCisjjqhJEmSJEmSJEmSJEmSJOkEYIFYx0x3dzcAxcXFESeRRrmccQQTz4YJr4JdjYQ7HiBMXA8FUwnKF0H5Agj851uSJEmSJEmSJEmSJEmS9NLYQNMx093dTW5uLjk5OVFHkY4PQTaULSAoWwC9bYQdKwi3/A623wvlCwkqToeccVGnlCRJkiRJkiRJkiRJkiQdZ4IwDMOoQ2hsWL16NQMDA5x88slRR5GOX4O7CTsfhc6HYagPxs3JTCUujkedTJIkSZIkSZIkSZIkSZJ0fGg8qECcSqXo6uqKKpBOYO3t7cRiMSoqKqKOolGgsrKSrKysqGMcv8JB6FpD2LEcejZBwdRMkbhsPmQ55VuSJEmSJEmSJEmSJEmS9LwOLhC3t7fT1NQUVSBJY0RJSQkLFy60RHwk9LYRdqyAXasglg/lpxBUnAY5pVEnkyRJkiRJkiRJkiRJkiSNPs9fID7rrLOiCiXpBPenP/2J7OxsioqKOPnkk4nFYlFHOjEMdkPyCcLOhzLni2cRVJ4BxfGok0mSJEmSJEmSJEmSJEmSRo9GR39KisT06dPp6elh5cqVDA0NRR3nxJBdDBNeRVB3KUHVhTDUR7j+RsKWa6HzUUgPRJ1QkiRJkiRJkiRJkiRJkjQKWCCWFIn8/Hzmz59vifhoCGJQ2kAQv5ig9sNQOI1w6+8J13yLcMsd0L8z6oSSJEmSJEmSJEmSJEmSpAhZIJYUmeLiYkvER1vBVIKpbyKo+yTB+FdB12rC5qsJ198Iu9cAYdQJJUmSJEmSJEmSJEmSJEnHmAViSZGyRHyMZBfBhFcR1F1KMOMdAIQbfk74zH9Cx3JI90ccUJIkSZIkSZIkSZIkSZJ0rFgglhQ5S8THUJAFJbMJZr6XYNZSKJpBuO2PhKu/Rdh2G6R2RJ1QkiRJkiRJkiRJkiRJknSUZUcdQNLY1NXVddC26upqNm7cyBNPPMHChQuJxWIRJBtD8qcQTH0TTHot7HyCcMdyws7HoLiGoHIJlNQBQdQpJUmSJEmSJEmSJEmSJElHmAViScdcVVUVra2tz3t9d3c3nZ2dTJgw4RimGsNi+VB5RqY0vLuZsGMF4YafQ24lQfkpULE4s+Y4tH37dtatW0cikWDdunWsW7cOgJqaGmpqaojH49TU1DBx4sSIk0qSdGSkUinCMBw+n06nARgYGBjxVx7CMKSvr++g2z/XtmfvZ58D9wcwODjIwMDA82YbHBxkcHDw0A/mOfT19Q0f30uVm5v7sn5RLQgC8vLynvf6WCxGbm7uId0mPz+fIBj5C1u5ublkZY38Y0E5OTlkZ4/8+J6fnz/i/L795OXlHbRPSdLxaceOHWzYsGH4tH79ejo6OqiurmbmzJnMmDGDGTNmMHPmTAoKCqKOK0mSJEmSJEk6zlgglnTM1dbWUltb+7zX/+lPfzqGabRfACWzCUpmQ2oHYefDhO1/hva/QNk8gsozIG90lbq7u7uHi8H7i8IJ1iXWsm7dBvb09ACQkx2jeko5NdPKgDT33LmLTVt2MjCYKT4VFRZQM3MGNfFaauK1w8Xifafi4uIIj1KSNNqEYUgqlQKgt7cX2F/c7e/vZ2hoaLgsu69Um06n6e/vH1Hc3fdzaGiI/v5+gL3r+obPp1L7C73PLvf29u4/n0oNvOxS7QvJzg7Izh5ZSI3FAnJzR24LAsgb2Zs9SF5eSFbWSy+3ZmWF5Oa+9GMdGoKu3qwXX/gCUik4oE89wuAQHNiTHhoK6e8fmTsMIZV6gR0dAbm52cNl5NzcnOHidE7OyPPZ2TkAZGfvP//sIvS+UvO+InMsFhveR25u7oiC9L4C274i877CdnZ29kElaEka67Zu3XpQQXjDhvWsX5dg/fqNw59pgyBgysRSaqaVU16Sy6pH72NDW5KdXT3D+5o0cTwzZkxnxsw4M2bMHC4W7ysal5SURHWYkiRJkiRJkqRRKggP+Ka5vb2dpqYmzjrrrKgySRrj/vSnP1FfX+8E4tFgqA92PkHYsQL6k1AcJyhfBOPmQvDyyjeHYmBggE2bNpFIJGhra2PLli0kEgkSa1tIJNaybv3G4cJUeWkR8aoK4lXjiE8ro6a6nHhV5jR9SinZsYPzJrv6SLQmh0/rNiVJbN5FonUn6zd3kE7v3XdZKfF4DfHaWcTjtUyZMoWpU6cSj8eZO3cuhYWFR/2xkCS9uH1TcXt7exkaGmJgYGC40NvX1zdc5j1w2+DgIH19fXuLvH0MDPSPKABnbje4t9x7eBN0s7IgNzeLIID8/Mx/i/L3DqLNy8tcHwQheXmZ/+YEQcCzBsuOPJ/Hs6bMZgq7mfMB+wbW5uTAvuG6OTkMF3+zY3BgdzM/P+DAQbW5uZB19P8TrxfwHEOgSaXCEaXlMIRU/77z4YjbHHh+/0TqzO0AUv3799ffv78QPTAAg4OZRYODAYODwd7bBqTTIf0DmbUDAyGDgyFDQzAwcHgl6Fgsi5ycTLE5L29/+Tjz2i8YLjHn5eURi8XIy8sbLi4fuC0Wi5Gfnz9cZN5XVn72dGZJilIymcx8ht17ynyubSOxtoXm5mfY3b1neO3wZ9pp44hXZT7TThlfwtSJJcypGU9RQc5B++9LDdLWvvuAz7Q7aWvfw5b2bta1duz/zFxWypQpk5g6tZp4beYXZ/ed9n3GlSRJkiRJkiSNKY3HdYE4DEPS6fTL+vOzUexbR4fP2YnDAvFoFEL3OsKO5bC7GXIrCMpPhYpFEHt5fyb1wC9Un10Q3riplcG9U4Lz83KYOrGUeFXpQQXhuhmVlBS9yMjDw5TqH2Lz9q6DvohNtHaxdlPHiElP+wvGJ434EjYejzNz5syD/gy5JAkGBwfp7+8nlUqRSqXo7+8fPvX29g4Xffv7++nr69u7JkV/f+b8vrJwX19qb/H3xYu9sVhATk5AXl4WWVmZQm52dqZom5ubJhbLlGqzs9l7CsjJ3lcCZm8JOFOo3NdPzJSAA3JzMuv2lXZjscx5aSxIpzNF5DCEvr7M/2Loywzp3juxORwuKmfKx+wtH2e27Ss09/fvLzGnUlkMDWVuP7B3fV9fuHea84uXlvcVlfdNXs7Pzyc7O5vc3Dzy8grIz88fLh3n5uY+5+W8vLwR2yTpQM/1ebZt82a2bNnM6tXNI/4qzviKYqZOGEd8WgnxqvJD+qXXl+vAz7Vt23eztb37OX9xNj8/j6lTJhOP1+795dmR5eKamprhX2SSJEmSJEmSJJ0Qjt8C8Y9+9CO+8IUv8Ic//IGGhobnXLN7926uvPJKmpubWbZs2RHd97EyNDTE97//ff785z8zadIkysvL2bhxIxs2bODee++NNBvA5s2bOeOMM3j66acpLi4+avfzYo/Dgc/Zscr1QnlvuukmPvShD9HQ0MAb3/hGgiCgubmZd7zjHVx44YVH5X6vu+46fvvb3zJz5kwee+wxxo8fz29+85ujcl9HkwXiUa6/gzD5OHQ+AmEayk4mqDgd8ic95/K+vj7a2toO+FJ1LYm1LaxZ00z3nv1fqFZPKSdeVUZ8WuneaUvFTJ2498vVaWWj6svKfdOL27bvZsuO3c+aXryLpxPb6OnNjAXMzc2hatrUg76Ejcfj1NbWUlZWFvGRSNLh6+vre9HTvnJwX18v/f19zyoDp+jvHxguqzyX/Pwscv8/e/cd31T1PnD8kzRd6d57UmjZylCUKaIoIIii+HUgICKiguvn14EIigP06wRkOBHZQ7SAIlsQZCNQCqV0b2ibpjtt8vsjbehuWsp+3q9XXtDk5txz7j03zel57nOslFhZGQNzbWzA2lqPlRUXHpaKioBfY8ZdKysFVlbGIOHK5yxVVHtOCHH90Okqg4oxBhXroLTUUOU548+V2xUVGwOXS0sNlJQYsyqXlkJpqYJSnTE4ubRUT3l5Q59NVlhZqaoEGdtiZWWDlZW1Kei48mFra1vt58qH3FgmxLVDp9ORlZV1YSWcBm54tbJU4e/tTKi/Mz7uanw9HKoFCAf5OmOhvHrGs5VKdeUkZ+RVGdvmV1uZJyE1m/Jy400b1tZW+Pn6mMa2VVfmkZtnhRBCCCGEEEIIIYQQ4pp07QYQGwwGbG1tOXjwYINBvj/++CPz5s1jz549LV725TB06FCsrKxYvHixaRnWEydOMHToUGJjY69o3QD0ej3bt2+nf//+l3Q/jR2HmufsUtRr586d9OnTp0nvCQwMZPz48UyZMgWAzMxM+vTpQ9u2bVmzZk2DwZBN3d/p06fp0aMHaWlpWFtbk5KSwuOPP24KNG9O/a8UCSC+RpQXQ+4R9Of2odBlczw3nD1R2ipZl5KNS7PGJZjeUteSrFf7hGpzVQYYV89gXHsS1riMrDe+fv7GidgqAcYRERHY2dld4ZYIIa5H5eXlFBYWUlhY2EggcBHFxVW3KaG4uLTOMq2slNjYKLGxNgbrWlkZsLLSV/xfYQr6NQYDV/xspcDaGqxNgcHG54UQ4kqpDDwuLqYiKPlC0LExyNj4szHoGFMQsvF1Y+bl4mI9xcV1Z0m2tLTAxsa6SlCxGhubuoONKwORbW1tUavVkgVZiBZWWlpKcnKycfyamnohULgiQDghMelC8KyVJX5eTqYbXr09LtzsGurvQrCvM8rraDxbSVemJyu7gLRz+XWObRPTci4EUVe5edbH169acHFoaChBQUGyapgQQgghhBBCCCGEEEJcXU6ornQNmkuhUGBpxprANs1INWZu2ZfaN998w5YtW4iLi6vWjvbt2zNx4sQrWLMLlErlJQ8eNuc41DxnLV2vzZs38/bbbzcpEB3AwsKiWpCwp6cnkZGRtGvXjm+++Yann366xfaXlJRETk4OJ06coEuXLvj5+TFhwoSLqr8QlepalrVyUjUpOZkBt4aw999kikrK8fV0ItTfifZ+zgy5tTWh/rcQ6u9CeLAb9uobJ+jBxdGGru186NrOp9ZrVbM8XZiATefg7lP89ouWtEzNhXKcnQgNDSG0Vetqk68yASuEqKq4uBitVktRURHFxcWmf7VaLVqtluLiQoqKCikuLqKoqJj8/KJaZahUiooH2NoqsLE2YGsLjg7g5WkM/LW1UWBjozK+blO5HajVxmzAtclnlBDi2mJhYfxss7Wt+mxTgwKNn31lZVBUZKC4pOLf4sp/SykrK0VXpql4DjS5StKLqNhWT2Ghvs5M7TY2Vjg42GNjY4utrZ0pyNjBwQF7e3tT5uPKf+3t7a+qVTyEuJxKSkpISUm5cJNrZZBwxVg2PiEJvd4YIGxjbWkay4b6OXPn/caxbOWqOFfbijiXi6VKia+nA76eDnWObaHum2dTE1OIOlRIdFwmBYUlxrIsVbi7uRoDi+sY3wYGBqJSXbN/qhZCCCGEEEIIIYQQQohrUov+Vfbdd99l69atDBw4kGXLlmFpacmSJUsICAjg888/5/fff2fkyJG899577Nu3j59++glfX1/i4uJIT0/nk08+YcaMGcyaNYv9+/fTrVs3li9fzsqVK5k7dy7dunVj06ZNRERE1Np3WloaX375JV27dmXFihW8/fbbdOzYETBmyX3llVdYuXIlbdq0YdGiRfj6+lJeXs4XX3xBbm4uO3bs4O2332bAgAEteUguyvr16+nUqROenp61XnvllVcAKCsrY9asWbWOo6WlJbNmzarzfLRp06bOtvfs2bPWeTpw4ABLly5l1apVTJ48ma+//pqysjJ27tyJSqXihx9+YObMmfz+++8EBQVhMBiYPXs2arWa48eP4+3tzYsvvsikSZPYt28fhw8fZvPmzQwbNowVK1YwePBgYmJiiIyMxMPDg82bN/PDDz80+TjUVLNes2fPZt68ecycOZPFixfz77//snLlSlatWsWaNWvo06cPX375ZZ39qH379qxevZqUlBS++OILRo8ejb29fbP7TlhYGJ06deK3335jyJAhZu2vsLCw3v5dqVevXrRv354BAwYwa9YsnnrqKUaOHIler69Vnp2dXZ39RqVS1eoD+/fvZ8WKFVftdSJaRk5OTvWMS2fPcvZsLGdjzxAdfZqCwkKg+rKsoX5OpknVyqxLLo6yPrw5rCwtTMesLsUlZaRmaWsEGJ9kc+ReTsVlkV9YbCynSoan0FZhponXqkvJCiGuPQaDgcLCQgoKCtBqtRQUFJCfn49Wq63IGlxAYWEBBQUFFBUVU1qqq1WGWm2Bra0StS2o1XrUtgbc3RTYqY1BcWq1JWq1AlsbsLUFG5v6AoCFEEI0l0oFDg4KHBygaUHISgwGAyUlCoqKDBQWGSgqgsJCgzG4uCiPwkINhYUG8jQK0tOgqBgKC/WUl1cPOrawUKJW22Bra4NabYdabY+9vQN2dnbY29tjb2+PnZ0dDg7G5+TmNHEtKS4uJjU1tdbNrpWr4cTFJ1K58JqLkx0+Hg74ethVCxAO9XcxBQmL5mno5lmoHWCclqkl7ZxxfHs6PgttQfGFsuq4gbZyfCsr9AghhBBCCCGEEEIIIUTLUxgq/5JeISsri6ioKPr27dvkwiIjI3n88cc5ceIEvr6+PPLII+Tk5LBp0yY2btzIww8/zIkTJygsLGTt2rUkJyczZ84cAMaMGYNKpeLrr7+mdevWzJ49m8GDB/Ptt9/Sv39/goOD+eGHH3jkkUewrUgF5ODgwN69e2nfvj3ffvstp06dYtasWcyaNYv4+Hjmzp3L8uXLmTx5MsePH8fGxoZBgwbh6+vLsmXLmDlzJt27d6d///4sW7aMF198kbS0NBQKRbWyr5SIiAjCw8NZt25dvdvMmjWLhISEWsdx4cKFDZ6P+tr++++/VztPrVu3Zv/+/QwYMICTJ08SEBBAWFgY33zzDf369aOkpAQbGxvi4+MJCgri888/R6lUMmnSJJKSknjyySfZsmUL69atY/r06Rw+fBiADh06MHPmTAYPHszUqVPx8/PjmWee4bfffuO+++5r8nGA6v2hZr1iY2MJCwsjKSkJf39/HnroIXQ6HWvXrqWgoABnZ2dycnJYsWJFnf1o9erVfPTRR+zfvx+gwb5TVUhICOPGjeOtt96q9vyTTz7J0aNHeeGFF8zaX339u6bz58/z6quv8uOPP3LrrbeyfPlyAgMDa5XXUL+pea2uWbOGHj16NNrWlrRjxw7atWuHh4fHJdvHjabq0qw1A4RjY8+Sq8kzbeviZEeovyuhfsblWEMCXK77ZVmvNXVleKpcQjYhNdu0zK6NjTW+Pt6EhoYR2qpVtexObdq0wcFBJsmFuJyKiorIz8+vFRhsfC4frTaPgoICCgqKqPoV3cJCgZ2dBY4OSmMwsFqPWq1AbatArTZm/60MBlarFdjaGm7IDHlCCCGgtBQKC6GgUG8KOi4srAwwNlBYaCA/X0FBoYL8fD0lJfpq77exscLeXo2dnT0ODs71Bhrb2dmhVCqvUCvFjaKhG11TU1NJS880bVs5jvVxt8XXw6HaOLZVgAvODnKz69Wq6vg2NVNLepa2Ynyr4UziOTTaCytnXAgwDiM0tFW1m2dljCuEEEIIIYQQQgghhBBNdqJFMxDb2tri4eGBn58fABMnTmTIkCEAqNVq3N3dCQwMBOCXX37hueeeM713+PDhjB07loULFzJp0iS+/vprBg8eTFJSEiEhIYAxyLE+Tz31FBqNhoMH9knGuAAAIABJREFUD6LRaNBqtabXQkJCcHd3B+C5555j0qRJAKxatQqDwcCxY8cAeOONNygqKkKtVrfUIbkoAQEBxMXFNbjN6tWr6z2ODZ2Phtpe9TyB8bza2toSEBAAGI9nbGws/fr1w9raulp9fv75Z3766SdT/bdu3QpQK4il6s/Dhg1j4MCBREVFMW3atGYdh5pq1svGxjhR5O/vD0BQUBAlJSUoFArs7e1RqVRkZWU12I+quti+ExsbS3h4uNn7M3c7Nzc3vv/+e8aMGcMjjzxCv379OHHiRK3tGuo3NfvA2rVrUSqVV+11Ii7IycmplXmprqVZTQHC/o70bGvPiL4XMgi3DXVHbWN5hVsiGtNQhiddmZ6kdE2NCdhczh7byuaNa4hLPn8hC1cd2Z1k+VghmqegoIC8vDzy8vLQaDRV/p+NRqMhP7/QFNwPoFQag4Lt1ODgAPZ2Bry9wN5OgZ2dCgcHBXZqsLdXYFMt3sWi4tEQCR4WQogblZWV8eHsbE5wrwVlZZCfbyC/AAoKDGi1egoK8skv0JKfn0ZqihJtvoH8/HLKyqpnN7a3t8XR0REHByecnV1wdHTE0dERJyeniucdJMhYNKhyDFs9SNgYIHzmTCyavAt/+6g5jvXp28k0jm0T5IaDndUVbIm4GOZkME7N1JJ2TltjhZ5/OJt8nhxN4YWyKsa4Pr5++Pr6VRvjhoWF4eTkdLmaJYQQQgghhBBCCCGEENeESxoZVBnAWp/U1FTT/11dXU0BiWPHjmXatGmsWbOG7t27m7Wvffv28dNPP/HVV1+xa9cuEhMT69zO19fXFEx87tw5BgwYQLdu3UyvFxQUmLW/y2HAgAFMnTqV5ORkU+BrXeo7jjVVPR+Xqu2V2WEiIiIA4xLcZWVlDb7npptuYv/+/Tz33HN06dKFvXv34uXlZXrd3OPQFHUFNBsMBrP70cUcP41Gw5EjRxg/frzZ+zNnu59//pnHHnsMgD59+rBixQp69+5tyvpck7n95mq/Tm4kdQUIp6amkJaaQtTJaIqKjMt+WltZ4uflRKi/U62lWcMCXXGyt25kT+JaZqlSmibS61JcUkZqlrZG9uIoNkfuJSbhHHn5xuxOlpYqAvz98PHxxdfPv1aAcUhIiGQ4FTeMkpISNBpNjcBgDRpNLnl5GvLytJSVlZu2V6uN2YIdHQ14exloE6bAwUGJvb0F9vbGwGC1uvb3ESGEEOJyU6nA2VmBszM0fAOKBaWloNUaKCg0Bh1rtTrytOfIyztHagqcPAn5+Xr0emOgsUIB9vZqnJwccXR0wdHRCWdnZ1OgcWWQsbh+1RzDGgOFUzkbe4bTp2PQ5l/428KFlXAcGXCTM0/f1xcfdwd8PR2ICHHHzlZudL1RuTja4OJoQ/uwuv/GXFRSRlqtMW48Jw6cYPPG/Fo30fr4eOHrG1BrlZ7KbMZCCCGEEEIIIYQQQghxI2nxAOLi4mIMBuOyyVu2bDEFNBoMBlP2S4CHH36YFStW8PrrrwNw7Ngx07ZOTk6MGjWKd955h6NHj5rev2TJEh588EFTNlmDwWD6A/Bnn31Gq1atAEhLS0On05n2VXUJ6CNHjjBu3DgAevbsyeTJk1m3bh12dnYsW7aM4cOH1yr7SnnppZdYtmwZTz/9NKtXrzYFeBYWFrJo0SLGjh3b4HGE+s9HfW2veZ6AWsehvLzc9FzNf++8805ee+01Vq9ejYuLCwsXLmTixIl4enqSlpZGWVkZubm5pKSkUFRkDFL74YcfeOqpp9iwYQPDhg3jn3/+YejQoU06DlZWVtXOWX3/Vm1T1XY21o8cHBzIyckBQKfTNdh36jtWledj6NCh3HHHHYwaNYr//Oc/Zu2vof5d6eTJkyxevJjHH38cgLKyMuzs7AgPDyc/P79aeQ31m5rHxty2iotXUlJCSkpKjSDh+rIvqQn1dyPUz4EBN7nw9H0DTEGjwb7OKJUSlCbqZmOtajDAuOrysabJ1+TDrNy7jcTUHMrKjUGS1tZW+Pn6EBraqmL52AsTr61bt8bR0fFyNkuIi1ZcXExOTk6NR1bFvxc+f1UqBQ4OFrg4G3B0MODnq8DFWYGDgyUODgrcXBVYSQI8IYQQ1yErK3BzU+DmBg0FGxcXQ06uAa3WgFZbSk5uFlptFpkZFpw6ZSA3V0flMNnCQomjoz0uLm64uLji4uKCi4sLHh4euLm5SQbjq1ydN7mmpJCWlkJ09GkKCo2ZYS1VFri72uPr4VhlDHsHof4u+Lg7EBrggq21rH4imse2kTFuXTfRpmZlcfZYAps3riE+5bzpxgcbG2t8fbxrjXMrg4vlRlohhBBCCCGEEEIIIcT1psX/Op+Xl8fMmTOxtbVFq9XyzjvvUFhYyKpVq0hOTmb16tU8+OCDvPjii2g0Gl577TVuuukmcnJymDZtmqmc559/npCQENNkUW5uLq+99hpdunShbdu2LFq0iIKCAlauXEmrVq0YMWIEkydPJisrix49erBkyRLWr19Pt27dcHZ25v3338fLywulUsnkyZMB+OSTTxg9ejShoaF06NCBOXPm4OzsXKtsW1vblj5MZrGysuLvv/9mxowZPPDAAwQEBBAcHIyVlRUTJ07Eysqq0eNY1/mor+1WVla1zhPA6tWryc3NZdu2bXh5eXH8+HE2b97MyJEj2bhxIwDLly/n5Zdf5qOPPmLcuHF07NiRzp07s2DBAmxtbenRowd9+/alS5cuDB8+nP79+3Pw4EGGDh1Keno6L7zwAv369aNLly7cfffdTT4OVc9ZSEgI69evN9XrxRdfZNmyZQD8+uuvdOnShd27d1NQUEBsbCwnT56kpKSEyMhIhg8fzssvv1yrH/Xu3Ru1Ws1zzz3HlClT6u07lcrLy1myZAlpaWmsXr2akpISFAoFp0+f5umnn+bRRx8FqLff1txffdsNHjzYtM82bdowa9Ys9u/fj62tLUePHuWXX37Bzc2NHj16VCuvvn5T17XaWFuF+XQ6HVlZWVWWZq14xJ7h7NlY4uITL2TFqbI8a2X2pcoJsUAfJ1QWMpEuLg1zlo+tFWB8bGutidfKpWONk66tqk28hoaGXrHfreLGptFoyM7OJjs7m5ycHLKzz5OTc57s7BxKS40rJlhYKHBxUeHqYsDTw0BEGwUuLpY4OSpwcpLgYCGEEKIxNjbg463Ax7uuIDsFer01eXkG8rSQna0nO6eAnJwC0lITOXHCQHGx8YZWpVKBs7MjLi6uuLq64+pqDDB2dXXF1dUVCwuLy9uwG0xj49ek5BR0OuP3JytLFf7ezvh42OHrblcRINxfxrDiqtDYTbSlunKSM/I4m5xDaqaWtHP51ca5CanZlJcbP5fqupG2Mrg4NDSU4OBgufFBCCGEEEIIIYQQQghxTVEYaqRmzcrKIioqir59+za5sC1btjBhwgRiYmJarIKi+eR8iGvVjh07aNeuHR4edS9PeTWrKwNT5QRrYlKyaYl7G2tLfD2dCPV3ItTPmZAAF9OEVutAVxztra9wS4RoupLSclIy82osHZvL2eQ8ziSeQ6MtMm17IcC4dbXsxTLpKlpCSUkJGRkZZGVlVTzSSU9Pp7CwBDAGCTs6KnFxBg8P8HBX4OJizCTs7KxAkooJIYQQV05lBuOcnIpHroGcHCU5uZiyFyuVCpycHPHw8MLHxwdPT088PDxwd3eX7KBmKi0tJTk5mdTU1OpBwnWMX62tLPHzciLU35lQPye8Pezx9XQwjWGDfJ2xkFVwxHVKV6YnKV1jCi6+MNbVcDY5l8S0HNO1YmVlib+fL6GhrfDx9TMFFlc+goKC5OYHIYQQQgghhBBCCCHE1eREi2Yg1ul0lJWVtWSR4iLI+RCi5RUXF5OamlojSDiWs7FnOH06Bm1+AWBcojXAx4VQf2d83NV0vcOfkICOpgnWED9nmdgW1x1rK4sGMzvVzF6clqkl7dxJNkfu5eTZDAqLSo3l1JHVqfLRqlUryYIuTMrKysjKyiIzM5PMzEwyMtLJzMxAqzV+FtvYKPHyVOLpaaBdhAIPD0vcXBXY2cnnrxBCCHG1aiiDsU5nTXaOgawsAxmZ+WRmajl6NJbc3MrgPRWenu54efnh6emJp6cnXl5eN+TqFyUlJaSkpJjGraZA4YoA4YTEJFNW1Zo3uN55f2t83G82BQnL+FXcyCxVygbHuVDPSj1nEji4p4D4lGzTWNfSUkWAv58xa7FfQK2baQMDA1GpWnzBQCGEEEIIIYQQQgghhKhXi2Ygfuihh9i9ezdfffUVDzzwgEwuXEHnz59nwoQJcj7ENelKZiDW6XQkJSVVCxBOTU0lLTWFs2djiYtPpPJj08XJjlB/V0L9HAn1r55FWJZoFaLp6px0rcjqFJ9yHr2+4tqryF5szOjkV23CNSIiAjs7uyvcEnGp5OTkkJiYSFpaGqmpiaSmZlBerkepBDc3FR7uejw8FPj6KPFwV+DsjHz/EUIIIW4ApaVwPttAZqaerHMGsrKUpKYZyM833lRtb6/G19cPHx9fAgMDCQgIwNLS8grX+uLUdXNrfWPXhlbA8XE3ZhMWQlw6dd9MW8DZZA2n4rLILyw2bVvfaj0+Pj6EhISgVquvYEuEEEIIIYQQQgghhBDXmRMtGkAshBAt4VIHEOfk5NTIIHzWrCxMVSdZw4PdsFdbXZL6CSFqK9WVk5yRVyO4OJezyXmcTT5PjqbQtG19E66yZOy1Ra/Xk5qaSnx8PAkJcSQmJlJaWoalpRIfbyV+fgb8fJV4eSpwdVWglHs2hBBCCFGDVmsgM8tAaqqBlFRITjFQUFCOUqnA29uToKBQgoODCQoKwtra+kpXt5qioiJjxuA6Vr9JTU0lLT3TtG3lza0+7rb4ejhUG7u2CnDB2cHmCrZECNGYqgHGqZla0rO0FTfTajiTeA6Ntsi07YXxbhihoa2M2Yx9fQkNDSU8PBx7e/sr2BIhhBBCCCGEEEIIIcQ1RgKIhRBXn0sZQLxhwwYGDx4MgLWVJcF+roT4ORHi50iwn3Fp1pCKiVYXR5lkFeJaUTnhGpecQ1xKLvEpOcSl5BGXoiE+JZuSUh0A69evZ9CgQVe4tqI+Go2GmJgYTp8+RUJCPKWlZdjbWxAcBEGBCvz9lXh6SLCwEEIIIZpPo4HklHISkwzExyvIzCpDoQAfHy/CwsIJDw/Hx8fniq5iUFxcjK2tLWBcTcHbw5FgXxeCfR0I8nEi0NeJIF9ngnycCPF3wdZadcXqKoS49M7lFBKfmktCqoaEtFwSUzXEpWhISMsjITUXjdZ4Q+2QIYP57bfIK1xbIYQQQgghhBBCCCHENeSEzDAIIW4olZPA0ZHP0zrQVZa2F+I64eJoQ9d2PnRt51PrNYPBQExiNhFDZss1fxXKycnh33//5eTJ42RknMPKSkmrUCV3D4CgQCvc3eWcCSGEEKLlODmBk5MF7dsZfy4sVJKQaOBs3DmOHj3Hzp07sbOzITy8LZ06dSYwMPCyf4es3N/8d+5j1NDOWFvJChpC3MjcXdS4u6jp1t63ztdztcWMeesX9DLeFUIIIYQQQgghhBBCNJEEEAshbiiVE7E+7g4SSHiD0pXpsVRJ+tIbiUKhwNvNuIyrUlLXXhX0ej3Hjh3j0KEDJCYmY29vQbu2cPcAS4IClVhIjIyog05XjqVl453DYDAQdTITby8H3NzU5OeXUl6ux8lJVhYQF2i1JTg4WF/paohmMhgMREdnYW2tIjTU9UpXx2zS765OarWCthEK2kYYvydmZFoQE1PGiah/OXToMM7ODnTu3IXu3btjZ2d3WepUOVb1dLOT4GEhRKOcHWyws7WiQMa7QgghhBBCCCGEEEKIJpIAYiHEDaVyItZgMFzhmojLKTFNw3drDvP77jN0befDnCmDL8t+/9xzlsjtp7CxVtEm2J0nh3VGZWHehF5OXjEff7eb18f1wtG+eqCJwQA//nqETbtjKSvXM7hPG0YN7Yw5MfEXU6drWeUVLzcOXFnl5eUcOHCAPXt2o9VqaRuh4tFHLGkVqkTmukVdiovLmL/gH37/4zTp6VoOH5zU4PZnzpznjbd+Z+TDnbl38PfY2VmRlKRh9crHGHh3m8tU64vz954EItdHo9OVU1amZ8L4WwkP96i2zeYtZ1ix8l+ysgq4/bYgXnj+dmxsVE0ux1xlZXq27zjL+g3RWFpaMOuje2u9/v0PB2nb1oNePYMbLOuXdVEcO5bO21P6N6suNZnTztjY84wbv8b0s8FgoF07L+bOHlZnmTk5Rfy1K560tDxGP9kVa2vzh831tS8m5hxzvt6LtbUF7m52jH6yKx4edQci1jze7793N1u3xRK5PhoPdzumvn2n2fWpqiX6RH1l6HTlLVLHquo7D6dOZfH+h9vof0crnnthHQPvboNeb0CjKa6znLWrn8DZufYNBPWVv33HWRb/fJjMzAJu6e7Pi5N7YW9vVW896zvn5vS77TvO8tdf8WRm5dO+nRdPje1m1o0SdWnoOjW3TU25lq9nXp4KvDwt6NUTMrMsOPpvIQcO7GL37l3cfHMXevXqhaOj4yWtQ+V3Vr1exq3XkqT0PNbvPM26rdHMfmswrQJcrnSVWpxeb+CbNYc4GZuFtZWKO24JYWDPVma//1T8eZZtPM47z/ZtsbIvtk7XCwMGGe8KIYQQQgghhBBCCCGaTEI1RDV79+5l+vTpzJgxg/fee4/t27dftn1nZ2fzxBNPUFxc98TvlS5PXB9MAcRXuB7i8grwduKxIZ3YdyyFyxU7/umiPUz+cCMzJt3JRy/dxfGYDJ54fQ3ljQQB5BeWMmfpfloP+pKPvt2Frkxf7XWDAUa9sYZjpzPoeXMg+YWljJnyCx8s/OuS1el6UHnTgEyoXjlpaWksWDCPLVs2ERFeyKTnrBjxgAWtwyR4WNTPxkbFU2O7E3s2m+KSska3HztuFcPvb8+IBzuwIXIMrULdKCgovQw1bRkLFu5jxvvbePut/nw8cxBPPN6F23vP49jxdNM2H360nRdfiiQrq4DDR1J57fWN9Oozj9LS8iaV0xSVwaJffvU3SUka0/N6vYHVa47T7ZbZjJ+whoyM/AbLycoq4Oln1hB1MrNZ9ajJ3HZ+/uVuDAYDKpUSlUqJtbWKp8Z2q1XeuXMFvPraBu4b9iMqlbLJwcP1tW/33wncevtcxo7pxswP7yUszI1+dy4gK6ugznJqHm+dTo9WW8rsOXtIS9eaXZ+qWqJPNFRGS9SxUmPn4cGHfmb4/e0Z/WRXFi8aSV5eMbt2x+PsbIO/v5PpUVioIyuroFbwcEPlf/b5LhYs3EeXm/3w9XVk2rtbGP7gT/XWtaE+3Vi/mzN3DzNn7eD1//bli8/u4+i/aQwZ+iOFhbpmHbf6rlNz2tTUa/lG4umh4K47Vbz4goq7ByiIiTnE3LmzOXTo0CW9KVVufL02lZSWsfWfOP6ouNHzemMwwIMvLmfXwUT+938DmTaxH9PmbmP20n2NvjchVcN/P/2TDsPmsHpTVIuVfTF1ut7o9QaUSslYLoQQQgghhBBCCCGEaJprOgNxcnIy/v7+V7oa140PPviAP//8kzVr1uDi4kJ+fj4jR44kMjKSTz755JLv39rampCQEFSq5nfLqn2iJcoT1x/J5HRjUiigdZDrZVv+NzYph9c/3czy/z2Eg50xu9sHLw7As/csvl1ziPEjutb73uKSMp55uCsnzmQyb8WBWq//uv0UzzzcjV5dAgGY+Eh3uo9cwNINx3hrfO9LUqfrQeU1LwHEV0Z8fDyLF/+En6+CCU+rcHWV8yDMZ29vRWiIKwmJOQ1uFxt7nr92xfO/T4xZ5ju09+LZCbeyfkP05ajmRTMYDLw55Q/mzR2Ora0lAF1u9qXn7UF89/0BPvvfEKKiMjkbl82xo5NRKBTodOWMHruKJUuP8P0PB3hm/K1mldNUtraW3DOwTa2MuUVFOu6+qzVlZXoeeXRpo+W8OeUP1GrLJu+/Lua2MyeniNjYbLZvHd9geUeOpnHv4O95+KGObNvydLOywNbVPr3ewJNjVvLE4zfTqaM3AMPvb89Xs/9m8ku/sWTxI7XKqXm81WpLRjzYoUnBzFW1RJ8wp4yLqWOlxs7DiagMTkRl4OtrzP46/P72/LMviZXLH8PFxbbatmPHrTJtZ075aWlaDAaqnRO12pLPPt9FVlZBnRmj6+vTjfW7pCQNr762gTWrHjfV4X8fD8bN812+mv03/32tdmbOxtR1nZrbpqZeyzcilQq6d7Pg5ptg199lrF8fSXp6OoMGDbok+1NW3F0l8cPXlrBAV/rfGsKqOgJkrweLfj3KbztOk779VZRKBTbWKma+fBd3jPmBu25rRXiwW73vtbK0YObLd/Hb9tMtWvbF1Ol6YzDIeFcIIYQQQgghhBBCCNF012y+t6SkJMaPb3gSWJhv7969TJ06lS+++AIXF+MSi/b29sybN485c+YQGRl5yetgZ2fHu+++2+yA35p94mLLE9cnyeR0Y7tck2nfrDqI3mCgX/dg03O21ipu6xzAvOW1g4KrcndRo7JQ4uxQe6ltgJvCvU3Bw2AMjr4pwptgX+dLVqfrQeUlLxOql19eXh7Lli2hQ3slo0dZSPCwaBZzLt0zsecBLjqA8UrJyyvh/PlCoqIyqj2fkZFv+gzbsPEUsz661/RZZmlpwccz7wXgwMEUs8tprpqfoXZ2Vjg4WNfK8FqXlauOcVuPQDw97C+uEhXMbee8+f9QWlrGT4sP15vxNyEhl379F9C5kw+ffzqkWcHD9bVv058xxMae587+YdWev7N/GKvXHCczs/5MrzWPd3N/hbVEnzC3jIv5NWvOeYiLq30jwRv/7VcreLi8XM+vv53k/mHtzC6/rEzPi5N7Vnvu5pt8cXKyqVU+NNynG+t3Py85THFxGZ06+pieU6st6d0rhM++2HVRNztW7Tfmtqkp1/KNTqWCfn1UjHhAxYED+zly5Mgl2Y+MW69d1/N4Y96K/XQO98LdRW167rbOAdhYqZhfx82vVflUfFbWN85tbtkXU6frjcFguK77nxBCCCGEEEIIIYQQ4tJo0dn1jRs3smPHDgYMGMCCBQsIDAxk+vTp2NrasmXLFrZs2cLAgQOZP38+8+fP559//iE1NZXk5GRCQ0N59NFHee+999i6dSuff/45nTt3JjIykk2bNjFjxgyef/55Zs2ahaenJ6+88grHjx/niy++4PHHH+eDDz7g2LFj/O9//6Njx45s3bqVdevW8fHHH7Nly5Y662VnZ8y2s27dOg4ePEhGRgZvv/32VZPV+HIdT29vb3788Ud8fHzo1KlTtToEBATQvn17Fi5cyKBBg+rc77Fjx9i/fz9paWlEREQQFBREnz59WLp0KWq1mqNHj/Lyyy/j7OzML7/8ws6dOxk1ahQzZ84kNDSUDz74AICdO3eydOlS3nnnHby9vfn2229JTEzE19eXqKgozp49y8qVK7GwsKhVtpOTU7U+MXr0aI4ePVqtPIBNmzbVOkYGg6HBeonry4WJ2CtckcsgV1vM0g3HcXdRE+zrzFc//8OIu9sx9I5wDAb4ef2/xCZmk5imoVWgK8/95xac7K1N7zdnG4CVm6I4eCKVrOwCbm7nw/gRXbGqCMj4fdcZtu+Px9vdnhJdOYP7tKZDmCcAny7aQ35hKVMn9L2s9a2Umqnl85/2cvhkGkP6hXNfvzaE+rs0eEwLinRMm7ONg1FpuDnbMm3iHbQP8yAvv4Sps7eRkJrLRy/fxeHodAK9nXBxrD452jnci//9uIeUTC1+ng5mnsnqgnydqv2sK9Nz4EQqn79+T4Pvu5R1uhZUBl/IhOrlFxUVhYWFnvsGqy4qsOx6ptOVs37DKaKjM3lyVFc++Ggb3l4OvPXmHQDs/CuOrdtiycwswNHRmtGjuhIR4VGtDHO22X8gmdVrjpObW4ybm5rJL9yOp6cxmOPUqSy++W4//n5OFBSU0rWrHwPvbgMYAyCXLT/KV18Mxc7Oilkf72Tj76dwcbFl+rQBONhb8+aUP0hL09KqlSuvv9aPsDA3/t6TwLvvbeWhER15amy3RuvZ2HGoVFJSxoKF+1iz9gS33RbIsKHtOHo0jeUr/gXgnWl/4u5u/J6fmJhb5zFvqB4X0z5z1HcenJxs6NrFj1mf7OTOO8PoeXsQx09kcCb2PIt+eAiACc/cir29VbXyfH0dsbKyMAUDmlMOGDOkLvxmPzpdOYlJuQwZHMF9Q9pWK/uvXfFErj8JwO23BZndxpqysgpY92sUixeN5Ot5/zTpvb+siyJy/Um02lKGDI7gicdvNruder2B2XP3kJqax5atsVhYKHnl5V68O+2uaoHm48avRqMpZt7c+5v1e6Kh9h0+nApA504+1Z7v3NmH0tJy/tx8hscevQkw/3gfO57Oj4sOkZiYy7Ch7Uzvr09L9Alzy2huHaHx8/DmlD/Yty8JgPc/2IaXlz2DB0VUCxKutPOveGxsVHTt4md2+QEBTrWe27Y9ltdf64tKVf3e64bOuTn9LvpUFkCtgN3gYGf+3BxDcrKGwEDni75Om9Im0TRtI5Tc1NmCw4cPcNNNjffvpjKNW1u85Kvb2eQcFq07ykMD23P8TCa/bDnJOxP7ERHiTkGRjnkrDpCbV0T6uXx6dA5gzP03oVReuJ7N2aaktJy5y/aTmplHtqaI++9sy339jN95yvUG5i0/wLncQmysVej1Bl56ogc21irKyvU8N2M99/Zuzf39I6rtc+6y/ZzLKcDW2hKrOla92fpPHNv2xVFSWo6FUsF/x/WqFkjbWL3/PZ3BkvXHGH3/TUTFZrF280nUtpY8O7I7N0V4N1r3xsSl5DLlyy2kZeXTPsyDaRPvwM3ZltMJ55n61TYc7a355NW7OXoqg0fu6VDtvZYqJe1aeRC54zSfvjbQnNNci15vaFZyYXhxAAAgAElEQVTZzX3f9cqAjHeFEEIIIYQQQgghhBBN16IzRqdPn+brr79Gq9Xy7rvvsm3bNl544QV0Oh3R0dHMnTuX0tJS+vXrR2RkJAsXLmT06NG8/vrrzJ8/n48//pgXXniBQ4cOUVZWBoBer2fkyJFYWlqiUCgwGAwolUpGjhyJl5cXkydPxs3NjUmTJrF9+3YcHY1LlGq1WgYPHoxSqay3XmAMHs7NzeXdd9+lbdu2DBnS9CV9L5XLdTzBGNwTHBxcZz3CwsKIjo6uc79paWmMHz+el156iUGDBvHss88CsHDhQrZt28aIESOwsLDgww8/RKFQoFQq+fbbbzl37hyffvopCxcu5NixYwC4u7szb948SkpKAPD29mb69Ok88cQT/PbbbwwaNAgbG5s6y67ZJ5ycnGqVt27dujqPUWP1EteXC0vBXv9TsU+/8yvPzVjP+h2n+eGXw+w5msTy34+j1xsY+vwS4lNyeWdiP+a9cx8nY7PoeP9cTicYszeasw3A4/9dQ15+CR+9NID3XujPK7P+YMJ0Y8byv48k8daXW/jopQG8+EQPzucUciruwnu/+Gkvn/24h3K9gbPJOZelvlW5ONkSFZvF1In9mPz4rY0GDwPY2Vryf2N7sv94CudyCmkfZgw2c7S3pkNrT/r3CCU82I3ouHM4O9bOrORUMUmcmKYx5xQ2qqBIx9gpv9C7ayC9uzYc2HW56nS1qrziKz8DhLiavDN9Mw+MWMz6Daf4cOZ2oqIymfP1HgA+mrmdjz/ZyRv/7cfc2cMICnSmS/evWLP2hOn95mwzb/4/LFi4j/em38XXc4bx669R9Owzj7IyPRpNMQMGfsurL/dh8qSedO7sQ+T6aNN7F/98mO9/OMjJ6EwAnp1wK4cOp1BcXEbHDt4EB7vw7IQebN9xlm5d/QkLMy4VffttQWRl5TPy4U6N1rOwUNfgcajK2lrFmdjzPDSiIx/MGMittwQw/ulbGPVEFwCmvNWfhfMfYOH8B5j0wu213t/Y8Wpu+8zR0HkAWLL4EdRqS+686xv++8ZG3nzrD/7a/gzh4cbfNzWDhwGSkzWUlpZXCypsrJyyMj29+s6jvFzPW2/ewUuTezFs+E/8uTnGVMa33x1gxvtbmTZ1ADM/vJe4uBwyMurPltuQN976nQ9mND2A5/U3f6e4WMfC+Q8w8dkejB67krfe3mR2O5VKBfv3PseGyNG89n99cHAwBsCPePhnUxknT2ayecsZunX1Z9v2szwwYjGPPbGc774/YPb3xYbaV1+gaOXPlUHu5h7vU6eyePOtP7C3tyIpScPjo5YzddqfjdaxJfpEY2VcTB3NOQ8fzBjIsxN6APDf1/qycP4DdQYPA6xZe5xhQ9uZAqmaep4NBgOff7Gb6OgsJjzTo9brDZ1zc/pdZYbhzMzq2YldXY0ZNM/GZbf4ddpYm8TV6WKyUV9rdh5M4MEXl/PuvB38uO4IO/bH8/uuM+w8mEByRh63PLKAru18eO+F/nzw4gA+/2kPd4z5gZLScgCzttHklzBg3I/0vDmAj1+9m3t7t2bYC0v5cd1RAD7+fjcxCed559m+vDzqNiK3n6KgSAcYx0sLVx3i29WHTHXO1hRx51M/0j7Mg5kv38XE/3Tnp1+PVmvXkg3HePiVlbw+rjezXrmL+NRchj6/1PR6Y/XeeTCBMVN+YdZ3u/lw4V9s2xdHmxB31m6Jpveo7zh6KqPRujcmxM+Zx4Z0Yvv+eNyd1bg5G29KahPkhqVKyfOP3sJ5TRHFJWV1jimdHWxIStc0+0bthDRNs8o25303EoNBAoiFEEIIIYQQQgghhBBN16JRNB06dMDT05Phw4cTERHB1KlT+fXXX7G2tqZTp064uLgwcOBAJkyYwHfffcfAgcYJN5VKxTPPPMOcOXNwdnZm3LhxzJ8/H4CDBw/Ss2dPbG1tTVly6xIUFMSIESP48ssvAfjrr78YMGAAKpWq3noBfPbZZ6SkpPDFF1+g0WgICQkhP795E+Mt7XIeTzc3NzSauv+wnpWVhaura537TUxM5Px5Y3Ber169sLKyon379jzxxBN8/PHHxMfHo9PpSEtLAyA4OBhra2vuuusufH196dixI/v37wegXbvqk7+DBw8G4M033yQoKIgJEyYA1Ft2TTXL+/LLL+s8Ro3VS1xfbqRMTjNfvguAlIw85kwZTNSvz/Pde/czb8UB9h9P5fVxvQBjdp4F04eiLShh4nvrAcza5vtfjnBeU8hTDxgzAfp6OvD4kE4kZ+QBxuzDNlYq00TfK6Nvp1RXbqrfzh/Hsn/5eCyUCkL9XS55favSFpTy7LuRfPbfe+jdJbBJx9XT1Y6xw29m9+Ek0s9d+H3x59+xPDm0M6W6cpLSNTja1c58XBms2xITmZv3nuXeCYtZtvE4c5bu58EXl9e77eWq09VMMhBfOe3bt0evt+DXyPIbIvt7c3wwYyD+/o4cO57OBzMGsuXPcZyKeoVjx9OZMvVP3p8x0JS18tkJPejdK5hnnl1LdnahWducPJnJe+9v5fNPh2BpaYFCoeDll3qj1ZaQn1/KgYMpnD9faHr/4EERtAp1M9Vv9pfD2Lf3Obp1Na7S4eBgzSMjO7N9x1m0WuONWr17BdOqlRvrN1wIPD57NpvbbgvC3t6q0XoWF+vqPQ41vfX2Ju7sH8bEZ5seAGfO8WpO+8zR2HkAaNPGnZ3bnsHCQsGsj3ei1xvw96+dQbSq5Sv+5a4BrendK9j0XGPlJCdriIrKJDjYePNMRIQHXl72/LHJGJiYnq5l0ou/8vGsQdjaWgIw6YXbsbOzNKutVa1ec5xuXf0JDHRu0vsOHkrh778TeGRkZxQKBX37hNDz9iD+9+lfpvNizvHy9XXk3nvCmfnhvcSe/j/69gkhcn20KWB8w8ZTANjZWeLkZMP0aQMIDnbhqadX8+SYlRfdvjNnzqNQKHBwqP472Mmp4vdvsqZJx1upVPDbuieZNnUAO7aNJzjYhZmzdpCc3PDv8YvtE+aUcTF1vNjzUJXBYOCXdVHVgoubUv6ZM+cZ+Z+lTJm6iT17E7m525dkZxeaXjenTzfW79q1Na7IsX3H2Wrvs6xYxUOhULToddpYm0TTRZ3Uc+RoOV26dL9k+1AqlTfEja+V+nQN4oXHbgWMN2jOfXswSVteZvyIrrwy6w8iQtzp1z0YAA8XNQumDeWvQ4nM+n43gFnbTP5wI4P7tuGWjsbs5EPvCCcixN00FtqwMwa1jfEaslQpeXHUbRSXGm/ID/V34eCKZ1j04QOmOr+/YCd+ng4M6t0aqBgrPtClWrs2/30Wd2c1dhXXab9bQth1KBFtQalZ9e7TNYiJj9wCwLD+EXz15iDefqYP6776DwVFOmbM39Fo3c0xqHdrOrb2ZNWfUabnSnXlaAtL6dTGizOJ2cZzU8+YsqS0nKycglqvmaO5ZZvzvhuJXm+QG2aFEEIIIYQQQgghhBBNdkn/qhgcHIyFxYWl+6r+EfPcuXMUFRWZfg4KCkKr1QLw/PPPs3z5ck6cOEFQkPlL5b766qt88803pKam4uLiUu8fTavWKy4ujocffpjJkyfzzjvvsHbtWuzt7ZvUzsvlUh7P2267jZiYGFOm4qqOHDnCLbfcUud+e/bsSevWrfn+++/ZsWMHw4YNw9vbG61Wy2effYa9vT2enp71tsnCwqLBCbE9e/bw3Xff8e2335qCvswtu6aGjlFT6yWuXaYA4hvg/NrZGgOa+lZMRFqqlFhbWbBs43HCg91QWVy4lm2tVdx/ZwRb/4kjW1Nk1jbfrj5En27B1fb57XvD2LTwCQDahnqw52gyI19dScb5Arzc7Hj4nvambYN8nQgLdL1s9a2UrSli0LOLmfpsX1oHXdh/U0wY2Z2ycj0//fYvAJnZBTjaW+Nob42VpQX2aivKyvW13qcrM05gujmrm7Xfqgb0CGXnj2M4vHoCbYLc+HXbKTb9HVvntperTlezykteAogvPwcHB0aO/A8novT8+FM5OTnX/+dvc9jZWdGtq58pGNXBwZoVK49hMBhMgWaV/vNIZ86dK2D7jjiztlm85Agd2nthZ3ch0HXM6K6kp7yFs7MNrcPcKCvT06//Ag4dTgXghedvM23r6GhN927+1cofM7orRUU6Vq85DkBJSRmFhaX8sSmGc+eMAR7f/3iQsWO6AZhVz/qOQyW93sCEib8QEe7B0Pva0hzm1qOp7TNHY+cBoKhIx9vvbGLmh/cy9L62rN8QTb/+C8jLK6mzTI2mmB8XHeKbBQ9Ue76xcoKDXYiP/S+PjDRmT966LZbCwlI0mmIAvvv+AEqlgk4dvU1lKpUK7O1rB+g05Ny5AlauOsYz429pfOMaVqz8l6xzBTz9zBrTw2CAgAAnYs6cN6udNbm6qlmx7FHs7a34a5fxXCdUZAD+3yeDeWB4ezp28Ob99+5m5MOd+GnxYdM10dz2ubmpMRgMlNf4HazT6U2vN+V4t27tbvq/lZUFk56/ndLScnb/nVBvHeDi+4Q5ZVxMHS/mPNS0/0AyWm0J/fqGNqv8sDA3Vix7lKT41xk8KIL4+Bw++fQvoHl9uq5+N+6p7jg4WPPBR9vIzDTekJaamsfaigBjP1/HFr1OG2qTaJqyMti0uYxVa3T06HEbnTt3vmT7Mq4adcmKvypVjgkrg2nt1VaUlJazZvNJOoRV/919W2d/gnydWPXHCbO2KS4p4+fIf+lbZQxrZWlB1K/PMeWZPgC0C/Vg1ve7eXfeDkpKyxlxVzt8PRxM29/c1huXimy35XoD85Yf4Pabq9+Q6ljjGvzqrUH89dNYAM7lFLL3aBIAeQUlZtUbwKbipic/T8dq29wU4c2eo8lm1d0cE0Z258SZLPYfN34mRu44zf13RgCYshLXN6a0UCpwdqidCdgczS3bnPfdSAwYZLwrhBBCCCGEEEIIIYRoshYPIK4alLd3717uvvvuOrfr06cPW7duNf2ckpLCgAEDAAgJCaF///48+eSTjBw50rRNcnKy6f+WlpbVgkEBunTpQvfu3RkxYgQjRowwq15t2rTh448/Nr22a9euavu50i7X8Xz++efx9vbmq6++qlZuZGQkSqWSKVOm1LlfOzs7nnrqKVq1aoWPjw+LFy8GYPr06djb2+Pu7k5paWm9wZr1LRcLUFJSwtixY3n//fcJDQ1Fr9dz+vTpesuuq09ULa+hY2ROvcT14UIA8RWuyGVUcwIpOu5cnZmIQgOMwbSnE843us2p+PMci8nAtmIisy6P3NuBZ0d2Y9WmKCKGfMUP646YNYF3Kep7OuG86bmYxPPsOZpcbenZpmob6k7vLoF8v/YwAD9HHuOJoReCB8ICXdHkF9d6nybP+Fx4sFut15qrQ5gnmxY+gcpCaZrorcvlrNPVSDIQX1nBwcE8/fR4SkpdmTtfx4bfy8jNvYE+iM1U6/MvOhO93kBpjexprVoZr9fTp7PM2ubo0TRTdsq6BAY6s3D+A5yMzuSWHnN46ZXIRn9P9rg1kIgID35abPwcXLrsKM89exsGg4HlK/5Frzdw+HAqXW72Nbst9R2HSvn5pfz6WxQLv9lXKxjTXObWo6ntM0dj5wHg8VHL8fCw5/nnbmPd2lG8M/VODh9JZfJLv9W5/Wuvb2T+vOG1MqGaU05QkDOLfjrMuPGrycsrqRbYfCIqE+eKoJyL8d83fueDGQMb/Oxd+M1+7rhzYbVHQUEpJ05k0qtnMAvnP2B6/LXjGWKiXzUd96YeLwBPT3t63h5MWprxRkJra+MNms5O1QOTHhhuvOnp4MGUeutoTvvCwox9q2ogLkBurnHcEt7G/aKOd4cOXgCkpWnrrSdcfJ8wt4zm1tGc82CuNWtPMHhQhCmbL5h3nmtycbHl119GERHhwf79xrGzOee8LjX7nbu7HVs3j8PJ0YbWEZ9w9z3fMXvuHtRqS/z9nWjVyvgdtqWv07raJMyj08G+/eXM/rqMw0csuO++ofX+faalKBTGgMAbUdVr7ExiNuV6Q53jvVYBrsQkZpu1zfEzmZTrDQ2OYT98aQC3dvRj2pztdH7ga/YdS6G+y/1sUg5FJWWNBs3a2VpSUFTKpA82MmfZfoJ8LvzONqfeDWkb6s753MIm170+jw3uiJ2tpWmcu3bzSR66u72pPkCdY8rcvGKC/ZyxqvK52xTNLduc991IDAYZ7wohhBBCCCGEEEIIIZquxQOIk5OTmTNnDlu3bmXr1q3MnDkTgJiYGDIyMsjKMk7Kv/vuu2g0GhYsWMDhw4f5888/+eyzz0zlTJo0idtvvx07OzsAsrOzCQgI4MiRIwB07dqV+Ph4pk+fTkLChUxGb7zxBgDh4eFm1ev9999n9erVdOrUibvuuovU1FT8/atnWLuSLtfxtLW1Zffu3ezdu5f333+fLVu28OmnnzJ//nz++usvPDw86txvdHQ006ZNY8mSJSxatIgFCxaQm5uLv78/s2fP5tVXXyU9PZ1du3bx+++/ExsbS0FBAXl5eZSUlJCQkEBiYiJgDOgFiI+PB4xByEqlknvuuYfo6Gg++eQTtFptvWXX7BM1y2voGDVUL3F9uZEyENfH3VlNUnperecd1MaAhABvp0a38fdyRFem51TcuXr3o1DAnCmDWffVf3BxtGXslHV8/P3fV6S+Ad4Xlte+taM/r43pyczvdrPln7gm16fS0w91JTruHHuOJvP3kUR6d7mQ4b1NkBsZ52svsZp+Ph+1jWW1zFEtIdDHiVYBLg1OXl/uOl1tJAPxlefl5cXTTz/D3XffS8wZNV/N1bFydRmnY/TomxcLet1zdzd+b0tKyq32fGVW3oAAZ7O20enKiT6VRUOeHNWFQwdeoOftQXz+xW6GDV/UaP1Gj+rK9h1nSUrSsGTpUV55uTf3DGzD4p+PsOnPGO6+q3WT2tIYR0drvvtmBH/tiufdGVsb3b4uTalHU9pnjsbOQ1xcDmvWnuCegW1Mz02bOoB7BrZh+Yp/a313+ezzXdw3pC239QhscjmlpeUMvu8H9h9IZuH8B7h/WDssqmTx12pLyMjIv6jvSyUlZSz66RBdb/kKF/fppsfhI6msXnMcF/fpvDnlD9q18+T+Ye2qPSwtLSgu1nH8eEaLHa+qXFxsTYG9EeHGrI8ZFVlgK/n5Gb876PX6Ouuo1xvMal+bimy86RnVy09PNwaShod7XNTxruzT4eHu9R7LlugTF3O8zamjOefBXGt/OcGwodWzlDe3fKVSQd8+oTg725jdp+tTtd8BdOvqz4F9z3Mu4202/T6Wp5+6hQMHU3js0ZtQKBSX7Dqt2ibRuIxMA5s2l/H5Vzo2b4Xw8K5MnPg8N9988yXf942Ygbgu7i7GlVLqG+/5ezmatY2uzHidRzcwhnVxtGHnorHMfPkuUrO09B/7AzsO1J09XVtozL6ellX3ylaVNvwVwx1jfuC5R2/hnWf7EuBzYWxqTr0bYm2pMq3q05S618fR3ppH7u3A0g3HSEzT4GBnjV3FzU9O9tZ4udmRfi6/1vvSz+cTHuxe63lzNbfsS1mna5EEEAshhBBCCCGEEEIIIZqj/rQbzRQQEMCoUaNISEhg6dKlKJVKCgsLad26NRs3biQ6OhoPDw9cXFzYsmULsbGxlJWVMX/+fJTKC5Nhd9xxB127djX97OrqyunTpwkLCwPAz8+PmJgYVCqVKbgVwNvbmzFjxphVL4BbbrmF+Ph4oqOjCQkJwc3t6srAeLmOJ4Cvry/Lly8nLy+PmJgYxowZw8svv2x6va79Vh5vd3d3cnNzOXPmDG+++SZz587l4YcfxtfXFzs7O0aPHk379u3ZtWsXGzdu5MyZMzg7O/PNN98AoNVqiYuLY/v27QDodDqGDh3KwIEDSU01ZtS89dZbad++PV27dq2zbKVSaeoTbm5u/P3339XKa+gYubu711mvgoICU9C1uD5UTqbo9TfuTOwtHf1Y9OtRjsVk0rH1haVSk9PzCPFzxs/TodFtArwdaRvqztKNx5kx6U7T0qEAKzdFMah3a9Zti+bRQR25r18b+t8awpCJPzN7yT/835jbL3t9/TyrL9067bl+bNwVw6g31nB41QQ8XZt+nY+4qx2TP9zI/32yiUH/z959x7dVWP//f13tYdmW94id5SwncQJJSAghYaYt0BIopS2bAg0U+JV+u6BAGS2ftrRllA2lgQIl7FVKS1iB7AQISezs4XgvyUvW1v39cS3F8k5w4sQ+z8dDD+teXd177tWVrWu977nzx8V1d/rOqRN56b/FbN/XENfZd+WXZZzdadqB4mryMnd6Xo+PD0ZNR5OIdCA+Kuh0OmbNmsWMGTPYsmULX3yxgaUvl2O16iicBBPG6xg1UodhwD+hHptOmJXH40+s5f1lO5kw4cDn3bKyRvR6HXNm5xEIhPuc5vMvKnh/2U6WfbCTM884EHotLqnB6w3i84UYme9kcmEmyz/+Mb/89X/4y18/Y88eF2PGpPRY32WXHs+tt7/Pj699nXknjcRiMXD5ZTP43vdf4Pf3fMRbb1x2UOvSH9/8xniuu3YOv7/nI049ZQynLBjTr+cdSh0Hs379MXlyZq+vQ1L7JdEtlvg3wLe+OYHPVuxrD4Vo4/753Bekpto45+yJcdPu3esmFAr3OZ8lz2zgP+9tZ9f2X3R7ctX48Wm88++tLP90b5dt3N+wosmk54P3r+4y/ic3vElWpoPf3n46I3ITGTs2lZPmjuwy3fjx6Tz+xFpWr9kfF5Kuqmrho493c8KsEX2uZ0+/8jdtruLaxbMBOGXBaAwGHRs2VDD3xAN1NLd36C8qyubEOfldalRVtV/rZzYbuP5GhZUr9zFlcmZsupWrSsnOdjB9WvbX2t6lpY0kJpqZfUIeKSm2brflQOwT/ZlHT9u7PzX253Xoj+KSGvbtc/Otb8afUPx15l9f72HeSaP6vU/3pON+11G0U/Kvbv4P2dkObvn1KcDhfZ9G10l0paoq1TWwc2eE4hKV2rowTmciJ5xwPDNnzjyi/x9QFGVYH7dGZabayc9O4qO1ewmFIxg6BOnLqpuZd1x+v6aZODoNnU7hkRfX8f1vTon7nfXMWxu54tzp/Os/m7norKn88sq5nHf6ROZfvoR/vP4FC2Z2/b1VkJeCosCHa/Zw2+L5XR6Pvg+vueNtTp89JnYM1vH92Z+6e7O7zMUps0YBHFTtvbnmghk8/fqXXPSr17j352fGPXbuqRN5+5PtceNqXR52lrr46SVzDmo5nR3qvA9nTccaCRALIYQQQgghhBBCCCEOxYB2IFZVFVVVcTgcTJkyJRbOtNlsLFiwgAULFnDyySfHplcUhYKCAiZOnBgXdo1KTIz/8m3cuHFx/wjNzs6OhYe9Xi+qqvL8889z0UUX9auuqISEBGbOnHnUhYeP9PbsON2MGTNwOp1x47tb7mWXXcYVV1zBDTfcwG233ca9997L7Nnal6ITJkzA4XCg0+mYOnUqOp2O+fPns2DBAo4//njGjBkTm5/D4WDevHmxYaPRyJw5c2LD0ZvFYulx3nBgn9DpdF3m19s26qkuCQ8PPbEv3we5jiMh+mVzqNNl3u/4ySlYzAYeW7o+Ni4UjvDGh1v58y8W9nuan112Is2tfk65cgn/XbGLLbtq+ePTKyitbMRuNbJlRy3rt2gnANitRn5w1lSciQeCxnc+8gk///OBLm2Hu97oMlRVxWTU89wfz8fV5OXSm1+PdaM6GBazgcu+M401m8q57DvT4h67YGEhk8ak8fw7X8XGfV5Sxe4yF7dco/3+DEdULv71azz56ufdzj/YHtSJdAqArN9SyWvLtsaFCV54dzMXnT2V4yZl9Tjv/tQ0lKkSID6q6HQ6ioqKuOKKH/HTn/6UOXMWUFGZxgsvBrn3r0FefCnM+g1h6urVYdMxPhJRCXX6XXTpJccxZXImf396PYFAODb+lVc385Pr5jB2bGq/prn+ujmYTHou/MG/eObZz9m2rY5/PvcFf/nrZ8ycMQKPJ8DSlw78brj6R7PQ63WxrrxvvFnM+Rc8T1NT/OWhs7MdfGPhOD5ZvofrrtUCGt8+ZyJOp5WcnERSU20HtS49bYfo+Oiu8Jd7z2Ls2FQuuewlKioOdOyLzrfj86Pjos/tbx0Hu3790dfrUFCQysSJ6bz1dknc83bvaeCsb01Ap9N+f739zlbWritj9gl5bN9ex/btdWwpruGv933Grt31/ZpPZZXWLfHTz/ahqirLP91LXZ2HxkYvPl8otg/88lfvxV734pIaGhra2LWrgba2YNy8g0Ftm3f826QoCgvmj+5yS3RYyMhIYMH80XHbu7MfX3MCAOdf8DxvvV1CZWUzr762heuuf5Pzz5vcr/X87/928Otb3qOq6kB3yH+9uJHZJ+SxYP5oAMaOTeXqq2bx5FPr8PkOXEL+w492c9qpY7t0eD7Y9RsxIokrr5jB8y9sjP0+a2nx89bbJdz2m9MwGvUHtb07vz+WPLOB3921kJSUnvfHgdgn+rt/HmqN/X0doo8Fg+Fu5/P668WcflpB7PfXwcy/srKZp/+xgZYW/4H1291AbW0r1/9kTr9f8/7sd539+S+f8v6ynby89CKSkrRj3oF4n/a1Tp11914eDlpbVYpLIrzzbpD7/xbmyb8H2PCFifyRx/GjH/2IG2+8aVD+P6DT6YbN56Cono4J//izM6h1eXht2dbYuF37XewobeCuG07t1zTORAtXLprOyi/LuPDnL7N2UwWrvypn8V3vMGaE9v+vl/9bjMer/c4tyE/hlFmjYsew/kCYC3/+Cs+9swnQuvVedNZUlm8o5YV3NwPa540Vn2tdfzftqCEYilDb4GFDcSVtviDuZh8frtkDQGOzD58/1K91i6pvbIvd37a3no3bq7nl6pP7rP1gnDA1l2kTMql3t3U5QfUXV86lscXHB+3rAPD8v810Z/AAACAASURBVDcxOjeZy8+dDsDeika+c8OLrNpY1u38g6Fwl2PcrzPv/jxvuIioarf/DxZCCCGEEEIIIYQQQoje6O+88847O45oa2ujrq6OUaNGHfTM7r33XpYvX875559PRkZG308YQN/85jf56U9/yiWXXMIJJ5wQG+/xeHjggQcGra6vYzC3Z3+tW7eOu+++my1btvDOO+/w+eefc8EFF3QJKwtxMEpLS0lPTz8sX9BWVFTw9NNP87PL5pCYYO77CcewF9/bzL+X70CNqHzr5HEk2EyAdmnTM+aM5b5/rmJXqYuWtgB//PsKrv3+LC78xuR+TzN1XCaKovD6sq08/+9NPPXqF8ycnMNtixe0d2Lay5+XrGRsXgq7y9z84/UvuPfnC8lvv2Tr1Xe8zbrNFfz8irmEQhFe/l/xYas3FI7w4dq9PPvWRnQ6hW+fMoExI5xU1DTz8v9K+Gp7NcdNyo5dQra/8rOTKK1sYvGFM+PG63UK3zl1Ivf/czXVDR72VTTyu8eXc9+vvxnrEFXvbuPq376Npy0QF0CORFTKqpv509MrqapvpSA/hcljMzAYtC8CH31xHf/fH97jzY+24W7xsWpjGQ67iV9cMTcWju1u3v2paShravXzwHNruOaaaxgxYsRglyM6sFgsjBw5khkzZrafwJSCyx3hy42NrFkbZMMXUFEZweNRUXRgtytDrmP2+g3lPPi3VbjdXr59ziRSU20oioJOp3Deosl88OEuXn5lMwaDjmf/+TmJiWbu/eO30On6N01Kio1pRdm89XYJS1/axCOPriYSUXnskUVYrUZ2727gpv/3bzIzE2jzBrnv/hVcc9UsTjlF62j5l79+xotLv+L7359GVlZ8R3ebzYjDYebC7xUBYDDoKCtv4oc/mBYXDu2rTkWBDZ9XdLsdtm2r44G/raSyspnzF00hO9tBepqdZ579nHfe3cb06Tmkp9l55NHVbNpcTUZGAvNOGonHE+C+B1awaVM14wrSOGnuSIxGfZ/b61DWrz/6eh0UReGM0wp49LE1fLWpikAgzL+WbmTPHhePP3oeNpuR5Z/uZdH5/2T1mv08/Ojq2O2xx9ewfUcdD97/bXS6vueTlZnACy9u5KWXN7H05U3MmZ1PMBjmjTeL2batlp9cN4eCglSeefZzHvjbSv797214fSFKSmpITbWj1yvMmJELgMvVxkOPrOLLLyux2YycfloBZnPPbcSf/scGkpOtXPDdKb1ur6wsB3l5SbzxZjHPv/Al992/gro6D089cX5s3+hrPf/97jbuuPMDnv7Hepqb/Sz7YBcOh5k77zgj7oSS004dy5biGh55dDUmk5533tlKydZaljx9AXa76aBe5+7Wb+GZ41m7roy339lKKBTh1tvf5zvnFPLLX2gdK9PS7P3a3o2NPl57fQu1ta3s3evm4UdXc8bpBbGAe0/6s6362icu/F5Rn/MADrnG/rwOTU0+HvjbSjZvqSYlxcbsE/K7dET+2f/7N5dcfFxs/zyY+a9YuY+LLnmJvz+9nsZGHxs2lLN3n5t7/3RWbP3685r3d78DcLu9LL7uDVauLOW1Vy9h1swDn1EG4n3q9QX7vU4H+14+lrndKrt2R9jweYRlH6p8+FGQbdtVFF0WU6fOYOHChZx55kLGjx9PUlLSoJ2A9n//dw9nn1zA9IlZg7L8I62p1c/jL23gy23VpCVbmTs9D1N7h+4p4zLIz0nmlvs/QEUL2D74/Fqeuec8JoxO7fc0p8waxfZ99bz+wTaefv0L3vpoGzdcNJuzTtauDPDIi+t4b8UuRuYk89kXpXyybh8P3XoWdquRipoWrr37HSIRlR98S3u/z58xko3bqvnLM6t4dVkJb364jZE5yewobcBqNjC5IAOfP8T/Vu3m0aXr2bannsUXzuSfb3/F2x9v4/jCbL5z6oQ+6968s5Y3PtjKnnIXO/Y1sGVXHX9ZspIX7v0uE0an9Vn7wVJVmDo+o0uAOCXJyrzjR/KbBz5Er9fxybp9vPZ+CS/++YLYVX8+Wb+P3z/xKaNyk5nfoftxMBSJbavaBg+LTp9EarI19tnrUOfdn+cNF/96dzN2Zx6LFi0a7FKEEEIIIYQQQgghhBDHjjpF7dTOpK6ujpKSEhYsWDBYRQkhhrnly5dTWFgY6zA+kNasWcOJJ55I6bKfkZc1tIPuyzeUxg3POz4ffadgVGllE61tASaNSesSmurvNK1tAbbva2DMCCfO9suvA7R4AvgCIUp212E1G5g6PhNrhxCCq8lLOKKS7rRRWdvCzv2uw1ZvTYOHbXvr46abPTWXtZsrYsNGg67LF6T94W72xa13Z+U1zTQ0epk0Ji32BXhUWXUzqclWbJYDX+q6mrxs3lkbN53NYmTWlJzYcJ27jX0VjYwZ4SQ1ufuuUt3Nuz81DVX7q5oYtfAB1qxZE+uUL45uqqpSVVVFaWkp+/btZf/+Uny+AAaDQnaWntxcldwchaxMHSkpCsdys63ln+6NG54yObNLd1uXq43S/Y1MmpjRJTDX32lCoQjFJTWkOG3k5SXFxre1BVFVlS83al3jJ03MiFt+IBCmvLyJMWNSusxTVVVaWgIkJh44Kaex0UdSkrnHwFV3dba1BVm/obzLdkhIMLFmbXwHu+nTstm6rRa//0AH0oQEE62tgdhwfl4yqqpSVt4UGzdmdErcevdnmx7K+vWlp9eho/37G6muaWH0qBTS0w+cULWlWOsu2p2MdDuTJsWfdNjTfKLrsa/UzZTJmRgMOgKBMNt31FE4KQN9+yXUA4EwJVtrGZGbSFqanYqKZnJzD3x+ikRUPluxr0stc0/Mx9jD35cvN1ZiMRu61NoTny/E1m21pDhtjByZ3O00va1na2uA7TvqyMlOJDu79yBRdNrRo5y9dsvtTW/r19joY/eeBsYVpMXtU1F9bW/Q9sk9e1z4/WEmTkzv8fNQT77uPtHXPAaixp5ehzVr98e973U6hZPnjYp77vJP93L8cTldOhD3Z/4AHk+AbdvryEhP6PH92Vl3r3lf+53L1cZDD6+mpraVs741gXPOntjtvAfifdqfdTqU9/KxoqUFamojVFaqVFRCeYVKW1sYnU4hJyebkSNHM2rUKPLz8zGZDu6EgcPNbrPx8K0LuWKYdFEt2V1HnfvA37gEm4kZhdlx04QjKtv21OOwm2InpnbWn2lqGjxU1rYwaUwalg7HqC2eADUNrVTUtpCSZKVwbHrcMWlpZROZqfa45wBU1LbgavJSODYdd5OXxARz3HHWll21pCXbyEpLALROunarkYyUA79De6v7hXc3c+nNr7PqhatISrCg1yuMHxl/IlNftR8Mf0DrEmzt4SSCSERl+74GjAYdY/NSupzct7PUxdg8Z9zv/z3lbsqqm+Omy0l3MG5k/OfLQ5l3f543HJz9kxfJHDuXJUuWDHYpQgghhBBCCCGEEEKIY0exBIiFEEedwxkgXrt2LXPmzGHf+zf1+GWiGJ7e/Ggb/2q/9GxPRuUkc+/PzzxCFYmBVFrZxOhvPMDatWvjrlQgji0tLS2UlZWxf/9+KivLqKysJhyOoNNBaqqB9LQI6ekKGek60tMV0lIZtK6BYvjYubOe39z2vz6ne3bJhb12MRVCCHHo/H5wuVVqayNUVavU1SnU1Kp4PFroPCHBRk5OLtnZOeTn55Ofn4/BcHR3WE6w2/jbLQu5ctHwCBCLnkUDxKtfuJrZRV07rPfmnic/46vt1b1Oc9b8ccMmqD6UnXXdi2SPO4l//OMfg12KEEIIIYQQQgghhBDi2FF8dH9bIoQQAywaJIs/dUIIWHTaRBad1n33N3HsU9He9BImPbY5HA4KCwspLCwEIBwOU1dXR21tLbW1tdTUVPPlxhqam1sBsFj0ZKTrycgIk5GukJGhIzVFISFhMNdCDDXjxqXxyksXD3YZQggxLESDwnV1EWrrVGprobYOmpq0oLDZbCQjI52MjBwmTsokIyODjIwMrNbur9pxNNPpdKhy4CqAcDii/YxEDvq53zl1AvOOz+91mhGZQ/vqTMOFqqrojuXLsgghhBBCCCGEEEIIIQaFBIiFEMNKLECMfBErxHASzV5IgHho0ev1ZGVlkZWVFTfe7/fjcrmora2lqqqKurpqtm6rwePxtT9PITFRhzMZnE5wJiukpyukpykkJyvD8pLHQgghxNHC5wN3o4rb3X5rVHG7dbgbwe0OAqDTKaSmOklPz2L69HQyMjJIT08nLS1tyHzeUxSFSESOW4e7rXvqeeV/xQD859OdjM1LITPV3u/nTx2XcbhKE0cZFTneFUIIIYQQQgghhBBCHDwJEAshhhXpQCzE8BTt3iZfqA4PZrOZ7OxssrOzmTZtWmx8c3MzLpcLt9uNy+XC5XJRWdXAlmIXfr8WSNLrFZKT9aQ4ISVFJcWp4HRqweJEh4LZPFhrJYQQQgwN4TA0N6s0t4DLFcHlVnG7weXSugv7/VqXVb1eR3Kyg5SUNNLSUxk/IYWUFO3mdDqHfKdNRVHkuFUwaUwa7zxy0WCXIY4BkYgqx7tCCCGEEEIIIYQQQoiDJgHio1x9fT1paWmDtvzt27eTkZGB0+nsdrgvzc3NmM1mzF8jbROJRPjyyy+ZMWMGoHUVrK2tJS8v75DnOVTJtunbgQCxfBMrxHAiHYgFQGJiIomJiYwaNarLYz6fD7fbHXerq69nx04XbndLbDqDQcHh0ONMhoSECA6HgjNZweHQbilOCRkLIYQY3jp2EG5pUWlp1QLCLS06Wj3Q2BiMfTbT63UkJjpwOlPIyU1h8hQn6enppKenk5ycPKw/uymKIlfOEUL0m6rK8a4QQgghhBBCCCGEEOLgHZYAsc/n49Zbb+WVV15h//79h2MRw8LJJ5/M9OnTeeihhwathu9///t8+OGHPQ735oUXXuCqq66iuLiYsWPHHtLym5ubufXWW1m6dCl1dXUAvPrqqzz88MOsXr36kOY5lMm26Vu0S5VcClaI4SX6nh/qnerEobNYLLGuxZ0FAgGamppoamqiubmZ5ubm9vtNVFY10tjYTCgUik1vtepJTNSTlBghMVEl0aGQmKhgt4PDoWC3gd2uIN/vCyGEOJb4fNDaquJpg5YWldZWlaZmVesm3KzQ1AytreFYOFinU0hIsJKUlERSUip5+dqJPElJSbGTehISEgZ3pY5i0oFYCHEwVFU6EAshhBBCCCGEEEIIIQ7eYQkQWywWFi1axMsvv9zntJs3b8blcrFgwYLDUcoxbe7cubS1tXX7WGtrK6+++ipXXHFFt8MDYcuWLWRlZZGamtrtcF8uvvhiLr/88q9VQ2JiIpdddhlLly6Nm+8FF1zwtebb0eHYdoNloLfNUHSgA/EgFyKEOKKi3dvkC1VxKEwmU6wbYk+8Xm8sWNwxaFxX72b3niZaWjyEQuHY9IoCdrseu02Hw6Fit6skJECCvWPQWCEhQcFqPRJrKYQQYjgKBrVQcKtHxePRgsGetvZxreDxKLS0gscTJhQ6cBClKFo4WAsCJ5M7IonJyckkJibicDhITk4mISFBPnt9DTqdTq6cI4ToNxU5YVYIIYQQQgghhBBCCHHwBjxA3NLSwq5du+K6sHV8bPfu3UyePBmj0UhpaSnnnXceV199NZmZmUycOBGA+vp6ysrKmDx5MiaTCdA6v7W0tBAMBjEajaSmphIIBHC73SQnJ7N9+3YmT56MXq+nqqqK1tZWxo0bF1v2jh07SExMxOl0YjabaW5uxu/3xwVBOk8TrXnHjh2MGjUqFpzdvn071dXVTJkyBdCCtQ6Hg+OPP77HWjuve1R36xoV/advIBCgpKSEcePGYbfb8fl8/OAHPyAhIYGJEycyffr0uOE5c+agqirV1dWkpKSwdetWJkyYgLVD+qSmpobm5mby8vKwWCyEw2HKysriLun98ssv8/3vf7/H4WAwSElJCaNHjyYxMTFufHFxMaNHj+7yZWHn5XbW3Ty7++d3eXl5XFfj8vJycnNzKSkpYeTIkSQkJNDS0sKePXsoKiqK1eH3+ykpKaGgoACHw9FlW86ZMwfQQkBbt25l7NixJCUldVl+X+u/detWkpOTyc/Pj43v6zXpaZnV1dUkJiZSW1vLqFGjUFWVyspKMjMz2bJlS5f5dN42neusqalh27ZtjBgxglGjRrFixQpA63gd3dZ9vU6da+3PPI8WsQCxXApWiGElmr2QEIs4XKxWK1arlczMzB6n8fv9tLS04PF4aG1tpbW1FY/H0z6uldq6lvZxbXGd8vV6BbtdjyNBh90ewWZTsVrBZgW7XafdtylYLWCzafdlVxdCiOHJ7wePR8Xrg7Y2lbY2Fa8X2rzaT49HxePRtXcRjhAIROKeb7OZsdtt2O0JOBzJOFPsOBwO7HY7CQkJOBwObDYbdrtdPlcdZooiV84RQvSfqsrxrhBCCCGEEEIIIYQQ4uANaID41VdfZdOmTZx99tk8/vjjcY8tXbqUhoYGZs+ezZQpU3jsscdigWG73Y7NZgPgmWeeIRQK0dzczA9/+EM++eQTysrKOP/88znvvPPYtWsXeXl5/OpXv+Lcc8/luOOOY/LkyaxYsQJFUTj33HPZvXs3zz//PH//+9/5xje+wRVXXMEvf/lL3njjDXQ6HYsXL+a2225j//79vPnmmwDdTrNkyRLKysr49re/zU9+8hMKCwu54447GDVqFKeeeiqPPfYY3/nOd1i9ejWvvfYa69evZ/369V1qPfXUU7us+2mnndbtumZlZcVtt927d3P77bdTXFxMbW0t69atIxAIkJCQgNlsJjExsctwZWUlP/jBD9DpdEyaNIlt27axe/duPvvsM0aOHMk999zDcccdh9Vq5YEHHuCRRx7hrbfe4qqrrsLlcsX+2fzGG2/w6aefxmrpOLx582aWLl3K+eefz8UXX8zcuXO55ZZbKCkp4f7772fx4sU8+OCDhMMHOu11t9yOeppnRy0tLfz617/mvffeY+/evTQ1NbF48WJ2797NxRdfzK5du3jrrbe47777KC4u5t1332XhwoXcc889PPHEE5SWlvLDH/6Qk08+mTfffJOUlJS4bQewdu1ali1bxujRo7nooot4/PHHOeWUU/pV6/r163niiSe44YYbePbZZ1m3bh2vvPIKLper19eku2UWFBRw+eWXY7FYyM3NZc2aNXzyySdccskltLW1ccYZZ7B69Wq8Xi8fffRRl23TU50333wz119/PXl5edx///0YjUZOOukkWltbsdvtfb5O3dW6YMGCXud5NJEOxEIMT9HubfKFqhhMZrMZs9lMWlpan9N6PJ4egsYeWj0e6uo9tLW14fF4CQSCXZ5vseiw2/VYLUp74DiMzaZgsyqxkLEWQlawWhUsFjAclmuTCCGEOBSRCPh8Kj7fgfCvFggmFg72eFS8XqXDuDCR+DwwBoMeq9WMzWbFarVhtzvIyk7Abo8PBickaOP0ev3grLDoQlEUOW4VQvRbJKLK8a4QQgghhBBCCCGEEOKgDVhMoL6+nuuuu479+/djtVq5+uqrWbVqFaB1RP2///s/Nm3aBMCf/vQnTCYTOTk5WK1WxowZQ35+Pvv372fJkiXcfffdAEQiEZ566iluv/12Ro0aRXZ2Nn/7299QVe0foieccAI5OTncfPPNlJWVkZ+fz2OPPcaIESMwm8288847nHbaaXzwwQfceuutXHfddWzcuBGA3//+9wQCAUDr0Np5mvLycm666Saqqqqw2Ww89dRT5ObmcuaZZzJ37txYdzlFUeI6Hc+aNSuu1rKyMs4+++wu697bunaUnp7On/70JzweD8nJyVRXV5OVlUV6ejoWi4XCwsLYdB2HTzrpJHbs2MFjjz2Gqqqceuqp3HfffTz44IN8/PHHTJo0ibPOOgun0wnAueeey8yZM2P/aN64cSP5+fmxxzsPX3zxxfznP/9hxIgR/PGPf2TdunUAXH311dxzzz3MnDmTqVOnctddd8XWpbvldtTTPDtyOBxccMEFvPfeewAkJSVx1lln8eSTT3LTTTcB8N577+H3+7nzzjs55ZRTuOGGG7jnnntobm7mvPPOY+rUqeTl5fHZZ59x6aWXdtl2119/PX/6058wGAwUFRXxu9/9rkuAuKdar7jiCh566CGmT5/O9OnTmT9/Pvfddx+/+c1ven1Nulvmhx9+yNy5c1m3bh1PPvlkbL8/44wz+Oijj7jttttoamoiNTUVl8tFSkpK3LbpqU5FUcjLy4tNM2HChLh16+t16mn79DbPo0l0H1/55X7KqpsGuRohxJGyv0re7+LYYrfbsdvtZGRk9Gt6n89HS0sLXq8Xn88X97O1tZWWlmZcbg8+nxev14fH4+v2sugGg4LFomC16rCYVaxWFYuFWMjYalHih60KFrP2UwLIQggRLxQCr1fF52//6evw03dgOBRSCIX0eL20TxvB4wl1CY8aDHosFhNWqxWLxYrVaicp2cKIPAcOhwOLxdL+2IGfCQkJEig7Rul0OrbvreeDNXsGrYYEq4k500YQDEXw+oO0+YJ4fSF8/iBefwivL4gvEO72M4UQ4shyN3vl970QQgghhBBCCCGEEOKgDdjX/KtWrWLUqFFYrVaAWEdhgJUrV1JUVBQbXrRoUbfzWL16NTk5OSQnJwPwyiuvkJKSohVqMJCTkwMcCADq9XqMRiNAbLro8q1WK01NTRiNRm6++WZmzJjB9ddfHwu0RrvNAt1O8+6775KSkhJbj8TERIqKilizZg1z587tdVt0rHXVqlXdrvtLL73U47p2FK0z2hWopqamS5finmqIzk9RFM4++2w++eQTAH7729/yve99jxdeeIGHH344ti3z8/Njz3/55Ze58MILux2uqanB5XIxYsQIACZPnszkyZNpbm5m9erVnHDCCYDWZU+n08Xm0d1yo3qaZ3c6d0TquB+Ati903g8AfvGLX7Bs2TK2bNlCMBiMBcg719HU1BTrDHjrrbdiMpn6Vavb7aakpISxY8fGpj355JNZs2YN0PNr0tsye9rvo+uXlJSEoii43W5SUlLits3BbNOO+nqd+to+R7voPnn1b98e5EqEEIOh498lIYYSi8WCxWLp9/SRSIS2tja8Xm8sbNzTraW1jbr66DR+fL5Aj+Fjq1WPxaKFik0mFbM5gtmsYDKByaRgNoHZTGzYZAKLBUzGA9McxGoIIcSACwYhEFAJBLQwbyDQYdin4vdDIKgSDILfr40LBBQCAQWfD3x+tX26SLfzN5kMWCzm2O9tq9WOxWLFkWghu31c55vNZsNqtcYd94qhT9HpefjFdTz8YteTq48UvU6hed1vsJoNGA1mEqwmQpEIep0OvU77H0U4olJd38Leika27alnX0Ujeyvc7C3XftY0eAat/uHKaDQye/ZsVqxYMdiliCPslG9IgFgIIYQQQgghhBBCCHFwBixAHIlEqKioiHVJjVuIwcDnn39OJBKJBXfKy8tjwcaOAYTdu3czbdq02PDevXu/Vl2hUIhLL72U+fPns3jxYq666iqee+65Pqf58Y9/TEVFBa2trSQkJADaP+CjNXfUW6eVntZ9INa183J7q6O5uZmCggIACgsL2bx5M7/61a848cQT2b17d5dQ7ptvvhnrIN152GAwUF1dHfcalpeXx7ZTWVkZEydO7FJDb8vtaZ7dbe9Dde2113LeeecxZcqULgGbjtuurKyMESNGkJqaGhsOhUIY2tvq9VRrVlYWZrOZ7du3M3LkSKDnfQbiX5Oelvl19Hebdt5v+to/+lPr0dx9aOLEibhcrsEuQ4gBoQs1YXO9h071o+osRBQrqsFGRDGD3oaqsxJRzKh6a9x9GL5fKnY8gUiI4Uyn08UuWX8o/H5/r6Fjn89HIBBoDyD7CQT8BAIB/H4ffn+AQCDY62cdk0nXHjDWtYeO1faAsRZItlhAr1cwGcFoBL1e64Ks12vDZrN232wCgwGMRgWzGaQpmxBDh98P4TD4/SrBkHbf54NwWI2FfqPjQiFtGm289pjfr+D3KwSC0WEVn6/70C9oJ3SazUbMZhMmkxGTyYTZbMFisWGzm0h2mroN/0Y7AUdv0h1S9Ne2bduJRHreJ48UY90rEKgEQKdTMOk6ndStU8jNSCQ3I5GTjh+lHWmoWt0B6zh8yQuI6OxHuOruKREv+nAzulAjulATunAzupAbFAOe5G+g6m19z+QY0Nrayp49eygoKIhr8CCGPrPZPNglCCGEEEIIIYQQQgghjjEDFiBesGABgUCA++67jxtvvJG1a9fidrvZs2cPZ555Jtdffz2XXXYZV155JV9++SVz5sxhxIgRZGdns3PnTsrLyzn99NNZvHgxixcv5oorrmDjxo1MmzaN0aNHEwqF8Pv9ccsMBoOxoGIwGAS0yzdHhyORCB6PhyVLlnDTTTfx3HPPceWVVwLw2muvUV9fz+LFi7ud5qSTTuL4449nyZIl3HjjjbhcLrxeL+eeey6ghRA/+OADioqK+O9//0tdXR2NjY0kJyfH1drTuve2rlGhUAiv1wtogUy/3x/78ig7O5t169bR0NCAzWbrMgywf//+2HyWLVsWC04//PDD3HnnnTzzzDMUFBTg8/koLS3lySef5IEHHmDDhg0UFBTEuiN3Hk5NTeXMM89k0aJF3HXXXTQ2NtLW1sY111zDaaedxm233cY///lPNm/eTDgc5osvvmDMmDHdLnft2rWsWbOG3/zmNz3O0+/3x17f6PqEw+Fu94PocOf9AODtt9+mqKiI4uJiSktLaWhooKmpKW7bJSYmMmPGDBYtWsTdd9+N2+2mtbWVyy67jI8++qjPWm+88UaefPJJFi5ciKqqrFq1ioceeihWW3evSWZmZo/L7G6/DwQCcft9JBKJbY+O26a312nixIksWbKEsrIy3nrrLQB27NjBcccd1+fr1FOtvc3zj0o/ggAAIABJREFUaKLX63E6nYNdhhADxAnOS1D3PAOBavQAfh0oOlBUiKhAN6EDnRkMVjAkoOSeC+b0I1u2EOKYZzabMZvNJCUlHfI8IpFILGQcCARit+6G/X4tgBwMBnA3+vD5vITD4fZxQUKhMD5f16tLdKYoYDbrMBp1GAzRgLGCyaRiNKro9WpcEDkaUtaep83DYtGChCYT6HRa12S9XgsqG/TtzzHFP0eIoS4Uit60zryRCASC2nFs+6EZfj+oqhbgDYfV+OeE2p8TOPC4z6cjFGrvCByMBoQjhEIqoVDfJyyaTAb0ej0Wizl21Rqz2YzJZMFkMuO0m9uHTbGbxWLpMmw2mzEajdL9VxxxX+dv7EBS/aOhoRbUvk9yVtSI9gfQ5ETJ+TbmhDEc0T+FagSCzRB0Q8CFGnBDwA3+eu1nJPpZQdGOmdQwGBNRxlxNsnHonGjodDqpr6/H7XaTm5s72OUIIYQQQgghhBBCCCGEOIoNWIDY6XTy8ccfc++99/KjH/2Ic845h5/97GcEAgESExP59NNP+cMf/sCjjz7KDTfcwLx58wC45ZZbeOKJJ5gxYwbz58/n448/5q9//St//vOfufLKK5k7dy4bNmzA4XCwadMmSktLGTlyJLt378bv91NbW0tNTQ3vv/8+p5xyCm+//Tbf/e53qaysJBKJUF5ezvbt23n00UdxOp08++yzgNY1LRrONRqNXabR6XQsW7aMBx54gL///e+Ew2Hee++9WCeHu+++mz/84Q88+OCDXH755WRlZVFTU8OuXbu61NrTune3rh01NDTg9XrZu3cvmzdvZvbs2SxfvpzjjjuOiy++mJKSEt58802uuuqqLsOghakfeughfD4fjz32GOPGjQO0AOXvf/97Jk+ezJIlS7Db7YRCITwe7bKSxcXFXHPNNbE6Og8DvPzyy/zud7/j8ccf55xzzmHx4sUAvPLKK9x9991ceumlXHzxxVx77bVkZGSgKEq3y+34OnQ3z5aWFj744AOOO+443n33XebNm8eGDRsYN24cy5YtY+bMmZSUlJCYmEhJSQler5fMzEy++uorFi5cyKpVq5gwYQKrVq3ikUce4V//+hdOp5O77rqLpUuX4vV6u2y7N998k9/97nf89a9/5bTTTuOnP/1pl32mp/W/9957eeqpp7jvvvtISkri/vvvZ8KECbHt1tNr0t0yy8rKqKiowOfzsX79embNmkVTUxOlpaUoisLOnTspLi5m/vz5fPTRR2RmZsZtmzPPPLPHOi+66CL27t3Lr3/9a+644w5+/OMf09TU1OP+0XHde9o+vc1TCHEYGRwoY69C3fsc+Gu1L8HVCPSWq4m0X48bHZjTjlSlQggRR6fTxTpyDpRwOEwwGCQQCMROxAqFQgSDQfx+P+FwOHZyWjgcxufzxR6PPsfd6CUUCsamiZ6w5fdroaP+BJU7s1i0K5GYzQo6nYLRQCx0HM0kGo0Rohd9MBq1YDO0B5Pbj9oMBjC2j4+GnKP3TSZtvBZqJnbfbNbGK4oWmO4oGnbuSILPgyvYHpTtKBzWOuR2FApr4VugPWSrxqaNnnvZ8XnRcG70vr99vKpqwd7ofZ/vwHJ8Pt2B6f0ACj6/2v5YpD0MHOFgG6QajQb0eh0Ggxbq1el0mEwmdDodZrMFo9GEXm8g2WnBYDBgNGrdfrUw8IFxZrMWDI4GfKOP6/V6TJ13bCHEoQn7UHQG1H6Eh0GvXegk/WSU9HmgDNi/HPvmr0fd/y8INMa6H4PuQEi4y8GRqt0MCSijr4QhFB6Oys/PZ8uWLfh8vgH9rCWEEEIIIYQQQgghhBBiaFHUjq1bgbq6OkpKSliwYMFg1SQGwO233051dTVPPfXUYJci2slr0n/Lly+nsLCQ9HTpiipEv0UCqKUvQltphy/Ne6Og5JwDKTMOe2lCCDEURa94Eb1KSDRwHA0kRzssax1Yfb0+p+M4gEDATyQSjt2PTtNx+mjnZYBQKBy7f7hEQ9Admc06dJ1GGw0Ken3v3WG1wPOh12IyRbost7/8fgVVVQ7puVogt/dpVBX83Uzj86l0OvQmEFCJRPrupHuoFEXBbDbG7lssB5LhHcNkVqutw3hb3DSKorTPxxw3Lhr4NRqNGAyGWIdfLQRs7vU5QoijVCQA3irwVqJ6K8FbCYGGfjxRAVRIKNCOL0zJh7vSbql7noa2Crq9Aktnig50ZpQxVw3pEypbW1tJSEgY7DKEEEIIIYQQQgghhBBCHL2Kj2A7EHEktbS00NraOthliA7kNRFCHFY6E8qoS1DLXoWW7X2HiHUmSJ56REoTQoihKBrAPBJd/Zqbm/H7/aiqSjgcJhKJxG7dDQeDQVRVJRQKoaoqDoeDjIwMAp3Sr1oIOb6rZPT5HWkdmP1d6ooGojvqGITuSXfP669oQPtQ2exfrzttxxCsTqdDVbsGg6OB2Z6eFxUN33YUDeICqKpKY2Mj4XA41mHXYDDEOvaazWYMBgNmszm2H0YfE0KIXqkRCNSDt6o9LFwF3gqtW6/eAuYMcBSg2E4D+0jUnY9CuK2bGenAmKAFhx3jj/hqdKRknYm65x/9mRIUA8qoy4Z0eBiQ8LAQQgghhBBCCCGEEEKIPkmAeAjauHEjTU1NOBwO1qxZw5w5cwa7pGFPXhMhjhy/3x8L2Aw7ih4l73uole+AeyNdL9UbnU4HziItRCyEEOKoV19fT1lZGUBcMDV6v2OAtXOYNT8/n9GjRx+BKocft9vNpk2bSElJIScnh9TU1AFfRigUYtOmTTQ3N8e6AXcX0FYUBYPBgMlkit2MRiOpqakkJw9ON1AhxFGi27BwJagh0JnBkgnWbJSUGWDNBnM6WlfhDmwjoHWn1mYdQNEDKqTMQsk8/eg4rrDlg30UtO3v5WRKRTtmGnWJtq5CCCGEEEIIIYQQQgghxDCnqJ2+Ya6rq6OkpIQFCxYMVk1CiGFu+fLlFBYWkp6ePtiliGPQtm3b8Pv9TJs2bbBLGUQqavUyaFh94Ev+OIoWIk6agpI+rz0kIIQQ4mjV1tbG+vXrD+o5iqJQUFBATk7OYapKAGzatAm32w2A2WwmJyeH7OzsWBfhgRAOh9myZQtNTU1dAuJ9Of7443E4HANWixDiGBBqAW8lqrdKC9O2lUMkoIV+LZlgy0Ox5vQcFu5O3aeotcvbg7kqJIxFyTkbTCmHe20OTlMJatnL3TygAjrQ6VFGXqIFjYUQQgghhBBCCCGEEEIIUTwM2zMKIYQYytxuN7m5uYNdxiBTULIWgt6GWvMBKh1iAYoekiahOCah1n6CuvMRcIxHSZ+vdRYTQghx1LHZbCQmJtLc3NzntIqioNPpmDJlinSePQIKCgrYsGEDqqri9/vZt28fe/fuJT09nezsbJxO59dehl6vp6ioiOLiYlwuV79DxElJSRIeFmJIUyHg7tBZuBJ8VRD2HQgLW3NRkqaCNUcLCyu6Q1uUNRfUMBgStOBw4qSBXZWvK9yGWvspuNaDzqjVqoY5cBSkgKKg5F0o4WEhhBBCCCGEEEIIIYQQogMJEAshhBgyWltbCQQCAxLWGRLS56HozVD5H7SuW4AaRkmdA9YRKEmF0LIDte4z1D1/B1s+SvpJ4BhPvzqRCSGEOGKys7P7DBArioLJZKKoqAibzXaEKhvebDYbWVlZVFdXo6pqLNzb0NBAXV0dVquV7OxssrOzMRgO/fBbURQmT57Mjh07qK6u7tdz8vLyDnl5QoijjQp+F/jaOwt7qzqEhXVaONiao32+t+aAJUsLEQ8Ua452bJE+H3SmgZvv16WGwbUetfYTQIeScSrYR2nHNh2PZxQFZcR3249zhBBCCCGEEEIIIYQQQggRJQFiIYQQQ4bb7cZoNEq3vY5SZqHozKgVb4Cqal/+W6OdhhVwTEBxTIC2/ah1K1BLXwRLFkraiZA09dC7lAkhhBgwgUCAQCDQ6zSKopCQkMDUqVMxGo1HqDIBMHr0aGpqauI6A0ciEQC8Xi979+5l3759ZGZmkpOTQ0JCwiEtR1EUJkyYgF6vp7KystdOxGazmdTU1ENajhDiKBBqAW80LFwJbeUQbtM+m5tStbBw4oT2sHC21nX3cNJbUTLPOLzLOCgqNJWg1nwAoVZInY2SfjLozNrDjvHQugtVjaCgoOSeB0mTB7dkIYQQQgghhBBCCCGEEOIoJAFiIYQQQ4bL5ZLuw91JLkLRm1H3v4ySdlL309jyUUZeBL5q1PrVqBVvQe1ylNQTIGUmKPKRQQghjiRVVamvr6e6uhqXy4XRaMRut9PW1tZtcDQ1NZVJkyah08mJH0ea0WgkPz+f0tLSbl+baGfi6upqqqqqSExMZOTIkaSkpBzS8goKCtDpdJSVlfU4TSgUYs+ePeTm5mI2mw9pOUKII0CNQKAefHWo/rr2sHAZhL3xYeGM+UcuLHy0a92DWv0++Gq045ysM8AQfwKpknkaassOFEDJPQeSiwan1qOIx+Nhx44dTJ069Wt1xBdCCCGEEEIIIYQQQggxtMh/jIUQQgwJkUiE5uZmxo+Xy9J2yzEBZfQVYM3tfTpLFsqI8yB9Hmr9StTqZVC/GiVtLqTMkCCxEEIcZm1tbVRXV1NdXU0wGMTpdFJYWEhaWhqtra188cUXXZ6Tm5tLQUHBIFR79AmFQuj1ehRF6XviAZSXl0dlZSXBYLDHzsCqqqIoCh6PB4vF8rWWN2bMGIxGI3v27OnymF6vZ+TIkVRUVFBWVkZqair5+fkkJiZ+rWUKIb6maFjYW4XqrQRvFfiqIRIARQ+mlPaw8AIJC3fHX4ta/QG07ICEMSgF14Ils/tpLVmQWIhizwfnjCNb51HKbDbT1tZGZWUl+fn5g12OEEIIIYQQQgghhBBCiKOEonb6drOuro6SkpLBqkcIIQAoLCwkPT19sMsQxxCXy8XmzZs58cQTMZlMg13O0BFsQq1fBe4vtEsXp8/TvoRX9INdmRBCDBmRSISGhgaqqqpwu92YzWYyMjLIycnpEjTdsGEDHo8HRVFQVZWJEyeSmdlDgGoYWr58+aB9jqyurmbHjh09BogBFEVh2rRpJCUlDcgyKysr2blzZ9z88/LyGD16dKyLdXl5Oc3NzTgcDnJzc8nIyDjiAWshhp1gM/hrwVeD6qttv18Hakg7Ic+SqYWFrdlgzQZzhny+7kmwCbXmQ2jcDNZclKwzwT6y7+dFAqCT48KO9u7dS1VVFXPmzJErFgghhBBCCCGEEEIIIYQAKO4SIPb7/TQ3Nw9WQUIIAUBiYqJcblkclKamJmpraxk3btxglzI0hTyoDauhYS3obShpJ0LKTOlILIQQX0NLSws1NTXU1NQQDodJS0sjMzOTlJSUHgOeFRUV7Nq1C71ez5QpU0hOTj7CVR/dBjNADFrAu62trccQ8eGorWNwWVEU5syZ0+VkqqamJioqKqivr8dsNjNixAiysrLQ6yWwKKJUCPsg7G3/2eF+xAe9BOMBLfyqM2kdcxU96C3x43RmbdxQCXSqEQi1QrAJAi5UfwMEXAduYZ82ncEBlgywZKKYM8Ca1R4WlvBmn9QQ1K1ErV8BBgdK5umQVAjICRCHKhgMsmbNGsaMGUNubh9XphFCCCGEEEIIIYQQQggxHHQNEAshhBBC9CgaJK5fA4YElPSTwXmchCCEEKKfQqEQdXV1VFZW0trais1mIysri6ysLIzGvi9VHwqF2LhxI4WFhdhstiNQ8bFlsAPEjY2NfPXVV90+lpKSwtSpUw/Lcuvq6ti6dSsZGRlMnDixx+m8Xi8VFRVUVVWhKApZWVnk5eXJiXvDRdjX3gm3FjXQAIEmCDZqIdiQp/vn6C3ara/QZiSkBT4jAVDDPU+n6DqEiS2gj943a/d1ZpTuHouGkHUG7QS2/tR0MMJere5IUFuHiF/bJu03NdzWHhhubt9erVqIGLR6TE4wp4IpBcWUot23ZIJefk8fkpbtqFX/1bZz2knaVVDkxMUBsWvXLurr65k9e7Z0oxdCCCGEEEIIIYQQQgghAWIhhBBCHIJgE2r9KnB9DkYHSto8CRILIUQvmpqaYt2GAVJTU8nOzsbpdB70vKKdZkVXgx0gBti0aRONjY2xLsSKopCSkoLL5SIjI4MJEyYcltfP5XJhNpux2+19ThsMBqmurqaiooJAIEBaWhp5eXk4HI4Br0sMkkgAvJXQVo7aVga+ai34Clr41pQKxiQwJaMYk8FgB721PTBs7X9wuCdhHxCBsB/UoPYz7NOCuWE/hL2okU7jIr72n/4DXZDp5V9W0TCyYtCCxdrI9rr7qE0NtweF+wg8663t28am/TQmoRgTIXZL0n5KV9yB4W9Arf4vtOwEx3iUnLPAKJ32B5Lf72ft2rWMHz+erKyswS5HCCGEEEIIIYQQQgghxOCSALEQQgghvoZgI2rdZ+D+EkypWnewpKkSJBZCCCAQCFBTU0NVVRVerxeHw0F2djYZGRno9frBLm9IOhoCxB6Ph88//zwWIM7IyGDSpEk0NDRQUlKC0+mksLAQnW7w/1aqqkptbS1lZWV4PB6SkpLIzc0lLS1NQurHGjUCvkpo2Y3augu8Fdo4YyJYR6DYcsGcAZb0YyuQGQ0XR0PIakjrdhxpDwGHA9pjkRAAqhrsPRAMKDozKPoDnY0VvRYUVvTtnY5N7d2Pbdo4cfhFAtrJiXUrwJyGkv0tsI8c7KqGrO3bt9PU1MSsWbPkd70QQgghhBBCCCGEEEIMbxIgFkIIIcQACLhR61e0B4nTUDIWQFIh0o1NCDHcqKpKY2MjVVVV1NfXo9frSU9PJycnh4SEhMEub8g7GgLEADt27KCqqork5GSKiopiAa2WlhY2b96M1WplypQpGI3GQa2zo6amJsrKymhoaMBqtZKbm0t2dvZREXQWPVDD0LoHtbkYmrdD2Kt1xE0Yi5IwBmx52rAQRy0VGjehVi8DNawdQ6ScICcjHmZer5fy8nLGjBkjJzQJIYQQQgghhBBCCCHE8CYBYiGEEEIMIF8tau3H0LwVrDkomadBQsFgVyWEEIed1+ulpqaG6upq/H4/TqeTzMxM0tPTJYB5BB0tAeJgMEhxcTFTpkzBYDDEPdbW1samTZvQ6/UUFRVhNpsHqcrueb1eKioqqKqqQq/Xk5WVRW5u7lFX5/ClgqcUtXHjgdCwbQRKYiE4xoF5cPd9IfrNW4la9R60lUNyEUrWQjDYB7sqIYQQQgghhBBCCCGEEGI4kQCxEEIIIQ4DXxVqzSfQsh3so1GyzgRrzmBXJYQQAyoSidDQ0EBVVRVutxuTyURmZiY5OTlYLJbBLm9YWrlyJRMmTCAtLW2wS0FV1R4vDR8IBNi0aRPBYJCioiLs9qMvNBcMBqmoqKCyspJQKERGRgZ5eXlHZa3DQsgDjRtR3V+AvwGsuShJU7QrPkiXYXEsCXlQaz4A90awj0TJ/hZYMge7KiGEEEIIIYQQQgghhBBiOJIAsRBCCCEOI2+5dkliTykkTUbJPB1MKYNdlRBCfC0ejyfWbTgUCpGSkkJmZiZpaWk9BkaF6CwUCrFlyxY8Hg9TpkwhKenoDIFGIhHq6urYv38/bW1tJCUlkZeXR2pq6mCXNjz4alHrV0HTZtAZIakIJeV4sGQNdmVCHCQV3F+hVv8PdEat43DSlMEuSgghhBBCCCGEEEIIIYQYziRALIQQ4ti2bds2UlNTB/1S5aIPrXu0sIC/HpzTUTJOBUPCYFclhBD9FgqFqKuro7KyktbWVmw2G1lZWWRlZWE0Gge7PHGMikQibNu2jYaGBgoLC4/6UK7b7aaiooKGhgasViu5ublkZ2ej0+kGu7Shx7MPtX4ltOwEczpK2lwtbKmT3zfiGBRwoVa+C617IOV4LTysMw92VUIIIYQQQgghhBBCCCHEcCcBYiGEEMeuUCjEqlWrmDRpkgSIjwVqBNxfoNZ+AmoIJW0epM0BxTDYlQkhRI9aWlqoqqqitrYWVVVJTU0lOzsbp9M52KWJIUJVVXbu3El1dTXjxo0jOzt7sEvqU2trK5WVldTU1KDX68nJySE3N1fC9AOhrRy15kPw7AVbPkrqbEicBIqEtMUxSI2Aax1qzUdgcqLkfBtsIwa7KiGEEEIIIYQQQgghhBBCaCRALIQQ4thVV1fH1q1bmTt3LgaDhFCPGZGAdinu+lVgsKFknglJhYAy2JUJIQQAgUCAmpoaqqqq8Hq9OBwOMjMz+f/Zu/Potu46///PK1mWF9mKItnavCVxk9hxnL3pSiktlCVf6EbboQN8+x2WMlPaw/xmDj3MgS8DzAIt+xQGylAKA0wLZVpK6UD7LaRtyN7GS9Zm86LVcmTHuy3p/v7w1ENJ0maxfb28Huf0nEa6vvcl2bpe9Lrvj9/v1/cbmTLHjx+nra2N6upqampqrI5zVkZHR4lGo0SjUbLZLGVlZVRVVVFUVGR1tNlnOD5esuw7BMU1GP63QFGV1alEzt9QDDP6y/EVSHyXY5RdCYbd6lQiIiIiIiIiIiIiIvI/VCAWEZHZ69ChQwwMDLBmzRqro8j5yPSNTyNOvwwFQYzg26Go0upUIjKPpdNpYrEYqVQKu91OWVkZoVAIl8tldTSZJ6LRKK+88grhcJja2lqr45y1bDZLMpmks7OTwcFBPB4P4XAYr9drdbSZL9OPmXgW0k1QGBwvDrtmz+de5BS5Ucyu58cvFiyqwghtAqfP6lTyOrLZLOl0Gp9PnycRERERERERERGReUYFYhERmb22b9+O3++fNVP65AyGopjx38BAG7hXYATeCo4FVqcSkXliaGiIRCJBPB5nZGQEt9s9MW3YZrNZHU/moVQqxf79+1m4cCF1dXWz7uuwu7ubSCRCOp3G5XIRCoX0ejodMwvdOzC7NoPNiRF4m1ZkkNmv7xBm9CnIjWL4r4WFa9HX9MyXSqXYu3cvGzZs0AR5ERERERERERERkflFBWIREZmdBgcH2blzJ6tXr8btdlsdRy6YCb37MBPPQGYQo+wK8F0GRp7VwURkDsrlcnR3dxOLxUin0+Tn5+P3+wkGgxQWFlodT4Senh727t2Ly+WioaEBu91udaRz1t/fT2dnJ8lkEofDQTAYpKKigrw8fW9n4Ph4yXI0DWWXY/iuAJvD6lQi5y/Thxl/Fnqaxi8IDL4T8oqtTiXnYNeuXbhcLpYvX251FBERERERERERERGZPioQi4jI7BSJRDh27BiXX345hqGpVnOGmYHUVsyuFyDPhRF8O5QstTqViMwRg4ODxONx4vE4mUyGBQsWEAwG8fl8+l4yR2QyGex2+5z4fPb399PS0oLT6WTlypU4HLOzYDo6Oko0GiUSiWCaJuXl5VRUVMzPKZe5Ecz4M3BiF5QsG/85J99jdSqRC2DCid3jX9d5xRihTeBabHUoOQ+JRIKDBw+yYcMGXUwlIiIiIiIiIiIiMn+oQCwiIrPT/v37yeVyrFixwuooMhX+eIqZa/H4FDOnz+pUIjILZbNZkskkiUSC3t5eCgsLCQaD+P1+8vPzrY4nk2zz5s3U19dTVlZmdZRJMTQ0REtLCwCNjY0UFBRYnOj8ZbNZ4vE4nZ2dDA8P4/V6CYfDeDzzpEDbfxgz8iTkRjH818LCdVYnErkwY72YkV/CwDHwXYZRdpUmac9ipmmyc+dOPB4PF110kdVxRERERERERERERGR6qEAsIiKzVyaT0TLYc93AcczY0zCSgoXrMfzXgE2FPxF5Y319fcRiMZLJJKZp4vV6CQaD86esOE/NtQIxjE/wbWlpYXR0lMbGRoqLi62OdMG6u7tpb2/n5MmTuFwuKioqKC8vnxOTo0+RG8WM/RekXwJ3A0bwHZA3+z+HMs/17sWM/grshRjh90BxtdWJZBJEo1GOHDnCxo0bdZGViIiIiIiIiIiIyPygArGIiIjMcGYWundgJn8/XlIIvh1Kl1udSkRmoNHRUbq6uojFYgwMDFBUVEQgECAQCOBwaCrifDAXC8QwftFUa2srAwMDrFy5ktLSUqsjTYq+vj4ikQjJZBKHw0EwGKSiomLuXCA2FMXsfAyywxihTVBaZ3UikQuT6R+fpN13EBauwwi8XVOH55BcLsf27dvx+/0sXrzY6jgiIiIiIiIiIiIiMvVUIBYREZFZItOPGf8t9DRD6XKM4DvBMTcKVCJyYdLpNLFYjFQqhd1up6ysjFAohMvlsjqaTLO5WiCG8WLX/v37SafTrFixYk5N0x4eHiYajRKLxTBNk0AgQEVFBQUFBVZHO08mdG/HjD8LRZUYFTfoZxaZ/XqaMWO/BnsxRsV7oKjK6kQyBTo6OohEImzcuHFuToUXERERERERERERkT+mArGIiIjMMgPHx5dMHuvFKLsKfJeBYbM6lYhMs5GREZLJJNFolOHhYUpKSggGg/j9fmw2nRPmq7lcIAYwTZNDhw6RSCSoq6ubc48zm80Sj8fp6OhgZGQEr9dLVVXV7Jq4nBnA7PxPGDiGUX41lF0OqIQns1h2CDP6FPS2gncjhv9aTR2ew3K5HKZpYrfbrY4iIiIiIiIiIiIiIlNPBWIRERGZhcwMZteL0PUiOH0Y4f8FhWGrU4nIFMvlcnR3dxOLxUin0+Tn5+P3+wkGgxQWFlodT2aAuV4gftWRI0eIRCJcdNFFBINBq+NMOtM0SaVSdHZ2cvLkSUpKSgiHw5SXl8/siZhDUcz2R8CwYVTeBIUVVicSuTCDHZidv4DcGEb43VCy1OpEIiIiIiIiIiIiIiIyeVQgFhERkVlspGt8GvFgByzciOG/Gmz5VqcSkUk2ODhIPB4nHo8zNjaGx+MhGAzi8/lmdplQpt18KRDD+DLzR48eZfHixVRWVlodZ8r09vYSiURIpVI4nU5CoRDBYJC8vDyro71WTzNm9EkoDGNUvhfyiq1OJHL+zCxm1wvQ9TyULBu/WM9eZHUqERERERENvCifAAAgAElEQVQRERERERGZXHtn2DtuIiIiIufAWYax6H9D+mXM+DOYfQfGp6MVL7I6mYhcoGw2SyqVIpFIkE6nKSwsnCgOOp1Oq+PJDJWXlzdvSuWVlZXY7XZeeeUVRkZGqK2ttTrSlHC73bjdboaGhohEIhw/fpy2tjYCgQCVlZXWnw/MHGbyufFVEbwbMQLXgWGzNpPIhRjpwuz4BYx2Y4Q2gWet1YlERERERERERERERGSKaAKxiIjMKqlUCo/Hg91utzqKzDSZfszor+HkPliwCiP4drAXWp1KRM5RX18fsViMZDKJaZp4vV6CwSAej8fqaCIzUjKZ5MCBA5SXl7Ns2bI5X6DOZDIkEgk6OjoYHR3F5/NRUVFBaWnp9IfJDmG2PwJDUYzwe8C9YvoziEym9EuYsaehwI9RcSPkL7Q6kYiIiIiIiIiIiIiITJ29KhCLiMis0d/fz+7du1m3bh0ul8vqODJT9e7FjP0asGGE3gWly61OJCJvIJPJ0NXVRSQSYWBggKKiIgKBAIFAAIfDYXU8kRmvu7ubffv2sXDhQurq6rDZ5v4EXNM0SSaTdHR0MDAwgNvtJhwO4/P5pqdEPdqD2fZjyI1iVL8PCvxTf0yRqZIbwYw+BT3N/z1J+21g6IJNEREREREREREREZE5TgViERGZPTo6Oujo6OCyyy6zOorMdNkhzMSzcGI3uFeMF4ntRVanEpE/kU6nicVipFIpbDYb5eXl+P1+3G631dFEZp3e3l5aW1txuVw0NDTMq9Uaent76ejooLu7m8LCQsLhMMFgcOqK1CPdmMcfBnvheHnYoXOWzGJDUcyOn0NuBCN8PZRcZHUimWFM05zz0+1FRERERERERERE5ikViEVEZPZoamoiPz+furo6q6PIbNF3EDPyKwCMiveAq9biQCIyMjJCMpkkGo0yPDxMSUkJwWCQ8vLyeVV4FJkKAwMDNDc343Q6Wbly5byb4D00NEQkEiEWi2Gz2fD7/VRWVuJ0OifvICMpzGMPg6MEo+b9YC+cvH2LTCsTurdjxp+BoiqMyhshr8TqUDLDJBIJOjs7WbdundVRRERERERERERERGTyqUAsIiKzQy6XY8uWLSxduhS/X0tEyznIDmPGfj2+JPPCDRiBt4It3+pUIvOKaZqkUikSiQQnTpzA4XBQVlZGMBikuLj4lO2PHj3Kjh07WLp0KWvXrrUgscjsNTw8THNzM4Zh0NjYOCnl2e7ubrZu3QrApk2bLnh/U21sbIx4PE5nZydjY2OUl5dTWVl52vPNue34JObR74HDjVHz52Bz6nwls1N2GDPyOPQdwii/GsquADRhVk41ODjIzp07WbFiBT6fz+o4IiIiIiIiIiIiIjK59k7Rep4iIiKTq6enh1wuh8fjsTqKzDb2AoyKGzGqboHevZiHvw0DbVanEpkXBgcHOXr0KFu3bmXfvn3kcjnq6uq45JJLqK2tPWOZb/HixUQiEfr6+qY5scjsV1BQwOrVqzEMgz179jA0NHTB+/R6veRyOWKx2CQknHoOh4PKyko2btzIsmXL6O/vZ9euXezZs4fu7u7z22luDLP9EbDlY1S/D2zjxWydr2TWGY5jHvkuDEYwFv1vKLsSlYflTIqKivD5fLS16fcnERERERERERERkbkoz+oAIiIiZ+PEiRMUFxeTn6/JsXKeSusxiqowI09iHn8YfJeNT1wz7FYnE5lTcrkc3d3dxGIx0uk0TqeTQCBAKBSioKDgrPdTVFQ0hSlF5rb8/HxWr15NS0sLe/bsYeXKlbhcrgva52x8TdpsNvx+P36/n3Q6TSQSobW1lcLCQsLhMMFgEJvtLK6rNnOYnY/BaBpjyYfAXviau2fjcyPzVE8zZvRJKAxhVN4MeSVWJ5JZoLq6mt27d5NOp3VBr4iIiIiIiIiIiMgcowKxiIjMCul0Gq/Xa3UMme3yXBjVt8GJXZjx32L2H8WouAGcZVYnE5n1+vr6iMViJJNJTNPE6/XS2Nh4xqJJR0cH27dvZ/369bzwwgtks1ne9a53UVZ2+tdjc3MzAO3t7axdu5ZQKMTx48fZuXMnl112GS+88AIjIyPcfPPNZ5xsLHNfJpPBbrdjGJqmmZeXR2NjI3v37qWpqYmGhgbcbvcZt+/p6WHHjh2EQiEOHz5MMpnkyiuvpK6u7rTbd3R0kEwm6e3txePxsGbNGrq7u9m5cycVFRV0dnZy/Phx3vWud1FZWTlVD/OseTwePB4P/f39RKNRjh49SltbG4FAgIqKite9SK19z6Ps2LGb9VfdzAuPPKXzlcw+ZgYz/gx0bwfvRozA23QRnZw1l8uFx+Ohvb1dBWIRERERERERERGROeYsRu2IiIhYLxwOU15ebnUMmRMMWLgBY8mdgG18Cef0S1aHEpmVMpkMsViM3bt389JLL9Hb20t1dTWXXHIJ9fX1r1syyeVyPPfccxw6dIh3vOMd2O12HnjgAXK53CnbxmIxfvazn9HY2MjSpUv50Y9+BIDP5+P555/n4MGDvPvd7+bkyZPs3Llzyh6vzHxbtmwhlUpZHWPGsNvtNDQ0sGDBAlpaWkin02fc1jAMtmzZwo4dO7j00ktZvnw53/rWt+jq6jrt9t/85jdZtGgRV155JQ8//DDDw8OUlpbS0tLCzp07ueKKK6ioqODpp5+eqod3XlwuF0uXLmXjxo2EQiHi8Tjbt2/nwIEDDAwMnPoB6d3k0q081zTAofZena9k9hnrxTz6EKT3YFTdihF8h8rDcs6qqqro6emht7fX6igiIiIiIiIiIiIiMolUIBYRkVkhFApd8NLbIq/h9GIs/j/guxwz8iRm+yOQHbI6lciskE6nOXDgAFu3buXIkSMUFxfT2NjIhg0bqKysxOFwvOE+Xp1IevHFF+Pz+bjpppvo6uoiHo+fsm0gEOATn/gE/f39DA8PT5RXXC4X+fn51NXVUVRUxJIlS2hra5vcBysyy9lsNurr6/H5fLS0tJyxYO12uyktLaWhoQG/38+b3vQmgsEge/fuPe32n/zkJ3G5XJw4cQKbzUZfXx8Oh4PS0lIWL16My+Vi+fLlM/Y1mZ+fT01NDZdccglLly6lr6+PXbt20dzcTHd39/hGI92Ysd9QWXcVoPOVzEIDbeMXy5ljGEs+AqWnnygu8kYWLFiA2+2mo6PD6igiIiIiIiIiIiIiMonyrA4gIiIiYhnDhlH+Ziiuxuz4Bebh72BU3gRF1i+1LjLTjI6OkkgkiEajDA8PU1JSQm1tLeXl5djtFz7JsKioiIKCAmy2U69xzOVyvPjii2zYsIGFCxeecR82mw3TNC84i8hcYxgGy5cvJy8vj3379rFs2TL8fv8bfpzX6z3taxLgwIEDlJSU0NjYiGEYZzzuTH9N2mw2/H4/fr+f7u5uIpEIra2tuFwugo6j+It84z8r8J8TH6PzlcwK6d2Y0V+DawlGxY1gL7A6kcxyixYtYnh42OoYIiIiIiIiIiIiIjKJNIFYREREpHgRRu2dUFCGeewhzOTvAZV6REzTpLu7m3379rFt2zba29vxeDysX7+etWvXEgwGJ6U8DJBIJCgqKqK8vPyU+15++WXa2toIBoNks9nXzSsiZ1ZbW0s4HObgwYOnnZ77p9rb21m2bNkpt/f09PDYY4+xcuVKgNd9Xc4mXq+XxsZG1q1bR7G9j8PpMnYkV3C87bUTN3W+khnNzGEmnsWMPAm+SzGq/0zlYZkUbrf7rC4+EREREREREREREZHZQxOIRURERADyijGq3wepP2AmnsMc7MSouAHyiq1OJjLtBgcHicfjxONxxsbG8Hg81NXV4fP5zjhp9Hw988wzrFmzhm3btvHBD34Qm83G2NgYqVSK7u5uAEpLSzl8+DA//vGPCYVC9Pf387vf/Y4NGzYwMjJCT08PgUCAZDJJT08PuVzujFNTRea7JUuWkJ+fz8GDB8lkMlRUVLzm/u3bt+N2uzly5AjXXnstfr8f0zSJx+P09PSQzWYpKCjAMAwefPBBFi1ahNvt5r/+679473vfy4kTJ+jt7QXGi7aDg4MMDw9TUDB7CowuW5pljudZXPd2ooPldHZ2AvDoo49y2WWXsWfPHp2vZGbKDmJ2/BwG2senDi9otDqRiIiIiIiIiIiIiIjMYIapsTciIiIirzUUwez4GZgmRtUtUBi2OpHIlMvlcnR3dxOLxUin0zidTsrLywmFQlNS/Mvlctx11118/vOfZ2hoCL/fj8PhACAajTIwMACA3++ntLSUnp4eDMPA7XaTSCTweDwkk0mGhoYwDINAIEAsFgOgrKyMBQsWTHpmmfk2b95MfX09ZWVlVkeZ8To6Ojh69Cg1NTVUV1cD8OUvf5krr7ySqqoqSkpKKC4ev4gmnU6TSqUAKCkpIRAITJRh/X7/RGE4m81OFGmDweDEa9LlchEMBqf7IZ4fM4d5+F/BUYpRcztgMDY2xj333MPNN99MX18fNTU1VFVV4fF4dL6SmWMkidn20/GfX6tvg4KA1YlERERERERERERERGRm26sJxCIiIiJ/qjCMseROzMjjmEcfwghcC95LrE4lMiX6+vpIJBIkEgmy2Sw+n4+GhgYWLlw46dOGT8dut58yATUUCp2y3R8X7F5dPvtPP+6iiy6agoQic1NlZSV2u51XXnmFbDbL4sWLJ+4LBF5bPPR4PHg8ntfc5nQ6J16Lbrd74vaFCxdO/P+sfE2e2AGj3RjVtwLj50C73Q7A2rVryWazdHR00NzcjMvloqKigtra2tecL3W+kmnXfxSz41FwlmNU3aoVNERERERERERERERE5KyoQCwiIiJyOvaC8QJG1xbM2G9gKIoR2gS2fKuTiVywTCZDV1cX0WiU/v5+ioqKqKqqIhAITEwBnmpbt24F4ODBg6xbt468PP1qIhcuLy9vWorvc0UoFCIvL48DBw7Q2dlJPB7n6NGjNDY2Tsnk8RkvO4SZfB58l0G+d+LmPz1feb1e+vr6iEQiHDx4kKNHjxIMBqmoqNC5TKZfzx7MyJNQsgyj4gawTc/3cRERERERERERERERmf0M0zRNq0OIiIicTldXF21tbaxbt05lILFW3yuYnb8Ahxuj6hbIX/jGHyMyA/X29k5MGwbwer0Eg8FTJotOh2Qyyau/ing8HvLzVc4XsUoqlWL37t2UlpayaNEiXC4XLpfL6ljTzow+CScPYiz9ONicE7e/3vlqeHiYaDRKLBbDNE0CgQAVFRXzs4At08zETG6G5O/BuxEj+HZenZotIiIiIiIiIiIiIiJyFvaqQCwiIjPWoUOHGBgYYM2aNVZHEYHR9PjS0KNpjIoboWSp1YlEzsro6CiJRIJYLMbQ0BAlJSUEg0HKy8ux2+1WxxORGeLEiRPs3bsXr9dLXV3d/Lt4aziOeeS7GOH3wIJV5/zh2WyWeDxOR0cHIyMjeL1eKisrcbvdUxBW5j0zixn5JfS2YATfCQvXW51I5qH+/n4GBwcpLy+3OoqIiIiIiIiIiIiInB8ViEVEZObavn07fr+fmpoaq6OIjDMzmNFfQU8zhv/a8SXORWYg0zTp6ekhFouRSqWw2+2UlZURCoXm5VRRETk7PT09tLa2smDBAurr67HZbFZHmjZm208h04+x5ENc6BTX7u5u2tvbOXnyJCUlJYTDYcrLy+dfKVumRm4Es+0/YDiGUflecC2xOpHMU+3t7bS3t3PJJZeQl5dndRwREREREREREREROXcqEIuIyMw0ODjIzp07Wb16tSa3ycxzYjdm7CkoXYERfjfYHFYnEgFgaGiIWCxGIpFgdHQUj8eD3++nrKxsXhUBReT89fX10dzcjMvloqGhYX5MKh+OYx7+V4zq903qCgO9vb1EIhFSqRROp5NQKEQwGFTRTs5fph/z+I/Hy+41fw4FfqsTyTyWzWbZtm0blZWVVFVVWR1HRERERERERERERM6dCsQiIjIzRSIRjh07xuWXX65pbTIz9R/G7Pg5OMswqm6FPE11FWvkcjm6u7uJxWKk02mcTifl5eWEQiEKCgqsjicis1B/fz/Nzc0UFRXR0NAw5wuvZvsjMJrGqP0oFzp9+HSGhoaIRCLE43EAAoEAlZWVOJ3OST+WzGGjPZhtPwIzh1HzfshfaHUiEY4dO0YsFmPjxo3z44ITERERERERERERkblFBWIREZmZWltbMQyDFStWWB1F5MxGu8eXPM+NYlTdBoUhqxPJPDIwMEAikSAWi5HNZlm4cCF+vx+fz6cLL0Tkgg0ODtLc3IzD4aCxsRGHY45O2x/pwnzlWxhVt0Bp3ZQeKpPJkEgk6OjoYHR0FJ/PR0VFBaWlpVN6XJkDRpKYx/8d8ooxqv8c8oqtTiQCwNjYGNu3b2fRokWEw2Gr44iIiIiIiIiIiIjIuVGBWEREZh7TNNmyZQtLliwhGAxaHUfk9WWHMNsfhaEIRsUNU14+kvktk8nQ1dVFNBqlv7+foqIiAoEAgUBg7pb7RMQyw8PDNDU1YbPZWLVqFfn5+VZHmnRmx89hpAuj9k6mYvrwaY9pmqRSKTo6Oujr68PtdhMOh3UBiJzeUCfm8Z9AQfn4BWt2rS4gM8vhw4dJpVJs3LhR5zARERERERERERGR2UUFYhERmXkGBwdpampizZo1FBToDXKZBcwsZuxpOLEbI/h28G60OpHMMX19fcRiMRKJBABer5dgMIjH47E4mcjMkslksNvtKjBNopGREZqamjAMY+6ViMd6MQ99ffwCIPdKSyL09vbS0dFBd3c3hYWFhMNhAoEAdrvdkjwyw/Qfxmx/BFy1GJU3gZFndSKRU4yMjLB9+3YuuugiXQAsIiIiIiIiIiIiMruoQCwiIiIyabq3YcZ+A96Lx4vE0zTJUOam0dFREokEsViMoaEhSkpK8Pv9+P1+8vJUIBI5nc2bN1NfX09ZWZnVUeaU0dFRmpqaME2TVatW4XQ6rY40KczEc5B+CWPZJ8CwtrA7NDREJBIhFoths9nw+/1UVlbOmedazkPfofFVLtwNGOF3g2GzOpHIGR08eBCAZcuWWZxERERERERERERERM6BCsQiIiIik+rkPsyOX0DJUozKGzUpTs5ZOp0mFouRSqWw2+2UlZURCoVwuVxWRxOZ8VQgnjpjY2M0NTWRzWZZtWrV7F8lwsxiHvwaeNZg+N9idZoJY2NjxONxOjs7GRsbo7y8nMrKSoqLi62OJtPp1fLwgkaM8P9CF6XJTGeapqb/i4iIiIiIiIiIiMw+KhCLiIiITLqBY+PLTRcEMapuBfssL1nJlBsaGiKRSBCPxxkZGcHtdk9MG7bZNHFQ5GypQDy15lSJuLcVs/MXGEvvBscCq9OcIpfL0dXVRUdHBwMDA7jdbiorK/F6vVZHk6l2ch9mx2OwYDVGeBMqD4uIiIiIiIiIiIiIyBRRgVhERERkSgwnMdt+DDYnRs3t4HBbnUhmmFwuR3d3N7FYjHQ6TX5+Pn6/n2AwSGFhodXxRGYlFYin3qsl4kwmw+rVq2dtidg89gOwF2BU3WZ1lDfU29tLR0cH3d3dFBYWEg6HCQaDusBkLurdi9n5i/HJ2KF3ofKwiIiIiIiIiIiIiIhMIRWIRURERKZMpg/z+I8hO4Sx6AOQr6mBAoODg8TjceLxOJlMhgULFhAMBvH5fFr6WeQCqUA8PTKZDM3NzYyOjrJq1arZd9HD6AnMQ9/AqL4dSi6yOs1ZGxgYIBKJkEgksNvtBAIBKioqyM/PtzqaTIbeFszO/4SFGzGCb0PlYRERERERERERERERmWIqEIuIiIhMqezQ+CTi0R6MmvdDgd/qRGKBbDZLMpkkkUjQ29tLYWEhwWAQv9+v4pfIJFKBePrM6hJxcjPmiR0Yy/4/MGbfFN/R0VGi0SjRaJRsNktZWRmVlZUUFxdbHU3O18kDmB2PgvcSjMDbrE4jIiIiIiIiIiIiIiLzgwrEIiIiIlMuN4rZ9lMYjmPU3A6FFVYnkmnS19dHLBYjmUximiZer5dgMIjH47E6msicpALx9JqtJWLzlQfAtRgj+A6ro1yQXC5HV1cX7e3tDA4O4vF4CIfDeL1a8WBW6T+K2fYTWLASI/xuNHlYRERERERERERERESmiQrEIiIyc5w4cWKiYCcy5+TGMNsfgaFOjOr3QVGV1YlkioyOjtLV1UUsFmNgYICioiICgQDBYJC8vDyr44nMaVu2bGHZsmX4fD6ro8wbr5aIR0ZGWLVqFUVFRVZHen3DMczD38FY/BdQVGl1mkmTTqeJRCJ0d3fjcrkIhUL4/X5sttk3YXleGezAPP4jKK3DqLgelYdlLslkMvrZV0RERERERERERGRmU4FYRERmjubmZhwOB3V1dVZHEZkaZhaz4zHofwWj6jZwLbE6kUyidDpNLBYjlUpht9spKysjFArhcrmsjiYiMqUymQwtLS0MDw/P+BKxGX8GevdiLLuHuVjW7O/vp7Ozk2QyicPhIBgMEg6HcTgcVkeTPzUcxzz2AyhehFH5XjBU9pa54+DBg2QyGVasWGF1FBERERERERERERE5MxWIRURkZsjlcmzZsoWlS5fi9/utjiMydcwcZuQ/oXc/RtWtUHKR1YnkAoyMjJBMJolGowwPD1NSUkIwGNTURxGZd/64RNzY2EhxcbHVkU7LPPQ1cDdg+K+1OsqUGh0dJRqNEolEyOVylJWVUVVVNaPL3fPKcGK8PFxUMX5RmWG3OpHIpEqlUuzdu5f169fP2O8HIiIiIiIiIiIiIqICsYiIzBAnTpygpaWFSy+9lPz8fKvjiEwxEzPyJPQ0Y1T/mSYRzzK5XI7u7m5isRjpdJr8/Hz8fj/BYJDCwkKr44mIWGbGl4iHE5iHv42x5MNQGLY6zbTIZrMkk0k6OzsZHBzE6/USDofxeDxWR5u/xnoxj/4b5C/EqL4dbJoOLXPTrl27KC4u1gpDIiIiIiIiIiIiIjOXCsQiIjIzHD58mJ6eHtavX291FJFp8t8l4t4WjOr3QfEiqwPJGxgcHCQejxOPx8lkMixYsIBgMIjP58MwDKvjiYjMCNlsltbWVgYGBli1atXMKhF3vYDZvQ1j+d8A8++83d3dTSQSIZ1O43K5qKiooLy8XN/DplNuBPPoQ2DmMBbfAXZdeCRzVyKR4ODBg2zYsEEX2YmIiIiIiIiIiIjMTCoQi4jIzLBz5068Xi+LFy+2OorI9DFzmJH/hJMHMKr/HIqrrU4kfyKbzZJKpUgkEqTTaQoLCykvLycYDOJ0Oq2OJyIyI83UErF59PvgXIgRvt7qKJbq6+sjEomQTCZxOBwEg0EqKirIy8uzOtrcZmYx234Mw10YSz4EDrfViUSmlGma7Ny5kwULFrB06VKr44iIiIiIiIiIiIjIqVQgFhER642MjLBt2zYaGxu1nLLMP2YOs/Mx6DuMsegD82ZJ9Zmur6+PWCxGMpnENE28Xi/BYFDnKBGRszTjSsTZIcwD92FU3gyl9dZmmSGGh4eJRqPEYjFM06S8vJzKykpNCp0SJmbn4+MXjS2+AwoCVgcSmRaxWIzDhw9z8cUX6+I7ERERERERERERkZlHBWIREbHeq28qXn755dhsNqvjiEw/M4vZ/igMtmHUfAAKQ1YnmpcymQxdXV1EIhEGBgYoKioiEAgQCARwOBxWxxMRmXVyuRwtLS309/fT2NhISUmJdWF6WzA7H8dY/rdgL7AuxwyUzWaJx+N0dnYyPDyM1+ulsrISt1sTcieLmXgWUlsxqt8HriVWxxGZNrlcjh07dlBWVsaSJfraFxEREREREREREZlhVCAWmQ5dXV3s27fP6hgiIjIF7HY7q1evxuVyXdiOzAxm209hKIax5C8g3zs5AeUNpdNpYrEYqVQKm81GeXk5fr9fxSmRWSiTyWC32zEMw+oo8t9myiRiM/JLGElhLP4/lhx/tuju7qa9vZ2TJ09SUlJCOBymvLxcr6kLkX4ZM/IERsUNsGDVWX3Ivn376OrqmuJgIiIy01RXV1NTU2N1DBERERERERERmT9UIBaZDq8WiOvrtVSuiMhccvLkSTo7O3E4HDQ2Nl54iTg3hnnsB5AdwljyIbAXTUpOOdXIyAjJZJJoNMrw8DAlJSUEg0HKy8ux2+1WxxOR87R582bq6+spKyuzOor8kVwuR3NzM0NDQ6xevZrCwsJpz2Ae+gYsWIlRfvW0H3s26uvrIxKJkEwmcTqdhEIhgsEgeXl5VkebXYY6MY/+AHyXYfjfctYftm/fPkZGRqioqJi6bCIiMqO8OnxiyZIlOv+LiIiIiIiIiMh02at3fkSmkYoMIiJzk8vloqmp6cKXZ7c5MKr/DPPov2G2P4pR8wEwbJOWc74zTZNUKkUikeDEiRM4HA7KysoIBoOWTcQUEZkPbDYbK1eupKmpiaamJlavXk1BQcH0BRg7CaMnMIprpu+Ys1xJSQnLly+npqaGzs5O2traaGtrIxAIUFlZidPptDrizJcdxmz/GbgWYfjPvbjudDr1NwQRkXnG7/dz5MgRcrkcVVVVVscREREREREREZF5QI0UERERkQvU0NBASUkJzc3N9PX1XdjO8lwYVbfBUAQz+bvJCTjPDQ4OcvToUbZu3cq+ffvI5XLU1dVxySWXUFtbq/KwiMg0sNvtNDY24nA4aG5uZnR0dPoOPnAMDDsUaprfuSooKKC2tpZLL72URYsWkUql2LZtG62trZw8edLqeDOaGXsKzAxG+HrAsDqOiIjMAl6vlyVLlnDs2DHa29utjiMiIiIiIiIiIvOAJhCLiIiIXCCbzUZDQwOtra00Nzdf+CTiAj9G8B2YkV+CawloYuI5y+VydHd3E4vFSKfTOJ1OAoEAoVBoeqdeiojIhLy8PBobG9mzZw/Nzc2sXr2avLyp/7OEOdAGRRVgc0z5seYqu91OOBwmFAqRSqXo6Ojg5Zdfxu12Ew6H8UYb780AACAASURBVPl8GIZKshP6DkJPC0b17ZCnC5VEROTsVVSMX/B05MgRAE0iFhERERERERGRKaUCsYiIiMgkmPQSsWct9B3CjDyJUXunSk9nqa+vj1gsRjKZxDRNvF4vjY2NeDweq6OJiAjgcDheUyJetWoVdrt9ag862AGly6f2GPOEYRiUlZVRVlZGb28vkUiE/fv3U1BQQDgcJhAITP3nc6Yzs5ix34J7JZRcZHUaERGZhVQiFhERERERERGR6aICsYiIiMgkmewSsRF6F+YrD2B2PY/hv2YSk84tmUyGrq4uotEo/f39FBUVUV1dTSAQwOFQ8VpEZKZxOp0TJeKWlhZWrlw5daXT7DCMpDAKw1Oz/3nM7XbjdrsZGhoiEolw9OhRjh8/jt/vp7KyEqfTaXVEa6S2QOYkRuD9VicREZFZTCViERERERERERGZDioQi4iIiEyiSS0R55Vg+K/BjD0NpfVQGJzcsLNcOp0mkUjQ1dWFYRj4fD4WL16sacMiIrNAYWEhjY2NNDU1sXfvXhoaGrDZbJN/oKEoYEKRCsRTpbCwkNraWqqrq4nH40QiEaLRKD6fj8rKygtbkWG2GTuJ2fUiRtmV4FhgdRoREZnlVCIWEREREREREZGppgKxiIiIyHlyOp04nU42b958xm2ampq44oorzv8gC9dDTwtm9CmMJX8BGOe/rzlgZGSEZDJJNBpleHiYkpISamtrKS8v15LpMmNls1lOnDhhdYx5wW6309fXZ3WMOcHtdpOfnz+lxyguLmblypU0NTWxf/9+6uvrMYxJ/j43FAGHG/LmUYnVIg6Hg8rKSioqKkgmk3R0dPDSSy/hdruprKzE6/VaHXHKmYlnIc8FvsusjiIiIrNMaWkp+/btO+P9x44do6SkRBfMioiIiIiIiIjIpFKBWEREROQ8lZaWUl9fz8jIyGnvP3nyJJ2dnRd4FAMj9C7Mw/8KJw9Aad0F7m/2MU2TEydOkEgkSKVS2O12ysrKCIfDFBcXWx1P5A0NDw+/bhlAJldHR4fVEeYEp9PJ2rVrp7xEXFJSQkNDAy0tLbzyyissXbp0UvdvDkWhMDSp+5TXZxgGfr8fv99Pb28vHR0dtLa2UlhYSDgcJhgMTs20aauNnoDeVoyKG8DQn9tEROTc1NfXc/LkyTPev2/fPjKZzDQmEhERERERERGR+UDvaIiIiIhcgNLS0qk/SIEf3CswE/8Po2QZGHOwdHMag4ODxONx4vE4Y2NjeDwe6urq8Pl8kz+hUmQarF+/XqV3mRV27NhBJpNhz549rF69espLxAsWLKC+vp69e/eSn59PTU3N5O18OAELGidvf3JO3G43breboaEhIpEIR48epa2tjUAgQEVFxZR/bU0ns+tFcCyA0hVWRxERkVnI6XRSVlZmdQwREREREREREZlnVCAWERERmQUM/9WYr3wLeprBs9rqOFMml8vR3d1NLBYjnU7jdDoJBAKEQiEKCgqsjiciMi+8OkH2xIkT01Yi9nq9XHTRRRw6dAiHw0E4HL7wnZoZGOvBcKqMY7XCwkJqa2uprq4mEokQjUbp7OykvLycysrK2X9xxdhJ6GnCCG2aNxd6iYiIiIiIiIiIiIjI7KcCsYhM+OlPf8oTTzzBF77wBWpra0+7zfDwML/85S85fPgwn/rUpyZ139Phu9/9Lj/96U/x+XwsWbKEoaEhGhsb+eAHP0he3vmdEgcHB/nhD3/IM888w2OPPTbJiUVE/lu+FzyrMZO/x1iwEgy71YkmVV9fH4lEgkQiQTabxefz0dDQwMKFCzVtWETEAna7nVWrVtHU1DRtJeJgMMjo6ChHjhzB6XTi8/kubIcjKTBzUKAC8UzhcDioqamhqqqKrq4u2tvb2bVrF263m8rKSrxer9URz4uZ2gJ5rnk17frYsWM89NBDAHzuc58743b79+/n5z//OZs2bWLNmjWTuu+ptm/fPr7+9a9z6NAhVq1aRVFREXl5eaxatYobb7zxtD+j/uEPf8But7Nx48ZT7hsaGuLBBx+kt7cXu92O0+nkIx/5CCUlJezdu5f777+f48ePs2HDBsbGxnC73fzlX/4l5eXljI6O8uUvf5ljx44xNjZGYWEhd955J42N8+drTkREREREREREREQmn8aiiMiE66+/nscee4yRkZEzbpOXl8eRI0d48sknJ33f0+EjH/kIzc3NbNiwgX/+53/mH/7hH3jwwQe56aabznufRUVFNDY28tvf/nYSk4qInMooexNk+qC3xeookyKTyRCLxdi9ezcvvfQS6XSaqqoqLr30Uurr6/F6vSoPi4hYKD8/n1WrVmEYBnv27GF0dHTKj1ldXU0oFGL//v309vZe2M5GusanweYvnJxwMmlsNht+v58NGzbQ2NhIXl4era2t7Nq1i1gsRi6Xszri2cuNQPplDN+lc+4Cr9ezaNEicrkc+/fvf93tvF4vDzzwAMlkctL3PdXq6+tZv349zz//PF/5ylf4x3/8R/7qr/6Kn/3sZ1x55ZUcP378lI/58pe/zH333XfK7e3t7axdu5ZQKMSnP/1pPvWpT7Fy5UrWrl1La2srK1asYOXKlbz00kt86Utf4itf+QqFhYUsW7aM48eP85nPfIZ4PM53v/tdvv71r9Pe3s4rr7wyDc+CiIiIiIiIiIiIiMxlKhCLyITCwsI3XB4+Ly+PxYsXT8m+p0t+fj52+/gbuy6Xi/e85z38+te/xjTN896n2+2erHgiImfmcIN7BWZqK3D+5yyr9fb2cujQIbZu3crhw4cpLCyksbGRDRs2UFlZicPhsDqiiIj8NytKxEuWLMHr9dLa2srAwMB578ccSY1P8De0+NJM5vF4aGhoYN26dZSWlnL48GG2b9/O8ePHGRsbszreG+tpAUxYsMrqJNPO4/G84Tbl5eVntd357Hs65OfnY7PZsNnG/4Tq9/v54Q9/iGEY3HHHHa/ZtqOjA4fDweOPP35KufjOO++kvr6em2++eeK2t73tbVx33XXccccd5HI5nE7nxHEMw+Cuu+6ip6eHp59+mhdeeGFi1aTS0lIefvhhUqnUFD5yEREREREREREREZkPVCAWmeGefvpp7r33Xp599lluueUW/uZv/oaBgQFyuRzPPPMM9957L7/73e+47bbb6O3t5be//S0/+MEP+MIXvsBPfvITAD7/+c9z9dVX09TUBMCvfvUr7r77bk6ePMkHPvAB4vH4aY89NjbGD3/4Q37+85/z6U9/mnQ6/Zr7H330UW666Sa+8IUvkMlkJm5/4okn+MxnPsNHP/pROjs7p+iZmTxbt26lvr5+Ysrl6Z7DV73efa86fPgw119/PT/+8Y8tn7gsInOP4b0UhhPQf8zqKOdkdHSUjo4OduzYwZ49e+jv76e2tpbLLruM+vr6GVMSERGRU013idgwDJYvX05xcTEtLS3n/zP1cBc4fZMbTqaMy+Vi6dKlbNy4kWAwSCQSYdu2bRw4cIDBwUGr452Rmd4N7hVgL7Q6Cp2dnXzxi1/kqaee4t577+Wmm26aWCknGo1y//338/TTT3PPPffw/e9/n5MnT/Ktb32LBx98kL/7u78jGo1y4MABNm3axCc/+UlGR0fp7e3lQx/6ENu2beORRx7hX/7lX854/JdffplHH32Ur371qzz22GOvuS+ZTHL33Xdz2223sWvXronbU6kU999/Px/+8Id56KGHpuaJmWT5+fl87GMf4/e//z0HDhyYuP173/seX/va17jiiiv4xje+MXF7IpHg6aef5p3vfOcp+3r729/Orl27Jv5e88de/XvKypUrueqqq/jmN7/J/fffTyaTwev18uEPf3gKHp2IiIiIiIiIiIiIzCcawyMywx06dIhvf/vbbNy4kc997nPcfvvtnDhxgm9/+9scOHCAb33rW1x99dW8+c1v5le/+hWPP/44P/vZz8hkMlxzzTVEIhE+/vGPT7zJBJDL5bj11ltxOBwYhnHGybsPPvggO3fu5KGHHqK1tZV/+qd/4ktf+hIAR44coaioiI9//OPccccd9PX18cUvfpEnnniCnp4ePve5z/G1r32NTZs2sWfPnml7vs7Wiy++yNDQEFu2bGHhwoU88cQTwHj5+d///d9PeQ7/9m//9nXve1U2m+Xxxx/nvvvu46KLLrLq4YnIXFYYhOJqzO5tGK5znwg/nUzTpKenh1gsRiqVwm63U1ZWRn19PS6Xy+p4IiLyOgYHB+nq6nrNbRUVFbS1tbF7927WrVtHfn7+lB3fZrPR0NDAnj17aGlpYfXq1RPTN8/aSBeU1k1NQJky+fn51NTUUFlZSTKZpLOzk507d+LxeAiHw3i9Xqsj/o+hCAzFMILvsjoJAHa7ne9973usX7+ez372szz33HNs2rSJ/fv3U1hYyIMPPsiGDRv4yEc+Qk9PD9dccw0PPfQQDQ0NPPPMM1x88cW0traybt06XnrpJfLz88nPz8fr9XLJJZfQ1tb2uiv3XHfddezcuRO/34/P5+Otb30rpaWlAGzevJm7776bH/3oR7zlLW/h8OHDLFy4kHvuuYeHH36YTCZDTU0NHo+H66+/frqesvO2fv16YPxvNsuXL2d4eJje3l4CgQB33303d9xxB3//939PSUkJ+/btA6CmpuaU/dTW1gJMFJHHxsZ46qmniEajPPDAA/zf//t/ueKKK7jkkksYHh7m3nvv5eGHH+Z73/seGzdunJ4HKyIiIiIiIiIiIiJzliYQi8xwDQ0NlJeXc8MNN7B8+XI+85nP8Mtf/hKn00ljYyMej4frrruOO++8k+9///tcd911AOTl5fHRj36UBx54gAULFvChD32I73znOwDs3r2byy+/nMLCQh5++GGCweBpj/3+97+f++67b2Lp2FgsNnHf4sWL2bRpE29+85u59957eeSRRwD46le/SiQS4etf/zq9vb0sWrSI/v7+KX6Wzt3q1aux2Wxs3bqVz372sxNv5H3jG9847XP4RvfBeHn41ltv5eabb1Z5WESmlOG9FPoOwWj6jTe2wNDQEEePHmXbtm00NzeTyWRYtmwZl156KUuXLlV5WERkhguHw3R1dbFv377X/Hfo0CFGRkYYHR19ze8GUyUvL4+VK1eSyWRobW0ll8ud/QebWRg9geEsm7qAMqXsdjvBYJANGzbQ0NAAQGtrK7t37yaRSLxukXW6mOmXoMAPRRVWRwEgGAwSCATYtGkTy5Yt42Mf+xgrVqzg6aefJhQKEQqFuOaaa3jTm96Ex+MhFotNPLdvfetbKSoq4vHHH+euu+7id7/7HR0dHbz00ktcfvnlANx66618/OMfP+Pxt2/fjs/no62tDZvN9pqLEG6++WYaGxv54he/SGlpKb/+9a958cUX6ejo4IEHHuA73/kO73jHO0ilUlP7JE2SV1doevXvKT/5yU8oKyvjN7/5DU6nk1wux7/9278BTJTee3t7T9nPq8/RwoULgfEJ7G63m7Vr1/L73/+ez372s8D4+fArX/kKO3fuJD8/n6uuuorNmzdP6WMUERERERERERERkblPE4hFZpmamhrsdvvEv222/7kOIJVKMTQ0NPHv6upq+vr6ALjrrrtYvXo199xzD9XV1Wd1rL6+Ph544AE+8YlPUF5eTnt7+8R9hmFM/H9dXd3Em7fHjh3jlltumZiiM1O5XC7++q//mj/84Q/ccMMNbNu2DZfL9brP4evdB+NvcHs8Hu69917+4z/+Y/oejIjMPyVLIa8Es2cPRvnVVqcBxqfbd3d3E4vFSKfTOJ1O/H4/oVCIgoICq+OJiMg5eLVoeCY7d+6ctvKm0+lk5cqV7Nmzh4MHD1JXd5YThUfT4yXiAt/UBpRp4fV68Xq99Pf309nZycGDBzl69CjBYJCKiopzn049Gcws9O7HKLt8+o99Ds70N4Q//f0W/ud33LKyMm655Ra++93vUlBQwL333ntWx3r22Wfx+/28+93vfs0x4X/+hmCz2Vi6dCmmaXLs2DGqqqq45557LuQhWmLXrl2UlpZOFLCff/557rjjjon7b7/9dr7xjW9w9913s3z5cjweD/v27ePGG298zX727NmDw+FgzZo1HD58mLy8PK644orXbJNMJhkYGGDRokWsWbOG559/nosvvpj77ruPq666auofrIiIiIiIiIiIiIjMWZpALDIL/PGb89u2beNtb3vbabd705vexHPPPTfx70gkwrXXXgvAokWLeMtb3sIHP/hBbr311oltOjs7z3jcv//7v8flcuHz+RgdHT1jSSASibBp0yYAli5dyn333Tdx34svvvi6x7CCaZqYpolhGPzw/2fvzsOqqvbHj7/PYZBRkFFAFBSZnJUcMxuvPak3mzTTShutLOtmWXpNyZ+WWQ7pNTO7luYQ5pRWVk6YAyrlBAKiIDIpIPM8nPX7w6/7CpwDOCBqn9fz9OQ+e+21PmutzT5777P22suXU1BQoP3QV1cb1rXuks8//5zo6GjmzJlzA2oihPjb0unBsTPkHAZ1BbMxNoKioiISEhLYv38/MTEx6PV6goOD6dWrF23btpXBw0IIIa6Zra0tHTt2JDMzk8TExIZtVPF/M31atGi8wMQNZ2dnR2BgIL1798bDw4PU1FQiIiI4efIkxcXFNzaYwtNQVQzNO9zYchvg8mv3P//8k3vvvbdWmp49e1JUVMTRo0e1z86dO8c991x8OG38+PF89dVX2NnZaYOBi4qKyM3NNVpmSkoKb7/9tnZvoKKiwuQ9hJycHO677z78/f3ZvHkzsbGxAJSXl7Nx48arqHHjMVaH+Ph4QkNDmTNnDtbW1oSHh9OjRw8GDBig/ffee++RmJjIxo0bsbS0ZObMmSxevLjaG5qqqqpYuXIlkyZNws3NDYPBYLQ8KysrJkyYoC3b2toSFBSEi4s8ICGEEEIIIYQQQgghhBDi2sgMxELcAlJSUvjPf/5DUFAQO3bsYO7cucDFH63Onz9PZmYmrq6ufPjhhzz22GMsWbKEO+64g99//11LC/DGG2+wYcMGbG1tAcjOzsbb25vDhw/TtWtXzpw5Q3FxMQkJCXTo0IFWrVqxcOFCLly4gFKKPXv2sHXrVlq3bk1KSgo//fQTzZo1IyIigpkzZwIwY8YMHnroIfbv34+7uzsvvvgid955Z628m0pSUhI5OTkcP36csrIynJycCAsLo3///kycOJFJkyYxcuRIo21YV/smJydrr3MOCwuja9euODg4MGbMmGqzRAshxPWia9ENlbUXis6AXdsbWnZlZSWZmZmkpaVRWFiIjY0NrVu3pmXLllhYWNzQWIQQQvw9ODg44O/vT1xcHFZWVnh4eNS9QUUe6C3BTB5kuR1ZWlri4+ODt7c3586dIyUlhfT0dJydnfHy8qJFi8YfOK7yosCmNVg6NnpZV2r58uV4eHiwb98+JkyYQEBAAMXFxaSlpREVFYVSCi8vL7766iveffddPv74YyIiInj55Ze1GXW7dOlC586dqz2A/P7773P27Fk2btyIwWAgJiaGlJQUKioqaN68OWZmZjz++OP06dOHli1bMnPmTBYsWEBgYCDr1q3DwcGBPXv2MGnSJFq3bk3r1q15+OGH6dmzJ3369MHOzo4VK1bUyrupzi8rKys5duwYlZWVbNq0CZ1Ox+HDh9mxYwcLFixg+PDhlJSUMHnyZN59991q27q5ueHu7s7/+3//j7vvvpuxY8dibW3N008/zTPPPIOFhQXLly/niSee4M0336SiooLjx49TUFBAfHw87du31/Jq3rw5e/fuZeTIkTz77LMcOXKE+Ph4Nm/efKObRAghhBBCCCGEEEIIIcRtRqdu1HtHhfgby8zM5MSJE1f1asnt27czduxY/vrrL5KSkggODkav11NcXMyhQ4eAi68A7d+/P3BxdpzTp09TWVmJv79/rcGr+fn5NG/eXFuOj4/Hz88PnU7HH3/8gcFwcSbLnj17Ym1tTVxcHJ6entja2hIdHU2HDh3Q6/WUlZURGxuLo6Mjbdq0qVZGYWEhsbGx+Pr64uzsDGA0byGEuN1dy/G/IVTCUrB0RtfqkUbJv6aCggLS09M5f/48cPF14h4eHjdkkI4Qt7KioiIiIyMJCQnRHuQS4lZ26NAhXF1d8fHxueFlJyYmkpycTKdOner8/lEZuyAvCl37cTcuONGkLly4wNmzZ8nPz8fe3h4vLy/c3NzQ6XTXvzBViYqZjc79XnDudd2zP3HiBADBwcFXvG3//v15+eWX6dGjB25ubto1+YkTJ8jMzASgbdu2eHt7AxfP706ePEm7du1wdKw+GDovLw8HBwdtOTc3l/Lyctzc3EhOTiYhIQEAd3d3AgMDKSwsJDU1lYCAANLS0tDpdNpg//T0dNLT0wkKCqp1P+DUqVMUFxfTqVMndDqd0byFEOLvLjw8nODgYFxdXZs6FCGEEEIIIYQQQghx+4iWGYiFuMkppVBKYW9vr80EBGBjY2N0QJpOp8PPz89kfpcPHgaqzWpzaRDy5QICArR/d+rUSft3s2bN6NKli9Ey7OzsCAkJqfaZsbyFEEJcG51DR9T5naAqQdc4p3Xl5eWcP3+e9PR0SkpKsLe3p23btri7u2NuLqeSQgghbixfX19KS0uJjo6mW7dupgflV+SDhYPxdeK25OzsjLOzMwUFBaSmphIXF8eZM2fw9PTEw8Pj+p63FCaCoQyaB9Sf9ga7NE9AUFBQtc9NDUa2t7enR48eRtddPngYqDbA2NvbWxuEfImdnZ12D8HT07PaOg8PD5Mzh9e8h2EsbyGEEEIIIYQQQgghhBBCXH/6+pMIIZrSDz/8QHJyMtHR0U0dihBCiJtN82AwlEPh6euarVKKnJwcTpw4QUREBGfPnsXR0ZEePXrQvXt3vLy8ZPCwEEKIJhMQEICtrS1RUVFUVFQYT1SRDxbNja8TtzV7e3sCAwPp2bMnrq6unD17loiICE6dOkVpael1KUMVxINVS7BwrD/xDRQREUFsbCz79u0jPz+/qcMRQgghhBBCCCGEEEIIIcRNTkZ+CHGTW7x4MYsXL27qMIQQQtyMLJqDTStU3gl09tc+A15JSQnnz5/n3LlzlJWV4eDgQPv27XF3d0evl+fOhBBC3Bz0ej0dO3bk8OHDHD9+nK5du9b+nqrIBxuvpglQ3BSsrKxo27Ytbdq04dy5cyQnJ5OamoqzszOtW7eu9XaeK1J4Ehw6X79gr5PevXuTlZXV1GEIIYQQQgghhBBCCCGEEOIWIQOIhRBCCCFuYbrmwajM3aAMoLvyQb4Gg4ELFy6Qnp5OTk4OlpaWuLu74+npiZWVVSNELIQQQlw7CwsLbRBxbGwswcHB1RNUFqAzt2+a4MRNxczMDC8vLzw9PcnKyiIlJYXDhw9jb2+Pl5cXbm5u6HS6hmdYlgXluejs2zde0EIIIYQQQgghhBBCCCGEEDeADCAWQgghhLiV2fvBuV+hJA1sWjV4s6KiIm224crKShwdHQkODsbFxeXKBtEIIYQQTcTGxoaOHTty7NgxEhMT8fX1vbhCGaCqBMxtmzZAcVPR6XS4urri6upKXl4eqampxMXFcebMGVq1akXLli0xMzOrP6OiJNBbgrVn4wcthBBCCCGEEEIIIYQQQgjRiGQAsRBCCCHErayZK1g4oApPoatnAHFVVRUZGRmcP3+evLw8rK2t8fb2xt3dHUtLyxsUsBBCCHH9ODg40L59e+Li4rCyssLDw+Pi4GEAM+umDU7ctBwcHHBwcKCkpITU1FQSEhJITEykZcuWeHt706xZM5PbquIzYOMNugYMNhZCCCGEEEIIIYQQQgghhLiJyQBiIYQQQohbnZ0fFJ4Ct7uNri4oKCA9PZ2MjAyUUjg7O9O5c2datGhxY+MUQgghGkHLli0pKSkhPj4eKysrWtgYLq4ws2rawMRNz9raGj8/P3x8fDh//jzJycmkpaXh4uKCt7c39vb2tTcqOovOqceND1YIIYQQQgghhBBCCCGEEOI6kwHEQgghhBC3OJ19O1Tu4YszLv7fbIvl5eVkZmaSnp5OUVER9vb2+Pr64u7ujrm5nAIKIcTViI2N5fvvvwegZ8+edO7cmVWrVlFcXEzLli158skncXBwYMeOHfzxxx+0adOG0aNHNyjv8vJy9u3bR3p6OiNGjDCaxmAwsHHjRv7880+srKy4++676d+///Wq3i3N19eXsrIyoqOj6RbkiQ3IDMSiwczNzfHy8sLT05OMjAySk5P566+/cHBwwMvLCxcXF3Q6HZTnQEUe2LRp6pCFEEIIIYQQQgghhBBCCCGumb6pAxBCiNuVUoqRI0fy+uuvs3z5cvr370/fvn0btO3evXv5+OOPmTVrFg8//HAjR1q/kpISAgMDKS0tbepQhBBGXCh1oAAPTsUdJyMjg+joaCIiIjhz5gyOjo706NGD7t274+XlJYOHhRDiGgQGBmJtbU1oaCj9+vXDy8uLvn37Mm3aNFq1aoWDgwMA9957L1u3bmX48OENzjs/P58VK1awatUqk2leffVVPDw8GDRoENu2bSMsLOya63Q78ff3x8bGhpNnskhWvUhOz6aqqqqpwxK3EJ1Oh7u7OyEhIXTu3Bm9Xs+JEyeIjIwkOTmZhFOxFODJhRKZ3Vpcf/v376dv374sXbqUDz74ABsbG3777bcGbTtu3Dj27NmDv78/hw8fbuRI6/fJJ5/w6aefNnUYQgghhBBCCCGEEEIIIeohA4iFENUsXLiwqUO4bRw8eJCff/6Zzz//nGeeeYadO3fi6enZoG1DQ0MZMGAAEydOZO3atUDT9s2qVas4d+4cK1asaNRyZP8T4sqlpqYSFXOKIxcCSMsqJSYmhvLycgIDA+nTpw9+fn7Y2dk1dZhCiFtAWVkZL7/8clOHcdN79dVXsbGxYcOGDQD069eP3r17s27dOi1NWloaAwcOxHpM2AAAIABJREFUxNq64TPguri40L17d5PrKyoqWLFiBT179qRv37707Nnz6itxmyorK6OoqIjC4jISs21IPJPM8ePHUUo1dWjiFtSiRQs6d+5MSEgI5ubmJCQkkJJVwZHsQKKiY0lNTW3qEJvc8ePHCQ8Pb+owbhsffvghw4YN44UXXuDDDz9k1apVpKWl1bvdvn37iI+P58477yQqKopu3bo1ad9UVVWxcuVKFixY0KgPccj+J4QQQgghhBBCCCGEENfObNq0adOaOgghbnfFxcVkZmbi4+NzVdunpqZib29PTEwMOp0OGxsbbV16ejq2trbExcXh4uKCUoqEhATS09NxdnZGr9cTHh5OUlISFRUVODs7c/ToUeLi4vDy8uLMmTM4OTkBMH36dL7++ms6deqEi4sL+/fvJykpiZKSElxdXTl+/DixsbF4e3uj1+vrjMtgMBAVFUVFRQXNmze/pva73m5Ue6amprJw4UJ8fHzo2rUrer0eHx8fvLy8AIzmDbB7924WL16Mv78/Silat25drW9atmzJvn37OHPmDM2aNeP06dPExcWRlpaGt7c3MTExxMTE0KZNG5RSREdHYzAYqg0grFnP+vrryy+/5J///Cdffvklr732Wq310dHRFBUV0aJFC+0zU3kmJyfj4OBAbGwsSilsbW0BatVRZkkVt4NrPf43RFRUFAaDodpnBoOBwMDAi6/aFkI0uYqKCtLS0vD09MTS0vKKts3JyWHr1q04OjqyYsUKzp8/j7+/P3BxxtpffvkFe3t7Vq1aRdeuXcnIyGDLli3s27ePFi1a0KJFC7788kt++uknnJyccHd3Z8eOHfz44490796db7/9lsDAQMzMzBg5ciS7du1Cr9fTvn17Fi9ezG+//YazszPu7u7s3buXjRs3EhISQl5ensm44OL3/fLlyzl9+jRBQUHaec4lCQkJHD16lLy8PNasWUOzZs3w8PAA4OzZsxw+fJgLFy6wd+9eOnToQFRUFL/88gvHjh3Dx8eH0tJS5s+fz969e/H398fW1pb//ve/nDp1ymh6K6uLs4XGxcVx5MgRlFIsX74ce3t73NzctLgiIyNZs2YNJSUl+Pr6ApCZmcnmzZvp2LEjAJaWlkRHR7N7925Gjx4NwMaNG/npp594/fXXadasGUuWLGHYsGHaeaGpeGrWtaioiFOnTvHUU08RHh7Od999R0lJCa1ateKjjz7ijz/+wMHBgQMHDrBz507c3Nx46KGHjJZRVlbG3LlzOXz4MJ06dWLZsmVs2bIFOzs7PD09WbNmDQkJCQQEBFzRPgkXB0jb2tri6Oh4xds2pqSkJAoKCqoNGC4rK6NFixZamwtxpSwtLUlMTKx1vlVQUIC3t3ejlJmZmQmAq6vrFW9bVlZGXl4e5eXlxMfH4+rqqp0TlpeXk5ubS35+PmVlZdjY2FBQUEBUVBTNmjXDxsaGpKQkjh49SlJSEp6enhQWFnLgwAEqKiqwsLAgPz8fW1tbkpKSeOihh3Bzc8PFxYXc3FyOHz9OUlIS7u7ulJaWEhERQVVVFU5OTnXGBZCVlUVcXBzOzs6YmZldn4a8Dm5UewKsXLmSPXv28OSTT2JlZUVgYCAVFRXaPYSaecPF75E1a9Zw4sQJ/P39sbe3Jysrq1rfFBcXc+TIEdLT07G3t+fAgQMkJSVhaWmJubk5+/btQ6/X4+DgQE5ODidPnqzWD8bqWVd/bdq0iQEDBrBu3TratWtHhw4dqq3Pzc3lxIkTNG/evNp5kbE8S0tLyc3NpaqqipiYGNzd3dHpdLX2PxcXl0bofSFuLklJSbi6umrHDCGEEEIIIYQQQgghroNMmYFYiJvcuHHj6NmzJxMmTODDDz/Ex8eHn3/+mZKSEt566y169erFzJkzueeeezh69CijRo0iPT2d6Oho+vTpQ3x8PHl5edx9993aIM6SkhLCw8MpKCjAz8+PI0eOYDAYsLa2xszMDEdHRywtLTlx4gT/+Mc/tMETlZWV7Ny5k4qKCpNxAWRnZ/Pee+8RFxfHiBEjbqrXVt6o9gTo1asXI0aMYMyYMYwaNYpz585pM8VduHDBaN4ADg4OVFRUYG1tjb29fa2+0ev1HD16lJEjR+Lu7o6TkxODBw+mtLQUuDhw8OeffyYyMpLHH38cCwsLXnzxRTZt2mS0nseOHauzv3bv3s2AAQN44YUXSExMrPYKVYPBwBNPPEFaWhqfffYZfn5+TJkyxeg+YDAYmDx5MiEhIcydO5c5c+YQEBBAfn6+0ToKIeqnlKKysrLW55WVlTLbohC3iUmTJvH888/z3//+F71ez5gxY5g9ezYlJSVMnjyZl156iQ0bNrBr1y7Cw8N57rnnGDp0KIMHD2bIkCFs3bqVe+65h+nTp2uDPa2srHBzc6OoqIjQ0FCSkpLQ6/UMHz4cd3d3xo8fj7OzM71792bGjBnaQxA6nY7mzZtTUVFhMi64+GDRkiVLGDFiBDt37mTkyJG16vX000/z1ltvsXPnTnJzc+nbty979+4lJSWFUaNGMXnyZMLDw/n5559Zvnw5y5Yt49lnn8XHx4du3bpRVFSEq6srS5Ys0QYAX7hwgZ49expNn5qaqp2fvP/+++zdu5f8/HyGDh2qxfTNN9+QkJDAsGHDePfdd1m0aBEAR48eZfr06dWOq6NGjWL37t0kJCSQmppKUFAQAN9//z0AJ0+exM/PD8BkPMbqeonBYGDv3r0MHjyYgQMHYmVlxYgRI7CwsGD8+PGMHz+eHj16aOmNlVFYWEhOTg579uzBxsaGO++8k1mzZmkDobOysmjfvv017J03n7Kysiv6XIiGuJXOtw4ePIivry9vv/02b731Fk888QT3338/VVVVHDp0iHbt2hEaGspzzz3HpEmTWLZsGXPnzkWv1/Pqq68SGhqKm5sbkyZNYs2aNVhaWuLg4MBXX32Fs7Mz//73v3nxxRcBsLCwAMDW1hYbGxucnJwYO3YsO3bs0K5lly1bhpOTU51xwcXj78aNG9m5cyedO3fm3LlzTdaGl7uR7QkXZyA+c+YMnTp10r5P7rjjDgCjeQM0a9YMMzMzdDodjo6OWFhY1OobZ2dnnn76aY4fP46DgwMbNmxg6tSptGzZEmtra7799lusra159tln+f3330lNTeXOO+/EYDAYrWd9/fXrr7/yyCOP8MILLzB37txq63bs2MG7775LQUEBAQEBPPXUU+zcudNonrGxsQQGBvLee+8xe/ZsRo0axfTp04Ha+58QQgghhBBCCCGEEEKIq6SEEI0uIyND7dq166q23bp1q2rZsqUqLy9XSin1wQcfqM6dOyullNq2bZtycHBQxcXFymAwqFdffVVNmTJF23bKlCnqgQceUEop1adPH7VkyRKllFKzZ89Wubm5SimlEhIStPQ//PCDCgkJ0ZYrKytV27Zt1dq1a5VSSn300UcqLS2t3rjGjh2rvvjiC7Vr1y41Y8YMZWVlpcrKyq6q/tfbjWxPpZQyGAzqm2++Ua6ursrBwUH98ssvSilVZ95KKdWqVSu1Z88ebblm3xQXF6sWLVqo48ePK6WUeuSRR7T8vvjiC5WSkqJ++eUX9fXXXyullPr000/Vc889Z7Se9fXXa6+9pi2/8MIL6sEHH9TW7dixQ3Xo0EEppVR6errS6/UqKyvLZJ5//vmncnBwUBUVFUoppbp166Y2bNhgtI5C3A6u5fjfUIcOHVLh4eFq165dateuXSo8PFxFRkY2aplCiCtTWFiodu3apQoLC694299//135+vpqy0uXLlWtW7dWSim1c+dO5e7urgwGg1JKqUcffVTNnTtXS7tgwQLtPGfYsGFq2rRpSimlQkNDte/iyxn7Lr7zzju1PCdNmqTVoa64hg4dqiZNmqTmzZunxo0bp1q0aKEKCgqq5Tt58mQ1ZswYbXnUqFHqmWeeUUopNXXqVDVs2DBtnbOzszp8+LC2/Nhjj6k33nhDlZeXKy8vL+04+8EHH9SZXiml5s6dqx5//HGllFJlZWVKr9erlJQUZTAYlI+Pj5o7d66aN2+eGjx4sLrnnntqtdElFRUVytXVVU2ZMkXNmDFDxcXFqdGjR6vevXurI0eOqAULFtQbv7G6Lly4UN1///3q3XffVefOnatWZmxsrLKzs9OWJ0yYoMaNG1dnGYmJicrOzk7l5uaq8vJy5eTkpL777jullKp2LnqlDh48qBITE696+8aSlJSkdu/erX0nXvpeLC4uburQxC3uRp9vRUdHq+jo6Kvatnfv3urzzz9XSimVk5OjHBwc1Pr165VSF4/pM2fOVEopdfbsWdW8eXNVVFSklFIqLy9P2dnZqb1796pff/1VeXt7q8rKSlVQUKBmzZqlpcnMzNTK6tixo9qyZYu2/N///ld17NhRKaVUSUmJmjhxYr1xJSUlqbvuuktr2/bt26sPP/zwqureGG5ke17K55FHHlGAGjp0qCoqKlLJyckm81bq4nfw/fffXy2fmn3z8ccfq8cee0wppdTRo0eVjY2Nys/PV+Xl5So0NFQppdTzzz+v8vLylMFgUM2bN1dnz56tVc8zZ87U2V/Hjx/XvgPPnDmjzMzMVEREhLb+rrvu0u4xjR07Vr3++ut17gNDhgxRs2fPVkoptWnTJtWlSxeTdRTidrdr1y6VkZHR1GEIIYQQQgghhBBCiNtLlEzxKMRNztzcHDs7O212lcGDB3Pq1CltXYsWLbC2tkan07Fnzx7atWunbdu/f38iIiIAePPNN1m0aBFVVVWUlJTg4OAAoM0ubIyZmRlvvfUWn332GXBxZuFLr5auK65du3YRFBSEo6MjgwYNIiIiotqrSZvSjWxPg8GATqfj2WefJTY2li5duvD444+TmZlZZ94NcWl2oK+//pqcnBzs7Oz45ptvqKqqIjU1FS8vLx588EE6duxIZGSk9spVY/Wsq7+Sk5OJjo5m6tSpvP/++1RWVvLrr78SExMDQMuWLYmLiyM3NxcXFxc8PT2xtbU1maeZmRkWFhaYm5sD4OzszIULF66sE4UQ1QQEBGizjl36O/P392/qsIQQ18mlv+tLQkJCyMnJ0dZd+j4HiIuLq/ZK406dOpGQkADA+PHjWbJkCbm5udjZ2WnfxfWZMGEC8+fP184jLuVfV1xHjhzh9ddfZ/z48SxYsIDs7Gzs7OyuqF6XZhPMysriwoULRutlYWHBq6++yqJFi9i9ezf33ntvnekv5X2JpaUler2e0tJSzp49S7NmzXjzzTcZP348mzdvZseOHSbbxdzcnCeffJJvv/2W6Oho/P39GT16NBEREfz73//miSeeqDf+mnW9JCsri2+//VZ7O0V96irDx8eHu+66i9WrV/Pdd9/xr3/9i6+//pqjR4/SuXPnBuV/K2nVqpW2r136XvT19cXa2rqJIxO3ulvpfMvc3BwnJycAHB0d6devX7VrXk9PTwAiIyNxcnLSjkHNmzenc+fORERE8I9//AN7e3t++uknwsLCGDFihJbGxcXFZNkjR44kOzub3377jS1btvDYY4/VG9f+/fvx9PTE0dERR0dH1q5dy+jRo697u1ytG9We6v9ms/b29mb9+vWsWrWKn376idDQUA4dOmQy74YaM2YMW7duJTMzk59++om+ffuyZs0aNm7cqM3GP3/+fPbs2UN8fDw6na7aPYRL9YyIiKizv77++mvi4+N5//33Wbx4Mb6+vtVmIfbw8GD//v0A+Pj4aMum8jQzM9OO4XL/QAghhBBCCCGEEEIIIa4/GUAsxC0mPz9fex1yTS4uLsTFxWnLFhYWtGrVCoBHH32UCxcuMHXqVAYPHmwyf1XjFazPPfccJ0+eZMmSJdqrMxsSV2FhIV26dKFLly4EBASQlZXVoPrdaI3ZnjNmzNBedevk5MSSJUsoKiri9OnTdeZtSs2+efnll1mxYgWLFi3i008/pU2bNkyaNIm77roLgFWrVrFhwwZCQkK0HzxNMdVfX3zxBd9++y0fffQRH330EcuWLaNz587MmzcPgKCgIObPn09oaChfffUV69evx8rKqs48r6SOQoj62dvb07ujG33djtAhyI9evXphb2/f1GEJIRrJyZMnCQkJMbouKCiIyMhIbbmkpISuXbsC0LdvXzw9PXn22WcZPny4yfwvvU7+kn/+8580a9aMcePGMXDgwAbF5ezsTFhYmLYuKSmJlJSUq6qXi4sLrq6uJuv10ksvsXXrVtatW8eAAQPqTW9KixYtiI+P5+jRo9pnBw4c0M7ljBk5ciRnz56lT58+ANx11120bduWkpIS3N3dGxS/Ma1ateKrr75i2LBhpKen1xl3Q8oYO3YsS5Ys4eTJk0ycOJG4uDjmzJmjDRi7nej1erp160aPAEf6uEdxxx134O3t3dRhiduAvb09vXr1oruPgV6eZ26p8y1T17wuLi6kpqZSWFiofXb5den48eNZtGgRaWlpdf4dXX4NZ2lpyRtvvMFnn33G0aNHG3wP4fTp09q1Y5cuXeo89ja1xmrPpKQkli1bpi2PGDGCxx57jKNHj9abtymX942bmxtDhgxh4cKFVFVV8d5777F06VLtgZKqqir69+9Pv3796h0cb6q/srOzqaqqYv78+do9hNmzZ7Nu3TqSk5MBWLJkCSdOnGDZsmXY2dkxYcKEOvOsj9xDEEIIIYQQQgghhBBCiGsjA4iFuAXk5ORQUFAAwPr163nnnXcAqKyspKysTEv31ltvsXr1au1HpW3btvHee+8BF2eMee2119ixYwfdunUDoLS0lBdffJGMjAzg4kwwKSkpFBUVaYMVbGxsGD9+PB988AH//Oc/GxTXo48+ygsvvMD69evZsWMH8+fP1wZR3AxuVHvq9XrefPNNbSDO/v37adu2LV26dKkz70uxXP6DmbG+CQwMpFOnTly4cAE3NzdefPFF1q9fz/333w/A5s2bSUpKIjk5mcOHD5Obm0tOTk6teprqr/z8fI4fP07r1q2rtd+IESNYsWIFGRkZ5OXl8eeffzJx4kTGjBmj/UBsKs/y8vJqP/CVlpZq7WOsjkKIhtEXn8LM3AJnV88GzyoqhLh1pKWl8eeff1JaWkpYWBgff/wxcPFhnby8PAwGAwAffvgh27ZtIyYmBoPBQFhYGJ9++qmWz/jx4zE3N8fLywuA3Nxc2rdvrz3UFBgYSHx8PFu3biUpKQm4OIvr+++/z/bt2+nfv3+D4nrzzTd55513eOONN/jggw9Yt26d0UFOBw4cICMjg9TUVGJiYhg/frxWr+zsbC3dvHnzmDdvHgUFBWRnZ3P8+HHefvtt4OKArSeeeKLaYK660ufn52vnQQUFBVRVVVFcXEzz5s157rnnePDBB5k6dSpvvPEGOTk5mJuba+d7NQcp9erVi6CgIG1Atk6nY/To0drsww2Jp2Zdi4uLKSsrY8iQIYwYMYKhQ4eSl5cHQFFREeXl5dqMkPn5+RQXF9dbxkMPPcSFCxd44oknMDc3Z8yYMbRp0+a2/r6wszbHvCJDZh4W19XFt9nYYFlx7qb/+zl79iwA6enp5OXlaQ+9Xn4t2K9fP7p3764NWs3OzqakpISHH34YgKeffprIyMhqg4DXrVvHl19+qS17eHgQHx9f7SGRsWPHcujQIZydnRsU13333cfJkyd5+eWX2b9/P1988cVNdz14I9qzdevWTJkyhaioKADKy8v566+/ePTRR+vNu+b9AzDdN59++inPP/889957LxcuXCAwMBCAU6dOcfToURISEti1axdlZWWkpqZSXl5erZ519deiRYtqPWA9aNAgbGxstIeQlyxZwptvvsljjz3G2LFjsbCwqDPPy+8hXH7/wFQdhRBCCCGEEEIIIYQQQlwZs2nTpk1r6iCEuN0VFxeTmZmJj4/PFW+bmJjIxo0bcXR0ZP/+/XTp0oUnn3yS4uJibQCqvb09wcHB+Pv706lTJ8LCwkhNTcXPz6/aAIagoCDatWtH+/btgYs/xFwacGpvb0/Lli1JSUlh3759DBo0SHutdJs2bcjOztZ+nKorLoABAwZgMBjYtGkTOTk5jB8/vtorlZvSjWzPiooKYmJi2LFjBzt37iQlJYWlS5fi5ORUZ95bt24lLi4OS0tL/Pz86uwbLy8vhg4dir29PQEBAXh7e9OhQwcA2rdvz549e0hPT+f5559n9+7dtGrVij/++KNaPY31V7Nmzfjkk0/Izs4mODgYNzc34OLg6z179lBZWUlSUhIdOnRgzpw5zJo1iw8++IDFixfj4eHBuHHjjO4Da9asIS8vjzZt2lBSUsLu3bvR6/X069eP1q1bG62jELeyazn+X5H0n8GhAzpb38YtRwhxVSoqKkhLS8PT0xNLS8sr2jYxMZHt27dz//33Ex4eztixY+nYsSPFxcX88ccfdOzYkby8PAIDA3F1dWXEiBHs2LGDkydP8uyzzxIcHKzlFRAQQPfu3bXXpVtaWmJjY8Odd96JhYUFbm5uBAQEoNfr6dmzp7ado6MjAHfffXe9cQF07tyZ++67j/z8fLp06cIzzzyDTqerVq+dO3diZmaGlZUV8fHxTJs2DQcHB5KTk0lISMDDwwNra2u8vLzo1KkTffv25ZdffiEjI4NJkyZVm/kzODiY/v37a21rKn1eXh4nTpygZcuWtGzZkqNHj+Ln54fBYKBjx44MGTKEtm3bUlxczNChQ7W3Otja2tKyZUs6d+5cq3/69etHu3bttOX27dvTqVMn7TXzdcVTs65mZmacPHkST09PnJycCAgI0Nq6ffv27N69m06dOlFSUoKNjQ0pKSm4urri4+NDv379TLaRXq/nnnvu0R56CwoKonfv3td0fp6Wloatra22b9x0yjIh/wQ6t7ubOhJxu6kshJzD6Fz6ga7xrlcyMzMBcHV1veJtly1bhk6nIzk5mcjISObPn4+9vT2RkZHs27eP8vJyOnToQIsWLRg+fDi7du0iPj6eqKgoZs6cqR07LCws8PT05JFHHtGO4UeOHCEvL4/evXsDF2dM37RpE35+frRp0wZAO66PGzeu2rHaVFw2NjYMHDiQ8PBwwsPDGTBggPZQ7M3gRrXnpTL27dvHkSNHWLlyJaNHj2bMmDHodDqTeaelpbFlyxby8/Np1aqV1g/G+sbHxwcvLy/69++PTqfD3d2dxx57DHNzc1xcXDAzM2Pjxo0MGDAAT09Pjh07RosWLYiIiNDq6enpabS/jh8/zjfffIOtrS133HGHdj1/4MABzpw5w/nz52nbti0JCQlMmTKF6dOnExoayt69e3n66acZPHhwrTxPnTrFjh07AOjevTsbNmygoKCAwMBAWrVqZbSOQtzOkpKScHV1vWnusQohhBBCCCGEEEKI20KmTsm73oRodJmZmZw4cYIBAwZc8bbbt29n7NixxMfHN0JkDbNmzRoCAgK0QQc3S1xX41aN+2a1cuVKWrdurc1IWFxczNy5c5k8eXITRybEzeFajv8NVnoOdWoxunYvgbVn45UjhLhqRUVFREZGEhIScsU/+N8M5y7z5s1j2LBheHr+7xhzrXFNmTKFc+fO8dVXX12vMMUNdOjQIW3w8k0pLxqVvBZdx2lNHYm43ZRlouL/g85vLFi1bLRiTpw4AVDtIZCG6t+/P2PHjmXkyJHXO6wGmzhxIrNmzar22c0Q19W4VeO+GRUUFPDhhx/yySefoNPpMBgM/Pnnn6Snp9d645UQorbw8HCCg4Ov6uESIYQQQgghhBBCCCFMiL6537kohKCgoIDCwsImKXvRokWUlpZy6tQpbXbhmyGua3Grxn2zmjt3LmPGjMHf3x+DwUBkZKTR2fmEEI1H5ceCuT1YezR1KEKIRnDy5EkyMzOpqqq64bPzv/DCC2RkZNCxY8dqg4evR1ynT58mPz//eoUqhBA3hqUT6PRQltWoA4ivRVNd8yYmJrJkyRKKi4sZMWLETRPXtbpV474ZhYeHs3PnTu0NACdPniQyMpLhw4c3dWhCCCGEEEIIIYQQQgjxt2U2bdq0aU0dhBC3u2t5hf2iRYtwc3NDr9cTGBhY6/XPjWn//v1ERkYyY8YM7OzstM8vXLjAN99802RxXYumbM/bUb9+/di9ezdff/01UVFR3HXXXdVeby7E3921HP8b7NyvYNcWnb1/45UhhLgmFRUVpKWl4enpiaWl5RVt+9dff/HAAw+QlpZGQEDADT13cXJywtnZmX/961/o9Xrt8wsXLhATE3NNcWVlZREQEEBlZSWtWrW63qGLRpaWloatrS2Ojo5NHYpxZZmQfwKd291NHYm43ej0kHcMzO3R2fo0WjGZmZkAVzzL5Lp168jKysLMzIzWrVvj5OTUGOEZVVhYyKpVq7jrrrsYMmTITRPXtbhV475Z+fn5odfrWblyJT/++CMAzz//PPb29k0cmRC3hqSkJFxdXa/4jSZCCCGEEEIIIYQQQtQhU6eUUk0dhRC3uxvyCnshhBA3nUY//lfko+LmoPMZBXZ+jVOGEOKaFRUVERkZSUhIiPzgL24Lhw4dwtXVtXEfkLkWedGo5LXoOk5r6kjEbUidDQMM6Fo/WW/aq3XixAkAgoODG60MIYQQt5bw8HCCg4Ov+OESIYQQQgghhBBCCCHqEK2vP40QQgghhLgpFcSC3hIacQY8IYQQQgjxPzobLyhOaeowhBBCCCGEEEIIIYQQQgghrpkMIBZCCCGEuEWp/Diwbw8686YORQghhBDi78HaCyoLoSKvqSMRQgghhBBCCCGEEEIIIYS4JjKAWAghhBDiVmQog6Iz6OwDmjoSIYQQQoi/D2tP0OmhJLWpIxFCCCGEEEIIIYQQQgghhLgmMoBYCCGEaCSVlZW3RJ7iFlUQDyiw92vqSIQQQggh/j70lmDVElWY0NSRCCHEVVNKUVVV1dRhCCGEEEIIIYQQQgghmpgMIBbiFlFaWspHH33EPfcNLE6yAAAgAElEQVTc09Sh3LIOHjzIoEGD2Lx5c5PFUFxcTGBgIEopo8umvPXWW8yYMcPouqut165du7jvvvvYvn37FW13vTW0DW6lGP766y/69OnD/Pnzr1uZiYmJDBs2jFGjRl2XGK9WY/RXQ/PMysritdde46uvvuLNN98kKSnJZNpjx47x6KOPcvDgwWqfR0dH89BDD+Hh4cEDDzxATk7ONZfVVFR+HNi0ATObpg5FCCGEEOLvxb79/z3MdfNKS0vj1Vdf5c0332zqUG5ZH374IUOGDGnSGEJDQ/n6669NLhuTmpqKt7c3hYWFtdaVlZVdVb0KCgqYNGkSjz/++BVt1xga0gZNEUNkZCRDhw7lu+++uyniqcuyZcvw8vIiNja2EaOqX2P0ZUPzXLFiBVOnTmXBggV89tlnJtOVlZWxYMECnnvuuavOo6HphBBCCCGEEEIIIYRoCjKAWIhbhJWVFb169eLUqVP1ps3OziYqKuoGRHVr6dmzJ2lpaZSXlxtdX7PdGqMdt2zZwqBBg9DpdEaXTXnllVd4+umnjcZWX71Mufvuu0lISGjyGW0b2ga3Ugzdu3fHzc3tupbp6+tLt27dmnyGoMvjvl5/Iw1ti7fffpsHH3yQF198kZdeeolBgwYZHXScl5dHRUUFv/zyS7X1BoOBzZs3s2nTJhISEsjOzjb5w2JDy2oyqgoKT6FrHtDUkQghhBBC/O3o7PygIg/KMps6FJM8PT1xcXHhwoUL9aaNiIi44uvJv4MuXbpw5swZk+t3795d5/L1sH79eoYOHWpy2RgPDw++/fZb7OzsasXWrFmzeutljL29PQEBAaSmpl7Rdo2hIW3QFDGEhISQnZ1NWVnZTRFPXUaPHk12dnYjRtQwl8d9vf5+GtIWcXFxfPHFF4SGhvL6669z4MABwsLCjKY9deoUiYmJpKenX1UeV1KWEEIIIYQQQgghhBBNQQYQC3ELadasWb1pysrKeOqpp27K2TJvBlZWVkY/r9lujdWO33//PcOGDTO5bIq/vz/e3t4mYzNVr/pc7XbXU0Pb4FaLwdLS8rqXWV+eN8KluK/n30hD2iI5OZnVq1dz//33AxAcHEx+fj47duyoldbBwYEePXpU+8EcoKqqirfffhsLCwusra254447CAwMvKaymkxRElSVgL0MIBZCCCGEuOFsWoG57U0/C3FD7iEkJyczbNgwKioqbkBEt5a6rpe3bdvGxIkTTS5fD8ePH8fT0xNnZ2ejy6bo9Xruvfdek7HdyvcPGtoGTRVDQ/7mbmQ8puh0OiwsLBoxqvpdHvf1+vtpaFvMnj272t/Igw8+yIIFC4ym7dChA+3atbvqPK6kLCGEEEIIIYQQQgghmoJ5UwcghKhbTEwMK1euxMvLi4MHD1ZbFxUVxdatW3F0dOTnn3/mk08+IT8/n6NHj7Jp0ybMzc0ZOHAgBw4cYOfOnURHR6PX61myZAnHjh0jNDSUAQMGsGnTJnr37s0rr7zCO++8Q3BwMBYWFqxbt44nn3yS7t27s2bNGsLDw/n5558JCgpi3rx5+Pj4cOzYMYKDg3n88ccJDQ0lOTmZpUuXAhhN89dff7F582Y8PT3Zvn07Y8aMYeDAgRw9epT+/fuzYsUK+vbty7/+9S9iY2M5dOgQhw4dqhXr6NGja9Xdz8/PaF1r/oBz+vRpXnzxRbZs2cLMmTMZM2YM0dHR1drN1dW12nKLFi2YOnUqffr04fDhw0RERPDSSy8RGhpqsq4126OwsJDo6Gh69uxpdPnMmTPMmzeP1q1bs3nzZkJCQnjooYfw9fVl6tSp2NjY8MUXX9SKdeDAgSbrVVe7XnLw4EE++ugjYmNjmTp1Kq+88kq9+5mfn5/Jvjx9+nSD96PL28BYPz/11FNGywBMll9XzMb6qbFiuKSqqopRo0bh7e3NqFGj6Ny5c71lPvHEE/Xux4DJ/f3S/9PT08nIyGDOnDkm91NTedTXVocPH661H5oq19S+fc8991TLMzY2loEDB9KjRw/WrFlDSUkJQ4YM4ZNPPiEnJwdnZ2esra21+rdu3ZrDhw9z3333mTqEVnP5D6R79+7FYDAwePDgWumioqKuuazGpgriwModLFs0dShCCCGEEH9DOrDzQ+WdQOfSt6mDqWbTpk3ExcVhYWHBtm3baNWqlbbuxx9/JDk5mcLCQk6ePMnChQvZs2cPycnJ/Oc//2HQoEF06NCBtWvXEh8fz+7du7n//vuZMGECq1evZs6cOYwbN47p06fz2Wef0bx5c959911eeeUVoqKi+PHHH1mwYAFnzpxh06ZNFBQUsH37dgA+++wz/P392bZtG++99x6+vr7cd999PPPMMzz77LOUlpYaTbN69WoyMjLQ6/Xs3r2bmTNn0r59e5YtW8Zzzz1Hbm4uKSkpPP3009x3333Mnj3baKw6na5W3a2trY3W9XJKKRYuXMiaNWsoKysjPDwcKysr1q1bR2pqKvPnz+eZZ56ptvzkk0/y5ZdfsmPHDgYOHMiaNWuwsLBg1apV+Pv7Ex8fz5YtW3B1dWXbtm1888035OTk0KVLF3777TftIcewsLBqD1rWXJ4zZw46nY7IyEjMzMxo06YN06dP55tvvmHWrFls3boVb2/varGNHj3aZL3MzMx44403OHjwIIcPH2bbtm08/PDDhIWFMWjQIODiW13efvtt1q5di7+/P8uXL8fT07NWe9nY2BAVFUXLli2ZOHEilZWVfPLJJ3h6epKYmMi5c+f49NNPsbe3Z+HChSxevJhZs2bx3XffcezYMdauXcsPP/zA+vXrueuuu/j888+rtUFJSQnz5s1j69atDB8+nOnTp3Pw4EFWrFhhtIy6yjcVs7F+qtkPSilmz56Ng4MD2dnZnD59WmuL9PR0Pv/8c3r06EFYWBhTpkyhU6dOJmOxsLDgk08+uaL9pr42OXToEGFhYeTm5hIeHs6UKVO0B2UvV1VVxfz582ulM1UHY7GYyqO+uA0GQ619tLi42Gi5de33Nftm4sSJfPLJJxw6dIiQkBC+//571q5dy+rVqzl+/Dh33HGHVv9L1/tXoqF5XI+yhBBCCCGEEEIIIYRoVEoI0egyMjLUrl27rni70tJS1a5dO5WRkaGUUmrt2rWqVatWSiml8vLyVLdu3VRlZaVSSqkPPvhArVy5UimlVMeOHdWWLVuUUkrl5uaqYcOGaXkGBASoRYsWKaWU6tmzp3rjjTdUUVGRSkhIUEopNWrUKPXCCy8opZSKiopSer1eHTp0SCml1Ntvv63eeecdVV5ertq1a6dKSkpUVVWV+umnn5RSSh05ckTt3r1bKaWMpsnLy1MeHh7q3LlzSimlTp8+rWxtbdWpU6eUUkp16dJFbdy4UatrSEiIFvflsR45csRo3euq6yW9e/dWU6dOVUoptWbNGtW7d29t3eXtZmy5R48easKECVpdzc3N1d69exvUHkoptXLlSm17Y8uPPPKICgsLU0opNXz4cPXvf/9bW/fee++p0aNHm4ytrnrV1a6BgYFq+vTpSimlNm3apPR6vYqKitLWm9rP6uvLhuxHxtqgZj+bKqOu8k3FbKqfGiMGpZR6/PHH1aeffqpWr16tdu7cqS5XV5mHDx82uR9/+umn6vHHH1dK1f23HRgYqDIyMpTBYFC2trbq3LlzRutvKo+GtlXN/dBYuUrVvW/XzHPp0qXaPlpVVaU++OADpZRSX375pfLz86vWjgMHDqy2bU0uLi4qIiKi1ue7d+9Ww4cPVzqdTtv/L3c1ZZlytcf/+hji5inD+R3XPV8hROMoLCxUu3btUoWFhU0dihDXxcGDB1ViYmJTh2FabpQyHJ/a1FGI213B6Yv7Wcm56551dHS0io6OvuLtTpw4obp166Ytv/baa2rUqFFKqYt/t0888YRSSimDwaAGDx6sYmJiVFZWlgK076h9+/Zp15ZpaWlKp9Op6OhoVVxcrAC1fv16lZKSorKzs5VSSrVq1UqtWLFCKaXUwoULlbe3t8rLy1NKXbyG/umnn9T27dvVk08+qZRSKi4uTsXFxSmllNq8ebN2LDGWZv/+/apjx45afb755hsVGBioKisrVU5OjgJUbm6uVtdL5+s1Y/3111+N1t1UXS/ZunWr8vDwUGlpaUoppYKCgtTWrVuVUkr98MMP1a6tay5v3rxZOTg4qJSUFGUwGNSwYcPUAw88oJRSasqUKWrx4sVKKaV+/PFHLa7//ve/qri4WMujQ4cOWjvXXD5y5IgKDg5WSikVExOjLC0tVVFRkVLq4r0kQJ05c8ZobHXVa8OGDapr167Vyrx0zbdmzRrl7u6uMjMzVUFBgerfv78aPny4utzcuXPV/PnzlVJKnT17Vt1zzz3KYDCoWbNmqVdffVVLN3r0aO2ewalTpxSgkpOTlVIXr6UffvhhZTAYVEFBgTIzM1P5+fm12uDnn39WdnZ2KikpScXExKiZM2eaLKOu8k3FbKyfasawZMkSNW7cuGrrli5dqpS6eG176d7HrFmz1CuvvFJvLFe639TXJjNmzFDbt29XSim1evVq5e7urgwGg1JKKTs7O+3+z8cff2w0nak6GIvFVB4NibvmPmqq3Lr2+5p5VlRUKB8fH23/Xbp0qXbv08PDQ3333Xfadvv37692HKxp4cKF6sEHH6z2WUPzuNKy6rJr1y7tHrEQQgghhBBCCCGEENdJlL7JRi4LIeq1Z88erK2tcXV1BcDDw0Nb98cff+Dv74+ZmRkAoaGhPPXUU0bzOH/+PPPnz2f+/Pm88sorBARcfOW9jY0N3bt3x8bGBl9fX+DiKykvzVDUpk0bDAaDts7FxYVz585hYWFB79696dGjB7/99hsPPfQQAF26dKF///4ARtPs3bsXKysr3N3dAWjbti3+/v788ssvwMVXKF5y+b9rxpqSkmK07nXV9XKXZi0JCAggNja2gb0B1tbWdO3aVavrnXfeyf79+xvUHgDff/89w4cPN7mcn59PfPzFV+D27NmTwsJCbV1DXhVqql51tSugzYTyz3/+E39/f3bv3q2tM7Wf1deXDdmPjLXB5f2clpZmsoy6yjcVs6l+aowYLlm9ejVbt27l7rvvrtbmdZWZmpraoP24rv09JiaG9PR0Tp48iV6vp7Cw0Gj9TeXR0LaqyVi5UPe+XTPPUaNGcfbsWSIjI/nll18YMmQIAN7e3hQXF1crr6ioCB8fH5PxmNK/f3/WrFnDkiVL+M9//lNr/fUsq1GUnoPyHHT2tfcLIYQQQghxg9j5gqUTKvdoU0eiWbVqFf369dOWL7+HEBYWxr333gtcvC7cvHmzNtPt5davX09KSgrz588nLCyMuXPnYm5urr2do3v37nh5edGixcU3YVhZWeHt7Q1cvPZzcHCgefPmwP+u/Xr16sVff/3FoEGDMBgM+Pv7AzB48GDtHNtYmg0bNlSbufORRx4hNjaWmJiYWte2ly/XjPX33383WndTdb2cs7Oz1o7+/v4Nvodw6V6Ol5cXOp2OV199lf379wPw8MMPM3nyZMaPH8+dd96pxTVmzBgt9sOHD+Pj46O1c83lgoICkpKSqKioIDAwEGtra0pLSwGMvr2mJlP1qqtdAXx9fXFxccHOzo7XXnuNnTt3Vlu/cuVK/vGPfwAXr6t27NiBTqdj3bp19OrVS0v3yCOPsGHDBuB/9zsuv4fg7e2NTqfDzs4Oc3NzMjMza7WBjY0NLi4utG7dmsDAQDZu3GiyjLrKNxWzsX6qGcPy5curXe9f/jf3/PPPM3nyZP7880/y8vIoKCioN5Yr3W/qa5MNGzZw8OBB5s+fz/nz53n//fcpKSmhph9++MFoOlN1MBaLqTwaEndNpsqta7+vmae5uTlvvPEGX3zxBQDJycnafama1/xFRUU4Oztja2trNB5jGprH9ShLCCGEEEIIIYQQQojGZF5/EiFEU8nKyqK8vNzoupycHNLS0qp9Vl5ejqWlZa087OzsGD9+vPZZUVFRg8o39sORUgqAb7/9liVLljBy5EgmTpzIu+++W2v7mmk6derE+fPnqaqq0gZ3Ojk5YWNj06B4LjFV9yutq7HBtFfi8sHd9bVHfn4+J0+eJCQkxOgyXHyl62uvvYaHhwfJyclMnDjxquK6lnp5enri4uKiLZtqa6DBfWlqPzLWBjXVVYapdXX9bdTsp7FjxzZKDJc89NBDrFq1ipUrVzJy5EjAeN9frqH7cV3pxowZw4QJEwgICNBig9r7qbu7u8k8rqatTJVrat821hbNmjXj5ZdfZtGiRfj6+jJlyhQAOnToQHZ2drXjXFpaGkFBQSbjqc+wYcOYMWNGrc8bo6zrSeXHgrk9WHvUn1gIIYQQQjQSHTrHLqgLB8D9XtA1/S22rKwsDAaD0XV1XdvVzKNDhw7X9R6ClZUVf/31F5MnT6Znz578+OOPtR6yNJYGqBZz8+bNMTc3v673EK6krtdyrX35/YOuXbty6NAhXnvtNbp3705ERIT2YOolYWFhDBs2zORy3759efHFFxk/fjxBQUHMmjULJyenq4rtautV8/4B/K+tLw1OV0pRWVkJVO/Luu4FmdqParaBMXWVYWqdqZiN9VPNGOq6b3fw4EFWrFjBggUL2LNnD2fPnm1QnJerb7+pr02ysrK4//77q11zm7q/YCydqToYi8VUHlcTt6ly69rvjeX53HPPMW3aNNavX///2bvz8Kjqu///rzP7ZCNsYZVdwbC4opVVLbZaXLtYW5e64O3Kbe3t161W9O59t73rglhbvetPUazK7W6tdUM0QAWpVpRFdgUCCUsIZJt9zu+PM3MyM5mEgEkmwPNxXXNlzuec8znvczJMwuQ170l7M8Lo0aO1detWe3nbtm0qLS1ttp5sWjtHWxwLAAAAAAAAaE90IAY6sZNOOklfffWVysrKJEl79uyxu1ZMnDhRS5cu1Z///GdFIhEtWbJEf/vb3yRJhYWFqq6uViQS0SmnnKL33ntPzz33nOLxuFauXKl58+ZJsv4okvnHxWRAOPV+cpvk8t69e/Xqq6/quuuu03vvvae5c+dKklasWKElS5Y0u82ECRNUXFysd955R5IUi8VUUVFhdzctKSnRli1bJEmff/55WleU1FqbO/eWzjUpHo8rFovZx08939Trlm1Zkl1TOBzW8uXL9b3vfa9V1+O1117TeeedZ8+TuSxZf0T4/e9/ryuuuEIzZ85U79690+puqdaWzqul65r6fQ2Hw6qpqdF3v/tdLVy4UKtXr272Wu/re9max1G2a5D6fW7pGC2ta67mbN+n9qohOU+XLl00d+5c3XjjjVq2bFmrzntf/2aT16+57dasWaPnn39eAwcO1N69exUIBBSJRLKef3NztPZapT4Omzuu1PxjO9ucknTdddfp5Zdf1sCBA+2xAQMGaOrUqfrwww8lSRs2bJDD4dDkyZMlyX7Mpkr+m0i9zhUVFfbywoULdeWVV6Ytr169ep/HyrnaNVLRCEnf7E0QAAAA+Ia6HivFAlJN6z/Zpj2NHz9er732mnbu3Ckp/TWEb3/723rkkUe0aNEihcNhPfvss1q/fr38fr+cTqf9e/348eN13333admyZYrH4/r73/+uDRs22MfY12sIqeuT69566y3V1dXpoYce0j333GOHg99++237/6rZtvnhD3+ohQsXavfu3ZKsTzwZO3asBg8eLL/fr4KCAm3ZskXhcFhffvllk//rJmtp7txbc66p/6dI/b928v9CkhSJRJosS1IwGLS3f//99+03lT711FMaPHiw/v73v2vMmDH6+OOPZZqmnn32Wbub6uuvv572f6XMZdM01b17dz388MOaPn26rrnmmibXvblaWzqvkpISVVRUKBqNateuXdq6dWuT12aSli1bpmnTpqm+vl7PPfecfa1vvfVWbdq0STU1NXrwwQcVjUZ14YUX2l12JWn58uX29UidM7mc7XGU7RqkbtfSMVpa11zN2b5PmTWMHz9eTz75pH099+7da/+bmzlzprp06SJJqqiosB8XLdUi7d/jZl/XZPz48brpppu0a9cuBQIBzZ49264j9fWF5rZr7hyy1dLcHK2pO/Mx2txxW3rcZ84pSV26dNFll12mGTNm6KyzzrLHb7rpJr333nv28rvvvqtp06ZJUtrjOSnztYX9maOl7QAAAAAAAIDOwHnPPffck+sigENdQ0ODdu7caX80Z2t17dpVAwYM0K233qqFCxeqqqpKkUhEvXv31tixYzV8+HDNmDFDv/vd79SjRw9de+21kqRQKKQ//OEP6tWrlyZOnKjevXvrrrvu0oMPPqhYLKbp06frk08+0axZs1RXV6dx48apuLhYGzZs0AMPPKDa2lpNmTJFr7zyit544w2VlJRo2LBhmjlzpjZs2KDTTjtN//mf/6mGhgZVVlbq/PPP15FHHqk//vGPmj9/vs4//3yFw2HdfPPNaduMGjVKU6ZM0SOPPKK9e/dq/vz5mj59ut3Vs6SkRPfee6/mzZunMWPGaMOGDSotLVVlZWVarQMHDsx67t27d896rkmfffaZ/vCHPygSiei0007To48+qgULFmjSpEkaNGhQ2nUrLS1tsjx79mxt3rxZVVVVevXVV3XXXXdpxIgRWc8183r88pe/1I033mh/nGXmsiTdd999uueee/T888/r+eefV0VFhSZMmKAtW7boT3/6k9avX69JkyappKQkrbbk/ebOq7nr2r9/f9XW1uqDDz7Qtm3bVFZWpjvvvFP9+vXTbbfdpqqqKp1zzjlZr7XX6232e9nax9HChQv1q1/9yr4GmY/JkpKSZo/R0vGLi4uz1pzt+/TUU0+lfR/aqoaVK1fqD3/4g0KhkH7yk5/o66+/1owZMzRw4EA9//zzLR5z6NChWR/HmzZt0v333681a9bo1FNPVWlpadbtiouLtWDBAj366KPy+XwKhUJatGiRpkyZottuuy3t/L/1rW9lnaM11yrzuWbcuHFZjzt16lQ7BJD52L7rrruazClZfzzcsWOH/v3f/11ut9senzhxop588klVVlbqlVde0QMPPGB36ko+ZidNmqRAIKCXX35Zf/nLX9SjRw+NGjVKBQUFqq2t1emnn66ysjKZpinDMDRt2jS7w1XqHC0da38c6PN/syI1UuV7MnqdLnkOrMMYgI4XiUS0bds29e3bt8mnRQAHo23btik/P1/FxcW5LiW70E6pZpWMklNzXQkOdU6fFNwh1a6R0e0EtdUbvJIB4GTn0dYaNWqUtm3bprvuukuffvqp6urqFI1GNWbMGJ166qmqqanRrbfeqieffFJnn322Jk6cKLfbrXXr1mnu3LkaOXKkzjzzTG3evFm33HKLnn76aZ188smaMmWK5syZo9dee02FhYUaO3asvF6vFi1apIcffli9evXSscceq8cee0zz58/Xaaedpvr6ej344IMyDEMDBw7UzJkzFQqFtGfPHv3sZz9Tt27ddPXVV6uwsFDHHXecNm7cqN/+9rdp24wePVpHHXWUHnnkEdXW1uof//iHfve736moqEhOp1Mul0u33nqrvvjiCx111FGqqKjQuHHj9Oqrr6bVevzxx2c99zFjxmQ916RZs2bp/fff12mnnaaamhrdd999ikQi+t73vqf+/fvrmWee0YoVK3TiiSdqyJAhacs7d+7UnDlzZBiGPv30U+3evVt33323XC6X3nrrLb344osKBAJyOp362c9+prq6Ol1wwQU699xztWnTJi1fvlxXXHGFJOv/jKnLkvUmxyuuuEJz5szRX/7yF82fP1+DBw9Wr1699NJLL+mll15Snz59dPLJJ6t37952baNHj9bTTz/d7HkNHTpUn3zyif77v/9bNTU1KigoUCgU0qRJk1RQUKD58+dr06ZNWrt2reLxuG688UatWrVKV155pa6++mqdfvrpWrBggW655Ra9//77+sUvfmHXUV5errfeeks7d+5UZWWl7rzzTjkcDj3++ON67733dPzxxys/P18PPPCA1q9fr+985zv66KOP9Mwzz2j37t3y+Xz2G0AbGho0a9YszZ8/X6NGjVJpaWmzx3C5XC2umzBhQtaaM79PI0eO1Jdffpn2fTjllFP0xhtvaNasWVqxYoUaGhrs4/n9fv3ud7/TmjVrdOyxx+qZZ57RUUcdpUsuuaTZWr766qtWP24y68l2TcaNG6e33npLt9xyi95++21dddVVGjx4sObMmaMXXnhBPXv21Le+9S1Nnjw563aGYWQ9h/Xr1zd5DE+aNCnrHK25jj179kz791NYWJj1uA6HI+vjfuvWrU3+jSQNHTpU+fn5GjdunD2W/L/9u+++q08//VR+v9/uRL5y5Ur78ez1erV27Vo9+OCDWrlypU455RQdccQR+zVHcvts2+2vTZs2qWfPnsrPzz+g/QEAAAAAAIAsdhpmZpsHAG1u586dWrVqVefpXokDMnHiRF177bVpnWHaSjwe16xZs3T22Werurpa9fX1WrZsmUaPHp32B0zgYHO4P7bb/Pl/91KZlfNkHH1rp/iYbACtU19fr08++URDhw6V1+vNdTnAN7Zhwwb17t277d4g09b2rpS55UUZo+7JdSU4HAQrZa5/TMbAn0iFw9tkylWrVkkSH3N/EHv//fd17bXXat26de0y/7Jly7Ru3TodffTR2rNnj2pqavT+++/rgQceaJfjoWO09+PmYHe4P+7LyspUWlq6328uAQAAAAAAAFqwkuQJALRSJBJRNBptl7nfe+89ffDBB/r5z38uwzBkmqbC4XDnDWUArcRju22ZNWukwiMJDwMHqdSPRQcAHCJ8vaWiUpmV78koGCYZzlxXhE6gPV8/kKTrrrtOjzzyiEaNGiVJ2rNnj6qqqtrteOgY7f24OdjxuAcAAAAAAADaHukTAGiFl19+Wdu3b9e8efM0fvx4DRs2rE3nHzt2rFR03pQAACAASURBVAoLCzVy5EgNGTJEJSUluvnmm9v8OEBH47HdhuIhqf5rGf3Oy3UlAPZTfn4+n0QBAIcwo/cZMtf9UapaKvU4JdflIMeqqqr0xBNPKBQK6eWXX9b3v/99GYbRpseYPn26pk+frkgkokGDBmnChAm67rrr2vQY6Fgd8bg52PG4BwAAAAAAANqeYZqmmesigENdm3+EPQDgoNCmz/97V8gsf0XGiFskZ943nw8AgEPV3pUyt7woY9Q9ua4EhxFzxwfSrsUyhl0rebp9o7lWrVolSSotLW2L0gAAh4CysjKVlpaqZ8+euS4FAAAAAAAAh46VjlxXAAAAgH0za9ZIeQMJDwMAAHRCRs9JkqebzPLXJDOe63IAAAAAAAAAAAD2iQAxAABAZ2fGpLr1MoqG57oSAAAAZGM4ZfT/vhSslFn5dq6rAQAAAAAAAAAA2CcCxAAAAJ1d/SYpFpAKCRADAAB0Wr4SGf3Pl6qWWjcAAAAAAAAAAIBOjAAxAABAJ2fWrpF8vSRP11yXAgAAgJYUlcrofYbMir9Lu/+Z62oAAAAAAAAAAACa5cp1AQAAANiH2rVSl9G5rgIAAACt0WO8DBkyt70pRfbKKDldMngPPwAAAAAAAAAA6FwIEAMdaNWqVbkuAQDQgUKh0DefJFgphatlFI345nMBAACgY/QYJ8Ppl7ntTZnB7TL6nSe5Clq9e01NDa8hAAAAAAAAAACAdkX7E6ADeL1e9ezZM9dlAAA6WFs8/5s1qyVXoeTv00ZVAQAAoEN0PU7GkMul0C6Z6/4o7fm8VbsVFRWpqKiofWsDABxUevbsKa/Xm+syAAAAAAAAcIihAzHQAYqKilRaWprrMgAAB6PaNVLRCElGrisBAADA/vL3lzHsepk7y2RufV2q/kxGnzMlX+9md+nfv38HFggAAAAAAAAAAA5XdCAGAADorCI1UqBCRtHwXFcCAACAA+Vwy+g1RcaQK6V4ROaGP8vc9jcpsjfXlQEAAAAAAAAAgMMYHYgBAAA6q9rVksMj5Q/KdSUAAAD4pvz9ZQydJlV/LnPHBzKrP5O6HiejxwTJU5zr6gAAAAAAAAAAwGGGADEAAEAnZdaskQqPlAx+ZQMAADg0GFLXY2UUj5b2rpC5Y4EVJO4ySkbPSZK3e64LBAAAAAAAAAAAhwnSKAAAAJ1RPCTVfy2j33m5rgQAAABtzXBKxcfI6DJK2vOFzJ0LZa7/o9RlpIxuY6W8AbmuEAAAAAAAAAAAHOIIEAMAAHRGteskmVLhsFxXAgAAgPZiOKWux8koPkbau1xm1ccyNz4p+UpkdD1RKh4jOX25rhIAAAAAAAAAAByCCBADAAB0QmbNGilvoOTMy3UpAAAAaG+Gw+pIXHyMFNgms/pTmdvnSZXvSkXDZXQ9QSoYkusqAQAAAAAAAADAIYQAMQAAQGdjxqS69TJKJue6EgAAAHQ0f18Z/r5SrzOkPV/I3P2JzK/nSL5eMrqMkrqMkjxdc10lAAAAAAAAAAA4yBEgBgAA6GzqN0mxgFQ4PNeVAAAAIFecPqn7STK6nyQ1bJa55wuZuxZL29+X/P0SYeKRkrso15UCAAAAAAAAAICDEAFiAACATsasXSP5etFZDgAAAJa8ATLyBkh9vifVb5S5d4XMnWVS5btS/gArTFw0QnIV5rpSAAAAAAAAAABwkCBADAAA0NnUrpW6jM51FQAAAOhsDIdUMExGwTCpb1Sq2yBz7yqZlfOkbW9K3p5S0XAZhUdJeUdIMnJdMQAAAAAAAAAA6KQIEAMAAHQmwUopXC2jaESuKwEAAEBnZrikwuEyCodL8YjUsMX6JIs9y2XuXCQ586SCwVaYuHC45PTlumIAAAAAAAAAANCJECAGAADoRMya1dZHT/v75LoUAAAAHCwcbqlgiIyCIVKfs6w3pdWuk1m7VubW1yUZUv5AGflDpILBkq+P1c0YAAAAAAAAAAActggQAwAAdCa1a6SiEeLjpgEAAHDAfL0lX28ZPSdKsYZEmHi9zKol0vZ5VjfivIEyCgZL+YMlX4n4/RMAAAAAAAAAgMMLAWIAAIDOIlIjBSpk9Pp2risBAADAocKZJxUfI6P4GGs5tEOq+0pm/Vcyd5RJsbclV76UP1hG/mApf6Dk7ZHbmgEAAAAAAAAAQLsjQAwAANBZ1K6WHB4pf1CuKwEAAMChylsieUtkdD9ZkimFdkr1W2TWb5S5/T0pFpQcXimvn5Q3QEbeACnvCMnhznXlAAAAAAAAAACgDREgBgAA6CTMmjVS4ZGSwa9oAAAA6AhGY6C42wmSGZMCFVLDFpkNW6Tdn8rc8aFkOCVfHymvv4y8I6T8AZKrMNfFAwAAAAAAAACAb4B0CgAAQGcQD0n1X8vod16uKwEAAMDhynBKef2toLBOscbCe6SGzTIbyqX6r2XuXiqZccldLPn7yvD3lZI3py+39QMAAAAAAAAAgFYjQAwAANAZ1K6TZEqFw3JdCQAAANDIUyx5imUUj7GW4yGpYasUKJfZsNUKFEdqEtt2ywgV95Ec3tzVDgAAAAAAAAAAmkWAGAAAoBMwa9ZIeQMlZ16uSwEAAACa5/BKBUOkgiEykmPRWimwTWZgmxSokLnrIylaJ8mQvN2tULGvt+TrLfl6Sa78HJ4AAAAAAAAAAACQCBADAADknhmT6tbLKJmc60oAAACA/ecqlAqHyygc3jgW2ZsIFVdYX+1QsSRXgRUk9vWW4etl3ff2kAxnbuoHAAAAAAAAAOAwRIAYAAAg1+o3SbGAlBq4AAAAAA5m7i6Su4uMoqMbx6J1UnC7FNwuM7hdqtsgs2qJ9YY6wyl5e0q+XolQcYm17O6Su3MAAAAAAAAAAOAQRoAYAAAgx8zaNVbXNU/XXJcCAAAAtB9XgVRQIBUMlZEcM2NSaFdjqDi4XeauxVK01lrv8FrdiX09ZXh7WqFib0/JUyw1zgIAAAAAAAAAAPYTAWIAAIBcq10rdRmd6yoAAACAjmc4rTfT+Xqlx4FjASm0UwrulBnaKYV2yqzbKEVqrPUOtxUs9iaDxT0SweKu1pwAAAAAAAAAAKBFBIgBAAByKVgphatlFI3IdSUAAABA5+H0S3kDpLwB6cHieEgKVUnh6sZg8Z4vrC7GMq1tXIWSzwoTG+6u1n1vieTuIhmOHJwMAAAAAAAAAACdDwFiAACAHDJrVlsBB3+fXJcCAAAAdH4Or+TvK/n7ZgSLw1K4KhEu3i0zVCUFtsvcu8rqZixJhkvydpc83SVvdxmebonlbpKrIBdnAwAAAAAAAABAzhAgBgAAyKXaNVLRCCk9/gAAAABgfzg8kq+PdVPGb9exgBSutm9maKdUt0Fm6GMreCxZ4WJ3oeTp2ti5OHFf3p6Sw93hpwQAAAAAAAAAQHviM/sAAAByJVIjBSpkFA1v18MEAgGNGDFCwWCwXY+TacuWLfJ6vaqrq2vzuT/55BMNGjRITzzxhOLxuB5++GEZhqG5c+fKNE0tXrxYXq9X119/vcJhKxQSCAR07rnn6sknn9TmzZubrS0UCun666/X6NGj27xuAMCh4fe//73uv//+Dj/u1VdfrTvuuKPN5w0Gg/qP//gPDRgwQJL1M3z06NE6/vjjFQgEVFNTo4svvlhOp1ObN2+29/vHP/6hE044QTt27GixtqVLl6pPnz56+eWX27x2oFWcfqtrcZeRUs8JMvpfIGPov8kovUPG8JtlDL5cRt/vSV1GSc48KVApc9c/ZG55UeaGP8v88rcy1z4k86unZW59Q9q5SNq7UgpslaL1uT67wxrPxxaejwEAAAAAAAAcCDoQAwAA5ErtaqtTWv6gdj3Mc889p8rKSj3zzDO6+uqr2/VYqY444gjV1NTI6/Xuc9tHHnlEN954Y6vnPvHEEzV06FBJksPh0PTp0/XHP/5Rn3/+uS666CKdcsop+vGPf6xly5bJ4/FIkvx+v3r06KErr7xSkprUlqzB6/XqnHPO0cKFC/fndAEAh4lYLKZnn31We/bs0c033yyn09lhx/7Tn/7UquMtX75cu3fv1uTJk1s1r8/n0/nnn68XXnhBkvUz/I477tBVV12lUCik4uJi3XvvvXr++ee1evVqO9hWX1+v//f//p9KSkqa1JZaw0knnWTvA3QuhuTuYt3yBzX9TBAzKkVqpdAOKbhTZiTRwbh+oxTZK5nxxDTp3YvlKpThSll2d5EM+ji0NZ6PeT4GAAAAAAAA8M3wyjUAAECOmDVrpMIjJcOlBQsWqKysTBUVFVq2bJnKysr00UcfSZK+/PJLLViwwNrHNLVixQpVVlamzdXQ0KAvvvgia0fdpUuX6o477tBDDz2UtY5s+2YbM01TGzZs0MqVKxWLxZrMs27dOpWXl6eNVVVVpXU+zlb/r3/9az3yyCMqKyuzt43H41q+fHmT+SRpzZo1Ki8vl8PR+KusYRi67LLLNGfOHLu2cePGafHixVq9erUkafPmzTryyCOz1pZZQ3Ju0zS1atUqbd++Peu1AwB0Tpsr9qqsrEyLFy/Wnj17VFZWprKyMm3btk2BQEBlZWV258bq6mp9/vnnikQiaXOsXbtWlZWVCoVCaeN//etfNWPGDNXV1emVV17Jevxs+2Ybq62t1aeffqqqqqomc9TW1mrZsmVpdTkcjrSOk9nq37Rpky644IK0n4GStGvXLn322Wd2Z/7U43z22WeKRqNp4xdccIHcbrfmzp0rSRo6dKh69eqlJ5980t7mrbfe0nnnndektmw1JH+27t27V8uWLVM8Hs967YBOxXBZAeDC4Vbn4r7nyBh0mYyjbpJR+kvr6+Cfyeg7VSo+RnIVSqEqac8ymRVvyvx6jsy1s2Su+o3MtX+wlrf+VdpRJu35XKr/SgpXWUHlQ9TmzZt5Pub5GAAAAAAAAEAnRYAYAAAgF+Ihqf5rGYXDJUmff/65Lr74YvXq1UvdunXT2WefnRam/fvf/65PPvlEP/zhD+V2u3X11Vfr9ddflyTNmzfPDgdfeumlaYdZsGCBJk+erGnTpumrr77Su+++m7Y+277ZxqqqqnTJJZeooqJCK1eu1CmnnKJ169ZJkurq6vTzn/9clZWVeuyxxzR16lRJ0uOPP64jjjjCDt9mqz8ej8vv98vpdKq4uFgOh0O7d+/W7bffrjVr1ugnP/mJ/ZHEtbW1uvzyy1VZWakPPvhA//rXv9LO5ac//am2bdtmn+O//vUvDR8+XE888YQk6dlnn9VPf/rTJrVlq0GyQtT33nuvHnroIQ0fPlw7duzY728zACA3uhfn6dJLL9Xy5cvVpUsXvfrqq5oxY4Z69+4tv9+vp59+Wn6/Xz/72c/03nvvaevWrZowYYIdorr88ssViUT06quv6qmnnkqb+5133tEFF1ygadOmaebMmU2OnW3fbGOzZ8/WzJkz5XA4dP311+vee++155g7d67mzJmjaDSqUaNGaf78+fr666916qmnpm2XrX632y1Jys/PV15eniTpqaee0muvvaYPPvhAY8aMsd/I89JLL+m+++5TOBzWY489lnYefr9f3//+9zV79mxJUllZmcaOHavXXntNu3fvViAQsLfLrC1bDZI0f/58/dd//ZcuvfRS3X777a38bgKdlOG0wsX5g6Wux8koOVVG/wtkDL5cxlE/l1F6l4zhN8sYfIWMfufIKB5jdSKO7JG553OZW9+Q+dXTVrB45X/JXH2fzA3/K3PT8zIr3pJ2/UPas1xq2CxF9khm0zfwHQy6d+/O8zHPxwAAAAAAAAA6KQLEAAAAuVC7TpIpFQ6TJE2bNk0NDQ1atWqVBgwYoDPOOEMffvihJGnhwoWaPn26du3apalTp2r48OE69dRT9de//lWStGTJEu3YsUOjRo3SjBkz0g7zwgsv6Ic//KG6d++uiy++uMkf1rPtm23s7rvv1tChQzVhwgRdeOGFOvPMM3XDDTdIku644w6ddNJJmjhxom6//XaddNJJMk1TV111VVo3q2z1OxwODR48WHl5eTrmmGPk8Xj0y1/+UkOGDFHPnj111lln6Ve/+pXC4bB++9vfauDAgZo8ebIuvfRSjRgxIu1cBg8erHHjxmn27NnasGGDBgwYoMsvv1xz5sxRJBLRxo0bNXDgQElKqy1bDUm/+tWv9Oc//1mlpaX64IMPDvjbDQDoWPl+t2644Qa9++67MgxDV155pf75z3+qvr5ekUhEgwYNUs+ePeV2u3XmmWfqrLPO0urVq7V161ZFIhHNmzdPHo9H1113nU4++WR73hUrVmjUqFEyDEPXX3+9li5dqo8//then23fbGPl5eX6+c9/rltuuUXHHXecHn/8cd1///366KOPVF5ert/85je64YYbdOKJJ+p//ud/5PF4NGjQIJ122mlp55mt/r59+8rv92vIkCEaMGCANm/erNmzZ+vII4/UCSecoHg8rscff1y7du3SddddpzvuuEMnn3yypk2b1uQ6XnzxxVq6dKlWrVqlF198UbNnz5bf79df/vIXvf766zr77LMlqUltmTUknXjiibrvvvv0wAMP6I033miz7zfQKRkOKzCcP9DqTlwyWUa/82R1MP53GSPvkjHiFhlD/03GgItk9Jwk5Q+RHB4pUCGzaqnMra/K3PikzDUPJULGD8jc+P/J3Px/Vsh450JpzzKpboMU3CHFGnJ91k3k5+fzfMzzMQAAAAAAAIBOypXrAgAAAA5HZs0aKW+g5LS6QCW7bj3xxBO6++67VVBQoKeeekozZszQ1q1b1a9fP/Xr109Lly7VJ598or1799ofeXvllVfqnHPO0QknnJDWrWrLli1auXKlHQKORqN655139OWXX+roo49udt9sY4sWLdIvfvELe+6JEyfaXYrnzZunm266SZJUUFBgH88wjLRzPvPMM7PWn+nDDz/URRddpOLiYk2dOlVTp06VYRh6++239etf/9reLrWDVtIll1yim2++WT179tQtt9wir9eru+66S3fffbeOO+44e7tkl+GW5OXlyel0SpJ69epldwcDABwcrrjiCv3617/Wzp079eabb2rcuHGaO3euiouLdf7550uSZs2apbKyMg0bNkyGYSgcDsvtduv222/XCSecoBtuuCGtw+QTTzyheDyuO+64Q5L15pWZM2faHyufbd9sY2+++aa6detm/ywrKirSmDFjtGTJEm3ZskVjxoyxj5msVZL9cykpW/2ZFi9erL59+6q4uFiS9OKLL6pbt2766KOPNGjQIPn9fknZf66efvrp6tOnj2bNmiWn06nu3bvroosu0hNPPKETTzxRjz/+eLO1ZVNUVCSJn6uAzVVg3fx9JUlG5nozLsXqpfAeKVIjRWpkRvZa9wMVMqO1UqRWMqON+xgua053YeJrkYzUZVeR5C6w/x/SEXg+tvB8DAAAAAAAAKCzIUAMAADQ0cyYVLdeRsnktOFrrrlGEyZMUI8ePXT//ffrBz/4ge68805NmTJFkvTcc89p+fLl+u1vf6tFixbpq6++kiR5PB4tXrxYM2fO1BlnnKElS5aotLRUjz76qJ5++um0TlOfffaZHnroIf3v//5vs/uWlJQ0GevRo4fWrFljz+N2u9W/f39Jksvl0j//+U8NG2Z1U66pqZHU+EfppObqlyTTNNO2raur0+TJ1vUJBoPatWuX4vG4tmzZ0uKlvfDCC3XTTTfpiy++0ODBgyVJ3/nOd/TAAw+ovLy8xX0zawAAHNxKSkp0zjnn6JFHHrFDY3feeafOOOMM/ehHP1IsFtPEiRP1wQcfqEuXLvZ+0WhUl156qSZNmqRrrrlGV111lZ555hnt3r1bsVhMDz/8sL3tySefrB/96EfasmWLjjjiiKz7zp49u8nYv/3bv2nr1q2qq6tTQUGBpMafrU6nU59++qni8bj9hpfy8nL7525Sc/Unpf5c27Bhg4455hh7+auvvlI8HtfWrVtlmmaTN/0kOZ1OXXTRRZo5c6bmzZsnyQoCPvbYYzr11FP3+YYcfrYC35DhkFyF1i05lG27eESK1knJQHG0Vma0zrof2imzbqMVOo6HUuZ2WiFiO2hsHcdwFVoBY1dh47rsR201no95PgYAAAAAAADQOe279RoAAADaVv0mKRaQCoenDY8YMUKjR49WVVWVSkpKdPXVV+uVV16xA8RvvPGGNm3apC1btuizzz7Tnj17VF1drSeffFKxWEy33Xabzj33XFVUVKimpkbLly9PCw9L0k9+8hM988wz2rFjhyRl3Tfb2M0336znn39edXV1kqyuw7fffrskq+vvTTfdpKefflpvvvmm7r//fhUVFSkWi0mS/bW5+vv06aPy8nLV19eroqJC3//+9zVt2jS98sormj9/vmbNmqVevXrpBz/4gWbOnKktW7aovLxcmzdv1pdffqlAIGCfX/fu3XXmmWfqkksusceuuOIKTZo0SSUlJfZYZm2ZNUSj0bR5A4GA4vH4gX7HAQA5cu211+r+++/XVVddpdNPP11VVVUaMWKEJGn9+vX6/PPPtXHjRn344YcKhULaunWrqqurNXv2bI0ZM0bPPPOMvv76a0nSn/70J/sj4pOmTp2qvLw8uyt/fX19k32zjY0fP17HH3+8Zs+eLUnavXu3AoGAzjvvPJ1xxhmqrq7WZZddpvfff1/333+/XUM0GrV/djVXfzgcVp8+fbRu3TqVl5fr29/+ttauXatrrrlGixcv1qOPPqqKigpNnjxZ4XBYDz74oMLhsD7++GNVV1dr48aNaed4ySWXqG/fvjrttNMkSSeddJJKS0v1ox/9KG271NokpdWQXJ/82crPVaCNOdySp6uUN0DqMlLq/i0ZvabI6H+BjEGXyTjyBhmld8g4+jYZR15vjfU7V0b3k619HG4puFPa87nMyrdlbnpe5oY/y1z9gMyV/y1zzUMyNz4hc/P/yax4S9q5UKpeJtWulQLlUmSPFWJuAc/HPB8DAAAAAAAA6Hyc99xzzz25LgIAAOBwYlYtkcyojJ4Tm6zr16+fzj//fBUWFmr48OE64ogjNHLkSEnSkUceqUWLFqmiokJXXXWVFixYoKOOOkqGYejZZ59VbW2tjj76aH33u9/V73//e+3evVulpaV2cLa6ulqLFi1SNBrVpk2bNGHCBG3fvj1t36lTp6q8vLzJ2FFHHaXRo0frhRde0NatWzVs2DD7D9Xjx4+X3+/X3/72N4VCId1+++1yuVx69dVXtXPnTrlcLh1//PEaPnx41vrHjh2r8vJyffTRR5o6dapOP/10xeNxvf7666qurtZNN92k/Px8TZgwQaFQSI899pj27t2rMWPGaPTo0RoxYoRcrsYP1iguLtZ3v/td+yOAhw0bpu7du9sBhXg83qS2fv362TVMmTJFL730kvbu3athw4appqZGH374oX2uXq+33R4bAIA2ENop1aySUXKqBg0apH79+mnixIkyDMN+Q4rL5VKPHj3kdDr12muvafLkyerbt6+++OILnX766Zo7d642b96s3bt368Ybb1R5ebmeeuop5efna+zYsfbHw3/88cf6+uuvtX37dg0ZMkT9+vXTc889l7Zvly5dmox169ZNP/7xj/Xhhx9q3bp1WrFihX7zm9+osLBQXq9X5557rj766CMtWrRI559/viZPnqzNmzfrnXfeUX19vY4++mgdffTRWes/44wzNGDAAL3++usaNmyY/btBWVmZysrKNHnyZE2ZMkV+v19nnXWWXn75Zb3++us64YQTNHToUI0cOVI9evSwL2efPn3Up08fjRkzxh7r1auXvvOd79idMjNrKykpUf/+/e0adu/erSVLligej+vEE0/USy+9pIaGBg0aNEiDBg3q0IcHcFhzuCVXvhU29vWW8gfIKBwmo8tIGV2Pk9H9WzJ6TpLR/WQZXY+VUXS0jIJBMnw9JYdXMiNSqEpq2CzVrJD2fC5V/0uqWmKFind9JFV/Ku1dIdWsluo3SoFyGcHtGtS3SP3699fEbx0rQ6Z69emvH/zghzwf83wMAAAAAAAAIHd2GiafXwYAANChzLWzpC6jZfQ6PdelAABw6Nm7UuaWF2WMuifXlQDAoS0ekeJB69NVInVStFaKBWTGgtb9SK2Uet+Mpu9vuCSnX3IXSq4C677TJ8NVaI05fZJ9P18y+DA9AAAAAAAAAGhDK1373gYAAABtJlgphatlFI3IdSUAAAAAcOAc7kRX40LJW2IPG81tHwtK0Top1iBFG6RovRStk5lcjtRIwQqZ0QZrGzOevr8r3woSu/KswLErT0Zy2emXnHkp9/2Sw9Nupw4AAAAAAAAAhwICxAAAAB2pZo31B3Z/n1xXAgAAAAAdx+mzbhmyB45NK1QcSwaNrZsZawweK7hdZrS+cbsmEyc6HLv8jQHjRLjYSA0dJwPHye0MXjIHAAAAAAAAcHjg1VAAAIAOZNauloqGq4W+XAAAAABwmDOsjsOufMnbM3W0efGIFA9KsYDV7TgWkCJ1MqO1jWPROim0S2bqssyMQyeCx05f1q+G02e9KdRdmLIuTzKc7XEhAAAAAAAAAKDdECAGAADoKJEaKVAho9e3c10JAAAAABxaHG7r5ipMG24xdGzGEuHixC3aYN+3QsYNUjQgRfZKwcrG8Xik6VzO1E7HvrSb4UgNIfskp1dypGxD12MAAAAAAAAAOcArkwAAAB2ldrXk8Ej5g3JdCQAAAADAcEquAuuWuaql/eKRlOBxQ1r42LTHg1KoSooHZcaCjV2Rs3G40wPFTl/aspGxnLme7scAAAAAAAAADgQBYgAAgA5i1qyRCo+kuxQAAAAAHMyS3Y7dRU1WtRg8lqwgcTwoxUIp9xtvZupYaJc1Fj+AAHJKyNjIDB07vJLTY311eK0xAAAAAAAAAIcd0isAAAAdIR6S6r+W0e+8XFcCAAAAAMiVZJjXnX31PgPI8UgiYBxoDBUnv8ajA1LQGAAAIABJREFUMs1o41hkrxTcnuiKHJRi9ZIZb+bALiuIbLgSNfobvzpciXF/IozsT2zvSt8uOQ4AAAAAAADgoMCreQAAAB2hdp0kUyoclutKAAAAAAAHq2T3Y1dh1tWt64AckuJh62ssnAgfJ5dDMuPhlC7JDVK4cXszuX9LQWSnV3J4EuFjT3rHY6dPht35OKMLssOTuLkTXZH3eTYAAAAAAAAAvgECxAAAAB3ArFkj5Q2UnHm5LgUAAAAAcLhKdkBuQatju9m6IcejUqILspkcM6PWeKRGCu6wOiInx6J1kswWinE16YJshY1TuiUn7mftjpx5n2AyAAAAAAAAYCNADAAA0N7MmFS3XkbJ5FxXAgAAAABA2/im3ZAlq5NxPJTojBxO3BLB5HjEusWCMs3E/USXZMUjkhmQQjvt7cx4qOXuyJJkOBJdjxOdjh0eK1RsJM7F6ZUMa53h8CS6Kbut9WlBZl8inJyYw3Ae0CUEAAAAAAAAcokAMQAAQHur32R1XSocnutKAAAAAADoPAxHoquwv+XN9ndeO4QclcxIIqCccj/RLdlMdEtu7JJca603ozIT4WWro3JQLXZKlhoDxRmdkdO6Jyfvp3ZNNtyJLskp95t0UfZa1woAAAAAAABoQwSIAQAA2plZu0by9ZI8XXNdCgAAAAAAh75kd+R9aH0w2UyEkCONgeJk6Dgesj55KBayAsrxqMx40BqzuyrHpGhtIsQcTWwbS3RNTsy5z3NKdDpO637sTYx5G0PHDp9kOK0Oyg5XRig5OYdHksOaS0ZizkR3ZgAAAAAAABw2CBADAAC0t9q1UpfRua4CAAAAAAAcEKNVnZJTtt5/sYzQsRlLCSpH0oLKphlNCTIn9ok1SNFYegflZGA5OV+rinc2Bo2TQWw7fOxo7Ibs8ElGInwshxVYTu6b0WnZ3tfpVZPgMgAAAAAAAHKGADEAAEB7ClZK4WoZRSNyXQkAAAAAAOis7DBt/j43PaCAclKy47EZlWKBlJBx1O6gnLlsB5bjkcZQc7Q2ZbtEYDll2Qo8x1tXUzJsbN/PDCC3vGwYiT91Nem4vK/lxHwAAAAAAACHKV4ZAQAAaE81ayRXoeTvk+tKAAAAAADA4c7hlpQI67oKW7XLAQeWk52P4yHJNK3AskwpFpIUT/kaTowHJUlm3Ppqr49HEvNEJDOQcj8uxUMyJXtf6xj7KdkR2e6ynOimbIeOE52V7W3VGESWZDgSY8lAsmFYnZqllLmyjTka5012dgYAAAAAAOhABIgBAADakVm7Wioarm/YHwgAAAAAAODgYodu/YmBrq3arU1eQUl2QE6Gj5MdlJPhYzvArMbwcTwomabMeNhabwegE12VzbgUrk5sG7aWzbjMeChjLGbdPxCpYWWH1woet3qssZOz4fBKMhLB5WToOSWwnLa/q7ETczLcLEnOxBwyUjpkAwAAAACAQwkBYgAAgPYSqZECFTJ6fTvXlQAAAAAAABw+kt1+7fBy67XpW8CTQWYz3hgqtseSYWbZ4eVsY6aZCDBLjR2W4yljkT1NxszkdqZpHc8aPPBgc5LhaLy2htMOLNvdl6XGTs6SFV42ElfUDiE7EuFk676RDDLb2yS2Tw02pwah7eM5m9YkpQSflR6UBgAAAAAATRAgBgAAaC+1q60/UuQPynUlAAAAAAAA6GipwVblH9AU7fKZVvFIYwA52TlZagwyS42dmVO7NacGnM2IFVqWGrs22/uZkpmYz9qgsXtzWkg6KtOMNNZlH1ONHaDbUmpA2XBZIWVrIb3LcmoIOjOEnOz4bM/htlcZTULOqQHozJBz6vzulHXNhKjpBA0AAAAAaAcEiAEAANqJWbNGKjwy5YV+AAAAAAAAIMccbkmJ0OoBdGnO1C4h51RmvLGTspTo4pwIOpvRxkCylB5CTgk5S2ZjEFrKCCjHEyHo1DkS86d2e5YaOz5LiSB2zK7RjGfOnwhVt0X350wOT0YX5tROy1nCxqnBZ6lJ+Nnax5tlH0faPkbq65yZ3Z+l9A7QUnqQWmoaprb3STlOWnC6meMAAAAAANoEaRYAAID2EA9J9V/L6HderisBAAAAAAAADl6GIz3o3Aah5yaHaPMZW5AaUDajGSHn1C7MkbSQc3oAuoUQtRlL7+wsSbFA+nLa3Ik5wg1Z6kzdJywzbZ9Y+nGzHae9pHZqljI6SkuSo5lAdOo+7ox9JDl8TR8MDl/6fpIMR0ZQWmoahJYkp6fpWGr42x5zNzOWWV8rtwMAAACAVuJ/EwAAAO2hdp0kUyoclutKAAAAAAAAAHQWmd2B20GHBqJbktbpWVlCx2bWoLLdvdneJ6ODc9Z90o+TFqI2TSm+r+PEpUh1+jammd79OlGzmXn8bDVJHReoztSkw7Ss4HHWMU/GWGZH62a2y9a1WmomcJ0tSJ0l+Jy1xmY6UGf7d5QtxJ0tdJ3t+gAAAACHKQLEAAAA7cCsXSPlDZScebkuBQAAAAAAAAA6XpPQacfpNCHqTKkdqO2xUNOxeCg94Cw1DT3bY7ED2s40I1n2jVgdqdPGok3HsnWtzhq4ViJwnXl+2WrMcuyOsj8h6cwu6A6PFXRuaa7MwLPDm7GPS0ZqoDpbcNqZ0fk6M4SdLfyd2a07M1Cd9bwBAABwOCFADAAA0NbMmFS7XkbJ5FxXAgAAAAAAAADoLLJ2zvU3HesAnTZkncqMZnStlhU8zuxKna2btZQIYmcLL2cEp82oFZROE5NiTY9jZoakMwPS8YxgthmXwtVZ9kmvydzfbt3tITVQbLgkRyJO4vA0Bo9TA9OpHaftx7ajMXhtOGUYiW7PqYHn1CBzaufo5ByGYc0tpQej6R4NAADQ5ggQAwAAtLX6TdbH0xUOz3UlAAAAAAAAAAAcnAyX5MwWacjv8FKSOk3wOrNLdWtCx5mBajOSHpxODVKnrDPjYUmJYyUD06akeGL+1JB0ah3xiMxkV+nUYHW2Dtv7KxlITgaanX7ZXaOTQehkCDrR8dlIBp4dvsQ+Xuu+02ttk/xKV2YAAHAYIUAMAAeJxYulBx/MdRUAWmNYP6/Gj/qWnr63a65LAQ4rv/iFdMopbT/viy9KL7zQ9vMCaB8De/XQ+NET9Ny9ua4EwP6YOVPq3z/XVQAA2lo0GlU02vTj6E3TVDCYvZNiOBxWPN40VBSLxRQOZ3aCtIRCIZmZHSYTx49EIln2ULPHb05Lcx2I5mo+EPF4XKFQaN8b7gev1yuHw9EmcxmGIa/X2yZzSZLb7ZbLtX9/4vT5snR9bWGulmpu7to4nU653dk7Y/p8PhlG09ihy+Xa73MBAElW0LWDtGto2u7gbEqxxM8yM26FjKX0QHJq4DkeTmwXlExTZjzYuF88Zm0bC0jRqL2tmTxWLJh+jGyc/pRAcUq42OmXnH4ZTr/k8tvLcuY13k90aOZ1ZQAA0Nlkex3eMNvq1QkAQLt64QXpxz+WThzH0zYAAJk++cjQ//2fdOGFbT/3PfdIv79PGnksP4MBAGhrwYC04jNDK1ZII0fmuhoAaB/xeDwt+BqJRNJCtalB0sxg7TfZNxaLpQVem+4byNg30Oy+ybFwuLkwbvZgb64ZhuT1Zg/Ber0O7W8+1u2SnM42KExWbc1kWg+I0xlXM9nV/RaJSLFY24SHJSkYTG94+U3EYlKkaSa9RfG4FApl73QZCsXbrLa2ZAWYs39DPR63nBkPRLc7fczn89uBZWsuv73O5XKlBZ2b7uvL2Nfb7L4ejyctTJ26r8PhkMfjafW+ANDxEmHiWCgRPA5ZYeNYyBqPB63uy8n1saAVSk69xbP8buTwSi6/Vm7sp5N+8CNeVwYAADnXwuvwK3lLKwAcZG647Rt+pA8AAIegK85ro7/gNqN7T34GAwDQHrZuNnTX9E7zIcAADkKRSESxWCwtPJva9TYYDMo0zbRAbHIsNZwbCoUUj8dlmqbdyTUcDisWiyX2aUgcL5w2d1IolN41t70CtU6nIbe78XnT43GkBVp9XkNWFz/J4TDk9TYGVlwuUy5X43JhgTWfvW9KmNXhkLyeps/PzQVerUBj03GHQ/I08yngXq9VYyan0wrqZuP3Z/+Z4Xa3XbD34HXYX4B92L/rE4tZQepsAoHsQbBI1NovUzxuqrkG0eGwFXDOdvxwOPvrEMFg08lCYTNtntQG27GYqdTm3YEGQ3Wxxn9LoZCheDx5ToaCITNl3/Q6IhFTsVj7BOF8vsYnC4fDIa/Xk7LOevKxQsiexFieJKvzczKo7PV6ZRhGYn8r+JwMKhuGYc+TDE2njqV2g04GoVvqKg3gUGA0dg1ufouWxSNNQ8WJ26aPPbyuDAAAOoWWXocnQAwAAAAAAAAAAPZLOGwFZpNh3NSvyWCu1bE2bId3WxfyDUsy7UBvPJ7semvaIV0r5NtMsq8VPB6r86wVsLW6X7rdktOR7AprhXAbA7emirsoESaT3eXV62kMwGYGWL1el73O6oLbuM7plDwp4dzMrrY+n6FEA88m+wLoGE5n86F06zlifxzsb5ZqPnwdCjV2lzZNKRhMDx+ndosOh820gHXqvlbIOp6yb1yRxM7xuKlQuF5Ssjt2smt6Yp6gVF9nSDIUDJoyTSkWM+xjh0JxxeNWULu5UHZreL3uRDjZSISbDXk8bjkcDjkcTnvM7fbI6XTJMBwthpOTIWaPx2N/dTgc9vrUr5ndnAF0Ig63dXMXNVn1zw05qAcAAGA/ESAGAAAAAAAAAOAgluyaG4/HFQqF7MBuNBpVJBKxu/SmhnpbDv8GE9uF7KCvNV9MkUhUsVjrAlhW+NUhp9OwA7PJDrlWiNbazus1ZRimPG5DBfnWmMejxpBvYrtkSNcKVFkpXpfLuklWd1w75OtKzm3N0VIn3Gaq35+NAeCwlPkGh+a6hFty9bzaNACd7Pyc2h062UE6NZwcjVo3yerqbJrxRHfqgCQpFLbmsMLJjXPHYqbicUPVu42UMSm1w7MVqLaC02Yrmzo7nQ653S65XFZn5MYQsjfx1bfPEHIyrJwMNbvdbvur0+mU1+u1OzgbBj8LAQAAgEMdAWIAAAAAAAAAANpZMBi0g7jBYFDhcFiRSEThcFihUMgO+gaDwSb3Y7GowuFQSvg3pmAwlAg5hfd98ASXy5DLZcjjSYZ6JYeR7HhryueLy+kw1bW4MXDrdEoed2PnXbfbmQguWeu8Xmtbr8cKDPv9Bl1zAQCdWuMbSgzl5WWuzU1oNtmRORCwuiiHEiHnUMhMhJatMHMkElckElcsFlE4YoWVk4HoZAfmPdWGTNPqyByPGynbmYpGrVtr+XyeRAjZkxFC9srpdMnt9sjn89uBZp/PZ9/3er3yeDxyu93yeDz2OpfLZXdnBgAAAJBbBIgBAAAAAAAAAEiwOvCGswZ5I5GIQqFQC+HfgN21NxQKKhQKKxKJ2h/D3hyPxyG32wr2ej3JoK7k88Xl95lyuw27024yzJvs0OvzuWUYye67VhjY4ZA8iYCvx2OkdeltniHJ0VaXEQAA7IfkG298vswAc/sEmiMRqyuy1QlZCkfSQ8hWx2UpGIwnOiwHEtvV2Z2ZrVCzqT3VhiIRQ5GIFXwOh01FIqbC4ZY/scDtdsrtdsnr9cjr9crlcsnj8crny5Pb7ckaQvZ6vVnDyj6fTx6PFXIGAAAA0HoEiAEAAAAAAAAAB7VksDd5CwaDacuZ6yKRiKLRiAKBBkUiVsjXCgZHFI8335XP6qzrkNfrsMO8Pp8V9nW5YupabCTCv4a8HivkawWD3fJ6rftut+TzqnG7Fjv1EoIBAABtr/HNSu0bWA6FrKBxJGIqmHI/FJLCYSkSiSkcDigUDigSMRWJWF2YAw1STcRQMGiFmyMRK5gcCsVlttBA2eFI/t7lkdvtktvtlt+fJ5fLLbfbK5/PJ6/Xm/WWuc7tdrfptQAAAAA6IwLEAAAAAAAAAICcicViCgaDCgaDCgQC9v3UW2MAOKhQKGAvBwJBhUIRmc0kSTweRyLwK3k9hrxeU15v3ArwFhjq01tyuxqDvF6vKy1Q43ZLbldjSNjpbOlMCPsCAACksn6/ktKDyd8spByLyQ4aRxP3g0FT4bDVGTkUiisUClqB5KgUDO62w8nVux0KhQyFwlaIORSKN9sp2TAMeb1u+f2pwWK/vF5fWug48+b3++37zpZ/eQQAAAByjgAxAAAAAAAAAOAbicViCgQCCgQCamhoyBoGtpYDCgZT11vdfzM5HIZ8Pod8PquTr88neb2m/D6puIvk9aaOO61lb+q4FRY2jGwBFYIcAAAAByun07qld08+0FCyU6ZpKhQyFAyaCoWlUCgZLrY6HgeDDQqFG1LGpbpaqztyKGyFl4PBeNZPsXC7nfL5vCmh4jz5fP60kHHq/by8PPn91nrCxwAAAOgIBIgB/P/snXV4FNfXgN/djRtEiBAkQAjursWLe0tp0dIWWmgL/RWoUqMG1JECLVKsxdviGtzdAiEEkhAgCXHPyvfHkiWb7O7MJhuk332fJw9kcuXcc8/cmTn3zBmBQCAQCAQCgUAgEAgEAoHAgFqtNgT/5v+blpZGWlpagWOZZGVlPPg9m4yM7CJZgO3s9EHAzs4KfcZfex12djrKlgFnf31WX2cnBU5OdvoyThjKurkpMBn7axW2/QS3QCAQCAQCgeC/h0Khvw99GJBcvHtItVqfFTk758G/2fn/5pKVnWP4XZ2nIClLRVYWD8pqSU8v+kKdnV1+8LHTg6BjV0PAsbu7O25ubobg4/x/3dzczLxAJxAIBAKBQCAQmEYEEAsEAoFAIBAIBAKBQCAQCAQCwX+Y3NxcMjIyDD+ZmZmkp6cb/p+RkUZ6ehqZmZlkZmYXyZ6mUilwdlbi7KTAxQWcnXW4uugo56PAxVmBszO4uOiDgJ2dwNlZHwgskqYJBAKBQCAQCP6/YGcH7u4K3N3BuiBkFRqNiqwsHVlZkJUNmZm6B7/nkpmVQ2ZmMllZClKSFdyJhaxsHVlZWjQa4/t2pVKBi4sTrq6uuLq64erqjouLC66urri5uRn+n//j4OBgSxUIBAKBQCAQCJ5CRACxQCAQCAQCgUAgEAgEAoFAIBA8ZWg0GtLT00lNTSUjI6PQv+kPfjLIyMhErdYY1XVwUOLmpsLVBVxctJQtAxUCFbg4g4uLChcXhf7nQXCwiCsQCAQCgUAgEAhKD5VK/wUON7f8I/ICkHNzISsLMrN0ZGbm/+SRmZVMenoSGRk6kpOUZGRCerqW3FytUX07OxWurs64ubni4qIPOPbw8MDV1dXoXzc3N1Ti7UCBQCAQCASC/yQigFggEAgEAoFAIBAIBAKBQCAQCJ4QdDodaWlppKSkkJqaSnp6OmlpaaSl6bMEp6WlkJ6eQVZWjlE9FxcVbm5K3N3AzU2Ljze4uSpwdVXi4qLE1RXcXJW4uOizoz1E+UjHJxAIBAKBQCAQCGyDg4P+p0wZBdJBxyrUasjMhPQMLRkZ+v9nZGSTnpFFZmYCaakQe1tBeoaWzEzjYGNnZwfc3Fxxd/fA3b0sbm5uuLu74+bmhoeHB2XL6o8pFNZkXxYIBAKBQCAQPG5EALFAIBAIBAKBQCAQCAQCgUAgEDwi1Go1aWlpJCUlkZSU9CAwOJ2kpASSkpJISUlDq334KWInJyXu7krc3XS4uekI8Ffg7qbA3d0eNzdwdlZQxkNRKEuwCAoWCAQCgUAgEAgExtjZgYcHeHhIPS+o0GggM1NHdg6kpelIS9PqX2hMTyUtLYaoW0rSMyAlRV3o+cUBT09PPD29cXd3x93d/cHvnoagY4FAIBAIBALBk4MIIBYIBAKBQCAQCAQCgUAgEAgEAhuh0+lITU0lMTGRpKQkEhMTSUy8T2JiAsnJKeTk5BnKOjur8HBXUKaMDm8vqBqkwMNDRdmySsp46D9hrBSxwAKBQCAQCAQCgeARo1KBu7sCd3co52M+q7BW60B6OiSnaElJ0ZGaqiUlNYGUlARuRipISdWSnf0wm7Gjoz1ly5bBy8sHLy9vvLy88PLywtPTEw8PD5HBWCAQCAQCgeARIwKIBQKBQCAQCAQCgUAgEAgEAoHASrKysoiLiyMuLs4oSDgpKQWNRr9B7uCgxMtThZeXlurBCjzLKvDwsKeMh4KyZRXY2z/mQQgEAoFAIBAIBAJBCVAqC2Q1rmiqhIrcXEhJ0ZGSqiM1FZKSk0lMTCLi+nVOJGnJzdU/P6lUSjw9PR4EF/vg7e1NuXLl8PPzw8nJ6ZGOSyAQCAQCgeD/CyKAWCAQCAQCgUAgEAgEAoFAIBAIzKBWq4mPj+fevXsP/r1DXNw90tIyAXByUuLtpcLTU0PtWgq8PJV4eanw8lTg6pqfPUukERYIBAKBQCAQCAT/P3FwgHLlFJQrZyq7sIqMDEhM0pKYCIlJaSQmphJ16yZnzz7MXuzu7oKvrx9+fgH4+vri6+tLuXLlsLMTIS8CgUAgEAgEJUHcTQkEAoFAIBAIBAKBQCAQCAQCAaDT6bh//z7R0dFER0cTE3OLhIQkdDoddnYKyvnY4eurpWpzBb6+9viWU+DhIYKEBQKBQCAQCAQCgaC4uLqCq6uSihXA+LlKRWoqxMVriYvLJS4+isgbMRw/rkat1qFQKPDx8aRixSAqVqxIhQoV8Pb2RqEwFagsEAgEAoFAIDCFCCAWCAQCgUAgeMSo1bkA2Nk5PGZJBMUlOTGWtJQEKgTVRaF4OgJFhN0JBP9/yM5Kw8nZ/XGLIRAIBE8FOp2O2NhYIiIiiI6OIiYmmuzsXOztlZQPUFIjBDo+Y4dvOQVeXgr0+9BPx/2fQCAQCAQCwaMiNjaV+IQM6tX1R6kUgXsCgcB2eHiAh4eS4GoPj+l0DiQm6oiL1xF7J5Xo6PNcuHCWvDwtTk4OD4KJK1GlShUqVKggAooFAoHgMSJnv0LsaQhshU6n487tMOztHCnnX/WR1S0OT5LdiwBigUAgEPznuR11mTPH/ubqpQP879Mtj1ucJ5r78VHs37kIjTqPrKxUGrfoR52GXYzK3IsNJ3T7Qu7evkZAhZp06/sWZb3KW92ONURFnuPcyc1cv3KYSdM2Ffn75XO7uR8fRbsuoy22E38vktVLpjJ+6upiy1IQOePUajXM/uY5sjJSDMd0Oi2Tv9hhsk11Xg7Xrx7lTkwY9Zv0wLtcJdnymBtfVmYq2//+kZycDBwcnGne5jkCK9cx205hfd+8fopzJzdzO+oyb0z5U7Y8BbGFTVhqwxYyFsTcPORkp7N8wURq1evAprXfkJ2VTot2z3Pz+imT7fQbOo2adZ+R3X78vUh2bZrNvdhwfP2r0a3f2/j4BpmV09ycy7G7uLsRHD+wmrTU+7h7eNOuy2jKePrL1lFhzJ2n1oxJ7rkseHLQaPK4cn4vZ09sxr2MD/2GfPy4RXpi0GrUHNi9hPIValG9dhur6up0On75epDROVyQNz9Yh4trWUB/Li/+5bWHddFRvmJtRoybbTh2+dxujh9cQ1pqPME1W9Gl1wTsHZyM2gy7uI8joStITY6jakgzuvV9G0cnN7Mynj76NzG3LtB3yEdWyyxHnuthRzh7YjMaTR5ajZqO3V/DP7CGWXkKci82nN1b5mFv74ibhzdtO43EvUw5WXXzMaeP0rD5wrosKMO1SwdITYknsFJt2nd9GZXK3up2iou1/ZtroyR2ZQvMnYvW2Ky1NlVa54c17dhKHmvmUKtRE3ZxH+dObkGlsuf5Ud+YU9FjR6vVcvPmTcLCwggLu0RaWiZlythRqaKOjs8oqFjRAT9fBUoRJyywIZGRSfw8+xDh4fepVs2LSW+3JSjI83GLZZbr1+/z26ITfPBeRzw8HIvdTk6OmiNHowgLi6dnjxpUqlR0nSrMrt3X2X8gkvPn7+Ll5UzdOv7UresHQGZmHiqVgg0bLxEZmQTAX6uG4utr/vry1sR/uXDhLkqlgm5dq/PmhNYcPnKLDRsvcflyHACBgR707FGDMmWc+GPZGeLi0gFQqRQ4O9sTEuJD7Vp+DB5UlzJlnIr08e+mKyWWaW9ohKy+d+2+blL2F4c2NNmXLWRzcSl6D/Akj3nd+ous+vMc9+9nAmBvr0KlUqDT6W0yn2VLn6dChTIAJCZm8v2PBzl9OhZXV3sCAjxwd3ekbZvK9Oheo1T0uGv3daKiknl5dFOz7RQmPDyB+QuPc+1aAjVrlmPiW20oX97DYp1du6+zfMUZbt1KBiAkxIfRo5rQskUlsrPV/DL7MDt2hqNWa1GpFHTtUp3gYG/WrL3AvXsP50alUlKlihch1X0YOKCO5Bp26fI9/v77MvsP3GTbFvPP+bZab0pCaciQl6fh4KFb+Pi4UK9u8f0tYN5WpOQujo1Z0z9Aenoub038h44dqvHVN3tJT8/l6uX/Gey9pDJM/3IPk99tj6Oj2NJ+EpGzJqWm5vD9jwfIyMjF2dme55+rT906fibbs2QvERH3+Wv1eRLuZ+Lj7cLLo5vi728ccCHV17RPd3LgwE2TfX8yrTMdnjEOFLEkjzXjEtgehQK8vRV4eyuoVVN/TKtVcfeeluhoLTG3b3Lq1E327t2Ls7Mj1aoFU6dOXapXr45KpXq8wgskuXR2F1GRZ+kx4F1Z5XU6HVcv7efMsX9RKpUMGT2j1GR7mnwfAmNK4q+3FXL99CX1yUpREt+7FHL2K+SUAek5k6NPOZjzSdtqn8Ga+bR2/8EWc1kSm5NTV04ZOXMpZz7u3r7Kv2u+pla9jiyb/yb1Gj/LhPfWyNJTkbqNuqHVaW225yXH7m1hc8VFuMEFAoFA8J8nLy+bI6EruRlxulT70Wo1T2RbcomKPMesad3p8OwrDB7xJQOGfsLK395h/85FhjKXz+3m+8/7EHc3gsSEaLZumMWHE+oTdzfCqnasRZ2Xw+G9K7h146zR8Yirx5j99WBmTnu2yN8Ko9PpWPTzK4RfOVxsOQp7Nj2QAAAgAElEQVQid5ynj/5Nwr1IlCo7w0+7LqOL3Bir1bns2TKPLya3Ju5OBM3bPm9V8LC58aWn3eeTiU0o6xXAkFHf0q7LKL77rBcRV4+ZbauwvvNys9m3YxExty7KlqcgtrAJqTZKKmM+UvOwZukHODu707rjMCa8v4bqtVqxb8fvKFUqPH0qGH6cnN25eukA5SvUlN3+9bAjLP7lVXz8ggiq1oTDocuZPqUt6Wn3Tcpqyaal7O562FF+/KIf7buNYeiYWXj7VubLqe24FxtefN2ZOE/ljsmac1nwZKFR55GdlcbuzXNISbxbqn0V99r4qK+pOp2Wk4fX8+n/mrNkzjhSku9Z3cals7sIv3wIF7eyRmtLbk4maanxRgGCO/75GR06w7lub+9I+64vG/6+ee03rPxtEmmp8dy6cZbVS97jq/faG7KS69v4kdDtC6lctRFlvcqzcdXn/PzVILPypaXEs3jOWGKjr1gtsxx5Qrcv5N/VX9J3yIcMGfUtrTsMY/qUdrLW+PArh/licmvadRnNcyO/xjcgmG8+7ExaSrw85Uvow9Y2b0qXALu3zGXLuhn0GjyVl179gejI8/z4RV9yczKtaqe4WNu/KWxhVyVB6lyUa7PW2lRpnh/WrA22kMfaOVRr8tBo1Oz89xcSE6LlTNMjJyUlhe3btzNr1gyWLVtGdNQZmjTKZdxrDkx8U8XA/nY0b6YiwF8EDwtsy+Ejtxjz6lqqBHnRpEkgy5afoVXbeYbgxieRLVuv8u2MfZw7f6dY9XNzNcydd5SWrecSEZHIkOfrSwYPR0Ym0bP3El4c9idVq3jx/axezPimB9Wre/P2pH95tscirl+/T5/etZj+eTdC990gdN8Nfp1v/vn2xo1EZs85Qui+G1Sp4snUKc/g4mJPl87BfD+rF6dO3yZ03w3em9qBF4c2pFfPmox/oyWh+26QlJTFzu1jWLZ0CK1bVWb6V3uoWn0mh4/cKtKPLWSS27c52c1hC9lKq93SGvOggXUZPaoJoftukJqazfato9m6eTTbtoxmx7aX+W5WL25FJZGerr/GJiZm0qjpLyQkZPL9rF58+kkXcnLUfPX1Xs6fv2tzPR49FsXAwcvp+uzvnDkba7adwuzafZ2efZYQEXGf6OhkZs7aT536PxARYdpvkE+XzsF88nEXQvfd4MjRKH74rjctW+h9EU5Odkx+tz116/oRuu8GtWr5MnXKMwwaWJeJb7chdN8Nbt5KYsum0WxcP5xhLzVk9ZrzVK85i2XLz1jsNztbzfKVZzl1+rbFcsVZbzQareyycijpmleYAwdv0q37Ijp1Wcjx4zHFbkfKVszJXVwbs7Z/gPc+2Ia7uyPDhzVi/Zph9OgegqOjyiYy3L+fyZdf7+XPv84XewyPE1vb6ZOGnDXp/v1MGjb5ifIBHsz8ticvj2pKj16LOXosyqgtKXs5cjSK3v2W8sqYZnw/qxeVK3vSut08wsMTZPeVkpLNnLlHUakUVKhQxvDj7u7I/gOR1KrpK1seueMSPFqUSigfoKRFcxWDBtgx6S07xo9zoF0bDelpV1m9+i9mzZrBjh07SEkxHQwkeDLYu/VXNq76HHVejqzyOq2GvNxsdm36hYS4ovfqhSmJv/hp8H086TyN/npbIMcvbgufrBQl8b3LQWq/Qk4ZOXMmR59yMOeTtsU+Q3Hm05r9B1vMZUlsTk5dOWXkzKXc+Zj9zXM0btmftp1H8to7f1A1pLlsPRWum5WVarM9L5C2e1vYXEkQr2sKBAKB4D9PULXGVK7WiAtnTGd8tQU6nY5lv05g5Bvznqi2rOGfP7+gTsMueHpXAMDNw4f2XUeze/Mc2nd9Ga1Ww/a/f+CzH04YPqWwe8tcls9/i/XLpzHu3RWy2ikOVUOaU6lKA65e2m903Me3MiNen8Opoxsl29izdZ7ZQMziIHec+3b8xntf7TUZ0JFPRnoiP37RD5XKjnc/21asN8nMje+vxVNwcnajw7OvAuDjG8Qzz45h7owXmLnwOkpl0bftC+u7eu02BFaqzf344jlAbWETUm2UVEaQNw/HDq6mR/93AChfoRa1G3Smx4B3CQpuYlTu0N5lZKQn4lH2YdYJqfbPHt/Eu59tQ6nS36JXDm7Mz18O4Mr5vTRrM7iILJZs2pLd6XRals4dR6PmffAoo3eMt3rmRfZtX8iKhRN555PNltRkFlPnqdwxWXMuC54sHBxdaNp6EHb2pZslKj01gW1//8jg4dMfSb2SkJuTRd1GXdFq1cyb+WKx2rhyYS/f/BqGq5txRq/ff34FzwJZ/zPSk4i/G8F7X+4x2U5s9GXi7kbyxc/nUCgUaDR5/Pbjyxzdv4qDu5fQ4dnXSE66g06nY9z/lhvqOTi6sOOfH0lLiTe5Fq5d9hGOji5WyyxHHp1Ox7plHzHyjbk4ODgDULlaI6rXas2BXYsZOuY7s3rT6bT89uNoWncYRsWgegA0admf3Ztms+K3SUZjNIccfdjS5k3pMjEhmr8WT2HCe2sNL3688PJMJgzzZdem2fQcNEVWO8WlOP0XxlZ2VRKkzkU5NlscmyrN80Pu2mALeYozhw4OztRr/Owjy4pgDRqNhn379nHo0EHc3ZW0aaWgdi0HPD3FZ2wFj4Z/N4WxY9sY7Oz0kelNGgfSb8Af7NkbwXOD6z1m6UwzYXwrenQPoXp1H6vrJiZm0qffH9jZKdmxbQzlyrlK1snIyKVbj9/JyVFz8tgEo2DjPr1r0bVLddq2/5XMTP0GTPnyHpQr58r9+5nMm3+M96Z2wMGh6PPtvPlHadG8IkePRVG5kvG65+hoR7lyrqSl5VC5QH/lA/SZE93dHVEoFJQt68SggXUpX96D1m3nMXrMWq5e/l+Rvmwhk9y+zcluDlvIVlrtltaYqwR5AeDh4WT02XJ7exWNG5Xn7TfboH4Q3Dd7zhHu3Utnzi99Uan05+n8eQMoW9aJ2DupNh0vQFBlT+bN6c+GjZckx5GPRqPl+x8OcvrEm7i76+9F58w9woS3/uGjaTtZteIFi/UrVNDr2dvbxWRQeKWKZY3+BQgsr8/O7OPt+mCcKtq2CWLj+uEEVvqatyb+w/PP1TObGbZJ40AaNyrP9h2WX1a2dr3R6XS8MeFv5s8bIKu8HEqy5pmiXdsgvv7qWVq1KZl/V8pWzMldHBsrTv8Af60+z7vvtAOgVi1fFvw60GYyLFp80pAle+SIxsVu53FQGnb6JCF3TXp3yhbc3Rx57dXmAAQFefLqmGY8/8JKIq9PMay5luxFq9UxdtwG+vapZcj8/tKLDVmw8DhvTfyXrZtHy+pr9ZoLbN86mqZNKhi1/8ey0yQmZuLn9zCrvJT9yh2X4PHj46PAx0dFq5aQmqrkwkUtx08e5/jxY7Rp05b27duLjMRPIK9OWkJmRrJs/5tSZUe9xs/K+sJiSf3FT7Lv42ngafXXlxQ5fj9b+GSlKInvXQ5S+xVyy0jNmRx9ysWU79QW+wzFnU+5e262mMuS2JycunLKyNszkjcft6MuczvqssG/3aRlf3Q6HW8N95fUk6m6N64d540pf5XYpw/Sdm8Lmysp4u5VIBAIBP8/UJTuxvC65R9z8czOJ64ta4i/F0ls9GWjY6nJcejQAXDt8kGe7TfJEDwM0LnnG/iVr07k9VOy2ykuChNzWMbT32JgbkGZbt+6RN3Gz5ZIhsJtSo3zethR4u5EcCR0BXdvXzXZjlaj5rtPe3I/PorxU1cXy+lgbnxZmSkc3beKWvU7Gx2vXb8ziQnRnDthPlC0sL5N6d8a+UpqE3LaKImMcuYhJzud9NQEo2PN2z5XJHgY4NSRDTRu0U92+7m5WTzbb6Ih0BagclV9NiUf36Ai7VuyaSm7u3HtBDG3LlIhyDhQoW6jblw4vZ3bUZeL1JFLwTmwZkxyz2XBk0tJzj8pcnOzmDtzKClJ1mWCKm69kuLo5IqTs3uJbLr34KlFnBJarYazx/+lccuHa0votvmo1bkc3rvc5FvI509u5flR3xjmR6WyZ8jobwGIDNdfu7UaNd36vm1Ur3LVhji7lCkiA8CJQ2sJrtmyyDomR2Y58mRnpZKedp/bRdb8e+h0lq8bF8/sJO5uBLUadDI6XqtBJ04dXk9qSpzF+iBfH7aweXO6PLJvJXm52QZHEegdhyG127L9n5/Q6bSy2iku1vZvClvZVUmQOhfl2Ky1NlXa54fctcEW8lg7hwUpzWtCcdDpdKxdu5pjxw7RvZuKt8bb0aa1SgQPCx4ZWVl5vDOxrSF4GKBRQ/1GQ1CQdIDm40KpVBQrkE6t1tK952JuRSWxdvVLsoKHASb9bxPXr9/n4w87m8xU7ORkx48/9CYzK89wLLC8B7161uTu3TRWrymanTI7W82WrVcNQdpKZdHzPv9Ywb+ZW8ZaNK+Io6Md164lkJpqOhtaSWWypm9TslvCFvoqjXZLa8wqleUyr77SnJAHNn71WgI5OWqiooyzEX7ycZcic20LPfr7u1O2rHWf1j1w8CbvTGprCNQDGP9GK6pX9+HkKekMt1K6M/V3c2X9/d2pWLEMycnZREYmWexXzn2BtevNhx/vYMfO4n9ByRYyyKHgXBUXKVsxJ3dxbKw4/aen55KQkFGsulLodDrWrrvISy825NTp2xw5+nRldi0NO32SkLMmpaRks3LVWTp3Djaq27lzMNHRKWzaHGY4Zslejp+I5sLFu9SvF2B0/Nlu1dm2/RqXLt+T1dfzz9UrEjwMsH7DJfr3q2N0zJI81oxL8GTh4aGgTWsVb0+wo2tnJUePHmTdurWS/ibBo8fRyc2QTMY6LN932NJf/KT5Pp4GnmZ/fUmR4/ezhU9WipL43uUgtV8ht4zUnMnRpxzM+U5tsc9Q0vmUWmNsMZclkVFOXTll5Myl3PlIuBdZbD2Zqmsrnz5I270tbK6kiAzEAoFA8B8m4uoxDocu56VXfmDL+pncvX2NUeN/xc7ekfh7kRzdt5LMjBTycrNp1KIvdRp2Maovp0xy0h32bp1PVkYKak0eHbuPNdwEZGYks+Pvn3BwckGrUVPG0592XUYb2t6w8lN6D55K+Yq1ZfdpaUyWZMlHq1Gza/Mcrl06gLdvEANe/MQoIDY68jwHdi0mIf4WVas349l+k7B3cLI4ntDtC9j5788oFEoWzx5LQGAI3Qf8z6ysSqWKw6HLSUyIITnpLgGBIXTp/SYKhcJsW1KyycWSjmo36My2jd+z89+f6drnLXKy0zl1dCMDhn4CQJXgpjg6Fd348/GtTGZGsuF3qXby58GcDgrawqHdf5CXl42ndyAaTR7FQafTsW75xwwf+zOb1n5rVV1LOpczzl2bfiHubgTLF+iDLxo068WoN+ZRtkCGuM3rZxAZfpJX3l5UrKAZS+O7HXUFtTqXSlXqGx3P//3sic00atEXkK/vtJR49u34jZvXT1GlelOe7TdJ8i1IW9iEnDZKIqPUPBza8weXzu0G4MThddy7E4FfQDWTb1/mZGdw6cxOhox6OB9S7Ts4OBvefMznyoVQ6jfpXiRAWcqmpezuTozeiV34wdvHLwiAmxGnCKxUu8TnqTVj+q+h0eRx7sQW7twOo02nEWxa8w1lPP3o89wHAFy9dIAr5/eSmhKHs4sHbTuNIKBCTaM25JSJDD/JySPryUxPxs3Dm6593jRklb57+yr7di7CyzuQnOwMgoKbULdRN0D/IHrswF8Me+0nw7puqnzNeh3Yun4ml8/toU7DLvR+7n3uxYazf9diblw9RstnhvJMt1eMZIq5dZFDe/7gfnwUjVr0pdUzD98OtyQTwOmjf3Pu5Gays9Jo0LQXrTsOA2DZr28SdiEU34BgFs8eS6MWfWjYrLfkPJirl5GexL4dv6HR5JEYH02DZr2M2pOS81Hg7FKmyLGrlw5g7+BE5Wr6rEs6nZZdm+eSnBjL5XN7UCpVdO//DgNe/NSw5nXsMRZHJzejdsp6lcfOzsHg+PDyqVikrysXQuk1eIrRCwCgX1/PHPuH1975gz1bf7VaZjnyOLuUIahaY7aun0Xt+p2pXqs1t29d4t6dCF6dtMSszgCibug/oVwpqNB1L6gBanUul87uMtikOXuzRh9g2eYtYUmXd2L0L38UWad9g7h0dheJCTF4l6sk2Q4gae+mkNu/pbZtZVdSmJtHOcixWWts6lGdH1Lt5FNSeayZw2uXDxpeTAuu2apIvcdNbGwsYWHXeHmUPRUriFwKTwtHj0WxbPkZfvqhDzNm7uPqtQQW/DoAR0c7IiOTWLHyDMkp2WRnq+nXV5+dtiByyty5k8a8+UdJSckmL0/LuLEtqF9Pn7EqOTmbH346iKuLA2q1Bn9/d14e3dTQ9rRPd/L+1A7Uru0r2Z6zsz3OzsbZPveGRtCjew2aNgk0HLPUpyXM9ZuXp2Fv6A3Wrb/IN1915/iJaFasPIu7uyOT/9eeoCBP/v7nMv/8e4XcXA1ffNa1SEDzhYt3cXVxoGpVLzQaLXv2RrBu/SVm/9yXX2Yf5sDBmwQHezN18jN4e+sz9nw7Yx8nTsawZNFzsoOHb99OZeFvJ3BysmPUSPMZJtu2CSIvz3gD6+232vDvpiv89PNhhr3UyOhvf60+z6CBdXF0tE1WuYyMXHJy1AQFeeLhYf4ZszRkktu3FKWlryd5zKbYvuMaTZtUMNhtzRr65/TBzy9n0z+jCAjQ+wpdXOz5+MNOReo/SrvLp1nTCri6OhQ5HlTZk+TkLJv2JUVOjprY2DQAfH3lnedqtZbZc46w/0AkQUGefPZJF6PAw4LrDZhfE+cvOMZPPx9CqVTw6tj11Agpx7v/02e/lVr7LV1bTMkAlq8VarWWZcvPEBOTwp27adQI8eGtN1tbHVAkJZcUpuS2hNz1XIqlf5xm1+7rAKxdd5HrEfcJrubN1CnPyKovxY6d4bRrF8TQFxqwYuVZfpl9mFYtKxmVscW1zpLd5OSo2bX7OuvWX+T3hYNY+sdpNm0Oo2pVLz6d1sVkNm/ArJ1K2Uxx7gWSk7OZPecwN28l4eXlwvBhjahX179E8u8/EMn0L/eSl6fh2W7VeW9qBwB274ngq6/30q1rdSaMbyW5Jl2+EkduroYG9Y0Df/N/37Q5jH59axdpozBhYfogi8IBvflzeerUbVJTc4rVV0ZGLjt2hjPz2x6ScuRjq3EJHh9KJbRoriIgQMHipWHcuXOH8uVNf9XnUfO0+ZW3rJ/JhVPbcHXzpP+Ln+Lk7MbaZR+RkngH34Bq9Bo0Bd+AYK6HHeHvP7+gWZvBhq9SWvLp6HRarpwPpXqt1kb7oLHRlzl+YA1xdyMIqFiTDt1eNbnfkpp8j12b5xJz8zw16z1D1z5vo1AoLPqZpXxMtvB9WPKl7d02n+MHVgPQY+Bk6jfpDsCOf37i7PF/6TFwMvUeJJQxJ6sl+5HjI5Sj35L44p5mfz3I87Oa048cv581PmFL82BJTmt875bWCVPI2a+QU0YOcvQphSXfqTU+YXN6smY+LWFu/8EWc1kSGeXUlVNGzlzKmY/bUZeJDD8OwL+rv8KjrB8Nmvakcct+knpau+wjs3ULUxyfvhy7l2tzxdnvkYvwmgsEAsF/lP07F/HjF30J3b6QrRu/487tqxzZv4qEuJtcPrebn78cQNvOIxkyegatOw5jzrfPs2bp+4b6cspEhp9kwfcj6NzrDV589QeUCiXTJ7cmNuYKAPNmvkjFqg3oOXAybTqN4MCuxYa6YRdCORK6gvMnt8ru09KYpGQBfYDiX0umYu/gRM16Hdi1eTarfn/X8PezJzZxcM9Shrw8g+FjfyF0+0JmTutmePvI3Hg6PPsatep3xN3Dh9ET5tN9wP8syvrHrxM4duAv+g75iGGv/sjWDd+zYeWnZtuSI5scpHQ04KXPqFajBSt/e4fffx7D/O+GM2T0DFq0139uzFTwMED83UijGxOpdgCLOgC4GXGaX74eRJvOI3hu5NdUDWnOuZNbZI+1IKHb5tOszWBc3eQ50fOR0rmccY58Yy7vfbWXIaNn4OtfjXMnNvP5u63JytRntNFqNezZog+Ad3Ypw4IfRvLzVwP5d/WX5GSnl3h8d2+bDhR1dHJDqbIjMUGfuUOuvnNzMlm+4G2ys9JR2dmzdtlHzPq0h6Qd2sIm5LRRXBnlzEObTiN48ZXvAWjcsh+jJ8w3++mWC6e34+NXBb/y1WW3X5gr5/fy7+qvGDJ6RpGNJymblrK7/DdG0wq9rZjfXvxd/VuWtj5PLY3pv8aGlZ8x+5vBnDu5hc1rvyU2+jJ7Nus/W7p53bds3TCL3oOnMmLcbHzKVeLTSc04dWSDob6cMnu3zSd0+0IGvvQZI16fw5nj//Dl1PZoNWqyMlOY8fGz9Oj/Dl37vEXFKg04WyDj+JF9Kzi4e4khmNxceTs7B57tN4nwK4eJfVDWr3x1eg58l7CL+wy2ks/d21dZu+xDHJ3cSEyIZsH3Iww2IyXTmj8+IC8vm1Hj59Opx+v89tPLrFv+MQBj3voNB0dXqtdqzegJ82U/DJuqp9Wo+eq9Z9BpNfR57gO69X2bn78cwKWzu2TJ+Tg5dWQDjVr0NZw/CoWST747yqRpm+g5cDJOzu5sWT+T2d8+b6hT2HEBkHQ/BrU6l4bNi+pRp9Ox45+fuHs7jI7dxxb5+9plHzLIis/LFZZZrjxj312Og6MLMz7uypql77N22Yd88E0o/oE1LPZncEi5GV/38q+DifH6654leyuIlD4s2bwUlnSZv04Xfqvc1f3BOl3gbXhL7UjZuznk9G9N27a2q3zkzqM1FLZZuTYFj+78kGrHVvIUxNIc7t+5iH9Xf0m/odN4buTXxN+LJDX5nux+HwX5YxJJpZ4efl90kt59l7Jg4XFmfbefsKvxrFx1lps3k9i1+zr9BvzBqJFNmDWjJ8OHNWLw8yuY+v5D34KcMidOxjBsxF9MeKMVP/3QB6VSQcvWc7lyRb/2vfDiKho2CGDK5PaMHNGERYtPGuruDY1g+YozbNl6VXZ7BdmzN4LpX+1l1oyeRuecpT7NYanfY8ej+WL6HhYsPM4nn+3i0qU4nn+uPlu2XmX0mLV8MX0PsbGpDOhfh6PHonhp+F+Gdg8dvkXHzgup3/AnzpyNBWDxklMMG7GaRYtP8vakf0lJzaZChTJ89/0BWrWdR1ZWHhqNlrm/HsXR0Y4yZZwYPnI1/QcuY/qXe0hPzzU7jn37bwBQtaoX9vaWgy47dqhq9HvnTtWoW8ePk6diOHzkltHfFiw8zrjXWkjqUS5ffRMKwJvjW1ssVxoyye1bitLS15M8ZlMsWXqa7Gy14fc3J7QmONib02diqdvgRxYsPG7wI5gKynyUdpePqUA9gBuRifTpXcvm/ZlDrdbyzrubycvT8OorzfDykg42Vas1TJ66BScnOzp2qMovsw/zzrv65yxT6w2YXxPHvtaCTh2r4ePjysL5Aw3Bw1Jrv6VrizkZpNb2NyZs5M+/zvHxR534+cc+zPr+ANM+tXyvXRhLcklhTm4p5Kznchg5ojE/fq+/T+3frzYL5w+0WfAwwLxfj/HaK81p0jiQ5s0qsnbdRe7cSTMqU5JrHUjbzaHDt5jy3lYWLznFO+9uJjMzj5o1y/H9Dwf5aNoOs7Kbs1Mpm7H2XiAjI5cWrefQvn0VfvmpL/v3R9K0+Wye6biASf/bVGz527erQsOGAYTuu0HLAkHbnTtVIzU1h4lvt5G1JpkL/HVzc8DOTklUVHKR+qbQavXrcVyccbbr/PXnRmRisfvatv0aVap4WpWB3FbjEjx+nsRnxKfNr9ypxzhu3ThDXl42FSrXxcc3iE49xhF2cR9BwU3wDdBn6g6u2Yq01HhatNP7LS35dI7sW8nk16ozc1o3cnIenvdRkef4/rPedOv3NgNe/JRtG77n/TfqMHNaNw7uXmool5wYy7rl0yhfsSaePhVY9fu7HN2/CjDvZ5byMdnC9yHlS+vYfSy5OZlcDztC7fodDfUaNuuFi5unIXjYnKy5OZlm7UeOH0+Ofkvqi3ua/fVydGhJP3L8fnJ9wpb6kSOnHN+7pXXCHHL2K+SUkUNx/agFseQ7lesTtqQna3z85pDafyjpXJZERjl15ZSRM5dy5mPw8Ol07D4OgJ6DpjB6wnxDALCUnizVLUxxfPpy7F7OGIu73yMXEUAsEAgE/1Had32Z+k17oNWoqV6rDa9OXMKcFfF4lavEotmv0b7bGMPnX6qGNKfXoClsWT+Tq5cOkJubJVkmLzebBT+MZNCw6Ya3zTr2GIe9gzMpiXfRaPK4dHYXjo56J46ndyBNWw8yyNem0wg+/PYAXfu+BSCrT3Nj8i5X2aIs+ajVuXTv/w4du4+lS+8J1K7fiUvn9BfUnOx0Vi6cxMCXPkelssfTO5A2nUYQfuUwl87ukhyPXP37B9bg0tld+PgGAaBU2RFSuw0XTm0125aUbHKQmi/QZwud/Pl2KgbV4+DupcTGhOFfvrqlZrkZcZrsrDQ69xpvOCanHUs60Ol0LJ0zjnZdRlPOrwqgt4Va9TpiLQlxN7kZcYYmLftbVU+OzuWM09mlDDXqtKN7/3f4et5luvV9m6T7Maxfoc+aGxV5juTEWMp4+pOelkCvgVNo3KIvW9bP4tN3WpCbazmDjNT47t2JAMDJxaPI35ydPUiMj7FK31mZqbz85gIGj/iS1yevomX7oVy9uJ8Th9ZalLOkNiG3jeLKWNJ5KMzpoxuNHiysaT8nO50/F03m11kvcS82nM/eaUH4lcOGv8uxaSm7y8/6HnZhn1E9lUqfdSQ/hsFW56nUmP6LDB4+HU/vCsTcvMjg4dOZ8sVOvp53mZhbF1m/fBqDhk0vkCF2HCF12rJk7utkpCfKKhMbc4V//vqSF1/5HpXKHoVCQfd+k8jOSiM7O53I8FNkpN031G/QtCe+/g8DLYa99iOYspEAACAASURBVDPTZh01ZIK2VN7B0aXICySOjqZfKFEolUz86G/6D53Ge1/txcc3iC3rZpB0P8ZiHzcjTnP9ymFatBuCQqGgRt32VK/Vmm0bvyc7K81kX8Ul8X4MsdGXDbYdUKEmHmX9uHhmh6QuHic6nY7TR/+mcQtjp0VZr/LUb9Kd50Z+zYwF16hRtz3nTmw22hQozLEDq6nTsAshtdsaHY+7c515M4eyfsU0rocd5ZOJTclITzT8/eTh9QQFN5H1VrwlmeXI418+hPe/2otSqWLL+pnodFpZny28d+c6CoXC6OsSAM6u+myr9xNiZNublD7Ass1bQkqX5SvqN1uvXjSzTj/4HKNUO1L2bg45/ctt29Z2lU9prBumbFaOTRVnHCU5P+S0Y0t5LM1hStJdViycyPOjZhi+OtC1z5s4mLlOPC4CAgKoVasmK1ZpOHpMg0bzuCUSSDHm5ab07FEDtVpLmzZB/LHkeRLjp1GpUlleeW0dr4xpRoUK+vOwRfOKvDelAzNm7mf/gUiysvIky2Rnqxk+cjVfTu+Gr6/e0f/6uBY4O9tz524aeXkadu4KN2TlCwz0YPCgh183GjmiMYcOjOPtt/RBjVLt5ZOensv/Jm9m6Et/Eh6eQNMWszl0WB94KNWnKaT6bdsmiMGD6gLwwpD6vDOpLb171WTM6KaE7rtB69aVeX1cS3r3qsnLo5py+MgtUlNzAGjTujKTJhqvPa+MaUa3rtXRaLR8Oq0Ln07rws8/9mH6590ID0/g90UnOXvuDrGxqfj7u5GQkMHUKc/Qr29tZszaT9MWs80GpeUHhFUILJohXQ5vvdkGgJ9+fviccfJUDBUrlqF8+aLPw3KJvJnIJ5/tYuI7m2jafDZLlp7i5x/78M4k0+uyLWUqSd+lLVtptVtaYz57LpaOnRfSsfNCnum4gOAas/jzr3NGZcqWdeJA6Fh69axJYmImY1/fQLtn5hMenmC23dLSozWcOn2btLQcJoyXnwUvPj7DoI+CP7PnHjFbJ/ZOKh9/spNXx64nqNq3nD4dy/x5A5g/b4CsPnNzNbz7TnvGjW3BmxNa07lTMDt3hQOm1xtr10Q5a7+5a0uNGuVMyiBnbd+567ohA6qdnZK2bYLYWuDlEjlYkksKU3LLQc56/riJjk4hKyuPkBB9UOfr41qQl6dh/sJjRuVKcq2TYzedOlajZw99YMHYV1vwxustmf55N9q1DWLXrutWj8uSzRTnXmD2nCMkJmbRrm0Qzs72zJzRk9xcDePfaMkP3/UukfyT3m6Lg4OKdesvGo6dPBVD9+4hZrNjF16TrkfcB8DDo+hXFD08nIiOSbEoQz75X3wI3XfD6Hj+S0cKFMXua8PGS/TvV0eWHPnYalyCx4dGA0eOalixSk3t2rUICAiQrvSIeNr8yk7O7rRoN4SwC/sM/piQ2m31iU0KJBuJv3uD4BqtcHRyk/TptHrmRZq0LHqPsfaPDwgKboKLa1nK+Vfl2X4TyUhPZOw7y2jbeaShnEaTx/Bxv9Cy/VBefOV7HJ3cLO6lSsljK9+HHF9az0FTUKtzjQJkTx/9m049XpeUVavVmLUfOX1L6be0fPhPi79eSs7i6Kew30+OT1aqHzlzLeV7l1onLCFnv6I4expykPKjFkTKdyrHJyylJ7k+fktI7T+UdC5LIqOcusVtv/BcyvXRm6O4+02FKYlPX8ru5YyxuPs9chEBxAKBQPAfxtHRFaVSZbg4OTm7c/3KEe7H3aJCpbpGZfOzeJ48vE5WmWuXD5IQd5OqIc0Nfw+sVJvZK+KoVb8jKpU9fgHBzP9uOMcPrgGgS+8JhrJKpYrgmq0MNwhy+jQ3JilZ8nFwdMHT++HnQT29A0lL1r/xdPXSQdLTEln52zssnj2WxbPHcuvGGXwDgom/GyE5Hrn6B/hoxkFefOUHAO7EhHEvNpzMzFSz7UjJJge5Otq9eS5VQ1rQ5/kPibsTwfQpbYm5ddFUkwBsXPkpL7/1W5HPgUi1Y0kHEVePcjPiNNVrtTFq09lEEKwldDoda//4kOdGfGlVPZCvc2v0pVSqGDrmO6qGNOfapQMA3I/TbxZ36TWe9l3HEFi5Dm07j+L5Ud9w9/ZVQrfNL9H43B68wWfqjVCNJg9XDy+r9F3G09/oTbr8DNlhF0LNypBPSWxCbhvFlbEk81CYfOdOwYcHa9p3dHLjhZdn8uPSGPo8p3+LePUSfabj4ti0KburVqMFwTVbcvzQGq6H6TcI83Kz2b9rEYBhnbTVeWppTP9lHJ1cqVK9icEenZzdOX5wDTqdjsCKxtmhWrR7gfTUBMIu7JNV5kjoSipUrmMU2Nu28yh+WnobF9ey+JUPRqNR882HnbgVof/sTcFrlrOLB1WqP/wEplR5ufgFPAzqt7NzoGufCajVuYRfOWyxjxMH15CWmmBYbxfPHosOHV4+FbkXa/2GnCV8fIOYtTCC5u2GAPrM2Lk5mWRm6Dd3bKULWxN5/STZWWnUrGc+m5OrmxdvTPkTRyc3rl0+aLJMVmYKh/b8wegJC4r8zTcgmDem/Ml3v9+kQdOeJMTdZOsGfeb19NQEThxaS4dnX7OpzObkyc3NYv2KT3h+5Nc0at6Hcye38O2HnciycL8E4ObujU6nQ6s1jg7UqPMMf5drb5b0kY8lmzeHHF0+03UMTs7u/LvmG8Pb+cmJsZw+qncmeXqXl9WOlL2XpH+5bdvarvIpjXXDlM3KsalHfX5ItWNreSzN4YFdi1EolFQMehjYoFAocXIumnnhcaJQKBg0aDCtWrVj1x4tP81Wc/CQhpSUJzDdlMCAq6sDKpWSdm2DAHB3d+TwkShu3Uqmbl0/o7JDX2gA6D+fLqfMgYOR3LyZRIvmFQ1/r1Pbj/txH9OpYzXs7VUEB3vz0vC/WL3mPABvTngYnKdSKWndqrIhaEWqvXzc3Bz4bmYv7sR8wIcfdCQ7W83kKfpNdak+TSGnXycnfYBPmTIPA1z8/PS+CX//h+eqj4/+vvLevYcbm6Y+Ye/kZIeDg4py5R7eh44b2wKlUsGRo3rdgz5j7CtjmlG3jh+jRzVhxjc9uHo1nl/nHyvSZsG+7t2T9yWewgx7qSHe3i6s33CR6Gj9tWjuvKNWBVWawsfblW5dqzP0hQb8uXIot6Pe580J8rLhllSmkvRd2rKVVrulNeb69QLYtmX0w5/No2nerGKRcv7+7mz6ZyRr/noJPz83Dh2+Ret2v3L23B2T7ZaWHq3hk093sei3QXh6Osuu4+XlzNrVLxX5GTWiidk67u6OdH82hF27r3PvXjozvu3Ba682l/11IRcXBwIDH/oLAgM9jDKJFl5vrF0T5az9YPraYk4GOWvskYOv89MPfQB9RtLw8ARSUrMtaMI0luSSwtRaLQep9fxxs+C347z6ykM/9pDn6+Pp6cz8BcfJzTW+Ny/utU6u3Tg56fcvAgIebub7+bkRn2CcDVcOlmymOPcCp8/E4uioMpyL7doG4e7uaLRuFVf+gAB3+verw4qVZ8nJ0fuWly0/w+iR5teKwmuS94MMwWp10Tf48vI0hr9L0bJFJVq1rMTqNecNWd+zs9X8vugEoF9TitNXbq6GTZvD6N+vtiw58rHVuASPnpQUHQcOqvnxlzx279XSps0zDBo0+In7Wt7T5FfOr5+bm8XJw+sBUOflkJuTycXTO0hP1b+MdWD3Utp1GQ3I8+m4eRT9AsStiDOGAF6A+k17AhAVed6onHe5ytjZ6bOkq1T2eJT1LfI1xoJIyWMr34ccX1qj5n0o61Xe6Iu+Vy8dMOzjytGdKfuR07eUfkvLh/+0+Oul5LRWP6b8fnJ8slL9yJlrKd+71DohFzn7FXLKyEGOHzUfOb5TOT5hKT3JmU8ppPYfSjqXJZFRTt3itG9qLuXMhyWKu99UGFv59E3ZvZwxFne/Ry6mXxEUCAQCwX+HQg++d27rPyuTl2fszPQuVwmlyo67t6/JKhPtcw57eyeLD9bjJq/kh897M2/mUA7sWsSrE5fgUdbPZFk5fZobU3SktCymUCiU6NBvGsdGXcK9TDlGTzAfKGjNeMzJCvoAx/DLhzi4ZymVqzbC06cCmVGXzTYhRzYp5Oho16bZHNm3ks9+OIlSZUdwzZbM+eZ5fvl6MF/PvYRSafwZ0f07F1G7QWcaPHiItKYdSzq4HXUJABfX4mUeyid0+wIat+yPm4f5z49Fhp9k9ZKpRscGDvtCls6t1Vc+jVv2Y8c/PwMY3pgt/MDVpNUA/pg3nsjwU2ZljLl1QXJ8+Z+Hyso0vnHUajVkZ6UREFijRPouX6EmCoWS5KQ7ZuWsXqt1iW0Ciq9vOTLKmQe5XDm/F0cnV8Mb+CBvngujUCgZOOxz0lLjObh7KTqdltDtCyXn3BwF7Q7gzffXsWTu68z6pAcVg+rhH1jD4FSrWVf/4GPr89TUmBSK//r7jIWuwTFh6HRa1OpcHFQPH8V8A/Sbj3djr8kqEx15DnsH8xvE3uUqMXrCfJbMGcfn77akS+8JDBn1rc3KyyXwwUtByYl3LPZxO+oS1Wu1KdF1zhq8fStzaM8fXLt8kAZNexllVC4tXZSUU0c20KBpT8OLV+bwKONL9VqtSU40HeSwesl7jHzjV4tZSV3dPHn7o418OKE+keH6zbjVS99n8PDpVt1ryZHZnDwLvh+BR1k/OvcaT+de49m46nP+/vNzVv42iTFv/c6+Hb9xdN8qozoTP/7n4XUvI8VorczM0AczBQSGcOzAX1bZmyl9mKOgzZuTUY4u3Tx8mDp9F0vnvs5742pSNaQ5QcFNH7wMV4Fy/tVYPPs1WXNiyd7NySinf6m2C1NcuzInY2msG6ZsVo5NPerzQ6qd0pLH1Bzejrps1cbB40SlUtGhQwcaN27MsWPHOHz0FHtCc6hYwY4aIRAcrMS33JO1aSwo+jgdFqbfbMjONn5BslKlstjZKbl2LUFWmXPn7uLkZGfxPPlz5VB69l7CkKGr+H3RSf5Y8jx+fqY3iOW0VxClUsH0z7sRH5/BkqWn0Gp1KJUKs32eOBnDlKnGXy2a/kU3q/st2L+5Y7l51qfo9vR0xs/Pjfv3M3F01D+XlS1rfK86cEAdXh+/kZOnbptsIz94K/x6AjqdzuoxOTvb8+orzfnm21Dm/nqUKe+2JywsnrZtgqweT0Hc3R1p07pyseqWVKbi9G3OVgq3U1r6elLHrFQqjLJlBgd78+aEVqhUpu1s8KC6dO5Ujd59l3L4yC1Gv7yGM6feKlKutPQodx5/X3SSLp2D6dWzplV1VSqlyaBTNzcHszK5u+nnZtWKF2j3zHyGDF3JmZNvmV0XpVAqFegkvhtvzTosZ+3PR+7yImeN9fd35+ChmyxZeorGjQKpUKEMKZetDyC2Rq7SpOB6/jjJy9Pw2+8nqFrFizkFMmMrFAru3k1j7boLvDi0ocU25FzrrLGbwhQ32FDKZqyxe4AmjQNZs/YC16/fJzjYm7wHY2tQ33I2Vbnyj32tOavXnGfj35cZOKAOd+6kUbVq0aA+ML0mBQfrgzlSUnKMymo0WtLScqhRQ76Pc8O64Yx9fQPP9lhE/XoB1Kjhg4OD/r6jwzNVuXwlzuq+9uyNwNXVgaZNAov8zRK2HJeg9ImL1xEeruXqNR3RMRqcnR1p1KgJLVu2xN3dXbqBx8bT4VcGfcKSgAo1ORy6nLadR3J0/5906vU6G1d9zrGDq+nUYxxRN84w8KXPgOL7goOCG3PtyiG0Wg1KpQqNOg+Vyp7yFWtarKdQKC3ed0jJs23j9zbzfUj50pQqO9p3fZlNa74m6f5tUlPiCarexLBuy9dd0XVeqm8p/ZamD/9p8ddbktNa/Zjy+8nxycrpR2qupXzvUuuEOX9t4S9ZgvR+hdwyUpjSZ0n883L3GSzpSc58WqNLMN5/gJLPZUlklFNXoVDI2mcoiKm5lDMflpDSk1xs5dOHonYvd4zW7MlYiwggFggEgv9nuD+44CQmRBsdVyiUODq64uVTUVYZjSaPrMwUUpLuUsbT32Rflas25MvZ51m95D0O7FrMF5PbMG3WEdzLFP0Em5w+zSFHFiny8rJJjI8iOyutyKcBijMeS/zz13TOn9rK5M+34+jkxvWrR0ssmxRydLR1w3c0bT0I5QPHQv0mPej3wses+eMDbl4/ZZS9OPzyIRITYug/dFqx2rGkg/xPuaQk3sXXxI2jXA7t+YPY6DCWzn3dcCw3NwuNOpfxL/pQoXJdXpu0lMYtC30O3tNfls6t0VdBXN088XvgsAmooP+EXGryPaMyHmV8Uans0em0eJQpZ1LGvxZPlhzfqPG/AvrPSxckvz//wJAS6dvewQknZzcCAmuYlRNKbhNy2yiujGU8/Yz0kk/BeZDL6aMbadSir9GDp5x5NkfNeh04eXg9CoVSlk2//3WoyXYK2h2AR1k/3vpgPVqtxhDEO3VsCFVDmhseUkrrPC04pv9vFLzW+QfWMBzPX2e8fCpyPy5KsoxGk8e9O5Yz0LfpNIKg4KYs+3U8O/75ibu3rzFp2r82Ky+H/Ifc/HGY6yMvL5vbUeaz3dsStTqXX74aRDm/KowaPx+FQsHyBW8blSkNXZSU00c2MuCBk10KVzdPk+fljn9+pGGz3gTXbCnZhkKhpEad9qSn3Uedl8OhvcuKfEIsOyuN6MjzjH/Rh449xjF4+HSrZDYnT/y9SE4d2cBbHz7sr//Qady4dozjB1bz8pu/Ub5i7SLrucrOHv9A/Rv5KUn3jJwsKcn666B/YI1i2VtBfViioM07u3gUkVGn08rWZVBwEz75/jgajd5ZH38vki3rvqXHwMlo1Lmy2uk/dJpFezenR8Bi/wqFQta5ZEmPcu2qQdOeJmUsjXXDlM1K2ZSPb9AjPT+kZC6t8zWfwudCdlYaqcn3ihXs97jw8PCga9eudOrUiYiICC5dusShI9fYuTsbd3cVlSpChUAFFSsqCfBXoPz/d7vyRJOfOTA6OtnouFKpwNXVgYoVy8gqk5enISUlm7t30/D3N/2816hheS6dn8iU97ayaPEpWraZy/Ej440yNeYjpz1TdOxQlXXrLxoCmsz16VvOrUhmvAB/92L3Wxo4OtoRHOxNzRp6/0jBTMYAvr5u2Nur0GpNb9zXruVH2bJOJCdnExYWT61avlbLMP71lsz6bj8LFh7HxdmeV8Y0s34gNuZRy2TOVh6lbE/ymAsy7KVGhv/fupXMpcv36Nnj4fOXp6czWzePplKVbzh77g737qWbDOIrjfHKGdPBQzeJjknm02ldrK5bElq2qMT0z7vx3gfbGPrSKnZuH4NKVToXS2vWYTlrv7XIWWO/mL6HLVuvsnP7GNzcHJ6IzL0lJX89f5xs2HiJEcMb8fmnXY2OnzkbS6s28/hl9hHJAGI5lIbdSCFlM9bYPcDr41pw6PBNXnhxFZ9/1pUdO8N59ZVmDHm+vk3k7dihKsHB3ixafBInJzv69qllspy5NSmkuv4Z6u5d4/uC/C8O1AiRv6/i5+fGxvXD0Wi0hnunaiEzadG8IsHB3qjVWqv72rDxEv361rb6WcaW4xLYFo0G7tzVEhOjIzpGR3QMpKVpcHFxIjg4hLbt6lCtWjVUKtPJSJ5knmS/MkDbTiNYu+wjEhOiObp/FW9/uJGIq8c4EroCX/9q1Gn0cE0vrk9nyMszmfvtEH776WVath/K/p2/88rERRb3j+UgJY+tfB9yfWntu4zm39VfcXjvMlJTEujW503Zspakbyn9lpYP/2nx10vJaY1+LPn9pHyyUv1IySnH9y61TljyKZvC3H6FtWXMYU6fpuSU65+Xs88gZz2Vmk9rdVlw/8EWc1lSGaXqyi2Tj7m5lDMf5pCjJ7lru618+vkUtHs5YyzOnow1iABigUAg+H9GUHATFAolF8/sNPo0Q3ZWGlmZKYTUbiOrjIubJwC7Ns9h0LAvDGVyczI5d3ILjVr05ezxTTRtPZDRExbQuEU/fpzej7MnNhk+U2OtXOYoX6mORVmatRksqRe/8iGo1bns2TKPnoOmGI5rtRp2bfqFTj3fkByPnCDDu7evsmHlp4yesMDw+RhMvPlasC0p2br1nSjZrxwdabUa7B2cjOrVa9KDNX98YJQGI/rmBU4d3cgLL880Kht/L5JyflUk25HSgX95/RtUl87tpnqheZfKTlKQ4ePmkF3o0xOh2xdy4fR23nx/LY7Obnj7VqZrn6JZZOToXK6+ChMVed7gLCnnVwVf/2rcvG6cgTY3NwuNJo+KQfXMyihnfAEVauJfPoTwK4fp3Gu8oVz+p03qN+5BQtxNoHj6zsxIJiszlToNu5iVEyixTchpoyQy6nRayXmQg06n5fTRv3l10lKj43Lm2RzpqQmGeZEz5+YoaHcFyc/cvHvzHBLibjHu3RWA9FpVkvO04Jj+v1E1pBl7t83n4pmdRg+0iQnRKJUqqtVogUadK1nm5vXTXDyzk0tnd1Gn4cPNmdtRl8nLzSIvNxtv30oEVqrNe1/t5a8lU9m24Tvi796gnH/VInKFXz5ksbxCoTB8Jgf0L6XI4X7cLZxdPKhWo7nFPvzKhxC6bT7Xw44aPVgnJ93hyvm9tHrmRQB0WvnB/AUpWO/g7iWcP7WVb+dfLeAUeGizUrp4HNyOukxC3E3qN+kuq3z0zQt07D7W6NihvctwdfemQbNeRsfzr92mSE9LoHqtNqjsHJjy+Y4if//j1wmU8fSj35CP8fQxztYjJbMlebQaffYne/vCa373B59z0lG9Vmuq1yr6OeuGzXqx7Nc3CQ87RGDlOobj4VcOU9YzgEpVG8i2N3P6sERBm3d18yoio06ns1qX+W+zr17yHmU8A+g9eKrsOZGyd3N6lOofpM8lc1hrV77+1UzKWNx5NIc5m5WyqSohzR7p+VHwfDXVTmmcr4UpeC74B4Zw9sQmrl7ab/iCQT7W3Lc/DlQqFSEhIYSEhKDT6YiNjeXGjRvExERz4FA0mZnZ2NkpKB+gomJFHeUD9BmKvbxEUPHjpGmTQJRKBTt2hjP2tRaG42lpOaSkZNO2TZCsMvmf1f5lzhG+/KKboUxmZh6bt4TRr29t/t10hUED6/LbgkH071eH/2PvzsPbKs+88X+P9sWyLMmy7DhO7NjZnJVs7ISGpaWkULa20DIsLx1KoS2/eSd9mUJnmOlA2cOaQKBhKXuAEghhCYUQsm8kwXG8JnbiJbZiy7Yka9f5/XEs2bJlS07sKHa+n+vSZUs6y32e8+hIenSf+/zkylfx8ZoDuPWW2Mv1AsC0abYBl3fdtfE/7x871hmtVOr3hwZc5x9+3/c96HjXO9S83iDq6ztw4cIJKCgwo7DQ0qfSsMcTQCAQwswZ8U9o1umUePivl+H2O/6BBx9aj7+/+rN+17dt+xGcuUD6EdvX4zL2Y8cacfVV0/Huqn14dtkW1FR3f5cf7CHpRA5hJxrTiax7/PiMuH1lqGIbruUO5zYncsedH+Iv/30J/uNPn+HSSyZCoeg+yKenqzGt2IYdO+uQkdH92XS42jEi0Tbt+/4o/vHhfjz+aOxnhUOHHCgoMPU7b6J44j0f7/38j0suwFdfV+OLdZW47z/X4a8P/HDgBR+HRMdEADEnJCRz7B+sRMfYmTOy8Z/3r8NLK66JVm8+1T//JNLzeJ5KTz+zGX978ZqYyuGAlMA+d04utm47jJ276jBv7tgTWs9w9JveevbT8nL7gH0mmX7fm8GgxiUXT0R+vgkmkxZ/uudCZGUdX2XweARBwK//zwL8x72fAZCqAPc20DFpyhQrJk3KxKbNtbjrzrOjz23aXAsAuOyy/pM9+hM5aeHZ57agtrYNb71xPQAMel3hsIgPV5cO+JmjP8OxXTR44TDQ2iqi2S6iviGMujqgoTGMYFCETqfG2LF5WLBgPAoKCjBmzJgRc9Jrf07VceWIcxbdiPdf/zNeee43mFh8LpQqDc5b9C947uGf4+N3H4hJ3DreMZ3MrHzMOesqzJz7I8jkCvz67pe7f7sYpJ7jxYniGaqxj2TH0ixZ4zFjzqXY8OUrKJy0AJas7itJHG/bJbPuRO07lGNxI3G8PlGcybZPsuN+/Y3JJlqPz+saMM5kxt7H5E0b8DiRzJhyT/F+rzieaeIZqD3jxZns+LxSqU74O0Oidup5pdr+9udg27Ln7w+uDqnAw4nsy6GKsb95BzPNQPsymd99+pNMn49Xtb23oRrT76lnv09mG7/98uXj+k0mWRzyJiIaxUQxDDEcjvkCk5VdiIWX3oa9O9eipbk2+viOTe9hXMEsnH3hL5OaZtbcy5CdOxmfvPcw/vHm/aiv3Y99uz7Fi0/eguJZiwBRxLdfvhydd9b8y2E0ZUcTjxvryvDkX65AbfV3ScfV3zYljAVAKBiISX6SHvMj1PWhYfaCxcgwj8H7r/8Z69Y8g9ZjR3Dg+/V44fEbUTzr4oTbo08zoaO9GT6vC22tDfD7OuPG6ui6DEHlgU0QRRH2owdRU70bne42iKKIYMDXZ1nFsxYNHFsSkmmj2fMvx94da2KSl5uPVsOcmYdx+TOj999//T6cf/EtOFpfjqP15WisK8POzR9Ez9ZLtJxEbTB5+gWw2grw5ZpnUVcrnUXp9ThRW/0dXB3H0NbaELsfuxLZeidwj58wG5OnXxBzs1jHQaFUYfL0C5BfOKff9krYH5LYzubGKrzx4t0xSaPNjVU4VLkDP75qCQCpits1N/4Fe3euRfPR7jMAD+z9CmnpmbjwR93J9L0lu31X/PxelHz3BZzt9ui8m79+HfPPvRa546dh2hmXJN3ekddLxLdfvoy5Z/0UxbMu6jfOZNoqmddFMv3zeGNMdj8E/NIlBUPBYNzlVB7YjEDAiykzYgeRkll+KBTAN1+8FE3ojqxv28Z3ccNtTwBIbp8n0+/ixf32y3/EDbc9Ea3kPBSvML0I1AAAIABJREFU02S2qaf+XssjlRgOR7+YRpxz4a+QO34aNqz7G4JBf/TxHZvew6If34Gs7MKkprno8jugUKiw7JFfYOM/X0VjXRk2ff13fPbh48gvmgufz41t374TnXfhJbdCJpNHq03s2vohnv3rtfB0tgNAwunN1jyU7vsKznY7RDGM9Z+/CLlciWP27vdroO/rb+M/X8FVv/xv6NPMA67jwh/+GgDw7EPX4rttH6GttQE7N7+P15bfiblnXwVAep+1Nx0CIPXpZPWer61F6tsV+7+FKIooL9kAZ7sdne42BPzehG0xGJHPHSfap3dt+QDFsxb1ieH73Z9j1av/gTZH96W9tm54CxMmLcDk6RdEH/tu+8c4WLEdhZMWRN+762v347MPn0BzYzXaWhuwYd3KaGVxQDq+drQ146LLfwtBEPoceyZPvwBanQHpxixMnn5Bn+oA/cWcTDxZOUXIGTsF323/KGY+e+NBzJx72YDVy02WsTj/4puxef0b0c9fXo8T3237CD/52Z8glysT9rdE7dHTQH0+nuNpSwD49B+PYf+edfjtH9+GVmdMejmJ+nuyeq8fQMJlD0e/6imZ40ZEMq/F/vpsoj6lUKhO6usj0XKG8vWazGvhgq5j5Dsv/zH6nlJ/uBSujhY0N1bB70vt5a+TJQgCcnNzcf755+P662/AkiX/D3fddRcWL74S1qxZqKzKwPv/COK55/148GE/XngxhA8+DGLjpiAqKsNoaxvZyUKnqnBYRDgsxnyfLiy04Ne3LcAna8tRW9tdLXDVe99j9qwc/OqXs5Oa5seXTcbkyVY89PB6/Of961CyvwlrPy3HTbe8i4sWFUIURax8eWd03sWXT0F2tiGaeFxWZsfiK17F7u+k70qJlhcIhPDiSztQU+OILtPrDeKdd/fhyScWA0DCdcaTaL0AEAqJXcvvni8Uko6HgUD3cTGS4NQz0SlyGfRIRb/ux8Nob+9+H3n1tV2YMd2Ga66eBplMwAN/uRSfrC1DdXV35f5/flWNzEw9bv9X6fvGp5+V46dX/x12uzs6TaRi4utvfIf/u+QTuN3dn4UBqarfbf/6fvRS8w6HBw0NHTF95A+/l37UuvmmOdBqu6v2dHZK7wUeb98T4SLL83i6n+vs+r+z099n+oh42zAUMSWz7oFi789QxDbSttnTNW3vPhzx7qp9KCuzIzNTD/sxN373h49iXgNNTS6U7D+KX94wO5rIOFT9Duh+DfZXmTue6uoW3Hvf57j1lnkoL7ejvNyOsjI73v+gBB/8Y+CKZ5E266/tIu3f8/l48wiCgL+/+jNkZxvw8CPf4OM1B6LPxesjgUAoejyJ8PtDMful9/Em0THRZNKiudkFl8uPhoYO5OSkJzz2A/HfW/qLIdExtqFR+oy0cVMNRFHEwYOt2LW7Hm1tXoiiCJ8vGHcfx2ujgeKSYuu/r/R3rE40X+T5/o7nyS4n8poMBEN9nks0b7y22LL1MDo6fJg8OX4F12uuli7b/MTSjdHHjve9LpnPDD2X1XP5fn8w+nh/29K7n1Z1vS/212e83uCA/T7eOl762w589nkFigotmDolK+7nhuONP+Lmm+ZAoZAhP98EnS62Il4yx6Q/37sIn39REbPsv7/+Ha67dgamdyXqRyR7XNy0uRb//se1ePKJxdGTiga7rk2ba+H1BgZMmB8onsGsi06MKIpoawMqKsPYuCmIDz4M4oUXQ3jwYT+ee96P9/8RRFV1BqxZs7F48ZW46667sGTJPbj++l/ivPPOQ25u7ohLHh5J48oRGaYcTD/jUpSVfINFP/oNAGD2/MXQp5mQYR6DNEN3dftkxnQiv8H0bIdXnr0dgiDAZB6DMWOnQKXW9Wm7UCjQp/hFKOhHONz9PtV7vDhRPEM19jGYcbqFl/4azY1VmDXvxzGPJ9N28fpPMutO1L6DGYsbyEgdr08UZzLtM5hxPyD+mGzCse0EcSYz9p7oONGfZH6vSPY3jYiB9tlg2xNIfuw0md8ZBttO8fZnIgP9/jAc+/J4YhzMvP1Nk2hfJrM/AKkSuNRu3e8Dyf7eFG/enk5kTD+Zfp/MNg7V7z39kd9///33n/BSiIho2O3fD7z3HvDT65MbVG6xH8bnq5eizdGIvPyZyMopjFaanD77YnS62/DxqgehUulQVvINyku+wR1L3oyeTZhoGkEmw/TZF+PA919j5+b38dWnz+NIzT788tdPIjMrH+FwCCufuQ2hYAAarQHffrkSWr0Ri6+9B4Ig4Ptdn2HtB48iZ+wUFE4+K6l19rdNiWJpdxzFJ+89jLbWBkybdRHMmXlwtjdjzXsPo6OtCVNnXAhbThEmFZ+L73d/ju0b38UXHz2FitKNuPqX/40JkxYk3B6ZTI6t37yJzV+/AblcgaycorixZpiysWfnGpTs/gLffP4SZDIFJhafg91bP8SeHWtwxplXQJdmilnW9DMuHTC2ZCRqIwCYOuNCVJVtxYZ1K6FUqlGxfwM2r38dt971IsyZY9HuOIqH77sYByu246tPl+OfnyyTbmuXYefm93Dj7c9AbzAnXE6iNph79lWYNf9y7NnxMT794DHs3fEJKg9sglqjRygcRCDgw4RJ86FQqOD3dWLbt+9gz/aP4fN2Yv6510Cl1vY7IFS69yscPrQXP/rpvw3YXnK5MmGbJ9rOow2VePPF/w/rP1+B1mN1qKnahYYjpbj5t8/HfPHOHTcN+rQMvPPyEsjkctTVfo9vvngJv777lUGfPRtv+/LyZ0Kt0ePjVQ9Crdbhq7XPIxDw4tbfrYBSqYFMJsekaRckbG+VSou9Oz5BXc336Ghvxo5N78HtcuCmO5ZBJh/4ohYn2ifOOPMKnHHmTwZcBiBV0z3eGBPth4Dfi60b3sK+XZ9BDIcwY86l0rGwR1/74qOnkWHOwYLzrhv08l0dx/DMg9fg89VPwtFSh4YjB3CwfBt+8rN7+z0zMd4+T7bfAdLg22ern8AHr/8nbvzNMzj/4pujzw3F69Rqy8fyR65PapsG+1qOZ/XbMlx3HTBtWuJpB2v9euC7PcCiy5J7Dz5UuRPrPn4abpcDsxcsRprBAkEQIMhkmHPWT1G695/YsXEV5HIFNn71GrTadPzspocgyGRJTaNPMyOvYCa+2/YRtn37Dv65dhnEcBj/csdzUKm0aD5ajbde+jekZ9jg93vw2eqlWHjp/8GUGRcCAD77x+PYuuFtLDj/5zCashNOn27MwtZv3sK6j5/B9o2rcOGPbsfOze9DEID0DBtyciej092GnVs+QEdbM+xNh/DPtcswbfZFWHSZNGA80DqMpmyYM/Owe8uH2Lz+DXy+eimc7XbcctcL0cHlttYGbPv2Heze9iHy8mciO3dSUvui93yTpp+Hrd+8he0b38W2b9+VqnOEAti15UM01pUhv3DOgG2RLLerFV9+8hxqD34HlVqH4lmLoFCqB7WMiLf+9m84+8Jf9hnQ2bvjE3z41v3YsG4lPJ0d2L/3S2i1Bvz0+v+KvnbKSzbg6QevRnXZ1u737U+W4atPn8fRhgr88tdLUXlgM154/FfY8MXf0OluQ03lTtiba/Czmx+OOxAfsWHdSuj0GZh3zjVJx5xMPIIgQ/GsRfhq7XIcObQPwaAfWze8DXvTQdz022UDxgQA02dfgoMV27Fn+8cIhYJ4//U/44wFi3HZVf8OAAn7W0XppqTaI1GfH4z+2tLtcuDVZXeg8sAm3HXPeyiYGL/qVH/LSTfZBuzv8d6vkl1/omVnmMcMeb/qKZnjhrQNyb0W++uzQOI+NdjtOLHXh5BwOUMVTzKvBUN6JmxjirDxn69i3cdPY8+ONQj4vag/Uoq0dAsEmTyp+JztAr76VMBvfwtkZSWc/KTQ6XTIzs7GpEmTMH/+Apx33nmYOnUqxo7Ng1ptQlu7AlXVPuzc5cW27SFs2SriwAEBh2pCaDwaRnu7CL8fkMsEqI/v8H9aO3y4DU8s3YjGRidmzsxBYaElWm3ukouL0NbmxQMPfgWdTon13xzC+m8O4e03r0damjqpaWQyAZdcXISvvj6I994vwfLnt2LfvkY89eQVyM83IRQK49bb3oc/EILBoMbKlTthNGrwH/dcCEEQ8OlnFXjk0W8wdUoWzjprXMLlHTvWiZ9e83c88eRG1NW148ABO7ZuO4z77l2EggLppORE64wn0Xo9ngCWLd+K778/isIJZsydkwu/P4Tnlm/Fvq7HFswfC58vhBdWbMOevY2YUGDBggV58PmCeOXV3fh2Yw0yM/X4wYUToFLJ8fGaA9izpxF79zbiyJE2fL6uEl99XY33V/0Ker1UTXH6NBtMGVr8+5K1kMsFfP99E158aTtee+VnmDBBOsnm2ee24LW/78YVV0zFuHEZAKQf8q69ZgamTsnCi3/bgUce24ANGw5h3ZeVeOTRDdi+4wj+688XY/bsHBw+3IZHH9+A9esPQq9XYdLEzK7LzWfgs88q8PBfL0NGhhahUBjflxzFI49uQH1DBxytHpx99jjYstJw7FgnPllbhpdfkU6+1GqVKJxghsvlx9PPbML2HXU41tKJOXPGwJaVBo0m9jtl720YipgaGpxJrdtud8eN3WiMrajT8zV1orEJgjCitrmurh1PPbMJO3bWoanZBZ8/hD17GrFxUw0+WVuG/33gazz+xEbcevM8LLygAKs/KsWnn1XgHx/uR+NRJ75efxB3/X41frJ4Kp556gqoVPIha0dASi5++519+OjjA3B3+nHdNTOg1SoH/A589KgTP7j4RWzbfgTLlm/Fs8u24NllW/Dcsi1Y9V4JnnvmSpjN8T9nNTe78LeVO7Huyyp4PAGMy8vA+PEZ0GqVCIdFfF/ShEce3YCGhg60tXkxb95YiGFg2fNbsXlzLRwOD2bNzEFOtgEajQJ6vQpnzB6D19/4Dqs/OoCxY42YODETL6zYFtNHjh514q8Pr0dDQwcuvqgIeXlGNDe78deH16OpyYUfXFgIW1Zan+ONTCYMeEyUy2V44809+Psbu6FQyLBoUWHCY/9A7y0eT6BPDBqNYsBjbE62AWvWlOHzLyqw4qXtkCtkOPec8fjHh/vx8ZoDuPSSSXjrnb3Y8O0hWK16XLSoCCqVPO7rqL+4EvWVeHGrVPKk+lgyx/NEy/F6g3jzrT349LNyhEMifnjpJKSlqZLu573b4uDBVtx087toa/fiokVFsNliq0oeO+bGNxsOYePGGpSWNmNcXgYKJ1jw/Iptx/VeF3kfHajfNDe78ORTm1BT48C0YhumT7OhqqoFjzz2DRoanLhw4QTk55vivq/17qe/vOGMAfvM4sun4O5/W9Nvv4+3jm3bj+Cppzfj2WVb8PAj3+AvD3yF51/YhsajTpx3bj7a2jzHHX+EXq9CSUkTfnfX2RgzJn3Qx6SZM3Og16u62liFZc9vhdcbwEsrrok51idzXAwGw3j8iW9x33+uw3PPXIlbbo79jpzsugDgqac3YUxOOn523UzEkyiewayLkuN0AkebRBw6JKL0QAi7doewabOAdf8MYfOWIEr2h9Hq0EOtyUNe3mTMmTMXCxcuxI9+9CMsWHAWJk2ahOzsbOh0A48bnWyjfVy5J5VaB63WEB1vkskVaD1WhzMv+AWycrpPZk40puNytuDz1UthbzqEsfkzkDuuGDKZHDs2vYev1i7HFx8/jU/eexir3/4Ldm5+D6IYxoRJC1BTtQvrPn4afr8H88+9BlpdOmoP7sHnq5ci4PdiwXnXQqtL7zNePHna+QPGM1RjH4MZp7PlFGH31g/xi1sfg7zHb1sDtZ0+zRxtg979J5l1J2rfZMfiEhmp4/WJ2vCSxXcN2D6DGfcbaEw20X5IZl8nGntPdJzoTzK/VyQzTTL7bLDjqInEGztNNCacbDsNdow/ItHvD4IgDNm+PN4Yk513oGmS3ZeJ9oensx1ffPQ06mpLoE8zo3DyAihVmqTaqb95ezqRMf29O9cm1e8TbeOJ/t4DDDgObxfEkX5NHSKi08S77wI//znw8ur4Z/P3VlW2JabibuQSwD35/R40HilDpi0f+q5Kur0lM01zYxVCoSCycydFz9IRRRE+rwtHGyrh87hgyRoXTVSNONpQAVvOxD4f4PpbZzLbFC+WQ5U7Y84AzS+ai/rD+2POxCmaejbkciVEMYzG+nJAFJE9ZlI06TCZ7WlurIJKrUOGecyAsQaDftTX7kd27sRownb94VJYbfnRH+N7Liuiv9gGK14b9eRytsB+9BDSjVaYreOi+8fRUofmxoNxlylXqGIulTLQcpJtA1EUcbS+HAqFCtbsCWhrbYhpDwCorf4upioaAIzJmwqDMX6VCnvTIbQ7mvrE2p9k2nyg7QyFAmisK4dKpYE1e8KAVRNDoQAajpRBpzfCYh2XVHy9DbR9wYAP9UcOwGiyIcOUE2dbE7c3ALQ7jqKttRG544oHnQx3on0i0TKGIsb+9kNjXRk62ppjph1feEbMmYaHD+1FmsEMc2Ye+jPQfg6HgmisK4dcoUBWdmFSr/F4+zyZfrduzTNoOFyK8YVzcN6if4nbTkPxOk12mwb7Wo7nlivleOcd4GeDv/JgQvffD/ztFeAvTyf3HlxesiHmfu74aX0G0dyuVhxrPowxY6f0+SKa7DThUBD1h0uhN5hi+p1UBV/E4YN7AAA5eVNi1h8M+uE4Vhc9SSHR9ADQ0d4MR0sDcvOmQqFUo83R2OdYIooi7E0HEQz4kDN2SkzfS2YdAb8XDXVlSEszxVyaLbLsuprvYc0uGFR1gXjzdbrbcKy5FmPHTYNMrkAw6MfR+gqMyZuKYMCXMM7E6wyjYv/GPo9HPmsMVnnJhj7Hmwif14XG+gpkmHPiHtvra/fD5Wzp8zgAGDKsGDN2atdy3GisL5eOrQMcw3qqPbgHSpU6uoxkYk42nogW+2G0tzXBmpU/qOMBIO3n5qMHYcspglaX3uf5gfpbsu0xUJ8fjN5t6Xa14ss1z6K9rRmz5l7W57JXyS4HGLi/R04u7C3Z9Sda9lD3q3gGPm4k/1oc6HUWkahPJbsdQ/X6SCbmE4kHSP61EAz60XDkAMyWXKSlZ8LRUg+TJTdhXBH1hwXc9zsZSkqG50Sg4eTz+dDc3Izm5ma0traitbUFra3H4HC0IxCIXCJPBpNJDrMpDLMZyDAKMBoFZGQISDcI0MT/GHBa27ylNqZi4NjcdBQWxr4fezwBHCizo6Drkt3xJDNNVVULgsEwJk3KhEwmfbcQRREulx8VlcfgcvkxflwG8vNjx0MqKo5h4kRLn+8j8ZYHSAkvZeV2KBUyFBZaoFDEvmcks86BxFtvyf4mtLR0j4UUFVrQ3u6F/Vh3pbzx4zLg8wVxtMkVfWxCgRntHd6Yec1mLWZMz8avb/8Ar7/xHdpb70fJ/iaMyTEgOzv+cSgQCOFAmR0ZRk2fZKRgMIzaWkef/dpTZ2cAB8qaodEoUJBvjql6+N2eBnR0+KL3c7INmDQpE4BUNTaSdObzBbF125E+yz77rHGoqmqJaQsA0cTIntseaafe+6P3NgxFTBWVx5Jad2lpc9zYe1Zh7GkoYlOp5CN6m/szrTgLmZl6VFe3oKDAjLq6drQ6PAgEQpg8yYr09O7vykPVjgCw+7sGOJ2x8RVPzYLVqu831rq6dlQfbI37nEolx9ln9T+WdOBAM5p7VRbNG2vEhAlmBAIhbN5yuM886enqPm1YkG+KeT333I4Z021IT9fE9JEdO+uilZgBYN7cXJTsb4pWrY23HrNZi+nTbAmPiVVVLdDplDEJjUD/x/6B3lt6Hy8jx7ye64p3bPf7QyjZ34RJEzORliYl3e4vbUJBvtSXGo92j3MYDGrMOWNMn9dRove8gfrKQHEn6mPJHs8HWk5ZmR1Nza6Y5+acMQYGgzqpGHq3xb7vj8Lh8ACQTpI5/7z8mHmrqlpQ39AR85hWq4DH092fBvNel5fXXfWsv37T+9gzc0Y2qg+2wO3u7tfnn5ePcFiM+77Wu58O1Ge0WsWA/T7ee+e27Ufw9dfVmD17DI4edcLl8sPp9GH7jiM4c0EervhJ8QnFH+FwePp8lhrsMcnnC6L0QDOybQbk5AyurwHA089sxv7SJsydk4ub/mVOtDJ8PInWBQB79jbCYtbF9IPBxDOYdZHE6wU6nCLa2kS0t4toaxfR2gq0tgpodYQQDEopK0qlHGZzBkymTJjNFpjNZmRlZSErKwvqEXh25mgfV+5JFEV4Pc6YMZNOd1v0alq99TemU1m6KaZisDW7AObMPHz75ctQKFRQa9LgcrbA53Wh092GPdvX4PrbnoAY7n4/lckVKCiai+rybdHHVGodCibO63eceaAxpsi2n8jYR6Q9kh2nc7sc/f4uHy9Wv68Thyp3xkzXs/8kWvdA7fur259B4eQzk2qnREbyeH0y+6+/9klm3G8wY8ID7Ydk+1misff+jhMDSfR7RbLTJNpngx1HTWSgsdNEY8L9tdPxjvH3lOzvD8e7L08kxmTmTWaawe7L/vZHdfk2BAPdn90EmQyTis+Lmbe/dkpm3hMd00+m3yfaxshzg/29Jybe/sfh9zOBmIhohBhsAjGdPp5//Fcxycrx/PjqJYM6W4yIaKQ5lRKIaXg1NVTivb/fl3C6X9/9csJqtSd7namInYjoVDeSE4gH4nQ6u5KKW+FwOLr+t6OtrR0eT/egtEolgzFdhowMID1dhDFdSjA2GgWkG4D0dAHyxOO/RCdFJOHM4/pLqkMhIqITwOP5yHfkSDsWLnoBlWX/HlO1GpCSWh99bAPuu3dRiqKj000oBHR0iOhwQkoObgt3/Q+0twto7wjD7+9O7tRq1cjIMMJstsJsNsNsNsNkMsFsNsNgGF2J2BxXHhq7t67Gpq9fw+/+4/0+zx3Y9zUgCJg6yIq0Q2U0jPeeaPtyvJ6IaGQYKIGY19AgIiIa4X7zf19PdQhEREQnjW3MRNz5/94ZketMRexERJQaBoMBBoMB48fHq1wUhNPphMPhgNPphMvlgsPhgMPRgsNH2tHe7oTf332SqEIhwGCQI00vwmAQYTAIMKQJSEuD9L9BgDFdgErVZ1VEQyoUCiMUYj0SIqKRjsfzke+zzytQV9eBbduP4Jyzuz9vtrR0YulTG/Gvty1IYXQ0WoRCQGenCJcbcDpF6eYS4XIBTqcg3VxhuN0hRErWyeUyaLUaGAwGmEwWTJpsin43iiQJj8RKwpRaOza9h4bDB/pU/T3aUIHvd3+Oa25M3QkxRlM2Lr78zoTTDfZqmSfTibZvKtpgqNY5GvYfEdFQYAIxERERERERERER0UmiUChgMplgMsW/HKkoinC73Whvb4fT6URHRwdcLldXsrETh2ra4Xa74XZ7YubTauVIS5PBkAakpYWg0wnQ64C0NBl0OkCnA9L0AvR6Acrkr9JJBAD4ev1BbPi2BoFACB+vOYALzi+A0Rj/kslERHTq4vF8dLjqp8X4++u7ce75z6Ow0AJbVho6Orw466xx+PO9izBuXEaqQ6RTVCAAuN2Ayx1GZyfQ2Qm4XGG4O7uShV0CnE7A5QY8ntiquXq9Bnq9DunpGUhLS0d2Tjr0ej3S09NhMBhgNBqRlpaWoi2j0eyHV96NZx+6Dv9+2wSMyZsKjTYNPl8n5p19Na78xZ8hl6fuC65Ga8Dk6RekbP1D4UTbNxVtMFTrHA37j4hoKDCBmIiIiIiIiIiIiOgUIQgC0tLSEv74Hg6HeyQWu9DR0QG3293114VWhwsulwtutweBQDBmXqVSBp1OhjS9AJ1OhF4vQq8H9DqhK9lYgFYL6LTSX61WGM5NphFArZbjby9eE73f1ORiwhkR0QjE4/nokJmpx4b1t6O83I7qg63IytJj6pQs6PW8JMXpxuMR4fEAnZG/naKUFOyW/rrdQGen0HVfRCAQjplfqZRDr9ciLS0NOl0ajBkG5I1LR1paGgwGQ8xfmUyWoq2k011+0Vw8+mIVaqp2o6O9GdbsAthyilKaODyasH2JiIgJxEREREREREREREQjjEwmQ3p6OtLT0xNOGwgE0NnZCZfLhc7OTrjd7pj7LrcLTc3Orse9CAZjE44FQapwrNMJ0GoArVaETgcpuVgjJRxHk46j0whQcPR51Oh5eXQiIhq5eDwfXSZPtmLyZGuqw6AhEAx2JQN7pSTg7mRg6THpPuDxyLqShUV4PCGIYuxyFAo5dDoN9Ho99HoD9Po0ZFp1SEtLg16vh06ng07XfV/BD+w0QgiCDAUT56U6jFGL7UtEdHrjJ0IiIiIiIiIiIiKiUUypVMJoNMJoNCY1fTAYhMfjgdfr7fPX6XTC6XSi0+NBS6sbXq8HHo8XbrcXYu8MBgAKhQCNRoBWK0CjlpKPNV0JxhoNoNUIsfe7ptPrBbDIGRERERGNFJEkYK+v66+3x19vz/syeDyA1yfA4wnD6w0jGIz3OVoOjUYNrVYLjUYLrVaHLJtUDVh6TNPnb1paGgSBVw8hIiIiouQxgZiIiIiIiIiIiIiIohQKBQwGAwwGQ9LziKKIzs5OeDye6M3r9UZv3fc96HB2otkeecwHny8Qd5kajQwajQxqFaBWA2q12HWTko01akCtFrqe6/6rUQMajXSfSchERERENJBwGPD5AK9XSv71+UT4Yv4CXp+UACw9JnTdAJ8f8HqlJOB41GpljyRgDTQaHXR6LcwWTY/HNNEk4MhNp9MxEZiIiIiITgomEBMRERERERERERHRCREEoetSyfpBzyuKYj/Jxt03n8/XdfPC7ZASkbsfCyAYDMZdtlQBWSYlGKsEaDQiVCoRSiWg6kpMVioBpUJKSlYqAaVSSj5WqaT/VcrIdAKUyhNtKSIiIiI6EYEAEAhIyb3+rv/9finRNxAQEQgAXi8QCPaYzi/N5/cL8HoF+PyAz9d/9V9AqgCsViuhVquhVquh0WjQsPdWAAAgAElEQVShVmug02tgMkce0/RJAu55n0nARERERHSqYwIxEREREREREREREaWMIAjRamvHKxQKRROK+yYd+2Ke8/v9CAQCcHf64PN5EAgEEAgE4PF4EQyG+k1GjtBoZFAqZVKisQpQqYSuhOQQ1GoxmmisiSYdx0lOVqJrHuk+c0uIiIhotBFFdCXvSkm9/kCcJN+AiEBAqvwbkxjsFxAICPD7Rfj8Qvd0/VT6jVAo5FAo5NBq1VAqlVAqlVCrNVCpVFCqNNCnqaDRaKJJwT1vkaTfyH25XH6SWoqIiIiIKHWYQExEREREREREREREI5pcLodOp4NOpzvhZYmiCJ/PF0009vv98Pl8PRKNPQgGgwgEAjEJyX6/Hx1OLwIBf9dzHgQC0nQ+X2DAdSoUApRKWVdyslQRWa2WqiXL5WFoNAJkMqkqslwOqJQCFApAoZASkRUKASoVIJMBGo0AQZASmAUBMfMSERERAVJF3nAY8HpFiCLg9QHhsJS8Gw5LzweDUqJvMCjd/AERoVDsvNJ9AT6fICUABwGPR6rq219l3wi1WtmV5KuARqPp+l8FtVqLNIOUAKxSqaLPKRQKaLXaHonBaikxuGs6tVrNir9ERERERIPEBGIiIiIiIiIiIiIioi6CIEQr0A2l/hKSvV5v9P94icvBYBCONh9CoSD8fj+CwUBXAnMQwWAQfn8A4fDACToRcrlUETmSsKxUAvIeiclSNeQQNJpIO0hJyWqVALk8kqyMaJVluTwyr1SNWUpY7p6XiIiIkuP1SicxSX8Bnx8IhUT4/UAo1F2dNxiU/g+FpGnCYbHvvD4hmugbCgkIBCPzSlV8Q6HkPjfIZAJUKiUUCjmUSgUUCummUqkgl0t/FUo19Gl9E3kjSb7dicHKaGXfyDKIiIiIiCj1mEBMRERERERERERERDTMVCoVVCoV9Hr9sCzf5/NBFEV4PJ5oFeVwOAyfz4dQKIRAIBCtnBwIBBAKheD3+xEKhaLzer1eiKKItvbOrnm9veaVbqHQwJcPjxAEQK2WQS4XoFJJFQE1agGAGE0+ltomDJlMSlRSq6XHIgnKgiBA0/VYpOoy0F1puWd15UgysyAAalX3chSKrnUzqZmIiCAl6wLdFXYBKRlXFLuTdoHuSruiKFXbleaRboBUtVcUxWiCL4CuCr5iVxVfWXQ5oRAACPD6xK7HpEReny8MMbl8XsjlMiiVimgyr0qlgkwmg1qtgUwmg0ajg0wmwGTWQBAEqNVqyOXyroRfeTSRV6FQQKlUQi6XQ61Wdy1Dqt6r1Wqj8xIRERER0ejHBGIiIiIiIiIiIiIiohEukugz1JWT++P3+6MJyuFwOJp8HPkbSVyOJCkHAoHo8wAQDEoVlAFE5wkEQ+j0BACI8Pm8CIfDEMUwfD4/ADFadVmax3/csUcqMQOARiPvSkQWoVJKyc2qrorLgiBCrRYAhLoqN6NrHumvQiFA2eNXlp5NL5Oha97ItN3Jz4D0nEzWY94eeVpSwnX3/UgyNRHRqaRn0iwQSZLtzoT1+rqfC4cBn6/7uZ5JuID0XLjHuSmRBF8ACASlRN+ejwe7KupK8wKi2F1xFwD8ASAcFhAOi9H1DqbybjwajRKAEK3GCwhQq5UQBBlkMnnX+7DQlZirgFwhgylNemOIVO6VliMl90YSeCPJvZEE3sjzGo0mmtgrk8lYsZeIiIiIiIYFE4iJiIiIiIiIiIiIiGhQIolMJythuT/xEpHD4TD8XVlkkQTmSFIzgGhF5cg8keUEujLhIhWZIwnSAODu9CEcDnUlQXv6rFt6vDtbLhQKR5c31NRqGYSu3GRBADSa7kxkuRwxSc1SVebu+xpNd4ZewiRnVWySc2Se/nLY1GqpinRvcrmUBB2PRiNVme5NoQAU/SRNa7V9pweYaE1Dp3dya08eT/wE1GAo/jzSsSH+sgKBSFXaWFLSa/x5IhVxY6cHfP7BJOd2v7B7Jt0CUrJuz5i83u7quKII+HzJVaAfLKVSAbm8Oy6NRh09NsQm30rVcWUyOVQq6cyLdKOUYNuzam6kyq40T3cSr7LrYBRJ1o0k8AKIVvONJO/2XjcREREREdFoxG88REQjzHMPyxJPREREREOqxc73YCIiouHQlYNHRHTceld1PFUFAgGEemTleb1eLFmyBG+//Tbkcjl0Ol30OVEUoVQqodVqo/cBKeFNq9UiHA5DLpdjypQpuP3226PPR9YT7JE5GEmGjizH2yOTMRAMotPTnTno9/v6xBhvO4LBvhmPUoL28CRMnyhBkJKu41GpZMeddKxSok+C9fFSq8W4ydeDJ0KjOf4KqwDg9QoATjwWKQl2KLZJSpD1H2f3khJk4ye9+nzdybGnGqmybbzkenk0Cbannsc/KSm2u6y5UqmCXN79k3CGSRNdds+kW2n5ipjlR5JqIyLHJQB9quL2TNqVtkEds57eMcbbDiKi0YbjykRERHQqGGgcngnEREQjRF4ecO21wFAM3hIREY02+ddK75XDYdo04PIfA3wPJqLRJDu7A/n5LRAEEQpFGApFGIIgQqWSEoI0mgAEAVAqQ9HnlEopGUmlCiEUkuO11xYgEGCZPzpxUwoBozHVURARDS+lUhmTLKfRaHDllVfipZdeAgC0t7cPank333wzli9ffkonTUf0Tp6O6FnhuTe/349w7zKrAEKhULS6dG89k6WTnSdeknQyelasPlH9tc/xiFTcHiylUgmDwYDW1lbo0+QxSaEnYiiTRHsnpyard4JsTyqVCvI4GeTHM0/vZNqe1Gp1TBJuBJNoiYhGN44rE51a5HIRJpMbVqsbdXUZcDrjf9471RiNXowd68D+/TmpDoWIRrj+xuEFMd5oChERERERERERjWq1tbWora2FKIrRymDJDBMJgoCMjAzMnDlzuEMkIiIa1QKBACwWC5xOZ1LTKxQKCIKARx99FH/4wx+GOTo6nXR2dmLHjh0444wzkJ6enupwiIiIiIhOSCAQgMvlgsvlgtvtRkdHB7xeL0RRxJgxYzBx4sRUh5g0u92O0tJSLFy4MNWhENHotJ8ViImIiIiIiIiITkPjx4+H0WhEaWkpgsFgUsnDgJRkbLVahzk6IiKi0U+pVOKqq67CW2+9lbCarVKphMViwerVq7FgwYKTFCGdLnQ6HdRqNRwOBxOIiYiIiGjEEEURnZ2dcLvd0WRhp9MZ/X7Vu2iC2WxGUVFRyuIlIjoVMYGYiIiIiIiIiOg0lZGRgfnz56O0tBTt7e1JJxFbLJZhjoyIiOj0cNFFF+G1114bcBqZTIZFixbhzTffhNlsPkmR0enGZDLB4XBg/PjxqQ6FiIiIiKhf4XAYlZWVcLlc6OzsRDgcBiAlC/ce24zcFwQBer0excXF0aRiIiKSyFIdABERERERERERpY5SqcSsWbNQUFAAQRASDqJrtVooFDwnnYiI6Hj5fD6sWrUKl19+OW699dZ+33tlMhkEQcCSJUuwdu1aJg/TsLJYLNBoNKkOg4iIiIhoQDKZDKIowuVyRZOHAfRbGEEQBKhUKsyYMQNyufxkhUlENGIwgZiIiIiIiIiIiJCXl4eZM2dCoVD0m8gkCAI8Hg82b96M0tJSNDc3IxgMnuRIiYiIRqb9+/fjnnvuQV5eHn7xi1/A7/dj5cqVuOGGG6BUKmOmVSqVMBgMWLt2LR566CHIZPw5h4ZXZmYmpkyZkuowiIiIiIgSmjBhQtLfkQRBwIwZM6BSqYY5KiKikYnlYoiIiIiIiIho1PB6vXA4HMjJyUl1KCNSRkYG5s+fj9LSUrS3t8e97N/cuXPhdrtht9tRVlYGAEhPT4fVaoXVauVgPBERUQ9tbW149913sWLFCuzatQuTJk3Cb3/7W9x8883Iz88HICVuvvHGG9F5FAoFpkyZgtWrV6OgoCBFkRMREREREZ2aVCoVxo0bh9ra2n4rDwNS8vD06dOh1+tPYnRERCMLE4iJiIiIjoPb7QYAfuEkIiI6xTidTlRUVDCB+AQolUrMnDkTtbW1OHz4cMwgfFpaWvRms9kQDAbhcDjQ0tKCQ4cOoaqqCgaDAWazGTabDVqtNoVbQkRElBrhcBhfffUVXnvtNbz33nsAgMWLF+Ohhx7CRRdd1KfS/yWXXAKDwQCn0wkAuOWWW/DMM89ArVaf9NiJiIiIiIhGgry8PNTX1yMQCPQ7zeTJk2EymU5iVEREIw8TiImIiIiOQ21tLQCguLg4xZEQERERDT1BEJCfnw+j0YjS0lKEQiEAUoXEnhQKRbTycDgcjiYTNzQ0oLa2FjqdDlarFRaLBQaDIRWbQkREdNLU1NRgxYoVePXVV9HY2IgLLrgAy5cvx7XXXjvgCchKpRLXXHMN3nzzTaxYsQI33XTTSYyaiIiIiIhoZHG73aiqqhoweTg/Px82m+0kRjU8NBoNi2UQ0bASxIFquRMRERFRXKWlpQCYQExERHSqsdvtKC0txcKFC1Mdyqjh9/tRWlqK9vZ2zJs3L6krMIiiiI6ODtjtdtjtdvj9fmg0GlgsFlitVhiNxpMQORER0fALh8NYt24dnnvuOaxduxY2mw233norbr75ZhQWFia9nG3btkGj0WDWrFnDGC0REREREdHIFQwGcfjwYdTV1UGv16OoqAgHDx6E0+mMXkVNEATYbDZMnjw5xdESEY0I+1mBmIiIiIiIiIiI+qVSqTBr1iw0NDQklTwMSAP1RqMRRqMRRUVFcDqdaGlpgd1uR319PZRKJcxmM6xWK8xmc59LuRMREZ3q2tvb8c477+Cpp55CaWkp5s6di5UrV+L666+HUqkc9PLOPPPMYYiSiIiIiIhodGhqakJ1dTVEUURhYSHGjBkDQRBQVFSE3bt3A+gek5w0aVKKoyUiGjmYQExERERERERERAMSBAG5ubnHPb/BYIDBYEB+fj7cbjdaW1vR0tKCkpISKBQKmEwmWCwWZGZmQi6XD2HkREREQ+vAgQNYunQpXn/9dSiVStx4441YtWoVr1BEREREREQ0DJxOJ6qqquB0OpGdnY2CgoKYkzYNBgNsNhuampqg1Woxbdo0FisgIhoEJhATEREREREREdFJo9frodfrkZeXB6/XG61MXFZWBplMBpPJBKvVCovFAoWCQ1dERHRq+PLLL7F06VJ8+umnmDhxIh577DHceOONMBgMqQ6NaEiFQiFUV1cjNzc36atPEBERERENNb/fj5qaGjQ2NiIjIwNz587t9/NpQUEBOjo6MHPmTI4nEhENEo+aRERERERERESUEhqNBrm5ucjNzUUgEEBrayvsdjvKy8sBAOnp6bBarbBarVCpVCmOloiITjd+vx+rV6/GY489hu3bt+Pcc8/FO++8g6uvvpoV82nUksvlaGlpgUajYQIxEREREZ10oiiivr4eNTU1UCgUKC4uhtVqHXAetVqNuXPn8nsaEdFxYAIxEREREREREY0aGo0GOTk5qQ6DjoNSqYTNZoPNZkMwGITD4UBLSwsOHTqEqqoqGAwGmM1m2Gw2aLXaVIdLRESjmNPpxAsvvIAnnngCx44dw89//nMsX74cc+bMSXVoRCdFRkYGHA4Hxo0bl+pQiIiIiOg00t7ejsrKSng8HuTl5WHcuHGQyWRJzcvkYSKi48MEYiIiIqLjwAosREREpyaDwcBLiY8CCoUiWnk4HA5Hk4kbGhpQW1sLnU4Hq9UKi8XC/U1EREPm2LFjePrpp/Hss88iGAzi9ttvx913343c3NxUh0Z0UplMJlRUVCAUCjERg4iIiIiGXTAYRE1NDerr65GRkYHi4mLodLpUh0VEdFoQRFEUUx0EERERERERERFRIqIooqOjA3a7HXa7HX6/HxqNBhaLBVarFUajMdUhEhHRCHT06FE8+eSTePbZZ6HVanHnnXfi97//Pcxmc6pDI0oJv9+PLVu2YMaMGXwdEBEREdGwampqQnV1NQRBwIQJE2Cz2VId0inF6/XC4XDwqntENFz2swIxERERERERERGNCIIgwGg0wmg0oqioCE6nEy0tLbDb7aivr4dSqYTZbIbVaoXZbIYgCKkOmYiITmG1tbV44IEH8Oqrr8Jms+GBBx7AbbfdxqsO0WlPpVJBp9PB4XAwgZiIiIiIhoXL5UJlZSWcTifGjBmDgoICXv0iDqfTiYqKCiYQE9GwYQIxERERERERERGNSAaDAQaDAfn5+XC73WhtbUVLSwtKSkqgUChgMplgsViQmZnJHyCIiCjqyJEjePDBB7Fy5UqMHTsWy5cvx69+9SuoVKpUh0Z0yjCZTHA4HKkOg4iIiIhGmWAwiJqaGjQ0NCA9PR1z587lSZxERCnEBGIiIiIiIiIiIhrx9Ho99Ho98vLy4PV6o5WJy8rKIJPJYDKZYLVaYbFYoFBwSIyI6HTU3NyMJ554Ak899RSysrLwyCOP4De/+Q3UanWqQyM65ZhMJtTX18Pv9zO5noiIiIiGRFNTE6qrqyEIAiZPngybzZbqkIiITnv8tYSIiIiIiIiIiEYVjUaD3Nxc5ObmIhAIoLW1FXa7HeXl5QCA9PR0WK1WWK1WJsQQEZ0G7HY7/vd//xcrVqxAVlYWnnzySdxyyy18DyAagMlkwvz58/k6ISIiIqIT5vF4UFlZCYfDgTFjxqCgoIAn+BMRnSJ4NCYiIiIiIiIiolFLqVTCZrPBZrMhGAzC4XCgpaUFhw4dQlVVFQwGA8xmM2w2G7RabarDJSKiIeRyubB06VI8+uijSEtLw+OPP47bbruNCZFESZDJZNDpdKkOg4iIiIhGMFEU0dDQgEOHDkGj0eCMM85Aenp6qsMiIqIemEBMRERERERERKOG1+uFw+FATk5OqkOhU5BCoYhWHg6Hw9Fk4oaGBtTW1kKn08FqtcJiscBgMKQ6XCIiOk6BQAAvv/wy7r//fjidTtx555249957eWwnIiIiIiI6Sdrb21FZWQmPx4O8vDyMHz8egiCkOiwiIuqFCcREREREx8HtdgMA9Hp9iiMhIiKinpxOJyoqKphATAnJZDJYLBZYLBZMnDgRHR0dsNvtaGxsRG1tLTQaDSwWC6xWK4xGY6rDJSKiJIiiiFWrVuG+++7D4cOHcccdd+Dee+9FZmZmqkMjIiIiIiI6LQSDQdTU1KC+vh4ZGRmYNm0ar/pFRHQKYwIxERER0XGora0FABQXF6c4EiIiIiI6UYIgwGg0wmg0oqioCE6nEy0tLbDb7aivr4dSqYTZbIbVaoXZbGa1FCKiU9CuXbtw9913Y/PmzbjhhhvwxRdfID8/P9VhERERERERnTZaWlpQWVkJURQxZcoU2Gy2VIc04mk0GhbLIKJhxQRiIiIiIiIiIiKiHgwGAwwGA/Lz8+F2u9Ha2oqWlhaUlJRAoVBEKxebzWbI5fJUh0tEdFpraWnB//zP/+C5557D3LlzsWnTJpx11lmpDouIiIiIiOi04fV6UVlZidbWVthsNhQWFkKpVKY6rFEhMk5JRDRcmEBMRERERERERETUD71eD71ej7y8PHi93mhl4tLSUshkMphMJlitVlgsFigUHGojIjpZAoEAli1bhv/6r/9CWloaVq5ciRtvvJFV4omIiIiIiE6ixsZGVFdXQ6VSYdasWcjIyEh1SERENAj8VYOIiIiIiIiIiCgJGo0Gubm5yM3NRSAQQGtrK+x2O8rLywEA6enpsFqtsFqtUKlUKY6WiGj0+uyzz/C73/0ODQ0NWLJkCf74xz9Cp9OlOiyiUcvv9wMAP98QERERUZTb7UZFRQWcTifGjx+PcePG8YROIqIRSJbqAIiIiIiIiIiIiEYapVIJm82G6dOn45xzzsHUqVOh0Whw6NAhbNmyBbt370ZNTQ08Hk+qQ43L4XDg97//PXw+35BMR0R0MtTX1+O6667DZZddhtmzZ+PAgQO4//77mTxMNMz27NmD+vr6VIdBRERERKcAURRx5MgR7N69G+FwGHPmzMH48eOZPExENEIJoiiKqQ6CiIiIaKQpLS0FABQXF6c4EiIiIurJbrejtLQUCxcuTHUodJoKh8NwOByw2+1oaWlBMBiETqeD1WqFxWKBwWBIWWzr16/HhRdeGL0fDAahUCS+QFnv6Xovh4houIXDYbz00ktYsmQJMjMz8eyzz+Kyyy5LdVhEp43Kyko4nU7MmTMn1aEQERERUQq5XC6Ul5ejs7MT+fn5GDt2LBOHiYhGtv2JfyEgIiIiIiIiIhohNBoNcnJyUh0GncZkMhksFgssFgtEUURHRwfsdjsaGxtRW1sLjUYDi8UCq9UKo9F4QusSRRGNjY1IS0tDenp6zHPNzc1QqVTIyMgAAKxduxY7duxAbm4u8vPzoVQq4Xa7odPpUFNTAwAwGo3IyspCXV0dPB4PJkyYALlcHp1OqVTGLGfcuHE4fPgwAMBgMCA7OxsNDQ1wu90oLCyETMaLnxHRidu9ezd+85vfYM+ePbjjjjvw4IMPQq/XpzosotOKyWRCQ0MDAoEAlEplqsMhIiIiopMsHA7j8OHDOHz4MNLT0zFv3jxotdpUh0VEREOAo/hEREREx0Gv1/MHSyIiolOQwWDApEmTUh0GEQBAEAQYjUYUFRXh7LPPxpw5c2Cz2eBwOLBnzx5s3rwZZWVlaGlpwWAvElZbW4sXX3wRcrkcb7zxBvbt2wcA8Pl8WLVqFTo6OrBhwwYsW7YMoihCpVJBJpNBq9VCEARs2rQJf/rTn+B0OuHxeLB06VJoNBoAQCAQQGVlJeRyecx0vZcjl8vR2NiIZ555BhaLBQAQCoVQUVHB5GEiOmFutxt/+MMfMH/+fKSnp6OkpARPPfUUv4sTpUBGRgYEQUBbW1uqQyEiIiKik6y9vR27du1CXV0dCgsLMXv2bCYPExGNIhzJJyIiIjoO48ePx/jx41MdBhERERGNIAaDAfn5+Zg/fz7mzZuHvLw8eL1elJSURJOJ7XY7QqFQwmW53W5Mnz4dNpsNEydOjCYQr169Gvn5+SgqKsIPf/jD6GdWi8UClUqFsWPHQqFQ4JxzzokmLc+cORMTJkzA999/DwCorq7GD37wAwCImU4QhD7LOe+885CRkYGSkhIAQGlpKc4777yhbTgiOu18/fXXmDlzJl5//XW88sor+PLLL3mCEFEKKRQKGAwGOByOVIdCRERERCdJKBRCZWUl9uzZA61Wi/nz5yM3NzfVYZ12vF4vGhsbUx0GEY1iTCAmIiIiIiIiIiI6yfR6PfLy8jB79myceeaZyM/Ph9frRWlpKTZv3oySkhI0NTUhGAzGnb+4uBhjxoxBbW0tvF5vdLqysjLk5+cDANRqNS6//HIIgtBn/t6P/eAHP8A333yDcDgMv98frSQTb96eZDIZFi1ahC+//BIA0NnZCaPROKi2ICKK6OzsxD333IOLL74YU6dOxb59+3DjjTemOiwiAmAymZhATERERHSaaGtrw86dO2G32zF16lRMnz4darU61WGdlpxOJyoqKlIdBhGNYkwgJiIiIiIiIiIiSiGNRoPc3FzMnj0b55xzTrTKZnl5OTZv3ow9e/agvr4efr8/Os+OHTuwd+9ejB8/HjqdLvq4TCZDbW1t9L7X64XX6wWAaCXheM444wy43W6sWbMGM2bMGDDe3ss555xz0NzcjI0bN/IqHUR03L744gsUFxdjxYoVWL58OdasWcPqVkSnEJPJBK/XC4/Hk+pQiIiIiGiYhMNhHDx4EHv37oVer8e8efOQlZWV6rCIiGgYKVIdABEREREREREREUmUSiVsNhtsNhuCwSAcDgdaWlpw6NAhVFVVwWg0wmKxYM+ePZDL5XA4HDhy5Ag8Hg86OzuxYMECvPvuuwgGg0hLS0NNTQ0WL14Mo9GItrY2+P1+eDweGAwGANIPQ4CUeLxw4ULs27cPV1xxRTSeyPORv72XYzQa/3/27jswqir/+/g7w4RM6iSZTEIIkZDECEFaYFUsiyj7E4yKBV3somCDtbfFdbGtZWV1FX66AvbHhhV2F8taNiqCAgJpkEJiGiGZTIb0PvP8wcM8IkkEJNyUz+svMnPvOZ+cO8zc3Pnecxg8eDBTp07lX//6Fw8//PARHjER6euam5u5++67WbJkCampqTz//PMMHTrU6Fgi8jMhISEMGTKk2xuSRERERKTvqq2tJScnh9bWVpKSkoiOjjY6koiIHAGD7r///vuNDiEiIiIiIiIiIiL7MplMBAYGEhERwbBhwwgJCaG1tZVdu3bh4+NDWVkZlZWVnHDCCRQVFREZGcnEiRMZPHgwGRkZtLe3c8YZZ2A2mwkJCWH37t3s2LGD0aNHk5GRQX19PSaTidjYWEwmE0OGDCEiIsI7s4zH42Hr1q37bBcaGupt59hjj8Vk2rPAWXh4OI2NjYwdO9bIIRORPuaHH37gjDPO4Ntvv+Wll17iL3/5i/cGBxHpXXx8fIiIiMDX19foKCIiIiJyGLndbgoLC8nNzSU4OJgxY8YQGhpqdCz5fxobG3E4HMTFxRkdRUT6J4ePR7cKi4iIiIiIiIiI9Bkej4fa2locDgcOh4PW1lYsFgs2mw273Y7Vaj3imTZu3EhUVBSxsbFHvG8R6Xs8Hg/PPPMMd999NxMnTuS1114jPj7e6FgiIiIiIiIDSn19PTk5OTQ1NZGQkKBZh3shh8NBdnY2U6ZMMTqKiPRPWWajE4iIiIiIiIiIHC7Nzc24XC5d7JZ+zcfHB6vVitVqJTExkbq6OpxOJ5WVlZSVleHr60t4eDh2u53w8HB8fHx6LMtXX31FW1sbDoeDSZMm9Vg/ItJ/lJSUcMUVV/DNN99w7733ct999zFo0CCjY4mIiIiIiAwYHo+H0tJSCgsLCQkJYeLEifj7+xsdS0REDKACYhEREZFD0NDQAEBgYKDBSUREROSn6urqyM3NVQGxDCjBwcEEBwcTFxdHQ0MDDoeD6upqMjMzMZvN2Gw2bJB53qcAACAASURBVDYb4eHhh71Ir6Ojg5KSEs4///zD2q6I9E+rV6/mqquuYsiQIXz33XekpKQYHUlERERERGRAaWhoYPv27TQ1NZGYmMjQoUONjiQiIgZSAbGIiIjIISgqKgIgOTnZ4CQiIiIiIv9fYGAggYGBxMXF0dzcjNPp9C51aDKZCAsLw263Y7PZMJt//aXBqVOnHobUItLftbe3s3DhQhYvXsycOXNYsmQJAQEBRscSEREREREZUMrKyigoKCAoKEizDvcRFotFk2WISI9SAbGIiIiIiIiIiEg/ZLFYiImJISYmhra2Nqqrq3E4HOTk5AAQEhKC3W7HbrczePBgg9OKSH9VWVnJJZdcwtq1a3n++eeZN2+e0ZFEREREREQGlJaWFnJycti9ezcjRowgNjbW6EhygPauPCYi0lNUQCwiIiIiIiIiItLP+fr6EhUVRVRUFO3t7bhcLpxOJ4WFheTn52O1WrHZbERERGj2GRE5bP773/9y8cUXExISwnfffcfYsWONjiQiIiIiIjKgVFVVkZubi6+vLxMmTFAxqoiI7EMFxCIiIiIiIiIiIgOI2Wz2zjzsdrtxuVw4HA6Ki4spKCggICAAu92OzWbTl0oickg8Hg+PPPIIixYt4oILLmDFihV6PxHpR4qLi/F4PAwfPtzoKCIiIiLSBbfbTUFBAWVlZURFRXH00UczaNAgo2OJiEgvowJiERERERERERGRAcpkMmGz2bDZbHg8Hmpra3E4HJSXl1NUVITFYsFms2G327FarUbHFZE+oLGxkTlz5vD+++/z1FNP8Yc//MHoSCJymLW3t1NVVaUCYhEREZFeqq6ujm3bttHe3s7o0aOJiIgwOpKIiPRSKiAWERERERERERERfHx8sFqtWK1WEhMTqaurw+l0UllZSVlZGb6+voSHh2O32wkPD8fHx8foyCLSy5SWlnLeeedRWFjIxx9/zOmnn250JBHpAWFhYZSUlNDc3IzFYjE6joiIiIj8RFlZGTt27CA0NJSRI0cyePBgoyOJiEgvpgJiEREREREREek3LBYL0dHRRscQ6ReCg4MJDg4mLi6OhoYGHA4H1dXVZGZmYjabvTMXh4eHawlMEWHt2rVccMEFREZGsmHDBkaMGGF0JBHpIVarlUGDBuFyuXTuLSIiItJLtLS0sG3bNurq6hgxYgSxsbFGRxIRkT7Ax+PxeIwOISIiItLXFBUVAWipRhEREREZcJqbm3E6nTgcDmpqajCZTISFhWG327HZbJjNmrNAZKBZvnw5CxYsIDU1lVdffZWgoCCjI4lID8vIyGDQoEEkJycbHUVERERkwHM4HOTm5uLn58eoUaMIDAw0OpKIiPQNWSogFhERERERERERkUPS1tZGdXW1d3ZigJCQEOx2O3a7XctkivRzHo+He+65hyeeeIL77ruP+++/Hx8fH6NjicgRUFpaSnFxMSeeeKLRUUREREQGLLfbzY4dO9i5cycxMTHEx8djMpmMjiWHUXNzs1b+EJGelKXpQEREREREREREROSQ+Pr6EhUVRVRUFO3t7bhcLpxOJ4WFheTn52O1WrHZbERERODv7290XBE5jFpbW5kzZw7vvvsur776KpdddpnRkUTkCAoLC2PHjh3U1dURHBxsdBwRERGRAaepqYns7GyamppITk7GbrcbHUl6QF1dHbm5uSogFpEeowJiERERERERERER+dXMZrN35mG3243L5cLhcFBcXExBQQEBAQHY7XZsNpsKjUT6uLq6Oi688ELWrl3LqlWrmD59utGRROQICwwMZPDgwdTW1upzXUREROQIczgc5Obm4u/vz8SJE3XTtoiIHDIVEIuIiIiIiIiIiMhhZTKZsNls2Gw2PB4PtbW1OBwOysvLKSoqwmKxYLPZsNvtWK1Wo+OKyEHYuXMnqampVFRU8NVXXzFhwgSjI4mIQSZNmoSvr6/RMUREREQGDLfbTUFBAWVlZURHR3P00Ufj4+NjdCwREenDVEAsIiIiIiIiIiIiPcbHxwer1YrVaiUxMZG6ujqcTieVlZWUlZXh5+dHeHg4NpuN8PBwffEl0otlZWUxffp0QkND+e6774iNjTU6kogYSMXDIiIiIkdOY2Mj2dnZtLS0kJycjN1uNzqSiIj0AyogFhERERERERERkSMmODiY4OBg4uLiaGhowOFwUF1dTXl5OWaz2TtzcXh4OIMGDTI6roj8P5s2bWL69OkkJyezatUqQkNDjY4kIiIiIiIyIFRUVJCXl0dAQAATJ07EYrEYHUlERPoJFRCLiIiIiIiISL/R3NyMy+UiOjra6CgicgACAwMJDAwkLi6O5uZmnE4nDoeD7OxsTCYTYWFh2O12bDYbZrMuZYoYZcOGDUyfPp1x48axevVqgoKCjI4kIiIiIiLS77ndbvLy8ti1axfDhg0jPj5eKzeJiMhhpavuIiIiIoegoaEB2FPwICIiIr1HXV0dubm5KiAW6YMsFgsxMTHExMTQ1tZGdXU1DoeDnJwcAEJCQrDb7djtdgYPHmxwWpGBIy0tjbPPPpspU6bwzjvvaKYrERERERGRI6C5uZmsrCxaWlo49thjsdlsRkcSEZF+SAXEIiIiIoegqKgIgOTkZIOTiIiIiIj0P76+vkRFRREVFUV7eztOpxOn00lhYSH5+flYrVZsNhsRERH4+/sbHVek31qzZg2zZs1i5syZvPrqq/j6+hodSUREREREpN/bvXs32dnZ+Pn5kZKSohs5BzCLxaLJMkSkR6mAWERERERERERERHots9nsLSZ2u924XC4cDgfFxcUUFBQQEBCA3W7HZrMRHBxsdFyRfuODDz5g9uzZXH755Tz//PMMGjTI6EgiIiIiIiL9XklJCYWFhdjtdo455hhMJpPRkcRAwcHBut4lIj1KBcQiIiIiIiIiIiLSJ5hMJmw2GzabDY/HQ21tLQ6Hg/LycoqKirBYLNhsNux2O1ar1ei4In3WmjVrmD17NnPnzmXp0qX4+PgYHUlEerHW1lYaGxsJDQ01OoqIiIhIn9XR0UFOTg5VVVWMGDGC2NhYoyOJiMgAoAJiERERERERERER6XN8fHywWq1YrVYSExOpq6vD6XRSWVlJWVkZfn5+hIeHY7PZCA8PVwGkyAH64osvmDVrFhdffDFLlizR/x0R+UW7du2irKyMyZMnGx1FREREpE9qamoiKyuL1tZWxo4dqxuzRETkiFEBsYiIiIiIiIiIiPR5e5d0jIuLo6GhAYfDQXV1NeXl5ZjNZu/MxeHh4QwaNMjouCK90rp165g5cyapqam88MILWipXRA5IWFgYhYWFNDQ0EBgYaHQcERERkT7F6XSyfft2LBYLKSkpWCwWoyOJiMgAogJiERERERERERER6VcCAwMJDAwkLi6O5uZmnE4nDoeD7OxsTCYTYWFh2O12bDYbZrMukYoAbNmyhdTUVKZNm8abb76pQnsROWDBwcH4+vricrlUQCwiIiJyEEpKSigoKCAqKoqkpCTdxCkiIkecro6LiIiIiIhIv1BbW0tpaanRMcRgbW1tWCwWsrOzjY4iPczX15eEhAR9sSK/yGKxEBMTQ0xMDG1tbVRXV+NwOMjJyQEgJCQEu92O3W5n8ODBBqcVMUZWVhann346J5xwAm+//bYK60XkoIWGhuJyuRg2bJjRUURERER6vfb2drZv347L5SIpKYno6GijI4mIyAClq4AiIiIih0CzqYiI9D4tLS04HA7sdrvRUcRAvr6++Pr6Gh1Detje/++NjY2MGTNGRcRywHx9fYmKiiIqKor29nacTidOp5PCwkLy8/OxWq3YbDYiIiLw9/c3Oq7IEVFVVcU555zD6NGjee+991RILyKHJCwsjPz8fNxut87NRERERLrR1NREZmYm7e3tjBs3jpCQEKMjiYjIAKYCYhEREZFDMHz4cKMjiIhIF5KTk42OICI9zOFwkJ2dTUNDA+np6YwZM4ZBgwYZHUv6GLPZ7C0mdrvduFwuHA4HxcXFFBQUEBAQgN1ux2azERwcbHRckR7R1tbGRRddREdHB++++64K50XkkIWFheF2u6mtrSU0NNToOCIiIiK9Uk1NDVlZWfj5+ZGSkoKfn5/RkaSXa25uxuVyaZZqEekxKiAWEREREREREZE+aezYsaSnp5ORkaEiYvlVTCYTNpsNm82Gx+OhtrYWh8NBeXk5RUVFWCwWbDYbdrsdq9VqdFyRw2bBggVs3LiRtWvXEhkZaXQcEenDLBYL/v7+uFwuFRCLiIiIdKK8vJy8vDwiIiIYOXKkVm2QA1JXV0dubq4KiEWkx6iAWERERERERERE+qSgoCAVEcth5+Pjg9VqxWq1kpiYSE1NDU6nk6qqKsrKyvDz8yM8PBybzUZ4eDg+Pj5GRxY5JO+88w7Lly/ngw8+YMyYMUbHEZF+YPjw4fj6+hodQ0RERKRX8Xg8FBYWUlJSQmxsLPHx8UZHEhER8VIBsYiIiIiIiIiI9FkqIpaetreYOD4+noaGBhwOB9XV1ZSXl2M2m70zF4eHh+u1J31GVVUVf/jDH5g3bx4zZ840Oo6I9BNRUVFGRxARERHpVTo6Oti2bRsul4uRI0fqfElERHodFRCLiIiIiIiIiEifpiJiOVICAwMJDAwkLi6O5uZmnE4nDoeD7OxsTCYTYWFh2O12bDYbZrMuvUrvtWDBAsxmM48//rjRUURERERERPqlpqYmMjMzaW9vZ/z48QQHBxsdSUREZD+6ii0iIiIiIiIiIn2eiojlSLNYLMTExBATE0NbWxvV1dU4HA5ycnLw8fHBarVis9mw2+0MHjzY6LgiXqtWrWLlypWsWbOG0NBQo+OIiIiIiIj0OzU1NWRlZeHn50dKSgp+fn5GRxIREemUCohFRERERERERKRPys7O3u+xoKAgampq2LJlCxMnTjQglQxEvr6+REVFERUVRXt7O06nE6fTSWFhIfn5+d5i4oiICPz9/Y2OKwNYW1sbd911F7Nnz2b69OlGxxEREREREel3ysvLycvLIyIigpEjR2IymYyOJCIi0iUVEIuIiIgcgoaGBmDPEsYiIiIicmTZ7XYSEhKora3d7zmz2UxgYCB1dXUGJBPZ8xrcW0zsdrtxuVw4HA6Ki4spKCggICAAu92OzWbT8qVyxK1YsYIff/yRNWvWGB1FRERERESkX/F4PBQWFlJSUkJsbCzx8fFGRxIREflFKiAWEREROQRFRUUAJCcnG5xEREREZGAaNmxYl885HI5OZycWOdJMJhM2mw2bzYbH46G2thaHw0F5eTlFRUVYLBZsNht2ux2r1Wp0XOnnGhoaeOihh7jxxhtJSEgwOo6IiIiIiEi/0dHRwbZt23C5XIwaNYrIyEijI0k/YbFYiI6ONjqGiPRjKiAWERERERERERER6WE+Pj5YrVasViuJiYnU1NTgdDqpqqqirKwMPz8/wsPDsdlshIeH4+PjY3Rk6WeWLFlCQ0MDCxcuNDqKiIiIiIhIv9Hc3ExGRgbt7e2MHz9eqw3JYRUcHKzXlIj0KBUQi4iIiIiIiBxh27dvZ+jQoYSEhHS7XWVl5UHPVnGgbcvhdSjHqrdzOBzY7XajY4j0W3uLiePj42loaMDhcFBdXU15eTlms9k7c3F4eDiDBg0yOq70ca2trSxZsoQbbrhB7+0i0uNcLhf5+flMmjRJN8SIiIhIv1ZbW0tWVha+vr6kpKTg5+dndCQREZGDYjI6gIiIiIiIiMhA8uKLLzJq1ChKSkq63Kauro4rrriCmTNnHva25fA61GPVm23bto3LLruMK6+80ugoIgNGYGAgcXFxpKSkcPzxxxMXF0dzczPZ2dl8++23ZGZmUlFRQXt7u9FRpY96++23qaysZP78+UZHEZEBwM/Pj8bGRmpra42OIiIiItJjHA4HW7duJSgoiAkTJqh4WERE+iQVEIuIiIiIiIgcQVdffTUBAQHdbhMcHMyMGTN6pG05vA71WHVl6dKlPbLtwdhbxOjxeHqkfRHpnsViISYmhvHjx3PiiSeSlJQEQE5ODuvWrSM9PZ2ysjJaW1sNTip9yZIlS5g1axaxsbFGRxGRASAgIACLxYLL5TI6ioiIiEiPKCsrIzs7m6ioKI499litHCQiIn2WCohFRERERERE2HPR1+PxkJ2dTVVV1T7PlZeX43a72b59OwAej4cdO3aQlZVFR0cHAGlpaaSlpZGXlwfA1q1bSUtLo62tjR07duzTnsm075/jHo+HzMxMdu3atd82brebjIwM6urq9tln7+OlpaXdti2HprGxkfT0dOrr62lpaSEtLY1NmzYBsGnTJtLS0qiurgZ++Vj9tK29Ojt+Dz30EEuXLiUtLY3m5uZu83W2bWevo676746/v79mTBHpJXx9fb1fRu4tJjabzRQWFrJu3Tq2bNlCSUkJTU1NRkeVXmzdunVs2LCBm266yegoIjKAhIaGqoBYRERE+h2Px0NeXh47duwgMTGRpKQkfHx8jI4lIiJyyPStooiIiIiIiAx4CxYs4LjjjuOOO+7gwQcfJC4ujjVr1tDU1MStt97K8ccfzyOPPMLUqVPZunUrl112GeXl5WRlZTF58mTy8vKoqanh1FNPJSQkBICmpibS0tKoq6sjMTGRLVu2dNr3xo0bmTVrFr6+vsybN49Vq1Z5n6utrWXevHn84Q9/YPjw4axfvx6A6upq7rnnHnJycrj44otZvHhxzw/SAPLZZ5/x97//HYDLL78cPz8/0tPTmTt3LgAJCQlceOGFrFu3zrtPV8fq521B58fP7Xbj7+/PoEGDCA0N7bYQvLNtu3oddda/iPRNZrOZqKgokpOTOfHEEzn22GOxWCwUFxfz/fffs2HDBn788UcaGxuNjiq9zKuvvkpycjKTJ082OoqIDCDh4eHU1dXR3t5udBQRERGRw6Kjo4PMzEwqKioYPXo0MTExRkcSERH51cxGBxARERlIWlpaqK2tNTqGHEYOh8PoCHIAbDabZuQUkW6dffbZvPfeezz22GP4+vqyaNEi/vjHP7J161bOOussXnrpJW6//XbuvfdeFixYQEJCAieffDIAmZmZzJ8/n08//ZTJkyezevVq5s2bxzfffMPNN9+M1WqloKCAESNGdNp3VVUVqampHHPMMZx66qmsXr2amTNnAnvOHZYvX47JZOKaa67h7rvvJi0tjXvvvZdx48Zht9uZMWMG9913HzfddBODBw8+YmPWn61fv56qqiqOPfZYFi1aBMBRRx3lfT40NJSoqKh99unqWHXWVlfHb8SIEQQEBDBu3Lhu85lMpv227ep11Fn/ItL3mUwmbDYbNpsNj8dDbW0tDoeD8vJyioqKsFgs2Gw27HY7VqvV6LhioLa2Nt555x3uvPNOo6OIyAATGhqKx+Nh9+7dREREGB1HRERE5FdpaWkhMzOT1tZWxo0bR3BwsNGRREREDgsVEIuIiBxBtbW1ZGdnGx1DDiMVEPcNwcHBjB8/XkXEItIls9lMUFAQvr6+AJx11lneWX3NZjNhYWH4+/sD8M0333Dbbbd59z3llFO8M7zecsstPProo1x99dU0NTV5i7a6Kh4GmD59Ot9//z0bN26kpqaG1tZW73N2u9373nXeeedx1VVXAfDf//6X2bNnExoaSmpqKqmpqVoq7zC6+uqrOfvss5k4cSL/+Mc/Dmifro5VZ231xPHr6nV0KL+LiPQtPj4+WK1WrFYriYmJ1NTU4HQ6qaqqoqysDD8/P8LDw7HZbISHh+vzYoBZs2YNLpeLSy65xOgoIjLA+Pr6EhwcjMvlUgGxiIiI9Gn19fVkZmZiNptJSUnBz8/P6EgygDQ3N+NyuYiOjjY6ioj0UyogFhERMcCUKVOMjiAyYKSlpdHU1ER6ejpjxoxh0KBBRkcSkT6gtraWxMTETp+LiIggJyfH+7Ovry/Dhg0D4Pzzz+eOO+5g0aJFXHDBBQfU1xtvvEFGRgaPPvoo33zzDYWFhZ1uFxQUxNFHH+39ub6+3ntO0dzcTFVVlS4iHiaDBw9m3bp1PPXUU/zud79j/fr1+23j8Xi63P+nx6qrtjo7fr/UbncZunodddZ/cnLyAfchIn3P3mLi+Ph4GhoacDgcVFdXU15ejtls9s5cHB4ernPjAeCNN95gypQpxMbGGh1FRAagsLAw6uvrjY4hIiIicsiqq6vJzs4mJCSE5ORkzGaVWcmRVVdXR25urq79i0iP0RRsIiIiItLvHXXUUTQ2NpKRkUFHR4fRcUSkl3K5XNTV1QHw/vvve5f6bm9vp6Wlxbvdrbfeyptvvun9Ivyzzz7jnnvuAfbMVjx//ny++OILJkyYAOwpDp03bx6VlZUAuN1u2tvbaWtrA+Cf//wnRUVFlJSUsHnzZnbv3o3L5QKgqanJ2++///1vFi1aBOwpVJ47dy7vv/8+X3zxBU8//TRRUVH7tS2H5sUXX6Sjo4O7776bc845h/LyckaNGkVeXh45OTmsWbOGyspK8vPzvUW8XR2rztrq6vhFR0dTWlpKQ0MD5eXl3Wb8+bZdvY466/9ANDY26jNTpB8IDAwkLi6OlJQUjj/+eOLi4mhubiY7O5tvv/2WzMxMKioq9P+9n2pra+Pjjz9m1qxZRkcRkQEqLi6OMWPGGB1DRERE5JCUlZWRmZlJZGQkY8aMUfGwiIj0S4Puv//++40OISIiMlA0NjbicDiIi4szOorIgFFUVER0dDTDhg2jtLQUl8u1zzLzItJ//JrP2cLCQj788ENCQ0NZt24d48aNY/bs2TQ2NnqLhYODg0lOTiYpKYkxY8awcuVKysrKSExM5MILL/S2NWrUKBISErwz0La2tvL+++8zbdo0goODef3113E4HAwePJjx48czatQovvnmG8rLy7nmmmv46quvSEpK4sQTT6S2tpa1a9eSk5PDb3/7W6ZOnQrsWc3A7XazatUqXC4XN998M4GBgfu17evre1jGdqApLS3l9ddfp66ujlGjRpGamorNZiM0NJRly5YxceJEhg8fzrBhwxg5ciRxcXFdHqvO2urq+A0ZMoTS0lK+/fZbUlNTu50Z9Ofbjhw5stPXkY+Pz379/5Lc3Fz+/e9/09DQwIgRI/rkrJU67xbZn9lsJiQkhCFDhhAdHY2/vz9NTU2UlpZSWlpKTU0N7e3tWCwWzUzcT6SlpbF8+XKWLFlCWFiY0XFEZADy8fExOoKIiIjIQfN4POTn51NUVERCQgIjRozQeY0YRtc5RaSHOXw8B7M2poiIiPwqDoeD7Oxs73LVItLz0tLSSE5Oxm63U19fT3p6OgEBAYwZM0aFESL9zK/5nP3888+5/vrrycvL64FkIgevtraWzZs3d/rcMcccw5AhQ3pVu72NzrtFDlx7eztOpxOn00l1dTUdHR1YrVZsNhsRERH4+/sbHVEO0R133MFHH31EVlaW0VFERERERET6BLfbTXZ2Ni6Xi1GjRhEREWF0JBngdJ1TRHpYlubXFxEREZEBIygoiLFjx5Kenk5GRoaKiEXEq66ujvr6eqNjiHg1NDSQmZnZ6XN2u/2QC317ql0R6bvMZjNRUVFERUXhdrtxuVw4HA6Ki4spKCggICAAu91OZGQkAQEBRseVg7BmzZoDmnleRERERERE9txgm5mZSUNDA2PHjsVqtRodSUREpMepgFhEREREBhQVEYtIZ7744gtOPfVU3n//fc477zwtSSeGi46OZv78+X2mXRHpH0wmEzabDZvNhsfjoba2FofDQXl5OUVFRVgsFmw2G3a7XV+k9nK7du1i27Zt/P3vfzc6ioiIiIiISK/X3NxMRkYGbrebCRMm6AZaEREZMFRALCIiIiL9Xm1t7X6PxcbGUlxczJYtWxg/fryKiEUGuGeeecboCCIiIr2Kj48PVqsVq9VKYmIiNTU1OJ1OqqqqKCsrw8/Pj/DwcGw2G+Hh4br5ppf5+uuvGTRoEJMnTzY6ioiIiIiISK9WV1dHZmYmfn5+jBs3jsGDBxsdSURE5IhRAbGIiIiI9GvDhg2jtLS0y+fr6+uprq7GbrcfwVQiIiIiIn3L3mLi+Ph4GhoacDgcVFdXU15ejtls9s5cHB4erpvzeoG1a9cyfvx4goODjY4iIiIiIiLSa7lcLrKysggJCWH06NG9+u/Z7OxsoyOIAdra2rBYLDr+/VRoaChDhw41OoYMcCogFhEREZF+LSEhgYSEhC6fT0tLO4JpRERERET6vsDAQAIDA4mLi6O5uRmn04nD4SA7OxuTyURYWBh2u52IiIhe/eVrf/bNN99w8sknGx1DRASA9vZ2HA4HkZGR+lwQERGRXmPXrl3k5uYSFRVFUlJSr19Zx+FwEBISgp+fn9FR5Ajy9fXF19fX6BjSA2pra3E4HLjdboYNG2Z0HBnAVEAsIiIiIiIiIiIiIofEYrEQExNDTEwMLS0tVFdX43Q6ycnJITc3F6vVis1mw263axnYI6SlpYX09HTuuOMOo6OIiADgdrvJzc3Fz8+P8PBwo+OIiIiIUFJSQkFBAbGxscTHxxsd54ANGzZMK2qK9BPZ2dk0NTWxY8cO3G43Rx11lNGRZIBSAbGIiIiIHDSPx0NxcTHDhw83OoqIiIiIiPQSfn5+REdHEx0dTXt7O06nE6fTSWFhITt27CAkJASbzUZERAT+/v5Gx+23MjMzaWtrY8KECUZHEREBYPDgwQQGBuJyuVRALCIiIobyeDzk5eWxa9cujj76aIYOHWp0JBEZwPz9/YmKimLHjh0AKiIWQ6iAWERERI6o9evXk5qaytlnn43JZOKll17iwgsvJCQkhI8++ohnnnkGHx8fnn/+eT755JPD2rfb7ea+++5jxYoVDB48mEWLFjF37lzv86+99hr5+flERETQ2trK7bfffkD77fXpp5+yYsUKVq5c2WWGrvo42HZaWlpYtmwZmzdv5sUXX9znX8EhYgAAIABJREFUuccee4xBgwbR2NhITU0NixcvxmQyERQUxBlnnMGwYcN4+eWXGT16NOPHj2f9+vWcdNJJLFmypNt2MzMzGTt2LB6PB4DPP/+80wLiXxqvrvIdzHi53W6eeOIJ/Pz8cDqdJCUlcfnll3c5XiIiIgNBeno68+fPZ/369dxxxx2YzWZaWlpYt24dM2bMYOHChYbkuvXWW4mIiODee+81pH8RMYbZbCYqKoqoqCjcbjculwuHw0FxcTEFBQUEBARgt9uJjIwkICDA6Lj9ypYtWwgICCAxMdHoKCIiXmFhYbhcLqNjiIiIyADW0dHBtm3b2L17N6NHj8ZmsxkdSUSEYcOGAaiIWAyjAmIRERE5IB6Ph2+++YZTTjnlV+3b1NTEa6+9xplnnklRUREvvfQSN998MyeddBIZGRls3bqV1NTUHpnZ9uWXX2bixIncddddvPnmm1x33XWccMIJHHvsseTk5PDcc8/x7bffAnDRRRexcuVKLrroom7326u6upqHH36YqKioLvvvro+DaQcgPz+fwsJCysvL93n8o48+4ocffvAWH8+aNYs1a9aQmprK/PnzefzxxwFYvXo1qamp3HvvvbS0tPCXv/yl23YBXn/9dXbt2oWfnx8mk4ng4OCDHueu8p111lkHNV4vvPACxcXF/O///i8ej4fx48cTHx/PSSed1O24iYj0Fl999RW//e1vjY4h/czYsWM599xz2b59O48++qj38ba2NpYvX37EclRXV7Nz507vudINN9yAxWI5Yv2LSO9jMpmw2WzYbDbcbjc1NTU4nU7Ky8spKirCYrFgs9mw2+1YrVaj4/Z5W7duZezYsQwaNMjoKCIiXmFhYZSWltLS0oKfn5/RcURERGSAaW1tJTMzk+bmZsaOHUtISIjRkUREvFRELEbqfKo3ERERkZ958MEHWb169a/ed/To0fzud7/rdLsxY8YwdepUwsLCSElJOeSsXYmPj+f888/HarVy/fXXM3r0aHJzcwF44oknOO2007zbTp8+nSVLlvzifns999xzXHbZZd32310fB9MO7BnHhISE/R5vbm5m8+bNNDU1AdDQ0EB8fDwej4dbbrml07b8/Py47rrrum23rKyM1157jXvvvZdNmzZ1WTwM3Y9XV/k60914vfXWW96iJB8fH04//XSeffbZLjOJiPQmn332GXfffbfRMaSfMpv3v1fc6XRy4403HpH+W1pauOSSSygqKvI+lpSURGxs7BHpX0R6P5PJRFhYGImJiUyePJnx48djt9uprq5my5YtrF+/ntzcXJxOp3f1Ezk4WVlZ+9zwKiLSG4SGhmIymdi9e7fRUURERGSAaWpqYsuWLbS1tTFhwgQVD4tIrzRs2DASEhIoLCykuLjY6DgygKiAWEREpI+YO3cu8+bN4/rrr2f48OHMmjWLhoYGSktLueGGG5g/fz5z587l+OOPp7KyknvvvZdXXnmF66+/nsWLF7N7927OOOMMEhISqKysBPbMBvfUU0/x2WefkZyc7P1y9l//+hcvv/wyy5YtY9GiRVRWVvLZZ5+xadMmXnjhBQC+/vpr/vrXv/LKK68wa9Ysamtru8zy030jIyPx9fXt8vcMCQnh/vvv5/jjjwegpqaGO+64g9///vc899xzTJ06lXPPPZesrCxuv/12hg8fzptvvgnArl27ePjhh7ntttv4n//5n30KVwBOPfVU7789Hg8VFRVMnjwZgIyMjH0KW4466ig2b978i/sBvPPOO5x11lm/OHtKd30cTDvdmTFjBjabjVNOOYWHHnqIc889l+TkZEwmE9HR0V3uFxMT0227bW1t3HjjjZSUlDBt2jRuv/1273Mul4ujjjqK7du3A92PV1f5Omunu/FyOp00NjZ6n4uKivLuJyJyKB588EFOPfVUHn30UcaNG8ekSZPIzc2lqamJRx99lClTpvDss88SHR1NSUkJjzzyCC+//DKLFi3iuuuuo66ujrvvvhsfHx82btwIwNtvv82sWbOorKz0vr+53W7ee+89ysrKePrpp3E6ncyZMwc/Pz/S09OBPbPE7/2c7yoX7Fly78knn+TPf/4zU6ZM4bPPPjNs/PqT77//nhkzZvDggw9y3nnnER0dzaJFiwDYsGEDZ511Fk888QQnn3wyd9xxBz/88AMPPPAAy5cvZ/bs2XzyySds376d4cOHc/7559Pa2kpNTQ2//e1vWb9+fafbA2zfvp0ZM2bwyCOPcOuttzJ06FDefvttb67vvvuOxx57jMsvv5wrr7ySlpYWAB544AHmzp3b5e9TU1PDE088AcDOnTs588wziY2NpaKigmnTpvHQQw91235mZiaLFy9mxYoVnH/++eTn57N161ZCQkJYtWoVDoeDyy+/nN/85jfAnqK1rVu3smrVKj755BN+/PFHrrzyyn0KmA91DESkf7JarcTHx3PccccxadIkhgwZQn19PZmZmaxbt47t27fjdDpxu91GR+0zcnJyOOaYY4yOISKyD5PJREhICC6Xy+goIiIiMoDU1dWxefNmzGYzKSkp+Pv7Gx1JRKRLKiIWI+w/LY2IiIj0SqGhoXz77bekpaXR2NjIpEmTePrpp1m4cCEhISF88cUXfP311xQUFHDVVVcxZ84cLrzwQi699FJGjRpFdHQ0S5YsYcKECd5lTO12OzfffDNOp5NFixbh4+MDwF//+leWL1/OMcccwz//+U8iIyMZP348FouFa665BoAXXniBCy64gLPPPpu3336bjz/+mIsuumi/LJ3t253g4GAmT57MK6+8Auz5MnnUqFF8/PHHvPLKK9xwww1ERkby6aef8re//Y2pU6fy4IMPcvHFF7NgwQJeeuklgoODuf7667nrrru6LDpZu3Ytl156qbeotqSkhKCgIO/zQUFBNDQ00NDQQGBgYLf7VVdXM27cOLZs2dLt79ZdH9XV1QfcTncsFgsrV67kpJNOYvHixbz++uuH3NZPxcXFsXDhQhYuXMiXX37J9OnTufTSS0lJSSE0NJQHHniA4cOH77ffz8eru3w/b6e78Zo8eTL//ve/vYXMDQ0Nnc64KCJyoFJSUnjyySd5/fXXueeee5g9ezYLFizg008/Zfz48TzyyCO89tprnHbaafyf//N/KCsrY+HChQDMmTOH2267jeeee46VK1dSUVEBQH19PU888QR2u937/mYymZg2bRobN27k5ptvBuCZZ57hgw8+8N4YUVFRwZ///GcCAwO7zbV48WJ+85vfcNppp/HWW29x2WWXUV5e7v08l0Nz3HHH4XA4qKur44MPPmDr1q1MmjSJM844gxNPPBGHw0FpaSmffvopeXl5zJgxg82bNxMVFcXpp5/O2LFj2bp1K3/+85/5xz/+weDBgzGbzUydOpXk5GRGjhzZ6fYjR4703njz9NNPM3HiRJ577jl+//vfU1NTw5NPPuk9rxk5ciQvvvgiN9xwA+eeey61tbX7/A4NDQ3ceeedeDweqqurKSsrA2Do0KG8/vrrJCcn884773DuueeyYMGCLtu/9NJLueKKK9iwYQODBg2ipKSE77//nksuucS7goDdbmfmzJneG3lSUlKIiIhg5syZnHHGGd5+d+3aBUBtbS1nnXXWQY+BiAwMgYGBBAYGEhcXR3NzM06nE4fDQWZmpnfmYrvdTkREhPfvWtlXQ0MDO3fuJCkpyegoIiL7CQsL856bioiIiPS03bt3k5mZSUhICKNHj9bfkSLS69TW1pKdnb3f40FBQRQWFmI2mxk6dKgByWQgUZWFiIhIH+Hv78/o0aPx9fXFarVy2WWXsW7dOgACAgI49thjsVgsDB8+nI8//ph//OMfwJ5lrM8++2w++OADLr30UqZNm8ZLL73EnDlziIyMxGQyYbfb9ynMuOyyyzjllFO47777ulzu+uWXX+bHH38kMzOTtrY26urq9suyd2bZg2WxWPb72W63ex8/6qijOOqoowCIiIhg165d1NXV8d133/Hiiy8CMGrUKMLCwjptv7GxkZdeesk7RgCxsbH7zGjb0NCAzWbbp3j45/t5PB6WLVvGAw880Gk/8+bNY/369QBcc801XfYREBDAY489dsDt3HLLLZ1uB1BVVcV1111Heno6y5Yt44ILLuDzzz/n5JNP7nKfgzV16lRmzZpFeno6KSkp+Pj4MGfOnP2262ycu8v383a6OyYPPvggV155JTNnzuSkk07iP//5D+PHjz9sv6OIDDz+/v7Y7XbvjOw33ngjZ511FrDnsy0iIsL72fPhhx8yf/58777nnXceV199NcuXL+emm27iueeeIzU1lZKSEkaMGAHQ6fvkXsHBwVx33XU8+eSTrFy5kpycHObNm/eLud599108Hg8ZGRkA/PGPf6SpqYmAgIDDOTQDkr+/v/dzZdy4cZx88smsW7eOE088kYCAAFJSUggICGDnzp1YLBaioqIAiI+PJykpiY8++oh58+axcOFCNm7cSEVFBWeffTZr167tcvsFCxbg7+/vLfgaMWIEO3bsAOCbb77xFtXCnlUk9s4sOW7cuP3yBwYGemcdBva5YScsLIylS5dy5ZVXeovdu2r/66+/Jikpyfvlyk/PVX5aqP5LRes/Pbc71DEQkYHHYrEQExNDTEwMLS0tVFdX43Q6ycnJITc3F6vVis1mw263M3jwYKPj9hp5eXl4PJ4eLyB2OBydfsElInIg0tLSjI4gIv1AUFAQEyZMwGTSossisr+qqiq2bdtGREQEI0eO1KQLItLrJCcnd3ltxd/fn7a2Nnbv3q0CYulxKiAWERHpo/YWFHXGx8eHnTt3egudwsPDqaqqAuDmm2/m2muvxd/fn4svvrjT/a+55hqOPvpo5s+fz0cffcSaNWv222bZsmWYTCbmzp27zyyxR8LPC1b2zq5XX1/PjTfeiK+vLwAtLS10dHTsc0exx+NhyZIlLF682LsdwJgxY/aZAWXnzp37FEB3tp/T6eStt97irbfeAvYsg1RfX8/RRx9NVlYWy5cv3yd3ZmZmp30cbDvdeffddzn66KMJCwvj7rvvprS0lBdffPGwFhDDnsLt7v5Y6WqcDyZfd8fEbrd7X5eNjY089dRTLF269HD9eiIi3X7Owp73pL3Cw8O9RbtXX301999/P++//z6/+c1vDri/m266iaOPPppvv/3WW3T8S7mqqqqYNm0akyZN8j7f0NBwwH3Kgevu9VBRUbHP+cbe14Ofnx/XXXcdzz77LCNGjOC+++7jo48+6nL77lRVVREUFOSdtRoO7lhfeumlOJ1OLBYLgYGBOBwORo8ezf33388TTzzRZfsffPDBPq91gNbW1l9dqHcoYyAiA5ufnx/R0dFER0fT3t6O0+nE6XRSWFjIjh07CAkJwWazERERMeCXoy0oKMBkMnV7PnE4HeqNwyIiIiK/RklJCQ0NDWRkZDBmzBgVEYvIPnbu3EleXh4xMTEkJiYaHUdEpEvdXVfRjdtypKiAWEREpA9pamry/vvzzz/nzjvvBPYUa7rdbmDPjHNnnnkm77//PieccAKwp3D1qquuAuC0004jICCA7OxsbDYbsKcQNi0tjfPPPx+Al156iblz57Jp0ybi4+Opra0lODiYyspKPB4PHR0dLFq0iNdeew23201FRQVtbW37Zdnr5/uazXtOQdrb2wHo6OjYZ3u3243H4/H+/NN//7yPvc/FxsYSEhLCHXfcweOPP059fT3vv/8+11577T77PvPMM8yZM4ewsDA6Ojp45513+P3vf8/NN9/M9ddfz/333w/Ap59+yty5c39xv7y8PO82r7/+Oh9++CHvvPNOZ4evyz4iIiIOqp29fj5usGfWhfT0dO/PQ4cOpaWlZb/t2tvbO92/q3bT09NJSEggMDCQtrY2du3axdSpU4E9x+CNN97gggsu8M4w2NV4dZfv5+380jHZ64YbbuDhhx9m4sSJXQ2ViMgBaW5uxuPx4OPjw+eff86ll14K7P/ZdtFFF7Fy5UruueceADIyMrzbWq1WrrjiChYtWsTWrVu9+//0/S04OBiXywVAW1sbvr6+xMTEcPHFF3PJJZewcePGA8p10kkncfPNN7Nq1SoCAwN56623OO+883p2kAaQveddra2tZGRk8OqrrwL7vh5OPvlkQkND+eSTTzjzzDPp6OigvLycM888E9jzGTVy5EiWLFlyQNv/9Jyno6PD+/PkyZO59tpreeONN5g9ezbbtm0jPz+fmTNnkpmZSX19vfe8r729vdNzp7vvvptnn32W7OxsWlpaePPNNxk/fjwXXXRRl+2fcsopzJ07l2XLljFnzhw2bdrEzp07Of/884mMjKSkpASArVu37nOeuvc1vvf1/dNzu0MdAxGRvcxmM1FRUURFReF2u3G5XDgcDoqLiykoKCAgIAC73U5kZOSAvDmhpKSEyMhI/Pz8jkh/3d1wJSIiItJTHA4HZrOZ+vp60tPTGTNmzD4TiYjIwFVSUkJBQQHDhw8nLi7O6DgiIiK9nm7FExER6UN++OEHlixZwqOPPsr555/PtGnTKCkp4csvv2Tt2rVs2LAB2FMAvGvXLp588klWrFjBjBkzmD59uredm266yVtQvLfdP/7xj94CjU8//ZSHH36Yjz/+mDvvvJOQkBDOOecc0tLSeOKJJ/B4PMyZM4drr72WRYsWcfrpp7N8+XI+++yz/bIA++0LUF5ezrJlywB49dVXyc/PB6CmpoaPP/6YiooK/vOf/+Byufjoo4/Iz88nOzubTZs2kZ+fz4cffojD4eDDDz+ksrKS9evX89Zbb/Hll18SExPD3LlzufDCC/cZv4ULF3LLLbcQFRWFj48PZrOZH374AR8fH8aMGcPVV1/NY489xtNPP01CQgJXXHHFL+53MLrr42Dl5uayevVq0tPT+fbbb72PX3LJJUycOJFHHnmEpUuXUllZ6S00hz1FaK+++irl5eV89NFHrFu37oDaffPNNxk9ejSPPfYYr7zyCs8995x3ZuHdu3dz1113UVhYCHQ/Xt3l+3k7vzRe+fn5zJkzh+OOO45rrrnmkMZRROSnamtrefzxx3n66aepq6vjT3/6E42Njbz77ruUlpby3nvvAXDLLbdwxhlncNddd/HGG2/gcrm8NzsALFiwgDlz5nhnv/n5+9sJJ5xAQEAA8+fP964QAHDbbbeRkpJCRETEL+YCWLx4McHBwcTHx3P66aczfvx4QkNDe3KIBpTVq1ezdOlS/vSnP/HWW28RERHBxo0b2bZtGx9++CFFRUUEBwezZs0aXnnlFVasWMHf/vY3VqxYwZAhQwCIjo7m6quv9p6TdLd9fn4+W7ZsIS0tDYfDwXvvvUdFRQXr168nKSmJpUuXctdddxEbG8vLL7/MzJkzAXjnnXd4/vnnAcjKymL16tU4nU5uv/12HnroIe666y6OP/54SktLKS4u5vLLL+eCCy4gLi6OKVOmMHv2bJqbmzttf/jw4bz22ms8+uijxMTE8J///Md7w9ltt93GkiVLmDlzJpGRkYSFhbF+/XoALrvsMhYvXsyqVasoLi5m3bp1bN68maysrEMeAxGRzphMJmw2GyNHjmTy5MmMHTuWsLAwysvL2bBhA9999x35+fnU1NQYHfWIKSsrY9iwYUbHEBEREelxZrOZsWPH0tjYSEZGRpcTZojIwODxeMjLy6OwsJCkpCQVDxuosrKSoqKiX9zO4XAc9OQBB9q2iIgcOB+PpnIRERE5YhwOB9nZ2UyZMuWg973vvvvYtWsXy5cv74FkIn1Lbm4upaWlHHfccQQFBf2qttLS0khOTtbMWSL9wK/5nP3888+5/vrr95kR/kj78ssvaWxsJDU1tVflGohOOeUUrr/+eu9sz9L3/Jr3AxHpH2pqanA6nVRVVdHU1ISfnx/h4eHYbDbCw8MP+obQvuKSSy6hsbGRDz/8sEf70fusiIiIGGnvkt7JycneWYgDAgI0E7HIAOXxeNi2bRtOp5ORI0f22+97+sL3WWvXrmXWrFn86U9/Yv78+V1u9+STT3LnnXfS2Nh4wCvoHGjb/UlJSQmJiYk4nc4uvw9taWnh1ltv5euvvyYjI+Ow9Ltx40ZmzZrFfffdp0mcDsG2bdv4y1/+QnV1NWvWrDnkdn56viPSg7I0A7GIiEgf0dbWRnt7u9ExRHqFpKQkTjvttF9dPCwispeRn7Pff/89P/zwAytXrmTGjBm9JtdApnEXEen7rFYr8fHxHHfccUyaNIkhQ4ZQX19PZmYm69atY/v27TidTtxut9FRD6vKykqioqKMjiEiIiJyxAQFBWkmYpEBrKOjg4yMDFwuF2PHju3VxbUDwUknnURKSsovbnfxxRcf9N/jB9p2fxIbG0ttbW2334f6+flx9tlnd9vO0qVLD6rfSZMmkZCQcFD79EUHOy4HKi4ujpSUlIOeYVvEKCogFhER6SPS0tLIzs7WEs4iIiI94IUXXqClpYX33nvviF/UWbJkCeeccw5XXXUVJtP//zPd6XQammugeu+996ioqOCzzz4jPz/f6DgiInIYBAYGer+8Of744xk+fDjNzc1kZmaydu1aMjMzqaio6BfFJi6Xi/DwcKNjiIiIiBxRKiIWGZhaW1vZsmULDQ0NjBs3DqvVanSkXquqqorW1laKi4vZsWPHPs9VV1fT0tJCXl4era2tAOzatYsffviBpqYmALZu3UpaWhobNmwAoKioiLS0NBwOB6WlpbS0tHjb++k17r1+/PFHcnNz99vG4/GwY8f/Ze/O42O6+geOf7JJImSPrJYQkYVILbG2lmq1qFJp/Wi1tBS1tcXD04daW5Tad1UUVdWWUh5VS4JGVJF9kZBENlllT2SZ+/sjr9wnk8xMJpZYet6vV17M3HvP+d5z7j33zp0z59wkNTW11jZxcXFERkYqPRdXlfaT7vz58/j7+5OamkpQUBD+/v4EBAQAlSPVnj9/HgCFQkFoaChJSUlK22dlZVFSUiK/Dg8PJy4uTmmd6uUZERFBWlqavGzJkiVs3LgRf39/OR11eQFER0eTlJRUr7KWJImwsDDu3LkDVPZr8Pf3l2dWrDp+ysrK1OadmpqKQqEgKipKZZrVqSoDTfukiqpyUZdnUVERISEhFBQUaJW2sbGx1iNrC8KT4OlrWQVBEAThH+rSpUtcvnyZ7t27P+5QBEEQBOGZc+jQIVJSUhgxYkSDT2m+d+9ekpKS6Natm9L7VlZWjzWuf6oRI0YQFxfH3r17cXFxedzhCIIgCA+ZkZERjo6OeHt70717d7mtj46OJiAggJCQEJKTk+UvTZ82OTk54ktzQRAEQRD+kUQnYkH4ZykpKSEoKIjy8nK8vb3FjJUafPvttzg4OPD5558zb948fHx8+PzzzwHYs2cP9vb2rF27Fl9fX37++WemTZuGv78/xcXFDBgwgGPHjmFhYcHrr7/OrVu3AHBwcGDdunVYWloyaNAgtmzZojLv3Nxc+vXrR15eHnv37mX27NlKyxcuXMgnn3yCi4uLUhpLly4lMDCQVatWMWzYsKd6cI3g4GDefvttbG1tsbS0ZMiQIUodeU+cOEF2djZz584lOjqaUaNGsWrVKgB27NhB8+bNSUtLQ6FQ8Oabb5KSksLXX3+Ni4sL8+fPl/MpKipi0aJFrF27lnbt2pGeno5CocDY2Bg9PT3Mzc3R1dVVm1d+fj5jx47lzp07nDt3jmvXrmm1f3///Te+vr4YGBgwYcIEfv31V3Jzc+nbty+mpqYAFBcX4+/vT35+fq28i4uL+eSTT+jWrRtffvkl/fr148iRI7XSrCovVWWgbp/UUVUuqvYD4PTp06xduxaAMWPGaFvtgvBUER2IBUEQBEEQBEEQBEEQBEEQhH8cQ0ND7O3tad++PT179sTV1RV9fX3i4uIIDAwkKCiI5ORkpZGUnnQ5OTmYm5s/7jAEQRAEQRAeKVNTUzIyMuQRDqv+rl69SllZGbm5uXInN0EQnj2FhYUEBQWhr69Pp06dMDY2ftwhPdHefvttysrKePvtt/nuu+/46aefWLZsGRkZGbzzzjuUlpbywgsvyGUaHBzMyJEj6dWrF0uWLOHdd9/F2tqajz76iKNHjwIQEBDAlClT0NPT4+TJk0yePFll3rm5uXTu3BkvLy+GDRvGL7/8orS8Ks2tW7cya9YsCgsLOXjwIElJSTg4OPDGG29w9OhRLl68+MjL6VEZP348RUVFRERE0KJFC1566SX8/PwAuHDhAtOmTeM///kPrVu3xsbGhldffZX58+dTWlrKBx98gEKhACpH9Y2MjOSll15i3rx5xMXF8fHHHyvlNX/+fLZv346Hhwfnzp1DV1cXZ2dnGjduTMeOHWnUqJHavJYtW0bLli3p06cPY8aMwc3NTav9y8zMZPDgwbRr146+ffty9OhRhg4dSo8ePeTj5eLFi8yYMUNl3np6egwZMoS8vDxmzpxJSkoKRkZGtdLUVAbq9kkdVeWiaj8AAgMDSU9Pp3379ixYsKBedS8ITwvRgVgQBEEQBEEQBEEQBEEQBEH4R9PX18fW1hYPDw969uyJp6cnRkZGxMfHExgYyJUrV4iPj6eoqOhxh6qWJEnk5uaKDsSCIAiCIDzznJyc8PDwUPtnampKWVnZ4w5TEIRHIDc3l6CgILnjn4GBweMO6Ymnr68PgKWlJQD9+vXD0NCQ+Ph49PT0gMoRhXV0dLh48SJt2rSRt+3Vqxe5ublERUUxZcoUfv31V9LT0/Hz86N///7ytoaGhirzbtGiBVOnTsXPz4/U1NRanTptbW0BGDZsGEVFRcTFxeHn50fbtm0xNzfHycmJoKAg2rdv/3ALpQEZGxvz3nvvsXPnTu7evUuTJk3YvXs3FRUVJCcn4+joiJ+fH+7u7pibmzN48GACAwPR0dFBV/d/3frs7OyIjo4mJycHa2trHBwcMDExkZc3btwvYvsVAAAgAElEQVRYrk9bW1vu3LmjMh51eZ08eRIfHx+l9LTxyiuv0L59e/7++29yc3PlOv7444/ZvHkzFRUVFBcXY2ZmpjZvfX19LCwsMDY2RkdHR22a6spAXbr1oS7P999/nwsXLtC5c+en6gfmglAf+o87AEEQBEEQBEEQBEEQBEEQBEF4Uujq6mJlZYWVlRUKhYLc3FyysrJITU0lISEBIyMjrKyssLGxwczM7HGHK8vPz6eiouKJikkQBEEQBOFRsbGxUbssIyOjASMRBKGhZGdnEx4ejpWVFW5ubkqdKwXtFRUVoVAoaN26da1l1tbWXLlyRX6tr6+Pnp4ejo6O2NraMnToUL766ivatGmjVQfN2NhYJk2axOnTpwkKClK7nrGxMYaGhrRq1QqAO3fu0LFjR3l5XFwcFhYW9djLJ8vEiRPp3bs31tbWrFq1ihEjRvDZZ58xYMAAeZ2CggL69OkDQElJCZmZmdjb28vL3d3dWbduHYsWLcLV1ZVffvkFIyMjrfKXJEnptaq8FAoFiYmJ9d6377//ntDQUJYtW8bFixeJi4sD4I033mDWrFksWLCAESNGaMxb2zQ1lUFd5VdXuajLs1GjRly6dIk1a9bw0ksvERgYiIeHR73LSRCeZKIDsSAIgiAIgnBfKioq5F+yCoIgCIIgCIIgPIt0dXWxsLDAwsICFxcXuTNxZmYmycnJGBoaYmlpiZWVFZaWlvUe4eZhysnJARAjEAsPXVFREfr6+jRq1OhxhyIIgiAIgiD8Q6WnpxMVFUWzZs1o167dY/3s9bS6ffs2jo6OHD9+nNGjR2NlZUVFRQWAPLLq+++/z5o1awgJCcHLy4uzZ88yZswYeaTgGTNm0L9/f5KSkuR0Fy1axIABA+jVq5ecVtUo8GfOnCExMZHExET8/f0pLCwkPT1d3ra4uBhDQ0NOnDjBzJkzadKkCW+88QaDBg3C0dERHx8f/P39GTduXK20nyZubm506NCBrKwsmjVrxoQJE1iyZAnLly8HKjvbjh8/nk2bNmFubs6VK1eYPXu2XD8VFRXk5uZy9epVvvjiC8zNzZU6D5eXl1NcXCy/Li4uRqFQAGBvb09SUhKFhYXk5eWpzWvEiBGsWbOGwYMHo6Ojw+3bt4mMjKS4uBhjY2O1+3bs2DF0dHRITEzk+vXr5OTkcPfuXSwsLORRq5cuXapxPyMiIpRG91WXpq6ursoyUJeuJjXLRV2e3377LdOmTWPOnDmEhoaSmpqqVQfioqIiuf4E4Umnt3DhwoWPOwhBEARB+KcoKioiIyND/vXks+rWrVt8++23FBcX07p1awYOHMixY8e4ePEia9eu5cSJE5w9e5YNGzaQnZ1N27Zt+fDDDxk0aJA8jc6jcurUKT777DOOHj2Ks7Oz0i8Pw8LC2LVrF8HBwZSWltKiRQuttqsSGxvLhg0b6Nu3r9r8NeVRn3QAgoODOXjwIN27d1d6/+zZs/z000+cPn2ajIwMPD09Aeqsh27dumlMNz09nddee43du3eza9cuTExM1E4ZpKm81MVX3/3Upiy1kZCQgI2NjdI0P4IgPJ3+KddZbR04cIAvvvgCb29veXq6+3X8+HFCQkLYvHkzTk5O8gPjZ9WmTZuYM2cOp0+f5vr165w5c4Yff/yR9evX8+6776rc5mGWt/DgRHsgCMKjYmRkhIWFBY6OjtjY2KCrq0t2djbJycmkpKRQWFiIjo4ORkZGDf6FdmpqKps2bWL69OmP/Fr9NLSzcXFxrFmzhnPnztGvXz+160VGRrJ161ZMTU3rHJ2ovmlXl5+fz5IlS1i9ejVxcXH06tWrQUdM2759O7GxsVpP/VtRUcGuXbv44Ycf0NPTo02bNirjLS0tZfv27XzzzTdcunSJy5cvExYWRkZGBqWlpSxevJiVK1fStWtXmjVrprRtbm4ugwcP5siRIzg5OVFSUsLy5ctZtmwZcXFxFBUVsWzZMtatW0dERAQnTpyQR3uq+gwfHh5erzzy8/OZM2eOyjSTk5OV8nd2dlbqkF/fvKo/p2jIOENCQpg9ezbr168nOjoaf39/Tp48ycaNG1EoFHh5eVFaWspXX33F3r17+eWXXzh16hTNmzcnMzPzvvaxpKSEzZs3Y2ZmhrW1tdrjKj8/n0WLFrFu3ToSExPx8fFR+eP0GzdusGDBAlauXElmZqZ83H7zzTfMnj0bf39/nJ2dyc7OZu7cuaxdu5bQ0FD++OMP/vjjD1q2bKkyjps3b7Jjxw709fVxcnKqtby+58n9eJA87qftUVc3quLQth61zQPgypUrnDp1io0bN8ojwtUnj4CAAFJSUlTWl1CbpnOsvLycLVu2EBwczMWLF3nuueeUnsWrq8fCwkLWrl1LWFgYV65coUuXLvI9jqY0x4wZw4YNG9izZ4/8179/f3mmBHX51RWntqpGINY0SrEgCE+PtLQ0oqOjcXBwwNXV9R/befh+v8+SJInFixfj4uLC9evXKSwsZOHChejq6nLgwAGys7Pl+0Rra2t8fX3Zv38/ycnJ5ObmMm/ePPmzgJOTE82bN1f6zu7kyZO0atUKZ2dnLl++zJ9//omOjg7e3t54eXlx69Yt/vzzTyZOnEh8fDxlZWU8//zzODo6cvLkSW7evImBgQHTpk0DoE2bNri5ufHbb78RHh7OuHHjaN26da20mzZt+vAKtwE4OjoybNgwmjZtSrt27WjevLn8HWmfPn1QKBT8+uuv3L17lxkzZmBsbMzhw4fJyMhAX1+fVq1asWrVKlasWMHnn3/O1q1bsbe3x9XVlYMHD5Kbm4uLiwt5eXn4+fkB0KtXL1q2bElSUhIBAQEMHjyY/v3718rLxMSE3r17c+/ePbZu3Upubi5eXl506NABNzc3jdfitm3bcvHiRVJTU/nggw84f/48rq6uNG/eHHd3d9q0aUPbtm3V7qeOjg4HDhygoKCApk2b4uHhoTZNExMTVqxYUasMpk6dqnKfNLGzs1MqFzc3N5V56ujosH//fvLz83F3d2fw4MF11vWNGzc4fvw4hYWFODs707x5cy2PEmXifkZoIBlIgiAIgiA0mPT0dMnPz+9xh/HIZWdnS15eXtI333wjSZIkvfnmm1JFRYUkSZLUqlUraenSpZIkSdLt27elTz75RCooKJDmz58vlZWVPdK4Tp48KU2fPl06cuSINHr0aMnU1FRKSUmRJEmS7t69K3Xu3FkqLCyUFAqF1K9fP+mvv/6qc7sq5eXl0ksvvST5+vqqzV9THvVJR5Ik6erVq9Jrr70mvfLKK0rvX79+XRo4cKD8+oUXXpAuX74sSVLd9aApXUmSpC+//FI6ePCgdOTIEeno0aNSaWmpytg0lZem+Oqzn9qUpbb8/Pyk9PT0+9pWEIQnyz/lOqutoqIiSV9fXwoLC3ugdDZt2iR9//33kiRJUkBAgHT06NGHEd4TTaFQSMbGxtL69euV3p85c6babR5WeQsPh2gPBEFoaMXFxVJSUpJ0/fp1yc/PTzp//rwUGhoq3blzRyovL2+QGMLCwiRACg8Pf+R5PS3t7H/+8586P1+npaVJtra20smTJx962tXNnz9fCgwMlC5cuCA5OjpKO3furFd+D+rIkSPSmTNntFr33r170muvvSYtWLBA43pJSUmSq6urtGzZMvk4T0xMlHr16iVt2LBBkiRJOnjwoKSrqyuNGzeu1varV6+WzMzMpPHjx8vv+fn5KR3HX3/9tWRqaipJUuU92vLlyyVzc3MpLi5O3qa+eWhKs2b+NdU3rwfZ9kHiXL58uWRpaan0XlpamrRixQpJkiRpzpw50vTp0yVJkqTc3Fxp8ODB0k8//XRfcebk5Ejff/+9pKenJwUGBqqMp2ofPvjgA2nXrl3S9u3bpWbNmkmzZs1Su/73338vAVJeXp7S+40bN5ZWr14tv16/fr1kbGwsvz506JCkr6+v8nlTZmam1KZNG3lfa9LmPCkvL6/1XLA+6nMuqlKftkdT3dSMQ9t6rE8eGRkZUv/+/SVJkqRvv/1WCgoKqnceb7zxhjRixAit43lUHrTeG0Jd59jSpUvltvnEiRNK5aqpHvv37y+FhIRIkiRJq1atkqZNm1Znmn///bc0d+5c6cyZM5Kfn5905swZyd3dXav8NMVZH+Hh4Q1yTyQIwqOXlJQk+fn5STdv3nzcoTx29/t9Vnl5uQRISUlJjyAqoaHs27dPOn/+vPy6sLBQ/q73UcrNzZX8/PxU/qWmpj7y/KurTxk8qrgbsjzE/YzQQMIa7uftgiAIgiD8Y1hYWMgjlFRUVDBnzhyVo9Q0b96c//u//8PExITFixc/8tGH09PTWbduHa+//jp79+7F3NycP//8E4AVK1bQo0cPGjdujI6ODkOHDmXFihV1bldl+/bt9O/fX2P+mvKoTzoAnTp1YuDAgbXeDwsLo7CwUH7t5OREcXGxVvWgKd2ioiKOHj1KWVkZL7zwAq+99hoGBgYqY9NUXuriq+9+alOWgiAI/3TGxsZK05jdr507d8qjUvXo0YPXXnvtgdN80uno6GBoaKh03ZQkic8++0ztNg+rvAVBEISnk5GREY6Ojnh7e9O9e3dcXFwAiI6OJiAggJCQEJKTkyktLX1kMVRNjalqNM9/KgsLizrXadasmVbr3U/aVe7du8fkyZPp1q0bvXv3ZujQoZSXl9c7zwfx+uuva/W8AWDBggVkZ2ezYMECtetIksSYMWPw8vJi7ty58nHn5OTEwYMH5elnDQ0NGTZsGPv37+fOnTvy9gqFgqCgINzd3ZXuoar+b2hoKP9bdU+mo6PD1KlTycnJ4b///a+8TX3z0JRmzfxrqm9eD7Ltg8RpZGRU6xmQtbU148ePB+DChQvyczhTU1P27NlDZmbmfcVpZmbGqFGj6jwngoOD+fjjjxk7diwTJkzgiy++UKrHmho1aqT0b/X3q7/XqFEjpXbP19cXPT09Tp06VStNKysrjaN3aXOezJs3j2vXrmlcR5P6nIuq1Kft0VQ3NePQth7rk8f58+fluho3bhwdO3asVx6JiYkYGBhw5MgR4uPj6xXXw/ag9d4QNJ1jd+/eZdmyZfIz4IEDB3Lu3DnCwsIA9fV4/fp1rl27RocOHQAYPXo0W7duJS0tTWOaTk5OLFu2jP79+9OnTx8MDAx4+eWX5XTV5VdXnIIg/PMkJiYSGxtLmzZtaN269eMO56mVn58PQEFBwWOORHgQa9asISQkhLS0NFJTUzlz5gxeXl6PPN/CwkLCwsJU/mVnZz/y/KurTxk8qrifpPIQhIfl0fbSEQRBEAThofnvf/+Lv78/AwYMYPv27bRo0YJFixZhbGzMmTNnOHPmDAMHDmTbtm1s27aNy5cvk5KSQlJSEq1bt2b06NEsWbKEs2fPsnbtWjp27Mhvv/3GqVOnWLp0KVOnTuWrr77Czs4OgF9//ZWrV6+SlpbG/PnzcXR05MiRI5w/f553332XFStW0Lp1a7788ks5xrNnzxITE0NBQYF8g6ynp0fnzp3V7pePjw/nz5/nwIEDLFiwADs7O44dO8aJEyeYNWsWy5Ytw8DAgDVr1vDdd99x8uRJfH19GT16tMo4NU1nN2bMGPn/urq6NGrUSO4QFRgYiK+vr7zczc2NpUuX1rkdwNWrV7G3t6dx48Ya61BTHvVJR5OXX36ZTz/9lKlTpzJo0CCMjIx4/vnn0dXVrbMeNLlx4wZNmzZl6tSpAGzbto233noLgOLiYiZOnCgfP5rKS118qtLRpK6yFARBqK8//vhDq2tplVOnTqlddv78eWJjY0lPT6dXr148//zz5Ofn89tvv1FRUUFiYiL//ve/a7V7ZWVlHDhwgMaNGxMcHMynn36Kqakpp06dUnkPYGRkpHZZ9em5ysvLmTlzJqGhoXz99dd06NCBs2fP8uuvv7J69WqNnYx27dpFdHQ0u3fvxs7OjqCgIEpKSvj55585ePAgW7duZfz48bRt25Zly5axePFiOnTooPL6rKoMniY///wzXbt2pWnTprXqSdUX4Or2tz73LoIgCMLTydDQEHt7e+zt7SkvLycrK4usrCzi4uK4efMmpqam2NjYYG1trbbz3/14GjoQJyUlsX//ftq3b8+FCxeIiYlh4sSJvPzyy6SkpPD999/j6enJyZMn6dixI76+vuzbtw8DAwPi4+OZMmUKeXl5zJo1C09PT5YsWUJxcTEzZ85k/PjxJCQkkJGRIX92ren69evExMSQnJxMixYtGDFihLwsPT2d6dOnk56ezqxZs+jSpQsAmZmZ7N69m+joaHr27Mm4ceM07mN+fj4HDx4EIDs7m6lTp9K4cWPs7e0ByMrKwtDQkLFjx8rb+Pv7c/fuXW7dukX37t3p2bOnVulmZ2fz/fff4+LiQkZGBn/88Qfjx4/HxcWFr7/+moKCAtatW4dCoeDgwYOUlZXx8ccfa6yHoqIiNm7cyPDhw5kwYQIlJSVMmzaNbt26KcVz69Ytzp07xy+//FIrVkdHR95//3359ZgxY7hw4QKbNm1iyZIlABw/fpyhQ4eyatUqjeVZU1JSEoDcme1h5KEuTXUeJK+GjLOmNWvWMHPmTKBy6uBVq1Zhb2/Pxx9/jJWVFRMmTHgocarj7e2t9NrY2Fjp+drDcvXqVe7duydPB61KcXExn332GREREcyZM4cePXqQmZmpdJ5A7XMTYNOmTWRlZaGvr8/AgQPJy8ur1U45ODiobNOGDh1aKw91bYam9koVVflVPw+rU7Wv6mhqLzT566+/OHToEHFxcaxbt46BAwfi5uamcZuavvnmG9auXcudO3dYv349q1evVopLm/bP0tJSbR3Fx8ezf/9+nnvuOYKCgvjrr7/4/PPP6dSpk1IcAQEBtepdXf3U1Z4XFxezZcsWdHR0yM7Opnv37nh4eMhTY9cVS1RUlNprYPWp5EH5HAsJCcHY2Bhra2ug8plt27Zt8fPz03gexsXFKd1X2NvbI0kSoaGhGBgYqE2z5nX40KFDSs9y1bnfOAVBeDbFxsaSkpJCu3bt6vzOSNBs48aN/N///R9//PEHNjY2WFpaPu6QhPuwZ88evvvuO8aPH4+zszNjx46tda/wKNjb2zNlypRHno826lMGjyruJ6k8BOFhESMQC4IgCMJT4saNG2zZsoX8/HwWL17MuXPnmDZtGmVlZURFRbF582ZKS0vp27cvv/32Gzt27GDs2LHMnTuXbdu2sXLlSqZNm8a1a9fkUW4UCgUjR47EwMAAHR0dJEkCKju25OTksHjxYtzd3RkyZAg6Ojro6uqyc+dOMjMzWb16NTt27CA0NBQAPz8/tm3bxsSJE5k2bZrSCCV1sba2ZuvWrfLoNJaWluzYsYNbt26xfv16wsLCePvttxk6dCgLFizgww8/5N69eyrj1FZcXBwtW7aUH1zHxMRgamoqLzczMyMrK6vW6Lg1tysuLubkyZMMGzaszjw15VGfdDRp1qwZZ8+eZdeuXXz44YfMnz9f5ajD9eXt7S13lpsxYwZjx44lISFBXl79+KmuZnnVFZ+6dGrStr4EQRC0pe21FCqvk+qWnTp1iuPHj/P+++8zYMAAXn/9dSRJYt26dejq6vLOO+/QpEkTOd/q7d6OHTs4d+6cPGLWsmXLkCRJ7T2ApmXV6evrM336dPz8/OS2Mz8/n8GDB9fZwWjcuHEYGBjw7rvvMnv2bAYNGsTt27cBGDlyJI6Ojvj5+eHv78+yZcvkzsOqrs/qyuBJdvjwYWbPns2UKVP48MMPAdX1pIqq/X2QexdBEATh6aSvr4+trS0eHh707NkTT09PjIyMiIuLIzAwkCtXrhAfH09RUdED5/U0dCDW09Pjm2++Yd++fYwbN44BAwYwZMgQbt68CVReZ/fv38+IESOwtrbmxRdf5IUXXmDChAn07dsXHx8f7Ozs6Ny5MxERETRq1AgzMzOsrKzkjlOaPlMOHDiQbt26MXnyZN577z3y8vLkZf7+/owfP57mzZvTv39/0tPTKS8vZ8aMGXz88cds2LCBf//73xw5ckRt+hUVFfj6+jJ8+HDGjx/PhQsX2LZtm7z8woULvPLKK2zfvp3ff/8dgLKyMj755BOGDRvG+PHjiY2N1TrdZs2acf78efbv38/rr7/O+++/z+jRowkODmb16tWUlpayZcsWjIyMuHbtGsHBwXXWQ1BQEAUFBUyaNIlvvvmGoUOH0r9/f1JSUpRiqkqrVatWKsui+g+sjI2N+eijj9iyZYt8rP/6669aPwMpKyvj+PHj7Nixg5EjR7JgwQJ69+6ttE5989AmTXUeZH8aMs7CwkJmz57NrFmzeOONN/jtt9/kZYsXL2bq1KnMnTuX5557jsuXLys9n3nQOtPGmTNnmDRpUp3rTZ06lcmTJ8t/qtrLsrIy1qxZw5QpU/j000/ZsmULw4cPV5vm+fPn+fTTT+nUqZPcQbrmeaLq3OzZsyctW7bk9ddfZ+DAgVRUVKhsp3JycgDlNs3W1rZWHpraDE3tlTo181OnZhya1NVuq+Pj48OAAQNo3rw5M2bMqHfn4ZKSEnJzc7Gzs2P69Ons3LlTHj0R0Lr901RHdnZ2/Pbbb+zfv58PP/wQLy8vvvjii1qx1Kx3UF0/2rTn//rXv7C0tOSTTz7hwoULHD58GF1dXa1jcXNz03gNrK76OVbzWSpUPk9NTEzUWA8uLi5kZWVx69YtoPIaa2hoSEFBgdZpSpLEhQsX6NWrl8a8HiROQRCeLZIkERUVRUpKCu7u7qLz8EMwb948Dhw4wNSpU0Xn4aeYp6cnK1as4NixY6xfv75BOg8/aUQZCMKjIToQC4IgCMJTon379jRr1ozhw4fj5ubG559/ztGjRzE0NMTLywsLCwsGDhzIpEmT+Pbbb+WHmfr6+kycOJFNmzZhbm7O+PHj5QfRV69epVevXhgbG7Nnzx55NJw1a9aQnJzMunXryM3NxdnZmYKCAlq1aoWhoSEvvfQSDg4OdOjQgStXrgDw1Vdf8eqrrwKVUwd6eHhovW81123VqhUVFRW89NJLNG7cmK5du+Lg4ICdnR0dO3akrKyMO3fuqI1TG19++SX79++XX1taWipNH1paWkrjxo1rTTtZc7sNGzao/ZXhxo0bmTZtGtOmTePo0aMa86hPOpqUlZWxbt06Tpw4gbe3Nz169FDq6PugjI2NWbhwIb169eLixYvye9WPn+pqlpem+DSlU5O29SUIgqAtba+lAOvXr1e7bPny5bz55psAdOnShZSUFHR0dPD09GT27NkcPnxY7ohas90bM2YMK1euJD4+nrKyMlJTU9HX11d7D6BpWU0tW7bE19eX9evXA5WdVwYMGFDvcqrZzq5bt47ffvuNkpIS+QthdddnVWXwpBs+fDgrV65k06ZNctmpqidVVO3vg9y7CIIgCE8/XV1drKyscHNzo2fPnvL9R2pqKleuXOHy5cvExsaSm5t7X+lXdSB+GD8ifVTs7e2xs7NjyJAhtGvXjsmTJ+Pp6cl///tfHBwccHBwkDt6VZVN1YiDVc8Ijhw5wtSpUzl37hyJiYlcu3ZN7pQ0cuTIWj+mqu7y5ctYW1uTkJCArq4uGRkZ8jJfX1+8vLxYsWIFpqamnDhxgosXL5KYmMimTZvYtm0br776KpmZmWrT//PPPzEwMMDKygqAX375hRkzZsjLn3/+eS5dusR7773H7NmzATAwMKCiooIPPviAkpISRo4cya1bt+TnANOmTcPf319luo0aNcLe3h4vLy/s7Ozo3bs3d+/epW/fvhgbG+Pt7U1sbCxNmjShRYsWWtVDYWEhjRs3lkfNfOutt3BwcODUqVNK+1r1A6m0tLQ6ar3SRx99RGFhIXv27CEiIgJ3d3etO7vr6OhgZmZGp06d8PPzY+HChQ+chzZp1qyH6s8hHmR/GipOExMTVq5cyapVq/jll1+U7v/19fVZvXo1V65coVGjRvTp0wd/f//7jlMVTeV36dIlXFxc6Nu3b53rbty4kS1btsh/qmbu0tPTY9iwYRw9epQOHTrU2TF54MCBWFtbM2jQIPnZZs3zRNW5WVNAQIDadqpmmzZ48OBaeWhqMzS1V6qoyk+dmnFooqm9eJS+//57bGxs+P333zE0NEShULBz5055ubbtn6Y6MjIyws7Ojp49e2Jtbc2AAQPk46EuqupHm2Pm6tWr8gAIr7zyCvr6+rRs2bJesai7BlZX8xyr+SwVKp+nVo30q46Xlxcffvgho0aN4rvvvmPFihUUFhbi6uqqdZoBAQF07dpVq/bjfuMUBOHZoVAoiIiIIDMzkw4dOmBjY/O4QxIEQRCEZ57+4w5AEARBEIT706pVK6WHbtW/IMzMzFQaibVly5byCA1Tp07F29ubGTNm0LJlS5Vpx8XF8dZbb+Hi4qIxBj09PXlkn5s3b6qcvvth0NPTo6ysTH6tq6tLeXm51nHWtGvXLqZMmaI0Eoerq6vSl4BZWVm0a9cOHR0dtdtlZWWxefNm+YH5nTt3yMrKol+/fpw6dYoXXnhBnlayRYsWavPIzs6uVzqaVE0d2qdPH3r37s3QoUP5+uuv5U5PD0uHDh3qHD1SVTk/rPi0qS9BEIT60vZaqmnZrVu3lK7PVR1uhw8fjkKhYPLkyXTv3p0DBw5gbGyslH9+fj6bNm3ik08+oVmzZvJIvzXVvAfQdtmsWbPo168fM2fOxMLC4qF0LrKwsMDHx4d9+/Yxe/ZseURFVddnbcrgSTZy5Eh0dXVJS0vTqp5U7e/93rsIgiAIzx5dXV0sLCywsLDAxcWF3NxcsrKyyMzMJDk5GUNDQywtLbGyssLS0lKrzzr6+pWP+2t2vHnSqXu+UfOeC/5332VjY8Nbb73F9u3bMTIyYu7cuVrldfr0aWxtbRk6dGite6aqMtbV1cXV1RVJkoiLi6NFixZKnYA1qXkvaGBgUPDyjGYAACAASURBVGsdfX19Fi5cyE8//SS/d+7cOSZPnoyrqys//PADPXv2VJrqXZt0ofbo01XPT7RRVQ8uLi4UFRVRUlIi38s6OTlRWlqqtL63tzcGBgZcvXqVV155pc70mzVrxjvvvMOaNWuIjY1l/vz5WsUFlWWmzai79clDmzStra2V6qF6+T7I/jRknNV9+umnKBQK0tPTKS4uxtnZmeeee47z58/j4+PDypUr6dOnz0PZR01xZWVlcfr0aebNm1fvfVBHV1cXZ2dnDh48SJ8+fejcuTPjxo2rczsDAwON50jNc7Pmsa6pnaoemzqazm1N7ZUmDfEjEk2fOx+W8+fPK9Xh22+/zfr165k+fbrKfVTX/mlTR9XT0GZmNFBfP3UdMzNmzGDz5s3069eP6OhoJk+erDJ9TbHUdQ1UdY65urqSlZWFJEny9a7qeWpdtm3bRmxsLCUlJUBlp2IPDw8UCoVWaf7000+88cYbdebzoHEKgvD0q6ioIDw8nPz8fLy8vGqNSC4IgiAIwqPx5A5FIAiCIAhCLdUfGgYGBvLyyy+rXO+FF17g7Nmz8uvk5GR5lBFnZ2f69+/Pe++9pzQKQlJSkvx/V1dXeSp2gIsXLyotVxWPq6srJ0+elF9XVFTIox9Vp1Ao1D781PYBbX3jrO7IkSN4enri7e0NwPXr15EkiXHjxnHp0iV5vYCAAIYOHapxO3Nzc/7880/27dvHvn37+Oijj+jatSv79u3DwMAALy8v+vTpQ58+fXB2dlabh4WFRb3S0SQtLU0erUpPT4+BAweqLFdN9aCKQqFQep2YmMjzzz8vv65Z7urKua746qq/KnXVlyAIwoPSdC3VtKxDhw6sWrVKbjePHz9Obm4uf/zxByNGjODGjRskJSVx5swZQLndW7RoEU2aNMHa2prS0lKl9lHTPYC29wedOnWia9eu+Pr6Kn05Xx+SJCnlt3HjRpYvX46DgwOLFi0C1F+f1ZXBk6rmtdLAwAA9PT2N9VSdqv29n3sXQRAE4Z/BzMyM1q1b4+PjQ5cuXbCzsyM3N5ewsDAuXbpEVFQUWVlZtT6bVVfV2fPevXsNFfZ9q379vHr1Kv3796+1jo+PD4WFhQQHB8vv3blzh379+gGVnbB27NhBkyZN5M5bhYWF5OTkqMwzKSmJmTNnMmTIEKByhhx11/G7d+/y4osv4urqyrFjx4iKigIqR0E8cuSI2v3q0KEDv//+uxxzfn4+x44dq7Xe7du35U5lBQUF3Lhxg4MHD7J582bmzZuHqamp/BygT58+eHl5aZWuJjXv46req1JVD87OznTu3JkLFy7Iy9LT0+URLrOysiguLqZZs2b861//YuXKlaSkpCilm5mZyZ9//glUlnPVj8I//fRTYmNjKSsrw9zcHKh9z1X1/6p/1T2/qIrjfvLQ5tmUJEm16kFHR6feeT2uOFVtZ2xszMqVKykvL2fWrFny+yYmJri7u8sjfNY3TnVUxZWXl8euXbv4z3/+g46ODgqFgqCgIJXrVrV3NfNSdcxUve7ZsyfLly/no48+4u+//5bXqV4P1ddXdU5Uvafq3ITKzwVVadXVTqlSPQ91bUZ92qvq+1YfqtqEutavoq7dfpA8qu+Hv78/nTt3Vjom5s6dS1xcnMY2WJX61FHNWKvHVL3e1dWPumOmejqdOnViwoQJ3L17l3Xr1uHj46Mybk2xgOprIKD2HGvfvj3u7u6EhoYCkJubS1JSkjxCcV1cXFxwdHRkzZo1HDx4EECrNCVJ4vTp01odL9qmKQjCs6m8vJyQkBAKCwvx9vYWnYcFQRAEoQGJEYgFQRAE4SmSlJTEpk2bcHd35+zZs6xZswaAmJgY0tLSyMjIwMbGhsWLFzNixAi2b99O165d+eOPP+R1AaZPn87hw4cxMTEBIDs7m+bNm3P9+nW8vb354osvGDRoEJcuXcLW1pYJEybQu3dv/vrrLwoLC8nLy8PQ0JCEhAR51L0lS5bwyiuvUF5eTrNmzUhJSeHkyZO8+eab8sjEt2/fJiMjg7CwMKWRbJKTkwGIj4+nVatW3Lp1C6jsDNusWTMSEhLIy8ujoqKCjIwM7t27R2pqqto41Tly5Agff/yx3Am3vLwcT09Ptm7dyuDBg/npp584ePAgNjY23Lhxgx9++KHO7RwdHeX0LS0tady4sdJ71anLQ1dXt17pVAkJCSEpKQmFQiGPvPHuu+9y6NAhfv31V6ysrDh79iyrV69W2k5dPWhKd+TIkeTk5DBhwgSys7OZOXMmlpaWQO3jR1N5aYqvZjqa4tFUX4IgCPejPtdSTcuWL1/OwIEDcXV1pXnz5kyfPh0zMzNOnjxJYmIiAwYMwN3dnS5dutRq95ycnNi4caM82s7Fixc5efIkBgYGau8BQP39QXx8PEVFRdy6dQtPT08A/v3vfzN//nytR+/JyMggLy+PmJgYOnbsSFJSEsnJyRQVFREcHExaWhru7u5s3LgRb29v+vXrp/b6vGbNmlpl8KS6ceMGBQUFhIaGUlZWpjQSmLp6cnNzUypvVXVe33sXQRAE4Z/JxMQEExMTWrVqRUlJCVlZWfJnuKqRi21sbLC2tlY580HVCIFPsu+++w57e3sCAgKYNWsW7dq1o6ioiJSUFMLCwpAkCUdHR3bs2MG//vUvli9fTmBgIBMnTpSnoe/YsSNeXl5KP47+97//ze3btzly5AgKhYLIyEiSkpIoKyvD1NQUPT09fH196dGjB3Z2dnz55Zds2LABNzc3fv75Z8zMzLh48SKfffYZLVq0oEWLFrz++uv4+PjQo0cPmjRpwt69e2ulXXWv0LlzZ3n2gS5duuDk5MQ333xDTk4OL7zwAu+++y4dO3YkJiZGnomnoqKCuXPnsnnzZgwMDFSO0qguXYVCQUJCgpx/XFwcAJGRkfTu3ZuEhATS0tKQJInk5GRSUlKU4lVVDwCbN2/ms88+w8zMjLCwMN555x35fnLUqFF4eXmxatUqFi1aRNOmTenduzfvvvsuzs7OpKSkYGpqyuTJkyktLeXChQsYGBgwcOBA3N3dGTRoENOmTQMqOyYnJCRgYmJCcXExhoaGBAUFAZU/RG7RogWhoaHk5+cTExND27Zt5TKpiuPLL7+sVx76+vpq06zqaFeVf5s2bZRG/67v/hgbGz+WOMvKyggODiY3N5djx45hbm5Ofn4+Z8+e5dKlS8yZM4c///yTt99+m/fee4+goCBiYmI4duzYfe0jVD7by87OJiEhgW7duqk874uLixkyZAgKhYLjx48DlR05VXWGr6iokPfxypUr8o/Yo6OjKSgoIDg4mNLSUnR1dQkLC6OoqIjIyEjc3d2ZOXMm58+fZ/jw4Rw/fhwvLy+5HhYvXkxGRgaRkZEAREREUFRURHZ2NpaWlkrnibpzs2fPnqxfv56KigpGjhyptp2q2aZV1VH1PNSd2xUVFSrbq3Xr1tVqe6rvm7r8VNWNqjZBUz2qay80bXf79m1SU1O1yqNqP5YsWcJ//vMf/vWvfynl36xZM2xtbVm6dCl9+/bF3Nxcq/bPwcFBbR2Vl5dz+/Zt+UcQ0dHR3L17l/z8fJo2barU3lWv91dffVVl/SxdulTlMVM9nfnz51NSUkLr1q35/fffGThwID169KhXLKD6GljXObZhwwZWrFjBnDlz2LZtG9u3b1fqoKep/m/evMn06dNZuXIlbm5u8vt1pXn58mU6duxIo0aNqEldfnWlKQjCs6e0tJSQkBAqKirw9vZ+qmYsEwRBEIRngY5U36H+BEEQBEG4bxkZGURERChNB6itM2fOMGnSJK5du0ZCQgIeHh7o6upSVFTElStXgMqp2aoeqEuSxM2bNykvL8fV1bXW1G55eXlKD95iYmJwcXGRHy4XFBQQFRWFs7MzVlZWQOXUcZIk0bRpU8zNzUlMTASgS5cumJiYUFhYSHR0NG3btiU/Px8HBwc5/Xv37hEYGCi/NjMzw9vbG4VCQUBAgDxacffu3bl8+TKSJGFkZISTkxOxsbFA5fRymZmZFBYWoqenR48ePSguLq4VpzpXrlyhqKhI6T1XV1fs7e3l13FxcRQWFuLp6SmXhTbbQeWXKJmZmXh4eGiMQ1Ue9U3nxo0bpKamApVfEld/yFr1RWZ5eTkeHh5KnZ7U1UNd6d67d4/IyEjMzMxo1apVrbirHz91lZem+Goeh5r2U5uy1Ia/vz8eHh7Y2Njc1/aCIDw5HuQ66+/vD2h/LdW0rKSkhIiICFq1aiX/2CI3N5ebN2+iUCjo3Lmz3GbVbPeio6NxcHDAxMSE8PBwPD09OXfunMp7AFB/fwBw4cIFedQuHx8fjI2NCQ8PJyAggAkTJmhVLlevXqWgoACoHAkoLCwMqJxiOCsrCyMjI3x8fIiPjychIQGAHj16UFpaWuv6rK4MBOFReJD2QBAE4Ul17949srOzycrKIjs7Gx0dHczMzLCyssLGxob09HSmTJnCggUL6NSp0yON5UHa2eeff56JEyfSuXNnmjVrJt8rREREkJGRAUDr1q1p3rw5UDki540bN2jTpo08AmqV3NxczMzM5Nc5OTmUlpbSrFkzEhMT5R8o29ra4ubmRkFBAcnJybRr146UlBR0dHTkz6qpqamkpqbi7u5eq9NCbGwsRUVFdOjQAR0dHZVpV1f1Q+gOHTrI7925c4ekpCRcXFyU9kOhUJCYmEh8fHydn01rphsXFyf/sNvNzY3Y2FjKy8vR0dHB3d2diIgIoPIet+q+0MHBgbZt26qthyolJSVERkbi5OSkFFNqaiomJiZKz5QqKiqIiYlBR0cHV1dXpXvdqs5wLVq0wNnZmaysrFrPmQAsLCwwNTWV7ylrxg3/e/5UPY60tLR65dGkSRP5eVbNNKvf08L/RtysUt/98fLyeuxx1mRnZ0e7du1ISEhAR0eHtLQ0jIyM8PDwQE9P7772sbi4mKtXr1JRUSEfA3Z2drXyrmo3qmvUqBE9evSotW5CQgLx8fHy686dO9OoUSOl2agcHBzQ19eXzwH43+eevLw8rl+/DkCfPn3kekhNTeXOnTtA5ei/VaOcWlpaYmZmJndCdXBwoE2bNirPTUmSiIqKol27dvJnL1XtlKo27fbt20p5VHUMV9VmqGqvysvLa7U9VfuWlJRUKz91daMqDk31qKm9ULddSkoKMTExABgaGtK9e3eNeVTtR0ZGhjxLS69evdDXrxwLKzg4WB5h3tbWFkNDQ63av1atWtGyZUuVdVT9OPPw8JC3sba2xtPTU6m9q1nvqurH1tZW5TFTPZ09e/ZQWlrK3bt3KSwsJCQkhAULFmBhYaF1LFVqXgO1OceqOts7OzvLzys01SPAoUOHyM/Px9fXV2VHXnVpQmUnYUmScHJyUnq/rnZDU5raqiqLup7VC4LweJWUlBAcHIyenh5eXl4qf3Ag/I/4PktoaP/9738ZN24cRkZGvPPOO0DlzD9Hjx5l79699OzZ87HE1bVrV1auXPnMz1Ig7meEBhIuOhALgiAIQgN6kC/YTp8+zaRJk+TOtIIgPBzigYsgPDue1Q6Dmu4BtL0/KC4uxsjIiM8++4x58+bJnQ+ioqKYP3++ym0mTZrEiy+++OA7IAiPwbPaHgiCIFQpKysjMzOTzMxMcnJyMDIykqc2lyQJU1NTOnbsWOvHxA/Lg7SzvXv3ZtKkSfKXj8LjIepBEARtifbi4fj777/ZvHkz3377rfxeTEwM6enp9OrV6zFG9mwSHW4E4clXVFRESEgIBgYGeHl5KQ02I6j2tHyfFRgYSKdOnUSH8GfEa6+9hpGREYcOHZLfu379OgUFBfJgLI9azWMqMDCQDh06yN9zPKvE/YzQQML1H3cEgiAIgiBo56effiIxMVEejVAQBEEQhGdfYWGh2nsATctqGjJkCFevXmXt2rVKD9Xc3NyUHvwJgiAIgvB0MDAwwN7eHnt7ewoKCrh69arS8vz8fJKTk+VRfJ8UgYGBREVFERAQwNChQ8WU5I+JqAdBELQl2ouHp2nTppw9e5Zhw4bh4uJCbm4ur776Km+88cbjDk0QBKHBFRUVERwcjKGhIV5eXvKI88LTLzExkbfeeovIyEjRgfgZoer8tLe3VznryKOg6pjq3r07YrxUQXh4Hs3wA4IgCIIgPHRbt27l3r17ovOwIAiCIPyDmJiYqL0H0LSspjNnzpCTk8PYsWMfYbSCIAiCIDwORUVFKt/Py8tr4Ejq1r17dzIzM9m8ebPohPYYiXoQBEFbor14eNq1a0d8fDxHjhxh1apV7NixQ3QeFgThHyk/P5+goCCMjY3p2LGj6DzcAPbv30+nTp3YsmULffv2pUWLFhw9ehSAAwcO0LVrV/bs2YOLiwu//vorBw4cYN26dWzYsIE333yTmJgYjh07hr6+PqtWrQLg5s2bdO7cmTt37vDiiy+yZ88eAC5evEhiYiKbNm0iPDycnTt3oqOjw7Zt2wC4ffs23bp1IyMjQ2NcAIcOHeLLL7/klVdekfN9Gj3q8le1PsDx48fp2LEj33//PaNGjaJly5ZER0fLcakr3+r1qUpMTIy8/Pr16zg7OzN06FBSUlLw9PTk8OHDGtM/evQomzZtYsWKFXzwwQcUFxeza9cudHR0yM3NJTw8nE6dOjF79myg9jEVEBBA37592bt3r5zm/ZaBIAiVxJVYEARBEARBEARBEARBEARBEJ5ShoaGtd7T0dFR+b4gCIIgCIIgCMLjkpubS2hoKGZmZnh6eqKrK8Y8bAivv/4677zzDi1atMDPz4/Nmzfz3nvvkZSUxLBhwxg9ejSmpqb4+/sTEhLCvHnzCA0NBcDU1JShQ4cSFhbGqFGjSEtLA6CiooKPP/4YOzs7PvnkE9q3bw/Ayy+/DMCUKVMwMTHB09OT/fv3c/fuXQDu3bvHO++8g42Njca4QkJCCA8PZ+HChYwbNw5HR0cGDRqEh4fHYyjBB/Moyz8+Pp4vv/xS5fqDBg3izTffxNjYmAMHDjB+/HgOHDjAwoULuXTpktryrV6fVUJCQpg9ezaSJBEVFUXXrl0BeO6559i3bx/Dhw9n37597Nq1Cx8fH7XpFxYWsm/fPn788UckSWLo0KEkJCQwfPhw3n//fQA8PT3p2bOnnHfNYwoqj6OqEYgDAwPvqwwEQfgfcTUWBEEQBEEQBEEQBEEQBEEQhKeUqakpZmZm6OjoAMhfwjs6Oj7OsARBEARBEARBEGQ5OTmEhoZibm4uOg83MGNjYwC8vb0BmDBhAoWFhURFRcnLOnXqhKOjI35+fnLnUIDhw4cTFRVFZGQkn3zyCbt27aKkpIRffvmFN998E4AhQ4bQqlUrtfnPnj2bjRs3UlZWxs8//8yoUaPqjOuXX34hKSmJdevW8eOPP7JmzZqndrTqR1n+hw8fVrt+1Q+LXV1dAXB2dubmzZsAGstXVX16eXmxcuVKVq1axbFjx+Q0AXr16sXIkSM5ceIEPj4+GtP/8ccf6d+/P1D5w+djx47h5uYmP8+oUvN1TUZGRvL/77cMBEH4n6ezdRUEQRAEQRAEQRAEQRAEQRAEAR0dHby8vIiLi+OHH36gf//+eHt7y19ECoIgCIIgCIIgPE7Z2dmEh4djbW2tsrOg0LB0dXUxNDTExsZG5fKUlBT5/6ampujr69O4cWPat2+Ph4cHe/fuRVdXV6kTpyavvPIK5ubm/PDDD+Tn52NtbV1nXJmZmXh6ejJjxgx5eWFhYT328sn1sMtf3fqaPEj56ujoMGrUKG7fvk2LFi0AMDExITIykt9++40hQ4aoTf/u3btK8QKUlpZqla8m91MGgiD8j/hJjyAIgiAIgiAIgiAIgiAIgiA8xXR1dbG0tGTevHkUFBSIzsOCIAiCIAiCIDwRsrKyCA8Px9bWFnd3d9F5+DEqLi4G4K+//sLb21vu/AmgUCgA8PX15cKFC2RnZwMQGRlJ165dcXZ2BmDGjBnMmjWLN954Q9725MmTJCYmApWj7erp6XH37l3KysqAyg6nc+bMYc6cOXTr1k2ruHr16sXKlSsJCgpCoVBw4sSJp37k2EdR/nWtL0mSnEdFRYX8WlP5Vq9PgPLycqV0AHJzc/nqq68A2L17N0OHDmX9+vVMnjyZvLw8tem/+OKLbNy4kYsXL1JaWsr+/fuJjY3F2NiYJk2akJiYSGlpKZGRkXJ5qTqmFAqFHNP9loEgCP8jOhALgiAIgqBSVFQUeXl5da6Xnp7+yNIWBEEQBEF4kkRERBAdHa1y2a1bt4iNjb2vdCVJIjIyst5p5uTk4O/vr/QXGhp6X3FFR0cTHBxMRUVFveMQBEEQngxVX4KJqYAFQRAEQRAEQXgSpKenEx4ejp2dHa6uro87nH+8LVu2sGHDBn788Ud++OEHAL777jsAvv32W/Lz8+natSu7d+/m008/Ze/evRw6dIiffvpJ7vg9bNgw3n77bVxcXOR0V6xYwenTpwFo3Lgxo0aNYvz48QQHB8vrjB49Gmtra1599VWt4ho7diy+vr7069cPDw8PcnJy8PLyejQF00AeRflrWv/06dPk5uZy9OhR0tPTOXPmDNevX+f27dsay7d6fZ4+fZq///6bixcvMn/+fBYvXsy0adPw8vLCycmJU6dOsXv3bjp37szAgQORJInRo0fz6quvqkz///7v/5g0aRLDhw/H09OTJk2a4OHhQaNGjZg/fz7Dhw9n4sSJdOnShaysLFJSUmodU9euXSMmJobff/+d9PT0+y4DQRD+R0cSXesFQRAEocFkZGQQERFBnz59HncoGn377bd88MEHhIWF4enpqXKd/Px8pkyZQkxMDJcuXXqoaT/Jdu7cyeTJk0lNTcXKyupxhyM8BP7+/nh4eKidKkgQhKfH03KdFZ4+RUVFTJkyhbKyMk6fPs2wYcPYunWrvHzKlCl07doVW1tbdu/ezXfffYehoaHW6a9Zs4aAgAAOHTpUrzQXLVrEzz//LN+T3LlzhyFDhrBy5Uqt0yguLua9995jzJgxVFRUsH79eg4fPoyZmdlD2bfHRbQHgiD8E2VmZmJjY8OZM2fo37//I81LtLPPpvj4eDw9PXn55ZeZMGECCQkJ/Pjjj7Rv356lS5fK9weCIAiC8KSLiIgAwMPD4zFHIgj/XKmpqdy4cYPmzZvTunXrxx3OM+F+v8+qqKhAX1+fpKQkHB0dH1F0mhUUFLBq1SoWLlz4RMXVEP4p+yk8fOJ+Rmgg4WIoAkEQBEEQann//fdp3LixxnWaNm2q8leiDyPtJ9no0aPl6VEe1M6dO+XpVxpiO0EQBEEQ7s+pU6dYs2YN+/bt48SJE+zZs0ce5fH3338nISGBsWPH8uqrr2Jra8u6deu0Tjs8PJwzZ84ovadtmu7u7oSEhHDu3DnOnTvHgAED5OnrtE3j8OHDGBgY8NprrzFs2DBatmzJ2bNnH8q+CYIgCA1LTAWs2saNGx93CE+NVq1aYWNjQ5cuXRg0aBCTJ0/mzJkz3L59G29vb/Lz8zVuL8paEARBEARBAEhJSRGdh58gVd9rlpeXN3jecXFxXLx4keXLlzN27NgnJq6G9E/ZT0EQnl6iA7EgCIIgPEWSk5ORJImIiAgyMzOVlqWmpqJQKIiKigIqpy69efMm4eHh8lTUVVNbx8TEABAcHIy/vz9lZWXcvHlTKb2aU55KkkRYWBh37typtY5CoSA0NLTWF0lV7yclJWlMu6HduXOHa9eu1eqEm52dzb1794iJiaG0tFRet+rXfaAce1JSEjdu3KiVflxcHJGRkVSf6EGhUBASEkJOTg7l5eX88ccfTJ06FX9/f7lMVeUfHx+vlIeq7dTlKQiCIAjCwzFs2DDMzc0BMDY2ZsSIEXInrZ07d9KrVy953d69e7N7926t0i0tLeXw4cP4+voqva9tmm+99Zb8f4VCwaVLl+jevXu90nBycuLkyZPExMRQVlZGdHQ0PXv2fOB9EwRBEBpe1QjxJSUljzmSujXU840lS5awceNG/P39KSgokLeLjIwEIDQ0FH9/fzldTXGpe8bR0Punav0qiYmJAERF/T979xkW1bW/ffxLU0DEigqiYkME7CWxRiNqCtYYjdGYGHsaMZZYojlqLAn2WBJNLBF7iTV6jF2iPjHGjiioICAqIAKCSn1e8HeOBRDrAN6f6zrXcWbtvde91xDWsOc3a/sTERGRrfwPXg96sBDd1NSUpUuXEhUVxQ8//GDI/OA1onvH+u7PYEbbiYiIiEjeFhwcTEBAABUrVlTxcA4xbtw4SpUqhY+PD9evX3+hfW/fvp02bdpQpkwZnJycckyuF+llOU8Ryb1UQCwiIpJLfPbZZ9SvX5/BgwczduxYnJyc+OOPP7h16xYDBw7klVdeYcKECTRv3pzjx4/TvXt3wsPDOX36NA0aNCAgIICYmBiaNWuGra0tkH7L6r179xIXF0elSpU4duxYhn3/888/dOrUCQsLC/r06cOGDRsMbbGxsfTp04fPP/+ccuXKcejQISC9GHbYsGGcPXuWrl27Mnny5Oc/SNnw+eefs3fvXm7duoWHhwebNm0CYPHixdjb2zN9+nQ6derE2rVrGTduHAcOHCAwMJCKFSve94HXL7/8gre3N40bN2bLli2G57/77jsOHTrE5MmTad++PWlpaVy9epV+/fphaWnJkCFDOH/+PIUKFeL27dsUKlSIfPnyPdT/ggULaN68ObGxsSxZsoQhQ4YAPLRfZn2KiMjjGThwIGXLluW7777D3t6e48eP061bN3x9fVm1ahX169c3FHBERUVl2nbz5k2+/PJL9u/fzzfffMPbb78NwI4dO5gwYQInTpygQ4cOQPpcaWJiYph///nnH9555x3Onj1LmzZt2LBhg2GevzfbiRMnGDp0KGvWrKFJkyaGOTaj/eXZ+vfff/noo4/48MMPDc/5+flRokQJw+MSJUoQGBhItdXRUgAAIABJREFUamrqI483Z84c+vfv/1ChzpMc88CBA7zyyiuGY2X3GE2bNuW9996jfv36dOvWjdmzZ1OyZMmnPjcREXnxrKysgJxfQPyirm+kpqZiZWWFmZkZhQsXJl++fPj5+dGqVSvKly8PpK8AtXv3bpKSkjLNBY93jeN5nl9sbGyG26empjJy5Ejq1q3LtGnTmDp1KlWqVCE2NjbL/NevX8/yetBdNjY21KlTh4MHD2Z4jejBsTY1Nc3yWpKIiIiI5E1BQUEEBQVRuXJlHB0djR1H/s/48eMJDw9n5MiRFC1a9IX23a9fP6Kjo+nXr1+OyvUivSznKSK5lwqIRUREcok2bdqQmprKpEmTWLFiBYMGDWL48OFYWVnh6elJbGwsgwYN4vLly8ybN4+KFSvSuHFjOnfuzBtvvMGnn35K27ZtadCgARs3bgTA19cXLy8vihYtyoULF6hZs2aGfUdGRvL2229TpUoVmjVrZtgf4M6dO8yfP589e/bQoUMHvv76awBGjhxJhQoVsLOz480332TUqFGGVXWNZfXq1Rw/fpwuXbrQqFEjxo0bR48ePUhISKB79+4kJibStGlTjh07Rr58+QgJCaFjx460bduWTz755L7C3M6dOzNjxgx69+7N5s2bAVi5ciWhoaE4ODjQsWNHNm7ciK+vLwEBAfj5+WFvb8+kSZMoUKAAFStWBKB69eoULVr0of7feust6tSpQ/Xq1Wnfvj3r1q0DeGi/zPoUEZHHk925FGD06NGZtg0fPpz69evTpEkThg0bRv369UlLS+PQoUNcu3YNd3d3vv32W4CH5t+M5tuM5vm5c+dmOMdmNV/L44mNjSUqKoqoqCgSEhKA9OLwS5cuUbZsWd566y3DHQpiYmIMKz4CWFpakpyczJ07d7I85l9//YWzszPFixd/qP/sHvNeq1evpmPHjk90jA8//JDGjRuzYcMGVq1a9VQ5RETEeMzMzLCwsHjobjs5zYu6vmFqakr58uWxtramRo0a5MuXj759++Lo6Gj4O/6///2v4Qu/meWCx7vG8TzPL7P3oaamprzzzjvcuXOHzz//nHnz5uHk5MSuXbuyzP+o60H3cnR05MaNGxm+58xorPXeVEREROTlEhQURHBwMJUrV8bBwcHYcURERCSbVEAsIiKSS5ibm2NjY4OFhQWQXugUGBhoaCtSpAhWVlaYmJjg6+trKDQFaNKkiWFl4C+//JI5c+aQkpLCrVu3KFSoEIBh9Z2MvPHGG7i7u/PPP/8QExNz34dkdnZ2mJqmv6Xo0KEDp0+fBmDPnj1UrVqVwoUL8/bbb3Po0KGHVtd70R4cl0aNGhETE4O/vz9mZmYAODg4YGJiwo4dO6hfv75h20GDBmFvb294fHcVoJIlSxpWJt6zZw+VK1emcOHCODo6cuzYMdzd3WnYsCHly5encuXKbNmyJcNvXT/Yf9myZfnss8/Ys2cP4eHhmX4wmVmfIiLyeB5nLs2q7d75w8bGhm+//RYTExM+/vhj9u/fT506de4rvrx3/s1svn0wW2ZzbFbztTyesWPH0qlTJzp16sTSpUuB9Nezffv2rF69mqZNm7Jjxw4g/cs9cXFxhn1jYmIoU6aMYRXIjI65ePFifvrpJwoUKMDevXsNtxnfu3cvaWlp2T7mXWlpaezZs4fXXnvN8Fx2j3H27FlGjhzJxo0b2bFjBz/99BOLFi16rGOIiEjOYWVlleNXIDbm9Q0zMzMGDhzIlClTgPQVeO/+rZ9Vrse5xvE8zy+r7e8WkJubmwNQrFgxoqKiHpk/q/G614kTJ6hRo0a233PqvamIiIjIy+PixYtcunQJFxcXFQ+LiIjkMiogFhERyaViY2OpVKlShm3Fixfn7NmzhscWFhaGotWOHTsSFRXFt99+i6enZ7b6WrZsGb///jt169bN8tYqNjY2VK5c2fD45s2b1KhRgxo1alClShUiIyOz1d/z8uC4mJubY2ZmRunSpR/a1tzcnMOHD9/3XFhY2CP7uHLliuGca9SowY0bN7h+/To+Pj789NNPDB8+nF9//dWw/b2rGt8rMDCQ3r1706xZswwLju/dL6M+RUTk6WQ1l2bV9uD8ERsbS2xsLPny5ePgwYO89957tGzZ0rB67b2yO99CxnPs4+wvWZs8eTK7d+9m9+7d9OnT56H2atWqGd4/NGzY0FAUBOlzeEar+N17zG7dumFpaYmPjw8+Pj4cOnSI4OBgfHx8SElJyfYx7zp48CC1a9c2FAw9Tq4tW7bg6uqKiYkJTZo0YciQIezevfuxjiEiIjmHtbV1jl+B+EHP+/rGg393f/zxx5w7d4558+ZRr169bOd60mscz/L8str+UZ7mGs2pU6fw9/enZ8+eWb7nvHes9d5URERE5OUQGBhISEgIVapUoWTJksaOIyIiIo9JBcQiIiK5SHR0tGEVuHXr1jFkyBCAh24lPXDgQJYvX87NmzeB9NUQhw0bBqQXNn366afs2rWLWrVqAXD79m369OnDtWvXAEhNTSU5OZmkpCQANm3aRHBwMCEhIRw9epQbN24QHR0NcN8Hk1u2bDHclr1jx4707t2bdevWsWvXLmbMmEHJkiUfOvaL9PHHH+Pv78+JEycA2LVrFx988AElS5YkJSUFwDCO77//PgsXLuS7775j586dDB8+nPz585OcnAz877xv3bpFamoqkH7O06dPZ/r06Rw4cICJEydiZWXFX3/9xbFjx2jfvj1jxowhKCgIW1tbrK2tCQgIIDQ09KH+d+7cSUhICCEhIezdu5f4+HiuXbv20H6Z9SkiIo/ncebSrNq6d++Ol5cXixcvZsuWLUyePBlbW1sWLFhASkoKX3/9NW3btiU8PPyh+Tez+fbBbJnNsVnN1/J09u/fb3j/kJCQQHh4OG3btgXAy8uLnTt3GlZ7XLduHUOHDgXSi23Gjh370Ip7tra2zJ8/3/C/3r17U7duXebPn4+5ufljH3PNmjV07Njxvj6ye4xatWrx559/Ggp+IiIiaNKkySOPISIiOZOtrW2u+FLpi7q+YW9vT2hoKPHx8YSHhwPpRdZeXl6MHj3aMJ8/Kldm779e9PlltX1iYuJ9Bby3b982XGvILP+D4wXp1yXuXvsAOHLkCG3atGHs2LE0btw40/ecD4613puKiIiI5H2BgYFcvnwZFxcXFQ+LiIjkUmb/+c9//mPsECIiIi+LhIQEIiIicHJyeux9L168yPr16ylcuDAHDx6kRo0avPfeeyQkJBg+PCpYsCCurq44OztTrVo1Vq1aRVhYGJUqVeLdd981HKtq1apUrFjRsFpwYmIi69atw8PDg4IFC7J06VIiIiLIly8fNWvWpGrVqvj6+hIeHk6vXr3Yt28fzs7ONGzYkNjYWP766y/Onj1L06ZNad68OQCvvfYaqampbNiwgejoaLy8vChQoMBDx757S88XwdbW1nAr8rCwMGJiYvjmm28wNTVl+fLlXL9+ndTUVKpXr07FihWpV68eW7du5dy5c3z55ZeULl2adevWERUVhYWFBU5OTvz+++/cuXOHOnXqULduXVxcXNi8eTOnT5+mZ8+eVKhQgZs3b7J48WKioqLIly8fvXr1wsrKiiJFirBu3TqaN2/Oli1b7uvfxcWFCxcu8Ndff9GvXz+CgoJISkqibt269+1Xq1atDPuU7AsODsbOzo4CBQoYO4qIPKWnmWd/++23bM+lWbU1atQIKysrNm/ezJ07dxg2bBj58uUjNDSUpUuXEhcXR9WqVXn77bcfmn8rV6780Hzr6OjI/v3778uW2Ryb0f7Ozs6UKVPmWQ7zS+ns2bN4e3tz7do1YmJiGDJkiOE9jI2NDQ0bNmTVqlUcPnyYDh060KxZMyC9UHfWrFlUrVo1y5/La9eucfv2bcN+j3vMlStX8sUXX9y3AnF2j9G8eXMcHR1Zv349x44dw9HRkV69ej3yGDnd0/w+EBHJzVauXEnhwoV54403nms/ueX6RqlSpQgNDeXAgQO8/fbbmJmZAVCuXDmuX79Ou3btHpkLMr/G8aLPL6vtV6xYQUxMDOXKlePWrVvs27cPU1NTGjVqhIeHR4b57x0va2trli5dSkhICLGxsZw6dYo9e/Zw/vx5pkyZQps2bQAyfc9Zr169+8baxcVF701FRMRoIiIiALCzszNyEpG8KyAggPDwcFxdXfXf2guiz7P+Z/ny5YwfP56aNWs+9R1PtmzZwokTJ5gzZw6Ojo7PvBh+69atfPHFF6xcuRI/Pz927drFpk2bmDJlCnXq1KFEiRIP7XPgwAEmTZpEQkICbm5uzzSP5B56PyMvSIRJWmb3zRYREZFnLiIiAj8/P1577bXH3nfnzp3079+fgICA55BM5OW1d+9eXeASySOeZp4VeV4WLFhA586dsbGxyVHHfB65chL9PhCRl1X79u0NX959nnL79Y0VK1ZQpUoVw8q+zzJXTjg/ERGRl52fnx8Arq6uRk4ikvekpaVx7tw5rl69iqurK8WLFzd2pJeGPs/6n1u3bmFra8uxY8eeqsB2zpw5FClShK5du3Lw4EEiIyMNX558lt58802sra1Zu3at4bmNGzdSuHBhmjZtmuE+jRs3pmvXrnz66afPPI/kDno/Iy/IafNHbyMiIiI5QVxcnOEWlSIiIiKS80VFRdGsWbNnWqT7LI75PHKJiEjOYGdnR3BwsLFjZMmY1zfmzJnD7du3CQwMNKwu/Kxz6fqNiIiIiORVaWlpnD17loiICNzc3ChWrJixI8lLysrKCktLy6c+zq+//sqiRYsAaNCgwVMfLzOWlpaYmpre91zr1q1JTEzMdJ8iRYo8tzwiIvcyffQmIiIikhPs2rWLZs2asW7dOnQDAREREZGcr1ixYlSoUCHHHfN55BIRkZyhePHiREZGGjtGlox5fSM5OZl///2X0aNH3/d8VFTUM8ul6zciIiIikhfdWzzs7u6u4uFc5M8//2TYsGHs3r2b9957j5iYGLZv386iRYv47rvvWLZs2X3bZ9W2b98+FixYwKRJk9i/fz+Q/iXK5cuX4+Pjw8SJE4H0FYJ79OjBlStXAEhKSuK3335jzZo1jBo1iujoaFJSUti6dSvDhg1jx44ddO7cmcGDBxMfH59l272Sk5MZNGgQrVq14uTJk0D632ReXl6kpKRkOS4LFy7k7NmzLFq0CG9vb7p168Y777wDwMqVK2nevDlLly7l77//pkOHDobjb9iwgdGjR9OvXz9CQ0MzHYOsREREsHLlSgoWLMiGDRvYuHEj3377raGPjKxdu5bVq1czbtw4rl69CsDJkyeZMGECH330Eb6+vo/sV0QkI1qBWEREJJeYOXOmsSOIiIiIiIiISA5WvHhxIiIijB0jS8a8vvHFF19k+HyxYsWeWS5dvxERERGRvCYtLQ0/Pz+io6OpVq0ahQsXNnYkeQz+/v7MmTOH5s2b06xZMzZv3sz69etZvXo1ycnJtGjRgrCwMIYMGcKGDRvw8fHJsG379u3s3LmT77//nn/++YdWrVoRFRXFjBkzqFy5Ml27duXHH3809GtiYmL4UuX8+fM5fPgwCxcu5NSpU0ycOJEJEyZw7tw55s6dyyuvvMLYsWPp1q0b169fZ968eZm2LViwwNCHubk5X3zxBZUrV8bW1hZIL+Z9++23MTMzy3JcevbsyVdffUWPHj2oUaMGS5cuZfr06QB06dKFTZs2sWfPHi5fvszEiRNxcXFhw4YN3Lhxg7FjxzJ9+nQ8PT05duxYpmNwrxMnTjBkyBCSk5PZtm0bw4YNw8/Pj4EDB3LhwgVsbW3p1asXf//990P7+vr6smPHDubOncvu3buJjIwkMTGRX3/9lenTp3Ps2DEaNGjAxYsXKVWq1OP9gIjIS08rEIuIiIiIiIiIiIiI5AF2dnZERkZq5VsREREREXkm7i0ednd3V/FwLlS9enWKFClC69at6d+/PwsWLKB169ZAegFuv379mD17NpD+hcjM2iZNmsS7774LQN26dbl8+TImJia4ubkxZMgQfv/9d/r27QuAlZUVixcvxt7eHoAPPvgAb29vgoKCSEpKIjw8HHNzc9zd3SlRogQdOnTAxcWF0aNHs3HjxizbHlSuXDk6depk+DLn/v378fDweOxxsrS0vO/xjBkz2Lx5M7dv38bFxQWAadOmERYWxowZM4iJiaF8+fLcvHkzwzHI6HXw9vZm2rRpbN++HQAXFxf27NlDREQEMTExhIeHZ7hvxYoVWbFiBd7e3jRo0ABnZ2d+/fVXYmNjmTFjBnv27OGNN94gKCjosc9bREQrEIuIiIiIiIiIiIiI5AFlypTh9u3bXL16VasOiYiIiIjIU0lNTeX06dPExsZSvXp1wwqvkvuYmv5vfcnIyEhu3bpleFyuXDni4uIe2XbhwoX7VvW9W3DboUMHUlNTGTBgAK+++irLly/Hysrqvv7j4uKYPXs2AwcOpESJEly6dCnDnE5OTpmuHJxV2+DBg2nevDmDBg2iSJEi953vkypSpAj169fHx8eHIUOGYGlpycWLF+ncuTOVKlW6b9vsjMG9ypQpQ+fOnUlJSWHevHl07doVJyenTLe3t7dn3759fPjhhyxYsIAtW7Zw8eJFmjRpQu/evQH48ssvn/qcReTlpBWIRURERERERERERETygLsfYgYGBho5iYiIiIiI5GYqHs67mjZtyq5duwyPw8LCDCv2ZtVWrVo1Jk+eTGpqKgBbtmwhJiaGP//8k3feeYdz584RGhrKzp07AQgNDTUcZ8yYMdjY2FC8eHESExPvu2vOvf8+dOgQrVq1ylbbvWrXrk29evXo1KkTnTp1evxB+b++7u1v1qxZTJo0CQcHB8aMGQOAs7Mz3t7ehm18fX0JDQ3NdAzuSk1NfehOQVZWVqxZs4bDhw/j5ub20Ljcy9fXl8qVK/PPP//w2muvMWfOHJydnZkzZw7x8fEAXLp0iYMHDz7RuYvIy00FxCIiIiIiIiIiIiIieYCjoyNWVlacP3/e2FFERERERCSXSktLw8/Pz1A8XLBgQWNHkqcQEBDA1atXiYiIAGDs2LHExMQwb948jh49yp9//sm0adMe2TZp0iT27t2Ls7MzzZs3JzExkUKFCrFt2zYWLFjAjRs3qFq1KnXr1uX69euUKVOGY8eOAel/q86aNYvBgwdz5coVfH192bZtG5BeaDx79mx27drFrl27+P777w3ZM2sLCgoiISGBCxcuGLYdPnw4AFWqVMnWuERERBAbG0tAQIChr7CwMBISEjh48CBXr16latWqzJo1i8mTJ7N9+3bGjx/P2rVrqV69Oi1btuTy5cs4OjpmOAZ3xcbGEhgYSGBgoGE157vs7e3Zv38/ffv25eDBg0RERDBz5kxu3brFxYsXuXjxIgBRUVEMGTKEkJAQ7OzseOONN/jkk09ISUmhSpUqtG7dmrlz59KgQYNsnbuIyL1M0jL7+oKIiIg8cxEREfj5+fHaa68ZO4rkMlu3bqVnz55YWlrSvXt3AOLj49m4cSNLliyhYcOGRslVr149vL29adasmVH6fxb27t2Lq6srdnZ2xo4iIk8pr82zYWFhvPrqq5w5cwYbGxtjx3mppKamMmrUKH755Rfy5cvHt99+a7gVHMCSJUsIDAw0rJgxaNCgp26D9JU4HB0d6dmzp1H6z0vy2u8DEZHH4e7uTseOHRk7duxz60O/Z0VERCQn8/PzA8DV1dXISURyn7S0NE6fPk1MTIyKh3OYJ/08a+/evQCYmprSpEkTIP11Pn/+PMnJyTg7O2Nq+r/1J7Nqu337Nn5+fjg5OVG0aFEAYmJiOH/+PKmpqdSpUwcTExMgvXC5UqVKhsdnz57FwcGBAgUKcPr0adzc3Ni9ezf9+/fn33//JTg4GFdXV0N/O3fuzLRt//79hpWQ69evj5WVFadPn+bAgQP06dMnW+Ny5MgRbt68CaT/HX3q1CkAihcvTlRUFJaWltSvX5+goCCCg4MBaNCgAYmJifj7+1O+fHmKFSuW5RiIPA29n5EX5LS5sROIiIhIzrRv3z6aNm1q7Bjyf958803q1auHpaUl3333neH5Hj16GP64fREOHTpE7dq1yZcvHwA//vgj1apVe2H9i4jkdffOv/b29ixevFjFw0awaNEi6tSpw9ChQ1m+fDn9+vXj1Vdfxd3dnbNnzzJ37lwOHDgAQOfOnVm1ahWdO3d+4ra71q1bx65du4zWv4iI5A2VKlUiMDDwhfR194NoERERkZxGC0aIPD4VD+dNGX3x08TEhEqVKmW4fVZtlpaW1K5d+77nChUq9NBzAJUrV77v8b0rA9/9bDEtLY20tDQKFiyIu7v7fdtn1Xa3EBrg1q1bpKWl4ePjwzfffGN43t/fn1GjRmV4Hv3796dFixb3PZfZF2SdnJxwcnIyPM6XL999KwxD5mMgIpIbqIBYREREHrJjxw5GjRrFwYMHjR1F7mFu/vBbN3t7e0qVKvVC+g8JCaFz586cOXPGUED86quvohtaiIg8Gw/Ov6amprz++utGTvVyqlChgmF1/f79+zNnzhzOnTuHu7s73t7e970ub7zxBj/++COdO3d+4jaAkydP4uDgQLFixYzSv4iI5B0VK1Zk//79z7UPW1tbrYAjIiIiOVr+/PmNHUEkV1HxsLxo8fHxrFmzhpCQEMOKxNlpe5CnpydHjhxh+vTpFChQwPC8i4sLq1evfq7nICKSF6iAWEREJJcYO3Ysu3btonXr1qxYsQILCwuWLVtGmTJlmD59Otu2baNLly6MGzeOv//+myVLluDg4MDFixe5cuUKkydP5rvvvuOHH37g8OHD1K1bl5UrV7J69WrmzJlD3bp12b59O87Ozqxdu5awsDBmzJhB9+7dGTx4MMuWLePw4cNUr16djRs38ttvv7F48WKmTJmSYS5nZ2dSUlKYMWMGN27cYO/evYwaNQoPDw+jjeHSpUuZMmUKffr0YeXKlVy4cIFZs2bRtm1bli9fztSpU/nss88YN24cU6ZMISEhgWvXrmFqasq+ffuYMGEC/v7+dOjQgUmTJjF48GDOnz9P586d2bJlC7t3735o+8qVK7NlyxZGjBjB119/zaZNmzhw4ADbt283fNN29erVBAQEsG/fPjw8PBg8eDAALVq0oEePHnz44YcZnk9AQADr1q3j66+/5ujRo3Ts2JFq1arx008/0bJlS7777js6dOiQ6fE3btxISEgIN2/e5Ny5c8yaNYsVK1bw8ccfc+PGDUJDQ/nggw9o0aIF3t7e+Pr6EhISwuzZs3n77beJiYlhxIgRfPzxx/To0QOA5cuXP9EYiIgY28SJE7M1lxYsWJDk5GR++OGHDNvS0tKYNWsW1tbWnDp1ilKlSvH1118TEBDA5s2bsbOzY8eOHSxatIjo6Ghq1KiR4fz70Ucf8fvvv/P999+zbds2ypUrx6xZs/jpp5/4/vvv8fHx4cSJE6xevZo1a9awbt06mjZtysyZM3Pc/Jsb3S3ehfQPT65evUqDBg2A9ELfevXqGdrLli3L0aNHn6oNuG81YGP0LyIieUfFihVZsGDBc+0jf/78WtVPRERERCSPUPGwGEOBAgX46aef+Omnnx6r7UE7d+58HvFERF4apsYOICIiItlTu3Ztjh07Ro8ePTh27BgVK1bks88+w8rKipo1a/Lvv//i6enJ7t278fHxISwsjI8++ogxY8aQmJjIV199xfjx43FycuLq1asA3Lx5E29vb+zs7BgzZgzlypXD1NQUDw8PSpYsiZeXF8WKFWPmzJlYWVmRkJAAwNWrVxk9ejQFChTINBfA5MmTqVmzJmPHjmXAgAF0797dqKvVtmvXjqNHj1K2bFn27NnDsGHD+PDDD4mPj6d9+/b8888/2NrasnfvXvLly8eECRPw8vLi888/x9PTk7Zt2/LWW2/RtWtXwximpKTw5ZdfEhQUlOH2KSkpvPXWWwQEBGBlZcXy5ctp2bIly5cvB+DgwYOcPn2aESNGsHDhQoYOHYqfnx8AAwcOfOh2OSdOnGDIkCEMHjyYgQMHcvv2bQBq1aqFj48Phw4dwsfHh4ULF9KhQ4dMj3/48GF8fHz49NNPGTp0KNeuXSM4OJgOHToY+nJzc6Nhw4aGx61atQLg008/NbTduXPH8JoeOnToicZARCQnyO5cCjB16tRM22bMmEFaWhq9evXiq6++4r///S9paWksWbIEa2trunfvzjvvvANA4cKFM51/CxUqRNeuXfH39zdkfPPNNzl9+jQ1atRg+fLluLq6MmLECEaNGoWvry9z5swhLi4ux82/ud1ff/1Ft27dsLe3B9JX5LexsTG029jYEB8fT3x8/BO3Afz++++0b9/eaP2LiEje4ezszI0bN4iIiDB2FBERERERyeFUPCwiIvJyUwGxiIhILmFlZYWdnR2lS5fGxMSETz75xHCLc2tra4oXL07ZsmVxcXFh/fr1vPLKK4Z9O3TowO+//465uTlffPEFc+fOBdILUMqXL4+JiQk9e/bEysoqw74LFixIv379mDp1KgBnz56levXqj8y1Zs0a/v77b2bMmMHVq1cZPnw4t27dem5j9Ch3z69mzZoA9OnTh/j4ePz9/Q1ttWvXpnTp0uzZs+e+Vfo6dOiAv78/Z86cYeDAgSxcuJDbt2+zbt063n33XX7//fdMtzcxMSF//vw4OzsDUL58ec6fPw/AunXrCA0NZcaMGaxatYpp06Zhbp5+kwhPT0+cnJzuO4fq1avj7e3N5MmT2bRpk+GYAI0aNaJLly788ccf1K9fP8vjr1q1ynAbcxMTEzZt2oSLiwsmJib39ffg4wdZWloa/v2kYyAikhNkdy4FWLt2baZtS5cuNXzhokyZMuzatQsTExPatWvHyJEj8fLyonHjxgCPnH8fvNXm3d+5jo6OAJQrV44yZcpgYmLyGQxVAAAgAElEQVSCjY0N5ubmRERE5Lj5NzdLSEhg4cKFfP/994bnypQpY/hSFaTfTq9YsWIUKFDgiduOHj2Kk5MTRYoUMUr/IiKSt9z9e/348eNGTiIiIiIiIjmZiodFRETE3NgBRERE5MncLdzNzOXLlw3/Llq0KNbW1gB8/PHH/Oc//2HdunX3FXs+yhdffEHlypU5cOAA5cuXz1auyMhIPDw8qFu3rqE9J61yZ2pqmuVtV+8dQ1tbW8zNzbG2tsbd3R1XV1eWLFmCqampoaArs+2zEhkZiZubG15eXobnsjtGJiYmdO3alUuXLlG2bFkg/ZY+Z86cYfPmzXh6emZ6/Ojo6PvyAiQmJmar36w8yRiIiORUmc2lWbXd/f3q4uICpF+ET05OpmbNmhw+fJhPP/2U2rVrc+jQIUqWLPlU+TL60kdaWlqOn39zi7S0NH788UcmT56MhYWF4flq1aoRFhZmeHz58mVcXV2fqm3VqlV07tzZaP2LiEjeUqJECRwcHDh69CgeHh7GjiMiIiIiIjmQiodFREQEtAKxiIhIrnL79m3DLch37txJt27dgPQ/8lNTUw3bde7c2bASIsDJkycN2xYqVIgePXrw7bff8uabbxr2X7p0Kbdv3wbSVxyOjo4GICkpCYDSpUvTtWtX3n//fbp06ZKtXI0aNcLLy4vIyEhu3brFwoULDcczprurMP7999/UrFnTUHwLGMaxU6dO7N+/n+vXrwNw5swZ6tWrZyie9vLyYvDgwXTs2DFb29976/iUlBTD40aNGuHt7c2xY8dITU3ljz/+MKzMu23bNkJCQgz7JScnP3QL+piYGH744QcAFi1aRNu2bZk5cyYDBgwgNjY20+O3aNGCWbNm4evrS2JiIkuXLiUwMBArKytsbGwICQkhMTGRM2fOGMbLysoKMzMzoqOjDa9jamqqIdOTjoGISE7wOHNpVm0tWrRg6NChBAcHExsby9SpU0lOTmbRokWUL1+eP/74g+rVq/P//t//e+T8e/f35IP/n1nme+eWnDj/5jYzZ86kZ8+eFClShJSUFFasWEFaWhpeXl78+eefhu22b99O7969AZ64bcOGDbRr185o/YuISN5Tq1Ytjh49auwYIiIiIiKSA6l4WERERO4y+89//vMfY4cQERF5WSQkJBAREYGTk9Nj73vx4kV+++03TExMOHLkCNevX2f06NEkJiYyY8YMdu3aZVgZ95VXXiE0NJStW7cSERHBlStXGDFiBObm6TcfqFixIgUKFKBhw4YA3Lhxgw4dOtC2bVvs7Oyws7NjyZIlnDp1irp16xouHFSqVAl/f3969uz5yFzm5uY0bNiQrVu3MnjwYLZt20avXr2yXL34eUtLS2Ps2LFYWFhw7tw5fH19mTp1Kra2tvz222+sX7+eggULGopenZ2dmTVrFnFxcfz1119MmjQJW1tbAKpUqUJoaCgffPABkF5gndn2O3bsYP78+Tg6OlKlShW+//57Lly4QJs2bWjSpAmXLl1i8ODBLF68mFdeecWwQlSfPn0oWLAgtWrVYseOHcyePZtLly4RExODr68va9as4csvv6RFixYkJCTw448/MnToUMqVK8ecOXP466+/GDhwIFFRUQ8d393dndjYWIYOHcqCBQvw9PSkSZMmmJmZYW5uztChQzlx4gTOzs6Eh4fTsGFDihYtSkBAACtWrMDNzY0rV64wa9YskpOTadq0Kc7Ozk80BoUKFTLazwRAcHAwdnZ2uoW7SB7wNPPs5MmTsz2XZtXWuHFj9u3bx+DBg9m5cydfffUV9vb2bN26ldWrV3Pr1i3MzMz48MMPuXnzZqbzb+3atdm2bRtr1qzB3t6eevXqsWDBAv78809q165NgQIFmDJlCoGBgbRq1YoDBw6wZMkSKlSogJeXF9u2bcsx829uNGLECL755hsmT57MmDFjGDt2LBUqVKBVq1aGlaO3b9/OkSNHsLKyMqz0/yRt//zzDydPnrzv/dWL7D+veprfByIiecGZM2fYuXMnn332mbGjiIiIiIhIDqLi4dxLn2eJvFwiIiIAsrwrtcgzEGGSpqXfREREXpiIiAj8/Px47bXXHnvfnTt30r9/fwICAp5DsuzZvXs3CQkJvP322zkqV3alpKRgbm5OaGgopUuXNnYcySH27t2Lq6ur/vgSyQOeZp4VkbxFvw9E5GW3ZcsW2rRpw5UrVyhRooSx44iIiIiISA6QmprK6dOniY2NVfFwLrR3714cHR0Nix2JSN4WGhpK/vz5cXV1NXYUydtOmxs7gYiIiGRPUlISycnJRun777//xtzcnFWrVjF79uwck+tx3b19e27JKyIiIiIiIvIkGjdujKmpKQcOHKB9+/bGjiMiIiIiIkaWlpaGn5+fiodzudDQUGNHEJEXSAtgyYugAmIREZFc4tdff+XOnTusXbuWjh07YmJi8sL6/vHHH9m9ezdr167F1NTU8HxUVJRRcz2ucePGUapUKXx8fBgwYABFixY1diQRERERERGRZ65QoUK4ubnh6+urAmIRERERkZdcWloaZ86c4caNGyoezsV0py0REXkeVEAsIiKSS6xevdpofS9ZsiTD54sVK2bUXI9r/PjxjB8/3tgxRERERERERJ67pk2bsm/fPmPHEBERERERI0pLS8Pf35/r169TrVo1bG1tjR1JREREchDTR28iIiIiIiIiIiIiIiK5yeuvv86RI0e4du2asaOIiIiIiIgR3C0ejoyMxN3dnUKFChk7koiIiOQwKiAWEREREREREREREcljPDw8MDc3Z8eOHcaOIiIiIiIiRnD27FkiIyOpVq0ahQsXNnYcERERyYFUQCwiIiIiIiIiIiIikscULFiQRo0asXXrVmNHERERERGRF+zcuXNERETg5uam4mERERHJlAqIRURERERERERERETyoDfffJNt27aRkpJi7CgiIiIiIvKCBAQEcOXKFVxdXSlatKix44iIiEgOpgJiERERERERkRxo3rx5rFy50tgx5DlLTk5mw4YNjB07Ntv79OnThwsXLjyzDElJSSxbtoxBgwaxYsWKh9pv377NqlWrmDBhwjPrU0REXoy2bdsSGRnJ3r17jR1FRERERERegICAAMLDw3Fzc6NYsWLGjiMiIiI5nLmxA4iIiLyM/Pz8jB1BREREcpiUlBSuXbuGvb09ACVLlqRgwYJGTpV3PDi+xhYaGoqjoyOmpqaEhISwevVqRo8ena19K1SogLW19TPLMnLkSF5//XW++uortmzZ8lC7ubk558+fZ9OmTYwYMeKZ9SsiIs9flSpVqFWrFitWrOD11183dhwREREREXmOAgMDCQ8Px9XVVcXDIiIiki1agVhEROQFyp8/P3Z2dsaOISL3sLOzI3/+/MaOISLCN998w7///mt43K5dOxX6PEMPjq8xhYSE0LdvXwBMTU2pXLnyY+0/fPhwSpUq9czybNu2jSJFilC6dGlDrnuZm5tToUKFZ9afiIi8WO+99x5r1qwhMTHR2FFEREREROQ5uXDhApcvX8bFxYXixYsbO46IiIjkElqBWERE5AWytbXF1dXV2DFERETkHpcvX2bZsmW4ubmxbds2atSoQadOnfDx8cHCwoKgoCA+/fRTHBwcAIiNjc20LS4ujpUrVwJw/fp1PvvsM6ytrdm7dy/R0dFcuHCBV199lYYNG7Jy5UoiIiL47LPPOHDgALNnzyYqKgpzc3Pq1KnDypUrSUpK4ssvvyQ0NJRly5ZRqVIlIiIi+PPPP+nduzeVKlViypQp3Lx5kxkzZlC0aFEiIyNZtGgRZ8+epWHDhvTs2fORY5BZ7szONbt5EhISWLp0Ke7u7uzfv5+AgAD69etHq1atshzLoKAgli5dSq1atTh27Bh///03o0ePpnbt2gAZnmNW+zw4vq1bt87wNblr06ZN/PHHHwwePJiJEydiYWHBtGnT+O2339i2bRudOnXi/fffB2D79u1cvnyZ0NBQKlSowPvvv09aWhrr169n37599OjRg++//54KFSowYcIEUlNTGTRoEKdOnWLGjBl89NFHhn53797N3LlzKVeuHJMmTcLMzIxbt27Rr18/fvjhB0qVKsWJEydYtmwZnp6eNG7cmKSkJJYvX461tTXHjx/nq6++onDhwpn2/6CZM2cSEhLC8uXLOXPmDB999BEbNmzgyJEjXL16lVGjRuHo6GjYftWqVaxcuZJatWoxbNgwzM3/d2kpu+OWUeZChQqxc+dOdu7cSevWrfn555/5+eefKVSo0KP/IxYRkSy99957DBs2jO3bt+Pp6WnsOCIiIiIi8oxdvHiR0NBQXFxcKFGihLHjiIiISC6iFYhFRERERETkpTd//nyWLl3KO++8Q/HixWnRogVNmzalT58+NGvWjPr163Pjxg1SUlKybOvUqRMdOnSgd+/e7N+/n59//pmkpCQGDhxI+/bt6d27N4GBgYZ+09LSAGjYsCHlypWjXbt2tG7dGktLS/7991+OHz8OQIkSJdi3bx9Lly6lXbt2fPzxx7z//vscP36cqVOnkpiYyNy5c0lOTsbLy4svv/ySH3/8keHDh7N+/foszz2z3Fmda3bzmJmZ8csvv+Dj40PPnj3x8PDA09OT8+fPZ3n8UqVKsXnzZpYuXUrfvn2pXr0648ePB8j0HLPa58Hxzeo1AShatCjz58/nwoULzJw5k1OnTtGtWzfatm3Lt99+S9++fblz5w4bNmxg/vz5fPTRRwwbNoyff/4Zb29vTExMMDU15ddffyUyMpKpU6cyf/58Tp48iampKV26dKFkyZJ4eXkZCmSjoqJISUlh+vTp+Pj4cOTIEUMeExMTw89KyZIlWbZsGVFRUYaf3d27d9OpUyfMzMyYOHFilv0/6IsvvsDGxoZ3333XUDx848YNxo4dS9WqVe8rNDt//jzW1tZ8/vnn/Prrr4wcOfKJxi2jzElJSfj7+zNnzhwSExNp1qwZZmZmWf7siohI9pQtW5YmTZqwYMECY0cREREREZFn7OLFi4SEhKh4WERERJ6ICohFRERERETkpebg4ICDg4OhmLVIkSKEh4fj7u4OQMuWLbG2tmb9+vUcOHAg07a//voLCwsLihUrBsC6devw8vLCwsKClJQUevXqxe3bt+nSpQsAXbp04fPPP88wk42NDWXLljU8zpcvH/b29lSvXp1SpUrRuHFjoqOjadasGVZWVtSsWZPAwEB8fX0JCQlh9uzZ/Pzzz7z55ptERkZmef6Z5c7qXLObx97enlKlSuHp6UmVKlUYMGAAbm5ubN26NcvjW1paUqpUKRo2bEjx4sXx8PDg8OHDAJmeY1b7PCiz1+QuJycnUlJSDJnq1auHg4MDpUqVokaNGiQlJXHlyhVmzpxJ69atATA3N6dfv37Mnj3bcIz8+fPTsmVLHBwcqFatWqZ5AIoVK4aHhwcODg7UqVPHsK2VlRWLFy/G3t4eSC8gvvtaAXzwwQd4e3sTFBREUlIS4eHhT9T/XdOmTSMsLIwZM2YQExND+fLluXnzJgAVKlTA09OTZs2aMWzYMMOq1Y87bhllzp8/P9WrV6dIkSK0bt2a/v37Y2Nj88i8IiKSPQMGDGDjxo0EBwcbO4qIiIiIiDwjwcHBXLp0iSpVqqh4WERERJ6I+aM3EREREREREcn7TE3Tv2MbGRnJrVu37msrV64ccXFxWbZduHDhvhVTLSwsDP/evXs3AwYMwNnZmRUrVvDGG288VdYHV2Y1NTUlOTmZixcvUrZsWby8vLJ9rMxyZ3Wu2c2TEScnJ8zMzB77+HdX4M3uOd67T0Ye5zUxMzMjKSnpofN78Bwyy5+dPPeysLDIdPweFBcXx+zZsxk4cCAlSpTg0qVLT9X/xYsX6dy5M5UqVXqozcTExPDvqlWrPvJ4mY1bVpnv/ncoIiLP1jvvvMOgQYP45ZdfGDdunLHjiIiIiIjIUwoNDSUoKIjKlStTsmRJY8cRERGRXEqfyoiIiIiIiIjco379+sTHx3P8+HHDc1euXKF58+ZZtlWrVo3//ve/hra4uDg2bdrEzZs3OXfuHCtXrmTOnDl88803AMTHx3Pjxg3DcSwsLO4rRk1LS8t2weldzs7ObNq0CX9/fwASExNZv359lvtkljurc31c957HkSNHeP311x/r+Pfun91zfHDs7h3fzF6Tx9W0aVN27dpleBwWFoaHh0eG296b51Gv9YPZQ0NDM80wZswYbGxsKF68OImJiZn+zDz4fGb9Ozs74+3tbWjz9fXNsP+wsDA8PT0fOlZ2ZDeziIg8OxYWFvTq1Yv58+eTmJho7DgiIiIiIvIUrly5wvnz56lQoQIODg7GjiMiIiK5mAqIRURERERE5KWWkJDA5cuXOXXqFGlpaZQuXZr58+czdOhQjh49yty5c+nXrx/u7u5ZttWpU4cBAwbw6quv0qRJE/r27cvrr79OSkoKw4YNw8/PDwsLCzp27AjA8OHD+eijjww5GjZsyMyZM1m5ciWQXqB5+fJlkpKSSE1NJTg4mKtXrwLpq8QCnDlzBsDQ1rBhQ9q1a0f9+vVp3bo1Xbt2pVWrVlmef2a5szrX7Oa5Wxj622+/sXPnTsaNG8fgwYOpUqVKlsdPTk7m0qVLXL58GYCzZ88SHR1NXFwcjRo1yvAcs9rnwfHN7DW568KFCwCGcwgODiYgIICUlBSuXLnCnTt3CA8PZ+zYscTExDBv3jyOHj3Kn3/+ybRp0wA4f/488fHxxMbGcufOHcMtJe+OeVBQEGPGjCE4OJigoCDCwsKIi4vjzp07nD9/3lC0e/36dcqUKcOxY8cyfP0cHR2ZNWsWgwcP5sqVK/j6+rJt27Ys+58/fz52dnacP3+euLg4oqOjDbe0Hz9+PGvXrqV69eq0bNmSy5cv4+joSNmyZQkNDWXLli3s2LGDQ4cOMWHChPuOld1xyyxzQEAAV69eJSIiIsufWREReTL9+vUjOjqaxYsXGzuKiIiIiIg8oatXr3L27FnKly9PmTJljB1HREREcjmTNC3zIiIiIiIiInlAREQEfn5+vPbaa4+1n5+fn6FgsUKFCoYL73FxcZw7d46KFStSuHDh+/bJqi04OJjY2FiqVasGQGpqKiEhIQQFBeHq6oqdnR0AN27cIDExkRIlSgDpq8D6+/tTpUoVQkNDDUW5Dg4OmJubG4o/XVxcCAwMJDk5GRMTE6pWrYqfnx8ATk5OlCtXjsDAQBISEqhWrRomJibZGocHc2d1rhcvXsx2nu7du9OvXz/q1KlDiRIlKFas2COPf7eoFsDV1dVwvOLFi+Pm5gbw0Dk+ap97xxfI8DW5a9++faSlpWFpaYmjoyOBgYEAlCtXjsjISOLj4zEzM6NBgwaYmppy/vx5kpOTcXZ2xtTU9L5jFCxYkMKFCxMSEgJA3bp1KVCgAOHh4Zibm2Nra8uhQ4cAKFq0KFZWVoSFhQFQu3ZtChYsSEBAAJUqVTK8ljVr1sTb25uWLVsC6cXSDg4OFChQgNOnT+Pm5oavr2+m/ZuamjJ79mxatmxJfHw8SUlJQPrqw/b29ty8eRN/f3/Kly9/3+t1584d/P39KVy4MOXKlQPSVx+ePXs2LVq0IC4uLtvjFhgYeF/m8uXLc+TIEQBMTU1p0qRJxj+o2fSkvw9ERPK6AQMG8McffxAQEEC+fPmMHUdERERERB5DREQEZ86coWzZsjg5ORk7joiIiOR+p1VALCIiIiIiInmCCgYzN3bsWE6ePPnQ80WLFuXnn39+rn03btyY/v3707179+faz8vE3d2dzZs3P/EHRTdu3GDz5s3P5DV5lsd6lvT7QEQkYyEhIVSuXJmZM2fSt29fY8cREREREZFsioyMxM/Pj9KlS1OxYkVjxxEREZG8QQXEIiIiIiIikjeoYDDnOXToEJ6ennTu3JlJkyZha2tr7Ei5VnR0NLVq1WLixIns3buXn3766YmPlZqaalgp+Wk9y2M9S/p9ICKSuU8++YQtW7Zw7tw58ufPb+w4IiIiIiLyCNHR0Zw6dQp7e3sqVapk7DgiIiKSd6iAWERERERERPIGFQyKyF36fSAikrnQ0FCqVKnCiBEjGDlypLHjiIiIiIhIFu4WD5coUYIqVaoYO46IiIjkLadz3hIxIiIiIiIiIiIiIiLyXDg6OvLNN98wfvx4Ll68aOw4IiIiIiKSidjYWE6fPk2xYsVwdnY2dhwRERHJg1RALCIiIiIiIiIiIiLyEhk0aBBOTk58+umnxo4iIiIiIiIZuHnzJidPnqRIkSJUrVoVExMTY0cSERGRPEgFxCIiIiIiIiIiIiIiL5F8+fIxe/Zstm3bxtq1a40dR0RERERE7hEfH8/x48extbVV8bCIiIg8VyogFhERERERERERERF5yTRv3pzevXvTp08fgoODjR1HRERERESAhIQEjh8/TsGCBXFzc8PUVGU9IiIi8vzonYaIiIiIiIiIiIiIyEto5syZlC1bls6dO5OYmGjsOCIiIiIiL7Xbt29z/PhxrK2tcXd3V/GwiIiIPHfmxg4gIiIiIiIi8ixFREQYO4KIGFlsbKyxI4iI5AqWlpYsX76cevXqMXLkSLy9vY0dSURERETkpZSYmMiJEyfIly+fiodFRETkhVEBsYiIiIiIiOQpfn5+xo4gIiIikmtUrVqV2bNn07NnT6pXr84HH3xg7EgiIiIiIi+VpKQkTpw4AUC1atUwN1cpj4iIiLwYJmlpaWnGDiEiIiIiIiIiIiIiIsYzdOhQpk+fzh9//IGHh4ex44iIiIiIvBRSUlI4fvw4iYmJ1KxZE0tLS2NHEhERkZfHaRUQi4iIiIiIiIiIiIi85NLS0vjggw/YtGkTvr6+VKtWzdiRRERERETytNTUVE6ePEl8fDw1a9bE2tra2JFERETk5aICYhERERERERERERERgdu3b+Ph4UFYWBgHDx6kVKlSxo4kIiIiIpInpaWlcfr0aWJiYqhRowY2NjbGjiQiIiIvn9Omxk4gIiIiIiIiIiIiIiLGZ2lpyYYNG8ifPz+enp7Ex8cbO5KIiIiISJ7k7+9PdHQ07u7uKh4WERERo1EBsYiIiIiIiIiIiIiIAFCsWDE2b97MpUuX6NKlC0lJScaOJCIiIiKSp5w7d46IiAjc3NwoVKiQseOIiIjIS0wFxCIiIiIiIiIiIiIiYlCpUiU2bdrEvn376NatGykpKcaOJCIiIiKSJ1y4cIErV65QtWpVihYtauw4IiIi8pJTAbGIiIiIiIiIiIiIiNznlVdeYdu2bfzxxx/07NmT1NRUY0cSEREREcnVgoODCQkJwcXFBTs7O2PHEREREcHc2AFERERERERERERERCTnadiwIevXr6dNmzZYWFjwyy+/YGJiYuxYIiIiIiK5zuXLlwkKCqJy5cqUKFHC2HFEREREAK1ALCIiIiIiIiIiIiIimfDw8GDFihUsWbKEgQMHGjuOiIiIiEiuc/XqVQICAqhQoQIODg7GjiMiIiJioBWIRURERERERERERETk/7N33+FRlfnfxz9TMjNJJiEJCYQWQJoJEHoTUFFXsQKuuqhYUBdFseyuZYuF9fnt2guIDRWwY12xixRFUEQ0EBJCi3QCIUB6pmTmPH8MGRISUiAwBN6v65orM2fuc5/vOZlzCMlnvnNIo0aN0htvvKFx48bJ6XTq//7v/0JdEgAAANAk5OXlae3atUpKSlK7du1CXQ4AAEAVBIgBAAAAAAAAAECtxo4dK7fbrRtvvFFlZWV68sknZTKZQl0WAAAAcNzat2+fsrKy1KpVK3Xs2DHU5QAAAFRDgBgAAAAAAAAAANTpuuuuk8Ph0DXXXKPi4mK9+OKLMpvNoS4LAAAAOO4UFhYqMzNTCQkJ6tKlS6jLAQAAqBEBYgAAAAAAAAAAUC9/+tOf5HQ6ddlll6moqEivv/66wsLCQl0WAAAAcNwoKSnRqlWrFBMTo27duoW6HAAAgEOiNQAAAAAAAAAAAKi3Cy+8UF999ZU+//xz/fGPf5TL5Qp1SQAAAMBxoaysTOnp6XI6nUpJSZHJZAp1SQAAAIdEgBgAAAAAAAAAADTImWeeqS+//FKLFi3S6NGjVVJSEuqSAAAAgJByu91KT0+Xw+FQjx49ZDYTyQEAAMc3floBAAAAAAAAAAANNmzYMM2fP19paWk644wztHPnzlCXBAAAAISE1+tVenq6LBaLevbsKYvFEuqSAAAA6kSAGAAAAAAAAAAAHJZ+/fpp6dKlKikpUf/+/bVy5cpQlwQAAAAcU+Xl5UpPT5dhGEpNTZXVag11SQAAAPVCgBgAAAAAAAAAABy2jh07asmSJerUqZPOPPNMLVy4MNQlAQAAAMeE3+9XRkaGvF6vUlNTZbPZQl0SAABAvREgBgAAAAAAAAAARyQuLk5z587V+eefr5EjR+qtt94KdUkAAADAUWUYhjIzM1VaWqrU1FQ5HI5QlwQAANAgfG4CAAAAAAAAAAA4Yna7XW+99ZbatGmja6+9VtnZ2XrwwQdlMplCXRoAAADQqAzDUFZWlgoLC9WrVy9FRESEuiQAAIAGMxmGYYS6CAAAAAAAAAAAcOJ46aWXdMcdd+iiiy7S66+/rqioqFCXBAAAADSaNWvWKC8vT6mpqYqOjg51OQAAAIcjkwAxAAAAAAAAAABodEuWLNFll12m6OhoffLJJ0pOTg51SQAAAMARy87O1vbt29WjRw/FxcWFuhwAAIDDlWkOdQUAAAAAAAAAAODEM3ToUC1fvlyxsbEaPHiw5syZE+qSAAAAgCOydetWbdu2Td26dSM8DAAAmjwCxAAAAAAAAAAA4Kho06aNvv/+e1122WUaM2aM/v73v4sPRgQAAEBTtGvXLv3+++/q1KmTWrZsGepyAAAAjpjJ4Dd1AAAAAAAAAADgKJs+fbomTZqk888/XzNnzqRjGwAAAIdFk38AACAASURBVJqMPXv2KDMzU0lJSerQoUOoywEAAGgMmXQgBgAAAAAAAAAAR92ECRO0ePFipaenq3fv3lqyZEmoSwIAAADqVFhYqKysLCUmJhIeBgAAJxQCxAAAAAAAAAAA4JgYOHCgli9frtTUVJ155pmaPHmy/H5/qMsCAAAAalRSUqJVq1YpJiZGXbp0CXU5AAAAjcpkGIYR6iIAAAAAAAAAAMDJwzAMTZ06Vffee6+GDx+ut956S4mJiSGrZ/Xq1br33nv1xRdf6Pbbb5fT6dSePXtks9n0wAMPqEWLFoc171/+8hfFx8frX//612HX5nK59Mwzz2ju3LlauHCh0tPTddttt2np0qW6++67ZbVa5Xa79dNPP+n888/XP//5z8PeFgAAAA5wu91KS0tTeHi4evbsKbP5yHr0ffjhh3I6nRo5cmSjjAMAADhCmQSIAQAAAAAAAABASCxdulRjx45VeXm5Zs2apXPOOSdktcyYMUMTJkxQeXl5cNnUqVP10EMP6eOPP9aIESMaPOe6devkcDiUlJR0RLUtWLBA1113nbZu3SpJeuqpp/Too49q9+7dwTFer1evvPKKbr311iPaFgAAAAI/W61YsUImk0m9e/eW1Wpt8BwlJSUqKChQ69atJUm5ubmyWq2Ki4urdb2Dxx08DwAAQCPJPLK3RwEAAAAAAAAAABymwYMHKy0tTYMHD9a5556rO++8U2VlZSGpxWKxyGQyVVl2xx13aMyYMbrxxhvl8XgaPGfXrl3Vrl27I67NbrdXeVxTgGXPnj2EhwEAABqBz+fTqlWr5Pf7lZqaeljh4fLycs2cOVN79+4NLmvRooViY2PrXLfyuJrmAQAAaCwN/ykHAAAAAAAAAACgkcTGxurDDz/UBx98oFtuuUVz587Vm2++qf79+x9ynaysLA0YMEB33XWX/va3v+mKK65QXl6ePv30U8XHx2vUqFF65JFH9Ouvv8putysnJ0e5ubl6+umnJUnPPvusOnTooPT0dKWkpOiyyy475LYuvfRSzZw5UxkZGerbt69+/vlnLVy4UJmZmTKbzZo+fbrS09P173//W2eccYbmzJmjwYMHa9KkSXrooYcUERGhO++8U+edd5769eun2bNnq6ysTBdffLEef/xxmUymavPZ7XZlZWXp7bffVps2bbRs2bJaj2FOTo6mTZum0aNHV6vjqquu0meffabWrVtr/vz5Gj9+vM477zxlZ2frnnvuUUpKisLCwvTRRx9p7Nix6tu3r2bPnq3vv/9eX375pZKTkw/vGwsAANAEGYah1atXy+VyqU+fPrLZbMHnFi9eLKvVqoKCAhUVFQV/htyxY4dWr16t8PBwZWZmasyYMXK5XNq2bZtWrlwps9msli1b6vPPP5fNZtOIESM0bdo0JSUl6YYbbpDX69WLL76oMWPGKDo6OjjuyiuvVE5OTpV5IiIi9Pzzzys1NVVjx46Vz+fT9OnTNWrUKLVv3z5Uhw0AADRRBIgBAAAAAAAAAEDIXX755Ro2bJhuuukmDRkyRH/729/0//7f/1NYWFi1scnJybrxxhtVUFCg2NhY/fe//9WoUaPUunVrWSwWDRgwQP369dO4ceO0aNEixcfHKyoqSvfdd5/i4uI0bdo0ZWRk6JJLLtHXX39da13du3eXJG3ZskWdOnXS008/rffee0+SdOqpp2rGjBmaOHGidu/erW3btmnu3LnatWuXOnTooNatW2vnzp069dRT9eCDD+qll16SzWaT1WrViBEjlJycrAkTJlSb74YbbtDFF1+sn376SQkJCUpISNC8efOq1FVSUqJ77rlHhmFo+/btcjgcGjBgQJU61q9fr/PPP19paWlq2bKlzj77bKWmpmrlypXq1KmTIiMjtWvXLr3yyiu67LLLlJqaqp9//lmzZs3S3XffrZkzZ+rxxx9vjG8vAABAk5CVlaWCggL17t1b4eHhVZ5bsGCB/vrXvyoyMlJ/+ctfdO6558pms+n111/XfffdJ7PZrH379mnTpk0aMGCAnE6nevXqpZSUFElSTEyMCgoKlJiYqAsuuEA//PCDrFarLBaLunbtqo4dO1YZJ0nt2rWrNs+IESP0+++/KywsTFarVa1atSI8DAAADgsBYgAAAAAAAAAAcFxo1aqVPv/8c02dOlX/+Mc/tHDhQs2cOTMYlqjs5ptv1rBhw/TEE09o5cqVcjqd+vLLL9W8eXMNHz5cUiAAkp6err1798psNqu4uFgtW7bU4MGD1a9fPz311FO64IILaq0pOztbktStWzctXrxYu3bt0pQpUyRJEydOVLdu3SRJERER6tu3ryIiIoLhD4fDEZxn3Lhx+uc//6nly5dr165duvjiiw853+LFixUeHq6EhITgcTlYZGSknnjiieDjt99+u1odO3bskMPhUMuWLSVJp5xyirp27aqvvvpKkyZNksPhUNu2bSVJ7du3l9/vD9YeHx+v1atX13psAAAATiQbNmxQXl6eevbsKafTWe35Bx98UNu3b1dJSYnMZrPcbre2bNmiFi1ayGw2S5IuuuiiQ85vtR6I6AwcOFBz5szR5s2bVVRUpJ49e9Y4riZnnHGG5s6dq5ycHJWUlOjUU09t6K4CAABIksyhLgAAAAAAAAAAAKCCyWTSnXfeqV9//VWGYahv3756+OGH5fF4qoxLSUlRz5499f7772vDhg164IEH9Nprr+nrr7/WeeedJ0kaP368LBaLunXrJovFElz39ddf16RJk3T11VfX2WH3u+++U+fOndW1a1fl5eXJ6XTqzjvvDN4GDRpUr/2y2+26+eab9cILL+i3335T//79DzlfXl5etf2ty9VXX13j8l27dsnn8wUfx8XFKSIioto4k8lU7bFhGA2qAQAAoKnavHmzduzYoeTkZMXGxtY45o033pDZbFbLli2DPzuVlpYGuwVXKC8vr3N7VqtVw4cP16JFi7Rly5YGdRCOjIzU4MGDNX/+fK1Zsyb4iRkAAAANRYAYAAAAAAAAAAAcd5KTk7V06VJNnTpVTzzxhPr166elS5dWGXPLLbforrvu0tixY3X55Zfrxx9/VFxcnEwmk9auXat3331X7du3V0FBgcrKyuT1elVQUKD//e9/mjhxor799lvNnj1bkuTz+aoFZj/99FM9++yzmjVrliwWi4YMGaJvv/1W77zzjvx+vzIzMzVv3jxJkmEY8vv9Vdb3+/1V5pw4caI++uijYEDkUPMNHDhQGzdu1Pfffy9Jys/PV2lpaXCe8vLyKqHgyirXMWzYMMXExOibb74J7mNOTk6w63Ll2iruV6xLeBgAAJwscnJytGnTJnXp0iX4CRAH27Vrl5YvX664uLjgz5U+n0+dO3fWpk2btHjxYvl8Pm3cuFEZGRmSAp9GUVpaGvy57eCfr4YPH660tDQ1b968yvKDxx08jySdc845Wr58uSwWS7D7MQAAQENZJk+ePDnURQAAAAAAAAAAABzMZDKpX79+uvLKK/X999/r/vvv144dO3TmmWfKbrerW7du2rJli2666SZZrVbl5+drwoQJioyMVExMjBYtWqQXX3xRDodDbrdbixcv1jnnnKP77rtPpaWl2rlzp0aPHi2/368pU6Zo7dq1Kigo0JIlSzRnzhytWbNG7777bvAjpZs3b67ExETdf//9evrpp+Xz+XT77bdr+fLlmjJlioqLi3XaaacpJiZGW7Zs0QsvvKANGzbo9NNPV4sWLRQVFaXc3FzdcccdCgsLO+R8sbGxSkpK0r333qsffvhBe/bskdfrVWJiojwej5555hmtXbtW7dq1U3JycvBjrg+uo0WLFjrnnHM0bdo0FRQUaMGCBbr99tuVnJys7OxsPfXUUyoqKtI555yjjz/+WJ999platGihzp0765lnnlF2drZGjhx5yC58AAAATV1eXp7Wrl2rjh07qm3btoccFxERofXr12vRokUKCwtTeXm5srOzNXDgQLVu3Vqff/65vvnmGzmdTg0fPlxS4E1f3333naKjo2W327Vo0SLt3r1bXbp0UVRUlBwOh4qKijRixIjgp2Xs3bu32rjK87Rq1SpYz9atWzV06FBFR0cf/QMFAABORLtNBm8hBwAAAAAAAAAAxznDMDRr1izdfffdio6O1vPPPx/spAsAAAA0VH5+vlatWqXExER16dIl1OU02Mcff6xLL7001GUAAICmK5PPMQAAAAAAAAAAAMc9k8mk8ePHKzMzU4MGDdKFF16o0aNHa9OmTaEuDQAAAE1MSUmJMjMzFR8f36TCw263W6tXr1ZaWpqSkpJCXQ4AAGjiCBADAAAAAAAAAIAmIzExUbNnz9bChQu1YcMGpaSkaPLkyXK5XKEuDQAAAE1AWVmZ0tPT5XQ61a1bt1CX0yC5ubmaOXOmVq1apf79+4e6HAAA0MSZDMMwQl0EAAAAAAAAAABAQ3m9Xr3wwgt64IEH1KJFC02ZMkUXXnhhqMsCAADAccrr9SotLU1Wq1W9evWSxWIJdUkAAAChkkkHYgAAAAAAAAAA0CSFhYXpzjvvVGZmpvr06aOLLrpIo0aN0rp160JdGgAAAI4zPp9P6enpkqQePXoQHgYAACc9AsQAAAAAAAAAAKBJa9eunT744APNnTtX2dnZ6tGjh+666y7t3bs31KUBAADgOOD3+7Vq1Sp5PB6lpqbKZrOFuiQAAICQI0AMAAAAAAAAAABOCH/4wx+Unp6uV199VbNnz1bnzp312GOPye12h7o0AAAAhIhhGFqzZo1KSkrUs2dPORyOUJcEAABwXCBADAAAAAAAAAAAThhms1nXXnut1q1bpwkTJmjy5Mnq2bOnPvnkk1CXBgAAgBBYt26d9uzZo549e8rpdIa6HAAAgOMGAWIAAAAAAAAAAHDCiY6O1qOPPqr169dr8ODBuvTSSzVkyBAtXLgw1KUBAADgGNm0aZN27dqllJQURUdHh7ocAACA4woBYgAAAAAAAAAAcMJq27at3njjDS1dulSRkZE666yzdMEFFygtLS3UpQEAAOAoysnJ0ebNm9W1a1c1b9481OUAAAAcdwgQAwAAAAAAAACAE97AgQM1b948/fDDDyoqKlK/fv10xRVXaN26daEuDQAAAI1sz549Wr9+vTp06KDExMRQlwMAAHBcIkAMAAAAAAAAAABOGsOGDdOiRYv04YcfKiMjQ927d9dNN92kjRs3hro0AAAANIKioiJlZWUpMTFR7du3D3U5AAAAxy0CxAAAAAAAAAAA4KRiMpl06aWXatWqVXrllVe0cOFCdevWTTfeeKOys7NDXR4AAAAOU1lZmTIyMtSsWTN16dIl1OUAAAAc1wgQAwAAAAAAAACAk5LFYtH111+v9evX6+2339bixYvVtWtXXXHFFVq3bl2oywMAAEADeL1erVq1Sna7XSkpKTKZTKEuCQAA4LhGgBgAAAAAAAAAAJzUzGazLr/8cmVmZmrmzJlasWKFunfvruuuu05ZWVmhLg8AAAB18Pv9ysjIkGEY6tGjhywWS6hLAgAAOO4RIAYAAAAAAAAAAJBktVp17bXXKisrSzNmzNCyZcvUo0cPjRkzRkuXLg11eQAAAKiBYRjKyspSWVmZUlNTZbPZQl0SAABAk0CAGAAAAAAAAAAAoBKLxaJrrrlGmZmZ+uSTT7Rr1y4NGTJEw4YN02effSbDMEJdIgAAAPbbsGGD9u7dqx49eig8PDzU5QAAADQZBIgBAAAAAAAAAABqYDabdfHFF+vHH3/UwoULFRUVpVGjRql3795666235PF4Ql0iAADASW3Tpk3KyclRcnKyoqOjQ10OAABAk0KAGAAAAAAAAAAAoA5nnnmmvvrqK/3222/q3r27xo8fr44dO+qRRx7Rnj17Ql0eAADASWfnzp3avHmzOnfurPj4+FCXAwAA0OSYDD5nCwAAAAAAAAAAoEFycnL08ssv67nnnlNJSYmuuOIK3XffferevXuoSwMAADjh7d27VxkZGUpKSlKHDh1CXQ4AAEBTlEmAGAAAAAAAAAAA4DAVFxdr1qxZmjp1qjZs2KCRI0dq0qRJGjlypMxmPggSAACgsRUVFWnlypVq3ry5kpOTQ10OAABAU5XJb64AAAAAAAAAAAAOk9Pp1KRJk7RmzRrNmTNHHo9HF110kU455RT95z//UU5OTqhLBAAAOGG4XC5lZGSoWbNmOvXUU0NdDgAAQJNGB2IAAAAAAAAAAIBGtH79er322muaMWOG9u7dqxEjRuiOO+7QRRddJJPJFOryAAAAmiSv16sVK1bIYrGoV69eslgsoS4JAACgKaMDMQAAAAAAAAAAQGPq0qWLHn30UW3dulXvvvuuJGnUqFHq2rWrHnvsMeXm5oa4QgAAgKbF7/crIyNDfr9fPXr0IDwMAADQCOhADAAAAAAAAAAAcJStXbtWM2fO1KuvvqqioiKNGjVKEyZM0Nlnn01XYgAAgFoYhqHVq1eroKBAvXv3VkRERKhLAgAAOBFkEiAGAAAAAAAAAAA4RkpLS/Xee+/ppZde0rJly5ScnKzbb79dEydOPGrb9Hq98vl81Za7XC7V989Ebre73mMPxefzyePxHNEckuTxeOT3+494Hkmy2+1HHOC2WCyy2WzHtBa73S6zufoHjTocjiOuAwCA48369eu1c+dO9erVS9HR0aEuBwAA4ERBgBgAAAAAAAAAAJxYKgdm/X6/3G538LnKQViv16vy8vLguMrh1srh2vLy8irjKs8nHTrQWlZWVm1ZYDsuSdLmzZu1YMF38vnKdd111wS3UdfchmHI5XJXG+vz+eX1Vp8DJzeLxaywMGu15WFhVlmt1ZfXFGQ2m82y26uHky0Wq8LCqoenbTZbjR8tf3DA2Wq1KiwsTJJkMplkt9ur1FERkrZaD9RqMpmqzGOz2aqMO9R8AICmafPmzdq8ebNSUlIUHx8f6nIAAABOJASIAQAAAAAAAABA/VSEbyuCt5VDtxWB24rwbnl5ubxerwzDCAZu3W53MAzrcrmC83o8nkqBX588ngPhWJerrErgt2owuHLg98g721Zms5lV0eDVYjHJZjsQqHQclEm0WqX9mcWD5jBkNlf/M0x4ePUus2azVFMT2zCrSTVkPGW3Swc3qzWZJIej+twWy6HqM6mGjGeNTCbJfuRNdhu0zVpraYRcqNcr1dCYuUECYe4jr6XcJ9WQH2/QNv1+qaYGz16vVF5e/XXodksH/5XQMCSXu/pYny8wz8E8HqPGY+hymSRVfS36/YFtVqmt/MD3wOcz5PEc2LbL1ThdpivYbNZKQWNLMGgs6aBAsj0Yfq4ckK4tuOxwOGQymRQWFiaLxVKlK3XFOhWhaoslsO1AKDvwQm6MTtgAcCLKzc1VVlaWOnfurDZt2oS6HAAAgBMNAWIAAAAAAAAAAI53FUHdiuBuxa1yN9yKcG9FGNfn8wUDvBVh3YputhXh3srdcCuCuhUhXZ/PJ4/Hu/+5hodzzeYDodvw8EDIzhZmCgZq7XYFA7pWqyGrNbD84BCszVZ5XCBQWzGucojUbjdVCvweCMwGQn8HxtnCKs9nqhKsdVRvsArgOFA57B0IGh94rnIz7sph6YMD1S6XKr0Z4cB8fr/krhRcrhys9nqNYLDbMExyu00HzVe1hkCg2tgfuG54ADoszCqLxSyLxVwtgGy3O2Q2m2W1hslqrTmAHBYWJqvVGgwpVw49VwSeK7o0V3RorhhTsQ4AHC/y8/OVnp6udu3aqWPHjqEuBwAA4EREgBgAAAAAAAAAgCNREeZ1u93y+Xxyu93BgG5FmNflcgUDvQcv83g88njc8vt9KisrDYaFA+P8DQ7vWq0mWa0mmc0m2e2BsJvDbpJkyGYLhGsDAVt/lXBtRUfbio63lTviOhzaH04LrFsRvK3clTYQCA6sW1PHXAA42RjGga7Lbrfk9xvBrsuVg9AVHaU9HlUKIAfGVzRarwg2V4Sk/X6TPJ7ANb6sbP/63kAgurw8EGAObL9hQWabLRBAdjjswVBxRVdmhyMi2F25ottyRfi4YpnVapXdHhhvt9tltVqrLQOAuhQVFWnlypVq3ry5kpOTQ10OAADAiYoAMQAAAAAAAADgxOd2u4OhXLfbLZfLFXxcEer1+/0qKyurIehbJp+vfP/YimXu/eHf8npt3+Ewy2IxyWYzy2YzyWwyFB4umc2GbDZDYWGGrNZAmNdsluy2A0Fcu12yWEyy2/d34A0zBQLA1qrddSt36gUAoLKDA8g+n+Qt39+B2R3otFxeHhjn8xlyu/cHkcuNYLDZ5dL+cLNp/zLJ5TbtD0Mb8noDHZjrYrVaZLVaZLcHOik7HI79nZFtstlsslhsVboiB5ZVDSs7HA7ZbLbgzeFwBDsqA2jaXC6X0tLSFBkZqZ49e3JeAwAAHD0EiAEAAAAAAAAAx6fy8nKVlZUFO/yWlZXJ5XIFu/u6XK6DlnnkcpWprKyk0rJylZa65Pcf+lfhFR17rVaTwsNNslokq9VQWFjgq8MRCO1WBHqtVincceBxteeCcwSes9sNgg8AgJNGRRjZ690fTPYdeOxyHfRcuVTmOnD/wDjL/vsH1i8r86u83JDH45e/lsbKVmugg3J4uEMOR7jCwmyyWsPkcDgUHh4e7IocHh5e5zIAx1Z5ebnS0tJkNpvVu3dvWSyWUJcEAABwIiNADAAAAAAAAABoPIHuvK7graLbb20dgD0et1yuMrndLnk83uDtUMLCAp187Xaz7DbJbjdkq/TV4ZBsYZLdbpLNFujca7dr/xiTbGGBrr107AUAoGlyuyWPJ9A92bM/mBx87Ancd7klj8cILnO7TYGbp2KMIZfr0Elki8Usm80qh8Muu92+v9uxXTZbuMLDw6t0QLbb7cGuyBX3K242m+0YHhmg6TIMQ6tWrVJJSYn69u0ru90e6pIAAABOdASIAQAAAAAAAABVlZWVBTv71n4rk8tVWumxR15veY1z2u1m2Wxm2WyBcK/DcSDwGwj2Sg67af9jUzAIbK9Ytj8QTDdfAADQmCoCxx6PIbdH+8PIlUPGkttzYJnbbcjlMsvjMQUee/xyuw253X7V9Jd3s9kkh8O+/xboiuxwRFQJGVd0Pj74Fh4eTgdWnDTWrFmjvLw89e7dW06nM9TlAAAAnAwIEAMAAAAAAADAicrj8ai0tFRlZWXBrxW3A49LVVZWsn9ZmcrK3DXO5XCYAze7SQ6Hsf8WCPkGlkkOh+nAModJDnsg9OtwHOMdBwAACAGvN9Ad2eUy5Kr46qr01R34WlYWCCG7XKb9ywLdkP3+6n+6t9msCg93KCIiQuHhEYqIcCo8PLzKLfBc1WW84QpNyaZNm7RlyxZ1795dzZs3D3U5AAAAJwsCxAAAAAAAAADQFBiGodLS0iq34uLigx4XqrS0ZP9jV7UQiskkhYdbFBFhUrjDpPBwv8LDDYWHmxQRblJ4uBQeLkVEmBUeXjkYHKKdBgAAOIl4PJXDx1JpqaGyMkNlZVJZ8LFUWmrav8xQWZlf5eXV/+QfHm5XREQgXBwZGaWIiEhFRgZuERERioiIkNPpDN6n0zFCJTc3V1lZWerSpYtat24d6nIAAABOJgSIAQAAAAAAACBUDMNQSUmJiouLVVRUpJKSEhUVFam4uFjFxcUqKSlWaWmxSkvLVFrq0sG/zo2IsCgiwqyIcEMREYacTikiQooINwVCwhWB4HCTwsPpBAwAAHAi8npVKVAcCBoHblJpWeBrSYlUUmJSaZmhkhKf/P6qc9jtYYqMPBA4joyMUlRUlCIjI6t8dTqdslqtodlRnHDy8/O1atUqtW3bVh07dgx1OQAAACcbAsQAAAAAAAAA0NgMw1BxcbEKCgpUVFQUDAUHQsLFKioq3B8QLqsSCg4LMysqyiJnpEmRkb4qgeDISJMiI6WICJMiwqXISJP4ZGoAAAAcDpdLKikxVLo/cFxSYqik5EDguKhIKi6WSkql0lJflXUdDpuczgg5nVGKioqpEi6Ojo5WVFSUmjVrRtAYtSotLVVaWppiY2OVkpIS6nIAAABORgSIAQAAAAAAAKChXC6X9u3bFwwHV9wvLi7Qvn17VVBQLL//wK9eHQ6zoqLMctgNRUUZiooyKcppktOpwP0okxz2wH0AAADgeOLzBULGLrdUVGSoqMhQcbFUVGyoqEgqKjLJ5TaroKBcHs+B1sZWq0VRUU7FxsbtDxtHKTY2VlFRgftxcXGy2+0h3DOEisfjUVpamux2u1JTU2U2m0NdEgAAwMmIADEAAAAAAAAAHKwiIFz1lqd9+/YpP7+oStdgh8Os2Bjz/mCwFBtzIBgcG2NSs2Ym8fdwAAAAnAxcropgsaF9+wwVFQfCxvv2mVRUbFJhoU9u94GQscNhU2xsjKKiYoIB44pbfHy8wsLCQrg3OBr8fr9Wrlwpr9erPn368D0GAAAIHQLEAAAAAAAAAE4+hmGosLBQeXl5ysvL0549e5Sfv0/79u1Rfn6hyssDH9NssZgUE2NRbIwUE2MoNsakmBiToqNNahYdCAqbaBoMAAAA1FtpqaGiYqmgwFBBgaH8AkP79gVCxvkFfrlcgYCxyWRSdHSEYmJiFBuboLi4OMXHxys+Pl5xcXGyWCwh3hMcjszMTBUUFKhPnz4KDw8PdTkAAAAnMwLEAAAAAAAAAE5cPp8vGBDOy8vT7t27tWdPrvLy9srrLZckRURY1DzOpNhYv2JjTYqNMSs21qSYZoEuwgSEAQAAgGPH5ZL25Qc6GOfnG/vvS3v3mZSfXy7DkMxmk2JiohUf30Lx8QnBYHFCQoIcDkeodwGHsGHDBuXk5KhXr16Kjo4OdTkAAAAnOwLEAAAAAAAAAE4MPp9Pe/fu1Y4dO5STk6MdO7YoJyc32E3Y6TSrRYJJCQlSQrxJsbEmtUgwy+kMceEAAAAA6sXnkwoLDe3OM7R7dyBcnJtrhJ+hRAAAIABJREFU1q5cnzyeQOdipzNCrVu3UatWrdW6dWslJCQoNjY2xJVj27Ztys7OVnJyslq0aBHqcgAAAECAGAAAAAAAAEBTtXv3bm3evFlbtmxRTs527dmzT4ZhyOEwq1WiRa1a+ZXY0qSWLc1qHmcSn3AMAAAAnJgMw1BhoUm5u/3audNQzk5DOTul/PyKNxOGq1WrNmrTpq06dOigtm3bysJ/EI6ZPXv2KDMzUx07dlS7du1CXQ4AAAACCBADAAAAAAAAaBry8vK0adMmbdq0UZs2bVRJSZlsNrPatTWpdWuTWiWalNgy0FkYAAAAAFwuBcLEOX7l7PRr6zazCgrKZbVa1K5dW7Vv31EdO3ZUmzZtCBQfJUVFRVq5cqVatGihrl27hrocAAAAHECAGAAAAAAAAMDxq6CgQBkZGUpLW649e/IVFmZSu7YWtWtnKKmdWe2TzHQWxnHjy6/W6oLzu4W6jCPy/As/KS+vVJKUmOjUzRMGHXKsYRh69LHv5fEEOvudckqcrhnXp8ocFRISItWtW4JSeyYqISFSkjRz1q/asiU/OCYszKxhwzro9OEdq23L7zc09bkfVVDgqrX+qCi7/vqXYcHHLle55ny6Whs37lVcXIQ6dIhVXl6JLrowWdHR9kbZ34NlZeXKbDapW7eEWmutLDe3WPPmb9Du3SU67bT2GtC/bZ3rzJi5XFu3FgQf2+0WXX1VH7Vr10wbN+7Te++vlNvtCz7fsWOsSko8ys0tqTJPZKRNXbvGKyW5hTp3bl7vmiuUlXn17bwN2rOnVOOv73fIcVu25Gvb9gKdNqR9g7fRWI5WDbm5xYqOdsjhsDbqvId6LdW1H4fzGmzoPCUlHv3nkYXy+fya/V66bps4RPfec3qj13As1Of883h8+vyLNdqyJV9Dh7ZX/35tZDKZQjamQn2Oc0O+F/n5Lm3IzlNqz1ay2Wr/AaspHrc9e0r11ddrlZtbooED22rY0A6H3L+jddxwfCgqMrR1m6HfN/qV/btJ+fnlstvD1K1bsrp3767OnTvLbDaHuswTgsvlUlpampxOp3r06HHI6xkAAABCIpOfegEAAAAAAAAcV3w+n3799Ve99torevbZZ7V06UJ17lSkG64P09/vsemaqy0683SrTulIeBjHj7QVO3TF2HeUn197wPV4d9utQ2SzWTT54XmaeNscbdiw55Bjv523Qf+8/xtNfnieLBZTMEx768TB2ra9QJMfnqff0rZrxIhTFBsbrqnPLVGbpEc06Y5P5fX6NP76furSpbkmPzxPTz69SOOv719jeFiSzGaT7rj9NK3OytXkh+dpxcodOu+8Lho5sqvOPbeLBg5sq737SvXEU4uC62zfXqgevZ7Ve++nq23bZtq9u0RXjZutq695T79v3Nto+1th48Z9uv6GD9Sz9xRlZO6q9zH/Zu469ej1rG67fY7u+uvnGjj4ed12+5w617thfH8ZMjT54Xma/f5KTbrtNLVr10xSICx868Qhmvn6ck1+eJ4iI2269pq+mnjLYO3cVaTJD8/TgoXZOuusTurSpbm+/madUno+o5EXzFReXkkdWz7A4/HpiScXadSYN/TlV2tqHXv7nZ9qxNmvyO0ur/f8ja2xa3jr7TQNGfqiWrX9r7ZvL6h7hXqq67V0qP043NdgQ7cvSVdePVvJp7bQY4+cr6uu7K2fl21p1BqOlfqcf9u3F6pv/+eUk1OosX9K1ez3VmrsVbPl8/lDMkaq33FuyPfi8y/W6NyRM/To49/J6/UrLKz2PyE3xeO28Lvfde7I1/TpZ1l6beYvGn7Gy7rvH18d0+OG40dUlEkpyWZddIFVd06y6I7bbDpjuKHduav17rvvasqUpzVv3jwVFRWFutQmrby8XBkZGQoLC1NycjLhYQAAgOMQ/4sBAAAAAAAAcNxYt26dnntuir766gs1j9ulcVeF6a93WjXyXKvatTWLRmCoSXm5XzNmLg9pDS++tFQlJR7NnBXaOhrDsGEdFBZmkWEYeu75Hw857oUXl6pDh9jgOhVMJpP692sjSUpNbaXTh3fUlWN7ac7/rtW11wQ6FD/+RCDoW9FBtdMpzdWqVVStdZnNJg0bGhjfu1drDR6UpEED22nI4CSdP7KbpjxzsQYPahcc/9e7v1BsTLg+/nCcxl3dR//65wit+PUOtWkTrR07ChttfyWpqMitzVv2qVvXhGpBv9rk5hbrmWeXaOVvd2pf3kNau/pv6tuntV54cak+/SyrzvWHDE4KHg+n01bluehou3p0T5QkDR9+oN7BgwLrDBzYVsOHddCoS1L0wrRR+r+Hz9U3c9fpvn98Xe/6bTaLHnzgbLVs6axz7L8n/0FvvzlWdnv9uvQejfO6oTXUZdzVfXT22Z3k9zfeh33W57VU034c7mvwcLa/bVuBPv9iTbBj9SP/OU8ffTCu0Wo4Vup7/l03/n2demqCbrt1iBITo/T4o+drVcZOPTh5XkjG1Oc41/d7UVDg0h/Oe02PPPqdpr80Ro/+d6SGDE6qNeTXFI9baalXH3y4Skt/vFXvz75Kq1bcpVGXpOjJp35QcbHnmBw3HN9iY00aMtiiCTdZdNstNvXu5daqVUs1deoULViwQH7/8X9NO94YhqHVq1fL6/WqZ8+eslobt0s/AAAAGge/bgcAAAAAAABwXPjxxx/17rvvqkP7Ut1xW5hGX2JVp1PMIouButz3j6/0w+JNIdt+QYFLq1btUlxchJ5/cWmjhglDwWaz6OKLTpXdbtXMWb+qsNBdbczWrQXatas4GBQOC6vaDtxqrbk9+JVje0tSMGRWsd7B69dWW23u/9dZwfs/Ld0si6XqBaRt22Z68vELqgSIG2N/o6LsOvOMU9S3b+t67UeFDz/K0NRnLw6Gp7t2jddrr14mSfp23vo61684zlZrzX/uqeiGWfn5Q40dPSql3tutvp26v3+9e7XSZX/sUe85j8Z53dAa6qNVYu3B94aqz2uppv043Nfg4Ww/I3OXDMOQ2Vz1/GqsGo6V+px/v6Xt0PwF2Rp1SUpwPYvFrAsv6KaXXv5ZLlf5MR0j1e8412dMaalXZ4yYrk2b9+mrL8YH3yBxIh633zfu1WOPjAxeq8xmk/54aQ9ZLGYZxoF/s4/mcUPTER9v0ogzLLrjNqvOOcukn39eojfemCWfzxfq0pqUtWvXqrCwUD179pTdbg91OQAAADgEAsQAAAAAAAAAQi4/P1/z5s3TyHOtGn2JVdHRpIZDKTe3WF99vVbl5X599HGG5s3fEHxu795S/e+TTD39zGJ9/c26YKCpsvqMKSx064MPV+nJp37Qt/PWVwnwuN3leuvtND3/wk/67vvftWHDnuBzv/++V2+8+VswpHv3vV/q6WcWa8WKHfr3w/P1/aKNwbE//rRZU5/7Ua/NWK4tW/KrbL+2bTTUG2/+pvHX99P11/VVdvYeffX12hrHbdtWoA8+XCVJysrK1bTnf9LC734PPp+5epeef+Enff7FmhrXr+u4bty4LxjMXfLjZj07ZYlWrMw5rH1q0cKpK8f2UlGRu8auyi9N/1m3Thzc4HkrAod1dRs+HD8v26p+fdsEHzePi9DPy7Zq+ivLqowbPaq7unaNr7LsaO1vXUaceUq1WnqlJtYZlD4aCotckiSb7fA7BPp8fs1fkK1nnl2sX5Zvq/Z8UZG7SlfPQ52HtZ3XdZ0HtV2/aqpBqv16JNV+LTlcddVZl5r2oy5btuTriy/XyOfza978DZoydYl+/W17g+Z4btqPmvX6r5KkV1/7Rf9+eH6V61hjKS316v0P0vXctB+15MfN1b4njXG9q8/598MPgdfewAFtq4wbNDBJe/eW6utv1h3TMY3p3r9/pZXpOZr52mWKjq5/uK8pHrce3VsqKqrqPq5bn6fL/tij2vK6HO5xq+9rtq7rEY4di0UaNNCim8ZbtWvXDi1btqzulSBJ2rRpk3Jzc9W9e3c5nXV/SgEAAABChwAxAAAAAAAAgJDLy8uTYRhK7cmvLEPt7nu/VJukR/TU0z/onvu+1M0T/6err3lPUqCz4Kgxb6pNm2hdcnGy3nwrTX0HPKfM1buC69dnzJIfN+ua695TUlKMRo9K0TXXva/Rl74pSfJ6fTpjxHQlJETqlpsHacHCbD33/I/BdR946FtdN/6DYDjxL3cOU0REmLp0iddNNw5Q3z6BroFXjZutV1/7RTeM7y+bzaI+/Z9TVlZuvbbRUG+/s0JXXdlbt0wYJJPJpOem/VRtzEsv/6xuKU/pn/d/o//8d6GeeuYH/frbdp11zit6590VevKpH/TctJ+0/NftunjU63ptRtUQa13H9YknF6lr8pN6/Invdfe9X+q1Gb9o6rQlGjTkea1MP7wQ8Z13DJUkPff8T1W6Kns8Pn366WpdcXnPBs/53vvpktToXWAl6ZlnF1d5/Le/Dpck3Tzxf/rzzR9rz55SSZLDYdXpwztWW/9o7G9dkpNbVFtWWOiWx+Orscaj6YUXl0qS/nRF6mGt7/H4NOmOT/Xe+yv17uyVGjL0RS35cbMk6etv1unKq2erZev/KD8/EFSu7Tw81Hld23lQWuqt9fpVUw1S7dcjqfZryeGoq866HGo/auN2l+uOuz5Th06P6/EnFmncte/rmWcX64mnFmnAoOc19bn6X/8uv6ynzhrRSZJ0wfnddNONA6oE9xtDbm6xzhgxXW3aNFNCQqROP/NlnXnWK5r88Dwt/O73Rrve1ef8W7N2tyQpPj6yyrj4+AhJgTe1HMsxjWX37hJNf2WZOnVqrhYJTk197ke98uovWru/htqcCMdt2S9btXTpFs3Y3zm5vg73uNX3NVvX9QihkZBgUqtEaffuus8PSDt37tTmzZvVuXNnxcbSoRsAAOB4x2/jAQAAAAAAAIRcUlKSnM4IffQ/n8rKQl3Nye3Jxy9QXFyEflm+TZNuHaINa+/R+7Ov0u7dJfrTle/qoQfP1sAB7dS5c3O9MetymU0mXXnVbJWX++s1Zt++Ml17/ft6/rlRGjQwMObGGwbos8/XKC+vRD8v26qsNbn6wzldZLGY9dADZysmJjxY3733nK7HHz0/GChs0yZaZrNJkZE2tWkTragou37/fa/enb1Sw4d1lNNp07ire8swDL0ze6Uk1bmNhvju+9/Vt28bOZ02dekSr3PO7qy5367XunV5VcbdcvMgnXnGKdq2rUBj/5SqV6f/UTNfu0wD+rfVTRM+1rnndtFLL4zWzNcu05DBSXr9jV+D69bnuN5z9+lKPrWF1q7L081/HqgZr16m5T9PUnm5X2+/s+Kw9q13r1Y6fXhHZWfvqdIV+aOPMzR6dHfZ7XV3qs3O3qOF3/2u2e+t1BVj39FrM37Ro/8dqXFX9zmsmip89/3v+vfD8/Xvh+fr/gfnatSYN6p1Uh13dR9Nm3qJHA6rXn3tF53a/Wm9+VbaIedsjP1tDF98uUZdusRr1CUp9V4nPT0neDwq39bUEmrburVA38xdpxdfWqqhw1/S/z7J1IMPnK3JD559WHWvytipf9x3pqa/dKnmfn2jLBaT3no7cLwH9G8rn8+vsjJvcHxt52FN53Vd54HNZjnk9etQNdR1ParrWnI4IiLCaq2zLjXtR13sdqumPnuxmjeP0MZNezVt6iX64rPrlZn+F516aoLu+8dXyskpqtdciYlRat48EMxs0cKpNm2iG9SFtT7+ef83atbMrqGntdfYP/XSjTf016IfNmrwoCR1OiXuqFzvKhx8/q1ZEziHmjVzVBlX8Vrdui3/mI5pLP/7JFNer08R4WF68eWlMpmkt95OU8/eU4JvJmiIpnLcNm3apwm3fKzhZ7ysefM36Mqr31V5ef07eR/ucavPa7au6xFCwzCkxUvKtXGTTykp9f93+WSVn5+vdevWKSkpSa1btw51OQAAAKgHAsQAAAAAAAAAQs5ms+mqq8Ypb0+Enn/Jq5+X+VReXvd6ODri4sLVK7WVOnVqrpgYh844vaNmzFyuffvKNPS09sFxFotZN4zvr1UZOzV/wYZ6jXl5+s9q0zpabds2C4556IGzlbHyLsXHR8rptKuw0K0b//yRios9sljMmnjzoODYXqmtdM/dpyss7MBHpR+sQ4dYzZpxucaM7i5JKiryyGo1a/fuQACnrm00xIsv/aybJwwMPp54yyAZhqFpL1TvQhwd7ZDTaVenTs2Dyzp1aq7ISJtSeyYGl7VvH6stWw8EnupzXKVAeKptm2h16RL4aPm4uAg1bx6h7dsLD2vfpANdeadMXRJcNv2VZbr5zwMPtUoVu3YVa8mSTdq+vVCXXJysbZv/ofvuPeOw66nQtm0zDR7cLnAblKQhg5NkNpuqjbvt1iHKWHmXzj6rk/LySnTt9e/rlls/qdJhuLIj3d8j5fcbenbKEr06/VLZbId+jR+sWTOHevRoWe0W5Tx0sHP79kJ98eVa3TppjnJ3F2vH1n/q3w+dU+u5VZt+fdsoKSlGkhQT41CrVlHB117z5hFVXuNSw8/D+p4HNV2/DlVDXdejuq4lR+JQddalpv2or5gYh7qntAwGgJs1c+hvfxkul6tcCxZmH9acR8PX36wLvpYk6eqrAm84sNutweVH43pX0/lntQb+lHrw9cW0/6HZbDqmYxrL+g2BN7k89eQFeuapi3T7pNM0/9ub1LdPa/317i+0ZUv9w8pN6bi1bdtMjz96gT6bc52SkmL0yZzVeunln+u9r0dy3Op6zdZ1PcKx9/tGv2bM8mnh936NHDlSnTt3DnVJx7XS0lJlZmYqISFBHTse209RAAAAwOE7Nm+XBwAAAAAAAIA6tGrVSrfccqsWLVqkeQuW6btFXqX2NKlXqkWtEiWTqfGCM6jbwd1WMzJ3yWQ6ENSpkJoaCLJlZOyq15gVK3PUooWzyvM2m0UpKYGPRO/dq5Um/Hmgpr+yTPPmb9C0qZc0qBOrFAgLXXdtX61fn6fHnvheFotJPp8hn8/faNuQAuHYBQuzlZLcQp98slqSVO7zy2w2adbrv+o//+9cRUXV3pnz4GNVsayk5EB30foc1/PO7Vrj/BaL+ZBh2foYdUmy2reP0YKF2VqVsVOGISUkRFYJONXmtNPa6/5/ndWgbc5fkK3FizdVWfb3+86o8prs3Kl5lX2+6MJTteMQHVQ7dWqueXNv0vRXlunWSXP08vSf1T2lhW6fdFq1sUe6v0eyT5L0zLOLdeMN/XX68I4NWrd9+1j98dIe1bb71ttp+mV5zTUNHtxOTzx2gfbtK9Nbb6fpgYe+1ZOPX9CwHatFWJhFXq8v+Pjga3hDz8OGnAeH6hZ9cA11XY/qupYcqcPtat2Y/x4OHNhWkrR5875Gm/NItWndTOnpO4OPKwLP8fERta53pNe7ms6/zp2ba978DSosdCsm5kCH24IClySpW9cElZZ6j9mYxuJyBd6l1emUA29osVrN+vNNA3XThI/0w+JNSkyMOuzr1vF63KxWs2JiHDr3D13067JJOrX70/p23npNum1Iox23q6/qXa+5pKqv2bquRzg2CgsNZa72K22ltHt3uTp3PkV//vMflJh4eG/cOFl4vV5lZGQoIiJC3bp1C3U5AAAAaAACxAAAAAAAAACOGw6HQ+eee66GDh2qFStW6LffftGyXwrUrJlF3bpKHTuY1T7JpPBwwsTHmskkGYahnJyiKp0hExICXfGiox31GrNzZ5FKS72qzcsvjtGA/m1179+/0uhL39TDk/+gB+5vWAj1iScX6Zu56/T2m2PVsqVTr7/xW6Nv49XXftHEWwZp8OB2VZZfdWVvvfV2ml5/47d6h5JqU5/jerRYLGZNuvU03XPfl5r63I+yWMw1Bm8b044dhVqxckeVZT5f3aHA//7fecH7y37Zqh7dExURERZcNuHPA2UymTThlo816/Vfa9yPo7W/9dmnBQuzVVrq1d/+OrzB6x6JF58frWW/bNVTT/+g04a016Vjujfa3HVpyHl4NM6D+lyP6rqWNHVxsYFQ7pGG5BvTP/5+pq68+l1Nf2WZrr6qt155dZluu3WIevY4egG+Q51/FUHRvXtLq4RT9+4tkyR165agwkL3MRvTWLru74K7d1+pTlFccHnnzoH9zcsrkd9vHPZ1qykct/j4SF104anatau4xudrUp/jdrjqcz1C4/P5pO07/Nq0ya9166XtO3yy28PUo0eqxozpp1atWoW6xOOeYRhavXq1DMNQjx49ZDbzIdgAAABNCQFiAAAAAAAAAMedyMhIDR06VEOHDtXOnTuVlZWldeuy9MvyPEmGWrawqkMHQx3am5XUjkDxsVAR3Ppp6ZYq4b28vFJJUu/erZSfX1bnmJ+XbdGs13/TunV56to1Pjhm374ybd1WIKvFrDZtonXTjQM0ZnR3jb3qXU1+eJ4m3jKo1o/wNowDoaZPP8vSvX//Sukr7lTLls5qY1evzj2sbVRWXu7XW++kafnPkxQZaavyXMcOcXrr7TRNe+En3Xbr4CPuFlqfY9+Y/H6jShfPm24coMkPz9Pb76xQn96tNXxYh0bd3sGuGddH14zr0+D1nM7A92HK1CVq27aZfvhhU7VQ21VX9tLNE/9XZf+Oxf7WtU9pK3bom7nr9Ngj51dZXlrqPezjUV9Op02z37lSQ4a+qPE3fqCePVqqS5f4ulc8QvU5Dyuf10fjPOjcuXmt16NNm/bVei05EezIKZQk9enTOsSVHDB6VIruu/f/s3fn4VHV9x7HP7PPhCwkYQsoS1C2QCBhsyQsCoq3KtVWa1ttq9elarVCe3tLV22t10cFq1brrUutrdqr9rba1mtbsLIkKgkkAUnYQ4BIgGwkk2T2mfvHkEMCSUjYJoT363nmyeSc3znne86cc5In+cx35qqmplnP/fc63XD9JOXmjDxj2+vq+ps/f7QkqXB9pdLTjwZGC9dXKi7OpimT05SY6DhrY06X6dOjnae3bavRtKkXGNODwWh37XHjBmrhFWNO+r51Lh237OxhXc5vqzvH7WSd6H6UOYkOuKdDOHw0MFyxR9pXGVEgEFZiYj+NHj1Gc+aO0+jRo2WxWGJd6jlj27ZtcrvdysrKks1mO/ECAAAA6FV4+xcAAAAAAACAXm3IkCG69NJL9Y1v3KOlS5fq5pu/qtEXzdSeval6462gHlvu1/InA/rDG0GtWhPU9h1hNXW/mRw6EIm0D+5J0m3/Pk2pqXH63e/bd998/187tfCKMZo+7YJujbn5piyFQmF96St/UEVFvSRp797D+u73/k/jxg7UvsrD+r/3tkmKfmz9L59apHA4YnQYLC07qKd/+aER1pGkuDi70WnQ7w+poHCfpKPdBw8f9qqursX46PETbaM73nxrk6ZNveC48LAkjRkzQNOnXaBt26r1j3/uaHNcj+8aG4m0D692NK47x7Wz9YdC4Q6nd6WhwWt89Lsk9e/v1Ne+mi2PJ6Bbb5nabqzPF5IkBQKhY6ZHj7XfH+xyW63LHbt85+Ojr3tEHe/Tq68Va1d5nS66KFU/feh9bS492G5+xZ56RSIRXX31eGPa6djfVse+lt2xY0eNXnypUI88fGW76RuKPtV7f9/W5bKtx7ezejqq1+9vnXb0GsqaMlSPP/pvamz06fovviaPp2ddMEOh8HGdSUOh8HFB7bZfT3QdHntdd/866Pha6KiGE92PTnQvad1e26/d1VWdbWvszn50dznp6Ovf6u13ynT1VeOO6+7b1Xpa77+hULjD+SdzHbT16GOrdcGwJP3g+5fqP74zu8Pw8Om6353o+suaMlRzZo/SX/+2pd223313q26/bbqSkpxndUxb3TnOnY25ZOZwXb7gYv3+1eJ204uL92v06FTNnZPe5XrPteMWCIS0a1dtu1qbm/3atOmA7r/v+C7zp3rcVr6/U6//oaTdmBOdsye6H6HnwmGpuiaijZtC+vs/g/rNb8N65DG/fvPbgNYV2uV0jdX8+Vfozjvv1JIl/6FFixZpzJgxhId7YM+ePTp06JDGjx+vfv269yY8AAAA9C50IAYAAAAAAABwzrDb7UpPT1d6erqkBfJ4PNq3b5+qqqp04ECVSjbu1+o1bklSQoJVaUOkwYOlAakmDRhgUmqKSQ5HbPeht/N4AqqubpbfH1QwGJbVGu1DkZISp7feuElfvukP+tlD7+sbd87URx/vVVHRfv3mxS90e8y8uen63n/O1aOPrdaoix7T4MHxstksevevt8hujwY2fvzACl0yc7guvDBJb79Tqi9/abLRVfC/Hlml1/9QohkzLtAlM4dLki6ZeaH+/o/tuufed5Q5aYjmzB6lh/WBvvil1zU7d6TGjRuozElpeu/v23TbHf+rL94wqcttnEhDg1cP/HSlPvtvYzsdM27cQBWur9RPHlih3JyRio+3q7KyQY2NXjU2+oyOiXv3Htbhwx7V1bUoJSVOklRV5dbhwx5jXHeOazgc0f6qRjU3BxQKhWWxmFVT06y6Oo927qzttM6O/OWvW7Rm7W7V1rYoNTVa07funaU33tykm74yxRjX1OTX5tIDkqSPPtqreXOPBs7WFUSDl4WFle3Oo2O1BjTLd9fp4MGmLru8RiIRY72rV+9W/od71K+fXV5vQIcONeu9v2/TCy8W6k9/vFmj01Pldvs099Ln9cPvX6pZs4Zr/363fvSTf+qaq8frxz+87LTub6uyskOSpK1bqzvdj7Y+/bRRl1/5kpqa/PrTn0uN6X5/SMFgSFWVP+xy+cLCSknSxk1Vam72twu0Nzf7VbYlGqDOz99jXC+F66PLbNjwqQKBkGy26HV3372z9P6/dumdv5Tpyzf9j15/9UuKiztxJ8GmJr9qa1tUURENZ5tMJrW0BHTwYJP6xdmNabsr6iRJe/cd1sCB0ZBRV9fhsdf1Xd+YecLroLP7V6tjazjR/ehE95KXXviCNm6qkiQdPNSkiy7zdiQDAAAgAElEQVRKPeHx6k6dUtfnUkfHsjvLSdEOzg/9/F+69toJKiio1OrV5XrrjZt6tP3WaTt21GrO7FE9WrY7/vTnUq3fUKmHH/lAKcku9etnV2Zmmm7792nKmjL0tN3vunv9vfLyDVp07e/021c26Jqrx2v5L9YqJcXVLjx7Nse06s5x7mrMc89+Ttd94VV9/4f/0LfunaXdFXV6861Neu33N8rp7PxfyOficXvzrU9089fe0JULx+jbS3IVDke0Zm2FXnrxCxo0qONPKjiV4/bN+95ReXmdrrs2Qy6XrVvnbHd+P0LHwmGpri6imtqIamrCqq6Rqg5INTUhRSKSw2FTWlqahl0wTNOmp2nYsGFKTe3e/Rqdq66uVkVFhS6++GKOJwAAwDnMFOnpW3EBAAAAAAAAoBfzeDyqqqo6Eio+oEOHqlRbW290SkxIsBwJFEfaBYsTE00ymWJcfC/wzLMfqba2RZI0dGiiPrdofLtwTX29Rx+sKteePfWaPDlNc2aPOi781p0x6zdUKj9/j1JS4nTdtRmKj48GHysrG7S59KDWr69UXJxdF1+cqquvGifTkRdn585arc2r0Ne+miWLJbrO2toWvfpascaNG6grLr9YJpNJq1aXq6SkSnPnjlLWlKHasuWQVr6/U1/4/ESFw5Eut3EiTz2dr8OHox1rp00bpqs+O67d/Lf++IkRPpKklBSXhg1L0iefRMOnAwbE6WtfzdaKlTuNaUOGxOuG6ydpbV6FSkqigcRBg/rpK1+eYnSd7Oq4/ubl9dq3r0GSNHhwvG69ZaqeefYjNTX5JUmTJg3R56/L6HK/wuGIfvXcx8br73BY9MUbMo1A59q8Cs3OHSlJ2rWrVn/6c6laWo52qh07doC+dONk/fr5dTpw4Ggb8KQkp750Y6aGDElot73XXi/Rrl21RudWh8Oi2bNHKWfWiA5re+6/P1ZNTUuX+yBJSxbnKjHRoVd+V6QRI/qrvLxOtbUtcjismjZtmGZ9ZsRp3V8p2kXynb9s0ebNBxSJSDabWZMmDdHCK8Z0Gfx6+50ybdxY1eG8tuvvyO9fLVZ5eZ3xfVycTV/58hQNG5aoiop6vfXHT9rVe/HFqfJ4gqqsbDCmJSY6dPNNWUYIta6uRb985iNJkstl07eX5HYa/paigcGXf7veeL3HjRuozy2aoN/9vkhVVdE3c2RmDpHJZDL2MzHRoUXXjJfDYe3yOuzoupY6vw6amvz67SsbOr1/tT3WrTWMHh0NPHV2P5LU5b1k46YqFRRUGuu8cuEYjR8/qNPjJemEdZ7oXOpsP7pzDl48bplGp6fqP787R0VF+zVx4mBdOi9dDsfRsOiJ1vP3f2xXQcE+RSKSxWJSZmaaFl0zvlvLdtf7/9qlN97cqLg4u2prW9TU5NPhw15t+uSA1n14j9as3X3K9zupZ9dfS0tAK9/fqR07ajRhwiBduXDMcT8zztaY7hzn7r4WXm9Q//pgl7ZsOaRRo1K0YP5Fxhtc+tJxC4cj+ueKHSotPahBg+I1ceJgZU0Zelz9p+u45X+4R7W1Lca10ZOf0V3dj853Ho9UVx9RdXVENbVh1dZK1TUm1dcHFT7SEL1//wQNGDBQQ4YMVVpamtLS0tS/f/9u/46H7nG73SopKdHQoUM1evToWJcDAACAk1dKgBgAAAAAAADAecHtdqu6ulr19fWqrq5WdfUBHTp0SE1N0Y+mN5ulpCSrkvtLyckRJfc3KTnZpPh4KSE++hx928GDTfrj/35ywnF33D7jnOsG2Jf3DWcG50zP9fZjdvG4ZbpodKree/fWs77t7h6b6dMv0I9+vEL/eO/W4wJ/K1bukN8fOu5NGye7Lc5doHcJhaTGxojqD0dUX9/6VaqvN6n+cFhebzQlbLGYlZiYoIEDB2vgwIFKTk7WwIEDNWTIENntBK7PNK/Xq+LiYsXHx2vixImEswEAAM5tpZ1//gwAAAAAAAAA9CEJCQlKSEg4bnpLS4tqa2tVX1+vw4cPq76+XrV1ddq5q06Njc1q7cHgdJrVP8ms/v0jSkqSEhNMSkiQkpJMSkwwKyFBspBDOqcFg+Fudbg9F/ty9OV9w5nBOdNzvf2YRSJSrF6u7h6bp57+UIFASJGI2n0qQDgc0dq8Cn1nyezTti3OXeDsiUQiam42qdEdltstNTRE1OiOqLExosOHzTrcILndQWN8XJxT/fsnKTl5gNJH91dycrKSk5OVkpKipKQkQqsxEgqFtHnzZtlsNo0fP57XAQAAoA+gAzEAAAAAAAAAdCIUCqmhocEIFtfX16uhoUENDfVqbGyU292kcPjon1jj461HwsShdiHjxESz+sVJ8fGSy8U/2gEAZ9ennzZq7ITlGj68vzZvXCyzuXf+LHrt9RJ97ZY3NX7cIF122WjFx9t14IBb4XBE3/vuXI0fPyjWJQI4RjAoud0RNTVH1NQU7SLc6I4cCQqbjjwPKxQ6+jtzv35OJSYmKDGxv5KSouHg/v2PBoXpJNz7RCIRlZaWyu12Kzs7Ww6HI9YlAQAA4NSVEiAGAAAAAAAAgFPg9XrldrvldrtVX18vt9utpqYm1dfXyO1u1OHDbgUCRzuqWSwmuVxmuVxSQrwUHx9RQoJJCfEmJSSYjJBxUqJJZCcAAKeqtrZFzzz7kfH9wIH9dNVnx2nEiP4xrKpz27ZV6y9/3aJD1U1KH5Wi7OxhmjnjwliXBZx3vF7J3RSRxxMNBrvdEbmbItGwcJNF7ibJ4wmrqSnUbjmn066EhHglJCQpOTlF8fHxSkhIUHJyshISEpSUlERA+By0Y8cOHThwQJMnT1ZiYmKsywEAAMDpQYAYAAAAAAAAAM60YDBohIybmpqM5263W15vs9zuaDfj5mZvu49Ut1pNcjpNcrlMRtjY5TLJ6ZQROHY6o4HjxASTaAQGAACAjrR2CnY3ReT16mgw+EhI2Ou1yO2W3E1htbSE233KhsVilsvlNILBTqdLCQkJxqM1JJyYmCiLxRLDvcSZ8Omnn2rnzp0aP368Bg2iEzwAAEAfQoAYAAAAAAAAAHqLYDCo5uZmud1uNTc3t3u0tLSopaVJTU3uI8+9CoXC7Za3282KjzcrziXFxUXkcin6OBIyjoszHZlmUpwr+pwGcAAAAOeOYDAa/vUcCQF7PDryiKjlyPctLRF5PGa1eExqaQmrpSWkY1MBcXFO9esXp7i4OMXFRUPA0edx6tevn+Lj49WvXz8lJCTIwbvUzlt1dXXavHmzRo4cqeHDh8e6HAAAAJxeBIgBAAAAAAAA4Fzl8/nU1NR0JFAcfbR+7/F41NLSLI+nWR6PRx6PVx6PT8f+SdhsNikuziKXy3QkaByWyxU58n20w7HT+Co5HUe7HlutMdpxAACAc1g4LHm90U7AXt/R59FOwEenRYPAJrW06EhgOKxA4Ph/7zscNrlcDrlcLsXF9ZPLFX/k+dFAcOujdZrJZIrBnuNc0tLSouLiYqWmpmrcuHGxLgcAAACnHwFiAAAAAAAAADifeL1eI2B87OPo9GZ5PC3yer3yeqPB47YfY93KYjHJ6TTL6WwNG0eOPNqHjZ1Ok+x2yW6PfnU6JIcj+pwQMgAAOJdEIpLPJ3m9kj8Qkd8v+f3R4K/PJ/l8ESMAHA0Em448JK8vIq83Ir8/3OG6nU67nM5oENjpdMnligZ+XS7XcY+2081m81k+Cujr/H6/iouL5XA4lJmZyTkGAADQN5Xyp1kAAAAAAAAAOI84nU45nc4eLxcIBNoEij3G844etXUt8no9R8b55PMFjut83MpkkhwOs5xOs+w2yW6XHA7J4QjL4TgaOnbYo2HkdkFkp0kOe/tpAAAAxwqFJL8/Gur1HQn8RoO/0a6/rSFgf6A1HByR328yHl5fRD5fNPgbDHben8vhsMnhcBi/bzmdcXK6XOqf7DSmRcPBzg4fQG8QDodVWloqScrIyCA8DAAA0IfRgRgAAAAAAAAAcMYFAgH5/X75/X55vV75/X75fD7ja+uj/RiffD7vkWk+eb0++f0BhUIdd+2TJKfTLIfDHA0U20xyOCJtwsjRoHG0A3L0uc0WfW61Rp/bba2dlSWLRbLZzuJBAgAACodlBHpDIcnri07z+SIKBKRAIHKk06+OBH4jRgfg1sCvzxeRP2Ayuv2GQp3/S9zptMtut8nhsMtut8vhcMrhcMlud8jhcMhut8vpdMpub53fflrr9w6H4yweJeDM2bJli+rq6pSVlaW4uLhYlwMAAIAzp5QAMQAAAAAAAADgnBMMBo1OyMFg0OiQ3Nm0YNCvYDAgj6flyDSvgsGQvF5/t7ZntZrkdJpls5lktUpWS0RWq+RyRb9arTLmOZ2SzWoypkfHmY4bZ7VEv4+LM8liOcMHDACA0yQYjD4CgYi8vqPPW6d7PEefB4NSIBgN9x4dZ1YwaJLHc2RMqHVeWB5P12HfVlarRU6nQzabVVar7Uhn335yOp2y2WyyWq3tuv0eO81qtcpqtSo+Pl4mk+ksHDXg3LB7927t27dPkyZNUnJycqzLAQAAwJlFgBgAAAAAAAAAcH7zer0KhUJG9+NwOCyPx6NQKGR0Tg6FQu3GBQKBY6b5FAj4FQwG5fV6FA6H5fP5FQgEu+yY3MpqNclqNcnhsMhikRz21rCxZLdHZLFE2nVFNpslhz0aeGr9xHO7PRpEbh1jMpmOzjuyTGuA2WSKdl4GAJybWsO54XC0G68k+fxSJCIFAlIwGDE6+UrRUK8U/T4cjs4PBI92+21dxus1KRyOdvANhkwKBiWvN3ykA/CJf55J0Y6+VqtFNptVdrtdFotFTqdLFotVNptddrvjyDSnLBaL0dnXbDbL5XLJYrHIZrO1WfboOJvNJgvvugHOiOrqapWVlWnMmDFKS0uLdTkAAAA48wgQAwAAAAAAAABwpnm93iOhYl8H4eNoIDkYDMrn8ykUCsnn8ykYDB4zzWOElFvDzZFIRF5vNDnm9wcUDvf8T/4Oh1kmU2tnZJPM5mjgWJJcruhXuz0iszkiq9V0JJx8NIDssEtm89EOy2az5HB0EW62RqdZLCbZ7UfraB0LAL1Ra/BWkkIhye+PGM8DQR25H7cf29pxNxJRu5BvOBxpEwCWfL7ourxekyST/P7oeo+uOxrija47cpL3eptMJtORjr1Wmc1mI7TrcDhltdpktdrkcETDvQ6HQ1arVTZbdJrZbJbT6TQ693Y0rnV9AM49DQ0N2rRpk4YNG6b09PRYlwMAAICzgwAxAAAAAAAAAAB9SWvwuDWwLEk+n0+RSMQIKofDYfmPtKX0eDySZHRfDgaDRji57fLReQEFg4Ej644m5bxHEnPRTs1hhUJhBQLBU9oHm80kiyUaQo4GjY9+vLyzTedkuz0aSo6Ok2y2o90xXa6jy9hs7cfZbW3W1ya4HF2fyRhnsx2d13Z9rR2d23I6o52d26LTM85HrcHYY/l8ESOA2+rI+x8kSQcONKmqyq2qAw06UNWo5OQEzZs3TtLR7rlStFNuKBR9HgpJ/sDRea0BXklHQrhtQr6BoxftkdtedFzg2GDw0SJbQ7sny2w2yX7kHRkuV/Rm0xqyjYZu7TKZTHI4ou/WaA3qtoZ0o+He6E3E6Ty6vMViMbr0RrvNd7Ru25F1cxMC0DWv16uioiIlJSUpIyMj1uUAAADg7Cm1xroCAAAAAAAAAABw+rQGzyQpLi4uZnV0HECOhpslGUHlY8e2Hd86rnWZaIdPb7txrX1Sjl1f/WFPm3HeDtcXDUL724wL6Gz0XbFYTLLZTMdNb+0CfSyHXR2Ek01yOo+v1WyOyG4/fnp03cfXYrcfH4Y+kdau06fiVDtOm0zR0PbJCgSkYPDUXuu2HWlPVms32p5oG5JtFQ5H1OYSMoRCJgUCxx+n1g63HdVz7CXQtvtt+3VHFAicuPZQKCS3263Gxka53W653W41NDTI7Xarvr5ebrdbTU1NxjXa6sorr1R17WhJR7vnSjI66Eo6LiDrcDiNDritHXUlyWY3Kz7h6LghDkeb9dk6XZ/T6TTGtb23tg32tnbybTveZrPJ0vquBQDoxUKhkDZv3iyHw6Fx48bFuhwAAACcZXQgBgAAAAAAAAAAOMbxQeP2Aee2/145NtjcKhQKGaHmtlo7QR/r2PV2te62XaS7s26/36dw+PjEqMfTcty0rrQ9LifL7w8o1FF6tYfr6Cp4O2bMGO3fv19NTU2djmkbSj0Z0RD3qXV3PZkOsXa7o8NwqtN5/BsG2gZd22rtXnustmHathxtAret2na+PXabFotFTz75pN566y1VV1e3W8ZqtcpkMhnd0DtTWFioadOmdTofAHDqNm/eLLfbrezsbDqWAwAAnH9KCRADAAAAAAAAAACgT6mqqlJycnKHAVecPa+//rruu+8+1dfX96i7t8vlUmNjY4dhZgDA6bFr1y7t379fkydPVmJiYqzLAQAAwNlX2sMPpQIAAAAAAAAAAAB6t7S0NMLDvcBXvvIV7dq1S7fddptMJlOHnZOPZTKZdMkllxAeBoAz6ODBg6qsrNSYMWMIDwMAAJzHCBADAAAAAAAAAAAAOCP69++vF154QatWrdKIESNOGAy2WCzat2+fHnroIa1atUotLS1nqVIAOD80NDRo+/btGj58uAYPHhzrcgAAABBDpkhPPi8IAAAAAAAAAAAAAE6Cx+PRo48+qocfflgmk0mBQKDDcfPnz9eOHTu0d+9e2Ww2TZ06VbNmzdKcOXM0a9YsDRw48CxXDgB9g9frVVFRkRISEjRx4kSZTKZYlwQAAIDYKSVADAAAAAAAAAAAAOCs2bRpk2655RZt3LhR4XC43TyLxaLDhw8rPj5eVVVVysvLU15envLz81VcXKxwOKz09HTl5OQoNzdXOTk5mjBhAiE4ADiBUCik4uJiRSIRZWdny2KxxLokAAAAxBYBYgAAAAAAAAAAAABnVzgc1osvvqjFixcrEAgoGAxKkiZPnqySkpIOl2lqatLHH39sBIrz8/Pl8Xg0ePBgTZ8+3QgUz5gxQ3a7/WzuDgD0eps3b1ZjY6Oys7PldDpjXQ4AAABijwAxAAAAAAAAAAAAgNjYvXu37rjjDv3rX/+SyWTS/fffryeeeKJbywaDQW3cuNEIFH/wwQeqqalRv379NGXKFCNQPGfOHCUlJZ3hPQGA3qu8vFyVlZXKzMxU//79Y10OAAAAegcCxAAAAAAAAAAAAABi6/e//70WL16s559/Xl/4whdOej3l5eVGoDgvL09lZWWyWCwaO3ascnNztWDBAs2dO1eDBg06jdUDQO918OBBbd26VWPGjFFaWlqsywEAAEDvQYAYAAAAAAAAAAAAfcv27duVlpamhISEWJeCHqipqZHNZjut3YKrqqq0fv165efna+XKlSouLlY4HFZ6erpycnKMLsUTJkyQyWQ6bdsFgN6gsbFRGzdu1LBhw5Senh7rcgAAANC7ECAGAAAAAAAAAABA37J69WpNmDBBAwcOjHUp6GWampr08ccfG12K8/Pz5fF4NHjwYE2fPt0IFM+YMUN2uz3W5QLASfN6vSouLlZ8fLwmTpzImyQAAABwLALEAAAAAAAAAAAA6FsIEKO7gsGgNm7caASKP/jgA9XU1Khfv36aMmWKESiePXu2+vfvH+tyAaBbQqGQSkpKFA6HlZWVJavVGuuSAAAA0PsQIAYAAAAAAAAAAEDfQoAYp6K8vNwIFOfl5amsrEwWi0Vjx441AsWXXnqpLrzwwliXCgAdKi0tVUNDg7KysuRyuWJdDgAAAHonAsQAAAAAAAAAAADoWwgQ43SqqqrS+vXrjUBxQUGBAoGA0tPTlZOTY4SKJ0yYIJPJFOtyAZzndu/erX379ikzM5PO6QAAAOgKAWIAAAAAAAAAAAD0LQSIcSY1NTXp448/NroU5+fny+PxaPDgwZo+fboRKJ4xY4bsdnusywVwHqmurlZZWZnGjBmjtLS0WJcDAACA3o0AMQAAAAAAAAAAAPoWAsQ4m4LBoDZu3GgEij/44APV1NSoX79+mjJlihEonj17Nt1AAZwxbrdbJSUlGjp0qEaPHh3rcgAAAND7ESAGAAAAAAAAAABA30KAGLFWXl5uBIrz8vJUVlYmi8WisWPHGoHiefPmafjw4bEuFUAf4PP5VFRUpISEBGVkZMhkMsW6JAAAAPR+BIgBAAAAAAAAAADQt1RVVSk5OVlOpzPWpQCSpAMHDqiwsNAIFBcUFCgQCCgtLU25ublasGCBcnJyNGHCBIJ/AHokHA6rpKREoVBI2dnZslgssS4JAAAA5wYCxAAAAAAAAAAAAABwNjU1NamkpET5+flauXKlPvzwQ7W0tGjQoEGaMWOG0aV4+vTpcjgcsS4XQC+2ZcsW1dXVKTs7Wy6XK9blAAAA4NxBgBgAAAAAAAAAAAAAYikYDGrjxo3Ky8tTfn6+Vq1aperqasXFxSkrK8sIFM+ePVv9+/ePdbkAeom9e/eqoqJCEydOVEpKSqzLAQAAwLmFADEAAAAAAAAAAAAA9Dbl5eVGoDgvL09btmyR2WzW2LFjjUDxvHnzNHz48FiXCiAG6urqtHnzZo0ePVrDhg2LdTkAAAA49xAgBgAAAAAAAAAAAIDe7sCBAyosLDQCxYWFhfL7/UpLSzMCxbm5ucrOzpbJZIp1uQDOoJaWFhUXFys1NVXjxo2LdTkAAAA4NxEgBgAAAAAAAAAAAIBzTXNzs4qLi41A8dq1a9XQ0KBBgwZpxowZRqh4+vTpcjgcsS4XwGkSCoVUVFQkq9WqyZMny2w2x7okAAAAnJsIEAMAAAAAAAAAAADAuS4YDGrjxo3Ky8tTfn6+Vq1aperqasXFxSkrK6tdl+Lk5ORYlwvgJH3yySdqampSdnY2bw4AAADAqSBADAAAAAAAAAAAAAB9UXl5uREozsvL05YtW2Q2mzV27FgjUDx37lyNGDEi1qUC6IZdu3Zp//79mjJlihISEmJdDgAAAM5tBIgBAAAAAAAAAADQt2zfvl1paWmEq4BjHDx4UAUFBUaguLCwUH6/X2lpae06FGdnZ8tkMsW6XABtHDx4UFu3btXYsWM1ZMiQWJcDAACAcx8BYgAAAAAAAAAAAPQtq1ev1oQJEzRw4MBYlwL0as3NzSouLjYCxWvXrlVDQ4MSExM1Y8YMLViwQDk5OZo+fbocDkesywXOW01NTSouLtawYcOUnp4e63IAAADQNxAgBgAAAAAAAAAAQN9CgBg4OaFQSFu3blV+fr5Wrlyp1atX69ChQ4qLi1NWVla7LsXJycmxLhc4L/j9fhUVFSkuLk6TJk2iOzgAAABOFwLEAAAAAAAAAAAA6FsIEAOnT3l5ufLy8owuxVu2bJHZbNbYsWONQPHcuXM1YsSIWJcK9DnhcFgbN25UIBBQdna2rFZrrEsCAABA30GAGAAAAAAAAAAAAH0LAWLgzDl48KAKCgqMQHFhYaH8fr/S0tLadSjOzs6mUypwirZt26bq6mplZWWpX79+sS4HAAAAfQsBYgAAAAAAAAAAAPQtBIiBs6e5uVnFxcVGoHjt2rVqaGhQYmKiZsyYYQSKZ8+eLYfDEetygXNGZWWldu3apYkTJyo1NTXW5QAAAKDvIUAMAAAAAAAAAACAvoUAMRA7oVBIW7duNQLFq1at0r59+xQXF6esrKx2XYqTk5NjXS7QK9XX1+uTTz7RqFGjdOGFF8a6HAAAAPRNBIgBAAAAAAAAAADQtxAgBnqX8vJy5eXlGaHiLVu2yGw2a+zYsUageM6cORo5cmSsSwVizuPxqKioSCkpKRo/fnysywEAAEDfRYAYAAAAAAAAAAAAfUtVVZWSk5PldDpjXQqADhw8eFAFBQVGoLiwsFB+v19paWntOhRnZWXJbDbHulzgrAmFQiouLpbZbNaUKVM4/wEAAHAmESAGAAAAAAAAAAAAAMROc3OziouLjUBxXl6eDh8+rMTERM2YMcMIFOfm5vLGAPRpZWVlOnz4sLKzsznXAQAAcKYRIAYAAAAAAAAAAAAA9B6hUEhbt241AsWrV6/W3r17ZbPZlJmZqQULFignJ0c5OTlKSUmJdbnAabF3715VVFQoMzNT/fv3j3U5AAAA6PsIEAMAAAAAAAAAAAAAerf9+/crPz9fK1euVF5enrZs2SKz2ayxY8cqNzdXOTk5mjNnjkaOHBnrUoEeq6+v1yeffKLRo0dr2LBhsS4HAAAA5wcCxAAAAAAAAAAAAACAc8uhQ4e0bt06o0txYWGh/H6/0tLSjEBxbm6usrKyZDabY10u0Cmv16uioiIlJydr/PjxsS4HAAAA5w8CxAAAAAAAAAAAAACAc1tzc7OKi4uNQHFeXp4OHz6sxMREzZgxwwgU5+bmyul0xrpcQJIUDodVXFwsSYTdAQAAcLYRIAYAAAAAAAAAAAAA9C2hUEhbt241AsWrV6/W3r17ZbPZlJmZaQSK58+fr5SUlFiXi/NUWVmZ6uvrNXXqVILtAAAAONsIEAMAAAAAAAAAAAAA+r79+/cbgeL8/HwVFRXJZDJp3Lhxys3NVU5OjmbPnq1Ro0bFulScB/bt26fdu3dr4sSJhNgBAAAQCwSIAQAAAAAAAAAA0Lds375daWlpSkhIiHUpAHqxQ4cOad26dUaoeP369fL5fEpLSzMCxbm5ucrKypLZbI51uehD6uvr9cknnyg9PV0XXHBBrMsBAADA+YkAMQAAAAAAAAAAAPqW1atXa8KECRo4cGCsSwFwDmlpaVFRUVG7LsX19fVKSEjQzJkzjUBxbm6unE5nrMvFOcrr9aqoqEjJyckaP358rMsBAADA+YsAMQAAAAAAAAAAAPoWAsQATodQKKStW7cageI1a9Zoz549stlsyszMNALF8+fPV0pKSqzLxTkgHA6rpKRE4XBYWVlZslgssS4JAAAA5y8CxAAAAAAAAPd7fVIAACAASURBVAAAAOhbCBADOFP279/frkNxUVGRIpGI0tPTtWDBAuXk5Gj27NkaNWpUrEtFL7R161bV1tYqOztbLpcr1uUAAADg/EaAGAAAAAAAAAAAAH0LAWIAZ0tjY6MKCgq0cuVK5eXlaf369fL5fEpLS1Nubq7RpTgrK0tmsznW5SKGKisrtWvXLk2aNImO1QAAAOgNCBADAAAAAAAAAACgbyFADCBWWlpaVFRU1K5LcX19vRISEjRz5kwjUJybmyun0xnrcnGWHD58WJs2bdKoUaN04YUXxrocAAAAQCJADAAAAAAAAAAAgL6GADGA3iIUCmnr1q1GoHjNmjXas2ePrFarJk+ebASKL7vsMqWmpsa6XJwBPp9PGzZsUFJSkjIyMmJdDgAAANCKADEAAAAAAAAAAAD6FgLEAHqz/fv3t+tQXFRUpEgkovT0dCNQvGDBAqWnp8e6VJyicDiskpIShcNhZWVlyWKxxLokAAAAoBUBYgAAAAAAAABA31NWVqbq6upYlwEAAM4Ai8WiKVOmKD4+PtalnBaNjY0qKCgwAsVr166Vz+dTWlqacnNzjVBxVlaWzGZzrMtFD2zbtk01NTXKzs6Wy+WKdTkAAABAWwSIAQAAAAAAAAB9T1lZmXw+ny644IJYlwIAAE6jxsZGVVZWymazKTMzs8+EiNtqaWlRUVFRuy7F9fX1SkhI0MyZM41AcU5ODqHUXqyyslK7du3SpEmTlJKSEutyAAAAgGMRIAYAAAAAAAAA9D1lZWWSpAkTJsS4EgAAcDpVV1errKxMycnJcrvdyszMVEJCQqzLOqNCoZC2bt1qBIrXrl2riooKWa1WTZ482QgUX3bZZUpNTY11uZDU0NCgjRs3auTIkRo+fHisywEAAAA6QoAYAAAAAAAAAND3ECAGAKBvag0Qz549W5s3bz5vQsTH2r9/f7sOxcXFxQqHw0pPT2/XoTgjIyPWpZ53fD6fNmzYoKSkJI4/AAAAejMCxAAAAAAAAACAvocAMQAAfVNrgHju3LkKh8PndYi4rcbGRhUUFBiB4rVr18rn8yktLc0IE+fm5iorK0tmsznW5fZZ4XBYJSUlCoVCys7OlsViiXVJAAAAQGcIEAMAAAAAAAAA+h4CxAAA9E1tA8SSCBF3IhAIaNOmTVq5cqXy8vL04Ycfqq6uTgkJCZo5c2a7LsUulyvW5fYZ27ZtU01NjbKzszmuAAAA6O0IEAMAAAAAAAAA+h4CxAAA9E3HBoglQsTdEQqFtHXrVuXn5ysvL09r165VRUWFrFarJk+ebASKL730Ug0YMCDW5Z6TPv30U+3cuVMTJ05UampqrMsBAAAAToQAMQAAAAAAAACg7yFADABA39RRgFgiRHwy9u/fbwSK8/PzVVxcrHA4rPT09HYdijMyMmJdaq/X2NiokpISjRw5UsOHD491OQAAAEB3ECAGAAAAAAAAAPQ9BIgBAOibGhsbVVZWJp/P1+kYi8Wi3Nzcs1hV39DY2KiCggIjUJyXlyev16u0tDRNnTpVubm5WrBggbKysmQ2m2Ndbq/h8/lUVFSkxMREwtYAAAA4lxAgBgAAAAAAAAD0PQSIAQDouxobGzsNEDc2NqqysvK4DsXouUAgoE2bNhmB4vfff191dXWKj4/XJZdc0q5LscvlinW5MRGJRFRSUqJgMKjs7GxZLJZYlwQAAAB0FwFiAAAAAAAAAEDfQ4AYAIDzU3V1tcrKyggQnwHhcFhbtmwxuhPn5eVp9+7dslqtmjx5shEovvTSSzVgwIBYl3tW7Ny5UwcOHFB2drbi4uJiXQ4AAADQE6XWWFcAAAAAAAAAAAAAAH1dS0uLrFar7HZ7rEs5K863/T0fmM1mZWRkKCMjQ3feeackaf/+/UagOD8/X88884zC4bDS09PbdSjOyMiIcfWn36FDh/Tpp59qwoQJhIcBAABwTiJADAAAAAAAAABADHz44Yd67bXXNG/ePN1www2djvvggw/05z//WcuXL5fNZjut6z5TPvzwQ1ksFs2cOfOsb7szpaWleu6551RaWqpnnnnmuCBTQ0ODPv/5zysxMVHf+c53lJycrGXLlqmiokLTp09XIBBQUlKS7rnnHh0+fFgvvPCC1q9frzlz5ujWW2/VyJEjjXVt2rRJy5Yt0759+3TJJZfIarXK5/Np27Zt+uIXv6ibbrpJfr9fy5cv1+7duxUIBORyuXTXXXfJYrH0qM7c3FxJktfr1fPPP68rrrhC48aN6/Q4uN1uPfLII9q8ebNyc3O1ZMmSDs+r7du36+mnn1Zpaamuuuoq3XnnnXI4HHr55Zf1xhtvaOTIkVq8eLFsNpuWL1+u8vJyZWdny2QyyWQy6fbbb9fYsWNP+Lrs2rVLf/zjHzV37lxdcsklx81//vnnlZSUpBtvvPGE6zpZp7KN3bt36+WXX5Yk/exnPzup7Xf22nVUV3df5+5uQ5IKCwu1efNm5eXlafny5XI6nSe1jdOtq3M1GAzq17/+tex2u1paWnTXXXfJ4XCcsXlS18ewq3mhUEi//e1vtW3bNs2fP1/z58/v9fvrdrv16KOPqqSkRJ/5zGe0dOlSWSyW07q/6DuGDh2qG264wfh9w+12a926dUag+P7775fX61VaWpqmTp1qBIpnzpzZ7d9reqOWlhZt375dF1xwgQYOHBjrcgAAAICTYo51AQAAAAAAAAAAnI9mzZqljRs36tChQ12Os1gs+uUvf6lwOHxa1h0KhVRVVdXjenti+fLlevzxx8/oNnoqIyNDc+bM0Zo1a7R8+fLj5v/mN7/Rhg0bNGDAAOXm5iojI0OTJk1SUVGRHnvsMT3xxBNyuVwaO3as7Ha7rr76aq1atUo33nhju/CwJGVmZiojI0ObNm3SI488ooceekiPPfaYXnjhBX366aeSpJ/85Cc6cOCAnn/+eT311FPau3evduzY0eM6pWio+M9//rO+/e1vq6GhodNjEIlEtGTJEo0ZM0bXXHONli9frh/84Acdjh0zZoxycnK0atUqfeMb31BiYqIcDofuuusuFRQUKDMzU5MnT9aECRM0ZcoUrVu3TsuXL9eyZcs0c+ZMTZw4UQUFBSd8Xfr379/uuBxr8ODBJwxmneo53Z1tdGbUqFEKh8PasmXLSS3f1Wt3bF3dfZ17so2amhotXbpUt956q3Jzc7Vnz56T2sbpdqJz9dFHH1UkEtEdd9yhMWPG6Kabbjqj87o6hl3N8/v9uu6667Rv3z499thjWrhwoazW4/s79bb9ffzxx3XNNddo6dKleu655/TKK6+c1v1F35aQkKAFCxbowQcf1IoVK9TY2Kj169fre9/7nlwulx577DHNnj1bKSkpuvzyy/Xggw9q5cqV8ng8sS6920KhkEpLS9WvXz+lp6fHuhwAAADgpBEgBgAAAAAAAAAgRpKTk084pjtdXHuy7h/96EcqKio6qXV2x759+2Sz2fT222+roqLijG3nZDgcDl177bV67bXXdODAAWN6OBxWSUmJxo8fL6fT2W682Rz9V4rJZNK9996rw4cP67333jPGte1Q2pbT6TSWbTVgwADdfvvtkqS1a9cawbrExES98sorqqmpOak6k5KS9OUvf/mE59PGjRu1ePFi3XLLLbrjjjv08MMP67333ut0vN1ub/e17fS20+x2e7vupNdff70sFov++c9/dlmPJKWmpnYZ3v3c5z6nyy67rMt1nOo53Z1tdKU713Fnunrtjq2ru69zT7axZs0a47W89dZbNXny5JPaxunW1blaX1+vRx55RF/60pckSQsXLtQHH3ygzZs3n5F5UtfHsKt5DzzwgOrq6vTAAw+cM/vr8/l09913a+bMmcrNzdWiRYsUDAZP6/7i/GKz2TR16lTdf//9evPNN1VbW6tdu3Zp+fLlSktL0+9+9ztdfvnlSkxM1LRp03T//ffrrbfeMn4m9kbbtm1TMBjUhAkTZDKZYl0OAAAAcNJ4yycAAAAAAAAAAEcUFRXp1Vdf1Y033qhf//rXCgQCevDBBzV69Ght2rRJv//973XDDTfo6aef1re+9S0lJydrxYoVCoVCam5u1uLFi7VixQo98cQTuuWWW/T1r39du3bt0g9/+EM9+eST+uUvf6krrrhCc+fO7XD777zzjkwmkzZs2KDrr79ekyZNMuatX79e//3f/634+Hj99Kc/1aBBgyRJn3zyif76179q+/btuv32242utB358MMP9eyzz6q2tlZWq1ULFy5UcXGxduzYoU8//VTDhw/XF77wBUnS6tWrVV9fr/Lycl1yySWaNWtWt47hiy++qCeffFIHDhzQ008/rSeeeMKYV1lZqddff10XXXSRqqurtWLFCt1+++266KKLtHz5cjU1Nempp55SSkqKGhsb9eqrr8pms6miokLf/OY3NXToUFVUVOi1115TVlaWSkpKVFBQoJ/85CfKzs7uVn1f/epXtXbtWj377LN66KGHJEnvvvuuFi1apGXLlnW5bGVlpSS1e1164he/+IW+853vSJLmzp2rZcuWKS0tTYsXL1ZqaqruuOOO01JnZ6ZMmdLue5fLpYkTJ57UurqyYcMG+Xw+ZWRkdHsZj8ejH/zgByorK9P3vvc9feYzn1FNTY3eeOMNBQIBLV68WNLx56Wk487pzs6d/fv36/XXX1dGRob+/ve/a/LkyVq0aNFx23C73XrjjTckSXV1dbr33nsVFxfX6bXSXR1t/9///d87HNvRvnemsrJSr732miZOnKi1a9dqx44d+sY3vqErrriiy+UKCgr01ltvaffu3Xrqqae0cOFCjRs3rkf71Mrj8ei5556TyWRSXV2dLrnkEiNYdzLXa1fn6qZNm+RyuTRgwABJktls1sUXX6xVq1Zp0qRJp33eyV4jLS0teuaZZ3TdddfpjjvukNfr1X333aeZM2f2+v1NS0uTJNXW1srhcOiWW245bft7ont4Z9cf+pb09HTdeeeduvPOOyVF74/5+fnKy8tTfn6+nnnmGYXDYaWnpysnJ0e5ubnKycnp0c+VM2Xfvn2qqanRpEmTOn0TEQAAAHCuIEAMAAAAAAAAAMAR4XBYv/jFLzR48GD96Ec/0s9//nP927/9m7Zs2SK/369ly5Zp6NCh+vznP6/6+np99atfVWlpqaxWq374wx/q+uuv19/+9jctW7bM6JzXv39/ZWdna8iQITKZTIpEIh1uu6ysTEuWLFF5ebkSExN12223qaCgwJhfUlKiJUuW6Pvf/74WLVqkjz/+WPv27dNLL72kJ598UiUlJfrMZz6j3bt3a8iQIR1uY9asWRoxYoQ+97nPaeHChZKinScLCws1ePBgDRgwQJdffrlcLpeWLFmioqIiNTY26u233+5WgNjr9aqhoUFDhgzRt771Ld1666366U9/qoSEBEnSoEGDtGbNGq1bt07PPvusLrzwQn3lK1/RCy+8YISun3vuOS1dulTz58/Xyy+/rIkTJ2rFihWaMWOGNm/erCFDhuhvf/ubysrK9NRTT8nr9erhhx/W//7v/3brNXa5XLrnnnv0zDPP6Pvf/77i4uL0zjvv6Ne//nWHwdxAIKB3331X+/fv17PPPqsHHnhAubm5Wrdu3Qm31dzcrO9+97uKRCIqLy9XfX29ESD+2c9+Jq/Xq6VLl+qVV17Riy++2C5o19M6T8b777+vu+6664Tj7r33XqNbshQNCh4rEAjoF7/4hXbu3KnNmzfrueee03XXXdftWtasWaP/+q//0q9+9Ss99NBD+r//+z85nU4VFRUpHA4b2zj2vPza177W7pwOhUKdnjuS9MILL2j69Om688475Xa7j9tGKBTS9ddfr9dff12pqam65pprZLPZtGTJkg6vlcTExG7vY0fb78yxdXXFYrHoxRdf1LRp0/Tggw/qX//6l66++mpt2bJFo0eP7nS5GTNmaMGCBaqpqdH999/fo/041n/+539q6tSpuuWWWzRv3jxVVVVp4sSJGjx48Cldr63anqs7duw47rgnJSVp3759cjqdp33eySopKVFTU5PuuusuzZo1S2+++aYuu+wy7dixQ0OHDu1y2d6wv2vXrtW3v/1tlZWV6bLLLtM111xzWva3q3t4V9cf+rahQ4fqhhtu0A033CApGiRft26dESi+//775fV6NWTIEE2bNs0IFM+cOVM2m+2s1dnY2Kjdu3dr1KhRMe/UDgAAAJwO5hMPAQAAAAAAAADg/JCVlSVJuvnmm5Wenq7ly5dr586d2rJli6ZNmyZJuvbaa/X5z39eBQUFmj59uhGs/OY3v6l3331XFRUV+o//+A89//zzikQi+sMf/mB0b/z5z3+uefPmdbjtcePGadWqVaqurlZDQ4Oqqqrazb/tttuUnZ2tp59+WuvWrVNFRYVeeuklNTY26qmnntKqVat05ZVXqqKiokf7vG7dOg0YMEB79uyR2WxWdXW1bDabQqGQbrvtNnm9Xt14443dWtfrr7+ugQMH6h//+IccDofC4bBeeuklY77dbldaWpoyMzM1ZMgQ5ebmqr6+XvPmzZPL5dKUKVO0c+dOffjhh0YAUZIuv/xyxcXF6e2335bT6dSQIUM0a9YsDRgwQAsWLFBhYWGP9vmee+5Rc3OzXnnlFZWVlWn8+PGyWCwdjjWZTEpKSlJ2drZWrVqlBx988Lgx5eXluu+++4xHMBiUJPXr10+PP/64li1bpj/96U9asGCBsYzVatUTTzyhwsJC2e12zZ07V6tXrz7pOjvSWV2S9NFHH+miiy4yzseuxj7zzDN67rnnjEdH3UAtFouuvfZa/eUvf9GkSZO6FUxua+HChRowYIA++9nPGq9nfHy8hg8fbozpznnZ1bkzdOhQDR06VPPnz9ecOXN01VVXHbeN/Px82Ww2paamSpL+9Kc/GeHajq6Vnuho+505tq6upKWlaciQIbr66qs1duxY3X333crIyNB7773Xo/pOxYYNG+TxeCRJV155paxWq0aMGHFartdjz9WUlJR256ck+f1+DRgw4IzMO1nNzc2Ki4sz3nzxxS9+UUOHDtU///nPHl2bsdrf2bNn66OPPtLXv/51ffe73z2l/W2rq3Oiq+sP55eEhAQtWLBADz74oFasWCG3263169dr6dKlcrlcevzxxzV79mylpKQoNzdXS5cu1cqVK4370Jng9/tVWlqqlJQUXXjhhWdsOwAAAMDZRAdiAAAAAAAAAAA6kZycrKSkpHahTbM52pujpqamXVBl6NChslqtcrvduuqqq7RkyRK9//77qq+v16BBg064rVAopOeff15f/vKXNXLkyOPmm0wmSdLFF18sq9WqSCSi3bt3a/bs2br99tslSYsXL+7xPq5cuVKDBw/WokWL2u3nBx98oLvvvltjxozR//zP/+jKK6884brWrFmjW2+91fj+pptu0tNPP61vfetbxnFr69gwrNlsVjAYPO7YStKIESM67NhqsVg67ercmUGDBunmm282Oub++Mc/7nSs1WpVbm5ul+sbMGCArr/++nY1deTb3/62wuGwDh06JI/Ho1GjRikrK0tr1qzRjBkz9Pjjj2vu3LknVWdP6qqtrdXKlSv1ox/9qMf70Bmz2axRo0bpjTfe0Ny5czV16tR250J32Wy244KNbZ3ovOzOudPRudiqvLy83b637WzZ2bXSU11t/3QZOXLkKdXYU/fff79+9atf6dJLL9W2bdt09913dziup9drR+fqmDFjVFtbq0gkYtwXa2trNXbsWKWnp5/2eSfroosuUktLi7xer5xOpyTpggsuMIK63b02Y7m/VqtVDz74oP74xz+e0v52pe050dX1h/Ob1WrV1KlTNXXqVCNUXl5ebnQofuutt/Too4/KarVq8uTJysnJUW5urubNm6eBAwee8vYjkYjKyspksVg0bty4U14fAAAA0FvQgRgAAAAAgP9n787Doyrv94/fZ/bJSgIECLtQdgEFKZsiKFZbN1ChiHsVRGtBRavi8lUpFUEtWLECFsVWBa0/qtVaURRRQFbZt7BkYQ2QPbPP/P6YzJCQhYCBIHm/ritXZs55znM+55kz45I7nwAAABwnEmbatm2b6tWrp1/84hflxlxyySVasmSJfD6fJOnQoUNq3LixOnToIJPJpAceeEBjxozRwIEDo8ccPHgwOv54H374oVauXKnOnTvL6/VWGrI7ePCg2rdvr9atW6tdu3aaMWOGioqKJEkZGRlatmxZlddmtVqjAcusrCw9/PDDuvrqqyVJPp9PoVBIhYWF2r59u+bNm6cZM2aUCbNVZvHixerRo4cGDBgQ/Xrssce0e/duLViw4ITHl9arVy8VFRVp3bp10W0HDhwos5YRJxNG9Pl80fV/6KGHlJaWJp/Pp3r16kmSgsFgmfmOf17ReUOhkBISEspct2EYFR4X6Zro9/s1fvz46PbY2Fh17Ngx2v3zZOusTEV15efna86cOZowYYIMw1AwGNSPP/5Y4dhgMFjmWitbl1AoFH3et29fvfDCC7rvvvu0atWqE9Z4/PHHn6v0vsruy9L39MncOxWd4/zzz9f//ve/6PEFBQX65JNPKn2vnE6l66ru+IjVq1dr0KBBNX6Oylx44YW65557lJOTo2nTpqlXr14nrPFEKrtXu3Tpoo4dO2rDhg2SpLy8PGVlZenSSy89LftOVevWrdWjRw8tWbIkuu3QoUPq16/fSb03a/t6MzIyqvULJFVdrxQOKFfUHbb0PVHZ+w+oyHnnnafbbrtNb7zxhnbu3Km9e/fq3XffVb9+/fT999/rt7/9rVJSUtSmTRvddtttmjlzpjZt2nRKn3m7du1SQUGBOnXqFP3LEwAAAMC5gAAxAAAAAAAAAADHmTJlir799ltNmTJFb7/9tiwWi9LS0iQpGri64YYbNHz4cI0bN04bN27U1KlT9e6770Y7Jt51111KSUkp07128ODBeu211yRJLpdLu3fv1u7duyVJTZo00ZIlSzRq1CgtW7ZM2dnZmj59uuLi4tSsWTPNnj1bS5cu1csvv6z3339fknTfffcpEAioffv2+tWvfqXXX39dffr0KTd3aX379tX06dM1b948JSQkyGw268Ybb9SUKVPUuHFjTZo0Sfn5+Xrssce0efNmWa1WDR06tMr1crlcmjBhglq2bFlme0pKiho1aqSJEyfq6NGjCgaDSk9P18GDByUpWt+WLVskKbovNTVVs2bN0qOPPqq1a9fq9ddf1+jRo9WlSxf5/X5lZGRo3759ksIh75ycnAq7E5fm9Xq1ZMkSffPNN/L5fOrYsaN+/etf64EHHpAUDrqlp6dr8+bNcrlc8vl82rBhgwoKCrRjx44yc0WCfZK0du3acmEkn8+ndevWKS8vT5988omWLFmizz77TOPHj9fHH3+sZs2a6fvvv9fIkSP1xRdf6MUXX9SOHTv03HPPnXSdEXv37tXRo0eVnp5e5et09dVXa8GCBbrssss0cOBAde7cWXFxceXGBgKB6DWuXLkyun3btm0qLCzUunXr5PV65ff7tXHjRhUXF0dfx4cfflhXXHGFhgwZovXr11f5uhQXFys7Ozt67ObNm1VcXKyjR49Gr2vfvn3y+XwKBAIV3pel7+mmTZtWeu8UFxdr37592rhxY5nXrPQ5evTooTFjxqh37966+OKLNWrUKA0aNKjS90pBQYG2bNmirKysSn85oPS1Vnb+il670nWdaKwkzZ07V1999ZWef/55jR8/vkw32cqOy8jI0P79+6t9jso89dRT+vDDD/XBBx/o5Zdfjv4iw6m+X090r7766quaPHmy1q9fryeeeEIzZ85UQkLCadt3onWpbN+MGTM0efJkrVixQn//+991yy23qHPnzmf19ebm5qpr166aOnWqFi5cqBUrVmj69Ok/+XpHjBihp556qsp7orL3H1AdqampuummmzRt2jStWrVKubm5WrhwoW699Vbt379fY8eOVZcuXZSamqprrrlGkydP1nfffXfCz+7Dhw8rKytL7dq1q/CflwAAAMDPmRE63b8eDQAAAAAAAADAGbZ582ZJUqdOnU7quEAgIIvFot27dysvL0/t2rWT0+mUJC1dujQaMrnwwgsVHx8vKdzddP/+/erUqZPsdnuZ+fLy8pSYmBh9npmZqQYNGsjpdGrDhg3RkGT79u3VuHFj7d27VyaTSU2aNNG2bdvUrFkzxcbGKhgMateuXfJ4POrQoUOZP/Hu9/u1adMmJSYmqlWrVpJU4dwRoVBIW7duVfv27WUymVRYWKi9e/eqffv22rdvnwzDUKNGjZSZmak9e/aoU6dOJ/zz3zt37lRWVpYkqV+/ftHufOvWrVNubq4kqVGjRrLb7crIyJAkdejQQWlpafL7/TIMQx07doy+bq1atVLLli1VUFCg7du3q02bNtHuu+np6dqzZ4+k8OsbOaZBgwYVBvMiduzYEQ2stWjRQq1bt9aRI0dUv359SdK3334bDXUmJSUpLi5OmZmZ0eN79uyp2NhYSdKePXvKBOfatm2rpk2bVniu4zVu3Fjt27dXenq6DMPQwYMH5XA41KlTJ5nN5pOus2vXrnK5XFq9erUCgYAMw1C7du3KvOYR2dnZ0fWKsNls6tOnT7mxpddZknr06CGbzVamw3VqaqosFkv0NZXCHYCdTqfy8/O1du1aSdKAAQMqXAspHB48cOCApHD30UhAPzk5WYmJidGQeWpqqtq0aVPhfXn8PS2pwntn8+bNys7OlhTuXNm8eXNlZGSUOUek23h6erry8/N1/vnnR2ut6L3i9/u1a9cuSeF7vKo/bV/R+St77Sqqq6rX+eKLL9bo0aPVo0cPpaSkRO8XSZUet2/fvmg43m63q3fv3tW+l4739ttvy+v1KicnR0VFRVq/fr2eeeYZJSUlndL7tTr3aiS03rp1ayUnJ5cZW9P7qlqXE62Z2+3Wli1brB2eEQAAIABJREFU1KxZs0o/S8+26z1w4ICysrLUtm3b6PunOmtR1fXu379fsbGxysnJOeE9UdH772RE1rOqzx7UPX6/X+vWrdN3332n77//XosWLdKRI0cUFxenbt26qX///urXr58uueQSJSYmKjc3Vy6XS2lpaWrcuHGFf40CAAAA+JnbRIAYAAAAAAAAAHDOOdUAsd/vl9VqVWZmppo1a3Y6SvvZeu6556LhztKSk5P1xhtv1EJF5f0caqyL6tLrUlvX2r9/f91777265ZZbTsv8VV3XPffcoxkzZujvf/97dPuOHTt06NAh9evX75TmPNfuC5xZBIhRHcFgUJs2bYoGipcsWaKMjAxZrVa9/fbbSk1NlWEYkqSWLVuW+ysLAAAAwDmAADEAAAAAAAAA4NxzqgHi2bNn65577tHcuXM1bNiwch2FAeBss3z5cl199dUaNmyYXnjhBSUkJJzR82/btk2/+tWv1L17d7Vt21Z5eXm66qqrNHTo0DNaBxBBgBinKjMzUwsWLFDHjh1ltVrL7It02AcAAADOIQSIAQAAAAAAAADnnlMNEAMAgJ83AsT4KTZt2qQjR47o+BhFx44dlZKSUktVAQAAAKfFJlNtVwAAAAAAAAAAAAAAAFDbKvvrE/xVCgAAAJyLCBADAAAAAAAAAAAAAIA6r2nTpjIMQ4ZhSJIMw1BiYqISExNruTIAAACg5hEgBgAAAAAAAAAAAAAAdZ7T6VTPnj114MABTZo0Sa1bt1bXrl1ruywAAADgtLDUdgEAAAAAAAAAAAAAAABnA6fTKUn64osv1Lx581quBgAAADh96EAMAAAAAAAAAAAAAAAAAAAA1CEEiAEAAAAAAAAAwFnP4/HooYcekmEY+uijjzRv3jw9+OCD6tOnjxYuXFjb5QEAAAAAAAA/K5baLgAAAAAAAAAAgLpqw4YNOnr0qAYMGFDbpZz17Ha7unbtKovFoqFDh0qShg8frqVLl2rQoEGaOnWqfv/731d6PGsNAAAAAAAAHEMHYgAAAAAAAAAASvF4PDpy5Ihyc3O1YcMGBYPB6D6v16sjR47owIEDOnLkiCSpoKBAq1evjj5PT0/X4sWLtXjxYnm9XuXl5Wnx4sXasWOH8vPzlZ2dHR03ZMgQLVu2TFu3blVaWlr0OJfLpYKCAi1evFg7d+48YV2SdPjwYa1du1Zer7fWrq+i8RFut1uHDx9WQUGBfvzxR4VCoRPWX3q9JMkwjHLX07dvXz3xxBN6/PHHlZeXJ0nKycnRunXr5PP5KlzriOPHAQAAAAAAAHUFHYgBAAAAAAAAACixYsUKXX/99briiitkGIaWLVum1NRULVy4UGvWrNHQoUM1ZMgQpaWlqXnz5urdu7cyMzN1zTXX6L777lOnTp306KOP6uabb1bXrl01YMAA2Ww2zZo1S9OnT9eTTz6pjIwMLViwQFarVZIUGxurmJgYxcXF6ZprrtGwYcOiXXLnzJmjV155pcq6zGaz3nrrLfn9fuXn52vEiBH65ptv1Lhx4zN+fXPmzCk3/plnntHWrVt15ZVX6vLLL1dqaqo++ugjDRs2TE8//bQkVVp/6fWqyoABA/TMM89ow4YNmjVrln7zm98oLi5Oo0aN0rJly8qttSTdfvvt5caZTPRdAQAAAAAAQN1AgBgAAAAAAAAAgBK9evVSy5Yt1aNHDz3wwAPKzc1Vq1at9PHHH2vIkCFq1aqVmjRpounTpyszM1NdunTR/v37FRMTo1mzZqlp06YaPHiwnnnmGd19990KBAJyuVzq2rWrkpOTNXHixGiH3dTUVDmdTp133nlq0aKFJOnRRx/Vyy+/rGeffVZut1uNGzdWUlJSlXX16NFDc+bM0XPPPSdJCgaDmjVrlp566qkzen3FxcUaN25cheP79u2rrl27qkOHDho/frx69uypp59+Wk8//bQyMjIqrb/0elWlWbNmkqTc3FxZrVZdeeWVio+P14gRI7R37141b9683FpXNg4AAAAAAACoCwgQAwAAAAAAAABQisViUXJysiSpXr166tevn9LS0qL7UlNTJUmrVq1ScnJytKNtQkKCunbtquXLl+uhhx5SfHy8Pv30Ux0+fFgjRoyIjqnKyJEj9eSTT+qLL75Qfn6+brjhhhPW5fV6lZqaqnr16kmSPvjgg+i4M3l9K1eurHR83759ZTab5XQ6JUn169fXkSNHJCnaBbmi+k+0XhHr16+XJHXr1k0DBw7U4sWL1bZtWxmGUWkAedq0adUaBwAAAAAAAJyLCBADAAAAAAAAAFCF/Px8tW3bttz2Bg0aaO/evSosLFRcXJykcFfbSDfcsWPHasaMGerfv3+VnW1DoVD0sc1m0x/+8Ae99NJL6tWrl2688cYT1uX1erVz505169Ytum/37t1n/Pr27NlT5fiq/JT6JWn+/Pm64oorlJqaqosuukhff/21EhMTy42LrHUgENDFF19c6TgAAAAAAADgXGeq7QIAAAAAAAAAADjbZGRkSJL279+vvLw8XX311ZIkv98vj8cjSerXr58uvPBCzZkzR5J09OhRuVwuXXfddZKkW2+9VatWrdJFF10Unfdf//qX3njjjejzJk2aaMeOHcrKyopuu/fee7Vy5UrVr1+/WnVddtll2r59u0aPHq1ly5bp9ddf1/79+8/49Z1ovNfrjQZ43W63AoGAJFVZ//Hr5fF4FAwGFQwGJUlFRUUaP368NmzYoNmzZystLU3r1q3Trl279M0338jj8Wjv3r3yer1l1rqycQAAAAAAAEBdQYAYAAAAAAAAAIDjpKWl6a9//avmzp2rRYsWyWq1atWqVYqPj9f69euVnp4uk8mkhQsXKjc3V7Nnz9YHH3yg//73v7Lb7ZIkp9Opv/zlL7riiiui83o8Hrlcrujzxx9/XD/88IN27doV3ZaYmKihQ4dq2LBh1aqrQYMG+vrrr1VUVKQpU6aoWbNm6tu37xm/vqrGp6WlyWazadeuXcrOztbSpUvVvn17LV++vMr6S6/Xtm3btGbNGl1yySV65JFH9NRTT2nSpEnq0aOH1q9fr+bNm6t9+/Z69tln9eKLLyo2NlYTJkzQJ598IpPJVGatKxsHAAAAAAAA1BVGqPTfRgMAAAAAAAAA4BywefNmSVKnTp1O+tiLL75Y9957r0aOHFnTZVXbH//4R02ePLnMtpqq62y4PgAATpfs7Gxt3rxZAwYMqO1S8DM2f/58DR8+XMQpAAAAcA7bZKntCgAAAAAAAAAAOJsUFBSosLDwjJ939+7dmjlzpoqLizVixIjTVldtXR8AAAAAAACAs4eptgsAAAAAAAAAAOBs8a9//UudOnVSZmam0tLSzui5LRaLduzYoe7du6t3796npa7avD4AAAAAAAAAZw8jxN/cAAAAAAAAAACcYzZv3ixJ6tSpUy1XAgAAzqTs7Gxt3rxZAwYMqO1S8DM2f/58DR8+XMQpAAAAcA7bRAdiAAAAAAAAAAAAAAAAAAAAoA4hQAwAAAAAAAAAAAAAAAAAAADUIQSIAQAAAAAAAAAAAAAAAAAAgDqEADEAAAAAAAAAAAAAAAAAAABQhxAgBgAAAAAAAAAAAAAAAAAAAOoQS20XAAAAAAAAAADA6ZCdna3FixfXdhkAAAAAAAAAcNYhQAwAAAAAAAAAOOc0a9ZMDRs2rO0yAAAAAAAAAOCsRIAYAAAAAAAAAHDOSUhIqO0SAAAAAAAAAOCsZartAgAAAAAAAAAAAAAAAAAAAACcOQSIAQAAAAAAAAAAAAAAAAAAgDqEADEAAAAAAAAAAAAAAAAAAABQhxAgBgAAAAAAAAAAAAAAAAAAAOoQAsQAAAAAAAAAAAAAAAAAAABAHUKAGAAAAAAAAAAAAAAAAAAAAKhDCBADAAAAAAAAAAAAAAAAAAAAdQgBYgAAAAAAAAAAAAAAAAAAAKAOIUAMAAAAAAAAAAAAAAAAAAAA1CEEiAEAAAAAAAAAAAAAAAAAAIA6hAAxAAAAAAAAAAAAAAAAAAAAUIcQIAYAAAAAAAAAAAAAAAAAAADqEALEAAAAAAAAAAAAAAAAAAAAQB1CgBgAAAAAAAAAAAAAAAAAAACoQwgQAwAAAAAAAAAAAAAAAAAAAHUIAWIAAAAAAAAAAAAAAAAAAACgDiFADAAAAAAAAAAAAAAAAAAAANQhBIgBAAAAAAAAAAAAAAAAAACAOoQAMQAAAAAAAAAAAAAAAAAAAFCHECAGAAAAAAAAAAAAAAAAAAAA6hACxAAAAAAAAAAAAAAAAAAAAEAdQoAYAAAAAAAAAAAAAAAAAAAAqEMIEAMAAAAAAAAAAAAAAAAAAAB1CAFiAAAAAAAAAAAAAAAAAAAAoA4hQAwAAAAAAAAAAAAAAAAAAADUIZbaLgAAAAAAAAAAAAAAAOBctnnzZk2bNk3bt29Xt27dFBMTI4vFom7dumno0KEyDOOU5p05c6YSExM1fPjwU67N5/Pp888/17JlyzRp0iStX79eU6dOVWZmpnr37i2LxSKPx6Nt27Zp2LBhGjly5CmfCwAAAGcPAsQAAAAAAAAAAAAAAACnUadOndSzZ0/Nnj1bX331lUwmkw4ePKixY8fqlVde0T/+8Q+1atXqpOdt1KiR4uPjf1JtJpNJR48e1TvvvKNJkyapa9eu6ty5sz799FN9/fXX0XGHDh3SW2+99ZPOBQAAgLOHqbYLAAAAAAAAAAAAAAAAONfZbDaZTCaZTOGoRqNGjTR37lwZhqE777zzlOa87rrrNGjQoJ9Ul9lsVtu2bctsczgc0TojGjRooLvvvvsnnQsAAABnDzoQAwAAAAAAAAAAAAAAHGfQoEEaMmSIbrnlFo0fP15er1eTJk1SgwYNNH78eN11110ymUzasWOH9u7dqxYtWuiGG26QJC1evFg5OTnatWuXevfurb59+1Z4DpvNpjFjxmjkyJHaunWrOnTooMOHD+utt97Stm3b1LdvX915553at2+f3n33XXXu3Fmff/65unXrpmuvvVbz5s2Tz+fTlVdeqfHjx6tz5856/vnn5XK59PDDD+vuu+9W27Zty80nScXFxXrzzTdlsViUnp5+wvV45ZVXNGLECE2dOrVMHTfeeKP+8Y9/yGq1as+ePbr//vuVmpqqrKwsvfvuu2rbtq2ys7O1cOHCaD0vvfSSCgsLNW3aNCUnJ9fciwYAAIBqI0AMAAAAAAAAAAAAAABwnKSkJOXl5SkpKUlDhgzRE088oebNm0uSYmJi1KNHD6WkpGjlypVq1KiRGjRooMGDB8vpdOrBBx/UmjVrlJ+frwULFlQaIJaknj17SpK2b9+utm3bauzYsXr77bfl9/vVqlUrJSUlqVevXpo1a5YuuugijRo1SgUFBXI4HFqzZo2CwaDGjRunHj16aM2aNbLZbLLZbKpfv7569uyp22+/vdx8119/va699lr95S9/UZcuXfTaa6+Vq6uoqEiPPPKIQqGQ1q5dqxYtWkhSmTpyc3N12WWXac6cOerSpYsWLlyoXr16aePGjUpJSdG3336rH374Qa+99pqaN2+um2++WbNmzdLLL7+sO+64Q6+//romTJhwGl49AAAAnAgBYgAAAAAAAAAAAAAAgOPcd999GjVqlCZMmCCLxaI9e/Zo1apVSk5OVufOnSVJP/zwgxo0aKD09HSZTCZlZ2erTZs2CgQC+t3vfqc///nPGj58eJXnycnJkSQ1adJE3333nTIzM6OB3quuukqHDx9WamqqUlNTddlll+mSSy6JHtuiRQvt2bNHkvT73/9erVu3VmZmprKzs9WvX79K51uxYoXS0tLUpUsXSVL37t3L1RUbG6spU6ZIkoLBoCZPnlyujiVLlmj//v3ReQYPHqyYmBgtWLBAd9xxh5o0aaJmzZqpcePG6t+/v3JycnTppZfK6XSqe/fu2r59+6m+PAAAAPiJCBADAAAAAAAAAAAAAAAcZ9CgQTKbzfrmm2/05ZdfasKECXrzzTfVvHlzjRs3TpL05ZdfqlGjRrr22mtlNpujx3799dcaM2aM2rVrp/fff19XXnllpedZtWqVEhIS1KVLF73//vtq0aKFxo4dW+FYk8lU6TwNGzbUsGHDNHPmTDkcDj322GOaO3duhfO99957SkpKqvZamEym6DWXruPw4cNyuVxlxrZs2VIFBQXl5ii9PpE5/H5/tWsAAABAzar83ywBAAAAAAAAAAAAAADqKMMwNHr0aI0dO1aXXHKJ7rzzTn344YcKBAKKiYlRVlaWHn74YV199dWSJJ/Pp1AopMLCQm3fvl3z5s3TjBkz9OSTT0qSQqFQuXPs2LFDzz77rF5++WU5nU61a9dOn3zyibZu3SpJ8nq9WrBgQaU1hkKhMvOOHTtWs2bNUlxcnMxmc6XztWvXTps2bVJWVpYkKRAIKBAIROcJBoPl6nU6neXO36tXLxUVFWndunXRbQcOHNDAgQOrXlwAAADUOjoQAwAAAAAAAAAAAAAAVOCOO+7Q/Pnzdc0118gwDA0aNEg33nijJCkhIUFms1k33nij+vTpo8aNG2vSpEmaOHGiHnvsMc2YMUNWq1VDhw6V3+/X+vXr5ff79e9//1uGYWjt2rVatGiRXn31VQ0fPlyS1K9fP1133XXq1auX+vTpo7i4OL3zzjsqLi7Wvn37tHHjRoVCIRmGIUnau3ev9u3bJ5/PJ6vVqm7duqlr164nnC8mJkZ33HGHLr/8cg0bNkz79u1TXl6ePvvsMw0ePFgbNmxQXl6edu3apfPOOy+6HsfX0bRpU82aNUuPPvqoXnjhBS1fvlyjR49Wly5dFAwGlZ6eLqvVKknavXu3JGnLli3q37+/0tPTdfDgwTLXAwAAgDPHCFX0K24AAAAAAAAAAAAAAAB10Pz58zV8+PAKOwYDAAAA54hNptquAAAAAAAAAAAAAAAAAAAAAMCZQ4AYAAAAAAAAAAAAAAAAAAAAqEMIEAMAAAAAAAAAAAAAAAAAAAB1CAFiAAAAAAAAAAAAAAAAAAAAoA4hQAwAAAAAAAAAAAAAAAAAAADUIQSIAQAAAAAAAAAAAAAAAAAAgDqEADEAAAAAAAAAAAAAAAAAAABQhxAgBgAAAAAAAAAAAAAAAAAAAOoQAsQAAAAAAAAAAAAAAAAAAABAHUKAGAAAAAAAAAAAAAAAAAAAAKhDCBADAAAAAAAAAAAAAAAAAAAAdQgBYgAAAAAAAAAAAAAAAAAAAKAOIUAMAAAAAAAAAAAAAAAAAAAA1CEEiAEAAAAAAAAAAAAAAAAAAIA6hAAxAAAAAAAAAAAAAAAAAAAAUIcQIAYAAAAAAAAAAAAAAAAAAADqEALEAAAAAAAAAAAAAAAAAAAAQB1CgBgAAAAAAAAAAAAAAAAAAACoQwgQAwAAAAAAAAAAAAAAAAAAAHUIAWIAAAAAAAAAAAAAAAAAAACgDiFADAAAAAAAAAAAAAAAAAAAANQhBIgBAAAAAAAAAAAAAAAAAACAOoQAMQAAAAAAAAAAAAAAAAAAAFCHECAGAAAAAAAAAAAAAAAAAAAA6hACxAAAAAAAAAAAAAAAAAAAAEAdYoRCoVBtFwEAAAAAAAAAAAAAwM+B1+tVMBiUJAWDQXk8nug+v98vv99fZrzH44mOL62isZIUCATk9XrLbQ+FQmXOVZrb7VZFP/r3+XwKBAIVntvn85XbHgwG5fW6Kzy32+2q8NwVCc9T/hpORXg9ytd6KsJ1lV/z4+Xl5SkrK0udO3eu1rwOh+2nliZJMgxDDoe9RuaSJIfDUe2xZrNZNlv5cxuGIbvdWen8hmGU2261WmU2m8ttt1gsslqt5babTCbZbBWvodNZ8bntdnul57ZYLJWONZlMstvtZcZXVCsAAEAdsIkAMQAAAAAAAAAAAADgtCkdfPV6vQoEAmUCpuFw6rHQ6vHB2tLh2OODqZH5So8tPU/pkKzH4yozj8dzbOzxQVuX69i+QCAon+/EodOa5HBU/MeE7XZDJlMFoUmLVFEG0mKRKshrymSSbLbyoWZJcjrLzy9JNlv4uOqyWiSLpeK5TpbFEv6qCVarUWNzSZLHE1IF+fBT4vWqxubyeE+uLp9PqiBrrkBA8nrLx0pCIcnjqfiGcLvD+4/n9VV8fX6/5POV3xEMSl5vDS1INZUOg5vNZYPNNptNppI3QTjsfSzcbLFYZbFYS83jKBNaPn6e0qHl0kHv40PWlYWfw8Fue5n5Sm8DAACoBgLEAAAAAAAAAAAAAHCuKB2wjXS+DQQC0SBtJIxb0bbSwV2XK9xtNrKtdMjX5/MqEPCX6UobCeCGt3lKtvkVCPz08J/NZooGVw2jbLjWYpEspYKzDkd4jCSZTCHZbKFS8xhlQralm7NaLIaspUKldnvpecLB3QirtWxYt3Tg1mxWmXkiNVqt5YO04RBvJRcNoFLhX0qoOJzu8UjBYNkYjLtU4+7jA9GlQ9uhkOR2H9vn94e/js0Tigajw+FmlZknEDh2rNt97HMqHJAuVaNXZebxeI59Tvp8oTLznCqbzSKTyVQSOraVbLOV2uYo2eaQyWQq6UAdHhcJLVe0rXTAORJ8ru42AABw1iFADAAAAAAAAAAAAAA1LdJ1NxAIyOv1RoO4kY65kXCv2+2Ohn4rH+sqGRsO63q93mgw2OsNp9I8Hp9O9Ue/drtJhiGZzYZstnAoz24LB2hLd7C124Ml24zotkguzGKRrCXdZiPbSnd6PbYtfLxhhM8REQ7+RrpsEqwFACnczTnC7w9Fg8jBYLijs3SsC3bpUHMkSB0IHAsvRwLQZba5I9sM+XxGyTaj5JdKJH9JV2qXKxitwe8/tX/WWCxmWSzmku7N4U7JVqtVZrO5JKxsj3ZyjnRVjoSeHQ5HtANzZLvFYpHFYomOjYScnU4n3ZgBAKgeAsQAAAAAAAAAAAAA6oZI8Pb48G4k6Ovz+eTz+aLh3ciYSPfdsmO98vm8pcYG5HZ7SsZ6T1xMCYfDLMMIyeEwh4Oz1mOh3XCn24DsdkMmU6kQrqVUCLckHxXprlt2WzgUHJlXUnQuQroAgFNVugu0zxcOFodC4e7KUrjLcyAQ7rTs8VSxzRfu3BwJNUfmCneGNuR2S6GQIbfnWLfm8Njqdbc3mQzZbFZZLGZZrZZoYNlut8tkMsvhiJHJFHluigaTrVbrcWPLh5itVmu5sQAA/MwQIAYAAAAAAAAAAABwdvL7/XK5XHK73fL7/fL5fOUeu1yuaMfe8FiX/P5wuPfYWL+Ki93l/qx9ZSwWI/oV6ZhrMYdksUhOZ/h7OORrRB9HOvCWfu50GuXHmo89t9tD0a67AADg5Pj94S+fLyS359jjyPYKn/tDcrtL7zPk95tKnoe7Lh87Nii3O1jtrssWi1kOh11Wa7g7ssPhlNVqk8VilcPhkNPpjHZOdjqdcjgc0SDy8Y8jYwEAOI0IEAMAAAAAAAAAAAD4aYLBoLzecGDX5/PJ6/XK4/HI6/XK6/VGw76Rx6X3h4O+rjL7TtTB12IxZLOZZLebZLOGO+larZLDEZTVGpLNZshmk+y2cGdeq9WQw3Es2BvpzGu3hbsTOhx05AUAABWLdE0OBMLdkf3+cNA40lXZ6w2Hkb3e8DivLySfr+SxNzzO5zPkdhul9oXk9Yaq/OUms9kkm81SEkoOdzq22x2y28PBZJvNJrvdLpst/NhqDQeVI4/tdrvs9mPHOiJ/ygAAgDACxAAAAAAAAAAAAEBd5vF4ol9ut7vM48jzY9vd8nhcpbZ75PF4TxB+CQd4nU6TrJZw0Ndul+z2kKzWUDTca7OGu/3abJLDEX4cDgUbspU8ttno2gsAAM4dgUC487HLFZKvpAuyxxOSxxN+7POFOyZHgsder+R2hwPJ4VCy5PWpZF+4Y3JVrFaz7HZbNFzscDjlcMSUeu6IPo48j2yLfKczMgCcMwgQAwAAAAAAAAAAAD9nwWBQLlc41Fv6e/ltxXK7i8uEfyvr9GsYkt1uktNpkr0ktGu3h+RwRMK/ksNeEvyNdvlVqSCwIbs9vM9kOsMLAgAAUIf5/eGux+FuyJEOyJLbXTag7PGGw8nhL6NkmyGPJyS3Oyivt+IwstlsKgkh2+RwOOR0xsjhiJHT6Sx5fuz78dvoggwAZxUCxAAAAAAAAAAAAMDZIBIELi4uLvO9qKgo+vhYEDgSEPbI6/WVm8tkMuR0muV0muSwS06n5HD45XQacjgM2W3hELDTaZQJBNvtx4K/AAAAqLtCoZA8nnCX43DYuCR47FHJ45DcnnAA2eUKye025HJJLnd4f2XdkJ1OmxwOe0mo2CmnM1ZOZziAHBMTo5iYY4+dTqdiY2Nlt9vP8NUDQJ1AgBgAAAAAAAAAAAA4HTwejwoLC6MB4Mj3YwHhIrlckW2uCrsB2+0mxcSYFOM05HSG5HAE5XQa4SBwSQDY4Sj13XGsKzAAAABQW0KhYx2OXe5QqaBxyXePwoFjV0gul0kul6FiV1AuV1B+f9k4m8lkKCbGUSpYHKuYmFjFxsaWCR7HxsYqLi5OMTExslgstXTlAPCzQYAYAAAAAAAAAAAAqC63262CgoJoN+CCggIVFBSUPM5XQUGe3G6X8vML5fGU7QxssYS7/4a7AgcVHy/Fx5cN/jqdhuLjDcXFSjExhszmWrpQAAAAoJb4/aVDxsdCx4WFUkFhqGSbWS6X5PYYKijwl+t4bLGY5XDYFR8fr/j4BDkczpLH8XI4HGUex8XFyTCMWrpaAKg1BIgBAAAAAAAAAACA0mHggoICFRYWljzOV0FBrgoLC5WXV6hgsOyP1hwOk+LjTXLYQ4qPD0UDwfFxRpnHiYmGTKZaujgAAADgHFc6dFxQEFJBQTh4XFAYeWxWQaFUUBBUUVFApRNzZrNJTmckVJyo+Ph4xcXFRUPGpZ8DwDmEADEAAAAAAAAAAADObeHwb16Zr9zcXBUVFSg/P0+FhcUL0QuXAAAgAElEQVRlgsE2m0kJCWbFxUoJCUHFxR0LBMfFSbExhmJjDTmdtXhRAAAAAE5JMCgVFYVU7AqHjYuKQsrPD6mwSOHvhYbyC6SioqACgWP/nWC1mpWQEKe4uHglJCQpMTEx+lWvXj0lJibKZrPV4pUBwEkhQAwAAAAAAAAAAICfr1AopIKCAuXk5Cg3NzcaDs7Li3zly+8PSJIMQ4qLs6heoqHExHAwOCHeUFycoYQEQ7ExUmKiIau1li8KAAAAwFmhqEgqjASMC0sHjaW8PEN5+UG53cHoeKfTrsTEeCUmJqleveRosDgxMVH169eX3W6vxasBgDIIEAMAAAAAAAAAAODs53a7lZOTo5ycHB06dEjZ2YeUk3NYR47kyOv1S5LMZqOkc3BI8fEhJSUZSqpnKCkp3D24HuFgAAAAADXM7w93Ms7JDSknJ6SCwpAKC6WcHJNycqXcXJ8iCT2Hw6akpCQlJdVXUlKSGjZsqJSUFCUnJxMuBnCmESAGAAAAAAAAAADA2SM/P18HDx6MfmVnH9DRo7ny+cIhYavVUP1ks5KTQ0pOluonm5ScLCUnmRQXV8vFAwAAAMBxAgEpLy+kozkhHT0a0pGjIR09aujIUSkvL6BgMBzfi4tzqn79BkpJaaxGjRqpUaNGSklJkc1mq+UrAHCOIkAMAAAAAAAAAACAMy8YDOrgwYPav3+/Dh48qEOHDujAgQNyu72SpIQEixqlSCkpISUnGapf36TkJCk+3qjlygEAAACgZgSDUk5OOFx85Eg4XHzwoHQoOySPJyhJSkqKV6NGTaLB4qZNmyoxMbGWKwdwDiBADAAAAAAAAAAAgNPP6/XqwIEDyszMVEbGHmVkZMjt9spsNpScbFKTxiGlNDSpYUNDTVMNxcYSFAYAAABQdxUUhJR9OKTs7JD27Q8pO9ukQ9l+BQIhxcXFKDW1qVq0aKnmzZuradOmMpvNtV0ygJ8XAsQAAAAAAAAAAACoecFgUBkZGdqxY4d27tyuQ4cOKxSSkpMtat4spBbNTWrezFCDBoYMssIAcNbxegMyDMlqJYxUV7jdfn21KE1btmSrR4+mGnjpebVdEgDgOH6/tHdfUBkZQWVmSZlZIbndQdlsFjVr1kxt27ZT+/btlZycXNulAjj7ESAGAAAAAAAAAABAzcnMzNT69eu1adMGuVwe1a9v1i/aKhoYjosjLYyfj+cnLlL37k10zdUda7uUU7b2x3167/11mvrSEoVCIb326nW6b0zvSsePffATTX91qQzD0EMP9teY0b9UUbFP06Z/r7/PWSVJ6v3LFjKZDAUCQTVuHK+hQzrr1lsu0Nat2Xp//npNmfqtXC6f2rVroPvH9NHv7uqp2FhbuXOtWJmp6a8u1T/f/TE6b716DknhIOOe9Bzt2ZOjmX8bqnvuvkiSlJGRq/GPfqZlyzPUoH6MCou8anNefTVuHKe3/n5TjVxvmzb1o/v9/qDenrtG/2/BJv3n49urve5r1u7To3/8TKtW71XjxvG6+66L9OC4fjKbTZUes3Vrtma9uUIvv/KdJKlf35b6wwN9NeymrpKkf777o6a/ulQrVmbKbDbpwXH91L9fK/3n062a/eZKSVLnTo3UoEGMPJ6A4uJsGjSwjR74fV/FxZVf/8os/yFD019dqs/+u03fL7lXnTs1qnDcwYOFun7oO5rwxEBd/ZsO1Z6/Jp2OGrZuzdYXC3dIkv7wQN8amVOq+l6q6jpO9R48mfNLUlGRVzcO+6denHyVPvtsmx574nN99p87dNWV7WushjOlOu+/AwcK9NgTnys+3i6TyVBsrE3P/d9gWSy1M0aq3mt9Mq/F/v0Fmjd/vbIPF+nq33RQn94tzrl1W71mrx57/HOtWJmppCSnRt3dS088PvCMrhtQ20Ih6fCRkDIygtqTHtLOXZLLFVDDhsnq2vUCdevWTfHx8bVdJoCzEwFiAAAAAAAAAAAA/HTbt2/Xt99+o7179yuloUXdukodO5iUlERgGKcmN9cth8Mih8NSK+cPBIJq3fZFdWifoi8+v6tWaqhJF/3yNa1anaX27Rtqy8YHZVTQ+ruoyKuW503WkSPFuvCCVK1e+UCZ/UkNnlVurlvuoudlt1tUXOzTM88u1NSXluiWkRfonbeHSZJuGv5PffivjZr71jDdessFVdbl9wcVl/iMPB6/fO4/lQvUTXjqCzVrmqAx9/ZWcbFPF170qgZf3lYvvnCVnE6r1qzdp+Ej3lWL5vX01cK7a/R6l/+QoY8/2aKpLy1R+3YNtGHduKoXucQPKzI15r4FGnlzdxUWevXW3NXasydHT04YpOefHXzC48/v9hdt3HRQK3+4Xz17NCuz7+tvdmnQ5bPUr29LffftvdHtKU0mKju7SIcPPqX69WMUDIb09zmrdM/oj3ThBalasfz+KsPLx3v6/xbq+YmLtHH9uEoDxHv25Kj/gL/pT8//SrffdmG15q3p9/Wp1FCVnTuPaMG/N2v8o5+Vuad/qhPdS5Vdx6negyd7fkl69a9L9d7767T0uzGSwoH1a67uqM1bDtZIDWdKdd5/BQUe9ej1V91910V69JFLJEm33TFfPl9Q7/3zt2d8jFS916i690NRkVfPTfxKn366TdOnXaNBA9uck+u2bv1+PT9xkR4c118xMVa9OOVbvT9vnd6ec5Nuu/Xk30ensm7A2SgUkjIyg9q0OaiNm0LyeEI6//zzNWDApUpKSqrt8gCcXTZV/78QAAAAAAAAAAAAgOP4/X59+OEHeu+99xQfd0i/u9OqMaPN6tvHTHgYP8moez/SwYOFtXb+/3y6VdnZRVr45Q5t3Zpda3XUlPr1Y9S2bX1t25atz/+3vcIx7763TpcOOE+SlJTkLLc/0kU4EvKNibHqxReuUuvWSfrHP9dq3fr9kqTEREelcxzPYjFFuw4fHx6WpFF395LDYZUkLfp6p7Zty9bIm7vL6Qxvu/CCVH368R06erS4xq+39y9baNLEX6lL54oDtJX562vL9PVX9+jhhy7WM09fph9X/0FNmybopZeXKBAInvD4yPrVSyxfU6TOevXK7ktICB8TCeaaTIbu/t1FunTAeVqzdl+la1CZli1OHDBq1SpJWemPn1Rwt6bf16dSQ1XatKmvhx+6WAkJ9hqZL+JE91Jl13Gq9+DJnl8Kf+ZF7j1JGnlzdyUk2GushjOlOu+/adO/V1ZWnsaN7Rc97rFHL9X789bpm8W7zvgYqXqvUXXGHD5cpEGXz9aSJXu07Psx1Q7B/hzXbdGinZr33gj169tSF3RP1dtzblK9eg4tXZZxxtYNOBsZhtSyhUm/vtKih8dZdc1vzNq7d5Nef32G1q5dW9vlATjLECAGAAAAAAAAAADAKfvss/9o166tunWkVcNvsqhZU378hJ/uyae/0AcfbqjVGt6YuUKvv3a9JOmvM5bVai01wTCkB+7vK0maNn1phWNmzV6h0aN6lYwv/wsAlW1r366hJCkrK6/MuAqGV1Jb5QNbtqynO+/oIUnR4Ol/Py8bhm3XroF69Wp+3Jw//Xoj7Pbqd8stKPBo8OVtywQxExMdGvHbbnK5fNq3r+CEc1S1fpFtx++rrPwWLepJkjIyck9c/Gl2Nryvq8tmOz2dz0/mXqqJ405mnkOHqg5211QNp1N133/v/HOtftmruWw2c3Rcx44N1aBBrF7/2w9nfExp1VnnysaEQiGNGPm+0nYe0bz3blZ8fPWC8D/XdbtvTO8yndVtNrPi4uzqdVHZzu0RNb1uwM+B2Sx172bWmFEW9ektffzxx0pLS6vtsgCcRfg/OAAAAAAAAAAAADgloVBImzZt0uWDzDqvNT92OlsVFnr11turNWDgTH27ZLfu+/2/1bjpn/TlV+HwwPoNBzTq3o804akvNOSGd3Tr7fO1f3/ZkGN1xmzdmq37H/i3xj/6mQZeNksPP/KpvN6AJOno0WKNuvcjPfvcV3p+4iJd+es5Kiz0SpLy8txq1/El/d9zX0qSVq7K0sKF4dr++Ph/dc/ojyRJgUBQzzz7pR4a/6ke+eNnumzwbK39cV/0/FWd42Tt3HlEVqtJd9zeQx06NNTbc1crP99TZsyhQ4V65S/f6eIBb+iDDzfo7blrdH63vyi1+SRNm/69JOn1vy1Xj4teVf2U5/WnSV+XO09V67pvX75enPKtevV+TV9/s0vPT1ykludNVsvzJuu/n287pesaOqSzmjVL1BcLy3dVXrosXW3b1ldqasJJzRkKhbQj7YjMZpP69ml5SnVVZsuWQ5o3f330ef9+LWU2mzTxT4s0Zeq3CgZD0X1/m3F9ueNPx/WeSHy8XbfdWr4bbkK8Q06nVY0axdXo+aoSCoW0evVeSVLHjimnNIfPF9S4h/6jZi3/rOatXtC/PtoY3ed2+/XBhxv0z3d/jG6r7H1Y2ftaqvp9cKLPr4pqkKr+PDrRZ8mpOFGdJ1LZdVTl0KFCTX91qX7ZZ4aWfLdHfxj3iZq2+LPadXxJs99cWe15lv+QoXtGf6T0jFyt33BA94z+SPeM/qjM+6smHDpUqHvvW6Df/+FjXdjzVT3yx8+in6s19XlXnfefx+PXzp1H9Ytf1C8zxjAMtW1TX0uXpZ/RMTXpn+/+qC+/StM9d1+k5s0Tq33cz3Xdjg8Ef7N4l7p1baJbRl5Q7WuXTn3dStu166hat31RhuVxPT7hf5KkmbNWyOZ8Uo7YpzTnrdWSJI/Hrzt/96HadXypXOf80qr6nNq9O0d9+78uw/K4htzwjo4cCc+zffthXdBjuq69fm7033+qet9V5GTei1V9zuLsYzJJAweYdV5rizZt2lTb5QA4i/B/cgAAAAAAAAAAAHBKDMNQSkpDrVsflKfyLAJq2fYdh/XJf7bo2yW7NfvNlRpwSWt17tRIHo9fy3/I0OBfvalnnxmsPz1/hf71wS1yu33qesG0aLfX6ozZti1bt9w2TxOfu0JTX/y1/jTxCr38yneaOGmRJGnCU1+oZYskPfP0ZXrqyUFq0CBGLpdPUjg4d+RIsQ4dKpIkXdSzmYbddL4kafKfr9KsN4ZKkib+6WvNnLVCL035taZM/rXOP7+xrhsyV6FQ6ITnOFl/m/mDRo/6pSTp3lG/jIYDS7PbLXI6rfru+z16Y+YPSk52avnS+zTy5u565I//1egx/0/t2zfUd9/eq9GjeumpZxYqPf1YF9gTrWtsrE0FhR6tXJWlP7/wjfr0aaFPP7lD9ZNjdPeoj6LXfTKsVrPuH9NboVBI0/9ativvjNeX6/f39zmp+bzegCY89YV27jyi/3v6MiUlOU+6psrk5bk1/a9L5fcHo9vat2+oFyZdqWAwpEcf+696952hNWvDgaqKOgjX9PX+FD+u26cbb+hSppvm6XToUKFGj/l/2vT/2bvv+Kiq/P/j7+kz6SEBJBJaQBEwCCqgqKsoKKgrIioWrKuyKpbV3VXWXUX3K7oWbD+wrGIXrKuIlRaVIiASuvQOEiAJKdPn/v6YzJCQNgmBAHk9H495ZObcc88958w9J+HBZz6z/Hddf11Pnf2HDvVq57F/T9OQS7vql3kjldEqSbeO+Exeb0Dr1+frjpGf64ph72vuz5ui9atbh9Wt69rWQU37V3V9qG0/qm0vqY+a+lmb6sZRm/x8t36atUHz5m/Wc8//pLPObK+J71+llGSnbrntU33+xfKY2unTu41ee2WIjs1IUpcTWui1V4botVeGyGyOMYV4DAKBkAZc8Ib69M7USy/8USPvPF1PP/Ojepzygvqf/7pcLluD73fllV9/a9buVjAYqpBtNyI52ant24u08re8Q1an/B53oCKB415vQGf+4RWlpI1Wz1Ne1IcfLa7lzKodKfMWDIb0/geLNGTou+revVWdx9kQ89ahQzP948FzJEnn9suSJN16Sy8NuzJbLpdVw68NBzU7HFad3PNYjXrgbDVrFldtezXtU+3bp+q1V4fIZDKpTZsUpaWF2znuuHRlZaXptVeGKCHBXuu6q+pDArH+7VHbPovD09ZtIW3dFlKLFvX7UBGAoxMBxAAAAAAAAAAAAKi3wYMv0558h8a9EtDiJSGFGi4OBg2kZ48MXTq4qyTpD2d10JVXZGva93/ShYM6a+Rdk3XxRZ3VqlWiJMlsNunJMQO1e3epRj0UzqAXS50bb/5Yd9x+WjSA9PTT2uq2W3ure3Y4kGfJkh1alLstGnhye1lQpyS1bJmgndv/oXEvXVLjOEKGoR4nZUQDRbt1banNmwtVUOCp9Rp14fEENH36Wl1w/nGSpOuvO1lxcTa9NG5OhfaSk50668z2kqRL/thFF190guLj7br6qpPk9wd1QucW6ndOllwum664PFuGYWje/M3R82ub1+Rkp848o50k6bZbe+m8czuqW9eWuvqqk7Rt295KGaBjdcufesnlsuntdxZG5y4vr0Tr1u2JOYNw//Nf1xlnvazuPZ/XnDmb9P67w/TQP/rVqz/lndZ3vE7rO159Th+nPn3H6eVXfq5U5/77ztTkz69X27Ypmr9gi3r1+X966F/fVfteN8R4D9TOncWambNe/350QJ3OG3jRmzqx+3MVHpdd/l6N51xy6dvq3uN5tW77hIqKfPrum5v05huX17vvD/z9bJ11Znu1bJmg4df20J49pdqwIV/t26dq3EuXVArcrus6rG0d1LR/VdeH2vaj2vaS+qipn7Wpbhy1Of745rrownD7I+88XUMv66Yzz2in/306XFarWc+O/anuAzlIvv1ulXIXb4/umddf11OZmcnq3StT3397s1JTXQdlv5Mqr7+tW/dKkhLiHZXqJiTYFQyGtHjxjkNWJ5I99kAZhqHZczYpLS1OV1yerZwZt2rLxgfVvn2qrrzqA/3v89gCyiOOpHl77b/zNXXaGoVChh4fM0N/uvWTmMfZkPM27Mruio+3Vwg8vmxINxUUePTd96ujZTk/rNMVl2fX2FZt+1TXLi11/oBOmvTh4mgw9Z49pXI6rdFM97Wtu6o+JBDr3x617bM4vJSUGPp+WkBvvBlQ27Yd1Lt378buEoDDCAHEAAAAAAAAAAAAqLe0tDTdfvud6tChmz6fHNAL/y+gmT8EtGdPw371OQ6MzRbOetq5c/No2d69Xi34ZYsyW6dUqNuhQzN1OaGFZuasi6lOfr5bc+ZuqpT17+Vxg3XZkG6SpEEDj9fHnyzVeQNe12+/5en009qqRYuEaF2Lpfb/thz98Hn66ssbFAoZ+nLKSk2clCtJKi31x3SNWH340WINubRbNLAmJcWpq4Z11+rVu/Ttd6sr1LVYwnXKB+EkJoQDnmy2fWNKiLdLknbtCmdZjmVew+2H27Ba97WVmBhuq6iofmm/09LidO01J6mkxBfNuvjf1+fr1lt6xdzG99/erJ9+GKEVS/+iGdNu0VXDuterL/ubM+vPmjPrz5o7+3atWPqXaoPKL7qws5Ytvld339VXhmHo/x6foZF3T66ybkOM90CNeuhbvTL+UrVpk1J75XK+/vIGLcm9p8Ljk4+uqfGczz+7ToMHd5XfH1QwGFL/8zodSNcVF2eLPk9JCWcDLSgMB7A5HNboGoioyzqMdR1UtX9F7N+HWPaj2vaS+qqpn7Wpai5jEdkjXK5971NGRpLO6NtOS5buqHN7B0sk+LSk1CcpvGf27pWpzZsLo3UOxn4nVV5/ma2TJUmlbl+luqWlfjmdVvXsmXHI6jRvHl/PkVWUl1civz+ofudk6bQ+bWQ2m5SQYNfL4y6V02nVU0//UKf2jqR5G3Fbb73x36H6Zd6d6ta1pd5599foPVebhpy3hAS7hl7WTR99vCSaffzHnzYoNdWld9/7VZK0eXOh0tLiK+ytVYllnxpxW2/9/nuxvvr6N0nSxEmLde01PaLHY1l3ValtLcayz6LxGYa0bn1I//sioOde9Ct3sV0XXDBQw4ZdLbOZcEEA+7AjAAAAAAAAAAAA4IC4XC5dcslgjRx5l7p06aVfFjr04jifXn41qGkzAtq02VAw2Ni9xP42bsqXJO3Jr5z9sE2bFG3btjemOkuX/S5J8vkC1V7rwQfO1l/vP0szc9Ypu8fzeuHF2fXq82f/W6bLr3xPdrtFV15RMWi1oa7x39fn68spK6PZcE/rO16//rpNkvTiS7W3WVUS0UhZ5OvCY5nXg+mukX0lSS+Nmy2fL6hPPl2qYVc2TBBwVbzegEzWBys87r3vy1rPu2xIN2VlNavyWHy8Xc89e5Hef3eYLBazxo2fG70X93cwxhvrmCZ9uFjHdWquoZd1q/O59fWvh/rprDPb66OPl9R7HVQllgy5dVmHB2MdxLIfSTXvJUeDdu1So1lJDwfn9suSxWLWhx8tiZZt2FAQzaB8sFS1/jp0aCaTyaTCwspByQUFbnXqmK6OWWmHrE5VWWDrIzXVJavVXOkDOc2bx+uEzi20YuXOA9q3joR5y8pK0wvP/1GStHrNripmqbJY5q0ubrzhFBUUeDT5y5UqLvZp6dLfdf9fztT/Pl+uoiKvJry5QDdc31NS7b8LatunLhzUWRkZSXpjwgJJ0rTpazSg/74PjRysdRfrPotDr7RUWr4iHDT89Fi/3nnPr127W+j88wfpnnv+olNPPbXO2e4BHP2sjd0BAAAAAAAAAAAAHB1SUlI0YMAA9e/fX+vXr9eqVau0bPkK/TRrrywWkzJaWdSmjaE2mWZltjbL5WrsHjdt7dqmSpLWrdtT5fHjj2seU52kpHDG3V9+2ao+vdtUOO7zBWW3W+TzBfWfJwbqsiHd9Ofb/6e7752sxESHbrzh5Jj7+3+Pz9Cbb/+i3IV3Ky7OptffWFDpWgd6jV8XbVN6erw+/fjaSsc6d31WX3+zSmvW7FbHjmkxt1mVWOb1YOrWtaXO7ZeladPX6tYRn6p//05yOg/efx3b7RYtWnhXhbLm6bVn3WzRIkEtWiTI7fbL7fbrwX+EM2KWd+UV2fpi8gq9/8Ei5eZuV7euLSu1czDGG8uY5v68ScuW/65HH+lf53MPhMVi1vvvDlP3ns/r/r99pVNPba3T+rSp/cQGUJd1eDDWQSz7UW17ydHA5wse9H2kLrKy0jRl8vW69roPtXevR2azSYMv6aK//fWsg3bN6tafw2FVp05p2rAhv9I5Gzbm64y+7Q5pnYZis1nUoUOzKgPv09LitLfIe0D71pEyb127tJAktW9X9YdP9hfLvNXFWWe2U4cOzfTOuwu1ffte/enmU9W7V6b++fD3+uTTpZr782b965/nSqr5d0Es+5TVatbNN52iMU/M1A8/rtcJJ7SoEFh9sNZdLPssDo3duw1t3mJo0+aQNm02affugEwmKTOztU4/vbM6d+6stLQD+5sVwNGPDMQAAAAAAAAAAABoUCaTSR06dNAFF1ygu+66V3fddZcuvvgStWjZXatWJ+uDSX795xmvxr0S1Gef+zV7TlBr14VUXNzYPW9aEhMdOq1PG02bvrbS18OvXrNLl1zSJaY6x3VKV1KSQ08/+6P27NmXSdTt9mvscz9Jkp57fpYkqXevTM36cYRO7HaMvv7mt2jdSGbeiEgAjN8fjB5//IkZ6tO7TfRrvyPHDMOI6RqxeP6FWbrh+qoDjv9006kyDEP/b/ycOrVZlVjmtaF5vYHoV6pL0t13hbPyvvveIv35tt7R8rLpjM5reZH3qYpDFUTOjdQzmUzqnt2qwiMjI6lS/er8+/EZWr8hXytX5innh/WVjrduHW7r+OPTo2UNMd6a1DamZct/16QPF2v0w+dVOG/uz5sUDBoxzUdVXdrX34rl+783xx6bpDffuFx+f1BXDHtfu3aV1Gl89VXTOtx/XR+MdVDbfhTLXnI0yM3drsuHnlincw728H/9dZu+//ZmPT/2Yo195iL9Y9Q5By0TZk3rLxAI6aph3TVr9oYKWZpXr96l7duLdM3VJ0nSIa3TUK4edpLmL9iivXsrrqcdO4rUp3fmAe1bR8q8/bZql07sdozatk1psHmrC5PJpOuH99TX36zSJ58u1aWDuygzM1nnnN1BD/7jW/U7J6tC3arej7rsUzffeKpCIUPXDJ+kG66r/PdLLOtu/7/BahPL331oWKGQtGuXoWXLg5o+M6APJgX09NiAXhrv05SvQ9qTn6EuXU7T1Vdfrb/97e+68cab1bdvX4KHAcSEAGIAAAAAAAAAAAAcVKmpqerevbsuuugi3X77SP3tb3/TVVddpeOP76OS0naaO8+hd9/365nnvHrq2YDefjekb74L6NdFIW3dZsjtPnqCuhpLJPDE46n4ddMvvhD+qu+nnvkhWvb1N7/JYjHr73/9Q0x1XC6b/vFgP23YkK9ep43Tk//J0ZgnZmrQRW/qyiuyJUnffrdKGzcWSJJcLpvatUvVyT2PlSTt3l2qVq0f11/unxJtPxLQ9M23q7RhQ75WrNwpk8mk775frTlzN+nLKSujQYnzF2zRb7/l1XiNWKxfn69JHy6u8PXf5UW+8vv1NxZEA2Z8ZfNaPsDJ6w2Xud375trvD1U4JsU295GvBy/ffkmJX5JU6vbHPDZJ2ripQOvLZXO8cFBnZWWl6Y8Xn6A2bfYFWkXGlp/vrnB+KGSosNBToU51IvX2b6MqoZARDdoqLvZVOjbhzV/0+hvz1eOkDHXsmKbLr3xPP8/bHK3z++/FmvThYv3x4hN0ysmtG2y85ZWW+uTxxv5V7Rs25GvYVR8oq0OaXn1tnl559We98urPeuTRqXrzrYWyWmv+b/qCgvD8FRRW7lOkvwUFFY9F5rx8+UUXdtY9d/fVli2FuuqaidF9IBalpb6yn/5yZeHnkcBsvz+oQCBUYV+paR1WWtcrdsa0Dqrbv6rqQyz7UW17SSAQUmmpr8K6i0VN/Yyo7l6qai5jOS9iwYIt0eeffrZMwVBII+88rU7tFBV7K7zfde1DTabPWKunnvlR0yZsMwAAACAASURBVKev1cefLNW3363S/AVbKgQuNtR+F8v6+8s9ZyotLU6vvPpz9LynnvlB553bURdfdIIkHdI65cUyz9XVue8vZyo9PU7/N2Z6tCx38XZt3FSgfz864Kibt/v/9pXGPDEzet8WFXn1zLM/6oP3hx2yeavK9dedrEAgpEsHd5XFYo6W7dpVouHX9oipjdr2qYi2bVN0/oDjlNWhWaVvR4hl3c2avVGp6aP19jsLo2W1rcVY9lnUj2FIhYXSuvUhzZkb1P++8OvV/wY15j8+/b+Xffr0f0GtWJkom/149e17rm6++WY9+OAo3XDDTerXr586deokp9PZ2MMAcISxPPLII480dicAAAAAAAAAAADQdNhsNqWlpalDhw7Kzu6u0047XX369NFxxx2nli0zZDIla9v2oBblFmvBLwHNmhPUz/MMLV8urVsf1PYdhvLzDQUCktNpktXa2CM6vM2es1FjnpipzZsLtWNHkTIzk9WuXaokKaNVkgYP7qJ33/1V309do6VLd2jFyjy9+/aVSkiwx1ynb9+2apYap18XbdNXX6+UyWTSi89fHA1mmTFznd6YsEA7dhRrylcrlZzs1L8e6ieLxSy326+33lmok7q30rn9OkqS2rdL1YyZ6/T55OUymU268opstWqVpG+/W6Xvp65Rp45puv++s/TJZ0u1YMEWXT70RC1esqPaa9RmUe52XXf9h9q0uUA+X1A9TspQXJw9enzTpgKNf+VnzZmzST5fULNmbVR6erzefmehfv11m3btKlWXLi1kGNKTT83Ur79u086dxerWraXMZpOe+M9MLVy4Tbt2lejEE49RZmZKrfO6Zs1uPTJ6qtas3a1du0rVo0eG1m/Yo9GPTlNeXon27HHrzDPaKSHBUePYFvyyRQ+Pnqpp09dq4cKtSk526sQTj5HJZJJhGPrjxV3Uvux++GBirh4fM0NbthRqx+/F8voC6tA+TVu37dWoh77VvLLA3dWrdysx0aHjOqVXuNZvv+Xp1dfm6Y0JC+T3h7Ri5U5ZzCZ1OaFFlV9p/svCrfrnv77T/LLgx8mTV+irr3/TxEmL9fIrP+vBf3yr9z9YpPMHdNKwK7trxYqdKijwaOKkxZr85Qp9+NESvfbfeRo69EQ99+xFstksDTLe1FSXJGnlyjy99fZCvffBIu3eXaq0ZnFKTHCoefP4auc7P9+tP/R7VStX5unrb37Tl1NWRh85Oev12Oj+6tQxvcpzV63apaef/VGf/W+ZJGnFijylpLh0wgktJEkffrRYj4+ZqS1bCrVtW5E83oC83qCee2GWfijLzLxq1S6lprqi1+h3Tpa+/vo3zZq9UT/8uF7HHZeuzMyaM3P+umibHh8zU1u37VVRkU8n9zxW6zfk6/8en6EtWwtVWupXRkaSXnltnn6atUE780qU2TpZXbu0rHGt77+ur7g8u9Z1UNP+tX59vp5+9sdKfahpPzKZTDXuJX37ttPrbyzQ9BlrtXtPqY49NkknnNAimj25OjX1s7Z7qbpxxHIPLlmyQ59+tkyJiQ5NePMX/fjTBq1Zu1sT379aiYmOmK6/ZUuhXn5lnj75dKl2/F6s1FSX0tPjD2gd7M9ms2jy5BV6f2KuJn24WO++t0iv/Xe+Jry5QMcdly6zydQg+12s68/hsOrqq07SW28v1KzZG/W/z5fL4bDq1ZeHyOEI/1FxKOvEOs+11bHbLbrm6pP0yafLNPnLFVqUu03Tpq3V2xMuV1ZW9ZlIj9R5++771Xr7nYX67+vztWt3qVat2qWH/3me2uy3xx2seatOSopTmzYXaNSD50R/93XqmK68vBINu7L2ANva9qnLh56otLS4aP2kJId6nJShrl1bVmintnV3XKd0bdu2V//7fLkGXnC8Tux2TMx/e5x//nE1/t2Hmnk8Ut4uQ+vWhbR0WUi/LAxp1mzpu6l+zZ4T0OIlIW3dZpXZ3FKtMzure/eT1LdvXw0cOFB9+pyuLl26KjMzU0lJSQctkzuAJiPPZBxN38MBAAAAAAAAAACAo4ZhGCooKNCePXu0e/fusp+7tGfPLhUU7I1mUIuLsyitmUnJySElJ5uUnGRSSkr4kZxkkt1ey4UAADgCvff+Il173STNnX27evfKbOzuVGvW7I2aOnWN/jHqHO3YUaSiIq+KS3xav36P3nt/kT7/7LrG7iJw1GHdNZ7iYqlwr6HCQkMFBYYK9xoqKJAKC83akx+MfjOF3W5VWlozNWvWXM2aNVOzZs2UlpamtLQ0xcXF1XIVAGgQy/g8NgAAAAAAAAAAAA5LJpNJqampSk1NVVZWVoVjoVCoQnBxfn6+CgrytXZdgQoLC+V2e6N1nU6zkpMtSkk2lJJiKDnJpKQkkxITpcQEkxITyWJ8NLvyqg80fcbaGuvcdmuven1NeWM7mseGg4N7pu6Ys+rFMjc3XN9Tb761ULN+GCGr1azWrZOjx049pbVWrMhrsGs11fcBB9eReO95vQENHvLOAa87VObxSEXFhvbuNVRcrGiAcGGhVFAoFRaGFAyGP+RoMkmJiXFKTk5WSkq6jjsmpUKgcHx87JncAeBgIQMxAAAAAAAAAAAAjjo+n0+FhYUqKCio8LOwcI8KCgpUXOxW+f8mc7ksSog3KSnJUEKCoaQkkxLiTUpONik+XkpOMis+XjKbG3FQAACU88aEBbr5lk/0w8zbdOYZ7Rq7O1XauLFA7bKe1LAru+uf/+inrKxm8ngCWrb8d30wMVd33Xm6OnVKb+xuAkcV1l3d+f0KBwWXGNq7VyouNrS3KBwkvHevSUXFUlFRUIHAvn8/WK0WJScnKjk5RcnJqWWBwilKSUlRcnKykpKSZOYfDwAOb8sIIAYAAAAAAAAAAECT5PF4VFRUFH0UFxcrPz9fRUV7VVRUoKKiYpWUeCoEGlutJiUmWpQQL7lcISUmmpSQILmcpn3PXSY5HVJioqkRRwcAOJp9/MlS/eOf32rVql26cFBn3XpLL/3x4hMau1tVmjgpV4/933StWJEnq9Ws4zqla8iQrvrrfWcpMdHR2N0DjkqsOykQkIqKDBUVG+HMweWeu91ScbFZRcWS222ouDhQ4Vyn067ExEQlJiYpNbWZEhISyl6HHwkJCUpISJDJxN/7AI5oBBADAAAAAAAAAAAA1QkGgxUCjIuKilRaWqqSkhIVFxerpKRIpaUlKi4ukdfrr3CuzWZWfLxZCfFmxcWFyh4mxblMiouT4uJMcrmkOFfZzziTiEEAABytvN6ALBazrFYycgKHytGy7gIBqbTUkNsT/llaGvlZvsyk4mKTSkoNlZaGFArtC4kzmUyKi3MoPj5e8fHxSkhIVlxcXNnzBMXHxyspKSn6nMBgAE0EAcQAAAAAAAAAAABAQwgEAiotLS0LLC6JPoqLi1VaWqrS0pJyD498Pn+lNlwui+LizHI5TWUBx0ZZkLEUF2eW01mW4dgZznrsdEpOZyMMFgAAAKijUCic8dfjkdyeSDZgQ253OCtwadnzcICwSaXucDCw318xvM1kMsnlsisuziWXy6W4uETFxe0LBo6Li4s+j7wmKBgAKiGAGAAAAAAAAAAAAGgMwWBQpaWlcrvd0Z8lJSX7lZWqtLS47LlHHo+vyrZcLoucTlNZULEhl8vYF2zsKBd0XPbT6ZAcDsnhMMliOcQDBwAAwBHL55O8XkNer+Tx7gsCjv70Rl6b5Habwj89IXk8hny+UKX2zGaTXC5HWSBwnOLiEuRyxZU93/eIHI/8BAAcMAKIAQAAAAAAAAAAgCOFYRjyeDzyeDxyu921/CyRx+Mue+2tNvjYajXJ6TTL4TDJYVdZVuOQnE5TOMjYrujz8M+KQch2u0lW6yGeCAAAANSZ1yv5fPuCf73ecJnbXbnM45G8XpO8XlNZoLAhjyeoqiLNIkHATqdTLpdLTqdLLld8udfV/7Tb7Yd+IgAAEgHEAAAAAAAAAAAAQNNQPvjY4/HI6/XK6/VGn5cvc7vd8nrd8no95Y575fcHq2zbZJIcDrMcDrNsNslmlVwuyWYzZLMZ4eBkh2SzmWSzhoOU7XaTbDbJXhagHDnP6TTJbpfM5kM8QQAAAIcRvz/88HoNeX2R1+FMvz5f+LnPJ3m84ed+v8qy/Jrl92u/Y4a83srZfyOcTrucToccjnAQsMPhksPhLHseLiv/3OFwVCgnCBgAjkgEEAMAAAAAAAAAAACITVVByD6fT36/Xx6PJ/rc5/PJ4/HI7/fL7/fL6/XI63WXO+aV3x9QMFh9IIvZLNntZjmd5v0Cj0Oy2QzZ7eFMyDZrODDZUZYR2WYz7XdM0QBmk+kQThYAAGgyAgHtC+D1lwvu9ewL7vV6Ja/PiAYGu91GuSBh035BwtX/jSRJdrtVNptVdrtNTqdTNptNNps9Gvgbfm2Ty+WKPo8E/drt9kqBwACAJokAYgAAAAAAAAAAAACNJxAIyO12KxAIRJ97PB4FAoFoYHL55+G6fgUCfrndJeXO88jt9tYYlCxJVqsp+rDZyl5bDFmtkssV/mktC0qOPLdaJZs1/NrprOJY5LVl32uHw5CJiGUAABpVIBAJ7jXCz4PhwN1IeYVjkdeBcJbffcdMCgTM0SDhQLD8uSG53SEFgzWHX1mtFjmdDtlsNlmtVjmdTrlc8bJarbJarXK5XNFA4MjxinVd0brx8fEy81UNAIADRwAxAAAAAAAAAAAAgKNH+WDj/TMiR475/X4Fg0F5vV6FQiF5PB6FQiF5vV4Fg0H5/T75/T4FAgH5fD6FQkF5PN6yDMy+mPvidJplNpvkcJhlsezLlmy1GrLbDZnNITmdKqsjWSwm2W37ApPtdpMsFkWzJ7tc4YBkuy2coTlyniTZ7eEyAAAOR36/FAxKhhHO0itJ/kC4LBiUfL59Qbw+nxQMGvJ6pVDIkMcrhULh8kBgX9beYNBUVkfyePe1Ha5b8weKIsxmk+x2m6xWi2w2q2w2mywWixwOh8xmi5zOOJnN4dcWiyWazddqtcput8tsNsvpdMpqtVab8ZcPFAEADlMEEAMAAAAAAAAAAABAXYRCIfl8vhoDksPBxp5q6+6rU1oWvOwpC14O1wkEgvL5/AqF6vbfueFAqLJAY7tJFotJZnM46DhcJlks4WBjuz1Urqysnr2snq1ymcNhKgtcrqbMVn09AMChYRiGvN7w7wG/PxxwaxiSt+zzLxXKvDWUBWqrF/7USjjYVxWu4fMZCgYj9WIL5C3PZrPKYjHL4dgXoGsymeR0umQ2W2S3O6IBuxUDfsN1zWZzrQG/kToAADRhBBADAAAAAAAAAAAAwOGsfECyJHm94WzIwWBQPp+vAcrc5cq8VdTzl5X5Vd//XrbbzeWyJlfMpCyFMy7bbPvqOxwhRRI2ms2KniOF61ks++q6nPuOWSz7t2OKXsNkksrHioWzQe977Sx3zGJRNBA73H8yPANHu0iG3Ai3e99+FwyGA2ojvN5wlltJFQJsI+0EAvvOLdu6o+34/PuO+Xyq0E4kM68kBQImBQL79iGPJ1xH2pe5N3xOqOy64aDd+rBaLbJawxury+UsK7PKWrZJulxxZWU2Wa22sjJXFfXqV7Z/wC8AADgkCCAGAAAAAAAAAAAAAMQukilZ2hfcfCBlkqKZmSPcbne56wXk9/uir73ecGZnKZJpc1/kXiR7c4THs++8hhIORN4XTWy1mmSz7Qvyc9il/b+t3mZThWDlCIvFkM1W+b/sTSbJ6az6K+8djsrtS5LNGu5L5WtUDKo+oGvYqr5GbSyWcP8OVDgD6YG3Ix14UPj+wab1FQwa8jXQberx1l6nKuWDYcsLBMKP/YVC4XOq7IOnymJ5fQ15jarfuEgm3ErtlysLj9WIXsPnq3t23NpYLGbZyt3wkSy6UvgeLp/1NpwZd98CdTrjyrVjkb1cGvdI9lxJ0ey74XOc9S5zOBwyVbXYAQBAU0AAMQAAAAAAAAAAAADg6Fc+eFmSfD5fNGh5/0DkQCBQoW4kI3OkHV+5iM/ywc/lM0WXV/788sIBz5WjJ/cPmo4It++uVF77NSpHugaDIfn9VURuQjabTQkJCcrPz2/srhy2nE57leXlg2XLK599trxw5tmqo8LLB9OWZ7fbZSmfhryGa9QUhBsOSHdWe77D4YjWNZvNldop3wdnQ0W2AwAAHDrLGuAzfgAAAAAAAAAAAAAAHN4sFgsBfzHYP5i6PK/XG83+XBdVBVXXR32vv79AIFBl4HaEz+eT2+1WcnJyje00VPbWcBbaAw/f2D/I9UCvX9/2AAAAcGQgAzEAAAAAAAAAAAAAAAAAAADQdCyr/L0RAAAAAAAAAAAAAAAAAAAAAI5aBBADAAAAAAAAAAAAAAAAAAAATQgBxAAAAAAAAAAAAAAAAAAAAEATQgAxAAAAAAAAAAAAAAAAAAAA0IQQQAwAAAAAAAAAAAAAAAAAAAA0IQQQAwAAAAAAAAAAAAAAAAAAAE0IAcQAAAAAAAAAAAAAAABlfD6f8vPzG7sbAAAAwEFFADEAAAAAAAAAAAAAAECZwsJCLV68uLG7AQAAABxUBBADAAAAAAAAAAAAAAAAAAAATQgBxAAAAAAAAAAAAAAAAAAAAEATQgAxAAAAAAAAAAAAAAAAAAAA0IQQQAwAAAAAAAAAAAAAAAAAAAA0IQQQAwAAAAAAAAAAAAAAAAAAAE0IAcQAAAAAAAAAAAAAAAAAAABAE0IAMQAAAAAAAAAAAAAAQBmbzabU1NTG7gYAAABwUJkMwzAauxMAAAAAAAAAAAAAAAAAAAAADollZCAGAAAAAAAAAAAAAAAAAAAAmhACiAEAAAAAAAAAAAAAAAAAAIAmhABiAAAAAAAAAAAAAAAAAAAAoAkhgBgAAAAAAAAAAAAAAAAAAABoQgggBgAAAAAAAAAAAAAAAAAAAJoQAogBAAAAAAAAAAAAAAAAAACAJoQAYgAAAAAAAAAAAAAAgDI+n0/5+fmN3Q0AAADgoCKAGAAAAAAAAAAAAAAAoExhYaEWL17c2N0AAAAADioCiAEAAAAAAAAAAAAAAAAAAIAmhABiAAAAAAAAAAAAAAAAAAAAoAkhgBgAAAAAAAAAAAAAAAAAAABoQgggBgAAAAAAAAAAAAAAAAAAAJoQAogBAAAAAAAAAAAAAAAAAACAJoQAYgAAAAAAAAAAAAAAAAAAAKAJIYAYAAAAAAAAAAAAAACgjM1mU2pqamN3AwAAADioTIZhGI3dCQAAAAAAAAAAAAAAAAAAAACHxDIyEAMAAAAAAAAAAAAAAAAAAABNCAHEAAAAAAAAAAAAAAAAAAAAQBNCADEAAAAAAAAAAAAAAAAAAADQhBBADAAAAAAAAAAAAAAAAAAAADQhBBADAAAAAAAAAAAAAAAAAAAATQgBxAAAAAAAAAAAAAAAAAAAAEATQgAxAAAAAAAAAAAAAABAGZ/Pp/z8/MbuBgAAAHBQEUAMAAAAAAAAAAAAAABQprCwUIsXL27sbgAAAAAHFQHEAAAAAAAAAAAAAAAAAAAAQBNCADEAAAAAAAAAAAAAAAAAAADQhBBADAAAAAAAAAAAAAAAAAAAADQhBBADAAAAAAAAAAAAAAAAAAAATQgBxAAAAAAAAAAAAAAAAAAAAEATQgAxAAAAAAAAAAAAAAAAAAAA0ISYDMMwGrsTAAAAAAAAAAAAAHCgtmzZor179zZ2NwAc4Xw+n9xut5KTkxu7KwCOAG3atFFCQkJjdwMAgLpaRgZiAAAAAAAAAAAAAEeFvXv3EkAM4IDZ7XaChwHEJC8vT7m5uSouLm7srgAAUGfWxu4AAAAAAAAAAAAAADSUpKQkdenSpbG7AQAAmoCcnBw5nU7l5uYqOztbiYmJjd0lAABiRgZiAAAAAAAAAAAAAAAAAKiHzMxMJSYmavHixSoqKmrs7gAAEDMCiAEAAAAAAAAAAAAAAACgHkwmk7p160YQMQDgiEMAMQAAAAAAAAAAAAAAAADUk9lsJogYAHDEIYAYAAAAAAAAAAAAAAAAAA4AQcQAgCMNAcQAAAAAAAAAAAAAAAAAcIAIIgYAHEmsjd0BAAAAAAAAAAAAAAAAADgSbdmyRXl5eRXKLBaLzGazcnNzdfLJJ8vlcjVS7wAAqB4ZiAEAAAAAAAAAAAAAAACgjnr06CGHw1Gp3GQyKSkpScFgUMXFxY3QMwAAakcGYgAAAAAAAAAAAAAAAACoo6SkJHXp0qXa4zk5OYewNwAA1A0ZiAEAAAAAAAAAAAAAAAAAAIAmhAzEAAAAAAAAAAAAAHAI7dy5U263W23btq2xXl5entLT02UymRq87YOhuLhYJpNJ8fHxh/za1VmzZo22bt0qSerTp0+VXzP/448/KhQKKTU1VQkJCdq8eXP0WPPmzZWVlSWHw6ENGzZo48aN0WMdO3bUscceG329evVqbdu2rcp+tG/fXm3atJEUnqdly5YpISFBzZs3l8vl0u+//16nfmZnZ0fLPR6PAoGAEhISapyLwsJCrV27Vscff3y179HGjRu1YcOG6OuTTz5Zdrtdc+bMiZZlZGTIarVq06ZN0bKkpCR17NhRiYmJNfahPJ/PJ4/Ho6SkpErHdu3aJZvNpuTk5Jjbq6sDvUZpaanWrVunbt261bsPVb131fUr1vc5lmtErFmzRna7PXpv1vcaDa2me7WkpES//fabTjjhBLlcroN+TKp5Xmo65vf79cUXX8hsNmvAgAHVrrvDabwFBQVas2aNjj/++CrXc0OMFwAAHD7IQAwAAAAAAAAAAAAAh8isWbPUvXt3ffnllzXWe/bZZ3XMMcfI5/M1eNsHy7hx4zR+/PhGuXZ12rRpo2nTpunss8/W22+/Xen47NmzddZZZ+nhhx9W+/btlZGRoXfffVcDBgxQSUmJfvrpJ/Xq1UujRo1SRkaGcnNzdfbZZ2vbtm1q2bJlhbYyMzP1xhtvaODAgdEgu5KSEn399dd65513JElz5szRgAEDtGTJEk2aNEnt2rXTnDlz6txPSfJ6vXrrrbfUoUMHLVu2rMZ5ePfdd3Xaaadp8ODBat++vebOnVtlvVatWun777/X2WefLbPZrPj4eNntdrVs2VL9+vXTe++9p9atW6tVq1aaNGmSzj33XBUWFmrFihUaNGiQrr/+ernd7lrfl3nz5qlt27b6/vvvqzz+4IMP6oknnqi1nQNxINdYv369Bg4cqNGjR9fr/Jreu/37VZf3OdZrSNKdd96pHTt26LzzztPcuXPrdY2DoaZ7dfHixbrppptkGIbuvPNOfffddwf1WE1zWNv8/vDDDxo0aJBat26tSy+9tNpg2sNpvJ999pluueUWPfDAA2rfvr2WL1/e4OMFAACHGQMAAAAAAAAAAAAAjgLLli0zli1b1tjdqNWgQYOMl156qcY627ZtMyQZHo+nQdpevHixMXPmzDq1VReBQMDIzs422rRpYwQCgYN2nfr47LPPjMzMTOOEE04wQqFQhWO33nqr0bVrV+OOO+6Ilr344otGSkpK9PXy5csNScann35qzJkzx5BkrF69usprjR071khPT69UPmXKFMMwDOOCCy4wxo4dW6FvEyZMqFc/PR6PEQqFjMTERGPu3LnVjn/Xrl3GU089ZRiGYQSDQePqq682zjrrrGrrf/TRR4Ykw+12VyhPTk42Xnzxxejr8ePHGwkJCdHX+fn5htlsNsaPH19t2+X16tXL+Pjjj6s85vP5jGAwWOP5B3pPx3KNmvznP/8xhg4dWq9za3rv9u9XrO9zXa4xa9YsY8CAAYZhGIbX6633NRpaTfdqKBQyTjvtNGP+/PnRuunp6UZpaelBOWYYNc9hTcfmzZtnNG/evNp94nAcr8fjMT744INo3y6++GJjzJgxDTrepmrmzJnGzp07G7sbAABUZSkZiAEAAAAAAAAAAAA0ebt27ZLP59OmTZu0du3aCsf27Nkjr9er1atXRzMC79ixQwsXLoxmW83NzVVOTo7mz58vSdq4caNycnKUl5enLVu2yOv1Rtszmyv/N+2GDRu0atWqSnUMw9DatWu1ffv2SuesX79eK1askGEYNba9ceNGXXrppZozZ45WrlwZLc/Pz1dubq78fn+F+qtWrdKOHTsq9Lk2X3zxhR5++GEVFxfr008/rXTc5/Pp999/l9fr1eLFixUMBiVJ27dv1+rVqyvULSoq0i+//KLdu3dXKPd4PNq1a5eKioq0aNGiCuOuiclk0siRI7VixQp9/fXX0fKtW7eqWbNmSkxMlMlkqlC/vLZt20b7FTm2f53qzpWkhQsXatCgQdHXb775pgoKCiRJgwcPVteuXevVT4fDIZPJJIfDUeP4i4uLNXLkSEnh+2PYsGHyeDzV1q9ujCaTqcZ5cjqdslgsKiwsrLE/EZF7tbCwUIsWLVIoFKpwbNOmTRXql78vq7unq7t3fD6fdu/erR07dkSPVXWNyL21/5qoaq1Utdaqs//1a3rv9u9XTXW9Xq92796tgoICLVmypMIcVnfepk2b9NVXX6mgoEA5OTkqKCiI+V6qSkFBgRYuXKiSkpIK5fVZrzXdqytWrNCiRYvUs2dPSVJaWpqaN2+uyZMnH5RjNc1hbcduv/12XXvttfJ4PFqzZs0RMV6Hw6Fhw4ZF+5aenq4LLrigQcdb3qZNm5STk6M5c+ZE78WcnBxt27ZNbrdbOTk5ldZnRPn1GPldm5OTI5/Pp8LCQuXk5ER/r1R3f0bUdp9WtycAAHC0IIAYAAAAAAAAAAAAQJP2xhtvKCMjQ//617/00EMPqVevXvrXv/4lSXrrrbfUqlUrPffccxo6dKg++eQTjRw5Ujk5OXK73TrvvPM0efJkpaam6pJLLtG6deskSRkZGXr++efVrFkzDRo0SOPHj6/y2oWFhTrnnHO0d+9evfPOO/rrX/9a4fgjjzyie++9Vx07dqzQxr///W/NnTtXK8AZ7AAAGrxJREFUTz/9tAYPHlxjcJ7NZpMkxcfHKy4uTpJ0/fXX6/vvv9fWrVt1xhlnRAMPb7jhBvn9fn322Wd68803Y57Db7/9Vpdeeqn+9Kc/aezYsRWOrV27Vj179tT999+vsWPHatSoURo8eLD++9//6oUXXlC/fv307bffSpImTJigsWPHymw26/bbb9fo0aMlSStXrlTnzp31wAMP6KmnntK1116rxx57LOb+ZWdnq3///nrmmWeiZa+++qpGjBhR67njxo1TZmamBg4cGNO1/H5/NKDt888/rzAfjz76qDZs2KATTzxRkyZNkiSdeuqpDdLP6rRt27ZC0F9ubm6FwMDq/PDDD9Fx5OTkKBAIVFs3Ly9Pd999t1q3bq3hw4fH3Lfp06fr3//+t4YPH64HHnhAUjiY/uyzz46+91Ll+7Kqe7q6e2f+/PnKysrS6NGjddNNN2nUqFFVXmPixIl6++23FQgE1K1bN02fPl1S9WslVlVdvzpV9as68+bNU/v27XXffffp3nvv1eWXX67zzjsvGpxfHYfDIYvFIpPJpJSUlOhc1sf06dP1t7/9TUVFRTr++ON19dVXa8aMGfVerzXdq8uXL1daWlqFwO0WLVpo9erVB+VYfa1Zs0YLFizQ3r17NXXqVA0fPlxDhw6tco8+HMdbUlKixx9/XHv27FGnTp0adLzlpaWlafjw4VqyZImSk5P12Wef6eGHH9Yxxxwjl8ult956Sy6Xq9J5+6/H9PR0jRo1ShMnTpTdbldycrJee+01paWlVXt/RtR2n1a3JwAAcDQhgBgAAAAAAAAAAABAk3bNNdfI7/frmmuu0dtvv62PP/5YY8aMUV5enq699lr5fD6dddZZWrRokaxWq3Jzc3XllVeqb9++euyxx3TdddcpPT1dt99+u7744gtJ0uzZs3XHHXfIYrHom2++0Z///Ocqr11YWKiTTz5Z2dnZGjx4cKXsvZE2X375Zd1///0qKSnRpEmTtGXLFmVkZGjIkCH64osv9NNPP1U7voyMDLlcLnXo0EFt2rSRFA4qvuCCCzRw4ECtXLlSW7duld/v19SpU2W32/XnP/9ZvXv3jmn+li5dqm7duslkMun222/XvHnz9PPPP0ePZ2VlqVevXmrbtq0eeOABjR8/Xl9++aUuuOACjRkzRjfffLMmT56sLVu26J577tH999+vHj166LXXXtPTTz+t2bNnq3PnzsrOzlbnzp316KOP6vHHH68y03FN7rvvPk2fPl2LFi2S1+tVXl5eNLvw/txutx544AGNGDFCO3fu1KxZs9S8efMKdQKBgHbv3h19RBiGoeLiYhUVFamwsDCatVoKBwsvWbJEp556qoYNG6ZLL71UpaWl9e5nVarrl6RoBui///3vtdbdsWNHhUdVgbM+n08jR45UixYt1KJFCy1fvlwZGRkx9/WUU07RU089pWeeeSaa9bVdu3Y655xzonWqui/3v6drundOPfVUtWvXTq1atdJXX32ll19+udI1tmzZoscff1x33HGHTjnlFD355JOy2+2Sql4rdVHV9auzf79qEllTJ598siZMmKC5c+dq4cKF0T2oOi1btlSbNm2UmJio7t27KzU1tU7jKW/06NEaMGCA/vCHP+jiiy9Wenq6zjnnnAZZr/vfq4WFhZWy3zqdThUXFx+UY/W1bt06Wa1Wvfzyy7rnnnv0zTff6JtvvtHUqVPrtDYba7y//fabUlNT9dNPP+mWW245oPHWJD4+XnfccYe+++47mUwm3XTTTZo/f75KSkrk9/vVrl07paamVpqv/dfjnj179PDDD2vKlCkKBoMqLi5Wdna2mjVrVu39GVHTfVrTngAAwNHE2tgdAAAAAAAAAAAAAIDGZLWG/9u0WbNmkqRzzjlHDodDGzZsiAaNZmRkyGQy6aefflJWVlb03L59+6qwsFArV67UHXfcoeOPP147d+7UzJkzo1mMawqobNOmje68807NnDlTxcXFFYJNpXCwnyQNHjxY1113ndavX6+ZM2eqU6dOSklJUUpKihYtWhQNDI7V888/r5ycHHXs2FEmk0k+n082m00PPPCATj75ZN1xxx0xZUGVpNdff12hUEgPPvigJKl9+/YaO3asJk6cGK1jsViimU4j8xzJLulyuVRYWKj58+erWbNm0YyySUlJys7O1ty5c3X66afLYrFEz0lLS6sUgFeb888/X127dtWzzz6rfv366Zprrqm2rsvl0hNPPFFjeytXrtTIkSOjr7/77jtJkt1u14UXXhgtj9wvhmHIZDIpMzNTn376qT744ANdf/31Gj16tJ588sl69TPWfkXm/sknn9Sjjz4anePqxiBJV1xxRYVgw6qyINvtdr344osKBoN68803deedd8rpdMbc16SkJEnh+3zHjh3RcovFEn0ey31Z271jtVqj69BkMlW6xqxZs5SdnR19PXjw4OjzqtZKXVV1/eqU71cs7UbWU0pKivr27as1a9bUuX/11apVK82ZM0dDhw5Vu3btKgSZH+h63f9ezcrKUlFRUYU6hYWFOu6449S+ffsGP1ZfzZo1k8lkir6PycnJOvHEE7Vy5Uq1atUq5rXZWOPt2bOnevbsqW7duumSSy45oPH279+/xnNvvPFGPfbYY8rLy9OUKVN0+umna+LEiUpJSdHgwYOr3J+qWo8DBgxQYmKipkyZol27dumqq66SVPP9GVHdfVrTngAAwNGEAGIAAAAAAAAAAAAAKKe0tFShUEgdOnSodCw9PV3z58+PvrZarbJYLDr22GPVsmVL/fGPf9R//vMfZWVl1RooKIW//n3EiBGaOnWqFi1aVG09l8slh8Ohdu3aSQpnh+3evXv0+Pr162vNJBr5SvlgMKgzzzxTM2bMUHJycvR4IBDQ8OHDddZZZ+m2227TzTffrHfeeafGNvfs2aNgMKgXXnghWta7d29dfvnl2rx5szIzM2s8v7z09HRt3bpVxcXFSkhIkBQOHm3dunXMbVTFMIzo2P/yl79oxIgRCgaDuuGGGw6o3W7dumnGjBm11uvbt6+WLFmiYDCoX3/9VTfeeKMk6aqrrtIXX3yh3NzcBu1ndf36+OOPddFFF6lz586Swpl9Yx1DbcaOHauff/5ZV1xxhaZNmxYNym8INd2Xkfk60HvHarXql19+USgUktkc/iLnLVu2qFWrVlWulcPV3r171bFjx0N2vVdffVVXXnmlJkyYoISEBN16660N0m5V92r37t3ldrtVUFCglJQUGYahdevW6aSTTlK7du0a/Fh9de7cWTabTZs3b45+sMNqtap169Z1WpuNPd5u3brFtH5qGm9tWrRooYsvvlgvvfRS9IMCo0aNUv/+/XX55ZdLUoX5qu53lyTdfffdGjdunM4444zo750DuT+r2xMO9PcRAACHG3NjdwAAAAAAAAAAAAAADgebNm2SJE2ZMkVXX3210tLSFAwGJYW/Xl6SbrrpJq1cuVKLFy+WJE2fPl3Dhw+PZgq+++67NX78eA0bNiza7ujRozVr1qzoa6/XK7/fL0maNm2aNm/erM2bNysnJ0clJSXauXNntK7b7ZYkffXVV7rvvvuUkJCgIUOG6LnnntNzzz2n2bNna8yYMdEMiuXbLq9Vq1ZavXq1tmzZojVr1ig3N1fr1q3TzJkz5fV6tXXrVuXn52vChAnKzs7WO++8ow0bNtQ6Z+PGjdNFF11UoezCCy9UXFycnnvuuWiZ3++PBntG+ufxeKKvQ6GQ+vbtq549e2rChAmSwsHJbrc7mgXT5/NF2/B4PNH3pjYFBQXas2ePJOmaa65Rs2bNNGjQoOhxt9sd7Uuk7cj7vb9IeXXHPR5PpfnfvXu3/v73vys7O1v//Oc/tXTp0uh4Fi5cqCFDhtSrn5IUCoVimosPP/xQq1evVlFRkXJycvTee+9p6tSpVdaN3HPlx2gYRqV58Xq90ffE4XDoo48+Um5uru69994a+xIRCASi13K73RWygwYCgeiYSkpKqrwvy9/Ttd07gUCg0ntW/hr9+/dXfn6+rrvuOk2bNk1PP/20NmzYUO1a8fl81a616sa6//Wre+/K96u2utK+fWv79u0qLCyssB5rukYgEIj5GtV59dVXdc899+iyyy7TiBEjotl0pfqv1+ru1dTUVN122236+OOPJUkzZ85Ujx491KNHj4NyLJZ5qepYQkKC7rzzTr322muSwkHdRUVFGjhw4GE9XrfbrYkTJ0bX5MSJE/Xoo482+Hj3N2LECD399NO6+eab1a9fP+3evTsaSL2/mtbj8OHDtWDBAp166qnR+tXdny+88IK++OILSdXfp9XtCQAAHG0sjzzyyCON3QkAAAAAAAAAAAAAOFB5eXmSpObNm9fpPMMw9Oijj6pjx4769ddfVVJSokceeURms1kffPCB9uzZo1AopOzsbKWnp2vo0KF67733tHXrVhUWFuqhhx6KZihs3bq1MjMz1adPn2j733zzjdq1a6f27dvr559/1qxZs2QymXTSSScpOztb69at06xZs3Tbbbdpw4YN8vv9/7+9uwuKuvrjOP4BVlZEHEd5KLFZBAJcpocRdNBgmKCGsQZTrHDAC6kpZXoaJ7OLhhrK4YIcjaayGlJvMgxJEI1MC0ghNBpEdzEFpkAHhjAfAEMR2P/Ff9zxYSEzYcF9v+747Tm/8znnd3avvr+D4uLiFBgYqO+++07Nzc2aMGGC/V+5h4SEKCIiQrt375bValVGRoaCg4NvurePj489w8yZM1VSUqLQ0FBFRUXJw8NDxcXFio+P14wZM3T06FElJCSooKBAra2tOnv2rF5++eVhTzU+duyYtm7dKm9vb82dO9f+L+wPHTqkP/74Qx0dHQoODtaVK1e0b98+DQ4OKjo6WmVlZTp37pwMBoNMJpNKS0vV29ur6OhorVq1ShUVFWpsbJTFYlFOTo58fHzU1NSkH3/8UZI0Z84c7dy5U93d3YqIiBj2REiLxaKvv/5aLS0tCgsLU0BAgPz9/bVs2TJ5eHiosLBQDQ0NstlsMplM6unpUUlJiby9vdXf36+wsDB5enpKkpqbm1VYWCiDwaBLly4pODj4ulMwrVarSkpK5OXlJYvFokOHDmnPnj3atGmToqKilJiYqFOnTqm6ulpHjhzRl19+qRUrVigjI+Nf55w5c6Z6e3tVXFystrY2GY1GhYSE2E/fvVZLS4uys7PV2NioiooKVVRUyGq16q233rI/s6uam5u1Y8cOeXt7q6enRw888IAkafPmzTp//rz6+voUGhqq8+fPq7i4WN7e3rp06ZLMZrP8/f1lNpu1a9cudXV1ad68eUOewl1XV6eamhr7ntixY4f+/vtvBQUFyd3dXXv37tXFixc1e/ZsTZ8+Xdu2bbtpX167p4OCgpSamupw79TW1qq6ulp9fX2KjIzU1KlT1draet0Y9913nxYtWqTq6modPHhQixcvVnx8vHx9fR1+V8LCwlRaWqrLly9r9uzZ9hcIHHE0/lDP7sZc/v7+wz7nLVu2yM3NTadOnVJtba3y8vLs3/uh+rW1tWn37t3q6urSzJkzZTKZbnkv3aiiokJZWVl677337C9KLF26VC0tLbf1ff2nvZqYmKjDhw/LYrGoqalJubm5MhqNkjQinw23LsN9lpiYKKvVqrq6OtXX12vdunUOf0vH0nxtNpvy8/NVXFysvr4+xcTEKDY21p71TszXkaCgIAUGBiouLk5ubm4KCAjQ0qVLHZ5iPtT38fHHH5fRaNSMGTO0ZMkS++/OUPuzqqpKU6ZMkdFoHHKfhoSEOPxNuB0tLS3y8/OTt7f3bfUHAGAEdbrZrr5KAwAAAAAAAAAAAADjWENDgyTJbDb/q34DAwMyGAw6ffq0AgMDRyLauHX06FGdO3fuputGo/G6ImlnGg8ZXZErPRdnzTUuLk6rVq1Senr6iNx/uHlFRkbq3XffVW5urtzc3DQ4OKhff/1V7e3tWrRo0W3d827bF67Omc+6u7v7tvbnSKisrJTZbP7XLzcBADAKrDe/sgMAAAAAAAAAAAAALqS7u1uS1NPT4+QkY8/vv/+u06dP33Td29t7zBT7jYeMrsiVnouz5trd3T2iv1vDzevMmTMqLy9XfX29QkNDdfLkSdXW1io1NfW273m37QtX58xnXVlZeVv7EwAAV8MJxAAAAAAAAAAAAADuCrd7AvG6detktVr1yCOPKC0tTdOmTRuJeABwxxQVFamoqEjBwcFasWKFQkNDR3X8wcFBffHFFyovL5fNZtOCBQv0wgsvaOLEiaOaA3BkLO1PTiAGAIxhVgqIAQAAAAAAAAAAANwVbreAGAAAYCRQQAwAGMOs7s5OAAAAAAAAAAAAAAAAAAAAAGD0UEAMAAAAAAAAAAAAAAAAAAAAuBAKiAEAAAAAAAAAAAAAAAAAAAAXQgExAAAAAAAAAAAAAAAAAAAA4EIMzg4AAAAAAAAAAAAAAIAjDQ0NWrt2rfbs2aNXXnlFkydP1l9//SVPT09lZWXJ39/f2REBAAAAYFziBGIAAAAAAAAAAAAAGEVnz56VxWJxdoxxwWw2KyUlRR4eHvrwww+Vk5Ojzz77TPfff7/Cw8NVXl4+bH/WGgAAAAAco4AYAAAAAAAAAAAAAEbJ5cuXlZaWppaWFmdHGTc8PDzk5uZ23bVXX31VS5Ys0fPPP6++vj6H/VhrAAAAABiawdkBAAAAAAAAAAAAAMCZDh8+rHfeeUfz589XXV2dampq9OKLLyo7O1u//PKLsrOzFR8fr5KSEsXExCgtLU2lpaWaMWOGfvjhB2VkZMhkMikpKUlRUVEqKChQb2+vkpOTlZubq7179+rUqVPKz8+X1WpVfX29SkpKZDAYNHXqVD355JNatGiRPv74Y/X39yslJUU5OTmy2WxD5pKkQ4cOqby8XFarVe7u7vr8889lNBpHfX6enp43tU9KStJvv/2m1atXKy4uTp2dndq+fbs2btyo1NTUYfNnZ2fb12s4KSkp2rJliywWi2pra2U0GtXe3q4///xTGzZsuGmtk5KS7GNc2w4AAAAAXBEFxAAAAAAAAAAAAABc2rx589TZ2anu7m7t3LlT9fX1io6OVlJSkhYsWKDOzk6dPn1a33//vRobG7Vw4ULV1dUpICBAiYmJevDBB1VfX6+3335bn376qTw9PWUwGPToo48qJiZGXl5e6urqkiTNmTNHvr6+euqpp5SUlCTp/6fpVldXy8vLSzabTWazWXPnzpWkIXNFRkZqw4YN2r59uyQpIiJCmzdvVmZm5qjOz2w2KyIiwmH7iIgI2Ww2dXR0KC8vT1FRUdq0aZNSU1N14cKFIfMvXrzYvl7DiYyMlCS1trZq48aN+umnn+Tr6ysfHx+9+eabDtfaUbuAgID/uIMAAAAAYPxxd3YAAAAAAAAAAAAAAHA2Ly8vPfzww5Kkhx56SLGxsfr5558lSZMmTdKcOXM0adIktbW1aeLEifai0+DgYIWFhamsrEzLly9Xa2uramtrVVZWpuTkZPv94uLihhz7pZde0oEDB2S1WnXgwAE99thj/5jr4MGD9sLcvLw8ZWZmKjw8fNTnV1VVNWT7q+OGhYVJkmbNmqXm5mZJGjb/P63XVVfvFR4eruPHj6u9vV0nT56Uu7u7enp6HPa51XYAAAAAcLfjBGIAAAAAAAAAAAAAuIGXl5f8/PwcftbR0aGBgQF5eHhIkqZNm6ZJkybJaDRq5cqV+uSTTzRr1ixlZWXd0ljTp0/XihUrtHHjRgUGBg7b72quM2fOaPLkyXrttdfsn128eHHU51dWVjZk++H81/ySVFFRodDQUIWFhSkjI0Nr1qxReHi4PYcjt9oOAAAAAO52nEAMAAAAAAAAAAAAAJJ6e3slSX19fTp27JieeOIJSZLNZtPg4KAkKTY2VlOnTtXevXslSQMDA2pvb7e3zczMVFFRkUwmk/2+FotFNTU19r99fHx07tw5XblyxX7t9ddfV0FBgSZMmCCD4fpzoBzlmj9/vvbt26dt27ZpcHBQVqtV+/fvH/X5/VN7m81mH39gYMD+93D5b1yva/tdtWvXLn3wwQfaunWrmpqa9NVXX8lkMunChQvq7e21r+21a33ixIkh2wEAAACAq+EEYgAAAAAAAAAAAADQ/4tSL126pNbWVhUUFMjX11e1tbU6fvy4iouLlZCQIJPJpG+//VY5OTlqa2vT2bNnlZ+fr3vuuUeSdO+99+q5557TM888Y79vYWGhWltbFRMTI0lavny51q9fr4kTJ+rpp5+WJAUHB2vhwoVKTk6+pVy+vr766KOPtHbtWr3xxhtKS0vT+++/P+rz8/HxGbJ9U1OTjhw5Ik9PTz377LMqKipSR0eHampqFBMTM2T+a9frxIkT+uabbzQwMKDVq1dr8uTJ6urq0uXLl2W1WmUymdTf36/Y2FjFx8dr5cqVSkhIUFZWlrZu3XrdWi9evNhhu8LCwv+4cwAAAABg/HGz3fiqJgAAAAAAAAAAAACMQw0NDZIks9n8r/vGxcVp1apVSk9Pv9OxbtmaNWu0fv36667dqVxjYX4AALiayspKmc1m+fn5OTsKAAA3snICMQAAAAAAAAAAAACXd+XKFfX394/6uD09PaqqqlJ3d7eio6NHLJez5gcAAAAAGJvcnR0AAAAAAAAAAAAAAJypqKhIHR0d2r9/v5qamkZ17MbGRqWnp2vPnj1atmzZiORy5vwAAAAAAGOTm81mszk7BAAAAAAAAAAAAAD8Vw0NDZIks9ns5CQAAABSZWWlzGaz/Pz8nB0FAIAbWTmBGAAAAAAAAAAAAAAAAAAAAHAhFBADAAAAAAAAAAAAAAAAAAAALoQCYgAAAAAAAAAAAAAAAAAAAMCFUEAMAAAAAAAAAAAAAAAAAAAAuBAKiAEAAAAAAAAAAAAAAAAAAAAXYnB2AAAAAAAAAAAAAAC4U7q6utTQ0ODsGAAAAAAAjGkUEAMAAAAAAAAAAAC4K0yZMsXZEQAAAOz8/PxkNBqdHQMAAIfcbDabzdkhAAAAAAAAAAAAAAAAAAAAAIwKq7uzEwAAAAAAAAAAAAAAAAAAAAAYPRQQAwAAAAAAAAAAAAAAAAAAAC6EAmIAAAAAAAAAAAAAAAAAAADAhfwPBaYO9rsgyk8AAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Image(resp.provenance_image())" + ] + }, + { + "cell_type": "markdown", + "id": "f3cc1404-0030-4e7c-98bb-498c354301d2", + "metadata": { + "tags": [] + }, + "source": [ + "## Summary\n", + "In this notebook, we used the Rooki Python client to retrieve a subset of a CMIP6 dataset. The operations are executed remotely on a Rook subsetting service (using OGC API and xarray/clisops). The dataset is plotted and a provenance document is shown. We also showed that remote operators can be chained to be executed in a single workflow operation.\n", + "\n", + "### What's next?\n", + "\n", + "This service is used by the European Copernicus Climate Data Store. \n", + "\n", + "We need to figure out how this service can be used in the new ESGF: \n", + "* where will it be deployed? \n", + "* how can it be integrated in the ESGF search (STAC catalogs, ...)\n", + "* ???\n", + "\n", + "## Resources and references\n", + "- [Roocs on GitHub](https://github.com/roocs)\n", + "- [Copernicus Climate Data Store](https://cds.climate.copernicus.eu/)\n", + "- [STAC](https://stacspec.org/en)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_preview/32/_sources/notebooks/rooki_enso_nonlinear.ipynb b/_preview/32/_sources/notebooks/rooki_enso_nonlinear.ipynb new file mode 100644 index 0000000..75e2986 --- /dev/null +++ b/_preview/32/_sources/notebooks/rooki_enso_nonlinear.ipynb @@ -0,0 +1,568 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fd53a474", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "931a4b84-bb67-44e4-aa91-30f3d8bcc529", + "metadata": { + "tags": [] + }, + "source": [ + "# Compute Demo: ENSO nonlinearity index with CMIP6 data" + ] + }, + { + "cell_type": "markdown", + "id": "6cff08e9", + "metadata": {}, + "source": [ + "\"Alpha" + ] + }, + { + "cell_type": "markdown", + "id": "cffd29c8", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "81f6c01b-1e08-463d-90d5-b9e7be5a61ac", + "metadata": { + "tags": [] + }, + "source": [ + "## Overview\n", + "\n", + "In this demo we combine multiple multiple tools described in previous cookbooks to subset, regrid and process CMIP6 data. We will be computing a measure of ENSO nonlinearity by computing the EOFs of the pacific sea surface temperature anomalies. This measure is particularly useful for characterizing models by their ability to represent different ENSO extremes (Karamperidou et al., 2017).\n", + "\n", + "The process we are going to follow in this demo is:\n", + "\n", + "1. Find the CMIP6 data we need using intake-esgf\n", + "2. Subset the data and regrid it to a common grid using Rooki\n", + "3. Load the datasets into xarray and perform the computations\n", + "4. Plot the results\n" + ] + }, + { + "cell_type": "markdown", + "id": "31d3693d-4e01-4982-b1d0-dffcd2a13157", + "metadata": { + "tags": [] + }, + "source": [ + "## Prerequisites\n", + "\n", + "| Concepts | Importance | Notes |\n", + "| --- | --- | --- |\n", + "| [Intro to Xarray](https://foundations.projectpythia.org/core/xarray/xarray-intro.html) | Necessary | How to use xarray to work with NetCDF data |\n", + "| [Intro to Intake-ESGF](intro-search) | Necessary | How to configure a search and use output |\n", + "| [Intro to Rooki](rooki) | Helpful | How to initialize and run rooki |\n", + "| [Intro to EOFs](https://projectpythia.org/eofs-cookbook/notebooks/eof-intro.html) | Helpful | Understanding of EOFs |\n", + "\n", + "\n", + "\n", + "\n", + "- **Time to learn**: 20 minutes" + ] + }, + { + "cell_type": "markdown", + "id": "288086a4", + "metadata": {}, + "source": [ + "## Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a2339b90", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "os.environ[\"ROOK_URL\"] = \"http://rook.dkrz.de/wps\"\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import numpy.polynomial.polynomial as poly\n", + "import xarray as xr\n", + "import xeofs as xe\n", + "from intake_esgf import ESGFCatalog\n", + "from rooki import operators as ops\n", + "from rooki import rooki" + ] + }, + { + "cell_type": "markdown", + "id": "d6ed87c2", + "metadata": {}, + "source": [ + "## Retrieve subset of CMIP6 data\n", + "\n", + "The CMIP6 dataset is identified by a dataset-id. Using intake-esgf we can query the ESGF database for the variables and models we are interested in. For this demo we are interested in the tos (sea surface temperature) variable for the historical runs. Also, for sake of simplicity we will only query a subset of the models available." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "66b3b3c0-6aa0-465b-bc17-86ae2ce5f25b", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2e14f0415b3142848615c8e9dfd26be9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " Searching indices: 0%| |0/2 [ ?index/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Summary information for 11 results:\n", + "activity_drs [CMIP]\n", + "variable_id [tos]\n", + "member_id [r1i1p1f1, r1i1p1f2]\n", + "mip_era [CMIP6, nan]\n", + "source_id [FGOALS-g3, CAMS-CSM1-0, EC-Earth3-Veg, CMCC-C...\n", + "grid_label [gn]\n", + "datetime_start [1848-10-25T13:00:00Z, 1850-01-16T12:00:00Z, 1...\n", + "datetime_stop [nan, 2014-12-16T12:00:00Z, 2014-12-15T12:00:00Z]\n", + "institution_id [CAS, CAMS, EC-Earth-Consortium, CMCC, CNRM-CE...\n", + "experiment_id [historical]\n", + "table_id [Omon]\n", + "project [CMIP6]\n", + "dtype: object\n" + ] + } + ], + "source": [ + "cat = ESGFCatalog()\n", + "cat.search(\n", + " experiment_id=[\"historical\"],\n", + " variable_id=[\"tos\"],\n", + " table_id=[\"Omon\"],\n", + " project=[\"CMIP6\"],\n", + " grid_label=[\"gn\"],\n", + " source_id=[\n", + " \"CAMS-CSM1-0\",\n", + " \"FGOALS-g3\",\n", + " \"CMCC-CM2-SR5\",\n", + " \"CNRM-CM6-1\",\n", + " \"CNRM-ESM2-1\",\n", + " \"EC-Earth3-Veg\",\n", + " \"CESM2\",\n", + " ],\n", + ")\n", + "cat.remove_ensembles()\n", + "print(cat)" + ] + }, + { + "cell_type": "markdown", + "id": "4aea426b", + "metadata": {}, + "source": [ + "Once the catalog has been queried, we have to do some manipulation in pandas to keep only the dataset_id. This has to be done because the same data has multiple locations online, and these get appended at the end of the dataset_id. Rookie only accepts the dataset_id without the online location, so we get rid of it in the next step." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "9482b7d7", + "metadata": {}, + "outputs": [], + "source": [ + "def keep_ds_id(ds):\n", + " return ds[0].split(\"|\")[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "46726e56-030d-4e54-a1a4-5e2f2ca11b43", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['CMIP6.CMIP.CAS.FGOALS-g3.historical.r1i1p1f1.Omon.tos.gn.v20191107',\n", + " 'CMIP6.CMIP.CAMS.CAMS-CSM1-0.historical.r1i1p1f1.Omon.tos.gn.v20190708',\n", + " 'CMIP6.CMIP.EC-Earth-Consortium.EC-Earth3-Veg.historical.r1i1p1f1.Omon.tos.gn.v20211207',\n", + " 'CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical.r1i1p1f1.Omon.tos.gn.v20200616',\n", + " 'CMIP6.CMIP.CNRM-CERFACS.CNRM-ESM2-1.historical.r1i1p1f2.Omon.tos.gn.v20181206',\n", + " 'CMIP6.CMIP.CNRM-CERFACS.CNRM-CM6-1.historical.r1i1p1f2.Omon.tos.gn.v20180917',\n", + " 'CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Omon.tos.gn.v20190308',\n", + " 'CMIP6.CMIP.CAS.FGOALS-g3.historical.r1i1p1f1.Omon.tos.gn.v20191107',\n", + " 'CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical.r1i1p1f1.Omon.tos.gn.v20200616',\n", + " 'CMIP6.CMIP.CNRM-CERFACS.CNRM-CM6-1.historical.r1i1p1f2.Omon.tos.gn.v20180917',\n", + " 'CMIP6.CMIP.EC-Earth-Consortium.EC-Earth3-Veg.historical.r1i1p1f1.Omon.tos.gn.v20211207']" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "collections = cat.df.id.apply(keep_ds_id).to_list()\n", + "collections" + ] + }, + { + "cell_type": "markdown", + "id": "513d3941", + "metadata": {}, + "source": [ + "We are left with a list of dataset_ids that Rookie can accept as input for the next step." + ] + }, + { + "cell_type": "markdown", + "id": "674a3b8b", + "metadata": {}, + "source": [ + "## Subset and regrid the data\n", + "\n", + "We define a function that will do the subset and regridding for us for each of the dataset_ids we have. The function will take the dataset_id as input and then use Rookie functions to select 100 years of data for the tos variable in the Pacific Ocean region. We don't need high resolution data for this particular use, so 2.5 degree resolution is enough." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "30e8c66b", + "metadata": {}, + "outputs": [], + "source": [ + "def get_pacific_ocean(dataset_id):\n", + " wf = ops.Regrid(\n", + " ops.Subset(\n", + " ops.Input(\"tos\", [dataset_id]),\n", + " time=\"1900-01-01/2000-01-31\",\n", + " area=\"100,-20,280,20\",\n", + " ),\n", + " method=\"nearest_s2d\",\n", + " grid=\"2pt5deg\",\n", + " )\n", + " resp = wf.orchestrate()\n", + " if resp.ok:\n", + " print(f\"{resp.size_in_mb=}\")\n", + " ds = resp.datasets()[0]\n", + " else:\n", + " ds = xr.Dataset()\n", + " return ds" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "eacbecbd", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "resp.size_in_mb=47.61813259124756\n", + "Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_fq1_rikt/tos_Omon_FGOALS-g3_historical_r1i1p1f1_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.\n", + "resp.size_in_mb=47.61836910247803\n", + "Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_78zekaf5/tos_Omon_CAMS-CSM1-0_historical_r1i1p1f1_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.\n", + "resp.size_in_mb=47.622283935546875\n", + "Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_btxkrzn3/tos_Omon_CMCC-CM2-SR5_historical_r1i1p1f1_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.\n", + "resp.size_in_mb=47.62028503417969\n", + "Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_guxi9kpa/tos_Omon_CNRM-ESM2-1_historical_r1i1p1f2_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.\n", + "resp.size_in_mb=47.621718406677246\n", + "Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_qw22qb9h/tos_Omon_CNRM-CM6-1_historical_r1i1p1f2_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.\n", + "resp.size_in_mb=47.61574363708496\n", + "Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_fusqog81/tos_Omon_CESM2_historical_r1i1p1f1_gr_19000115-20000115_regrid-nearest_s2d-72x144_cells_grid.nc.\n", + "resp.size_in_mb=47.61813259124756\n", + "Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_6d4b6nu0/tos_Omon_FGOALS-g3_historical_r1i1p1f1_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.\n", + "resp.size_in_mb=47.622283935546875\n", + "Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_15dtyr8e/tos_Omon_CMCC-CM2-SR5_historical_r1i1p1f1_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.\n", + "resp.size_in_mb=47.621886253356934\n", + "Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_yugmj4nu/tos_Omon_CNRM-CM6-1_historical_r1i1p1f2_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.\n" + ] + } + ], + "source": [ + "sst_data = {dset: get_pacific_ocean(dset) for dset in collections}" + ] + }, + { + "cell_type": "markdown", + "id": "46301d38", + "metadata": {}, + "source": [ + "## ENSO nonlinearity measure: `alpha` value" + ] + }, + { + "cell_type": "markdown", + "id": "788b135d", + "metadata": {}, + "source": [ + "This part of the demo is computation heavy. You can refer to Takahashi et al. (2011) and Karamperidou et al. (2017) for more details on the usefulness and computation of the `alpha` parameter.\n", + "\n", + "The `alpha` parameter is computed by doing a quadratic fit to the first two EOFs for the DJF season of the SST anomalies in the Pacific region. We are looking to obtain two EOFs modes that represent the Eastern and central pacific SST patterns, which is why we include a correction factor to account for the fact the sometimes the EOFs come with the opposite sign.\n", + "\n", + "The higher the value of `alpha`, the more nonlinear (or extreme) ENSO events can be represented by the model. Likewise, a model with lower `alpha` values will have a harder time representing extreme ENSO events, making it not suitable for climate studies of ENSO in a warming climate (Cai et al., 2018, 2021)." + ] + }, + { + "cell_type": "markdown", + "id": "99631cca", + "metadata": {}, + "source": [ + "We are looking to obtain data that can reproduce a figure similar to the one below (taken from Karamperiou et al., 2017):" + ] + }, + { + "cell_type": "markdown", + "id": "a4266bc6", + "metadata": {}, + "source": [ + "\"Alpha" + ] + }, + { + "cell_type": "markdown", + "id": "31e2e06a", + "metadata": {}, + "source": [ + "Each of the \"wings\" of this boomerang-shaped distribution represents a different ENSO extreme, with the left (right) wing representing the extreme central (eastern) pacific El Niño events. More details on Takahashi et al. (2011)." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f43be532-c565-45e7-84d8-21be6e4e351e", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def compute_alpha(pc1, pc2):\n", + " coefs = poly.polyfit(pc1, pc2, deg=2)\n", + " xfit = np.arange(pc1.min(), pc1.max() + 0.1, 0.1)\n", + " fit = poly.polyval(xfit, coefs)\n", + " return coefs[-1], xfit, fit\n", + "\n", + "\n", + "def correction_factor(model):\n", + " _eofs = model.components()\n", + " _subset = dict(lat=slice(-5, 5), lon=slice(140, 180))\n", + " corr_factor = np.zeros(2)\n", + " corr_factor[0] = 1 if _eofs.sel(mode=1, **_subset).mean() > 0 else -1\n", + " corr_factor[1] = 1 if _eofs.sel(mode=2, **_subset).mean() > 0 else -1\n", + " return xr.DataArray(corr_factor, coords=[(\"mode\", [1, 2])])\n", + "\n", + "\n", + "def compute_index(ds):\n", + " tos = ds.tos.sel(lat=slice(-20, 20), lon=slice(100, 280))\n", + " tos_anom = tos.groupby(\"time.month\").apply(lambda x: x - x.mean(\"time\"))\n", + "\n", + " # Compute Eofs\n", + " model = xe.models.EOF(n_modes=2, use_coslat=True)\n", + " model.fit(tos_anom, dim=\"time\")\n", + " corr_factor = correction_factor(model)\n", + " # eofs = s_model.components()\n", + " scale_factor = model.singular_values() / np.sqrt(model.explained_variance())\n", + " pcs = (\n", + " model.scores().convert_calendar(\"standard\", align_on=\"date\")\n", + " * scale_factor\n", + " * corr_factor\n", + " )\n", + "\n", + " pc1 = pcs.sel(mode=1)\n", + " pc1 = pc1.sel(time=pc1.time.dt.month.isin([12, 1, 2]))\n", + " pc1 = pc1.resample(time=\"QS-DEC\").mean().dropna(\"time\")\n", + "\n", + " pc2 = pcs.sel(mode=2)\n", + " pc2 = pc2.sel(time=pc2.time.dt.month.isin([12, 1, 2]))\n", + " pc2 = pc2.resample(time=\"QS-DEC\").mean().dropna(\"time\")\n", + "\n", + " alpha, xfit, fit = compute_alpha(pc1, pc2)\n", + "\n", + " return pc1, pc2, alpha, xfit, fit" + ] + }, + { + "cell_type": "markdown", + "id": "2334677a", + "metadata": {}, + "source": [ + "Now we can compute the `alpha` parameter for each of the models we have selected." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "140ee71c-01ad-4df5-a4af-d3f7f28c622a", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "alpha_fits = {}\n", + "for key, item in sst_data.items():\n", + " if len(item.variables) == 0:\n", + " continue\n", + " alpha_fits[key] = compute_index(item)" + ] + }, + { + "cell_type": "markdown", + "id": "b8714f85", + "metadata": {}, + "source": [ + "## Plot the results\n", + "\n", + "Finally, we can plot the results of the `alpha` parameter for each of the models we have selected. This will give us an idea of how well the models represent different ENSO extremes." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6b327ec5-f261-4ae8-9ee8-19fff28b62dc", + "metadata": { + "tags": [], + "trusted": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAPvCAYAAAA29Y1nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxTV/o/8E/YIWyK4oqiKO77Li6oqCiCIqLsS5jpdKwVZ9pOpfObr9pNp+3U2ulmpwSEsImALG4I7lh3UeuG4oKKKCBrgADJ+f1Bk7KTQJKb5bxfr7wUcnPzXCBPnpx77nlYhBACiqIoiqIoilJzOkwHQFEURVEURVHyQAtbiqIoiqIoSiPQwpaiKIqiKIrSCLSwpSiKoiiKojQCLWwpiqIoiqIojUALW4qiKIqiKEoj0MKWoiiKoiiK0gi0sKUoiqIoiqI0Ai1sKYqiKIqiKI1AC1tKaSIjI8Fisdq9vf/++5LtBAIBvv/+eyxcuBBWVlbQ19eHlZUVHB0dsXfvXlRVVbXZd2lpKcLCwjB27FiYmJjA3Nwcs2fPxvfff4+GhoYOY0pLSwOLxYKVlRUEAkG729ja2mLVqlWdHhshBPHx8Zg/fz6sra1hZGSEwYMHY/ny5fjll1+k/AlJJzc3Fy4uLhgyZAiMjY3Ru3dvzJkzBzweT67PQ1GUct28eRPBwcEYNmwYjIyMYGpqiqlTp+KLL77Amzdv2mw/depUsFgsfPXVV+3ur3nOPXXqVJv7CSEYMWIEWCwWHB0dW9zXPKey2WxYWFhg9OjR8Pf3x82bN6U+pkePHmHTpk2wt7eHsbExTExMMG7cOPy///f/8OLFixaxSJtDxccUFBTU7nN+/PHHkm2ePHki+f7t27exceNGzJkzB2w2u8OfS1eysrIwZ84cmJiYoE+fPggKCsLr169l3g+lGLSwpZQuIiICv/76a4vb5s2bAQDFxcWYO3cu/v73v2PUqFH4+eefceLECYSHh2PixIn4xz/+gY0bN7bY37179zBlyhTs3bsXvr6+OHToEOLj4zF16lSEhoZi6dKlqKmpaTeW8PBwAMCbN29w8ODBbh9TWFgYvL29MWbMGPzyyy84cuQIPv30U/Tr1w+pqand3m97ysvLYWNjg88//xyHDx9GVFQUbG1t4e/vj08//VSuz0VRlHL873//w7Rp03D58mV88MEHOHr0KFJSUuDp6YmffvoJISEhLbbPzc3F9evXAfyRxzpiZmbW7janT59Gfn4+zMzMWny/uroas2fPRmRkJP70pz8hLS0NMTExeOutt/D48WPk5uZKdUwZGRmYOHEiMjIy8NZbbyEjI0Py//T09BYDBrLmUDMzMyQmJrYZ6CCEIDIyEubm5m0ec+XKFRw8eBC9e/fGkiVLpDqG1k6fPo0VK1ZI4tqzZw+ysrKwZMmSDgdHKCUjFKUkERERBAC5fPlyh9ssW7aM6Ovrk9OnT7d7f0lJCYmOjpZ83djYSMaOHUssLCzI/fv322wfHx9PAJC//OUvbe57+fIl0dPTI4sXLyZGRkZk6dKl7T7n0KFDiYuLS4cx19TUEENDQxIQENDu/UKhsMPHytOsWbOIjY2NUp6Loij5OX/+PNHV1SXOzs6krq6uzf0CgYCkpqa2+N4777xDABAXFxcCgOTk5LR5nDjn/ulPfyLGxsakoqKixf1+fn5kzpw5ZNy4cWThwoWS73O5XAKAnDhxot14pclpjx49Imw2m0yZMoWUl5e3uV8kEpGkpCRCiOw5FADx8/MjxsbG5Oeff25xX1ZWFgFA/vznPxMA5PHjx+3uJzExkQAgJ0+e7PJYmpsxYwYZO3YsaWhokHwvJyeHACA//PCDTPuiFIOO2FIq4/Lly8jMzMRbb72FBQsWtLuNlZUV/Pz8JF+npKTgzp072Lp1K+zt7dtsv2HDBixbtgzh4eEoKipqcd++ffvQ2NiIv/3tb1i7di2ys7Px9OlTmePm8/kQCAQYMGBAu/fr6Ej3MisvL0dISAh69+4NU1NTuLi44NGjR2CxWNi+fXuXj+/Tpw/09PRkCZ2iKBXw+eefg8Vi4eeff4ahoWGb+w0MDODm5ib5uq6uDrGxsZg2bRp2794NAOByuR3u39vbGwAQFxcn+V5FRQWSkpLA4XDabF9aWgoAPcppX3/9Nfh8Pn744QdYWFi0uZ/FYmHt2rUAupdDLSws4O7u3ua4uVwuHBwc2n0/kDYXd+TFixe4fPky/P39W+TauXPnwt7eHikpKT3aPyUftLCllE4oFKKxsbHFDQCOHz8OAC0SeFfEj1mzZk2H26xZswaNjY1t5lJxuVwMGDAAK1asAIfDgUgkQmRkpEzHAjQVlCNGjMAPP/yAr7/+Gvfu3QMhRKZ9iEQiuLq6IjY2Fh9++CFSUlIwa9YsODs7d/qYxsZGFBcX44cffsCxY8fw4Ycfyhw/RVHMEQqFOHHiBKZNmwYbGxupHpOcnIyysjJwOByMHDkS8+bNQ0JCAqqrq9vd3tzcHOvWrWtRBMbFxUFHRwcbNmxos/2cOXMAAAEBATh48KCk0JVFZmYm+vXrh9mzZ3e5bXdzaEhICC5cuIC7d+8CaBocSE5ObjNtQ15+++03AMDEiRPb3Ddx4kTJ/RSzaGFLKd3s2bOhr6/f4tbY2Ihnz54BAIYOHdpie0JIiyJYKBRK7isoKAAADBs2rMPnE98n3hYAzp49i7y8PAQGBkJXVxeLFy/GsGHDEBERIXNRCgCxsbHo1asX3nvvPYwZMwYWFhZwdXVFdHS0VPs7evQozp07h927d+PDDz/E0qVL8X//93/tjqaIbdy4Efr6+rC2tsbf/vY3fPvtt/jLX/4ic+wURTGnpKQENTU1neaw1sLDw2FkZAQfHx8ATQVedXU19u/f3+FjOBwOLl26hNu3bwNo+mDv6enZZn4tADg4OODjjz/GjRs34O7ujj59+mD48OH461//KvWFYwUFBTIdU3dy6KJFizBs2DBJwR4bGws9PT14enpK/byyEBf4vXv3bnNf7969u/UBgJI/WthSShcVFYXLly+3uHV2Cj01NbVFEdzeaa3OiJMii8WSfE98IYW4cBRfYfv06VNkZ2fLekiYMWMGHj58iKNHj+Kjjz7CnDlzkJ2djYCAALi5uUliaD1aLRKJADRdkAAA69evb7Ff8SnE9nz00Ue4fPkyDh06BA6Hg02bNnV4dTRFUZrh8ePHOHnyJNauXQtLS0sAkBSonU1HWLhwIezs7MDlcnHr1i1cvny50w/O//rXv1BQUAAul4u//OUvMDU1xU8//YRp06a1mNLQ+uxbdwYGAOlzaHPivB0dHY3GxkaEh4dj/fr1MDU17VYMYh3l6ebP256Ovk8pFy1sKaUbM2YMpk+f3uIGAEOGDAGANvNcHR0dJQVw62W3xI95/Phxh88nXu5FfJqvqqoKiYmJmDlzJvr27Yvy8nKUl5fD3d0dLBaryyuMO6Kvr4/ly5fjs88+w7Fjx/Ds2TM4OjoiIyMDR44cAQAsWbKkRZEufmMpLS2Fnp5em5GAfv36dfh8Q4YMwfTp07Fy5Ur8+OOPeOuttxAWFobi4uJuxU9RlPL16dMHJiYmneaw5rhcLgghWLdunSR3NTQ0wM3NDTk5Obh37167j2OxWAgODgaPx8NPP/0Ee3t7zJ8/v9Pn6tevH4KDg/HTTz/h5s2bOH36NAwMDBAaGgqgKbe2Pvsm/pA+ZMgQqY9JTJoc2lpwcDCKi4vx+eef49q1a3KZhtBRnraysgKAdkdm37x50+5ILqV8tLClVMbSpUsBNK0t25ylpaWkABYnltaP6WyproMHD0JPT0+yTmNcXBxqampw6dIl9OrVS3KbOHEiCCFISUlBWVlZj4/HysoKW7ZsAfDH3Ky9e/e2GKkWXxRmZWWFxsbGNmtVtr7grTMzZ85EY2MjHj161OPYKYpSDl1dXSxZsgRXr17F8+fPO922+XUAa9eubZG/YmJiAHR+EVlQUBBKSkrw008/ITg4WOZYFyxYgGXLlqG4uBivX7/GwIED25x9mzZtGgBg+fLlePXqFS5cuCDz84i1l0Nbs7GxgZOTE3bs2IFRo0Zh7ty53X4+sY7y9Pjx4wEAt27davOYW7duSe6nmEULW0plTJ8+HcuWLcP//vc/nD17VqrHuLu7Y+zYsdi1axfy8vLa3J+QkIDMzEz86U9/Qv/+/QE0TUMwMzNDdnY2Tp482eL25ZdfQiAQSN4kpNHQ0NDh3CrxRQ0DBw4EAIwaNarFSLWtrS2AptOE4nibi4+PlzqOkydPQkdHB8OHD5f6MRRFMS8sLAyEEPz5z39GfX19m/sbGhqQnp6OY8eO4fnz53jnnXfa5K6TJ09i3LhxiIqKklyQ29qgQYPwwQcfwNXVFYGBgR3G8+rVqzan34GmU/QPHjyAiYkJLC0tYWBg0Obsm3jO7t/+9jew2Wxs3LgRFRUVbfYlHkQQH5+0ObQ97733HlxdXfGvf/2rw21k0VGeHjRoEGbOnAkej9fiWo8LFy7g/v37klUeKGbRtYEolcLj8bB8+XI4OTkhKCgIy5cvh7W1NSorK3Hz5k1kZWW1WHhbV1cXSUlJWLp0KebMmYP33nsPc+bMgUAgQHp6On7++WcsXLgQ//nPfwA0feq/dOkS/vrXv2Lx4sVtnt/BwQH/+c9/EB4ejk2bNkm+X1RUhAMHDrTZ3tbWVnLz9PSEk5MTbGxsUF1djVOnTmHPnj0YM2ZMlwnP2dkZDg4OeO+991BZWYlp06bh119/RVRUFICWy9S89dZbMDc3x8yZM9GvXz+UlJQgMTERCQkJ+OCDD9C3b1/ZfugURTFqzpw5+PHHH7Fx40ZMmzYNf/3rXzFu3Dg0NDTg+vXr+PnnnzF+/Hjo6upCT08PH330UbuF3l/+8hds3rwZhw4dwurVq9t9rl27dnUZT3R0NPbu3QsfHx/MmDEDFhYWeP78OX755Rfcvn0b//d//wcDA4NO9zFs2DDEx8djw4YNmDx5MjZt2oQpU6YAAO7cuSOZUuHu7o6Kiooe5dBly5Zh2bJlXR5XTU0NDh8+DACSkeTTp0+jpKQEbDYbK1as6HIf//73v7F06VJ4enpi48aNeP36NbZu3Yrx48d3axScUgAG1s6ltJQ0DRoIIaSuro7897//JfPmzSOWlpZET0+P9O7dm8yfP5/8+9//JqWlpW0eU1JSQrZu3UpGjx5NjIyMiKmpKZk5cyb57rvvSH19vWS7LVu2EAAkNze3w+ffunUrAUCuXr1KCGlq0ACg3VtgYCARCATkq6++IitWrCBDhgwhhoaGxMjIiIwZM4b84x//aDfe9rx584YEBwcTS0tLYmJiQpYuXUouXLhAAJA9e/ZItuNyuWT+/PmkT58+RE9Pj1haWpKFCxe2aFxBUZT6yc3NJYGBgWTIkCHEwMBA0uDg//7v/8jr16+JgYEBWbNmTYePLysrI8bGxsTV1ZUQIn3Obd2g4c6dO+S9994j06dPJ3379iV6enqkV69e3coz+fn5ZOPGjWTEiBHE0NCQGBsbk7Fjx5K///3vkuYJsuZQAOSdd97p9Hm//PLLNg0aHj9+3GEuHzp0qNTHlJmZSWbPnk2MjIxI7969SUBAAHn16pXUj6cUi0VINy9hpChK4WJjY+Hr64ucnBy5zB2jKIqiKE1GC1uKUhFxcXF48eIFJkyYAB0dHVy4cAFffvklpkyZIrnSmKIoiqKojtE5thSlIszMzBAfH49PP/0UfD4fAwYMQFBQED799FOmQ6MoiqIotUBHbCmKoiiKoiiNoLbLfe3cuRMsFkuyxh1FURQlG5pHKYrSNGpZ2F6+fBk///wzJk6cyHQoFEVRaonmUYqiNJHaFbbV1dXw9fXF//73P/Tq1YvpcCiKotQOzaMURWkqtbt47J133oGLiwucnJy6vKhGIBBAIBBIvhaJRHjz5g2srKzAYrEUHSpFUVqIEIKqqioMHDiwRWMNVULzKEVRqqwneVStCtv4+Hhcu3YNly9flmr7nTt3YseOHQqOiqIoqq1nz55h8ODBTIfRBs2jFEWpi+7kUbUpbJ89e4bQ0FBkZmbCyMhIqseEhYXh73//u+TriooKDBkyBO+99x5GjRoFd3f3LtsCUtpLJBLhxo0bAIBJkyap7Ogbxbxr167h2LFjGDNmDBYuXAhbW1uYmZkxHVYb8syjYWFh6N27NzZs2AALCwtFhUypOZpHKWk9fvwYSUlJ6Nu3L5ydnWFvb9+tPKo2y30dPHgQ7u7u0NXVlXxPKBSCxWJBR0cHAoGgxX3tqayshIWFBXJzc3Ho0CH07dsXvr6+MDExUXT4lJoSiUQAQJMx1S5CCM6cOYOTJ09i1qxZcHZ2RlVVFSwsLFBRUQFzc3OmQ2xBnnn08ePHOHjwIEQiEfz9/dG3b19Fh0+pKZpHqa7cvn0bycnJGDZsGNavX4+6urpu51G1KWyrqqrw9OnTFt8LDg7G6NGj8eGHH2L8+PFd7kOckCsqKlBdXY2YmBgYGxvD39+fjjhQFCUTkUiEo0eP4tKlS1iyZAnmzZsHFovVIs+oWmEr7zzKYrEQHR2Nqqoq+Pr6quTUC4qiVNvly5dx+PBhTJgwAatXr4aurm6P8qjafHwyMzPD+PHjW9zYbDasrKykSsatDRw4EBwOB42NjQgPD8fr168VEDVFUZqosbERSUlJuHz5Mtzc3DB//ny1uJBK3nnUzMwMwcHB6Nu3L/bt24cHDx4oIGqKojQRIQQnT57EoUOHMHv27DZnk7pLbQpbRbCyskJISAiMjY0RERGBgoICpkOiVAghBE+ePMGTJ0+gJic2KCUQCASIjY3F/fv3sWHDBkydOpXpkBglPus1fPhwxMXF4ebNm0yHRKkQmkep9ohEIhw6dAinT5+Gk5MTli1bJrfBAbWZiiAPHQ1t19XVIS4uDoWFhfD09IS9vT2DUVKqQiQS4fr16wCAKVOm0PlhFPh8PmJiYlBaWgpvb2/Y2tq22UaVpyLIQ0fHJxKJkJ6ejuvXr2P58uWYM2cOg1FSqoLmUaq1xsZGJCcn4+7du3Bzc8OUKVPabKMVUxEUycjICH5+frCzs0N8fLzkCk6KoiixsrIycLlcVFZWIjg4uN2iVpvp6OjAzc0N8+bNw7Fjx5CVlUVH6CiKakEgEIDH4yEvLw9eXl7tFrU9pTbLfSmavr4+1q9fj4yMDKSkpKC6uhoODg5Mh0VRlAp49eoVeDwe9PX1ERISQrt1dYDFYsHJyQlsNhvHjh0Dn8+Hq6srHaWjKEpy0X5ZWRn8/f0xdOhQhTwPLWyb0dHRgaurK9hsNo4fPw4+n4+lS5eqxUUhFEUpxtOnTxEXF4devXrB19cXpqamTIek8ubMmQM2m42DBw+ipqYG69atg76+PtNhURTFkLKyMkRHR6OhoQHBwcHo16+fwp6LFratsFgsLFmyBKampjhy5Aj4fD7c3NzkcqUeRVHq5d69ezhw4ABsbGzg5eUFQ0NDpkNSGxMnToSxsTH279+P6OhoeHt7w9jYmOmwKIpSsqKiIvB4PBgaGiIkJASWlpYKfT56fqgDs2bNgoeHB27duoWEhAQ0NDQwHRJFUUp07do1JCQkwN7eHr6+vrSo7YaRI0ciMDAQxcXFiIiIQFVVFdMhURSlRE+ePEFERATMzc3B4XAUXtQCtLDt1IQJE+Dr64snT54gKioKtbW1TIdEUZSCEUJw9uxZpKWlYfr06Vi3bh309OjJre4aPHgwOBwO6urqEB4ejtLSUqZDoihKCe7evQsej4dBgwYhMDAQbDZbKc9Ll/uSwosXLxATEwM2mw1/f3+NXMKHal9jYyMA0MJGSxBCcOzYMVy4cAGOjo5YuHChzHPstXW5r65UVFSAx+OBz+fD19cXgwYNUmCUlCqheVT7XL16FRkZGRg7dizc3d1l/t3T5b4UbNCgQeBwOKivr0d4eDiKi4uZDolSEj09PZqMtYRQKERycjIuXrwIFxcXODo60gtH5cjCwgLBwcHo3bs39u3bh/z8fKZDopSE5lHtQQjB6dOnkZ6ejhkzZjByxosWtlLq06cPQkJCYGhoCC6Xi+fPnzMdEkVRclJfX4+4uDjcuXMHnp6emDFjBtMhaSQTExMEBARg6NChiI2NxW+//cZ0SBRFyQkhBEeOHMHJkyexePFirFixgpHBAVrYysDc3BzBwcHo06cP9u3bh4cPHzIdEqVAhBAUFBSgoKCALjSvwWpqarBv3z48e/YMfn5+GDt2LNMhaTQDAwN4eXlh/PjxSEpKwsWLF5kOiVIgmke1Q2NjI5KSknD58mW4urpiwYIFjJ3xooWtjIyNjREQEIBhw4YhNjaW9kXXYIQQFBcXo7i4mCZkDVVRUQEul4vy8nIEBQVh2LBhTIekFXR1dbFmzRrMmTMHR44cwYkTJ+hrTEPRPKr5BAIBYmNjcffuXaxfvx7Tpk1jNB466aUb9PX1sWHDBqSnpyM5ORk1NTWYPXs202FRFCWD169fg8fjQVdXFyEhIejduzfTIWkVFouFZcuWtWiI4+LiQruUUZQa4fP5iImJQWlpKfz9/VWi1TgtbLtJV1cXq1evBpvNxtGjR1FdXY0lS5bQi00oSg08e/YMsbGxsLCwgK+vL8zMzJgOSWs5ODiAzWYjLS0NNTU18PDwoBcaUZQaKCsrA4/Hg0AgQHBwMPr37890SABoYdsjLBYLS5cuhampKe2LTlFqIi8vD4mJiRg4cCC8vb1hZGTEdEhab/LkyTA2NkZiYiJ4PB68vLzo74WiVNirV6/A4/Ggr68PDoejUme8aAUmB3PmzIG7uztu3LhBu5RRlAq7ceMG4uPjYWdnB39/f1o8qZBRo0YhICAARUVFiIyMpF3KKEpFPX36FBEREWCz2SpX1AK0sJWbSZMmwdvbG48ePQKPx0NdXR3TIVEU1cz58+eRkpKCyZMnY/369fR0twoaMmQIOBwO+Hw+uFwu3rx5w3RIFEU1c//+fURHR6N///4ICgqCqakp0yG1QQtbORo5ciQCAgLw+vVr2hedolQEIQTHjx9HZmYmFixYQKcLqThra2uEhIRAR0cH4eHhePnyJdMhURQF4Pr160hISIC9vT38/PxU9owXbamrAMXFxYiOjoaOjg78/f1hZWWlsOeiFKu+vh5A09qblPoRCoVIT09Hbm4uVqxYgVmzZin8OWlLXfng8/mIjY1FSUkJvLy86FJsaozmUfVGCEFOTg6ysrIwffp0rFy5UuGDA7Slrorp27cvQkJCoK+vDy6Xi8LCQqZDorrJwMCAJmM11dDQgISEBNy6dQseHh5KKWop+WGz2QgMDMTgwYPB4/Fw584dpkOiuonmUfVFCEFmZiaysrLg6OioFkvyqXZ0akzcF71Xr16IjIzEo0ePmA6JorRGbW0toqKi8OTJE/j4+GDChAlMh0R1g4GBAXx8fDBmzBgkJibiypUrTIdEUVpDKBQiJSUFFy5cgIuLCxwdHdViSVNa2CqQuC/6kCFDEBMTg9u3bzMdEiUDQgieP3+O58+f0445aqSyshJcLhelpaUIDAyEnZ0d0yFRPaCrqwsPDw/MnDkTGRkZOHXqFH09qhGaR9VTfX094uLicPv2baxbtw4zZsxgOiSpqU1h++OPP2LixIkwNzeHubm5pBWjqjMwMIC3tzfGjRuHAwcO4NKlS0yHREmJEIJXr17h1atXNCGriZKSEoSHh6O+vh4cDgeDBg1iOiSVoq55lMViwdnZGYsXL8apU6dw+PBhiEQipsOipEDzqPqpqalBVFQUCgoK4Ovri3HjxjEdkkzUZr2bwYMHY9euXRgxYgQAYN++fVi9ejWuX7+u8j90XV1duLu7g81m4/Dhw+Dz+WozpE9R6uL58+eIjY2Fqakp/Pz8NPLCrZ5S5zzKYrGwYMECsNlsZGRkoKamBu7u7nTZNoqSo4qKCkRHR6O2thZBQUEYOHAg0yHJTG0ygqura4uvP/vsM/z444+4cOGCyidkoGVf9KysLPD5fKVcWUhR2uDhw4dISEhA//794ePjA2NjY6ZDUknqnkcBYNq0aTAxMUFSUhJiY2OxYcMGGBoaMh0WRam95is6cTgctV3RSS2rKqFQiPj4ePD5fMyZM6fD7QQCASorK1vcmMRisTBv3jysXr0aV69eRWJiIhobGxmNiaLU3c2bNxEbG4thw4YhICCAFrVSUtc8CgBjxoyBn58fXrx4gcjISPD5fKZDoii19uzZM3C5XBgbGyMkJERti1pAzQrbW7duwdTUFIaGhnj77beRkpKCsWPHdrj9zp07YWFhIbnZ2NgoMdqOTZkyBV5eXnjw4AHtUkZRPXDhwgUkJydj4sSJ2LBhA/T19ZkOSeVpSh61tbVFcHAwqqqqEB4ejrKyMqZDoii19ODBA0RFRcHa2hrBwcEwMzNjOqQeUasGDfX19SgoKEB5eTmSkpLwyy+/4PTp0x0mZYFAAIFAIPm6srISNjY2KrNw+tOnTxEXFwdLS0v4+fmpZGs6bSYSiXD9+nUATR9G6LQR1UEIQXZ2Ns6dOwcHBwc4OTmpzJx1VW/QoGl5tKysDNHR0aivr4e/vz/69evHdEhUMzSPqrYbN24gNTUV9vb28PDwUJnBgZ7kUbUqbFtzcnKCnZ0d9u7dK9X2qviG8+rVK/B4POjp6cHf3x+9e/dmOiTqdzQhqyaRSIT09HRcv34dy5Ytw9y5c5kOqQVVzDOd0YQ8Wl1djZiYGJSVlcHb2xtDhw5lOiTqdzSPqq7z588jMzMTU6dOxapVq1Tqd6O1nccIIS1GEtRRv379JH3RuVwu7YuuQnR0dDB27FiMHTtWpV7w2qyhoQH79+/HjRs34O7urnJFrTrShDxqamqKoKAgDBgwANHR0bh37x7TIVG/o3lU9RBCcPz4cWRmZmL+/PlwdXXVqN+N2hzJRx99hLNnz+LJkye4desW/vnPf+LUqVPw9fVlOrQes7S0BIfDgbm5OSIjI/H48WOmQ6J+Z2xsTC9GUhF1dXXg8XjIz8+Ht7c3Jk2axHRIakeT86ihoSF8fX1hb2+PhIQEXLt2jemQqN/RPKo6RCIRUlNTkZOTgxUrVmDJkiUqM41LXtRmua9Xr17B398fL1++hIWFBSZOnIijR49i6dKlTIcmF+K+6AkJCeDxeFi3bh3GjBnDdFgUpRKqqqrA4/FQWVmJgIAAlbmASd1oeh7V09PDunXrcOTIEaSlpYHP52PevHka98ZNUd3R0NCAxMREPHz4EB4eHhrbalyt59jKShXnhrUm7s18+/ZtrFq1CtOmTWM6JK1FCJFMDRkwYAB9c2RIaWkpoqOjIRKJ4O/vj759+zIdUqfUIc/0hDocHyEEp0+fxqlTpzB79mwsX76cvn4ZQvOoaqitrUVcXByKioqwfv16SZMWVdWTPKM2I7baQtwX3cTEBOnp6aiursaCBQtoMmBA84Tcv39/+jtgQGFhIWJiYmBsbAx/f39YWFgwHRKlBlgsFhwdHVt0e1yzZg10dXWZDk3r0DzKvMrKSvB4PFRXVyMwMFDjW43TwlYFsVgsrFixAqampjhx4gT4fD5WrFhBEwKlVR49eoT4+HhYW1vDx8cHJiYmTIdEqZkZM2aAzWYjKSkJNTU12LBhAwwMDJgOi6KUpqSkBNHR0QAADoeDPn36MByR4qnNxWPaRtwX3dXVFZcvX8aBAwdolzJKa9y+fRsxMTEYMmQIAgICaFFLddvYsWPh5+eH58+fY9++faipqWE6JIpSihcvXoDL5cLAwAAhISFaUdQCtLBVedOmTcP69etx//59xMbGqv2yPBTVlUuXLuHAgQMYN24cvL296Qgb1WPDhg1DUFAQysvLweVyUV5eznRIFKVQ+fn52LdvH6ysrCSrLmkLWtiqgeZ90fft20f7olMaiRCCkydP4vDhw5g9ezbc3d3pnEhKbgYMGICQkBAIhUJwuVy8fv2a6ZAoSiFu3bqFmJgY2NraIiAgQOuWWqOFrZoQ90WvrKwEl8ulfdEpjSISiXDo0CGcPn0aS5cuxbJly+icckruevfuDQ6HAxMTE0RERODZs2dMh0RRcnXhwgUkJSVh4sSJ2LBhg8q0yFUmWtiqkf79+4PD4YAQAi6Xi1evXjEdEkX1WGNjIw4cOIBr165hzZo1cHBwoEUtpTBmZmYICgqCtbU1oqKikJeXx3RIFNVjhBBkZ2fj6NGjcHBwwOrVq7X2jBctbNWMeMSBzWYjIiICT58+ZTokjcVisTB69GiMHj2aFloKIhAIwOPxkJeXhw0bNmDy5MlMh0RpASMjI/j7+8POzg7x8fHIzc1lOiSNRfOo4olEIqSnp+Ps2bNYtmwZli5dqtU/a1rYqiFTU1MEBwfTvugKxmKxwGazwWaztTpJKEp1dTUiIiJQVFSEgIAAjBo1iumQKC2ip6eH9evXY/LkyTh48CBycnKYDkkj0TyqWA0NDdi/fz9yc3Ph7u6OuXPnMh0S42hhq6Za90W/fv060yFRlNTevHmD8PBw8Pl8BAcHY8iQIUyHRGkhHR0duLq6YsGCBTh+/DgyMzOhRc04KTVXV1cHHo+H/Px8eHl5YdKkSUyHpBJogwY1Ju6LfvjwYaSmpoLP59P5iXJECJFcOW1tbU1/rnLy8uVLxMTEwNDQECEhIbC0tGQ6JEqLsVgsLF68GGw2G0ePHgWfz4ebm5vWzk+UN5pHFaOqqgo8Hg+VlZUICAiAjY0N0yGpDFrYqjkdHR24uLjA1NQUWVlZqK6upn3R5YQQgufPnwMA+vbtS3+mcvDkyRPExcWhT58+8PHxAZvNZjokigIAzJo1C2w2GykpKaitrYWnp6dWXlEubzSPyl9paSmio6MhEokQHBwMa2trpkNSKbSw1QCt+6LX1NRo9RWRlGq6e/cuDhw4AFtbW9ralFJJ48ePh7GxMRISEhAVFQUfHx+tWwOUUm2FhYWIiYmBsbEx/P39YWFhwXRIKofOsdUgM2bMwLp163D79m3ExcWhvr6e6ZCodtTW1iI0NBSrVq1CaGgoamtrmQ5J4a5evYr9+/djzJgx8PHxoUUtpbLs7OwQGBiI0tJScLlcVFZWMh0SRQEAHj16hMjISFhaWoLD4dCitgO0sNUw48aNg6+vLwoKCmhfdBW1detWODk5ISMjA05OTggLC2M6JIUhhOD06dNIT0/HzJkz4eHhQc8kUCpv0KBB4HA4aGhoQHh4OIqLi5kOidJyt2/fRkxMDIYMGYLAwECYmJgwHZLKooWtBho+fHiLvugVFRVMh0Q1k5+fD1dXVwCAq6srHj58yHBEikEIwZEjR3Dy5EksXrwYzs7OdH4dpTb69OkDDocDQ0NDcLlcyTxRilK2S5cu4cCBAxg7diy8vb3pGa8u0MJWQw0cOBAcDgeNjY0IDw+nfdFViJ2dHdLT0wEA6enpGDFiBMMRyV9jYyOSkpJw+fJlyXJKtKil1I25uTmCg4PRt29f7Nu3T2M/hFKqiRCCkydP4vDhw5g1axbWrl1Lz3hJgRa2GszKygohISEwNjamfdFVyK5du5CdnY1Vq1YhOzsbO3fuZDokuRIIBIiNjcW9e/ewfv16TJs2jemQKKrbxBfpDBs2DLGxsbh58ybTIam85tcRbNmyBXV1dUyHpHZEIhEOHTqE06dPY8mSJXS1IxmwiBatRl1ZWQkLCwtUVFTA3Nyc6XCUpq6uDnFxcSgsLISnpyfs7e2ZDkktEEJQXV0NoKnbG00qXePz+YiJiUFpaSm8vb1ha2vLdEhKp+l5RtOPryMikQhpaWnIzc2Fs7MzZs+ezXRIKis0NBROTk5wdXVFWloajh49in//+980j0qpsbERycnJuHv3LlxdXTF16lSmQ1K6nuQZOmKrBYyMjODn5yfpi37jxg2mQ1ILLBYLZmZmMDMzo8lYCuI53ZWVlQgODtbKopbSXDo6Oli9ejUcHBxw9OhRZGVl0S5lHWh+HYGbmxsKCgpoHpWSQCBATEwM8vLysGHDBq0sanuKFrZaQl9fH+vXr8ekSZOQkpKC8+fPMx0SpUFevXqF8PBwEEIQEhKC/v37Mx0SRckdi8XC0qVLsXz5cpw7dw5paWkQiURMh6VytOE6AkWorq5GZGQkXr58CX9/f4wePZrpkNSS2hS2O3fuxIwZM2BmZgZra2usWbMG9+/fZzostaKjowM3NzfMnz8fmZmZOH78OB1x6AQhBMXFxSguLqY/p048ffoUERERMDU1BYfDQa9evZgOieoAzaPyMWfOHKxduxY3btxAQkICGhoamA5JpTS/jiArKwt///vfaR7tQllZGbhcLqqrqxEcHIyhQ4cyHZLaUpvC9vTp03jnnXdw4cIFHD9+HI2NjVi2bBn4fD7ToakVFouFJUuWwNnZGTk5OUhNTYVQKGQ6LJVECEFBQQEKCgpoQu7A/fv3ER0djQEDBiAoKAimpqZMh0R1guZR+Zk4cSK8vb3x6NEjREdHa0WjFWkZGxvjm2++QUZGBnbv3o3i4mKaRztRVFSE8PBwsFgshISEoF+/fkyHpNbU9uKx4uJiWFtb4/Tp01iwYIFUj9HWix46cuvWLaSkpGDEiBG0L3o7RCIRrl+/DgCYMmUKdHTU5nOgUly7dg3p6ekYM2YM1q5dCz092qEbUK88Q/Nozz1//hwxMTEwMzODv78/zMzMmA5JpdA82rknT54gLi4OVlZW8PX1BZvNZjoklaCVF4+Jmw707t27w20EAgEqKytb3Kg/TJgwAT4+Pnjy5AmioqLoiAMlFUIIzp49i7S0NEyfPh3r1q2jRa2aonm05wYPHgwOh4O6ujqEh4ejtLSU6ZAoNXH37l3weDwMGjQIgYGBtKiVE7UsbAkh+Pvf/4558+Zh/PjxHW63c+dOWFhYSG42NjZKjFI9jBgxQtIXPSIigr5pUZ0ihODYsWPIzs6Go6MjVq5cSUdg1BTNo/LTt29fhISEQF9fH+Hh4SgsLGQ6JErFXb16Ffv378eoUaPg4+MDQ0NDpkPSGGr5jrRp0ybcvHkTcXFxnW4XFhaGiooKyY02KGifuC+6QCBAeHg4SkpKmA6JUkFCoRDJycm4ePEiXFxc4OjoSJfvUWM0j8qXhYUFgoOD0bt3b0RGRuLRo0dMh0SpIEIIzpw5g/T0dMyYMYOe8VIAtSts3333XaSlpeHkyZMYPHhwp9saGhrC3Ny8xY1qX58+fRASEiLpi/7ixQumQ6JUSH19PeLi4nDnzh2sW7cOM2bMYDokqgdoHlUMExMTBAQEYOjQoYiJicFvv/3GdEiUCiGE4MiRIzhx4gQWLVqEFStW0MEBBVCbwpYQgk2bNiE5ORknTpzAsGHDmA5J44j7oltZWdG+6JRETU0N9u3bh4KCAvj5+WHcuHFMh0R1E82jimdgYAAvLy+MGzcOSUlJuHTpklz337xdbWhoKL02Qk0IhUIkJSXh8uXLWLVqFRYuXEiLWgVRm8L2nXfeAY/HQ2xsLMzMzFBUVISioiL6opYzY2NjBAQEwNbWFrGxsbh16xbTITGGxWJhxIgRGDFihNYmoIqKCnC5XJSXlyMoKIgWQmqO5lHl0NXVhbu7O2bPno3Dhw/j5MmTclvqauvWrXByckJGRgacnJwQFhYml/0qCs2jTRdgxsbG4u7du/D09MT06dOZDkmjqc1yXx29ICIiIhAUFCTVPugyNdITCoVIT0+nfdG12OvXr8Hj8aCrqws/Pz9YWVkxHZJaUOU8Q/Oo8uXk5OD48eOYNm0aXFxcenyx5apVq5CRkdHh15Rq4fP5iImJQWlpKby9vWmrcSn1JM+ozYxlNam/NYauri5Wr14NNpuNo0ePgs/nY/HixVr7iVvbPHv2DLGxsbCwsICvry9dm1ND0DyqfA4ODmCz2UhLS0NNTQ08PDx6dLGQuF2tq6srbVer4srLyxEdHQ2BQIDg4GDaalxJ1GYqAqV84r7oy5Ytw9mzZ5Genq5VfdEJISgtLUVpaalWFQR5eXmIioqCtbU1goKCaFFLUT00efJkbNiwAQ8ePACPx0NdXV2399W8XW12djZ27twpx0jlT1vz6KtXrxAeHg5CCDgcDi1qlUhtRmwp5sydOxdsNhupqamSEQdt6FJGCMGTJ08AAL169dKK0erc3FykpaXB3t5ea37PFKUMo0aNQkBAAGJjYxEZGQk/P79utaAWt6tVF9qYRwsKChAbGwtLS8tu/56p7qMjtpRUJk2aBG9vb+Tn5/d4xEGe6BXC8pOTk4ODBw9i8uTJWL9+PS1qKUrOhgwZAg6HAz6fj/DwcLx584bpkCg5u3//PqKiotC/f38EBQXRopYBtLClpDZy5EgEBATg9evXiIiIQFVVFdMhqd0VwqqIEILMzEwcP34c8+fPh6urK+0mRlEKYm1tjZCQEOjo6IDL5eLRo0f0w7mGuH79OhISEjBy5Ej4+fnByMiI6ZC0En33omRiY2OD4OBg1NbWqkRf9Pz8fLi6ugIAXF1d6dq7MhIKhTh48CDOnz+PFStWYMmSJVpxqpCimGRpaQkOhwMLCwv4+flh/Pjx9MO5GiOE4Ny5c0hNTcXUqVPh6elJu4kxiBa2lMzEIw56enrgcrmM9kUXXyEMgF4hLKOGhgYkJCTg1q1b8PDwwKxZs5gOiaK0BpvNRmBgIGpqalBUVIQ7d+7QD+dqSHzGKysrCwsXLpTLkm5Uz9CfPtUtFhYW4HA46NWrF6N90dXtCmFVUVtbi6ioKDx58gQ+Pj6YMGEC0yFRlNYxMDDA/PnzwefzkZiYiK+//pp+OFcjQqEQKSkpuHDhAlauXIlFixbRM14qgI6VU90m7ou+f/9+xMTEYO3atUpvt6puVwirgsrKSkRHR4PP5yMwMBCDBg1iOiSK0lpffPEFtm7dihMnTkBHRwcff/wxCCG0QFJx9fX1SExMxKNHj7Bu3TraalyF0MKW6hEDAwN4e3sjNTUVBw4cAJ/Px8yZM5kOSy5YLBaGDx8u+b8mKCkpQXR0NACAw+GgT58+DEdEUdrN2NgYe/bskczTzM7ORmNjI5ydnTXilLYm5tGamhrExsbi9evX8PX1lRwfpRpoYUv1mLgvuomJCQ4fPgw+nw9HR0e1T2IsFgu9evViOgy5ef78OWJjY2Fqago/Pz/aDpWiVAiLxcL8+fPBZrORnp4OPp8Pd3d3tbsIqba2Flu3bkV+fj7s7Oywa9cujcqjFRUViI6ORm1tLYKCgjBw4ECmQ6JaUf+Pg5Rc9HQ9WBaLheXLl8PJyQmnT5/GoUOHtKpLmap7+PAh9u3bBysrKwQHB9OilqJU1NSpU7Fhwwbcv38fsbGxEAgETIckE01egrG4uBjh4eFobGwEh8OhRa2KooUtBUA+yYjFYmHevHlYvXo1rl69igMHDqCxsVEB0SoHIQRlZWUoKytT61aQt27dQmxsLIYNG4aAgAAYGxsr5HloswyKko/Ro0fDz88PL168QGRkJPh8PtMhSa31EowPHjzQiDz67NkzcLlcGBsbIyQkBFZWVkyHRHWAFrYUAPmuBztlyhR4eXkhLy8PPB6P0RGHnhRbhBA8evQIjx49UtuEfOHCBSQlJWHixInYsGGDQruJafJIDUUpm62tLYKDg1FVVYXw8HCUlZUxHZJU2luCUd3z6IMHDxAVFQVra2sEBwfDzMyM6ZCoTtDClgIg//VgR40aBX9/fxQVFSEiIgLV1dXyCLNLrQvZ999/XyuLLUIIsrOzcfToUTg4OGD16tXQ1dVV6HPSZhkUJV/9+/dHSEgIACA8PByvXr1iOKKutV6C8fPPP2c6pE51Nfhx48YNxMXFwc7OjnYTUxO0sKUAKGY92KFDhyI4OFipfdFbjxrm5OQopdhSpdPwIpEI6enpOHv2LJYvX46lS5cq5UI+2iyDouSvV69e4HA4MDMzQ0REBJ4+fcp0SJ0SL8GYkZGBb775RmFTn+SlszNN58+fR0pKCiZNmoT169cr9IwXJT+0sKUAKC4Z9evXr0Vf9JcvX8plvx1pPWqoq6urlGJLVU7DNzQ0YP/+/cjNzYW7uzvmzJmjtOemzTIoSjFMTU0RFBSEAQMGIDo6Gvfu3WM6JI3R3pkmQgiOHz+OzMxMzJ8/H25ubhqx9Jq2oL8pSuHEfdHNzc0RGRmJJ0+eyG3frUdKhw4d2qKQnTNnjlKKLVU4DV9XVwcej4f8/Hx4e3tj0qRJSn1+dRupoSh1YmhoCF9fX9jb2yMhIQHXrl1jOiSlU8SZsdZnmoYPH47U1FTk5OTA2dkZS5YsUfulK7UNLWwppRD3RR80aBCio6Nx9+5duey39Ugpi8VqUch++eWXSim2mD4NX1VVhYiICLx+/RoBAQEYOXKkUp+foijF09PTw7p16zB9+nSkpaXh7NmzanlBVncLVEWcGWt+pikzMxNTp07FzZs34eHhgdmzZ/d4/5Ty0cKWkoo8PikbGhrCx8cHY8aMwf79+3H16tUex9V6pPTJkyeMjBoyeRq+tLQU4eHhqK2tBYfDgY2NjdKem6KoPyhjrr2Ojg5WrlwJR0dHZGdn49ixY3IvbhV9HN0tUBVxZkx8pikxMRGTJ0/Gixcv4OPjgwkTJvR43xQzaGFLSUVen5T19PTg4eGBGTNmID09HadPn+5RUlbkSCmLxYKtrS1sbW27PBXF1Gn4wsJCcLlc6OnpISQkBH379lXK81IU1Zay5tqzWCw4OjrCxcUFFy9eRHJyMoRCodSP76pwledxtJdHu1ugKirfV1ZWIiIiAqWlpQgMDKQXvqo5WthSUpHnJ2UWi4UVK1Zg8eLFOHnyJI4cOdLt4laRI6UsFgtWVlawsrJSiTlWrd+M7ty5g8jISMlV0xYWFkyHSFFaTdlz7WfMmIF169bhzp07iIuLQ319vVSP66pwlXe+b51Hu1ugKiLfl5SUIDw8HAKBABwOB4MHD+7xPilmqVVhe+bMGbi6umLgwIFgsVg4ePAg0yFpDXl/UmaxWFiwYAFcXV1x+fJlJCUldatLmTZdsNT8zcje3h4hISEYMmQIAgICYGJiovDnV6Ulzajuo3lUcZiYaz9u3Dj4+fmhoKAA+/btQ01NTZeP6apwVfRxdLdAlXe+f/HiBbhcLgwNDRESEoI+ffr0aH+UalCrwpbP52PSpEn47rvvmA5F6yhqZHTatGlYv3497t69q3J90QkhqKioQEVFhUpcoCF+M7p06RJKSkpQX18Pb29vGBgYKOX5VWVJM6pnaB5VHKbm2g8bNgxBQUEoLy8Hl8tFeXl5p9t3VbjK8zjay6OqMCCRn5+Pffv2wcrKCsHBwTA3N1d6DJRisIgqvGN3A4vFQkpKCtasWSP1YyorK2FhYYGKigr6R6xiHj9+jPj4eFhZWcHX1xdsNrtH+6utrcXWrVuRn58POzs77Nq1S+bkKRKJcP36dQBNbYKZXsdw8+bN6NevHxoaGsBisfDmzRvs2bNHac+/atUqZGRkdPg11USd8gzNo5qltLQU0dHREIlE8PPzg7W1dbvb1dbWIiwsDA8fPsSIESOwc+dOhRWXqpZHAeDWrVs4ePAg7Ozs4OnpSRsvqKCe5Bnm/8IUSCAQoLKyssWNUk3iEYfKykqpRhy60p3RRVU+1S4SibBw4UKkp6cjMzMTb968wa5du5QaA9NLmlHMoHlUfVhZWSEkJATGxsaIiIjAs2fP2t1O0SOmzXPpli1bUFdXJ9f998TFixcRHx+PixcvIiYmBu+//75K5Xqq5zS6sN25cycsLCwkN7oMkmobMGAAOBwORCJRt/uiixPqyZMnZb74oXUx/NFHH8n8/IrQ2NiIAwcO4LfffsOPP/6I8+fPY8+ePUo/fUc7i2knmkfVi5mZGYKDg2FtbY19+/YhLy9P6TE0z6VLlixRiWkvhBBkZ2fjyJEjuHPnDt566y0cOnSITqvSQBpd2IaFhUnm9lRUVHT46ZVSHb1790ZISAjYbDYiIiJQUFDQ6fatR1nff/99ODk5YdGiRZKLYtobXWxvdFYeVwLLe9RXIBCAx+MhLy8PXl5emDJlSo/21xOqMC+OUj6aR9WPkZER/P39MWLECMTHxyM3N1epz986lz5//lypz9+aSCRCeno6zp49i2XLlqGhoQFubm6S+JjoFEkpjkYXtoaGhjA3N29xo1SfuC96//79ERUVhfv373e4betR1pycHLi6umLXrl04deoUJk6c2O7oYntTFeRxql2eF1hVV1cjIiICRUVFCAgIwKhRo7q9L4rqLppH1ZOenh7Wr1+PyZMn4+DBg8jJyVHac7fOpfJeQkuWAYTGxkbs378fubm5cHd3x9y5c+m0Kg2n0YUtpbq6SkxGRkbw8/PDyJEjkZCQILn4oLXWIwO6urpIT0+HsbExlixZgsWLF7c7utje6GzzU+3Hjh1DQ0MDtmzZgq+++krqkdf8/Hw4OTkhNDQUe/fuxcmTJ7s1avvmzRuEh4eDz+cjODgYQ4YMkXkfFEVpNx0dHbi6umLBggU4fvw4MjMzlbLCS/NceuLECWzatEmu+5d2AKGurg7R0dHIz8+Hl5cXJk2a1CY+Oq1K86hVYVtdXY3c3FzJaZXHjx8jNze3y9PVlOqRJjHp6enB09MTU6dORWpqKs6dO9cmKbf+5D1nzhypElZ7n9ibn2rX1dXF8uXL8c0332DmzJlSz7e1s7ODv7+/5Ni2b98u86jty5cvweVyoaOjg5CQEPTr10+mx1NUZ2ge1S4sFguLFy/GihUrcP78eRw8eFCmLmXd0TyX7t69G0ZGRnLdvzTTxqqqqhAREYHXr18jICAA9vb27cZHp1VpIKJGTp48SQC0uQUGBkr1+IqKCgKAVFRUKDZQqksuLi6dft2cSCQiJ06cINu2bSNHjx4lIpFIcl9NTQ0JDQ0lLi4uJDQ0lNTU1Ej1/F09zsXFhYhEIvL69Wvy+vVrsnLlSqn3O23atA6PraamhmzevJm4uLiQzZs3t3nex48fk88//5zs3buXVFdXS/WclGpR9TxD8yizusoBinTz5k3y8ccfk5iYGFJfXy/XfXd0XM3zaPPc3RObN28maWlphBBC0tLSSGhoaIv7S0pKyDfffEP+85//kFevXsnlOSnl6kmeUasRW0dHRxBC2twiIyOZDk1ryOviKFnmOLFYLCxatAgrV67EhQsXkJKSIhlx6O4n764eZ2dnh4yMDPTt2xcXLlzAyJEjpd6vg4NDh8fW2Uj13bt3ER0djUGDBiEwMLDHa/lSVHtoHmUWk41OJkyYAB8fHzx58gRRUVFyXeaqo+NisVgwNTXFp59+CldXV7lcVNvZVALxGS9dXV2EhIR0uJavrFR5OUiqFbmV12qAjjT0XFeflKXV3ZHW3377jXz88cckOjqaCASCbj13T+PrasSls8d2NFJ95coVsn37drJ//37S0NDQZWzSjPgwOTKkzTQ9z2j68SmaLGerFOX58+fk3//+N/nuu+/k9nvs7Liav2+kpqYSBwcHueelmpoaEhgYSEaNGkUWL15MSkpK5LJfMXm991HS0ZoRW4p58lgSC+j+SOu4cePg6+uLgoICREVFSdUXvbvx7d69G3Fxcfjkk09azBFrvUbj0qVLW3yK7+zYWo9U29nZ4fTp00hPT8eMGTOwbt066OnpdRqbtCM+tAUuRakeVbgif9CgQeBwOKivr0d4eDhKSkp6vM+OjosQgvv370vOFLi5uUFXV1eueam2thYODg4QCAT4f//v/2Hjxo345JNPerzf5uT13kcpHi1sKZnIkpQVdepm+PDhCAoKQllZGSIiIlBRUSGX/bZGCEFeXh7y8vJaXLTWPMG5ublBR0dHUuR2laSbn0LLysqCo6MjTp48iUWLFmHFihVgsVhdxiVtgqWJmKJUT1dX5Mszb3a2rz59+iAkJASGhobgcrk9Xmu2o+MihKBXr1745ZdfQAhBcnIyJkyY0OOVY5oLDg7GmzdvsG7dOnh7e8PDw0Pu+U4VPpBQ0qGFLSUTWZZJUeSI4cCBA8HhcNDQ0IDw8HAUFxfLbd9daZ7gkpOTMXXqVABNRW5XyVQ8mnvw4EHMnz8fN2/ehKurKxYuXChVUdv6+TtLsDQRU5Tq6epsVU/zZvNi1snJCfPnz+9wX+bm5ggODkafPn2wb9++HhWDnR3Xpk2bcOnSJbi6uuLrr7/Gixcv4OTkhMTERNjZ2WH+/PndKuIJITh16hSuXbuGSZMmQV9fH7q6ukhOTpZ7vqNLhKkPFiFKWNRORVRWVsLCwgIVFRV0kXElWLVqFTIyMjr8Wh6qqqrA4/FQWVkJHx8f9OnTB1u3bkV+fj7s7Oywa9eubi/lIhKJJOvnTpkyBTo6TZ8Da2trERYWhhMnTsDc3BxbtmzBunXrkJycjDNnzuCbb77pdL8CgQAJCQkoKCiAh4cHxowZI1Nc4ud/+PAhRowYgZ07d7Z7jLW1tfjggw/w66+/QigUwsHBAV999RVd2kbBND3PaPrxMa2neTM0NBROTk5wdXVtk5M62ldDQwMSExPx8OFDrFmzBhMnTuzxcYi1zqMCgQDz58/HlStXWsSanp6O7OzsLvNn8/0eOXIEly9fxu3bt7F+/Xrk5OTg+vXrEAqFOH78OM11aqwneYaO2FIKo4wRw+Z90aOiovD2228rfF6peGRi0aJF2LJlC86dO4eFCxfi66+/7vJTPJ/Px759+/DixQv4+fnJXNQ2f/6u5icbGxtDV1cX27dvR25uLpydnek8W4pScT3Nm82nIK1du1ZSVHa2L319fXh5eWHixIlITk7GhQsXenAEnROvHHPgwAGcOnUKe/fulRS40o4YNzY24sCBA7hy5Qrc3NwQFRWFnJwcPHz4EFOmTKFFrZajhS2lMMo6dSPuUmZnZ4cLFy5IunS1nlcq7zm/u3btwrlz56ROpuXl5eByuaisrERwcDBsbW1lfk5Zj4HOs6Uo9dLTvNm8ME5LS4NQKJRqXzo6Oli9ejUcHBxw9OhRZGVlKaxL2a5du/DNN99g27ZtkkEIf39/qYp4gUCAmJgY5OXlYcOGDZg6dSptuEC1QKciUBpDJBLBzc0NZmZmePfdd1FaWtri1Jasp706morQHa9evQKPx4O+vj78/PzQu3fvbu1H1mPoyak+qns0Pc9o+vGpO2mnKnXm119/xbFjxzBlyhS4urpKnftqa2vbTAUzNDRsN4+2nhYxffp0nD17ttNYq6urERMTg7KyMnh7e2Po0KEyHRelPuhUBC1EF4tuS0dHB/v374dAIEBQUBC4XC4+//xzyf1MjV4+ffoUERERYLPZ4HA43S5qAdmPgV7wQFHaRR6jl3PmzIG7uztu3LiBhIQENDQ0SPU4WS58az3lYt68eZ3GWlhYCBcXF+zZswf5+fkyN16g75nagxa2akrV1ihVlaRhYmKC5ORkREVFYdKkScjMzIRIJAIg3dy15sexZcsWWFlZYfDgwVKvWNDa/fv3ER0djf79+yMoKAimpqbdPzgpj6E5eoqOoqjumDRpEry9vfHo0SNER0dLldPb++DNYrEwePDgNnlUlg/dRUVF2LBhA0aPHo3z58/Dzc0NH3zwgUzvOar2nkkpDi1s1ZSqzZ1UtaQxe/ZseHh44ObNm4iPj0dDQwN27dqFY8eOYdq0afjXv/6FhoaGNsmw+XEsXboU33zzDfr169etwvb69euIj4/HyJEj4efn16LJQ3fREViKopRl5MiRCAgIQHFxMSIiIlBVVdXp9u198GaxWOjXr59kBRlxIQpAqg/dT548kaxX/vXXX8PS0hKurq749ddfZXrPkfU9U1UGayjZ0cJWTXU2csfEC1LVCm2g/b7oubm5+Oc//4nc3FwsX768TTKUx3EQQnDu3DmkpqZi2rRp8PT07LKbmLToCCxFUd3V+r3hzZs3Xb5X2NjYgMPhoK6uDuHh4SgtLe1w/5198O7O4Mfdu3fB4/EwaNAgzJ8/HydOnADQdFFcVVWVTLla1rNdncVLi17VRgtbNdXZ6CMTo6eq2gxgxIgRCAwMRGlpKTw8PEAIwdq1awG031Ch9RXFQ4cOBZ/Pl/rqYEIIjh07hqysLCxcuBAuLi49uuhM09E3CIpqnyJeG63fG9zc3KR6r+jbty9CQkKgr6+P8PBwFBYWtrtdex+8CSHg8/m4f/8+Vq1aBUC6QvTq1avYv38/Ro0aBR8fH3z11VeSovmLL77AuHHjJLk6JSWly/ccWc92dTbIoWpnKKmW6DuumupsjVImRk87SxpMFy/ivuivXr2Crq4uYmJiAKDd7jStj8PHxwf37t2TqrAVCoVISUnBxYsX4eLigkWLFnV7bq62oG8QlLaRNh8q4rXR+r2hsrJS6vcKCwsLBAcHw9TUFOvWrcPixYulyueEENy7dw+9evVCWloagM4HPwghOHPmDNLT0zFjxgy4uLjgvffeg6enJwghSExMhKWlJWJjYyW5eseOHV0WqrKe7epssEYVz1BSf6CFrRrr6MXFxOhpZ0lDFYqXPn36YMGCBbC3t8ePP/6I2bNnt9tQoflx7N69W+p5sfX19YiLi8Pt27exbt06zJgxQxGHoXHoGwSlbaTNh4p4bbR+bzA3N5fpvcLExAR37tzB7NmzsWjRIowcOVLqfL5p0yacOHGixeBH6yK/pqYGR48exYkTJ7Bo0SKsWLECYWFhbX5ednZ2yMrKwjfffIO//OUvcHR0lPu0rM4Ga1T1DCXVRD4T/yhGiF9c4jVKxS+uXbt2ISwsDHv37pWsY8ik/Px87NmzB0BTgt67d2+P99neeoldJbbdu3fjgw8+QGVlJUxNTbF37165JMOamhrExsbi9evX8PX1xfDhw3u8T23R0d8wRWkqafOhIl4b4veG8B9+wNT+/XE4LAwHv/sOe7duha2pKb6aPBnw9gb4fKC6uunf+nqgsREQCgFC8P6LFxg6YgTKqqtR0dCAFxUVQEkJYG4O9O0LWFs3/TtwIDBkCNC/P4CmRjq7d+9uMTVLvM72nj17cPDgQXh6emLmzJlYtWoVpk+f3uHPKzExsdP3uObvD+K1bp8+fSpTm3XxIEdHP8cPPvgA27dvl7Qrr62tpdc8qAoio9zcXPLJJ5+Q77//nhQXF7e4r6KiggQHB8u6S6WpqKggAEhFRQXTochFTU0NCQ0NJS4uLiQ0NJTU1NQwHVK7Nm/eTNLS0gghhKSlpZHQ0FBG91lfX09iYmLIjh07yM2bNzvcTigUkitXrpArV64QoVDY7jbl5eXkv//9L/niiy/IixcvZDoGdVRTU0M2b95MXFxcyObNm3v8N6cuf8OykDbPqGsu1bQ8qmzS5q4evzZEIkKePSPk8GFCvviCkD//mRBHR0IGDyYEUNpNpKNDBP36kYoZM4joL38hZPduQo4eJeTlS+KyciUhhJC6ujoSFRVF7O3tyZ07d7r18+roMR4eHiQ5OVmmx0tDEe9r1B96kmdk6jyWmZkJV1dXjBw5ElVVVaipqcH+/fuxaNEiAE3dlQYOHAihUKiQIrynaMccZsijE05rrbvWtP66K0KhEOnp6cjNzcWKFSswa9asNtt01XmsuLgY0dHR0NHRgb+/P6ysrLp5NOqDdjLrmjR5Rp1zKc2jPaOIfAhCgIIC4NIl4MoV4PJl4Pp1oLy848cYGACDBwODBjWNqvbp03Tr3RswNQVMTfFzTAwmTp+O2Q4OOH/xIq5dv44/Bwcj8n//w6sXLzCkTx/MGjMGBbdvY1ivXhhpaQlWSQnw6hVQWAg8ewZ00tyhytgYNSNGoHDQIJyurcWRsjLo29i0GFntzs+r+ftBT98rpHkOee6XatKTPCPTVITt27fj/fffx2effQZCCL766iu4ubkhMTERzs7OMj0xpT06O6XTXT09Taerq4vVq1eDzWbjyJEjqK6uxuLFi6W+2OvZs2eIjY2Fubk5/Pz8YGZm1p3DUDuKmFaijWgu1V5yyYeEAPfvAydPAmfPNt2eP2+7na4uYG8PTJgAjB4NjBjRdLOza5ou0EW+S+Px8Na2bQCAKQ4O+Ovs2Tj6449NhWdcnKTArLt+HXFpaRg9ejQ8PDz+WN5QJILo5UvkHTsGw2fPYCsQgJWXB9y+DeTlway2Fma3bqHfrVuYAmALAFRU4FlNDQ66usJ7714YDx8u88+r+fuDkZERUlJS4O7u3u7SmLJOaWvvOeg0KtUi04ithYUFrl27Bjs7O8n34uLi8Oc//xlxcXGYOXOmyo4yAHSkQV21l3wAyG3U4/z588jMzMTUqVOxatUqychsRyO2eXl5SExMxMCBA+Ht7S2Xxgs91ZMELQumRmyVdXzyIE2eUedcSvMoQ8rLgWPHgMzMplvrQlZPD5g0CZg+HZgxA5g2DRgzBjA07PZTNn+9r1u3Dr6+vpICsfVr//79+0hMTMTgwYPh5eUlyYsd5dFXjx/j+J496F9UhHkGBnh58CCG8fnA750iJWxtAWdnYPlyYPHiprm8XWg+ymtrawugqdFD6/eKnuQzhYy8UxI9yjOyzFvo27cvuXLlSpvvx8fHExMTE/Ljjz8SHR0dmedDKAudG6aeFDWXqfl8UW9vb/L//t//I3FxcaS+vp4QQohIJCIvXrwgL168ICKRiBDSNC9yx44dLbZTBcqa78XUnFh1ms8mTZ5R51xK86gSPX5MyDffELJ4MSF6ei3nrxoaNn1/+3ZCsrMJqa4mhMh3Hnzz1/u0adNa3Ofi4tJm+6dPn5KdO3eSH3/8kVRVVRFC2s+j9+/fJ3PnziXjx48nb7/9tiTmQ/HxhBw7RvI8PUn+gAGE6Ou3PGZ9fUKWLyfkhx8Ief6828fV0TG0d0zSkPe1B1TP8oxMhe3SpUvJl19+2e59sbGxRF9fX+HJ+Pvvvye2trbE0NCQTJ06lZw5c0bqx2pUQn74kJC//52QsDBCtm0j5PPPCfnqK0L++19C9u4lJDKSkNhYQpKSCElPJyQzk5DTpwm5cIGQa9cIuX27aR/PnhHy+jUh5eWE1NYS0sFFUkySV/JprXWxFBAQQD799FPC5XJJbW1tm+1PnDhBZs6cSaZPn07effddlUpeivoZqQp1Oj5p8gzTuZTmURX29GlTLp85s+3FWGPGEPLee4QcO0YIn9/uw6X5ENidQkzaD5dFRUXkq6++It988w0pLS1tc/+9e/fI7NmzSWhoKKmtrZXsq90PzVVVTe9fmzYRMmJE25/H3LmEfPstIS9fdhl/T45JWfuh/qC0wjY5OZls2bKlw/tjY2OJo6OjzEFIKz4+nujr65P//e9/5M6dOyQ0NJSw2Wzy9OlTqR6vUQk5K0txV7Lq6xNiakpI796EDBhAiK0tIaNGETJxIiEzZhDi4NA0UrBiBSFr1hCyYQMh/v6E/OlPhLzzTlPi/egjQnbsIGTXrqarYH/4gZDwcEJ4PEL27yckNbXpythTpwj59demYvvOHULy85s+iRcXE1JZSYhAQDa/+65CkkZ7xVJBQQHZtWsX+eGHH0hlZSUhpGnEITMzk8ycOZN88sknRCQSMZ68Wr8xbdy4UaMTqzq9cUiTZ5jMpTSPqqCKCkJ++YWQBQta5mIdHUIWLiTk668JefBAql1J8yGwO68nWc7WlJWVkW+//ZZ8+eWXpLCwUPL9a9eukR07dpApU6aQhoaGTmNs1927Te8pc+YQwmK1/DktWUJIdLRk5Foa8joDpU4fvNWF0lZFYNqsWbMwdepU/Pjjj5LvjRkzBmvWrJFqrVbxnI2ysrIO52w0v/Jd1Hqujyptm5cHFpcLVn190zqDAgFIXV3T/3//usX/BYKmbX//P2n+/U6uWlUFhMVCg44O6lksEH19sK2swDI2bpo79vuNZWgIGBkBhoYgRkZNV/w2+57k+4aG0Pn9sbzERIyePBlT58zBhRs3cOXWLWx67z28qalBemYmiIEBlrq64spvv+FOfj4OZWdj+qxZknmeeXl5OHz4sCROFoslufiMNH1o7PCYerrtli1bsGTJEsncsMzMTOjp6eHhw4cYOXIkdu7cCSMjI4XGIM22QOd/79JuW1tbi48++gj5+fmS+WyGncwdlCUGQL6vz8rKSvTq1Utl56DSPKoi2xICnD0L1v/+ByQng1VX1/R9FgtkwQIQT0/A3V2yDmxH+239emydG06ePCmZNyreVnyfmPjrzvYrSwwAwOfzERMTgzdv3mDNmjUoKirCmTNnMHXqVBw/frzF3NYTJ05g9+7dvx++lLmmsBCsAwfASkgALlz4IxYzM8DTEyQkBJg1S3KBnCLz3ZYtW+Dk5IRVq1YhLS2txfH0ZL/yzqOK3BZQnTwqU2FbVlYGHo+HwMDANk9UUVGBqKiodu+Th/r6epiYmCAxMRHu7u6S74eGhiI3NxenT59u8xiBQACBQCD5urKyEjY2Njh16hRMTU3bbG9hYdHiysbr1693+MsxMzODvb295OsbN26gsbGx3W1NTEwwZswYyde3bt1CfX19u9saGRlh3Lhxkq9v376NOnHCa8XAwAATJkyQfH337l3U1NS0u62enh4mTZok+TovLw9VVVVNX4hEYDU0gNXQAJ2GBug2NmL8yJGSwvdZfj5qysrAqq+HTkMDWPX1km1Z9fUY2r8/8HtRXVZUBEFlZdP94u3q6yWPsTA0BOv3/dZXVUFUW9v03M32rVNfD5YKXjQDAEIdHcDQEPUsFiobGmBpbQ2RoSFEBgYwMjeHLpsNGBlBAIAvFEJkaAiir9/0r4EBRAYGIAYG6D1wIIx79QKMjFDV0IDXFRVN9/2+r+bb24wcCcv+/QEjI5TV1ODR06fYsmVLi4scxF/b2tpKlh2rqKjotFvRkCFD0LdvXwBAVVUV8vLyOtx28ODB6NevH4CmN6x79+51uO2AAQMwcOBAAE0F6Z07dzrctl+/fhg8eDCAptf4rVu3Oty2b9++GDJkCACgsbERN27c6HBbKysryUUjzS9eaU+vXr1aNNW4evVqh9tKkyOqq6vh6OjYaUJmKpfSPNqW3PJoKzo6OpgyZYrk64cPH6KiogK6VVWwSk9Hn5QUGD9+/McDRo8GAgMBX188amhAWVlZu/sFWl6E9eTJE5SWlkruq6urw3fffYfnz59j8ODB+PnnnyWrthQUFKC4uBhfffUVZs6ciQULFuDMmTO4dOkS3n//fUyYMAEGBgYAgOfPn+PVq1cdxjB27FjJxVKFhYV4+fJlm23q6+tx7NgxXLhwAWZmZnj77bcxbtw45Ofnt4hx06ZNkovN7O3tJfEWFxejoKCgwxhGjBgBAwMDfPHXv8L23Dk4FxWhH58vub/G3h7FHh544+wM2wkT0KtXLwBNr79Hjx51uF9Z86ipqSnCwsIkrYObH09zNI82kVce7YhMy3199913uHnzJt599912Az179iwqKyvxz3/+U6YgpFFSUgKhUCj5oxDr168fioqK2n3Mzp07sWPHDrnHonF0dEAMDZuKKgAiHZ2m5WB+JzAzQ3VFRYcPHzptmuT/ZY8edZmQWb8n5MJWCbkFoRCTRo+GnlAICAR48egRyoqKmgrl30eZJf/W12Nov36SbctfvUJ1aWmbbcRFs4WREfQaG4G6OggqK9FQXd3iftbvN1JbC92GBug2C0tXJAJqa2EMwBgAXrxoN3zD32/SMPv9Jo1eAKbq6iKTxQJZuBB6pqbgC4WIaWiAVUAADMzNATMzwMgIxrq6sK2vb1Eki4yMJP836t+/ackfIyPoEQLzkpKmbVsX14aGYJmbA5aWTSPhVI8xlUtpHmWOfn4+bH75BVYZGdD9vcgWGhvjzfLlKFmzBmMCAv5YfquToqsrRkZGeP/99yVft3el/qZNm/Ddd98hOTlZUlh2V21tLf71r38hLy+vTZGqq6sLHR0d3L59Gw0NDdDV1cWuXbvaxNgTW7duhZOHB+b+5z+IioxE5eHD2GRsjF5ZWTDJy8PQnTsx+Ntv0RAQAHzwATBsmFyetznxEm5dDRBQyiHTiO3kyZPxn//8B0uWLGn3/uzsbLz//vudVvXdVVhYiEGDBuH8+fOYM2eO5PufffYZoqOj2/3k09FIgyacQhMvNfLo0SPJ8kednZptb7/ifYhPrTdfrkQZx9bTU12K2rayshIxMTGoqqrCmDFjcOv6deg2NuLJ3btY6+KCpQsW4NSRI7h6/jze27SpabS6rq6pIBYIgLo6kN9vkvt+/z7q6v6YAvL716T5fb/fX15UBBMWCwaEgNTWQkdVRrBZrKYpHcbGTdM8xLfmXxsbN00V+f1rYmgouZ+0ehzLxKRp29+/LxJv2+x7+H3qCEtHR2NOoTGVS2keVfK2LBZw+jTwxRfAkSOS7xdaWSG5f38UzJuHbf/5D4yNjdvdb0c5WpXyaGhoKJYsWYJVq1a1mFZQX1+PxMREfP/995g3bx6GDBmC8+fPo6GhAfv37+9wzXBZT9e7uroiIyOj7TSLN2+AqCiw9u5tWju3KWhgzRrUvfsu/pGc3O57X3diUJcpXYrcFlCdqQgyjdjm5+dj5MiRHd4/cuRI5OfnyxSAtPr06QNdXd02owqvX79uM/ogZmho2G6xp6Oj06aLVHuk2YapbT/66CMsXbpU8iIOCwuTaT1RHR0dyT6+/fZbpKen45///Ge7+1DUsbV+0bSnO+uXSrPfjrYtKSlBdHQ0AIDD4eDZs2cYMGAACgoKwAcQkZmJ/yYnN83z5HKb5uu2t9/fb1LF0M73/Jt1sWEBWOXsjDHDhuF5fj5G2tjgo7/9DUYs1h/FcG1tU8Es/n/zIrr51823a/51bW3bfTS/T4wQsMT3deP4uvqZdPrX07yINjaGzpUrwO+nFruizNenNI9nKpdqah7tKk8oPZeLREBqKrBrV1M3MKBpNNbVFd/p6mJoUBA2ubl1mHfF+5UmR/ck38lj2+ZNW1avXo3//e9/qKurQ2xsLF6/fg1jY2N4e3uDEIKJEyfirbfewrFjx+Ds7Nzlz1qaGJo3SsjIyMDIkSOb9tunD/D3vwNbtjSt+7t7d9O/yckwSk7G/40fjz5ffYUUPh8ODg5YuHBhu+8vTP98xVS5HlHEtrI8vjWZCltdXV0UFhZK5me0VlhY2KNgOmNgYIBp06bh+PHjLeaGHT9+HKtXr1bIc6oyeXSAUocuUlu3boWTkxP27NnTrQJeFi9evEBMTAxMTU3h5+cHU1NTPHv2DLq6unB2dkZ0dDTu3r2LCRMm4PPPP++wwJZHM4HWXW3Kq6uxYOVKyddbf/ml05+DXBsaENJ0EWLzorl1sdz8/+0Vy60fJ76v9eNa39/8k7x4W3GbUDWeFsFULtXUPKrMPNEpkQg4cAD4+OOm7lpA04ex4GDgvfcAOzscXbUKGW5uqK2tRVZWFk6ePInQ0NB2X6Otc/T27duxatUqlWpS0jpX2djYICIiAjU1NQgKCpJcNLZgwQJUVFRg2rRpuHz5Mvh8Ptzd3f/oUtZNu3btQlhYGPbu3Su5sLQFHZ2mBg/Ozk2/k6+/RkNEBPr89hvg7Az3qVNxS18fU5YsYe7vhpIvWZZQcHR0JB9++GGH9//jH/9QynJf4eHh5M6dO2TLli2EzWaTJ0+eSPV4TVqmRh7LH6nDEkrKWkbl4cOH5LPPPiO//PKLZMkXoVBIrly5Qq5cuULeffddkpqaSs6ePUu8vLyIq6srEXaw5q88fq6tl6FxdnZucX9XPwd1+N12SSQipL6+aSmkoiJCnjxpWu7n2jVCzp9XyTWXCZEuzzCZSzUxjzK+3JJQSEhCAiFjx/6xBJWFRdOyh0VFLTYVvzY3b95MUlJSCCEdv0abv46Tk5OJh4dHp9szoXmu+vOf/0x27dpFdu/eTUpKSgghhFRXVxMvLy8yb948yZq5d+7cIZ988gnZt28fqaur63L/8m5+8K/gYJLv5kaIickfv69p08j26dOb8g7FOKWtY3vgwAGip6dH/vvf/5LGxkbJ9xsbG8m3335L9PX1SWJiosxByOL7778nQ4cOJQYGBmTq1Knk9OnTUj9WFRNyd8lj/T2mukjJQhkF2s2bN8mOHTtITExMi25izQvblStXSr5/9epVMnLkSJKQkNBiLUYxRbzJyvpzYPyNXotJk2eYzqWalkcZ+yAnEhFy5Aghkye3LGi3byekrKzdh4jz7oQJE1p8v73XaPMcPWnSpBY5WtVe0+2tAV5TU0PeffddMm/ePOLl5UWqm60x+/jxY/L555+TvXv3tvh+a4r43Yp/rosnTiRJo0YREZv9x+9v9uym9dUpRimtsCWEkI8++oiwWCxibm5OJk+eTKZMmULMzc2Jjo5OpyMQqkAVEzLVOUUX37/++ivZtm0bSUlJaVFgENLUmOHZs2fk2bNn5N1WTSL8/f3JJ598QiIjI9uMOCgyEUv7c2g90jNp0qQ2ox20DaRiSJtn1DWXqmIeZeRD+qVLTc0TxAWRmVmnBW1rsuYJVT4Lk5eXRz799FMSHh7eomvj5s2bSWpqKnn27Bnhcrlk8+bNLR738uVL8uWXX5Jvv/2WvHnzpt19K/JDuvjvxtvJiWRNm0ZEzUdwV64k5MYNqfdDc6l8KbWwJYSQS5cukdDQULJy5UqyYsUKEhoaSi5evNidXSmVKiZkihkikYhkZWWRbdu2kczMTEkP846098b55MkTsnPnTvLTTz9J+qJ3tK2yiWOYOnUq8fDwIDU1NW3eDDt6o6RJumdkyTPqmEu1JY92+Dp4+pQQX98/CiBDw6b25sXFMu9fljyhCnmlPTdu3CA7duwgsbGxLc54ESJdUfrmzRuyZ88e8tVXX5GiVtM2CFFyQV9YSMhf/0qInl7T75bFIiQkpMuWvar8oUNdKa2w5fP5ZOPGjWTgwIGkb9++xMvLixTL+GJmkrYkZKpzQqGQpKamkm3btpGcnJwe7UvcF33Pnj0djjgwqbM3lo7uo0m6Z6TJM+qcS7Ulj7Z+HXywcSMh//wnIUZGfxS1AQFNha6WOn/+PNm2bRs5ePBgu9ccSJtLqqqqyE8//UR27tzZZq43IwV9Xh4hnp5//J5NTQnZuZOQZqPRzdGpX/LXkzwj02W327ZtQ2RkJFxcXODt7Y2srCz89a9/lcc1bBSlFOI1FHNzc+Hu7o65c+d2un19fX2H3Y2ApoXtQ0JCwGKxEB4e3uEi90wRX7EMAOnp6S26vXR0X35+PlxdXQE0XYndWdcdqntoLlV9ktcBIXCtq8MHXC7w2WdNK3MsXAhcuQLs2wd0sLKFJiOE4Pjx4zh27BjmzZsHNze3dlfx2LVrF7Kzs7Fy5UpkZmZ22LLZ1NQUQUFBGDBgAKKjo3H//n3JfeLmBxkZGfjmm2+UsxLEyJHA/v1ATg4wYwZQXQ2EhQHjxwPN2qiLdZZnKeWTqUGDnZ0dPvvsM3h5eQEALl26BAcHB9TV1UFXV7eLRzNP3ONcVXu4M0Guy0KpuLq6OsTFxaGwsBCenp4tWnm2p3kLweYtLFurra3Fe++9h3PnzsHU1BRcLhejR4+We/zdIV7g/eHDh5KlcMS/347uCw0NbdHHPTs7my6BIwNp8ow651JtyaOhoaFYM3o0FiUlAdnZTd8cOhT4+mvA3f2PLmFaRiQSIS0tDbm5uVi+fHmLRh8dbS9NHgWaWrwmJyfj7t27cHNza9GSuCOyvoc1337o0KEAgKdPn3b8WJEIiI0FPvwQKCxs+t7q1cA33wC/t5vtLM9S3dOjPCPL8K6+vj55/vx5i+8ZGRmRgoICmYeKmaAtp9BkoS2nnSsrK8kPP/xAdu3aJfXfa/NVETpa2ouQP36GdXV1ZMuWLWTOnDnkzp078gpd6VR1Lp+6kCbPqHMu1Yo8WltL6sPCSIOODiEAqdfVJfUffUSIlr8W6uvrSUxMDNmxYwe50cWFVeI5yitXriReXl7k3LlzneZRMaFQSDIyMsi2bdvI2bNn273+ofn857lz50pWEJH1IjyZllCrrCTk/ff/mH9rZETIrl1NSxJScqe0qQhCoRAGrRZF19PTQ2Njo2zVNKUyZD3tXFtbi9DQUKxatQqhoaGolaEDFVNKS0sRHh6O2tpaBAcHw8bGRq77F/8MRSIRGhsb8eLFCwQHByMnJ0euz6MsjJz60zI0l6qwU6eASZOgv3Mn9EQiYOVK6OflQf+zz5q63imAOuTV2tpaREdH4/Hjx/Dx8cHEiRM73V7cNCM9PR0zZ87Ed999J9Xz6OjoYOXKlXB0dERWVhaOHTvWpvWseN8ZGRmSs2WAdO9hzd/z3N3dUVdXJ91jzcyAL78EcnMBR8emKSlbtzZNVbh8Wapjo5RDppYfhBAEBQW1aK9YV1eHt99+G2w2W/K95ORk+UVIKVTrrjFdzQ1SmQ4/UiosLERMTAyMjY3h7+8PCwsLuT+H+GeYlZWFJUuW4Ntvv8X27dvx3nvv4YsvvsD8+fNlap1IaT6aS1VQZSXwwQfAzz83fd2/P/Dtt8C6dQqfdqDqebWyshI8Hg/V1dUIDAzE4MGDu3yMuGuaSCTCggUL2v1b7mpaAJvNxuHDh1FWVobz58/j8ePHsLOzw4MHDyQd2dauXSv5vzTvYc3f81JSUmBkZCT1YwEA48YBJ040za9+7z3gxg1g9mwgNBT49FPAxKTrfVAKJdOIbWBgIKytrWFhYSG5+fn5YeDAgS2+RylXTz7tiyf3r1q1CtnZ2R1O7hdTpwuLHj16hMjISPTq1QscDkdhf5vin+HJkyexZs0asFgsbN++HSwWCydOnMCRI0dQU1PD+IiMOowKaQuaS1XMsWNNFwaJi9q//AW4exfw9FTKXFpVzqslJSUIDw+HQCAAh8ORqqgFWl5QdebMmXYf13zk1cnJCa9evZL8PywsDDNmzMC6devw7bffQl9fH8nJyXByckJlZaVk32lpaRAKhVK/h7V+z+vfv7/Uj5VgsYCgoKa/EV/fpnm4u3cDkycDv48eUwyS97wIVaapc8OUOU9WXu1iFb1O6m+//UY+/vhjEh0dTQQCQbf2Ie0cW7GNGzeS5ORkQgghcXFxZM6cOcTBwYHMmjWLLF++vMv2mYom778Tut5t+zQ1z4hp1PFVVhLypz/9sazT8OGEnDih9DBU9VqH58+fk3//+9/ku+++k/n3LZ6r39kcW2mXI1y0aBH57LPPyM8//0z4fD5xdnZWresADh8mZNCgP9a+3bJF6+dj95TS5thSqkmZn/ZlHeFtT+tP6WFhYXKN8dKlSzhw4ADGjh0Lb2/vNnMZFSkmJgarVq3CF198gQ8++ADnzp1DQEAAbty4gaqqKggEgm7/jno64irvvxNF/x4pSqHOnQMmTQJ++aVpBG7zZuDmTWDRIqWHIo+8Km/5+fnYt28frKyswOFwZL4yXTxXPz09He+//77klH9zzUd1O5sWMGHCBAwcOBDl5eX429/+BltbW5W5DqC2thahR49iw7hxuDB2bNNHpG++AaZNA65dYywubUYLWw2gzDX05HFhkaIKcUIITp48icOHD2PWrFlYu3Ztj5ZOYrFY6Nu3L/r27SvVHNmnT5/iwIEDyMjIwMCBA+Hu7g4A2LhxI6ysrHD8+HHs27cPiYmJ3fod9bSQlPffiSqfPqWojtRWVOD49OkQzZ8PPH4M0ZAhwMmTwJ49QLP5zcqkahds/vbbb4iNjcXQoUMREBDQo3g6y6PSTgvYtWsXcnNzcfz4cdy7dw+2trZ4/fp1t2OSp/fffx+Ojo5IOHYMLz/9FD+4uDTNz757F5g1C9i5ExAKmQ5Tu8h/AFl1adQptGYUsTyTIk8zK+K0m1AoJOnp6Z0uEaNozY/Lw8NDMi0hKSmJjB49mkyYMIEMGDCAzJ8/nxQWFsq8/552t5H334msv0dtmbqgqXlGTK2P78ED8tTaWjL14OmSJeQfb7/NdFQq5cKFC2Tbtm0kOTmZNDY2Mh1OG91ZulGRpk6d2uLradOmNbVXXrv2jyku8+cTogKxqhOltdRVd2qdkJVMkXO+5F1gNTQ0kISEBLJ9+3Zy9epVOUUpu+bH9c4775C5c+eSBQsWEAcHBxIfH08IISQmJoYsWLCgw77onVG1eXiy/h5VLX5F0fQ8o5bHJxIRsm9fU2tUgJBevQhJSiKE0PanYiKRiGRnZ5Nt27aRzMxMRgYHpFVbW0u4XC759NNPyf379xmNZeLEiS3y2qRJk5ruEIkIiYwkxMzsj7+5gweZC1TN9CTPyNR5TN1pS8ecjsjSoWXVqlXIyMjo8GtVIRAIEBcXh+fPn2PdunVddvyStUuNeF1RPT2ZVsYD8MfPrPXPztnZGWvWrEF5eTl8fHwwRMqWnOre3UZd/qZ6StPzjNodX3U1sHEjEB0NAHg4cCAef/IJlnI4GtNZr6cdJEUiEQ4dOoSrV69i2bJlXbYal5W0eVSW42hoaEBSUhLy8vLg5uaGyZMnyzVmab3zzjt49eoV6urqYGRkhP79+7dcszc/H/DyamrB3PQA4KuvgHbmHFN/6EmeoXNstYgsczTVofd1dXU1IiMjUVRUBH9/f6na2MryMxCJRLhx4wZu3LgBkUjU4XYdXdQl/hna2dnh4MGDAJp+lqNHj0ZQUBD69++PqKioFn3ROyPPeXhMLP2lDn9TlIa5cweYObOpqNXRAT75BIPu38ehmzdV6kKtnurJ/PvGxkbs378f169fh7u7u9yLWmnzKCDbcejr62P9+vWYPHkyDh48yFhDnK+++kqylNngwYPx5ZdfttzAzg7IyQHef7/p6++/BxwcgEePlBypFpH7+LEKU8tTaHIk7RzNmpoasnHjRjJp0iQydepU8s4776jcfMg3b96QPXv2yHxKX5Z5qrK21CWk5Sl28al6Z2dn4uDgQFasWNHilH1DQwOJj48nO3bsINeuXZP6GOSBiWkB2tKqV9PzjNocX1QUISYmTaeBBwwg5PRppiNSmO7Ov1fGKX1Zlk3sznE0n0Jx7NgxlZ5CQY4cIcTKqulv0sKCTk3oBF3ui5KKtCNmW7duhbOzM3Jzc7F9+3bo6emp1CnvoqIihIeHg8ViISQkBP369ZP6sYoYNexodQDxCOuRI0dw7tw5HD58uMVIq56eHjw9PTF16lSkpqbi3LlzbVpHKgoTKxqo2pXflIaqr2+aehAQANTUAE5OTW1QFyxgOjKF6U5eq6qqQkREBF69eoWAgADY29srOswudec46urqkJqaiuPHj+Nf//oXEhISIFTVVQicnYHr14E5c4CKCmDNGuDDDwHaSluuaGGrRaRdK1GVl3F68uQJIiIiYG5uDg6HA0tLS5ke39XPoPkp+i1btkj6iLfWfLuysjKkpaUBkL1Y1tHRgYuLCxYuXIisrCxkZmYqpbil0wIojVRYCDg6Aj/+2LQ27fbtwNGjgLU105EplKzr4L558wZcLhc1NTXgcDiwsbFRUqSd6856vuLpCzk5OfDz88OePXuQkJCAhoaGdrdnvAOjjQ1w6hSwZUvT11980VTwlpQoNw4NRi8eo9oIDQ2Fk5MTXF1dVeriirt37yIpKQlDhgzBhg0bYGhoKPfnaH7sqampiI+Px/vvv48pU6ZAR0en3e0OHDiAb775BpaWlj26qOvSpUs4cuQIJkyYgNWrV/doDd6udHYhWk8vRNF2mp5nVPb4zp5taoH76hVgaQnExAArV3b5MG37e3/58iV4PB6MjY3h5+cn8+CANJr/TIcPH44NGzbAyMioTR6Vh9YXoS5atAhLly5Fv3794OPj0+Z3ydT7W7t/Z+npQHBw05mFoUOBlBRgyhSFx6IOepRn5DwtQqWpzdwwhqniXMgrV66Q7du3k8TERNLQ0KCw52k+p0soFJJ58+a1Ozesp2vKdkQerYB7SluW5VIUTc8zKnl81dWE9O3bNHdxwgRCHj6U+qHa9Pf+6NEjsmPHDrJ48WLi7OyssPWkm/9MDx48SLy8vKRuTd6T5xL//sStgL///vs2f6eKyt3diZMQQsjNm4TY2TX97RoZERIbq5R4VB2dY0vJrLPTMao0F5IQgjNnziA9PR0zZsyAh4dHt5beklbrU/Tiq1272k5ep/LHjRsHX19fFBQUICoqCjU1NXLZryxUeSoKRbWLzQb27QN8fYFff226El1K2vL3fufOHfB4POTk5OCdd97BkSNHWqw8IM9T9K1/ps+fP5fLMbSnvekLgwYNAofDgUAgQHh4OEqaneZvnrvT0tJQXl6ulGkJHf6dTZgAXL7cdHahrg7w8QH+9S+gixUkqI6pTWH72WefYe7cuTAxMVHIqRNt09P2rMpACMHRo0dx4sQJLFq0CCtWrJCqtW1PNE+SJ06cwLZt22BlZdVlK0h5Lhk0fPhwBAUFoaysDFwuFxUVFXLbtzTo/FvNpdF5dMUKgMeTuS2uNvy9X758GYmJiRg7diz09PSwdu1aAC0LLHm+JzT/mWZkZGDkyJHt5lF56Gggpk+fPggJCYGhoSG4XK6kuG6eu7/44gts2bJFKe+Dnf6d9eoFpKUB//hH09effgqsW9e0BjMlM7WZY7tt2zZYWlri+fPnCA8PR3l5ucz7UNm5YQxQ9cXyhUIhUlJScPv2bbi4uGD69OlSPU5T5suJR09ycnLQu3dvxMTEdNjIQd7HrO6NIJimynmG5tG2NPnvnRCC06dP49SpU5g9ezaWL1+OLVu2tDvHVJ7vCar0M62trUVsbCyKioqwYcOGFgWlMt8Hpf6ZREUBf/5z0+oekyYBGRlAB2cONZlWzbGNiIggFhYW3XqsSs4NY4gqzyurq6sjUVFR5JNPPiF37tyR6bGqfFyyEB9HZWUlefvtt8mcOXNIcHAwcXFxaTMvTlOOWVOoQ56heVTzCYVCkpGRQbZt20bOnDkjWd+1o2soNDmP1NfXk5iYGLJjxw5y8+ZNyfdV9pjPnyfE2rpp3u3AgYRcv850REpH59h2QCAQoLKyssWNaqLIU+k9wefzsW/fPjx//hx+fn4YM2aMTI+X13w58Yipi4sLNm/erPQlYcTHYWZmht27d+PZs2doaGjA7t2725wy05Y5ghQzaB5VP42NjThw4ACuXLkCNzc3zJ8/XzINoKNT94p8TxCJRF12HVMkfX19bNiwARMnTkRSUhIuXLgAoPvHLO8lw9rsb/Jk4OJFYOzYpiXs5s0DDh3q0XNoE40ubHfu3AkLCwvJTVXW6lMFqnSBmFh5eTm4XC4qKysRHBwMW1tbmfchr/lyW7duxeLFi/Hxxx9j2LBh2Lp1a7f2013Nj+P48eOwtraGi4sL4uLiMGTIkBbFqzbMEaSYQ/OofCl6HVWBQICYmBjk5eVhw4YNmDp1qlSPU9R7gkgkwvXr13H9+nVGi1tdXV2sXr0aDg4OOHr0KLKzs2FkZNStY5b3NSrt7s/WtqkVr5MTwOcDbm5N7XipLjFa2G7fvh0sFqvT25UrV7q9/7CwMFRUVEhuz549k2P0lDy9evUK4eHhIISAw+Ggf//+3dqPvEYdmo+CLliwQOmjoK2PY/bs2TA2NsbkyZOxa9cumJiYdLitqoy+U8pB86hiybsQVeSFu9XV1YiMjMTLly/h7++P0aNHy23fmoDFYmHp0qVYtmwZzp49i7S0tG4V2/I+S9bh/iwtgcOHgZCQplUSOmg6QbWkuHWTpLBp0yZ4eXl1uk13Ru3EDA0NFbKIPyVfBQUFiI2NhaWlJfz8/GBqaiq5T9YLo8SjDj0lHgUdPHgwzpw5o/RR0NbHIb7w4MGDBzA0NMSYMWNw/PhxODk5ye2YKfVE86hiiQvRPXv2ID09HWFhYT16veXn52PPnj0AmoqYvXv3yiXOsrIyREdHo76+HsHBwTK1Gtc2c+fOBZvNRmpqKmpra+Hh4QF9fX2pHy9+fxBfgNfT94dO96evD/zvf8D69cDSpT16Hm3BaGHbp08f9OnTh8kQKIbdv38fiYmJsLGxgZeXV5s3UHm/qUhr165d2Lp1K65du4bBgwfjl19+kRTZDx48kFypaW9vr5SVF1oXrxcuXMDRo0fB5/Ph5uYm924+lPqgeVSx5F2IyrsoAoCioiLweDwYGBggJCQEvXr16vE+NU17gyTe3t7Yv38/eDwevL29YWRkJNW+du3ahbCwMOzdu1eywkFPdLk/FgtYtqxHz6FNGC1sZVFQUIA3b96goKAAQqEQubm5AIARI0a0GOGj1Mf169eRnp6O0aNHY+3ate02XlDU6EZXjI2NsXv3bly/fl3y9d/+9jdJkX3w4EGcOnUKS5YsUVqx3dzs2bPBZrORkpKCmpoaeHp6yjTiQGknmkdlJ+9CVN5F0dOnTxEbG4vevXvDz88PbBnX8dUWHQ2SBAQEIDY2FhEREfDz84OZmVmX+5L3WTJ61k3O5L9Ig2IEBgYSAG1uJ0+elHofdJka1SASicjZs2fJtm3bSHp6eqdtFplcjkUoFJIrV65IWkF21IpRWS0Z2/PgwQPy6aefkvDwcJVofUypdp6heVR2qthinJCmuPz8/Ii9vT1ZunQpKSsrYzqkdrXOo0zprJXu69evyX/+8x+ye/duUlJSouzQqHZoxXJfkZGRIIS0uTk6OjIdGiUDQggyMzORlZUFR0dHuLi4dHoaXZUujGq++sDBgwcxYsQIxlchGDFiBAIDA1FSUoKIiAi6FBPVKZpHZaeKK8gAAIfDgVAoxKeffoqNGzdi+/btTIek0jpbPaZv374ICQmBnp4euFwuCgsL5f783bkIUdEraGgqtek8Jg+a1jFH3QiFQqSmpuLWrVtYuXIlZsyYwXRInRKJRHjy5AmApotvBAIBwsLCkJeXh8rKSpiZmWHUqFFy7arT3S5iJSUliI6OBgD4+/vTOZcM0vQ8o+nHp+oIITh79iz+9Kc/Yffu3VixYgV0dHRUrnukWOs8ytT1ANJ0/qqpqUFsbCxev34NLy8vDB8+XG7PHxoa2m7HN3k/RlP0JM/QwpZSivr6euzfvx+PHz/G2rVrMW7cOKZDUkk9SWSVlZWIjo4Gn8+Hr68vBg0apNhgqXZpep7R9ONTZYQQHD16FBcvXsStW7cQGBgINze3bhc9mtKCXJ4U9V7Vnfa9ymz5q2p6kmfUZioCpb5qamoQFRWFgoIC+Pr6KqSo1ZRTNj1ZH9Hc3BwcDgdWVlbYt28f8vPzFRUmRVFKJhQKkZSUhEuXLmHVqlXg8Xg4ceJEj6ZpKXJNXXVlYGAAb29vjBs3DgcOHMClS5fkst/uNNKhzXe6hxa2lEJVVFSAy+WirKwMQUFBcj2105ymJOieJjJjY2MEBARg6NChiI2Nxa1btxQRJkVRSlRfX4/Y2FjcvXsXnp6emD59ulzm/tJ23O3T1dWFu7s7Zs2ahcOHD+PkyZPo6cnt7lwvokrXmKgTOhWBUpji4mJER0dDR0cH/v7+sLKyUthzKeKUjbgVJABMmTJFqrlhPT21J808MGkIhUKkpaXhxo0bWLFiBWbNmiXzPqju0fQ8o+nHp2r4fD5iY2NRUlICLy8vDBs2TG77VsYczu7kUVVBCEFOTg6ysrIwffp0rFy5Uq3iV2d0KgKlcp49ewYulwtjY2OEhIQotKgFVOeUTWcjx9JMl5DXFdi6urpYs2YNHBwccOTIEZw4caLHIw4URSlXeXk5IiIiUF5ejqCgILkWtQAzI4LqNG2MxWJh3rx5cHNzw9WrV5GYmIjGxkamw6K6QAtbSu4ePHiAqKgoWFtbIzg4WKoFr3tKVU7ZdHZqT9nTJZr3RT9z5gzS09O71Redoijle/36NcLDwyEUChESEoIBAwbI/TmYWMpMHaeNTZ06FV5eXnjw4AF4PB7q6uqYDonqBC1sKbm6ceMG4uLiYGdnBz8/P6lbFPZUdxK0IkYOOhs5Zmo+29y5c7FmzRrk5uZi//79aGhoUMrzUhTVPQUFBeByuWCz2QgJCUHv3r2ZDklu1HVe76hRo+Dv74+ioiJERkaiurqa6ZCoDtDClpKb8+fPIyUlBZMmTcL69etVvsWrIkYOOhs5ZnK6xOTJk+Hl5YX8/Hw64kBRKuz+/fuIiopC//79ERQUpHGtjlVl2lh3DB06FMHBweDz+QgPD8ebN2+YDolqB714jOoxQgiysrKQk5OD+fPnY/HixWCxWEyH1aWuLjiT90UP8rowrCeePXuGmJgYWFhYSN0XnZKNpucZTT8+JuXm5iItLQ2jRo2Ch4cH9PT0mA6px1rnUXGjGybzYE+Vl5cjOjoaAoEAvr6+Cpkmou3oxWMUY0QiEVJTU5GTkwNnZ2csWbJELYpaQPkjB6rQmtPGxgYcDge1tbXgcrkoLS1VegwURbUkvvr+4MGDGDt2LHJycrBmzRqVv7iqO1QhD/aUpaUlOBwOzM3NERkZKemsRqkGWthS3dbQ0ID4+HjcvHkTHh4emD17NtMhyUSaC84sLCxgYWHBQHSKY21tDQ6HA11dXXC5XLx8+ZLpkChKaxFCkJmZiePHj2PBggU4c+YMli5dqlYXV3VFE/Mom81GYGAgBg0ahOjoaNy9e5fpkKjf0akIVLfU1tYiLi4ORUVFWL9+vVrNk6Ka1NTUICYmRiHrY2ozTc8zmn58yiQUCpGamopbt27B2dkZs2bN0uo2quqosbERBw8exO3bt7Fq1SpMmzaN6ZA0Ap2KQClVZWUl9u7dCy6Xi+zsbPz3v//VuNNl2sDExASBgYGwsbEBj8fD7du3mQ6JorRGfX094uPjcfv2bXh4eEiaqKjzxVXaSE9PDx4eHpgxYwbS09Nx+vRpumY4w2hhS8mkpKQE4eHhSE5Oxl//+ldkZ2drzOkybSTuiz527FgcOHAAly9fZjokitJ4NTU1iIqKwtOnT+Hj44Px48dL7lOVNbkp6bFYLKxYsQKLFy/GyZMnceTIEVrcMkj9L7mklObFixeIiYmBqakpjI2N4evrC6BpLcK9e/cyHJ38iUQi3LhxAwAwadIkjW2lqKuri7Vr14LNZuPQoUPg8/lYuHCh2lwESFHqpKKiAjweD3w+H0FBQRg4cGCL+8UXV2kKbcmjLBYLCxYsAJvNRkZGBmpqarBmzRqNWNlC3WjmXxgld/n5+di3bx+srKwQHByM0aNHa8XpMpFIpBXdulgsFpYvXw4nJyecOnUKhw8f1orjpihlKi4uRnh4OBoaGhASEtKmqNVU2pJHAWDatGlYv3497t27h9jYWAgEAqZD0jq0sKW6dOvWLcTGxsLW1hYBAQEwNjamp8s0kLgv+urVq3HlyhUcOHCA9kWnKDl59uwZuFwujIyMEBISAisrK6ZDohRkzJgx8PPzw4sXL7Bv3z7w+XymQ9IqdIyc6tTFixdx5MgRTJo0CW5ubtDV1QWgeafLqD9MmTIFxsbGOHDgAGJiYuDl5QVDQ0Omw6IotfXgwQPs378fAwYMgI+Pj9JajVPMsbW1RXBwMHg8HrhcLvz9/WFpacl0WFqBjthS7SKEIDs7G0eOHIGDgwPWrFkjKWopzTd69Gj4+/vj5cuXtC86RfXAzZs3ERcXh+HDh8Pf358WtVqkf//+4HA4IIQgPDwcr169YjokrUALW6oNkUiE9PR0nD17FsuWLcPSpUvphURaSNwXvbq6GlwuF2VlZUyHRFFq5ddff0VycjImTZqEDRs2QF9fn+mQKCXr3bs3OBwO2Gw2IiIiUFBQwHRIGk8tCtsnT54gJCQEw4YNg7GxMezs7LBt2zbU19czHZrGaWhowP79+5Gbm4s1a9Zg7ty5TIdEMahfv37gcDhgsVgIDw9HUVER0yFR3UTzqPIQQnD8+HEcO3YM8+bNg5ubm8auBkB1zdTUFMHBwRgwYACioqJw//59pkPSaGrxSrt37x5EIhH27t2L27dvY/fu3fjpp5/w0UcfMR2aRqmrqwOPx0N+fj68vLwwefJkpkNinJmZGczMzBSy79raWoSGhmLVqlUq3RO+V69ekr7oERERtC+6mqJ5VDlEIhFSU1ORk5MDZ2dnODk5af0ZL0XmUXVhaGgIX19f2NvbIyEhAdevX2c6JI2lti11v/zyS/z444949OiR1I+hrSA7VlVVBR6Ph8rKSvj4+MDGxobpkDReaGgonJyc4OrqivT0dGRnZ6v0BXkCgQAJCQkoKCiAh4cHxowZw3RIKkmd8gzNo/LV0NCAxMREPHz4EGvWrMHEiROZDokRtbW12Lp1K/Lz82FnZ4ddu3bB2NiY6bBUgkgkwuHDh3HlyhU4OTnBwcFB6z/4tEcrW+pWVFSgd+/enW4jEAhQWVnZ4ka1VVpaivDwcNTW1iI4OJgWtUqSn58PV1dXAE1NLh4+fMhwRJ0zNDSEj48PRo0ahf379+Pq1atMh0T1EM2j8lNbW4vo6Gg8fvwYPj4+WlvUAsDWrVvh5OSEjIwM2pmyFR0dHbi4uMDR0RFZWVk4duwY7VImZ2pZ2Obn5+O///0v3n777U6327lzJywsLCQ3WrC1VVhYCC6XCz09PYSEhMDa2prpkLSGOvaE19PTw7p16yR90c+cOUOTspqieVR+KisrERERgeLiYgQGBqrFa1mR1O1Du7KxWCw4OjrCxcUFFy9eREpKCoRCIdNhaQxGC9vt27eDxWJ1erty5UqLxxQWFsLZ2Rmenp7405/+1On+w8LCUFFRIbk9e/ZMkYejdh49eoTIyEhYWlqCw+HAwsKC6ZBUirgV5I0bNxTSNUddm1yI+6IvWrQIJ06coH3RGUbzKLNKSkoQHh4OgUAADoeDwYMHMx0S45p/aE9NTYWFhYXC8qg6mzFjBtatW4fbt28jLi6OXsgpJ4zOsS0pKUFJSUmn29ja2krW/SssLMSiRYswa9YsREZGynyVKZ0b9ofbt28jOTkZw4YNw/r162FgYMB0SCpHJBJJJvhPmTKFXtXcjitXruDQoUMYN24c3N3d6VrHUH6eoXmUOS9evEBMTAzYbDb8/Pzo4MDvamtrERYWhocPH8LOzg7r16+HkZERzaMdePToEeLj42FtbQ0fHx+YmJgwHRLjepJn1ObisRcvXmDRokWYNm0aeDxet95AaUJucvnyZRw+fBjjx4+njRc6QQtb6dy9excHDhyAra0t1q9fr/VdylQ5z9A8Kj/5+flISEigxUgXaB6VTmFhIWJiYmBsbAx/f3+t/5Ck8RePFRYWwtHRETY2Nvjqq69QXFyMoqIiuqamjAghOHXqFA4dOoRZs2Zh7dq1tKilekzcF/358+e0L7oKo3lUfn777TfExsZi6NChCAgIoEUt1WMDBw4Eh8NBY2MjwsPDUVxczHRIakstCtvMzEw8fPgQJ06cwODBgzFgwADJjZKOSCTCoUOHcOrUKTg5OWH58uV0iRFKboYNG4agoCBUVlaCy+WivLyc6ZCoVmgelY+LFy8iKSkJ48ePh5eXF53GRcmNlZUVQkJCYGxsDC6XS+ezd5NaFLZBQUEghLR7o7rW2NiIAwcO4OrVq3Bzc8O8efNoUUvJ3YABA8DhcCASiWhfdBVE82jPEEIkF0vOmTOHTuOiFMLMzAzBwcGwtrZGVFQUHjx4wHRIakctCluq+wQCAWJiYpCXl4cNGzZg6tSpTIdEabDevXsjJCSE9kWnNIpIJEJGRgbOnDmDpUuXYtmyZXRwgFIYIyMj+Pn5wc7ODnFxcbhx4wbTIakVWthqsOrqakRGRuLly5fw9/fH6NGjmQ5J7ZiYmND5czIS90Xv378/7YtOqb3GxkYkJibi+vXrWLNmDRwcHJgOSe3QPCo7fX19rF+/HpMnT0ZKSgrOnz/PdEhqQ4/pACjFKCsrQ3R0NBoaGhAcHIx+/foxHZLa0dHRoW1ju8nQ0BB+fn5ISkpCQkICXF1dMWXKFKbDoiiZ1NXVIT4+Hi9evICXlxfs7e2ZDknt0DzafTo6OnB1dQWbzUZmZib4fD6cnJzo2YIu0MJWAxUVFYHH48HQ0BAhISGwtLRkOiRKC+np6cHT0xOHDx9Gamoq+Hw+7YtOqY3q6mrweDyUl5cjICCAdlyjGMFisbBkyRKYmpriyJEj4PP5cHV1pfO7O0ELWw3z5MkTxMXFwcrKCr6+vmCz2UyHRGkxcV90NpuNrKws8Pl8Oj+RUnlv3rxBdHQ0GhsbweFwaKtxinGzZs2CiYkJUlJSUFNTA09PT+jr6zMdlkqiha0GuXv3LpKSkjBkyBBs2LBB6xfK7ymRSITbt28DAMaNG0cXFu8mFouFRYsWgc1mS0YcVq9eTUccKJX08uVL8Hg8GBkZ0TNeckDzqPxMmDABxsbGSEhIQFRUFHx8fGBsbMx0WCqH/oVpiKtXr2L//v0YPXo0fHx8aFErJ/X19bR/t5zMnDkTHh4etC86pbIeP36MyMhIWFpa0qJWjmgelZ8RI0YgMDAQpaWliIiIQGVlJdMhqRxa2Ko5QgjOnDmD9PR0zJgxAx4eHtDTowPxlGoaP348fHx8UFBQgKioKNTU1DAdEkUBAO7cuQMej4fBgwcjMDCQXsVPqazBgweDw+FAIBAgPDwcJSUlTIekUmhhq8YIITh69ChOnDiBRYsWYcWKFXTuIqXy7OzsEBQUhDdv3iAiIgIVFRVMh0RpuStXriAxMRFjx46Fj48P7SZGKV1tbS1CQ0OxatUqhIaGora2ttPt+/Tpg5CQEBgaGoLL5eLFixdKilT10cJWTQmFQiQlJeHSpUtYtWoVFi5cSItaSm0MHDgQISEhaGhooH3RKcYQQnDq1ClkZGRg5syZWLt2LZ37TTFi69atcHJyQkZGBpycnBAWFtblY8zNzREcHAwrKyvs27cP+fn5SohU9dHCVg0JBALExsbi7t27WL9+PaZPn850SBQlM9oXnWKSSCTC4cOHcerUKSxZsgTOzs50cIBiTH5+PlxdXQEArq6uePjwoVSPMzY2RkBAAGxtbRETE4Nbt24pMky1QAtbNcPn87Fv3z48f/4cfn5+dOFrSq2J+6L37duX9kWnlKaxsREHDhzAlStX4Obmhvnz59OilmKUnZ0d0tPTAQDp6ekYMWKE1I/V19fHhg0bMHHiRCQlJeHixYuKClMt0MJWjZSXl4PL5aKyshJBQUEYNmwY0yFpPCMjIxgZGTEdhkYzMjKCv78/hg8fTvuiUwonEAgQExODvLw8bNiwAVOnTmU6JI1H82jXdu3ahezsbKxatQrZ2dnYuXOnTI/X1dXF6tWr4eDggCNHjiA7OxuEEAVFq9pYRIuOvLKyEhYWFqioqIC5uTnT4cjk1atX4PF40NPTg7+/P3r37s10SBQlVyKRCOnp6bh+/TqWL1+OOXPmMB1St6hznpGGOh9fdXU1YmJi8ObNG3h7e8PW1pbpkChK7s6fP4/MzExMnToVq1atUsu1g3uSZ+i6UGqgoKAAsbGxsLS0hJ+fH0xNTZkOiaLkTkdHB25ubmCz2Th27Biqq6tpX3RKbsrKyhAdHY36+noEBwejf//+TIdEUQoxd+5csNlspKamoqamBh4eHlrVpYwWtiru/v37SExMxODBg+Hl5UVP51AajcViwcnJCaampjh69Chqamrg6uqqliMOlOooKioCj8eDgYEBQkJC0KtXL6ZDoiiFmjRpEoyNjZGYmAgejwdvb2+tqR/ou4UKu379OhISEjBy5Ej4+flpzR+lqhC3grx9+zZEIhHT4WiV2bNnY+3atbhx4wYSEhLQ0NDAdEiUmnr69CkiIiJgZmZGi1oG0DzKHHt7ewQEBOD169eIiIhAVVUV0yEpBS1sVRAhBOfOnUNqaiqmTJkCT09P2k2MIXV1dairq2M6DK00ceJE+Pj44NGjR4iOju5ywXKKau3evXuIjo7GoEGDEBQUBDabzXRIWonmUebY2NggODgYtbW1CA8PR2lpKdMhKRwtbFUMIQSZmZnIysrCwoUL1XbiN0XJg7gveklJCe2LTsnk2rVrSEhIwKhRo+Dj4wNDQ0OmQ6IoRlhbWyMkJAR6enrgcrkoLCxkOiSFohWTChEKhUhJScGFCxewcuVKLFq0iF44Q2m95n3RuVwu7YtOdYoQgrNnzyItLQ0zZsyAh4cHPeNFaT0LCwtwOBz06tULkZGRePToEdMhKQwtbFVEfX094uPjcfv2bXh4eGDmzJlMh0RRKkPcF11fX5/2Rac6RAjB0aNHkZ2djUWLFmHFihX0jBdF/c7ExAQBAQEYMmQIYmJicPv2baZDUgi1ecW7ublhyJAhMDIywoABA+Dv768xw+k1NTWIiorC06dP4evri/HjxzMdEkWpHHNzc3A4HNoXvQc0OY8KhUIkJSXh0qVLWLVqFRYuXEjPeFFUKwYGBvD29sbYsWNx4MABXL58memQ5E5tCttFixZh//79uH//PpKSkpCfn49169YxHVaPVVRUICIiAmVlZQgKCsLw4cOZDomiVJa4L/rQoUMRGxtL+6LLSFPzaH19PWJjY3H37l14enpi+vTpTIdEUSpLV1cXa9euxaxZs3Do0CGcOnVKo7qUqW3nsbS0NKxZswYCgUDqhYdVrWNOcXExoqOjoaOjA39/f1hZWTEdEtWMeJkaABg3bhw9palChEIh0tLScOPGDaxYsQKzZs1iOiQJVcszndGEPMrn8xEbG4uSkhJ4eXnRVuMqhuZR1UUIQU5ODrKysjB9+nSsXLlSZX4/Wtd57M2bN4iJicHcuXM7TcYCgQACgUDytSpdUf3s2TPExsbCzMwM/v7+MDMzYzqkHhEKhRq51ujIkSMBNI0IaRp9fX3o6uoyHUa36OrqYs2aNWCz2Thy5Aj4fD692FJGmpBHy8vLER0djbq6OgQFBWHAgAFMh9QjNI+qJwMDA5UpCGXBYrEwb948sNlspKWloaamBmvXrlX7iy3VKvoPP/wQ3333HWpqajB79mxkZGR0uv3OnTuxY8cOJUUnvQcPHmD//v0YMGAAfHx81LrxAiEERUVFKC8vZzoUqhssLS3Rv39/tSwIWSwWli1bBjabjePHj4PP58PFxUUt32CUSVPy6OvXrxEdHQ09PT2EhISgd+/eTIfUbTSPqjcdHR0MGzYMBgYGTIfSLVOmTIGJiQkSExMRExMDLy8vtV4ej9GpCNu3b+8yYV6+fFkyX6qkpARv3rzB06dPsWPHDlhYWCAjI6PDN+X2RhpsbGwYPYV28+ZNHDx4ECNHjsS6devUvn/zy5cvUV5eDmtra5iYmKhlgaSNCCGoqanB69evYWlpqfYjXbm5uUhLS4O9vT3WrVvH6IiDsk/Va2MeLSgoQGxsLCwtLeHn5wdTU1NG4pAXmkfVl0gkQmFhIfT19TFkyBC1/t09ffoUcXFx6NWrF3x9fRl9XfUkjzJa2JaUlHS5JqWtrW27I5rPnz+HjY0Nzp8/jzlz5kj1fEzPDfv1119x7NgxTJkyBa6urmo/siQUCpGXlwdra2uNnB9MCJF0yzEyMlLrhNWR0tJSvH79Gvb29mo7LUEsLy8PiYmJGDhwIKN90ZWdZ7Qtj+bl5WH//v0YPHgwvLy81PqMF0DzqCaoqKhAYWEhRowYofaDVa9evQKPx4O+vj78/PwYOxOitnNs+/Tpgz59+nTrseJ6vPlIgqoihCArKws5OTmYN28elixZohEvbvFcMBMTE4YjURxN720u/t01NDSofWEr7oseExODyMhI+Pr6qv3cdWloSx4F/hiZHzVqlMY0XqB5VP2JpyAIhUK1L2z79euHkJAQREdHg8vlws/PD/3792c6LJmoxZDhpUuX8N133yE3NxdPnz7FyZMn4ePjAzs7O6lHGZgiEomQmpqKnJwcODs7w8nJSSOK2uY07Xi0iab97mxsbMDhcMDn88HlcvHmzRumQ1IZ6pxHxVdvHzx4EFOmTIGnp6dGFLXNadprUZto2u/O0tISHA4H5ubmiIiIwJMnT5gOSSZqUdgaGxsjOTkZS5YswahRo8DhcDB+/HicPn1apSc4NzQ0ID4+Hjdv3oSHhwdmz57NdEgUpfHEfdF1dXURHh6Oly9fMh2SSlDXPEoIQWZmJo4fP44FCxbg/7N332FNne0fwL9hQ0BUVBwgCLgH7r2oOFBQEBFEkPX211qr+Pa1rbZ9a7W22m3f7sFQNqIgoLhwoHWiuDeKiBMU2TN5fn9QUgIBAkk4Sbg/15VLk5ycc58Ad+485xmOjo4q342LEGXH5/Ph4+ODXr16ITw8HDdu3OA6JKmpxFfeoUOH4vDhw1yH0SJlZWWIiorCkydP4OnpCRsbG65DIqTdqG1xqO2WQPObqmYerZ2v+PLly0o3XzEh6k5XVxeenp5ISEhAbGwsHB0dMWrUKK7DahZ97VWAwsJChISEIDc3Fz4+PlTUEsIBAwMD+Pj4wNzcHOHh4bh+/TrXIZEWqKysRHR0NK5evQpXV1cqagnhgJaWFlxdXTFmzBgkJSUhLS1N6Vcpo8JWzvLy8hAUFISKigoEBATAzMyM65CIkvr555/Rp08f6OnpYdSoUTh+/LhcXtOa/aqruuui79ixQy3XRVdHpaWl2L59Ox48eABPT08MGTKE65CIkmppvktLS4OTkxN69uwJHo+HhISEBttUV1fjo48+Qp8+faCvrw8rKyts3LhR7QfBNYbH48HBwQGvvfYaDh8+jJSUFKUubqmwlaNHjx4hODgYOjo6CAgIaPVIZaI8eDyeQgYGxMTEYPXq1fjwww+RkZGBKVOmwMHBAdnZ2TK9pjX7VXfqvi66uikoKEBISAhevnwJX19fWFtbcx0SkZEy5dGSkhLY2trixx9/bHSbL774Ar/++it+/PFH3LhxA19++SW++uor/PDDD3I/B1XB4/EwdepUODk54dy5c9i5cyeqq6u5DksiTuexbWuKnH8xMzMTMTExMDU1haenJ/T19eW6f2VUXl6O+/fvi74tAwAYA0pL2z4YAwOgFYnz7NmzeO+993DmzBlYWFggLCwMGRkZSE5ORmJiogICrTFu3DiMHDkSv/zyi+ixgQMHwtnZGZs3b271a1q6X4k/QzXFGMOJEyeQmpqKMWPGwMHBQSGDkLie51XRFHl+ubm5CA8PB4/Hg7e3t1rO61qfUuVRoFW5VJXyaF08Hg/x8fFwdnYWe9zR0RGmpqYICgoSPebq6goDAwOEhYU12E97yqMAcOPGDezcuRO9e/eGu7u7QgafypJnqMVWDq5cuYLIyEhYWFhg2bJl7aKobVRpKWBo2Pa3VnwInD59GtOmTcOcOXNw+fJlDBo0CJ988gm++uqrBis5ff755zA0NGzyJu0l/8rKSpw/fx6zZs0Se3zWrFk4efJkq1/Tmv22JzweD1OmTMH8+fORnp6OuLg4pW1xaI9ycnIQHBwMXV1dBAQEtIuitlFc5dFW5FJVyqPSmjx5MlJTU3H79m0AwKVLl3DixAnMnTtXpv2qi4EDB8LLywuPHj3Ctm3bUFJSwnVIYlRiVgRldubMGaSkpGD48OFwcnJS+Unu25N33nkHrq6uWLt2LQDAw8MDS5YswYIFCzBixAixbd98800sXry4yf316tVLquPm5eVBIBDA1NRU7HFTU1M8ffq01a9pzX7bo5EjR8LAwABxcXFqsS66Orhz5w5iY2PRo0cPLFmypH03DqgYVcqj0nr//fdRUFCAAQMGQFNTEwKBAJ999hmWLFki037ViaWlJfz8/BAeHo7g4GB4e3ujY8eOXIcFgArbVmOM4ciRI0hLS8OkSZPUcuGFVjEwAIqLuTluC+Tk5ODUqVP46quvRI/p6OiAMSZqZWCMiVZk6tSpU6uWFoyIiMAbb7whup+SkiLqM1j/94Ux1uzvkDSvac1+25sBAwbA29sbUVFRolXKuFwXvT27fPkyEhIS0LdvXyxatEjlV26SC67yaO2xpaSqebQ5MTExCA8PR2RkJAYPHoyLFy9i9erV6NmzJ3x8fGTatzrp3r07/P39ER4ejqCgIHh5eTX4osEFKmxbQSgUYs+ePaLLIBMnTuQ6JOXB4wF8PtdRNKt2sunRo0eLHrt16xbGjh2LoUOHih4TCAQAai6hNddnKyUlBVOmTBF7bP78+WLTFPXq1QuamprQ1NRs0Krw/PnzRpNCly5dmn2NNNuQf1hYWMDPz0+0dKS3tzc6derEdVjtyqlTp7B//36MGDECTk5OtPBCLcqjYo/JK49K691338XatWvh4eEBoGYO6AcPHmDz5s1U2NbTuXNnUXEbEhKCJUuWwMLCgtOYqLBtoerqasTFxeH27dtwdnbG8OHDuQ6JtEJBQYFYt5GXL1/iyy+/bHRaoTfffBPu7u5N7lPSJTQjIyMYGRk1eHzUqFE4ePAgXFxcRI8dPHgQCxYskLhvHR2dZl8jzTZEXN110YOCguDt7U1fAtoAYwyHDh3CX3/9hcmTJ2PGjBl0VUEFqVoelVZpaWmDL1mamprtdrqv5hgaGsLPzw9RUVEICwuDm5sb+vfvz11ArB0pKChgAFhBQUGrXl9WVsZCQkLYpk2b2O3bt+UcneopKytj169fZ2VlZVyH0mJ37txhANjGjRvZjRs32KxZs9iIESNY165dWVZWFmOMMaFQyIqLi1lxcTETCoVyPX50dDTT1tZmQUFB7Pr162z16tWMz+eLjs0YYz/88AN77bXXWvQaabapS5V/hvJUXFzMfv31V7Z58+ZG3ytpyZpnlJ2s5ycQCFhCQgJbv349O3nypJyjUz2q/Deoinm0qKiIZWRksIyMDAaAffvttywjI4M9ePBAtI2Pjw/r1asXS05OZvfv32e7du1iXbp0Ye+9957EOFT5ZyhPVVVVLDo6mn3yySfswoULMu1LljxDha2UCgsL2S+//MK2bNnCsrOzFRCd6lH1P+aNGzcyExMTpqenx3x8fFhubi4bOXIks7GxYYwpNiEzxthPP/3ELCwsmI6ODhs5ciQ7duyY2PPr169nFhYWLXqNtNvUUvWfoTyVl5ez0NBQ9umnn7IbN260ej9U2DausrKSRUZGsg0bNrBLly4pIDrVo+p/g6qWR48cOcIANLj5+PiItiksLGSBgYGsd+/eTE9Pj1lZWbEPP/yQVVRUSIxB1X+G8iQQCFhSUhJbv349O378eKt/5rLkGZrHVgovX75EWFgYBAIBvLy80K1bNwVGqTrUfe4+xhhK/576xsDAQC0vlar7z7ClqqurER8fj+vXr8PJyQkjR45s8T5oHlvJysrKEBUVhSdPnmDx4sXo27evAqNUHer+N0h5tP1hjOHo0aM4duwYJkyYgFmzZrX45y5LHqU+ts148uQJwsPDoa+vD19fXxgbG3MdEiFEQWrXRTcwMEBiYiJKSkowefJktfwwbktFRUUICwtDUVERfHx8aKlxQtQYj8eDnZ0dDA0NsXfvXpSUlGDBggVtNh0qFbZNuH//PqKjo9GlSxcsXboUBi2cUoqoPipo2h8NDQ3MnTsXhoaGSE1NRXFxMebMmUO/C6304sULhIWFgTEGf39/dO3aleuQSBujv532acyYMTAwMMCuXbtQWlqKxYsXQ0dHR+HHpcK2EdevX8fOnTvRp0+fNvthEOXC4/Hoy0w7xePxMG3aNPD5fOzZswclJSVwcXGhBVha6NGjR4iIiACfz4eXlxdd8WqHKI+2b4MHD4a+vj6io6Oxfft2eHp6Kvz3gSYNlODcuXPYsWMHBg0ahCVLllBRS0g7NXr0aLi5ueHGjRuIjIxEZWUl1yGpjMzMTGzbtg2dO3eGn58fFbWEtFNWVlbw9fVFfn4+goODUVBQoNDjUWFbR22H5z179mDcuHFYuHAhtdBIgeb2U130s2veoEGD4OXlhZycHKVcF10ZXb16FZGRkbCwsMCyZcuoxU4K9LeoutrRGPxW69mzJ/z9/VFdXY2goCDk5uYq7Fg0K8LfhEIhUlJScO7cOcyYMYMGjEhBKBTizp070NTURNeuXaGjo6NW7xljTNRCp67nlpubC4FAgL59+9KqT82oHUiqp6fX5Lro7X1WhDNnzmDfvn0YNmwY5s+fT40DzaA8qtoYY8jNzUVpaSn69u1Lv+/NKCoqQnh4OAoLC+Hp6Qlzc3OJ28mSR6mwRc0UP7t27cKNGzdaPcVPe1VZWYknT56IpnNRJ4wxVFVVAQC0tbXVLiEDNdPv9OjRg7rbSKl26r/q6mp4e3tLnPqvvRa2jDEcOXIEaWlpmDhxImbOnKmWfzOKQHlUtfF4PJiZmcHQ0JDrUFRCeXk5oqKi8Pjx40an/qPCVkqS3qiKigpER0fj4cOHWLRoEQYMGMBxlKqHMYbq6mrReuDqQigUitZCHzhwoNq1aGpqakJLS0stP2gUqbi4GOHh4Xj16hU8PT3Ru3dvsefbY2ErFAqxZ88enD9/HjNnzsSkSZM4jlL1UB5VXdra2tRS20JVVVXYuXMnbt++jQULFsDW1lbseZrHtpWKi4sRERGB/Px8eHt7w8LCguuQVBKPx4O2tja0tbW5DkWu6vZ509PTU8uETFrO0NAQvr6+olG+nK+LzrHq6mrs3LkTt27dgrOzM4YPH851SCqJ8ihpT7S1tbF48WIkJSUhPj4eJSUlmDhxolz2rXK/YRUVFRg+fDh4PB4uXrzY6v3Ujs4rLi6Gn58fFbWEEKnp6enBy8sLffv2RUxMDDIyMrgOqUXklUfLy8sRHh6OO3fuwN3dnYpaQojUNDQ0MH/+fEyZMgUHDhzAwYMH5TIQT+UK2/feew89e/aUaR/Pnj1DUFAQeDwe/P39YWpqKqfoCCHthZaWFtzc3DBixAjs3r0bf/31l8qMjpZHHi0uLkZoaCiePn2KZcuWtetWa0JI6/B4PMyYMQNz5szBX3/9hd27d8s8Q4hKdUVISUnBgQMHsHPnTqSkpLR6P+Hh4ejVqxeWLl0KPp8vxwgJIe2JhoYGHB0dwefzcfDgQRQXF2P8+PFch9UkeeXRsLAwaGlpwd/fX+IgOkIIkdb48ePB5/MRHx+P0tJSzJ49u9X7UpnC9tmzZ3j99deRkJAg9ZyIFRUVqKioEN2vnRS4U6dOcHFxgUAgQGFhoULiJapPKBSiuLgYQE1HduobRhozevRoAMDBgweRnZ0NQDnntpRnHq2oqMCSJUugp6dHeZQ0ivIokZaFhQWcnJwQHx+Px48fA2hlHmUqQCgUsjlz5rBPP/2UMcbY/fv3GQCWkZHR5OvWr1/PANCNbnSjW5vfMjMz2yA7So/yKN3oRjdVu7Umj3I63dcnn3yCDRs2NLnNuXPncPLkScTExCAtLQ2amprIyspCnz59kJGR0eRghfotDa9evYKFhQWys7Npecc6CgsLYW5ujocPH6rl9ESyoPdGMnpfGldQUIDevXsjPz+/0UUc5InyqHKgv4nG0XsjGb0vjZMlj3Ja2Obl5SEvL6/JbSwtLeHh4YGkpCSx+TYFAgE0NTWxdOlSbNu2Tarjqfv8kq1F70vj6L2RjN6XxrX1e0N5VDnQ+9I4em8ko/elcSo7j22XLl3QpUuXZrf73//+h02bNonuP378GLNnz0ZMTAzGjRunyBAJIUSpUR4lhJB/qMTgsfor+9QuW2dtbQ0zMzMuQiKEEJVCeZQQ0h60q+GJurq6WL9+PXR1dbkORanQ+9I4em8ko/elcer+3qj7+bUWvS+No/dGMnpfGifLe8NpH1tCCCGEEELkpV212BJCCCGEEPVFhS0hhBBCCFELVNgSQgghhBC1QIUtIYQQQghRC1TYEkIIIYQQtdDuC9uKigoMHz4cPB4PFy9e5DocTmVlZSEgIAB9+vSBvr4+rK2tsX79elRWVnIdGid+/vln9OnTB3p6ehg1ahSOHz/OdUic27x5M8aMGQMjIyN069YNzs7OuHXrFtdhKZ3NmzeDx+Nh9erVXIfSJiiPiqNc+g/Kow1RHpVOa/Nouy9s33vvPfTs2ZPrMJTCzZs3IRQK8dtvv+HatWv47rvv8Ouvv+KDDz7gOrQ2FxMTg9WrV+PDDz9ERkYGpkyZAgcHB2RnZ3MdGqeOHTuGFStW4PTp0zh48CCqq6sxa9YslJSUcB2a0jh37hx+//13DBs2jOtQ2gzlUXGUS2tQHpWM8mjzZMqjrB3bu3cvGzBgALt27RoDwDIyMrgOSel8+eWXrE+fPlyH0ebGjh3L3nzzTbHHBgwYwNauXctRRMrp+fPnDAA7duwY16EohaKiIta3b1928OBBNm3aNBYYGMh1SApHeVQ67TGXUh6VDuVRcbLm0XbbYvvs2TO8/vrrCAsLg4GBAdfhKK2CggJ07tyZ6zDaVGVlJc6fP49Zs2aJPT5r1iycPHmSo6iUU0FBAQC0u9+RxqxYsQLz5s2Dvb0916G0Ccqj0mtvuZTyqPQoj4qTNY9qyTkelcAYg6+vL958802MHj0aWVlZXIeklDIzM/HDDz/gm2++4TqUNpWXlweBQABTU1Oxx01NTfH06VOOolI+jDG88847mDx5MoYMGcJ1OJyLjo7GhQsXcO7cOa5DaROUR6XXHnMp5VHpUB4VJ488qlYttp988gl4PF6Tt/T0dPzwww8oLCzEunXruA65TUj7vtT1+PFjzJkzB25ubvjXv/7FUeTc4vF4YvcZYw0ea8/efvttXL58GVFRUVyHwrmHDx8iMDAQ4eHh0NPT4zocmVAebRzl0pajPNo0yqP/kFce5THGmBzj4lReXh7y8vKa3MbS0hIeHh5ISkoS++MSCATQ1NTE0qVLsW3bNkWH2qakfV9qf5EeP34MOzs7jBs3DqGhodDQUKvvP82qrKyEgYEBduzYARcXF9HjgYGBuHjxIo4dO8ZhdMph5cqVSEhIQFpaGvr06cN1OJxLSEiAi4sLNDU1RY8JBALweDxoaGigoqJC7DllRnm0cZRLpUd5tHmUR8XJK4+qVWErrezsbBQWForuP378GLNnz0ZcXBzGjRsHMzMzDqPj1qNHj2BnZ4dRo0YhPDxcZT6M5W3cuHEYNWoUfv75Z9FjgwYNwoIFC7B582YOI+MWYwwrV65EfHw8jh49ir59+3IdklIoKirCgwcPxB7z8/PDgAED8P7776vlJUbKo02jXEp5tDGURyWTVx5tl31se/fuLXbf0NAQAGBtbd2uk/Hjx48xffp09O7dG19//TVyc3NFz3Xv3p3DyNreO++8A29vb4wePRoTJkzA77//juzsbLz55ptch8apFStWIDIyErt374aRkZGor5yxsTH09fU5jo47RkZGDZIun8+HiYmJWha1AOXRplAurUF5VDLKo5LJK4+2y8KWSHbgwAHcvXsXd+/ebfDB1N4a9t3d3fHixQts3LgRT548wZAhQ7B3715YWFhwHRqnfvnlFwDA9OnTxR4PCQmBr69v2wdEiBKiXFqD8qhklEcVq112RSCEEEIIIeqn/fRkJ4QQQgghao0KW0IIIYQQohaosCWEEEIIIWqBCltCCCGEEKIWqLAlhBBCCCFqgQpbQgghhBCiFqiwJYQQQgghaoEKW0IIIYQQohaosCXtiq+vL3g8Hng8HrS1tWFlZYU1a9agpKREtM3OnTsxffp0GBsbw9DQEMOGDcPGjRvx8uVLAMCTJ0/g6emJ/v37Q0NDA6tXr+bobAghhBuUS4myosKWtDtz5szBkydPcO/ePWzatAk///wz1qxZAwD48MMP4e7ujjFjxiAlJQVXr17FN998g0uXLiEsLAwAUFFRga5du+LDDz+Era0tl6dCCCGcoVxKlBEtqUvaFV9fX7x69QoJCQmix15//XUkJydj9+7dGDduHLZu3YrAwMAGr3316hU6duwo9tj06dMxfPhwbN26VbGBE0KIEqFcSpQVtdiSdk9fXx9VVVWIiIiAoaEh3nrrLYnb1U/EhBBC/kG5lCgDKmxJu3b27FlERkZixowZuHPnDqysrKCtrc11WIQQolIolxJlQYUtaXeSk5NhaGgIPT09TJgwAVOnTsUPP/wAxhh4PB7X4RFCiEqgXEqUkRbXARDS1uzs7PDLL79AW1sbPXv2FLUq9OvXDydOnEBVVRW1NBBCSDMolxJlRC22pN3h8/mwsbGBhYWFWNL19PREcXExfv75Z4mve/XqVRtFSAghyo9yKVFG1GJLyN/GjRuH9957D//5z3/w6NEjuLi4oGfPnrh79y5+/fVXTJ48WTTC9+LFiwCA4uJi5Obm4uLFi9DR0cGgQYM4PANCCOEe5VLCJZrui7QrkqaoqS82NhY//fQTMjIyIBQKYW1tjUWLFmHlypWi0byS+o9ZWFggKytLMYETQogSoVxKlBUVtoQQQgghRC1QH1tCCCGEEKIWqLAlhBBCCCFqgQpbQgghhBCiFqiwJYQQQgghaoEKW0IIIYQQohaosCWEEEIIIWqBCltCCCGEEKIWqLAlhBBCCCFqgQpbQgghhBCiFqiwJYQQQgghaoEKW0IIIYQQohaosCWEEEIIIWqBCltCCCGEEKIWqLAlhBBCCCFqgQpbQgghhBCiFqiwJYQQQgghaoEKWyK1y5cvw8/PD3369IGenh4MDQ0xcuRIfPnll3j58iUAYPr06eDxeLCysgJjrME+0tLSwOPxwOPxEBoa2qpj1BIKhQgLC4O9vT26dOkCbW1tdOvWDY6OjkhKSoJQKJTqvAoLC/HZZ59h9OjR6NChA3R1dWFpaQl/f39cuHBBtF1oaKgo9qNHjzbYD2MMNjY24PF4mD59uujxJ0+e4KOPPsKECRPQpUsXdOjQAaNGjcLvv/8OgUAgVYwAcOPGDXh7e8PKygp6enro0qULRo4cibfffhuFhYWi7Xx9fUVx8ng86OjowNraGmvWrBHbrpalpaXY9rW3N998U+rYCCGyaUl+nTNnToPXZ2Vlgcfj4euvvxY9dvToUbG/aU1NTXTt2hVOTk5IT09vsI/a3GFkZITi4uIGzz948AAaGhrg8Xj45JNPmj2n2pgau9XdB2MM0dHRmDJlCrp16wY9PT2YmZlh9uzZ+PPPP8X2W/t6X19ficfduHGjaJusrCzR43/++SecnZ1haWkJfX192NjYYPny5Xjy5Emz51IrOTkZy5Ytw9ChQ6GtrQ0ejyf1a0nb0OI6AKIa/vjjD7z11lvo378/3n33XQwaNAhVVVVIT0/Hr7/+ilOnTiE+Ph4AYGRkhPv37+Pw4cOYMWOG2H6Cg4PRoUMHiQVWS45RXl4OZ2dnHDhwAB4eHvjll1/QvXt35ObmYt++fXBzc0NMTAwWLFjQ5HllZmZi1qxZeP78Od58801s2LABhoaGyMrKQmxsLEaNGoVXr17B2NhY9BojIyMEBQWJFa8AcOzYMWRmZsLIyEjs8fPnz2P79u1YtmwZ/vvf/0JbWxspKSlYvnw5Tp8+jeDg4Gbf/4yMDEyaNAkDBw7Exx9/DEtLS+Tl5eHSpUuIjo7GmjVr0KFDB9H2+vr6OHz4MADg1atXiIuLwzfffIPLly/jwIEDDfY/adIksQ9EADA1NW02LkKI7FqS+wBg//79OHz4MF577TWp9v/555/Dzs4OVVVVyMjIwIYNGzBt2jRcvHgRffv2FdtWW1sb1dXViImJQUBAgNhzISEhMDIykpi/m7Jy5Up4eno2eNzMzEz0/3Xr1uGLL77A66+/jnfffRdGRkZ48OABDh8+jN27d+Nf//qX2GuNjIywY8cO/PDDD2I5lzGG0NBQiZ8z69evh52dHT7//HP06tULt27dwqeffordu3cjIyNDqpwXHx+P06dPY8SIEdDV1cX58+db9F6QNsAIacbJkyeZpqYmmzNnDisvL2/wfEVFBdu9ezdjjLFp06axwYMHs/HjxzNPT0+x7QoLC5mBgQF7/fXXGQAWEhLSqmMwxtjy5csZALZt2zaJMd++fZtdunSpyfOqrq5mQ4cOZR06dGBXrlyRuM3evXtZSUkJY4yxkJAQBoD961//Yvr6+qygoEBsWy8vLzZhwgQ2ePBgNm3aNNHjL1++ZJWVlQ32vWLFCgaAZWdnNxknY4wtW7aM8fl8VlhYKPF5oVAo+r+Pjw/j8/kNtrGzs2MA2L1798Qet7CwYPPmzWs2BkKI/LU0v/br149ZWVmxUaNGif3d379/nwFgX331leixI0eOMABsx44dYvvctm0bA8A+/vhjscdrc4eHhwebOHGi2HNCoZBZWFiI8vf69eubPTdJMUlSWlrKdHV12bJlyyQ+LxAIxO4DYF5eXkxfX5/9/vvvYs8dOnSIARDFef/+fdFzz549a7Dvc+fOMQDs008/bfZ86sdSm8OJcqGuCKRZn3/+OXg8Hn7//Xfo6uo2eF5HRwfz588Xe8zf3x+7du3Cq1evRI9FR0cDADw8PGQ6xtOnT/Hnn39i9uzZWLZsmcSY+/bti2HDhjV5XgkJCbhy5QrWrVuHIUOGSNzGwcEBBgYGYo8tWbIEABAVFSV6rKCgADt37oS/v3+DfXTq1Ana2toNHh87diwAICcnp8k4AeDFixfo0KEDDA0NJT4vzeWw0aNHAwCePXvW7LaEkLbR0vyqra2Nzz77DOfPn0dMTEyrjtlcLvD398fJkydx69Yt0WOHDh3CgwcP4Ofn16pjNqWkpAQVFRXo0aOHxOc1NBqWKsbGxnBxcWlwxSs4OBiTJk1Cv379GrymW7duDR4bNWoUNDU18fDhQ6lilRQLUS70EyJNEggEOHz4MEaNGgVzc3OpX+fh4QFNTU2x4i8oKAiLFi0Su2TemmMcOXIEVVVVcHZ2ljoeSWovybd0Px06dMCiRYvEEmpUVBQ0NDTg7u4u9X4OHz4MLS0tiQm4vgkTJuDJkydYunQpjh07hrKyshbFDAD379+HlpYWrKysGjyXlpYGIyMjaGtrY9CgQfjmm29a1P+XENJyrc2v7u7uGDVqFD766CNUVVW1+Lj3798HgEZzj729PSwsLMRyXFBQEKZOndqg64I0hEIhqqurG9xqdenSBTY2Nvj555/x7bff4ubNmxLHaNQXEBCA06dP48aNGwBqul3t2rWrQReKphw7dgwCgQCDBw9u8XkR5USFLWlSXl4eSktL0adPnxa9zsjISKz4u379Os6cOSOxRbOlx8jOzgaAFsckz/34+/vj7NmzuHbtGoCaVgI3N7cG/Wsbc+DAAYSFhWHlypUwMTFpdvs1a9bA2dkZUVFRmD59OoyMjDBy5Eh89NFHyM3Nlfia2g+PFy9e4Ndff8WuXbvw3nvvNWi1mDdvHr7//nvs2bMHcXFxGDlyJNasWdPowAxCiHy0Nr/yeDx88cUXyMzMxG+//dbs9rWFZVlZGU6ePIn//Oc/GDRokMR8XLt/X19fbN++HdXV1Xj58iUSEhIa3b4577//PrS1tRvcTpw4IdomMjISnTp1wn/+8x8MHDgQxsbGcHJyQlhYWKNFrp2dHfr06SP6nImMjISWlhbc3NykiquoqAhvvfUWzM3NW31uRPnQ4DGiMP7+/pg2bRquXLmC0NBQWFtbY+rUqW3e2V4gEIglRg0NDZkvJ02bNg3W1tYIDg6Gr68vzp07h2+++Uaq1164cAGLFy/G+PHjsXnzZrHn6rZiAICmpiZ4PB50dXURHx+PGzduYP/+/UhPT8exY8fw2Wef4ddff8Vff/2F/v37i15XUlLSoPvDkiVL8NlnnzWI56effhK7v2DBAnTq1Ak//vgj3nnnHYwYMUKq8yKEtJ0ZM2Zg1qxZ2LhxI3x8fJrctv6VpB49euDkyZPo2LFjo6/x8/PDxo0bkZKSgqysLOjo6MDNzQ2lpaUNtm0sb9UKDAyEl5dXg9cNGDBA9P8xY8bg7t27OHz4MNLS0pCeno7U1FQkJycjNjYWiYmJDbpc1RbgP//8MzZv3oygoCAsXry40S5bdZWXl2PhwoWiAWp1X6OIzwzSdugnRZrUpUsXGBgYiC5dtUTtZavffvsNYWFh8Pf3l9gXtKXH6N27NwBIvb21tbVYK8HGjRtbtZ+6eDwe/Pz8EB4ejl9//RX9+vXDlClTmn1dRkYGZs6cib59+2Lv3r1ifeqysrIatGgcO3ZM7PUDBw7E6tWrER4ejuzsbHz77bd48eIF/vvf/4ptp6+vj3PnzuHcuXNISkrC9OnTERUVhS1btkh1frUfQqdPn5Zqe0JIy8mSXwHgiy++QF5eXoMZTSRtd+7cORw7dgwffvghnj17BmdnZ1RUVDT6GgsLC8yYMQPBwcEIDg6Gh4dHg/EGternrW3btok9b2ZmhtGjRze41S9AtbW1MXv2bHz22WfYv38/Hj58iOnTpyM5ORkpKSkSj+3n54fc3Fx8/vnnuHDhglTdECoqKuDi4oITJ04gMTER48aNE3t+xowZYudDrbmqhVpsSZM0NTUxY8YMpKSkICcnR2x6Fmn4+fnho48+Ao/Ha7RVoaXHsLOzg7a2NhISEqSaazUpKUksgffs2RMAMHv2bPz+++9ISEjA2rVrW3BWNXx9ffHxxx/j119/ldgSWl9GRoao79qBAwfEphCrjevcuXNij9Vtha2Px+Ph3//+NzZu3IirV6+KPaehoSEaIAIAM2fOxKhRo7BhwwYsXbq02f58ta0V1EpBiOLIml+HDx+OJUuW4Ntvv8XcuXMb3c7KykqUD6ZOnQp9fX189NFH+OGHH7BmzZpGX+fv7w8vLy8IhUL88ssvjW5XP2/J2k2slomJCVavXo2jR4/i6tWrEs/R3Nwc9vb22LBhA/r374+JEyc2uc+Kigo4OzvjyJEj2L17d4MpKQHgt99+Q1FRkeh+ly5dZD8Z0mboU4s0a926dWCM4fXXX0dlZWWD56uqqpCUlCTxtT4+PnBycsK7776LXr16yeUY3bt3x7/+9S/s378f27dvl7i/zMxMXL58GQAwdOhQsVaC2sJ2wYIFGDp0KDZv3tygMKy1f/9+iZfeAKBXr15499134eTk1OylwIsXL8Le3h5mZmY4ePAgOnXq1GAbHR2dBi0atX12G5tA/PHjxygsLBSdU2N0dXXx008/oby8HJs2bWpyWwCi93X8+PHNbksIaT1Z8isAbNq0CZWVldiwYYPUx3zvvfdgY2ODLVu2iBVw9bm4uMDFxQX+/v5N5oL6eUuacQN1VVVV4cWLFxKfqx0Y1lSO+89//gMnJ6cGV67qq22pPXz4MHbu3InZs2dL3K5///5i52NpaSndiRClQC22pFkTJkzAL7/8grfeegujRo3C8uXLMXjwYNFk37///juGDBkCJyenBq/t2bMnEhIS5H6Mb7/9Fvfu3YOvry/2798PFxcXmJqaIi8vDwcPHkRISAiio6ObnPJLU1MT8fHxmDVrFiZMmIDly5fDzs4OfD4fDx48QFxcHJKSkpCfn9/oPqS5tH/r1i3Y29sDAD777DPcuXMHd+7cET1vbW2Nrl27NrmP//u//8OrV6/g6uqKIUOGQFNTEzdv3sR3330HDQ0NvP/++83GMW3aNMydOxchISFYu3Yt+vTpg8jISOzatQvz5s2DhYUFXr16hR07diA6Ohq+vr6wtbVtdr+EkNaTJb8CNa2jy5cvx/fffy/1MbW1tfH5559j8eLF+P777/HRRx9J3E5PTw9xcXGtOq+6srOzJXZr6tq1K6ytrVFQUABLS0u4ubnB3t4e5ubmKC4uxtGjR/H9999j4MCBWLhwYaP7nzVrFmbNmtVsHIsWLUJKSgo+/PBDmJiYiMXUoUMHDBo0qNl9PHjwQNRCnZmZCQCi98jS0lLsShnhCHdT6BJVc/HiRebj48N69+7NdHR0GJ/PZyNGjGAff/wxe/78OWPsnwUamlI7IXbdBRpacoxa1dXVbNu2bey1115jnTt3ZlpaWqxr167MwcGBRUZGNpjUuzGvXr1in376KRs5ciQzNDRk2trarHfv3szLy4v99ddfou1qF2g4d+5ck/urv0BD7esau0l6H+rbv38/8/f3Z4MGDWLGxsZMS0uL9ejRgy1cuJCdOnVKbNvGFmhgjLErV64wDQ0N5ufnxxhj7NSpU2zGjBmse/fuTFtbmxkYGLAxY8awn3/+Wer3jxAiO1nya25uLuvQoYPUCzTUGjduHOvUqRN79eoVY6zp3FH3WGjhAg2N3ZYuXcoYq1mE4uuvv2YODg6sd+/eTFdXl+np6bGBAwey9957j7148UJsvwDYihUrmjz2V1991WCBhqZiqZuzm9JUPvfx8ZFqH0SxeIxJMVkcIYQQQgghSo762BJCCCGEELVAhS0hhBBCCFELVNgSQgghhBC1oLKF7ebNm8Hj8bB69WquQyGEEJVEeZQQom5UsrA9d+4cfv/99yanciKEENI4yqOEEHWkcvPYFhcXY+nSpfjjjz+anWi+oqJCbMUpoVCIly9fwsTEROLSroQQIivGGIqKitCzZ0+lXbmN8ighRJnJkkdVrrBdsWIF5s2bB3t7+2YT8ubNm1u0GgshhMjLw4cPW7xEaluhPEoIUQWtyaMqVdhGR0fjwoULDdalbsy6devwzjvviO4XFBSgd+/e+Pjjj+Hr69viZf9I+yIUCnHp0iUAgK2trdK2vhHuCQQC7NmzB9euXcPEiRMxf/580XLIykZeefS9996Dp6cn+vTpo6hQiRqgPEqkxRjDyZMnkZaWhgEDBsDX17dVeVRlCtuHDx8iMDAQBw4cgJ6enlSv0dXVha6uboPHjYyMsGPHDixduhS9evWSd6hETQiFQhgaGgKoWW6REjKRpLKyErGxsbh//z68vLxgbm4OAEp5mV6eedTGxgaJiYlYuHAhBg8eLO9QiZqgPEqkwRhDSkoKzp49izlz5mD48OEAWpdHVWblsYSEBLi4uEBTU1P0mEAgAI/Hg4aGBioqKsSek6SwsBDGxsZ4+vQpkpOT8ezZM7i7u8Pa2lrR4RMVJRQKAYCSMZGotLQUkZGReP78OTw8PGBlZSXKMwUFBejQoQPXIYqRZx59+fIljhw5gitXrsDBwQFjx45VdPhERVEeJU0RCASIj4/HtWvXMG/ePIwePVqmPKoyLbYzZszAlStXxB7z8/PDgAED8P777zebjOvS19fHsmXLEBsbi8jISDg7O2Po0KHyDpmoAUrEpDEFBQUICwtDWVkZfH190bNnT65DapY886impiZcXFzA5/Oxd+9elJSUYPr06UrZUk24RXmUNKaiogKxsbHIysqCm5sbBg0aJPM+VaawNTIywpAhQ8Qe4/P5MDExafC4NLS1teHh4YHExETs3LkTpaWlGDdunLzCJYSosdzcXISFhUFDQwP+/v4q019f3nmUx+Nh1qxZ4PP5OHToEEpKSjB37lwqZAghzSopKUFERARevHgBLy8vufXXV5nCVhE0NTXh7OwMPp+PlJQUFBcX47XXXqMWBwKgps/PgwcPAAAWFhb0e0EA1PRTjYyMRIcOHeDl5aW0g8TaCo/Hw+TJk8Hn85GUlISSkhK4urpCS6tdf7yQv1EeJZK8evUKYWFhKC8vh6+vL3r06CG3fat05jl69KjM+6htcTA0NMSBAwdQUlICR0dHanEgYIzhxYsXAIDevXtTQia4c+cOYmNj0bNnTyxZskTqAVjKTB55FABGjBgBAwMD7NixA+Hh4fDw8FCL94fIhvIoqe/Zs2cIDw+HlpYWAgIC0LlzZ7nun6q3v02cOBEuLi64ePEiYmNjUVVVxXVIhBAlcunSJURFRcHa2hpeXl5UtEnQv39/LFu2DE+fPkVoaCiKi4u5DokQokSys7MREhICPp+vkKIWoMJWjK2tLTw8PJCZmYnw8HCUl5dzHRIhRAmcPHkS8fHxGD58OBYvXgxtbW2uQ1JavXv3hp+fH0pKShAUFISXL19yHRIhRAncunUL27dvR/fu3eHr6yuaBk7eqLCtp1+/fli2bBmeP3+OkJAQFBUVcR0SIYQjjDEcPHgQBw4cwJQpU+Dk5ETdlKRgamqKgIAAaGhoIDg4GE+ePOE6JEIIhzIyMhATE4O+ffsq/IoXZWgJzM3N4efnh7KyMgQFBYn6BxFC2g+BQIDdu3fjr7/+goODA2bMmEH9A1ugY8eO8Pf3R4cOHRAaGoqsrCyuQyKEtDHGGE6cOIHdu3djxIgRcHNzU/jAUipsG9GtWzcEBARAS0sLwcHBePz4MdchEULaSFVVFWJiYnD58mW4urrSVICtxOfz4ePjg169eiEsLAw3btzgOiRCSBthjOHAgQM4dOgQpk2b1mYD86mwbYKxsTH8/f3RqVMnhIaG4t69e1yHRAhRsLKyMmzfvh1ZWVnw9PSkxVtkpKuri6VLl2LgwIGIjY1Feno61yERQhSsdjWx06dPY+7cubCzs2uzK14qs6SuPLR2iba6a8HTuujtS3V1NQDQnJztRGFhIcLDw1FcXIylS5eiV69erdqHsi6pKw+tPb+6a8Hb2dlh6tSp1LWjnaA82r7UrZlcXFxatfhLu1hSl0s6OjpYsmQJEhISEBcXh9LSUowZM4brsEgboETcfuTl5SEsLAwA4O/vjy5dunAckXrh8XhwcHCAoaEhDh8+jJKSEjg4OFBx2w5QHm0/SktLERkZiefPn8PT0xPW1tZtHgP9tklJU1MTCxcuBJ/Px549e1BcXEzrohOiJh49eoSIiAgYGhrCy8tLLVtalQGPx8PUqVPB5/ORnJyM0tJSODs7U+FDiBooKChAeHg4SkpK4Ovri549e3ISB2WTFuDxeJg9ezYMDQ1pXfR2gDGGhw8fAqiZKYO+xKinu3fvIjY2FqampvD09IS+vj7XIam9UaNGwcDAADt37kRkZCTc3d2hq6vLdVhEASiPtg+5ubkICwuDhoYGAgICYGJiwlksVJG1UO266AsWLMD58+cRFxcn6j9E1AtjDLm5ucjNzUU76orerly5cgWRkZGwtLTEsmXLqKhtQwMHDoSXlxcePXqEbdu2oaSkhOuQiAJQHlV/Dx8+RHBwMPT19TkvagEqbFttxIgRcHd3x+3btxEREYGKigquQyKEtMDp06exc+dODBs2DO7u7rSaGAcsLS3h5+eHwsJCBAcH49WrV1yHRAhpgTt37mD79u3o2rUr/Pz8YGRkxHVIVNjKYsCAAfD29saTJ09oXXRCVARjDKmpqdi3bx8mTZqEBQsWQFNTk+uw2q3u3bvD398fjDEEBQXh2bNnXIdECJHC5cuXERUVBSsrK3h7eyt0NbGWoMJWRhYWFvDz80NxcTGCg4ORn5/PdUiEkEYIhUIkJSXh+PHjmDVrFmbOnEl9/pRA586d4e/vDz6fj5CQEDx48IDrkAghTTh16hR27doFW1tbpbviRYWtHJiamsLf3x88Hg9BQUF4+vQp1yERQuqpqqpCbGwsLl68CBcXF0ycOJHrkEgdhoaG8PPzQ48ePRAWFoZbt25xHRIhpB7GGA4ePIj9+/dj8uTJmD9/vtINoFeuaFRYp06dROuih4SE0LrohCiR8vJyhIeHIzMzEx4eHrC1teU6JCJB7Spl/fr1Q3R0NDIyMrgOiRDyN6FQiMTERPz111+YM2cO7O3tlfKKFxW2clR3XfTw8HBaF50QJVBUVISQkBA8f/4cy5YtQ79+/bgOiTRBS0sLixYtwqhRo7B7926cOHGCRtMTwrGqqirExMTg0qVLWLhwIcaPH891SI2ieWzlTFdXF56enoiPj0dsbCwcHR0xatQorsMiraChoYGhQ4eK/k9Uz4sXLxAWFgahUAg/Pz9069aN65CIFDQ0NDBv3jzRnOHFxcWYPXu2UrYOkaZRHlV9ZWVliIqKwpMnT+Dp6QkbGxuuQ2oSFbYKoKWlBVdXV/D5fCQlJaGkpARTpkyhpKyCdHR0uA6BtNKTJ08QHh4OfX19eHl5oWPHjlyHRFqAx+Nh+vTp4PP52Lt3L0pLS2kGCxVFeVR1FRYWIjw8HEVFRfDx8YGZmRnXITWLClsF0dDQgIODA/h8Pg4fPozi4mJaF52QNnL//n1ER0eja9eu8PT0hIGBAdchkVYaM2YMDAwMsGvXLpSWlmLx4sVUKBHSBvLy8hAWFgYA8Pf3R9euXTmOSDpU2CoQj8fDtGnTwOfzsWfPHpSWlsLFxYVaHFQEYwyPHj0CAPTq1Yu+lKiIa9euYdeuXejTpw8VQWpi8ODB0NfXR3R0NLZv305fVlQI5VHV9OjRI0RERIDP58PLywvGxsZchyQ1lenw8ssvv2DYsGHo0KEDOnTogAkTJiAlJYXrsKQyevRouLm54caNG4iMjKRVylQEYwzPnj3Ds2fPaPCKijh37hzi4uIwePBgLFmyhIraelQ5j1pZWcHX1xf5+fkIDg5GQUEB1yERKVAeVT2ZmZnYtm0bOnfuDD8/P5UqagEVKmzNzMywZcsWpKenIz09Ha+99hoWLFiAa9eucR2aVAYNGgQvLy/k5OTQuuiEyBljDEePHsWePXswbtw4ujLSCFXPoz179oS/vz+qq6sRFBSE3NxcrkMiRK1cuXIFkZGRsLCwwLJly1TyygiPqfBXqM6dO+Orr75CQECAxOcrKirEWkcLCwthbm6OgoICdOjQoa3CFPPkyRNERERAV1cX3t7eNKBFiQmFQtE8miNGjKARvUpKKBRi7969SE9Ph729PSZNmsTp5c7CwkIYGxtzmmdaQhXzaFFREcLDw1FYWAhPT0+Ym5tzEgdpHuVR1XHmzBmkpKTA1tYW8+fP57RxQJY8qpK/YQKBANHR0SgpKcGECRMa3W7z5s0wNjYW3ZQh+fXo0QP+/v4QCoW0LjohMqqurkZcXBzOnz+PBQsWYPLkydSHT0qqnEeNjIxE07dt374dt2/f5jokQlQWYwyHDx9GSkoKJk6cCGdnZ5W+4qVShe2VK1dgaGgIXV1dvPnmm4iPj8egQYMa3X7dunUoKCgQ3R4+fNiG0Tauc+fOCAgIEK2Lnp2dzXVIhKiciooKRERE4Pbt2/Dw8MCIESO4DkklqEse1dPTg5eXF6ytrREdHY1Lly5xHRIhKkcoFCI5ORlpaWmYOXMmZs2apfKNAypV2Pbv3x8XL17E6dOnsXz5cvj4+OD69euNbq+rqysaJFF7UxaGhobw9fVF9+7dsX37dloXnZAWKC4uRmhoKJ48eQJvb2/079+f65BUhjrlUW1tbSxevBjDhw9HfHw8Tp48yXVIhKiM6upqxMbGIiMjAy4uLpg0aRLXIcmFShW2Ojo6sLGxwejRo7F582bY2tri+++/5zqsVqttcejbty9iYmJoXXRCpFA7Kr64uBh+fn6wsLDgOiSVom55VENDA05OTpgyZQoOHDiAgwcP0uh7QppRXl6O8PBwZGZmwsPDA7a2tlyHJDcqPY8tY0zlp87S0tKCm5sb9uzZg927d6OkpITzwS+khoaGhugSLQ14UA5Pnz5FeHg4dHV1ERAQQIMv5UAd8iiPx8OMGTNgaGiIlJQUlJSUwMnJSaX7CaoLyqPKp6ioCBERESgoKMCyZcuUot+8PKlMYfvBBx/AwcEB5ubmKCoqQnR0NI4ePYp9+/ZxHZrMNDQ04OjoKFoXvaSkRC36uagDfX19ue2rrKwMa9euRWZmJqytrbFlyxa57l/dZWVlISoqCiYmJli6dCn4fD7XIakcdc6jADBu3DgYGBggISEBpaWlcHNzg7a2NtdhtXuU55THy5cvERYWBoFAIBqAqW5U5uvTs2fPRH3pZsyYgTNnzmDfvn2YOXMm16HJBY/Hg52dHebOnYvTp08jPj4eAoGA67CIHK1duxb29vZITk6Gvb091q1b12CbsrIyBAYGwtHREYGBgSgrK+MgUuVz48YNhIeHo1evXvDx8aGitpXUPY8CwNChQ+Hp6YmsrCxs376d/oYI+duTJ08QFBQETU1NBAQEqGVRC6j4PLYtpSrzS9KSoMqBMYYnT54AqJmmTdYWdEdHRyQnJzd6HwACAwNhb28PJycnJCUlITU1FVu3bpXpuKru/PnzSE5OxuDBg+Hs7AwtLeW+0KQqeaa1VOX8apcENTQ0hJeXl1LHqs7knUdJ69y/fx/R0dHo0qULli5dqvQLL7S7eWzV3eDBg7F06VJkZ2dj+/btKC0t5Tqkdqk2IT958kQug1Gsra2RlJQEAEhKSoKNjU2DbTIzM+Hk5AQAcHJywt27d2U+rqpijCEtLQ1JSUkYM2YMXF1dlb6oJcqjV69e8Pf3R0VFBYKCgpCXl8d1SO2SvPMoabnr168jPDwc5ubm8PHxUfqiVlZU2Cqp2nXRX758iZCQEFoXXQ1s2bIFqampcHR0RGpqKjZv3txgG2mK3/aAMYaUlBQcPnwYdnZ2cHBwoJYe0mJdunRBQEAAdHV1ERwcjJycHK5DIqRNpaenY8eOHRg0aBCWLFnSLq4AU1cEJffixQuEhYVBKBTC29sbXbt25TqkdoOLpSDLysqwbt063L17FzY2Nti8eXO7G3hRXV2NhIQEXLt2DfPmzcPo0aO5DqlFVDHPtIQqnl9ZWRkiIyPx9OlTuLu7t9svjFygJXW5wRjDsWPHcPToUYwfPx6zZ89WqcYB6oqgxkxMTBAQEAB9fX0EBwcrzao/RDH09fWxdetWJCcnY+vWre2uqK2oqEBkZCRu3LiBxYsXq1xRS5STvr4+li1bhj59+iAyMhJXrlzhOiRCFEYoFGLv3r04evQoZsyYoXJFrayosFUBteuid+3aFdu3b8edO3e4DokQuSspKcG2bdvw6NEjeHt7Y+DAgVyHRNSItrY23N3dMWzYMOzcuROnT5/mOiRC5K66uho7d+5Eeno65s+fjylTprSrohagwlZl6OnpwdvbG1ZWVoiKisLly5e5DokQuXn16hWCg4NRWFgIPz8/WFpach0SUUOamppYsGABJk2ahH379iE1NZUGNBG1UVFRgYiICNy6dQvu7u4YOXIk1yFxgoYYq5DaFoekpCTs2rULJSUlmDBhAtdhESKTZ8+eITw8HNra2vD390fnzp25DomoMR6Ph5kzZ4LP5+PAgQMoKSmBo6Mj9f0kKq24uBgRERHIz8+Ht7d3u15qnApbFaOhoYH58+fD0NAQ+/fvR3FxMezt7dvdpYa2wOPxMGDAANH/ifxlZ2cjMjISHTt2hJeXFwwNDbkOibQTEydOBJ/PFy1lvmjRIlqlTAEojypefn4+wsLCUFlZCT8/P5iamnIdEqeosFVBteui8/l87Nu3DyUlJZg/fz61OMgZj8ejFa4U6NatW9ixYwfMzMzg4eEBPT09rkMi7YytrS0MDAwQGxuL8PBwLFmyhH4P5YzyqGI9ffoU4eHh0NHRQUBAADp16sR1SJyjSkiFjR8/Hq6urrh8+TJiYmJQVVXFdUiESCUjIwMxMTHo27cvvLy8qJggnOnbty+WLVuG58+fIyQkBEVFRVyHRIhUsrKyEBISAiMjIypq66DCVsXVrot+7949hIWF0brocsQYw7Nnz/Ds2TMaYCInjDGcOHECu3fvxsiRI+Hm5kariRHOmZubw8/PD2VlZQgKCsKLFy+4DkltUB5VjBs3biA8PBw9e/aEr68vtYrXQYWtGrCxsYGPjw/y8vIQEhKCwsJCrkNSC4wx5OTkICcnhxKyHDDGcODAARw6dAjTpk3DvHnzqPsMURrdunVDQEAAtLS0EBwcjMePH3MdklqgPCp/Fy5cQGxsLPr374+lS5dCV1eX65CUCn2qqAkzMzPRuujBwcG0LjpRKgKBAPHx8Th9+jTmzZsHOzs7GkhClI6xsTH8/f3RqVMnhIaG4t69e1yHRIgIYwzHjx9HYmIixowZA1dXV7riJQEVtmqkdl10bW1tBAcH49GjR1yHRAgqKysRFRWFa9euYdGiRRgzZgzXIRHSKAMDAyxbtgy9e/dGREQErl27xnVIhIAxJpp72c7ODg4ODnTFqxH0rqiZDh06wN/fHyYmJti2bRsyMzO5Dom0Y6Wlpdi+fTuys7OxdOlSDB48mOuQCGmWjo4OlixZgsGDByMuLg7nzp3jOiTSjgkEAuzcuRNnz56Fo6Mjpk2bRle8mkCFrRqqXRfdwsICkZGRuHr1KtchkXaooKAAwcHByM/Ph6+vL6ysrLgOiRCpaWpqwsXFBePHj8eePXtw9OhR6iNK2lxlZSUiIyNx48YNuLm5YfTo0VyHpPSoc4aa0tbWhoeHBxITE7Fz506UlJRg3LhxXIdF2onc3FyEhYVBQ0NDdAWBEFXD4/Ewa9Ys8Pl8HDp0CMXFxZg7dy5dAiZtoqSkBJGRkcjLy4OXlxf69OnDdUgqgQpbNaapqQlnZ2fw+XykpKSgpKSEBu0QhXv48CEiIyPRoUMHeHl5wcjIiOuQCGk1Ho+HyZMng8/nIykpCaWlpVi4cCEN2iEK9erVK4SFhaG8vBy+vr7o0aMH1yGpDPrLVHN1WxwOHjyIkpISmmZJSjweD/369RP9nzTvzp07iI2NRY8ePeDp6UkLLxC1MWLECBgYGGDHjh2IiIiAh4cHTbMkBcqjLff8+XOEhYVBS0sLAQEB6Ny5M9chqRSqbtqJSZMmwdnZGRkZGYiNjUV1dTXXISk9Ho8HIyMjGBkZUUKWwqVLlxAVFQUrKyt4e3tTUUvUTv/+/eHt7Y0nT54gNDQUxcXFXIek9CiPtkx2djaCg4PB5/Ph7+9PRW0rUGHbjgwfPhweHh7IzMwUXeIgRB5OnjyJ+Ph42Nrawt3dHdra2lyHRIhCWFhYwM/PD8XFxaLBkYTIw+3bt7F9+3aYmprC19eXunG1ksoUtps3b8aYMWNgZGSEbt26wdnZGbdu3eI6LJXTr18/0brooaGhtC56ExhjyM3NRW5ubotHQ5eVlSEwMBCOjo4IDAyU61LHitx3SzHGcPDgQRw4cABTpkzB/PnzqZuLEqM8Kh+mpqYICAgAj8dDUFAQnj59ynVISkuWPNqeXLx4EdHR0ejbty9d8ZKRynwCHTt2DCtWrMDp06dx8OBBVFdXY9asWSgpKeE6NJVTuy56aWkpgoOD8fLlS65DUkqMMWRnZyM7O7vFCXnt2rWwt7dHcnIy7O3tsW7dOrnFpch9t4RQKMTu3bvx119/Yc6cOZgxYwZdalRylEflp2PHjvD390eHDh0QEhKCrKwsrkNSSrLk0fbir7/+QkJCAkaMGAE3NzcamCgjHlPR37Tc3Fx069YNx44dw9SpU6V6TWFhIYyNjVFQUIAOHTooOELlV1BQgLCwMJSVlcHLy4tGXdYjFAqRkZEBoGbgSEtaIh0dHZGcnNzofVkoct/Sqqqqwo4dO3D37l24uLhg6NChbXp8ZaZKeYbyqOwqKioQExOD7OxsuLq6YuDAgVyHpFRkyaPqrvaK18mTJzF16lSatagOWfKMyv6GFRQUAECTHasrKipQWFgodiP/qF0XvWPHjggNDcX9+/e5DkltWFtbIykpCQCQlJQEGxsbldi3NMrKyhAWFob79+/D09OTiloVRnlUdrq6uvD09MSAAQMQGxuL8+fPcx0SUQECgQAJCQk4deoUHBwc8Nprr1FRKycqWdgyxvDOO+9g8uTJGDJkSKPbbd68GcbGxqKbubl5G0apGgwMDODj4wNzc3OEh4fj+vXrXIekFrZs2YLU1FQ4OjoiNTUVmzdvVol9N6ewsBAhISHIy8uDj49PmxfVRH4oj8qPlpYWXF1dMWbMGCQlJSEtLY0uu5NGVVZWIjo6GlevXoWrqystniRnKtkVYcWKFdizZw9OnDgBMzOzRrerqKhARUWF6H5hYSHMzc3pEpoEtd8er169irlz52LMmDFch8Q5uoQmLi8vD2FhYQAAb29vdOnSheOIlJOqXKqnPCp/jDEcP34chw8fxtixY+Hg4NDuW+Eoj4orLS1FZGQknj9/Dnd3d1hbW3MdklKSJY+qXA/llStXIjExEWlpaU0mY6DmEhFNoC0dTU1NLFy4EHw+H3v27EFJSQmmTZvW7pMyqfHo0SNERESAz+fD29ubChoVR3lUMXg8HqZOnQo+n4/k5GSUlpbC2dmZBgMRADVdf8LDw1FSUgJfX1/07NmT65DUksr8tTHGsHLlSsTHx+Po0aO0ZrIC8Hg8zJ49G3w+H6mpqbQuuozKysqwdu1aZGZmwtraGlu2bIG+vj7XYbVYZmYmYmJiYGpqCk9PT5U8B1KD8mjbGDVqFAwMDLBz505ERkbC3d2dvhy0c7m5uQgLC4OGhgYCAgJgYmLCdUhqS2UqlhUrViA8PByRkZEwMjLC06dP8fTpU07n8FRHPB5PNB/p+fPnERcX125XKePxeLCxsYGNjU2rWq6VZVouWVy5cgURERGwtLTEsmXLqKhVcZRH287AgQPh5eWFR48eYdu2be12SjVZ86g6yMnJQXBwMPT09KiobQMq08e2sT+IkJAQ+Pr6SrUPVen7pixu3ryJuLg4mJub07roraAM03LJ4syZM0hJScHw4cPh5OQETU1NrkNSCcqcZyiPtr0nT54gIiICurq68Pb2RseOHbkOibShO3fuIDY2Fj169MCSJUuocUBK7WK6L8aYxJu0yZi03IABA2hddBlwPS1XazHGcPjwYaSkpGDSpElYsGABFbVqgvJo2+vRowf8/f0hFAoRFBSEZ8+ecR0SaSOXL19GVFQUrKys4O3tTUVtG1GZwpZwoz2vi84Yw4sXL/DixYtWTd3D5bRcrSUUCkXTFc2aNQszZ85st5cPCZGXzp07IyAgAHw+HyEhIcjOzuY6pDYjax5VVadOncKuXbtga2sLd3d3aGtrcx1Su6EyXRHkgS6htV5+fj7Cw8NRUVEBLy8vdO/eneuQFK69TVNTVVWFnTt34vbt21iwYAFsbW25DkklqXueUffzU6Ty8nJER0cjJycHbm5u6N+/P9chKVx7y6OMMaSmpuLEiROYPHkyLTXeSu2iKwLhVqdOncTWRX/w4AHXIRE5Ki8vR3h4ODIzM+Hh4UFFLSEKoKenBy8vL/Tt2xcxMTGigo+oB6FQiMTERJw4cQKzZ8+Gvb09FbUcoMKWSI3P58PHxwe9evVCWFgYbt68yXVIclFWVobAwEA4OjoiMDCw3Y0QLyoqQkhICJ4/f45ly5ahX79+XIdEiNrS0tKCm5sbRo4cid27d+PEiRPt6hK9uqqqqkJMTAwuXbqEhQsXYsKECVyH1G5RYUtapHZd9P79+yMmJgYXLlzgOiSZqcO0XK314sULBAcHo6ysDH5+frRcKiFtQENDA/PmzcO0adNw6NAhHDhwgIpbFVZWVoawsDDcu3cPS5YswbBhw7gOqV2jwpa0WN110RMTE3H8+HGVTsqZmZlwcnICADg5OeHu3bscR9Q2Hj9+jODgYGhqaiIgIADdunXjOiRC2g0ejwc7OzvMnTsXp0+fRnx8PAQCAddhkRaqveKVm5sLHx8f9O3bl+uQ2j2VWXmMKBcNDQ04ODiIrVI2Z84clexPVDstl5OTk0pNyyWLe/fuITo6Gt26dYOnpycMDAy4DomQdmns2LHg8/nYtWsXSktLsXjxYujo6HAdFpHCixcvEBYWBsYY/P390bVrV65DIqAWWyIDHo+HadOmwdHREWfPnsXOnTtVssWhuWm5ysvLsXr1arXpg3vt2jVERESgd+/eWLZsGRW1hHBs8ODBWLp0KbKzs7F9+3aUlpZyHRJpxuPHjxEUFARtbW0qapUMTfdF5OL69evYuXMnLC0tsXjxYrVYpYwxhlevXmHt2rWYN28e5s+fj6SkJKSmpmLr1q1ch9cq586dw969ezFkyBA4OzvTwgsKoO55Rt3Pj0uPHz9GREQE9PX14e3tDWNjY65DklltHgWAjh07quRVvfoyMzMRExNDV7wUiKb7IpwbNGgQvLy8kJOTozbrovN4PHTq1AmPHj3C/PnzAahuH1zGGI4ePYo9e/Zg3LhxWLhwIRW1hCiZnj17wt/fH9XV1QgKCsLz58+5DklmtXm0U6dOalHUXr16FZGRkbCwsKArXkqKClsiN3369IGvry8KCwsRHBws+pau6lR1adxaQqEQe/bswdGjR2Fvb4/Zs2erxQcMIerIxMQEAQEB0NfXR0hICB4+fMh1SORvZ86cQVxcHIYMGQIPDw/qC62kqLAlclV/XXRlbnFobv5axhjy8/Px/vvv49ChQ5wsjfvy5UtMnjwZw4YNw6RJk/Dy5csWvb66uhpxcXE4f/485s+fj8mTJytdUdve5xEmpD4jIyP4+fmhW7du2L59O+7cucN1SK1Wm0fz8/NVdvYcxhgOHz6MlJQUTJw4kbpxKTkqbInc1V0XPTg4WGnXRW9u/lrGGO7du4cnT57gu+++Q3JyMrZu3Qp9ff02i3H+/PlYs2YNLl++jHfffVfUJUIaFRUViIiIwO3bt+Hu7o6RI0cqMNLWa8/zCBPSmNpVyqytrREVFYVLly5xHVKr1ObRe/fuqWRhKxQKkZycjLS0NMycOROzZs1SusYBIo4KW6IQhoaG8PX1Rffu3bF9+3bcunWL65AaUIX5awsLC+Hs7AwAcHZ2RmFhoVSvKy4uRmhoKJ48eQJvb28MGDBAgVHKRhV+DoRwQVtbG4sXL4atrS3i4+Nx8uRJrkNqV6qrqxEbG4uMjAw4Oztj0qRJXIdEpECFLVEYZV8XXRX6zhoZGSEhIQEAkJCQINXo0Pz8fAQHB6O4uBh+fn6wsLBQcJSyUYWfAyFc0dDQwPz58zFlyhQcOHAABw8eVMmWT1VTXl6O8PBw3L17F+7u7hg+fDjXIREp0XRfROFqBy+dP38eM2fOxMSJE5XiUk5ZWRnWrVuHu3fvwsbGBps3bxbrZiAUCkXF+IgRI6Ch0fbfA1++fIn58+ejsLAQHTp0QGJiIjp37tzo9k+fPkV4eDh0dXXh5eWFTp06tWG0rdPcz0HVqHueUffzU2anT5/Gvn37MHz4cMyfP5+TnNRSypBHW6qoqAgRERF49eoVPD090bt3b65DandkyTO08hhROA0NDTg6OsLQ0BAHDx5EcXGxUvRT0tfXb9V8tGVlZVi7di0yMzNhbW2NLVu2KKwQ69y5M06cOCHVtllZWYiKioKJiQmWLl0KPp+vkJjkrbU/B0Lam/Hjx4PP5yM+Ph6lpaVwc3ODtrY212GplZcvXyIsLAzV1dXw9/enpcZVkPJ/dSJqQRnWRZfX6HtlHOx048YNhIeHo1evXvDx8VGZopYQ0jJDhw6Fp6cnsrKyEBYWRrOIyNGTJ08QFBQETU1NBAQEUFGroqiwJW1q7NixcHV1xbVr1xAdHY3Kyso2O7a8ClJlG+x0/vx5xMbGon///vD09FSLVd8IIY2zsbGBj48P8vLyEBISIvWgUtK4+/fvIzQ0FB07doS/vz86duzIdUiklaiwJW1uyJAh8PT0xIMHD9p0XfSWFqQ8Hg+WlpawtLQU6zahLIOdGGNIS0tDUlISxowZg0WLFkFLi3oXEdIe9OrVC/7+/qioqEBQUBDy8vK4DkmixvKoMrl+/TrCw8NhZmYGHx8fWk1MxVFhSzhhbW0NX19fvHz5EiEhISgoKGiTY7akIOXxeDAxMYGJiYlYQt6yZQtSU1M5WbChFmMMKSkpOHz4MOzs7ODg4KC0HxqEEMXo0qULAgICoKuri+DgYDx69IjrkBpoLI8qy8Is6enp2LFjBwYOHAhPT09aTUwNqFRhm5aWBicnJ/Ts2RM8Hk80DRJRTT179kRAQACqqqoQFBSE3NzcVu1H2gQpr4K0drBTUws2KDJpCwQC7Ny5E+fOnYOjoyOmTZvWqqJWWT5YSNuiPKpeOnToAD8/P5iYmGDbtm3IzMzkOiSpyNo1TNb8xRjD0aNHkZycLOoip6jVxCjXti2VKmxLSkpga2uLH3/8ketQiJzUXRc9ODi4yXXRG0sO0iZIaQrSuhhjKCgoQEFBQYvnjVTUALOKigpERkbixo0bWLx4MUaPHt3qfSnjIDiieJRH1Y++vj6WLVsGS0tLRERE4MqVKwo9XksKtcbyqKxjFWTJX0KhEHv37sXRo0cxY8YMzJkzR6FXvCjXti2VKmwdHBywadMmLFy4kOtQiBzVrovetWvXJtdFbyw5KGowF2MMd+/exd27d1tc2CoippKSEmzbtg05OTnw8vLCwIEDZdqfsg2CI22D8qh60tbWhru7O4YOHYqdO3fizJkzCjtWSwq1xvKorGMVWpu/qqursXPnTqSnp4sWvlB0Ny7KtW1LpQrblqqoqEBhYaHYjSifsrIyvP/++4iLi8Px48exfft2ieuiN5YclGUwV13yjunVq1cIDg5GYWEhfH190adPH6WLkagnyqOqQ1NTE87Ozpg4cSJSUlKQmpqqkFXK6ufi48ePt/jyuqxdw1qTvyoqKhAREYFbt27B3d0dI0eObNExW4tybdtS68J28+bNMDY2Ft3Mzc25DolIUPvtf+/evVi+fDkuXryI+Ph4nDp1Smy7xpKDMgzmqk+eMT179gxBQUEQCoXw9/dHjx49lC5Gor4oj6oWHo+HWbNmYdasWTh+/DiSkpIgFAqlfr003Qysra0RHx8PoCYX9+nTp8WX11vaNay+luav4uJihIaG4vHjx/Dy8sKAAQNadDxZUK5tWyq7pC6Px0N8fDycnZ0b3aaiogIVFRWi+4WFhTA3N6elIJWMo6MjkpOTRffnzZuHf//73zhx4gQmTZoEe3t78Hi8Nl96VRmWgszOzkZkZCQ6duwILy8vGBoaSvW6tlwdjYhTpSVnKY+qt0uXLmH37t3o168fXF1dpVqlLDAwEPb29nByckJSUhJSU1MbrAxYVlaGCRMmwMzMTJSL3dzcxPJ4LWXIo/n5+QgLC0NlZSW8vLzQvXv3Vu+LcmvbkCWPqnWLra6uLjp06CB2I8qnfkts3759YW9vjzlz5uCvv/5CYmIihEKhzN/wVc2tW7ewfft2dO/eHb6+vlIXtQANViDyQ3lUddna2sLDwwOZmZkIDw9HeXl5s6+Rpj+ovr4+pk2bhjfeeANbt27FoUOHlPby+tOnTxEUFAQACAgIkKmoBSi3qgK1LmyJamjsMs348eOxcOFCXLp0CTExMaiqquI40raTkZGBmJgY9O3bF15eXtDT02vR65v6cKKpZwhpP/r164dly5bh+fPnCAkJQVFRUZPbS9sfVBUurz948AAhISEwMjJCQEAAOnXqJPM+aSCY8lOpwra4uBgXL17ExYsXAdQsgXfx4kVkZ2dzGxiRSVMtscOGDYOnpyfu3bunVOuiK6o4ZIzhxIkT2L17N0aOHAk3N7dWrSbW1IcTtTi0b5RH2x9zc3P4+fmhrKwMQUFBePHiRaPbSluwtvUVtJbm3Js3byIsLAw9e/aEr68v+Hy+XOKggWDKT6X62B49ehR2dnYNHvfx8UFoaGizr1elvm9EXE5ODiIiImBkZAQvL682+fkxxkTLVHbp0kVsShhp+qG15ngHDhzAqVOnMG3aNEyfPr3V09A01R+5fp/m+veJbJQ9z1Aebb8KCgpEDQReXl5yG4jamNoZb27cuAFLS0t8//33rV6utiU598KFC0hKSsKgQYPg4uIi16XG23qsR3slS55RqcJWVpSQVVtubi7Cw8PB4/Hg5eWFLl26cBaLvItDgUCA3bt348qVK3BwcMDYsWPlEaZEiijKyT/UPc+o+/mpu9LSUkRGRiI3NxceHh5ymTqwMfLMNdLk3NorXqmpqRgzZgwcHBxaPViNBolxiwaPkXaha9eu8Pf3h7a2NufrosvzclRlZSWioqJw7do1LFq0SKFFLaAafeMIIYphYGCAZcuWwdzcHOHh4bh+/brCjiXP/qjN5VzGGPbt24fU1FRMnz4dc+fOlWkGBuqypbqoxZYovfrfnD/++GPEx8fj+fPncHd3h7W1tUKOyxhDcXExAMDQ0FCsW0BTl6Na8k2/tvXk+fPn8PDwgJWVlULORVbUeiE9dc8z6n5+7YVAIEBCQgKuXr2KuXPnYsyYMXI/RmBgIGbMmAE7Ozvs3bsXJ0+exPfff9+qfTWVc+uey7x585pcalzaXEZdtrhFXRGkRAlZNUm6nPXll19ix44duHXrFu7du4dXr17JveBq7fyL0l5+KygoQHh4OEpLS7F06VL07NlTLnErAnVfkJ665xl1P7/2hDGG/fv34/Tp05g+fTqmTZsm1+Vla4vICxcuwMzMDH/++adcBnHVLU4tLS0xYsQIPH78GK6urhg0aFCTr5U2l1HO4xZ1RSBqTdLlLB0dHXh4eODChQsQCoX473//q9DLRS0ZkSvN5bfc3FwEBQWhqqoK/v7+Sl3UAjTFDSHqiMfjYfbs2bC3t8fRo0exd+9e0Spl8pj5RV9fH9999x22bt2KNWvWyK3RobabQExMDAAgODgYXl5ezRa1gPS5jLpsqS4qbInSa6xvlaamJhhj8PX1RUpKCvh8Pu7cuaOQqbjWrVsndX+r5vqCPXz4EMHBwdDX10dAQABMTExkjk/RaIobQpRfa3Ifj8fD5MmTsWDBAqSnpyMuLg7V1dVK0ce0sfPJzMzElClTEBwcDAsLC+jr60s9CK4luaz2gnY7urCtFqgrAlF6TfWtqr1c1LlzZ/z4448oKSmBpaUlZs6cKfMlpLpdET7++GPs2bNH9FxT/a3Kysqwbu1a5F27hlEmJnhrwQLoPn8OPHuGV48eIevaNXTQ0oKFpSU0DQwAXV3AwAAwNQV69Ki59elTc9PUbPkbpgA0xY301D3PqPv5qTJZL5/fvHkTcXFxMDc3R3R0NFJSUkTPScp50vRXlWVJ3cbO5/XXX4dAIICtrS26du2Ks2fPSn2e0uYy6orALepjKyVKyOqnbpIyNjaGlZUV9uzZg7Nnz4rmLmxtp/+6CXnbtm1NF8vPngHHjgGnTwOXL9fccnNlOzl9fWDAAGDIEGDCBGDKFGDQIKCJDwYa5MU9dc8z6n5+qkweA54ePHiAqKgoHDhwAG+++SYWL17caGEnTfHXmsK2No8dOXIEly9fFjufX375Bdu2bcPhw4eho6ODAQMGKOSLNg0e45YseUZ+sxYTwoHa1W9q3b59G6mpqVizZg22bNmCgwcPyuWy+ebNm/Hhhx/it99+q/mWv3EjcPAgkJAAHD4M3LzZ8EU8HmBmBpibI09fH3eLi9Gpd2/0HT4cGrUDKMrLgYoKoKQEePoUePy45paZCZSVARkZNbewsJrtO3UC7OyA+fOBefOAenP51l4+/P7775GUlIR169ZRKwMhHGurL5y1l9lrC836uU+aOCwsLODn5wcA+PnnnxEUFISBAwdK7GOamZkpmuXAyckJv/32m1zOozaPAUBCQgKcnZ2RlJQEExMTbN++Hb169cLevXsbXWpcHu93c+8lUV7UYkvUzp07d+Dr64vCwkJMmTIF33zzTas+RBq0NDAGHDgAREUBSUnAq1f/bMzjAcOG1bSqjhhR8/9Bg8D09XHo0CEcPXoU169fR2VlJWxsbJpPtAIBcO8ecO0acPEicOIEcOoUUFr6zzYaGsDEicDSpYC7O9CpE7UyKAF1zzPqfn6K0FaXtetfZv/444+xYcMGUYFXXV2NOXPmSBVHfn4+wsPDUVFRAS8vL3Tv3r1V59WaFtvavFV7PocPH8bQoUNhZWWFIUOGwNXVtcnVxOTxfrd19yu62iZOpjzD2pGCggIGgBUUFHAdClGwZ8+esa+//ppt3bqVvXjxolX7EAqF7OnTp+z5mTNM+OGHjJmZMQb8c+vWjbHXX2ds1y7GJBxDIBCwhIQEtn79eubm5sYSExMZY4wlJiaywMDABtuXlpayVatWsXnz5rFVq1ax0tJS8Q0qKxk7fZqx9esZGz5cPBZdXcbc3dmPzs4scffuJo9DFEvd84y6n58izJs3r8n7irJq1SpR3tm1axezsbERyy3NxVFcXMx+++039vnnn7P79+83eL60tJQFBgayefPmscDAwIY5i/2TR58+fcqEQmGL405MTGRubm5s/fr1LDExkQkEgkZfV5tDhw4dKvZ4W73fsqh/zu09d8uSZ6iwJWorPz+f/fDDD+zLL79kjx8/bnS7RgvKkycZc3FhjMf7p4Ds3JmxlSsZS0tjrLq60X0UFBSwyMhItmHDBnbp0iWpPthanNgePGDs668ZGzJErMh9ZGLCvhs2jL2zYoXEDxqiWOqeZ9T5/Jr9ctlKXBUtkvJOfHw8CwwMlBiHpPMvLy9n27ZtY59++im7fv16m8RdWzDPnTuXOTs7sw8++IClpqY2WxjXvs+rVq1i8fHxjLHm329F/cxbiqsvP8qKClspqXNCJpKVlJSw33//nX3++efs3r17ErcR+9DZvZv9umABY5MmibeI2tszFhPDWHl5s/vYsWMHs7e3Z5s2bWJ37txpeIxGEm2rE5tQyFh6OmNvvcUYn/9PzKamjH31FWMlJdLth8iFuucZdT4/SX+n8ih8pGnZVITG8s7QoUMlxtHY9lVVVSw2NpZ98sknLD09vU1ir66uZrt27WKffPIJO336tFSvqc2Zte93Y+dZlzy/dMjyu0IttuKosJWSOidkIq5uglmxYgX7888/2caNG9m1a9cabCsqII8fZ2zyZFFhKNTWZpXe3qzk3LlmWwpq91FQUMB++uknNmDAAPbw4UOxeJr7YFu1ahXb/Xc3gp07d7JJkya1/AMwP5+xL78U7zbRvTtjP/zQaFFO5Evd84w6n5+kL5eqXHDU5p2RI0cyV1dXVlpa2uQ5NPXlWiAQsD179rD169ezY8eOSdWtoLS0lK1cuZLNnj2bLV++nJVI+SW7oqKChYeHs40bN7IrV65I9RrGWlccyrOlVJbfFa6+/CgrWfIMDR4jaqn+4IGDBw9i2rRpEtcS/8zbG/+6eROm6ekAgEpNTeisXg3h6tXIePYMQPODHgIDAzF27Fjk5ubi6tWr0NDQwO+//96imMvKyjBz5kxoampixIgRmDx5Mk6cONG6QSZVVUB4OLBxI5CVVfOYhQXw9deAq2vNYDeiEOqeZ9T5/CQNOrp7965MAzKVYVCQvOZuZYwhLS0NR44cwdixY+Hg4NDkEryBgYF47bXXYGZmhrS0NGRlZYlmUWgq1oiICDx//hzu7u6wtraW+3nWj3HKlCk4fvw4Ll68CIFAgIMHD7bqZ0SDd+WHBo9JSZ1bGog4BwcHsfsjR45kc+fOZfPmzWOjR49m48ePZ2veeINV/vvfTKilxRjAqnk8dmLIEFb6d/cBgUDA0tPTWXp6epMDFhhj7M6dO2zSpEls8ODB7M0332z1t22597OqqGDsl18Y69Xrnxbc6dMZu3xZtv2SRql7nlHn85PUaiZri60qtfhK22p47tw59sknn7AdO3aw6jpjDeqbN2+eWB6dO3duk8cvKChgP/74I/viiy/Yo0ePZDoXaZWWlrJJkyaxnTt3MsYY2717d6t/Rqr0s1Z2suQZWlKXqKWCggIkJCQAAHbt2gXGGOLi4uDv7w++gQHeMTPDfyMjof3dd+BVVwNOTtC8dQuTrlyBfgvnK8zMzERsbCx8fX1x9uxZ/PLLL61ukZG03KNMSwTr6ABvvgncvg2sXw/o6QFHjwLDhwP/+Y/49GGEtHO182InJydj69at0NfXx5YtW5CamgpHR0ekpqZKnM+1KZmZmXBycgJQM9fr3bt3FRG6XEg6f0lGjx6NxYsX48aNG4iIiEBFRYXE7erms7S0tCbngs3NzUVQUBCqqqoQEBCAnj17ij2viKXSgZpz7tixIxYuXAgAmD9/fqt/RrL+rhD5aHFXhEuXLiEpKQmdO3fG4sWL0aXOBPGFhYVYvXo1goOD5R6oPKjzJbT2rv7lvhs3bqC0tLThZf116/DX8OGY9PQpAOChjg567tgBzfnzG+xTmvkXr1y5goSEBFhZWcHNzQ06Ojoyn0f9S2m1k5XLZQ7MBw+ANWuAuLia+9bWQFAQMG2aTHGTf0ibZ1Q1l1IebZnmLu8rQ1eF1rp//z6io6NhYmKCpUuXgl+78Mzfas/twoULMDMzw59//tlgGwDIyclBREQEjIyM4O3tDSMjowbbyHMu4PrveUvm9yVto826Iuzfv5/p6OiwwYMHs969e7MuXbqww4cPi55/+vQp09DQaHGzcVtR50to7V39S0CTJk1iU6dO/WcDoZBtGTGClRsZ1VyO19Ji5xwc2LRx41hoaCgrlzCwqrmuCKdPn2br169nu3btavJynKwUMg3Mnj3iA8yWL2esuFj2/RKp8owq51LKoy3T3OV9WQcccT1V1ePHj9lXX33FvvnmG/bGG280iKW5PHrnzh22fv16NmPGDDZnzpxGz0ORg7xWrFhBA7eUTJvNijBhwgT2wQcfMMZqJl3+8ssvmaGhIUtJSWGMKXcyZowSsjqrn+QcHBz+6TdVWMgeTJsmKuIempiwlZMns8DAQHbz5k22ceNGZmdnx2bPni1VQhYKhWzv3r1s7NixbOzYsWzlypUKTYQK67dVUMDYm2/+U9wOGMDYxYvy2Xc7Jk2eUeVcSnlUvmQp2JSlT+eLFy/Y1KlTmZ+fH3v69KlYLE0VtpcuXWIbNmxgs2fPZrt27WKM/VNo1i/Y5XmuNGes8muzPrbXrl2Dv78/AIDH4+Hdd9/F77//jkWLFon60RDSHEX0larfN7Vfv344ePAg7sXF4XH37uh97BiYpibw8ccwe/wY/zt+HFu3bkX//v2RnZ0NS0tLzJ07F+PHj8e6desaPY5QKERSUhI++eQTLFy4EGfOnMHMmTObfI2sFNZvq0MH4JdfgEOHgJ49gZs3gbFjge+/ryl1icJQLiW1JPWrl5ay9N/t3Lkz9PX1MXbsWISEhMDW1rbZWE6dOoVdu3bB1tYWmpqacHFxAQA4OTri1LFjmD15MpIjIzFn/Hh8uno1trz7Lk7t2QP32bPx19692PzRR0BFRc3y4y3MV7K850T5taiPbbdu3ZCSkoJRo0aJPR4TEwN/f3988803WLFiBQQCgdwDlQfqG6YcFLFueoO+qZ9/Dv2goJoBUlVVgLk5EBkJTJ7c4LWOjo4ICwtDWFgYKisrsW/fPhw6dAiMMTx58gQA0KNHD1RXV2Pnzp24ffs2Dh48iOPHj4vtQ6WndcnLAwICgMTEmvsLFgDbtgHGxtzGpYKkyTOqnEspj8pXa6aoqqWIXNpaK5cvR1FWFooyM9GhshLDzc0R6OUF9uIFih89gkZhIQyqqoCiIrx6+BBleXkw1tSEAY+Hktxc6AHQqq4GqqtbfnANjZqBsbq6Nf8aGAB8fs3NyKjmS3ztrVMnVBoaIubAAdx5+RIdrK3x9oYN0DM3ByS876rcB1qVtVkf25kzZ7KvvvpK4nORkZFMW1tb4ZfPfvrpJ2Zpacl0dXXZyJEjWVpamtSvpUtoykHhl4FKSxlbtuyfS+zOzoy9eNHo5rULIxQXF7M33niDWVhYsJs3b4ptU1ZWxoKDg9mmTZvYrVu3OL0EqLB+dUIhYz/9xJiubs371q8fY220hKY6kSbPcJ1LKY+qhzab1D8/v6abUlISYz//zNi6dazKy4td792b3TcyYkV6ekxQd6VGVb0ZGTHWty9jU6YwtngxY++8w3ZNnszOvfceYydPsv0hIWz1qlWKeY+JmDZboCE+Ph5paWn47rvvJD4fFRWF33//HUeOHGlZdS2lmJgYeHt74+eff8akSZPw22+/4c8//8T169fRu3fvZl9PLQ3KQaGtDA8fAgsXAunpgKYm8NVXwOrVTS5IUHdhhKFDh4LH4+H8+fMIDg7GgAEDUFRUhPDwcBQWFsLT0xPm5uYytbLISuGtNOfO1Szi8PAhYGhY03L791Q4pHnS5BkucynlUdKAQFDz937nDnD3LpCZWfNvVlbNraBAuv3weICJCViXLriUkwO9Xr3QycoK3fr3h9DICJeyspBTWAjbyZNhMXgwwOejnMfD1t9+w91Hj2DauzdOpqejm5kZeltbY+Nnn8FuxgwcOXYM+gYGohK0rKQE//3gAzzIzISNhQU+XrsW+hoaQHk5UFZWM41hSUnNv0VFqMzLw/4dO1D29Cl0S0vRmcdDN21t9O3YERovXgC5uTVX9qRQxeNB29oa6NMHsLKqudnYAP361cwyU+9zgFp8W0eWPKNSK4+NGzcOI0eOxC+//CJ6bODAgXB2dpaq32HtG5Wfn9/oG1V3SiehUNjk/mjb1m1bWxTeuXMHNjY2+PzzzyX+odfdL6sZ6Nh0DKdOAc7OwPPnYCYmYNHRwGuvAahJLu+++y5Onz6NqqoqGBkZoWPHjrCxscHHH3+M1157Debm5rC2tsann34KOzs7zJ8/H2PHjsX169ehoaGBpUuXomvXro3GwOPxRKvwNBevLNs6OjqK9cOsLXDlGsPz5+AtWQLe0aM1z2/aBN4HHwA8Xov2CzT9O6EM2wLy/X0vLCxEp06dlLbwozyq+G1rc9y9e/dExYyurm6L91u7n9qiqPYLdItzY+225eVgN28C16+Dd+MGcP16zRzXd+6A18hctKLXmpggR0MDj3g8VJqa4l5FBXw/+ADo0QOse3fYeXjg35s2wcnZGYmJifjyyy8hFArBGMPKlStRVFSEly9fws3NTaxP6+rVqzFjxgw4OTnBzc0Nnp6ecHV1RVJSEkJDQ2FmZtbgC2Dta+bPn4/k5GSkpqbiu+++a/R9WL16Nezt7ZGamgo7OzssWLAAiYmJOHz4cM2+GQMKC4Fnz4CnT8F79gy8x4+BR49wcNs2jOjaFSYlJUBODnjN/H6w3r2B/v2BgQPBBgzA/1JT0c/FBXOWLEFycjIOHz6MrVu3Uh5VYB5tUWGbn5+P8PBw+Pj4NDhQQUEBtm/fLvE5eaisrISBgQF27Ngh6mQO1LReXbx4EceOHWvwmoqKCrGJowsLC2Fubo6jR4/C0NCwwfbGxsZif3AZGRmN/nCMjIzQr18/0f1Lly6hupG+QQYGBhg4cKDo/pUrV1BZWSlxWz09PQwePFh0/9q1aygvL5e4rY6ODoYOHSq6Xzt3qyRaWlqwtbUV3b99+zaKiookbquhoYERI0aI7t+9excFTXxjr9tP8N69e8jPz29029r5YMvKyvDWW2/h7t27MDMzw9tvvw09PT2xbW1tbaGlpQUAyM7ORm5ubqP7HXb3LrR9fYHyclQOGoRbW7agss4E319//TVGjRoFOzs7bNq0Cd7e3li4cCFCQ0OxdetWeHl5wc7ODmlpaUhOTkbXrl0xaNAgJCUloW/fvvjxxx9RVVWFnJycRmPo16+faP7F3NxcZGdnN7qtjY0NjP/uv/rixQtk1S57K4GVlRU6deoEoOZv8K233sLYsWMxdepUpKWl4ezZs1izZg0AwNTUFF999RUyMzNhZmYGb2/vBu9rrd69e4sK9aKiIty+fVt8g+pqmH3/PUyjomruBwQAv/yCkspK3Lx5s9F4e/ToIZpcvaysDNevX290W1NTU5iZmQGo+Ru/cuVKo9t27dpV1KJYXV2NS5cuNbqtiYkJLC0tAYjPRyxJp06dYGVlJbp//vz5RreVJkcUFxdj+vTpTSZkrnIp5dGGFJFHv/76a4wbNw6rV68WXVV5++23W5xHv/76a4l/63Xn1c7KysKLFy/Ed8YYtPPyoH/rFqyKiqB59Spw5QrYrVvgNdJvW6itDZ61NXh9+wI2Nsjv3Bl5HTqgskcPVPbogS9/+kksltjYWHzwwQdwcnJCaGgo9u7dC01NTeTk5KCoqAhLliyBvb09/vzzTyQkJGDEiBH46aefYGBgIMqj5eXl8PX1Rffu3WFmZoYHDx5g//79ojxqa2uLn3/+uUEOW716NbZu3SrKo46Ojti2bVujeXT16tVITEyEt7c3kpOTkZ+fj3v37on2U5+lpSVMTEwAADNnzsSWLVtqnqiuxmdvvYXN+MK8AwAA/TRJREFUb7wB3cePofPoETq/fAm9hw9rviA08fOt7NYNbPBgJD14gEWfforSfv1wQyAA/v6Mq4/yaPN5tDEtmhXhxx9/RFpamsSDGBsb4/jx4/jhhx9aFIC08vLyIBAIYGpqKva4qakpnv492X59mzdvhrGxsehmbm6ukNhIy61duxaTJk3C1q1bMXbsWPz444+t3le3yEhoLVlScxnKyQm58fFiRS1QMwG4nZ0dgJpkWrvKzKxZs1BSUiJ6burUqXj8+DFcXV3x9OlT2NjYQE9PD6dOnWry23Vbevvtt3H27FmsXr0aZ8+exdtvvy16buPGjbC3t0dycjKmT58u0/sKLS3k/Oc/yH7vPTANDSAoCBd79MDHq1Y1WiQQ6XCVSymPto2cnBxM+3vRE1lmK8jJycHUqVMB1OSmxr5YC3NycOTf/8YVFxdozJsH68mTMczBAX1Xr4bmf/8LxMTUtNIKBKg2NETxsGHIdXbGw3//G3e+/x5XEhKQceIEqi5dqhlA+u23KPH1xfNRo7Bp1y6sWrcO6enpGDt2LABg7NixKCoqwoYNG2Bra4tjx44hMDAQa9aswdatW2FkZAR7e3u8evUK+vr64PF46NatG06cOCH2ZeTHH3/EG2+8ga1bt2LkyJHIyclB3N+LxyQlJWHcuHESv5ibmZkhLS1NtF1zsxqYmZlh3759sLa2Fq1ImZaWhh49euDrr7/G6tWr8fXXX0vMa9bW1qJjpZ08Cd1+/VA8ahReODnhyZtvoujXX4GzZ4H8fBTfu4ebf/6JrI8+wrOlS1EwcSJyDQwAADrPn0P3yBEsuncPWLoUBmPGYMS0aejv5wfzL76ASWIi9O7erekWQmTTkg65tra27NChQ40+f+jQITZ8+PCW7FJqjx49YgDYyZMnxR7ftGkT69+/v8TXlJeXs4KCAtHt4cOHDADLz89nAoFA4q2uxrahbWXfdt68eUwoFIoenzt3bpP7rbtt7a24sJAdHj5c1PG/6v/+j7Hqaonbrly5ksXFxTGBQMBcXV3F1gWfOHEiS0hIYAKBgCUkJLClS5eyDRs2sNDQUHby5Em2fft2tn79erZjxw5WWVnZ6LkJhcIm462/be0gsLlz57KVK1ey4uJimfdbdy12oVAo8X1tzX5/cXRkVXp6jAHslaUl+zAgQKr9Nvc7oQzbyvv3PT8/v9lBD1zlUsqjbbPtypUrWUJCAmPsn8Glrdlv7X4EgprctGrVKiYoLmYsLY2xL75gbOFCJuzVS+JAKKGGBiswN2fn+vdnbMsWxvbuZcLsbCaorpYqBqFQKHb8uLg4tnDhQiYQCNjChQvF5p1dtWpVg/MPDg5mW7ZsYa+//jpbuHAhS0hIYJs2bWI//fQTe/PNN9ncuXPZiBEjxF43efJkNmHCBNFguJKSEolxFhcXi3Jn7aC5pnJY7fYzZ85kAwcOZIMHD2YTJ05k//d//9fw/a2XP0pKSkTHWrVqVYM83VweLS4uZu+98QZ7Z8IEFm1nx6pef52xiROZkM+X/HPj85lw2jQmfPddxuLjGXv6tNnfy/aaRxvTosLW0NCQPXjwoNHnHzx4wIyMjFochDQqKiqYpqam6I+p1qpVq8RXmGoCjeZVHjLPKlBVxU4PHChKBlf9/FhgE6NVS0tL2YoVK9ioUaPY0KFD2cSJE5mDgwMLDAxkL168EI0s9vDwYB9++CGLi4tjlZWVoonFr1y5wjZu3Mi2b9/OKioqZDjzfyhiZgVFzdYwb948xi5cYKx7d8YA9sjAgLH79+Wyb3UjTZ7hKpdSHm0b8pqtoLS0lH3wf//HPh01ih0ZMYIJxoxhTFu7QTFUDTA2dChjfn7sp8GDGTt9mrGSEsaYbLPO1H/tqFGj2Lx589ioUaOa3O7q1atswoQJbOjQoez1119nixYtYpMnT2Z+fn5swoQJ7I033mCvXr0Sa2SozVeKXCyhfn5s7jwUSiBg7OZNxiIjGVuzhrFp0xgzNJQ8W4OVVc1MP3/8wdiNGzUz2Ki5Nlt5zNjYmJ06darR50+dOsWMjY1bHIS0xo4dy5YvXy722MCBA9natWulej0lZNnJa6qp2sRfu0JYU0spNlBeztjChTV/8JqajIWHM8aYaB+tiU0oFLIjR46w9evXs5SUFNE377or5ty7d499/vnn7Pfff2fFclh+VhHTnilq+h/RB8KdO6ykW7ea975nT8auXZPL/tWJNHmGy1xKebRttThnPn/OWGxszTLXgwZJLnR69KjJgV9+ydixY2zN8uWigs3V1VWsNVWWL7eNfVFu6gt0bSNAeHg4q6ioYCtXrmTffvstS09PZwkJCczW1pZ999137JtvvmEPHjxgNjY2bOrUqSwwMJDt2LFDoVMn1s+xw4YNE53H7t272aRJkzhdnphVVzN29SpjQUGM/etfjA0ezBiP1/Dn360bY25ujP34Y832aljotllhO336dPb+++83+vx7773Hpk+f3uIgpBUdHc20tbVZUFAQu379Olu9ejXj8/ksKytLqtdTQpZdYwmttQWvpDW7m9xPSQljs2fXdD3Q0GBn/l6WNDExkU2aNKlVrZUCgYAlJyez9evXs7S0NNHll/qFLWM166J/+eWX7H//+x/Lz8+Xav/SnjtXy2FKo27B/HFAABPUtpabmNS05BIRafIMl7mU8mjbqvt3vmvXLmZrayue24qKGNuzh7HVq2taXSUVsoMH1yx/HR7O2L17DQqZun+fK1asYCtWrJDLl9vGvig39vjp06fZJ598wnbt2sWqq6sZY4zNnTtXLI8OGzaMRUdHs59//pn5+PiwZcuWKeTLeP3PpBcvXrCJEyeKdUNbsWKF6NiTJk1iO3bsYIwpWT5+9YqxffsY++ijmlbdv7uEid26d2fM07OmIJby71jZtVlhGxcXx7S0tNgPP/wg+qVljLHq6mr2v//9j2lra4t+MRTlp59+YhYWFkxHR4eNHDmSHTt2TOrXUkKWXWOtjK0t0pr6Bt1gPyUljL32Ws0fsoEBK09OFkuIDg4OTe5bkqqqKhYbG8s++eQTdv78ebHnJBW2jNWsi75161b29ddfs2fPnkl1npK02eTqipCXx9jYsTU/i86dqbitQ5o8w3UupTzadurnIce5c9mx775jSRMnMjZ1qsSuBWzoUMZWrWJs1y7GcnM5ilx6QqGQpaamsvXr17P9+/eL9c2s32JbW0zOmTOH2dvbs/Xr17Pbt2/LPab6n0njx49nzs7OzNbWlg0bNoxNnDhRLOcqfOEgGdQt0v/91lus/NAhxj79lDF7e8b09Rv+/jx5wnXIMmuzwpYxxj744APG4/FYhw4d2PDhw9mIESNYhw4dmIaGRpMtEMqAErLsGitgW5sUpO7zVFpa80cM1PRDOnFCqtiaakkuLy9noaGh7NNPP2U3btxosD+hUMgePnzIHj582KATfVFREfvll1/Y5s2bm+wrqdZevWJs3DgqbuuRNs+oai5tr3lUlqtSe6OiGIuNZdmvvcYKJRUilpaMvf46YzExNV0RVIhAIGCJiYls/fr17ISEvFxSUsL8/f3Za6+91uB9q6ysZNu2bWPjxo1jU6ZMkWsXgPqfQTY2NmKfD7a2tmLPK/MVtCZjKy9n7MiRmhbdCRNqvhSpgTZbeazWuXPnEBERgTt37oAxhn79+sHT01M0FYiyohVzZNfYilutXQ2r/v6qqqowZ84c8f1s2VKz8ML+/TVrf+/fD0yaJFVsa9eulRhXcXExIiIikJ+fjyVLlqBbt24tXh2mvLwc0dHRyMnJweLFi8Xm42w3CgqA2bOBM2eAzp2B1FRg+HCuo+JUS/KMKubS9ppHW5zj7t8HEhMhiI8Hjh+HZp15Oqv19HCjZ08MXbMGmDWrZsUqFVRdXY2dO3fi1q1bmD9/PoY387cvaRWu999/H0ZGRtDW1oaBgQEeP34sl5UU6/+81q5di2vXroliOHDgAGbNmoX169djw4YNuHPnDgoLC2FkZIT+/fu36WqSzXF0dERycnKj98VUVzc6N64qkSnPtKQKLikpYW+99Rbr2bMn69q1K/Pw8GC5KnCZpFZ7bWloC/IcBbxixQo2cuRIZmtry1a+8QarnjNH1P2AteCSKWOSW5JfvnzJvv/+e/bVV1+xp39PpdLab+tVVVUsOjqabdiwgWVkZLQoNrVRt+W2S5eaUbvtmDR5RpVzaXvNo81elRIKa65a/Pe/EvvKCvr1Y4dHjGDrxo1j77z9ttQ5Ul4DduV9jLKyMhYSEsI+/fRTdvPmTamOIynP1k79eOjQIbZ+/Xo2duzYBlfIWqP+Z9Ibb7zBdu3axVatWsXi4+NFMbR2bEZbUubWZEVps64Ia9asYQYGBuz1119nq1atYl26dGGLFi1q8UG50l4TsqoR/RELBCxnypSaDwZ9/ZrLLa3dF6tJCP/617/YV199xb7//nv28uVL0XaNfWhVVFQ0O71Xc5fi2oVXrxgbNarmZ2VmpjYDGFpDmjyjyrm0veZRicWFUMjYqVOMvfNOTXeCusWspiZj06cz9t13jN25I9/jyllLj9HSrli1eVRSnq177C+//JKNGzeOxcfHN5jrVFa1he7Qepfq699Xpr61tVR6PEYrtVlha2VlxaKiokT3z5w5w7S0tMQGPyiz9pqQVc28efNqPjDeeosxgFXyeDWjQluhbkLw8/NjGzZsYL/99luD6bokJfbGBo9J0tTgCWUl95ag3FzGBgyo+VDv21c0sXh7I02eUeVc2l7zqCiXzJ3LvnV3Z1UrVzJmbi5ezOrrM+biwtj27Yy9eCGX47bFoKaWHKPu4NmnUvyN182jK1eulDgOom7RdubMGbZhwwYWERHBKisrZTsxCern+rotthJnrSCcaLPCVltbm+Xk5Ig9pqenx7Kzs1t8YC6014SsalatWsVuubvXrMLC47HQerMdtMb169fZp59+yrZt28bKy8sbPC/pG3FLCttakqa7UVYKaQl6+JAxC4uaD3lb25qW3HZGmjyjyrm03ebRS5cYW7u2YcusoSFjS5YwtnOnaFEEeVKmFtvHjx+zr776SjTdoTRfjuvm0eLiYqlaHu/cucM2bdrEgoKCGmwj6xfy+rm+doGekSNHMldXV1ZaWtpuLvcrszYrbDU0NNjzeiM2DQ0N2b1791p8YC6024SshJpKThXffiv60Iixs5P5m/P58+fZJ598wmJjY1lVVZXEGN566y321ltvicUjbWFb/1zOnTsnNkF5c+fLFYW1BN2+zZipac3PcMYMxuS0UpuqkCbPqHIubVd5NDu7ZjnaIUPEi1k+v6aYjY+vmbFFgdriMrQ0x7h//36DBWqkKYhb00DAGGMPHz5kX3zxBfvpp5/EftcUurpiE/fbmjJ+ZrSlNitseTwemzt3LnNxcRHdtLS02KxZs8QeU1btKiEruUaT0+7djGlo1Hx4fPqpTMcoKSlhrq6urG/fvmz+/PlNdj/YtWsXc3V1FYtH2oQs6Vzu3r3LPvvsM/bHH3+IEpSydf5XaEwXLvyzPKS3t1qujNMYafKMKudStc+jRUWMhYYyZmcnvuqTjk5NN4PYWIW0zCqaLIXStWvXJC4pLk0x2NrCljHGcnNz2bfffsu+++470eBKRRWgypajlS2etiZLntFoyQwKPj4+6NatG4yNjUU3Ly8v9OzZU+wxQpqTmZkJJycnAICTkxPu3r0LpKcDS5YAQiHw+uvAhx+2ev+MMSxZsgTa2tr4448/EBAQgA/r7a9uDC4uLigvLxePR4Zzsba2hq+vL16+fIng4GBcv35dbJvbt2+jrKwMgYGBcHR0RGBgIMrKylp9vq2xZcsWpKamwtHREampqdi8ebP8dj5iBLBjB6CpCYSFAR9/LL99qwHKpUpGKASOHgV8fABTU8DXFzhypKaknTYN+OMP4OlTYNcuwM0NMDDgOuIWq536MDk5Gfb29li3bp1Ur0tPT8eOHTswaNAgeHp6QkdHR/SctbU1kpKSAABJSUmwsbGRa8xdunRBQEAAdHR0EBwcjEePHinsmArNh60g8TOSSEf+dbbyUvuWBhVS+220tLSUubq6snlDhrACA4OalpHZsxmTYdBAdXU127FjB+vbty87d+6c6PH63+wV2WJbKy8vj3333XfM0tKShYaGMsYYi4+PZ5MmTWqzb+ScXtL6889/Wrz++KPtjsshdc8zanV+OTmMbdrEmJWVeFeDvn1rHlej2T1a2tIpFArZ0aNH2fr169nevXslDoiVpguDLC22dY/z559/ss8++4xdvXq1XcwQQC22bbxAg6pqrxOLK6PaxRSOHDmCTe+9B6fPPweuX8ejLl3Q6949wMhItF1LFk6orKxETEwMsrKycOvWLbi7uzc6oXrdBR0sLS0BAFlZWaLFHXR1dZGRkQEAGDFiBDQ0JF/gaGzRilpFRUUYP348OnXqBF1dXQwdOhS3bt2Cpqam9JNuy6C1i2fIzccfA59+WjNp+KFDNS1gakzd84zKn191NZCSUtMKu2dPTWstUJNzPDwAPz9g/HiAx+M2TjlrSR4QCoXYt28fzp49ixkzZmDy5MngtfL9EAqFUuVRoOl8X1VVhR07diAzMxPOzs4YOnRoq+JRFc19rqg7WfIMFbaEU/PnzUMij1fzAdOzJ3wGDMC21FTR8y1JxiUlJYiMjEReXh48PDzQvXt3mRIDYwwPHz4EAJibm7c6sQPAihUroKmpCVNTU3Tp0gU3btwAY6zFBWdLC32ghavWKAJjwNKlQFQUYGICnD0LWFm13fHbmLrnGZU9v8ePa4rZP/4AHj365/EpU4B//Qtwda1Z2VBNSVsoVVdXIz4+HtevX4ejoyNGjRol03Fbkkcl5fvaFSQzMzPRp08fTJ48GTdu3ICDgwPGjRsnU2xEebXZymOqTq0uoamJA7WT+uvpsWPffNPgcou0l8/y8/PZ//73P/bll1+yx48ftzoeRV22Ly0tZW+//TYbPnw4Gz9+PDtz5kyrRju35vKUUlzSKi1lbPTomp/14MGMqfHfoLrnGZU6P4GAsYMHGVu4sGbBhNquBiYmjP3nP61eJU9dR6yXl5ezbdu2sU8//ZTdqPfetOacW/qa5hZwSExMZKtWrWIHDhxg69evZ6mpqSoxZzhpuTabFUHVqVRCbg8iIkQfNF8OHy6xuJOmKHv27Bn7+uuv2datW9kLGSdFV3QRKBAIWEJCAlu/fj07efJki1/fmhHBSrNqzaNHTNijB2MAO9OtGwtswbKiqkTd84xKnV9lJWN//84xgLEpU2ryjoS5rFtCKb4syllxcTH77bff2Oeff87u37/f4Pm2+FLd2JK7ddXe/+uvv9j69evZ7t275b5KGeFem82KQIjcpKcDAQE1/3//fbybkYGtW7c2uDTW3EjV7OxsBAcHg8/nIyAgAJ07d5YprPojUW/fvo3q6mqZ9lmXhoYG5s+fj8mTJ2P//v04dOgQWAt6A7VmRLC+vj62bt2K5ORkie9xm+nZE99OnQqBjg7GPn+Ot3JzpR6ZTUhrlFVXY7eVFZItLLBl6VKU7d8PeHoCuroy7VfdRqzn5+cjKCgIhYWF8PPzE405qKs151z7murqajg4ODT7Gkn5vrGcN3HiRLi4uODixYuIjY1FVVVVC8+aqCsqbEnby8ur6c9WXg7Mmwd89lmjmzZVlN2+fRvbt2+HqakpfH19YWhoKHNodZPo7t27YWxsjEuXLkFYO8BEDng8Huzt7TF79mycOHECiYmJUu+/pVPScD2lWH1HiouhGRwMAOgXE4NOf/3FaTxEva1duxYa778Px6wsDHZ3l9sXKUVPc9WWnj17hqCgIABAQEAAunfvLnG71pyztbU1du/ejUuXLuGHH36AtbV1k9tLyvf1c97HH38symnBwcFwdnZGZmYmwsPDRVM2ckHZcm17RoPHSNsSCIC5c4EDBwAbm5qW21bM13nx4kUkJiaif//+cHV1hZaWllzCqzvAwtraGosXL4aenl6zo3lb6/Lly0hISEDfvn2xaNEiaGtry3X/bTkjgjQD20TxHDwI/PADynR0oH/tWs3vgppQ9zyjSuenqIGT6jJi/cGDB4iKikKnTp3g5eUFfhOD51pzzrU54cKFCzAzM8Off/7Z5DGkISmn/ec//0FkZCSMjY2xdOlSGP09q05b4nz2GTVDsyJISZUSstpavx7YuBHQ1wdOnwaGDWvRyxljOHnyJA4ePIhRo0Zh3rx5Cik4gZZNU9NSdYtAExMT9OnTB71798aSJUvk+gFZ/4PcwcEB/fr1a9GsCtKSJrHXfjhm3b6Nby9ehNWTJzW/A6dOqeSk95Koe55RpfOjYqNxN2/eRFxcHMzNzeHh4QFdGbtnNEbeebSxLyvPnz9HeHg4NDU14e3tLXO3NHnFRVpHljxDXRFI29m7t6aoBYDffmtRUVtWVoZVq1Zh/PjxeOeddzB+/Hg4OjoqrKhVtLqrAC1atAgPHz5Ebm4uQkJCUFRUJLfj1L98WFRU1KrVh6QhTR+82kuNCXv3wio9vWaVp8uXgTffrBneQ4gcKdtqUsriwoULiImJQb9+/bB06VKFFbWK0FiXiG7duiEgIACampoICgrCkydPlCIu0vZUsyogqic7G/Dyqvn/8uWAt3eLXv7ee++Bz+dj7ty5cHNzw759+0TzIapi36b6ReCzZ8/g7++PiooKBAUF4cWLF3I5Tv0P9g4dOihs0EuLE3vPnkBs7D/L7oaGyi0WQgAlGjipJBhjOH78OBITEzF69GgsWrRIbt242kpTX1aMjY3h7++Pjh07IjQ0FPfv31eKuEjbosKWKF51NQQeHkB+Pm4bG+MdHk9UfEpTlFZWVuLEiRMwMDCAq6sr1qxZI1aQtXYNdC5JKgK7du0Kf39/aGtrIygoCI/qTiLfSvU/2Pv27auwVoVWJfapU2tWJQOAFSuA69flFg8h5B+MMezfvx+pqamYPn065s6dq5JXvJr7smJgYAAfHx+Ym5sjPDwc19sop9CXKOWher/VRPV88gk0T51ClYEB+l24ALs5c0TFZ3NFaWlpKbZv3w59fX2YmppiyJAhDQoyVZx6p7Ei0NjYGH5+fujcuTO2bduGzMzMNjmuPLQ6sb//PjBzJlBWBri7A6WlcouJEAIIBALs2rULZ86cgaOjI6ZPn95gBTBVvPLVGB0dHSxZsgSDBg3Cjh07cO7cOa5DIm1IZQrbzz77DBMnToSBgQE6duzIdThEWqmpwOefAwC0g4MBKyux4rOporSgoAAhISF4+fIlwsLCREs81i/IFNW3icfjwcTEBCYmJjItpytJU0WggYEBli1bBgsLC0RGRuLq1attclzOaGjUdEXo3h24ehVYvZrriNQW5VHl0VaFZGVlJSIjI3H9+nW4ublh9OjRErdT1JUvRebRpmhqamLhwoUYN24c9uzZg6NHj7ZoznCiulSmsK2srISbmxuWL1/OdShEWs+f1/SrZQwnBw9G0t+j3usWn40Vpbm5uQgKCkJVVRX8/f1hbW3daEGmqFZIHo8HS0tLWFpatmlCBmpaHDw8PDBkyBDs3LkTZ86cadPjtzlTUyAiAuDxgD/+AKKiuI5ILVEeVR5t0YWqtLQU27ZtQ05ODry8vDBo0KBGt1XUlS9JebStinoej4fZs2djxowZOHr0KPbu3SvXOcmJclKZwnbDhg3497//jaFDh3IdCvlbk8mJMcDfH3j6FBg0CCOOHZNYfEoqSnNychAcHAw9PT0EBASgS5cuTcahlK2QcqCpqQlnZ2dMmDABKSkpOHz4sFK1OMj9w+m114D//hfo3BlQ8mmkVBXlUeWh6C5Ur169QnBwMF69egVfX1/06dOnye3bclR/W46L4PF4mDJlCubPn4/09HTExcXJdTVJonxUprBtjYqKChQWFordiPw0mZx++w3Ys6dm6croaOibmEgsPusXpTk5Odi2bRu6du0KPz8/TibarksoFHL6DZ/H42HWrFmYOXMm0tLSkJycrDQtDgr5cPr4Y+DKlZoV6YhSoDyqGIosJJ8/f47g4GAIBAIEBASgR48ezb5Gkf3v6+dRLsZFjBw5Eu7u7rh9+zYiIiJQUVGh8GMSbqh1Ybt582YYGxuLbubm5lyHpFYaTU63bgHvvFPz/y1bAClbhy5fvoyoqChYWVnB29tbrOW1qdZBRV3Wqp1YPCMjg/NictKkSXB2dkZGRgZ27NihFC0OCvlw0tSsmQaMKA3Ko4qhqELy4cOHCAkJgYGBAfz9/aVeqEBRV74k5VGu5nwdMGAAvL298eTJE4SGhqK4uLhNjkvaFqeF7SeffAIej9fkLT09vdX7X7duHQoKCkS3hw8fyjF6IjE5VVXV9KstKwNmzABWrQIgXnyuWLECK1asECtET506hV27dsHW1hbu7u4NlpZtqnVQFaf7ao3hw4fDw8MDd+7c4XxddIAmJFcWlEdVkyIKydu3b2P79u3o1q0bfH19Ob/i1Rgu53y1sLCAn58fiouLERwcjPz8/DY7NmkbnC6pm5eXh7y8vCa3sbS0hJ6enuh+aGgoVq9ejVevXrX4eKq0FKQqkLh2+ObNNfOSduxYc0nZzAyA+NKW8fHxiIiIQFxcHBITExESEgJbW1tMnjwZM2bMkDhQq6nlChW1lKEil9SVRXZ2NiIjI9GxY0fO1kUHWrd2fHvQ1nmG8igBgIsXLyIxMRH9+vVTqoUXlDWP5ufnIzw8HBUVFfDy8kL37t25DonUIUue4fQ3v0uXLs0ODCLKq7bFQeTsWeCzz2r+/+uvoqIWqLls/f333wMAXFxcEBQUBKFQCMYYrl27hvfffx/jx49v9Fi1rYO1a77XbR1s6jl11Lt3b/j7+yMsLAzBwcGcrIsOSPj5E05QHiV//fUXDh48iJEjRypkqfGysjKsXbsWmZmZsLa2xpYtW1T+S2ynTp3g7++PiIgIhISEYMmSJbC0tOQ6LCIHyvHVSQrZ2dm4ePEisrOzIRAIcPHiRVy8eJH6yCiL8nIIfXwAoRBHe/ZE4MmTYn1d6162jo+Ph46ODmJiYhAbG4sxY8Y0WdQCTV+6ao9LGXK9LjpRTZRH1UtpaSmcnZ3h5+eHy5cvw97eXiEtoura3YvP58PHxwe9evVCeHg4bty4wXVILaJOi2rIE6ddEVrC19cX27Zta/D4kSNHMH36dKn2QZfQFGjtWuCLL1DesSP07t5F0smTSE1NFbXo1b1sbWZmhtu3b+PRo0cYP348fv31V6X89q+sl9DqKi0tRUREBPLy8uDh4dHslD5E8ZQ5z1AeVR8CgQALFiyAkZERVq9ejefPn4vlXHmSpbuXKuTR6upqxMfH4/r163BycsLIkSO5Dkkqdbv4JSUlKeznzwVZ8ozy/YY1IjQ0FIyxBjdpkzFRoLNnga++AgDohYQAJiYNRsnXXraOiorCgAEDUFFRATMzM1r9SEa166KbmZm16broRDVRHlUPVVVViI6Oxp07d/DBBx9g3LhxCp02S90HimppacHV1RVjxoxBYmIi0tLSlGrO8Mao4nLybUFlCluipMrLAV9fQChEev/+SNLUBCA5+b148QJBQUHYtWsXli9fjtTUVKW/rNWpUyd06tSJ6zCapKOjA09PT9G66LKMgCeESKetLwPXHs/BwQEODg64e/cuxo8fj6ysLACKLThl7e6lCnlUQ0MDDg4OsLOzw+HDh7Fv3z6lL27V/QtHa6lMVwR5oEtoCrBuXc1ctaamKEtPx7qvv5Y4Sv7Ro0eIiIgAn89HYmIi9u/fL9qFvGYxaO8YY9i/fz9Onz4NOzs7TJ06tc2XAibqn2fU/fyk1daXgQMDAzFx4kTk5eXh3Llz0NLSwg8//EAzkyhAeno69uzZg8GDB8PFxQWafzfYKBt1nplGZWdFICru4kVRFwT8+iv0zcwkJvbMzEzExMTA1NQUnp6euH37druaxaCt1K6LzufzkZqaipKSEsyZM0cp+7QRogxkGe1fd6YXJyen/2fvzsOautI/gH/DDmFRxLUsIor7glotdcMNV1xBEIJAMv11F6fTaW1nOtZOW53WmbHTTlvbISiETRYRUdy32rqh4oYbKCAKiuyENeT8/mDIgCwGCNws7+d58miSm3vfG5L3vjn33HOwY8eO7gwVt27dUly1v23bNgQGBtLIJN1k8uTJ4PP5iIuLQ1VVFdasWQNjY2Ouw2qB/v6toyMe6Zz6euC11xr+9fQEVqxo9nTjabNZs2ZBIBBg4MCBWLduHUxNTXVyFIOe0nRe9IsXLyI+Pl4tZikjRB115Wr/njwNnJubi8rKSty9excikQhnz56lBoFuNnLkSAgEAsU071KplOuQiJKoKwLpnH/+s2HaXCsr4NYt4Lm5yIODg2FnZwepVIqamhpUVFTgX//6F0fBdo4mXM3bntu3byMuLg729vbw9vZWyxYHbaTteUab9q8rV/v31GngjIwMxMTEoE+fPrhx4waysrI06rSzpufRvLw8REREwNjYGP7+/nTBcw+hrgikZ2VlAX/+c8P/v/66RVHLGMP58+fRu3dvuLq6wt3dHePGjcP06dNhaWmJYcOGacUA3+qucV70qKgo7Ny5EwKBAHw+n+uwCFEbXZncpSdOA1+/fh179uzB0KFD4eXl1WKqcdL9Bg4cqJgQJyQkBAKBAP379+c6LNIOzfrpRLjHGPDGG0BlJTBrFiASNXtaLpcjOTkZjDGYmppiwYIF2Lt3L6ysrPD+++/jwIEDaj8SgjZxcHBAYGAgysvLERISQvOiE9KEOneLOnfuHOLj4zFu3Dh4e3tTUcsha2triEQi8Pl8hIaGIicnh+uQSDuosCUdExsLHDoEGBsDP/0ENDmtJJPJsHv3bly5cgXffPMN8vLyMG7cOJw8eRIWFhZY8d9+uDTeXs8aMGAARP/9ARISEoL8/HyOIyJEPTS2uiYnJ2P79u1qcRaJMYajR4/i4MGDmDZtGpYvX662V+XrEnNzcwQGBmLAgAEICwvDnTt3uA6JtIEKW9IxixYB774LbNoEODsrHq6uroZEIkFmZiZ8fHzwyiuvYPv27Zg9ezbmzp0LZ2dnJCYmAqDx9rjQOC+6hYUFQkNDkZ2dzXVIhJDnyOVy7Nu3D2fOnMGCBQswf/58GrJPjZiYmEAgEGDYsGGIiYlR9B0m6oUuHiNdVl5ejoiICJSUlMDX1xf29vaK5xovsLhz5w7Ky8thaWkJZ2dnjbjwQdMvemhNTU0NoqOj8fDhQ3h6emLEiBFch6R1tD3PaPv+caWurg5xcXG4d+8eli9fjvHjx3MdkkpoYx6Vy+U4cOAAUlNTMX/+fLz66qv0A0TF6OIxwpmioiKEh4dDJpNBKBSiX79+zZ6ncfbUi7GxMfz8/LBnzx7ExMRo1LzohGir6upqREVF4fHjx1i7di2GDRvGdUikHXp6eliyZAn4fD6OHDmCiooKuLu7U3GrJqiwJZ2Wl5cHiUQCU1NTBAQEaOUwKFZWVlyHoHKN86KbmZkhKSkJUqkU06dPp6RMCAfKy8shkUhQVlaGgIAA2Nrach2SymljHuXxeJg9ezb4fD5SUlIglUqpP7SaoMKWdMqDBw8QHR0NGxsb+Pn5wczMrMPr6MqsPz1BT09Pa/sC6+npYfHixc1mKVuwYAEVt4T0oMLCQoSHh0Mul0MoFKJv375ch6Ry2pxHAWDKlCng8/lISEhAVVUVvLy8YGRkxHVYOk3zO7uQHpeeng6JRAJbW1sEBAR0qqgFujbrD+k6Ho8HNzc3LFmyBOfPn0dCQgLq6+u5DosQnfD48WOEhITAwMAAIpFIK4taXTF69Gj4+fkhOzsbYWFhqKys5DoknUaFLemQ1NRUxMbGYtSoUfD19e3SL9PMzEx4eHgAaBgC7JdffkFVVZWqQiVKevnll+Hl5YX09HRERkaitraW65AI0Wr379/Hzp07YW1tDaFQqJWn6nXNkCFDEBgYiOLiYoSGhqK0tJTrkHQWFbZEKYwxnDx5EsnJyZgyZQpWrVrV5b5ETk5O2LNnD4CGIcAcHR3VqtW28WreK1euQC6Xcx1Otxo1alSzedGpxYGQ7nHjxg1ERETAwcEB69at6/QZL02hS3l00KBBEAqFqKurQ0hICAoKCrgOSSdRYUteqHFok5MnT2Lu3LlYuHBhh/tiVlVVITg4GEuXLkVwcDCqqqqwdetWbN68WTHrT3h4uNpN3CCXy7U+GTdydHREYGAgSkpKIBaLUVJSwnVIhGiVCxcuID4+HqNHj4aPj4/O9MXUpTzap08fiEQimJqaQiwWIzc3l+uQdA4VtqRdMpkM8fHxSE1NhYeHB2bMmNGpC4xa609ramqKWbNm4fXXX8f27dtx9OhRrb7IQBMMHDgQIpEI9fX1CAkJwdOnT7kOiRCNxxjDiRMncODAAbzyyitYuXIlXT2vxSwsLBAUFIS+ffti165duHfvHtch6RQqbEmbampqEBkZiTt37sDb2xuTJk3q9Lqe70/b2DKrznO166rGfn98Ph9isZjmRSekC+RyOZKTk3Hq1CnMnz+fxjvVESYmJvD398eQIUMQFRWFa9eucR2SzqDClrRKKpVi586dePToEQQCQZdnqHJycsK+ffsANJ9SVx3naicNLQ6BgYHo378/wsLCcPfuXa5DIkTjyGQyxMbG4sqVK1i+fDmmTZtGRa0OMTQ0hLe3N8aPH4+EhAScPXuW65B0AhW2pIXi4mKIxWKUl5cjKCgIgwcP7vI6qWVW8zS2OAwdOhTR0dFIS0vjOiRCNEZ1dTUkEgnu3bsHb29vuLi4cB0S4YCenh6WLVuG6dOn49ChQzhy5AgYY1yHpdU0orDNysqCSCSCo6MjTE1N4eTkhE2bNtGwRN0gPz8fISEhYIxBJBJhwIABKlkvtcxqJgMDA6xZswYuLi5ITEzEr7/+ynVIpJMoj/aciooK7Ny5E/n5+Vi3bh2GDx/OdUiEQzweD/PmzcPChQvx66+/IikpSWcupuOCRsw8dvv2bcjlcuzYsQNDhw7FjRs38Nprr0EqlWLbtm1ch6c1srOzERkZCWtrawgEAvD5fK5D4pyFhQXXIXBOT08PS5cuVcyLLpVKMX/+fDqlqmEoj/aMoqIihIeHQyaTQSgUol+/flyHxDnKow1eeeUVmJmZITExEZWVlfD09IShoSHXYWkdHtPQNvGvv/4aP/zwA+7fv6/0a8rKymBlZYXS0lJYWlp2Y3Sa5/bt24iLi4OdnR18fHxgbGzMdUhEDZ0/fx4HDx7EuHHjsGzZMrqyuxWalGcoj6pWXl4eJBKJohtPr169uA6JqKGMjAzExMRg4MCBWLt2LZ3BbEVX8oxGdEVoTWlpKaytrdtdpqamBmVlZc1upKXLly8jJiYGw4cPh5+fHxW1pE1Tp07F6tWrcePGDURHR9NpbA1HeVR1Hjx4gJ07d6JXr14QCoVU1JI2DR06FAEBASgoKEBoaCh9p1RMIwvbzMxMfPvtt3jjjTfaXW7Lli2wsrJS3Ozs7HooQs3AGMPp06eRlJSEyZMnY/Xq1TAw6JneKa1N2EA0w5gxY+Dr66uYF53+dpqJ8qjqpKenQyKRwNbWFgEBAdSNi7yQra0thEIhampqIBaL8ezZM65D0hqcFraffvopeDxeu7fU1NRmr3n8+DEWLlwILy8v/O53v2t3/R999BFKS0sVt4cPH3bn7mgUxhgOHjyI48ePY/bs2Vi8eDH09Hru49DahA3qRi6X4+rVq7h69Sp19H+Ok5MTAgICUFRUBLFYTC0OHKI8yq3U1FTExsZi5MiR8PX11ZnZxJRFebRtffv2hVAohKGhIcRiMR49esR1SFqB0z62z549e+GvlMGDB8PExARAQzKePXs2pk6dip07d3a4EKO+YQ3q6+uxZ88e3Lx5E0uWLMHkyZN7PIalS5ciOTm5zfvqoHGOcwBwcXHp0cJfUzx79gwSiQSMMQgEAvTt25frkDjX03mG8ig3Gs94nThxAlOnTu3UVOO6gPLoi1VWViIyMhJPnz6Ft7c3nJycuA6Jc13JM5yOimBjYwMbGxulln306BFmz56NSZMmITQ0lL4cnVRbW4uYmBhkZWXBy8sLo0aN4iSOxgkbPDw8mk3YQDSLjY0NhEIhJBIJxGIx/Pz8YGtry3VYOoXyaM+Ty+U4ePAgLly4gLlz52L69OlU1JJOMzMzw7p16xAbG4vIyEisXLkSY8aM4TosjaURWe3x48dwc3ODnZ0dtm3bhoKCAuTn5yM/P5/r0DSKVCrFrl27kJubC4FAwFlRC9CEDdrE0tKy2bzojdMlE/VCeVQ1ZDIZ4uPjcfHiRXh4eGDGjBlU1JIuMzIygo+PD8aMGYP4+HicP3+e65A0lkaMY3v48GFkZGQgIyOjRWuQho5W1uNKSkoQHh6OmpoaBAYGYuDAgZzG0zhhA9EOpqam8Pf3R1xcHCIjI7FixQqMGzcOQMOFghs3bkRmZiacnJywdetWGt6GA5RHu66mpgYxMTHIycmBt7d3l6caJ6QpfX19rFixAnw+HykpKZBKpZg9ezb9cOogjWixDQwMBGOs1Rt5sadPnyIkJARyuRxCoZDzopZop+fnRT937hwAzbhQUBdQHu2axjNejx49gkAgoKKWdAsejwd3d3fMnz8fp0+fxr59++iiuw7SiBZb0nk5OTmIjIxEr169IBAIYG5uznVIRIs1zovO5/Nx8OBBVFRUICMjA9988w0AwMPDAzt27OA4SkI6pri4GBKJBDU1NQgKClLZVOOEtGXatGng8/lISkpCZWUlVq9eTbOUKUkjWmxJ59y9exdhYWEYMGAAAgMDqajtBDMzM5iZmXEdhkZpnBd9wYIFOHPmDHg8Hvbu3QsAdKEg0ThPnjyBWCwGYwwikYiK2k6gPNo5EyZMgI+PDzIzMyGRSFBdXc11SBpBY6fU7QxdGqYmLS0NSUlJGD58eI9OvEBIU9euXUNsbCxSU1PB4/Hg7OyMLVu2aHUfW23PM9q+f01lZ2cjKioKvXv3hp+fHzUOEE48fPgQERERsLKygkAggIWFBdchdTuNHe6LdI9ff/0VR44cwaRJk7BkyRIa0odwZty4cTA1NYWJiQkGDRqEtWvXKsZTJUSd3b59G3FxcbCzs4OPjw9NNU44Y2dnB6FQiPDwcIjFYvj7+79wKmxdRhWPFmGM4fDhwzhy5AhmzpyJpUuXUlFLODds2DAEBATg6dOnEIvFKC8v5zokQtp1+fJlxMTEwNnZGX5+flTUEs7169cPIpEI+vr6CAkJQV5eHtchqS2qerREfX09EhMTcfbsWSxatAhz5syhIUK6SC6X4/r167h+/TpdldpFjfOiV1dXIyQkBIWFhVyHREgLjDH88ssvSEpKwqRJk+Dp6UnduLqI8qjq9OrVC0KhEL169cLOnTvx4MEDrkNSS1TYaoHa2lpER0fjxo0bWL16NaZOncp1SFqjtrYWtbW1XIehFfr27QuRSARDQ0OEhITg8ePHXIdEiAJjDIcOHcKxY8fg5uZG3bhUiPKo6piZmSEgIAB2dnaQSCRIT0/nOiS1Q99aDVdZWYmwsDBkZ2fD19eXpuEjas3KygpBQUGwtrbGzp07cf/+fa5DIgT19fVISEjA+fPnsWTJEri5udEZL6K2jIyMsHbtWowaNQqxsbG4ePEi1yGpFSpsNVhpaSlCQ0NRVFSEgIAAODk5cR0SIS/UOC+6g4MDIiIicOPGDa5DIjqstrYWUVFRSE9Ph6enJ15++WWuQyLkhfT19bFq1SpMnToV+/fvx8mTJ2mylf+izkMaqqCgAOHh4dDT04NQKISNjQ3XIRGitMZ50ffu3Yv4+HhUVlZiypQpXIdFdExlZSUiIiJQUFAAgUAAR0dHrkMiRGk8Hg8LFiwAn8/HsWPHIJVKsWjRIp3vQkOFrQbKzc1FREQELCws4O/vrxNj2hHto6+vj5UrV4LP5+PAgQOQSqV0Cpj0mJKSEkgkElRVVSEwMBCDBg3iOiRCOozH42HGjBng8/nYt28fpFIpVq1apdMXPerunmuojIwMxMTEYODAgVi7dq1WD3RPtF/jvOjm5uY4cuQIKioq6KId0u2ePn0KiUSiOOPVp08frkMipEsmTpwIMzMzxMXFISIiQqfHXqajhwa5du0aIiMjMWTIEPj7+1NR2wNMTExoQoFuxuPxMG3aNCxfvhxXrlxBbGwsZDIZ12ERLfXw4UOEhobC1NQUIpGIitoeQHm0Z4wYMQL+/v7Iy8vDzp07UVFRwXVInKApdTXEuXPncPDgQbi4uMDDw4NatIhWunPnDmJjY2FrawsfHx+NPBhqcp5Rhibv3927dxEbG0uz4BGt9uTJE4SHh8PIyAj+/v7o3bs31yF1WFfyDFVHao4xhqNHj+LgwYOYPn06li1bRkUt0VrDhw/HunXrkJ+fr9MtDkT10tLSEB0dDScnJ/j7+1NRS7RW//79IRKJwOPxEBISgvz8fK5D6lFUIakxuVyOpKQknDlzBgsWLMC8efPowhqi9ezt7SEUCiGVShESEoKioiKuQyIa7rfffkNiYiImTJiANWvW6PSFNUQ39O7dG0KhEJaWlggNDUVWVhbXIfUYKmzVVF1dHWJiYnD16lWsWrUKrq6uXIekc+RyOW7evImbN2/SVJA9rHFedD09PZoXnXQaYwyHDx/G4cOHMXPmTOrGxQHKo9zh8/kICAjASy+9BIlEglu3bnEdUo+gb7gaqqqqQnh4OO7fv4+1a9di3LhxXIeks6qrq1FdXc11GDqJ5kUnXVFfX4/ExET89ttvWLRoEebMmUNnvDhCeZQ7xsbG8PX1xfDhw7F7925cvnyZ65C6HRW2aqa8vByhoaEoKChAQEAAhg0bxnVIhHCmscXB1taW5kUnSms843Xjxg2sXr0aU6dO5TokQjhjYGCA1atX4+WXX0ZSUhJOnz6t1bOUUWGrRgoLCxESEoKamhoIhULY2tpyHRIhnDMyMoKvry9GjhyJ2NhYpKamch0SUWNVVVUICwtDVlYWfH19MXbsWK5DIoRzenp6WLRoEWbPno3jx4/j4MGDWlvcUg96NfHo0SNERESAz+dDIBDAysqK65AIURv6+vpYvXo1+Hw+kpOTUVFRgVmzZtGpZdJMWVkZwsPDIZVKFX0LCSENeDweZs2aBT6fj/3790MqlWLlypXQ19fnOjSV0pgW22XLlsHe3h4mJiYYOHAg/P398fjxY67DUonMzEzs2rUL1tbWCAoKoqKWkFbweDwsXLgQc+bMwcmTJ3HgwAG6GKWDtDmPFhQUICQkBLW1tRAKhVTUEtKGyZMnw8vLC7du3UJkZCRqa2u5DkmlNKawnT17Nnbv3o07d+4gPj4emZmZ8PT05DqsLrtx4wYiIyPh4OCAdevWwczMjOuQCFFbPB5PcXV7amoq4uPjaZayDtDWPJqbmwuxWAxjY2OIRCLY2NhwHRIham3UqFEQCATIzc3Frl27IJVKuQ5JZTR25rGkpCSsWLECNTU1MDQ0VOo16jZjzoULF5CSkoKxY8di+fLlWnc6QNM1DlMDAKNHj6ZhgtTMrVu3EB8fD3t7e3h7e6vNvOjqlmfaow15NCMjAzExMRgwYAB8fX1pqnE1Q3lUveXl5UEikcDExAT+/v7o1asX1yEB6Fqe0cjCtqioCG+++SYePXqEM2fOtLlcTU0NampqFPfLyspgZ2fHeUJmjOHEiRM4ffo0XF1d4e7urvF9Bevr61FXV8d1GKSDjIyMNPpAk5WVhaioKFhbW0MgEIDP53MdktoVfm3R9DwKANeuXUNiYiKGDh0KLy8vpYtzdUV5VDNpeh4tKipCeHg4ZDIZ/P390a9fP65D0p3C9sMPP8R3332HyspKvPLKK0hOTkafPn3aXP7TTz/F5s2bWzzOZUKWy+XYv38/Ll26hPnz5+PVV1/V6KKWMYb8/HyUlJRwHQrpBD09PTg6OsLIyIjrUDotPz8fEolEbeZFV/fCVhvyKACcO3cOBw8exIQJE+Dh4aHRZ7woj2o2bcijFRUVkEgkKCkpga+vL+zt7TmNR2ML27YSZlMXL17E5MmTAQDPnj1DUVERsrOzsXnzZlhZWSE5ObnNwlDdWhpkMhni4+Nx584dLFu2DBMmTOjxGFQtLy8PJSUl6NevH8zMzDS6SNc1crkcjx8/hqGhIezt7TX6b1dcXIzw8HDU1tbC398f/fv35yyWni5sdS2PMsZw7NgxnDlzBtOmTdOKqcYpj2oubcqj1dXViI6ORm5uLtasWQNnZ2fOYtHYwvbZs2d49uxZu8sMHjwYJiYmLR7Pzc2FnZ0dfvvtN6Wnm+WyJaXpB8bLywvDhw/v0e13h/r6ety9exf9+vVrt8VHUzHGFLPlmJiYaHTCaktpaSkeP36MoUOHavxp3IqKCkRERKC4uBhr166Fg4MDJ3H0dJ7RpTwql8uxb98+XLlyBe7u7nj11Vd7dPvdgfKo5tOmPKouDXBdyTOcjmNrY2PT6atXG+vxpi0J6qppE/+6des4b+JXlca+YNo8koO2DyfVeOqsvr5e4xOyubk5AgMDER0djfDwcHh6emLEiBFch9XtdCWP1tXVIS4uDvfu3cPKlSsxfvx4rkNSCcqjmk+b8qiBgQG8vLywf/9+JCYmQiqVYtq0aVyH1SEaMUHDhQsXcOHCBUyfPh29e/fG/fv38Ze//AVOTk5KtzJwpWmnbKFQqBadslVNG3+B6wpt+9sZGxvDz88PCQkJiImJgYeHByZOnMh1WGpBk/NodXU1oqKi8PjxY6xdu1YrpxrXtu+iLtG2v52enh6WLl0KPp+PI0eOQCqVYv78+RqznxpR2JqamiIhIQGbNm2CVCrFwIEDsXDhQkRHR6vNED+taRxGw9TUFAEBAWozjAYh2szAwACenp5ISUlBUlISpFIppk+frjFJubtoah4tLy+HRCJBWVkZ1q1bBzs7O65DIkTr8Xg8zJkzB3w+HwcPHkRFRYXGDEuqEYXt2LFjcfz4ca7D6JAHDx4gOjoaNjY28PPz0+rTTISoGz09PSxevBh8Ph/Hjh2DVCrFggULdLq41cQ8WlhYiPDwcMjlcgQFBWnlGS9C1NnUqVPB5/OxZ88eVFVVwcvLS+1Hf9DcgdfUWHp6OiQSCWxtbREQEEBFLWnV999/D0dHR5iYmGDSpEn45Zdf2l3+hx9+wLhx42BpaQlLS0u4uroiJSWl2TIymQx//vOf4ejoCFNTUwwZMgSfffaZ1vdxaw2Px4ObmxuWLFmC8+fPIyEhAfX19VyHRZT0+PFjiMViGBgYQCQSUVFLWtXRPKrMawYPHgwej9fi9vbbb3fXbqi1MWPGwNfXF9nZ2QgLC0NlZSXXIbWLClsVS01NRWxsLEaNGgVfX1+1/2VDuBETE4MNGzbgT3/6E65cuYIZM2Zg0aJFyMnJafM1tra22Lp1K1JTU5Gamoo5c+Zg+fLlill9AOBvf/sbfvzxR3z33Xe4desWvvrqK3z99df49ttve2K31NLLL78MT09PpKenIyoqSuvmRddG9+/fx86dO9G7d28IhUJYWVlxHRJRQ53Jo8q85uLFi8jLy1Pcjhw5AgDw8vLq9n1SV05OTggICEBRURFCQ0NRWlrKdUhtYzqktLSUAWClpaUqX7dcLmcnTpxgmzZtYgcOHGByuVzl21A3VVVVLD09nVVVVXEdSqedP3+ezZo1i5mYmLDhw4ezCxcusB07djAPDw8ml8uZVCplUqlU5X/PKVOmsDfeeKPZYyNGjGAbN27s0Hp69+7N/vOf/yjuL1myhAmFwmbLrFq1igkEglZfrw1/Q2Xdv3+fffHFF+ynn35iUqm027bTnXlGHXT3/t24cYN99tlnLDw8nNXU1HTLNtSJNnwHNSmPduY1wcHBzMnJqc34teFvqKxnz56xf/7zn+zvf/87e/r0abdtpyt5hlpsVUAul+PAgQM4efIk5s6di4ULF+puXz7GAKm052+dGI753LlzmDVrFhYuXIhr165h1KhR+PTTT/H1119j8+bN4PF4MDMzg5mZGbZs2QJzc/N2b8qcAgOA2tpaXLp0Ce7u7s0ed3d3x2+//abUOurr6xEdHQ2pVNrsivbp06fj2LFjuHv3LgDg6tWrOHPmDBYvXqzku6K9HB0dERgYiJKSEojFYprlSQ1duHABcXFxGD16NNauXau7Z7y4yqOdyKWalEc7+xqJRAKhUKi7x/Um+vTpA5FIBBMTE4jFYjx8+JDrkFrQiIvH1JlMJsOePXuQnp4ODw8PTJo0ieuQuFVZCZib9/x2KyoAPr9DL3nvvfewevVqbNy4EQDg4+ODtWvXYvny5XBxcWm27BtvvIE1a9a0u76XXnpJqe0+e/YM9fX1LWbH6t+/P/Lz89t97fXr1+Hq6orq6mqYm5tjz549GDVqlOL5Dz/8EKWlpRgxYgT09fVRX1+PL774AmvXrlUqNm03aNAgiEQihIeHQywWQyAQUN9NNcAYw8mTJ3Hq1Cm4urrC3d1dt4sIrvIo0OFcqkl5tDOvSUxMRElJCQIDA5WKSxdYWFggKCgIUVFRCAsLw5o1a9RqCD4qbLugpqYGMTExyMnJgbe3t04MBq8tcnNzcfbsWXz99deKx4yMjMAYa3V6Umtra1hbW3d4OxEREXj99dcV91NSUuDk5ASg5diHjLEXHsyHDx+OtLQ0lJSUID4+HgEBATh16pSiuI2JiYFEIkFkZCRGjx6NtLQ0bNiwAYMGDUJAQECH49dG1tbWEAqFkEgkCA0Nha+vLw0hxSG5XI79+/fj0qVLmD9/Pl599VXdLmo1iKbm0Y68JiQkBIsWLcKgQYM6HLc2MzU1hb+/P+Li4hAVFYUVK1Zg3LhxXIcFgArbTpNKpZBIJCguLoa/vz9n03eqHTOzhl/8XGy3A27dugUAmDx5suKxO3fuYMqUKRg7diyAhmTXOCPT3//+d2zZsqXddaakpGDGjBnNHlu2bBmmTp2quP/SSy9BX18f+vr6LVoInj592qIl4XlGRkYYOnSoIvaLFy/im2++wY4dOwAAf/zjH7Fx40b4+PgAaBjiKTs7G1u2bKHCtonnWxy8vLw4nRddVzWdvrO1Fj6dxVUebdy2kjQtj9rY2HToNdnZ2Th69CgSEhLajVlXGRoawtvbG/v27UNCQkKLrnFcocK2E4qLixEeHo7a2loEBgZiwIABXIekPni8DncJ4EJpaWmzgaaLiorw1VdfYcyYMc2Waxwe6o033oC3t3e762ztFJqFhQUsLCxaPD5p0iQcOXIEK1euVDx25MgRLF++vEP70fSgAQCVlZXQ02vedV5fX18nh/t6ERMTEwgEAsTHxyM6OprTedF1UXV1NaKjo5Gbmwtvb28MHz6c65DUB+XRZlSVR42MjDr0mtDQUPTr1w9LlixpN2Zdpqenh2XLloHP5+PQoUOoqKjAvHnzOD3rQoVtB+Xn50MikcDIyAgikQi9e/fmOiTSCRMmTEB9fT2++uoreHl5ITg4GA4ODrh16xays7NbtMBbW1ujT58+Ktv+e++9B39/f0yePBmurq746aefkJOTgzfeeEOxzHfffYc9e/bg2LFjAICPP/4YixYtgp2dHcrLyxEdHY2TJ0/i4MGDitd4eHjgiy++gL29PUaPHo0rV67gH//4B4RCocpi1yaGhoZYs2YNkpOTNXZedE1UUVEBiUSCkpISrFu3Dvb29lyHRDpBE/OoMq8BGrrIhIaGIiAgAAYGVCq1h8fjYd68eTA3N8fBgwdRWVkJDw+PFo0sPUZ1gzOov64OU5OVlcW+/PJL9uOPP7KKigoVR6d5NH2Ik88++4z16dOHmZiYsICAAFZQUMAmTpzIhg4dyhhrGMKtoqKCVVRUdMvwbf/+97+Zg4MDMzIyYhMnTmSnTp1q9vymTZuYg4OD4r5QKFQs37dvXzZ37lx2+PDhZq8pKytjwcHBzN7enpmYmLAhQ4awP/3pT20Om6Tpf0NVkcvl7NixY2zTpk3s0KFDXfp703Bf7SssLGTbt29n27ZtY/n5+SqOTvNo+ndQ0/KoMq9hjLFDhw4xAOzOnTsvjEHT/4aqdPXqVbZ582YWGRnJamtrO72eruQZHmOdGCdJQ5WVlcHKygqlpaWwtLTs0Gtv376NuLg42NnZwcfHR63nVu8p1dXVePDggWIGF23DGFPMsGJmZqaVF7Ro+9+wo86fP4+UlBSMHz8ey5Yt69S86F3JM5qgK/vXeMbL2NgY/v7+6NWrV/cEqUG0/TtIeVT3ZGRkICYmBgMHDsTatWthamra4XV0Jc/QOLZKuHz5MmJiYjB8+HD4+flRUUuIlpo6dSo8PT1x48YNxMTEoK6ujuuQtEZWVhZCQ0NhaWkJoVBIRS0hWmro0KEICAjAs2fPEBoairKysh7dPhW27WCM4ZdffkFSUhImT56M1atXU18bQrRc47zoWVlZCAsLQ1VVFdchabxbt24hPDwcL730EgICAsDXgAujCCGdZ2trC6FQiJqaGojFYjx79qzHtk2FbRsYYzh48CCOHTsGNzc3LF68mLuO0IQzPB5PK0+dkfY1zoteWFgIsVjc4y0O2uTSpUvYvXs3Ro4cSWe8dBTlUd1kY2MDkUgEQ0NDiMViPHr0qEe2S5VaK+rr65GQkIALFy5g6dKlcHNzoy+lDmo6FST9/XXPSy+9BKFQiNraWoSEhPRoi4M2YIzh9OnT2LdvH15++WWsXr26U32WiWajPKrbLC0tERQUBGtra+zatQuZmZndvk0qbJ9TW1uLqKgopKenw8vLq9nA06R1OnT9odahv137GlscjI2NIRaLkZuby3VIGoExhpSUFBw/fhxz5szBokWLqKh5Afouai7627XPzMwM69atg4ODAyIjI3Hjxo1u3R4Vtk1UVlZi165dePjwIQQCgWKaUtI6Q0NDAFBc8Uo0T21tLQBQS1o7GlscbGxssGvXLmRkZHAdklprnE3s4sWL8PDwwMyZM6mobQflUc1HefTFjIyM4OPjgzFjxiA+Ph7nz5/vtm3RlVD/VVJSAolEgqqqKgQGBmLgwIFch6T29PX10atXLzx9+hSA9g3lwhhTJCwjIyOt2jegYQDygoICmJmZ0UWRL9A4L3psbCwiIyOxcuVKxZSh5H9qamoQExODnJwcrFmzBiNHjuQ6JLVHeVSzUR5Vnr6+PlasWAE+n4+UlBRIpVLMnj1b5Z8J+iugYZ5oiUQCfX19iEQiWFtbcx2SxmicTrgxKWsTxphiuCdDQ0OtS8hAw3SI9vb2WrlvqmZoaAgfHx8kJSUhPj4eUqkUr7zyCtdhqQ2pVIqIiAgUFhZCIBBg8ODBXIekMSiPajbKo8rj8Xhwd3cHn8/HkSNHIJVKsWTJEpVenK/zhe3Dhw8RGRkJKysr+Pn5tTofNWkbj8fDwIED0a9fP60b81Mul+PWrVsAgGHDhmnlqBhGRkZauV/dRU9PD8uXL1dMHVlRUYG5c+fq/AGtuLgYEokENTU1CAoKUhRqRDmURzUb5dGOmzZtGvh8PpKSklBZWanS4VR1urC9e/cuYmNjMWjQIKxdu5ZmDOkCfX19retfJJfLFf83MTGhxEUA/G9edD6fj0OHDkEqlXI7LzrHnjx5AolEAkNDQ4hEIvTu3ZvrkDQW5VGiSyZMmAAzMzPExsZCIpHAx8dHJXWYxn3CampqMGHCBPB4PKSlpXV6PWlpaYiOjoaTkxP8/f2pqCWEdIirqytWrlyJq1evatwsZarKo9nZ2QgNDYW5uTmEQiEVtYSQDnF2dsa6deuQn5+PnTt3oqKiosvr1LjC9oMPPsCgQYO6tI5z584hMTEREyZMwJo1a6jDNyGkU8aPH4+1a9fi/v37kEgkqK6u5jokpagij967dw/h4eEYOHAgAgMDYW5urqLoCCG6xM7ODkKhEFKpFCEhISgqKurS+jSqsE1JScHhw4exbdu2Lq3nxIkTmDlzpk6fPiSEqMawYcOwbt06PH36FKGhoSgvL+c6pHapKo/GxcXB2dmZZhMjhHRZv379IBKJoK+vj5CQEOTn53d6XRrTVPnkyRO89tprSExMhJmZmVKvqampQU1NjeJ+aWkpAODVV1/F5MmT1f4ARLgll8sVp0XKysroRxBpk5WVFby8vBAdHY2ff/4ZgHoO2q7KPDp8+HC4u7vT+KukXZRHibL09PTg6emJ3bt3QywWA+hkHmUaQC6Xs4ULF7K//vWvjDHGHjx4wACwK1eutPu6TZs2MQB0oxvd6Nbjt8zMzB7IjsqjPEo3utFN026dyaM8xrhrVvj000+xefPmdpe5ePEifvvtN8TExOD06dPQ19dHVlYWHB0dceXKFUyYMKHN1z7f0lBSUgIHBwfk5OTAyspKVbuh8crKymBnZ4eHDx/C0tKS63DUCr03raP3pW2lpaWwt7dHcXExevXq1e3bozyqHug70TZ6b1pH70vbupJHOS1snz17hmfPnrW7zODBg+Hj44N9+/Y1Gyuyvr4e+vr68PPzw65du5TaXllZGaysrFBaWkofoibofWkbvTeto/elbT393lAeVQ/0vrSN3pvW0fvStq68N5z2sbWxsYGNjc0Ll/vXv/6Fzz//XHH/8ePHWLBgAWJiYjB16tTuDJEQQtQa5VFCCPkfjbh4zN7evtn9xmFlnJycYGtry0VIhBCiUSiPEkJ0gU5dnmhsbIxNmzbR0DTPofelbfTetI7el7Zp+3uj7fvXWfS+tI3em9bR+9K2rrw3nPaxJYQQQgghRFV0qsWWEEIIIYRoLypsCSGEEEKIVqDClhBCCCGEaAUqbAkhhBBCiFbQ+cK2pqYGEyZMAI/HQ1paGtfhcCorKwsikQiOjo4wNTWFk5MTNm3ahNraWq5D48T3338PR0dHmJiYYNKkSfjll1+4DolzW7ZswcsvvwwLCwv069cPK1aswJ07d7gOS+1s2bIFPB4PGzZs4DqUHkF5tDnKpf9DebQlyqPK6Wwe1fnC9oMPPsCgQYO4DkMt3L59G3K5HDt27MDNmzfxz3/+Ez/++CM+/vhjrkPrcTExMdiwYQP+9Kc/4cqVK5gxYwYWLVqEnJwcrkPj1KlTp/D222/j3LlzOHLkCGQyGdzd3SGVSrkOTW1cvHgRP/30E8aNG8d1KD2G8mhzlEsbUB5tHeXRF+tSHmU67MCBA2zEiBHs5s2bDAC7cuUK1yGpna+++oo5OjpyHUaPmzJlCnvjjTeaPTZixAi2ceNGjiJST0+fPmUA2KlTp7gORS2Ul5ezYcOGsSNHjrBZs2ax4OBgrkPqdpRHlaOLuZTyqHIojzbX1Tyqsy22T548wWuvvYbw8HCYmZlxHY7aKi0thbW1Nddh9Kja2lpcunQJ7u7uzR53d3fHb7/9xlFU6qm0tBQAdO4z0pa3334bS5Yswbx587gOpUdQHlWeruVSyqPKozzaXFfzqEZMqatqjDEEBgbijTfewOTJk5GVlcV1SGopMzMT3377Lf7+979zHUqPevbsGerr69G/f/9mj/fv3x/5+fkcRaV+GGN47733MH36dIwZM4brcDgXHR2Ny5cv4+LFi1yH0iMojypPF3Mp5VHlUB5tThV5VKtabD/99FPweLx2b6mpqfj2229RVlaGjz76iOuQe4Sy70tTjx8/xsKFC+Hl5YXf/e53HEXOLR6P1+w+Y6zFY7rsnXfewbVr1xAVFcV1KJx7+PAhgoODIZFIYGJiwnU4XUJ5tG2USzuO8mj7KI/+j6ryqFZNqfvs2TM8e/as3WUGDx4MHx8f7Nu3r9mXq76+Hvr6+vDz88OuXbu6O9Qepez70vhBevz4MWbPno2pU6di586d0NPTqt8/L1RbWwszMzPExsZi5cqViseDg4ORlpaGU6dOcRidenj33XeRmJiI06dPw9HRketwOJeYmIiVK1dCX19f8Vh9fT14PB709PRQU1PT7Dl1Rnm0bZRLlUd59MUojzanqjyqVYWtsnJyclBWVqa4//jxYyxYsABxcXGYOnUqbG1tOYyOW48ePcLs2bMxadIkSCQSjTkYq9rUqVMxadIkfP/994rHRo0aheXLl2PLli0cRsYtxhjeffdd7NmzBydPnsSwYcO4DkktlJeXIzs7u9ljQUFBGDFiBD788EOtPMVIebR9lEspj7aF8mjrVJVHdbKPrb29fbP75ubmAAAnJyedTsaPHz+Gm5sb7O3tsW3bNhQUFCieGzBgAIeR9bz33nsP/v7+mDx5MlxdXfHTTz8hJycHb7zxBtehcertt99GZGQk9u7dCwsLC0VfOSsrK5iamnIcHXcsLCxaJF0+n48+ffpoZVELUB5tD+XSBpRHW0d5tHWqyqM6WdiS1h0+fBgZGRnIyMhocWDStYZ9b29vFBYW4rPPPkNeXh7GjBmDAwcOwMHBgevQOPXDDz8AANzc3Jo9HhoaisDAwJ4PiBA1RLm0AeXR1lEe7V462RWBEEIIIYRoH93pyU4IIYQQQrQaFbaEEEIIIUQrUGFLCCGEEEK0AhW2hBBCCCFEK1BhSwghhBBCtAIVtoQQQgghRCtQYUsIIYQQQrQCFbaEEEIIIUQrUGFLCCGEEEK0AhW2RKcEBgaCx+OBx+PB0NAQQ4YMwfvvvw+pVKpYJj4+Hm5ubrCysoK5uTnGjRuHzz77DEVFRQCAvLw8+Pr6Yvjw4dDT08OGDRs42htCCOEG5VKirqiwJTpn4cKFyMvLw/379/H555/j+++/x/vvvw8A+NOf/gRvb2+8/PLLSElJwY0bN/D3v/8dV69eRXh4OACgpqYGffv2xZ/+9CeMHz+ey10hhBDOUC4l6ojHGGNcB0FITwkMDERJSQkSExMVj7322mtITk7G3r17MXXqVGzfvh3BwcEtXltSUoJevXo1e8zNzQ0TJkzA9u3buzdwQghRI5RLibqiFlui80xNTVFXV4eIiAiYm5vjrbfeanW55xMxIYSQ/6FcStQBFbZEp124cAGRkZGYO3cu7t27hyFDhsDQ0JDrsAghRKNQLiXqggpbonOSk5Nhbm4OExMTuLq6YubMmfj222/BGAOPx+M6PEII0QiUS4k6MuA6AEJ62uzZs/HDDz/A0NAQgwYNUrQqODs748yZM6irq6OWBkIIeQHKpUQdUYst0Tl8Ph9Dhw6Fg4NDs6Tr6+uLiooKfP/9962+rqSkpIciJIQQ9Ue5lKgjarEl5L+mTp2KDz74AH/4wx/w6NEjrFy5EoMGDUJGRgZ+/PFHTJ8+XXGFb1paGgCgoqICBQUFSEtLg5GREUaNGsXhHhBCCPcolxIu0XBfRKe0NkTN83bv3o1///vfuHLlCuRyOZycnODp6Yl3331XcTVva/3HHBwckJWV1T2BE0KIGqFcStQVFbaEEEIIIUQrUB9bQgghhBCiFaiwJYQQQgghWoEKW0IIIYQQohWosCWEEEIIIVqBCltCCCGEEKIVqLAlhBBCCCFagQpbQgghhBCiFaiwJYQQQgghWoEKW0IIIYQQohWosCWEEEIIIVqBCltCCCGEEKIVqLAlhBBCCCFagQpbQgghhBCiFaiwJYQQQgghWoEKW0IIIYQQohWosCXd4tq1awgKCoKjoyNMTExgbm6OiRMn4quvvkJRUREAwM3NDTweDwsXLmzx+qysLPB4PGzbtk3x2MmTJ8Hj8RQ3fX199O3bFx4eHkhNTW2xjsDAQPB4PFhYWKCioqLF89nZ2dDT0wOPx8Onn36q9L49efIEGzduxNixY2Fubg4TExMMGzYMwcHBuHfvnmK5Tz/9FDweD3p6erh//36L9UilUlhaWoLH4yEwMLDV+IRCIQYNGgRjY2O89NJLWLlypVIxlpeX44MPPoC7uzv69u3b4X0khOiOjuTr1m6DBw9utr5bt27B398fQ4YMgYmJCWxsbDBx4kS88847KCsrUyzX2Rx96dIlvP322xg7diwsLCzQv39/zJs3D8ePH++W94doFgOuAyDa5+eff8Zbb72F4cOH449//CNGjRqFuro6pKam4scff8TZs2exZ88exfKHDh3C8ePHMWfOHKXW/+WXX2L27Nmoq6vDlStXsHnzZsyaNQtpaWkYNmxYs2UNDQ0hk8kQExMDkUjU7LnQ0FBYWFg0S7QvcuHCBSxduhSMMbzzzjtwdXWFkZER7ty5A4lEgilTpqC4uLjZa8zNzREaGoq//vWvzR6PjY1FXV0dDA0NW2znxo0bcHNzw5AhQ7Bt2zbY2toiLy8Phw4dUirOwsJC/PTTTxg/fjxWrFiB//znP0rvIyFEd3QkXw8ZMgQREREt1mFsbKz4/5UrVzBt2jSMHDkSf/nLXzB48GA8e/YMV69eRXR0NN5//31YWloqlu9Mjo6KisKFCxcgFAoxfvx4SKVS/Pjjj5g7dy527dqFdevWqfItIpqGEaJCv/32G9PX12cLFy5k1dXVLZ6vqalhe/fuZYwxNmvWLObs7MyGDBnCJk2axORyuWK5Bw8eMADs66+/Vjx24sQJBoDFxsY2W+euXbsYAPaXv/yl2eMBAQGMz+czHx8f9uqrrzZ7Ti6XMwcHB/baa68xAGzTpk0v3LfS0lI2YMAAZmdnxx4+fNjqMk1j27RpEwPAfve73zE7OztWX1/fbNnp06eztWvXMj6fzwICAprFNmHCBDZhwoRW30NlyOVyxftZUFCg9D4SQnRHR/P16NGjX7jOdevWMT6fz8rKylp9vmme72yOfvLkSYv1ymQyNm7cOObk5PTCGIl2o64IRKW+/PJL8Hg8/PTTT81+xTcyMjLCsmXLFPcNDQ3xxRdf4NKlS4iJienUNidPngygoYtAa4RCIX777TfcuXNH8djRo0eRnZ2NoKAgpbfz888/Iz8/H1999RVsbW1bXcbT07PV7T98+BBHjhxRPHb37l2cOXMGQqGwxfKnT59GWloaNmzY0Op7qIzGU4SEENKWjuZrZRQWFsLS0hLm5uatPt9aXupoju7Xr1+Lx/T19TFp0iQ8fPiwQ/ES7UOFLVGZ+vp6HD9+HJMmTYKdnZ3Sr/P29sakSZPw5z//GXV1dR3e7oMHDwAAzs7OrT4/b948ODg4QCwWKx4LCQnBzJkzW3RdaM/hw4ehr68PDw+PDsU3bNgwzJgxo9n2xWIxBg8ejLlz57ZY/vTp0wAACwsLLF68WNHnbenSpbh9+3aHtk0IIa3pbL6WyWQtbnK5XPG8q6sr8vLy4Ofnh1OnTqGqquqF61RFjpbJZPjll18wevRopfeFaCcqbInKPHv2DJWVlXB0dOzQ63g8Hv72t78hMzMTO3bseOHycrkcMpkMVVVV+O233/CHP/wBo0aNarX1s3H9gYGBCAsLg0wmQ1FRERITE9tcvi05OTno27cv+Hx+h14HNLRI7N27F0VFRaivr0dYWJjiwonnPXr0CAAQFBSEQYMGYf/+/fjxxx9x48YNzJgxA3l5eR3ePiGENNWZfH3z5k0YGhq2uP3f//2fYpn3338fK1asQFRUFNzc3GBhYYGJEyfiz3/+MwoKClpdrypy9KeffoqMjAxs2rRJ6dcQ7UQXjxG1MHfuXLi7u+Ozzz5DQEBAu8t6e3s3uz9w4ED89ttv6NWrV5uvCQoKwmeffYaUlBRkZWXByMgIXl5eqKysbLGsTCZrdl9fX7/Lp/W9vLywfv16REREYPDgwcjPz291JAQAitYPV1fXZhd9jRkzBi4uLvj3v/+Nzz//HIwx1NfXN3utgQF9pQkh3cPJyQnR0dEtHu/bt6/i/8bGxtizZw9u3bqFQ4cOITU1FadOncIXX3yBH3/8Eb/++iuGDx/eYh0dydHP+89//oMvvvgCf/jDH7B8+fKu7STReHQUJCpjY2MDMzMzRdeAjvrb3/6GiRMnYtu2be32ff3b3/6GOXPmoLKyEocPH8aWLVuwYsUKnD9/vs0+qQ4ODpg7dy7EYjGysrLg4+MDMzOzVpPm86MUhIaGIjAwEPb29rh37x6kUmmHW235fD68vb0hFovh4OCgOPXWmj59+gAAFixY0OzxCRMmYODAgbh8+TIA4NSpU5g9e3azZR48eNBi6B1CCHleZ/K1iYmJ4pqGFxk5ciRGjhwJAGCMYfv27XjvvffwySefYPfu3S2W70iObio0NBSvv/46/u///g9ff/210vtCtBcVtkRl9PX1MXfuXKSkpCA3N7fNC6zaMmHCBKxduxb/+Mc/sHjx4jaXGzJkiCK5zpw5E6ampvjzn/+Mb7/9Fu+//36brxMKhRAIBJDL5fjhhx/aXO7ixYvN7jeeqluwYAEOHz6Mffv2wcfHpyO7ptj+f/7zH1y7dq3VIXMajRs3rs3nGGPQ02voQTRp0qQWsQ4aNKjDcRFCdE9X83VH8Hg8/P73v8dnn32GGzdutLmcsjm6UWhoKH73u98hICAAP/74I10wSwBQH1uiYh999BEYY3jttddQW1vb4vm6ujrs27evzdd//vnnqK2txebNm5Xe5gcffIChQ4di69atKC8vb3O5lStXYuXKlRAKhXjllVfaXG7y5MnNbo0tqCKRCAMGDMAHH3yg6Af7vISEhDbX6+rqCqFQqIijLYsWLYKZmRlSUlKaPX758mXk5+crYrewsGgRq5GRUZvrJYSQprqar1vT1jUAjx8/RllZWbs/vpXN0QCwc+dO/O53v4NAIMB//vMfKmqJArXYEpVydXXFDz/8gLfeeguTJk3Cm2++idGjRysmU/jpp58wZsyYNkcWcHR0xJtvvolvvvlG6W0aGhriyy+/xJo1a/DNN9/gz3/+c6vLmZiYIC4urlP7BQBWVlbYu3cvli5dChcXl2YTNNy7dw8SiQRXr17FqlWr2lxHSEjIC7fTq1cvfPbZZ3j//fcRGBiItWvXIj8/H5988gns7e3x1ltvKRVvSkoKpFKpothPT09X7P/ixYthZmam1HoIIdqpo/m6qqoK586da3VdjYXo//3f/6GkpASrV6/GmDFjoK+vj9u3b+Of//wn9PT08OGHH7YZj7I5OjY2FiKRCBMmTMDrr7+OCxcuNHvexcWl00MlEi3A6Si6RGulpaWxgIAAZm9vz4yMjBifz2cuLi7sL3/5C3v69CljrO0BvwsKCpilpaXSEzQ0mjp1KuvduzcrKSlhjP1v8O/2dGbygvz8fPbhhx+y0aNHMzMzM2ZsbMyGDh3KXn/9dXb9+nXFco0TNBQUFLS7vucnaGj0888/szFjxjAjIyPWp08f5ufn1+bEEK1xcHBgAFq9PXjwQOn1EEK0m7L5uq18AoDV1dUxxhg7dOgQEwqFbNSoUczKyooZGBiwgQMHslWrVrGzZ882225nc3RAQEC7sVB+0208xhjrsSqaEEIIIYSQbkJ9bAkhhBBCiFagwpYQQgghhGgFKmwJIYQQQohW0NjCdsuWLeDxeNiwYQPXoRBCiEaiPEoI0TYaWdhevHgRP/30U7sD2RNCCGkb5VFCiDbSuMK2oqICfn5++Pnnn9G7d2+uwyGEEI1DeZQQoq00boKGt99+G0uWLMG8efPw+eeft7tsTU0NampqFPflcjmKiorQp08fmqWEENItGGMoLy/HoEGDFNMfqxvKo4QQddaVPKpRhW10dDQuX76MixcvKrX8li1bOjQ1KyGEqMrDhw9ha2vLdRgtUB4lhGiKzuRRjSlsHz58iODgYBw+fBgmJiZKveajjz7Ce++9p7hfWloKe3t7/P73v4eHhwcmTZrUXeESLSCXy3H16lUAwPjx49W29Y1wr7CwENHR0QCAJUuWYPz48bCwsOA4qpZUnUdfffVVzJ8/n1puSZsojxJlVVVVYffu3SgoKIC7uztmzJjRqTyqMYXtpUuX8PTp02bFaH19PU6fPo3vvvsONTU10NfXb/YaY2PjVueLnjZtGk6dOgUej4dZs2ZRUiatksvlMDc3BwBYWlpSQiatevToEWJjY2FpaQl/f3/F4+qYV1SZR5ctW4ZTp04BAFauXNnidYQAlEeJcsrKyhAXF4eqqiq8/vrrioK2M3lUY6bULS8vR3Z2drPHgoKCMGLECHz44YcYM2bMC9dRVlYGKysrlJSU4Nq1azh27BhefvllLFq0iL5spFVyuRwA6PNBWpWZmYmYmBj0798fvr6+MDU1VeSZ0tJSWFpach1iM6rMo6WlpXj06BHi4uIwePBgrFmzptUCmBDKo6Q9BQUFkEgk4PF4EAgEsLGx6VIe1ZgWWwsLixZJl8/no0+fPkol46Z4PB5mzJgBPp+Pffv2QSqVYtWqVTAw0Ji3g/QQSsSkLdevX0diYiKGDBmCNWvWwNDQkOuQXkiVeRQARo4cCYFAgOjoaOzatQt+fn7g8/mqCpdoCcqjpC25ubmIiIiAhYUFBAKBShoDdPrTNnHiRHh7e+Pu3buIiIhoduUvIYS05fz584iPj8eYMWPg4+OjEUVtd3F0dERgYCDKysogFotRUlLCdUiEEA2QkZGBXbt2oW/fvggKClLZGS6N6YqgCm01bWdlZSEqKgrW1tYQCATU4kAANAw30nja1sHBQS37TJKexRjDiRMncPr06TYvnFLnrgiq0Nb+FRUVITw8HDKZDAKBAP379+cwSqIuKI+S1ly7dg2JiYkYNmwYPD09WzQOdCWP6nSLbaPBgwcjKCgI5eXlCAkJQXFxMdchETXAGENhYSEKCwuhQ7//SBvkcjn27duH06dPY/78+XB3d6eDdBPW1tYQiUTg8/kIDQ1FTk4O1yERNUB5lDzv3LlzSEhIwPjx4+Ht7a3yM15U2P7XgAEDIBKJAAAhISF48uQJxxERQtSFTCbD7t27kZaWhhUrVmDatGlch6SWzM3NERgYiAEDBiAsLAx37tzhOiRCiJpgjOHo0aM4ePAgpk+fjmXLlnVL/2sqbJvo3bs3RCIRLCwsEBoa2uLqYUKI7qmurkZ4eDgyMzPh4+ODCRMmcB2SWjMxMYFAIMCwYcMQExODtLQ0rkMihHCs8YzXmTNnsGDBAsybN6/bznhRYfscPp+PwMBADBw4EOHh4bh9+zbXIRFCOFJeXo7Q0FA8efIE/v7+cHZ25jokjWBgYAAvLy+4uLggMTERZ86codPQhOiouro6xY/cVatWwdXVtVu3R4VtK4yNjeHn54fhw4cjJiYGly9f5jokQkgPKywshFgsRlVVFYRCIezt7bkOSaPo6elh6dKlmDVrFo4ePYrDhw9TcUuIjqmqqkJ4eDju37+PtWvXYty4cd2+TRq4tQ0GBgZYvXo1zMzMkJSUBKlUiunTp9PFIoTogLy8PEgkEpiamiIwMBBWVlZch6SReDweZs+eDT6fj5SUFEilUixfvpxmKSNEB5SXlyM8PBzl5eUICAiAra1tj2yXCtt26OnpYfHixTA3N8exY8dQUVGBhQsXUnFLiBZ78OABoqOjYWNjAz8/P5iZmXEdksabMmUK+Hw+EhISUFlZiTVr1sDIyIjrsAgh3aSwsBDh4eGQy+UQCoXo27dvj22bCtsX4PF4mDVrFvh8Pvbv3w+pVErzousIPT09jB8/XvF/ov3S09MRHx+PwYMHw9vbm4ovFRo9ejRMTU0RHR2NsLAw+Pr60o8GHUB5VPc8evQIERER4PP5EAgEPX7Giz5lSpo8eTK8vLxw69YtREZGora2luuQSA8wMDCgqZZ1xMWLFxEbG4tRo0bB19eXitpuMGTIEAQGBqK4uBhisRilpaVch0R6AOVR3ZGZmYldu3bB2toaQUFBnHTjosK2A0aNGgWBQIDc3Fzs2rULUqmU65AIIV3EGMPJkyexf/9+TJ06FatWraIzMt1o0KBBEAqFkMlkCAkJQUFBAdchEUJU4MaNG4iMjISDgwPWrVvH2RkZKmw7qHFe9JKSEpoXXcsxxpCTk4OcnBy6mltLyeVyHDhwACdPnsTcuXOxYMEC6kPfA/r06QORSARTU1OIxWI8fPiQ65BIN6E8qhvOnz+P+Ph4jB49Gj4+Ppye8aLCthMGDhwIkUgEuVyOkJAQPH36lOuQSDdgjKGgoAAFBQWUkLWQTCZDXFwcUlNTsWzZMsyYMYOK2h5kYWGBoKAg9O3bF2FhYbh37x7XIZFuQHlUuzHGcPz4caSkpOCVV15Ri2uQqLDtpKbzoovFYpoXnRANUlNTg4iICNy9exfe3t6YOHEi1yHpJBMTE/j7+2PIkCGIiorCtWvXuA6JEKIkuVyO5ORknD59GvPnz4e7u7taNA5QYdsFNC86IZqnoqICO3fuRF5eHvz9/TFixAiuQ9JphoaG8Pb2xvjx45GQkICzZ89yHRIh5AVkMhliY2Nx5coVLF++HNOmTVOLohagwrbLnp8X/cqVK1yHRAhpQ+PV+OXl5QgKCoKDgwPXIRE0DAO1bNkyTJ8+HYcOHcKRI0fotDUhaqq6uhoSiQT37t2Dt7c3XFxcuA6pGRp/QwUa50Xfv38/9u7di8rKSkybNo3rsAghTeTn50MikcDIyAgikQi9e/fmOiTSBI/Hw7x582Bubo6DBw+isrISHh4eNPYpIWqkoqICEokEJSUlWLdunVpONU6FrYo0zovO5/Nx5MgRSKVSzJ8/X22a5gnRZdnZ2YiMjIS1tTUEAgH4fD7XIZE2vPLKKzAzM0NiYiIqKyvh6ekJQ0NDrsMiROcVFRUhPDwcMpkMQUFB6N+/P9chtYoKWxXi8XiYM2dOs3nRly1bxvkVgoTostu3byMuLg52dnbw8fGBsbEx1yGRFxg3bhzMzMwQExOD8PBwrF27FqamplyHRYjOysvLg0QigYmJCUQiEXr16sV1SG3iMR3qyFRWVgYrKyuUlpbC0tKyW7d148YN7NmzB0OGDIGXlxfNYqShGmeYo7+fZrp8+TL27duHUaNGYeXKlT0y+1FP5hku9OT+5ebmIjIyEubm5hAIBFr5fuoCyqOa7cGDB4iOjkafPn3g5+fXI2e8upJnqPNSNxkzZgx8fX2RnZ2NsLAwVFVVcR0S6QQjIyNKxhqIMYZffvkFSUlJmDx5MlavXk1TemogW1tbCIVC1NTUQCwW49mzZ1yHRDqB8qjmSk9Ph0Qiga2tLQICAjSiGxcVtt3IyckJAQEBKCoqglgsRllZGdchEaL1GGM4ePAgjh07Bjc3NyxevJguQNJgNjY2EIlEMDQ0hFgsxqNHj7gOiRCdkJqaitjYWIwcORK+vr4a041LY7L9Dz/8gHHjxsHS0hKWlpZwdXVFSkoK12G90EsvvQShUIi6ujqaF13DMMaQm5uL3NxcGnpIQ9TX1yMhIQEXLlzA0qVL4ebmRhdwNqGpedTS0hJCoRB9+vTBrl27kJmZyXVIREmURzUPYwynTp1CcnIypkyZgtWrV2vUtUIaU9ja2tpi69atSE1NRWpqKubMmYPly5fj5s2bXIf2QjY2NhAKhTA2NoZYLEZubi7XIRElMMbw5MkTPHnyhBKyBqitrUVkZCTS09Ph6emJyZMncx2S2tHkPGpqaop169bBwcEBkZGRuH79OtchESVQHtUscrkcKSkpOHHiBObOnYuFCxdqXOOARl88Zm1tja+//hoikUip5bm+qKOqqgpRUVHIy8uDt7c3hg4d2uMxEOXJ5XLFhBsuLi50OluNSaVSREZG4tmzZ/Dx8YGjoyNnsXCdZzpK0/JofX09kpKScPXqVSxatAhTp07t8RiI8iiPag6ZTIY9e/YgPT0dHh4enE413pU8o5FXU9TX1yM2NhZSqRSurq5tLldTU4OamhrFfa77uJqamsLf3x+xsbGIjIzEihUrMG7cOE5jIkTTlZSUIDw8HNXV1QgMDMTAgQO5DkkjaGoe1dfXx4oVK5oNqzh79myNa1UiRJ3U1NQgJiYGOTk58Pb21uipxjWqsL1+/TpcXV1RXV0Nc3Nz7NmzB6NGjWpz+S1btmDz5s09GOGLGRoawsfHB0lJSUhISHjhQYUQ0ranT58iPDwcBgYGEIlEsLa25joktacNeZTH48Hd3R3m5uY4fPgwpFIplixZQq2BhHSCVCpFREQECgsLIRAIMHjwYK5D6hKN6opQW1uLnJwclJSUID4+Hv/5z39w6tSpNpNyay0NdnZ2anGKkDGGY8eO4cyZM5g+fTrmzp1LLQ5qhk6hqbecnBxERkaiV69eEAgEMDc35zokANyfqn8RbcqjAHD16lXs3bsXzs7O8PT0pGHd1AzlUfVWXFwMiUSCmpoaCAQCDBgwgOuQAOhQVwQjIyNFv9TJkyfj4sWL+Oabb7Bjx45Wlzc2Nlbb4Ska50Xn8/k4dOgQpFIpzYtOiJLu3r2L3bt3w9bWFj4+PjAxMeE6JI2hTXkUAMaPHw9TU1PExsYqZimjzwMhL/bkyRNIJBIYGhpCJBKhd+/eXIekEhpdRTHGmrUkaCJXV1esWrUKV69eRUxMDOrq6rgOiRC1lpaWhujoaAwbNgwCgYCKmC7Shjzq7OyMdevW4enTpwgNDUV5eTnXIRGi1rKzsxEaGgpzc3MIhUKtKWoBDWqx/fjjj7Fo0SLY2dmhvLwc0dHROHnyJA4ePMh1aF02btw4mJqaYvfu3TQvuhrR09NTnJ6llnT18Ouvv+LIkSOYNGkS9ansBG3Oo3Z2dggKCoJEIoFYLIZAIECfPn24DkvnUR5VP7dv30ZcXBzs7Ozg4+Oj1mdkOkNjPmVPnjyBv78/hg8fjrlz5+L8+fM4ePAg5s+fz3VoKjFs2DAEBASgoKAAoaGhnF95TBqYmprSjww1wBjD4cOHceTIEcycORNLly6lg2QnaHse7devH0QiEfT19SEWi5GXl8d1SASUR9XJ5cuXERMTA2dnZ/j5+WldUQto2MVjXaXuF3UAQEFBAcLDw6GnpweBQAAbGxuuQyKEU/X19di7dy+uX7+ORYsWYcqUKVyH1C5NyDNdoQn7V1lZiYiICLUY15gQdcAYw5kzZ3Ds2DG8/PLLWLRokVo3DnQlz6jvXumovn370rzoaoIxhsePH+Px48c0Yw5HamtrER0djZs3b2L16tVqX9QS9WBmZoaAgADY2tpCIpEgPT2d65B0FuVR7jHGcOjQIRw7dgxubm5YvHixWhe1XaW9e6bBrKysEBQUBGtra5oXnUOMMeTl5SEvL48SMgcqKysRFhaG7Oxs+Pr6YsyYMVyHRDSIkZERfH19MWrUKMTGxuLixYtch6STKI9yq76+HgkJCTh//jyWLl0KNzc3rR9alApbNWVmZtZsXvQbN25wHRIhPaa0tBShoaEoKipCQEAAnJycuA6JaCB9fX2sWrUKU6ZMwf79+3Hy5EkqrojOqK2tRVRUFNLT0+Hl5YXJkydzHVKP0JhREXSRkZGRYpay+Ph4SKVSmhedaL2m/cyFQiH1MyddwuPxsHDhQpibm+PYsWOQSqVq37+QkK5q2s9cIBDoVD9zKmzVHM2LTnRJbm4uIiIiYGFhAX9/f1hYWHAdEtECPB4PM2bMAJ/Px759+yCVSrFq1SqapYxopdLSUoSHh6OqqgqBgYEYOHAg1yH1KPpWa4DGedH5fD6OHDlC86ITrZSRkYGYmBgMHDiQxnIm3WLixIkwMzNDXFwcIiIitHIMT6Lbnj59ColEAn19fYhEIlhbW3MdUo+jykiDTJs2DStWrMCVK1cQGxsLmUzGdUiEqMS1a9cQGRmJIUOGwN/fn4pa0m1GjBgBf39/5OXlYefOnaioqOA6JEJU4uHDhwgNDYWZmRmEQqFOFrUAFbYaZ8KECfD29sa9e/cgkUhQXV3NdUiEdMnZs2eRkJCA8ePHw9vbG4aGhlyHRLScg4MDgoKCUF5eDrFYjOLiYq5DIqRL7t69i7CwMPTr1w+BgYE63Y2LClsNNHz4cKxbtw75+fnU4tCNeDweRowYgREjRlCf5m7AGMPRo0dx6NAhTJ8+HcuWLaPuNaTH9O/fHyKRCAAQEhKC/Px8jiPSTpRHu19aWhqio6Ph5OQEf39/mJiYcB0Sp+gooqHs7e0hFAohlUoREhKCoqIirkPSOjweD3w+H3w+nxKyisnlciQlJeHMmTNYsGAB5s2bR+8x6XG9e/eGSCSChYUFQkNDkZWVxXVIWofyaPf69ddfkZiYiAkTJmDNmjV0QSSosNVojfOi6+npISQkhOZFJxqhrq4OMTExuHr1KlatWgVXV1euQyI6jM/nIzAwEIMGDYJEIsGtW7e4DomQF2KM4fDhwzhy5AhmzpwJDw8POuP1X/QuaLhevXpBKBSiV69e2LlzJx48eMB1SFqDMYYnT57gyZMnNKi7ilRVVSE8PBz379/H2rVrMW7cOK5DIgTGxsbw8/PD8OHDsXv3bly+fJnrkLQG5VHVq6+vR2JiIn777TcsWrQIc+bModbwJqiw1QJ8Pp/mRe8GjDHk5uYiNzeXErIKlJeXIzQ0FAUFBQgICMCwYcO4DokQBQMDA6xevRqTJ09GUlISTp8+Td97FaA8qlqNZ7xu3LiB1atX06RNraDCVks8Py96amoq1yERolBYWIiQkBDU1NRAKBTC1taW65AIaUFPTw+LFy/G7Nmzcfz4cRw8eJCKMaI2qqqqEBYWhqysLPj6+mLs2LFch6SWqJexFmmcF93MzAzJycmoqKjArFmz6BQF4dSjR48QEREBPp8PgUAAKysrrkMipE08Hg+zZs0Cn8/H/v37IZVKsXLlSujr63MdGtFhZWVlCA8Ph1QqRUBAAF566SWuQ1JbVNhqGZoXnaiTzMxMxMTEoF+/fvD19YWZmRnXIRGilMmTJ8PMzAzx8fGoqqqCt7c3jIyMuA6L6KCCggJIJBIAgFAohI2NDccRqTeqdrRQ47zoy5YtQ2pqKuLj42mWMtLjbty4gcjISDg4OGDdunVU1BKNM2rUKAgEAuTm5mLXrl2QSqVch0R0TG5uLsRiMYyNjSESiaioVQIVtlps4sSJ8Pb2xp07dxAREYGamhquQyI64vz584iPj8eYMWPg4+NDLV1EYzk6OiIwMBClpaUQi8UoKSnhOiSiIzIyMrBr1y7Y2NggKCgIlpaWXIekEaiw1XIjRoyAQCDA48ePsXPnTmpxIN2KMYbjx48jJSUFrq6uWLFiBfVNJBpv4MCBEAqFkMvlCAkJwdOnT7kOiWi5a9euITIyEo6Ojli3bh1MTU25DkljUGGrAwYPHqyYFz0kJITmRVcSj8eDs7MznJ2d6QI8JcjlciQnJ+P06dOYP38+3N3d6X0jWsPa2hoikQh8Ph9isRg5OTlch6QRKI923Llz55CQkIBx48bB29sbhoaGXIekUaiw1REDBgxoNi/6kydPOI5I/fF4PFhYWMDCwoIS8gvIZDLs3r0bV65cwYoVKzBt2jSuQyJE5czNzREYGIgBAwYgLCwMd+7c4ToktUd5VHmMMRw9ehQHDx7EtGnTsHz5cjrj1QkaU9hu2bIFL7/8MiwsLNCvXz+sWLGCkkoH9e7dG0KhUDEvenZ2NtchES1QXV0NiUSCzMxM+Pj4YMKECVyHRNpAebTrTExMIBAIMGzYMMTExODKlStch0S0gFwuR1JSEs6cOYMFCxZg/vz59EOgkzSmsD116hTefvttnDt3DkeOHIFMJoO7uzv1Ge2gxhaHgQMHIjw8HLdv3+Y6JLXFGENBQQEKCgpokPY2lJeXY+fOncjPz8e6devg7OzMdUikHZRHVcPAwABeXl5wcXHB3r178euvv1KOaAPl0RdrnE3s6tWrWLlyJVxdXbkOSaPxmIZ+0goKCtCvXz+cOnUKM2fOVOo1ZWVlsLKyQmlpqc5fXSiTybBnzx6kp6fDw8MDEydO5DoktSOXyxWtMS4uLjQW8HOKiooQHh4OmUwGf39/9OvXj+uQ1IIm5RnKo13DGMPJkydx6tQpuLq6Ur/yVlAebV9VVRWioqKQl5eHNWvW0FTj/9WVPKOxEzSUlpYCaOjQ35aamppmQ1yVlZV1e1yaonFedDMzMyQlJUEqlWL69OmUlIlS8vLyIJFIYGpqioCAAPTq1YvrkEgnUB7tGh6Ph9mzZ4PP5yMlJQVSqVQn+0VWVVVh48aNyMzMhJOTE7Zu3UpX8SuhvLwcEokEZWVlWLduHezs7LgOSSto5E8nxhjee+89TJ8+HWPGjGlzuS1btsDKykpxow9Nc03nRT927BgOHTpEp4rICz148AA7d+5Er169IBQKqajVUJRHVWfKlClYvXo1bt68iaioKNTW1nIdUo/auHEj5s2bh+TkZMybNw8fffQR1yGpvcLCQoSEhKCqqgpCoZC+VyqkkYXtO++8g2vXriEqKqrd5T766COUlpYqbg8fPuyhCDVH47zoS5cuxfnz55GQkID6+nquwyJqKj09HRKJBLa2tggICKDZxDQY5VHVGjNmDHx9fZGTk4OwsDBUVlZyHVKPyczMhIeHBwDAw8MDGRkZHEek3h4/foyQkBAYGBhAJBKhb9++XIekVTSusH333XeRlJSEEydOwNbWtt1ljY2NYWlp2exGWjd58mR4eXkhPT1dJ1scyItdvHgRsbGxGDVqFHx9fWk2MQ1GebR7ODk5ITAwEEVFRQgNDVV09dB2Tk5O2LdvHwBg3759GDp0KMcRqa/79+9j586dsLa2hlAohJWVFdchaR2NKWwZY3jnnXeQkJCA48ePw9HRkeuQtE7jvOgPHz7Erl27dKrFgbSt8QKZ/fv3Y+rUqVi1apXO9SHUFpRHu9+gQYMgEolQV1eHkJAQFBQUcB1St9u6dSuOHTuGpUuX4tixY9iyZQvXIamlmzdvIiIiAg4ODli3bh2d8eomGlPYvv3225BIJIiMjISFhQXy8/ORn5+PqqoqrkPTKo3zopeUlNC86ARyuRwHDhzAyZMnMXfuXCxYsIAuMNRglEd7Rp8+fSASiWBqagqxWKwR3TeqqqoQHByMpUuXIjg4uEOfCVNTU2zfvh3JycnYvn07XTjWigsXLiAuLg6jR4+Gj48PnfHqRhoz3FdbB9PQ0FAEBgYqtQ4apkZ5jUM51dfXQyAQ6ORQTowxxRXglpaWOlfQ0ZBwnaPOeYbyaM+qrq5GZGSkRgzlFBwcjHnz5sHDwwP79u3DsWPHsH379i6vV9fzKA0J1zldyTMaU9iqAiXkjikvL0dERARKS0vh6+tLV23qkJqaGsTExCAnJweenp4YMWIE1yFpDG3PM9q+f6pWV1eHuLg43Lt3DytWrMC4ceO4DqlVS5cuRXJycpv3ScfJ5XLs378fly5dwvz58/Hqq69SUaukruQZjemKQHqehYUFAgMD0a9fP4SFheHu3btch0Ta0ZVTiU1JpVLs2rULjx8/hr+/PxW1hHSBoaEhvL29MX78eCQkJODs2bNch9QqugBMtWQyGWJjY3HlyhUsX74c06ZNo6K2h1BhS9plYmICf39/ODk5ITo6GmlpaVyH1GMYYygsLERhYaFGjO+rirEki4uLERISgrKyMgQGBsLBwaEbIiVEt+jp6WHZsmWYPn06Dh06hCNHjqhdTumuC8A0LY+qQnV1NSQSCe7duwdvb2+4uLhwHZJO0diZx0jPMTAwwJo1a5CcnIzExERIpVJMmzaN67C6HWMMWVlZAIDevXur/a/tzMxMfPPNNwAaxpLcsWNHh16fn58PiUQCIyMjiEQi9O7duzvCJEQn8Xg8zJs3D+bm5jh48CAqKyvh4eGhNlPMNl4Apmqalke7qqKiAhKJBCUlJVi3bh3s7e25DknnUGFLlKKnpwcPDw+Ym5vjyJEjkEqlmD9/vtYnKU3SeCqx8eKPjpxKzM7ORmRkJKytrSEQCMDn87sxUkJ01yuvvAIzMzMkJiaisrISnp6eMDQ05DosogKNF13LZDIIhUKdvOhaHajHT0WiEXg8HubMmYNFixbht99+Q2JiIs1SpkY6eyrx9u3bCA8Px6BBgxAYGEhFLSHdbNy4cfD19cX9+/cRHh5Ow61pgby8PIjFYujp6UEkElFRyyFqsSUdNnXq1GYtDl5eXjQmnxrozKnEy5cvY9++fRg1ahRWrlwJAwNKCYT0hKFDhyIgIAAREREIDQ2FQCCgUSY0VFZWFqKiomBjYwNfX19qHOAYtdiSThk7dix8fX2RnZ2NsLAwanHQMIwx/PLLL0hKSsLkyZOxevVqKmoJ6WG2trYQCoWoqamBWCzGs2fPuA6p01Q1KoumuXXrFsLDw2Fra4uAgAAqatUAFbak05ycnBAQEICioiKIxWLFINxEvTHGcPDgQRw7dgxubm5YvHix2lzAQoiu6du3L4RCIQwNDSEWi/Ho0SOuQ+oUVYzKomkuXbqE3bt3Y+TIkfD19aUzl2qCjmakS1566SUIhULU1tbqzLzomqy+vh4JCQm4cOECli5dCjc3N7oAkBCOWVlZISgoCNbW1ti1axcyMzO5DqnDMjMz4eHhAaBhVJaMjAyOI+o+jDGcPn0a+/btw5QpU7B69Wro6+tzHRb5LypsSZfZ2NhAJBLB2NgYYrEYubm5XIekEjweD0OGDMGQIUO0ovirra1FZGQk0tPT4eXlhcmTJ3MdEiHkv8zMzLBu3To4ODggMjISN27c4DqkDmlrggdty6NyuRwpKSk4fvw45syZg4ULF2rFfmkTmlKXqExVVRWioqKQl5cHb2/vbpu5pqqqChs3bkRmZiacnJywdetWmJqadsu2tIVUKkVkZCSePXsGHx8fODo6ch2S1tL2PKPt+8e1+vp6JCUl4dq1a1i4cCGmTp3KdUhKqaqqwkcffYSMjAwMHToUW7Zs0bq8LJPJsGfPHqSnp2Pp0qWYNGkS1yFpLZpSl6gFU1NT+Pv7w9HREZGRkbh27Vq3bKcn+3JpwwURJSUlEIvFKCkpQWBgIBW1hKgxfX19rFixAq6uroqWQU1pf2qMU1XxqlP+rampQWRkJO7cuYM1a9ZQUavGqLAlKmVoaAgfH59unRe9p/pyMcawYcMGvPLKK9i3b5/Ki+ieSNpPnz6FWCyGXC6HSCTCwIEDVb4NQohq8Xg8uLu7Y/78+Th9+jSSk5Mhl8u5DqtdbTU4MMZQXFyM4uLiDhe86nJBmlQqxa5du/Do0SMIBAKMHDmSkziIcqiwJSr3/LzoR48eVWmLQ1t9uVSpseg8fvw4nJ2dwRhTeRHd3Uk7JycHYrEYZmZmEAqFsLa2Vun6CSHda9q0aVixYgWuXLmC3bt3QyaTcR1Sm9pqcGCM4f79+7h//36HjwPqcEFacXExQkJCUFZWhqCgIAwePLjHYyAdQ4Ut6RaN86IvWLAAZ86cQVJSkspaHDo7w1ZHbNy4EXPnzsXkyZNx8uRJAKovorszad+9exdhYWEYMGAAAgMDYWFhobJ1E0J6zoQJE7BixQr861//wqRJk/D222+rZZeothocqqqqsG3bNmzYsAEbNmzoUOw90YjRnidPniAkJAQAIBKJMGDAgB7dPukcuniMdJvGi7yuXLmC2tpavPnmm/D19dWIedGXLl2KpKQknD17Ft999x1u3LiBuXPnqvSCiODgYMybNw8eHh7Yt28fjh071uGZw1qTlpaGpKQkDB8+nCZe4IC25xlt3z91FBwcjPHjx+Pp06fIyckBAHz//fccR9VcWxePrV+/Ho6Ojpg5cyZyc3Nx4sQJpfMclxekZWdnIyoqCr1794afnx/Mzc17ZLukQVfyDB3xSLdpPNX+zTffYMeOHdixYwfq6+uxdu1atb9atrGlwNbWFlOmTEG/fv1UUnQ2tXXrVnz00UfYsWOHIml31a+//oojR45g0qRJWLJkCU28QIgWyMzMxDfffIOnT58iPDwcYrEYRUVFatW9qK0pvTMzMxEQEACg4czUzz//3OV1drfbt28jLi4OdnZ28PHxgbGxcY/HQDqPjnqk2zQ91f7666/D1NQUBQUFCA0NRXl5OcfRtW/r1q04fvw4NmzYgAsXLuDLL79U+TYak3ZycjK2b9/epWKfMYbDhw/jyJEjmDlzJpYuXUpFLSFaovGHdr9+/TBo0CD069cPISEhyMvL4zq0F3JycsLp06cBtOxOoE6jHjS6fPkyYmJi4OzsDD8/PypqNRAd+Ui3eb5/1NixYyEUClFdXY2QkBAUFhZyHGHbTE1N8c9//hPbt2/H+++/r9YtzPX19UhMTMTZs2exaNEizJkzhwYMJ0SLNL2u4Pz584iLi0OvXr2wc+dOPHjwgOvw2rVlyxZcuHABGzZswPHjx5udmVKXUQ+AhsaBX375BUlJSZg0aRI8PT2pG5eGoj62pNu01T+qtLQUEokEUqkUfn5+eOmll7o1hs5O5iCXy3HlyhUAgIuLi1q2gNbW1iI2Nhb379/HypUrMWbMGK5D0nnanme0ff80RW1tLWJiYpCVlYXVq1dj1KhRXIfUqvby6NKlS5GcnNzm/Z7CGMOhQ4dw7tw5uLm5YdasWdQ4wDGaoIGopbZOtT8/L/r9+/e7LYautAjweDwMHjwYgwcPVsskV1VVhbCwMGRnZ8PX17fHi1p1PI1IiLI0/fNrZGQEX19fjBo1CrGxsUhNTeU6pFa1l0e5HvUAaDjjlZCQgPPnz2PJkiVwc3NTy3xPlKdRhe3p06fh4eGBQYMGgcfjITExkeuQSCc1nRc9IiKi2+ZF78qQWjweD3369EGfPn3ULtGVlZUpLiAJCAiAk5NTj8egTqcRifIojzbQhs+vvr4+Vq1ahSlTpiA5ORknT55Uu1nK2sujPTF0Y3tqa2sRFRWF9PR0eHp64uWXX+7R7ZPuoVGFrVQqxfjx4/Hdd99xHQpRASMjI/j4+GD06NGIj4/HhQsXVL4NdWgR6IrWWpUKCgoQEhKCuro6CIXCbu3K0R51GDyddBzl0Qbq/PntSGsyj8fDwoULMXfuXJw8eRIHDhxQ+1nKGqnyAtqOqqysxK5du5CTkwM/Pz+MHj26x7ZNupdGFbaLFi3C559/jlWrVnEdClERfX19rFy5Eq+88goOHDig8nnRu9IiwBhDaWkpSktLOWsFeb5V6Z133oFYLIaxsTGEQiFsbGw4iQvQ/B8NuoryaAN1/vx2tDWZx+NhxowZWLZsGVJTUxEXF/fCWcp6qitGZWUl3njjDSxYsADr169XajvtxaaKuEtLSyEWi1FSUoLAwEAMGTKkw+sg6kujCtuOqqmpQVlZWbMbUT88Hg8LFizolnnRu9IiwBhDRkYGMjIyOCtsm7YqjRw5EmfOnEHfvn0RFBTE+YU7XJ9GJD1DW/OoOn9+O9uaPHHiRHh7e+Pu3buIiIhATU1Nm8v2VFeMjRs3Yvjw4fjyyy8xd+5cxXbaK1Dbi62rcT99+hQhISGQyWQQCoUYNGiQanaUqA2tLmy3bNkCKysrxc3Ozo7rkEg7ms6LHhsbq9bzoveUxlala9euYdOmTRgyZAj8/f05GX7s+QMRAM5OI5Keo615VNkfvVxcZNaV1uQRI0bA398feXl52LlzJyoqKlpdrqe6YmRmZmLmzJktttNegdpebI3PVVVV4ejRozh+/LjSf5eHDx8iNDQUpqamEIlE6NOnjyp3lagJrS5sP/roI8Wp5NLSUjx8+JDrkMgLTJgwAd7e3rh37x4kEgmqq6u5DglAxw9uqjoYbt26FRKJBJ6enigrK0NcXBxnUxJrw8U2pON0PY9y8bnvamuyg4MDgoKCUF5eDrFYjOLi4hbL9FRXjLYmaGiveG0vtsbnNm7ciNmzZ+PatWtK/V3u3r2LsLAw9OvXD0FBQbCwsFDpfhI1wjQUALZnz54Ovaa0tJQBYKWlpd0TFFGZ7OxstmXLFvbDDz+w8vJyla+/srKSrV+/ni1ZsoStX7+eVVZWtlimvr6epaamstTUVPbuu++ypKQkxhhjSUlJLDg4uN31r1+/XrH83r172bRp09rdVmvkcjk7cuQI27RpEzt8+DCTy+Ud20kVW7JkSbv3SQNNyjOUR19Mkz/3RUVF7JtvvmFff/01y8vLa/ZcZWUlCw4OZkuWLGHBwcFK56WOqqioYD4+Pmz69OnN8l/THPl8Tm0vtsbnxo4d22w77f1dzp07x6ZOncpcXFzY22+/3W37SlSnK3lGq1tsieayt7dHUFAQpFIpQkJCUFRUpNL1t9YK014ra0dP2zVdftmyZdDX1+9Qi49cLkdSUhLOnDkDd3d3zJ8/n/Mhx9T5YhtCuosmf+579+4NkUgECwsLhIaGIisrS/FcT41IYGpqivfffx/bt2/HP//5T8V22muVbi+2xudmz57d7t+lMZ+/+uqr8PT0xKxZs5CamooFCxbQ2SYtp1GFbUVFBdLS0pCWlgYAePDgAdLS0pCTk8NtYKRb9O/fHyKRCHp6ehCLxSqdF721QvX5Yvfjjz9WLK/Mwa1pYVxcXIy4uDgAQEJCAlxcXJptq7XXLVq0CNOnT8fChQuxePFipKamYuXKlXj11VdVtt9doc4X2xDlUR7tGE3/3PP5fAQGBmLQoEGQSCS4deuWytbdlS5XXS2st27dikOHDmH8+PHYvHkz6urqmm3/ww8/RJ8+feDu7g6RSITq6mro6emp3dBupBt0Qwtytzlx4gQD0OIWEBCg1Ot17RSatqioqGA7duxgX375JXvw4IFK1tnaabDnT2UtXrxY0RWhoqLihaft2up+MG3aNBYbG9tsW629bv369Sw6OpqFhIQwgUDA1q1bp5J9JT1L3fMM5dGeoUx3p55UV1fHdu/ezT799FN26dIllayzve4EjZp26aqvr1fJdl+0fZlMxiZNmsQ2bdrEzp07xxhjbObMme3GSdSLznRFcHNzA2OsxW3nzp1ch0a6UWOLg62tLcLDw5Gent7ldbbWCtNaq6y9vT3s7e1hZmbWautC0xaLM2fONOt+0KtXLyQnJ+PIkSM4c+ZMmy0+ja3Hd+7cQWFhIQoKCrBlyxYUFhZ2eT8JeR7l0Z6hbhdbGhgYYPXq1Xj55ZeRlJSE06dPtzmMYWstsa09pkwXLR6Pp8ijqu5O1dr26+rqEBMTA0NDQ/Tp0wdTp05FUlIS6uvrNbbVnXQMj7X1ydZCZWVlsLKyQmlpKedjgJKOq6+vx549e3Dz5k0sWbIEkydPVun6q6qq8NFHHyEjIwNDhw7Fli1bXnh6LDg4GPPmzYOHhwc8PT3h5+eHlStXYt++fTh27Bi2b9/+wu0GBwdjypQp2LFjB5ycnPDVV1/h3Llzbb6+qqoKGzduRGZmJpycnLB161YaakuNaHue0fb9U5WlS5ciOTm5zftcYYzh9OnTOHHiBKZOnYqFCxe2KDib5rXGXMYYU+oxZXKeqjwf56FDh+Di4oInT55g+fLl+PnnnzuUz4n66EqeocKWaBTGGA4ePIjz589j9uzZmDlzJqcXVTU9WFVVVcHV1RW2trYdSqQZGRkIDAxEUVERLC0tYW1tDWdn5zZf39pBZ8uWLW0Wu1QI9yxtzzPavn+q0tr3tCeLvhdJTU3F/v37MWbMGKxYsQL6+vqK51orygG0eCw2NrbDjQGq1LQxws7ODs7Ozqirq4Ofnx9nU40T1aDCVkmUkLUDYwy//PILjh8/jilTpmDhwoXQ02u7V01nCzvGmGJwc3Nz81YL6K4evDIzMxETE4N+/frB19cXZmZmL3xNawcdJyenNuNQ9wOsttH2PKPt+6cqnTkD1NPS09MRHx+PwYMHw9vbG0ZGRgCa54ykpCR89dVXqKqqgqOjI8LDw3H06FGl84gyebSrnj17hvDwcACAv78/p1ONE9WgwlZJlJC1y6VLl5CcnIxRo0Zh5cqVMDAwaHW51k5X6evrv7DQlcvluHLlCgDAxcWl1eK5KwevGzduYM+ePRgyZAi8vLwUB5UXaa1QzcjIaPO0p7qeEtVW2p5ntH3/dM2DBw8QHR0NGxsb+Pn5wczMrFleKykpwYYNG+Dp6Yk9e/Zg8+bNcHNzUzrXKZNHW6Nsg0Rubi4iIyNhbm4OgUBAn0kt0ZU8o1EXjxHS1KRJk7BmzRrcuXMHkZGRbc6L/vwFBmfPnlXZRR2dHbLm/PnziI+Px+jRo+Hj46N0UQsof+FbI00eh5MQXdYT0/k6OjoiMDAQJSUlEIvFKCkpaZbXevXqBU9PTwDAypUrYWtr2yNTaCtz8V1GRgZ27doFGxsbBAUFUVFLAFBhSzTcyJEjIRAI8OjRI+zatQtSqbTFMs8XdvX19c0K3bt37/bYXPCMMRw/fhwpKSl45ZVXsHLlymZ925Q5kLVWTLc31qamj8NJiK7qqZEVBg4cCJFIhPr6eojFYjx9+lTxHFc/jF804sL169cRGRkJR0dH+Pv7q103D8IdKmyJxhs8eDCCgoJQVlbW6rzozxd206ZNa5aoy8rKeuTgIZfLkZycjNOnT2P+/Plwd3dv0d+sswcyZWbq6e4ZhgghqtXRGQ+7wtraGiKRCGZmZhCLxYoJOxonQpg0aRI++eQTVFVV4e233+72hgAnJyckJSUBaJjkpqSkRLGtc+fOIT4+HuPGjYOPjw8MDQ2bvbYnWrqJ+qLClmiFAQMGQCQSgTEGsViMJ0+eKJ57vrDbtm1bs0LXwsKi2w8eMpkMsbGxuHLlClasWIFp06a1ehFFTx7ICCHqraMzHna1iDM3N0dgYCAGDBiAsLAw3L17F6amptDX18enn36KtLQ0FBYW9khDwNatW/HVV19h1qxZOH36NDZs2ICNGzfi2LFjOHjwIKZNm4bly5e32mdX3cYQJj2LCluiNXr37g2hUAhzc3OEhoYiOzu71eWeL3SdnZ279VRbdXU1JBIJ7t27B29vb0yYMKHNZak/LCEEaChYZTIZPvnkE0yaNAmHDh1qtRuRqos4ExMTCAQCDBs2DNHR0UhLS2v2g7u6uhorV64E0L0/vk1NTdGrVy+cOnUK27dvx6pVq3DmzBl8/PHHOHLkCJKTk1FdXd3qa6mBQLdRYUu0SmOLw8CBAxEeHo7bt2+/8DVd7YPaXotJRUUFdu7cifz8fKxbtw7Dhw/v1lgIIdph48aNWLhwIdLS0vDpp5/CwMCgRTeiqqqqZjMeNhZxXW3FNTAwgJeXF1xcXJCYmAhTU1PFD24TExPs2bMHQPf/+G78oV9XV4cPP/wQBQUF8PPzw6+//tpuEa/ODQTUTaL70XBfRCvJZDIkJCTg1q1b8PDwwMSJEzu8DsaY4iKKfv36tTn+YlvjxBYVFSE8PBwymQz+/v7o169fl/apLTQBg3rR9jyj7funLpQZpi84OBiPHj1CQEAAPDw8sGfPHpw6dUplM4IxxnDixAkcO3YM6enpqK2thaOjIwAgKytLqSEOlc2jramqqsIf//hH/PLLL+Dz+TA0NMSpU6cUz7c1dKE6jyFM44orpyt5pvWBPwnRcAYGBvD09MSBAweQlJQEqVSK6dOndyip8ng89O/fH1VVVdiwYUObhWNmZia++eYbAA0tJjt27EBeXh4iIiJgbGwMkUiEXr16qXoXFRpPRX7zzTfYt28fPvroI0qUhGi4xlbHxgKotVbHzMxMxexfO3bsQG5uLs6ePQsvL68WOakzeDwe5syZAz6fDyMjI4wbNw7Lli1rNpKLMuvo379/p7Yvk8kwevRo2NnZwdfXF9u2bXvhewL8r7uZOmrteEFUi7oiEK2lp6eHJUuWYNasWTh27BgOHTqEzpygeFEftudPe/Xt2xc7d+6Eqakpbt26BYFA0K2nnJTpT0anvwjRLMp0S3JycsLRo0exfft2vP7663Bzc4OpqanKT8VPnToVq1evxo0bNxAdHY3a2tourU8ZhYWFCAkJQVVVFYRCIezs7LSiq5Y6d5PQFtQVgfQ4Lk6dX7x4EQcOHGh1XvS2MMZQWVmJ1atXIyUlRdHa+/zpr6anvXr37g1HR0cMGzYM58+fx4IFC+Dh4YG4uDhs374dvXr1Uvk+K3Nqi05/9RxtzzPavn+apK1T7t11Kr4zU4A35lEAMDMzU+qs2ePHjxEREQFTU1P4+/vDysqqy7GrC3XuJqFOaEpdJVFC5k7TYrakpATBwcE4c+YM0tLSUF9fjyNHjnT7l/vmzZtISEiAo6Mj1qxZ88LZvhqngty2bRt8fHywfPnydovC1NRU7N+/H6NHj8bKlSuxfPlyRQEcHByMWbNmYdWqVSovLJVJlDStbs/R9jyj7ftH2vf48WNIJBLw+XwIBIIXFp0dnVL3/v37iI6O7lDxTLQPTalL1F7T0/n6+vo4c+YM5s2bh1OnTuG9997D/Pnzu/30+OjRoyEQCJCTk4Ndu3YpWhFe5J133sHx48fbPP3FGMOpU6eQnJyMKVOmYPXq1dDX1292yiktLQ2rVq0CoPrhZ5SZgIFOfxFCVGHQoEEQiUSoq6tDSEgICgoKVLbumzdvIiIiAvb29li3bl23FLXULUv7UYst6RFNWwiDg4Nx5coVnD59WvH8rFmz4OLi0iOnx/Py8iCRSF54mkuZlga5XI6UlBRcvHgRc+bMwYwZMxSn2qqqqvDRxo14dPs25IWFeFcggNuECTh76BAOJiTgTxs2wEgmA2prG251dYBcDgCoq6vD0WPH8LSkBFZ9+2LxihUwMjcHmt6srIDevQFr64b/t9MSQqe/eo625xlt3z9d0pVuYeXl5QgPD0d5eTn8/Pxga2vb6nLKttheuHABKSkpGDt2LJYvX96hC9Q6grplaYYe7Ypw9epV7Nu3D9bW1lizZg1sbGyaBbJhwwaIxeIOBdFTKCFzp2kyiYuLw1/+8hd8/vnnWLVqFZKSknD8+HFkZGT02OnxwsJChIeHQy6XQyAQtDoUl1wux9mzZ/Hdd9+hrKwMQ4cObZb4ZdXVOBQSgmcXLmDW4MEYbGAA5OY23J48AZ4+bbjV1HT/DunpAX37Av37N9xeegmwtW242dsDQ4YAgwcDxsbdH4uOUzbPaGoupTyqPbpa5FVVVWHXrl0ICwuDsbExxo0bh61btwKAomAeMmQIvL29YWJi0mphyxjDyZMncerUKbi6urY61biysTRu08HBAQCQnZ3domBXh25ZNETji/VYYXv48GF4eHhg2LBhKC8vR2VlJXbv3o3Zs2cDAJ48eYJBgwahvr6+Y3vQQyghc+f5FsO//OUvimFjXFxcMH36dJw5c6ZHfzmXl5dDIpGgrKwMvr6+sLOza/a8XC6Hn58fZowdizemT8f16Gjc2rsXTnV1GFxTgz4VFdD7bwvrCxkbowiAtaMjYGkJ8Pm4cPMmpsya1VBsGhkBhoaAvj7AGPbv348lixYB/23RPXXsGGa9/DIglQIVFUB5OVBSAhQXA0p2qQCP11DwDhsGjBgBDB8OjBwJjB0LDBjQ8DzpMmXyjCbnUsqj2kMVRd4777wDExMTWFpaolevXrh//36zcXT37t2L6OhovP/++y0KW7lcjj179uCrr76Cvr4+Jk+ejL/97W+dKvKaFunR0dH46quvMGjQIJiYmGDAgAH47rvvWizHVYutOsSg7nqssH311Vcxe/ZsfPHFF2CMYdu2bfjss88QGxuLhQsXqnUyBighd0Z3/rJUh9Pj1dXViIqKwuPHj+Hl6QlnExPg8mXg8mWwS5fw9Ngx9G9naBtmZATe4MENraF2dv9rJR0w4H+tp337AqamHUpmHUp8NTVAYeH/Wonz84FHjxpajh8+BLKzgfv3G4ritvTp01DgurgAkyYBEycCzs4NhTbpEGXyjCbnUsqj2iM4OBjz5syBx6uv4mR0NNJPnMBb3t4N+aSoqOHHc3k5UFbW8IO6uvp/t9paQC5HTlYW7F56CRVSKSpra1FWUQFmaAjnceMAExMwY2McOX8eLjNnwsbREbz/dp+q79ULx65exd927sSKN9/Eu598gqR9+3D8+PFOFXnPd3drerHuJ598grS0NADqcdxRh1Zjdddjha2VlRUuX74MJycnxWNRUVF47bXXEBUVhSlTpqhtMgYoIXeGVv+yrKxEzenTOLx5MyzT0zG2shLWMlmrizJ7ezzp0wc3ZDLojRyJAmtr7Ll+HdGnT7fbt7WpjiRUlSdfxoBnz4DMTODOnYbb7dvAzZtARoaib28z5ubAlCnAK6803FxdgSany0nrlMkzmpxLKY9qGJkMyMlp+J5nZgIPHjTcz8mBPCcH7PFj6KvDpTbGxsDAgbheVoaxixc3dKFydAScnBputrbt5tqmx6qZM2c2u4Zj8uTJSE1N7Ym9aKG1xqHGi6m18riqIj0285ixsTFKSkqaPbZ27Vro6enBx8cHf//73zu0caL+NHmWlBYJ5c9/hunFi8DJk8AvvwCpqTCWyeDR5DV1PB5qhg2D+YwZYC4ueNy3L7YmJ+N+YSEKCgowYswYTJ48GX379sUAY2NU1dQo3aLdkdlwVD5zDo/X0HLct29DkdpUVRWQng5cuwZcuQJcugSkpTW00Bw/3nBrNHo0MHNmw23OHKCbpgnWdpRLicrV1TX8YL1+HbhxA7h1q+HHa0ZGw3OtaFYm2tg0nGGysWm4ILVPH6BXr4auUxYWDT90zcwAE5P/dZ/S00ONTIYffvwR169dg5G+Pgb26we7AQOQn5UFQ5kMtn36YN7UqTCqrYWFXA7Zs2fIvXYNBqWlkD99ir719TCrqWk485SVhbEAIJG0DNbEpOEs0siRDV2pxowBxo1rKHr19bF161bFDGwymQx79uzBypUrsWfPHrzyfM7rQa3NDNk01saGC6I6HWqxdXd3h7u7O95///0Wz0VFRSEgIAD19fXd2srw/fff4+uvv0ZeXh5Gjx6N7du3Y8aMGUq9lloaOk7ZFlt17Ay/4d13sdreHjOkUhTt3g2rO3eg/1zLZIGJCfouWwa4uoJNnYpZwcGYs3gxXn31VcyfP19xEUN2djZ27dqFU6dOwdDQECNGjMCWLVu69Zc3p+9pfT22rluHRb17Y3xVFcoPH4ZFbm7L5caNA+bNA+bPB2bNAugCCKXyDNe5lPKohqupAa5ebfgRmpra0H3q5s02C1iYmDRcQNp4c3BoaBG1s2vod9+/f0Mf/056/jgRHR2N4cOHY9iwYfD09IThf9ddVFSE8PBwyGQyCAQCfPnll5gxYwbOnTyJhxcvondVFf71/vswys//XxeqzEwgK6vtfTM1BcaOhWz8eOy+fx9na2uB0aPB9PWRlZXF+Sgw1O2gc3qsK8KePXtw+vRp/POf/2z1+aioKPz00084ceJEh4JQVkxMDPz9/fH9999j2rRp2LFjB/7zn/8gPT0d9vb2L3x94xtVXFzc5hv1fMf29ujCso3FVeMp8S+//LJFgtDT01MktiVLlmDff/tJtfY5aRoDY6zdKW6bxvDhhx8qCrzWkpRivUVFYPv3A/v3ozwhAZbPJcNnlpaQTp0KB4EAR2trsUksxgcffqhIyMePH4ePjw8OHjyIcePGYfny5cjIyEBcXBxsbW3h7e0N4yYjCzS+DmiYE93DwwPJyckv3Dcej6comtta9p133sGTJ09QXV0NU1NTDBgwAN9++22X16vsss/vm5+7OyLfegvs1Cng5Enwrl5ttjwzNW0obhcvBm/ZsoaDJ9r/rDWNgatlAdV+j8rKytC7d+92EzKXuZTyqGYs29gdKTMzExMGDMAnbm4wvnwZOHcOvMuXG/q4PodZWDT0lR8zBuy/LZt6o0YpTuMrm3MB5fMzAEXeb+Th4YF//OMfiI2NxYABA+Dr64vS0lJERETAyMgIAoEAvXr1QlVVFT7++ONmx5ems5MpYpDJGgrd27eB27fBS09vKORv3ACvlXFoZcbGeGBjg6ECAZirKzBtGnh9+qgsN3Zk2Q0bNmDu3LmKY0NjH+LGZZv+nZse39QhN6p7Hm2LRo1jO3XqVEycOBE//PCD4rGRI0dixYoVrTbl19TUoKbJUEtlZWWws7PDyZMnYW5u3mJ5KyurZgPXX7lypc0/joWFBZydnRX3r169Clkb/TPNzMwwcuRIxf3r16+3Ode2iYkJRo8erbh/8+ZNVFdXt7qskZERxo4dq7h/69atNicdMDAwwPjx4xX37969i/Ly8laX1dPTg4uLi+J+RkYGSktLW10WACZNmqT4FXr//n0UFxdjw4YNrbZcNr0qNisrC4WFhW2ud/z48TAwMEBwcDDGjx+P8ePH4/Tp07hw4UKzli6jvDyMvHULBvv3A2fOAE1auapNTFA5fTouWVtjX2UlrpSU4PDhw4rCeM6cOejfvz9yc3Nha2uruMI3IyMDJ0+eRO/evcEYg4uLC6ZNm4b8/PxmMW7btg1TpkzBzJkzkZGRgbNnz2L79u0oKChATk4Oqqur8d1337VY/9ChQxXj5xYWFiIrK6vF/vv4+OCtt95CYGAgzpw5g08++QQnTpzA/fv323zPBg8ejD59+qCqqgq///3vcfPmzWbbbcre3h59+/YF0DBCxN27d9vct5s3b+Ly5cvYvn07pFIpbt++DYPiYlhcvAiLCxdgdfYsjJ48aR7MhAmoW7wY98aMQdWwYa2OutC/f3/F+Je1tbW4fv16m/vWt29fReElk8lw9bnCuqk+ffpg8ODBAJqPo9ma3r17Y8iQIYr7ly5danNZZXJERUUF3Nzc1LZFk/Joc+qURxtlnzuH5N//HjMZw7C8PJjk5LR8gY0NMHkySpycUDh4MCqHD0ftwIEtvmeNeRQAcnJy2p1QYezYsYoZGXNzc/Hk+e90E6NGjVLk0cDAQIwZMwazZ8/GiRMncOHCBXz44Yd48uQJUlJSwOfzoa+vDwcHB8ybNw/FxcVtrtfZ2RkWFhYAoMijbRnq6AirggLgyhXEbtyIBX37gn/rFvSfu1CW8XioHzUKBrNnA7Nno8TFBZlFRW2utzGPAkBpaWm7E+q8KI82PQaMGDEC//rXv2BqaqrIo03zbNPj28CBAzFo0CAADY076enpbcZAebS5DvWxLS4uhkQiQUBAQIsNlZaWIiwsrNXnVKG2thaXLl3Cxo0bmz3u7u6O3377rdXXbNmyBZs3b1Z5LLqstUIN+N/MVqNHj8bp06dbHay7uroaGzZswP379+Hk5IQ333xTqW1mZmbiD3/4AwoKCjBz5kwkJCTAKDcXvY8eRe/jx8F/7gtfO2IECl1dUfDyy/jbyZPIefwYtnp6eGfjRhR89x32798PT09P7Nu3D0OGDGk1DicnJ2RkZCAhIQHOzs74+OOPWz3YvfPOO/juu++QkJCAsWPHtugb+d1332HKlCl4//33cfr0aXz33Xd455138OGHHyI3NxdOTk744x//2Op+GxgYYObMmQAaWkCafpbbKpgbbdy4EW5ubnjttdcU223ttHd7mu5bY0JuSta7N4rd3VHs7g4wBpPMTFj9+iv6XrgA44sXgbQ0GKalYRSAajs7FM+di+J581A1fLjODy3GVS6lPKqeeNXVQEoKcPAgcPQoHNLT8XaT5xmPhwwzM1gtXgzpuHFw8PaG3tChAI+HkqwslLTTQNBTUlJSsHfvXhgZGSmKwv79+2P8+PH4+eef0bt3b7zxxhswMjJqt7DtEH39hmELhw/HkePHkTtyJGZOn46bcXGoOnECqwcNgnlaGkyys2Fw82ZDK+9338GKx8OIkSNRNmUKylxdUTF+PGDQoXKohaqqKnzwwQe4ceNGs5xsYmKiyL22trYtzjbm5uYqnm88vpEuYh3w2WefMU9Pzzaf9/LyYp9//nlHVqm0R48eMQDs119/bfb4F198wZydnVt9TXV1NSstLVXcHj58yACw4uJiVl9f3+qtqbaW0eVl3333XZaYmMjq6+tZYmIiW79+PWOMscrKShYcHMwWL17M1q9fzyoqKlqs891332VJSUmMMcaSkpLY+vXrlYph/fr1bO/evaz+0SN27Xe/Yw/692es4Tp/xgAm19NjzM2Nse3bGbt/n8nl8jbXWVFRwYKDg9mSJUtYcHAwk0qlLZaRyWQsOTmZffLJJ2zLli3s3XffZd9++y0rKSlpN165XK6IuTGGxYsXN1tm8eLF7N1332V79+594fvw5ptvsri4OCaXy1lCQgJ7++23Fet99913WUxMDHv33XfZjBkz2KuvvsoqKioUMSxZsqTZ+/B8HG3F25F9a3fZp08ZCw1lbMUKJjcxaf73cnZm9Zs2sfpbt5qt90Wfy+5aVtXfo+LiYgaAlZaWsrZwlUspj6rRsvfvs/p//YvJ3d1bfkd4PJbdrx+7u2IFq09KYskSSbM80dSLvo/KLltRUcHWr1/PlixZwtavX99qbmxrva3lufr6enbhwgX2l7/8hf3pT39iLi4ubPjw4SwoKKjV40Nr392O5CWpVMrWr1/f+jHo8WMm372bsbffZmzkyGbvNQOY3MKCyVesYPU//8zq8/I6FYPiOFX/v2OjMvvW2jH1+WVf9FlTh2VV/T1SJo+2pUOF7fjx49nRo0fbfP7o0aNswoQJHQ5CGY0J+bfffmv2+Oeff86GDx+u1DpKS0s7/UaRBkuWLGn3fldeW1lZqUisb731FnvrrbfYyoULWcj8+eyGvT2TNU1GenqMzZ3L2I8/ssoHD5ol5MrKyk7vn0wmY3FxcezTTz9l58+fZ6mpqezo0aPsH//4B/vHP/7Bnj592qH1rV+/vlkx31hUt/c+NGr8sdBYhDfdr8Z9bVx3fHw8Cw4Obne7Td/frr5PHVJezlh0NGOenoyZmjY/qLz8MmPffcfYs2c9E0sPUCbPcJVLKY+qntLfK7mcsbQ0xj75hLHx41sUV8zWlrHXXmMsNpaxZ8/a/f53h9ZyRmdfu379enby5Em2adMmtm/fPubt7c22bt3KduzYwQQCAQsICOiGPeiAR48YCwtjTCBgzMam+d+Bx2Ps1VcZ+9vfGLt3T+lVdvbY2NN/Z03RlTzTocLW3NycZWdnt/l8dnY2s7Cw6HAQyqipqWH6+vosISGh2ePr169nM2fOVGodlJC7TpXJ7/nXKp6Xy9kHc+aw++7ujFlaNk86U6cy9s03jOXlqSSmpmpqalhYWBj77LPP2M2bN1l9fT1LTU1lqamprLi4mP373/9mW7duZQ8fPlR6na0lLVXE29rnvmki7a7tdllZGWPh4YwtWsSYvv7//q6GhoytXs3YgQOMyWQ9H5cKKZNnuMqllEdVr93vlVzO2KVLjG3cyNjQoc1zmZ4eYzNmsNovvmBf+vmxJf9taeSqsOlKo0XTfLN+/XqWkJDANm3axE6dOsVkMhmbPn06S01NZVVVVUwikTBnZ2d2/fp1Ve9C59TXM3bhAmOffsrYpEktf3BMmMDYX//K2J077a5GLfKrFumxwtbKyoqdPXu2zefPnj3LrKysOhyEsqZMmcLefPPNZo+NHDmSbdy4UanXU0Luuq78unzRa73c3Rta755vzXBwYJFDh7b567krCblRRUUF++mnn9iXX37J7t+/zxhjzQrb+vp6VllZyUJCQtjnn3/O7r3gl3x7rTiq+IVeWVnJpk2bxuLj4xljjO3du/eFiVQV75NKPXnS0H3ExaX539venrHNmxnrwA8IdaJMnuEyl1IeVa1Wv1e3bjH2l78w5uzc/LNtYsLYihWM7drFWEEBY0x9CiJVxFFXV8d2797NPv30U5aamsoYa8ijPj4+7B//+Aerr69ne/bsYUuWLGGffvopO3fuXJfjVvmZqIcPGfv+eyabO5fJeLzmf7+JExn7+mvGcnJajYNaXlWnxwpbNzc39uGHH7b5/AcffMDc3Nw6HISyoqOjmaGhIQsJCWHp6elsw4YNjM/ns6ysLKVeTwlZTV29ytjrr7NqQ0NFAqnR02M5M2Ywdvw4S0pMbDfJdjUhFxcXs2+//ZZ99dVX7PHjx4rHny9sGWOstraWRUREsM2bN7OrV692W0zK6GgiVZcDaKvS0hgLDmasd+//HUT09RlbtYqxo0cbWr40hDJ5hstcSnlUtRTfq4ICdu3//o9l9+vXspj19GQsJqahW85z1OUHZ1cLs+rqarZr1y7217/+laWnpyser6+vZ2fOnGE+Pj5s8eLFimsbDh06xDZt2sSOHTvWoi9nR3RXXlu/fj1LkUgYE4vZk4kTWxa5s2cztnNnq39T0nU9VtjGxcUxAwMD9u233zJZk9OFMpmM/etf/2KGhoYsNja2w0F0xL///W/m4ODAjIyM2MSJE9mpU6eUfi0lZNXq0i9lmYyx+HjGZsxolizyrK3Zj6NGsT+KROyNN95gEydOZOPHj2dvvfVWm+vvSkJ+8uQJ27ZtG9u+fTsrLCxs9lxrhW3j43v27GGbNm1qtdWtsrKSTZw4sdljnLeOsq4fuHqkj25VFWMSCWMzZzY/iIwYwZhYrPrtdQNl8gzXuZTyqIrIZKw6IYGlOTmx2qaFj4EBY4sXN3S7KStrdxVq/YNTSRUVFWzHjh3syy+/ZA8ePGj2XFt5lDHGzpw5wzZt2sSSkpJaPPcijflo7NixzR5XVa59fj1r589n7IcfWuYmMzPGAgIY++UXjfoBru56rLBljLGPP/6Y8Xg8ZmlpySZMmMBcXFyYpaUl09PTa7cFQh1QQlatziTkyrw8ljB9OstrehGRgQFjXl6MnTjRLDF0d8LPzs5mW7ZsYT/88AMra+XgI5fL2cOHD9nDhw9btCjI5XJ2+PBhtmnTJnbkyJFmz69fv56tXr1aEXtCQoJGHqye1+MH4Bs3GHvrLcbMzRs+J7//ffduT0WUzTOamkspjzLGsrIaLgJ76aWWp6q/+aahm42SuusUdk9dLFpUVMT+/ve/s+nTp7O5c+e22FZ7eZQxxq5cucI2b97MoqKiWF1dndLbbcxH69evZ3v27GGMdSwvvej9+f/27jyq6WvrG/g3gMwIjnVkEOd5xooDWqRSRERwYBIIt29HL759ett6u56r3ut99LW2tXPtfQggAQRFZCjOWpzqDNU6iyIqooICEjBAct4/UlJRhgBJfvn9sj9rZS0TQ7Iz7eyc3zlnt5jvCgsZW7uWsUGDGr/+Q4YwtmGDalcY0iF6LWwZY+zUqVPqrZ28vb1ZdHQ0O3nyZHtuSq8oIWtXmw6h3b3L2N/+xqrNzf+cbmBnx/ZMmqT6v47efhtdvXqV/etf/2ISiYTV1NS0+e8bkuLUqVPZ5MmTWUpKinrEwcfHp9GX1ZgxYwQx34qzQ6YVFaq5121YocyltuQZPuZSo82jCoVqcaOvr2rhV0Mx07UrYytWMHb+PNcRNqKPH6IlJSVs48aNbMaMGSwxMbHd93X16lW2du1aFhsb2ygft1R8NuSfhlw7atSoNv0waO35efEHR1lZ2cuxKJWMHTvGWFQUYzY2f74nzM0ZCwlR/R+N4raL3gpbmUzG3n33XdanTx/Wo0cPtnTpUvbojwnwfGC0CVlHNEqcV64wFhmpWvXe8KEfNoyxn35irLq6xeJIV4m5vSMEzcX21VdfsSlTprCkpCRWW1sriEOLTRHq49I2TfIMn3Op0eXR8nLGvviCsQEDGo/OzZ6t2sbu2TOuI2xSW3+ItnWEt+GI148//shef/31Nt1XU4qKitRH0J7+MW+1pZzT0XzU1uen1furrGTsP/9hbOLEl3dVkEhU06yIxvRW2H744YfM2tqavfnmm+yvf/0r6969e4ubjBsao0vIOtbiIbT8fMYWL1btCdjwAZ8xg2329WWZO3cyxlpPRro4RNcwp6thI+3WyOVyJpfLX7r8xSTo4eHB1q5dyyQSCXv8+LFBrI7V9qFIWvWrGU3yDJ9zqdHk0evXGXv//T+nwgCMOTioRmevXOE6ula1tfBry/WvXLnC/vWvf7G4uDj27NmzVv+2uTz6ogcPHrB169Yxd3d3Nnr0aObq6tpofUVrWxq2RVufnzYVwqdPMyYWN963u3t3xj79lLHnFiiT5umtsB0wYABLTk5Wnz958iQzMzNrtPjBkBlNQuZSXp5qO5vnf7H6+jL2xyKrlpJRdXU1e/fdd9n48ePZ6NGjW1ww1lZKpbLNq3BbWvTQ0GWGMVVzBHd3d3bt2jW2fv169v333zc5Z1ffaISVG5rkGT7nUsHn0ePHVbtxPP+jfPhwxn78kbGqKq6j05gmhd/zP341XfB67tw5tnr1apaSkqI+4tXSfbWUR5vy1ltvsb/85S9sw4YNLC4uji1cuJBFR0drPYfpZVeZsjLVnNv+/RtPUxCLGbt4scXYOGmmY0D0Vth26tSJ3X1hPqSlpSUramJPN0Mk+ITMpd9+Y8zfv3H3liVLVJdrqGFjb8ZUiSMgIEAriay+vl69YXhb9k1sKSE37CM7Y8YMFh0dzbZt28aio6PZw4cP2eeff86+/PJLVspxNy1D2UbI2GiSZ/icSwWZR5VKxrKzGXN3b/yj3NubsX37BDtP8vliLSAgoFH+fTH3KpVKduTIEXU3MU13MWhrYevj48NkMpl6X/FZs2a1ef6sLnRohLiujrHt21UdzZ5/f/n4MHb06EtXp0GJjuUZE7SBQqGAubl5o8vMzMxQX1/flpshQnL9OhAUBIwZA6SnAyKR6vzFi8DWrcDo0RrfVEFBAfz9/QEAvr6+ePbsGW7cuNGh8Gpra7F161b8/vvvCAgIgJubG2pqahAdHY158+YhOjoaNTU1bb5dKysrODg4IDc3F5s2bUJgYCBu3LiBHj16ICoqCmZmZpBIJCguLu5Q/B3h6uqKrKwsAEBWVhYGDhzIWSykMcqlBqK+HkhOBsaOBebNA44dA8zNAbEY+P13ICcH8PRU5TUBKigogK+vLwAgISEBa9aswbx583DgwAGsW7dOfT3GGPbs2YP9+/fDw8MDPj4+MDFpU/mgMVdXV+zZswfh4eF49OgRHjx4gDFjxmDTpk2wsrLSyX1qwsrKCps2bUJ2dnbbYzEzAwICVO+vY8eAhQtV76mffwamTQNmzgT27FGVu2j8uvj6+nb4e9DYmLXlyowxREREwMLCQn3Zs2fP8Pbbb8PGxkZ92Y4dO7QXITFM9+4Ba9YAEgmgUKguW7wYWLUKGD68XTfp6uqK9PR0+Pv7IysrC5aWlujXr1+7Q6ypqUFiYiIePnyI4OBguLq6AgA++eQTeHp64quvvkJWVhZWrlyJTZs2tSverKws+Pr6Nioc7e3tIRaLkZSUhLi4OCxduhQDBgxo9+Nor/Xr12PlypXYvHkzBg4ciHXr1qGmpgaffPIJCgoK4OrqivXr13P6ZdESPsXaVpRLDYSvL7B7t+rftrbAO+8A//f/Ar17cxuXnjyfwxqK1hdzoUKhQEZGBi5cuAAfHx9MmjRJpzGtX78ef/vb3/Dvf/8bdXV1cHR0hJOTE86cOYOJEyfq7H71lm+mTlWdrl8HPvsMiIsDDh9WnSZNAv7xD7gOGNDkdwvRjIixP34iaCAyMlKj68XGxrY7IF2qrKyEvb09Kioq0LlzZ67D4aeKCmDDBuDLL4GGkU4fH2DtWtWoRwfU1NTgb3/7G06cOIH6+npMmzYNn332WbuSS2VlJRISEiCTyRASEoK+ffuq/2/evHnIzs5u9nwDpVKJvLw8AMC4ceNeGqGoqanBypUrcePGDXXh+HystbW1SE1Nxa1bt7Bw4UKMGDGizY+jKR1JwNHR0fD09FQnzAMHDrSrqNcHPsX6PE3yDJ9zqaDy6P/+L/DJJ0B0NPD++0CXLlxHpFf6yGGt5dHWMMawe/dunDx5ErNmzcKMGTPw7NkzrRehnOWbe/eAL74AfvwRqK4GACjHjUNMv37IUCgwcNCgl14XY9ChPKPVSREGTpBzw/Sltpaxr79mrFu3P+cHTZvW5Pwgrj18+JB98cUX7IsvvmhyCyVN5y+1dW5YU+rr61laWhpbvXq11vYn7cj8Kz7Nu+VTrM8Tep4R1OOTy3m1IEyfZDIZ+89//sP+/e9/s5s3b7b7drSRR5VKJTt8+DBbtWoVy87OZsuXL9f6HFTO882DB4x99FHj/XAnT2Zs717BzvFuid7m2BIjxJhqHtCoUcBf/wqUlQFDhwIZGapDJ+7uXEfYyN27dyGRSGBhYYGoqCh07979peusX78eBw4ceGkumTbm3r7I1NQU/v7+mDJlCnJycnDo0CEwzQ+SNKkj86/aOu9WF8+JpmiOMNE5c3PguakfTeHyM8CViooKSCQSPHnyBBEREXBxceE0HpFIhOnTp2P+/Pk4c+YMjh07Bm9vbwDam4PKeb7p2RP4f/8PKCwEPv4YsLYGTp0CvLwADw/V3FyiGe3X2YZLUCMN+nDxImNeXn/+euzRQ7XlTTubGjRHW1ubXL9+na1du5bFxMS06zbeffdd9argHTt2sLfeeotFRkay2bNns+XLl3doRa5MJmP+/v6sV69ezNnZmb3zzjvtvr2OjNjqZYsbLeHrvrlCzzNCf3wvEvoK9Rfz7+3bt7W6s4tSqWS3b99mt2/f1mibxdZcvnyZTZkyha1YsYI9e/ZMa6+JweWbkhLVnskWFn9+B8+f3+I2YUKi95a6fGVsCbndystVHyhT0z/33fvoI9XlbaBpwaqNL47ffvuNrVmzhiUmJrLa2to2/z1j7KV9HIcPH661L7SGrczOnTvHgoKC2OTJk9ny5cvbdVv6TMAdOTxnrHsxCj3PCP3xvai9nwG+vP+fz78xMTHM3d3dYPbibs7ly5fZ1KlT2ciRI7W633lb6eU1vnOHsb/85c82ziYmqn1w793TXwwcoMJWQ8aWkNtMoWAsNpaxnj3//IW4YAFjBQXtujlNC9aOtn785Zdf2KpVq1h6enq753Axxtjo0aMbxTtw4MAm42oukWjS15wxVdeewYMHs9GjRzfqi26IOvKjQ+gjXc0Rep4R+uN7UXvfx3x5/zfkpmvXrrG1a9fyIi8xxtj9+/fZZ599xr766iv2+PFjTmLQ62t8+bKqcUjDd7O1NWOrV7MP33mHF++ztqI5tqTjLlwAZswAIiOBhw+BIUNU++qlpwPt3KpK07mgrq6uyMzMBKDa3qi8vLzFeWwN23VlZWWhR48e+Pjjj+Hu7g4/P78O7a04bdo0xMfHY968eYiPj0f37t2xc+dO1NfXN5pz1XD/2dnZ8PT0xMqVK1u8vOExpqenAwCuXbuGAQMGwNbWFnFxcaiqqmp3zLrW3HxkTdBejEQI2vsZ4Mv739XVFV9//TWSk5NRXl6OGTNmwNLSUqv3UV9fr/U9mnv16oWoqCgAQExMDB48eKDV29eEXl/joUOBtDTg+HHg1VdVOyisXo1PJBL4Pn4MKJUG/T7TJypsjV1VFfC3vwHjxqkmp9vYqLbzOn9eNWm9AzSdjL9+/Xps2LABM2fOxOHDh7FixYpGReGLCgoK4OPjg8zMTNTX18PU1BRz5syBqIObqG/cuFG9b26/fv2QlZWFlJQUzJo1C/v371d/oTWXzF68/MiRI+oCveHLceLEifjv//5vuLq6IjExETKZDDExMXj8+HGHYteVjmxKzvliDEK0oL2fAb68/xcsWICkpCRkZWWhtrYWGzZs0OrtK5VK/Pbbb/jtt9+gVCq1ettdunSBWCyGnZ0dYmNjcfv2ba3efms4eY1ffVX1XZ2aCri4oJtcDkREAFOn4sjGjQb7PtOnNu1jy3eC2n9RG3JyVBuSFxWpzi9cCGzaBPTvr5Wbb22PxOdpurcsALz//vuwtLRE586d4eDggJs3b+pkv8Hm9l9sbr/D6OhoeHh4qBtMxMfHo1+/fi3GVl5ejoSEBMjlcoSEhKC3gDaGb8vrLyRCzzNCf3za0tL73xCajzDGsH//fhw7dgzTp0/H7NmzOzw40JSO7mOrCblcjq1bt+LOnTsIDAzE0KFDtX4fTeE8x8nlqNu4EYo1a2BZVwcAqA8NhdmGDbxvMtKRPEOFrTEqKQFWrABSUlTnnZ2B774D3niDs5A03Ry7pqYG8fHx2LJlCywsLDBmzBidJZPmEnJzyaympgavvvoq+vXrp7580aJFzRboDWQyGRITE1FWVoalS5dyvrUO6Rih5xmhPz590FUzAE0LZoVCgaysLOTn58Pb2xtubm4dvu/m6KOwBVTTHdLT03Hp0iX4+vpi/PjxOrkfg1RSAqxcqepiBqhGdKdO5TSkjupInqGpCMaEMSA+XtXyNiUFMDEBPvxQ1ROdw6IW0Gwe29OnTxEXF4eKigqkpqbi0KFDnPQPb+7QpJWVFWbOnIm33noLmzZtwv79+zU6LGRjY4Pw8HD07dsXUqkUly5d0vVDIIRwSFdzM1ua59+grq4OKSkpOH/+PAICAnRa1LZFR/cLNjMzQ0BAACZOnIjMzEwcOXKkw3uG60uH90ru1QuIjVXte7t2Le+L2o6iwtZYFBWpiteICODJE2D8eOD0aVWv6lY2KNeH1uaxlZWVISYmBjU1NRCLxeq5sIamvQtNLCwsEBISgmHDhmHbtm04c+aMjiMlhHBFV3MzWyuYa2pqsGXLFhQWFiI4OBijRo3Syv1qgyZFeWsFoImJCd544w14eHjgwIED2L17t1aLW10169DksWtk0iTg00+1EhOfUWFrwLTyIWIM+OknYORIYPduwMICWL8eOHlSVdzyQHFxMSQSCTp16oSoqCj06NFDa7et7UTVkcVWpqamCAgIwKRJk5CdnY3c3FzejDgQQjTXkd1GWtJSwVxZWQmJRIKysjKEh4cb3CIjTUaxNSkARSIRPDw8MG/ePJw6dQo7duyAQqHQSoxaK0BfwJcdNPiCClsD1uEP0d27gLc38NZbwNOnqsMT+fmqdn1mZjqJWdtu3ryJuLg4dOnSBZGRkbC3t9fq7esqUbWXSCSCt7c3Zs+ejUOHDmHXrl1U3BIiMB35AdyS5grm0tJSxMTEoLa2FmKxGH379tXK/WmTJqPYbSkAJ06ciEWLFuHSpUtITk5GbW1th2PUVQHKlx00+II3he2///1vTJ06FdbW1nBwcOA6HL1o94eIMWDLFtUo7Z49qlHazz8HDh9W7YXHExcvXkRiYiKcnJywbNkyWFtba/0+WnqORSIRunXrhm7duulktXBzRCIRZsyYAV9fX5w+fRrbt2/X+h6QxDgZYx41Jk0VzPfu3YNEIoGFhQWioqLQvXt3nR1Sb4qmeVSTUey2FoDDhw9HaGgo7ty5g/j4eFRXV7f7cdTU1ODJkyfYsWMHACAzM1NrBaiuRvCNFW92RVi1ahUcHBxw9+5dxMTEoLy8vM23wbfVvO1aOVtaqhqh/ePDh8mTVQvGeFTQAsCpU6ewa9cujBo1Cn5+fjA1NdXJ/ehqdbK2XL58GWlpaXB0dMSSJUtgYWHBdUikFYacZ4wxjxoqfWz5dePGDaSkpKBXr14IDg5W376h573mtHd7rfv370MqlcLKygqhoaFt+lHX8DodPXoUjo6O6Nu3Ly5cuACFQoF9+/YZxRaGXOhQntFW+zN9iY2NZfb29hpd99mzZ6yiokJ9unPnDq9aQVZXV7Po6Gjm4+PDoqOjW+8BvWsXY716qdrtmZkxtnYtY3V1+glWS5RKJTt48CBbtWoV2717N1MqlTq9vzY/xxy4desW+5//+R+2efNmVlVVxXU4pBV8aDlrTHnUULWnHWtLbbtfdP78ebZmzRqWmJjIamtrG/1fc23M23L7fFNWVsY2bdrEPv/8c/bgwQON/66516m11u+kY6ilbjPWrVsHe3t79am/lhoP6IvG87CePQP++lfVfNqSEtXo7IkTqtWRz82l1efhp/ZQKpXqRVNz5syBl5eXzqcAtPYcK5VKrXfLaStnZ2dERkaqF388efKE03iIceF7HjVU7ZlqpumagBMnTiAtLQ2jR4/GkiVLUF9f3yj3Ozk5NXlIX1drDgwhj3bt2hVisRjW1taIjY3FnTt3NPq7pl4nmgdr2ARd2K5cuRIVFRXqk6ZvZF65dEk13eCbb1Tn338fOHsWmDDhpasa2kKp59XX12Pbtm3Iy8uDn58f3N3d9TqvtSkNG4vn5eVxnpQb+qIzxiCRSDjpi06Mk1HkUQ60Z8FQa8UwY0y9zZW7u7t6GteLuV8kEjU5p1MXi6MMKY/a2dkhIiICPXv2xJYtW3Dt2rVW/+b51yk9PR13796lebAGjtPCdvXq1RCJRC2eOrKfp4WFBTp37tzoJBiMAT/+qCpgL1wAevRQtcj95hugmUVWhrqlyLNnzyCRSLBp0yYcPHgQcXFxBjeabAga+qLb2tpy0hedGCbKo/zUngVDLRXDMpkM8+fPxzvvvINLly5h2rRp6sGBF3N/YWFhk0equFqdr8+jiZaWlggLC4Orqyu2bt2K/Pz8Fq///OuUm5uLX3/9lZPGQERznC4eKy0tRWlpaYvXcXZ2hqWlpfp8XFwcVqxYYdyLHioqgL/8Bdi+XXXey0u1QKxXrxb/zBAXDFRVVUEqlSIhIQFRUVEQi8UGE9vzrSCHDh2Kv//975z2dm/wfF/0RYsWYciQIZzEQZqm7zxDedR4PH78GPPnz0dlZSU6d+6MzMxMdO3aFXV1dZg/fz66du2Kjz76CEVFRY1yaFtalrdncVZLNGmpy8V3U8PUt3PnzmHOnDlwd3fX6f1pQh8LCvmCFo9piA+LOlp16hRjLi6qBWKdOjG2cSNjCoVGf2poC6UaJvNv3LiReXp6Nvo/Q5iYr1Ao2JkzZ9iZM2fY8uXL27zQQ5fq6upYSkoKW716NTt37hynsZDG+JBnjD6P8lRTC5lqamqYRCJhgwcPZteuXVNf9/kcymXufz6PKpr5rmpuMZuuKZVKduDAAbZq1Sq2Z88enS9Wbk17FhQKVUfyDD926QdQVFSEx48fo6ioCAqFQn34YODAgbC1teU2OH1gTDXN4MMPgbo6wNkZSElRza/VUMNCKUPQsP2KpaUloqKiUFRUhKysLPUvdkObmF9QUICvv/4agOpQ3ubNmzmNx8zMDIGBgcjJyUFGRgaqqqoaHXokpClGn0d5rqCgAF999RUAVR767rvvEBsbi8rKSri7u+PKlSsYNGjQSznUkHJ/UxqmQOg7/4tEIsyePRs2NjbYvXu3ejqHrraXbM2Lry/X3zN8xZvFY//4xz8wbtw4rFq1ClVVVRg3bhzGjRvXobljvFFZCSxeDERHq4ragAAgL69NRa0huXXrFuLi4uDg4ACxWAwHB4cOb1Ct6zlahtgZxsTEBD4+Puq+6Hv27KEuZaRFRp1HBeD5PJSYmIiamhrU1NQgMjIS3333HW83+ee6QYGbmxsCAgLw+++/Y+vWrVrpUtYehvg9w0e8adCgDbycG3bhgqqQvX4d6NQJ2LgRWL4c4OnI3KVLl5CWlgZnZ2csWbIE5ubmWrldXczRenGO7aeffqrVuWfadPr0aeTk5GDkyJFYsGABZyMOhKd5pg2E/vgMWcMc2N9//x1yuRz+/v6IiorSeqtxbdJkjq2hKCgoQEpKCnr27Ing4GCddLtsiS7mOPNVR/IMFbYca3GyuFQK/J//A9TUAP37A9u2AW5uhhtvK86cOYOff/4ZI0aMgL+/v1aLr3nz5iE7O7vZ8+2hVCpRWFgIQLX4xpATMqBqQbxjxw64uLhg8eLFWvvRQNrGEPOMNgn98Rm6mzdvYuvWrZwVX23Ftzx67949JCYmwsbGBqGhoQb9o0HIOpJnDPsdZgSa3Fu2tlY1KhsWpipq585VTT3guKhtNt5WMMaQm5uL7OxsTJ48GQEBAVofUdTFIRwTExMMGDAAAwYMMPhkDAAjRoxAaGgoioqKOtwXnRBieC5evIjExEQ4Ojpi2bJlBl/UAvzLo3379oVYLEZdXR1iYmLw6NEjrkMibWT47zKBe3F/wbLffwdmzwa+/VZ1hX/8A/j5Z6BbNw6j/FNb98JVKpXYtWsXDh06hNmzZ2Pu3Lk6WeDE9RwtQ+Hi4oKIiAiUl5dDIpGgoqKC65AIIVpw6tQpbN++HcOHD0dQUBAdkdGh7t27QywWw9LSEhKJBHfv3uU6JNIGVNhy7PmRxiOffYZvT5wAjh0D7O2BzExgzRrAgH7ltmVktL6+HmlpaTh9+jR8fX0xY8YMna3a17j9sBHo06cPxGIx6uvrERMTg4cPH3IdEiGknRhjOHToEHJycuDm5oaFCxfSHHo96Ny5MyIjI9GjRw/Ex8fj+vXrXIdENERzbDnWMFnc+dAhvH/xIswUCmD4cGDnTmDQIK7De4mmk9vlcjlSUlJQVFSEwMBADB06lINoO4ZPix6a8vTpU0ilUlRWViI4OBj9+/fnOiSjYIh5RpuE/vgMiVKpRE5ODs6cOQNPT0+DaDXe1nUWfM+jdXV12L59O65fv44FCxZg9OjRXIdkFGiOLY9ZmZlhk1KJFefPq4paf3/gxAmDLGoBzUZGZTIZ4uPjce/ePYSGhvKyqBUCOzs7REZGtqkvOiHEMNTX12P79u04e/Ys/Pz8DGKf6pqaGsyZMwf5+flwdXXF9OnTNVpnwWedOnXCkiVLMGbMGOzYsQMnTpzgOiTSCipsubZ2rarxAqCadrB9O2Bnx21MHfDkyRNIJBJUVlYiMjISzs7OXIdk1CwtLREaGqpxX3RCCPfkcjmkUimuXbuGpUuXYty4cVyHBEC1ePiDDz5Abm4uPD09cfTo0VbXWQiBiYkJ5s+fj2nTpmH37t3Yv38/7RluwKiw5dp//Zeq0cLOnaqFYjw7TPO8Bw8eQCKRgDGGqKgo9OrVi+uQCFQjDosXL8bYsWOxc+dOHDt2jOuQCCHNqKqqQlxcHEpKShAWFoYhQ4ZwHZJaQUEBFi5cCEC1eDgvL89omgiIRCJ4enri9ddfx9GjR5GZmQmlUsl1WKQJvGmpK1idO6umHvC04UKD27dvIzk5GV26dEFISAi15zQwJiYm8PX1hY2NDfbt2weZTIY5c+ZwfmiTEPKnJ0+eICEhAXV1dYiMjMQrr7zCdUiNuLq6IjMzE/Pnz8eOHTugUCiMbgeaV199FTY2Nti5cyeqq6sRGBiITp06cR0WeQ5/hweF5I/iQtdtYXXl6tWrSEhIQO/evREREUFFrYESiUR47bXX4O3tjePHjyMjIwMKhYLrsAghAEpKShATEwORSISoqCiDK2oB1baKBw8exLx583D48GHs27fPKHegGT16NIKCgnDz5k1IpVI8e/aM65DIc6iwNSDtaX7Atby8PGzduhWDBw9GSEgILCwsuA6JtKKhL/r58+eRkpKCuro6rkMixKgVFhYiNjYWnTt3hlgshoODA9chNYm2VfzToEGDEB4ejocPHyI2NhZPnz7lOiTyBypsDUhbmx9wiTGGo0ePIiMjAxMnTkRgYCDMzIQ3s8Xe3l6QLRVHjRqF4OBgFBYWYsuWLbw5OkCI0Fy+fBlSqRR9+/ZFeHg4bGxsuA5J64SaR/v16wexWIyamhrExMSgrKyM65AIqLA1KLpoC6sLjDHs2bMH+/fvh4eHB9544w3e7U2oCRMTEwwcOBADBw4U5OMbOHAgwsPDUVZWhtjYWFRWVnIdEiFG5ezZs0hNTcXQoUMFe8RL6Hm0R48eiIqKQqdOnRATE4Pi4mKuQzJ6wnuX8Rgf2sIqFArs2LEDJ0+ehI+PDzw8PGgBEo819EWXy+WIiYlBaWkp1yERIniMMRw+fBhZWVmYNGkSAgICqJsYj9nb2yMyMhJdu3ZFXFwcbt68yXVIRo06jxGN1dbWIjU1Fbdu3cLChQsxYsQIrkMiWlJZWQmpVIqqqiqEhISgb9++XIfEW0LPM0J/fLrGGMOuXbtw6tQpzJ49G9OnT6fBAYGora3Ftm3bcPPmTfj7+2PkyJFch8Rb1HmM6Fx1dTXi4+NRVFSE0NBQoyhqG1pB5uXlCX6/woa+6N26dUNcXJxBz+8mhK8UCgXS0tJw+vRp+Pr6YsaMGYIvao0pj5qbm2Pp0qUYMWIE0tLScOrUqTbfBl93RzIkVNiSVlVUVEAikaC8vBwRERFwcXHhOiS9USqVgk/GDaysrLBs2TK4uLggKSkJFy5c4DokQgRDLpcjKSkJV65cweLFizFhwgSuQ9IbY8qjpqam8Pf3x5QpU5CTk4NDhw61qUsZH3dHMjRU2JIWPXz4EDExMaivr4dYLEafPn24DonoUENf9NGjRyMtLY36ohOiBTKZDPHx8bh79y5CQ0MxbNgwrkMiOiQSieDl5YU5c+YgNzcX2dnZGhf2fNodyVAJb38m0iE1NTX45JNPUFBQgJ49e2LAgAHo1q0bQkNDYWdnx3V4RA9MTU3h5+cHGxsb7N69GzKZDLNnzxb8IVNCdKG8vBwJCQmQy+WIjIykVuNGQiQSwd3dHdbW1sjKykJ1dTUCAgJa3RazYXckX19fg94dyZDRiC1ppOEwyBdffIG6ujrk5uYiMjKSilojIxKJMGfOHHh5eeHIkSPIysoymkOJhGjLgwcPEBMTA8YYxGIxFbVGaNy4cViyZAmuX7+uUZcyPuyOZOiosCWNFBQUwNHREVu3boWPjw86deoES0tLrsMiHJk6dSr8/f2Rn5+P1NRU6lJGiIaKiooQGxsLGxsbiMVidO3aleuQDJqQF00NGTIEy5YtQ0lJCeLi4lBVVdXsdam7W8fxorAtLCxEVFQUXFxcYGVlBVdXV6xatQq1tbVchyY41tbWWL9+PcaOHQsrKysMHjyY65AIx8aMGYOgoCAUFBRQX3QeozyqP1evXsWWLVvQq1cvREREwNbWluuQXmJohaTQF005OjpCLBZDJpMhJiYGjx8/5jokweJFYXvlyhUolUps3rwZFy9exJdffokff/wRf//737kOTTAYY9i3bx8GDRqE2tpabN68GYcOHdL5YRBDS64vsrOzo2kYUPVFX7ZsGfVF5zHKo/qRl5eHlJQUDBo0CKGhoQZ7xEufhaQmedQYFk317NkTUVFRMDExgUQiwf3797kOSZB426Dhs88+ww8//NCmDh+0sXjTFAoFsrKykJ+fD29vb7i5uentvqOjo+Hp6ameKH/gwAFs2rRJb/dP2ubRo0dISEiAiYkJwsLC0K1bN65DMjh8yjOUR7WHMYZjx45h//79mDhxosG3Gp83bx6ys7ObPa9vxvRdIJPJkJSUhNLSUgQFBcHZ2ZnrkAyOUTZoqKioaHXOklwuR2VlZaMTaayurg4pKSk4f/48AgIC9FrUAsbxK11IGvqim5mZQSKRUF90nqM8qh2MMezduxf79+/HzJkz4ePjY9BFLfDn6nsABrH63pgWTdnY2CA8PBz9+vVDQkICLl26xHVIgmLYn7xmFBQU4JtvvsHbb7/d4vXWrVsHe3t79al///56ipAfampqsGXLFhQWFiI4OBijRo3SewyGllxJ6+zt7SEWi9GlSxfqi85jlEe1Q6FQID09HSdOnMAbb7yBWbNm8WJrPEMrJI1t0ZS5uTmCg4MxbNgwbNu2DWfOnOE6JMHgdCrC6tWrsWbNmhavc/r0aUycOFF9vri4GDNnzsTMmTPxv//7vy3+rVwuh1wuV5+vrKxE//796RAaVM9FQkICZDIZQkJC0LdvX07iqKmpwcqVK3Hjxg0MHDgQ69atM5iEplQq1d23Ro0aZfAjMPpWW1uL1NRU3Lp1CwsXLjSKNsua0Pehesqj3GnpM/D8nuCurq5Yv369weQ2faI82jLGGHbv3o2TJ09i1qxZRtFmWRMdyaOcFralpaUoLS1t8TrOzs7qyffFxcWYNWsW3NzcEBcX1+YPCM0NUyktLUVCQgIAICwsDN27d+c4IsPU0OMcUO1FSAn5ZQqFAhkZGbhw4QK8vb0xefJkrkPinL7zDOVRblRXVyMpKQkPHz7E0qVLMWDAgEb/b0xzRltCebR1jDEcOXIEBw8exOTJkzF37lyjf546kmc47TzWvXt3jYuqe/fuYdasWZgwYQJiY2ON/kVvr7t37yIpKQk2NjYICwsz6i8m0nENfdFtbGyQk5MDmUwGDw8PGnHQI8qj+ldRUQGpVIrq6mpEREQ02Wq8oKAAX331FQDV+oHNmzfrO0zCEyKRCDNmzICNjQ2ys7Mhk8ng7+/fapcy0jReZLXi4mJ4eHigf//+2LhxIx49eoSSkhKUlJRwHRqv3LhxA/Hx8ejWrRvEYjEVtUQrGvqie3p6Ijc3Fz///DN1KTNAlEe149GjR4iJiUFdXR3EYnGTRS1A6wdI202YMAGLFy/G1atXkZSU1GgKENEcL34O7N27Fzdu3MCNGzfQr1+/Rv/H093K9O78+fPYuXMnBg4ciEWLFqFTp05ch0QERCQSYdq0abCxsUFmZiaqq6uxcOFCGnEwIJRHO+7OnTtISkpC586dERoa2uLerOvXr8fKlSuxefNm9foBQlozbNgwhIaGIjk5GXFxcQgNDYWNjQ3XYfEKb/exbQ9jnRt24sQJ7N69G2PHjoWvry9MTU25DokXaG5Y+1y9ehXbtm1Dv379EBQUBAsLC65D0iuh5xmhP77mXL9+HampqejTpw+CgoIMtvGCoaE82j4lJSWQSqUwNzdHWFgYunTpwnVIemWU+9iS1jHGsH//fuzevRvu7u7w8/OjopboXFv6ohPCB7/99huSk5Ph6upq0N3EiHD06tULUVFRAICYmBg8ePCA44j4gwpbgVIqlcjMzMTRo0fh5eWFOXPm0IKedrC2toa1tTXXYfCOo6MjIiMjUVVVBYlEQn3RCW8dP34c6enpGDt2LBYvXkzTuNqB8mj7dOnSBWKxGHZ2doiNjcXt27e5DokXaCqCANXV1SEtLQ3Xrl2Dn58fxowZw3VIxEiVl5cjISEBcrkcISEh6N27N9ch6ZzQ84zQH1+DhiNex44dw/Tp0zF79mwaHCCckMvl2Lp1K+7cuYPAwEAMHTqU65B0jqYiELVnz55BKpWioKAAQUFBVNQSTjk4OKh34IiLi0NhYSHXIRHSqob9mY8dOwZvb2+89tprVNQSzlhYWCAkJASDBw9GSkoKzp07x3VIBo0KWwF5+vQpYmNj8fDhQyxbtgyDBg3iOiRCXuqLfvnyZa5DIqRZdXV1SElJwfnz5xEQEAA3NzeuQyIEZmZmCAwMxMSJE5GZmYkjR47QbibNoMJWIMrKyhATE4OamhqIxWLq564FDa0gL1y4QPuydpCFhYW6L3pqairOnj3LdUiEvKSmpgZbtmxBYWEhgoODMWrUKK5D4j3Ko9pjYmKCN954Ax4eHjhw4AB2795NxW0TaJNJASguLkZiYiKsrKwQFhYGe3t7rkMSjNraWq5DEAxTU1MEBATA2toaWVlZqKqqor7oxGBUVlZCKpWiqqoK4eHh6Nu3L9chCQblUe0RiUTw8PBQd3usrq7GggULaMej51Bhy3M3b97E1q1b0bNnTwQHB9PKU2LQRCIRvL29YWtri4MHD0Imk8Hb25uKW8Kp0tJSJCQkAADEYrHGLYoJ4cqkSZNgY2ODtLQ0VFdXY8mSJTA3N+c6LINAUxF47OLFi0hMTISjoyOWLVtGRS3hhYa+6L6+vjh9+jTS0tKgUCi4DosYqXv37kEikcDc3BxRUVFU1BLeGD58OEJDQ3H37l3Ex8ejurqa65AMAhW2PHXq1Cls374dI0aMQFBQEP1SI7zT0Bf9ypUr1BedcKKgoADx8fHo1q2bevcOQvjExcUFERERKC8vh0QiQUVFBdchcY4KW55hjOHQoUPIycnBlClT4O/vT3NrCG819EVvGHGQyWRch0SMxIULF5CYmAhnZ2csW7YMVlZWXIdESLv07t0bUVFRUCgUiImJwcOHD7kOiVNU2PKIUqnEzz//jNzcXHh6esLLy4vmJhLec3Z2RmRkJCorKyGRSFBeXs51SETgTp48ibS0NIwePRpLliyhbmKE97p27QqxWAxra2vExsbizp07XIfEGSpseaK+vh7btm3D2bNn4efnh2nTplFRqweWlpbUF14PevXqBbFYDMYY9UUnOsMYw4EDB7Br1y64u7vDz8+PjnjpAeVR/bCzs0NERAR69uyJLVu24Nq1a1yHxAlqqcsDcrkcycnJuHv3LhYtWoQhQ4ZwHRIhOlFVVQWpVIry8nIEBwfD0dGR65DajK95RlN8fXxKpRLZ2dk4d+4cvLy8MHXqVK5DIkQn6uvrsX37dly7dg1+fn687EBKLXUFrKqqCnFxcSgpKUFYWBgVtUTQbG1tERERgV69emHLli24evUq1yERAairq0Nqairy8/Ph7+9PRS0RNDMzMyxevBhjx45Feno6jh07xnVIekWFrQF78uQJJBIJqqqqEBkZCScnJ65DIkTnLC0tERoaikGDBiElJQV5eXlch0R47NmzZ5BKpSgoKEBQUBAvR68IaSsTExP4+vpixowZ2LdvH/bu3Ws0XcqoQYOBKikpgVQqhYWFBaKiouDg4MB1SEZHqVTi8uXLAFSr901M6HegvpiZmWHRokXIyclBRkYGZDIZ3N3daV45aZOnT59CKpWisrISy5Yto1bjHKA8yh2RSITZs2fDxsYGu3btgkwmw/z58wU/r5wKWwNUWFiI5ORkdOvWDSEhIbCxseE6JKP17NkzrkMwWiYmJvDx8YGNjQ32798PmUxGO4EQjZWVlSEhIQFKpRKRkZHo2bMn1yEZLcqj3HJzc4O1tTV27tyJmpoaLFq0SNA7gVBha2AuXbqEtLQ0ODk5YcmSJbCwsOA6JEI4IxKJMGvWrEYjDrSSnbSmuLgYiYmJsLKyQlhYGOzt7bkOiRBOjRo1CtbW1khJScGWLVsQHBws2L2b6ZiAATlz5gy2bduGYcOGISQkhIpaQv4wefJkBAYG4uLFi0hOTkZtbS3XIREDdfPmTcTFxaFLly4Qi8VU1BLyB1dXV4SHh6OsrAwSiQSVlZVch6QTVNgaAMYYcnNzkZ2djUmTJiEgIIBGpAh5wYgRIxASEoKioiJs2bKF+qKTl1y8eBGJiYlwdHTEsmXLYG1tzXVIhBiUvn37QiwWo7a2FjExMSgtLeU6JK3jTWE7f/58ODo6wtLSEr1790ZYWBiKi4u5DqvDlEoldu3ahUOHDmH27Nnw9vamOYSENGPAgAGIiIhQ7xhCfdHbRqh5FABOnz6N7du3Y/jw4QgKCoK5uTnXIRFikLp3746oqChYWFhAIpHg7t27XIekVbwpbGfNmoXU1FRcvXoVaWlpKCgoQGBgINdhdUh9fT3S0tJw+vRp9bYcVNQS0rI+ffpALBajvr6e+qK3kRDzKGMMhw4dws8//ww3NzcsXLiQjngR0orOnTsjMjIS3bt3R3x8PG7cuMF1SFrD285jmZmZWLBgAeRyucar+wypY45cLkdKSgqKiooQEBCAYcOGcRoPeZlSqcTFixcBqA6D0zY1huX5rZyCg4MNZisnQ8ozreF7HlUqlcjJycGZM2fg6elJW8IZIMqjhq2urg7btm3DjRs3sGDBAowePZrrkAB0LM/wsrB9/Pgx3nnnHdy7dw9Hjx5t9npyuRxyuVx9vrKyEv379+c8IctkMiQmJqKsrAxBQUFwdnbmLBZtYIyhvr4eCoWC61BIG5iamsLMzIzXhcCzZ8+QnJyM4uJiLFq0CIMHD+Y6JIMq/FrC9zxaX1+PHTt24PLly/D19cX48eM5i0VbFAoF6urquA6DtIEQ8qhSqURmZiby8/Mxd+5cTJkyheuQOpRHebXd18cff4xvv/0W1dXVmDJlCrKzs1u8/rp167BmzRo9RaeZJ0+eQCqVQi6XIzIyEr169eI6pA6pra3F/fv3aSEPT1lbW6N37968nY/Y0KUsLS0NW7du5W1fdH0SQh6Vy+XYunUr7ty5gyVLlmDo0KFch9RhVVVVuHv3rtF0hxISvudRExMT+Pn5wcbGBrt374ZMJsPs2bN5W6xzOmK7evXqVhPm6dOnMXHiRABAaWkpHj9+jNu3b2PNmjWwt7dHdnZ2s0++oY00PHjwAFKpFJ06dUJYWBi6dOmi9xi0SalU4vr16zA1NUWPHj1gbm7O2w+CsWGMoba2Fo8ePYJCocCgQYN4fYhQqVQiOzsb586dg5eXF6ZOncpZLPoesTW2PFpVVYXExEQ8efIEQUFBgmg1rlAocP36dVhbW6NHjx6UR3lCaHkUAH799Vfs2bMH48ePx7x58zh7PLydilBaWtrqVhPOzs6wtLR86fK7d++if//+OH78OF599VWN7o/LQ4S3b99GcnIyunTpgpCQENja2ur1/nXh2bNnuHXrFpycnAS5rQ5jTN0xx9LSUpBfNtXV1bh9+zZcXFya/JzxCWMMBw8exJEjR+Du7g5PT09OXjN95xljyqNPnjxBQkIC6urqEBoaildeeUWv968rDbnU2dlZcJvmUx7ln99++w0ZGRkYNGgQAgMDOelSxtupCN27d0f37t3b9bcN9fjzIwmG6urVq9i2bRv69++PpUuXCq7xAt9/obZEqVRyHYJOCem1E4lEeO2112Bra6vuUubr6yv4FfLGkkdLSkoglUphbm4OsVjM+yNeTRFi0QdQHuWbMWPGwNraGqmpqZBKpQgKCuJVwc6LObanTp3CqVOnMG3aNHTp0gU3b97EP/7xD7i6umo8ysCVvLw8ZGZmYtiwYVi4cCHMzHjxlBPCWw190dPT01FdXS34vuia4nMeLSwsRHJyMrp164aQkBDY2NhwHRIhgjZo0CAsW7YMSUlJiI2NRWhoKOzs7LgOSyO8+JlhZWWFHTt24LXXXsOQIUMgFosxcuRI5ObmGuzoJ2MMR48eRUZGBiZOnIjAwEAqagnRk1GjRiE4OBiFhYXYsmULampquA6Jc3zMowBw+fJlSKVS9O3bF+Hh4VTUEqIn/fv3h1gsRk1NDWJiYlBWVsZ1SBrhRaU1atQoHDx4kOswNMYYw549e3DixAl4eHhg5syZgj3ERIihGjhwIMLDw5GYmKgecTDk7bd0jW95FADOnj2L7OxsDB8+HP7+/jQ4QIie9ejRA1FRUUhISIBEIkFISAj69OnDdVgt4sWILZ8oFArs2LEDJ0+ehI+PDzw8PKioJU36/vvv1YsNJkyYgCNHjrR4/cOHD8PX1xd9+vSBSCTCzp07X7rOunXrMGnSJNjZ2aFnz55YsGABrl69qqNHYPga+qLL5XLB9kUXIsYYDh8+jKysLEyaNAkBAQFU1JImUR7VPXt7e/W89ri4ONy8eZPrkFpEha0W1dbWIjk5GZcuXUJgYCAmTZrEdUjEQKWkpGDFihX49NNPkZeXh+nTp8Pb2xtFRUXN/o1MJsOYMWPw7bffNnud3NxcvPfeezhx4gT27duH+vp6eHl5QSaT6eJh8MKLfdHv3bvHdUikBYwx7Nq1CwcPHsSsWbPg7e0tuMU5RDsoj+qPtbU1li1bBkdHRyQmJuL333/nOqRm8bLzWHvpcpua6upqJCYm4tGjR1i6dCkGDBig1ds3RA1b1DTa4oQxgKtmDdbWQBtHx0+dOoWPPvoIJ0+ehJOTExISEpCXl4fs7GxkZGSo52ZaWVlpdeTdzc0N48ePxw8//KC+bNiwYViwYAHWrVvX6t+LRCKkp6djwYIFLV7v0aNH6NmzJ3JzczFjxoyX/r/J11CgampqkJSUhAcPHmDx4sUYOHCgTu6HL53H2kuXj0+hUCA9PR0XL16Ej4+Peu9doXvpc0h5VCOUR/VPoVAgIyMDFy5cgLe3NyZPnqyT++lInqGfwVpQUVEBiUSC8vJyREREGEVR26zqasDWlptTG78ITpw4gZkzZ2Lu3Lk4f/48hg8fjtWrV+Ozzz7DmjVrIBKJYG1tDWtra6xbtw62trYtnlo7BNagtrYWZ8+ehZeXV6PLvby8cPz48TY9htZUVFQAALp27arV2+UjKysrLFu2DM7OzkhKSsKFCxe4Dok8Ry6XIykpCZcvX8bixYuNpqhtEuXRVlEe5YapqSn8/f0xZcoU5OTk4NChQwbXLY8mLXXQw4cPIZVKYWJiArFYjG7dunEdEtHQBx98gICAAHzyyScAgKVLlyIoKAh+fn4YN25co+u+/fbbWLx4cYu317dvX43ut7S0FAqF4qXN5V955RWUlJS04RG0jDGGDz74ANOmTcPIkSO1drt81qlTJyxZsgRZWVlIS0tDdXU13NzcuA7L6MlkMiQmJqKsrAyhoaFwcXHhOiSiIcqjxkckEsHLywu2trbYt28fqqqq4OPjYzBThqiw7YA7d+4gKSkJnTt35tUebzplbQ1UVXF33xq6e/cufv31V3z22Wfqy8zNzcEYa7I9adeuXdv1az0xMRFvvfWW+vyuXbvg6uoK4OXN2BljWj1M9/777+P8+fM4evSo1m5TCExNTdV90Xft2oWqqipe90Xnu/LyciQkJEAulyMiIgK9e/fmOiTuUR5thPKo4RGJRHB3d4e1tTWysrJQXV1tMIs8uY+Ap65fv47U1FT06dOHd105dEokAniwz+Tly5cBoNHhzqtXr2Ly5MkYNWoUAFWCbOjI9Pnnn7c6Z2vXrl2YPn16o8vmz5/faESwb9++MDU1hamp6UujCg8fPtRai9Dly5cjMzMThw8fRr9+/bRym0IiEokwZ84c2NjYYO/evZDJZJz2RTdWDx48gFQqhZmZGcRiMR3qbUB5tNFllEcN17hx42BtbY1t27ZBKpVi6dKlnNdDVNi2Q0Mf5cGDByMgIIC6GvFQRUVFo1arjx8/xoYNG1461KRQKACoDqEtWbKkxdts6hCanZ1dkyP5EyZMwL59++Dv76++bN++ffDz82vT43gRYwzLly9Heno6fvnlFzqk24qpU6fCxsYGGRkZ6hEH+jzrR1FREZKSkuDg4IDQ0FDY2tpyHRJpI8qjBACGDBmi7lIWFxfH+eeZCts2On78OPbu3Yvx48fTCA+PjR07FgqFAhs2bMCiRYsQHR0NJycnXL58Gbdv34aTk1Oj63ft2lWr86c/+OADhIWFYeLEiXj11Vfx008/oaioCG+//bb6Ot9++y3S09Nx4MABAEBVVRVu3Lih/v9bt24hPz8fXbt2haOjIwDgvffeQ1JSEjIyMmBnZ6cezbC3t4eVlZXW4heSMWPGwMrKSj3iQEdgdO/q1avYtm0b+vXrZxAjPKR9KI+SBo6OjoiMjIRUKkVMTAzCwsK4OwLDjEhFRQUDwCoqKtr8t0qlku3du5etWrWK7d+/nymVSh1EyC81NTXs0qVLrKamhutQ2uWf//wn69atG7O0tGTh4eHs0aNHbPz48WzgwIGMMdVrXlVVxaqqqnTyen/33XfMycmJmZubs/Hjx7Pc3NxG/79q1Srm5OSkPn/o0CEG4KVTeHi4+jpN/T8AFhsb22QMfH8NtamoqIitX7+eff/996yysrLdt9ORPMMHHX18586dY2vWrGFbt25ldXV1Wo6On/j8OaQ8yu/XT9uePHnCvv76a7ZhwwZWXFzc7tvpSJ6hfWw1oFAokJWVhfz8fHh7e9Mq6j8Ife8+xhiq/9j6xtraWpCLi4T+GrbV87uchIWFtWt0ifaxbRpjDMeOHcP+/fsxceJEvPHGG3TE6w9C/hxSHjU+MpkMSUlJKC0txdKlS9s1lYP2sdWhuro6pKSk4Pz58wgICKCilhAB69mzJ6KiomBmZgaJRIL79+9zHZIgMMawd+9e7N+/HzNnzjSorYEIIdplY2OD8PBw9OvXD1KpVL3IUF8os7SgpqYGW7ZsQWFhIYKDg9WrPAkhwvViX/Rbt25xHRKvNXQTO3HiBN544w3MmjVLkKN2hJA/mZubIzg4GMOGDUNqairOnj2rt/umwrYZlZWViI2NRVlZGcLDw3XWfpMYNpFIRF/CRqihL3r//v0hlUpx6dIlrkPipdraWiQnJ+PixYsIDAzUWftNYtgojxonU1NTBAQEYPLkycjKykJubq5eupRRYduE0tJSxMTEQC6XQywWa9wJhQjL860gKSkbH3NzcwQFBWH48OHYtm0bTp8+zXVIvFJdXY0tW7agqKgIISEhGDFiBNchEQ5QHjVuIpEIc+fOxezZs3Ho0CHs2rVL58Utbff1gnv37iExMRG2trYIDQ0V5OIPbTOi9YeCQ69dy0xNTbFw4ULY2Njg559/hkwmw8yZM+kLuhUVFRWQSqWorq5GREQE+vTpw3VIvECfR36i161lIpEIM2bMgI2NDbKzsyGTyeDv76+zLmU0YvucgoICxMfHo1u3boiMjKSithUNG9k3rHgl/NPw2lFTguaJRCK8/vrr8PT0xC+//IKff/4ZSqWS67AM1qNHjxATE4O6ujqIxWIqajXQ0OSgtraW40hIe1Ae1cyECROwePFiXL16FUlJSeqOdNpGI7Z/uHDhAtLT0zFw4EAsWrSI3qAaMDU1hYODAx4+fAhAeFu5MMbUXzTm5uaCe2zV1dV4+PAhHBwcGnUPIi8TiUSYNm1ao77oCxcuNIi+6Ibkzp07SEpKQufOnREaGtpktyjyMjMzM1hbW+PRo0fo1KmToHaMoDxKnjds2DCEhoYiOTkZ8fHxCAkJgY2W20fTPrYATpw4gd27d2Ps2LHw9fWlN2cbMMZQUlKC8vJyrkPROsYY6urqAKh+iQspITdwcHBAr169BPnYdOXKlSvYvn07+vfvj6VLl8LCwqLR/xvrPrbXr19Hamoq+vTpQ93b2qG2tha3bt0S3NEAyqOkKSUlJZBKpbCwsEBoaCi6dOnS6P87kkeNurBljOHgwYM4cuQI3N3d4enpSW/MdlIoFOrkJRRKpVK9/96wYcMENYoCqL5k6Edc+9y+fRvJycno0qULQkJCGvVFN8bC9vz589i5cycGDx6MgIAAOuLVTkqlUnDTESiPkuY8efIECQkJqKurQ2hoKF555RX1/3UkjxrtcTSlUons7GycO3cOXl5emDp1Ktch8ZqpqangPtzPj5xYWloKLiGT9nNyclL3RZdIJAgLC3tpxMFY/Prrr9izZw/GjRsHX19f+px0gImJieBGuimPkuZ06dIFYrEYiYmJiI2NRVBQEJycnDp8u7x7h8nlcowdOxYikQj5+fntuo26ujqkpqYiPz8f/v7+VNQSQtrslVdegVgshkgkQkxMDEpKSrgOSWPayKOMMezbtw979uzB9OnTMX/+fCpaCCFtYmtri4iICPTu3RsJCQm4cuVKh2+Td1noo48+6vAq25SUFBQUFCAoKAhjxozRUmSEEGPTMOLQuXNnxMbGorCwkOuQNKKNPJqTk4Njx45h7ty5eO2112gaFyGkXSwsLBASEoLBgwcjJSUF586d69Dt8aqw3bVrF/bu3YuNGzd26HYePXqEZcuWYdCgQVqKjBBirBr6ovft2xdSqRRXr17lOqQWaSuPXrhwAQEBAZgyZYqWIiOEGCszMzMEBgZiwoQJyMzMxPHjx9t/W1qMS6cePHiAN998Ezt37oS1tbVGfyOXyxvtk1ZRUQEA8PPzg729PSorK3USKxEGpVKJqqoqAKqJ7HSYlbRk3rx5yM7ORnJyMgDD3LRdm3nU29sbTk5OlEdJiyiPkraYPn06RCIR9u7dC6CdeZTxgFKpZHPnzmX/+te/GGOM3bp1iwFgeXl5Lf7dqlWrGAA60YlOdNL7qaCgQA/ZUXOUR+lEJzrx7dSePMrpdl+rV6/GmjVrWrzO6dOncfz4caSkpODw4cMwNTVFYWEhXFxckJeXh7Fjxzb7ty+ONJSXl8PJyQlFRUWwt7fX1sPgvcrKSvTv3x937twR5PZEHUHPTdPoeWleRUUFHB0d8eTJEzg4OOj8/iiPGgb6TDSPnpum0fPSvI7kUU4L29LSUpSWlrZ4HWdnZyxduhRZWVmNFicoFAqYmpoiJCQE8fHxGt2f0PeXbC96XppHz03T6Hlpnr6fG8qjhoGel+bRc9M0el6ax9t9bLt3747u3bu3er2vv/4aa9euVZ8vLi7G66+/jpSUFLi5uekyREIIMWiURwkh5E+8WDzm6OjY6HxDlx9XV1f069ePi5AIIYRXKI8SQoyBUS1PtLCwwKpVq17q7W7s6HlpHj03TaPnpXlCf26E/vjai56X5tFz0zR6XprXkeeG0zm2hBBCCCGEaItRjdgSQgghhBDhosKWEEIIIYQIAhW2hBBCCCFEEKiwJYQQQgghgmD0ha1cLsfYsWMhEomQn5/PdTicKiwsRFRUFFxcXGBlZQVXV1esWrUKtbW1XIfGie+//x4uLi6wtLTEhAkTcOTIEa5D4ty6deswadIk2NnZoWfPnliwYAGuXr3KdVgGZ926dRCJRFixYgXXoegF5dHGKJf+ifLoyyiPaqa9edToC9uPPvoIffr04ToMg3DlyhUolUps3rwZFy9exJdffokff/wRf//737kOTe9SUlKwYsUKfPrpp8jLy8P06dPh7e2NoqIirkPjVG5uLt577z2cOHEC+/btQ319Pby8vCCTybgOzWCcPn0aP/30E0aPHs11KHpDebQxyqUqlEebRnm0dR3Ko8yI5eTksKFDh7KLFy8yACwvL4/rkAzOhg0bmIuLC9dh6N3kyZPZ22+/3eiyoUOHsk8++YSjiAzTw4cPGQCWm5vLdSgG4enTp2zQoEFs3759bObMmSw6OprrkHSO8qhmjDGXUh7VDOXRxjqaR412xPbBgwd48803kZCQAGtra67DMVgVFRXo2rUr12HoVW1tLc6ePQsvL69Gl3t5eeH48eMcRWWYKioqAMDo3iPNee+99+Dj4wNPT0+uQ9ELyqOaM7ZcSnlUc5RHG+toHuVFS11tY4whIiICb7/9NiZOnIjCwkKuQzJIBQUF+Oabb/D5559zHYpelZaWQqFQ4JVXXml0+SuvvIKSkhKOojI8jDF88MEHmDZtGkaOHMl1OJzbunUrzp07h9OnT3Mdil5QHtWcMeZSyqOaoTzamDbyqKBGbFevXg2RSNTi6cyZM/jmm29QWVmJlStXch2yXmj6vDyvuLgYc+fOxaJFi/CXv/yFo8i5JRKJGp1njL10mTF7//33cf78eSQnJ3MdCufu3LmD6OhoSKVSWFpach1Oh1AebR7l0rajPNoyyqN/0lYeFVRL3dLSUpSWlrZ4HWdnZyxduhRZWVmNPlwKhQKmpqYICQlBfHy8rkPVK02fl4Y3UnFxMWbNmgU3NzfExcXBxERQv39aVVtbC2tra2zbtg3+/v7qy6Ojo5Gfn4/c3FwOozMMy5cvx86dO3H48GG4uLhwHQ7ndu7cCX9/f5iamqovUygUEIlEMDExgVwub/R/hozyaPMol2qO8mjrKI82pq08KqjCVlNFRUWorKxUny8uLsbrr7+O7du3w83NDf369eMwOm7du3cPs2bNwoQJEyCVSnnzZaxtbm5umDBhAr7//nv1ZcOHD4efnx/WrVvHYWTcYoxh+fLlSE9Pxy+//IJBgwZxHZJBePr0KW7fvt3ossjISAwdOhQff/yxIA8xUh5tGeVSyqPNoTzaNG3lUaOcY+vo6NjovK2tLQDA1dXVqJNxcXExPDw84OjoiI0bN+LRo0fq/+vVqxeHkenfBx98gLCwMEycOBGvvvoqfvrpJxQVFeHtt9/mOjROvffee0hKSkJGRgbs7OzUc+Xs7e1hZWXFcXTcsbOzeynp2tjYoFu3boIsagHKoy2hXKpCebRplEebpq08apSFLWna3r17cePGDdy4ceOlLyZjG9hfsmQJysrK8M9//hP379/HyJEjkZOTAycnJ65D49QPP/wAAPDw8Gh0eWxsLCIiIvQfECEGiHKpCuXRplEe1S2jnIpACCGEEEKEx3hmshNCCCGEEEGjwpYQQgghhAgCFbaEEEIIIUQQqLAlhBBCCCGCQIUtIYQQQggRBCpsCSGEEEKIIFBhSwghhBBCBIEKW0IIIYQQIghU2BJCCCGEEEGgwpYYlYiICIhEIohEInTq1AkDBgzAhx9+CJlMpr5OWloaPDw8YG9vD1tbW4wePRr//Oc/8fjxYwDA/fv3ERwcjCFDhsDExAQrVqzg6NEQQgg3KJcSQ0WFLTE6c+fOxf3793Hz5k2sXbsW33//PT788EMAwKeffoolS5Zg0qRJ2LVrF37//Xd8/vnn+O2335CQkAAAkMvl6NGjBz799FOMGTOGy4dCCCGcoVxKDJGIMca4DoIQfYmIiEB5eTl27typvuzNN99EdnY2MjIy4Obmhk2bNiE6Ovqlvy0vL4eDg0Ojyzw8PDB27Fhs2rRJt4ETQogBoVxKDBWN2BKjZ2Vlhbq6OiQmJsLW1hbvvvtuk9d7MRETQgj5E+VSYgiosCVG7dSpU0hKSsJrr72G69evY8CAAejUqRPXYRFCCK9QLiWGggpbYnSys7Nha2sLS0tLvPrqq5gxYwa++eYbMMYgEom4Do8QQniBcikxRGZcB0CIvs2aNQs//PADOnXqhD59+qhHFQYPHoyjR4+irq6ORhoIIaQVlEuJIaIRW2J0bGxsMHDgQDg5OTVKusHBwaiqqsL333/f5N+Vl5frKUJCCDF8lEuJIaIRW0L+4Obmho8++gj/9V//hXv37sHf3x99+vTBjRs38OOPP2LatGnqFb75+fkAgKqqKjx69Aj5+fkwNzfH8OHDOXwEhBDCPcqlhEu03RcxKk1tUfOi1NRUfPfdd8jLy4NSqYSrqysCAwOxfPly9WrepuaPOTk5obCwUDeBE0KIAaFcSgwVFbaEEEIIIUQQaI4tIYQQQggRBCpsCSGEEEKIIFBhSwghhBBCBIEKW0IIIYQQIghU2BJCCCGEEEGgwpYQQgghhAgCFbaEEEIIIUQQqLAlhBBCCCGCQIUtIYQQQggRBCpsCSGEEEKIIFBhSwghhBBCBOH/A7S0yffqthVsAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(nrows=3, ncols=2, figsize=(8, 12))\n", + "axs = axs.ravel()\n", + "for num, (ds, (pc1, pc2, alpha, xfit, fit)) in enumerate(alpha_fits.items()):\n", + " ax = axs[num]\n", + " ax.axhline(0, color=\"k\", linestyle=\"--\", alpha=0.2)\n", + " ax.axvline(0, color=\"k\", linestyle=\"--\", alpha=0.2)\n", + "\n", + " # draw a line 45 degrees\n", + " x = np.linspace(-6, 6, 100)\n", + " y = x\n", + " ax.plot(x, y, color=\"k\", alpha=0.5, lw=1)\n", + " ax.plot(-x, y, color=\"k\", alpha=0.5, lw=1)\n", + "\n", + " ax.scatter(\n", + " pc1,\n", + " pc2,\n", + " s=8,\n", + " marker=\"o\",\n", + " c=\"w\",\n", + " edgecolors=\"k\",\n", + " linewidths=0.5,\n", + " )\n", + "\n", + " ax.plot(xfit, fit, c=\"r\", label=f\"$\\\\alpha=${alpha:.2f}\")\n", + "\n", + " ax.set_xlabel(\"PC1\")\n", + " ax.set_ylabel(\"PC2\")\n", + "\n", + " ax.set_title(ds.split(\".\")[3])\n", + "\n", + " ax.set_xlim(-4, 4)\n", + " ax.set_ylim(-4, 4)\n", + " ax.legend()\n", + "fig.subplots_adjust(hspace=0.3)" + ] + }, + { + "cell_type": "markdown", + "id": "9f67612b", + "metadata": {}, + "source": [ + "From this example, we can see that from the subset of models we have selected, the `alpha` parameter is higher for CMCC-CM2-SR5 compared to the other models as the \"boomerang\" shape is better represented in this model. This indicates that this model is better at representing extreme ENSO events compared to the other models." + ] + }, + { + "cell_type": "markdown", + "id": "f3cc1404-0030-4e7c-98bb-498c354301d2", + "metadata": { + "tags": [] + }, + "source": [ + "## Summary\n", + "In this notebook, we used intake-esgf with Rooki Python client to retrieve a subset of a CMIP6 dataset. The subset and regrid operations are executed remotely on a Rook subsetting service (using OGC API and xarray/clisops). The dataset is analyzed using xeofs to extract a measurement used in ENSO research. We also showed that remote operators can be chained to be executed in a single workflow operation.\n", + "\n", + "### What's next?\n", + "\n", + "This service is used by the European Copernicus Climate Data Store. \n", + "\n", + "We need to figure out how this service can be used in the new ESGF: \n", + "* where will it be deployed? \n", + "* how can it be integrated in the ESGF search (STAC catalogs, ...)\n", + "* ???\n", + "\n", + "## Resources\n", + "- [Roocs on GitHub](https://github.com/roocs)\n", + "- [Copernicus Climate Data Store](https://cds.climate.copernicus.eu/)\n", + "- [STAC](https://stacspec.org/en)\n", + "\n", + "## References\n", + "- Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.-S., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Taschetto, A. S., Timmermann, A., Wu, L., Yeh, S.-W., Wang, G., Ng, B., Jia, F., Yang, Y., Ying, J., Zheng, X.-T., … Zhong, W. (2021). Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2(9), 628–644. https://doi.org/10.1038/s43017-021-00199-z\n", + "- Cai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y., Carréric, A., & McPhaden, M. J. (2018). Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564(7735), 201–206. https://doi.org/10.1038/s41586-018-0776-9\n", + "- Karamperidou, C., Jin, F.-F., & Conroy, J. L. (2017). The importance of ENSO nonlinearities in tropical pacific response to external forcing. Climate Dynamics, 49(7), 2695–2704. https://doi.org/10.1007/s00382-016-3475-y\n", + "- Takahashi, K., Montecinos, A., Goubanova, K., & Dewitte, B. (2011). ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophysical Research Letters, 38(10). https://doi.org/10.1029/2011GL047364\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_preview/32/_sources/notebooks/use-intake-esgf-with-rooki.ipynb b/_preview/32/_sources/notebooks/use-intake-esgf-with-rooki.ipynb new file mode 100644 index 0000000..3f508c2 --- /dev/null +++ b/_preview/32/_sources/notebooks/use-intake-esgf-with-rooki.ipynb @@ -0,0 +1,2088 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "5191269c-944c-4516-9f51-6cdfc704852a", + "metadata": {}, + "source": [ + "\"Intake" + ] + }, + { + "cell_type": "markdown", + "id": "fa96801d-4d1a-4264-94f9-9bf12a77421a", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "545103ee-abac-4da8-af3b-c8877a3d2d6c", + "metadata": {}, + "source": [ + "# Using intake-esgf with rooki\n", + "Here we dig into using intake-esgf to search for data, then rooki to do server-side computing!" + ] + }, + { + "cell_type": "markdown", + "id": "7f90a23b-fd23-4339-924f-d665f1d36472", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "d57fa890-a874-4282-bdf2-dfb905678467", + "metadata": {}, + "source": [ + "## Overview\n", + "If you have an introductory paragraph, lead with it here! Keep it short and tied to your material, then be sure to continue into the required list of topics below,\n", + "\n", + "1. Search and find data using intake-esgf, returning the dataset ids\n", + "1. Feed the dataset ids to rooki to subset and average the data remotely\n", + "1. Visualize the results on the end-user side" + ] + }, + { + "cell_type": "markdown", + "id": "0b633dab-4c9d-482a-b148-8f9b09102e78", + "metadata": {}, + "source": [ + "## Prerequisites\n", + "\n", + "| Concepts | Importance | Notes |\n", + "| --- | --- | --- |\n", + "| [Intro to Intake-ESGF](intro-search) | Necessary | How to configure a search and use output |\n", + "| [Intro to Rooki](rooki) | Helpful | How to initialize and run rooki |\n", + "| [Intro to hvPlot](https://hvplot.holoviz.org/user_guide/Geographic_Data.html) | Necessary | How to plot interactive visualizations |\n", + "\n", + "- **Time to learn**: 30 minutes" + ] + }, + { + "cell_type": "markdown", + "id": "64a5b6f9-eeee-4726-abdc-686e96dfc3cf", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "f7571ba4-43cf-4f61-b74a-a51cdee373aa", + "metadata": {}, + "source": [ + "## Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "c12d0875-9794-4101-b74f-346148cb36c0", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.4.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " var reloading = false;\n", + " var Bokeh = root.Bokeh;\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", + " root._bokeh_is_loading = css_urls.length + 0;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.0.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/panel.min.js\", \"https://cdn.jsdelivr.net/npm/@holoviz/geoviews@1.12.0/dist/geoviews.min.js\"];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + "\ttry {\n", + " inline_js[i].call(root, root.Bokeh);\n", + "\t} catch(e) {\n", + "\t if (!reloading) {\n", + "\t throw e;\n", + "\t }\n", + "\t}\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.4.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.0.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/panel.min.js\", \"https://cdn.jsdelivr.net/npm/@holoviz/geoviews@1.12.0/dist/geoviews.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ] + }, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p13376" + } + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "\n", + "\n", + "\n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import os\n", + "\n", + "from rooki import rooki\n", + "from rooki import operators as ops\n", + "import intake_esgf\n", + "from intake_esgf import ESGFCatalog\n", + "import xarray as xr\n", + "import hvplot.xarray\n", + "import holoviews as hv\n", + "import panel as pn\n", + "hv.extension(\"bokeh\")" + ] + }, + { + "cell_type": "markdown", + "id": "7dd9b81a-9aeb-4769-8c67-4db88a089859", + "metadata": {}, + "source": [ + "## Search and Find Data for Surface Temperature on DKRZ Node\n", + "\n", + "Let's start with refining which index we would like to search from. For this analysis, we are remotely computing on the DKRZ node since this is where rooki is running. We know this from checking the `._url` method of rooki!" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "d3cdea76-9a74-4001-91b4-6c1b664835b2", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'http://rook.dkrz.de/wps'" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rooki._url" + ] + }, + { + "cell_type": "markdown", + "id": "4a4442f9-6c41-4a56-ac66-4299d0c4ddda", + "metadata": {}, + "source": [ + "### Set the Index Node and Search\n", + "We need to turn off the new index nodes (Argonne National Lab (`anl-dev`) and Oak Ridge National Lab (`ornl-dev`)), and turn on the German Climate Computation Center (`esgf-data.dkrz.de`) node." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "d0f5ede4-feb0-4896-9e65-e100cbfadee4", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7eef94748b8743ed8a8dc1fae67b7926", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " Searching indices: 0%| |0/1 [ ?index/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mip_erasource_idtable_idgrid_labelactivity_drsexperiment_idversionmember_idvariable_idinstitution_idprojectid
0CMIP6CESM2-WACCM-FV2AmongnCMIPhistorical20191120r1i1p1f1tasNCARCMIP6[CMIP6.CMIP.NCAR.CESM2-WACCM-FV2.historical.r1...
1CMIP6GISS-E2-1-GAmongnCMIPhistorical20180827r1i1p1f1tasNASA-GISSCMIP6[CMIP6.CMIP.NASA-GISS.GISS-E2-1-G.historical.r...
2CMIP6CESM2-FV2AmongnCMIPhistorical20191120r1i1p1f1tasNCARCMIP6[CMIP6.CMIP.NCAR.CESM2-FV2.historical.r1i1p1f1...
3CMIP6CESM2AmongnCMIPhistorical20190308r1i1p1f1tasNCARCMIP6[CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amo...
4CMIP6GISS-E2-1-HAmongnCMIPhistorical20190403r1i1p1f1tasNASA-GISSCMIP6[CMIP6.CMIP.NASA-GISS.GISS-E2-1-H.historical.r...
5CMIP6CESM2-WACCMAmongnCMIPhistorical20190227r1i1p1f1tasNCARCMIP6[CMIP6.CMIP.NCAR.CESM2-WACCM.historical.r1i1p1...
6CMIP6MIROC6AmongnCMIPhistorical20181212r1i1p1f1tasMIROCCMIP6[CMIP6.CMIP.MIROC.MIROC6.historical.r1i1p1f1.A...
7CMIP6CMCC-CM2-SR5AmongnCMIPhistorical20200616r1i1p1f1tasCMCCCMIP6[CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical.r1i1p...
8CMIP6CMCC-CM2-HR4AmongnCMIPhistorical20200904r1i1p1f1tasCMCCCMIP6[CMIP6.CMIP.CMCC.CMCC-CM2-HR4.historical.r1i1p...
11CMIP6CMCC-ESM2AmongnCMIPhistorical20210114r1i1p1f1tasCMCCCMIP6[CMIP6.CMIP.CMCC.CMCC-ESM2.historical.r1i1p1f1...
\n", + "
" + ], + "text/plain": [ + " mip_era source_id table_id grid_label activity_drs experiment_id \\\n", + "0 CMIP6 CESM2-WACCM-FV2 Amon gn CMIP historical \n", + "1 CMIP6 GISS-E2-1-G Amon gn CMIP historical \n", + "2 CMIP6 CESM2-FV2 Amon gn CMIP historical \n", + "3 CMIP6 CESM2 Amon gn CMIP historical \n", + "4 CMIP6 GISS-E2-1-H Amon gn CMIP historical \n", + "5 CMIP6 CESM2-WACCM Amon gn CMIP historical \n", + "6 CMIP6 MIROC6 Amon gn CMIP historical \n", + "7 CMIP6 CMCC-CM2-SR5 Amon gn CMIP historical \n", + "8 CMIP6 CMCC-CM2-HR4 Amon gn CMIP historical \n", + "11 CMIP6 CMCC-ESM2 Amon gn CMIP historical \n", + "\n", + " version member_id variable_id institution_id project \\\n", + "0 20191120 r1i1p1f1 tas NCAR CMIP6 \n", + "1 20180827 r1i1p1f1 tas NASA-GISS CMIP6 \n", + "2 20191120 r1i1p1f1 tas NCAR CMIP6 \n", + "3 20190308 r1i1p1f1 tas NCAR CMIP6 \n", + "4 20190403 r1i1p1f1 tas NASA-GISS CMIP6 \n", + "5 20190227 r1i1p1f1 tas NCAR CMIP6 \n", + "6 20181212 r1i1p1f1 tas MIROC CMIP6 \n", + "7 20200616 r1i1p1f1 tas CMCC CMIP6 \n", + "8 20200904 r1i1p1f1 tas CMCC CMIP6 \n", + "11 20210114 r1i1p1f1 tas CMCC CMIP6 \n", + "\n", + " id \n", + "0 [CMIP6.CMIP.NCAR.CESM2-WACCM-FV2.historical.r1... \n", + "1 [CMIP6.CMIP.NASA-GISS.GISS-E2-1-G.historical.r... \n", + "2 [CMIP6.CMIP.NCAR.CESM2-FV2.historical.r1i1p1f1... \n", + "3 [CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amo... \n", + "4 [CMIP6.CMIP.NASA-GISS.GISS-E2-1-H.historical.r... \n", + "5 [CMIP6.CMIP.NCAR.CESM2-WACCM.historical.r1i1p1... \n", + "6 [CMIP6.CMIP.MIROC.MIROC6.historical.r1i1p1f1.A... \n", + "7 [CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical.r1i1p... \n", + "8 [CMIP6.CMIP.CMCC.CMCC-CM2-HR4.historical.r1i1p... \n", + "11 [CMIP6.CMIP.CMCC.CMCC-ESM2.historical.r1i1p1f1... " + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "intake_esgf.conf.set(indices={\"anl-dev\":False,\n", + " \"ornl-dev\":False,\n", + " \"esgf-data.dkrz.de\":True,\n", + " }\n", + " )\n", + "\n", + "cat = ESGFCatalog()\n", + "\n", + "cat = ESGFCatalog()\n", + "cat.search(\n", + " activity_id='CMIP',\n", + " experiment_id=[\"historical\",],\n", + " variable_id=[\"tas\"],\n", + " member_id='r1i1p1f1',\n", + " grid_label='gn',\n", + " table_id=\"Amon\",\n", + " institution_id=[\"MIROC\", \"NCAR\", \"NASA-GISS\", \"CMCC\"]\n", + " )\n", + "cat.df" + ] + }, + { + "cell_type": "markdown", + "id": "b00d07ff-58a7-4141-922c-9f7a97772f1e", + "metadata": { + "tags": [] + }, + "source": [ + "## Extract the Dataset ID and Pass to Rooki\n", + "Now that we have set of datasets, we need to extract the `dataset_id`, which is the unique identifier for the dataset. We can pull this from the `id` column from `intake-esgf`" + ] + }, + { + "cell_type": "markdown", + "id": "6c8ee46c-06e3-4a25-ad5d-23c7e10aa9ff", + "metadata": {}, + "source": [ + "### Separate the Dataset ID" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "e44f6c32-e4b9-4767-88eb-8099bee603e8", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['CMIP6.CMIP.NCAR.CESM2-WACCM-FV2.historical.r1i1p1f1.Amon.tas.gn.v20191120|esgf3.dkrz.de']" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cat.df.id.values[0]" + ] + }, + { + "cell_type": "markdown", + "id": "85d44542-5ca7-4884-b77b-aa7a469efd34", + "metadata": {}, + "source": [ + "Notice how the node information is added onto end of the file id. We need to \"chop off\" that last bit, leaving everything before the `|` character. We put this into a function to make it easier to generalize and apply." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "363d5d3b-3da5-45a2-9981-e66969fbb227", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'CMIP6.CMIP.NCAR.CESM2-WACCM-FV2.historical.r1i1p1f1.Amon.tas.gn.v20191120'" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def separate_dataset_id(full_dataset):\n", + " return full_dataset[0].split(\"|\")[0]\n", + "\n", + "separate_dataset_id(cat.df.id.values[0])" + ] + }, + { + "cell_type": "markdown", + "id": "6e443d8c-f1d7-4f92-a0ab-ed0bbc588ced", + "metadata": {}, + "source": [ + "Now, we can apply this to the entire list within our dataframe using the following" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "044b088b-a9e0-48e9-ab93-a5a107341367", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['CMIP6.CMIP.NCAR.CESM2-WACCM-FV2.historical.r1i1p1f1.Amon.tas.gn.v20191120',\n", + " 'CMIP6.CMIP.NASA-GISS.GISS-E2-1-G.historical.r1i1p1f1.Amon.tas.gn.v20180827',\n", + " 'CMIP6.CMIP.NCAR.CESM2-FV2.historical.r1i1p1f1.Amon.tas.gn.v20191120',\n", + " 'CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amon.tas.gn.v20190308',\n", + " 'CMIP6.CMIP.NASA-GISS.GISS-E2-1-H.historical.r1i1p1f1.Amon.tas.gn.v20190403',\n", + " 'CMIP6.CMIP.NCAR.CESM2-WACCM.historical.r1i1p1f1.Amon.tas.gn.v20190227',\n", + " 'CMIP6.CMIP.MIROC.MIROC6.historical.r1i1p1f1.Amon.tas.gn.v20181212',\n", + " 'CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical.r1i1p1f1.Amon.tas.gn.v20200616',\n", + " 'CMIP6.CMIP.CMCC.CMCC-CM2-HR4.historical.r1i1p1f1.Amon.tas.gn.v20200904',\n", + " 'CMIP6.CMIP.CMCC.CMCC-ESM2.historical.r1i1p1f1.Amon.tas.gn.v20210114']" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dsets = [separate_dataset_id(dataset) for dataset in list(cat.df.id.values)]\n", + "dsets" + ] + }, + { + "cell_type": "markdown", + "id": "4a470bea-581c-4796-a716-a02fd02e1531", + "metadata": {}, + "source": [ + "### Compute with Rooki\n", + "Now that we have a list of IDs to pass to rooki, let's compute!\n", + "\n", + "In this case, we are:\n", + "- Subsetting from the year 1900 to 2000\n", + "- Subsetting near India using the bounds `65,0,100,35`\n", + "- Computing the yealy average\n", + "\n", + "We then check to make sure the response is okay, and if it is, return that to the user!" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "38704069-b1ad-474f-99f6-3273554df831", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def compute_annual_mean_subset(dset_id):\n", + " # Subset by area then time\n", + " wf = ops.AverageByTime(\n", + " ops.Subset(\n", + " ops.Input(\n", + " 'tas', [dsets[0]]\n", + " ),\n", + " time='1900-01-01/2000-12-31',\n", + " area='65,0,100,35',\n", + " ),\n", + " freq=\"year\"\n", + " )\n", + " \n", + " resp = wf.orchestrate()\n", + " \n", + " if resp.ok:\n", + " ds = resp.datasets()[0]\n", + " else:\n", + " ds = xr.Dataset()\n", + " return ds" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "94609894-705d-4fdc-a235-b2f1f5747305", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_gze8fnoi/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 165kB\n",
+       "Dimensions:    (time: 101, lat: 18, lon: 15, nbnd: 2)\n",
+       "Coordinates:\n",
+       "  * lat        (lat) float64 144B 0.9474 2.842 4.737 6.632 ... 29.37 31.26 33.16\n",
+       "  * lon        (lon) float64 120B 65.0 67.5 70.0 72.5 ... 92.5 95.0 97.5 100.0\n",
+       "  * time       (time) object 808B 1900-01-01 00:00:00 ... 2000-01-01 00:00:00\n",
+       "Dimensions without coordinates: nbnd\n",
+       "Data variables:\n",
+       "    tas        (time, lat, lon) float32 109kB ...\n",
+       "    lat_bnds   (time, lat, nbnd) float64 29kB ...\n",
+       "    lon_bnds   (time, lon, nbnd) float64 24kB ...\n",
+       "    time_bnds  (time, nbnd) object 2kB ...\n",
+       "Attributes: (12/45)\n",
+       "    Conventions:            CF-1.7 CMIP-6.2\n",
+       "    activity_id:            CMIP\n",
+       "    branch_method:          standard\n",
+       "    branch_time_in_child:   674885.0\n",
+       "    branch_time_in_parent:  10950.0\n",
+       "    case_id:                1562\n",
+       "    ...                     ...\n",
+       "    sub_experiment_id:      none\n",
+       "    table_id:               Amon\n",
+       "    tracking_id:            hdl:21.14100/2ebbfd9d-97bf-4858-b893-80d31ffe8cc7\n",
+       "    variable_id:            tas\n",
+       "    variant_info:           CMIP6 CESM2 historical ensemble with WACCM6-FV2 (...\n",
+       "    variant_label:          r1i1p1f1
" + ], + "text/plain": [ + " Size: 165kB\n", + "Dimensions: (time: 101, lat: 18, lon: 15, nbnd: 2)\n", + "Coordinates:\n", + " * lat (lat) float64 144B 0.9474 2.842 4.737 6.632 ... 29.37 31.26 33.16\n", + " * lon (lon) float64 120B 65.0 67.5 70.0 72.5 ... 92.5 95.0 97.5 100.0\n", + " * time (time) object 808B 1900-01-01 00:00:00 ... 2000-01-01 00:00:00\n", + "Dimensions without coordinates: nbnd\n", + "Data variables:\n", + " tas (time, lat, lon) float32 109kB ...\n", + " lat_bnds (time, lat, nbnd) float64 29kB ...\n", + " lon_bnds (time, lon, nbnd) float64 24kB ...\n", + " time_bnds (time, nbnd) object 2kB ...\n", + "Attributes: (12/45)\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " activity_id: CMIP\n", + " branch_method: standard\n", + " branch_time_in_child: 674885.0\n", + " branch_time_in_parent: 10950.0\n", + " case_id: 1562\n", + " ... ...\n", + " sub_experiment_id: none\n", + " table_id: Amon\n", + " tracking_id: hdl:21.14100/2ebbfd9d-97bf-4858-b893-80d31ffe8cc7\n", + " variable_id: tas\n", + " variant_info: CMIP6 CESM2 historical ensemble with WACCM6-FV2 (...\n", + " variant_label: r1i1p1f1" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "compute_annual_mean_subset(dsets[0])" + ] + }, + { + "cell_type": "markdown", + "id": "4ecacf51-e35f-4810-8250-3e90a1b5888a", + "metadata": {}, + "source": [ + "Now that it works with a single dataset, let's do this for all the datasets and put them into a dictionary with the dataset ids as the keys." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "a52e7d71-18fd-4bbe-91a7-fa86725ad4de", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_shm9lihm/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.\n", + "Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_knwmboqr/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.\n", + "Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_hwnk7sbm/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.\n", + "Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_j_w92ac9/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.\n", + "Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_0qmd9id3/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.\n", + "Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_53g0pvrs/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.\n", + "Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_4p48gwjo/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.\n", + "Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_5p_02p66/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.\n", + "Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_0d20f3r4/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.\n", + "Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_xncn6l3t/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.\n" + ] + } + ], + "source": [ + "dset_dict = {}\n", + "for dset in dsets:\n", + " dset_dict[dset] = compute_annual_mean_subset(dset)" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "50cecbf0-9a45-4565-a559-cb23f0f8da94", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'CMIP6.CMIP.NASA-GISS.GISS-E2-1-G.historical.r1i1p1f1.Amon.tas.gn.v20180827'" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(dset_dict.keys())[1]" + ] + }, + { + "cell_type": "markdown", + "id": "4a77cda9-536f-4fc2-8e89-9ce2e4937810", + "metadata": {}, + "source": [ + "## Visualize the Output\n", + "Let's use hvPlot to visualize. The datasets are stored in a dictionary of datasets, we need to:\n", + "- Extract a single key\n", + "- Plot a contour filled visualization, with some geographic features" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "id": "1b08b0a0-7add-4a50-8e62-9bb88b98cc7c", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": {}, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": {}, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ], + "text/plain": [ + "Column\n", + " [0] HoloViews(DynamicMap, sizing_mode='fixed', widget_location='bottom')\n", + " [1] WidgetBox(align=('center', 'end'))\n", + " [0] DiscreteSlider(name='time', options={'1900-01-01 00:00:00': cf...}, value=cftime.DatetimeNoLeap(1900...)" + ] + }, + "execution_count": 102, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p25555" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "dset_dict['CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amon.tas.gn.v20190308'].tas.hvplot.contourf(x='lon',\n", + " y='lat',\n", + " cmap='Reds',\n", + " levels=20,\n", + " clim=(250, 320),\n", + " features=[\"land\", \"ocean\"],\n", + " alpha=0.7,\n", + " widget_location='bottom',\n", + " clabel=\"Yearly Average Temperature (K)\",\n", + " geo=True)" + ] + }, + { + "cell_type": "markdown", + "id": "33c9fce3-722a-4cc9-8b4c-5d2038cc981f", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "86e3979e-505a-455c-8753-6cd5c7f0b219", + "metadata": {}, + "source": [ + "## Summary\n", + "Within this notebook, we learned how to specify a specific index node to search from, pass discovered datasets to rooki, and chain remote-compute with several operations using rooki. We then visualized the output using hvPlot, leading to an interactive plot!\n", + "\n", + "### What's next?\n", + "More adaptations of the intake-esgf + rooki to remotely compute on ESGF data." + ] + }, + { + "cell_type": "markdown", + "id": "bbda4631-017e-4295-b2a5-e97fe5197cf8", + "metadata": {}, + "source": [ + "## Resources and references\n", + " - [intake-esgf documentation](https://intake-esgf.readthedocs.io/en/latest/)\n", + " - [rooki documentation](https://rooki.readthedocs.io/en/latest/)\n", + " - [Working with geographic data with hvPlot](https://hvplot.holoviz.org/user_guide/Geographic_Data.html)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c36f52a0-c7c3-4e33-a35f-054b006fe63c", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_preview/32/_sources/notebooks/yearly-average-selection-globus.ipynb b/_preview/32/_sources/notebooks/yearly-average-selection-globus.ipynb new file mode 100644 index 0000000..9eceab5 --- /dev/null +++ b/_preview/32/_sources/notebooks/yearly-average-selection-globus.ipynb @@ -0,0 +1,1725 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "dff85968-989f-4e70-baf3-515f9670dc88", + "metadata": {}, + "source": [ + "\"Globus\n", + "\"ESGF" + ] + }, + { + "cell_type": "markdown", + "id": "f45b06fc-7432-4d39-8ccc-e7c39264406c", + "metadata": {}, + "source": [ + "# Basic Demonstration of Data Reduction Using Globus, Intake-ESGF, and Clisops\n", + "\n", + "## Overview\n", + "Within this notebook, we highlight how to use a collection of open-source tools in the Earth System Grid Federation user-computing community, to reduce and select datasets available through the federation of servers. Mainly, we will\n", + "- Select a given time frame\n", + "- Subset for a point\n", + "- Average into yearly frequency" + ] + }, + { + "cell_type": "markdown", + "id": "7f17259b-602f-4480-bc77-c8d03fa4806e", + "metadata": {}, + "source": [ + "## Prerequisites\n", + "\n", + "| Concepts | Importance | Notes |\n", + "| --- | --- | --- |\n", + "| [Intro to Xarray](https://foundations.projectpythia.org/core/xarray/xarray-intro.html) | Necessary | |\n", + "| [hvPlot Basics](https://hvplot.holoviz.org/getting_started/hvplot.html) | Necessary | Interactive Visualization with hvPlot |\n", + "- **Time to learn**: 30 minutes" + ] + }, + { + "cell_type": "markdown", + "id": "0c1b5757-4bd8-4d52-a1b7-45bd538af891", + "metadata": { + "tags": [] + }, + "source": [ + "## Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a7beeef7-b818-4c60-a990-9ee8e692a6d5", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.3.1'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " var reloading = false;\n", + " var Bokeh = root.Bokeh;\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n", + " require([\"jspanel\"], function(jsPanel) {\n", + "\twindow.jsPanel = jsPanel\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-modal\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-tooltip\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-hint\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-layout\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-contextmenu\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-dock\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"gridstack\"], function(GridStack) {\n", + "\twindow.GridStack = GridStack\n", + "\ton_load()\n", + " })\n", + " require([\"notyf\"], function() {\n", + "\ton_load()\n", + " })\n", + " root._bokeh_is_loading = css_urls.length + 9;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.3.2/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.3.2/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.3.2/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.3.2/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.3.2/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.3.2/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.3.2/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.3.2/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.3.2/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.1.min.js\", \"https://cdn.holoviz.org/panel/1.3.2/dist/panel.min.js\"];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + "\ttry {\n", + " inline_js[i].call(root, root.Bokeh);\n", + "\t} catch(e) {\n", + "\t if (!reloading) {\n", + "\t throw e;\n", + "\t }\n", + "\t}\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.3.1'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n require([\"jspanel\"], function(jsPanel) {\n\twindow.jsPanel = jsPanel\n\ton_load()\n })\n require([\"jspanel-modal\"], function() {\n\ton_load()\n })\n require([\"jspanel-tooltip\"], function() {\n\ton_load()\n })\n require([\"jspanel-hint\"], function() {\n\ton_load()\n })\n require([\"jspanel-layout\"], function() {\n\ton_load()\n })\n require([\"jspanel-contextmenu\"], function() {\n\ton_load()\n })\n require([\"jspanel-dock\"], function() {\n\ton_load()\n })\n require([\"gridstack\"], function(GridStack) {\n\twindow.GridStack = GridStack\n\ton_load()\n })\n require([\"notyf\"], function() {\n\ton_load()\n })\n root._bokeh_is_loading = css_urls.length + 9;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.3.2/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.3.2/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.3.2/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.3.2/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.3.2/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.3.2/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.3.2/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.3.2/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.3.2/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.1.min.js\", \"https://cdn.holoviz.org/panel/1.3.2/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ] + }, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p1122" + } + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + "\n", + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import hvplot.xarray\n", + "import holoviews as hv\n", + "import numpy as np\n", + "import hvplot.xarray\n", + "import matplotlib.pyplot as plt\n", + "import cartopy.crs as ccrs\n", + "from intake_esgf import ESGFCatalog\n", + "import xarray as xr\n", + "import warnings\n", + "from clisops.ops.subset import subset, subset_bbox\n", + "from clisops.ops.average import average_over_dims, average_time\n", + "import os\n", + "from globus_compute_sdk import Executor, Client\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "hv.extension(\"matplotlib\")" + ] + }, + { + "cell_type": "markdown", + "id": "d9c38227-22b6-4ce3-978a-5661ad55d316", + "metadata": {}, + "source": [ + "## Search and Find Data Using Intake-ESGF\n", + "Let's start with a sample dataset - which we can search for using intake-esgf." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e77d622b-ca17-403f-8be2-8d090f9d837b", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Perform a search() to populate the catalog." + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cat = ESGFCatalog()\n", + "cat" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "2e78e4d4-fa09-404c-a192-ae5b762e10e1", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " Searching indices: 100%|███████████████████████████████|1/1 [ 4.22s/index]\n" + ] + }, + { + "data": { + "text/plain": [ + "Summary information for 3 results:\n", + "mip_era [CMIP6]\n", + "activity_id [CMIP]\n", + "institution_id [CCCma]\n", + "source_id [CanESM5]\n", + "experiment_id [historical]\n", + "member_id [r1i1p1f1]\n", + "table_id [Amon, Lmon]\n", + "variable_id [tas, pr, gpp]\n", + "grid_label [gn]\n", + "dtype: object" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cat.search(\n", + " experiment_id=\"historical\",\n", + " source_id=\"CanESM5\",\n", + " frequency=\"mon\",\n", + " variable_id=[\"gpp\", \"tas\", \"pr\"],\n", + " variant_label=\"r1i1p1f1\", # addition from the last search\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "444549b5-fcf4-43d9-ba72-252ef5d6d407", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " Obtaining file info: 100%|███████████████████████████████|3/3 [ 1.24dataset/s]\n", + "Adding cell measures: 100%|███████████████████████████████|3/3 [ 3.04s/dataset]\n" + ] + }, + { + "data": { + "text/plain": [ + "dict_keys(['Amon.tas', 'Lmon.gpp', 'Amon.pr'])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dsd = cat.to_dataset_dict()\n", + "dsd.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "5fc96317-6d59-4332-b591-52040e187fe7", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:    (time: 1980, bnds: 2, lat: 64, lon: 128)\n",
+       "Coordinates:\n",
+       "  * time       (time) object 1850-01-16 12:00:00 ... 2014-12-16 12:00:00\n",
+       "  * lat        (lat) float64 -87.86 -85.1 -82.31 -79.53 ... 82.31 85.1 87.86\n",
+       "  * lon        (lon) float64 0.0 2.812 5.625 8.438 ... 348.8 351.6 354.4 357.2\n",
+       "    height     float64 ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    time_bnds  (time, bnds) object ...\n",
+       "    lat_bnds   (lat, bnds) float64 ...\n",
+       "    lon_bnds   (lon, bnds) float64 ...\n",
+       "    tas        (time, lat, lon) float32 ...\n",
+       "    areacella  (lat, lon) float32 ...\n",
+       "Attributes: (12/53)\n",
+       "    CCCma_model_hash:            3dedf95315d603326fde4f5340dc0519d80d10c0\n",
+       "    CCCma_parent_runid:          rc3-pictrl\n",
+       "    CCCma_pycmor_hash:           33c30511acc319a98240633965a04ca99c26427e\n",
+       "    CCCma_runid:                 rc3.1-his01\n",
+       "    Conventions:                 CF-1.7 CMIP-6.2\n",
+       "    YMDH_branch_time_in_child:   1850:01:01:00\n",
+       "    ...                          ...\n",
+       "    tracking_id:                 hdl:21.14100/872062df-acae-499b-aa0f-9eaca76...\n",
+       "    variable_id:                 tas\n",
+       "    variant_label:               r1i1p1f1\n",
+       "    version:                     v20190429\n",
+       "    license:                     CMIP6 model data produced by The Government ...\n",
+       "    cmor_version:                3.4.0
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 1980, bnds: 2, lat: 64, lon: 128)\n", + "Coordinates:\n", + " * time (time) object 1850-01-16 12:00:00 ... 2014-12-16 12:00:00\n", + " * lat (lat) float64 -87.86 -85.1 -82.31 -79.53 ... 82.31 85.1 87.86\n", + " * lon (lon) float64 0.0 2.812 5.625 8.438 ... 348.8 351.6 354.4 357.2\n", + " height float64 ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " time_bnds (time, bnds) object ...\n", + " lat_bnds (lat, bnds) float64 ...\n", + " lon_bnds (lon, bnds) float64 ...\n", + " tas (time, lat, lon) float32 ...\n", + " areacella (lat, lon) float32 ...\n", + "Attributes: (12/53)\n", + " CCCma_model_hash: 3dedf95315d603326fde4f5340dc0519d80d10c0\n", + " CCCma_parent_runid: rc3-pictrl\n", + " CCCma_pycmor_hash: 33c30511acc319a98240633965a04ca99c26427e\n", + " CCCma_runid: rc3.1-his01\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " YMDH_branch_time_in_child: 1850:01:01:00\n", + " ... ...\n", + " tracking_id: hdl:21.14100/872062df-acae-499b-aa0f-9eaca76...\n", + " variable_id: tas\n", + " variant_label: r1i1p1f1\n", + " version: v20190429\n", + " license: CMIP6 model data produced by The Government ...\n", + " cmor_version: 3.4.0" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds = dsd[\"Amon.tas\"]\n", + "ds" + ] + }, + { + "cell_type": "markdown", + "id": "aa3b35d2-cccb-47b8-9792-7a945d947aba", + "metadata": {}, + "source": [ + "## Use clisops to subset for time and location" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "404534be-f6fa-48dc-b4ba-cdd8aad75669", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def subset_time(ds, start_time=\"1850-01-01T12:00:00Z\", end_time=\"2014-12-30T12:00:00Z\"):\n", + " from clisops.ops.subset import subset\n", + " \n", + " return subset(ds, time=f\"{start_time}/{end_time}\", output=\"xarray\")\n", + "\n", + "def subset_location(ds, lat_bounds=[30, 50], lon_bounds=[-100, -80]):\n", + " from clisops.ops.subset import subset_bbox\n", + " \n", + " return subset_bbox(ds, lat_bnds=lat_bounds, lon_bnds=lon_bounds)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "56ebc5e7-e300-4819-be8b-cef0fe6b3d09", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + ":QuadMesh [lon,lat] (tas)" + ] + }, + "execution_count": 26, + "metadata": { + "application/vnd.holoviews_exec.v0+json": {} + }, + "output_type": "execute_result" + } + ], + "source": [ + "ds.tas.isel(time=0).hvplot.quadmesh(geo=True, cmap=\"Reds\")" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "937299ba-5838-494d-a77f-06cb5b4bc666", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + ":Overlay\n", + " .Land.I :Feature [Longitude,Latitude]\n", + " .Ocean.I :Feature [Longitude,Latitude]\n", + " .Image.I :Image [lon,lat] (tas)\n", + " .Borders.I :Feature [Longitude,Latitude]\n", + " .Lakes.I :Feature [Longitude,Latitude]" + ] + }, + "execution_count": 27, + "metadata": { + "application/vnd.holoviews_exec.v0+json": {} + }, + "output_type": "execute_result" + } + ], + "source": [ + "subset_location(ds).tas.isel(time=-1).hvplot(x='lon',\n", + " y='lat',\n", + " features=[\"land\", \"lakes\", \"ocean\", \"borders\"],\n", + " cmap='Reds',\n", + " geo=True)" + ] + }, + { + "cell_type": "markdown", + "id": "aaf3c9a5-29bb-4145-b10e-3742d9b46779", + "metadata": {}, + "source": [ + "### Calculate a yearly average" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "99861710-a1b3-4b94-bfe5-39919917c419", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def yearly_average(ds):\n", + " from clisops.ops.average import average_time\n", + " return average_time(ds, \"year\", output_type=\"xarray\")[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "92c6bb5b-cd66-44ca-bfbc-bb25dec72eab", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + ":Overlay\n", + " .Land.I :Feature [Longitude,Latitude]\n", + " .Ocean.I :Feature [Longitude,Latitude]\n", + " .Image.I :Image [lon,lat] (tas)\n", + " .Borders.I :Feature [Longitude,Latitude]\n", + " .Lakes.I :Feature [Longitude,Latitude]" + ] + }, + "execution_count": 40, + "metadata": { + "application/vnd.holoviews_exec.v0+json": {} + }, + "output_type": "execute_result" + } + ], + "source": [ + "yearly_average(subset_location(ds)).isel(time=0).tas.hvplot(x='lon',\n", + " y='lat',\n", + " features=[\"land\", \"lakes\", \"ocean\", \"borders\"],\n", + " cmap='Reds',\n", + " geo=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "4103dcaa-9fe0-4129-b62f-64921dec0658", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + ":Overlay\n", + " .Land.I :Feature [Longitude,Latitude]\n", + " .Ocean.I :Feature [Longitude,Latitude]\n", + " .Image.I :Image [lon,lat] (tas)\n", + " .Borders.I :Feature [Longitude,Latitude]\n", + " .Lakes.I :Feature [Longitude,Latitude]" + ] + }, + "execution_count": 42, + "metadata": { + "application/vnd.holoviews_exec.v0+json": {} + }, + "output_type": "execute_result" + } + ], + "source": [ + "yearly_average(subset_location(ds)).isel(time=-1).tas.hvplot(x='lon',\n", + " y='lat',\n", + " features=[\"land\", \"lakes\", \"ocean\", \"borders\"],\n", + " cmap='Reds',\n", + " geo=True)" + ] + }, + { + "cell_type": "markdown", + "id": "2111d7bc-b451-4d92-9794-46ac087ca248", + "metadata": {}, + "source": [ + "## Summary\n", + "In this notebook, we applied data reduction functions from the ESGF stack to data accessed through intake-esgf.\n", + "\n", + "### What's next?\n", + "We will see some more advanced examples of using these functions, including full task orchestration using Globus-Flows.\n", + "\n", + "## Resources and references\n", + "- [Intake-ESGF Documentation](https://github.com/nocollier/intake-esgf)\n", + "- [Globus Compute Documentation](https://www.globus.org/compute)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b2166127-1d65-4757-8953-fff73e71384f", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_preview/32/_sphinx_design_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css b/_preview/32/_sphinx_design_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css new file mode 100644 index 0000000..eb19f69 --- /dev/null +++ b/_preview/32/_sphinx_design_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css @@ -0,0 +1 @@ +.sd-bg-primary{background-color:var(--sd-color-primary) !important}.sd-bg-text-primary{color:var(--sd-color-primary-text) !important}button.sd-bg-primary:focus,button.sd-bg-primary:hover{background-color:var(--sd-color-primary-highlight) !important}a.sd-bg-primary:focus,a.sd-bg-primary:hover{background-color:var(--sd-color-primary-highlight) !important}.sd-bg-secondary{background-color:var(--sd-color-secondary) !important}.sd-bg-text-secondary{color:var(--sd-color-secondary-text) !important}button.sd-bg-secondary:focus,button.sd-bg-secondary:hover{background-color:var(--sd-color-secondary-highlight) !important}a.sd-bg-secondary:focus,a.sd-bg-secondary:hover{background-color:var(--sd-color-secondary-highlight) !important}.sd-bg-success{background-color:var(--sd-color-success) !important}.sd-bg-text-success{color:var(--sd-color-success-text) !important}button.sd-bg-success:focus,button.sd-bg-success:hover{background-color:var(--sd-color-success-highlight) !important}a.sd-bg-success:focus,a.sd-bg-success:hover{background-color:var(--sd-color-success-highlight) !important}.sd-bg-info{background-color:var(--sd-color-info) !important}.sd-bg-text-info{color:var(--sd-color-info-text) !important}button.sd-bg-info:focus,button.sd-bg-info:hover{background-color:var(--sd-color-info-highlight) !important}a.sd-bg-info:focus,a.sd-bg-info:hover{background-color:var(--sd-color-info-highlight) !important}.sd-bg-warning{background-color:var(--sd-color-warning) !important}.sd-bg-text-warning{color:var(--sd-color-warning-text) !important}button.sd-bg-warning:focus,button.sd-bg-warning:hover{background-color:var(--sd-color-warning-highlight) !important}a.sd-bg-warning:focus,a.sd-bg-warning:hover{background-color:var(--sd-color-warning-highlight) !important}.sd-bg-danger{background-color:var(--sd-color-danger) !important}.sd-bg-text-danger{color:var(--sd-color-danger-text) !important}button.sd-bg-danger:focus,button.sd-bg-danger:hover{background-color:var(--sd-color-danger-highlight) !important}a.sd-bg-danger:focus,a.sd-bg-danger:hover{background-color:var(--sd-color-danger-highlight) !important}.sd-bg-light{background-color:var(--sd-color-light) !important}.sd-bg-text-light{color:var(--sd-color-light-text) !important}button.sd-bg-light:focus,button.sd-bg-light:hover{background-color:var(--sd-color-light-highlight) !important}a.sd-bg-light:focus,a.sd-bg-light:hover{background-color:var(--sd-color-light-highlight) !important}.sd-bg-muted{background-color:var(--sd-color-muted) !important}.sd-bg-text-muted{color:var(--sd-color-muted-text) !important}button.sd-bg-muted:focus,button.sd-bg-muted:hover{background-color:var(--sd-color-muted-highlight) !important}a.sd-bg-muted:focus,a.sd-bg-muted:hover{background-color:var(--sd-color-muted-highlight) !important}.sd-bg-dark{background-color:var(--sd-color-dark) !important}.sd-bg-text-dark{color:var(--sd-color-dark-text) !important}button.sd-bg-dark:focus,button.sd-bg-dark:hover{background-color:var(--sd-color-dark-highlight) !important}a.sd-bg-dark:focus,a.sd-bg-dark:hover{background-color:var(--sd-color-dark-highlight) !important}.sd-bg-black{background-color:var(--sd-color-black) !important}.sd-bg-text-black{color:var(--sd-color-black-text) !important}button.sd-bg-black:focus,button.sd-bg-black:hover{background-color:var(--sd-color-black-highlight) !important}a.sd-bg-black:focus,a.sd-bg-black:hover{background-color:var(--sd-color-black-highlight) !important}.sd-bg-white{background-color:var(--sd-color-white) !important}.sd-bg-text-white{color:var(--sd-color-white-text) !important}button.sd-bg-white:focus,button.sd-bg-white:hover{background-color:var(--sd-color-white-highlight) !important}a.sd-bg-white:focus,a.sd-bg-white:hover{background-color:var(--sd-color-white-highlight) !important}.sd-text-primary,.sd-text-primary>p{color:var(--sd-color-primary) !important}a.sd-text-primary:focus,a.sd-text-primary:hover{color:var(--sd-color-primary-highlight) !important}.sd-text-secondary,.sd-text-secondary>p{color:var(--sd-color-secondary) !important}a.sd-text-secondary:focus,a.sd-text-secondary:hover{color:var(--sd-color-secondary-highlight) !important}.sd-text-success,.sd-text-success>p{color:var(--sd-color-success) !important}a.sd-text-success:focus,a.sd-text-success:hover{color:var(--sd-color-success-highlight) !important}.sd-text-info,.sd-text-info>p{color:var(--sd-color-info) !important}a.sd-text-info:focus,a.sd-text-info:hover{color:var(--sd-color-info-highlight) !important}.sd-text-warning,.sd-text-warning>p{color:var(--sd-color-warning) !important}a.sd-text-warning:focus,a.sd-text-warning:hover{color:var(--sd-color-warning-highlight) !important}.sd-text-danger,.sd-text-danger>p{color:var(--sd-color-danger) !important}a.sd-text-danger:focus,a.sd-text-danger:hover{color:var(--sd-color-danger-highlight) !important}.sd-text-light,.sd-text-light>p{color:var(--sd-color-light) !important}a.sd-text-light:focus,a.sd-text-light:hover{color:var(--sd-color-light-highlight) !important}.sd-text-muted,.sd-text-muted>p{color:var(--sd-color-muted) !important}a.sd-text-muted:focus,a.sd-text-muted:hover{color:var(--sd-color-muted-highlight) !important}.sd-text-dark,.sd-text-dark>p{color:var(--sd-color-dark) !important}a.sd-text-dark:focus,a.sd-text-dark:hover{color:var(--sd-color-dark-highlight) !important}.sd-text-black,.sd-text-black>p{color:var(--sd-color-black) !important}a.sd-text-black:focus,a.sd-text-black:hover{color:var(--sd-color-black-highlight) !important}.sd-text-white,.sd-text-white>p{color:var(--sd-color-white) !important}a.sd-text-white:focus,a.sd-text-white:hover{color:var(--sd-color-white-highlight) !important}.sd-outline-primary{border-color:var(--sd-color-primary) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-primary:focus,a.sd-outline-primary:hover{border-color:var(--sd-color-primary-highlight) !important}.sd-outline-secondary{border-color:var(--sd-color-secondary) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-secondary:focus,a.sd-outline-secondary:hover{border-color:var(--sd-color-secondary-highlight) !important}.sd-outline-success{border-color:var(--sd-color-success) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-success:focus,a.sd-outline-success:hover{border-color:var(--sd-color-success-highlight) !important}.sd-outline-info{border-color:var(--sd-color-info) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-info:focus,a.sd-outline-info:hover{border-color:var(--sd-color-info-highlight) !important}.sd-outline-warning{border-color:var(--sd-color-warning) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-warning:focus,a.sd-outline-warning:hover{border-color:var(--sd-color-warning-highlight) !important}.sd-outline-danger{border-color:var(--sd-color-danger) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-danger:focus,a.sd-outline-danger:hover{border-color:var(--sd-color-danger-highlight) !important}.sd-outline-light{border-color:var(--sd-color-light) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-light:focus,a.sd-outline-light:hover{border-color:var(--sd-color-light-highlight) !important}.sd-outline-muted{border-color:var(--sd-color-muted) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-muted:focus,a.sd-outline-muted:hover{border-color:var(--sd-color-muted-highlight) !important}.sd-outline-dark{border-color:var(--sd-color-dark) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-dark:focus,a.sd-outline-dark:hover{border-color:var(--sd-color-dark-highlight) !important}.sd-outline-black{border-color:var(--sd-color-black) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-black:focus,a.sd-outline-black:hover{border-color:var(--sd-color-black-highlight) !important}.sd-outline-white{border-color:var(--sd-color-white) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-white:focus,a.sd-outline-white:hover{border-color:var(--sd-color-white-highlight) !important}.sd-bg-transparent{background-color:transparent !important}.sd-outline-transparent{border-color:transparent !important}.sd-text-transparent{color:transparent !important}.sd-p-0{padding:0 !important}.sd-pt-0,.sd-py-0{padding-top:0 !important}.sd-pr-0,.sd-px-0{padding-right:0 !important}.sd-pb-0,.sd-py-0{padding-bottom:0 !important}.sd-pl-0,.sd-px-0{padding-left:0 !important}.sd-p-1{padding:.25rem !important}.sd-pt-1,.sd-py-1{padding-top:.25rem !important}.sd-pr-1,.sd-px-1{padding-right:.25rem !important}.sd-pb-1,.sd-py-1{padding-bottom:.25rem !important}.sd-pl-1,.sd-px-1{padding-left:.25rem !important}.sd-p-2{padding:.5rem !important}.sd-pt-2,.sd-py-2{padding-top:.5rem !important}.sd-pr-2,.sd-px-2{padding-right:.5rem !important}.sd-pb-2,.sd-py-2{padding-bottom:.5rem !important}.sd-pl-2,.sd-px-2{padding-left:.5rem !important}.sd-p-3{padding:1rem !important}.sd-pt-3,.sd-py-3{padding-top:1rem !important}.sd-pr-3,.sd-px-3{padding-right:1rem !important}.sd-pb-3,.sd-py-3{padding-bottom:1rem !important}.sd-pl-3,.sd-px-3{padding-left:1rem !important}.sd-p-4{padding:1.5rem !important}.sd-pt-4,.sd-py-4{padding-top:1.5rem !important}.sd-pr-4,.sd-px-4{padding-right:1.5rem !important}.sd-pb-4,.sd-py-4{padding-bottom:1.5rem !important}.sd-pl-4,.sd-px-4{padding-left:1.5rem !important}.sd-p-5{padding:3rem !important}.sd-pt-5,.sd-py-5{padding-top:3rem !important}.sd-pr-5,.sd-px-5{padding-right:3rem !important}.sd-pb-5,.sd-py-5{padding-bottom:3rem !important}.sd-pl-5,.sd-px-5{padding-left:3rem !important}.sd-m-auto{margin:auto !important}.sd-mt-auto,.sd-my-auto{margin-top:auto !important}.sd-mr-auto,.sd-mx-auto{margin-right:auto !important}.sd-mb-auto,.sd-my-auto{margin-bottom:auto !important}.sd-ml-auto,.sd-mx-auto{margin-left:auto !important}.sd-m-0{margin:0 !important}.sd-mt-0,.sd-my-0{margin-top:0 !important}.sd-mr-0,.sd-mx-0{margin-right:0 !important}.sd-mb-0,.sd-my-0{margin-bottom:0 !important}.sd-ml-0,.sd-mx-0{margin-left:0 !important}.sd-m-1{margin:.25rem !important}.sd-mt-1,.sd-my-1{margin-top:.25rem !important}.sd-mr-1,.sd-mx-1{margin-right:.25rem !important}.sd-mb-1,.sd-my-1{margin-bottom:.25rem !important}.sd-ml-1,.sd-mx-1{margin-left:.25rem !important}.sd-m-2{margin:.5rem !important}.sd-mt-2,.sd-my-2{margin-top:.5rem !important}.sd-mr-2,.sd-mx-2{margin-right:.5rem !important}.sd-mb-2,.sd-my-2{margin-bottom:.5rem !important}.sd-ml-2,.sd-mx-2{margin-left:.5rem !important}.sd-m-3{margin:1rem !important}.sd-mt-3,.sd-my-3{margin-top:1rem !important}.sd-mr-3,.sd-mx-3{margin-right:1rem !important}.sd-mb-3,.sd-my-3{margin-bottom:1rem !important}.sd-ml-3,.sd-mx-3{margin-left:1rem !important}.sd-m-4{margin:1.5rem !important}.sd-mt-4,.sd-my-4{margin-top:1.5rem !important}.sd-mr-4,.sd-mx-4{margin-right:1.5rem !important}.sd-mb-4,.sd-my-4{margin-bottom:1.5rem !important}.sd-ml-4,.sd-mx-4{margin-left:1.5rem !important}.sd-m-5{margin:3rem !important}.sd-mt-5,.sd-my-5{margin-top:3rem !important}.sd-mr-5,.sd-mx-5{margin-right:3rem !important}.sd-mb-5,.sd-my-5{margin-bottom:3rem !important}.sd-ml-5,.sd-mx-5{margin-left:3rem !important}.sd-w-25{width:25% !important}.sd-w-50{width:50% !important}.sd-w-75{width:75% !important}.sd-w-100{width:100% !important}.sd-w-auto{width:auto !important}.sd-h-25{height:25% !important}.sd-h-50{height:50% !important}.sd-h-75{height:75% !important}.sd-h-100{height:100% !important}.sd-h-auto{height:auto !important}.sd-d-none{display:none !important}.sd-d-inline{display:inline !important}.sd-d-inline-block{display:inline-block !important}.sd-d-block{display:block !important}.sd-d-grid{display:grid !important}.sd-d-flex-row{display:-ms-flexbox !important;display:flex !important;flex-direction:row !important}.sd-d-flex-column{display:-ms-flexbox !important;display:flex !important;flex-direction:column !important}.sd-d-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}@media(min-width: 576px){.sd-d-sm-none{display:none !important}.sd-d-sm-inline{display:inline !important}.sd-d-sm-inline-block{display:inline-block !important}.sd-d-sm-block{display:block !important}.sd-d-sm-grid{display:grid !important}.sd-d-sm-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-sm-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 768px){.sd-d-md-none{display:none !important}.sd-d-md-inline{display:inline !important}.sd-d-md-inline-block{display:inline-block !important}.sd-d-md-block{display:block !important}.sd-d-md-grid{display:grid !important}.sd-d-md-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-md-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 992px){.sd-d-lg-none{display:none !important}.sd-d-lg-inline{display:inline !important}.sd-d-lg-inline-block{display:inline-block !important}.sd-d-lg-block{display:block !important}.sd-d-lg-grid{display:grid !important}.sd-d-lg-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-lg-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 1200px){.sd-d-xl-none{display:none !important}.sd-d-xl-inline{display:inline !important}.sd-d-xl-inline-block{display:inline-block !important}.sd-d-xl-block{display:block !important}.sd-d-xl-grid{display:grid !important}.sd-d-xl-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-xl-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}.sd-align-major-start{justify-content:flex-start !important}.sd-align-major-end{justify-content:flex-end !important}.sd-align-major-center{justify-content:center !important}.sd-align-major-justify{justify-content:space-between !important}.sd-align-major-spaced{justify-content:space-evenly !important}.sd-align-minor-start{align-items:flex-start !important}.sd-align-minor-end{align-items:flex-end !important}.sd-align-minor-center{align-items:center !important}.sd-align-minor-stretch{align-items:stretch !important}.sd-text-justify{text-align:justify !important}.sd-text-left{text-align:left !important}.sd-text-right{text-align:right !important}.sd-text-center{text-align:center !important}.sd-font-weight-light{font-weight:300 !important}.sd-font-weight-lighter{font-weight:lighter !important}.sd-font-weight-normal{font-weight:400 !important}.sd-font-weight-bold{font-weight:700 !important}.sd-font-weight-bolder{font-weight:bolder !important}.sd-font-italic{font-style:italic !important}.sd-text-decoration-none{text-decoration:none !important}.sd-text-lowercase{text-transform:lowercase !important}.sd-text-uppercase{text-transform:uppercase !important}.sd-text-capitalize{text-transform:capitalize !important}.sd-text-wrap{white-space:normal !important}.sd-text-nowrap{white-space:nowrap !important}.sd-text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.sd-fs-1,.sd-fs-1>p{font-size:calc(1.375rem + 1.5vw) !important;line-height:unset !important}.sd-fs-2,.sd-fs-2>p{font-size:calc(1.325rem + 0.9vw) !important;line-height:unset !important}.sd-fs-3,.sd-fs-3>p{font-size:calc(1.3rem + 0.6vw) !important;line-height:unset !important}.sd-fs-4,.sd-fs-4>p{font-size:calc(1.275rem + 0.3vw) !important;line-height:unset !important}.sd-fs-5,.sd-fs-5>p{font-size:1.25rem !important;line-height:unset !important}.sd-fs-6,.sd-fs-6>p{font-size:1rem !important;line-height:unset !important}.sd-border-0{border:0 solid !important}.sd-border-top-0{border-top:0 solid !important}.sd-border-bottom-0{border-bottom:0 solid !important}.sd-border-right-0{border-right:0 solid !important}.sd-border-left-0{border-left:0 solid !important}.sd-border-1{border:1px solid !important}.sd-border-top-1{border-top:1px solid !important}.sd-border-bottom-1{border-bottom:1px solid !important}.sd-border-right-1{border-right:1px solid !important}.sd-border-left-1{border-left:1px solid !important}.sd-border-2{border:2px solid !important}.sd-border-top-2{border-top:2px solid !important}.sd-border-bottom-2{border-bottom:2px solid !important}.sd-border-right-2{border-right:2px solid !important}.sd-border-left-2{border-left:2px solid !important}.sd-border-3{border:3px solid !important}.sd-border-top-3{border-top:3px solid !important}.sd-border-bottom-3{border-bottom:3px solid !important}.sd-border-right-3{border-right:3px solid !important}.sd-border-left-3{border-left:3px solid !important}.sd-border-4{border:4px solid !important}.sd-border-top-4{border-top:4px solid !important}.sd-border-bottom-4{border-bottom:4px solid !important}.sd-border-right-4{border-right:4px solid !important}.sd-border-left-4{border-left:4px solid !important}.sd-border-5{border:5px solid !important}.sd-border-top-5{border-top:5px solid !important}.sd-border-bottom-5{border-bottom:5px solid !important}.sd-border-right-5{border-right:5px solid !important}.sd-border-left-5{border-left:5px solid !important}.sd-rounded-0{border-radius:0 !important}.sd-rounded-1{border-radius:.2rem !important}.sd-rounded-2{border-radius:.3rem !important}.sd-rounded-3{border-radius:.5rem !important}.sd-rounded-pill{border-radius:50rem !important}.sd-rounded-circle{border-radius:50% !important}.shadow-none{box-shadow:none !important}.sd-shadow-sm{box-shadow:0 .125rem .25rem var(--sd-color-shadow) !important}.sd-shadow-md{box-shadow:0 .5rem 1rem var(--sd-color-shadow) !important}.sd-shadow-lg{box-shadow:0 1rem 3rem var(--sd-color-shadow) !important}@keyframes sd-slide-from-left{0%{transform:translateX(-100%)}100%{transform:translateX(0)}}@keyframes sd-slide-from-right{0%{transform:translateX(200%)}100%{transform:translateX(0)}}@keyframes sd-grow100{0%{transform:scale(0);opacity:.5}100%{transform:scale(1);opacity:1}}@keyframes sd-grow50{0%{transform:scale(0.5);opacity:.5}100%{transform:scale(1);opacity:1}}@keyframes sd-grow50-rot20{0%{transform:scale(0.5) rotateZ(-20deg);opacity:.5}75%{transform:scale(1) rotateZ(5deg);opacity:1}95%{transform:scale(1) rotateZ(-1deg);opacity:1}100%{transform:scale(1) rotateZ(0);opacity:1}}.sd-animate-slide-from-left{animation:1s ease-out 0s 1 normal none running sd-slide-from-left}.sd-animate-slide-from-right{animation:1s ease-out 0s 1 normal none running sd-slide-from-right}.sd-animate-grow100{animation:1s ease-out 0s 1 normal none running sd-grow100}.sd-animate-grow50{animation:1s ease-out 0s 1 normal none running sd-grow50}.sd-animate-grow50-rot20{animation:1s ease-out 0s 1 normal none running sd-grow50-rot20}.sd-badge{display:inline-block;padding:.35em .65em;font-size:.75em;font-weight:700;line-height:1;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25rem}.sd-badge:empty{display:none}a.sd-badge{text-decoration:none}.sd-btn .sd-badge{position:relative;top:-1px}.sd-btn{background-color:transparent;border:1px solid transparent;border-radius:.25rem;cursor:pointer;display:inline-block;font-weight:400;font-size:1rem;line-height:1.5;padding:.375rem .75rem;text-align:center;text-decoration:none;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;vertical-align:middle;user-select:none;-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none}.sd-btn:hover{text-decoration:none}@media(prefers-reduced-motion: reduce){.sd-btn{transition:none}}.sd-btn-primary,.sd-btn-outline-primary:hover,.sd-btn-outline-primary:focus{color:var(--sd-color-primary-text) !important;background-color:var(--sd-color-primary) !important;border-color:var(--sd-color-primary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-primary:hover,.sd-btn-primary:focus{color:var(--sd-color-primary-text) !important;background-color:var(--sd-color-primary-highlight) !important;border-color:var(--sd-color-primary-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-primary{color:var(--sd-color-primary) !important;border-color:var(--sd-color-primary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-secondary,.sd-btn-outline-secondary:hover,.sd-btn-outline-secondary:focus{color:var(--sd-color-secondary-text) !important;background-color:var(--sd-color-secondary) !important;border-color:var(--sd-color-secondary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-secondary:hover,.sd-btn-secondary:focus{color:var(--sd-color-secondary-text) !important;background-color:var(--sd-color-secondary-highlight) !important;border-color:var(--sd-color-secondary-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-secondary{color:var(--sd-color-secondary) !important;border-color:var(--sd-color-secondary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-success,.sd-btn-outline-success:hover,.sd-btn-outline-success:focus{color:var(--sd-color-success-text) !important;background-color:var(--sd-color-success) !important;border-color:var(--sd-color-success) !important;border-width:1px !important;border-style:solid !important}.sd-btn-success:hover,.sd-btn-success:focus{color:var(--sd-color-success-text) !important;background-color:var(--sd-color-success-highlight) !important;border-color:var(--sd-color-success-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-success{color:var(--sd-color-success) !important;border-color:var(--sd-color-success) !important;border-width:1px !important;border-style:solid !important}.sd-btn-info,.sd-btn-outline-info:hover,.sd-btn-outline-info:focus{color:var(--sd-color-info-text) !important;background-color:var(--sd-color-info) !important;border-color:var(--sd-color-info) !important;border-width:1px !important;border-style:solid !important}.sd-btn-info:hover,.sd-btn-info:focus{color:var(--sd-color-info-text) !important;background-color:var(--sd-color-info-highlight) !important;border-color:var(--sd-color-info-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-info{color:var(--sd-color-info) !important;border-color:var(--sd-color-info) !important;border-width:1px !important;border-style:solid !important}.sd-btn-warning,.sd-btn-outline-warning:hover,.sd-btn-outline-warning:focus{color:var(--sd-color-warning-text) !important;background-color:var(--sd-color-warning) !important;border-color:var(--sd-color-warning) !important;border-width:1px !important;border-style:solid !important}.sd-btn-warning:hover,.sd-btn-warning:focus{color:var(--sd-color-warning-text) !important;background-color:var(--sd-color-warning-highlight) !important;border-color:var(--sd-color-warning-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-warning{color:var(--sd-color-warning) !important;border-color:var(--sd-color-warning) !important;border-width:1px !important;border-style:solid !important}.sd-btn-danger,.sd-btn-outline-danger:hover,.sd-btn-outline-danger:focus{color:var(--sd-color-danger-text) !important;background-color:var(--sd-color-danger) !important;border-color:var(--sd-color-danger) !important;border-width:1px !important;border-style:solid !important}.sd-btn-danger:hover,.sd-btn-danger:focus{color:var(--sd-color-danger-text) !important;background-color:var(--sd-color-danger-highlight) !important;border-color:var(--sd-color-danger-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-danger{color:var(--sd-color-danger) !important;border-color:var(--sd-color-danger) !important;border-width:1px !important;border-style:solid !important}.sd-btn-light,.sd-btn-outline-light:hover,.sd-btn-outline-light:focus{color:var(--sd-color-light-text) !important;background-color:var(--sd-color-light) !important;border-color:var(--sd-color-light) !important;border-width:1px !important;border-style:solid !important}.sd-btn-light:hover,.sd-btn-light:focus{color:var(--sd-color-light-text) !important;background-color:var(--sd-color-light-highlight) !important;border-color:var(--sd-color-light-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-light{color:var(--sd-color-light) !important;border-color:var(--sd-color-light) !important;border-width:1px !important;border-style:solid !important}.sd-btn-muted,.sd-btn-outline-muted:hover,.sd-btn-outline-muted:focus{color:var(--sd-color-muted-text) !important;background-color:var(--sd-color-muted) !important;border-color:var(--sd-color-muted) !important;border-width:1px !important;border-style:solid !important}.sd-btn-muted:hover,.sd-btn-muted:focus{color:var(--sd-color-muted-text) !important;background-color:var(--sd-color-muted-highlight) !important;border-color:var(--sd-color-muted-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-muted{color:var(--sd-color-muted) !important;border-color:var(--sd-color-muted) !important;border-width:1px !important;border-style:solid !important}.sd-btn-dark,.sd-btn-outline-dark:hover,.sd-btn-outline-dark:focus{color:var(--sd-color-dark-text) !important;background-color:var(--sd-color-dark) !important;border-color:var(--sd-color-dark) !important;border-width:1px !important;border-style:solid !important}.sd-btn-dark:hover,.sd-btn-dark:focus{color:var(--sd-color-dark-text) !important;background-color:var(--sd-color-dark-highlight) !important;border-color:var(--sd-color-dark-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-dark{color:var(--sd-color-dark) !important;border-color:var(--sd-color-dark) !important;border-width:1px !important;border-style:solid !important}.sd-btn-black,.sd-btn-outline-black:hover,.sd-btn-outline-black:focus{color:var(--sd-color-black-text) !important;background-color:var(--sd-color-black) !important;border-color:var(--sd-color-black) !important;border-width:1px !important;border-style:solid !important}.sd-btn-black:hover,.sd-btn-black:focus{color:var(--sd-color-black-text) !important;background-color:var(--sd-color-black-highlight) !important;border-color:var(--sd-color-black-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-black{color:var(--sd-color-black) !important;border-color:var(--sd-color-black) !important;border-width:1px !important;border-style:solid !important}.sd-btn-white,.sd-btn-outline-white:hover,.sd-btn-outline-white:focus{color:var(--sd-color-white-text) !important;background-color:var(--sd-color-white) !important;border-color:var(--sd-color-white) !important;border-width:1px !important;border-style:solid !important}.sd-btn-white:hover,.sd-btn-white:focus{color:var(--sd-color-white-text) !important;background-color:var(--sd-color-white-highlight) !important;border-color:var(--sd-color-white-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-white{color:var(--sd-color-white) !important;border-color:var(--sd-color-white) !important;border-width:1px !important;border-style:solid !important}.sd-stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;content:""}.sd-hide-link-text{font-size:0}.sd-octicon,.sd-material-icon{display:inline-block;fill:currentColor;vertical-align:middle}.sd-avatar-xs{border-radius:50%;object-fit:cover;object-position:center;width:1rem;height:1rem}.sd-avatar-sm{border-radius:50%;object-fit:cover;object-position:center;width:3rem;height:3rem}.sd-avatar-md{border-radius:50%;object-fit:cover;object-position:center;width:5rem;height:5rem}.sd-avatar-lg{border-radius:50%;object-fit:cover;object-position:center;width:7rem;height:7rem}.sd-avatar-xl{border-radius:50%;object-fit:cover;object-position:center;width:10rem;height:10rem}.sd-avatar-inherit{border-radius:50%;object-fit:cover;object-position:center;width:inherit;height:inherit}.sd-avatar-initial{border-radius:50%;object-fit:cover;object-position:center;width:initial;height:initial}.sd-card{background-clip:border-box;background-color:var(--sd-color-card-background);border:1px solid var(--sd-color-card-border);border-radius:.25rem;color:var(--sd-color-card-text);display:-ms-flexbox;display:flex;-ms-flex-direction:column;flex-direction:column;min-width:0;position:relative;word-wrap:break-word}.sd-card>hr{margin-left:0;margin-right:0}.sd-card-hover:hover{border-color:var(--sd-color-card-border-hover);transform:scale(1.01)}.sd-card-body{-ms-flex:1 1 auto;flex:1 1 auto;padding:1rem 1rem}.sd-card-title{margin-bottom:.5rem}.sd-card-subtitle{margin-top:-0.25rem;margin-bottom:0}.sd-card-text:last-child{margin-bottom:0}.sd-card-link:hover{text-decoration:none}.sd-card-link+.card-link{margin-left:1rem}.sd-card-header{padding:.5rem 1rem;margin-bottom:0;background-color:var(--sd-color-card-header);border-bottom:1px solid var(--sd-color-card-border)}.sd-card-header:first-child{border-radius:calc(0.25rem - 1px) calc(0.25rem - 1px) 0 0}.sd-card-footer{padding:.5rem 1rem;background-color:var(--sd-color-card-footer);border-top:1px solid var(--sd-color-card-border)}.sd-card-footer:last-child{border-radius:0 0 calc(0.25rem - 1px) calc(0.25rem - 1px)}.sd-card-header-tabs{margin-right:-0.5rem;margin-bottom:-0.5rem;margin-left:-0.5rem;border-bottom:0}.sd-card-header-pills{margin-right:-0.5rem;margin-left:-0.5rem}.sd-card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:1rem;border-radius:calc(0.25rem - 1px)}.sd-card-img,.sd-card-img-bottom,.sd-card-img-top{width:100%}.sd-card-img,.sd-card-img-top{border-top-left-radius:calc(0.25rem - 1px);border-top-right-radius:calc(0.25rem - 1px)}.sd-card-img,.sd-card-img-bottom{border-bottom-left-radius:calc(0.25rem - 1px);border-bottom-right-radius:calc(0.25rem - 1px)}.sd-cards-carousel{width:100%;display:flex;flex-wrap:nowrap;-ms-flex-direction:row;flex-direction:row;overflow-x:hidden;scroll-snap-type:x mandatory}.sd-cards-carousel.sd-show-scrollbar{overflow-x:auto}.sd-cards-carousel:hover,.sd-cards-carousel:focus{overflow-x:auto}.sd-cards-carousel>.sd-card{flex-shrink:0;scroll-snap-align:start}.sd-cards-carousel>.sd-card:not(:last-child){margin-right:3px}.sd-card-cols-1>.sd-card{width:90%}.sd-card-cols-2>.sd-card{width:45%}.sd-card-cols-3>.sd-card{width:30%}.sd-card-cols-4>.sd-card{width:22.5%}.sd-card-cols-5>.sd-card{width:18%}.sd-card-cols-6>.sd-card{width:15%}.sd-card-cols-7>.sd-card{width:12.8571428571%}.sd-card-cols-8>.sd-card{width:11.25%}.sd-card-cols-9>.sd-card{width:10%}.sd-card-cols-10>.sd-card{width:9%}.sd-card-cols-11>.sd-card{width:8.1818181818%}.sd-card-cols-12>.sd-card{width:7.5%}.sd-container,.sd-container-fluid,.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container-xl{margin-left:auto;margin-right:auto;padding-left:var(--sd-gutter-x, 0.75rem);padding-right:var(--sd-gutter-x, 0.75rem);width:100%}@media(min-width: 576px){.sd-container-sm,.sd-container{max-width:540px}}@media(min-width: 768px){.sd-container-md,.sd-container-sm,.sd-container{max-width:720px}}@media(min-width: 992px){.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container{max-width:960px}}@media(min-width: 1200px){.sd-container-xl,.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container{max-width:1140px}}.sd-row{--sd-gutter-x: 1.5rem;--sd-gutter-y: 0;display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;margin-top:calc(var(--sd-gutter-y) * -1);margin-right:calc(var(--sd-gutter-x) * -0.5);margin-left:calc(var(--sd-gutter-x) * -0.5)}.sd-row>*{box-sizing:border-box;flex-shrink:0;width:100%;max-width:100%;padding-right:calc(var(--sd-gutter-x) * 0.5);padding-left:calc(var(--sd-gutter-x) * 0.5);margin-top:var(--sd-gutter-y)}.sd-col{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-auto>*{flex:0 0 auto;width:auto}.sd-row-cols-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}@media(min-width: 576px){.sd-col-sm{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-sm-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-sm-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-sm-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-sm-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-sm-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-sm-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-sm-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-sm-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-sm-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-sm-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-sm-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-sm-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-sm-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 768px){.sd-col-md{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-md-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-md-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-md-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-md-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-md-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-md-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-md-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-md-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-md-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-md-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-md-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-md-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-md-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 992px){.sd-col-lg{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-lg-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-lg-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-lg-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-lg-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-lg-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-lg-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-lg-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-lg-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-lg-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-lg-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-lg-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-lg-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-lg-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 1200px){.sd-col-xl{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-xl-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-xl-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-xl-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-xl-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-xl-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-xl-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-xl-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-xl-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-xl-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-xl-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-xl-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-xl-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-xl-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}.sd-col-auto{flex:0 0 auto;-ms-flex:0 0 auto;width:auto}.sd-col-1{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}.sd-col-2{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-col-3{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-col-4{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-col-5{flex:0 0 auto;-ms-flex:0 0 auto;width:41.6666666667%}.sd-col-6{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-col-7{flex:0 0 auto;-ms-flex:0 0 auto;width:58.3333333333%}.sd-col-8{flex:0 0 auto;-ms-flex:0 0 auto;width:66.6666666667%}.sd-col-9{flex:0 0 auto;-ms-flex:0 0 auto;width:75%}.sd-col-10{flex:0 0 auto;-ms-flex:0 0 auto;width:83.3333333333%}.sd-col-11{flex:0 0 auto;-ms-flex:0 0 auto;width:91.6666666667%}.sd-col-12{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-g-0,.sd-gy-0{--sd-gutter-y: 0}.sd-g-0,.sd-gx-0{--sd-gutter-x: 0}.sd-g-1,.sd-gy-1{--sd-gutter-y: 0.25rem}.sd-g-1,.sd-gx-1{--sd-gutter-x: 0.25rem}.sd-g-2,.sd-gy-2{--sd-gutter-y: 0.5rem}.sd-g-2,.sd-gx-2{--sd-gutter-x: 0.5rem}.sd-g-3,.sd-gy-3{--sd-gutter-y: 1rem}.sd-g-3,.sd-gx-3{--sd-gutter-x: 1rem}.sd-g-4,.sd-gy-4{--sd-gutter-y: 1.5rem}.sd-g-4,.sd-gx-4{--sd-gutter-x: 1.5rem}.sd-g-5,.sd-gy-5{--sd-gutter-y: 3rem}.sd-g-5,.sd-gx-5{--sd-gutter-x: 3rem}@media(min-width: 576px){.sd-col-sm-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-sm-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-sm-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-sm-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-sm-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-sm-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-sm-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-sm-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-sm-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-sm-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-sm-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-sm-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-sm-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-sm-0,.sd-gy-sm-0{--sd-gutter-y: 0}.sd-g-sm-0,.sd-gx-sm-0{--sd-gutter-x: 0}.sd-g-sm-1,.sd-gy-sm-1{--sd-gutter-y: 0.25rem}.sd-g-sm-1,.sd-gx-sm-1{--sd-gutter-x: 0.25rem}.sd-g-sm-2,.sd-gy-sm-2{--sd-gutter-y: 0.5rem}.sd-g-sm-2,.sd-gx-sm-2{--sd-gutter-x: 0.5rem}.sd-g-sm-3,.sd-gy-sm-3{--sd-gutter-y: 1rem}.sd-g-sm-3,.sd-gx-sm-3{--sd-gutter-x: 1rem}.sd-g-sm-4,.sd-gy-sm-4{--sd-gutter-y: 1.5rem}.sd-g-sm-4,.sd-gx-sm-4{--sd-gutter-x: 1.5rem}.sd-g-sm-5,.sd-gy-sm-5{--sd-gutter-y: 3rem}.sd-g-sm-5,.sd-gx-sm-5{--sd-gutter-x: 3rem}}@media(min-width: 768px){.sd-col-md-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-md-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-md-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-md-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-md-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-md-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-md-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-md-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-md-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-md-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-md-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-md-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-md-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-md-0,.sd-gy-md-0{--sd-gutter-y: 0}.sd-g-md-0,.sd-gx-md-0{--sd-gutter-x: 0}.sd-g-md-1,.sd-gy-md-1{--sd-gutter-y: 0.25rem}.sd-g-md-1,.sd-gx-md-1{--sd-gutter-x: 0.25rem}.sd-g-md-2,.sd-gy-md-2{--sd-gutter-y: 0.5rem}.sd-g-md-2,.sd-gx-md-2{--sd-gutter-x: 0.5rem}.sd-g-md-3,.sd-gy-md-3{--sd-gutter-y: 1rem}.sd-g-md-3,.sd-gx-md-3{--sd-gutter-x: 1rem}.sd-g-md-4,.sd-gy-md-4{--sd-gutter-y: 1.5rem}.sd-g-md-4,.sd-gx-md-4{--sd-gutter-x: 1.5rem}.sd-g-md-5,.sd-gy-md-5{--sd-gutter-y: 3rem}.sd-g-md-5,.sd-gx-md-5{--sd-gutter-x: 3rem}}@media(min-width: 992px){.sd-col-lg-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-lg-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-lg-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-lg-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-lg-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-lg-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-lg-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-lg-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-lg-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-lg-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-lg-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-lg-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-lg-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-lg-0,.sd-gy-lg-0{--sd-gutter-y: 0}.sd-g-lg-0,.sd-gx-lg-0{--sd-gutter-x: 0}.sd-g-lg-1,.sd-gy-lg-1{--sd-gutter-y: 0.25rem}.sd-g-lg-1,.sd-gx-lg-1{--sd-gutter-x: 0.25rem}.sd-g-lg-2,.sd-gy-lg-2{--sd-gutter-y: 0.5rem}.sd-g-lg-2,.sd-gx-lg-2{--sd-gutter-x: 0.5rem}.sd-g-lg-3,.sd-gy-lg-3{--sd-gutter-y: 1rem}.sd-g-lg-3,.sd-gx-lg-3{--sd-gutter-x: 1rem}.sd-g-lg-4,.sd-gy-lg-4{--sd-gutter-y: 1.5rem}.sd-g-lg-4,.sd-gx-lg-4{--sd-gutter-x: 1.5rem}.sd-g-lg-5,.sd-gy-lg-5{--sd-gutter-y: 3rem}.sd-g-lg-5,.sd-gx-lg-5{--sd-gutter-x: 3rem}}@media(min-width: 1200px){.sd-col-xl-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-xl-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-xl-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-xl-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-xl-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-xl-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-xl-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-xl-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-xl-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-xl-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-xl-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-xl-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-xl-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-xl-0,.sd-gy-xl-0{--sd-gutter-y: 0}.sd-g-xl-0,.sd-gx-xl-0{--sd-gutter-x: 0}.sd-g-xl-1,.sd-gy-xl-1{--sd-gutter-y: 0.25rem}.sd-g-xl-1,.sd-gx-xl-1{--sd-gutter-x: 0.25rem}.sd-g-xl-2,.sd-gy-xl-2{--sd-gutter-y: 0.5rem}.sd-g-xl-2,.sd-gx-xl-2{--sd-gutter-x: 0.5rem}.sd-g-xl-3,.sd-gy-xl-3{--sd-gutter-y: 1rem}.sd-g-xl-3,.sd-gx-xl-3{--sd-gutter-x: 1rem}.sd-g-xl-4,.sd-gy-xl-4{--sd-gutter-y: 1.5rem}.sd-g-xl-4,.sd-gx-xl-4{--sd-gutter-x: 1.5rem}.sd-g-xl-5,.sd-gy-xl-5{--sd-gutter-y: 3rem}.sd-g-xl-5,.sd-gx-xl-5{--sd-gutter-x: 3rem}}.sd-flex-row-reverse{flex-direction:row-reverse !important}details.sd-dropdown{position:relative}details.sd-dropdown .sd-summary-title{font-weight:700;padding-right:3em !important;-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none;user-select:none}details.sd-dropdown:hover{cursor:pointer}details.sd-dropdown .sd-summary-content{cursor:default}details.sd-dropdown summary{list-style:none;padding:1em}details.sd-dropdown summary .sd-octicon.no-title{vertical-align:middle}details.sd-dropdown[open] summary .sd-octicon.no-title{visibility:hidden}details.sd-dropdown summary::-webkit-details-marker{display:none}details.sd-dropdown summary:focus{outline:none}details.sd-dropdown .sd-summary-icon{margin-right:.5em}details.sd-dropdown .sd-summary-icon svg{opacity:.8}details.sd-dropdown summary:hover .sd-summary-up svg,details.sd-dropdown summary:hover .sd-summary-down svg{opacity:1;transform:scale(1.1)}details.sd-dropdown .sd-summary-up svg,details.sd-dropdown .sd-summary-down svg{display:block;opacity:.6}details.sd-dropdown .sd-summary-up,details.sd-dropdown .sd-summary-down{pointer-events:none;position:absolute;right:1em;top:1em}details.sd-dropdown[open]>.sd-summary-title .sd-summary-down{visibility:hidden}details.sd-dropdown:not([open])>.sd-summary-title .sd-summary-up{visibility:hidden}details.sd-dropdown:not([open]).sd-card{border:none}details.sd-dropdown:not([open])>.sd-card-header{border:1px solid var(--sd-color-card-border);border-radius:.25rem}details.sd-dropdown.sd-fade-in[open] summary~*{-moz-animation:sd-fade-in .5s ease-in-out;-webkit-animation:sd-fade-in .5s ease-in-out;animation:sd-fade-in .5s ease-in-out}details.sd-dropdown.sd-fade-in-slide-down[open] summary~*{-moz-animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out;-webkit-animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out;animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out}.sd-col>.sd-dropdown{width:100%}.sd-summary-content>.sd-tab-set:first-child{margin-top:0}@keyframes sd-fade-in{0%{opacity:0}100%{opacity:1}}@keyframes sd-slide-down{0%{transform:translate(0, -10px)}100%{transform:translate(0, 0)}}.sd-tab-set{border-radius:.125rem;display:flex;flex-wrap:wrap;margin:1em 0;position:relative}.sd-tab-set>input{opacity:0;position:absolute}.sd-tab-set>input:checked+label{border-color:var(--sd-color-tabs-underline-active);color:var(--sd-color-tabs-label-active)}.sd-tab-set>input:checked+label+.sd-tab-content{display:block}.sd-tab-set>input:not(:checked)+label:hover{color:var(--sd-color-tabs-label-hover);border-color:var(--sd-color-tabs-underline-hover)}.sd-tab-set>input:focus+label{outline-style:auto}.sd-tab-set>input:not(.focus-visible)+label{outline:none;-webkit-tap-highlight-color:transparent}.sd-tab-set>label{border-bottom:.125rem solid transparent;margin-bottom:0;color:var(--sd-color-tabs-label-inactive);border-color:var(--sd-color-tabs-underline-inactive);cursor:pointer;font-size:var(--sd-fontsize-tabs-label);font-weight:700;padding:1em 1.25em .5em;transition:color 250ms;width:auto;z-index:1}html .sd-tab-set>label:hover{color:var(--sd-color-tabs-label-active)}.sd-col>.sd-tab-set{width:100%}.sd-tab-content{box-shadow:0 -0.0625rem var(--sd-color-tabs-overline),0 .0625rem var(--sd-color-tabs-underline);display:none;order:99;padding-bottom:.75rem;padding-top:.75rem;width:100%}.sd-tab-content>:first-child{margin-top:0 !important}.sd-tab-content>:last-child{margin-bottom:0 !important}.sd-tab-content>.sd-tab-set{margin:0}.sd-sphinx-override,.sd-sphinx-override *{-moz-box-sizing:border-box;-webkit-box-sizing:border-box;box-sizing:border-box}.sd-sphinx-override p{margin-top:0}:root{--sd-color-primary: #0071bc;--sd-color-secondary: #6c757d;--sd-color-success: #28a745;--sd-color-info: #17a2b8;--sd-color-warning: #f0b37e;--sd-color-danger: #dc3545;--sd-color-light: #f8f9fa;--sd-color-muted: #6c757d;--sd-color-dark: #212529;--sd-color-black: black;--sd-color-white: white;--sd-color-primary-highlight: #0060a0;--sd-color-secondary-highlight: #5c636a;--sd-color-success-highlight: #228e3b;--sd-color-info-highlight: #148a9c;--sd-color-warning-highlight: #cc986b;--sd-color-danger-highlight: #bb2d3b;--sd-color-light-highlight: #d3d4d5;--sd-color-muted-highlight: #5c636a;--sd-color-dark-highlight: #1c1f23;--sd-color-black-highlight: black;--sd-color-white-highlight: #d9d9d9;--sd-color-primary-text: #fff;--sd-color-secondary-text: #fff;--sd-color-success-text: #fff;--sd-color-info-text: #fff;--sd-color-warning-text: #212529;--sd-color-danger-text: #fff;--sd-color-light-text: #212529;--sd-color-muted-text: #fff;--sd-color-dark-text: #fff;--sd-color-black-text: #fff;--sd-color-white-text: #212529;--sd-color-shadow: rgba(0, 0, 0, 0.15);--sd-color-card-border: rgba(0, 0, 0, 0.125);--sd-color-card-border-hover: hsla(231, 99%, 66%, 1);--sd-color-card-background: transparent;--sd-color-card-text: inherit;--sd-color-card-header: transparent;--sd-color-card-footer: transparent;--sd-color-tabs-label-active: hsla(231, 99%, 66%, 1);--sd-color-tabs-label-hover: hsla(231, 99%, 66%, 1);--sd-color-tabs-label-inactive: hsl(0, 0%, 66%);--sd-color-tabs-underline-active: hsla(231, 99%, 66%, 1);--sd-color-tabs-underline-hover: rgba(178, 206, 245, 0.62);--sd-color-tabs-underline-inactive: transparent;--sd-color-tabs-overline: rgb(222, 222, 222);--sd-color-tabs-underline: rgb(222, 222, 222);--sd-fontsize-tabs-label: 1rem} diff --git a/_preview/32/_sphinx_design_static/design-tabs.js b/_preview/32/_sphinx_design_static/design-tabs.js new file mode 100644 index 0000000..36b38cf --- /dev/null +++ b/_preview/32/_sphinx_design_static/design-tabs.js @@ -0,0 +1,27 @@ +var sd_labels_by_text = {}; + +function ready() { + const li = document.getElementsByClassName("sd-tab-label"); + for (const label of li) { + syncId = label.getAttribute("data-sync-id"); + if (syncId) { + label.onclick = onLabelClick; + if (!sd_labels_by_text[syncId]) { + sd_labels_by_text[syncId] = []; + } + sd_labels_by_text[syncId].push(label); + } + } +} + +function onLabelClick() { + // Activate other inputs with the same sync id. + syncId = this.getAttribute("data-sync-id"); + for (label of sd_labels_by_text[syncId]) { + if (label === this) continue; + label.previousElementSibling.checked = true; + } + window.localStorage.setItem("sphinx-design-last-tab", syncId); +} + +document.addEventListener("DOMContentLoaded", ready, false); diff --git a/_preview/32/_static/__init__.py b/_preview/32/_static/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/_preview/32/_static/__pycache__/__init__.cpython-310.pyc b/_preview/32/_static/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000..96b08d0 Binary files /dev/null and b/_preview/32/_static/__pycache__/__init__.cpython-310.pyc differ diff --git a/_preview/32/_static/basic.css b/_preview/32/_static/basic.css new file mode 100644 index 0000000..d54be80 --- /dev/null +++ b/_preview/32/_static/basic.css @@ -0,0 +1,906 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 270px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 450px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a.brackets:before, +span.brackets > a:before{ + content: "["; +} + +a.brackets:after, +span.brackets > a:after { + content: "]"; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +table.footnote td, table.footnote th { + border: 0 !important; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +dl.footnote > dt, +dl.citation > dt { + float: left; + margin-right: 0.5em; +} + +dl.footnote > dd, +dl.citation > dd { + margin-bottom: 0em; +} + +dl.footnote > dd:after, +dl.citation > dd:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dt:after { + content: ":"; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/_preview/32/_static/check-solid.svg b/_preview/32/_static/check-solid.svg new file mode 100644 index 0000000..92fad4b --- /dev/null +++ b/_preview/32/_static/check-solid.svg @@ -0,0 +1,4 @@ + + + + diff --git a/_preview/32/_static/clipboard.min.js b/_preview/32/_static/clipboard.min.js new file mode 100644 index 0000000..54b3c46 --- /dev/null +++ b/_preview/32/_static/clipboard.min.js @@ -0,0 +1,7 @@ +/*! + * clipboard.js v2.0.8 + * https://clipboardjs.com/ + * + * Licensed MIT © Zeno Rocha + */ +!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define([],e):"object"==typeof exports?exports.ClipboardJS=e():t.ClipboardJS=e()}(this,function(){return n={686:function(t,e,n){"use strict";n.d(e,{default:function(){return o}});var e=n(279),i=n.n(e),e=n(370),u=n.n(e),e=n(817),c=n.n(e);function a(t){try{return document.execCommand(t)}catch(t){return}}var f=function(t){t=c()(t);return a("cut"),t};var l=function(t){var e,n,o,r=1 + + + + diff --git a/_preview/32/_static/copybutton.css b/_preview/32/_static/copybutton.css new file mode 100644 index 0000000..f1916ec --- /dev/null +++ b/_preview/32/_static/copybutton.css @@ -0,0 +1,94 @@ +/* Copy buttons */ +button.copybtn { + position: absolute; + display: flex; + top: .3em; + right: .3em; + width: 1.7em; + height: 1.7em; + opacity: 0; + transition: opacity 0.3s, border .3s, background-color .3s; + user-select: none; + padding: 0; + border: none; + outline: none; + border-radius: 0.4em; + /* The colors that GitHub uses */ + border: #1b1f2426 1px solid; + background-color: #f6f8fa; + color: #57606a; +} + +button.copybtn.success { + border-color: #22863a; + color: #22863a; +} + +button.copybtn svg { + stroke: currentColor; + width: 1.5em; + height: 1.5em; + padding: 0.1em; +} + +div.highlight { + position: relative; +} + +/* Show the copybutton */ +.highlight:hover button.copybtn, button.copybtn.success { + opacity: 1; +} + +.highlight button.copybtn:hover { + background-color: rgb(235, 235, 235); +} + +.highlight button.copybtn:active { + background-color: rgb(187, 187, 187); +} + +/** + * A minimal CSS-only tooltip copied from: + * https://codepen.io/mildrenben/pen/rVBrpK + * + * To use, write HTML like the following: + * + *

Short

+ */ + .o-tooltip--left { + position: relative; + } + + .o-tooltip--left:after { + opacity: 0; + visibility: hidden; + position: absolute; + content: attr(data-tooltip); + padding: .2em; + font-size: .8em; + left: -.2em; + background: grey; + color: white; + white-space: nowrap; + z-index: 2; + border-radius: 2px; + transform: translateX(-102%) translateY(0); + transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); +} + +.o-tooltip--left:hover:after { + display: block; + opacity: 1; + visibility: visible; + transform: translateX(-100%) translateY(0); + transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); + transition-delay: .5s; +} + +/* By default the copy button shouldn't show up when printing a page */ +@media print { + button.copybtn { + display: none; + } +} diff --git a/_preview/32/_static/copybutton.js b/_preview/32/_static/copybutton.js new file mode 100644 index 0000000..2ea7ff3 --- /dev/null +++ b/_preview/32/_static/copybutton.js @@ -0,0 +1,248 @@ +// Localization support +const messages = { + 'en': { + 'copy': 'Copy', + 'copy_to_clipboard': 'Copy to clipboard', + 'copy_success': 'Copied!', + 'copy_failure': 'Failed to copy', + }, + 'es' : { + 'copy': 'Copiar', + 'copy_to_clipboard': 'Copiar al portapapeles', + 'copy_success': '¡Copiado!', + 'copy_failure': 'Error al copiar', + }, + 'de' : { + 'copy': 'Kopieren', + 'copy_to_clipboard': 'In die Zwischenablage kopieren', + 'copy_success': 'Kopiert!', + 'copy_failure': 'Fehler beim Kopieren', + }, + 'fr' : { + 'copy': 'Copier', + 'copy_to_clipboard': 'Copier dans le presse-papier', + 'copy_success': 'Copié !', + 'copy_failure': 'Échec de la copie', + }, + 'ru': { + 'copy': 'Скопировать', + 'copy_to_clipboard': 'Скопировать в буфер', + 'copy_success': 'Скопировано!', + 'copy_failure': 'Не удалось скопировать', + }, + 'zh-CN': { + 'copy': '复制', + 'copy_to_clipboard': '复制到剪贴板', + 'copy_success': '复制成功!', + 'copy_failure': '复制失败', + }, + 'it' : { + 'copy': 'Copiare', + 'copy_to_clipboard': 'Copiato negli appunti', + 'copy_success': 'Copiato!', + 'copy_failure': 'Errore durante la copia', + } +} + +let locale = 'en' +if( document.documentElement.lang !== undefined + && messages[document.documentElement.lang] !== undefined ) { + locale = document.documentElement.lang +} + +let doc_url_root = DOCUMENTATION_OPTIONS.URL_ROOT; +if (doc_url_root == '#') { + doc_url_root = ''; +} + +/** + * SVG files for our copy buttons + */ +let iconCheck = ` + ${messages[locale]['copy_success']} + + +` + +// If the user specified their own SVG use that, otherwise use the default +let iconCopy = ``; +if (!iconCopy) { + iconCopy = ` + ${messages[locale]['copy_to_clipboard']} + + + +` +} + +/** + * Set up copy/paste for code blocks + */ + +const runWhenDOMLoaded = cb => { + if (document.readyState != 'loading') { + cb() + } else if (document.addEventListener) { + document.addEventListener('DOMContentLoaded', cb) + } else { + document.attachEvent('onreadystatechange', function() { + if (document.readyState == 'complete') cb() + }) + } +} + +const codeCellId = index => `codecell${index}` + +// Clears selected text since ClipboardJS will select the text when copying +const clearSelection = () => { + if (window.getSelection) { + window.getSelection().removeAllRanges() + } else if (document.selection) { + document.selection.empty() + } +} + +// Changes tooltip text for a moment, then changes it back +// We want the timeout of our `success` class to be a bit shorter than the +// tooltip and icon change, so that we can hide the icon before changing back. +var timeoutIcon = 2000; +var timeoutSuccessClass = 1500; + +const temporarilyChangeTooltip = (el, oldText, newText) => { + el.setAttribute('data-tooltip', newText) + el.classList.add('success') + // Remove success a little bit sooner than we change the tooltip + // So that we can use CSS to hide the copybutton first + setTimeout(() => el.classList.remove('success'), timeoutSuccessClass) + setTimeout(() => el.setAttribute('data-tooltip', oldText), timeoutIcon) +} + +// Changes the copy button icon for two seconds, then changes it back +const temporarilyChangeIcon = (el) => { + el.innerHTML = iconCheck; + setTimeout(() => {el.innerHTML = iconCopy}, timeoutIcon) +} + +const addCopyButtonToCodeCells = () => { + // If ClipboardJS hasn't loaded, wait a bit and try again. This + // happens because we load ClipboardJS asynchronously. + if (window.ClipboardJS === undefined) { + setTimeout(addCopyButtonToCodeCells, 250) + return + } + + // Add copybuttons to all of our code cells + const COPYBUTTON_SELECTOR = 'div.highlight pre'; + const codeCells = document.querySelectorAll(COPYBUTTON_SELECTOR) + codeCells.forEach((codeCell, index) => { + const id = codeCellId(index) + codeCell.setAttribute('id', id) + + const clipboardButton = id => + `` + codeCell.insertAdjacentHTML('afterend', clipboardButton(id)) + }) + +function escapeRegExp(string) { + return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string +} + +/** + * Removes excluded text from a Node. + * + * @param {Node} target Node to filter. + * @param {string} exclude CSS selector of nodes to exclude. + * @returns {DOMString} Text from `target` with text removed. + */ +function filterText(target, exclude) { + const clone = target.cloneNode(true); // clone as to not modify the live DOM + if (exclude) { + // remove excluded nodes + clone.querySelectorAll(exclude).forEach(node => node.remove()); + } + return clone.innerText; +} + +// Callback when a copy button is clicked. Will be passed the node that was clicked +// should then grab the text and replace pieces of text that shouldn't be used in output +function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { + var regexp; + var match; + + // Do we check for line continuation characters and "HERE-documents"? + var useLineCont = !!lineContinuationChar + var useHereDoc = !!hereDocDelim + + // create regexp to capture prompt and remaining line + if (isRegexp) { + regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') + } else { + regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') + } + + const outputLines = []; + var promptFound = false; + var gotLineCont = false; + var gotHereDoc = false; + const lineGotPrompt = []; + for (const line of textContent.split('\n')) { + match = line.match(regexp) + if (match || gotLineCont || gotHereDoc) { + promptFound = regexp.test(line) + lineGotPrompt.push(promptFound) + if (removePrompts && promptFound) { + outputLines.push(match[2]) + } else { + outputLines.push(line) + } + gotLineCont = line.endsWith(lineContinuationChar) & useLineCont + if (line.includes(hereDocDelim) & useHereDoc) + gotHereDoc = !gotHereDoc + } else if (!onlyCopyPromptLines) { + outputLines.push(line) + } else if (copyEmptyLines && line.trim() === '') { + outputLines.push(line) + } + } + + // If no lines with the prompt were found then just use original lines + if (lineGotPrompt.some(v => v === true)) { + textContent = outputLines.join('\n'); + } + + // Remove a trailing newline to avoid auto-running when pasting + if (textContent.endsWith("\n")) { + textContent = textContent.slice(0, -1) + } + return textContent +} + + +var copyTargetText = (trigger) => { + var target = document.querySelector(trigger.attributes['data-clipboard-target'].value); + + // get filtered text + let exclude = '.linenos'; + + let text = filterText(target, exclude); + return formatCopyText(text, '', false, true, true, true, '', '') +} + + // Initialize with a callback so we can modify the text before copy + const clipboard = new ClipboardJS('.copybtn', {text: copyTargetText}) + + // Update UI with error/success messages + clipboard.on('success', event => { + clearSelection() + temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_success']) + temporarilyChangeIcon(event.trigger) + }) + + clipboard.on('error', event => { + temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_failure']) + }) +} + +runWhenDOMLoaded(addCopyButtonToCodeCells) \ No newline at end of file diff --git a/_preview/32/_static/copybutton_funcs.js b/_preview/32/_static/copybutton_funcs.js new file mode 100644 index 0000000..dbe1aaa --- /dev/null +++ b/_preview/32/_static/copybutton_funcs.js @@ -0,0 +1,73 @@ +function escapeRegExp(string) { + return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string +} + +/** + * Removes excluded text from a Node. + * + * @param {Node} target Node to filter. + * @param {string} exclude CSS selector of nodes to exclude. + * @returns {DOMString} Text from `target` with text removed. + */ +export function filterText(target, exclude) { + const clone = target.cloneNode(true); // clone as to not modify the live DOM + if (exclude) { + // remove excluded nodes + clone.querySelectorAll(exclude).forEach(node => node.remove()); + } + return clone.innerText; +} + +// Callback when a copy button is clicked. Will be passed the node that was clicked +// should then grab the text and replace pieces of text that shouldn't be used in output +export function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { + var regexp; + var match; + + // Do we check for line continuation characters and "HERE-documents"? + var useLineCont = !!lineContinuationChar + var useHereDoc = !!hereDocDelim + + // create regexp to capture prompt and remaining line + if (isRegexp) { + regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') + } else { + regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') + } + + const outputLines = []; + var promptFound = false; + var gotLineCont = false; + var gotHereDoc = false; + const lineGotPrompt = []; + for (const line of textContent.split('\n')) { + match = line.match(regexp) + if (match || gotLineCont || gotHereDoc) { + promptFound = regexp.test(line) + lineGotPrompt.push(promptFound) + if (removePrompts && promptFound) { + outputLines.push(match[2]) + } else { + outputLines.push(line) + } + gotLineCont = line.endsWith(lineContinuationChar) & useLineCont + if (line.includes(hereDocDelim) & useHereDoc) + gotHereDoc = !gotHereDoc + } else if (!onlyCopyPromptLines) { + outputLines.push(line) + } else if (copyEmptyLines && line.trim() === '') { + outputLines.push(line) + } + } + + // If no lines with the prompt were found then just use original lines + if (lineGotPrompt.some(v => v === true)) { + textContent = outputLines.join('\n'); + } + + // Remove a trailing newline to avoid auto-running when pasting + if (textContent.endsWith("\n")) { + textContent = textContent.slice(0, -1) + } + return textContent +} diff --git a/_preview/32/_static/css/blank.css b/_preview/32/_static/css/blank.css new file mode 100644 index 0000000..8a686ec --- /dev/null +++ b/_preview/32/_static/css/blank.css @@ -0,0 +1,2 @@ +/* This file is intentionally left blank to override the stylesheet of the +parent theme via theme.conf. The parent style we import directly in theme.css */ \ No newline at end of file diff --git a/_preview/32/_static/css/index.ff1ffe594081f20da1ef19478df9384b.css b/_preview/32/_static/css/index.ff1ffe594081f20da1ef19478df9384b.css new file mode 100644 index 0000000..9b1c5d7 --- /dev/null +++ b/_preview/32/_static/css/index.ff1ffe594081f20da1ef19478df9384b.css @@ -0,0 +1,6 @@ +/*! + * Bootstrap v4.5.0 (https://getbootstrap.com/) + * Copyright 2011-2020 The Bootstrap Authors + * Copyright 2011-2020 Twitter, Inc. + * Licensed under MIT (https://github.com/twbs/bootstrap/blob/master/LICENSE) + */:root{--blue:#007bff;--indigo:#6610f2;--purple:#6f42c1;--pink:#e83e8c;--red:#dc3545;--orange:#fd7e14;--yellow:#ffc107;--green:#28a745;--teal:#20c997;--cyan:#17a2b8;--white:#fff;--gray:#6c757d;--gray-dark:#343a40;--primary:#007bff;--secondary:#6c757d;--success:#28a745;--info:#17a2b8;--warning:#ffc107;--danger:#dc3545;--light:#f8f9fa;--dark:#343a40;--breakpoint-xs:0;--breakpoint-sm:540px;--breakpoint-md:720px;--breakpoint-lg:960px;--breakpoint-xl:1200px;--font-family-sans-serif:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans",sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";--font-family-monospace:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace}*,:after,:before{box-sizing:border-box}html{font-family:sans-serif;line-height:1.15;-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:rgba(0,0,0,0)}article,aside,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}body{margin:0;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-size:1rem;line-height:1.5;color:#212529;text-align:left}[tabindex="-1"]:focus:not(:focus-visible){outline:0!important}hr{box-sizing:content-box;height:0;overflow:visible}h1,h2,h3,h4,h5,h6{margin-top:0;margin-bottom:.5rem}p{margin-top:0;margin-bottom:1rem}abbr[data-original-title],abbr[title]{text-decoration:underline;text-decoration:underline dotted;cursor:help;border-bottom:0;text-decoration-skip-ink:none}address{font-style:normal;line-height:inherit}address,dl,ol,ul{margin-bottom:1rem}dl,ol,ul{margin-top:0}ol ol,ol ul,ul ol,ul ul{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem}b,strong{font-weight:bolder}small{font-size:80%}sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}a{color:#007bff;background-color:transparent}a:hover{color:#0056b3}a:not([href]),a:not([href]):hover{color:inherit;text-decoration:none}code,kbd,pre,samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace;font-size:1em}pre{margin-top:0;margin-bottom:1rem;overflow:auto;-ms-overflow-style:scrollbar}figure{margin:0 0 1rem}img{border-style:none}img,svg{vertical-align:middle}svg{overflow:hidden}table{border-collapse:collapse}caption{padding-top:.75rem;padding-bottom:.75rem;color:#6c757d;text-align:left;caption-side:bottom}th{text-align:inherit}label{display:inline-block;margin-bottom:.5rem}button{border-radius:0}button:focus{outline:1px dotted;outline:5px auto -webkit-focus-ring-color}button,input,optgroup,select,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,input{overflow:visible}button,select{text-transform:none}[role=button]{cursor:pointer}select{word-wrap:normal}[type=button],[type=reset],[type=submit],button{-webkit-appearance:button}[type=button]:not(:disabled),[type=reset]:not(:disabled),[type=submit]:not(:disabled),button:not(:disabled){cursor:pointer}[type=button]::-moz-focus-inner,[type=reset]::-moz-focus-inner,[type=submit]::-moz-focus-inner,button::-moz-focus-inner{padding:0;border-style:none}input[type=checkbox],input[type=radio]{box-sizing:border-box;padding:0}textarea{overflow:auto;resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{display:block;width:100%;max-width:100%;padding:0;margin-bottom:.5rem;font-size:1.5rem;line-height:inherit;color:inherit;white-space:normal}progress{vertical-align:baseline}[type=number]::-webkit-inner-spin-button,[type=number]::-webkit-outer-spin-button{height:auto}[type=search]{outline-offset:-2px;-webkit-appearance:none}[type=search]::-webkit-search-decoration{-webkit-appearance:none}::-webkit-file-upload-button{font:inherit;-webkit-appearance:button}output{display:inline-block}summary{display:list-item;cursor:pointer}template{display:none}[hidden]{display:none!important}.h1,.h2,.h3,.h4,.h5,.h6,h1,h2,h3,h4,h5,h6{margin-bottom:.5rem;font-weight:500;line-height:1.2}.h1,h1{font-size:2.5rem}.h2,h2{font-size:2rem}.h3,h3{font-size:1.75rem}.h4,h4{font-size:1.5rem}.h5,h5{font-size:1.25rem}.h6,h6{font-size:1rem}.lead{font-size:1.25rem;font-weight:300}.display-1{font-size:6rem}.display-1,.display-2{font-weight:300;line-height:1.2}.display-2{font-size:5.5rem}.display-3{font-size:4.5rem}.display-3,.display-4{font-weight:300;line-height:1.2}.display-4{font-size:3.5rem}hr{margin-top:1rem;margin-bottom:1rem;border-top:1px solid rgba(0,0,0,.1)}.small,small{font-size:80%;font-weight:400}.mark,mark{padding:.2em;background-color:#fcf8e3}.list-inline,.list-unstyled{padding-left:0;list-style:none}.list-inline-item{display:inline-block}.list-inline-item:not(:last-child){margin-right:.5rem}.initialism{font-size:90%;text-transform:uppercase}.blockquote{margin-bottom:1rem;font-size:1.25rem}.blockquote-footer{display:block;font-size:80%;color:#6c757d}.blockquote-footer:before{content:"\2014\00A0"}.img-fluid,.img-thumbnail{max-width:100%;height:auto}.img-thumbnail{padding:.25rem;background-color:#fff;border:1px solid #dee2e6;border-radius:.25rem}.figure{display:inline-block}.figure-img{margin-bottom:.5rem;line-height:1}.figure-caption{font-size:90%;color:#6c757d}code{font-size:87.5%;color:#e83e8c;word-wrap:break-word}a>code{color:inherit}kbd{padding:.2rem .4rem;font-size:87.5%;color:#fff;background-color:#212529;border-radius:.2rem}kbd kbd{padding:0;font-size:100%;font-weight:700}pre{display:block;font-size:87.5%;color:#212529}pre code{font-size:inherit;color:inherit;word-break:normal}.pre-scrollable{max-height:340px;overflow-y:scroll}.container{width:100%;padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:540px){.container{max-width:540px}}@media (min-width:720px){.container{max-width:720px}}@media (min-width:960px){.container{max-width:960px}}@media (min-width:1200px){.container{max-width:1400px}}.container-fluid,.container-lg,.container-md,.container-sm,.container-xl{width:100%;padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:540px){.container,.container-sm{max-width:540px}}@media (min-width:720px){.container,.container-md,.container-sm{max-width:720px}}@media (min-width:960px){.container,.container-lg,.container-md,.container-sm{max-width:960px}}@media (min-width:1200px){.container,.container-lg,.container-md,.container-sm,.container-xl{max-width:1400px}}.row{display:flex;flex-wrap:wrap;margin-right:-15px;margin-left:-15px}.no-gutters{margin-right:0;margin-left:0}.no-gutters>.col,.no-gutters>[class*=col-]{padding-right:0;padding-left:0}.col,.col-1,.col-2,.col-3,.col-4,.col-5,.col-6,.col-7,.col-8,.col-9,.col-10,.col-11,.col-12,.col-auto,.col-lg,.col-lg-1,.col-lg-2,.col-lg-3,.col-lg-4,.col-lg-5,.col-lg-6,.col-lg-7,.col-lg-8,.col-lg-9,.col-lg-10,.col-lg-11,.col-lg-12,.col-lg-auto,.col-md,.col-md-1,.col-md-2,.col-md-3,.col-md-4,.col-md-5,.col-md-6,.col-md-7,.col-md-8,.col-md-9,.col-md-10,.col-md-11,.col-md-12,.col-md-auto,.col-sm,.col-sm-1,.col-sm-2,.col-sm-3,.col-sm-4,.col-sm-5,.col-sm-6,.col-sm-7,.col-sm-8,.col-sm-9,.col-sm-10,.col-sm-11,.col-sm-12,.col-sm-auto,.col-xl,.col-xl-1,.col-xl-2,.col-xl-3,.col-xl-4,.col-xl-5,.col-xl-6,.col-xl-7,.col-xl-8,.col-xl-9,.col-xl-10,.col-xl-11,.col-xl-12,.col-xl-auto{position:relative;width:100%;padding-right:15px;padding-left:15px}.col{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-1>*{flex:0 0 100%;max-width:100%}.row-cols-2>*{flex:0 0 50%;max-width:50%}.row-cols-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-4>*{flex:0 0 25%;max-width:25%}.row-cols-5>*{flex:0 0 20%;max-width:20%}.row-cols-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-auto{flex:0 0 auto;width:auto;max-width:100%}.col-1{flex:0 0 8.33333%;max-width:8.33333%}.col-2{flex:0 0 16.66667%;max-width:16.66667%}.col-3{flex:0 0 25%;max-width:25%}.col-4{flex:0 0 33.33333%;max-width:33.33333%}.col-5{flex:0 0 41.66667%;max-width:41.66667%}.col-6{flex:0 0 50%;max-width:50%}.col-7{flex:0 0 58.33333%;max-width:58.33333%}.col-8{flex:0 0 66.66667%;max-width:66.66667%}.col-9{flex:0 0 75%;max-width:75%}.col-10{flex:0 0 83.33333%;max-width:83.33333%}.col-11{flex:0 0 91.66667%;max-width:91.66667%}.col-12{flex:0 0 100%;max-width:100%}.order-first{order:-1}.order-last{order:13}.order-0{order:0}.order-1{order:1}.order-2{order:2}.order-3{order:3}.order-4{order:4}.order-5{order:5}.order-6{order:6}.order-7{order:7}.order-8{order:8}.order-9{order:9}.order-10{order:10}.order-11{order:11}.order-12{order:12}.offset-1{margin-left:8.33333%}.offset-2{margin-left:16.66667%}.offset-3{margin-left:25%}.offset-4{margin-left:33.33333%}.offset-5{margin-left:41.66667%}.offset-6{margin-left:50%}.offset-7{margin-left:58.33333%}.offset-8{margin-left:66.66667%}.offset-9{margin-left:75%}.offset-10{margin-left:83.33333%}.offset-11{margin-left:91.66667%}@media (min-width:540px){.col-sm{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-sm-1>*{flex:0 0 100%;max-width:100%}.row-cols-sm-2>*{flex:0 0 50%;max-width:50%}.row-cols-sm-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-sm-4>*{flex:0 0 25%;max-width:25%}.row-cols-sm-5>*{flex:0 0 20%;max-width:20%}.row-cols-sm-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-sm-auto{flex:0 0 auto;width:auto;max-width:100%}.col-sm-1{flex:0 0 8.33333%;max-width:8.33333%}.col-sm-2{flex:0 0 16.66667%;max-width:16.66667%}.col-sm-3{flex:0 0 25%;max-width:25%}.col-sm-4{flex:0 0 33.33333%;max-width:33.33333%}.col-sm-5{flex:0 0 41.66667%;max-width:41.66667%}.col-sm-6{flex:0 0 50%;max-width:50%}.col-sm-7{flex:0 0 58.33333%;max-width:58.33333%}.col-sm-8{flex:0 0 66.66667%;max-width:66.66667%}.col-sm-9{flex:0 0 75%;max-width:75%}.col-sm-10{flex:0 0 83.33333%;max-width:83.33333%}.col-sm-11{flex:0 0 91.66667%;max-width:91.66667%}.col-sm-12{flex:0 0 100%;max-width:100%}.order-sm-first{order:-1}.order-sm-last{order:13}.order-sm-0{order:0}.order-sm-1{order:1}.order-sm-2{order:2}.order-sm-3{order:3}.order-sm-4{order:4}.order-sm-5{order:5}.order-sm-6{order:6}.order-sm-7{order:7}.order-sm-8{order:8}.order-sm-9{order:9}.order-sm-10{order:10}.order-sm-11{order:11}.order-sm-12{order:12}.offset-sm-0{margin-left:0}.offset-sm-1{margin-left:8.33333%}.offset-sm-2{margin-left:16.66667%}.offset-sm-3{margin-left:25%}.offset-sm-4{margin-left:33.33333%}.offset-sm-5{margin-left:41.66667%}.offset-sm-6{margin-left:50%}.offset-sm-7{margin-left:58.33333%}.offset-sm-8{margin-left:66.66667%}.offset-sm-9{margin-left:75%}.offset-sm-10{margin-left:83.33333%}.offset-sm-11{margin-left:91.66667%}}@media (min-width:720px){.col-md{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-md-1>*{flex:0 0 100%;max-width:100%}.row-cols-md-2>*{flex:0 0 50%;max-width:50%}.row-cols-md-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-md-4>*{flex:0 0 25%;max-width:25%}.row-cols-md-5>*{flex:0 0 20%;max-width:20%}.row-cols-md-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-md-auto{flex:0 0 auto;width:auto;max-width:100%}.col-md-1{flex:0 0 8.33333%;max-width:8.33333%}.col-md-2{flex:0 0 16.66667%;max-width:16.66667%}.col-md-3{flex:0 0 25%;max-width:25%}.col-md-4{flex:0 0 33.33333%;max-width:33.33333%}.col-md-5{flex:0 0 41.66667%;max-width:41.66667%}.col-md-6{flex:0 0 50%;max-width:50%}.col-md-7{flex:0 0 58.33333%;max-width:58.33333%}.col-md-8{flex:0 0 66.66667%;max-width:66.66667%}.col-md-9{flex:0 0 75%;max-width:75%}.col-md-10{flex:0 0 83.33333%;max-width:83.33333%}.col-md-11{flex:0 0 91.66667%;max-width:91.66667%}.col-md-12{flex:0 0 100%;max-width:100%}.order-md-first{order:-1}.order-md-last{order:13}.order-md-0{order:0}.order-md-1{order:1}.order-md-2{order:2}.order-md-3{order:3}.order-md-4{order:4}.order-md-5{order:5}.order-md-6{order:6}.order-md-7{order:7}.order-md-8{order:8}.order-md-9{order:9}.order-md-10{order:10}.order-md-11{order:11}.order-md-12{order:12}.offset-md-0{margin-left:0}.offset-md-1{margin-left:8.33333%}.offset-md-2{margin-left:16.66667%}.offset-md-3{margin-left:25%}.offset-md-4{margin-left:33.33333%}.offset-md-5{margin-left:41.66667%}.offset-md-6{margin-left:50%}.offset-md-7{margin-left:58.33333%}.offset-md-8{margin-left:66.66667%}.offset-md-9{margin-left:75%}.offset-md-10{margin-left:83.33333%}.offset-md-11{margin-left:91.66667%}}@media (min-width:960px){.col-lg{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-lg-1>*{flex:0 0 100%;max-width:100%}.row-cols-lg-2>*{flex:0 0 50%;max-width:50%}.row-cols-lg-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-lg-4>*{flex:0 0 25%;max-width:25%}.row-cols-lg-5>*{flex:0 0 20%;max-width:20%}.row-cols-lg-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-lg-auto{flex:0 0 auto;width:auto;max-width:100%}.col-lg-1{flex:0 0 8.33333%;max-width:8.33333%}.col-lg-2{flex:0 0 16.66667%;max-width:16.66667%}.col-lg-3{flex:0 0 25%;max-width:25%}.col-lg-4{flex:0 0 33.33333%;max-width:33.33333%}.col-lg-5{flex:0 0 41.66667%;max-width:41.66667%}.col-lg-6{flex:0 0 50%;max-width:50%}.col-lg-7{flex:0 0 58.33333%;max-width:58.33333%}.col-lg-8{flex:0 0 66.66667%;max-width:66.66667%}.col-lg-9{flex:0 0 75%;max-width:75%}.col-lg-10{flex:0 0 83.33333%;max-width:83.33333%}.col-lg-11{flex:0 0 91.66667%;max-width:91.66667%}.col-lg-12{flex:0 0 100%;max-width:100%}.order-lg-first{order:-1}.order-lg-last{order:13}.order-lg-0{order:0}.order-lg-1{order:1}.order-lg-2{order:2}.order-lg-3{order:3}.order-lg-4{order:4}.order-lg-5{order:5}.order-lg-6{order:6}.order-lg-7{order:7}.order-lg-8{order:8}.order-lg-9{order:9}.order-lg-10{order:10}.order-lg-11{order:11}.order-lg-12{order:12}.offset-lg-0{margin-left:0}.offset-lg-1{margin-left:8.33333%}.offset-lg-2{margin-left:16.66667%}.offset-lg-3{margin-left:25%}.offset-lg-4{margin-left:33.33333%}.offset-lg-5{margin-left:41.66667%}.offset-lg-6{margin-left:50%}.offset-lg-7{margin-left:58.33333%}.offset-lg-8{margin-left:66.66667%}.offset-lg-9{margin-left:75%}.offset-lg-10{margin-left:83.33333%}.offset-lg-11{margin-left:91.66667%}}@media (min-width:1200px){.col-xl{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-xl-1>*{flex:0 0 100%;max-width:100%}.row-cols-xl-2>*{flex:0 0 50%;max-width:50%}.row-cols-xl-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-xl-4>*{flex:0 0 25%;max-width:25%}.row-cols-xl-5>*{flex:0 0 20%;max-width:20%}.row-cols-xl-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-xl-auto{flex:0 0 auto;width:auto;max-width:100%}.col-xl-1{flex:0 0 8.33333%;max-width:8.33333%}.col-xl-2{flex:0 0 16.66667%;max-width:16.66667%}.col-xl-3{flex:0 0 25%;max-width:25%}.col-xl-4{flex:0 0 33.33333%;max-width:33.33333%}.col-xl-5{flex:0 0 41.66667%;max-width:41.66667%}.col-xl-6{flex:0 0 50%;max-width:50%}.col-xl-7{flex:0 0 58.33333%;max-width:58.33333%}.col-xl-8{flex:0 0 66.66667%;max-width:66.66667%}.col-xl-9{flex:0 0 75%;max-width:75%}.col-xl-10{flex:0 0 83.33333%;max-width:83.33333%}.col-xl-11{flex:0 0 91.66667%;max-width:91.66667%}.col-xl-12{flex:0 0 100%;max-width:100%}.order-xl-first{order:-1}.order-xl-last{order:13}.order-xl-0{order:0}.order-xl-1{order:1}.order-xl-2{order:2}.order-xl-3{order:3}.order-xl-4{order:4}.order-xl-5{order:5}.order-xl-6{order:6}.order-xl-7{order:7}.order-xl-8{order:8}.order-xl-9{order:9}.order-xl-10{order:10}.order-xl-11{order:11}.order-xl-12{order:12}.offset-xl-0{margin-left:0}.offset-xl-1{margin-left:8.33333%}.offset-xl-2{margin-left:16.66667%}.offset-xl-3{margin-left:25%}.offset-xl-4{margin-left:33.33333%}.offset-xl-5{margin-left:41.66667%}.offset-xl-6{margin-left:50%}.offset-xl-7{margin-left:58.33333%}.offset-xl-8{margin-left:66.66667%}.offset-xl-9{margin-left:75%}.offset-xl-10{margin-left:83.33333%}.offset-xl-11{margin-left:91.66667%}}.table{width:100%;margin-bottom:1rem;color:#212529}.table td,.table th{padding:.75rem;vertical-align:top;border-top:1px solid #dee2e6}.table thead th{vertical-align:bottom;border-bottom:2px solid #dee2e6}.table tbody+tbody{border-top:2px solid #dee2e6}.table-sm td,.table-sm th{padding:.3rem}.table-bordered,.table-bordered td,.table-bordered th{border:1px solid #dee2e6}.table-bordered thead td,.table-bordered thead th{border-bottom-width:2px}.table-borderless tbody+tbody,.table-borderless td,.table-borderless th,.table-borderless thead th{border:0}.table-striped tbody tr:nth-of-type(odd){background-color:rgba(0,0,0,.05)}.table-hover tbody tr:hover{color:#212529;background-color:rgba(0,0,0,.075)}.table-primary,.table-primary>td,.table-primary>th{background-color:#b8daff}.table-primary tbody+tbody,.table-primary td,.table-primary th,.table-primary thead th{border-color:#7abaff}.table-hover .table-primary:hover,.table-hover .table-primary:hover>td,.table-hover .table-primary:hover>th{background-color:#9fcdff}.table-secondary,.table-secondary>td,.table-secondary>th{background-color:#d6d8db}.table-secondary tbody+tbody,.table-secondary td,.table-secondary th,.table-secondary thead th{border-color:#b3b7bb}.table-hover .table-secondary:hover,.table-hover .table-secondary:hover>td,.table-hover .table-secondary:hover>th{background-color:#c8cbcf}.table-success,.table-success>td,.table-success>th{background-color:#c3e6cb}.table-success tbody+tbody,.table-success td,.table-success th,.table-success thead th{border-color:#8fd19e}.table-hover .table-success:hover,.table-hover .table-success:hover>td,.table-hover .table-success:hover>th{background-color:#b1dfbb}.table-info,.table-info>td,.table-info>th{background-color:#bee5eb}.table-info tbody+tbody,.table-info td,.table-info th,.table-info thead th{border-color:#86cfda}.table-hover .table-info:hover,.table-hover .table-info:hover>td,.table-hover .table-info:hover>th{background-color:#abdde5}.table-warning,.table-warning>td,.table-warning>th{background-color:#ffeeba}.table-warning tbody+tbody,.table-warning td,.table-warning th,.table-warning thead th{border-color:#ffdf7e}.table-hover .table-warning:hover,.table-hover .table-warning:hover>td,.table-hover .table-warning:hover>th{background-color:#ffe8a1}.table-danger,.table-danger>td,.table-danger>th{background-color:#f5c6cb}.table-danger tbody+tbody,.table-danger td,.table-danger th,.table-danger thead th{border-color:#ed969e}.table-hover .table-danger:hover,.table-hover .table-danger:hover>td,.table-hover .table-danger:hover>th{background-color:#f1b0b7}.table-light,.table-light>td,.table-light>th{background-color:#fdfdfe}.table-light tbody+tbody,.table-light td,.table-light th,.table-light thead th{border-color:#fbfcfc}.table-hover .table-light:hover,.table-hover .table-light:hover>td,.table-hover .table-light:hover>th{background-color:#ececf6}.table-dark,.table-dark>td,.table-dark>th{background-color:#c6c8ca}.table-dark tbody+tbody,.table-dark td,.table-dark th,.table-dark thead th{border-color:#95999c}.table-hover .table-dark:hover,.table-hover .table-dark:hover>td,.table-hover .table-dark:hover>th{background-color:#b9bbbe}.table-active,.table-active>td,.table-active>th,.table-hover .table-active:hover,.table-hover .table-active:hover>td,.table-hover .table-active:hover>th{background-color:rgba(0,0,0,.075)}.table .thead-dark th{color:#fff;background-color:#343a40;border-color:#454d55}.table .thead-light th{color:#495057;background-color:#e9ecef;border-color:#dee2e6}.table-dark{color:#fff;background-color:#343a40}.table-dark td,.table-dark th,.table-dark thead th{border-color:#454d55}.table-dark.table-bordered{border:0}.table-dark.table-striped tbody tr:nth-of-type(odd){background-color:hsla(0,0%,100%,.05)}.table-dark.table-hover tbody tr:hover{color:#fff;background-color:hsla(0,0%,100%,.075)}@media (max-width:539.98px){.table-responsive-sm{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-sm>.table-bordered{border:0}}@media (max-width:719.98px){.table-responsive-md{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-md>.table-bordered{border:0}}@media (max-width:959.98px){.table-responsive-lg{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-lg>.table-bordered{border:0}}@media (max-width:1199.98px){.table-responsive-xl{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-xl>.table-bordered{border:0}}.table-responsive{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive>.table-bordered{border:0}.form-control{display:block;width:100%;height:calc(1.5em + .75rem + 2px);padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;background-color:#fff;background-clip:padding-box;border:1px solid #ced4da;border-radius:.25rem;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.form-control{transition:none}}.form-control::-ms-expand{background-color:transparent;border:0}.form-control:-moz-focusring{color:transparent;text-shadow:0 0 0 #495057}.form-control:focus{color:#495057;background-color:#fff;border-color:#80bdff;outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.form-control::placeholder{color:#6c757d;opacity:1}.form-control:disabled,.form-control[readonly]{background-color:#e9ecef;opacity:1}input[type=date].form-control,input[type=datetime-local].form-control,input[type=month].form-control,input[type=time].form-control{appearance:none}select.form-control:focus::-ms-value{color:#495057;background-color:#fff}.form-control-file,.form-control-range{display:block;width:100%}.col-form-label{padding-top:calc(.375rem + 1px);padding-bottom:calc(.375rem + 1px);margin-bottom:0;font-size:inherit;line-height:1.5}.col-form-label-lg{padding-top:calc(.5rem + 1px);padding-bottom:calc(.5rem + 1px);font-size:1.25rem;line-height:1.5}.col-form-label-sm{padding-top:calc(.25rem + 1px);padding-bottom:calc(.25rem + 1px);font-size:.875rem;line-height:1.5}.form-control-plaintext{display:block;width:100%;padding:.375rem 0;margin-bottom:0;font-size:1rem;line-height:1.5;color:#212529;background-color:transparent;border:solid transparent;border-width:1px 0}.form-control-plaintext.form-control-lg,.form-control-plaintext.form-control-sm{padding-right:0;padding-left:0}.form-control-sm{height:calc(1.5em + .5rem + 2px);padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.form-control-lg{height:calc(1.5em + 1rem + 2px);padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}select.form-control[multiple],select.form-control[size],textarea.form-control{height:auto}.form-group{margin-bottom:1rem}.form-text{display:block;margin-top:.25rem}.form-row{display:flex;flex-wrap:wrap;margin-right:-5px;margin-left:-5px}.form-row>.col,.form-row>[class*=col-]{padding-right:5px;padding-left:5px}.form-check{position:relative;display:block;padding-left:1.25rem}.form-check-input{position:absolute;margin-top:.3rem;margin-left:-1.25rem}.form-check-input:disabled~.form-check-label,.form-check-input[disabled]~.form-check-label{color:#6c757d}.form-check-label{margin-bottom:0}.form-check-inline{display:inline-flex;align-items:center;padding-left:0;margin-right:.75rem}.form-check-inline .form-check-input{position:static;margin-top:0;margin-right:.3125rem;margin-left:0}.valid-feedback{display:none;width:100%;margin-top:.25rem;font-size:80%;color:#28a745}.valid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:.875rem;line-height:1.5;color:#fff;background-color:rgba(40,167,69,.9);border-radius:.25rem}.is-valid~.valid-feedback,.is-valid~.valid-tooltip,.was-validated :valid~.valid-feedback,.was-validated :valid~.valid-tooltip{display:block}.form-control.is-valid,.was-validated .form-control:valid{border-color:#28a745;padding-right:calc(1.5em + .75rem);background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8'%3E%3Cpath fill='%2328a745' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3E%3C/svg%3E");background-repeat:no-repeat;background-position:right calc(.375em + .1875rem) center;background-size:calc(.75em + .375rem) calc(.75em + .375rem)}.form-control.is-valid:focus,.was-validated .form-control:valid:focus{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.was-validated textarea.form-control:valid,textarea.form-control.is-valid{padding-right:calc(1.5em + .75rem);background-position:top calc(.375em + .1875rem) right calc(.375em + .1875rem)}.custom-select.is-valid,.was-validated .custom-select:valid{border-color:#28a745;padding-right:calc(.75em + 2.3125rem);background:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5'%3E%3Cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3E%3C/svg%3E") no-repeat right .75rem center/8px 10px,url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8'%3E%3Cpath fill='%2328a745' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3E%3C/svg%3E") #fff no-repeat center right 1.75rem/calc(.75em + .375rem) calc(.75em + .375rem)}.custom-select.is-valid:focus,.was-validated .custom-select:valid:focus{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.form-check-input.is-valid~.form-check-label,.was-validated .form-check-input:valid~.form-check-label{color:#28a745}.form-check-input.is-valid~.valid-feedback,.form-check-input.is-valid~.valid-tooltip,.was-validated .form-check-input:valid~.valid-feedback,.was-validated .form-check-input:valid~.valid-tooltip{display:block}.custom-control-input.is-valid~.custom-control-label,.was-validated .custom-control-input:valid~.custom-control-label{color:#28a745}.custom-control-input.is-valid~.custom-control-label:before,.was-validated .custom-control-input:valid~.custom-control-label:before{border-color:#28a745}.custom-control-input.is-valid:checked~.custom-control-label:before,.was-validated .custom-control-input:valid:checked~.custom-control-label:before{border-color:#34ce57;background-color:#34ce57}.custom-control-input.is-valid:focus~.custom-control-label:before,.was-validated .custom-control-input:valid:focus~.custom-control-label:before{box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.custom-control-input.is-valid:focus:not(:checked)~.custom-control-label:before,.custom-file-input.is-valid~.custom-file-label,.was-validated .custom-control-input:valid:focus:not(:checked)~.custom-control-label:before,.was-validated .custom-file-input:valid~.custom-file-label{border-color:#28a745}.custom-file-input.is-valid:focus~.custom-file-label,.was-validated .custom-file-input:valid:focus~.custom-file-label{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.invalid-feedback{display:none;width:100%;margin-top:.25rem;font-size:80%;color:#dc3545}.invalid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:.875rem;line-height:1.5;color:#fff;background-color:rgba(220,53,69,.9);border-radius:.25rem}.is-invalid~.invalid-feedback,.is-invalid~.invalid-tooltip,.was-validated :invalid~.invalid-feedback,.was-validated :invalid~.invalid-tooltip{display:block}.form-control.is-invalid,.was-validated .form-control:invalid{border-color:#dc3545;padding-right:calc(1.5em + .75rem);background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' fill='none' stroke='%23dc3545'%3E%3Ccircle cx='6' cy='6' r='4.5'/%3E%3Cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3E%3Ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3E%3C/svg%3E");background-repeat:no-repeat;background-position:right calc(.375em + .1875rem) center;background-size:calc(.75em + .375rem) calc(.75em + .375rem)}.form-control.is-invalid:focus,.was-validated .form-control:invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.was-validated textarea.form-control:invalid,textarea.form-control.is-invalid{padding-right:calc(1.5em + .75rem);background-position:top calc(.375em + .1875rem) right calc(.375em + .1875rem)}.custom-select.is-invalid,.was-validated .custom-select:invalid{border-color:#dc3545;padding-right:calc(.75em + 2.3125rem);background:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5'%3E%3Cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3E%3C/svg%3E") no-repeat right .75rem center/8px 10px,url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' fill='none' stroke='%23dc3545'%3E%3Ccircle cx='6' cy='6' r='4.5'/%3E%3Cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3E%3Ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3E%3C/svg%3E") #fff no-repeat center right 1.75rem/calc(.75em + .375rem) calc(.75em + .375rem)}.custom-select.is-invalid:focus,.was-validated .custom-select:invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.form-check-input.is-invalid~.form-check-label,.was-validated .form-check-input:invalid~.form-check-label{color:#dc3545}.form-check-input.is-invalid~.invalid-feedback,.form-check-input.is-invalid~.invalid-tooltip,.was-validated .form-check-input:invalid~.invalid-feedback,.was-validated .form-check-input:invalid~.invalid-tooltip{display:block}.custom-control-input.is-invalid~.custom-control-label,.was-validated .custom-control-input:invalid~.custom-control-label{color:#dc3545}.custom-control-input.is-invalid~.custom-control-label:before,.was-validated .custom-control-input:invalid~.custom-control-label:before{border-color:#dc3545}.custom-control-input.is-invalid:checked~.custom-control-label:before,.was-validated .custom-control-input:invalid:checked~.custom-control-label:before{border-color:#e4606d;background-color:#e4606d}.custom-control-input.is-invalid:focus~.custom-control-label:before,.was-validated .custom-control-input:invalid:focus~.custom-control-label:before{box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.custom-control-input.is-invalid:focus:not(:checked)~.custom-control-label:before,.custom-file-input.is-invalid~.custom-file-label,.was-validated .custom-control-input:invalid:focus:not(:checked)~.custom-control-label:before,.was-validated .custom-file-input:invalid~.custom-file-label{border-color:#dc3545}.custom-file-input.is-invalid:focus~.custom-file-label,.was-validated .custom-file-input:invalid:focus~.custom-file-label{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.form-inline{display:flex;flex-flow:row wrap;align-items:center}.form-inline .form-check{width:100%}@media (min-width:540px){.form-inline label{justify-content:center}.form-inline .form-group,.form-inline label{display:flex;align-items:center;margin-bottom:0}.form-inline .form-group{flex:0 0 auto;flex-flow:row wrap}.form-inline .form-control{display:inline-block;width:auto;vertical-align:middle}.form-inline .form-control-plaintext{display:inline-block}.form-inline .custom-select,.form-inline .input-group{width:auto}.form-inline .form-check{display:flex;align-items:center;justify-content:center;width:auto;padding-left:0}.form-inline .form-check-input{position:relative;flex-shrink:0;margin-top:0;margin-right:.25rem;margin-left:0}.form-inline .custom-control{align-items:center;justify-content:center}.form-inline .custom-control-label{margin-bottom:0}}.btn{display:inline-block;font-weight:400;color:#212529;text-align:center;vertical-align:middle;user-select:none;background-color:transparent;border:1px solid transparent;padding:.375rem .75rem;font-size:1rem;line-height:1.5;border-radius:.25rem;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.btn{transition:none}}.btn:hover{color:#212529;text-decoration:none}.btn.focus,.btn:focus{outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.btn.disabled,.btn:disabled{opacity:.65}.btn:not(:disabled):not(.disabled){cursor:pointer}a.btn.disabled,fieldset:disabled a.btn{pointer-events:none}.btn-primary{color:#fff;background-color:#007bff;border-color:#007bff}.btn-primary.focus,.btn-primary:focus,.btn-primary:hover{color:#fff;background-color:#0069d9;border-color:#0062cc}.btn-primary.focus,.btn-primary:focus{box-shadow:0 0 0 .2rem rgba(38,143,255,.5)}.btn-primary.disabled,.btn-primary:disabled{color:#fff;background-color:#007bff;border-color:#007bff}.btn-primary:not(:disabled):not(.disabled).active,.btn-primary:not(:disabled):not(.disabled):active,.show>.btn-primary.dropdown-toggle{color:#fff;background-color:#0062cc;border-color:#005cbf}.btn-primary:not(:disabled):not(.disabled).active:focus,.btn-primary:not(:disabled):not(.disabled):active:focus,.show>.btn-primary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(38,143,255,.5)}.btn-secondary{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-secondary.focus,.btn-secondary:focus,.btn-secondary:hover{color:#fff;background-color:#5a6268;border-color:#545b62}.btn-secondary.focus,.btn-secondary:focus{box-shadow:0 0 0 .2rem rgba(130,138,145,.5)}.btn-secondary.disabled,.btn-secondary:disabled{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-secondary:not(:disabled):not(.disabled).active,.btn-secondary:not(:disabled):not(.disabled):active,.show>.btn-secondary.dropdown-toggle{color:#fff;background-color:#545b62;border-color:#4e555b}.btn-secondary:not(:disabled):not(.disabled).active:focus,.btn-secondary:not(:disabled):not(.disabled):active:focus,.show>.btn-secondary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(130,138,145,.5)}.btn-success{color:#fff;background-color:#28a745;border-color:#28a745}.btn-success.focus,.btn-success:focus,.btn-success:hover{color:#fff;background-color:#218838;border-color:#1e7e34}.btn-success.focus,.btn-success:focus{box-shadow:0 0 0 .2rem rgba(72,180,97,.5)}.btn-success.disabled,.btn-success:disabled{color:#fff;background-color:#28a745;border-color:#28a745}.btn-success:not(:disabled):not(.disabled).active,.btn-success:not(:disabled):not(.disabled):active,.show>.btn-success.dropdown-toggle{color:#fff;background-color:#1e7e34;border-color:#1c7430}.btn-success:not(:disabled):not(.disabled).active:focus,.btn-success:not(:disabled):not(.disabled):active:focus,.show>.btn-success.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(72,180,97,.5)}.btn-info{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-info.focus,.btn-info:focus,.btn-info:hover{color:#fff;background-color:#138496;border-color:#117a8b}.btn-info.focus,.btn-info:focus{box-shadow:0 0 0 .2rem rgba(58,176,195,.5)}.btn-info.disabled,.btn-info:disabled{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-info:not(:disabled):not(.disabled).active,.btn-info:not(:disabled):not(.disabled):active,.show>.btn-info.dropdown-toggle{color:#fff;background-color:#117a8b;border-color:#10707f}.btn-info:not(:disabled):not(.disabled).active:focus,.btn-info:not(:disabled):not(.disabled):active:focus,.show>.btn-info.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(58,176,195,.5)}.btn-warning{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-warning.focus,.btn-warning:focus,.btn-warning:hover{color:#212529;background-color:#e0a800;border-color:#d39e00}.btn-warning.focus,.btn-warning:focus{box-shadow:0 0 0 .2rem rgba(222,170,12,.5)}.btn-warning.disabled,.btn-warning:disabled{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-warning:not(:disabled):not(.disabled).active,.btn-warning:not(:disabled):not(.disabled):active,.show>.btn-warning.dropdown-toggle{color:#212529;background-color:#d39e00;border-color:#c69500}.btn-warning:not(:disabled):not(.disabled).active:focus,.btn-warning:not(:disabled):not(.disabled):active:focus,.show>.btn-warning.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(222,170,12,.5)}.btn-danger{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-danger.focus,.btn-danger:focus,.btn-danger:hover{color:#fff;background-color:#c82333;border-color:#bd2130}.btn-danger.focus,.btn-danger:focus{box-shadow:0 0 0 .2rem rgba(225,83,97,.5)}.btn-danger.disabled,.btn-danger:disabled{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-danger:not(:disabled):not(.disabled).active,.btn-danger:not(:disabled):not(.disabled):active,.show>.btn-danger.dropdown-toggle{color:#fff;background-color:#bd2130;border-color:#b21f2d}.btn-danger:not(:disabled):not(.disabled).active:focus,.btn-danger:not(:disabled):not(.disabled):active:focus,.show>.btn-danger.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(225,83,97,.5)}.btn-light{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-light.focus,.btn-light:focus,.btn-light:hover{color:#212529;background-color:#e2e6ea;border-color:#dae0e5}.btn-light.focus,.btn-light:focus{box-shadow:0 0 0 .2rem rgba(216,217,219,.5)}.btn-light.disabled,.btn-light:disabled{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-light:not(:disabled):not(.disabled).active,.btn-light:not(:disabled):not(.disabled):active,.show>.btn-light.dropdown-toggle{color:#212529;background-color:#dae0e5;border-color:#d3d9df}.btn-light:not(:disabled):not(.disabled).active:focus,.btn-light:not(:disabled):not(.disabled):active:focus,.show>.btn-light.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(216,217,219,.5)}.btn-dark{color:#fff;background-color:#343a40;border-color:#343a40}.btn-dark.focus,.btn-dark:focus,.btn-dark:hover{color:#fff;background-color:#23272b;border-color:#1d2124}.btn-dark.focus,.btn-dark:focus{box-shadow:0 0 0 .2rem rgba(82,88,93,.5)}.btn-dark.disabled,.btn-dark:disabled{color:#fff;background-color:#343a40;border-color:#343a40}.btn-dark:not(:disabled):not(.disabled).active,.btn-dark:not(:disabled):not(.disabled):active,.show>.btn-dark.dropdown-toggle{color:#fff;background-color:#1d2124;border-color:#171a1d}.btn-dark:not(:disabled):not(.disabled).active:focus,.btn-dark:not(:disabled):not(.disabled):active:focus,.show>.btn-dark.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(82,88,93,.5)}.btn-outline-primary{color:#007bff;border-color:#007bff}.btn-outline-primary:hover{color:#fff;background-color:#007bff;border-color:#007bff}.btn-outline-primary.focus,.btn-outline-primary:focus{box-shadow:0 0 0 .2rem rgba(0,123,255,.5)}.btn-outline-primary.disabled,.btn-outline-primary:disabled{color:#007bff;background-color:transparent}.btn-outline-primary:not(:disabled):not(.disabled).active,.btn-outline-primary:not(:disabled):not(.disabled):active,.show>.btn-outline-primary.dropdown-toggle{color:#fff;background-color:#007bff;border-color:#007bff}.btn-outline-primary:not(:disabled):not(.disabled).active:focus,.btn-outline-primary:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-primary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(0,123,255,.5)}.btn-outline-secondary{color:#6c757d;border-color:#6c757d}.btn-outline-secondary:hover{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-outline-secondary.focus,.btn-outline-secondary:focus{box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.btn-outline-secondary.disabled,.btn-outline-secondary:disabled{color:#6c757d;background-color:transparent}.btn-outline-secondary:not(:disabled):not(.disabled).active,.btn-outline-secondary:not(:disabled):not(.disabled):active,.show>.btn-outline-secondary.dropdown-toggle{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-outline-secondary:not(:disabled):not(.disabled).active:focus,.btn-outline-secondary:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-secondary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.btn-outline-success{color:#28a745;border-color:#28a745}.btn-outline-success:hover{color:#fff;background-color:#28a745;border-color:#28a745}.btn-outline-success.focus,.btn-outline-success:focus{box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.btn-outline-success.disabled,.btn-outline-success:disabled{color:#28a745;background-color:transparent}.btn-outline-success:not(:disabled):not(.disabled).active,.btn-outline-success:not(:disabled):not(.disabled):active,.show>.btn-outline-success.dropdown-toggle{color:#fff;background-color:#28a745;border-color:#28a745}.btn-outline-success:not(:disabled):not(.disabled).active:focus,.btn-outline-success:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-success.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.btn-outline-info{color:#17a2b8;border-color:#17a2b8}.btn-outline-info:hover{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-outline-info.focus,.btn-outline-info:focus{box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.btn-outline-info.disabled,.btn-outline-info:disabled{color:#17a2b8;background-color:transparent}.btn-outline-info:not(:disabled):not(.disabled).active,.btn-outline-info:not(:disabled):not(.disabled):active,.show>.btn-outline-info.dropdown-toggle{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-outline-info:not(:disabled):not(.disabled).active:focus,.btn-outline-info:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-info.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.btn-outline-warning{color:#ffc107;border-color:#ffc107}.btn-outline-warning:hover{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-outline-warning.focus,.btn-outline-warning:focus{box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.btn-outline-warning.disabled,.btn-outline-warning:disabled{color:#ffc107;background-color:transparent}.btn-outline-warning:not(:disabled):not(.disabled).active,.btn-outline-warning:not(:disabled):not(.disabled):active,.show>.btn-outline-warning.dropdown-toggle{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-outline-warning:not(:disabled):not(.disabled).active:focus,.btn-outline-warning:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-warning.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.btn-outline-danger{color:#dc3545;border-color:#dc3545}.btn-outline-danger:hover{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-outline-danger.focus,.btn-outline-danger:focus{box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.btn-outline-danger.disabled,.btn-outline-danger:disabled{color:#dc3545;background-color:transparent}.btn-outline-danger:not(:disabled):not(.disabled).active,.btn-outline-danger:not(:disabled):not(.disabled):active,.show>.btn-outline-danger.dropdown-toggle{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-outline-danger:not(:disabled):not(.disabled).active:focus,.btn-outline-danger:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-danger.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.btn-outline-light{color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light:hover{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light.focus,.btn-outline-light:focus{box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.btn-outline-light.disabled,.btn-outline-light:disabled{color:#f8f9fa;background-color:transparent}.btn-outline-light:not(:disabled):not(.disabled).active,.btn-outline-light:not(:disabled):not(.disabled):active,.show>.btn-outline-light.dropdown-toggle{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light:not(:disabled):not(.disabled).active:focus,.btn-outline-light:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-light.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.btn-outline-dark{color:#343a40;border-color:#343a40}.btn-outline-dark:hover{color:#fff;background-color:#343a40;border-color:#343a40}.btn-outline-dark.focus,.btn-outline-dark:focus{box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.btn-outline-dark.disabled,.btn-outline-dark:disabled{color:#343a40;background-color:transparent}.btn-outline-dark:not(:disabled):not(.disabled).active,.btn-outline-dark:not(:disabled):not(.disabled):active,.show>.btn-outline-dark.dropdown-toggle{color:#fff;background-color:#343a40;border-color:#343a40}.btn-outline-dark:not(:disabled):not(.disabled).active:focus,.btn-outline-dark:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-dark.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.btn-link{font-weight:400;color:#007bff;text-decoration:none}.btn-link:hover{color:#0056b3}.btn-link.focus,.btn-link:focus,.btn-link:hover{text-decoration:underline}.btn-link.disabled,.btn-link:disabled{color:#6c757d;pointer-events:none}.btn-group-lg>.btn,.btn-lg{padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}.btn-group-sm>.btn,.btn-sm{padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.btn-block{display:block;width:100%}.btn-block+.btn-block{margin-top:.5rem}input[type=button].btn-block,input[type=reset].btn-block,input[type=submit].btn-block{width:100%}.fade{transition:opacity .15s linear}@media (prefers-reduced-motion:reduce){.fade{transition:none}}.fade:not(.show){opacity:0}.collapse:not(.show){display:none}.collapsing{position:relative;height:0;overflow:hidden;transition:height .35s ease}@media (prefers-reduced-motion:reduce){.collapsing{transition:none}}.dropdown,.dropleft,.dropright,.dropup{position:relative}.dropdown-toggle{white-space:nowrap}.dropdown-toggle:after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid;border-right:.3em solid transparent;border-bottom:0;border-left:.3em solid transparent}.dropdown-toggle:empty:after{margin-left:0}.dropdown-menu{position:absolute;top:100%;left:0;z-index:1000;display:none;float:left;min-width:10rem;padding:.5rem 0;margin:.125rem 0 0;font-size:1rem;color:#212529;text-align:left;list-style:none;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.15);border-radius:.25rem}.dropdown-menu-left{right:auto;left:0}.dropdown-menu-right{right:0;left:auto}@media (min-width:540px){.dropdown-menu-sm-left{right:auto;left:0}.dropdown-menu-sm-right{right:0;left:auto}}@media (min-width:720px){.dropdown-menu-md-left{right:auto;left:0}.dropdown-menu-md-right{right:0;left:auto}}@media (min-width:960px){.dropdown-menu-lg-left{right:auto;left:0}.dropdown-menu-lg-right{right:0;left:auto}}@media (min-width:1200px){.dropdown-menu-xl-left{right:auto;left:0}.dropdown-menu-xl-right{right:0;left:auto}}.dropup .dropdown-menu{top:auto;bottom:100%;margin-top:0;margin-bottom:.125rem}.dropup .dropdown-toggle:after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:0;border-right:.3em solid transparent;border-bottom:.3em solid;border-left:.3em solid transparent}.dropup .dropdown-toggle:empty:after{margin-left:0}.dropright .dropdown-menu{top:0;right:auto;left:100%;margin-top:0;margin-left:.125rem}.dropright .dropdown-toggle:after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid transparent;border-right:0;border-bottom:.3em solid transparent;border-left:.3em solid}.dropright .dropdown-toggle:empty:after{margin-left:0}.dropright .dropdown-toggle:after{vertical-align:0}.dropleft .dropdown-menu{top:0;right:100%;left:auto;margin-top:0;margin-right:.125rem}.dropleft .dropdown-toggle:after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";display:none}.dropleft .dropdown-toggle:before{display:inline-block;margin-right:.255em;vertical-align:.255em;content:"";border-top:.3em solid transparent;border-right:.3em solid;border-bottom:.3em solid transparent}.dropleft .dropdown-toggle:empty:after{margin-left:0}.dropleft .dropdown-toggle:before{vertical-align:0}.dropdown-menu[x-placement^=bottom],.dropdown-menu[x-placement^=left],.dropdown-menu[x-placement^=right],.dropdown-menu[x-placement^=top]{right:auto;bottom:auto}.dropdown-divider{height:0;margin:.5rem 0;overflow:hidden;border-top:1px solid #e9ecef}.dropdown-item{display:block;width:100%;padding:.25rem 1.5rem;clear:both;font-weight:400;color:#212529;text-align:inherit;white-space:nowrap;background-color:transparent;border:0}.dropdown-item:focus,.dropdown-item:hover{color:#16181b;text-decoration:none;background-color:#f8f9fa}.dropdown-item.active,.dropdown-item:active{color:#fff;text-decoration:none;background-color:#007bff}.dropdown-item.disabled,.dropdown-item:disabled{color:#6c757d;pointer-events:none;background-color:transparent}.dropdown-menu.show{display:block}.dropdown-header{display:block;padding:.5rem 1.5rem;margin-bottom:0;font-size:.875rem;color:#6c757d;white-space:nowrap}.dropdown-item-text{display:block;padding:.25rem 1.5rem;color:#212529}.btn-group,.btn-group-vertical{position:relative;display:inline-flex;vertical-align:middle}.btn-group-vertical>.btn,.btn-group>.btn{position:relative;flex:1 1 auto}.btn-group-vertical>.btn.active,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn:focus,.btn-group-vertical>.btn:hover,.btn-group>.btn.active,.btn-group>.btn:active,.btn-group>.btn:focus,.btn-group>.btn:hover{z-index:1}.btn-toolbar{display:flex;flex-wrap:wrap;justify-content:flex-start}.btn-toolbar .input-group{width:auto}.btn-group>.btn-group:not(:first-child),.btn-group>.btn:not(:first-child){margin-left:-1px}.btn-group>.btn-group:not(:last-child)>.btn,.btn-group>.btn:not(:last-child):not(.dropdown-toggle){border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn-group:not(:first-child)>.btn,.btn-group>.btn:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.dropdown-toggle-split{padding-right:.5625rem;padding-left:.5625rem}.dropdown-toggle-split:after,.dropright .dropdown-toggle-split:after,.dropup .dropdown-toggle-split:after{margin-left:0}.dropleft .dropdown-toggle-split:before{margin-right:0}.btn-group-sm>.btn+.dropdown-toggle-split,.btn-sm+.dropdown-toggle-split{padding-right:.375rem;padding-left:.375rem}.btn-group-lg>.btn+.dropdown-toggle-split,.btn-lg+.dropdown-toggle-split{padding-right:.75rem;padding-left:.75rem}.btn-group-vertical{flex-direction:column;align-items:flex-start;justify-content:center}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group{width:100%}.btn-group-vertical>.btn-group:not(:first-child),.btn-group-vertical>.btn:not(:first-child){margin-top:-1px}.btn-group-vertical>.btn-group:not(:last-child)>.btn,.btn-group-vertical>.btn:not(:last-child):not(.dropdown-toggle){border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn-group:not(:first-child)>.btn,.btn-group-vertical>.btn:not(:first-child){border-top-left-radius:0;border-top-right-radius:0}.btn-group-toggle>.btn,.btn-group-toggle>.btn-group>.btn{margin-bottom:0}.btn-group-toggle>.btn-group>.btn input[type=checkbox],.btn-group-toggle>.btn-group>.btn input[type=radio],.btn-group-toggle>.btn input[type=checkbox],.btn-group-toggle>.btn input[type=radio]{position:absolute;clip:rect(0,0,0,0);pointer-events:none}.input-group{position:relative;display:flex;flex-wrap:wrap;align-items:stretch;width:100%}.input-group>.custom-file,.input-group>.custom-select,.input-group>.form-control,.input-group>.form-control-plaintext{position:relative;flex:1 1 auto;width:1%;min-width:0;margin-bottom:0}.input-group>.custom-file+.custom-file,.input-group>.custom-file+.custom-select,.input-group>.custom-file+.form-control,.input-group>.custom-select+.custom-file,.input-group>.custom-select+.custom-select,.input-group>.custom-select+.form-control,.input-group>.form-control+.custom-file,.input-group>.form-control+.custom-select,.input-group>.form-control+.form-control,.input-group>.form-control-plaintext+.custom-file,.input-group>.form-control-plaintext+.custom-select,.input-group>.form-control-plaintext+.form-control{margin-left:-1px}.input-group>.custom-file .custom-file-input:focus~.custom-file-label,.input-group>.custom-select:focus,.input-group>.form-control:focus{z-index:3}.input-group>.custom-file .custom-file-input:focus{z-index:4}.input-group>.custom-select:not(:last-child),.input-group>.form-control:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.custom-select:not(:first-child),.input-group>.form-control:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.input-group>.custom-file{display:flex;align-items:center}.input-group>.custom-file:not(:last-child) .custom-file-label,.input-group>.custom-file:not(:last-child) .custom-file-label:after{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.custom-file:not(:first-child) .custom-file-label{border-top-left-radius:0;border-bottom-left-radius:0}.input-group-append,.input-group-prepend{display:flex}.input-group-append .btn,.input-group-prepend .btn{position:relative;z-index:2}.input-group-append .btn:focus,.input-group-prepend .btn:focus{z-index:3}.input-group-append .btn+.btn,.input-group-append .btn+.input-group-text,.input-group-append .input-group-text+.btn,.input-group-append .input-group-text+.input-group-text,.input-group-prepend .btn+.btn,.input-group-prepend .btn+.input-group-text,.input-group-prepend .input-group-text+.btn,.input-group-prepend .input-group-text+.input-group-text{margin-left:-1px}.input-group-prepend{margin-right:-1px}.input-group-append{margin-left:-1px}.input-group-text{display:flex;align-items:center;padding:.375rem .75rem;margin-bottom:0;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;text-align:center;white-space:nowrap;background-color:#e9ecef;border:1px solid #ced4da;border-radius:.25rem}.input-group-text input[type=checkbox],.input-group-text input[type=radio]{margin-top:0}.input-group-lg>.custom-select,.input-group-lg>.form-control:not(textarea){height:calc(1.5em + 1rem + 2px)}.input-group-lg>.custom-select,.input-group-lg>.form-control,.input-group-lg>.input-group-append>.btn,.input-group-lg>.input-group-append>.input-group-text,.input-group-lg>.input-group-prepend>.btn,.input-group-lg>.input-group-prepend>.input-group-text{padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}.input-group-sm>.custom-select,.input-group-sm>.form-control:not(textarea){height:calc(1.5em + .5rem + 2px)}.input-group-sm>.custom-select,.input-group-sm>.form-control,.input-group-sm>.input-group-append>.btn,.input-group-sm>.input-group-append>.input-group-text,.input-group-sm>.input-group-prepend>.btn,.input-group-sm>.input-group-prepend>.input-group-text{padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.input-group-lg>.custom-select,.input-group-sm>.custom-select{padding-right:1.75rem}.input-group>.input-group-append:last-child>.btn:not(:last-child):not(.dropdown-toggle),.input-group>.input-group-append:last-child>.input-group-text:not(:last-child),.input-group>.input-group-append:not(:last-child)>.btn,.input-group>.input-group-append:not(:last-child)>.input-group-text,.input-group>.input-group-prepend>.btn,.input-group>.input-group-prepend>.input-group-text{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.input-group-append>.btn,.input-group>.input-group-append>.input-group-text,.input-group>.input-group-prepend:first-child>.btn:not(:first-child),.input-group>.input-group-prepend:first-child>.input-group-text:not(:first-child),.input-group>.input-group-prepend:not(:first-child)>.btn,.input-group>.input-group-prepend:not(:first-child)>.input-group-text{border-top-left-radius:0;border-bottom-left-radius:0}.custom-control{position:relative;display:block;min-height:1.5rem;padding-left:1.5rem}.custom-control-inline{display:inline-flex;margin-right:1rem}.custom-control-input{position:absolute;left:0;z-index:-1;width:1rem;height:1.25rem;opacity:0}.custom-control-input:checked~.custom-control-label:before{color:#fff;border-color:#007bff;background-color:#007bff}.custom-control-input:focus~.custom-control-label:before{box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.custom-control-input:focus:not(:checked)~.custom-control-label:before{border-color:#80bdff}.custom-control-input:not(:disabled):active~.custom-control-label:before{color:#fff;background-color:#b3d7ff;border-color:#b3d7ff}.custom-control-input:disabled~.custom-control-label,.custom-control-input[disabled]~.custom-control-label{color:#6c757d}.custom-control-input:disabled~.custom-control-label:before,.custom-control-input[disabled]~.custom-control-label:before{background-color:#e9ecef}.custom-control-label{position:relative;margin-bottom:0;vertical-align:top}.custom-control-label:before{pointer-events:none;background-color:#fff;border:1px solid #adb5bd}.custom-control-label:after,.custom-control-label:before{position:absolute;top:.25rem;left:-1.5rem;display:block;width:1rem;height:1rem;content:""}.custom-control-label:after{background:no-repeat 50%/50% 50%}.custom-checkbox .custom-control-label:before{border-radius:.25rem}.custom-checkbox .custom-control-input:checked~.custom-control-label:after{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8'%3E%3Cpath fill='%23fff' d='M6.564.75l-3.59 3.612-1.538-1.55L0 4.26l2.974 2.99L8 2.193z'/%3E%3C/svg%3E")}.custom-checkbox .custom-control-input:indeterminate~.custom-control-label:before{border-color:#007bff;background-color:#007bff}.custom-checkbox .custom-control-input:indeterminate~.custom-control-label:after{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='4' height='4'%3E%3Cpath stroke='%23fff' d='M0 2h4'/%3E%3C/svg%3E")}.custom-checkbox .custom-control-input:disabled:checked~.custom-control-label:before{background-color:rgba(0,123,255,.5)}.custom-checkbox .custom-control-input:disabled:indeterminate~.custom-control-label:before{background-color:rgba(0,123,255,.5)}.custom-radio .custom-control-label:before{border-radius:50%}.custom-radio .custom-control-input:checked~.custom-control-label:after{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' viewBox='-4 -4 8 8'%3E%3Ccircle r='3' fill='%23fff'/%3E%3C/svg%3E")}.custom-radio .custom-control-input:disabled:checked~.custom-control-label:before{background-color:rgba(0,123,255,.5)}.custom-switch{padding-left:2.25rem}.custom-switch .custom-control-label:before{left:-2.25rem;width:1.75rem;pointer-events:all;border-radius:.5rem}.custom-switch .custom-control-label:after{top:calc(.25rem + 2px);left:calc(-2.25rem + 2px);width:calc(1rem - 4px);height:calc(1rem - 4px);background-color:#adb5bd;border-radius:.5rem;transition:transform .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.custom-switch .custom-control-label:after{transition:none}}.custom-switch .custom-control-input:checked~.custom-control-label:after{background-color:#fff;transform:translateX(.75rem)}.custom-switch .custom-control-input:disabled:checked~.custom-control-label:before{background-color:rgba(0,123,255,.5)}.custom-select{display:inline-block;width:100%;height:calc(1.5em + .75rem + 2px);padding:.375rem 1.75rem .375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;vertical-align:middle;background:#fff url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5'%3E%3Cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3E%3C/svg%3E") no-repeat right .75rem center/8px 10px;border:1px solid #ced4da;border-radius:.25rem;appearance:none}.custom-select:focus{border-color:#80bdff;outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.custom-select:focus::-ms-value{color:#495057;background-color:#fff}.custom-select[multiple],.custom-select[size]:not([size="1"]){height:auto;padding-right:.75rem;background-image:none}.custom-select:disabled{color:#6c757d;background-color:#e9ecef}.custom-select::-ms-expand{display:none}.custom-select:-moz-focusring{color:transparent;text-shadow:0 0 0 #495057}.custom-select-sm{height:calc(1.5em + .5rem + 2px);padding-top:.25rem;padding-bottom:.25rem;padding-left:.5rem;font-size:.875rem}.custom-select-lg{height:calc(1.5em + 1rem + 2px);padding-top:.5rem;padding-bottom:.5rem;padding-left:1rem;font-size:1.25rem}.custom-file{display:inline-block;margin-bottom:0}.custom-file,.custom-file-input{position:relative;width:100%;height:calc(1.5em + .75rem + 2px)}.custom-file-input{z-index:2;margin:0;opacity:0}.custom-file-input:focus~.custom-file-label{border-color:#80bdff;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.custom-file-input:disabled~.custom-file-label,.custom-file-input[disabled]~.custom-file-label{background-color:#e9ecef}.custom-file-input:lang(en)~.custom-file-label:after{content:"Browse"}.custom-file-input~.custom-file-label[data-browse]:after{content:attr(data-browse)}.custom-file-label{left:0;z-index:1;height:calc(1.5em + .75rem + 2px);font-weight:400;background-color:#fff;border:1px solid #ced4da;border-radius:.25rem}.custom-file-label,.custom-file-label:after{position:absolute;top:0;right:0;padding:.375rem .75rem;line-height:1.5;color:#495057}.custom-file-label:after{bottom:0;z-index:3;display:block;height:calc(1.5em + .75rem);content:"Browse";background-color:#e9ecef;border-left:inherit;border-radius:0 .25rem .25rem 0}.custom-range{width:100%;height:1.4rem;padding:0;background-color:transparent;appearance:none}.custom-range:focus{outline:none}.custom-range:focus::-webkit-slider-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,123,255,.25)}.custom-range:focus::-moz-range-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,123,255,.25)}.custom-range:focus::-ms-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,123,255,.25)}.custom-range::-moz-focus-outer{border:0}.custom-range::-webkit-slider-thumb{width:1rem;height:1rem;margin-top:-.25rem;background-color:#007bff;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none}@media (prefers-reduced-motion:reduce){.custom-range::-webkit-slider-thumb{transition:none}}.custom-range::-webkit-slider-thumb:active{background-color:#b3d7ff}.custom-range::-webkit-slider-runnable-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:#dee2e6;border-color:transparent;border-radius:1rem}.custom-range::-moz-range-thumb{width:1rem;height:1rem;background-color:#007bff;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none}@media (prefers-reduced-motion:reduce){.custom-range::-moz-range-thumb{transition:none}}.custom-range::-moz-range-thumb:active{background-color:#b3d7ff}.custom-range::-moz-range-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:#dee2e6;border-color:transparent;border-radius:1rem}.custom-range::-ms-thumb{width:1rem;height:1rem;margin-top:0;margin-right:.2rem;margin-left:.2rem;background-color:#007bff;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none}@media (prefers-reduced-motion:reduce){.custom-range::-ms-thumb{transition:none}}.custom-range::-ms-thumb:active{background-color:#b3d7ff}.custom-range::-ms-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:transparent;border-color:transparent;border-width:.5rem}.custom-range::-ms-fill-lower,.custom-range::-ms-fill-upper{background-color:#dee2e6;border-radius:1rem}.custom-range::-ms-fill-upper{margin-right:15px}.custom-range:disabled::-webkit-slider-thumb{background-color:#adb5bd}.custom-range:disabled::-webkit-slider-runnable-track{cursor:default}.custom-range:disabled::-moz-range-thumb{background-color:#adb5bd}.custom-range:disabled::-moz-range-track{cursor:default}.custom-range:disabled::-ms-thumb{background-color:#adb5bd}.custom-control-label:before,.custom-file-label,.custom-select{transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.custom-control-label:before,.custom-file-label,.custom-select{transition:none}}.nav{display:flex;flex-wrap:wrap;padding-left:0;margin-bottom:0;list-style:none}.nav-link{display:block;padding:.5rem 1rem}.nav-link:focus,.nav-link:hover{text-decoration:none}.nav-link.disabled{color:#6c757d;pointer-events:none;cursor:default}.nav-tabs{border-bottom:1px solid #dee2e6}.nav-tabs .nav-item{margin-bottom:-1px}.nav-tabs .nav-link{border:1px solid transparent;border-top-left-radius:.25rem;border-top-right-radius:.25rem}.nav-tabs .nav-link:focus,.nav-tabs .nav-link:hover{border-color:#e9ecef #e9ecef #dee2e6}.nav-tabs .nav-link.disabled{color:#6c757d;background-color:transparent;border-color:transparent}.nav-tabs .nav-item.show .nav-link,.nav-tabs .nav-link.active{color:#495057;background-color:#fff;border-color:#dee2e6 #dee2e6 #fff}.nav-tabs .dropdown-menu{margin-top:-1px;border-top-left-radius:0;border-top-right-radius:0}.nav-pills .nav-link{border-radius:.25rem}.nav-pills .nav-link.active,.nav-pills .show>.nav-link{color:#fff;background-color:#007bff}.nav-fill .nav-item{flex:1 1 auto;text-align:center}.nav-justified .nav-item{flex-basis:0;flex-grow:1;text-align:center}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.navbar{position:relative;padding:.5rem 1rem}.navbar,.navbar .container,.navbar .container-fluid,.navbar .container-lg,.navbar .container-md,.navbar .container-sm,.navbar .container-xl{display:flex;flex-wrap:wrap;align-items:center;justify-content:space-between}.navbar-brand{display:inline-block;padding-top:.3125rem;padding-bottom:.3125rem;margin-right:1rem;font-size:1.25rem;line-height:inherit;white-space:nowrap}.navbar-brand:focus,.navbar-brand:hover{text-decoration:none}.navbar-nav{display:flex;flex-direction:column;padding-left:0;margin-bottom:0;list-style:none}.navbar-nav .nav-link{padding-right:0;padding-left:0}.navbar-nav .dropdown-menu{position:static;float:none}.navbar-text{display:inline-block;padding-top:.5rem;padding-bottom:.5rem}.navbar-collapse{flex-basis:100%;flex-grow:1;align-items:center}.navbar-toggler{padding:.25rem .75rem;font-size:1.25rem;line-height:1;background-color:transparent;border:1px solid transparent;border-radius:.25rem}.navbar-toggler:focus,.navbar-toggler:hover{text-decoration:none}.navbar-toggler-icon{display:inline-block;width:1.5em;height:1.5em;vertical-align:middle;content:"";background:no-repeat 50%;background-size:100% 100%}@media (max-width:539.98px){.navbar-expand-sm>.container,.navbar-expand-sm>.container-fluid,.navbar-expand-sm>.container-lg,.navbar-expand-sm>.container-md,.navbar-expand-sm>.container-sm,.navbar-expand-sm>.container-xl{padding-right:0;padding-left:0}}@media (min-width:540px){.navbar-expand-sm{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-sm .navbar-nav{flex-direction:row}.navbar-expand-sm .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-sm .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-sm>.container,.navbar-expand-sm>.container-fluid,.navbar-expand-sm>.container-lg,.navbar-expand-sm>.container-md,.navbar-expand-sm>.container-sm,.navbar-expand-sm>.container-xl{flex-wrap:nowrap}.navbar-expand-sm .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-sm .navbar-toggler{display:none}}@media (max-width:719.98px){.navbar-expand-md>.container,.navbar-expand-md>.container-fluid,.navbar-expand-md>.container-lg,.navbar-expand-md>.container-md,.navbar-expand-md>.container-sm,.navbar-expand-md>.container-xl{padding-right:0;padding-left:0}}@media (min-width:720px){.navbar-expand-md{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-md .navbar-nav{flex-direction:row}.navbar-expand-md .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-md .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-md>.container,.navbar-expand-md>.container-fluid,.navbar-expand-md>.container-lg,.navbar-expand-md>.container-md,.navbar-expand-md>.container-sm,.navbar-expand-md>.container-xl{flex-wrap:nowrap}.navbar-expand-md .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-md .navbar-toggler{display:none}}@media (max-width:959.98px){.navbar-expand-lg>.container,.navbar-expand-lg>.container-fluid,.navbar-expand-lg>.container-lg,.navbar-expand-lg>.container-md,.navbar-expand-lg>.container-sm,.navbar-expand-lg>.container-xl{padding-right:0;padding-left:0}}@media (min-width:960px){.navbar-expand-lg{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-lg .navbar-nav{flex-direction:row}.navbar-expand-lg .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-lg .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-lg>.container,.navbar-expand-lg>.container-fluid,.navbar-expand-lg>.container-lg,.navbar-expand-lg>.container-md,.navbar-expand-lg>.container-sm,.navbar-expand-lg>.container-xl{flex-wrap:nowrap}.navbar-expand-lg .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-lg .navbar-toggler{display:none}}@media (max-width:1199.98px){.navbar-expand-xl>.container,.navbar-expand-xl>.container-fluid,.navbar-expand-xl>.container-lg,.navbar-expand-xl>.container-md,.navbar-expand-xl>.container-sm,.navbar-expand-xl>.container-xl{padding-right:0;padding-left:0}}@media (min-width:1200px){.navbar-expand-xl{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-xl .navbar-nav{flex-direction:row}.navbar-expand-xl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xl .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-xl>.container,.navbar-expand-xl>.container-fluid,.navbar-expand-xl>.container-lg,.navbar-expand-xl>.container-md,.navbar-expand-xl>.container-sm,.navbar-expand-xl>.container-xl{flex-wrap:nowrap}.navbar-expand-xl .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-xl .navbar-toggler{display:none}}.navbar-expand{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand>.container,.navbar-expand>.container-fluid,.navbar-expand>.container-lg,.navbar-expand>.container-md,.navbar-expand>.container-sm,.navbar-expand>.container-xl{padding-right:0;padding-left:0}.navbar-expand .navbar-nav{flex-direction:row}.navbar-expand .navbar-nav .dropdown-menu{position:absolute}.navbar-expand .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand>.container,.navbar-expand>.container-fluid,.navbar-expand>.container-lg,.navbar-expand>.container-md,.navbar-expand>.container-sm,.navbar-expand>.container-xl{flex-wrap:nowrap}.navbar-expand .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand .navbar-toggler{display:none}.navbar-light .navbar-brand,.navbar-light .navbar-brand:focus,.navbar-light .navbar-brand:hover{color:rgba(0,0,0,.9)}.navbar-light .navbar-nav .nav-link{color:rgba(0,0,0,.5)}.navbar-light .navbar-nav .nav-link:focus,.navbar-light .navbar-nav .nav-link:hover{color:rgba(0,0,0,.7)}.navbar-light .navbar-nav .nav-link.disabled{color:rgba(0,0,0,.3)}.navbar-light .navbar-nav .active>.nav-link,.navbar-light .navbar-nav .nav-link.active,.navbar-light .navbar-nav .nav-link.show,.navbar-light .navbar-nav .show>.nav-link{color:rgba(0,0,0,.9)}.navbar-light .navbar-toggler{color:rgba(0,0,0,.5);border-color:rgba(0,0,0,.1)}.navbar-light .navbar-toggler-icon{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='30' height='30'%3E%3Cpath stroke='rgba(0,0,0,0.5)' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3E%3C/svg%3E")}.navbar-light .navbar-text{color:rgba(0,0,0,.5)}.navbar-light .navbar-text a,.navbar-light .navbar-text a:focus,.navbar-light .navbar-text a:hover{color:rgba(0,0,0,.9)}.navbar-dark .navbar-brand,.navbar-dark .navbar-brand:focus,.navbar-dark .navbar-brand:hover{color:#fff}.navbar-dark .navbar-nav .nav-link{color:hsla(0,0%,100%,.5)}.navbar-dark .navbar-nav .nav-link:focus,.navbar-dark .navbar-nav .nav-link:hover{color:hsla(0,0%,100%,.75)}.navbar-dark .navbar-nav .nav-link.disabled{color:hsla(0,0%,100%,.25)}.navbar-dark .navbar-nav .active>.nav-link,.navbar-dark .navbar-nav .nav-link.active,.navbar-dark .navbar-nav .nav-link.show,.navbar-dark .navbar-nav .show>.nav-link{color:#fff}.navbar-dark .navbar-toggler{color:hsla(0,0%,100%,.5);border-color:hsla(0,0%,100%,.1)}.navbar-dark .navbar-toggler-icon{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='30' height='30'%3E%3Cpath stroke='rgba(255,255,255,0.5)' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3E%3C/svg%3E")}.navbar-dark .navbar-text{color:hsla(0,0%,100%,.5)}.navbar-dark .navbar-text a,.navbar-dark .navbar-text a:focus,.navbar-dark .navbar-text a:hover{color:#fff}.card{position:relative;display:flex;flex-direction:column;min-width:0;word-wrap:break-word;background-color:#fff;background-clip:border-box;border:1px solid rgba(0,0,0,.125);border-radius:.25rem}.card>hr{margin-right:0;margin-left:0}.card>.list-group{border-top:inherit;border-bottom:inherit}.card>.list-group:first-child{border-top-width:0;border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px)}.card>.list-group:last-child{border-bottom-width:0;border-bottom-right-radius:calc(.25rem - 1px);border-bottom-left-radius:calc(.25rem - 1px)}.card-body{flex:1 1 auto;min-height:1px;padding:1.25rem}.card-title{margin-bottom:.75rem}.card-subtitle{margin-top:-.375rem}.card-subtitle,.card-text:last-child{margin-bottom:0}.card-link:hover{text-decoration:none}.card-link+.card-link{margin-left:1.25rem}.card-header{padding:.75rem 1.25rem;margin-bottom:0;background-color:rgba(0,0,0,.03);border-bottom:1px solid rgba(0,0,0,.125)}.card-header:first-child{border-radius:calc(.25rem - 1px) calc(.25rem - 1px) 0 0}.card-header+.list-group .list-group-item:first-child{border-top:0}.card-footer{padding:.75rem 1.25rem;background-color:rgba(0,0,0,.03);border-top:1px solid rgba(0,0,0,.125)}.card-footer:last-child{border-radius:0 0 calc(.25rem - 1px) calc(.25rem - 1px)}.card-header-tabs{margin-bottom:-.75rem;border-bottom:0}.card-header-pills,.card-header-tabs{margin-right:-.625rem;margin-left:-.625rem}.card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:1.25rem}.card-img,.card-img-bottom,.card-img-top{flex-shrink:0;width:100%}.card-img,.card-img-top{border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px)}.card-img,.card-img-bottom{border-bottom-right-radius:calc(.25rem - 1px);border-bottom-left-radius:calc(.25rem - 1px)}.card-deck .card{margin-bottom:15px}@media (min-width:540px){.card-deck{display:flex;flex-flow:row wrap;margin-right:-15px;margin-left:-15px}.card-deck .card{flex:1 0 0%;margin-right:15px;margin-bottom:0;margin-left:15px}}.card-group>.card{margin-bottom:15px}@media (min-width:540px){.card-group{display:flex;flex-flow:row wrap}.card-group>.card{flex:1 0 0%;margin-bottom:0}.card-group>.card+.card{margin-left:0;border-left:0}.card-group>.card:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.card-group>.card:not(:last-child) .card-header,.card-group>.card:not(:last-child) .card-img-top{border-top-right-radius:0}.card-group>.card:not(:last-child) .card-footer,.card-group>.card:not(:last-child) .card-img-bottom{border-bottom-right-radius:0}.card-group>.card:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.card-group>.card:not(:first-child) .card-header,.card-group>.card:not(:first-child) .card-img-top{border-top-left-radius:0}.card-group>.card:not(:first-child) .card-footer,.card-group>.card:not(:first-child) .card-img-bottom{border-bottom-left-radius:0}}.card-columns .card{margin-bottom:.75rem}@media (min-width:540px){.card-columns{column-count:3;column-gap:1.25rem;orphans:1;widows:1}.card-columns .card{display:inline-block;width:100%}}.accordion>.card{overflow:hidden}.accordion>.card:not(:last-of-type){border-bottom:0;border-bottom-right-radius:0;border-bottom-left-radius:0}.accordion>.card:not(:first-of-type){border-top-left-radius:0;border-top-right-radius:0}.accordion>.card>.card-header{border-radius:0;margin-bottom:-1px}.breadcrumb{flex-wrap:wrap;padding:.75rem 1rem;margin-bottom:1rem;list-style:none;background-color:#e9ecef;border-radius:.25rem}.breadcrumb,.breadcrumb-item{display:flex}.breadcrumb-item+.breadcrumb-item{padding-left:.5rem}.breadcrumb-item+.breadcrumb-item:before{display:inline-block;padding-right:.5rem;color:#6c757d;content:"/"}.breadcrumb-item+.breadcrumb-item:hover:before{text-decoration:underline;text-decoration:none}.breadcrumb-item.active{color:#6c757d}.pagination{display:flex;padding-left:0;list-style:none;border-radius:.25rem}.page-link{position:relative;display:block;padding:.5rem .75rem;margin-left:-1px;line-height:1.25;color:#007bff;background-color:#fff;border:1px solid #dee2e6}.page-link:hover{z-index:2;color:#0056b3;text-decoration:none;background-color:#e9ecef;border-color:#dee2e6}.page-link:focus{z-index:3;outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.page-item:first-child .page-link{margin-left:0;border-top-left-radius:.25rem;border-bottom-left-radius:.25rem}.page-item:last-child .page-link{border-top-right-radius:.25rem;border-bottom-right-radius:.25rem}.page-item.active .page-link{z-index:3;color:#fff;background-color:#007bff;border-color:#007bff}.page-item.disabled .page-link{color:#6c757d;pointer-events:none;cursor:auto;background-color:#fff;border-color:#dee2e6}.pagination-lg .page-link{padding:.75rem 1.5rem;font-size:1.25rem;line-height:1.5}.pagination-lg .page-item:first-child .page-link{border-top-left-radius:.3rem;border-bottom-left-radius:.3rem}.pagination-lg .page-item:last-child .page-link{border-top-right-radius:.3rem;border-bottom-right-radius:.3rem}.pagination-sm .page-link{padding:.25rem .5rem;font-size:.875rem;line-height:1.5}.pagination-sm .page-item:first-child .page-link{border-top-left-radius:.2rem;border-bottom-left-radius:.2rem}.pagination-sm .page-item:last-child .page-link{border-top-right-radius:.2rem;border-bottom-right-radius:.2rem}.badge{display:inline-block;padding:.25em .4em;font-size:75%;font-weight:700;line-height:1;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25rem;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.badge{transition:none}}a.badge:focus,a.badge:hover{text-decoration:none}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.badge-pill{padding-right:.6em;padding-left:.6em;border-radius:10rem}.badge-primary{color:#fff;background-color:#007bff}a.badge-primary:focus,a.badge-primary:hover{color:#fff;background-color:#0062cc}a.badge-primary.focus,a.badge-primary:focus{outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.5)}.badge-secondary{color:#fff;background-color:#6c757d}a.badge-secondary:focus,a.badge-secondary:hover{color:#fff;background-color:#545b62}a.badge-secondary.focus,a.badge-secondary:focus{outline:0;box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.badge-success{color:#fff;background-color:#28a745}a.badge-success:focus,a.badge-success:hover{color:#fff;background-color:#1e7e34}a.badge-success.focus,a.badge-success:focus{outline:0;box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.badge-info{color:#fff;background-color:#17a2b8}a.badge-info:focus,a.badge-info:hover{color:#fff;background-color:#117a8b}a.badge-info.focus,a.badge-info:focus{outline:0;box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.badge-warning{color:#212529;background-color:#ffc107}a.badge-warning:focus,a.badge-warning:hover{color:#212529;background-color:#d39e00}a.badge-warning.focus,a.badge-warning:focus{outline:0;box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.badge-danger{color:#fff;background-color:#dc3545}a.badge-danger:focus,a.badge-danger:hover{color:#fff;background-color:#bd2130}a.badge-danger.focus,a.badge-danger:focus{outline:0;box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.badge-light{color:#212529;background-color:#f8f9fa}a.badge-light:focus,a.badge-light:hover{color:#212529;background-color:#dae0e5}a.badge-light.focus,a.badge-light:focus{outline:0;box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.badge-dark{color:#fff;background-color:#343a40}a.badge-dark:focus,a.badge-dark:hover{color:#fff;background-color:#1d2124}a.badge-dark.focus,a.badge-dark:focus{outline:0;box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.jumbotron{padding:2rem 1rem;margin-bottom:2rem;background-color:#e9ecef;border-radius:.3rem}@media (min-width:540px){.jumbotron{padding:4rem 2rem}}.jumbotron-fluid{padding-right:0;padding-left:0;border-radius:0}.alert{position:relative;padding:.75rem 1.25rem;margin-bottom:1rem;border:1px solid transparent;border-radius:.25rem}.alert-heading{color:inherit}.alert-link{font-weight:700}.alert-dismissible{padding-right:4rem}.alert-dismissible .close{position:absolute;top:0;right:0;padding:.75rem 1.25rem;color:inherit}.alert-primary{color:#004085;background-color:#cce5ff;border-color:#b8daff}.alert-primary hr{border-top-color:#9fcdff}.alert-primary .alert-link{color:#002752}.alert-secondary{color:#383d41;background-color:#e2e3e5;border-color:#d6d8db}.alert-secondary hr{border-top-color:#c8cbcf}.alert-secondary .alert-link{color:#202326}.alert-success{color:#155724;background-color:#d4edda;border-color:#c3e6cb}.alert-success hr{border-top-color:#b1dfbb}.alert-success .alert-link{color:#0b2e13}.alert-info{color:#0c5460;background-color:#d1ecf1;border-color:#bee5eb}.alert-info hr{border-top-color:#abdde5}.alert-info .alert-link{color:#062c33}.alert-warning{color:#856404;background-color:#fff3cd;border-color:#ffeeba}.alert-warning hr{border-top-color:#ffe8a1}.alert-warning .alert-link{color:#533f03}.alert-danger{color:#721c24;background-color:#f8d7da;border-color:#f5c6cb}.alert-danger hr{border-top-color:#f1b0b7}.alert-danger .alert-link{color:#491217}.alert-light{color:#818182;background-color:#fefefe;border-color:#fdfdfe}.alert-light hr{border-top-color:#ececf6}.alert-light .alert-link{color:#686868}.alert-dark{color:#1b1e21;background-color:#d6d8d9;border-color:#c6c8ca}.alert-dark hr{border-top-color:#b9bbbe}.alert-dark .alert-link{color:#040505}@keyframes progress-bar-stripes{0%{background-position:1rem 0}to{background-position:0 0}}.progress{height:1rem;line-height:0;font-size:.75rem;background-color:#e9ecef;border-radius:.25rem}.progress,.progress-bar{display:flex;overflow:hidden}.progress-bar{flex-direction:column;justify-content:center;color:#fff;text-align:center;white-space:nowrap;background-color:#007bff;transition:width .6s ease}@media (prefers-reduced-motion:reduce){.progress-bar{transition:none}}.progress-bar-striped{background-image:linear-gradient(45deg,hsla(0,0%,100%,.15) 25%,transparent 0,transparent 50%,hsla(0,0%,100%,.15) 0,hsla(0,0%,100%,.15) 75%,transparent 0,transparent);background-size:1rem 1rem}.progress-bar-animated{animation:progress-bar-stripes 1s linear infinite}@media (prefers-reduced-motion:reduce){.progress-bar-animated{animation:none}}.media{display:flex;align-items:flex-start}.media-body{flex:1}.list-group{display:flex;flex-direction:column;padding-left:0;margin-bottom:0;border-radius:.25rem}.list-group-item-action{width:100%;color:#495057;text-align:inherit}.list-group-item-action:focus,.list-group-item-action:hover{z-index:1;color:#495057;text-decoration:none;background-color:#f8f9fa}.list-group-item-action:active{color:#212529;background-color:#e9ecef}.list-group-item{position:relative;display:block;padding:.75rem 1.25rem;background-color:#fff;border:1px solid rgba(0,0,0,.125)}.list-group-item:first-child{border-top-left-radius:inherit;border-top-right-radius:inherit}.list-group-item:last-child{border-bottom-right-radius:inherit;border-bottom-left-radius:inherit}.list-group-item.disabled,.list-group-item:disabled{color:#6c757d;pointer-events:none;background-color:#fff}.list-group-item.active{z-index:2;color:#fff;background-color:#007bff;border-color:#007bff}.list-group-item+.list-group-item{border-top-width:0}.list-group-item+.list-group-item.active{margin-top:-1px;border-top-width:1px}.list-group-horizontal{flex-direction:row}.list-group-horizontal>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal>.list-group-item.active{margin-top:0}.list-group-horizontal>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}@media (min-width:540px){.list-group-horizontal-sm{flex-direction:row}.list-group-horizontal-sm>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-sm>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-sm>.list-group-item.active{margin-top:0}.list-group-horizontal-sm>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-sm>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media (min-width:720px){.list-group-horizontal-md{flex-direction:row}.list-group-horizontal-md>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-md>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-md>.list-group-item.active{margin-top:0}.list-group-horizontal-md>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-md>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media (min-width:960px){.list-group-horizontal-lg{flex-direction:row}.list-group-horizontal-lg>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-lg>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-lg>.list-group-item.active{margin-top:0}.list-group-horizontal-lg>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-lg>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media (min-width:1200px){.list-group-horizontal-xl{flex-direction:row}.list-group-horizontal-xl>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-xl>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-xl>.list-group-item.active{margin-top:0}.list-group-horizontal-xl>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-xl>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}.list-group-flush{border-radius:0}.list-group-flush>.list-group-item{border-width:0 0 1px}.list-group-flush>.list-group-item:last-child{border-bottom-width:0}.list-group-item-primary{color:#004085;background-color:#b8daff}.list-group-item-primary.list-group-item-action:focus,.list-group-item-primary.list-group-item-action:hover{color:#004085;background-color:#9fcdff}.list-group-item-primary.list-group-item-action.active{color:#fff;background-color:#004085;border-color:#004085}.list-group-item-secondary{color:#383d41;background-color:#d6d8db}.list-group-item-secondary.list-group-item-action:focus,.list-group-item-secondary.list-group-item-action:hover{color:#383d41;background-color:#c8cbcf}.list-group-item-secondary.list-group-item-action.active{color:#fff;background-color:#383d41;border-color:#383d41}.list-group-item-success{color:#155724;background-color:#c3e6cb}.list-group-item-success.list-group-item-action:focus,.list-group-item-success.list-group-item-action:hover{color:#155724;background-color:#b1dfbb}.list-group-item-success.list-group-item-action.active{color:#fff;background-color:#155724;border-color:#155724}.list-group-item-info{color:#0c5460;background-color:#bee5eb}.list-group-item-info.list-group-item-action:focus,.list-group-item-info.list-group-item-action:hover{color:#0c5460;background-color:#abdde5}.list-group-item-info.list-group-item-action.active{color:#fff;background-color:#0c5460;border-color:#0c5460}.list-group-item-warning{color:#856404;background-color:#ffeeba}.list-group-item-warning.list-group-item-action:focus,.list-group-item-warning.list-group-item-action:hover{color:#856404;background-color:#ffe8a1}.list-group-item-warning.list-group-item-action.active{color:#fff;background-color:#856404;border-color:#856404}.list-group-item-danger{color:#721c24;background-color:#f5c6cb}.list-group-item-danger.list-group-item-action:focus,.list-group-item-danger.list-group-item-action:hover{color:#721c24;background-color:#f1b0b7}.list-group-item-danger.list-group-item-action.active{color:#fff;background-color:#721c24;border-color:#721c24}.list-group-item-light{color:#818182;background-color:#fdfdfe}.list-group-item-light.list-group-item-action:focus,.list-group-item-light.list-group-item-action:hover{color:#818182;background-color:#ececf6}.list-group-item-light.list-group-item-action.active{color:#fff;background-color:#818182;border-color:#818182}.list-group-item-dark{color:#1b1e21;background-color:#c6c8ca}.list-group-item-dark.list-group-item-action:focus,.list-group-item-dark.list-group-item-action:hover{color:#1b1e21;background-color:#b9bbbe}.list-group-item-dark.list-group-item-action.active{color:#fff;background-color:#1b1e21;border-color:#1b1e21}.close{float:right;font-size:1.5rem;font-weight:700;line-height:1;color:#000;text-shadow:0 1px 0 #fff;opacity:.5}.close:hover{color:#000;text-decoration:none}.close:not(:disabled):not(.disabled):focus,.close:not(:disabled):not(.disabled):hover{opacity:.75}button.close{padding:0;background-color:transparent;border:0}a.close.disabled{pointer-events:none}.toast{max-width:350px;overflow:hidden;font-size:.875rem;background-color:hsla(0,0%,100%,.85);background-clip:padding-box;border:1px solid rgba(0,0,0,.1);box-shadow:0 .25rem .75rem rgba(0,0,0,.1);backdrop-filter:blur(10px);opacity:0;border-radius:.25rem}.toast:not(:last-child){margin-bottom:.75rem}.toast.showing{opacity:1}.toast.show{display:block;opacity:1}.toast.hide{display:none}.toast-header{display:flex;align-items:center;padding:.25rem .75rem;color:#6c757d;background-color:hsla(0,0%,100%,.85);background-clip:padding-box;border-bottom:1px solid rgba(0,0,0,.05)}.toast-body{padding:.75rem}.modal-open{overflow:hidden}.modal-open .modal{overflow-x:hidden;overflow-y:auto}.modal{position:fixed;top:0;left:0;z-index:1050;display:none;width:100%;height:100%;overflow:hidden;outline:0}.modal-dialog{position:relative;width:auto;margin:.5rem;pointer-events:none}.modal.fade .modal-dialog{transition:transform .3s ease-out;transform:translateY(-50px)}@media (prefers-reduced-motion:reduce){.modal.fade .modal-dialog{transition:none}}.modal.show .modal-dialog{transform:none}.modal.modal-static .modal-dialog{transform:scale(1.02)}.modal-dialog-scrollable{display:flex;max-height:calc(100% - 1rem)}.modal-dialog-scrollable .modal-content{max-height:calc(100vh - 1rem);overflow:hidden}.modal-dialog-scrollable .modal-footer,.modal-dialog-scrollable .modal-header{flex-shrink:0}.modal-dialog-scrollable .modal-body{overflow-y:auto}.modal-dialog-centered{display:flex;align-items:center;min-height:calc(100% - 1rem)}.modal-dialog-centered:before{display:block;height:calc(100vh - 1rem);height:min-content;content:""}.modal-dialog-centered.modal-dialog-scrollable{flex-direction:column;justify-content:center;height:100%}.modal-dialog-centered.modal-dialog-scrollable .modal-content{max-height:none}.modal-dialog-centered.modal-dialog-scrollable:before{content:none}.modal-content{position:relative;display:flex;flex-direction:column;width:100%;pointer-events:auto;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.2);border-radius:.3rem;outline:0}.modal-backdrop{position:fixed;top:0;left:0;z-index:1040;width:100vw;height:100vh;background-color:#000}.modal-backdrop.fade{opacity:0}.modal-backdrop.show{opacity:.5}.modal-header{display:flex;align-items:flex-start;justify-content:space-between;padding:1rem;border-bottom:1px solid #dee2e6;border-top-left-radius:calc(.3rem - 1px);border-top-right-radius:calc(.3rem - 1px)}.modal-header .close{padding:1rem;margin:-1rem -1rem -1rem auto}.modal-title{margin-bottom:0;line-height:1.5}.modal-body{position:relative;flex:1 1 auto;padding:1rem}.modal-footer{display:flex;flex-wrap:wrap;align-items:center;justify-content:flex-end;padding:.75rem;border-top:1px solid #dee2e6;border-bottom-right-radius:calc(.3rem - 1px);border-bottom-left-radius:calc(.3rem - 1px)}.modal-footer>*{margin:.25rem}.modal-scrollbar-measure{position:absolute;top:-9999px;width:50px;height:50px;overflow:scroll}@media (min-width:540px){.modal-dialog{max-width:500px;margin:1.75rem auto}.modal-dialog-scrollable{max-height:calc(100% - 3.5rem)}.modal-dialog-scrollable .modal-content{max-height:calc(100vh - 3.5rem)}.modal-dialog-centered{min-height:calc(100% - 3.5rem)}.modal-dialog-centered:before{height:calc(100vh - 3.5rem);height:min-content}.modal-sm{max-width:300px}}@media (min-width:960px){.modal-lg,.modal-xl{max-width:800px}}@media (min-width:1200px){.modal-xl{max-width:1140px}}.tooltip{position:absolute;z-index:1070;display:block;margin:0;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;white-space:normal;line-break:auto;font-size:.875rem;word-wrap:break-word;opacity:0}.tooltip.show{opacity:.9}.tooltip .arrow{position:absolute;display:block;width:.8rem;height:.4rem}.tooltip .arrow:before{position:absolute;content:"";border-color:transparent;border-style:solid}.bs-tooltip-auto[x-placement^=top],.bs-tooltip-top{padding:.4rem 0}.bs-tooltip-auto[x-placement^=top] .arrow,.bs-tooltip-top .arrow{bottom:0}.bs-tooltip-auto[x-placement^=top] .arrow:before,.bs-tooltip-top .arrow:before{top:0;border-width:.4rem .4rem 0;border-top-color:#000}.bs-tooltip-auto[x-placement^=right],.bs-tooltip-right{padding:0 .4rem}.bs-tooltip-auto[x-placement^=right] .arrow,.bs-tooltip-right .arrow{left:0;width:.4rem;height:.8rem}.bs-tooltip-auto[x-placement^=right] .arrow:before,.bs-tooltip-right .arrow:before{right:0;border-width:.4rem .4rem .4rem 0;border-right-color:#000}.bs-tooltip-auto[x-placement^=bottom],.bs-tooltip-bottom{padding:.4rem 0}.bs-tooltip-auto[x-placement^=bottom] .arrow,.bs-tooltip-bottom .arrow{top:0}.bs-tooltip-auto[x-placement^=bottom] .arrow:before,.bs-tooltip-bottom .arrow:before{bottom:0;border-width:0 .4rem .4rem;border-bottom-color:#000}.bs-tooltip-auto[x-placement^=left],.bs-tooltip-left{padding:0 .4rem}.bs-tooltip-auto[x-placement^=left] .arrow,.bs-tooltip-left .arrow{right:0;width:.4rem;height:.8rem}.bs-tooltip-auto[x-placement^=left] .arrow:before,.bs-tooltip-left .arrow:before{left:0;border-width:.4rem 0 .4rem .4rem;border-left-color:#000}.tooltip-inner{max-width:200px;padding:.25rem .5rem;color:#fff;text-align:center;background-color:#000;border-radius:.25rem}.popover{top:0;left:0;z-index:1060;max-width:276px;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;white-space:normal;line-break:auto;font-size:.875rem;word-wrap:break-word;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.2);border-radius:.3rem}.popover,.popover .arrow{position:absolute;display:block}.popover .arrow{width:1rem;height:.5rem;margin:0 .3rem}.popover .arrow:after,.popover .arrow:before{position:absolute;display:block;content:"";border-color:transparent;border-style:solid}.bs-popover-auto[x-placement^=top],.bs-popover-top{margin-bottom:.5rem}.bs-popover-auto[x-placement^=top]>.arrow,.bs-popover-top>.arrow{bottom:calc(-.5rem - 1px)}.bs-popover-auto[x-placement^=top]>.arrow:before,.bs-popover-top>.arrow:before{bottom:0;border-width:.5rem .5rem 0;border-top-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=top]>.arrow:after,.bs-popover-top>.arrow:after{bottom:1px;border-width:.5rem .5rem 0;border-top-color:#fff}.bs-popover-auto[x-placement^=right],.bs-popover-right{margin-left:.5rem}.bs-popover-auto[x-placement^=right]>.arrow,.bs-popover-right>.arrow{left:calc(-.5rem - 1px);width:.5rem;height:1rem;margin:.3rem 0}.bs-popover-auto[x-placement^=right]>.arrow:before,.bs-popover-right>.arrow:before{left:0;border-width:.5rem .5rem .5rem 0;border-right-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=right]>.arrow:after,.bs-popover-right>.arrow:after{left:1px;border-width:.5rem .5rem .5rem 0;border-right-color:#fff}.bs-popover-auto[x-placement^=bottom],.bs-popover-bottom{margin-top:.5rem}.bs-popover-auto[x-placement^=bottom]>.arrow,.bs-popover-bottom>.arrow{top:calc(-.5rem - 1px)}.bs-popover-auto[x-placement^=bottom]>.arrow:before,.bs-popover-bottom>.arrow:before{top:0;border-width:0 .5rem .5rem;border-bottom-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=bottom]>.arrow:after,.bs-popover-bottom>.arrow:after{top:1px;border-width:0 .5rem .5rem;border-bottom-color:#fff}.bs-popover-auto[x-placement^=bottom] .popover-header:before,.bs-popover-bottom .popover-header:before{position:absolute;top:0;left:50%;display:block;width:1rem;margin-left:-.5rem;content:"";border-bottom:1px solid #f7f7f7}.bs-popover-auto[x-placement^=left],.bs-popover-left{margin-right:.5rem}.bs-popover-auto[x-placement^=left]>.arrow,.bs-popover-left>.arrow{right:calc(-.5rem - 1px);width:.5rem;height:1rem;margin:.3rem 0}.bs-popover-auto[x-placement^=left]>.arrow:before,.bs-popover-left>.arrow:before{right:0;border-width:.5rem 0 .5rem .5rem;border-left-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=left]>.arrow:after,.bs-popover-left>.arrow:after{right:1px;border-width:.5rem 0 .5rem .5rem;border-left-color:#fff}.popover-header{padding:.5rem .75rem;margin-bottom:0;font-size:1rem;background-color:#f7f7f7;border-bottom:1px solid #ebebeb;border-top-left-radius:calc(.3rem - 1px);border-top-right-radius:calc(.3rem - 1px)}.popover-header:empty{display:none}.popover-body{padding:.5rem .75rem;color:#212529}.carousel{position:relative}.carousel.pointer-event{touch-action:pan-y}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner:after{display:block;clear:both;content:""}.carousel-item{position:relative;display:none;float:left;width:100%;margin-right:-100%;backface-visibility:hidden;transition:transform .6s ease-in-out}@media (prefers-reduced-motion:reduce){.carousel-item{transition:none}}.carousel-item-next,.carousel-item-prev,.carousel-item.active{display:block}.active.carousel-item-right,.carousel-item-next:not(.carousel-item-left){transform:translateX(100%)}.active.carousel-item-left,.carousel-item-prev:not(.carousel-item-right){transform:translateX(-100%)}.carousel-fade .carousel-item{opacity:0;transition-property:opacity;transform:none}.carousel-fade .carousel-item-next.carousel-item-left,.carousel-fade .carousel-item-prev.carousel-item-right,.carousel-fade .carousel-item.active{z-index:1;opacity:1}.carousel-fade .active.carousel-item-left,.carousel-fade .active.carousel-item-right{z-index:0;opacity:0;transition:opacity 0s .6s}@media (prefers-reduced-motion:reduce){.carousel-fade .active.carousel-item-left,.carousel-fade .active.carousel-item-right{transition:none}}.carousel-control-next,.carousel-control-prev{position:absolute;top:0;bottom:0;z-index:1;display:flex;align-items:center;justify-content:center;width:15%;color:#fff;text-align:center;opacity:.5;transition:opacity .15s ease}@media (prefers-reduced-motion:reduce){.carousel-control-next,.carousel-control-prev{transition:none}}.carousel-control-next:focus,.carousel-control-next:hover,.carousel-control-prev:focus,.carousel-control-prev:hover{color:#fff;text-decoration:none;outline:0;opacity:.9}.carousel-control-prev{left:0}.carousel-control-next{right:0}.carousel-control-next-icon,.carousel-control-prev-icon{display:inline-block;width:20px;height:20px;background:no-repeat 50%/100% 100%}.carousel-control-prev-icon{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='%23fff' width='8' height='8'%3E%3Cpath d='M5.25 0l-4 4 4 4 1.5-1.5L4.25 4l2.5-2.5L5.25 0z'/%3E%3C/svg%3E")}.carousel-control-next-icon{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='%23fff' width='8' height='8'%3E%3Cpath d='M2.75 0l-1.5 1.5L3.75 4l-2.5 2.5L2.75 8l4-4-4-4z'/%3E%3C/svg%3E")}.carousel-indicators{position:absolute;right:0;bottom:0;left:0;z-index:15;display:flex;justify-content:center;padding-left:0;margin-right:15%;margin-left:15%;list-style:none}.carousel-indicators li{box-sizing:content-box;flex:0 1 auto;width:30px;height:3px;margin-right:3px;margin-left:3px;text-indent:-999px;cursor:pointer;background-color:#fff;background-clip:padding-box;border-top:10px solid transparent;border-bottom:10px solid transparent;opacity:.5;transition:opacity .6s ease}@media (prefers-reduced-motion:reduce){.carousel-indicators li{transition:none}}.carousel-indicators .active{opacity:1}.carousel-caption{position:absolute;right:15%;bottom:20px;left:15%;z-index:10;padding-top:20px;padding-bottom:20px;color:#fff;text-align:center}@keyframes spinner-border{to{transform:rotate(1turn)}}.spinner-border{display:inline-block;width:2rem;height:2rem;vertical-align:text-bottom;border:.25em solid;border-right:.25em solid transparent;border-radius:50%;animation:spinner-border .75s linear infinite}.spinner-border-sm{width:1rem;height:1rem;border-width:.2em}@keyframes spinner-grow{0%{transform:scale(0)}50%{opacity:1;transform:none}}.spinner-grow{display:inline-block;width:2rem;height:2rem;vertical-align:text-bottom;background-color:currentColor;border-radius:50%;opacity:0;animation:spinner-grow .75s linear infinite}.spinner-grow-sm{width:1rem;height:1rem}.align-baseline{vertical-align:baseline!important}.align-top{vertical-align:top!important}.align-middle{vertical-align:middle!important}.align-bottom{vertical-align:bottom!important}.align-text-bottom{vertical-align:text-bottom!important}.align-text-top{vertical-align:text-top!important}.bg-primary{background-color:#007bff!important}a.bg-primary:focus,a.bg-primary:hover,button.bg-primary:focus,button.bg-primary:hover{background-color:#0062cc!important}.bg-secondary{background-color:#6c757d!important}a.bg-secondary:focus,a.bg-secondary:hover,button.bg-secondary:focus,button.bg-secondary:hover{background-color:#545b62!important}.bg-success{background-color:#28a745!important}a.bg-success:focus,a.bg-success:hover,button.bg-success:focus,button.bg-success:hover{background-color:#1e7e34!important}.bg-info{background-color:#17a2b8!important}a.bg-info:focus,a.bg-info:hover,button.bg-info:focus,button.bg-info:hover{background-color:#117a8b!important}.bg-warning{background-color:#ffc107!important}a.bg-warning:focus,a.bg-warning:hover,button.bg-warning:focus,button.bg-warning:hover{background-color:#d39e00!important}.bg-danger{background-color:#dc3545!important}a.bg-danger:focus,a.bg-danger:hover,button.bg-danger:focus,button.bg-danger:hover{background-color:#bd2130!important}.bg-light{background-color:#f8f9fa!important}a.bg-light:focus,a.bg-light:hover,button.bg-light:focus,button.bg-light:hover{background-color:#dae0e5!important}.bg-dark{background-color:#343a40!important}a.bg-dark:focus,a.bg-dark:hover,button.bg-dark:focus,button.bg-dark:hover{background-color:#1d2124!important}.bg-white{background-color:#fff!important}.bg-transparent{background-color:transparent!important}.border{border:1px solid #dee2e6!important}.border-top{border-top:1px solid #dee2e6!important}.border-right{border-right:1px solid #dee2e6!important}.border-bottom{border-bottom:1px solid #dee2e6!important}.border-left{border-left:1px solid #dee2e6!important}.border-0{border:0!important}.border-top-0{border-top:0!important}.border-right-0{border-right:0!important}.border-bottom-0{border-bottom:0!important}.border-left-0{border-left:0!important}.border-primary{border-color:#007bff!important}.border-secondary{border-color:#6c757d!important}.border-success{border-color:#28a745!important}.border-info{border-color:#17a2b8!important}.border-warning{border-color:#ffc107!important}.border-danger{border-color:#dc3545!important}.border-light{border-color:#f8f9fa!important}.border-dark{border-color:#343a40!important}.border-white{border-color:#fff!important}.rounded-sm{border-radius:.2rem!important}.rounded{border-radius:.25rem!important}.rounded-top{border-top-left-radius:.25rem!important}.rounded-right,.rounded-top{border-top-right-radius:.25rem!important}.rounded-bottom,.rounded-right{border-bottom-right-radius:.25rem!important}.rounded-bottom,.rounded-left{border-bottom-left-radius:.25rem!important}.rounded-left{border-top-left-radius:.25rem!important}.rounded-lg{border-radius:.3rem!important}.rounded-circle{border-radius:50%!important}.rounded-pill{border-radius:50rem!important}.rounded-0{border-radius:0!important}.clearfix:after{display:block;clear:both;content:""}.d-none{display:none!important}.d-inline{display:inline!important}.d-inline-block{display:inline-block!important}.d-block{display:block!important}.d-table{display:table!important}.d-table-row{display:table-row!important}.d-table-cell{display:table-cell!important}.d-flex{display:flex!important}.d-inline-flex{display:inline-flex!important}@media (min-width:540px){.d-sm-none{display:none!important}.d-sm-inline{display:inline!important}.d-sm-inline-block{display:inline-block!important}.d-sm-block{display:block!important}.d-sm-table{display:table!important}.d-sm-table-row{display:table-row!important}.d-sm-table-cell{display:table-cell!important}.d-sm-flex{display:flex!important}.d-sm-inline-flex{display:inline-flex!important}}@media (min-width:720px){.d-md-none{display:none!important}.d-md-inline{display:inline!important}.d-md-inline-block{display:inline-block!important}.d-md-block{display:block!important}.d-md-table{display:table!important}.d-md-table-row{display:table-row!important}.d-md-table-cell{display:table-cell!important}.d-md-flex{display:flex!important}.d-md-inline-flex{display:inline-flex!important}}@media (min-width:960px){.d-lg-none{display:none!important}.d-lg-inline{display:inline!important}.d-lg-inline-block{display:inline-block!important}.d-lg-block{display:block!important}.d-lg-table{display:table!important}.d-lg-table-row{display:table-row!important}.d-lg-table-cell{display:table-cell!important}.d-lg-flex{display:flex!important}.d-lg-inline-flex{display:inline-flex!important}}@media (min-width:1200px){.d-xl-none{display:none!important}.d-xl-inline{display:inline!important}.d-xl-inline-block{display:inline-block!important}.d-xl-block{display:block!important}.d-xl-table{display:table!important}.d-xl-table-row{display:table-row!important}.d-xl-table-cell{display:table-cell!important}.d-xl-flex{display:flex!important}.d-xl-inline-flex{display:inline-flex!important}}@media print{.d-print-none{display:none!important}.d-print-inline{display:inline!important}.d-print-inline-block{display:inline-block!important}.d-print-block{display:block!important}.d-print-table{display:table!important}.d-print-table-row{display:table-row!important}.d-print-table-cell{display:table-cell!important}.d-print-flex{display:flex!important}.d-print-inline-flex{display:inline-flex!important}}.embed-responsive{position:relative;display:block;width:100%;padding:0;overflow:hidden}.embed-responsive:before{display:block;content:""}.embed-responsive .embed-responsive-item,.embed-responsive embed,.embed-responsive iframe,.embed-responsive object,.embed-responsive video{position:absolute;top:0;bottom:0;left:0;width:100%;height:100%;border:0}.embed-responsive-21by9:before{padding-top:42.85714%}.embed-responsive-16by9:before{padding-top:56.25%}.embed-responsive-4by3:before{padding-top:75%}.embed-responsive-1by1:before{padding-top:100%}.flex-row{flex-direction:row!important}.flex-column{flex-direction:column!important}.flex-row-reverse{flex-direction:row-reverse!important}.flex-column-reverse{flex-direction:column-reverse!important}.flex-wrap{flex-wrap:wrap!important}.flex-nowrap{flex-wrap:nowrap!important}.flex-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-fill{flex:1 1 auto!important}.flex-grow-0{flex-grow:0!important}.flex-grow-1{flex-grow:1!important}.flex-shrink-0{flex-shrink:0!important}.flex-shrink-1{flex-shrink:1!important}.justify-content-start{justify-content:flex-start!important}.justify-content-end{justify-content:flex-end!important}.justify-content-center{justify-content:center!important}.justify-content-between{justify-content:space-between!important}.justify-content-around{justify-content:space-around!important}.align-items-start{align-items:flex-start!important}.align-items-end{align-items:flex-end!important}.align-items-center{align-items:center!important}.align-items-baseline{align-items:baseline!important}.align-items-stretch{align-items:stretch!important}.align-content-start{align-content:flex-start!important}.align-content-end{align-content:flex-end!important}.align-content-center{align-content:center!important}.align-content-between{align-content:space-between!important}.align-content-around{align-content:space-around!important}.align-content-stretch{align-content:stretch!important}.align-self-auto{align-self:auto!important}.align-self-start{align-self:flex-start!important}.align-self-end{align-self:flex-end!important}.align-self-center{align-self:center!important}.align-self-baseline{align-self:baseline!important}.align-self-stretch{align-self:stretch!important}@media (min-width:540px){.flex-sm-row{flex-direction:row!important}.flex-sm-column{flex-direction:column!important}.flex-sm-row-reverse{flex-direction:row-reverse!important}.flex-sm-column-reverse{flex-direction:column-reverse!important}.flex-sm-wrap{flex-wrap:wrap!important}.flex-sm-nowrap{flex-wrap:nowrap!important}.flex-sm-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-sm-fill{flex:1 1 auto!important}.flex-sm-grow-0{flex-grow:0!important}.flex-sm-grow-1{flex-grow:1!important}.flex-sm-shrink-0{flex-shrink:0!important}.flex-sm-shrink-1{flex-shrink:1!important}.justify-content-sm-start{justify-content:flex-start!important}.justify-content-sm-end{justify-content:flex-end!important}.justify-content-sm-center{justify-content:center!important}.justify-content-sm-between{justify-content:space-between!important}.justify-content-sm-around{justify-content:space-around!important}.align-items-sm-start{align-items:flex-start!important}.align-items-sm-end{align-items:flex-end!important}.align-items-sm-center{align-items:center!important}.align-items-sm-baseline{align-items:baseline!important}.align-items-sm-stretch{align-items:stretch!important}.align-content-sm-start{align-content:flex-start!important}.align-content-sm-end{align-content:flex-end!important}.align-content-sm-center{align-content:center!important}.align-content-sm-between{align-content:space-between!important}.align-content-sm-around{align-content:space-around!important}.align-content-sm-stretch{align-content:stretch!important}.align-self-sm-auto{align-self:auto!important}.align-self-sm-start{align-self:flex-start!important}.align-self-sm-end{align-self:flex-end!important}.align-self-sm-center{align-self:center!important}.align-self-sm-baseline{align-self:baseline!important}.align-self-sm-stretch{align-self:stretch!important}}@media (min-width:720px){.flex-md-row{flex-direction:row!important}.flex-md-column{flex-direction:column!important}.flex-md-row-reverse{flex-direction:row-reverse!important}.flex-md-column-reverse{flex-direction:column-reverse!important}.flex-md-wrap{flex-wrap:wrap!important}.flex-md-nowrap{flex-wrap:nowrap!important}.flex-md-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-md-fill{flex:1 1 auto!important}.flex-md-grow-0{flex-grow:0!important}.flex-md-grow-1{flex-grow:1!important}.flex-md-shrink-0{flex-shrink:0!important}.flex-md-shrink-1{flex-shrink:1!important}.justify-content-md-start{justify-content:flex-start!important}.justify-content-md-end{justify-content:flex-end!important}.justify-content-md-center{justify-content:center!important}.justify-content-md-between{justify-content:space-between!important}.justify-content-md-around{justify-content:space-around!important}.align-items-md-start{align-items:flex-start!important}.align-items-md-end{align-items:flex-end!important}.align-items-md-center{align-items:center!important}.align-items-md-baseline{align-items:baseline!important}.align-items-md-stretch{align-items:stretch!important}.align-content-md-start{align-content:flex-start!important}.align-content-md-end{align-content:flex-end!important}.align-content-md-center{align-content:center!important}.align-content-md-between{align-content:space-between!important}.align-content-md-around{align-content:space-around!important}.align-content-md-stretch{align-content:stretch!important}.align-self-md-auto{align-self:auto!important}.align-self-md-start{align-self:flex-start!important}.align-self-md-end{align-self:flex-end!important}.align-self-md-center{align-self:center!important}.align-self-md-baseline{align-self:baseline!important}.align-self-md-stretch{align-self:stretch!important}}@media (min-width:960px){.flex-lg-row{flex-direction:row!important}.flex-lg-column{flex-direction:column!important}.flex-lg-row-reverse{flex-direction:row-reverse!important}.flex-lg-column-reverse{flex-direction:column-reverse!important}.flex-lg-wrap{flex-wrap:wrap!important}.flex-lg-nowrap{flex-wrap:nowrap!important}.flex-lg-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-lg-fill{flex:1 1 auto!important}.flex-lg-grow-0{flex-grow:0!important}.flex-lg-grow-1{flex-grow:1!important}.flex-lg-shrink-0{flex-shrink:0!important}.flex-lg-shrink-1{flex-shrink:1!important}.justify-content-lg-start{justify-content:flex-start!important}.justify-content-lg-end{justify-content:flex-end!important}.justify-content-lg-center{justify-content:center!important}.justify-content-lg-between{justify-content:space-between!important}.justify-content-lg-around{justify-content:space-around!important}.align-items-lg-start{align-items:flex-start!important}.align-items-lg-end{align-items:flex-end!important}.align-items-lg-center{align-items:center!important}.align-items-lg-baseline{align-items:baseline!important}.align-items-lg-stretch{align-items:stretch!important}.align-content-lg-start{align-content:flex-start!important}.align-content-lg-end{align-content:flex-end!important}.align-content-lg-center{align-content:center!important}.align-content-lg-between{align-content:space-between!important}.align-content-lg-around{align-content:space-around!important}.align-content-lg-stretch{align-content:stretch!important}.align-self-lg-auto{align-self:auto!important}.align-self-lg-start{align-self:flex-start!important}.align-self-lg-end{align-self:flex-end!important}.align-self-lg-center{align-self:center!important}.align-self-lg-baseline{align-self:baseline!important}.align-self-lg-stretch{align-self:stretch!important}}@media (min-width:1200px){.flex-xl-row{flex-direction:row!important}.flex-xl-column{flex-direction:column!important}.flex-xl-row-reverse{flex-direction:row-reverse!important}.flex-xl-column-reverse{flex-direction:column-reverse!important}.flex-xl-wrap{flex-wrap:wrap!important}.flex-xl-nowrap{flex-wrap:nowrap!important}.flex-xl-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-xl-fill{flex:1 1 auto!important}.flex-xl-grow-0{flex-grow:0!important}.flex-xl-grow-1{flex-grow:1!important}.flex-xl-shrink-0{flex-shrink:0!important}.flex-xl-shrink-1{flex-shrink:1!important}.justify-content-xl-start{justify-content:flex-start!important}.justify-content-xl-end{justify-content:flex-end!important}.justify-content-xl-center{justify-content:center!important}.justify-content-xl-between{justify-content:space-between!important}.justify-content-xl-around{justify-content:space-around!important}.align-items-xl-start{align-items:flex-start!important}.align-items-xl-end{align-items:flex-end!important}.align-items-xl-center{align-items:center!important}.align-items-xl-baseline{align-items:baseline!important}.align-items-xl-stretch{align-items:stretch!important}.align-content-xl-start{align-content:flex-start!important}.align-content-xl-end{align-content:flex-end!important}.align-content-xl-center{align-content:center!important}.align-content-xl-between{align-content:space-between!important}.align-content-xl-around{align-content:space-around!important}.align-content-xl-stretch{align-content:stretch!important}.align-self-xl-auto{align-self:auto!important}.align-self-xl-start{align-self:flex-start!important}.align-self-xl-end{align-self:flex-end!important}.align-self-xl-center{align-self:center!important}.align-self-xl-baseline{align-self:baseline!important}.align-self-xl-stretch{align-self:stretch!important}}.float-left{float:left!important}.float-right{float:right!important}.float-none{float:none!important}@media (min-width:540px){.float-sm-left{float:left!important}.float-sm-right{float:right!important}.float-sm-none{float:none!important}}@media (min-width:720px){.float-md-left{float:left!important}.float-md-right{float:right!important}.float-md-none{float:none!important}}@media (min-width:960px){.float-lg-left{float:left!important}.float-lg-right{float:right!important}.float-lg-none{float:none!important}}@media (min-width:1200px){.float-xl-left{float:left!important}.float-xl-right{float:right!important}.float-xl-none{float:none!important}}.user-select-all{user-select:all!important}.user-select-auto{user-select:auto!important}.user-select-none{user-select:none!important}.overflow-auto{overflow:auto!important}.overflow-hidden{overflow:hidden!important}.position-static{position:static!important}.position-relative{position:relative!important}.position-absolute{position:absolute!important}.position-fixed{position:fixed!important}.position-sticky{position:sticky!important}.fixed-top{top:0}.fixed-bottom,.fixed-top{position:fixed;right:0;left:0;z-index:1030}.fixed-bottom{bottom:0}@supports (position:sticky){.sticky-top{position:sticky;top:0;z-index:1020}}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);white-space:nowrap;border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;overflow:visible;clip:auto;white-space:normal}.shadow-sm{box-shadow:0 .125rem .25rem rgba(0,0,0,.075)!important}.shadow{box-shadow:0 .5rem 1rem rgba(0,0,0,.15)!important}.shadow-lg{box-shadow:0 1rem 3rem rgba(0,0,0,.175)!important}.shadow-none{box-shadow:none!important}.w-25{width:25%!important}.w-50{width:50%!important}.w-75{width:75%!important}.w-100{width:100%!important}.w-auto{width:auto!important}.h-25{height:25%!important}.h-50{height:50%!important}.h-75{height:75%!important}.h-100{height:100%!important}.h-auto{height:auto!important}.mw-100{max-width:100%!important}.mh-100{max-height:100%!important}.min-vw-100{min-width:100vw!important}.min-vh-100{min-height:100vh!important}.vw-100{width:100vw!important}.vh-100{height:100vh!important}.m-0{margin:0!important}.mt-0,.my-0{margin-top:0!important}.mr-0,.mx-0{margin-right:0!important}.mb-0,.my-0{margin-bottom:0!important}.ml-0,.mx-0{margin-left:0!important}.m-1{margin:.25rem!important}.mt-1,.my-1{margin-top:.25rem!important}.mr-1,.mx-1{margin-right:.25rem!important}.mb-1,.my-1{margin-bottom:.25rem!important}.ml-1,.mx-1{margin-left:.25rem!important}.m-2{margin:.5rem!important}.mt-2,.my-2{margin-top:.5rem!important}.mr-2,.mx-2{margin-right:.5rem!important}.mb-2,.my-2{margin-bottom:.5rem!important}.ml-2,.mx-2{margin-left:.5rem!important}.m-3{margin:1rem!important}.mt-3,.my-3{margin-top:1rem!important}.mr-3,.mx-3{margin-right:1rem!important}.mb-3,.my-3{margin-bottom:1rem!important}.ml-3,.mx-3{margin-left:1rem!important}.m-4{margin:1.5rem!important}.mt-4,.my-4{margin-top:1.5rem!important}.mr-4,.mx-4{margin-right:1.5rem!important}.mb-4,.my-4{margin-bottom:1.5rem!important}.ml-4,.mx-4{margin-left:1.5rem!important}.m-5{margin:3rem!important}.mt-5,.my-5{margin-top:3rem!important}.mr-5,.mx-5{margin-right:3rem!important}.mb-5,.my-5{margin-bottom:3rem!important}.ml-5,.mx-5{margin-left:3rem!important}.p-0{padding:0!important}.pt-0,.py-0{padding-top:0!important}.pr-0,.px-0{padding-right:0!important}.pb-0,.py-0{padding-bottom:0!important}.pl-0,.px-0{padding-left:0!important}.p-1{padding:.25rem!important}.pt-1,.py-1{padding-top:.25rem!important}.pr-1,.px-1{padding-right:.25rem!important}.pb-1,.py-1{padding-bottom:.25rem!important}.pl-1,.px-1{padding-left:.25rem!important}.p-2{padding:.5rem!important}.pt-2,.py-2{padding-top:.5rem!important}.pr-2,.px-2{padding-right:.5rem!important}.pb-2,.py-2{padding-bottom:.5rem!important}.pl-2,.px-2{padding-left:.5rem!important}.p-3{padding:1rem!important}.pt-3,.py-3{padding-top:1rem!important}.pr-3,.px-3{padding-right:1rem!important}.pb-3,.py-3{padding-bottom:1rem!important}.pl-3,.px-3{padding-left:1rem!important}.p-4{padding:1.5rem!important}.pt-4,.py-4{padding-top:1.5rem!important}.pr-4,.px-4{padding-right:1.5rem!important}.pb-4,.py-4{padding-bottom:1.5rem!important}.pl-4,.px-4{padding-left:1.5rem!important}.p-5{padding:3rem!important}.pt-5,.py-5{padding-top:3rem!important}.pr-5,.px-5{padding-right:3rem!important}.pb-5,.py-5{padding-bottom:3rem!important}.pl-5,.px-5{padding-left:3rem!important}.m-n1{margin:-.25rem!important}.mt-n1,.my-n1{margin-top:-.25rem!important}.mr-n1,.mx-n1{margin-right:-.25rem!important}.mb-n1,.my-n1{margin-bottom:-.25rem!important}.ml-n1,.mx-n1{margin-left:-.25rem!important}.m-n2{margin:-.5rem!important}.mt-n2,.my-n2{margin-top:-.5rem!important}.mr-n2,.mx-n2{margin-right:-.5rem!important}.mb-n2,.my-n2{margin-bottom:-.5rem!important}.ml-n2,.mx-n2{margin-left:-.5rem!important}.m-n3{margin:-1rem!important}.mt-n3,.my-n3{margin-top:-1rem!important}.mr-n3,.mx-n3{margin-right:-1rem!important}.mb-n3,.my-n3{margin-bottom:-1rem!important}.ml-n3,.mx-n3{margin-left:-1rem!important}.m-n4{margin:-1.5rem!important}.mt-n4,.my-n4{margin-top:-1.5rem!important}.mr-n4,.mx-n4{margin-right:-1.5rem!important}.mb-n4,.my-n4{margin-bottom:-1.5rem!important}.ml-n4,.mx-n4{margin-left:-1.5rem!important}.m-n5{margin:-3rem!important}.mt-n5,.my-n5{margin-top:-3rem!important}.mr-n5,.mx-n5{margin-right:-3rem!important}.mb-n5,.my-n5{margin-bottom:-3rem!important}.ml-n5,.mx-n5{margin-left:-3rem!important}.m-auto{margin:auto!important}.mt-auto,.my-auto{margin-top:auto!important}.mr-auto,.mx-auto{margin-right:auto!important}.mb-auto,.my-auto{margin-bottom:auto!important}.ml-auto,.mx-auto{margin-left:auto!important}@media (min-width:540px){.m-sm-0{margin:0!important}.mt-sm-0,.my-sm-0{margin-top:0!important}.mr-sm-0,.mx-sm-0{margin-right:0!important}.mb-sm-0,.my-sm-0{margin-bottom:0!important}.ml-sm-0,.mx-sm-0{margin-left:0!important}.m-sm-1{margin:.25rem!important}.mt-sm-1,.my-sm-1{margin-top:.25rem!important}.mr-sm-1,.mx-sm-1{margin-right:.25rem!important}.mb-sm-1,.my-sm-1{margin-bottom:.25rem!important}.ml-sm-1,.mx-sm-1{margin-left:.25rem!important}.m-sm-2{margin:.5rem!important}.mt-sm-2,.my-sm-2{margin-top:.5rem!important}.mr-sm-2,.mx-sm-2{margin-right:.5rem!important}.mb-sm-2,.my-sm-2{margin-bottom:.5rem!important}.ml-sm-2,.mx-sm-2{margin-left:.5rem!important}.m-sm-3{margin:1rem!important}.mt-sm-3,.my-sm-3{margin-top:1rem!important}.mr-sm-3,.mx-sm-3{margin-right:1rem!important}.mb-sm-3,.my-sm-3{margin-bottom:1rem!important}.ml-sm-3,.mx-sm-3{margin-left:1rem!important}.m-sm-4{margin:1.5rem!important}.mt-sm-4,.my-sm-4{margin-top:1.5rem!important}.mr-sm-4,.mx-sm-4{margin-right:1.5rem!important}.mb-sm-4,.my-sm-4{margin-bottom:1.5rem!important}.ml-sm-4,.mx-sm-4{margin-left:1.5rem!important}.m-sm-5{margin:3rem!important}.mt-sm-5,.my-sm-5{margin-top:3rem!important}.mr-sm-5,.mx-sm-5{margin-right:3rem!important}.mb-sm-5,.my-sm-5{margin-bottom:3rem!important}.ml-sm-5,.mx-sm-5{margin-left:3rem!important}.p-sm-0{padding:0!important}.pt-sm-0,.py-sm-0{padding-top:0!important}.pr-sm-0,.px-sm-0{padding-right:0!important}.pb-sm-0,.py-sm-0{padding-bottom:0!important}.pl-sm-0,.px-sm-0{padding-left:0!important}.p-sm-1{padding:.25rem!important}.pt-sm-1,.py-sm-1{padding-top:.25rem!important}.pr-sm-1,.px-sm-1{padding-right:.25rem!important}.pb-sm-1,.py-sm-1{padding-bottom:.25rem!important}.pl-sm-1,.px-sm-1{padding-left:.25rem!important}.p-sm-2{padding:.5rem!important}.pt-sm-2,.py-sm-2{padding-top:.5rem!important}.pr-sm-2,.px-sm-2{padding-right:.5rem!important}.pb-sm-2,.py-sm-2{padding-bottom:.5rem!important}.pl-sm-2,.px-sm-2{padding-left:.5rem!important}.p-sm-3{padding:1rem!important}.pt-sm-3,.py-sm-3{padding-top:1rem!important}.pr-sm-3,.px-sm-3{padding-right:1rem!important}.pb-sm-3,.py-sm-3{padding-bottom:1rem!important}.pl-sm-3,.px-sm-3{padding-left:1rem!important}.p-sm-4{padding:1.5rem!important}.pt-sm-4,.py-sm-4{padding-top:1.5rem!important}.pr-sm-4,.px-sm-4{padding-right:1.5rem!important}.pb-sm-4,.py-sm-4{padding-bottom:1.5rem!important}.pl-sm-4,.px-sm-4{padding-left:1.5rem!important}.p-sm-5{padding:3rem!important}.pt-sm-5,.py-sm-5{padding-top:3rem!important}.pr-sm-5,.px-sm-5{padding-right:3rem!important}.pb-sm-5,.py-sm-5{padding-bottom:3rem!important}.pl-sm-5,.px-sm-5{padding-left:3rem!important}.m-sm-n1{margin:-.25rem!important}.mt-sm-n1,.my-sm-n1{margin-top:-.25rem!important}.mr-sm-n1,.mx-sm-n1{margin-right:-.25rem!important}.mb-sm-n1,.my-sm-n1{margin-bottom:-.25rem!important}.ml-sm-n1,.mx-sm-n1{margin-left:-.25rem!important}.m-sm-n2{margin:-.5rem!important}.mt-sm-n2,.my-sm-n2{margin-top:-.5rem!important}.mr-sm-n2,.mx-sm-n2{margin-right:-.5rem!important}.mb-sm-n2,.my-sm-n2{margin-bottom:-.5rem!important}.ml-sm-n2,.mx-sm-n2{margin-left:-.5rem!important}.m-sm-n3{margin:-1rem!important}.mt-sm-n3,.my-sm-n3{margin-top:-1rem!important}.mr-sm-n3,.mx-sm-n3{margin-right:-1rem!important}.mb-sm-n3,.my-sm-n3{margin-bottom:-1rem!important}.ml-sm-n3,.mx-sm-n3{margin-left:-1rem!important}.m-sm-n4{margin:-1.5rem!important}.mt-sm-n4,.my-sm-n4{margin-top:-1.5rem!important}.mr-sm-n4,.mx-sm-n4{margin-right:-1.5rem!important}.mb-sm-n4,.my-sm-n4{margin-bottom:-1.5rem!important}.ml-sm-n4,.mx-sm-n4{margin-left:-1.5rem!important}.m-sm-n5{margin:-3rem!important}.mt-sm-n5,.my-sm-n5{margin-top:-3rem!important}.mr-sm-n5,.mx-sm-n5{margin-right:-3rem!important}.mb-sm-n5,.my-sm-n5{margin-bottom:-3rem!important}.ml-sm-n5,.mx-sm-n5{margin-left:-3rem!important}.m-sm-auto{margin:auto!important}.mt-sm-auto,.my-sm-auto{margin-top:auto!important}.mr-sm-auto,.mx-sm-auto{margin-right:auto!important}.mb-sm-auto,.my-sm-auto{margin-bottom:auto!important}.ml-sm-auto,.mx-sm-auto{margin-left:auto!important}}@media (min-width:720px){.m-md-0{margin:0!important}.mt-md-0,.my-md-0{margin-top:0!important}.mr-md-0,.mx-md-0{margin-right:0!important}.mb-md-0,.my-md-0{margin-bottom:0!important}.ml-md-0,.mx-md-0{margin-left:0!important}.m-md-1{margin:.25rem!important}.mt-md-1,.my-md-1{margin-top:.25rem!important}.mr-md-1,.mx-md-1{margin-right:.25rem!important}.mb-md-1,.my-md-1{margin-bottom:.25rem!important}.ml-md-1,.mx-md-1{margin-left:.25rem!important}.m-md-2{margin:.5rem!important}.mt-md-2,.my-md-2{margin-top:.5rem!important}.mr-md-2,.mx-md-2{margin-right:.5rem!important}.mb-md-2,.my-md-2{margin-bottom:.5rem!important}.ml-md-2,.mx-md-2{margin-left:.5rem!important}.m-md-3{margin:1rem!important}.mt-md-3,.my-md-3{margin-top:1rem!important}.mr-md-3,.mx-md-3{margin-right:1rem!important}.mb-md-3,.my-md-3{margin-bottom:1rem!important}.ml-md-3,.mx-md-3{margin-left:1rem!important}.m-md-4{margin:1.5rem!important}.mt-md-4,.my-md-4{margin-top:1.5rem!important}.mr-md-4,.mx-md-4{margin-right:1.5rem!important}.mb-md-4,.my-md-4{margin-bottom:1.5rem!important}.ml-md-4,.mx-md-4{margin-left:1.5rem!important}.m-md-5{margin:3rem!important}.mt-md-5,.my-md-5{margin-top:3rem!important}.mr-md-5,.mx-md-5{margin-right:3rem!important}.mb-md-5,.my-md-5{margin-bottom:3rem!important}.ml-md-5,.mx-md-5{margin-left:3rem!important}.p-md-0{padding:0!important}.pt-md-0,.py-md-0{padding-top:0!important}.pr-md-0,.px-md-0{padding-right:0!important}.pb-md-0,.py-md-0{padding-bottom:0!important}.pl-md-0,.px-md-0{padding-left:0!important}.p-md-1{padding:.25rem!important}.pt-md-1,.py-md-1{padding-top:.25rem!important}.pr-md-1,.px-md-1{padding-right:.25rem!important}.pb-md-1,.py-md-1{padding-bottom:.25rem!important}.pl-md-1,.px-md-1{padding-left:.25rem!important}.p-md-2{padding:.5rem!important}.pt-md-2,.py-md-2{padding-top:.5rem!important}.pr-md-2,.px-md-2{padding-right:.5rem!important}.pb-md-2,.py-md-2{padding-bottom:.5rem!important}.pl-md-2,.px-md-2{padding-left:.5rem!important}.p-md-3{padding:1rem!important}.pt-md-3,.py-md-3{padding-top:1rem!important}.pr-md-3,.px-md-3{padding-right:1rem!important}.pb-md-3,.py-md-3{padding-bottom:1rem!important}.pl-md-3,.px-md-3{padding-left:1rem!important}.p-md-4{padding:1.5rem!important}.pt-md-4,.py-md-4{padding-top:1.5rem!important}.pr-md-4,.px-md-4{padding-right:1.5rem!important}.pb-md-4,.py-md-4{padding-bottom:1.5rem!important}.pl-md-4,.px-md-4{padding-left:1.5rem!important}.p-md-5{padding:3rem!important}.pt-md-5,.py-md-5{padding-top:3rem!important}.pr-md-5,.px-md-5{padding-right:3rem!important}.pb-md-5,.py-md-5{padding-bottom:3rem!important}.pl-md-5,.px-md-5{padding-left:3rem!important}.m-md-n1{margin:-.25rem!important}.mt-md-n1,.my-md-n1{margin-top:-.25rem!important}.mr-md-n1,.mx-md-n1{margin-right:-.25rem!important}.mb-md-n1,.my-md-n1{margin-bottom:-.25rem!important}.ml-md-n1,.mx-md-n1{margin-left:-.25rem!important}.m-md-n2{margin:-.5rem!important}.mt-md-n2,.my-md-n2{margin-top:-.5rem!important}.mr-md-n2,.mx-md-n2{margin-right:-.5rem!important}.mb-md-n2,.my-md-n2{margin-bottom:-.5rem!important}.ml-md-n2,.mx-md-n2{margin-left:-.5rem!important}.m-md-n3{margin:-1rem!important}.mt-md-n3,.my-md-n3{margin-top:-1rem!important}.mr-md-n3,.mx-md-n3{margin-right:-1rem!important}.mb-md-n3,.my-md-n3{margin-bottom:-1rem!important}.ml-md-n3,.mx-md-n3{margin-left:-1rem!important}.m-md-n4{margin:-1.5rem!important}.mt-md-n4,.my-md-n4{margin-top:-1.5rem!important}.mr-md-n4,.mx-md-n4{margin-right:-1.5rem!important}.mb-md-n4,.my-md-n4{margin-bottom:-1.5rem!important}.ml-md-n4,.mx-md-n4{margin-left:-1.5rem!important}.m-md-n5{margin:-3rem!important}.mt-md-n5,.my-md-n5{margin-top:-3rem!important}.mr-md-n5,.mx-md-n5{margin-right:-3rem!important}.mb-md-n5,.my-md-n5{margin-bottom:-3rem!important}.ml-md-n5,.mx-md-n5{margin-left:-3rem!important}.m-md-auto{margin:auto!important}.mt-md-auto,.my-md-auto{margin-top:auto!important}.mr-md-auto,.mx-md-auto{margin-right:auto!important}.mb-md-auto,.my-md-auto{margin-bottom:auto!important}.ml-md-auto,.mx-md-auto{margin-left:auto!important}}@media (min-width:960px){.m-lg-0{margin:0!important}.mt-lg-0,.my-lg-0{margin-top:0!important}.mr-lg-0,.mx-lg-0{margin-right:0!important}.mb-lg-0,.my-lg-0{margin-bottom:0!important}.ml-lg-0,.mx-lg-0{margin-left:0!important}.m-lg-1{margin:.25rem!important}.mt-lg-1,.my-lg-1{margin-top:.25rem!important}.mr-lg-1,.mx-lg-1{margin-right:.25rem!important}.mb-lg-1,.my-lg-1{margin-bottom:.25rem!important}.ml-lg-1,.mx-lg-1{margin-left:.25rem!important}.m-lg-2{margin:.5rem!important}.mt-lg-2,.my-lg-2{margin-top:.5rem!important}.mr-lg-2,.mx-lg-2{margin-right:.5rem!important}.mb-lg-2,.my-lg-2{margin-bottom:.5rem!important}.ml-lg-2,.mx-lg-2{margin-left:.5rem!important}.m-lg-3{margin:1rem!important}.mt-lg-3,.my-lg-3{margin-top:1rem!important}.mr-lg-3,.mx-lg-3{margin-right:1rem!important}.mb-lg-3,.my-lg-3{margin-bottom:1rem!important}.ml-lg-3,.mx-lg-3{margin-left:1rem!important}.m-lg-4{margin:1.5rem!important}.mt-lg-4,.my-lg-4{margin-top:1.5rem!important}.mr-lg-4,.mx-lg-4{margin-right:1.5rem!important}.mb-lg-4,.my-lg-4{margin-bottom:1.5rem!important}.ml-lg-4,.mx-lg-4{margin-left:1.5rem!important}.m-lg-5{margin:3rem!important}.mt-lg-5,.my-lg-5{margin-top:3rem!important}.mr-lg-5,.mx-lg-5{margin-right:3rem!important}.mb-lg-5,.my-lg-5{margin-bottom:3rem!important}.ml-lg-5,.mx-lg-5{margin-left:3rem!important}.p-lg-0{padding:0!important}.pt-lg-0,.py-lg-0{padding-top:0!important}.pr-lg-0,.px-lg-0{padding-right:0!important}.pb-lg-0,.py-lg-0{padding-bottom:0!important}.pl-lg-0,.px-lg-0{padding-left:0!important}.p-lg-1{padding:.25rem!important}.pt-lg-1,.py-lg-1{padding-top:.25rem!important}.pr-lg-1,.px-lg-1{padding-right:.25rem!important}.pb-lg-1,.py-lg-1{padding-bottom:.25rem!important}.pl-lg-1,.px-lg-1{padding-left:.25rem!important}.p-lg-2{padding:.5rem!important}.pt-lg-2,.py-lg-2{padding-top:.5rem!important}.pr-lg-2,.px-lg-2{padding-right:.5rem!important}.pb-lg-2,.py-lg-2{padding-bottom:.5rem!important}.pl-lg-2,.px-lg-2{padding-left:.5rem!important}.p-lg-3{padding:1rem!important}.pt-lg-3,.py-lg-3{padding-top:1rem!important}.pr-lg-3,.px-lg-3{padding-right:1rem!important}.pb-lg-3,.py-lg-3{padding-bottom:1rem!important}.pl-lg-3,.px-lg-3{padding-left:1rem!important}.p-lg-4{padding:1.5rem!important}.pt-lg-4,.py-lg-4{padding-top:1.5rem!important}.pr-lg-4,.px-lg-4{padding-right:1.5rem!important}.pb-lg-4,.py-lg-4{padding-bottom:1.5rem!important}.pl-lg-4,.px-lg-4{padding-left:1.5rem!important}.p-lg-5{padding:3rem!important}.pt-lg-5,.py-lg-5{padding-top:3rem!important}.pr-lg-5,.px-lg-5{padding-right:3rem!important}.pb-lg-5,.py-lg-5{padding-bottom:3rem!important}.pl-lg-5,.px-lg-5{padding-left:3rem!important}.m-lg-n1{margin:-.25rem!important}.mt-lg-n1,.my-lg-n1{margin-top:-.25rem!important}.mr-lg-n1,.mx-lg-n1{margin-right:-.25rem!important}.mb-lg-n1,.my-lg-n1{margin-bottom:-.25rem!important}.ml-lg-n1,.mx-lg-n1{margin-left:-.25rem!important}.m-lg-n2{margin:-.5rem!important}.mt-lg-n2,.my-lg-n2{margin-top:-.5rem!important}.mr-lg-n2,.mx-lg-n2{margin-right:-.5rem!important}.mb-lg-n2,.my-lg-n2{margin-bottom:-.5rem!important}.ml-lg-n2,.mx-lg-n2{margin-left:-.5rem!important}.m-lg-n3{margin:-1rem!important}.mt-lg-n3,.my-lg-n3{margin-top:-1rem!important}.mr-lg-n3,.mx-lg-n3{margin-right:-1rem!important}.mb-lg-n3,.my-lg-n3{margin-bottom:-1rem!important}.ml-lg-n3,.mx-lg-n3{margin-left:-1rem!important}.m-lg-n4{margin:-1.5rem!important}.mt-lg-n4,.my-lg-n4{margin-top:-1.5rem!important}.mr-lg-n4,.mx-lg-n4{margin-right:-1.5rem!important}.mb-lg-n4,.my-lg-n4{margin-bottom:-1.5rem!important}.ml-lg-n4,.mx-lg-n4{margin-left:-1.5rem!important}.m-lg-n5{margin:-3rem!important}.mt-lg-n5,.my-lg-n5{margin-top:-3rem!important}.mr-lg-n5,.mx-lg-n5{margin-right:-3rem!important}.mb-lg-n5,.my-lg-n5{margin-bottom:-3rem!important}.ml-lg-n5,.mx-lg-n5{margin-left:-3rem!important}.m-lg-auto{margin:auto!important}.mt-lg-auto,.my-lg-auto{margin-top:auto!important}.mr-lg-auto,.mx-lg-auto{margin-right:auto!important}.mb-lg-auto,.my-lg-auto{margin-bottom:auto!important}.ml-lg-auto,.mx-lg-auto{margin-left:auto!important}}@media (min-width:1200px){.m-xl-0{margin:0!important}.mt-xl-0,.my-xl-0{margin-top:0!important}.mr-xl-0,.mx-xl-0{margin-right:0!important}.mb-xl-0,.my-xl-0{margin-bottom:0!important}.ml-xl-0,.mx-xl-0{margin-left:0!important}.m-xl-1{margin:.25rem!important}.mt-xl-1,.my-xl-1{margin-top:.25rem!important}.mr-xl-1,.mx-xl-1{margin-right:.25rem!important}.mb-xl-1,.my-xl-1{margin-bottom:.25rem!important}.ml-xl-1,.mx-xl-1{margin-left:.25rem!important}.m-xl-2{margin:.5rem!important}.mt-xl-2,.my-xl-2{margin-top:.5rem!important}.mr-xl-2,.mx-xl-2{margin-right:.5rem!important}.mb-xl-2,.my-xl-2{margin-bottom:.5rem!important}.ml-xl-2,.mx-xl-2{margin-left:.5rem!important}.m-xl-3{margin:1rem!important}.mt-xl-3,.my-xl-3{margin-top:1rem!important}.mr-xl-3,.mx-xl-3{margin-right:1rem!important}.mb-xl-3,.my-xl-3{margin-bottom:1rem!important}.ml-xl-3,.mx-xl-3{margin-left:1rem!important}.m-xl-4{margin:1.5rem!important}.mt-xl-4,.my-xl-4{margin-top:1.5rem!important}.mr-xl-4,.mx-xl-4{margin-right:1.5rem!important}.mb-xl-4,.my-xl-4{margin-bottom:1.5rem!important}.ml-xl-4,.mx-xl-4{margin-left:1.5rem!important}.m-xl-5{margin:3rem!important}.mt-xl-5,.my-xl-5{margin-top:3rem!important}.mr-xl-5,.mx-xl-5{margin-right:3rem!important}.mb-xl-5,.my-xl-5{margin-bottom:3rem!important}.ml-xl-5,.mx-xl-5{margin-left:3rem!important}.p-xl-0{padding:0!important}.pt-xl-0,.py-xl-0{padding-top:0!important}.pr-xl-0,.px-xl-0{padding-right:0!important}.pb-xl-0,.py-xl-0{padding-bottom:0!important}.pl-xl-0,.px-xl-0{padding-left:0!important}.p-xl-1{padding:.25rem!important}.pt-xl-1,.py-xl-1{padding-top:.25rem!important}.pr-xl-1,.px-xl-1{padding-right:.25rem!important}.pb-xl-1,.py-xl-1{padding-bottom:.25rem!important}.pl-xl-1,.px-xl-1{padding-left:.25rem!important}.p-xl-2{padding:.5rem!important}.pt-xl-2,.py-xl-2{padding-top:.5rem!important}.pr-xl-2,.px-xl-2{padding-right:.5rem!important}.pb-xl-2,.py-xl-2{padding-bottom:.5rem!important}.pl-xl-2,.px-xl-2{padding-left:.5rem!important}.p-xl-3{padding:1rem!important}.pt-xl-3,.py-xl-3{padding-top:1rem!important}.pr-xl-3,.px-xl-3{padding-right:1rem!important}.pb-xl-3,.py-xl-3{padding-bottom:1rem!important}.pl-xl-3,.px-xl-3{padding-left:1rem!important}.p-xl-4{padding:1.5rem!important}.pt-xl-4,.py-xl-4{padding-top:1.5rem!important}.pr-xl-4,.px-xl-4{padding-right:1.5rem!important}.pb-xl-4,.py-xl-4{padding-bottom:1.5rem!important}.pl-xl-4,.px-xl-4{padding-left:1.5rem!important}.p-xl-5{padding:3rem!important}.pt-xl-5,.py-xl-5{padding-top:3rem!important}.pr-xl-5,.px-xl-5{padding-right:3rem!important}.pb-xl-5,.py-xl-5{padding-bottom:3rem!important}.pl-xl-5,.px-xl-5{padding-left:3rem!important}.m-xl-n1{margin:-.25rem!important}.mt-xl-n1,.my-xl-n1{margin-top:-.25rem!important}.mr-xl-n1,.mx-xl-n1{margin-right:-.25rem!important}.mb-xl-n1,.my-xl-n1{margin-bottom:-.25rem!important}.ml-xl-n1,.mx-xl-n1{margin-left:-.25rem!important}.m-xl-n2{margin:-.5rem!important}.mt-xl-n2,.my-xl-n2{margin-top:-.5rem!important}.mr-xl-n2,.mx-xl-n2{margin-right:-.5rem!important}.mb-xl-n2,.my-xl-n2{margin-bottom:-.5rem!important}.ml-xl-n2,.mx-xl-n2{margin-left:-.5rem!important}.m-xl-n3{margin:-1rem!important}.mt-xl-n3,.my-xl-n3{margin-top:-1rem!important}.mr-xl-n3,.mx-xl-n3{margin-right:-1rem!important}.mb-xl-n3,.my-xl-n3{margin-bottom:-1rem!important}.ml-xl-n3,.mx-xl-n3{margin-left:-1rem!important}.m-xl-n4{margin:-1.5rem!important}.mt-xl-n4,.my-xl-n4{margin-top:-1.5rem!important}.mr-xl-n4,.mx-xl-n4{margin-right:-1.5rem!important}.mb-xl-n4,.my-xl-n4{margin-bottom:-1.5rem!important}.ml-xl-n4,.mx-xl-n4{margin-left:-1.5rem!important}.m-xl-n5{margin:-3rem!important}.mt-xl-n5,.my-xl-n5{margin-top:-3rem!important}.mr-xl-n5,.mx-xl-n5{margin-right:-3rem!important}.mb-xl-n5,.my-xl-n5{margin-bottom:-3rem!important}.ml-xl-n5,.mx-xl-n5{margin-left:-3rem!important}.m-xl-auto{margin:auto!important}.mt-xl-auto,.my-xl-auto{margin-top:auto!important}.mr-xl-auto,.mx-xl-auto{margin-right:auto!important}.mb-xl-auto,.my-xl-auto{margin-bottom:auto!important}.ml-xl-auto,.mx-xl-auto{margin-left:auto!important}}.stretched-link:after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;pointer-events:auto;content:"";background-color:transparent}.text-monospace{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace!important}.text-justify{text-align:justify!important}.text-wrap{white-space:normal!important}.text-nowrap{white-space:nowrap!important}.text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.text-left{text-align:left!important}.text-right{text-align:right!important}.text-center{text-align:center!important}@media (min-width:540px){.text-sm-left{text-align:left!important}.text-sm-right{text-align:right!important}.text-sm-center{text-align:center!important}}@media (min-width:720px){.text-md-left{text-align:left!important}.text-md-right{text-align:right!important}.text-md-center{text-align:center!important}}@media (min-width:960px){.text-lg-left{text-align:left!important}.text-lg-right{text-align:right!important}.text-lg-center{text-align:center!important}}@media (min-width:1200px){.text-xl-left{text-align:left!important}.text-xl-right{text-align:right!important}.text-xl-center{text-align:center!important}}.text-lowercase{text-transform:lowercase!important}.text-uppercase{text-transform:uppercase!important}.text-capitalize{text-transform:capitalize!important}.font-weight-light{font-weight:300!important}.font-weight-lighter{font-weight:lighter!important}.font-weight-normal{font-weight:400!important}.font-weight-bold{font-weight:700!important}.font-weight-bolder{font-weight:bolder!important}.font-italic{font-style:italic!important}.text-white{color:#fff!important}.text-primary{color:#007bff!important}a.text-primary:focus,a.text-primary:hover{color:#0056b3!important}.text-secondary{color:#6c757d!important}a.text-secondary:focus,a.text-secondary:hover{color:#494f54!important}.text-success{color:#28a745!important}a.text-success:focus,a.text-success:hover{color:#19692c!important}.text-info{color:#17a2b8!important}a.text-info:focus,a.text-info:hover{color:#0f6674!important}.text-warning{color:#ffc107!important}a.text-warning:focus,a.text-warning:hover{color:#ba8b00!important}.text-danger{color:#dc3545!important}a.text-danger:focus,a.text-danger:hover{color:#a71d2a!important}.text-light{color:#f8f9fa!important}a.text-light:focus,a.text-light:hover{color:#cbd3da!important}.text-dark{color:#343a40!important}a.text-dark:focus,a.text-dark:hover{color:#121416!important}.text-body{color:#212529!important}.text-muted{color:#6c757d!important}.text-black-50{color:rgba(0,0,0,.5)!important}.text-white-50{color:hsla(0,0%,100%,.5)!important}.text-hide{font:0/0 a;color:transparent;text-shadow:none;background-color:transparent;border:0}.text-decoration-none{text-decoration:none!important}.text-break{word-wrap:break-word!important}.text-reset{color:inherit!important}.visible{visibility:visible!important}.invisible{visibility:hidden!important}@media print{*,:after,:before{text-shadow:none!important;box-shadow:none!important}a:not(.btn){text-decoration:underline}abbr[title]:after{content:" (" attr(title) ")"}pre{white-space:pre-wrap!important}blockquote,pre{border:1px solid #adb5bd;page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}h2,h3,p{orphans:3;widows:3}h2,h3{page-break-after:avoid}@page{size:a3}.container,body{min-width:960px!important}.navbar{display:none}.badge{border:1px solid #000}.table{border-collapse:collapse!important}.table td,.table th{background-color:#fff!important}.table-bordered td,.table-bordered th{border:1px solid #dee2e6!important}.table-dark{color:inherit}.table-dark tbody+tbody,.table-dark td,.table-dark th,.table-dark thead th{border-color:#dee2e6}.table .thead-dark th{color:inherit;border-color:#dee2e6}}html{font-size:var(--pst-font-size-base);scroll-padding-top:calc(var(--pst-header-height) + 12px)}body{padding-top:calc(var(--pst-header-height) + 20px);background-color:#fff;font-family:var(--pst-font-family-base);font-weight:400;line-height:1.65;color:rgba(var(--pst-color-text-base),1)}p{margin-bottom:1.15rem;font-size:1em;color:rgba(var(--pst-color-paragraph),1)}p.rubric{border-bottom:1px solid #c9c9c9}a{color:rgba(var(--pst-color-link),1);text-decoration:none}a:hover{color:rgba(var(--pst-color-link-hover),1);text-decoration:underline}a.headerlink{color:rgba(var(--pst-color-headerlink),1);font-size:.8em;padding:0 4px;text-decoration:none}a.headerlink:hover{background-color:rgba(var(--pst-color-headerlink),1);color:rgba(var(--pst-color-headerlink-hover),1)}.heading-style,h1,h2,h3,h4,h5,h6{margin:2.75rem 0 1.05rem;font-family:var(--pst-font-family-heading);font-weight:400;line-height:1.15}h1{margin-top:0;font-size:var(--pst-font-size-h1);color:rgba(var(--pst-color-h1),1)}h2{font-size:var(--pst-font-size-h2);color:rgba(var(--pst-color-h2),1)}h3{font-size:var(--pst-font-size-h3);color:rgba(var(--pst-color-h3),1)}h4{font-size:var(--pst-font-size-h4);color:rgba(var(--pst-color-h4),1)}h5{font-size:var(--pst-font-size-h5);color:rgba(var(--pst-color-h5),1)}h6{font-size:var(--pst-font-size-h6);color:rgba(var(--pst-color-h6),1)}.text_small,small{font-size:var(--pst-font-size-milli)}hr{border:0;border-top:1px solid #e5e5e5}code,kbd,pre,samp{font-family:var(--pst-font-family-monospace)}code{color:rgba(var(--pst-color-inline-code),1)}pre{margin:1.5em 0;padding:10px;background-color:rgba(var(--pst-color-preformatted-background),1);color:rgba(var(--pst-color-preformatted-text),1);line-height:1.2em;border:1px solid #c9c9c9;border-radius:.2rem;box-shadow:1px 1px 1px #d8d8d8}dd{margin-top:3px;margin-bottom:10px;margin-left:30px}.navbar{position:fixed;min-height:var(--pst-header-height);width:100%;padding:0}.navbar .container-xl{height:100%}@media (min-width:960px){.navbar #navbar-end>.navbar-end-item{display:inline-block}}.navbar-brand{position:relative;height:var(--pst-header-height);width:auto;padding:.5rem 0}.navbar-brand img{max-width:100%;height:100%;width:auto}.navbar-light{background:#fff!important;box-shadow:0 .125rem .25rem 0 rgba(0,0,0,.11)}.navbar-light .navbar-nav li a.nav-link{padding:0 .5rem;color:rgba(var(--pst-color-navbar-link),1)}.navbar-light .navbar-nav li a.nav-link:hover{color:rgba(var(--pst-color-navbar-link-hover),1)}.navbar-light .navbar-nav>.active>.nav-link{font-weight:600;color:rgba(var(--pst-color-navbar-link-active),1)}.navbar-header a{padding:0 15px}.admonition,div.admonition{margin:1.5625em auto;padding:0 .6rem .8rem;overflow:hidden;page-break-inside:avoid;border-left:.2rem solid;border-left-color:rgba(var(--pst-color-admonition-default),1);border-bottom-color:rgba(var(--pst-color-admonition-default),1);border-right-color:rgba(var(--pst-color-admonition-default),1);border-top-color:rgba(var(--pst-color-admonition-default),1);border-radius:.2rem;box-shadow:0 .2rem .5rem rgba(0,0,0,.05),0 0 .0625rem rgba(0,0,0,.1);transition:color .25s,background-color .25s,border-color .25s}.admonition :last-child,div.admonition :last-child{margin-bottom:0}.admonition p.admonition-title~*,div.admonition p.admonition-title~*{padding:0 1.4rem}.admonition>ol,.admonition>ul,div.admonition>ol,div.admonition>ul{margin-left:1em}.admonition>.admonition-title,div.admonition>.admonition-title{position:relative;margin:0 -.6rem;padding:.4rem .6rem .4rem 2rem;font-weight:700;background-color:rgba(var(--pst-color-admonition-default),.1)}.admonition>.admonition-title:before,div.admonition>.admonition-title:before{position:absolute;left:.6rem;width:1rem;height:1rem;color:rgba(var(--pst-color-admonition-default),1);font-family:Font Awesome\ 5 Free;font-weight:900;content:var(--pst-icon-admonition-default)}.admonition>.admonition-title+*,div.admonition>.admonition-title+*{margin-top:.4em}.admonition.attention,div.admonition.attention{border-color:rgba(var(--pst-color-admonition-attention),1)}.admonition.attention>.admonition-title,div.admonition.attention>.admonition-title{background-color:rgba(var(--pst-color-admonition-attention),.1)}.admonition.attention>.admonition-title:before,div.admonition.attention>.admonition-title:before{color:rgba(var(--pst-color-admonition-attention),1);content:var(--pst-icon-admonition-attention)}.admonition.caution,div.admonition.caution{border-color:rgba(var(--pst-color-admonition-caution),1)}.admonition.caution>.admonition-title,div.admonition.caution>.admonition-title{background-color:rgba(var(--pst-color-admonition-caution),.1)}.admonition.caution>.admonition-title:before,div.admonition.caution>.admonition-title:before{color:rgba(var(--pst-color-admonition-caution),1);content:var(--pst-icon-admonition-caution)}.admonition.warning,div.admonition.warning{border-color:rgba(var(--pst-color-admonition-warning),1)}.admonition.warning>.admonition-title,div.admonition.warning>.admonition-title{background-color:rgba(var(--pst-color-admonition-warning),.1)}.admonition.warning>.admonition-title:before,div.admonition.warning>.admonition-title:before{color:rgba(var(--pst-color-admonition-warning),1);content:var(--pst-icon-admonition-warning)}.admonition.danger,div.admonition.danger{border-color:rgba(var(--pst-color-admonition-danger),1)}.admonition.danger>.admonition-title,div.admonition.danger>.admonition-title{background-color:rgba(var(--pst-color-admonition-danger),.1)}.admonition.danger>.admonition-title:before,div.admonition.danger>.admonition-title:before{color:rgba(var(--pst-color-admonition-danger),1);content:var(--pst-icon-admonition-danger)}.admonition.error,div.admonition.error{border-color:rgba(var(--pst-color-admonition-error),1)}.admonition.error>.admonition-title,div.admonition.error>.admonition-title{background-color:rgba(var(--pst-color-admonition-error),.1)}.admonition.error>.admonition-title:before,div.admonition.error>.admonition-title:before{color:rgba(var(--pst-color-admonition-error),1);content:var(--pst-icon-admonition-error)}.admonition.hint,div.admonition.hint{border-color:rgba(var(--pst-color-admonition-hint),1)}.admonition.hint>.admonition-title,div.admonition.hint>.admonition-title{background-color:rgba(var(--pst-color-admonition-hint),.1)}.admonition.hint>.admonition-title:before,div.admonition.hint>.admonition-title:before{color:rgba(var(--pst-color-admonition-hint),1);content:var(--pst-icon-admonition-hint)}.admonition.tip,div.admonition.tip{border-color:rgba(var(--pst-color-admonition-tip),1)}.admonition.tip>.admonition-title,div.admonition.tip>.admonition-title{background-color:rgba(var(--pst-color-admonition-tip),.1)}.admonition.tip>.admonition-title:before,div.admonition.tip>.admonition-title:before{color:rgba(var(--pst-color-admonition-tip),1);content:var(--pst-icon-admonition-tip)}.admonition.important,div.admonition.important{border-color:rgba(var(--pst-color-admonition-important),1)}.admonition.important>.admonition-title,div.admonition.important>.admonition-title{background-color:rgba(var(--pst-color-admonition-important),.1)}.admonition.important>.admonition-title:before,div.admonition.important>.admonition-title:before{color:rgba(var(--pst-color-admonition-important),1);content:var(--pst-icon-admonition-important)}.admonition.note,div.admonition.note{border-color:rgba(var(--pst-color-admonition-note),1)}.admonition.note>.admonition-title,div.admonition.note>.admonition-title{background-color:rgba(var(--pst-color-admonition-note),.1)}.admonition.note>.admonition-title:before,div.admonition.note>.admonition-title:before{color:rgba(var(--pst-color-admonition-note),1);content:var(--pst-icon-admonition-note)}table.field-list{border-collapse:separate;border-spacing:10px;margin-left:1px}table.field-list th.field-name{padding:1px 8px 1px 5px;white-space:nowrap;background-color:#eee}table.field-list td.field-body p{font-style:italic}table.field-list td.field-body p>strong{font-style:normal}table.field-list td.field-body blockquote{border-left:none;margin:0 0 .3em;padding-left:30px}.table.autosummary td:first-child{white-space:nowrap}.sig{font-family:var(--pst-font-family-monospace)}.sig-inline.c-texpr,.sig-inline.cpp-texpr{font-family:unset}.sig.c .k,.sig.c .kt,.sig.c .m,.sig.c .s,.sig.c .sc,.sig.cpp .k,.sig.cpp .kt,.sig.cpp .m,.sig.cpp .s,.sig.cpp .sc{color:rgba(var(--pst-color-text-base),1)}.sig-name{color:rgba(var(--pst-color-inline-code),1)}blockquote{padding:0 1em;color:#6a737d;border-left:.25em solid #dfe2e5}dt.label>span.brackets:not(:only-child):before{content:"["}dt.label>span.brackets:not(:only-child):after{content:"]"}a.footnote-reference{vertical-align:super;font-size:small}div.deprecated{margin-bottom:10px;margin-top:10px;padding:7px;background-color:#f3e5e5;border:1px solid #eed3d7;border-radius:.5rem}div.deprecated p{color:#b94a48;display:inline}.topic{background-color:#eee}.seealso dd{margin-top:0;margin-bottom:0}.viewcode-back{font-family:var(--pst-font-family-base)}.viewcode-block:target{background-color:#f4debf;border-top:1px solid #ac9;border-bottom:1px solid #ac9}span.guilabel{border:1px solid #7fbbe3;background:#e7f2fa;font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}footer{width:100%;border-top:1px solid #ccc;padding:10px}footer .footer-item p{margin-bottom:0}.bd-search{position:relative;padding:1rem 15px;margin-right:-15px;margin-left:-15px}.bd-search .icon{position:absolute;color:#a4a6a7;left:25px;top:25px}.bd-search input{border-radius:0;border:0;border-bottom:1px solid #e5e5e5;padding-left:35px}.bd-toc{-ms-flex-order:2;order:2;height:calc(100vh - 2rem);overflow-y:auto}@supports (position:-webkit-sticky) or (position:sticky){.bd-toc{position:-webkit-sticky;position:sticky;top:calc(var(--pst-header-height) + 20px);height:calc(100vh - 5rem);overflow-y:auto}}.bd-toc .onthispage{color:#a4a6a7}.section-nav{padding-left:0;border-left:1px solid #eee;border-bottom:none}.section-nav ul{padding-left:1rem}.toc-entry,.toc-entry a{display:block}.toc-entry a{padding:.125rem 1.5rem;color:rgba(var(--pst-color-toc-link),1)}@media (min-width:1200px){.toc-entry a{padding-right:0}}.toc-entry a:hover{color:rgba(var(--pst-color-toc-link-hover),1);text-decoration:none}.bd-sidebar{padding-top:1em}@media (min-width:720px){.bd-sidebar{border-right:1px solid rgba(0,0,0,.1)}@supports (position:-webkit-sticky) or (position:sticky){.bd-sidebar{position:-webkit-sticky;position:sticky;top:calc(var(--pst-header-height) + 20px);z-index:1000;height:calc(100vh - var(--pst-header-height) - 20px)}}}.bd-sidebar.no-sidebar{border-right:0}.bd-links{padding-top:1rem;padding-bottom:1rem;margin-right:-15px;margin-left:-15px}@media (min-width:720px){.bd-links{display:block}@supports (position:-webkit-sticky) or (position:sticky){.bd-links{max-height:calc(100vh - 11rem);overflow-y:auto}}}.bd-sidenav{display:none}.bd-content{padding-top:20px}.bd-content .section{max-width:100%}.bd-content .section table{display:block;overflow:auto}.bd-toc-link{display:block;padding:.25rem 1.5rem;font-weight:600;color:rgba(0,0,0,.65)}.bd-toc-link:hover{color:rgba(0,0,0,.85);text-decoration:none}.bd-toc-item.active{margin-bottom:1rem}.bd-toc-item.active:not(:first-child){margin-top:1rem}.bd-toc-item.active>.bd-toc-link{color:rgba(0,0,0,.85)}.bd-toc-item.active>.bd-toc-link:hover{background-color:transparent}.bd-toc-item.active>.bd-sidenav{display:block}nav.bd-links p.caption{font-size:var(--pst-sidebar-caption-font-size);text-transform:uppercase;font-weight:700;position:relative;margin-top:1.25em;margin-bottom:.5em;padding:0 1.5rem;color:rgba(var(--pst-color-sidebar-caption),1)}nav.bd-links p.caption:first-child{margin-top:0}.bd-sidebar .nav{font-size:var(--pst-sidebar-font-size)}.bd-sidebar .nav ul{list-style:none;padding:0 0 0 1.5rem}.bd-sidebar .nav li>a{display:block;padding:.25rem 1.5rem;color:rgba(var(--pst-color-sidebar-link),1)}.bd-sidebar .nav li>a:hover{color:rgba(var(--pst-color-sidebar-link-hover),1);text-decoration:none;background-color:transparent}.bd-sidebar .nav li>a.reference.external:after{font-family:Font Awesome\ 5 Free;font-weight:900;content:"\f35d";font-size:.75em;margin-left:.3em}.bd-sidebar .nav .active:hover>a,.bd-sidebar .nav .active>a{font-weight:600;color:rgba(var(--pst-color-sidebar-link-active),1)}.toc-h2{font-size:.85rem}.toc-h3{font-size:.75rem}.toc-h4{font-size:.65rem}.toc-entry>.nav-link.active{font-weight:600;color:#130654;color:rgba(var(--pst-color-toc-link-active),1);background-color:transparent;border-left:2px solid rgba(var(--pst-color-toc-link-active),1)}.nav-link:hover{border-style:none}#navbar-main-elements li.nav-item i{font-size:.7rem;padding-left:2px;vertical-align:middle}.bd-toc .nav .nav{display:none}.bd-toc .nav .nav.visible,.bd-toc .nav>.active>ul{display:block}.prev-next-area{margin:20px 0}.prev-next-area p{margin:0 .3em;line-height:1.3em}.prev-next-area i{font-size:1.2em}.prev-next-area a{display:flex;align-items:center;border:none;padding:10px;max-width:45%;overflow-x:hidden;color:rgba(0,0,0,.65);text-decoration:none}.prev-next-area a p.prev-next-title{color:rgba(var(--pst-color-link),1);font-weight:600;font-size:1.1em}.prev-next-area a:hover p.prev-next-title{text-decoration:underline}.prev-next-area a .prev-next-info{flex-direction:column;margin:0 .5em}.prev-next-area a .prev-next-info .prev-next-subtitle{text-transform:capitalize}.prev-next-area a.left-prev{float:left}.prev-next-area a.right-next{float:right}.prev-next-area a.right-next div.prev-next-info{text-align:right}.alert{padding-bottom:0}.alert-info a{color:#e83e8c}#navbar-icon-links i.fa,#navbar-icon-links i.fab,#navbar-icon-links i.far,#navbar-icon-links i.fas{vertical-align:middle;font-style:normal;font-size:1.5rem;line-height:1.25}#navbar-icon-links i.fa-github-square:before{color:#333}#navbar-icon-links i.fa-twitter-square:before{color:#55acee}#navbar-icon-links i.fa-gitlab:before{color:#548}#navbar-icon-links i.fa-bitbucket:before{color:#0052cc}.tocsection{border-left:1px solid #eee;padding:.3rem 1.5rem}.tocsection i{padding-right:.5rem}.editthispage{padding-top:2rem}.editthispage a{color:var(--pst-color-sidebar-link-active)}.xr-wrap[hidden]{display:block!important}.toctree-checkbox{position:absolute;display:none}.toctree-checkbox~ul{display:none}.toctree-checkbox~label i{transform:rotate(0deg)}.toctree-checkbox:checked~ul{display:block}.toctree-checkbox:checked~label i{transform:rotate(180deg)}.bd-sidebar li{position:relative}.bd-sidebar label{position:absolute;top:0;right:0;height:30px;width:30px;cursor:pointer;display:flex;justify-content:center;align-items:center}.bd-sidebar label:hover{background:rgba(var(--pst-color-sidebar-expander-background-hover),1)}.bd-sidebar label i{display:inline-block;font-size:.75rem;text-align:center}.bd-sidebar label i:hover{color:rgba(var(--pst-color-sidebar-link-hover),1)}.bd-sidebar li.has-children>.reference{padding-right:30px}div.doctest>div.highlight span.gp,span.linenos,table.highlighttable td.linenos{user-select:none;-webkit-user-select:text;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none}.docutils.container{padding-left:unset;padding-right:unset} \ No newline at end of file diff --git a/_preview/32/_static/css/theme.css b/_preview/32/_static/css/theme.css new file mode 100644 index 0000000..2e03fe3 --- /dev/null +++ b/_preview/32/_static/css/theme.css @@ -0,0 +1,120 @@ +/* Provided by the Sphinx base theme template at build time */ +@import "../basic.css"; + +:root { + /***************************************************************************** + * Theme config + **/ + --pst-header-height: 60px; + + /***************************************************************************** + * Font size + **/ + --pst-font-size-base: 15px; /* base font size - applied at body / html level */ + + /* heading font sizes */ + --pst-font-size-h1: 36px; + --pst-font-size-h2: 32px; + --pst-font-size-h3: 26px; + --pst-font-size-h4: 21px; + --pst-font-size-h5: 18px; + --pst-font-size-h6: 16px; + + /* smaller then heading font sizes*/ + --pst-font-size-milli: 12px; + + --pst-sidebar-font-size: .9em; + --pst-sidebar-caption-font-size: .9em; + + /***************************************************************************** + * Font family + **/ + /* These are adapted from https://systemfontstack.com/ */ + --pst-font-family-base-system: -apple-system, BlinkMacSystemFont, Segoe UI, "Helvetica Neue", + Arial, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol; + --pst-font-family-monospace-system: "SFMono-Regular", Menlo, Consolas, Monaco, + Liberation Mono, Lucida Console, monospace; + + --pst-font-family-base: var(--pst-font-family-base-system); + --pst-font-family-heading: var(--pst-font-family-base); + --pst-font-family-monospace: var(--pst-font-family-monospace-system); + + /***************************************************************************** + * Color + * + * Colors are defined in rgb string way, "red, green, blue" + **/ + --pst-color-primary: 19, 6, 84; + --pst-color-success: 40, 167, 69; + --pst-color-info: 0, 123, 255; /*23, 162, 184;*/ + --pst-color-warning: 255, 193, 7; + --pst-color-danger: 220, 53, 69; + --pst-color-text-base: 51, 51, 51; + + --pst-color-h1: var(--pst-color-primary); + --pst-color-h2: var(--pst-color-primary); + --pst-color-h3: var(--pst-color-text-base); + --pst-color-h4: var(--pst-color-text-base); + --pst-color-h5: var(--pst-color-text-base); + --pst-color-h6: var(--pst-color-text-base); + --pst-color-paragraph: var(--pst-color-text-base); + --pst-color-link: 0, 91, 129; + --pst-color-link-hover: 227, 46, 0; + --pst-color-headerlink: 198, 15, 15; + --pst-color-headerlink-hover: 255, 255, 255; + --pst-color-preformatted-text: 34, 34, 34; + --pst-color-preformatted-background: 250, 250, 250; + --pst-color-inline-code: 232, 62, 140; + + --pst-color-active-navigation: 19, 6, 84; + --pst-color-navbar-link: 77, 77, 77; + --pst-color-navbar-link-hover: var(--pst-color-active-navigation); + --pst-color-navbar-link-active: var(--pst-color-active-navigation); + --pst-color-sidebar-link: 77, 77, 77; + --pst-color-sidebar-link-hover: var(--pst-color-active-navigation); + --pst-color-sidebar-link-active: var(--pst-color-active-navigation); + --pst-color-sidebar-expander-background-hover: 244, 244, 244; + --pst-color-sidebar-caption: 77, 77, 77; + --pst-color-toc-link: 119, 117, 122; + --pst-color-toc-link-hover: var(--pst-color-active-navigation); + --pst-color-toc-link-active: var(--pst-color-active-navigation); + + /***************************************************************************** + * Icon + **/ + + /* font awesome icons*/ + --pst-icon-check-circle: '\f058'; + --pst-icon-info-circle: '\f05a'; + --pst-icon-exclamation-triangle: '\f071'; + --pst-icon-exclamation-circle: '\f06a'; + --pst-icon-times-circle: '\f057'; + --pst-icon-lightbulb: '\f0eb'; + + /***************************************************************************** + * Admonitions + **/ + + --pst-color-admonition-default: var(--pst-color-info); + --pst-color-admonition-note: var(--pst-color-info); + --pst-color-admonition-attention: var(--pst-color-warning); + --pst-color-admonition-caution: var(--pst-color-warning); + --pst-color-admonition-warning: var(--pst-color-warning); + --pst-color-admonition-danger: var(--pst-color-danger); + --pst-color-admonition-error: var(--pst-color-danger); + --pst-color-admonition-hint: var(--pst-color-success); + --pst-color-admonition-tip: var(--pst-color-success); + --pst-color-admonition-important: var(--pst-color-success); + + --pst-icon-admonition-default: var(--pst-icon-info-circle); + --pst-icon-admonition-note: var(--pst-icon-info-circle); + --pst-icon-admonition-attention: var(--pst-icon-exclamation-circle); + --pst-icon-admonition-caution: var(--pst-icon-exclamation-triangle); + --pst-icon-admonition-warning: var(--pst-icon-exclamation-triangle); + --pst-icon-admonition-danger: var(--pst-icon-exclamation-triangle); + --pst-icon-admonition-error: var(--pst-icon-times-circle); + --pst-icon-admonition-hint: var(--pst-icon-lightbulb); + --pst-icon-admonition-tip: var(--pst-icon-lightbulb); + --pst-icon-admonition-important: var(--pst-icon-exclamation-circle); + +} diff --git a/_preview/32/_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css b/_preview/32/_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css new file mode 100644 index 0000000..eb19f69 --- /dev/null +++ b/_preview/32/_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css @@ -0,0 +1 @@ +.sd-bg-primary{background-color:var(--sd-color-primary) !important}.sd-bg-text-primary{color:var(--sd-color-primary-text) !important}button.sd-bg-primary:focus,button.sd-bg-primary:hover{background-color:var(--sd-color-primary-highlight) !important}a.sd-bg-primary:focus,a.sd-bg-primary:hover{background-color:var(--sd-color-primary-highlight) !important}.sd-bg-secondary{background-color:var(--sd-color-secondary) !important}.sd-bg-text-secondary{color:var(--sd-color-secondary-text) !important}button.sd-bg-secondary:focus,button.sd-bg-secondary:hover{background-color:var(--sd-color-secondary-highlight) !important}a.sd-bg-secondary:focus,a.sd-bg-secondary:hover{background-color:var(--sd-color-secondary-highlight) !important}.sd-bg-success{background-color:var(--sd-color-success) !important}.sd-bg-text-success{color:var(--sd-color-success-text) !important}button.sd-bg-success:focus,button.sd-bg-success:hover{background-color:var(--sd-color-success-highlight) !important}a.sd-bg-success:focus,a.sd-bg-success:hover{background-color:var(--sd-color-success-highlight) !important}.sd-bg-info{background-color:var(--sd-color-info) !important}.sd-bg-text-info{color:var(--sd-color-info-text) !important}button.sd-bg-info:focus,button.sd-bg-info:hover{background-color:var(--sd-color-info-highlight) !important}a.sd-bg-info:focus,a.sd-bg-info:hover{background-color:var(--sd-color-info-highlight) !important}.sd-bg-warning{background-color:var(--sd-color-warning) !important}.sd-bg-text-warning{color:var(--sd-color-warning-text) !important}button.sd-bg-warning:focus,button.sd-bg-warning:hover{background-color:var(--sd-color-warning-highlight) !important}a.sd-bg-warning:focus,a.sd-bg-warning:hover{background-color:var(--sd-color-warning-highlight) !important}.sd-bg-danger{background-color:var(--sd-color-danger) !important}.sd-bg-text-danger{color:var(--sd-color-danger-text) !important}button.sd-bg-danger:focus,button.sd-bg-danger:hover{background-color:var(--sd-color-danger-highlight) !important}a.sd-bg-danger:focus,a.sd-bg-danger:hover{background-color:var(--sd-color-danger-highlight) !important}.sd-bg-light{background-color:var(--sd-color-light) !important}.sd-bg-text-light{color:var(--sd-color-light-text) !important}button.sd-bg-light:focus,button.sd-bg-light:hover{background-color:var(--sd-color-light-highlight) !important}a.sd-bg-light:focus,a.sd-bg-light:hover{background-color:var(--sd-color-light-highlight) !important}.sd-bg-muted{background-color:var(--sd-color-muted) !important}.sd-bg-text-muted{color:var(--sd-color-muted-text) !important}button.sd-bg-muted:focus,button.sd-bg-muted:hover{background-color:var(--sd-color-muted-highlight) !important}a.sd-bg-muted:focus,a.sd-bg-muted:hover{background-color:var(--sd-color-muted-highlight) !important}.sd-bg-dark{background-color:var(--sd-color-dark) !important}.sd-bg-text-dark{color:var(--sd-color-dark-text) !important}button.sd-bg-dark:focus,button.sd-bg-dark:hover{background-color:var(--sd-color-dark-highlight) !important}a.sd-bg-dark:focus,a.sd-bg-dark:hover{background-color:var(--sd-color-dark-highlight) !important}.sd-bg-black{background-color:var(--sd-color-black) !important}.sd-bg-text-black{color:var(--sd-color-black-text) !important}button.sd-bg-black:focus,button.sd-bg-black:hover{background-color:var(--sd-color-black-highlight) !important}a.sd-bg-black:focus,a.sd-bg-black:hover{background-color:var(--sd-color-black-highlight) !important}.sd-bg-white{background-color:var(--sd-color-white) !important}.sd-bg-text-white{color:var(--sd-color-white-text) !important}button.sd-bg-white:focus,button.sd-bg-white:hover{background-color:var(--sd-color-white-highlight) !important}a.sd-bg-white:focus,a.sd-bg-white:hover{background-color:var(--sd-color-white-highlight) !important}.sd-text-primary,.sd-text-primary>p{color:var(--sd-color-primary) !important}a.sd-text-primary:focus,a.sd-text-primary:hover{color:var(--sd-color-primary-highlight) !important}.sd-text-secondary,.sd-text-secondary>p{color:var(--sd-color-secondary) !important}a.sd-text-secondary:focus,a.sd-text-secondary:hover{color:var(--sd-color-secondary-highlight) !important}.sd-text-success,.sd-text-success>p{color:var(--sd-color-success) !important}a.sd-text-success:focus,a.sd-text-success:hover{color:var(--sd-color-success-highlight) !important}.sd-text-info,.sd-text-info>p{color:var(--sd-color-info) !important}a.sd-text-info:focus,a.sd-text-info:hover{color:var(--sd-color-info-highlight) !important}.sd-text-warning,.sd-text-warning>p{color:var(--sd-color-warning) !important}a.sd-text-warning:focus,a.sd-text-warning:hover{color:var(--sd-color-warning-highlight) !important}.sd-text-danger,.sd-text-danger>p{color:var(--sd-color-danger) !important}a.sd-text-danger:focus,a.sd-text-danger:hover{color:var(--sd-color-danger-highlight) !important}.sd-text-light,.sd-text-light>p{color:var(--sd-color-light) !important}a.sd-text-light:focus,a.sd-text-light:hover{color:var(--sd-color-light-highlight) !important}.sd-text-muted,.sd-text-muted>p{color:var(--sd-color-muted) !important}a.sd-text-muted:focus,a.sd-text-muted:hover{color:var(--sd-color-muted-highlight) !important}.sd-text-dark,.sd-text-dark>p{color:var(--sd-color-dark) !important}a.sd-text-dark:focus,a.sd-text-dark:hover{color:var(--sd-color-dark-highlight) !important}.sd-text-black,.sd-text-black>p{color:var(--sd-color-black) !important}a.sd-text-black:focus,a.sd-text-black:hover{color:var(--sd-color-black-highlight) !important}.sd-text-white,.sd-text-white>p{color:var(--sd-color-white) !important}a.sd-text-white:focus,a.sd-text-white:hover{color:var(--sd-color-white-highlight) !important}.sd-outline-primary{border-color:var(--sd-color-primary) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-primary:focus,a.sd-outline-primary:hover{border-color:var(--sd-color-primary-highlight) !important}.sd-outline-secondary{border-color:var(--sd-color-secondary) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-secondary:focus,a.sd-outline-secondary:hover{border-color:var(--sd-color-secondary-highlight) !important}.sd-outline-success{border-color:var(--sd-color-success) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-success:focus,a.sd-outline-success:hover{border-color:var(--sd-color-success-highlight) !important}.sd-outline-info{border-color:var(--sd-color-info) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-info:focus,a.sd-outline-info:hover{border-color:var(--sd-color-info-highlight) !important}.sd-outline-warning{border-color:var(--sd-color-warning) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-warning:focus,a.sd-outline-warning:hover{border-color:var(--sd-color-warning-highlight) !important}.sd-outline-danger{border-color:var(--sd-color-danger) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-danger:focus,a.sd-outline-danger:hover{border-color:var(--sd-color-danger-highlight) !important}.sd-outline-light{border-color:var(--sd-color-light) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-light:focus,a.sd-outline-light:hover{border-color:var(--sd-color-light-highlight) !important}.sd-outline-muted{border-color:var(--sd-color-muted) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-muted:focus,a.sd-outline-muted:hover{border-color:var(--sd-color-muted-highlight) !important}.sd-outline-dark{border-color:var(--sd-color-dark) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-dark:focus,a.sd-outline-dark:hover{border-color:var(--sd-color-dark-highlight) !important}.sd-outline-black{border-color:var(--sd-color-black) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-black:focus,a.sd-outline-black:hover{border-color:var(--sd-color-black-highlight) !important}.sd-outline-white{border-color:var(--sd-color-white) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-white:focus,a.sd-outline-white:hover{border-color:var(--sd-color-white-highlight) !important}.sd-bg-transparent{background-color:transparent !important}.sd-outline-transparent{border-color:transparent !important}.sd-text-transparent{color:transparent !important}.sd-p-0{padding:0 !important}.sd-pt-0,.sd-py-0{padding-top:0 !important}.sd-pr-0,.sd-px-0{padding-right:0 !important}.sd-pb-0,.sd-py-0{padding-bottom:0 !important}.sd-pl-0,.sd-px-0{padding-left:0 !important}.sd-p-1{padding:.25rem !important}.sd-pt-1,.sd-py-1{padding-top:.25rem !important}.sd-pr-1,.sd-px-1{padding-right:.25rem !important}.sd-pb-1,.sd-py-1{padding-bottom:.25rem !important}.sd-pl-1,.sd-px-1{padding-left:.25rem !important}.sd-p-2{padding:.5rem !important}.sd-pt-2,.sd-py-2{padding-top:.5rem !important}.sd-pr-2,.sd-px-2{padding-right:.5rem !important}.sd-pb-2,.sd-py-2{padding-bottom:.5rem !important}.sd-pl-2,.sd-px-2{padding-left:.5rem !important}.sd-p-3{padding:1rem !important}.sd-pt-3,.sd-py-3{padding-top:1rem !important}.sd-pr-3,.sd-px-3{padding-right:1rem !important}.sd-pb-3,.sd-py-3{padding-bottom:1rem !important}.sd-pl-3,.sd-px-3{padding-left:1rem !important}.sd-p-4{padding:1.5rem !important}.sd-pt-4,.sd-py-4{padding-top:1.5rem !important}.sd-pr-4,.sd-px-4{padding-right:1.5rem !important}.sd-pb-4,.sd-py-4{padding-bottom:1.5rem !important}.sd-pl-4,.sd-px-4{padding-left:1.5rem !important}.sd-p-5{padding:3rem !important}.sd-pt-5,.sd-py-5{padding-top:3rem !important}.sd-pr-5,.sd-px-5{padding-right:3rem !important}.sd-pb-5,.sd-py-5{padding-bottom:3rem !important}.sd-pl-5,.sd-px-5{padding-left:3rem !important}.sd-m-auto{margin:auto !important}.sd-mt-auto,.sd-my-auto{margin-top:auto !important}.sd-mr-auto,.sd-mx-auto{margin-right:auto !important}.sd-mb-auto,.sd-my-auto{margin-bottom:auto !important}.sd-ml-auto,.sd-mx-auto{margin-left:auto !important}.sd-m-0{margin:0 !important}.sd-mt-0,.sd-my-0{margin-top:0 !important}.sd-mr-0,.sd-mx-0{margin-right:0 !important}.sd-mb-0,.sd-my-0{margin-bottom:0 !important}.sd-ml-0,.sd-mx-0{margin-left:0 !important}.sd-m-1{margin:.25rem !important}.sd-mt-1,.sd-my-1{margin-top:.25rem !important}.sd-mr-1,.sd-mx-1{margin-right:.25rem !important}.sd-mb-1,.sd-my-1{margin-bottom:.25rem !important}.sd-ml-1,.sd-mx-1{margin-left:.25rem !important}.sd-m-2{margin:.5rem !important}.sd-mt-2,.sd-my-2{margin-top:.5rem !important}.sd-mr-2,.sd-mx-2{margin-right:.5rem !important}.sd-mb-2,.sd-my-2{margin-bottom:.5rem !important}.sd-ml-2,.sd-mx-2{margin-left:.5rem !important}.sd-m-3{margin:1rem !important}.sd-mt-3,.sd-my-3{margin-top:1rem !important}.sd-mr-3,.sd-mx-3{margin-right:1rem !important}.sd-mb-3,.sd-my-3{margin-bottom:1rem !important}.sd-ml-3,.sd-mx-3{margin-left:1rem !important}.sd-m-4{margin:1.5rem !important}.sd-mt-4,.sd-my-4{margin-top:1.5rem !important}.sd-mr-4,.sd-mx-4{margin-right:1.5rem !important}.sd-mb-4,.sd-my-4{margin-bottom:1.5rem !important}.sd-ml-4,.sd-mx-4{margin-left:1.5rem !important}.sd-m-5{margin:3rem !important}.sd-mt-5,.sd-my-5{margin-top:3rem !important}.sd-mr-5,.sd-mx-5{margin-right:3rem !important}.sd-mb-5,.sd-my-5{margin-bottom:3rem !important}.sd-ml-5,.sd-mx-5{margin-left:3rem !important}.sd-w-25{width:25% !important}.sd-w-50{width:50% !important}.sd-w-75{width:75% !important}.sd-w-100{width:100% !important}.sd-w-auto{width:auto !important}.sd-h-25{height:25% !important}.sd-h-50{height:50% !important}.sd-h-75{height:75% !important}.sd-h-100{height:100% !important}.sd-h-auto{height:auto !important}.sd-d-none{display:none !important}.sd-d-inline{display:inline !important}.sd-d-inline-block{display:inline-block !important}.sd-d-block{display:block !important}.sd-d-grid{display:grid !important}.sd-d-flex-row{display:-ms-flexbox !important;display:flex !important;flex-direction:row !important}.sd-d-flex-column{display:-ms-flexbox !important;display:flex !important;flex-direction:column !important}.sd-d-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}@media(min-width: 576px){.sd-d-sm-none{display:none !important}.sd-d-sm-inline{display:inline !important}.sd-d-sm-inline-block{display:inline-block !important}.sd-d-sm-block{display:block !important}.sd-d-sm-grid{display:grid !important}.sd-d-sm-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-sm-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 768px){.sd-d-md-none{display:none !important}.sd-d-md-inline{display:inline !important}.sd-d-md-inline-block{display:inline-block !important}.sd-d-md-block{display:block !important}.sd-d-md-grid{display:grid !important}.sd-d-md-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-md-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 992px){.sd-d-lg-none{display:none !important}.sd-d-lg-inline{display:inline !important}.sd-d-lg-inline-block{display:inline-block !important}.sd-d-lg-block{display:block !important}.sd-d-lg-grid{display:grid !important}.sd-d-lg-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-lg-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 1200px){.sd-d-xl-none{display:none !important}.sd-d-xl-inline{display:inline !important}.sd-d-xl-inline-block{display:inline-block !important}.sd-d-xl-block{display:block !important}.sd-d-xl-grid{display:grid !important}.sd-d-xl-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-xl-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}.sd-align-major-start{justify-content:flex-start !important}.sd-align-major-end{justify-content:flex-end !important}.sd-align-major-center{justify-content:center !important}.sd-align-major-justify{justify-content:space-between !important}.sd-align-major-spaced{justify-content:space-evenly !important}.sd-align-minor-start{align-items:flex-start !important}.sd-align-minor-end{align-items:flex-end !important}.sd-align-minor-center{align-items:center !important}.sd-align-minor-stretch{align-items:stretch !important}.sd-text-justify{text-align:justify !important}.sd-text-left{text-align:left !important}.sd-text-right{text-align:right !important}.sd-text-center{text-align:center !important}.sd-font-weight-light{font-weight:300 !important}.sd-font-weight-lighter{font-weight:lighter !important}.sd-font-weight-normal{font-weight:400 !important}.sd-font-weight-bold{font-weight:700 !important}.sd-font-weight-bolder{font-weight:bolder !important}.sd-font-italic{font-style:italic !important}.sd-text-decoration-none{text-decoration:none !important}.sd-text-lowercase{text-transform:lowercase !important}.sd-text-uppercase{text-transform:uppercase !important}.sd-text-capitalize{text-transform:capitalize !important}.sd-text-wrap{white-space:normal !important}.sd-text-nowrap{white-space:nowrap !important}.sd-text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.sd-fs-1,.sd-fs-1>p{font-size:calc(1.375rem + 1.5vw) !important;line-height:unset !important}.sd-fs-2,.sd-fs-2>p{font-size:calc(1.325rem + 0.9vw) !important;line-height:unset !important}.sd-fs-3,.sd-fs-3>p{font-size:calc(1.3rem + 0.6vw) !important;line-height:unset !important}.sd-fs-4,.sd-fs-4>p{font-size:calc(1.275rem + 0.3vw) !important;line-height:unset !important}.sd-fs-5,.sd-fs-5>p{font-size:1.25rem !important;line-height:unset !important}.sd-fs-6,.sd-fs-6>p{font-size:1rem !important;line-height:unset !important}.sd-border-0{border:0 solid !important}.sd-border-top-0{border-top:0 solid !important}.sd-border-bottom-0{border-bottom:0 solid !important}.sd-border-right-0{border-right:0 solid !important}.sd-border-left-0{border-left:0 solid !important}.sd-border-1{border:1px solid !important}.sd-border-top-1{border-top:1px solid !important}.sd-border-bottom-1{border-bottom:1px solid !important}.sd-border-right-1{border-right:1px solid !important}.sd-border-left-1{border-left:1px solid !important}.sd-border-2{border:2px solid !important}.sd-border-top-2{border-top:2px solid !important}.sd-border-bottom-2{border-bottom:2px solid !important}.sd-border-right-2{border-right:2px solid !important}.sd-border-left-2{border-left:2px solid !important}.sd-border-3{border:3px solid !important}.sd-border-top-3{border-top:3px solid !important}.sd-border-bottom-3{border-bottom:3px solid !important}.sd-border-right-3{border-right:3px solid !important}.sd-border-left-3{border-left:3px solid !important}.sd-border-4{border:4px solid !important}.sd-border-top-4{border-top:4px solid !important}.sd-border-bottom-4{border-bottom:4px solid !important}.sd-border-right-4{border-right:4px solid !important}.sd-border-left-4{border-left:4px solid !important}.sd-border-5{border:5px solid !important}.sd-border-top-5{border-top:5px solid !important}.sd-border-bottom-5{border-bottom:5px solid !important}.sd-border-right-5{border-right:5px solid !important}.sd-border-left-5{border-left:5px solid !important}.sd-rounded-0{border-radius:0 !important}.sd-rounded-1{border-radius:.2rem !important}.sd-rounded-2{border-radius:.3rem !important}.sd-rounded-3{border-radius:.5rem !important}.sd-rounded-pill{border-radius:50rem !important}.sd-rounded-circle{border-radius:50% !important}.shadow-none{box-shadow:none !important}.sd-shadow-sm{box-shadow:0 .125rem .25rem var(--sd-color-shadow) !important}.sd-shadow-md{box-shadow:0 .5rem 1rem var(--sd-color-shadow) !important}.sd-shadow-lg{box-shadow:0 1rem 3rem var(--sd-color-shadow) !important}@keyframes sd-slide-from-left{0%{transform:translateX(-100%)}100%{transform:translateX(0)}}@keyframes sd-slide-from-right{0%{transform:translateX(200%)}100%{transform:translateX(0)}}@keyframes sd-grow100{0%{transform:scale(0);opacity:.5}100%{transform:scale(1);opacity:1}}@keyframes sd-grow50{0%{transform:scale(0.5);opacity:.5}100%{transform:scale(1);opacity:1}}@keyframes sd-grow50-rot20{0%{transform:scale(0.5) rotateZ(-20deg);opacity:.5}75%{transform:scale(1) rotateZ(5deg);opacity:1}95%{transform:scale(1) rotateZ(-1deg);opacity:1}100%{transform:scale(1) rotateZ(0);opacity:1}}.sd-animate-slide-from-left{animation:1s ease-out 0s 1 normal none running sd-slide-from-left}.sd-animate-slide-from-right{animation:1s ease-out 0s 1 normal none running sd-slide-from-right}.sd-animate-grow100{animation:1s ease-out 0s 1 normal none running sd-grow100}.sd-animate-grow50{animation:1s ease-out 0s 1 normal none running sd-grow50}.sd-animate-grow50-rot20{animation:1s ease-out 0s 1 normal none running sd-grow50-rot20}.sd-badge{display:inline-block;padding:.35em .65em;font-size:.75em;font-weight:700;line-height:1;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25rem}.sd-badge:empty{display:none}a.sd-badge{text-decoration:none}.sd-btn .sd-badge{position:relative;top:-1px}.sd-btn{background-color:transparent;border:1px solid transparent;border-radius:.25rem;cursor:pointer;display:inline-block;font-weight:400;font-size:1rem;line-height:1.5;padding:.375rem .75rem;text-align:center;text-decoration:none;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;vertical-align:middle;user-select:none;-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none}.sd-btn:hover{text-decoration:none}@media(prefers-reduced-motion: reduce){.sd-btn{transition:none}}.sd-btn-primary,.sd-btn-outline-primary:hover,.sd-btn-outline-primary:focus{color:var(--sd-color-primary-text) !important;background-color:var(--sd-color-primary) !important;border-color:var(--sd-color-primary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-primary:hover,.sd-btn-primary:focus{color:var(--sd-color-primary-text) !important;background-color:var(--sd-color-primary-highlight) !important;border-color:var(--sd-color-primary-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-primary{color:var(--sd-color-primary) !important;border-color:var(--sd-color-primary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-secondary,.sd-btn-outline-secondary:hover,.sd-btn-outline-secondary:focus{color:var(--sd-color-secondary-text) !important;background-color:var(--sd-color-secondary) !important;border-color:var(--sd-color-secondary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-secondary:hover,.sd-btn-secondary:focus{color:var(--sd-color-secondary-text) !important;background-color:var(--sd-color-secondary-highlight) !important;border-color:var(--sd-color-secondary-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-secondary{color:var(--sd-color-secondary) !important;border-color:var(--sd-color-secondary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-success,.sd-btn-outline-success:hover,.sd-btn-outline-success:focus{color:var(--sd-color-success-text) !important;background-color:var(--sd-color-success) !important;border-color:var(--sd-color-success) !important;border-width:1px !important;border-style:solid !important}.sd-btn-success:hover,.sd-btn-success:focus{color:var(--sd-color-success-text) !important;background-color:var(--sd-color-success-highlight) !important;border-color:var(--sd-color-success-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-success{color:var(--sd-color-success) !important;border-color:var(--sd-color-success) !important;border-width:1px !important;border-style:solid !important}.sd-btn-info,.sd-btn-outline-info:hover,.sd-btn-outline-info:focus{color:var(--sd-color-info-text) !important;background-color:var(--sd-color-info) !important;border-color:var(--sd-color-info) !important;border-width:1px !important;border-style:solid !important}.sd-btn-info:hover,.sd-btn-info:focus{color:var(--sd-color-info-text) !important;background-color:var(--sd-color-info-highlight) !important;border-color:var(--sd-color-info-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-info{color:var(--sd-color-info) !important;border-color:var(--sd-color-info) !important;border-width:1px !important;border-style:solid !important}.sd-btn-warning,.sd-btn-outline-warning:hover,.sd-btn-outline-warning:focus{color:var(--sd-color-warning-text) !important;background-color:var(--sd-color-warning) !important;border-color:var(--sd-color-warning) !important;border-width:1px !important;border-style:solid !important}.sd-btn-warning:hover,.sd-btn-warning:focus{color:var(--sd-color-warning-text) !important;background-color:var(--sd-color-warning-highlight) !important;border-color:var(--sd-color-warning-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-warning{color:var(--sd-color-warning) !important;border-color:var(--sd-color-warning) !important;border-width:1px !important;border-style:solid !important}.sd-btn-danger,.sd-btn-outline-danger:hover,.sd-btn-outline-danger:focus{color:var(--sd-color-danger-text) !important;background-color:var(--sd-color-danger) !important;border-color:var(--sd-color-danger) !important;border-width:1px !important;border-style:solid !important}.sd-btn-danger:hover,.sd-btn-danger:focus{color:var(--sd-color-danger-text) !important;background-color:var(--sd-color-danger-highlight) !important;border-color:var(--sd-color-danger-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-danger{color:var(--sd-color-danger) !important;border-color:var(--sd-color-danger) !important;border-width:1px !important;border-style:solid !important}.sd-btn-light,.sd-btn-outline-light:hover,.sd-btn-outline-light:focus{color:var(--sd-color-light-text) !important;background-color:var(--sd-color-light) !important;border-color:var(--sd-color-light) !important;border-width:1px !important;border-style:solid !important}.sd-btn-light:hover,.sd-btn-light:focus{color:var(--sd-color-light-text) !important;background-color:var(--sd-color-light-highlight) !important;border-color:var(--sd-color-light-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-light{color:var(--sd-color-light) !important;border-color:var(--sd-color-light) !important;border-width:1px !important;border-style:solid !important}.sd-btn-muted,.sd-btn-outline-muted:hover,.sd-btn-outline-muted:focus{color:var(--sd-color-muted-text) !important;background-color:var(--sd-color-muted) !important;border-color:var(--sd-color-muted) !important;border-width:1px !important;border-style:solid !important}.sd-btn-muted:hover,.sd-btn-muted:focus{color:var(--sd-color-muted-text) !important;background-color:var(--sd-color-muted-highlight) !important;border-color:var(--sd-color-muted-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-muted{color:var(--sd-color-muted) !important;border-color:var(--sd-color-muted) !important;border-width:1px !important;border-style:solid !important}.sd-btn-dark,.sd-btn-outline-dark:hover,.sd-btn-outline-dark:focus{color:var(--sd-color-dark-text) !important;background-color:var(--sd-color-dark) !important;border-color:var(--sd-color-dark) !important;border-width:1px !important;border-style:solid !important}.sd-btn-dark:hover,.sd-btn-dark:focus{color:var(--sd-color-dark-text) !important;background-color:var(--sd-color-dark-highlight) !important;border-color:var(--sd-color-dark-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-dark{color:var(--sd-color-dark) !important;border-color:var(--sd-color-dark) !important;border-width:1px !important;border-style:solid !important}.sd-btn-black,.sd-btn-outline-black:hover,.sd-btn-outline-black:focus{color:var(--sd-color-black-text) !important;background-color:var(--sd-color-black) !important;border-color:var(--sd-color-black) !important;border-width:1px !important;border-style:solid !important}.sd-btn-black:hover,.sd-btn-black:focus{color:var(--sd-color-black-text) !important;background-color:var(--sd-color-black-highlight) !important;border-color:var(--sd-color-black-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-black{color:var(--sd-color-black) !important;border-color:var(--sd-color-black) !important;border-width:1px !important;border-style:solid !important}.sd-btn-white,.sd-btn-outline-white:hover,.sd-btn-outline-white:focus{color:var(--sd-color-white-text) !important;background-color:var(--sd-color-white) !important;border-color:var(--sd-color-white) !important;border-width:1px !important;border-style:solid !important}.sd-btn-white:hover,.sd-btn-white:focus{color:var(--sd-color-white-text) !important;background-color:var(--sd-color-white-highlight) !important;border-color:var(--sd-color-white-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-white{color:var(--sd-color-white) !important;border-color:var(--sd-color-white) !important;border-width:1px !important;border-style:solid !important}.sd-stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;content:""}.sd-hide-link-text{font-size:0}.sd-octicon,.sd-material-icon{display:inline-block;fill:currentColor;vertical-align:middle}.sd-avatar-xs{border-radius:50%;object-fit:cover;object-position:center;width:1rem;height:1rem}.sd-avatar-sm{border-radius:50%;object-fit:cover;object-position:center;width:3rem;height:3rem}.sd-avatar-md{border-radius:50%;object-fit:cover;object-position:center;width:5rem;height:5rem}.sd-avatar-lg{border-radius:50%;object-fit:cover;object-position:center;width:7rem;height:7rem}.sd-avatar-xl{border-radius:50%;object-fit:cover;object-position:center;width:10rem;height:10rem}.sd-avatar-inherit{border-radius:50%;object-fit:cover;object-position:center;width:inherit;height:inherit}.sd-avatar-initial{border-radius:50%;object-fit:cover;object-position:center;width:initial;height:initial}.sd-card{background-clip:border-box;background-color:var(--sd-color-card-background);border:1px solid var(--sd-color-card-border);border-radius:.25rem;color:var(--sd-color-card-text);display:-ms-flexbox;display:flex;-ms-flex-direction:column;flex-direction:column;min-width:0;position:relative;word-wrap:break-word}.sd-card>hr{margin-left:0;margin-right:0}.sd-card-hover:hover{border-color:var(--sd-color-card-border-hover);transform:scale(1.01)}.sd-card-body{-ms-flex:1 1 auto;flex:1 1 auto;padding:1rem 1rem}.sd-card-title{margin-bottom:.5rem}.sd-card-subtitle{margin-top:-0.25rem;margin-bottom:0}.sd-card-text:last-child{margin-bottom:0}.sd-card-link:hover{text-decoration:none}.sd-card-link+.card-link{margin-left:1rem}.sd-card-header{padding:.5rem 1rem;margin-bottom:0;background-color:var(--sd-color-card-header);border-bottom:1px solid var(--sd-color-card-border)}.sd-card-header:first-child{border-radius:calc(0.25rem - 1px) calc(0.25rem - 1px) 0 0}.sd-card-footer{padding:.5rem 1rem;background-color:var(--sd-color-card-footer);border-top:1px solid var(--sd-color-card-border)}.sd-card-footer:last-child{border-radius:0 0 calc(0.25rem - 1px) calc(0.25rem - 1px)}.sd-card-header-tabs{margin-right:-0.5rem;margin-bottom:-0.5rem;margin-left:-0.5rem;border-bottom:0}.sd-card-header-pills{margin-right:-0.5rem;margin-left:-0.5rem}.sd-card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:1rem;border-radius:calc(0.25rem - 1px)}.sd-card-img,.sd-card-img-bottom,.sd-card-img-top{width:100%}.sd-card-img,.sd-card-img-top{border-top-left-radius:calc(0.25rem - 1px);border-top-right-radius:calc(0.25rem - 1px)}.sd-card-img,.sd-card-img-bottom{border-bottom-left-radius:calc(0.25rem - 1px);border-bottom-right-radius:calc(0.25rem - 1px)}.sd-cards-carousel{width:100%;display:flex;flex-wrap:nowrap;-ms-flex-direction:row;flex-direction:row;overflow-x:hidden;scroll-snap-type:x mandatory}.sd-cards-carousel.sd-show-scrollbar{overflow-x:auto}.sd-cards-carousel:hover,.sd-cards-carousel:focus{overflow-x:auto}.sd-cards-carousel>.sd-card{flex-shrink:0;scroll-snap-align:start}.sd-cards-carousel>.sd-card:not(:last-child){margin-right:3px}.sd-card-cols-1>.sd-card{width:90%}.sd-card-cols-2>.sd-card{width:45%}.sd-card-cols-3>.sd-card{width:30%}.sd-card-cols-4>.sd-card{width:22.5%}.sd-card-cols-5>.sd-card{width:18%}.sd-card-cols-6>.sd-card{width:15%}.sd-card-cols-7>.sd-card{width:12.8571428571%}.sd-card-cols-8>.sd-card{width:11.25%}.sd-card-cols-9>.sd-card{width:10%}.sd-card-cols-10>.sd-card{width:9%}.sd-card-cols-11>.sd-card{width:8.1818181818%}.sd-card-cols-12>.sd-card{width:7.5%}.sd-container,.sd-container-fluid,.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container-xl{margin-left:auto;margin-right:auto;padding-left:var(--sd-gutter-x, 0.75rem);padding-right:var(--sd-gutter-x, 0.75rem);width:100%}@media(min-width: 576px){.sd-container-sm,.sd-container{max-width:540px}}@media(min-width: 768px){.sd-container-md,.sd-container-sm,.sd-container{max-width:720px}}@media(min-width: 992px){.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container{max-width:960px}}@media(min-width: 1200px){.sd-container-xl,.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container{max-width:1140px}}.sd-row{--sd-gutter-x: 1.5rem;--sd-gutter-y: 0;display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;margin-top:calc(var(--sd-gutter-y) * -1);margin-right:calc(var(--sd-gutter-x) * -0.5);margin-left:calc(var(--sd-gutter-x) * -0.5)}.sd-row>*{box-sizing:border-box;flex-shrink:0;width:100%;max-width:100%;padding-right:calc(var(--sd-gutter-x) * 0.5);padding-left:calc(var(--sd-gutter-x) * 0.5);margin-top:var(--sd-gutter-y)}.sd-col{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-auto>*{flex:0 0 auto;width:auto}.sd-row-cols-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}@media(min-width: 576px){.sd-col-sm{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-sm-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-sm-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-sm-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-sm-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-sm-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-sm-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-sm-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-sm-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-sm-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-sm-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-sm-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-sm-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-sm-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 768px){.sd-col-md{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-md-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-md-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-md-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-md-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-md-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-md-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-md-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-md-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-md-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-md-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-md-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-md-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-md-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 992px){.sd-col-lg{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-lg-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-lg-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-lg-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-lg-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-lg-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-lg-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-lg-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-lg-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-lg-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-lg-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-lg-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-lg-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-lg-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 1200px){.sd-col-xl{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-xl-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-xl-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-xl-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-xl-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-xl-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-xl-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-xl-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-xl-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-xl-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-xl-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-xl-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-xl-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-xl-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}.sd-col-auto{flex:0 0 auto;-ms-flex:0 0 auto;width:auto}.sd-col-1{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}.sd-col-2{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-col-3{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-col-4{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-col-5{flex:0 0 auto;-ms-flex:0 0 auto;width:41.6666666667%}.sd-col-6{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-col-7{flex:0 0 auto;-ms-flex:0 0 auto;width:58.3333333333%}.sd-col-8{flex:0 0 auto;-ms-flex:0 0 auto;width:66.6666666667%}.sd-col-9{flex:0 0 auto;-ms-flex:0 0 auto;width:75%}.sd-col-10{flex:0 0 auto;-ms-flex:0 0 auto;width:83.3333333333%}.sd-col-11{flex:0 0 auto;-ms-flex:0 0 auto;width:91.6666666667%}.sd-col-12{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-g-0,.sd-gy-0{--sd-gutter-y: 0}.sd-g-0,.sd-gx-0{--sd-gutter-x: 0}.sd-g-1,.sd-gy-1{--sd-gutter-y: 0.25rem}.sd-g-1,.sd-gx-1{--sd-gutter-x: 0.25rem}.sd-g-2,.sd-gy-2{--sd-gutter-y: 0.5rem}.sd-g-2,.sd-gx-2{--sd-gutter-x: 0.5rem}.sd-g-3,.sd-gy-3{--sd-gutter-y: 1rem}.sd-g-3,.sd-gx-3{--sd-gutter-x: 1rem}.sd-g-4,.sd-gy-4{--sd-gutter-y: 1.5rem}.sd-g-4,.sd-gx-4{--sd-gutter-x: 1.5rem}.sd-g-5,.sd-gy-5{--sd-gutter-y: 3rem}.sd-g-5,.sd-gx-5{--sd-gutter-x: 3rem}@media(min-width: 576px){.sd-col-sm-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-sm-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-sm-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-sm-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-sm-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-sm-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-sm-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-sm-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-sm-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-sm-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-sm-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-sm-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-sm-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-sm-0,.sd-gy-sm-0{--sd-gutter-y: 0}.sd-g-sm-0,.sd-gx-sm-0{--sd-gutter-x: 0}.sd-g-sm-1,.sd-gy-sm-1{--sd-gutter-y: 0.25rem}.sd-g-sm-1,.sd-gx-sm-1{--sd-gutter-x: 0.25rem}.sd-g-sm-2,.sd-gy-sm-2{--sd-gutter-y: 0.5rem}.sd-g-sm-2,.sd-gx-sm-2{--sd-gutter-x: 0.5rem}.sd-g-sm-3,.sd-gy-sm-3{--sd-gutter-y: 1rem}.sd-g-sm-3,.sd-gx-sm-3{--sd-gutter-x: 1rem}.sd-g-sm-4,.sd-gy-sm-4{--sd-gutter-y: 1.5rem}.sd-g-sm-4,.sd-gx-sm-4{--sd-gutter-x: 1.5rem}.sd-g-sm-5,.sd-gy-sm-5{--sd-gutter-y: 3rem}.sd-g-sm-5,.sd-gx-sm-5{--sd-gutter-x: 3rem}}@media(min-width: 768px){.sd-col-md-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-md-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-md-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-md-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-md-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-md-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-md-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-md-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-md-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-md-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-md-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-md-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-md-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-md-0,.sd-gy-md-0{--sd-gutter-y: 0}.sd-g-md-0,.sd-gx-md-0{--sd-gutter-x: 0}.sd-g-md-1,.sd-gy-md-1{--sd-gutter-y: 0.25rem}.sd-g-md-1,.sd-gx-md-1{--sd-gutter-x: 0.25rem}.sd-g-md-2,.sd-gy-md-2{--sd-gutter-y: 0.5rem}.sd-g-md-2,.sd-gx-md-2{--sd-gutter-x: 0.5rem}.sd-g-md-3,.sd-gy-md-3{--sd-gutter-y: 1rem}.sd-g-md-3,.sd-gx-md-3{--sd-gutter-x: 1rem}.sd-g-md-4,.sd-gy-md-4{--sd-gutter-y: 1.5rem}.sd-g-md-4,.sd-gx-md-4{--sd-gutter-x: 1.5rem}.sd-g-md-5,.sd-gy-md-5{--sd-gutter-y: 3rem}.sd-g-md-5,.sd-gx-md-5{--sd-gutter-x: 3rem}}@media(min-width: 992px){.sd-col-lg-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-lg-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-lg-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-lg-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-lg-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-lg-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-lg-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-lg-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-lg-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-lg-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-lg-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-lg-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-lg-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-lg-0,.sd-gy-lg-0{--sd-gutter-y: 0}.sd-g-lg-0,.sd-gx-lg-0{--sd-gutter-x: 0}.sd-g-lg-1,.sd-gy-lg-1{--sd-gutter-y: 0.25rem}.sd-g-lg-1,.sd-gx-lg-1{--sd-gutter-x: 0.25rem}.sd-g-lg-2,.sd-gy-lg-2{--sd-gutter-y: 0.5rem}.sd-g-lg-2,.sd-gx-lg-2{--sd-gutter-x: 0.5rem}.sd-g-lg-3,.sd-gy-lg-3{--sd-gutter-y: 1rem}.sd-g-lg-3,.sd-gx-lg-3{--sd-gutter-x: 1rem}.sd-g-lg-4,.sd-gy-lg-4{--sd-gutter-y: 1.5rem}.sd-g-lg-4,.sd-gx-lg-4{--sd-gutter-x: 1.5rem}.sd-g-lg-5,.sd-gy-lg-5{--sd-gutter-y: 3rem}.sd-g-lg-5,.sd-gx-lg-5{--sd-gutter-x: 3rem}}@media(min-width: 1200px){.sd-col-xl-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-xl-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-xl-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-xl-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-xl-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-xl-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-xl-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-xl-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-xl-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-xl-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-xl-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-xl-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-xl-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-xl-0,.sd-gy-xl-0{--sd-gutter-y: 0}.sd-g-xl-0,.sd-gx-xl-0{--sd-gutter-x: 0}.sd-g-xl-1,.sd-gy-xl-1{--sd-gutter-y: 0.25rem}.sd-g-xl-1,.sd-gx-xl-1{--sd-gutter-x: 0.25rem}.sd-g-xl-2,.sd-gy-xl-2{--sd-gutter-y: 0.5rem}.sd-g-xl-2,.sd-gx-xl-2{--sd-gutter-x: 0.5rem}.sd-g-xl-3,.sd-gy-xl-3{--sd-gutter-y: 1rem}.sd-g-xl-3,.sd-gx-xl-3{--sd-gutter-x: 1rem}.sd-g-xl-4,.sd-gy-xl-4{--sd-gutter-y: 1.5rem}.sd-g-xl-4,.sd-gx-xl-4{--sd-gutter-x: 1.5rem}.sd-g-xl-5,.sd-gy-xl-5{--sd-gutter-y: 3rem}.sd-g-xl-5,.sd-gx-xl-5{--sd-gutter-x: 3rem}}.sd-flex-row-reverse{flex-direction:row-reverse !important}details.sd-dropdown{position:relative}details.sd-dropdown .sd-summary-title{font-weight:700;padding-right:3em !important;-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none;user-select:none}details.sd-dropdown:hover{cursor:pointer}details.sd-dropdown .sd-summary-content{cursor:default}details.sd-dropdown summary{list-style:none;padding:1em}details.sd-dropdown summary .sd-octicon.no-title{vertical-align:middle}details.sd-dropdown[open] summary .sd-octicon.no-title{visibility:hidden}details.sd-dropdown summary::-webkit-details-marker{display:none}details.sd-dropdown summary:focus{outline:none}details.sd-dropdown .sd-summary-icon{margin-right:.5em}details.sd-dropdown .sd-summary-icon svg{opacity:.8}details.sd-dropdown summary:hover .sd-summary-up svg,details.sd-dropdown summary:hover .sd-summary-down svg{opacity:1;transform:scale(1.1)}details.sd-dropdown .sd-summary-up svg,details.sd-dropdown .sd-summary-down svg{display:block;opacity:.6}details.sd-dropdown .sd-summary-up,details.sd-dropdown .sd-summary-down{pointer-events:none;position:absolute;right:1em;top:1em}details.sd-dropdown[open]>.sd-summary-title .sd-summary-down{visibility:hidden}details.sd-dropdown:not([open])>.sd-summary-title .sd-summary-up{visibility:hidden}details.sd-dropdown:not([open]).sd-card{border:none}details.sd-dropdown:not([open])>.sd-card-header{border:1px solid var(--sd-color-card-border);border-radius:.25rem}details.sd-dropdown.sd-fade-in[open] summary~*{-moz-animation:sd-fade-in .5s ease-in-out;-webkit-animation:sd-fade-in .5s ease-in-out;animation:sd-fade-in .5s ease-in-out}details.sd-dropdown.sd-fade-in-slide-down[open] summary~*{-moz-animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out;-webkit-animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out;animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out}.sd-col>.sd-dropdown{width:100%}.sd-summary-content>.sd-tab-set:first-child{margin-top:0}@keyframes sd-fade-in{0%{opacity:0}100%{opacity:1}}@keyframes sd-slide-down{0%{transform:translate(0, -10px)}100%{transform:translate(0, 0)}}.sd-tab-set{border-radius:.125rem;display:flex;flex-wrap:wrap;margin:1em 0;position:relative}.sd-tab-set>input{opacity:0;position:absolute}.sd-tab-set>input:checked+label{border-color:var(--sd-color-tabs-underline-active);color:var(--sd-color-tabs-label-active)}.sd-tab-set>input:checked+label+.sd-tab-content{display:block}.sd-tab-set>input:not(:checked)+label:hover{color:var(--sd-color-tabs-label-hover);border-color:var(--sd-color-tabs-underline-hover)}.sd-tab-set>input:focus+label{outline-style:auto}.sd-tab-set>input:not(.focus-visible)+label{outline:none;-webkit-tap-highlight-color:transparent}.sd-tab-set>label{border-bottom:.125rem solid transparent;margin-bottom:0;color:var(--sd-color-tabs-label-inactive);border-color:var(--sd-color-tabs-underline-inactive);cursor:pointer;font-size:var(--sd-fontsize-tabs-label);font-weight:700;padding:1em 1.25em .5em;transition:color 250ms;width:auto;z-index:1}html .sd-tab-set>label:hover{color:var(--sd-color-tabs-label-active)}.sd-col>.sd-tab-set{width:100%}.sd-tab-content{box-shadow:0 -0.0625rem var(--sd-color-tabs-overline),0 .0625rem var(--sd-color-tabs-underline);display:none;order:99;padding-bottom:.75rem;padding-top:.75rem;width:100%}.sd-tab-content>:first-child{margin-top:0 !important}.sd-tab-content>:last-child{margin-bottom:0 !important}.sd-tab-content>.sd-tab-set{margin:0}.sd-sphinx-override,.sd-sphinx-override *{-moz-box-sizing:border-box;-webkit-box-sizing:border-box;box-sizing:border-box}.sd-sphinx-override p{margin-top:0}:root{--sd-color-primary: #0071bc;--sd-color-secondary: #6c757d;--sd-color-success: #28a745;--sd-color-info: #17a2b8;--sd-color-warning: #f0b37e;--sd-color-danger: #dc3545;--sd-color-light: #f8f9fa;--sd-color-muted: #6c757d;--sd-color-dark: #212529;--sd-color-black: black;--sd-color-white: white;--sd-color-primary-highlight: #0060a0;--sd-color-secondary-highlight: #5c636a;--sd-color-success-highlight: #228e3b;--sd-color-info-highlight: #148a9c;--sd-color-warning-highlight: #cc986b;--sd-color-danger-highlight: #bb2d3b;--sd-color-light-highlight: #d3d4d5;--sd-color-muted-highlight: #5c636a;--sd-color-dark-highlight: #1c1f23;--sd-color-black-highlight: black;--sd-color-white-highlight: #d9d9d9;--sd-color-primary-text: #fff;--sd-color-secondary-text: #fff;--sd-color-success-text: #fff;--sd-color-info-text: #fff;--sd-color-warning-text: #212529;--sd-color-danger-text: #fff;--sd-color-light-text: #212529;--sd-color-muted-text: #fff;--sd-color-dark-text: #fff;--sd-color-black-text: #fff;--sd-color-white-text: #212529;--sd-color-shadow: rgba(0, 0, 0, 0.15);--sd-color-card-border: rgba(0, 0, 0, 0.125);--sd-color-card-border-hover: hsla(231, 99%, 66%, 1);--sd-color-card-background: transparent;--sd-color-card-text: inherit;--sd-color-card-header: transparent;--sd-color-card-footer: transparent;--sd-color-tabs-label-active: hsla(231, 99%, 66%, 1);--sd-color-tabs-label-hover: hsla(231, 99%, 66%, 1);--sd-color-tabs-label-inactive: hsl(0, 0%, 66%);--sd-color-tabs-underline-active: hsla(231, 99%, 66%, 1);--sd-color-tabs-underline-hover: rgba(178, 206, 245, 0.62);--sd-color-tabs-underline-inactive: transparent;--sd-color-tabs-overline: rgb(222, 222, 222);--sd-color-tabs-underline: rgb(222, 222, 222);--sd-fontsize-tabs-label: 1rem} diff --git a/_preview/32/_static/design-tabs.js b/_preview/32/_static/design-tabs.js new file mode 100644 index 0000000..36b38cf --- /dev/null +++ b/_preview/32/_static/design-tabs.js @@ -0,0 +1,27 @@ +var sd_labels_by_text = {}; + +function ready() { + const li = document.getElementsByClassName("sd-tab-label"); + for (const label of li) { + syncId = label.getAttribute("data-sync-id"); + if (syncId) { + label.onclick = onLabelClick; + if (!sd_labels_by_text[syncId]) { + sd_labels_by_text[syncId] = []; + } + sd_labels_by_text[syncId].push(label); + } + } +} + +function onLabelClick() { + // Activate other inputs with the same sync id. + syncId = this.getAttribute("data-sync-id"); + for (label of sd_labels_by_text[syncId]) { + if (label === this) continue; + label.previousElementSibling.checked = true; + } + window.localStorage.setItem("sphinx-design-last-tab", syncId); +} + +document.addEventListener("DOMContentLoaded", ready, false); diff --git a/_preview/32/_static/doctools.js b/_preview/32/_static/doctools.js new file mode 100644 index 0000000..e1bfd70 --- /dev/null +++ b/_preview/32/_static/doctools.js @@ -0,0 +1,358 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for all documentation. + * + * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/** + * select a different prefix for underscore + */ +$u = _.noConflict(); + +/** + * make the code below compatible with browsers without + * an installed firebug like debugger +if (!window.console || !console.firebug) { + var names = ["log", "debug", "info", "warn", "error", "assert", "dir", + "dirxml", "group", "groupEnd", "time", "timeEnd", "count", "trace", + "profile", "profileEnd"]; + window.console = {}; + for (var i = 0; i < names.length; ++i) + window.console[names[i]] = function() {}; +} + */ + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} + +/** + * Small JavaScript module for the documentation. + */ +var Documentation = { + + init : function() { + this.fixFirefoxAnchorBug(); + this.highlightSearchWords(); + this.initIndexTable(); + this.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS : {}, + PLURAL_EXPR : function(n) { return n === 1 ? 0 : 1; }, + LOCALE : 'unknown', + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext : function(string) { + var translated = Documentation.TRANSLATIONS[string]; + if (typeof translated === 'undefined') + return string; + return (typeof translated === 'string') ? translated : translated[0]; + }, + + ngettext : function(singular, plural, n) { + var translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated === 'undefined') + return (n == 1) ? singular : plural; + return translated[Documentation.PLURALEXPR(n)]; + }, + + addTranslations : function(catalog) { + for (var key in catalog.messages) + this.TRANSLATIONS[key] = catalog.messages[key]; + this.PLURAL_EXPR = new Function('n', 'return +(' + catalog.plural_expr + ')'); + this.LOCALE = catalog.locale; + }, + + /** + * add context elements like header anchor links + */ + addContextElements : function() { + $('div[id] > :header:first').each(function() { + $('\u00B6'). + attr('href', '#' + this.id). + attr('title', _('Permalink to this headline')). + appendTo(this); + }); + $('dt[id]').each(function() { + $('\u00B6'). + attr('href', '#' + this.id). + attr('title', _('Permalink to this definition')). + appendTo(this); + }); + }, + + /** + * workaround a firefox stupidity + * see: https://bugzilla.mozilla.org/show_bug.cgi?id=645075 + */ + fixFirefoxAnchorBug : function() { + if (document.location.hash && $.browser.mozilla) + window.setTimeout(function() { + document.location.href += ''; + }, 10); + }, + + /** + * highlight the search words provided in the url in the text + */ + highlightSearchWords : function() { + var params = $.getQueryParameters(); + var terms = (params.highlight) ? params.highlight[0].split(/\s+/) : []; + if (terms.length) { + var body = $('div.body'); + if (!body.length) { + body = $('body'); + } + window.setTimeout(function() { + $.each(terms, function() { + body.highlightText(this.toLowerCase(), 'highlighted'); + }); + }, 10); + $('') + .appendTo($('#searchbox')); + } + }, + + /** + * init the domain index toggle buttons + */ + initIndexTable : function() { + var togglers = $('img.toggler').click(function() { + var src = $(this).attr('src'); + var idnum = $(this).attr('id').substr(7); + $('tr.cg-' + idnum).toggle(); + if (src.substr(-9) === 'minus.png') + $(this).attr('src', src.substr(0, src.length-9) + 'plus.png'); + else + $(this).attr('src', src.substr(0, src.length-8) + 'minus.png'); + }).css('display', ''); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) { + togglers.click(); + } + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords : function() { + $('#searchbox .highlight-link').fadeOut(300); + $('span.highlighted').removeClass('highlighted'); + var url = new URL(window.location); + url.searchParams.delete('highlight'); + window.history.replaceState({}, '', url); + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar : function() { + $('input[name=q]').first().focus(); + }, + + /** + * make the url absolute + */ + makeURL : function(relativeURL) { + return DOCUMENTATION_OPTIONS.URL_ROOT + '/' + relativeURL; + }, + + /** + * get the current relative url + */ + getCurrentURL : function() { + var path = document.location.pathname; + var parts = path.split(/\//); + $.each(DOCUMENTATION_OPTIONS.URL_ROOT.split(/\//), function() { + if (this === '..') + parts.pop(); + }); + var url = parts.join('/'); + return path.substring(url.lastIndexOf('/') + 1, path.length - 1); + }, + + initOnKeyListeners: function() { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) + return; + + $(document).keydown(function(event) { + var activeElementType = document.activeElement.tagName; + // don't navigate when in search box, textarea, dropdown or button + if (activeElementType !== 'TEXTAREA' && activeElementType !== 'INPUT' && activeElementType !== 'SELECT' + && activeElementType !== 'BUTTON') { + if (event.altKey || event.ctrlKey || event.metaKey) + return; + + if (!event.shiftKey) { + switch (event.key) { + case 'ArrowLeft': + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) + break; + var prevHref = $('link[rel="prev"]').prop('href'); + if (prevHref) { + window.location.href = prevHref; + return false; + } + break; + case 'ArrowRight': + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) + break; + var nextHref = $('link[rel="next"]').prop('href'); + if (nextHref) { + window.location.href = nextHref; + return false; + } + break; + case 'Escape': + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) + break; + Documentation.hideSearchWords(); + return false; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case '/': + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) + break; + Documentation.focusSearchBar(); + return false; + } + } + }); + } +}; + +// quick alias for translations +_ = Documentation.gettext; + +$(document).ready(function() { + Documentation.init(); +}); diff --git a/_preview/32/_static/documentation_options.js b/_preview/32/_static/documentation_options.js new file mode 100644 index 0000000..877e3c3 --- /dev/null +++ b/_preview/32/_static/documentation_options.js @@ -0,0 +1,14 @@ +var DOCUMENTATION_OPTIONS = { + URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), + VERSION: '', + LANGUAGE: 'None', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '', + NAVIGATION_WITH_KEYS: true, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/_preview/32/_static/esgf2-us.png b/_preview/32/_static/esgf2-us.png new file mode 100644 index 0000000..fad229c Binary files /dev/null and b/_preview/32/_static/esgf2-us.png differ diff --git a/_preview/32/_static/favicon.ico b/_preview/32/_static/favicon.ico new file mode 100644 index 0000000..da6ac73 Binary files /dev/null and b/_preview/32/_static/favicon.ico differ diff --git a/_preview/32/_static/file.png b/_preview/32/_static/file.png new file mode 100644 index 0000000..a858a41 Binary files /dev/null and b/_preview/32/_static/file.png differ diff --git a/_preview/32/_static/images/logo_binder.svg b/_preview/32/_static/images/logo_binder.svg new file mode 100644 index 0000000..45fecf7 --- /dev/null +++ b/_preview/32/_static/images/logo_binder.svg @@ -0,0 +1,19 @@ + + + + +logo + + + + + + + + diff --git a/_preview/32/_static/images/logo_colab.png b/_preview/32/_static/images/logo_colab.png new file mode 100644 index 0000000..b7560ec Binary files /dev/null and b/_preview/32/_static/images/logo_colab.png differ diff --git a/_preview/32/_static/images/logo_jupyterhub.svg b/_preview/32/_static/images/logo_jupyterhub.svg new file mode 100644 index 0000000..60cfe9f --- /dev/null +++ b/_preview/32/_static/images/logo_jupyterhub.svg @@ -0,0 +1 @@ +logo_jupyterhubHub diff --git a/_preview/32/_static/jquery-3.5.1.js b/_preview/32/_static/jquery-3.5.1.js new file mode 100644 index 0000000..5093733 --- /dev/null +++ b/_preview/32/_static/jquery-3.5.1.js @@ -0,0 +1,10872 @@ +/*! + * jQuery JavaScript Library v3.5.1 + * https://jquery.com/ + * + * Includes Sizzle.js + * https://sizzlejs.com/ + * + * Copyright JS Foundation and other contributors + * Released under the MIT license + * https://jquery.org/license + * + * Date: 2020-05-04T22:49Z + */ +( function( global, factory ) { + + "use strict"; + + if ( typeof module === "object" && typeof module.exports === "object" ) { + + // For CommonJS and CommonJS-like environments where a proper `window` + // is present, execute the factory and get jQuery. + // For environments that do not have a `window` with a `document` + // (such as Node.js), expose a factory as module.exports. + // This accentuates the need for the creation of a real `window`. + // e.g. var jQuery = require("jquery")(window); + // See ticket #14549 for more info. + module.exports = global.document ? + factory( global, true ) : + function( w ) { + if ( !w.document ) { + throw new Error( "jQuery requires a window with a document" ); + } + return factory( w ); + }; + } else { + factory( global ); + } + +// Pass this if window is not defined yet +} )( typeof window !== "undefined" ? window : this, function( window, noGlobal ) { + +// Edge <= 12 - 13+, Firefox <=18 - 45+, IE 10 - 11, Safari 5.1 - 9+, iOS 6 - 9.1 +// throw exceptions when non-strict code (e.g., ASP.NET 4.5) accesses strict mode +// arguments.callee.caller (trac-13335). But as of jQuery 3.0 (2016), strict mode should be common +// enough that all such attempts are guarded in a try block. +"use strict"; + +var arr = []; + +var getProto = Object.getPrototypeOf; + +var slice = arr.slice; + +var flat = arr.flat ? function( array ) { + return arr.flat.call( array ); +} : function( array ) { + return arr.concat.apply( [], array ); +}; + + +var push = arr.push; + +var indexOf = arr.indexOf; + +var class2type = {}; + +var toString = class2type.toString; + +var hasOwn = class2type.hasOwnProperty; + +var fnToString = hasOwn.toString; + +var ObjectFunctionString = fnToString.call( Object ); + +var support = {}; + +var isFunction = function isFunction( obj ) { + + // Support: Chrome <=57, Firefox <=52 + // In some browsers, typeof returns "function" for HTML elements + // (i.e., `typeof document.createElement( "object" ) === "function"`). + // We don't want to classify *any* DOM node as a function. + return typeof obj === "function" && typeof obj.nodeType !== "number"; + }; + + +var isWindow = function isWindow( obj ) { + return obj != null && obj === obj.window; + }; + + +var document = window.document; + + + + var preservedScriptAttributes = { + type: true, + src: true, + nonce: true, + noModule: true + }; + + function DOMEval( code, node, doc ) { + doc = doc || document; + + var i, val, + script = doc.createElement( "script" ); + + script.text = code; + if ( node ) { + for ( i in preservedScriptAttributes ) { + + // Support: Firefox 64+, Edge 18+ + // Some browsers don't support the "nonce" property on scripts. + // On the other hand, just using `getAttribute` is not enough as + // the `nonce` attribute is reset to an empty string whenever it + // becomes browsing-context connected. + // See https://github.com/whatwg/html/issues/2369 + // See https://html.spec.whatwg.org/#nonce-attributes + // The `node.getAttribute` check was added for the sake of + // `jQuery.globalEval` so that it can fake a nonce-containing node + // via an object. + val = node[ i ] || node.getAttribute && node.getAttribute( i ); + if ( val ) { + script.setAttribute( i, val ); + } + } + } + doc.head.appendChild( script ).parentNode.removeChild( script ); + } + + +function toType( obj ) { + if ( obj == null ) { + return obj + ""; + } + + // Support: Android <=2.3 only (functionish RegExp) + return typeof obj === "object" || typeof obj === "function" ? + class2type[ toString.call( obj ) ] || "object" : + typeof obj; +} +/* global Symbol */ +// Defining this global in .eslintrc.json would create a danger of using the global +// unguarded in another place, it seems safer to define global only for this module + + + +var + version = "3.5.1", + + // Define a local copy of jQuery + jQuery = function( selector, context ) { + + // The jQuery object is actually just the init constructor 'enhanced' + // Need init if jQuery is called (just allow error to be thrown if not included) + return new jQuery.fn.init( selector, context ); + }; + +jQuery.fn = jQuery.prototype = { + + // The current version of jQuery being used + jquery: version, + + constructor: jQuery, + + // The default length of a jQuery object is 0 + length: 0, + + toArray: function() { + return slice.call( this ); + }, + + // Get the Nth element in the matched element set OR + // Get the whole matched element set as a clean array + get: function( num ) { + + // Return all the elements in a clean array + if ( num == null ) { + return slice.call( this ); + } + + // Return just the one element from the set + return num < 0 ? this[ num + this.length ] : this[ num ]; + }, + + // Take an array of elements and push it onto the stack + // (returning the new matched element set) + pushStack: function( elems ) { + + // Build a new jQuery matched element set + var ret = jQuery.merge( this.constructor(), elems ); + + // Add the old object onto the stack (as a reference) + ret.prevObject = this; + + // Return the newly-formed element set + return ret; + }, + + // Execute a callback for every element in the matched set. + each: function( callback ) { + return jQuery.each( this, callback ); + }, + + map: function( callback ) { + return this.pushStack( jQuery.map( this, function( elem, i ) { + return callback.call( elem, i, elem ); + } ) ); + }, + + slice: function() { + return this.pushStack( slice.apply( this, arguments ) ); + }, + + first: function() { + return this.eq( 0 ); + }, + + last: function() { + return this.eq( -1 ); + }, + + even: function() { + return this.pushStack( jQuery.grep( this, function( _elem, i ) { + return ( i + 1 ) % 2; + } ) ); + }, + + odd: function() { + return this.pushStack( jQuery.grep( this, function( _elem, i ) { + return i % 2; + } ) ); + }, + + eq: function( i ) { + var len = this.length, + j = +i + ( i < 0 ? len : 0 ); + return this.pushStack( j >= 0 && j < len ? [ this[ j ] ] : [] ); + }, + + end: function() { + return this.prevObject || this.constructor(); + }, + + // For internal use only. + // Behaves like an Array's method, not like a jQuery method. + push: push, + sort: arr.sort, + splice: arr.splice +}; + +jQuery.extend = jQuery.fn.extend = function() { + var options, name, src, copy, copyIsArray, clone, + target = arguments[ 0 ] || {}, + i = 1, + length = arguments.length, + deep = false; + + // Handle a deep copy situation + if ( typeof target === "boolean" ) { + deep = target; + + // Skip the boolean and the target + target = arguments[ i ] || {}; + i++; + } + + // Handle case when target is a string or something (possible in deep copy) + if ( typeof target !== "object" && !isFunction( target ) ) { + target = {}; + } + + // Extend jQuery itself if only one argument is passed + if ( i === length ) { + target = this; + i--; + } + + for ( ; i < length; i++ ) { + + // Only deal with non-null/undefined values + if ( ( options = arguments[ i ] ) != null ) { + + // Extend the base object + for ( name in options ) { + copy = options[ name ]; + + // Prevent Object.prototype pollution + // Prevent never-ending loop + if ( name === "__proto__" || target === copy ) { + continue; + } + + // Recurse if we're merging plain objects or arrays + if ( deep && copy && ( jQuery.isPlainObject( copy ) || + ( copyIsArray = Array.isArray( copy ) ) ) ) { + src = target[ name ]; + + // Ensure proper type for the source value + if ( copyIsArray && !Array.isArray( src ) ) { + clone = []; + } else if ( !copyIsArray && !jQuery.isPlainObject( src ) ) { + clone = {}; + } else { + clone = src; + } + copyIsArray = false; + + // Never move original objects, clone them + target[ name ] = jQuery.extend( deep, clone, copy ); + + // Don't bring in undefined values + } else if ( copy !== undefined ) { + target[ name ] = copy; + } + } + } + } + + // Return the modified object + return target; +}; + +jQuery.extend( { + + // Unique for each copy of jQuery on the page + expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "" ), + + // Assume jQuery is ready without the ready module + isReady: true, + + error: function( msg ) { + throw new Error( msg ); + }, + + noop: function() {}, + + isPlainObject: function( obj ) { + var proto, Ctor; + + // Detect obvious negatives + // Use toString instead of jQuery.type to catch host objects + if ( !obj || toString.call( obj ) !== "[object Object]" ) { + return false; + } + + proto = getProto( obj ); + + // Objects with no prototype (e.g., `Object.create( null )`) are plain + if ( !proto ) { + return true; + } + + // Objects with prototype are plain iff they were constructed by a global Object function + Ctor = hasOwn.call( proto, "constructor" ) && proto.constructor; + return typeof Ctor === "function" && fnToString.call( Ctor ) === ObjectFunctionString; + }, + + isEmptyObject: function( obj ) { + var name; + + for ( name in obj ) { + return false; + } + return true; + }, + + // Evaluates a script in a provided context; falls back to the global one + // if not specified. + globalEval: function( code, options, doc ) { + DOMEval( code, { nonce: options && options.nonce }, doc ); + }, + + each: function( obj, callback ) { + var length, i = 0; + + if ( isArrayLike( obj ) ) { + length = obj.length; + for ( ; i < length; i++ ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } else { + for ( i in obj ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } + + return obj; + }, + + // results is for internal usage only + makeArray: function( arr, results ) { + var ret = results || []; + + if ( arr != null ) { + if ( isArrayLike( Object( arr ) ) ) { + jQuery.merge( ret, + typeof arr === "string" ? + [ arr ] : arr + ); + } else { + push.call( ret, arr ); + } + } + + return ret; + }, + + inArray: function( elem, arr, i ) { + return arr == null ? -1 : indexOf.call( arr, elem, i ); + }, + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + merge: function( first, second ) { + var len = +second.length, + j = 0, + i = first.length; + + for ( ; j < len; j++ ) { + first[ i++ ] = second[ j ]; + } + + first.length = i; + + return first; + }, + + grep: function( elems, callback, invert ) { + var callbackInverse, + matches = [], + i = 0, + length = elems.length, + callbackExpect = !invert; + + // Go through the array, only saving the items + // that pass the validator function + for ( ; i < length; i++ ) { + callbackInverse = !callback( elems[ i ], i ); + if ( callbackInverse !== callbackExpect ) { + matches.push( elems[ i ] ); + } + } + + return matches; + }, + + // arg is for internal usage only + map: function( elems, callback, arg ) { + var length, value, + i = 0, + ret = []; + + // Go through the array, translating each of the items to their new values + if ( isArrayLike( elems ) ) { + length = elems.length; + for ( ; i < length; i++ ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + + // Go through every key on the object, + } else { + for ( i in elems ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + } + + // Flatten any nested arrays + return flat( ret ); + }, + + // A global GUID counter for objects + guid: 1, + + // jQuery.support is not used in Core but other projects attach their + // properties to it so it needs to exist. + support: support +} ); + +if ( typeof Symbol === "function" ) { + jQuery.fn[ Symbol.iterator ] = arr[ Symbol.iterator ]; +} + +// Populate the class2type map +jQuery.each( "Boolean Number String Function Array Date RegExp Object Error Symbol".split( " " ), +function( _i, name ) { + class2type[ "[object " + name + "]" ] = name.toLowerCase(); +} ); + +function isArrayLike( obj ) { + + // Support: real iOS 8.2 only (not reproducible in simulator) + // `in` check used to prevent JIT error (gh-2145) + // hasOwn isn't used here due to false negatives + // regarding Nodelist length in IE + var length = !!obj && "length" in obj && obj.length, + type = toType( obj ); + + if ( isFunction( obj ) || isWindow( obj ) ) { + return false; + } + + return type === "array" || length === 0 || + typeof length === "number" && length > 0 && ( length - 1 ) in obj; +} +var Sizzle = +/*! + * Sizzle CSS Selector Engine v2.3.5 + * https://sizzlejs.com/ + * + * Copyright JS Foundation and other contributors + * Released under the MIT license + * https://js.foundation/ + * + * Date: 2020-03-14 + */ +( function( window ) { +var i, + support, + Expr, + getText, + isXML, + tokenize, + compile, + select, + outermostContext, + sortInput, + hasDuplicate, + + // Local document vars + setDocument, + document, + docElem, + documentIsHTML, + rbuggyQSA, + rbuggyMatches, + matches, + contains, + + // Instance-specific data + expando = "sizzle" + 1 * new Date(), + preferredDoc = window.document, + dirruns = 0, + done = 0, + classCache = createCache(), + tokenCache = createCache(), + compilerCache = createCache(), + nonnativeSelectorCache = createCache(), + sortOrder = function( a, b ) { + if ( a === b ) { + hasDuplicate = true; + } + return 0; + }, + + // Instance methods + hasOwn = ( {} ).hasOwnProperty, + arr = [], + pop = arr.pop, + pushNative = arr.push, + push = arr.push, + slice = arr.slice, + + // Use a stripped-down indexOf as it's faster than native + // https://jsperf.com/thor-indexof-vs-for/5 + indexOf = function( list, elem ) { + var i = 0, + len = list.length; + for ( ; i < len; i++ ) { + if ( list[ i ] === elem ) { + return i; + } + } + return -1; + }, + + booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|" + + "ismap|loop|multiple|open|readonly|required|scoped", + + // Regular expressions + + // http://www.w3.org/TR/css3-selectors/#whitespace + whitespace = "[\\x20\\t\\r\\n\\f]", + + // https://www.w3.org/TR/css-syntax-3/#ident-token-diagram + identifier = "(?:\\\\[\\da-fA-F]{1,6}" + whitespace + + "?|\\\\[^\\r\\n\\f]|[\\w-]|[^\0-\\x7f])+", + + // Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors + attributes = "\\[" + whitespace + "*(" + identifier + ")(?:" + whitespace + + + // Operator (capture 2) + "*([*^$|!~]?=)" + whitespace + + + // "Attribute values must be CSS identifiers [capture 5] + // or strings [capture 3 or capture 4]" + "*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + + whitespace + "*\\]", + + pseudos = ":(" + identifier + ")(?:\\((" + + + // To reduce the number of selectors needing tokenize in the preFilter, prefer arguments: + // 1. quoted (capture 3; capture 4 or capture 5) + "('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" + + + // 2. simple (capture 6) + "((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" + + + // 3. anything else (capture 2) + ".*" + + ")\\)|)", + + // Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter + rwhitespace = new RegExp( whitespace + "+", "g" ), + rtrim = new RegExp( "^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + + whitespace + "+$", "g" ), + + rcomma = new RegExp( "^" + whitespace + "*," + whitespace + "*" ), + rcombinators = new RegExp( "^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + + "*" ), + rdescend = new RegExp( whitespace + "|>" ), + + rpseudo = new RegExp( pseudos ), + ridentifier = new RegExp( "^" + identifier + "$" ), + + matchExpr = { + "ID": new RegExp( "^#(" + identifier + ")" ), + "CLASS": new RegExp( "^\\.(" + identifier + ")" ), + "TAG": new RegExp( "^(" + identifier + "|[*])" ), + "ATTR": new RegExp( "^" + attributes ), + "PSEUDO": new RegExp( "^" + pseudos ), + "CHILD": new RegExp( "^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + + whitespace + "*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + + whitespace + "*(\\d+)|))" + whitespace + "*\\)|)", "i" ), + "bool": new RegExp( "^(?:" + booleans + ")$", "i" ), + + // For use in libraries implementing .is() + // We use this for POS matching in `select` + "needsContext": new RegExp( "^" + whitespace + + "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" + whitespace + + "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i" ) + }, + + rhtml = /HTML$/i, + rinputs = /^(?:input|select|textarea|button)$/i, + rheader = /^h\d$/i, + + rnative = /^[^{]+\{\s*\[native \w/, + + // Easily-parseable/retrievable ID or TAG or CLASS selectors + rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/, + + rsibling = /[+~]/, + + // CSS escapes + // http://www.w3.org/TR/CSS21/syndata.html#escaped-characters + runescape = new RegExp( "\\\\[\\da-fA-F]{1,6}" + whitespace + "?|\\\\([^\\r\\n\\f])", "g" ), + funescape = function( escape, nonHex ) { + var high = "0x" + escape.slice( 1 ) - 0x10000; + + return nonHex ? + + // Strip the backslash prefix from a non-hex escape sequence + nonHex : + + // Replace a hexadecimal escape sequence with the encoded Unicode code point + // Support: IE <=11+ + // For values outside the Basic Multilingual Plane (BMP), manually construct a + // surrogate pair + high < 0 ? + String.fromCharCode( high + 0x10000 ) : + String.fromCharCode( high >> 10 | 0xD800, high & 0x3FF | 0xDC00 ); + }, + + // CSS string/identifier serialization + // https://drafts.csswg.org/cssom/#common-serializing-idioms + rcssescape = /([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g, + fcssescape = function( ch, asCodePoint ) { + if ( asCodePoint ) { + + // U+0000 NULL becomes U+FFFD REPLACEMENT CHARACTER + if ( ch === "\0" ) { + return "\uFFFD"; + } + + // Control characters and (dependent upon position) numbers get escaped as code points + return ch.slice( 0, -1 ) + "\\" + + ch.charCodeAt( ch.length - 1 ).toString( 16 ) + " "; + } + + // Other potentially-special ASCII characters get backslash-escaped + return "\\" + ch; + }, + + // Used for iframes + // See setDocument() + // Removing the function wrapper causes a "Permission Denied" + // error in IE + unloadHandler = function() { + setDocument(); + }, + + inDisabledFieldset = addCombinator( + function( elem ) { + return elem.disabled === true && elem.nodeName.toLowerCase() === "fieldset"; + }, + { dir: "parentNode", next: "legend" } + ); + +// Optimize for push.apply( _, NodeList ) +try { + push.apply( + ( arr = slice.call( preferredDoc.childNodes ) ), + preferredDoc.childNodes + ); + + // Support: Android<4.0 + // Detect silently failing push.apply + // eslint-disable-next-line no-unused-expressions + arr[ preferredDoc.childNodes.length ].nodeType; +} catch ( e ) { + push = { apply: arr.length ? + + // Leverage slice if possible + function( target, els ) { + pushNative.apply( target, slice.call( els ) ); + } : + + // Support: IE<9 + // Otherwise append directly + function( target, els ) { + var j = target.length, + i = 0; + + // Can't trust NodeList.length + while ( ( target[ j++ ] = els[ i++ ] ) ) {} + target.length = j - 1; + } + }; +} + +function Sizzle( selector, context, results, seed ) { + var m, i, elem, nid, match, groups, newSelector, + newContext = context && context.ownerDocument, + + // nodeType defaults to 9, since context defaults to document + nodeType = context ? context.nodeType : 9; + + results = results || []; + + // Return early from calls with invalid selector or context + if ( typeof selector !== "string" || !selector || + nodeType !== 1 && nodeType !== 9 && nodeType !== 11 ) { + + return results; + } + + // Try to shortcut find operations (as opposed to filters) in HTML documents + if ( !seed ) { + setDocument( context ); + context = context || document; + + if ( documentIsHTML ) { + + // If the selector is sufficiently simple, try using a "get*By*" DOM method + // (excepting DocumentFragment context, where the methods don't exist) + if ( nodeType !== 11 && ( match = rquickExpr.exec( selector ) ) ) { + + // ID selector + if ( ( m = match[ 1 ] ) ) { + + // Document context + if ( nodeType === 9 ) { + if ( ( elem = context.getElementById( m ) ) ) { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( elem.id === m ) { + results.push( elem ); + return results; + } + } else { + return results; + } + + // Element context + } else { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( newContext && ( elem = newContext.getElementById( m ) ) && + contains( context, elem ) && + elem.id === m ) { + + results.push( elem ); + return results; + } + } + + // Type selector + } else if ( match[ 2 ] ) { + push.apply( results, context.getElementsByTagName( selector ) ); + return results; + + // Class selector + } else if ( ( m = match[ 3 ] ) && support.getElementsByClassName && + context.getElementsByClassName ) { + + push.apply( results, context.getElementsByClassName( m ) ); + return results; + } + } + + // Take advantage of querySelectorAll + if ( support.qsa && + !nonnativeSelectorCache[ selector + " " ] && + ( !rbuggyQSA || !rbuggyQSA.test( selector ) ) && + + // Support: IE 8 only + // Exclude object elements + ( nodeType !== 1 || context.nodeName.toLowerCase() !== "object" ) ) { + + newSelector = selector; + newContext = context; + + // qSA considers elements outside a scoping root when evaluating child or + // descendant combinators, which is not what we want. + // In such cases, we work around the behavior by prefixing every selector in the + // list with an ID selector referencing the scope context. + // The technique has to be used as well when a leading combinator is used + // as such selectors are not recognized by querySelectorAll. + // Thanks to Andrew Dupont for this technique. + if ( nodeType === 1 && + ( rdescend.test( selector ) || rcombinators.test( selector ) ) ) { + + // Expand context for sibling selectors + newContext = rsibling.test( selector ) && testContext( context.parentNode ) || + context; + + // We can use :scope instead of the ID hack if the browser + // supports it & if we're not changing the context. + if ( newContext !== context || !support.scope ) { + + // Capture the context ID, setting it first if necessary + if ( ( nid = context.getAttribute( "id" ) ) ) { + nid = nid.replace( rcssescape, fcssescape ); + } else { + context.setAttribute( "id", ( nid = expando ) ); + } + } + + // Prefix every selector in the list + groups = tokenize( selector ); + i = groups.length; + while ( i-- ) { + groups[ i ] = ( nid ? "#" + nid : ":scope" ) + " " + + toSelector( groups[ i ] ); + } + newSelector = groups.join( "," ); + } + + try { + push.apply( results, + newContext.querySelectorAll( newSelector ) + ); + return results; + } catch ( qsaError ) { + nonnativeSelectorCache( selector, true ); + } finally { + if ( nid === expando ) { + context.removeAttribute( "id" ); + } + } + } + } + } + + // All others + return select( selector.replace( rtrim, "$1" ), context, results, seed ); +} + +/** + * Create key-value caches of limited size + * @returns {function(string, object)} Returns the Object data after storing it on itself with + * property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength) + * deleting the oldest entry + */ +function createCache() { + var keys = []; + + function cache( key, value ) { + + // Use (key + " ") to avoid collision with native prototype properties (see Issue #157) + if ( keys.push( key + " " ) > Expr.cacheLength ) { + + // Only keep the most recent entries + delete cache[ keys.shift() ]; + } + return ( cache[ key + " " ] = value ); + } + return cache; +} + +/** + * Mark a function for special use by Sizzle + * @param {Function} fn The function to mark + */ +function markFunction( fn ) { + fn[ expando ] = true; + return fn; +} + +/** + * Support testing using an element + * @param {Function} fn Passed the created element and returns a boolean result + */ +function assert( fn ) { + var el = document.createElement( "fieldset" ); + + try { + return !!fn( el ); + } catch ( e ) { + return false; + } finally { + + // Remove from its parent by default + if ( el.parentNode ) { + el.parentNode.removeChild( el ); + } + + // release memory in IE + el = null; + } +} + +/** + * Adds the same handler for all of the specified attrs + * @param {String} attrs Pipe-separated list of attributes + * @param {Function} handler The method that will be applied + */ +function addHandle( attrs, handler ) { + var arr = attrs.split( "|" ), + i = arr.length; + + while ( i-- ) { + Expr.attrHandle[ arr[ i ] ] = handler; + } +} + +/** + * Checks document order of two siblings + * @param {Element} a + * @param {Element} b + * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b + */ +function siblingCheck( a, b ) { + var cur = b && a, + diff = cur && a.nodeType === 1 && b.nodeType === 1 && + a.sourceIndex - b.sourceIndex; + + // Use IE sourceIndex if available on both nodes + if ( diff ) { + return diff; + } + + // Check if b follows a + if ( cur ) { + while ( ( cur = cur.nextSibling ) ) { + if ( cur === b ) { + return -1; + } + } + } + + return a ? 1 : -1; +} + +/** + * Returns a function to use in pseudos for input types + * @param {String} type + */ +function createInputPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for buttons + * @param {String} type + */ +function createButtonPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return ( name === "input" || name === "button" ) && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for :enabled/:disabled + * @param {Boolean} disabled true for :disabled; false for :enabled + */ +function createDisabledPseudo( disabled ) { + + // Known :disabled false positives: fieldset[disabled] > legend:nth-of-type(n+2) :can-disable + return function( elem ) { + + // Only certain elements can match :enabled or :disabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-enabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-disabled + if ( "form" in elem ) { + + // Check for inherited disabledness on relevant non-disabled elements: + // * listed form-associated elements in a disabled fieldset + // https://html.spec.whatwg.org/multipage/forms.html#category-listed + // https://html.spec.whatwg.org/multipage/forms.html#concept-fe-disabled + // * option elements in a disabled optgroup + // https://html.spec.whatwg.org/multipage/forms.html#concept-option-disabled + // All such elements have a "form" property. + if ( elem.parentNode && elem.disabled === false ) { + + // Option elements defer to a parent optgroup if present + if ( "label" in elem ) { + if ( "label" in elem.parentNode ) { + return elem.parentNode.disabled === disabled; + } else { + return elem.disabled === disabled; + } + } + + // Support: IE 6 - 11 + // Use the isDisabled shortcut property to check for disabled fieldset ancestors + return elem.isDisabled === disabled || + + // Where there is no isDisabled, check manually + /* jshint -W018 */ + elem.isDisabled !== !disabled && + inDisabledFieldset( elem ) === disabled; + } + + return elem.disabled === disabled; + + // Try to winnow out elements that can't be disabled before trusting the disabled property. + // Some victims get caught in our net (label, legend, menu, track), but it shouldn't + // even exist on them, let alone have a boolean value. + } else if ( "label" in elem ) { + return elem.disabled === disabled; + } + + // Remaining elements are neither :enabled nor :disabled + return false; + }; +} + +/** + * Returns a function to use in pseudos for positionals + * @param {Function} fn + */ +function createPositionalPseudo( fn ) { + return markFunction( function( argument ) { + argument = +argument; + return markFunction( function( seed, matches ) { + var j, + matchIndexes = fn( [], seed.length, argument ), + i = matchIndexes.length; + + // Match elements found at the specified indexes + while ( i-- ) { + if ( seed[ ( j = matchIndexes[ i ] ) ] ) { + seed[ j ] = !( matches[ j ] = seed[ j ] ); + } + } + } ); + } ); +} + +/** + * Checks a node for validity as a Sizzle context + * @param {Element|Object=} context + * @returns {Element|Object|Boolean} The input node if acceptable, otherwise a falsy value + */ +function testContext( context ) { + return context && typeof context.getElementsByTagName !== "undefined" && context; +} + +// Expose support vars for convenience +support = Sizzle.support = {}; + +/** + * Detects XML nodes + * @param {Element|Object} elem An element or a document + * @returns {Boolean} True iff elem is a non-HTML XML node + */ +isXML = Sizzle.isXML = function( elem ) { + var namespace = elem.namespaceURI, + docElem = ( elem.ownerDocument || elem ).documentElement; + + // Support: IE <=8 + // Assume HTML when documentElement doesn't yet exist, such as inside loading iframes + // https://bugs.jquery.com/ticket/4833 + return !rhtml.test( namespace || docElem && docElem.nodeName || "HTML" ); +}; + +/** + * Sets document-related variables once based on the current document + * @param {Element|Object} [doc] An element or document object to use to set the document + * @returns {Object} Returns the current document + */ +setDocument = Sizzle.setDocument = function( node ) { + var hasCompare, subWindow, + doc = node ? node.ownerDocument || node : preferredDoc; + + // Return early if doc is invalid or already selected + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( doc == document || doc.nodeType !== 9 || !doc.documentElement ) { + return document; + } + + // Update global variables + document = doc; + docElem = document.documentElement; + documentIsHTML = !isXML( document ); + + // Support: IE 9 - 11+, Edge 12 - 18+ + // Accessing iframe documents after unload throws "permission denied" errors (jQuery #13936) + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( preferredDoc != document && + ( subWindow = document.defaultView ) && subWindow.top !== subWindow ) { + + // Support: IE 11, Edge + if ( subWindow.addEventListener ) { + subWindow.addEventListener( "unload", unloadHandler, false ); + + // Support: IE 9 - 10 only + } else if ( subWindow.attachEvent ) { + subWindow.attachEvent( "onunload", unloadHandler ); + } + } + + // Support: IE 8 - 11+, Edge 12 - 18+, Chrome <=16 - 25 only, Firefox <=3.6 - 31 only, + // Safari 4 - 5 only, Opera <=11.6 - 12.x only + // IE/Edge & older browsers don't support the :scope pseudo-class. + // Support: Safari 6.0 only + // Safari 6.0 supports :scope but it's an alias of :root there. + support.scope = assert( function( el ) { + docElem.appendChild( el ).appendChild( document.createElement( "div" ) ); + return typeof el.querySelectorAll !== "undefined" && + !el.querySelectorAll( ":scope fieldset div" ).length; + } ); + + /* Attributes + ---------------------------------------------------------------------- */ + + // Support: IE<8 + // Verify that getAttribute really returns attributes and not properties + // (excepting IE8 booleans) + support.attributes = assert( function( el ) { + el.className = "i"; + return !el.getAttribute( "className" ); + } ); + + /* getElement(s)By* + ---------------------------------------------------------------------- */ + + // Check if getElementsByTagName("*") returns only elements + support.getElementsByTagName = assert( function( el ) { + el.appendChild( document.createComment( "" ) ); + return !el.getElementsByTagName( "*" ).length; + } ); + + // Support: IE<9 + support.getElementsByClassName = rnative.test( document.getElementsByClassName ); + + // Support: IE<10 + // Check if getElementById returns elements by name + // The broken getElementById methods don't pick up programmatically-set names, + // so use a roundabout getElementsByName test + support.getById = assert( function( el ) { + docElem.appendChild( el ).id = expando; + return !document.getElementsByName || !document.getElementsByName( expando ).length; + } ); + + // ID filter and find + if ( support.getById ) { + Expr.filter[ "ID" ] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + return elem.getAttribute( "id" ) === attrId; + }; + }; + Expr.find[ "ID" ] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var elem = context.getElementById( id ); + return elem ? [ elem ] : []; + } + }; + } else { + Expr.filter[ "ID" ] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + var node = typeof elem.getAttributeNode !== "undefined" && + elem.getAttributeNode( "id" ); + return node && node.value === attrId; + }; + }; + + // Support: IE 6 - 7 only + // getElementById is not reliable as a find shortcut + Expr.find[ "ID" ] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var node, i, elems, + elem = context.getElementById( id ); + + if ( elem ) { + + // Verify the id attribute + node = elem.getAttributeNode( "id" ); + if ( node && node.value === id ) { + return [ elem ]; + } + + // Fall back on getElementsByName + elems = context.getElementsByName( id ); + i = 0; + while ( ( elem = elems[ i++ ] ) ) { + node = elem.getAttributeNode( "id" ); + if ( node && node.value === id ) { + return [ elem ]; + } + } + } + + return []; + } + }; + } + + // Tag + Expr.find[ "TAG" ] = support.getElementsByTagName ? + function( tag, context ) { + if ( typeof context.getElementsByTagName !== "undefined" ) { + return context.getElementsByTagName( tag ); + + // DocumentFragment nodes don't have gEBTN + } else if ( support.qsa ) { + return context.querySelectorAll( tag ); + } + } : + + function( tag, context ) { + var elem, + tmp = [], + i = 0, + + // By happy coincidence, a (broken) gEBTN appears on DocumentFragment nodes too + results = context.getElementsByTagName( tag ); + + // Filter out possible comments + if ( tag === "*" ) { + while ( ( elem = results[ i++ ] ) ) { + if ( elem.nodeType === 1 ) { + tmp.push( elem ); + } + } + + return tmp; + } + return results; + }; + + // Class + Expr.find[ "CLASS" ] = support.getElementsByClassName && function( className, context ) { + if ( typeof context.getElementsByClassName !== "undefined" && documentIsHTML ) { + return context.getElementsByClassName( className ); + } + }; + + /* QSA/matchesSelector + ---------------------------------------------------------------------- */ + + // QSA and matchesSelector support + + // matchesSelector(:active) reports false when true (IE9/Opera 11.5) + rbuggyMatches = []; + + // qSa(:focus) reports false when true (Chrome 21) + // We allow this because of a bug in IE8/9 that throws an error + // whenever `document.activeElement` is accessed on an iframe + // So, we allow :focus to pass through QSA all the time to avoid the IE error + // See https://bugs.jquery.com/ticket/13378 + rbuggyQSA = []; + + if ( ( support.qsa = rnative.test( document.querySelectorAll ) ) ) { + + // Build QSA regex + // Regex strategy adopted from Diego Perini + assert( function( el ) { + + var input; + + // Select is set to empty string on purpose + // This is to test IE's treatment of not explicitly + // setting a boolean content attribute, + // since its presence should be enough + // https://bugs.jquery.com/ticket/12359 + docElem.appendChild( el ).innerHTML = "" + + ""; + + // Support: IE8, Opera 11-12.16 + // Nothing should be selected when empty strings follow ^= or $= or *= + // The test attribute must be unknown in Opera but "safe" for WinRT + // https://msdn.microsoft.com/en-us/library/ie/hh465388.aspx#attribute_section + if ( el.querySelectorAll( "[msallowcapture^='']" ).length ) { + rbuggyQSA.push( "[*^$]=" + whitespace + "*(?:''|\"\")" ); + } + + // Support: IE8 + // Boolean attributes and "value" are not treated correctly + if ( !el.querySelectorAll( "[selected]" ).length ) { + rbuggyQSA.push( "\\[" + whitespace + "*(?:value|" + booleans + ")" ); + } + + // Support: Chrome<29, Android<4.4, Safari<7.0+, iOS<7.0+, PhantomJS<1.9.8+ + if ( !el.querySelectorAll( "[id~=" + expando + "-]" ).length ) { + rbuggyQSA.push( "~=" ); + } + + // Support: IE 11+, Edge 15 - 18+ + // IE 11/Edge don't find elements on a `[name='']` query in some cases. + // Adding a temporary attribute to the document before the selection works + // around the issue. + // Interestingly, IE 10 & older don't seem to have the issue. + input = document.createElement( "input" ); + input.setAttribute( "name", "" ); + el.appendChild( input ); + if ( !el.querySelectorAll( "[name='']" ).length ) { + rbuggyQSA.push( "\\[" + whitespace + "*name" + whitespace + "*=" + + whitespace + "*(?:''|\"\")" ); + } + + // Webkit/Opera - :checked should return selected option elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + // IE8 throws error here and will not see later tests + if ( !el.querySelectorAll( ":checked" ).length ) { + rbuggyQSA.push( ":checked" ); + } + + // Support: Safari 8+, iOS 8+ + // https://bugs.webkit.org/show_bug.cgi?id=136851 + // In-page `selector#id sibling-combinator selector` fails + if ( !el.querySelectorAll( "a#" + expando + "+*" ).length ) { + rbuggyQSA.push( ".#.+[+~]" ); + } + + // Support: Firefox <=3.6 - 5 only + // Old Firefox doesn't throw on a badly-escaped identifier. + el.querySelectorAll( "\\\f" ); + rbuggyQSA.push( "[\\r\\n\\f]" ); + } ); + + assert( function( el ) { + el.innerHTML = "" + + ""; + + // Support: Windows 8 Native Apps + // The type and name attributes are restricted during .innerHTML assignment + var input = document.createElement( "input" ); + input.setAttribute( "type", "hidden" ); + el.appendChild( input ).setAttribute( "name", "D" ); + + // Support: IE8 + // Enforce case-sensitivity of name attribute + if ( el.querySelectorAll( "[name=d]" ).length ) { + rbuggyQSA.push( "name" + whitespace + "*[*^$|!~]?=" ); + } + + // FF 3.5 - :enabled/:disabled and hidden elements (hidden elements are still enabled) + // IE8 throws error here and will not see later tests + if ( el.querySelectorAll( ":enabled" ).length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: IE9-11+ + // IE's :disabled selector does not pick up the children of disabled fieldsets + docElem.appendChild( el ).disabled = true; + if ( el.querySelectorAll( ":disabled" ).length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: Opera 10 - 11 only + // Opera 10-11 does not throw on post-comma invalid pseudos + el.querySelectorAll( "*,:x" ); + rbuggyQSA.push( ",.*:" ); + } ); + } + + if ( ( support.matchesSelector = rnative.test( ( matches = docElem.matches || + docElem.webkitMatchesSelector || + docElem.mozMatchesSelector || + docElem.oMatchesSelector || + docElem.msMatchesSelector ) ) ) ) { + + assert( function( el ) { + + // Check to see if it's possible to do matchesSelector + // on a disconnected node (IE 9) + support.disconnectedMatch = matches.call( el, "*" ); + + // This should fail with an exception + // Gecko does not error, returns false instead + matches.call( el, "[s!='']:x" ); + rbuggyMatches.push( "!=", pseudos ); + } ); + } + + rbuggyQSA = rbuggyQSA.length && new RegExp( rbuggyQSA.join( "|" ) ); + rbuggyMatches = rbuggyMatches.length && new RegExp( rbuggyMatches.join( "|" ) ); + + /* Contains + ---------------------------------------------------------------------- */ + hasCompare = rnative.test( docElem.compareDocumentPosition ); + + // Element contains another + // Purposefully self-exclusive + // As in, an element does not contain itself + contains = hasCompare || rnative.test( docElem.contains ) ? + function( a, b ) { + var adown = a.nodeType === 9 ? a.documentElement : a, + bup = b && b.parentNode; + return a === bup || !!( bup && bup.nodeType === 1 && ( + adown.contains ? + adown.contains( bup ) : + a.compareDocumentPosition && a.compareDocumentPosition( bup ) & 16 + ) ); + } : + function( a, b ) { + if ( b ) { + while ( ( b = b.parentNode ) ) { + if ( b === a ) { + return true; + } + } + } + return false; + }; + + /* Sorting + ---------------------------------------------------------------------- */ + + // Document order sorting + sortOrder = hasCompare ? + function( a, b ) { + + // Flag for duplicate removal + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + // Sort on method existence if only one input has compareDocumentPosition + var compare = !a.compareDocumentPosition - !b.compareDocumentPosition; + if ( compare ) { + return compare; + } + + // Calculate position if both inputs belong to the same document + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + compare = ( a.ownerDocument || a ) == ( b.ownerDocument || b ) ? + a.compareDocumentPosition( b ) : + + // Otherwise we know they are disconnected + 1; + + // Disconnected nodes + if ( compare & 1 || + ( !support.sortDetached && b.compareDocumentPosition( a ) === compare ) ) { + + // Choose the first element that is related to our preferred document + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( a == document || a.ownerDocument == preferredDoc && + contains( preferredDoc, a ) ) { + return -1; + } + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( b == document || b.ownerDocument == preferredDoc && + contains( preferredDoc, b ) ) { + return 1; + } + + // Maintain original order + return sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + } + + return compare & 4 ? -1 : 1; + } : + function( a, b ) { + + // Exit early if the nodes are identical + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + var cur, + i = 0, + aup = a.parentNode, + bup = b.parentNode, + ap = [ a ], + bp = [ b ]; + + // Parentless nodes are either documents or disconnected + if ( !aup || !bup ) { + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + /* eslint-disable eqeqeq */ + return a == document ? -1 : + b == document ? 1 : + /* eslint-enable eqeqeq */ + aup ? -1 : + bup ? 1 : + sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + + // If the nodes are siblings, we can do a quick check + } else if ( aup === bup ) { + return siblingCheck( a, b ); + } + + // Otherwise we need full lists of their ancestors for comparison + cur = a; + while ( ( cur = cur.parentNode ) ) { + ap.unshift( cur ); + } + cur = b; + while ( ( cur = cur.parentNode ) ) { + bp.unshift( cur ); + } + + // Walk down the tree looking for a discrepancy + while ( ap[ i ] === bp[ i ] ) { + i++; + } + + return i ? + + // Do a sibling check if the nodes have a common ancestor + siblingCheck( ap[ i ], bp[ i ] ) : + + // Otherwise nodes in our document sort first + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + /* eslint-disable eqeqeq */ + ap[ i ] == preferredDoc ? -1 : + bp[ i ] == preferredDoc ? 1 : + /* eslint-enable eqeqeq */ + 0; + }; + + return document; +}; + +Sizzle.matches = function( expr, elements ) { + return Sizzle( expr, null, null, elements ); +}; + +Sizzle.matchesSelector = function( elem, expr ) { + setDocument( elem ); + + if ( support.matchesSelector && documentIsHTML && + !nonnativeSelectorCache[ expr + " " ] && + ( !rbuggyMatches || !rbuggyMatches.test( expr ) ) && + ( !rbuggyQSA || !rbuggyQSA.test( expr ) ) ) { + + try { + var ret = matches.call( elem, expr ); + + // IE 9's matchesSelector returns false on disconnected nodes + if ( ret || support.disconnectedMatch || + + // As well, disconnected nodes are said to be in a document + // fragment in IE 9 + elem.document && elem.document.nodeType !== 11 ) { + return ret; + } + } catch ( e ) { + nonnativeSelectorCache( expr, true ); + } + } + + return Sizzle( expr, document, null, [ elem ] ).length > 0; +}; + +Sizzle.contains = function( context, elem ) { + + // Set document vars if needed + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( ( context.ownerDocument || context ) != document ) { + setDocument( context ); + } + return contains( context, elem ); +}; + +Sizzle.attr = function( elem, name ) { + + // Set document vars if needed + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( ( elem.ownerDocument || elem ) != document ) { + setDocument( elem ); + } + + var fn = Expr.attrHandle[ name.toLowerCase() ], + + // Don't get fooled by Object.prototype properties (jQuery #13807) + val = fn && hasOwn.call( Expr.attrHandle, name.toLowerCase() ) ? + fn( elem, name, !documentIsHTML ) : + undefined; + + return val !== undefined ? + val : + support.attributes || !documentIsHTML ? + elem.getAttribute( name ) : + ( val = elem.getAttributeNode( name ) ) && val.specified ? + val.value : + null; +}; + +Sizzle.escape = function( sel ) { + return ( sel + "" ).replace( rcssescape, fcssescape ); +}; + +Sizzle.error = function( msg ) { + throw new Error( "Syntax error, unrecognized expression: " + msg ); +}; + +/** + * Document sorting and removing duplicates + * @param {ArrayLike} results + */ +Sizzle.uniqueSort = function( results ) { + var elem, + duplicates = [], + j = 0, + i = 0; + + // Unless we *know* we can detect duplicates, assume their presence + hasDuplicate = !support.detectDuplicates; + sortInput = !support.sortStable && results.slice( 0 ); + results.sort( sortOrder ); + + if ( hasDuplicate ) { + while ( ( elem = results[ i++ ] ) ) { + if ( elem === results[ i ] ) { + j = duplicates.push( i ); + } + } + while ( j-- ) { + results.splice( duplicates[ j ], 1 ); + } + } + + // Clear input after sorting to release objects + // See https://github.com/jquery/sizzle/pull/225 + sortInput = null; + + return results; +}; + +/** + * Utility function for retrieving the text value of an array of DOM nodes + * @param {Array|Element} elem + */ +getText = Sizzle.getText = function( elem ) { + var node, + ret = "", + i = 0, + nodeType = elem.nodeType; + + if ( !nodeType ) { + + // If no nodeType, this is expected to be an array + while ( ( node = elem[ i++ ] ) ) { + + // Do not traverse comment nodes + ret += getText( node ); + } + } else if ( nodeType === 1 || nodeType === 9 || nodeType === 11 ) { + + // Use textContent for elements + // innerText usage removed for consistency of new lines (jQuery #11153) + if ( typeof elem.textContent === "string" ) { + return elem.textContent; + } else { + + // Traverse its children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + ret += getText( elem ); + } + } + } else if ( nodeType === 3 || nodeType === 4 ) { + return elem.nodeValue; + } + + // Do not include comment or processing instruction nodes + + return ret; +}; + +Expr = Sizzle.selectors = { + + // Can be adjusted by the user + cacheLength: 50, + + createPseudo: markFunction, + + match: matchExpr, + + attrHandle: {}, + + find: {}, + + relative: { + ">": { dir: "parentNode", first: true }, + " ": { dir: "parentNode" }, + "+": { dir: "previousSibling", first: true }, + "~": { dir: "previousSibling" } + }, + + preFilter: { + "ATTR": function( match ) { + match[ 1 ] = match[ 1 ].replace( runescape, funescape ); + + // Move the given value to match[3] whether quoted or unquoted + match[ 3 ] = ( match[ 3 ] || match[ 4 ] || + match[ 5 ] || "" ).replace( runescape, funescape ); + + if ( match[ 2 ] === "~=" ) { + match[ 3 ] = " " + match[ 3 ] + " "; + } + + return match.slice( 0, 4 ); + }, + + "CHILD": function( match ) { + + /* matches from matchExpr["CHILD"] + 1 type (only|nth|...) + 2 what (child|of-type) + 3 argument (even|odd|\d*|\d*n([+-]\d+)?|...) + 4 xn-component of xn+y argument ([+-]?\d*n|) + 5 sign of xn-component + 6 x of xn-component + 7 sign of y-component + 8 y of y-component + */ + match[ 1 ] = match[ 1 ].toLowerCase(); + + if ( match[ 1 ].slice( 0, 3 ) === "nth" ) { + + // nth-* requires argument + if ( !match[ 3 ] ) { + Sizzle.error( match[ 0 ] ); + } + + // numeric x and y parameters for Expr.filter.CHILD + // remember that false/true cast respectively to 0/1 + match[ 4 ] = +( match[ 4 ] ? + match[ 5 ] + ( match[ 6 ] || 1 ) : + 2 * ( match[ 3 ] === "even" || match[ 3 ] === "odd" ) ); + match[ 5 ] = +( ( match[ 7 ] + match[ 8 ] ) || match[ 3 ] === "odd" ); + + // other types prohibit arguments + } else if ( match[ 3 ] ) { + Sizzle.error( match[ 0 ] ); + } + + return match; + }, + + "PSEUDO": function( match ) { + var excess, + unquoted = !match[ 6 ] && match[ 2 ]; + + if ( matchExpr[ "CHILD" ].test( match[ 0 ] ) ) { + return null; + } + + // Accept quoted arguments as-is + if ( match[ 3 ] ) { + match[ 2 ] = match[ 4 ] || match[ 5 ] || ""; + + // Strip excess characters from unquoted arguments + } else if ( unquoted && rpseudo.test( unquoted ) && + + // Get excess from tokenize (recursively) + ( excess = tokenize( unquoted, true ) ) && + + // advance to the next closing parenthesis + ( excess = unquoted.indexOf( ")", unquoted.length - excess ) - unquoted.length ) ) { + + // excess is a negative index + match[ 0 ] = match[ 0 ].slice( 0, excess ); + match[ 2 ] = unquoted.slice( 0, excess ); + } + + // Return only captures needed by the pseudo filter method (type and argument) + return match.slice( 0, 3 ); + } + }, + + filter: { + + "TAG": function( nodeNameSelector ) { + var nodeName = nodeNameSelector.replace( runescape, funescape ).toLowerCase(); + return nodeNameSelector === "*" ? + function() { + return true; + } : + function( elem ) { + return elem.nodeName && elem.nodeName.toLowerCase() === nodeName; + }; + }, + + "CLASS": function( className ) { + var pattern = classCache[ className + " " ]; + + return pattern || + ( pattern = new RegExp( "(^|" + whitespace + + ")" + className + "(" + whitespace + "|$)" ) ) && classCache( + className, function( elem ) { + return pattern.test( + typeof elem.className === "string" && elem.className || + typeof elem.getAttribute !== "undefined" && + elem.getAttribute( "class" ) || + "" + ); + } ); + }, + + "ATTR": function( name, operator, check ) { + return function( elem ) { + var result = Sizzle.attr( elem, name ); + + if ( result == null ) { + return operator === "!="; + } + if ( !operator ) { + return true; + } + + result += ""; + + /* eslint-disable max-len */ + + return operator === "=" ? result === check : + operator === "!=" ? result !== check : + operator === "^=" ? check && result.indexOf( check ) === 0 : + operator === "*=" ? check && result.indexOf( check ) > -1 : + operator === "$=" ? check && result.slice( -check.length ) === check : + operator === "~=" ? ( " " + result.replace( rwhitespace, " " ) + " " ).indexOf( check ) > -1 : + operator === "|=" ? result === check || result.slice( 0, check.length + 1 ) === check + "-" : + false; + /* eslint-enable max-len */ + + }; + }, + + "CHILD": function( type, what, _argument, first, last ) { + var simple = type.slice( 0, 3 ) !== "nth", + forward = type.slice( -4 ) !== "last", + ofType = what === "of-type"; + + return first === 1 && last === 0 ? + + // Shortcut for :nth-*(n) + function( elem ) { + return !!elem.parentNode; + } : + + function( elem, _context, xml ) { + var cache, uniqueCache, outerCache, node, nodeIndex, start, + dir = simple !== forward ? "nextSibling" : "previousSibling", + parent = elem.parentNode, + name = ofType && elem.nodeName.toLowerCase(), + useCache = !xml && !ofType, + diff = false; + + if ( parent ) { + + // :(first|last|only)-(child|of-type) + if ( simple ) { + while ( dir ) { + node = elem; + while ( ( node = node[ dir ] ) ) { + if ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) { + + return false; + } + } + + // Reverse direction for :only-* (if we haven't yet done so) + start = dir = type === "only" && !start && "nextSibling"; + } + return true; + } + + start = [ forward ? parent.firstChild : parent.lastChild ]; + + // non-xml :nth-child(...) stores cache data on `parent` + if ( forward && useCache ) { + + // Seek `elem` from a previously-cached index + + // ...in a gzip-friendly way + node = parent; + outerCache = node[ expando ] || ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex && cache[ 2 ]; + node = nodeIndex && parent.childNodes[ nodeIndex ]; + + while ( ( node = ++nodeIndex && node && node[ dir ] || + + // Fallback to seeking `elem` from the start + ( diff = nodeIndex = 0 ) || start.pop() ) ) { + + // When found, cache indexes on `parent` and break + if ( node.nodeType === 1 && ++diff && node === elem ) { + uniqueCache[ type ] = [ dirruns, nodeIndex, diff ]; + break; + } + } + + } else { + + // Use previously-cached element index if available + if ( useCache ) { + + // ...in a gzip-friendly way + node = elem; + outerCache = node[ expando ] || ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex; + } + + // xml :nth-child(...) + // or :nth-last-child(...) or :nth(-last)?-of-type(...) + if ( diff === false ) { + + // Use the same loop as above to seek `elem` from the start + while ( ( node = ++nodeIndex && node && node[ dir ] || + ( diff = nodeIndex = 0 ) || start.pop() ) ) { + + if ( ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) && + ++diff ) { + + // Cache the index of each encountered element + if ( useCache ) { + outerCache = node[ expando ] || + ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + uniqueCache[ type ] = [ dirruns, diff ]; + } + + if ( node === elem ) { + break; + } + } + } + } + } + + // Incorporate the offset, then check against cycle size + diff -= last; + return diff === first || ( diff % first === 0 && diff / first >= 0 ); + } + }; + }, + + "PSEUDO": function( pseudo, argument ) { + + // pseudo-class names are case-insensitive + // http://www.w3.org/TR/selectors/#pseudo-classes + // Prioritize by case sensitivity in case custom pseudos are added with uppercase letters + // Remember that setFilters inherits from pseudos + var args, + fn = Expr.pseudos[ pseudo ] || Expr.setFilters[ pseudo.toLowerCase() ] || + Sizzle.error( "unsupported pseudo: " + pseudo ); + + // The user may use createPseudo to indicate that + // arguments are needed to create the filter function + // just as Sizzle does + if ( fn[ expando ] ) { + return fn( argument ); + } + + // But maintain support for old signatures + if ( fn.length > 1 ) { + args = [ pseudo, pseudo, "", argument ]; + return Expr.setFilters.hasOwnProperty( pseudo.toLowerCase() ) ? + markFunction( function( seed, matches ) { + var idx, + matched = fn( seed, argument ), + i = matched.length; + while ( i-- ) { + idx = indexOf( seed, matched[ i ] ); + seed[ idx ] = !( matches[ idx ] = matched[ i ] ); + } + } ) : + function( elem ) { + return fn( elem, 0, args ); + }; + } + + return fn; + } + }, + + pseudos: { + + // Potentially complex pseudos + "not": markFunction( function( selector ) { + + // Trim the selector passed to compile + // to avoid treating leading and trailing + // spaces as combinators + var input = [], + results = [], + matcher = compile( selector.replace( rtrim, "$1" ) ); + + return matcher[ expando ] ? + markFunction( function( seed, matches, _context, xml ) { + var elem, + unmatched = matcher( seed, null, xml, [] ), + i = seed.length; + + // Match elements unmatched by `matcher` + while ( i-- ) { + if ( ( elem = unmatched[ i ] ) ) { + seed[ i ] = !( matches[ i ] = elem ); + } + } + } ) : + function( elem, _context, xml ) { + input[ 0 ] = elem; + matcher( input, null, xml, results ); + + // Don't keep the element (issue #299) + input[ 0 ] = null; + return !results.pop(); + }; + } ), + + "has": markFunction( function( selector ) { + return function( elem ) { + return Sizzle( selector, elem ).length > 0; + }; + } ), + + "contains": markFunction( function( text ) { + text = text.replace( runescape, funescape ); + return function( elem ) { + return ( elem.textContent || getText( elem ) ).indexOf( text ) > -1; + }; + } ), + + // "Whether an element is represented by a :lang() selector + // is based solely on the element's language value + // being equal to the identifier C, + // or beginning with the identifier C immediately followed by "-". + // The matching of C against the element's language value is performed case-insensitively. + // The identifier C does not have to be a valid language name." + // http://www.w3.org/TR/selectors/#lang-pseudo + "lang": markFunction( function( lang ) { + + // lang value must be a valid identifier + if ( !ridentifier.test( lang || "" ) ) { + Sizzle.error( "unsupported lang: " + lang ); + } + lang = lang.replace( runescape, funescape ).toLowerCase(); + return function( elem ) { + var elemLang; + do { + if ( ( elemLang = documentIsHTML ? + elem.lang : + elem.getAttribute( "xml:lang" ) || elem.getAttribute( "lang" ) ) ) { + + elemLang = elemLang.toLowerCase(); + return elemLang === lang || elemLang.indexOf( lang + "-" ) === 0; + } + } while ( ( elem = elem.parentNode ) && elem.nodeType === 1 ); + return false; + }; + } ), + + // Miscellaneous + "target": function( elem ) { + var hash = window.location && window.location.hash; + return hash && hash.slice( 1 ) === elem.id; + }, + + "root": function( elem ) { + return elem === docElem; + }, + + "focus": function( elem ) { + return elem === document.activeElement && + ( !document.hasFocus || document.hasFocus() ) && + !!( elem.type || elem.href || ~elem.tabIndex ); + }, + + // Boolean properties + "enabled": createDisabledPseudo( false ), + "disabled": createDisabledPseudo( true ), + + "checked": function( elem ) { + + // In CSS3, :checked should return both checked and selected elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + var nodeName = elem.nodeName.toLowerCase(); + return ( nodeName === "input" && !!elem.checked ) || + ( nodeName === "option" && !!elem.selected ); + }, + + "selected": function( elem ) { + + // Accessing this property makes selected-by-default + // options in Safari work properly + if ( elem.parentNode ) { + // eslint-disable-next-line no-unused-expressions + elem.parentNode.selectedIndex; + } + + return elem.selected === true; + }, + + // Contents + "empty": function( elem ) { + + // http://www.w3.org/TR/selectors/#empty-pseudo + // :empty is negated by element (1) or content nodes (text: 3; cdata: 4; entity ref: 5), + // but not by others (comment: 8; processing instruction: 7; etc.) + // nodeType < 6 works because attributes (2) do not appear as children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + if ( elem.nodeType < 6 ) { + return false; + } + } + return true; + }, + + "parent": function( elem ) { + return !Expr.pseudos[ "empty" ]( elem ); + }, + + // Element/input types + "header": function( elem ) { + return rheader.test( elem.nodeName ); + }, + + "input": function( elem ) { + return rinputs.test( elem.nodeName ); + }, + + "button": function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === "button" || name === "button"; + }, + + "text": function( elem ) { + var attr; + return elem.nodeName.toLowerCase() === "input" && + elem.type === "text" && + + // Support: IE<8 + // New HTML5 attribute values (e.g., "search") appear with elem.type === "text" + ( ( attr = elem.getAttribute( "type" ) ) == null || + attr.toLowerCase() === "text" ); + }, + + // Position-in-collection + "first": createPositionalPseudo( function() { + return [ 0 ]; + } ), + + "last": createPositionalPseudo( function( _matchIndexes, length ) { + return [ length - 1 ]; + } ), + + "eq": createPositionalPseudo( function( _matchIndexes, length, argument ) { + return [ argument < 0 ? argument + length : argument ]; + } ), + + "even": createPositionalPseudo( function( matchIndexes, length ) { + var i = 0; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "odd": createPositionalPseudo( function( matchIndexes, length ) { + var i = 1; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "lt": createPositionalPseudo( function( matchIndexes, length, argument ) { + var i = argument < 0 ? + argument + length : + argument > length ? + length : + argument; + for ( ; --i >= 0; ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "gt": createPositionalPseudo( function( matchIndexes, length, argument ) { + var i = argument < 0 ? argument + length : argument; + for ( ; ++i < length; ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ) + } +}; + +Expr.pseudos[ "nth" ] = Expr.pseudos[ "eq" ]; + +// Add button/input type pseudos +for ( i in { radio: true, checkbox: true, file: true, password: true, image: true } ) { + Expr.pseudos[ i ] = createInputPseudo( i ); +} +for ( i in { submit: true, reset: true } ) { + Expr.pseudos[ i ] = createButtonPseudo( i ); +} + +// Easy API for creating new setFilters +function setFilters() {} +setFilters.prototype = Expr.filters = Expr.pseudos; +Expr.setFilters = new setFilters(); + +tokenize = Sizzle.tokenize = function( selector, parseOnly ) { + var matched, match, tokens, type, + soFar, groups, preFilters, + cached = tokenCache[ selector + " " ]; + + if ( cached ) { + return parseOnly ? 0 : cached.slice( 0 ); + } + + soFar = selector; + groups = []; + preFilters = Expr.preFilter; + + while ( soFar ) { + + // Comma and first run + if ( !matched || ( match = rcomma.exec( soFar ) ) ) { + if ( match ) { + + // Don't consume trailing commas as valid + soFar = soFar.slice( match[ 0 ].length ) || soFar; + } + groups.push( ( tokens = [] ) ); + } + + matched = false; + + // Combinators + if ( ( match = rcombinators.exec( soFar ) ) ) { + matched = match.shift(); + tokens.push( { + value: matched, + + // Cast descendant combinators to space + type: match[ 0 ].replace( rtrim, " " ) + } ); + soFar = soFar.slice( matched.length ); + } + + // Filters + for ( type in Expr.filter ) { + if ( ( match = matchExpr[ type ].exec( soFar ) ) && ( !preFilters[ type ] || + ( match = preFilters[ type ]( match ) ) ) ) { + matched = match.shift(); + tokens.push( { + value: matched, + type: type, + matches: match + } ); + soFar = soFar.slice( matched.length ); + } + } + + if ( !matched ) { + break; + } + } + + // Return the length of the invalid excess + // if we're just parsing + // Otherwise, throw an error or return tokens + return parseOnly ? + soFar.length : + soFar ? + Sizzle.error( selector ) : + + // Cache the tokens + tokenCache( selector, groups ).slice( 0 ); +}; + +function toSelector( tokens ) { + var i = 0, + len = tokens.length, + selector = ""; + for ( ; i < len; i++ ) { + selector += tokens[ i ].value; + } + return selector; +} + +function addCombinator( matcher, combinator, base ) { + var dir = combinator.dir, + skip = combinator.next, + key = skip || dir, + checkNonElements = base && key === "parentNode", + doneName = done++; + + return combinator.first ? + + // Check against closest ancestor/preceding element + function( elem, context, xml ) { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + return matcher( elem, context, xml ); + } + } + return false; + } : + + // Check against all ancestor/preceding elements + function( elem, context, xml ) { + var oldCache, uniqueCache, outerCache, + newCache = [ dirruns, doneName ]; + + // We can't set arbitrary data on XML nodes, so they don't benefit from combinator caching + if ( xml ) { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + if ( matcher( elem, context, xml ) ) { + return true; + } + } + } + } else { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + outerCache = elem[ expando ] || ( elem[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ elem.uniqueID ] || + ( outerCache[ elem.uniqueID ] = {} ); + + if ( skip && skip === elem.nodeName.toLowerCase() ) { + elem = elem[ dir ] || elem; + } else if ( ( oldCache = uniqueCache[ key ] ) && + oldCache[ 0 ] === dirruns && oldCache[ 1 ] === doneName ) { + + // Assign to newCache so results back-propagate to previous elements + return ( newCache[ 2 ] = oldCache[ 2 ] ); + } else { + + // Reuse newcache so results back-propagate to previous elements + uniqueCache[ key ] = newCache; + + // A match means we're done; a fail means we have to keep checking + if ( ( newCache[ 2 ] = matcher( elem, context, xml ) ) ) { + return true; + } + } + } + } + } + return false; + }; +} + +function elementMatcher( matchers ) { + return matchers.length > 1 ? + function( elem, context, xml ) { + var i = matchers.length; + while ( i-- ) { + if ( !matchers[ i ]( elem, context, xml ) ) { + return false; + } + } + return true; + } : + matchers[ 0 ]; +} + +function multipleContexts( selector, contexts, results ) { + var i = 0, + len = contexts.length; + for ( ; i < len; i++ ) { + Sizzle( selector, contexts[ i ], results ); + } + return results; +} + +function condense( unmatched, map, filter, context, xml ) { + var elem, + newUnmatched = [], + i = 0, + len = unmatched.length, + mapped = map != null; + + for ( ; i < len; i++ ) { + if ( ( elem = unmatched[ i ] ) ) { + if ( !filter || filter( elem, context, xml ) ) { + newUnmatched.push( elem ); + if ( mapped ) { + map.push( i ); + } + } + } + } + + return newUnmatched; +} + +function setMatcher( preFilter, selector, matcher, postFilter, postFinder, postSelector ) { + if ( postFilter && !postFilter[ expando ] ) { + postFilter = setMatcher( postFilter ); + } + if ( postFinder && !postFinder[ expando ] ) { + postFinder = setMatcher( postFinder, postSelector ); + } + return markFunction( function( seed, results, context, xml ) { + var temp, i, elem, + preMap = [], + postMap = [], + preexisting = results.length, + + // Get initial elements from seed or context + elems = seed || multipleContexts( + selector || "*", + context.nodeType ? [ context ] : context, + [] + ), + + // Prefilter to get matcher input, preserving a map for seed-results synchronization + matcherIn = preFilter && ( seed || !selector ) ? + condense( elems, preMap, preFilter, context, xml ) : + elems, + + matcherOut = matcher ? + + // If we have a postFinder, or filtered seed, or non-seed postFilter or preexisting results, + postFinder || ( seed ? preFilter : preexisting || postFilter ) ? + + // ...intermediate processing is necessary + [] : + + // ...otherwise use results directly + results : + matcherIn; + + // Find primary matches + if ( matcher ) { + matcher( matcherIn, matcherOut, context, xml ); + } + + // Apply postFilter + if ( postFilter ) { + temp = condense( matcherOut, postMap ); + postFilter( temp, [], context, xml ); + + // Un-match failing elements by moving them back to matcherIn + i = temp.length; + while ( i-- ) { + if ( ( elem = temp[ i ] ) ) { + matcherOut[ postMap[ i ] ] = !( matcherIn[ postMap[ i ] ] = elem ); + } + } + } + + if ( seed ) { + if ( postFinder || preFilter ) { + if ( postFinder ) { + + // Get the final matcherOut by condensing this intermediate into postFinder contexts + temp = []; + i = matcherOut.length; + while ( i-- ) { + if ( ( elem = matcherOut[ i ] ) ) { + + // Restore matcherIn since elem is not yet a final match + temp.push( ( matcherIn[ i ] = elem ) ); + } + } + postFinder( null, ( matcherOut = [] ), temp, xml ); + } + + // Move matched elements from seed to results to keep them synchronized + i = matcherOut.length; + while ( i-- ) { + if ( ( elem = matcherOut[ i ] ) && + ( temp = postFinder ? indexOf( seed, elem ) : preMap[ i ] ) > -1 ) { + + seed[ temp ] = !( results[ temp ] = elem ); + } + } + } + + // Add elements to results, through postFinder if defined + } else { + matcherOut = condense( + matcherOut === results ? + matcherOut.splice( preexisting, matcherOut.length ) : + matcherOut + ); + if ( postFinder ) { + postFinder( null, results, matcherOut, xml ); + } else { + push.apply( results, matcherOut ); + } + } + } ); +} + +function matcherFromTokens( tokens ) { + var checkContext, matcher, j, + len = tokens.length, + leadingRelative = Expr.relative[ tokens[ 0 ].type ], + implicitRelative = leadingRelative || Expr.relative[ " " ], + i = leadingRelative ? 1 : 0, + + // The foundational matcher ensures that elements are reachable from top-level context(s) + matchContext = addCombinator( function( elem ) { + return elem === checkContext; + }, implicitRelative, true ), + matchAnyContext = addCombinator( function( elem ) { + return indexOf( checkContext, elem ) > -1; + }, implicitRelative, true ), + matchers = [ function( elem, context, xml ) { + var ret = ( !leadingRelative && ( xml || context !== outermostContext ) ) || ( + ( checkContext = context ).nodeType ? + matchContext( elem, context, xml ) : + matchAnyContext( elem, context, xml ) ); + + // Avoid hanging onto element (issue #299) + checkContext = null; + return ret; + } ]; + + for ( ; i < len; i++ ) { + if ( ( matcher = Expr.relative[ tokens[ i ].type ] ) ) { + matchers = [ addCombinator( elementMatcher( matchers ), matcher ) ]; + } else { + matcher = Expr.filter[ tokens[ i ].type ].apply( null, tokens[ i ].matches ); + + // Return special upon seeing a positional matcher + if ( matcher[ expando ] ) { + + // Find the next relative operator (if any) for proper handling + j = ++i; + for ( ; j < len; j++ ) { + if ( Expr.relative[ tokens[ j ].type ] ) { + break; + } + } + return setMatcher( + i > 1 && elementMatcher( matchers ), + i > 1 && toSelector( + + // If the preceding token was a descendant combinator, insert an implicit any-element `*` + tokens + .slice( 0, i - 1 ) + .concat( { value: tokens[ i - 2 ].type === " " ? "*" : "" } ) + ).replace( rtrim, "$1" ), + matcher, + i < j && matcherFromTokens( tokens.slice( i, j ) ), + j < len && matcherFromTokens( ( tokens = tokens.slice( j ) ) ), + j < len && toSelector( tokens ) + ); + } + matchers.push( matcher ); + } + } + + return elementMatcher( matchers ); +} + +function matcherFromGroupMatchers( elementMatchers, setMatchers ) { + var bySet = setMatchers.length > 0, + byElement = elementMatchers.length > 0, + superMatcher = function( seed, context, xml, results, outermost ) { + var elem, j, matcher, + matchedCount = 0, + i = "0", + unmatched = seed && [], + setMatched = [], + contextBackup = outermostContext, + + // We must always have either seed elements or outermost context + elems = seed || byElement && Expr.find[ "TAG" ]( "*", outermost ), + + // Use integer dirruns iff this is the outermost matcher + dirrunsUnique = ( dirruns += contextBackup == null ? 1 : Math.random() || 0.1 ), + len = elems.length; + + if ( outermost ) { + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + outermostContext = context == document || context || outermost; + } + + // Add elements passing elementMatchers directly to results + // Support: IE<9, Safari + // Tolerate NodeList properties (IE: "length"; Safari: ) matching elements by id + for ( ; i !== len && ( elem = elems[ i ] ) != null; i++ ) { + if ( byElement && elem ) { + j = 0; + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( !context && elem.ownerDocument != document ) { + setDocument( elem ); + xml = !documentIsHTML; + } + while ( ( matcher = elementMatchers[ j++ ] ) ) { + if ( matcher( elem, context || document, xml ) ) { + results.push( elem ); + break; + } + } + if ( outermost ) { + dirruns = dirrunsUnique; + } + } + + // Track unmatched elements for set filters + if ( bySet ) { + + // They will have gone through all possible matchers + if ( ( elem = !matcher && elem ) ) { + matchedCount--; + } + + // Lengthen the array for every element, matched or not + if ( seed ) { + unmatched.push( elem ); + } + } + } + + // `i` is now the count of elements visited above, and adding it to `matchedCount` + // makes the latter nonnegative. + matchedCount += i; + + // Apply set filters to unmatched elements + // NOTE: This can be skipped if there are no unmatched elements (i.e., `matchedCount` + // equals `i`), unless we didn't visit _any_ elements in the above loop because we have + // no element matchers and no seed. + // Incrementing an initially-string "0" `i` allows `i` to remain a string only in that + // case, which will result in a "00" `matchedCount` that differs from `i` but is also + // numerically zero. + if ( bySet && i !== matchedCount ) { + j = 0; + while ( ( matcher = setMatchers[ j++ ] ) ) { + matcher( unmatched, setMatched, context, xml ); + } + + if ( seed ) { + + // Reintegrate element matches to eliminate the need for sorting + if ( matchedCount > 0 ) { + while ( i-- ) { + if ( !( unmatched[ i ] || setMatched[ i ] ) ) { + setMatched[ i ] = pop.call( results ); + } + } + } + + // Discard index placeholder values to get only actual matches + setMatched = condense( setMatched ); + } + + // Add matches to results + push.apply( results, setMatched ); + + // Seedless set matches succeeding multiple successful matchers stipulate sorting + if ( outermost && !seed && setMatched.length > 0 && + ( matchedCount + setMatchers.length ) > 1 ) { + + Sizzle.uniqueSort( results ); + } + } + + // Override manipulation of globals by nested matchers + if ( outermost ) { + dirruns = dirrunsUnique; + outermostContext = contextBackup; + } + + return unmatched; + }; + + return bySet ? + markFunction( superMatcher ) : + superMatcher; +} + +compile = Sizzle.compile = function( selector, match /* Internal Use Only */ ) { + var i, + setMatchers = [], + elementMatchers = [], + cached = compilerCache[ selector + " " ]; + + if ( !cached ) { + + // Generate a function of recursive functions that can be used to check each element + if ( !match ) { + match = tokenize( selector ); + } + i = match.length; + while ( i-- ) { + cached = matcherFromTokens( match[ i ] ); + if ( cached[ expando ] ) { + setMatchers.push( cached ); + } else { + elementMatchers.push( cached ); + } + } + + // Cache the compiled function + cached = compilerCache( + selector, + matcherFromGroupMatchers( elementMatchers, setMatchers ) + ); + + // Save selector and tokenization + cached.selector = selector; + } + return cached; +}; + +/** + * A low-level selection function that works with Sizzle's compiled + * selector functions + * @param {String|Function} selector A selector or a pre-compiled + * selector function built with Sizzle.compile + * @param {Element} context + * @param {Array} [results] + * @param {Array} [seed] A set of elements to match against + */ +select = Sizzle.select = function( selector, context, results, seed ) { + var i, tokens, token, type, find, + compiled = typeof selector === "function" && selector, + match = !seed && tokenize( ( selector = compiled.selector || selector ) ); + + results = results || []; + + // Try to minimize operations if there is only one selector in the list and no seed + // (the latter of which guarantees us context) + if ( match.length === 1 ) { + + // Reduce context if the leading compound selector is an ID + tokens = match[ 0 ] = match[ 0 ].slice( 0 ); + if ( tokens.length > 2 && ( token = tokens[ 0 ] ).type === "ID" && + context.nodeType === 9 && documentIsHTML && Expr.relative[ tokens[ 1 ].type ] ) { + + context = ( Expr.find[ "ID" ]( token.matches[ 0 ] + .replace( runescape, funescape ), context ) || [] )[ 0 ]; + if ( !context ) { + return results; + + // Precompiled matchers will still verify ancestry, so step up a level + } else if ( compiled ) { + context = context.parentNode; + } + + selector = selector.slice( tokens.shift().value.length ); + } + + // Fetch a seed set for right-to-left matching + i = matchExpr[ "needsContext" ].test( selector ) ? 0 : tokens.length; + while ( i-- ) { + token = tokens[ i ]; + + // Abort if we hit a combinator + if ( Expr.relative[ ( type = token.type ) ] ) { + break; + } + if ( ( find = Expr.find[ type ] ) ) { + + // Search, expanding context for leading sibling combinators + if ( ( seed = find( + token.matches[ 0 ].replace( runescape, funescape ), + rsibling.test( tokens[ 0 ].type ) && testContext( context.parentNode ) || + context + ) ) ) { + + // If seed is empty or no tokens remain, we can return early + tokens.splice( i, 1 ); + selector = seed.length && toSelector( tokens ); + if ( !selector ) { + push.apply( results, seed ); + return results; + } + + break; + } + } + } + } + + // Compile and execute a filtering function if one is not provided + // Provide `match` to avoid retokenization if we modified the selector above + ( compiled || compile( selector, match ) )( + seed, + context, + !documentIsHTML, + results, + !context || rsibling.test( selector ) && testContext( context.parentNode ) || context + ); + return results; +}; + +// One-time assignments + +// Sort stability +support.sortStable = expando.split( "" ).sort( sortOrder ).join( "" ) === expando; + +// Support: Chrome 14-35+ +// Always assume duplicates if they aren't passed to the comparison function +support.detectDuplicates = !!hasDuplicate; + +// Initialize against the default document +setDocument(); + +// Support: Webkit<537.32 - Safari 6.0.3/Chrome 25 (fixed in Chrome 27) +// Detached nodes confoundingly follow *each other* +support.sortDetached = assert( function( el ) { + + // Should return 1, but returns 4 (following) + return el.compareDocumentPosition( document.createElement( "fieldset" ) ) & 1; +} ); + +// Support: IE<8 +// Prevent attribute/property "interpolation" +// https://msdn.microsoft.com/en-us/library/ms536429%28VS.85%29.aspx +if ( !assert( function( el ) { + el.innerHTML = ""; + return el.firstChild.getAttribute( "href" ) === "#"; +} ) ) { + addHandle( "type|href|height|width", function( elem, name, isXML ) { + if ( !isXML ) { + return elem.getAttribute( name, name.toLowerCase() === "type" ? 1 : 2 ); + } + } ); +} + +// Support: IE<9 +// Use defaultValue in place of getAttribute("value") +if ( !support.attributes || !assert( function( el ) { + el.innerHTML = ""; + el.firstChild.setAttribute( "value", "" ); + return el.firstChild.getAttribute( "value" ) === ""; +} ) ) { + addHandle( "value", function( elem, _name, isXML ) { + if ( !isXML && elem.nodeName.toLowerCase() === "input" ) { + return elem.defaultValue; + } + } ); +} + +// Support: IE<9 +// Use getAttributeNode to fetch booleans when getAttribute lies +if ( !assert( function( el ) { + return el.getAttribute( "disabled" ) == null; +} ) ) { + addHandle( booleans, function( elem, name, isXML ) { + var val; + if ( !isXML ) { + return elem[ name ] === true ? name.toLowerCase() : + ( val = elem.getAttributeNode( name ) ) && val.specified ? + val.value : + null; + } + } ); +} + +return Sizzle; + +} )( window ); + + + +jQuery.find = Sizzle; +jQuery.expr = Sizzle.selectors; + +// Deprecated +jQuery.expr[ ":" ] = jQuery.expr.pseudos; +jQuery.uniqueSort = jQuery.unique = Sizzle.uniqueSort; +jQuery.text = Sizzle.getText; +jQuery.isXMLDoc = Sizzle.isXML; +jQuery.contains = Sizzle.contains; +jQuery.escapeSelector = Sizzle.escape; + + + + +var dir = function( elem, dir, until ) { + var matched = [], + truncate = until !== undefined; + + while ( ( elem = elem[ dir ] ) && elem.nodeType !== 9 ) { + if ( elem.nodeType === 1 ) { + if ( truncate && jQuery( elem ).is( until ) ) { + break; + } + matched.push( elem ); + } + } + return matched; +}; + + +var siblings = function( n, elem ) { + var matched = []; + + for ( ; n; n = n.nextSibling ) { + if ( n.nodeType === 1 && n !== elem ) { + matched.push( n ); + } + } + + return matched; +}; + + +var rneedsContext = jQuery.expr.match.needsContext; + + + +function nodeName( elem, name ) { + + return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase(); + +}; +var rsingleTag = ( /^<([a-z][^\/\0>:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i ); + + + +// Implement the identical functionality for filter and not +function winnow( elements, qualifier, not ) { + if ( isFunction( qualifier ) ) { + return jQuery.grep( elements, function( elem, i ) { + return !!qualifier.call( elem, i, elem ) !== not; + } ); + } + + // Single element + if ( qualifier.nodeType ) { + return jQuery.grep( elements, function( elem ) { + return ( elem === qualifier ) !== not; + } ); + } + + // Arraylike of elements (jQuery, arguments, Array) + if ( typeof qualifier !== "string" ) { + return jQuery.grep( elements, function( elem ) { + return ( indexOf.call( qualifier, elem ) > -1 ) !== not; + } ); + } + + // Filtered directly for both simple and complex selectors + return jQuery.filter( qualifier, elements, not ); +} + +jQuery.filter = function( expr, elems, not ) { + var elem = elems[ 0 ]; + + if ( not ) { + expr = ":not(" + expr + ")"; + } + + if ( elems.length === 1 && elem.nodeType === 1 ) { + return jQuery.find.matchesSelector( elem, expr ) ? [ elem ] : []; + } + + return jQuery.find.matches( expr, jQuery.grep( elems, function( elem ) { + return elem.nodeType === 1; + } ) ); +}; + +jQuery.fn.extend( { + find: function( selector ) { + var i, ret, + len = this.length, + self = this; + + if ( typeof selector !== "string" ) { + return this.pushStack( jQuery( selector ).filter( function() { + for ( i = 0; i < len; i++ ) { + if ( jQuery.contains( self[ i ], this ) ) { + return true; + } + } + } ) ); + } + + ret = this.pushStack( [] ); + + for ( i = 0; i < len; i++ ) { + jQuery.find( selector, self[ i ], ret ); + } + + return len > 1 ? jQuery.uniqueSort( ret ) : ret; + }, + filter: function( selector ) { + return this.pushStack( winnow( this, selector || [], false ) ); + }, + not: function( selector ) { + return this.pushStack( winnow( this, selector || [], true ) ); + }, + is: function( selector ) { + return !!winnow( + this, + + // If this is a positional/relative selector, check membership in the returned set + // so $("p:first").is("p:last") won't return true for a doc with two "p". + typeof selector === "string" && rneedsContext.test( selector ) ? + jQuery( selector ) : + selector || [], + false + ).length; + } +} ); + + +// Initialize a jQuery object + + +// A central reference to the root jQuery(document) +var rootjQuery, + + // A simple way to check for HTML strings + // Prioritize #id over to avoid XSS via location.hash (#9521) + // Strict HTML recognition (#11290: must start with <) + // Shortcut simple #id case for speed + rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]+))$/, + + init = jQuery.fn.init = function( selector, context, root ) { + var match, elem; + + // HANDLE: $(""), $(null), $(undefined), $(false) + if ( !selector ) { + return this; + } + + // Method init() accepts an alternate rootjQuery + // so migrate can support jQuery.sub (gh-2101) + root = root || rootjQuery; + + // Handle HTML strings + if ( typeof selector === "string" ) { + if ( selector[ 0 ] === "<" && + selector[ selector.length - 1 ] === ">" && + selector.length >= 3 ) { + + // Assume that strings that start and end with <> are HTML and skip the regex check + match = [ null, selector, null ]; + + } else { + match = rquickExpr.exec( selector ); + } + + // Match html or make sure no context is specified for #id + if ( match && ( match[ 1 ] || !context ) ) { + + // HANDLE: $(html) -> $(array) + if ( match[ 1 ] ) { + context = context instanceof jQuery ? context[ 0 ] : context; + + // Option to run scripts is true for back-compat + // Intentionally let the error be thrown if parseHTML is not present + jQuery.merge( this, jQuery.parseHTML( + match[ 1 ], + context && context.nodeType ? context.ownerDocument || context : document, + true + ) ); + + // HANDLE: $(html, props) + if ( rsingleTag.test( match[ 1 ] ) && jQuery.isPlainObject( context ) ) { + for ( match in context ) { + + // Properties of context are called as methods if possible + if ( isFunction( this[ match ] ) ) { + this[ match ]( context[ match ] ); + + // ...and otherwise set as attributes + } else { + this.attr( match, context[ match ] ); + } + } + } + + return this; + + // HANDLE: $(#id) + } else { + elem = document.getElementById( match[ 2 ] ); + + if ( elem ) { + + // Inject the element directly into the jQuery object + this[ 0 ] = elem; + this.length = 1; + } + return this; + } + + // HANDLE: $(expr, $(...)) + } else if ( !context || context.jquery ) { + return ( context || root ).find( selector ); + + // HANDLE: $(expr, context) + // (which is just equivalent to: $(context).find(expr) + } else { + return this.constructor( context ).find( selector ); + } + + // HANDLE: $(DOMElement) + } else if ( selector.nodeType ) { + this[ 0 ] = selector; + this.length = 1; + return this; + + // HANDLE: $(function) + // Shortcut for document ready + } else if ( isFunction( selector ) ) { + return root.ready !== undefined ? + root.ready( selector ) : + + // Execute immediately if ready is not present + selector( jQuery ); + } + + return jQuery.makeArray( selector, this ); + }; + +// Give the init function the jQuery prototype for later instantiation +init.prototype = jQuery.fn; + +// Initialize central reference +rootjQuery = jQuery( document ); + + +var rparentsprev = /^(?:parents|prev(?:Until|All))/, + + // Methods guaranteed to produce a unique set when starting from a unique set + guaranteedUnique = { + children: true, + contents: true, + next: true, + prev: true + }; + +jQuery.fn.extend( { + has: function( target ) { + var targets = jQuery( target, this ), + l = targets.length; + + return this.filter( function() { + var i = 0; + for ( ; i < l; i++ ) { + if ( jQuery.contains( this, targets[ i ] ) ) { + return true; + } + } + } ); + }, + + closest: function( selectors, context ) { + var cur, + i = 0, + l = this.length, + matched = [], + targets = typeof selectors !== "string" && jQuery( selectors ); + + // Positional selectors never match, since there's no _selection_ context + if ( !rneedsContext.test( selectors ) ) { + for ( ; i < l; i++ ) { + for ( cur = this[ i ]; cur && cur !== context; cur = cur.parentNode ) { + + // Always skip document fragments + if ( cur.nodeType < 11 && ( targets ? + targets.index( cur ) > -1 : + + // Don't pass non-elements to Sizzle + cur.nodeType === 1 && + jQuery.find.matchesSelector( cur, selectors ) ) ) { + + matched.push( cur ); + break; + } + } + } + } + + return this.pushStack( matched.length > 1 ? jQuery.uniqueSort( matched ) : matched ); + }, + + // Determine the position of an element within the set + index: function( elem ) { + + // No argument, return index in parent + if ( !elem ) { + return ( this[ 0 ] && this[ 0 ].parentNode ) ? this.first().prevAll().length : -1; + } + + // Index in selector + if ( typeof elem === "string" ) { + return indexOf.call( jQuery( elem ), this[ 0 ] ); + } + + // Locate the position of the desired element + return indexOf.call( this, + + // If it receives a jQuery object, the first element is used + elem.jquery ? elem[ 0 ] : elem + ); + }, + + add: function( selector, context ) { + return this.pushStack( + jQuery.uniqueSort( + jQuery.merge( this.get(), jQuery( selector, context ) ) + ) + ); + }, + + addBack: function( selector ) { + return this.add( selector == null ? + this.prevObject : this.prevObject.filter( selector ) + ); + } +} ); + +function sibling( cur, dir ) { + while ( ( cur = cur[ dir ] ) && cur.nodeType !== 1 ) {} + return cur; +} + +jQuery.each( { + parent: function( elem ) { + var parent = elem.parentNode; + return parent && parent.nodeType !== 11 ? parent : null; + }, + parents: function( elem ) { + return dir( elem, "parentNode" ); + }, + parentsUntil: function( elem, _i, until ) { + return dir( elem, "parentNode", until ); + }, + next: function( elem ) { + return sibling( elem, "nextSibling" ); + }, + prev: function( elem ) { + return sibling( elem, "previousSibling" ); + }, + nextAll: function( elem ) { + return dir( elem, "nextSibling" ); + }, + prevAll: function( elem ) { + return dir( elem, "previousSibling" ); + }, + nextUntil: function( elem, _i, until ) { + return dir( elem, "nextSibling", until ); + }, + prevUntil: function( elem, _i, until ) { + return dir( elem, "previousSibling", until ); + }, + siblings: function( elem ) { + return siblings( ( elem.parentNode || {} ).firstChild, elem ); + }, + children: function( elem ) { + return siblings( elem.firstChild ); + }, + contents: function( elem ) { + if ( elem.contentDocument != null && + + // Support: IE 11+ + // elements with no `data` attribute has an object + // `contentDocument` with a `null` prototype. + getProto( elem.contentDocument ) ) { + + return elem.contentDocument; + } + + // Support: IE 9 - 11 only, iOS 7 only, Android Browser <=4.3 only + // Treat the template element as a regular one in browsers that + // don't support it. + if ( nodeName( elem, "template" ) ) { + elem = elem.content || elem; + } + + return jQuery.merge( [], elem.childNodes ); + } +}, function( name, fn ) { + jQuery.fn[ name ] = function( until, selector ) { + var matched = jQuery.map( this, fn, until ); + + if ( name.slice( -5 ) !== "Until" ) { + selector = until; + } + + if ( selector && typeof selector === "string" ) { + matched = jQuery.filter( selector, matched ); + } + + if ( this.length > 1 ) { + + // Remove duplicates + if ( !guaranteedUnique[ name ] ) { + jQuery.uniqueSort( matched ); + } + + // Reverse order for parents* and prev-derivatives + if ( rparentsprev.test( name ) ) { + matched.reverse(); + } + } + + return this.pushStack( matched ); + }; +} ); +var rnothtmlwhite = ( /[^\x20\t\r\n\f]+/g ); + + + +// Convert String-formatted options into Object-formatted ones +function createOptions( options ) { + var object = {}; + jQuery.each( options.match( rnothtmlwhite ) || [], function( _, flag ) { + object[ flag ] = true; + } ); + return object; +} + +/* + * Create a callback list using the following parameters: + * + * options: an optional list of space-separated options that will change how + * the callback list behaves or a more traditional option object + * + * By default a callback list will act like an event callback list and can be + * "fired" multiple times. + * + * Possible options: + * + * once: will ensure the callback list can only be fired once (like a Deferred) + * + * memory: will keep track of previous values and will call any callback added + * after the list has been fired right away with the latest "memorized" + * values (like a Deferred) + * + * unique: will ensure a callback can only be added once (no duplicate in the list) + * + * stopOnFalse: interrupt callings when a callback returns false + * + */ +jQuery.Callbacks = function( options ) { + + // Convert options from String-formatted to Object-formatted if needed + // (we check in cache first) + options = typeof options === "string" ? + createOptions( options ) : + jQuery.extend( {}, options ); + + var // Flag to know if list is currently firing + firing, + + // Last fire value for non-forgettable lists + memory, + + // Flag to know if list was already fired + fired, + + // Flag to prevent firing + locked, + + // Actual callback list + list = [], + + // Queue of execution data for repeatable lists + queue = [], + + // Index of currently firing callback (modified by add/remove as needed) + firingIndex = -1, + + // Fire callbacks + fire = function() { + + // Enforce single-firing + locked = locked || options.once; + + // Execute callbacks for all pending executions, + // respecting firingIndex overrides and runtime changes + fired = firing = true; + for ( ; queue.length; firingIndex = -1 ) { + memory = queue.shift(); + while ( ++firingIndex < list.length ) { + + // Run callback and check for early termination + if ( list[ firingIndex ].apply( memory[ 0 ], memory[ 1 ] ) === false && + options.stopOnFalse ) { + + // Jump to end and forget the data so .add doesn't re-fire + firingIndex = list.length; + memory = false; + } + } + } + + // Forget the data if we're done with it + if ( !options.memory ) { + memory = false; + } + + firing = false; + + // Clean up if we're done firing for good + if ( locked ) { + + // Keep an empty list if we have data for future add calls + if ( memory ) { + list = []; + + // Otherwise, this object is spent + } else { + list = ""; + } + } + }, + + // Actual Callbacks object + self = { + + // Add a callback or a collection of callbacks to the list + add: function() { + if ( list ) { + + // If we have memory from a past run, we should fire after adding + if ( memory && !firing ) { + firingIndex = list.length - 1; + queue.push( memory ); + } + + ( function add( args ) { + jQuery.each( args, function( _, arg ) { + if ( isFunction( arg ) ) { + if ( !options.unique || !self.has( arg ) ) { + list.push( arg ); + } + } else if ( arg && arg.length && toType( arg ) !== "string" ) { + + // Inspect recursively + add( arg ); + } + } ); + } )( arguments ); + + if ( memory && !firing ) { + fire(); + } + } + return this; + }, + + // Remove a callback from the list + remove: function() { + jQuery.each( arguments, function( _, arg ) { + var index; + while ( ( index = jQuery.inArray( arg, list, index ) ) > -1 ) { + list.splice( index, 1 ); + + // Handle firing indexes + if ( index <= firingIndex ) { + firingIndex--; + } + } + } ); + return this; + }, + + // Check if a given callback is in the list. + // If no argument is given, return whether or not list has callbacks attached. + has: function( fn ) { + return fn ? + jQuery.inArray( fn, list ) > -1 : + list.length > 0; + }, + + // Remove all callbacks from the list + empty: function() { + if ( list ) { + list = []; + } + return this; + }, + + // Disable .fire and .add + // Abort any current/pending executions + // Clear all callbacks and values + disable: function() { + locked = queue = []; + list = memory = ""; + return this; + }, + disabled: function() { + return !list; + }, + + // Disable .fire + // Also disable .add unless we have memory (since it would have no effect) + // Abort any pending executions + lock: function() { + locked = queue = []; + if ( !memory && !firing ) { + list = memory = ""; + } + return this; + }, + locked: function() { + return !!locked; + }, + + // Call all callbacks with the given context and arguments + fireWith: function( context, args ) { + if ( !locked ) { + args = args || []; + args = [ context, args.slice ? args.slice() : args ]; + queue.push( args ); + if ( !firing ) { + fire(); + } + } + return this; + }, + + // Call all the callbacks with the given arguments + fire: function() { + self.fireWith( this, arguments ); + return this; + }, + + // To know if the callbacks have already been called at least once + fired: function() { + return !!fired; + } + }; + + return self; +}; + + +function Identity( v ) { + return v; +} +function Thrower( ex ) { + throw ex; +} + +function adoptValue( value, resolve, reject, noValue ) { + var method; + + try { + + // Check for promise aspect first to privilege synchronous behavior + if ( value && isFunction( ( method = value.promise ) ) ) { + method.call( value ).done( resolve ).fail( reject ); + + // Other thenables + } else if ( value && isFunction( ( method = value.then ) ) ) { + method.call( value, resolve, reject ); + + // Other non-thenables + } else { + + // Control `resolve` arguments by letting Array#slice cast boolean `noValue` to integer: + // * false: [ value ].slice( 0 ) => resolve( value ) + // * true: [ value ].slice( 1 ) => resolve() + resolve.apply( undefined, [ value ].slice( noValue ) ); + } + + // For Promises/A+, convert exceptions into rejections + // Since jQuery.when doesn't unwrap thenables, we can skip the extra checks appearing in + // Deferred#then to conditionally suppress rejection. + } catch ( value ) { + + // Support: Android 4.0 only + // Strict mode functions invoked without .call/.apply get global-object context + reject.apply( undefined, [ value ] ); + } +} + +jQuery.extend( { + + Deferred: function( func ) { + var tuples = [ + + // action, add listener, callbacks, + // ... .then handlers, argument index, [final state] + [ "notify", "progress", jQuery.Callbacks( "memory" ), + jQuery.Callbacks( "memory" ), 2 ], + [ "resolve", "done", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 0, "resolved" ], + [ "reject", "fail", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 1, "rejected" ] + ], + state = "pending", + promise = { + state: function() { + return state; + }, + always: function() { + deferred.done( arguments ).fail( arguments ); + return this; + }, + "catch": function( fn ) { + return promise.then( null, fn ); + }, + + // Keep pipe for back-compat + pipe: function( /* fnDone, fnFail, fnProgress */ ) { + var fns = arguments; + + return jQuery.Deferred( function( newDefer ) { + jQuery.each( tuples, function( _i, tuple ) { + + // Map tuples (progress, done, fail) to arguments (done, fail, progress) + var fn = isFunction( fns[ tuple[ 4 ] ] ) && fns[ tuple[ 4 ] ]; + + // deferred.progress(function() { bind to newDefer or newDefer.notify }) + // deferred.done(function() { bind to newDefer or newDefer.resolve }) + // deferred.fail(function() { bind to newDefer or newDefer.reject }) + deferred[ tuple[ 1 ] ]( function() { + var returned = fn && fn.apply( this, arguments ); + if ( returned && isFunction( returned.promise ) ) { + returned.promise() + .progress( newDefer.notify ) + .done( newDefer.resolve ) + .fail( newDefer.reject ); + } else { + newDefer[ tuple[ 0 ] + "With" ]( + this, + fn ? [ returned ] : arguments + ); + } + } ); + } ); + fns = null; + } ).promise(); + }, + then: function( onFulfilled, onRejected, onProgress ) { + var maxDepth = 0; + function resolve( depth, deferred, handler, special ) { + return function() { + var that = this, + args = arguments, + mightThrow = function() { + var returned, then; + + // Support: Promises/A+ section 2.3.3.3.3 + // https://promisesaplus.com/#point-59 + // Ignore double-resolution attempts + if ( depth < maxDepth ) { + return; + } + + returned = handler.apply( that, args ); + + // Support: Promises/A+ section 2.3.1 + // https://promisesaplus.com/#point-48 + if ( returned === deferred.promise() ) { + throw new TypeError( "Thenable self-resolution" ); + } + + // Support: Promises/A+ sections 2.3.3.1, 3.5 + // https://promisesaplus.com/#point-54 + // https://promisesaplus.com/#point-75 + // Retrieve `then` only once + then = returned && + + // Support: Promises/A+ section 2.3.4 + // https://promisesaplus.com/#point-64 + // Only check objects and functions for thenability + ( typeof returned === "object" || + typeof returned === "function" ) && + returned.then; + + // Handle a returned thenable + if ( isFunction( then ) ) { + + // Special processors (notify) just wait for resolution + if ( special ) { + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ) + ); + + // Normal processors (resolve) also hook into progress + } else { + + // ...and disregard older resolution values + maxDepth++; + + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ), + resolve( maxDepth, deferred, Identity, + deferred.notifyWith ) + ); + } + + // Handle all other returned values + } else { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Identity ) { + that = undefined; + args = [ returned ]; + } + + // Process the value(s) + // Default process is resolve + ( special || deferred.resolveWith )( that, args ); + } + }, + + // Only normal processors (resolve) catch and reject exceptions + process = special ? + mightThrow : + function() { + try { + mightThrow(); + } catch ( e ) { + + if ( jQuery.Deferred.exceptionHook ) { + jQuery.Deferred.exceptionHook( e, + process.stackTrace ); + } + + // Support: Promises/A+ section 2.3.3.3.4.1 + // https://promisesaplus.com/#point-61 + // Ignore post-resolution exceptions + if ( depth + 1 >= maxDepth ) { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Thrower ) { + that = undefined; + args = [ e ]; + } + + deferred.rejectWith( that, args ); + } + } + }; + + // Support: Promises/A+ section 2.3.3.3.1 + // https://promisesaplus.com/#point-57 + // Re-resolve promises immediately to dodge false rejection from + // subsequent errors + if ( depth ) { + process(); + } else { + + // Call an optional hook to record the stack, in case of exception + // since it's otherwise lost when execution goes async + if ( jQuery.Deferred.getStackHook ) { + process.stackTrace = jQuery.Deferred.getStackHook(); + } + window.setTimeout( process ); + } + }; + } + + return jQuery.Deferred( function( newDefer ) { + + // progress_handlers.add( ... ) + tuples[ 0 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onProgress ) ? + onProgress : + Identity, + newDefer.notifyWith + ) + ); + + // fulfilled_handlers.add( ... ) + tuples[ 1 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onFulfilled ) ? + onFulfilled : + Identity + ) + ); + + // rejected_handlers.add( ... ) + tuples[ 2 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onRejected ) ? + onRejected : + Thrower + ) + ); + } ).promise(); + }, + + // Get a promise for this deferred + // If obj is provided, the promise aspect is added to the object + promise: function( obj ) { + return obj != null ? jQuery.extend( obj, promise ) : promise; + } + }, + deferred = {}; + + // Add list-specific methods + jQuery.each( tuples, function( i, tuple ) { + var list = tuple[ 2 ], + stateString = tuple[ 5 ]; + + // promise.progress = list.add + // promise.done = list.add + // promise.fail = list.add + promise[ tuple[ 1 ] ] = list.add; + + // Handle state + if ( stateString ) { + list.add( + function() { + + // state = "resolved" (i.e., fulfilled) + // state = "rejected" + state = stateString; + }, + + // rejected_callbacks.disable + // fulfilled_callbacks.disable + tuples[ 3 - i ][ 2 ].disable, + + // rejected_handlers.disable + // fulfilled_handlers.disable + tuples[ 3 - i ][ 3 ].disable, + + // progress_callbacks.lock + tuples[ 0 ][ 2 ].lock, + + // progress_handlers.lock + tuples[ 0 ][ 3 ].lock + ); + } + + // progress_handlers.fire + // fulfilled_handlers.fire + // rejected_handlers.fire + list.add( tuple[ 3 ].fire ); + + // deferred.notify = function() { deferred.notifyWith(...) } + // deferred.resolve = function() { deferred.resolveWith(...) } + // deferred.reject = function() { deferred.rejectWith(...) } + deferred[ tuple[ 0 ] ] = function() { + deferred[ tuple[ 0 ] + "With" ]( this === deferred ? undefined : this, arguments ); + return this; + }; + + // deferred.notifyWith = list.fireWith + // deferred.resolveWith = list.fireWith + // deferred.rejectWith = list.fireWith + deferred[ tuple[ 0 ] + "With" ] = list.fireWith; + } ); + + // Make the deferred a promise + promise.promise( deferred ); + + // Call given func if any + if ( func ) { + func.call( deferred, deferred ); + } + + // All done! + return deferred; + }, + + // Deferred helper + when: function( singleValue ) { + var + + // count of uncompleted subordinates + remaining = arguments.length, + + // count of unprocessed arguments + i = remaining, + + // subordinate fulfillment data + resolveContexts = Array( i ), + resolveValues = slice.call( arguments ), + + // the master Deferred + master = jQuery.Deferred(), + + // subordinate callback factory + updateFunc = function( i ) { + return function( value ) { + resolveContexts[ i ] = this; + resolveValues[ i ] = arguments.length > 1 ? slice.call( arguments ) : value; + if ( !( --remaining ) ) { + master.resolveWith( resolveContexts, resolveValues ); + } + }; + }; + + // Single- and empty arguments are adopted like Promise.resolve + if ( remaining <= 1 ) { + adoptValue( singleValue, master.done( updateFunc( i ) ).resolve, master.reject, + !remaining ); + + // Use .then() to unwrap secondary thenables (cf. gh-3000) + if ( master.state() === "pending" || + isFunction( resolveValues[ i ] && resolveValues[ i ].then ) ) { + + return master.then(); + } + } + + // Multiple arguments are aggregated like Promise.all array elements + while ( i-- ) { + adoptValue( resolveValues[ i ], updateFunc( i ), master.reject ); + } + + return master.promise(); + } +} ); + + +// These usually indicate a programmer mistake during development, +// warn about them ASAP rather than swallowing them by default. +var rerrorNames = /^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/; + +jQuery.Deferred.exceptionHook = function( error, stack ) { + + // Support: IE 8 - 9 only + // Console exists when dev tools are open, which can happen at any time + if ( window.console && window.console.warn && error && rerrorNames.test( error.name ) ) { + window.console.warn( "jQuery.Deferred exception: " + error.message, error.stack, stack ); + } +}; + + + + +jQuery.readyException = function( error ) { + window.setTimeout( function() { + throw error; + } ); +}; + + + + +// The deferred used on DOM ready +var readyList = jQuery.Deferred(); + +jQuery.fn.ready = function( fn ) { + + readyList + .then( fn ) + + // Wrap jQuery.readyException in a function so that the lookup + // happens at the time of error handling instead of callback + // registration. + .catch( function( error ) { + jQuery.readyException( error ); + } ); + + return this; +}; + +jQuery.extend( { + + // Is the DOM ready to be used? Set to true once it occurs. + isReady: false, + + // A counter to track how many items to wait for before + // the ready event fires. See #6781 + readyWait: 1, + + // Handle when the DOM is ready + ready: function( wait ) { + + // Abort if there are pending holds or we're already ready + if ( wait === true ? --jQuery.readyWait : jQuery.isReady ) { + return; + } + + // Remember that the DOM is ready + jQuery.isReady = true; + + // If a normal DOM Ready event fired, decrement, and wait if need be + if ( wait !== true && --jQuery.readyWait > 0 ) { + return; + } + + // If there are functions bound, to execute + readyList.resolveWith( document, [ jQuery ] ); + } +} ); + +jQuery.ready.then = readyList.then; + +// The ready event handler and self cleanup method +function completed() { + document.removeEventListener( "DOMContentLoaded", completed ); + window.removeEventListener( "load", completed ); + jQuery.ready(); +} + +// Catch cases where $(document).ready() is called +// after the browser event has already occurred. +// Support: IE <=9 - 10 only +// Older IE sometimes signals "interactive" too soon +if ( document.readyState === "complete" || + ( document.readyState !== "loading" && !document.documentElement.doScroll ) ) { + + // Handle it asynchronously to allow scripts the opportunity to delay ready + window.setTimeout( jQuery.ready ); + +} else { + + // Use the handy event callback + document.addEventListener( "DOMContentLoaded", completed ); + + // A fallback to window.onload, that will always work + window.addEventListener( "load", completed ); +} + + + + +// Multifunctional method to get and set values of a collection +// The value/s can optionally be executed if it's a function +var access = function( elems, fn, key, value, chainable, emptyGet, raw ) { + var i = 0, + len = elems.length, + bulk = key == null; + + // Sets many values + if ( toType( key ) === "object" ) { + chainable = true; + for ( i in key ) { + access( elems, fn, i, key[ i ], true, emptyGet, raw ); + } + + // Sets one value + } else if ( value !== undefined ) { + chainable = true; + + if ( !isFunction( value ) ) { + raw = true; + } + + if ( bulk ) { + + // Bulk operations run against the entire set + if ( raw ) { + fn.call( elems, value ); + fn = null; + + // ...except when executing function values + } else { + bulk = fn; + fn = function( elem, _key, value ) { + return bulk.call( jQuery( elem ), value ); + }; + } + } + + if ( fn ) { + for ( ; i < len; i++ ) { + fn( + elems[ i ], key, raw ? + value : + value.call( elems[ i ], i, fn( elems[ i ], key ) ) + ); + } + } + } + + if ( chainable ) { + return elems; + } + + // Gets + if ( bulk ) { + return fn.call( elems ); + } + + return len ? fn( elems[ 0 ], key ) : emptyGet; +}; + + +// Matches dashed string for camelizing +var rmsPrefix = /^-ms-/, + rdashAlpha = /-([a-z])/g; + +// Used by camelCase as callback to replace() +function fcamelCase( _all, letter ) { + return letter.toUpperCase(); +} + +// Convert dashed to camelCase; used by the css and data modules +// Support: IE <=9 - 11, Edge 12 - 15 +// Microsoft forgot to hump their vendor prefix (#9572) +function camelCase( string ) { + return string.replace( rmsPrefix, "ms-" ).replace( rdashAlpha, fcamelCase ); +} +var acceptData = function( owner ) { + + // Accepts only: + // - Node + // - Node.ELEMENT_NODE + // - Node.DOCUMENT_NODE + // - Object + // - Any + return owner.nodeType === 1 || owner.nodeType === 9 || !( +owner.nodeType ); +}; + + + + +function Data() { + this.expando = jQuery.expando + Data.uid++; +} + +Data.uid = 1; + +Data.prototype = { + + cache: function( owner ) { + + // Check if the owner object already has a cache + var value = owner[ this.expando ]; + + // If not, create one + if ( !value ) { + value = {}; + + // We can accept data for non-element nodes in modern browsers, + // but we should not, see #8335. + // Always return an empty object. + if ( acceptData( owner ) ) { + + // If it is a node unlikely to be stringify-ed or looped over + // use plain assignment + if ( owner.nodeType ) { + owner[ this.expando ] = value; + + // Otherwise secure it in a non-enumerable property + // configurable must be true to allow the property to be + // deleted when data is removed + } else { + Object.defineProperty( owner, this.expando, { + value: value, + configurable: true + } ); + } + } + } + + return value; + }, + set: function( owner, data, value ) { + var prop, + cache = this.cache( owner ); + + // Handle: [ owner, key, value ] args + // Always use camelCase key (gh-2257) + if ( typeof data === "string" ) { + cache[ camelCase( data ) ] = value; + + // Handle: [ owner, { properties } ] args + } else { + + // Copy the properties one-by-one to the cache object + for ( prop in data ) { + cache[ camelCase( prop ) ] = data[ prop ]; + } + } + return cache; + }, + get: function( owner, key ) { + return key === undefined ? + this.cache( owner ) : + + // Always use camelCase key (gh-2257) + owner[ this.expando ] && owner[ this.expando ][ camelCase( key ) ]; + }, + access: function( owner, key, value ) { + + // In cases where either: + // + // 1. No key was specified + // 2. A string key was specified, but no value provided + // + // Take the "read" path and allow the get method to determine + // which value to return, respectively either: + // + // 1. The entire cache object + // 2. The data stored at the key + // + if ( key === undefined || + ( ( key && typeof key === "string" ) && value === undefined ) ) { + + return this.get( owner, key ); + } + + // When the key is not a string, or both a key and value + // are specified, set or extend (existing objects) with either: + // + // 1. An object of properties + // 2. A key and value + // + this.set( owner, key, value ); + + // Since the "set" path can have two possible entry points + // return the expected data based on which path was taken[*] + return value !== undefined ? value : key; + }, + remove: function( owner, key ) { + var i, + cache = owner[ this.expando ]; + + if ( cache === undefined ) { + return; + } + + if ( key !== undefined ) { + + // Support array or space separated string of keys + if ( Array.isArray( key ) ) { + + // If key is an array of keys... + // We always set camelCase keys, so remove that. + key = key.map( camelCase ); + } else { + key = camelCase( key ); + + // If a key with the spaces exists, use it. + // Otherwise, create an array by matching non-whitespace + key = key in cache ? + [ key ] : + ( key.match( rnothtmlwhite ) || [] ); + } + + i = key.length; + + while ( i-- ) { + delete cache[ key[ i ] ]; + } + } + + // Remove the expando if there's no more data + if ( key === undefined || jQuery.isEmptyObject( cache ) ) { + + // Support: Chrome <=35 - 45 + // Webkit & Blink performance suffers when deleting properties + // from DOM nodes, so set to undefined instead + // https://bugs.chromium.org/p/chromium/issues/detail?id=378607 (bug restricted) + if ( owner.nodeType ) { + owner[ this.expando ] = undefined; + } else { + delete owner[ this.expando ]; + } + } + }, + hasData: function( owner ) { + var cache = owner[ this.expando ]; + return cache !== undefined && !jQuery.isEmptyObject( cache ); + } +}; +var dataPriv = new Data(); + +var dataUser = new Data(); + + + +// Implementation Summary +// +// 1. Enforce API surface and semantic compatibility with 1.9.x branch +// 2. Improve the module's maintainability by reducing the storage +// paths to a single mechanism. +// 3. Use the same single mechanism to support "private" and "user" data. +// 4. _Never_ expose "private" data to user code (TODO: Drop _data, _removeData) +// 5. Avoid exposing implementation details on user objects (eg. expando properties) +// 6. Provide a clear path for implementation upgrade to WeakMap in 2014 + +var rbrace = /^(?:\{[\w\W]*\}|\[[\w\W]*\])$/, + rmultiDash = /[A-Z]/g; + +function getData( data ) { + if ( data === "true" ) { + return true; + } + + if ( data === "false" ) { + return false; + } + + if ( data === "null" ) { + return null; + } + + // Only convert to a number if it doesn't change the string + if ( data === +data + "" ) { + return +data; + } + + if ( rbrace.test( data ) ) { + return JSON.parse( data ); + } + + return data; +} + +function dataAttr( elem, key, data ) { + var name; + + // If nothing was found internally, try to fetch any + // data from the HTML5 data-* attribute + if ( data === undefined && elem.nodeType === 1 ) { + name = "data-" + key.replace( rmultiDash, "-$&" ).toLowerCase(); + data = elem.getAttribute( name ); + + if ( typeof data === "string" ) { + try { + data = getData( data ); + } catch ( e ) {} + + // Make sure we set the data so it isn't changed later + dataUser.set( elem, key, data ); + } else { + data = undefined; + } + } + return data; +} + +jQuery.extend( { + hasData: function( elem ) { + return dataUser.hasData( elem ) || dataPriv.hasData( elem ); + }, + + data: function( elem, name, data ) { + return dataUser.access( elem, name, data ); + }, + + removeData: function( elem, name ) { + dataUser.remove( elem, name ); + }, + + // TODO: Now that all calls to _data and _removeData have been replaced + // with direct calls to dataPriv methods, these can be deprecated. + _data: function( elem, name, data ) { + return dataPriv.access( elem, name, data ); + }, + + _removeData: function( elem, name ) { + dataPriv.remove( elem, name ); + } +} ); + +jQuery.fn.extend( { + data: function( key, value ) { + var i, name, data, + elem = this[ 0 ], + attrs = elem && elem.attributes; + + // Gets all values + if ( key === undefined ) { + if ( this.length ) { + data = dataUser.get( elem ); + + if ( elem.nodeType === 1 && !dataPriv.get( elem, "hasDataAttrs" ) ) { + i = attrs.length; + while ( i-- ) { + + // Support: IE 11 only + // The attrs elements can be null (#14894) + if ( attrs[ i ] ) { + name = attrs[ i ].name; + if ( name.indexOf( "data-" ) === 0 ) { + name = camelCase( name.slice( 5 ) ); + dataAttr( elem, name, data[ name ] ); + } + } + } + dataPriv.set( elem, "hasDataAttrs", true ); + } + } + + return data; + } + + // Sets multiple values + if ( typeof key === "object" ) { + return this.each( function() { + dataUser.set( this, key ); + } ); + } + + return access( this, function( value ) { + var data; + + // The calling jQuery object (element matches) is not empty + // (and therefore has an element appears at this[ 0 ]) and the + // `value` parameter was not undefined. An empty jQuery object + // will result in `undefined` for elem = this[ 0 ] which will + // throw an exception if an attempt to read a data cache is made. + if ( elem && value === undefined ) { + + // Attempt to get data from the cache + // The key will always be camelCased in Data + data = dataUser.get( elem, key ); + if ( data !== undefined ) { + return data; + } + + // Attempt to "discover" the data in + // HTML5 custom data-* attrs + data = dataAttr( elem, key ); + if ( data !== undefined ) { + return data; + } + + // We tried really hard, but the data doesn't exist. + return; + } + + // Set the data... + this.each( function() { + + // We always store the camelCased key + dataUser.set( this, key, value ); + } ); + }, null, value, arguments.length > 1, null, true ); + }, + + removeData: function( key ) { + return this.each( function() { + dataUser.remove( this, key ); + } ); + } +} ); + + +jQuery.extend( { + queue: function( elem, type, data ) { + var queue; + + if ( elem ) { + type = ( type || "fx" ) + "queue"; + queue = dataPriv.get( elem, type ); + + // Speed up dequeue by getting out quickly if this is just a lookup + if ( data ) { + if ( !queue || Array.isArray( data ) ) { + queue = dataPriv.access( elem, type, jQuery.makeArray( data ) ); + } else { + queue.push( data ); + } + } + return queue || []; + } + }, + + dequeue: function( elem, type ) { + type = type || "fx"; + + var queue = jQuery.queue( elem, type ), + startLength = queue.length, + fn = queue.shift(), + hooks = jQuery._queueHooks( elem, type ), + next = function() { + jQuery.dequeue( elem, type ); + }; + + // If the fx queue is dequeued, always remove the progress sentinel + if ( fn === "inprogress" ) { + fn = queue.shift(); + startLength--; + } + + if ( fn ) { + + // Add a progress sentinel to prevent the fx queue from being + // automatically dequeued + if ( type === "fx" ) { + queue.unshift( "inprogress" ); + } + + // Clear up the last queue stop function + delete hooks.stop; + fn.call( elem, next, hooks ); + } + + if ( !startLength && hooks ) { + hooks.empty.fire(); + } + }, + + // Not public - generate a queueHooks object, or return the current one + _queueHooks: function( elem, type ) { + var key = type + "queueHooks"; + return dataPriv.get( elem, key ) || dataPriv.access( elem, key, { + empty: jQuery.Callbacks( "once memory" ).add( function() { + dataPriv.remove( elem, [ type + "queue", key ] ); + } ) + } ); + } +} ); + +jQuery.fn.extend( { + queue: function( type, data ) { + var setter = 2; + + if ( typeof type !== "string" ) { + data = type; + type = "fx"; + setter--; + } + + if ( arguments.length < setter ) { + return jQuery.queue( this[ 0 ], type ); + } + + return data === undefined ? + this : + this.each( function() { + var queue = jQuery.queue( this, type, data ); + + // Ensure a hooks for this queue + jQuery._queueHooks( this, type ); + + if ( type === "fx" && queue[ 0 ] !== "inprogress" ) { + jQuery.dequeue( this, type ); + } + } ); + }, + dequeue: function( type ) { + return this.each( function() { + jQuery.dequeue( this, type ); + } ); + }, + clearQueue: function( type ) { + return this.queue( type || "fx", [] ); + }, + + // Get a promise resolved when queues of a certain type + // are emptied (fx is the type by default) + promise: function( type, obj ) { + var tmp, + count = 1, + defer = jQuery.Deferred(), + elements = this, + i = this.length, + resolve = function() { + if ( !( --count ) ) { + defer.resolveWith( elements, [ elements ] ); + } + }; + + if ( typeof type !== "string" ) { + obj = type; + type = undefined; + } + type = type || "fx"; + + while ( i-- ) { + tmp = dataPriv.get( elements[ i ], type + "queueHooks" ); + if ( tmp && tmp.empty ) { + count++; + tmp.empty.add( resolve ); + } + } + resolve(); + return defer.promise( obj ); + } +} ); +var pnum = ( /[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/ ).source; + +var rcssNum = new RegExp( "^(?:([+-])=|)(" + pnum + ")([a-z%]*)$", "i" ); + + +var cssExpand = [ "Top", "Right", "Bottom", "Left" ]; + +var documentElement = document.documentElement; + + + + var isAttached = function( elem ) { + return jQuery.contains( elem.ownerDocument, elem ); + }, + composed = { composed: true }; + + // Support: IE 9 - 11+, Edge 12 - 18+, iOS 10.0 - 10.2 only + // Check attachment across shadow DOM boundaries when possible (gh-3504) + // Support: iOS 10.0-10.2 only + // Early iOS 10 versions support `attachShadow` but not `getRootNode`, + // leading to errors. We need to check for `getRootNode`. + if ( documentElement.getRootNode ) { + isAttached = function( elem ) { + return jQuery.contains( elem.ownerDocument, elem ) || + elem.getRootNode( composed ) === elem.ownerDocument; + }; + } +var isHiddenWithinTree = function( elem, el ) { + + // isHiddenWithinTree might be called from jQuery#filter function; + // in that case, element will be second argument + elem = el || elem; + + // Inline style trumps all + return elem.style.display === "none" || + elem.style.display === "" && + + // Otherwise, check computed style + // Support: Firefox <=43 - 45 + // Disconnected elements can have computed display: none, so first confirm that elem is + // in the document. + isAttached( elem ) && + + jQuery.css( elem, "display" ) === "none"; + }; + + + +function adjustCSS( elem, prop, valueParts, tween ) { + var adjusted, scale, + maxIterations = 20, + currentValue = tween ? + function() { + return tween.cur(); + } : + function() { + return jQuery.css( elem, prop, "" ); + }, + initial = currentValue(), + unit = valueParts && valueParts[ 3 ] || ( jQuery.cssNumber[ prop ] ? "" : "px" ), + + // Starting value computation is required for potential unit mismatches + initialInUnit = elem.nodeType && + ( jQuery.cssNumber[ prop ] || unit !== "px" && +initial ) && + rcssNum.exec( jQuery.css( elem, prop ) ); + + if ( initialInUnit && initialInUnit[ 3 ] !== unit ) { + + // Support: Firefox <=54 + // Halve the iteration target value to prevent interference from CSS upper bounds (gh-2144) + initial = initial / 2; + + // Trust units reported by jQuery.css + unit = unit || initialInUnit[ 3 ]; + + // Iteratively approximate from a nonzero starting point + initialInUnit = +initial || 1; + + while ( maxIterations-- ) { + + // Evaluate and update our best guess (doubling guesses that zero out). + // Finish if the scale equals or crosses 1 (making the old*new product non-positive). + jQuery.style( elem, prop, initialInUnit + unit ); + if ( ( 1 - scale ) * ( 1 - ( scale = currentValue() / initial || 0.5 ) ) <= 0 ) { + maxIterations = 0; + } + initialInUnit = initialInUnit / scale; + + } + + initialInUnit = initialInUnit * 2; + jQuery.style( elem, prop, initialInUnit + unit ); + + // Make sure we update the tween properties later on + valueParts = valueParts || []; + } + + if ( valueParts ) { + initialInUnit = +initialInUnit || +initial || 0; + + // Apply relative offset (+=/-=) if specified + adjusted = valueParts[ 1 ] ? + initialInUnit + ( valueParts[ 1 ] + 1 ) * valueParts[ 2 ] : + +valueParts[ 2 ]; + if ( tween ) { + tween.unit = unit; + tween.start = initialInUnit; + tween.end = adjusted; + } + } + return adjusted; +} + + +var defaultDisplayMap = {}; + +function getDefaultDisplay( elem ) { + var temp, + doc = elem.ownerDocument, + nodeName = elem.nodeName, + display = defaultDisplayMap[ nodeName ]; + + if ( display ) { + return display; + } + + temp = doc.body.appendChild( doc.createElement( nodeName ) ); + display = jQuery.css( temp, "display" ); + + temp.parentNode.removeChild( temp ); + + if ( display === "none" ) { + display = "block"; + } + defaultDisplayMap[ nodeName ] = display; + + return display; +} + +function showHide( elements, show ) { + var display, elem, + values = [], + index = 0, + length = elements.length; + + // Determine new display value for elements that need to change + for ( ; index < length; index++ ) { + elem = elements[ index ]; + if ( !elem.style ) { + continue; + } + + display = elem.style.display; + if ( show ) { + + // Since we force visibility upon cascade-hidden elements, an immediate (and slow) + // check is required in this first loop unless we have a nonempty display value (either + // inline or about-to-be-restored) + if ( display === "none" ) { + values[ index ] = dataPriv.get( elem, "display" ) || null; + if ( !values[ index ] ) { + elem.style.display = ""; + } + } + if ( elem.style.display === "" && isHiddenWithinTree( elem ) ) { + values[ index ] = getDefaultDisplay( elem ); + } + } else { + if ( display !== "none" ) { + values[ index ] = "none"; + + // Remember what we're overwriting + dataPriv.set( elem, "display", display ); + } + } + } + + // Set the display of the elements in a second loop to avoid constant reflow + for ( index = 0; index < length; index++ ) { + if ( values[ index ] != null ) { + elements[ index ].style.display = values[ index ]; + } + } + + return elements; +} + +jQuery.fn.extend( { + show: function() { + return showHide( this, true ); + }, + hide: function() { + return showHide( this ); + }, + toggle: function( state ) { + if ( typeof state === "boolean" ) { + return state ? this.show() : this.hide(); + } + + return this.each( function() { + if ( isHiddenWithinTree( this ) ) { + jQuery( this ).show(); + } else { + jQuery( this ).hide(); + } + } ); + } +} ); +var rcheckableType = ( /^(?:checkbox|radio)$/i ); + +var rtagName = ( /<([a-z][^\/\0>\x20\t\r\n\f]*)/i ); + +var rscriptType = ( /^$|^module$|\/(?:java|ecma)script/i ); + + + +( function() { + var fragment = document.createDocumentFragment(), + div = fragment.appendChild( document.createElement( "div" ) ), + input = document.createElement( "input" ); + + // Support: Android 4.0 - 4.3 only + // Check state lost if the name is set (#11217) + // Support: Windows Web Apps (WWA) + // `name` and `type` must use .setAttribute for WWA (#14901) + input.setAttribute( "type", "radio" ); + input.setAttribute( "checked", "checked" ); + input.setAttribute( "name", "t" ); + + div.appendChild( input ); + + // Support: Android <=4.1 only + // Older WebKit doesn't clone checked state correctly in fragments + support.checkClone = div.cloneNode( true ).cloneNode( true ).lastChild.checked; + + // Support: IE <=11 only + // Make sure textarea (and checkbox) defaultValue is properly cloned + div.innerHTML = ""; + support.noCloneChecked = !!div.cloneNode( true ).lastChild.defaultValue; + + // Support: IE <=9 only + // IE <=9 replaces "; + support.option = !!div.lastChild; +} )(); + + +// We have to close these tags to support XHTML (#13200) +var wrapMap = { + + // XHTML parsers do not magically insert elements in the + // same way that tag soup parsers do. So we cannot shorten + // this by omitting or other required elements. + thead: [ 1, "", "
" ], + col: [ 2, "", "
" ], + tr: [ 2, "", "
" ], + td: [ 3, "", "
" ], + + _default: [ 0, "", "" ] +}; + +wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead; +wrapMap.th = wrapMap.td; + +// Support: IE <=9 only +if ( !support.option ) { + wrapMap.optgroup = wrapMap.option = [ 1, "" ]; +} + + +function getAll( context, tag ) { + + // Support: IE <=9 - 11 only + // Use typeof to avoid zero-argument method invocation on host objects (#15151) + var ret; + + if ( typeof context.getElementsByTagName !== "undefined" ) { + ret = context.getElementsByTagName( tag || "*" ); + + } else if ( typeof context.querySelectorAll !== "undefined" ) { + ret = context.querySelectorAll( tag || "*" ); + + } else { + ret = []; + } + + if ( tag === undefined || tag && nodeName( context, tag ) ) { + return jQuery.merge( [ context ], ret ); + } + + return ret; +} + + +// Mark scripts as having already been evaluated +function setGlobalEval( elems, refElements ) { + var i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + dataPriv.set( + elems[ i ], + "globalEval", + !refElements || dataPriv.get( refElements[ i ], "globalEval" ) + ); + } +} + + +var rhtml = /<|&#?\w+;/; + +function buildFragment( elems, context, scripts, selection, ignored ) { + var elem, tmp, tag, wrap, attached, j, + fragment = context.createDocumentFragment(), + nodes = [], + i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + elem = elems[ i ]; + + if ( elem || elem === 0 ) { + + // Add nodes directly + if ( toType( elem ) === "object" ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, elem.nodeType ? [ elem ] : elem ); + + // Convert non-html into a text node + } else if ( !rhtml.test( elem ) ) { + nodes.push( context.createTextNode( elem ) ); + + // Convert html into DOM nodes + } else { + tmp = tmp || fragment.appendChild( context.createElement( "div" ) ); + + // Deserialize a standard representation + tag = ( rtagName.exec( elem ) || [ "", "" ] )[ 1 ].toLowerCase(); + wrap = wrapMap[ tag ] || wrapMap._default; + tmp.innerHTML = wrap[ 1 ] + jQuery.htmlPrefilter( elem ) + wrap[ 2 ]; + + // Descend through wrappers to the right content + j = wrap[ 0 ]; + while ( j-- ) { + tmp = tmp.lastChild; + } + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, tmp.childNodes ); + + // Remember the top-level container + tmp = fragment.firstChild; + + // Ensure the created nodes are orphaned (#12392) + tmp.textContent = ""; + } + } + } + + // Remove wrapper from fragment + fragment.textContent = ""; + + i = 0; + while ( ( elem = nodes[ i++ ] ) ) { + + // Skip elements already in the context collection (trac-4087) + if ( selection && jQuery.inArray( elem, selection ) > -1 ) { + if ( ignored ) { + ignored.push( elem ); + } + continue; + } + + attached = isAttached( elem ); + + // Append to fragment + tmp = getAll( fragment.appendChild( elem ), "script" ); + + // Preserve script evaluation history + if ( attached ) { + setGlobalEval( tmp ); + } + + // Capture executables + if ( scripts ) { + j = 0; + while ( ( elem = tmp[ j++ ] ) ) { + if ( rscriptType.test( elem.type || "" ) ) { + scripts.push( elem ); + } + } + } + } + + return fragment; +} + + +var + rkeyEvent = /^key/, + rmouseEvent = /^(?:mouse|pointer|contextmenu|drag|drop)|click/, + rtypenamespace = /^([^.]*)(?:\.(.+)|)/; + +function returnTrue() { + return true; +} + +function returnFalse() { + return false; +} + +// Support: IE <=9 - 11+ +// focus() and blur() are asynchronous, except when they are no-op. +// So expect focus to be synchronous when the element is already active, +// and blur to be synchronous when the element is not already active. +// (focus and blur are always synchronous in other supported browsers, +// this just defines when we can count on it). +function expectSync( elem, type ) { + return ( elem === safeActiveElement() ) === ( type === "focus" ); +} + +// Support: IE <=9 only +// Accessing document.activeElement can throw unexpectedly +// https://bugs.jquery.com/ticket/13393 +function safeActiveElement() { + try { + return document.activeElement; + } catch ( err ) { } +} + +function on( elem, types, selector, data, fn, one ) { + var origFn, type; + + // Types can be a map of types/handlers + if ( typeof types === "object" ) { + + // ( types-Object, selector, data ) + if ( typeof selector !== "string" ) { + + // ( types-Object, data ) + data = data || selector; + selector = undefined; + } + for ( type in types ) { + on( elem, type, selector, data, types[ type ], one ); + } + return elem; + } + + if ( data == null && fn == null ) { + + // ( types, fn ) + fn = selector; + data = selector = undefined; + } else if ( fn == null ) { + if ( typeof selector === "string" ) { + + // ( types, selector, fn ) + fn = data; + data = undefined; + } else { + + // ( types, data, fn ) + fn = data; + data = selector; + selector = undefined; + } + } + if ( fn === false ) { + fn = returnFalse; + } else if ( !fn ) { + return elem; + } + + if ( one === 1 ) { + origFn = fn; + fn = function( event ) { + + // Can use an empty set, since event contains the info + jQuery().off( event ); + return origFn.apply( this, arguments ); + }; + + // Use same guid so caller can remove using origFn + fn.guid = origFn.guid || ( origFn.guid = jQuery.guid++ ); + } + return elem.each( function() { + jQuery.event.add( this, types, fn, data, selector ); + } ); +} + +/* + * Helper functions for managing events -- not part of the public interface. + * Props to Dean Edwards' addEvent library for many of the ideas. + */ +jQuery.event = { + + global: {}, + + add: function( elem, types, handler, data, selector ) { + + var handleObjIn, eventHandle, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.get( elem ); + + // Only attach events to objects that accept data + if ( !acceptData( elem ) ) { + return; + } + + // Caller can pass in an object of custom data in lieu of the handler + if ( handler.handler ) { + handleObjIn = handler; + handler = handleObjIn.handler; + selector = handleObjIn.selector; + } + + // Ensure that invalid selectors throw exceptions at attach time + // Evaluate against documentElement in case elem is a non-element node (e.g., document) + if ( selector ) { + jQuery.find.matchesSelector( documentElement, selector ); + } + + // Make sure that the handler has a unique ID, used to find/remove it later + if ( !handler.guid ) { + handler.guid = jQuery.guid++; + } + + // Init the element's event structure and main handler, if this is the first + if ( !( events = elemData.events ) ) { + events = elemData.events = Object.create( null ); + } + if ( !( eventHandle = elemData.handle ) ) { + eventHandle = elemData.handle = function( e ) { + + // Discard the second event of a jQuery.event.trigger() and + // when an event is called after a page has unloaded + return typeof jQuery !== "undefined" && jQuery.event.triggered !== e.type ? + jQuery.event.dispatch.apply( elem, arguments ) : undefined; + }; + } + + // Handle multiple events separated by a space + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // There *must* be a type, no attaching namespace-only handlers + if ( !type ) { + continue; + } + + // If event changes its type, use the special event handlers for the changed type + special = jQuery.event.special[ type ] || {}; + + // If selector defined, determine special event api type, otherwise given type + type = ( selector ? special.delegateType : special.bindType ) || type; + + // Update special based on newly reset type + special = jQuery.event.special[ type ] || {}; + + // handleObj is passed to all event handlers + handleObj = jQuery.extend( { + type: type, + origType: origType, + data: data, + handler: handler, + guid: handler.guid, + selector: selector, + needsContext: selector && jQuery.expr.match.needsContext.test( selector ), + namespace: namespaces.join( "." ) + }, handleObjIn ); + + // Init the event handler queue if we're the first + if ( !( handlers = events[ type ] ) ) { + handlers = events[ type ] = []; + handlers.delegateCount = 0; + + // Only use addEventListener if the special events handler returns false + if ( !special.setup || + special.setup.call( elem, data, namespaces, eventHandle ) === false ) { + + if ( elem.addEventListener ) { + elem.addEventListener( type, eventHandle ); + } + } + } + + if ( special.add ) { + special.add.call( elem, handleObj ); + + if ( !handleObj.handler.guid ) { + handleObj.handler.guid = handler.guid; + } + } + + // Add to the element's handler list, delegates in front + if ( selector ) { + handlers.splice( handlers.delegateCount++, 0, handleObj ); + } else { + handlers.push( handleObj ); + } + + // Keep track of which events have ever been used, for event optimization + jQuery.event.global[ type ] = true; + } + + }, + + // Detach an event or set of events from an element + remove: function( elem, types, handler, selector, mappedTypes ) { + + var j, origCount, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.hasData( elem ) && dataPriv.get( elem ); + + if ( !elemData || !( events = elemData.events ) ) { + return; + } + + // Once for each type.namespace in types; type may be omitted + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // Unbind all events (on this namespace, if provided) for the element + if ( !type ) { + for ( type in events ) { + jQuery.event.remove( elem, type + types[ t ], handler, selector, true ); + } + continue; + } + + special = jQuery.event.special[ type ] || {}; + type = ( selector ? special.delegateType : special.bindType ) || type; + handlers = events[ type ] || []; + tmp = tmp[ 2 ] && + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ); + + // Remove matching events + origCount = j = handlers.length; + while ( j-- ) { + handleObj = handlers[ j ]; + + if ( ( mappedTypes || origType === handleObj.origType ) && + ( !handler || handler.guid === handleObj.guid ) && + ( !tmp || tmp.test( handleObj.namespace ) ) && + ( !selector || selector === handleObj.selector || + selector === "**" && handleObj.selector ) ) { + handlers.splice( j, 1 ); + + if ( handleObj.selector ) { + handlers.delegateCount--; + } + if ( special.remove ) { + special.remove.call( elem, handleObj ); + } + } + } + + // Remove generic event handler if we removed something and no more handlers exist + // (avoids potential for endless recursion during removal of special event handlers) + if ( origCount && !handlers.length ) { + if ( !special.teardown || + special.teardown.call( elem, namespaces, elemData.handle ) === false ) { + + jQuery.removeEvent( elem, type, elemData.handle ); + } + + delete events[ type ]; + } + } + + // Remove data and the expando if it's no longer used + if ( jQuery.isEmptyObject( events ) ) { + dataPriv.remove( elem, "handle events" ); + } + }, + + dispatch: function( nativeEvent ) { + + var i, j, ret, matched, handleObj, handlerQueue, + args = new Array( arguments.length ), + + // Make a writable jQuery.Event from the native event object + event = jQuery.event.fix( nativeEvent ), + + handlers = ( + dataPriv.get( this, "events" ) || Object.create( null ) + )[ event.type ] || [], + special = jQuery.event.special[ event.type ] || {}; + + // Use the fix-ed jQuery.Event rather than the (read-only) native event + args[ 0 ] = event; + + for ( i = 1; i < arguments.length; i++ ) { + args[ i ] = arguments[ i ]; + } + + event.delegateTarget = this; + + // Call the preDispatch hook for the mapped type, and let it bail if desired + if ( special.preDispatch && special.preDispatch.call( this, event ) === false ) { + return; + } + + // Determine handlers + handlerQueue = jQuery.event.handlers.call( this, event, handlers ); + + // Run delegates first; they may want to stop propagation beneath us + i = 0; + while ( ( matched = handlerQueue[ i++ ] ) && !event.isPropagationStopped() ) { + event.currentTarget = matched.elem; + + j = 0; + while ( ( handleObj = matched.handlers[ j++ ] ) && + !event.isImmediatePropagationStopped() ) { + + // If the event is namespaced, then each handler is only invoked if it is + // specially universal or its namespaces are a superset of the event's. + if ( !event.rnamespace || handleObj.namespace === false || + event.rnamespace.test( handleObj.namespace ) ) { + + event.handleObj = handleObj; + event.data = handleObj.data; + + ret = ( ( jQuery.event.special[ handleObj.origType ] || {} ).handle || + handleObj.handler ).apply( matched.elem, args ); + + if ( ret !== undefined ) { + if ( ( event.result = ret ) === false ) { + event.preventDefault(); + event.stopPropagation(); + } + } + } + } + } + + // Call the postDispatch hook for the mapped type + if ( special.postDispatch ) { + special.postDispatch.call( this, event ); + } + + return event.result; + }, + + handlers: function( event, handlers ) { + var i, handleObj, sel, matchedHandlers, matchedSelectors, + handlerQueue = [], + delegateCount = handlers.delegateCount, + cur = event.target; + + // Find delegate handlers + if ( delegateCount && + + // Support: IE <=9 + // Black-hole SVG instance trees (trac-13180) + cur.nodeType && + + // Support: Firefox <=42 + // Suppress spec-violating clicks indicating a non-primary pointer button (trac-3861) + // https://www.w3.org/TR/DOM-Level-3-Events/#event-type-click + // Support: IE 11 only + // ...but not arrow key "clicks" of radio inputs, which can have `button` -1 (gh-2343) + !( event.type === "click" && event.button >= 1 ) ) { + + for ( ; cur !== this; cur = cur.parentNode || this ) { + + // Don't check non-elements (#13208) + // Don't process clicks on disabled elements (#6911, #8165, #11382, #11764) + if ( cur.nodeType === 1 && !( event.type === "click" && cur.disabled === true ) ) { + matchedHandlers = []; + matchedSelectors = {}; + for ( i = 0; i < delegateCount; i++ ) { + handleObj = handlers[ i ]; + + // Don't conflict with Object.prototype properties (#13203) + sel = handleObj.selector + " "; + + if ( matchedSelectors[ sel ] === undefined ) { + matchedSelectors[ sel ] = handleObj.needsContext ? + jQuery( sel, this ).index( cur ) > -1 : + jQuery.find( sel, this, null, [ cur ] ).length; + } + if ( matchedSelectors[ sel ] ) { + matchedHandlers.push( handleObj ); + } + } + if ( matchedHandlers.length ) { + handlerQueue.push( { elem: cur, handlers: matchedHandlers } ); + } + } + } + } + + // Add the remaining (directly-bound) handlers + cur = this; + if ( delegateCount < handlers.length ) { + handlerQueue.push( { elem: cur, handlers: handlers.slice( delegateCount ) } ); + } + + return handlerQueue; + }, + + addProp: function( name, hook ) { + Object.defineProperty( jQuery.Event.prototype, name, { + enumerable: true, + configurable: true, + + get: isFunction( hook ) ? + function() { + if ( this.originalEvent ) { + return hook( this.originalEvent ); + } + } : + function() { + if ( this.originalEvent ) { + return this.originalEvent[ name ]; + } + }, + + set: function( value ) { + Object.defineProperty( this, name, { + enumerable: true, + configurable: true, + writable: true, + value: value + } ); + } + } ); + }, + + fix: function( originalEvent ) { + return originalEvent[ jQuery.expando ] ? + originalEvent : + new jQuery.Event( originalEvent ); + }, + + special: { + load: { + + // Prevent triggered image.load events from bubbling to window.load + noBubble: true + }, + click: { + + // Utilize native event to ensure correct state for checkable inputs + setup: function( data ) { + + // For mutual compressibility with _default, replace `this` access with a local var. + // `|| data` is dead code meant only to preserve the variable through minification. + var el = this || data; + + // Claim the first handler + if ( rcheckableType.test( el.type ) && + el.click && nodeName( el, "input" ) ) { + + // dataPriv.set( el, "click", ... ) + leverageNative( el, "click", returnTrue ); + } + + // Return false to allow normal processing in the caller + return false; + }, + trigger: function( data ) { + + // For mutual compressibility with _default, replace `this` access with a local var. + // `|| data` is dead code meant only to preserve the variable through minification. + var el = this || data; + + // Force setup before triggering a click + if ( rcheckableType.test( el.type ) && + el.click && nodeName( el, "input" ) ) { + + leverageNative( el, "click" ); + } + + // Return non-false to allow normal event-path propagation + return true; + }, + + // For cross-browser consistency, suppress native .click() on links + // Also prevent it if we're currently inside a leveraged native-event stack + _default: function( event ) { + var target = event.target; + return rcheckableType.test( target.type ) && + target.click && nodeName( target, "input" ) && + dataPriv.get( target, "click" ) || + nodeName( target, "a" ); + } + }, + + beforeunload: { + postDispatch: function( event ) { + + // Support: Firefox 20+ + // Firefox doesn't alert if the returnValue field is not set. + if ( event.result !== undefined && event.originalEvent ) { + event.originalEvent.returnValue = event.result; + } + } + } + } +}; + +// Ensure the presence of an event listener that handles manually-triggered +// synthetic events by interrupting progress until reinvoked in response to +// *native* events that it fires directly, ensuring that state changes have +// already occurred before other listeners are invoked. +function leverageNative( el, type, expectSync ) { + + // Missing expectSync indicates a trigger call, which must force setup through jQuery.event.add + if ( !expectSync ) { + if ( dataPriv.get( el, type ) === undefined ) { + jQuery.event.add( el, type, returnTrue ); + } + return; + } + + // Register the controller as a special universal handler for all event namespaces + dataPriv.set( el, type, false ); + jQuery.event.add( el, type, { + namespace: false, + handler: function( event ) { + var notAsync, result, + saved = dataPriv.get( this, type ); + + if ( ( event.isTrigger & 1 ) && this[ type ] ) { + + // Interrupt processing of the outer synthetic .trigger()ed event + // Saved data should be false in such cases, but might be a leftover capture object + // from an async native handler (gh-4350) + if ( !saved.length ) { + + // Store arguments for use when handling the inner native event + // There will always be at least one argument (an event object), so this array + // will not be confused with a leftover capture object. + saved = slice.call( arguments ); + dataPriv.set( this, type, saved ); + + // Trigger the native event and capture its result + // Support: IE <=9 - 11+ + // focus() and blur() are asynchronous + notAsync = expectSync( this, type ); + this[ type ](); + result = dataPriv.get( this, type ); + if ( saved !== result || notAsync ) { + dataPriv.set( this, type, false ); + } else { + result = {}; + } + if ( saved !== result ) { + + // Cancel the outer synthetic event + event.stopImmediatePropagation(); + event.preventDefault(); + return result.value; + } + + // If this is an inner synthetic event for an event with a bubbling surrogate + // (focus or blur), assume that the surrogate already propagated from triggering the + // native event and prevent that from happening again here. + // This technically gets the ordering wrong w.r.t. to `.trigger()` (in which the + // bubbling surrogate propagates *after* the non-bubbling base), but that seems + // less bad than duplication. + } else if ( ( jQuery.event.special[ type ] || {} ).delegateType ) { + event.stopPropagation(); + } + + // If this is a native event triggered above, everything is now in order + // Fire an inner synthetic event with the original arguments + } else if ( saved.length ) { + + // ...and capture the result + dataPriv.set( this, type, { + value: jQuery.event.trigger( + + // Support: IE <=9 - 11+ + // Extend with the prototype to reset the above stopImmediatePropagation() + jQuery.extend( saved[ 0 ], jQuery.Event.prototype ), + saved.slice( 1 ), + this + ) + } ); + + // Abort handling of the native event + event.stopImmediatePropagation(); + } + } + } ); +} + +jQuery.removeEvent = function( elem, type, handle ) { + + // This "if" is needed for plain objects + if ( elem.removeEventListener ) { + elem.removeEventListener( type, handle ); + } +}; + +jQuery.Event = function( src, props ) { + + // Allow instantiation without the 'new' keyword + if ( !( this instanceof jQuery.Event ) ) { + return new jQuery.Event( src, props ); + } + + // Event object + if ( src && src.type ) { + this.originalEvent = src; + this.type = src.type; + + // Events bubbling up the document may have been marked as prevented + // by a handler lower down the tree; reflect the correct value. + this.isDefaultPrevented = src.defaultPrevented || + src.defaultPrevented === undefined && + + // Support: Android <=2.3 only + src.returnValue === false ? + returnTrue : + returnFalse; + + // Create target properties + // Support: Safari <=6 - 7 only + // Target should not be a text node (#504, #13143) + this.target = ( src.target && src.target.nodeType === 3 ) ? + src.target.parentNode : + src.target; + + this.currentTarget = src.currentTarget; + this.relatedTarget = src.relatedTarget; + + // Event type + } else { + this.type = src; + } + + // Put explicitly provided properties onto the event object + if ( props ) { + jQuery.extend( this, props ); + } + + // Create a timestamp if incoming event doesn't have one + this.timeStamp = src && src.timeStamp || Date.now(); + + // Mark it as fixed + this[ jQuery.expando ] = true; +}; + +// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding +// https://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html +jQuery.Event.prototype = { + constructor: jQuery.Event, + isDefaultPrevented: returnFalse, + isPropagationStopped: returnFalse, + isImmediatePropagationStopped: returnFalse, + isSimulated: false, + + preventDefault: function() { + var e = this.originalEvent; + + this.isDefaultPrevented = returnTrue; + + if ( e && !this.isSimulated ) { + e.preventDefault(); + } + }, + stopPropagation: function() { + var e = this.originalEvent; + + this.isPropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopPropagation(); + } + }, + stopImmediatePropagation: function() { + var e = this.originalEvent; + + this.isImmediatePropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopImmediatePropagation(); + } + + this.stopPropagation(); + } +}; + +// Includes all common event props including KeyEvent and MouseEvent specific props +jQuery.each( { + altKey: true, + bubbles: true, + cancelable: true, + changedTouches: true, + ctrlKey: true, + detail: true, + eventPhase: true, + metaKey: true, + pageX: true, + pageY: true, + shiftKey: true, + view: true, + "char": true, + code: true, + charCode: true, + key: true, + keyCode: true, + button: true, + buttons: true, + clientX: true, + clientY: true, + offsetX: true, + offsetY: true, + pointerId: true, + pointerType: true, + screenX: true, + screenY: true, + targetTouches: true, + toElement: true, + touches: true, + + which: function( event ) { + var button = event.button; + + // Add which for key events + if ( event.which == null && rkeyEvent.test( event.type ) ) { + return event.charCode != null ? event.charCode : event.keyCode; + } + + // Add which for click: 1 === left; 2 === middle; 3 === right + if ( !event.which && button !== undefined && rmouseEvent.test( event.type ) ) { + if ( button & 1 ) { + return 1; + } + + if ( button & 2 ) { + return 3; + } + + if ( button & 4 ) { + return 2; + } + + return 0; + } + + return event.which; + } +}, jQuery.event.addProp ); + +jQuery.each( { focus: "focusin", blur: "focusout" }, function( type, delegateType ) { + jQuery.event.special[ type ] = { + + // Utilize native event if possible so blur/focus sequence is correct + setup: function() { + + // Claim the first handler + // dataPriv.set( this, "focus", ... ) + // dataPriv.set( this, "blur", ... ) + leverageNative( this, type, expectSync ); + + // Return false to allow normal processing in the caller + return false; + }, + trigger: function() { + + // Force setup before trigger + leverageNative( this, type ); + + // Return non-false to allow normal event-path propagation + return true; + }, + + delegateType: delegateType + }; +} ); + +// Create mouseenter/leave events using mouseover/out and event-time checks +// so that event delegation works in jQuery. +// Do the same for pointerenter/pointerleave and pointerover/pointerout +// +// Support: Safari 7 only +// Safari sends mouseenter too often; see: +// https://bugs.chromium.org/p/chromium/issues/detail?id=470258 +// for the description of the bug (it existed in older Chrome versions as well). +jQuery.each( { + mouseenter: "mouseover", + mouseleave: "mouseout", + pointerenter: "pointerover", + pointerleave: "pointerout" +}, function( orig, fix ) { + jQuery.event.special[ orig ] = { + delegateType: fix, + bindType: fix, + + handle: function( event ) { + var ret, + target = this, + related = event.relatedTarget, + handleObj = event.handleObj; + + // For mouseenter/leave call the handler if related is outside the target. + // NB: No relatedTarget if the mouse left/entered the browser window + if ( !related || ( related !== target && !jQuery.contains( target, related ) ) ) { + event.type = handleObj.origType; + ret = handleObj.handler.apply( this, arguments ); + event.type = fix; + } + return ret; + } + }; +} ); + +jQuery.fn.extend( { + + on: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn ); + }, + one: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn, 1 ); + }, + off: function( types, selector, fn ) { + var handleObj, type; + if ( types && types.preventDefault && types.handleObj ) { + + // ( event ) dispatched jQuery.Event + handleObj = types.handleObj; + jQuery( types.delegateTarget ).off( + handleObj.namespace ? + handleObj.origType + "." + handleObj.namespace : + handleObj.origType, + handleObj.selector, + handleObj.handler + ); + return this; + } + if ( typeof types === "object" ) { + + // ( types-object [, selector] ) + for ( type in types ) { + this.off( type, selector, types[ type ] ); + } + return this; + } + if ( selector === false || typeof selector === "function" ) { + + // ( types [, fn] ) + fn = selector; + selector = undefined; + } + if ( fn === false ) { + fn = returnFalse; + } + return this.each( function() { + jQuery.event.remove( this, types, fn, selector ); + } ); + } +} ); + + +var + + // Support: IE <=10 - 11, Edge 12 - 13 only + // In IE/Edge using regex groups here causes severe slowdowns. + // See https://connect.microsoft.com/IE/feedback/details/1736512/ + rnoInnerhtml = /\s*$/g; + +// Prefer a tbody over its parent table for containing new rows +function manipulationTarget( elem, content ) { + if ( nodeName( elem, "table" ) && + nodeName( content.nodeType !== 11 ? content : content.firstChild, "tr" ) ) { + + return jQuery( elem ).children( "tbody" )[ 0 ] || elem; + } + + return elem; +} + +// Replace/restore the type attribute of script elements for safe DOM manipulation +function disableScript( elem ) { + elem.type = ( elem.getAttribute( "type" ) !== null ) + "/" + elem.type; + return elem; +} +function restoreScript( elem ) { + if ( ( elem.type || "" ).slice( 0, 5 ) === "true/" ) { + elem.type = elem.type.slice( 5 ); + } else { + elem.removeAttribute( "type" ); + } + + return elem; +} + +function cloneCopyEvent( src, dest ) { + var i, l, type, pdataOld, udataOld, udataCur, events; + + if ( dest.nodeType !== 1 ) { + return; + } + + // 1. Copy private data: events, handlers, etc. + if ( dataPriv.hasData( src ) ) { + pdataOld = dataPriv.get( src ); + events = pdataOld.events; + + if ( events ) { + dataPriv.remove( dest, "handle events" ); + + for ( type in events ) { + for ( i = 0, l = events[ type ].length; i < l; i++ ) { + jQuery.event.add( dest, type, events[ type ][ i ] ); + } + } + } + } + + // 2. Copy user data + if ( dataUser.hasData( src ) ) { + udataOld = dataUser.access( src ); + udataCur = jQuery.extend( {}, udataOld ); + + dataUser.set( dest, udataCur ); + } +} + +// Fix IE bugs, see support tests +function fixInput( src, dest ) { + var nodeName = dest.nodeName.toLowerCase(); + + // Fails to persist the checked state of a cloned checkbox or radio button. + if ( nodeName === "input" && rcheckableType.test( src.type ) ) { + dest.checked = src.checked; + + // Fails to return the selected option to the default selected state when cloning options + } else if ( nodeName === "input" || nodeName === "textarea" ) { + dest.defaultValue = src.defaultValue; + } +} + +function domManip( collection, args, callback, ignored ) { + + // Flatten any nested arrays + args = flat( args ); + + var fragment, first, scripts, hasScripts, node, doc, + i = 0, + l = collection.length, + iNoClone = l - 1, + value = args[ 0 ], + valueIsFunction = isFunction( value ); + + // We can't cloneNode fragments that contain checked, in WebKit + if ( valueIsFunction || + ( l > 1 && typeof value === "string" && + !support.checkClone && rchecked.test( value ) ) ) { + return collection.each( function( index ) { + var self = collection.eq( index ); + if ( valueIsFunction ) { + args[ 0 ] = value.call( this, index, self.html() ); + } + domManip( self, args, callback, ignored ); + } ); + } + + if ( l ) { + fragment = buildFragment( args, collection[ 0 ].ownerDocument, false, collection, ignored ); + first = fragment.firstChild; + + if ( fragment.childNodes.length === 1 ) { + fragment = first; + } + + // Require either new content or an interest in ignored elements to invoke the callback + if ( first || ignored ) { + scripts = jQuery.map( getAll( fragment, "script" ), disableScript ); + hasScripts = scripts.length; + + // Use the original fragment for the last item + // instead of the first because it can end up + // being emptied incorrectly in certain situations (#8070). + for ( ; i < l; i++ ) { + node = fragment; + + if ( i !== iNoClone ) { + node = jQuery.clone( node, true, true ); + + // Keep references to cloned scripts for later restoration + if ( hasScripts ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( scripts, getAll( node, "script" ) ); + } + } + + callback.call( collection[ i ], node, i ); + } + + if ( hasScripts ) { + doc = scripts[ scripts.length - 1 ].ownerDocument; + + // Reenable scripts + jQuery.map( scripts, restoreScript ); + + // Evaluate executable scripts on first document insertion + for ( i = 0; i < hasScripts; i++ ) { + node = scripts[ i ]; + if ( rscriptType.test( node.type || "" ) && + !dataPriv.access( node, "globalEval" ) && + jQuery.contains( doc, node ) ) { + + if ( node.src && ( node.type || "" ).toLowerCase() !== "module" ) { + + // Optional AJAX dependency, but won't run scripts if not present + if ( jQuery._evalUrl && !node.noModule ) { + jQuery._evalUrl( node.src, { + nonce: node.nonce || node.getAttribute( "nonce" ) + }, doc ); + } + } else { + DOMEval( node.textContent.replace( rcleanScript, "" ), node, doc ); + } + } + } + } + } + } + + return collection; +} + +function remove( elem, selector, keepData ) { + var node, + nodes = selector ? jQuery.filter( selector, elem ) : elem, + i = 0; + + for ( ; ( node = nodes[ i ] ) != null; i++ ) { + if ( !keepData && node.nodeType === 1 ) { + jQuery.cleanData( getAll( node ) ); + } + + if ( node.parentNode ) { + if ( keepData && isAttached( node ) ) { + setGlobalEval( getAll( node, "script" ) ); + } + node.parentNode.removeChild( node ); + } + } + + return elem; +} + +jQuery.extend( { + htmlPrefilter: function( html ) { + return html; + }, + + clone: function( elem, dataAndEvents, deepDataAndEvents ) { + var i, l, srcElements, destElements, + clone = elem.cloneNode( true ), + inPage = isAttached( elem ); + + // Fix IE cloning issues + if ( !support.noCloneChecked && ( elem.nodeType === 1 || elem.nodeType === 11 ) && + !jQuery.isXMLDoc( elem ) ) { + + // We eschew Sizzle here for performance reasons: https://jsperf.com/getall-vs-sizzle/2 + destElements = getAll( clone ); + srcElements = getAll( elem ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + fixInput( srcElements[ i ], destElements[ i ] ); + } + } + + // Copy the events from the original to the clone + if ( dataAndEvents ) { + if ( deepDataAndEvents ) { + srcElements = srcElements || getAll( elem ); + destElements = destElements || getAll( clone ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + cloneCopyEvent( srcElements[ i ], destElements[ i ] ); + } + } else { + cloneCopyEvent( elem, clone ); + } + } + + // Preserve script evaluation history + destElements = getAll( clone, "script" ); + if ( destElements.length > 0 ) { + setGlobalEval( destElements, !inPage && getAll( elem, "script" ) ); + } + + // Return the cloned set + return clone; + }, + + cleanData: function( elems ) { + var data, elem, type, + special = jQuery.event.special, + i = 0; + + for ( ; ( elem = elems[ i ] ) !== undefined; i++ ) { + if ( acceptData( elem ) ) { + if ( ( data = elem[ dataPriv.expando ] ) ) { + if ( data.events ) { + for ( type in data.events ) { + if ( special[ type ] ) { + jQuery.event.remove( elem, type ); + + // This is a shortcut to avoid jQuery.event.remove's overhead + } else { + jQuery.removeEvent( elem, type, data.handle ); + } + } + } + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataPriv.expando ] = undefined; + } + if ( elem[ dataUser.expando ] ) { + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataUser.expando ] = undefined; + } + } + } + } +} ); + +jQuery.fn.extend( { + detach: function( selector ) { + return remove( this, selector, true ); + }, + + remove: function( selector ) { + return remove( this, selector ); + }, + + text: function( value ) { + return access( this, function( value ) { + return value === undefined ? + jQuery.text( this ) : + this.empty().each( function() { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + this.textContent = value; + } + } ); + }, null, value, arguments.length ); + }, + + append: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.appendChild( elem ); + } + } ); + }, + + prepend: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.insertBefore( elem, target.firstChild ); + } + } ); + }, + + before: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this ); + } + } ); + }, + + after: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this.nextSibling ); + } + } ); + }, + + empty: function() { + var elem, + i = 0; + + for ( ; ( elem = this[ i ] ) != null; i++ ) { + if ( elem.nodeType === 1 ) { + + // Prevent memory leaks + jQuery.cleanData( getAll( elem, false ) ); + + // Remove any remaining nodes + elem.textContent = ""; + } + } + + return this; + }, + + clone: function( dataAndEvents, deepDataAndEvents ) { + dataAndEvents = dataAndEvents == null ? false : dataAndEvents; + deepDataAndEvents = deepDataAndEvents == null ? dataAndEvents : deepDataAndEvents; + + return this.map( function() { + return jQuery.clone( this, dataAndEvents, deepDataAndEvents ); + } ); + }, + + html: function( value ) { + return access( this, function( value ) { + var elem = this[ 0 ] || {}, + i = 0, + l = this.length; + + if ( value === undefined && elem.nodeType === 1 ) { + return elem.innerHTML; + } + + // See if we can take a shortcut and just use innerHTML + if ( typeof value === "string" && !rnoInnerhtml.test( value ) && + !wrapMap[ ( rtagName.exec( value ) || [ "", "" ] )[ 1 ].toLowerCase() ] ) { + + value = jQuery.htmlPrefilter( value ); + + try { + for ( ; i < l; i++ ) { + elem = this[ i ] || {}; + + // Remove element nodes and prevent memory leaks + if ( elem.nodeType === 1 ) { + jQuery.cleanData( getAll( elem, false ) ); + elem.innerHTML = value; + } + } + + elem = 0; + + // If using innerHTML throws an exception, use the fallback method + } catch ( e ) {} + } + + if ( elem ) { + this.empty().append( value ); + } + }, null, value, arguments.length ); + }, + + replaceWith: function() { + var ignored = []; + + // Make the changes, replacing each non-ignored context element with the new content + return domManip( this, arguments, function( elem ) { + var parent = this.parentNode; + + if ( jQuery.inArray( this, ignored ) < 0 ) { + jQuery.cleanData( getAll( this ) ); + if ( parent ) { + parent.replaceChild( elem, this ); + } + } + + // Force callback invocation + }, ignored ); + } +} ); + +jQuery.each( { + appendTo: "append", + prependTo: "prepend", + insertBefore: "before", + insertAfter: "after", + replaceAll: "replaceWith" +}, function( name, original ) { + jQuery.fn[ name ] = function( selector ) { + var elems, + ret = [], + insert = jQuery( selector ), + last = insert.length - 1, + i = 0; + + for ( ; i <= last; i++ ) { + elems = i === last ? this : this.clone( true ); + jQuery( insert[ i ] )[ original ]( elems ); + + // Support: Android <=4.0 only, PhantomJS 1 only + // .get() because push.apply(_, arraylike) throws on ancient WebKit + push.apply( ret, elems.get() ); + } + + return this.pushStack( ret ); + }; +} ); +var rnumnonpx = new RegExp( "^(" + pnum + ")(?!px)[a-z%]+$", "i" ); + +var getStyles = function( elem ) { + + // Support: IE <=11 only, Firefox <=30 (#15098, #14150) + // IE throws on elements created in popups + // FF meanwhile throws on frame elements through "defaultView.getComputedStyle" + var view = elem.ownerDocument.defaultView; + + if ( !view || !view.opener ) { + view = window; + } + + return view.getComputedStyle( elem ); + }; + +var swap = function( elem, options, callback ) { + var ret, name, + old = {}; + + // Remember the old values, and insert the new ones + for ( name in options ) { + old[ name ] = elem.style[ name ]; + elem.style[ name ] = options[ name ]; + } + + ret = callback.call( elem ); + + // Revert the old values + for ( name in options ) { + elem.style[ name ] = old[ name ]; + } + + return ret; +}; + + +var rboxStyle = new RegExp( cssExpand.join( "|" ), "i" ); + + + +( function() { + + // Executing both pixelPosition & boxSizingReliable tests require only one layout + // so they're executed at the same time to save the second computation. + function computeStyleTests() { + + // This is a singleton, we need to execute it only once + if ( !div ) { + return; + } + + container.style.cssText = "position:absolute;left:-11111px;width:60px;" + + "margin-top:1px;padding:0;border:0"; + div.style.cssText = + "position:relative;display:block;box-sizing:border-box;overflow:scroll;" + + "margin:auto;border:1px;padding:1px;" + + "width:60%;top:1%"; + documentElement.appendChild( container ).appendChild( div ); + + var divStyle = window.getComputedStyle( div ); + pixelPositionVal = divStyle.top !== "1%"; + + // Support: Android 4.0 - 4.3 only, Firefox <=3 - 44 + reliableMarginLeftVal = roundPixelMeasures( divStyle.marginLeft ) === 12; + + // Support: Android 4.0 - 4.3 only, Safari <=9.1 - 10.1, iOS <=7.0 - 9.3 + // Some styles come back with percentage values, even though they shouldn't + div.style.right = "60%"; + pixelBoxStylesVal = roundPixelMeasures( divStyle.right ) === 36; + + // Support: IE 9 - 11 only + // Detect misreporting of content dimensions for box-sizing:border-box elements + boxSizingReliableVal = roundPixelMeasures( divStyle.width ) === 36; + + // Support: IE 9 only + // Detect overflow:scroll screwiness (gh-3699) + // Support: Chrome <=64 + // Don't get tricked when zoom affects offsetWidth (gh-4029) + div.style.position = "absolute"; + scrollboxSizeVal = roundPixelMeasures( div.offsetWidth / 3 ) === 12; + + documentElement.removeChild( container ); + + // Nullify the div so it wouldn't be stored in the memory and + // it will also be a sign that checks already performed + div = null; + } + + function roundPixelMeasures( measure ) { + return Math.round( parseFloat( measure ) ); + } + + var pixelPositionVal, boxSizingReliableVal, scrollboxSizeVal, pixelBoxStylesVal, + reliableTrDimensionsVal, reliableMarginLeftVal, + container = document.createElement( "div" ), + div = document.createElement( "div" ); + + // Finish early in limited (non-browser) environments + if ( !div.style ) { + return; + } + + // Support: IE <=9 - 11 only + // Style of cloned element affects source element cloned (#8908) + div.style.backgroundClip = "content-box"; + div.cloneNode( true ).style.backgroundClip = ""; + support.clearCloneStyle = div.style.backgroundClip === "content-box"; + + jQuery.extend( support, { + boxSizingReliable: function() { + computeStyleTests(); + return boxSizingReliableVal; + }, + pixelBoxStyles: function() { + computeStyleTests(); + return pixelBoxStylesVal; + }, + pixelPosition: function() { + computeStyleTests(); + return pixelPositionVal; + }, + reliableMarginLeft: function() { + computeStyleTests(); + return reliableMarginLeftVal; + }, + scrollboxSize: function() { + computeStyleTests(); + return scrollboxSizeVal; + }, + + // Support: IE 9 - 11+, Edge 15 - 18+ + // IE/Edge misreport `getComputedStyle` of table rows with width/height + // set in CSS while `offset*` properties report correct values. + // Behavior in IE 9 is more subtle than in newer versions & it passes + // some versions of this test; make sure not to make it pass there! + reliableTrDimensions: function() { + var table, tr, trChild, trStyle; + if ( reliableTrDimensionsVal == null ) { + table = document.createElement( "table" ); + tr = document.createElement( "tr" ); + trChild = document.createElement( "div" ); + + table.style.cssText = "position:absolute;left:-11111px"; + tr.style.height = "1px"; + trChild.style.height = "9px"; + + documentElement + .appendChild( table ) + .appendChild( tr ) + .appendChild( trChild ); + + trStyle = window.getComputedStyle( tr ); + reliableTrDimensionsVal = parseInt( trStyle.height ) > 3; + + documentElement.removeChild( table ); + } + return reliableTrDimensionsVal; + } + } ); +} )(); + + +function curCSS( elem, name, computed ) { + var width, minWidth, maxWidth, ret, + + // Support: Firefox 51+ + // Retrieving style before computed somehow + // fixes an issue with getting wrong values + // on detached elements + style = elem.style; + + computed = computed || getStyles( elem ); + + // getPropertyValue is needed for: + // .css('filter') (IE 9 only, #12537) + // .css('--customProperty) (#3144) + if ( computed ) { + ret = computed.getPropertyValue( name ) || computed[ name ]; + + if ( ret === "" && !isAttached( elem ) ) { + ret = jQuery.style( elem, name ); + } + + // A tribute to the "awesome hack by Dean Edwards" + // Android Browser returns percentage for some values, + // but width seems to be reliably pixels. + // This is against the CSSOM draft spec: + // https://drafts.csswg.org/cssom/#resolved-values + if ( !support.pixelBoxStyles() && rnumnonpx.test( ret ) && rboxStyle.test( name ) ) { + + // Remember the original values + width = style.width; + minWidth = style.minWidth; + maxWidth = style.maxWidth; + + // Put in the new values to get a computed value out + style.minWidth = style.maxWidth = style.width = ret; + ret = computed.width; + + // Revert the changed values + style.width = width; + style.minWidth = minWidth; + style.maxWidth = maxWidth; + } + } + + return ret !== undefined ? + + // Support: IE <=9 - 11 only + // IE returns zIndex value as an integer. + ret + "" : + ret; +} + + +function addGetHookIf( conditionFn, hookFn ) { + + // Define the hook, we'll check on the first run if it's really needed. + return { + get: function() { + if ( conditionFn() ) { + + // Hook not needed (or it's not possible to use it due + // to missing dependency), remove it. + delete this.get; + return; + } + + // Hook needed; redefine it so that the support test is not executed again. + return ( this.get = hookFn ).apply( this, arguments ); + } + }; +} + + +var cssPrefixes = [ "Webkit", "Moz", "ms" ], + emptyStyle = document.createElement( "div" ).style, + vendorProps = {}; + +// Return a vendor-prefixed property or undefined +function vendorPropName( name ) { + + // Check for vendor prefixed names + var capName = name[ 0 ].toUpperCase() + name.slice( 1 ), + i = cssPrefixes.length; + + while ( i-- ) { + name = cssPrefixes[ i ] + capName; + if ( name in emptyStyle ) { + return name; + } + } +} + +// Return a potentially-mapped jQuery.cssProps or vendor prefixed property +function finalPropName( name ) { + var final = jQuery.cssProps[ name ] || vendorProps[ name ]; + + if ( final ) { + return final; + } + if ( name in emptyStyle ) { + return name; + } + return vendorProps[ name ] = vendorPropName( name ) || name; +} + + +var + + // Swappable if display is none or starts with table + // except "table", "table-cell", or "table-caption" + // See here for display values: https://developer.mozilla.org/en-US/docs/CSS/display + rdisplayswap = /^(none|table(?!-c[ea]).+)/, + rcustomProp = /^--/, + cssShow = { position: "absolute", visibility: "hidden", display: "block" }, + cssNormalTransform = { + letterSpacing: "0", + fontWeight: "400" + }; + +function setPositiveNumber( _elem, value, subtract ) { + + // Any relative (+/-) values have already been + // normalized at this point + var matches = rcssNum.exec( value ); + return matches ? + + // Guard against undefined "subtract", e.g., when used as in cssHooks + Math.max( 0, matches[ 2 ] - ( subtract || 0 ) ) + ( matches[ 3 ] || "px" ) : + value; +} + +function boxModelAdjustment( elem, dimension, box, isBorderBox, styles, computedVal ) { + var i = dimension === "width" ? 1 : 0, + extra = 0, + delta = 0; + + // Adjustment may not be necessary + if ( box === ( isBorderBox ? "border" : "content" ) ) { + return 0; + } + + for ( ; i < 4; i += 2 ) { + + // Both box models exclude margin + if ( box === "margin" ) { + delta += jQuery.css( elem, box + cssExpand[ i ], true, styles ); + } + + // If we get here with a content-box, we're seeking "padding" or "border" or "margin" + if ( !isBorderBox ) { + + // Add padding + delta += jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + + // For "border" or "margin", add border + if ( box !== "padding" ) { + delta += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + + // But still keep track of it otherwise + } else { + extra += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + + // If we get here with a border-box (content + padding + border), we're seeking "content" or + // "padding" or "margin" + } else { + + // For "content", subtract padding + if ( box === "content" ) { + delta -= jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + } + + // For "content" or "padding", subtract border + if ( box !== "margin" ) { + delta -= jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + } + } + + // Account for positive content-box scroll gutter when requested by providing computedVal + if ( !isBorderBox && computedVal >= 0 ) { + + // offsetWidth/offsetHeight is a rounded sum of content, padding, scroll gutter, and border + // Assuming integer scroll gutter, subtract the rest and round down + delta += Math.max( 0, Math.ceil( + elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - + computedVal - + delta - + extra - + 0.5 + + // If offsetWidth/offsetHeight is unknown, then we can't determine content-box scroll gutter + // Use an explicit zero to avoid NaN (gh-3964) + ) ) || 0; + } + + return delta; +} + +function getWidthOrHeight( elem, dimension, extra ) { + + // Start with computed style + var styles = getStyles( elem ), + + // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-4322). + // Fake content-box until we know it's needed to know the true value. + boxSizingNeeded = !support.boxSizingReliable() || extra, + isBorderBox = boxSizingNeeded && + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + valueIsBorderBox = isBorderBox, + + val = curCSS( elem, dimension, styles ), + offsetProp = "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ); + + // Support: Firefox <=54 + // Return a confounding non-pixel value or feign ignorance, as appropriate. + if ( rnumnonpx.test( val ) ) { + if ( !extra ) { + return val; + } + val = "auto"; + } + + + // Support: IE 9 - 11 only + // Use offsetWidth/offsetHeight for when box sizing is unreliable. + // In those cases, the computed value can be trusted to be border-box. + if ( ( !support.boxSizingReliable() && isBorderBox || + + // Support: IE 10 - 11+, Edge 15 - 18+ + // IE/Edge misreport `getComputedStyle` of table rows with width/height + // set in CSS while `offset*` properties report correct values. + // Interestingly, in some cases IE 9 doesn't suffer from this issue. + !support.reliableTrDimensions() && nodeName( elem, "tr" ) || + + // Fall back to offsetWidth/offsetHeight when value is "auto" + // This happens for inline elements with no explicit setting (gh-3571) + val === "auto" || + + // Support: Android <=4.1 - 4.3 only + // Also use offsetWidth/offsetHeight for misreported inline dimensions (gh-3602) + !parseFloat( val ) && jQuery.css( elem, "display", false, styles ) === "inline" ) && + + // Make sure the element is visible & connected + elem.getClientRects().length ) { + + isBorderBox = jQuery.css( elem, "boxSizing", false, styles ) === "border-box"; + + // Where available, offsetWidth/offsetHeight approximate border box dimensions. + // Where not available (e.g., SVG), assume unreliable box-sizing and interpret the + // retrieved value as a content box dimension. + valueIsBorderBox = offsetProp in elem; + if ( valueIsBorderBox ) { + val = elem[ offsetProp ]; + } + } + + // Normalize "" and auto + val = parseFloat( val ) || 0; + + // Adjust for the element's box model + return ( val + + boxModelAdjustment( + elem, + dimension, + extra || ( isBorderBox ? "border" : "content" ), + valueIsBorderBox, + styles, + + // Provide the current computed size to request scroll gutter calculation (gh-3589) + val + ) + ) + "px"; +} + +jQuery.extend( { + + // Add in style property hooks for overriding the default + // behavior of getting and setting a style property + cssHooks: { + opacity: { + get: function( elem, computed ) { + if ( computed ) { + + // We should always get a number back from opacity + var ret = curCSS( elem, "opacity" ); + return ret === "" ? "1" : ret; + } + } + } + }, + + // Don't automatically add "px" to these possibly-unitless properties + cssNumber: { + "animationIterationCount": true, + "columnCount": true, + "fillOpacity": true, + "flexGrow": true, + "flexShrink": true, + "fontWeight": true, + "gridArea": true, + "gridColumn": true, + "gridColumnEnd": true, + "gridColumnStart": true, + "gridRow": true, + "gridRowEnd": true, + "gridRowStart": true, + "lineHeight": true, + "opacity": true, + "order": true, + "orphans": true, + "widows": true, + "zIndex": true, + "zoom": true + }, + + // Add in properties whose names you wish to fix before + // setting or getting the value + cssProps: {}, + + // Get and set the style property on a DOM Node + style: function( elem, name, value, extra ) { + + // Don't set styles on text and comment nodes + if ( !elem || elem.nodeType === 3 || elem.nodeType === 8 || !elem.style ) { + return; + } + + // Make sure that we're working with the right name + var ret, type, hooks, + origName = camelCase( name ), + isCustomProp = rcustomProp.test( name ), + style = elem.style; + + // Make sure that we're working with the right name. We don't + // want to query the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Gets hook for the prefixed version, then unprefixed version + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // Check if we're setting a value + if ( value !== undefined ) { + type = typeof value; + + // Convert "+=" or "-=" to relative numbers (#7345) + if ( type === "string" && ( ret = rcssNum.exec( value ) ) && ret[ 1 ] ) { + value = adjustCSS( elem, name, ret ); + + // Fixes bug #9237 + type = "number"; + } + + // Make sure that null and NaN values aren't set (#7116) + if ( value == null || value !== value ) { + return; + } + + // If a number was passed in, add the unit (except for certain CSS properties) + // The isCustomProp check can be removed in jQuery 4.0 when we only auto-append + // "px" to a few hardcoded values. + if ( type === "number" && !isCustomProp ) { + value += ret && ret[ 3 ] || ( jQuery.cssNumber[ origName ] ? "" : "px" ); + } + + // background-* props affect original clone's values + if ( !support.clearCloneStyle && value === "" && name.indexOf( "background" ) === 0 ) { + style[ name ] = "inherit"; + } + + // If a hook was provided, use that value, otherwise just set the specified value + if ( !hooks || !( "set" in hooks ) || + ( value = hooks.set( elem, value, extra ) ) !== undefined ) { + + if ( isCustomProp ) { + style.setProperty( name, value ); + } else { + style[ name ] = value; + } + } + + } else { + + // If a hook was provided get the non-computed value from there + if ( hooks && "get" in hooks && + ( ret = hooks.get( elem, false, extra ) ) !== undefined ) { + + return ret; + } + + // Otherwise just get the value from the style object + return style[ name ]; + } + }, + + css: function( elem, name, extra, styles ) { + var val, num, hooks, + origName = camelCase( name ), + isCustomProp = rcustomProp.test( name ); + + // Make sure that we're working with the right name. We don't + // want to modify the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Try prefixed name followed by the unprefixed name + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // If a hook was provided get the computed value from there + if ( hooks && "get" in hooks ) { + val = hooks.get( elem, true, extra ); + } + + // Otherwise, if a way to get the computed value exists, use that + if ( val === undefined ) { + val = curCSS( elem, name, styles ); + } + + // Convert "normal" to computed value + if ( val === "normal" && name in cssNormalTransform ) { + val = cssNormalTransform[ name ]; + } + + // Make numeric if forced or a qualifier was provided and val looks numeric + if ( extra === "" || extra ) { + num = parseFloat( val ); + return extra === true || isFinite( num ) ? num || 0 : val; + } + + return val; + } +} ); + +jQuery.each( [ "height", "width" ], function( _i, dimension ) { + jQuery.cssHooks[ dimension ] = { + get: function( elem, computed, extra ) { + if ( computed ) { + + // Certain elements can have dimension info if we invisibly show them + // but it must have a current display style that would benefit + return rdisplayswap.test( jQuery.css( elem, "display" ) ) && + + // Support: Safari 8+ + // Table columns in Safari have non-zero offsetWidth & zero + // getBoundingClientRect().width unless display is changed. + // Support: IE <=11 only + // Running getBoundingClientRect on a disconnected node + // in IE throws an error. + ( !elem.getClientRects().length || !elem.getBoundingClientRect().width ) ? + swap( elem, cssShow, function() { + return getWidthOrHeight( elem, dimension, extra ); + } ) : + getWidthOrHeight( elem, dimension, extra ); + } + }, + + set: function( elem, value, extra ) { + var matches, + styles = getStyles( elem ), + + // Only read styles.position if the test has a chance to fail + // to avoid forcing a reflow. + scrollboxSizeBuggy = !support.scrollboxSize() && + styles.position === "absolute", + + // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-3991) + boxSizingNeeded = scrollboxSizeBuggy || extra, + isBorderBox = boxSizingNeeded && + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + subtract = extra ? + boxModelAdjustment( + elem, + dimension, + extra, + isBorderBox, + styles + ) : + 0; + + // Account for unreliable border-box dimensions by comparing offset* to computed and + // faking a content-box to get border and padding (gh-3699) + if ( isBorderBox && scrollboxSizeBuggy ) { + subtract -= Math.ceil( + elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - + parseFloat( styles[ dimension ] ) - + boxModelAdjustment( elem, dimension, "border", false, styles ) - + 0.5 + ); + } + + // Convert to pixels if value adjustment is needed + if ( subtract && ( matches = rcssNum.exec( value ) ) && + ( matches[ 3 ] || "px" ) !== "px" ) { + + elem.style[ dimension ] = value; + value = jQuery.css( elem, dimension ); + } + + return setPositiveNumber( elem, value, subtract ); + } + }; +} ); + +jQuery.cssHooks.marginLeft = addGetHookIf( support.reliableMarginLeft, + function( elem, computed ) { + if ( computed ) { + return ( parseFloat( curCSS( elem, "marginLeft" ) ) || + elem.getBoundingClientRect().left - + swap( elem, { marginLeft: 0 }, function() { + return elem.getBoundingClientRect().left; + } ) + ) + "px"; + } + } +); + +// These hooks are used by animate to expand properties +jQuery.each( { + margin: "", + padding: "", + border: "Width" +}, function( prefix, suffix ) { + jQuery.cssHooks[ prefix + suffix ] = { + expand: function( value ) { + var i = 0, + expanded = {}, + + // Assumes a single number if not a string + parts = typeof value === "string" ? value.split( " " ) : [ value ]; + + for ( ; i < 4; i++ ) { + expanded[ prefix + cssExpand[ i ] + suffix ] = + parts[ i ] || parts[ i - 2 ] || parts[ 0 ]; + } + + return expanded; + } + }; + + if ( prefix !== "margin" ) { + jQuery.cssHooks[ prefix + suffix ].set = setPositiveNumber; + } +} ); + +jQuery.fn.extend( { + css: function( name, value ) { + return access( this, function( elem, name, value ) { + var styles, len, + map = {}, + i = 0; + + if ( Array.isArray( name ) ) { + styles = getStyles( elem ); + len = name.length; + + for ( ; i < len; i++ ) { + map[ name[ i ] ] = jQuery.css( elem, name[ i ], false, styles ); + } + + return map; + } + + return value !== undefined ? + jQuery.style( elem, name, value ) : + jQuery.css( elem, name ); + }, name, value, arguments.length > 1 ); + } +} ); + + +function Tween( elem, options, prop, end, easing ) { + return new Tween.prototype.init( elem, options, prop, end, easing ); +} +jQuery.Tween = Tween; + +Tween.prototype = { + constructor: Tween, + init: function( elem, options, prop, end, easing, unit ) { + this.elem = elem; + this.prop = prop; + this.easing = easing || jQuery.easing._default; + this.options = options; + this.start = this.now = this.cur(); + this.end = end; + this.unit = unit || ( jQuery.cssNumber[ prop ] ? "" : "px" ); + }, + cur: function() { + var hooks = Tween.propHooks[ this.prop ]; + + return hooks && hooks.get ? + hooks.get( this ) : + Tween.propHooks._default.get( this ); + }, + run: function( percent ) { + var eased, + hooks = Tween.propHooks[ this.prop ]; + + if ( this.options.duration ) { + this.pos = eased = jQuery.easing[ this.easing ]( + percent, this.options.duration * percent, 0, 1, this.options.duration + ); + } else { + this.pos = eased = percent; + } + this.now = ( this.end - this.start ) * eased + this.start; + + if ( this.options.step ) { + this.options.step.call( this.elem, this.now, this ); + } + + if ( hooks && hooks.set ) { + hooks.set( this ); + } else { + Tween.propHooks._default.set( this ); + } + return this; + } +}; + +Tween.prototype.init.prototype = Tween.prototype; + +Tween.propHooks = { + _default: { + get: function( tween ) { + var result; + + // Use a property on the element directly when it is not a DOM element, + // or when there is no matching style property that exists. + if ( tween.elem.nodeType !== 1 || + tween.elem[ tween.prop ] != null && tween.elem.style[ tween.prop ] == null ) { + return tween.elem[ tween.prop ]; + } + + // Passing an empty string as a 3rd parameter to .css will automatically + // attempt a parseFloat and fallback to a string if the parse fails. + // Simple values such as "10px" are parsed to Float; + // complex values such as "rotate(1rad)" are returned as-is. + result = jQuery.css( tween.elem, tween.prop, "" ); + + // Empty strings, null, undefined and "auto" are converted to 0. + return !result || result === "auto" ? 0 : result; + }, + set: function( tween ) { + + // Use step hook for back compat. + // Use cssHook if its there. + // Use .style if available and use plain properties where available. + if ( jQuery.fx.step[ tween.prop ] ) { + jQuery.fx.step[ tween.prop ]( tween ); + } else if ( tween.elem.nodeType === 1 && ( + jQuery.cssHooks[ tween.prop ] || + tween.elem.style[ finalPropName( tween.prop ) ] != null ) ) { + jQuery.style( tween.elem, tween.prop, tween.now + tween.unit ); + } else { + tween.elem[ tween.prop ] = tween.now; + } + } + } +}; + +// Support: IE <=9 only +// Panic based approach to setting things on disconnected nodes +Tween.propHooks.scrollTop = Tween.propHooks.scrollLeft = { + set: function( tween ) { + if ( tween.elem.nodeType && tween.elem.parentNode ) { + tween.elem[ tween.prop ] = tween.now; + } + } +}; + +jQuery.easing = { + linear: function( p ) { + return p; + }, + swing: function( p ) { + return 0.5 - Math.cos( p * Math.PI ) / 2; + }, + _default: "swing" +}; + +jQuery.fx = Tween.prototype.init; + +// Back compat <1.8 extension point +jQuery.fx.step = {}; + + + + +var + fxNow, inProgress, + rfxtypes = /^(?:toggle|show|hide)$/, + rrun = /queueHooks$/; + +function schedule() { + if ( inProgress ) { + if ( document.hidden === false && window.requestAnimationFrame ) { + window.requestAnimationFrame( schedule ); + } else { + window.setTimeout( schedule, jQuery.fx.interval ); + } + + jQuery.fx.tick(); + } +} + +// Animations created synchronously will run synchronously +function createFxNow() { + window.setTimeout( function() { + fxNow = undefined; + } ); + return ( fxNow = Date.now() ); +} + +// Generate parameters to create a standard animation +function genFx( type, includeWidth ) { + var which, + i = 0, + attrs = { height: type }; + + // If we include width, step value is 1 to do all cssExpand values, + // otherwise step value is 2 to skip over Left and Right + includeWidth = includeWidth ? 1 : 0; + for ( ; i < 4; i += 2 - includeWidth ) { + which = cssExpand[ i ]; + attrs[ "margin" + which ] = attrs[ "padding" + which ] = type; + } + + if ( includeWidth ) { + attrs.opacity = attrs.width = type; + } + + return attrs; +} + +function createTween( value, prop, animation ) { + var tween, + collection = ( Animation.tweeners[ prop ] || [] ).concat( Animation.tweeners[ "*" ] ), + index = 0, + length = collection.length; + for ( ; index < length; index++ ) { + if ( ( tween = collection[ index ].call( animation, prop, value ) ) ) { + + // We're done with this property + return tween; + } + } +} + +function defaultPrefilter( elem, props, opts ) { + var prop, value, toggle, hooks, oldfire, propTween, restoreDisplay, display, + isBox = "width" in props || "height" in props, + anim = this, + orig = {}, + style = elem.style, + hidden = elem.nodeType && isHiddenWithinTree( elem ), + dataShow = dataPriv.get( elem, "fxshow" ); + + // Queue-skipping animations hijack the fx hooks + if ( !opts.queue ) { + hooks = jQuery._queueHooks( elem, "fx" ); + if ( hooks.unqueued == null ) { + hooks.unqueued = 0; + oldfire = hooks.empty.fire; + hooks.empty.fire = function() { + if ( !hooks.unqueued ) { + oldfire(); + } + }; + } + hooks.unqueued++; + + anim.always( function() { + + // Ensure the complete handler is called before this completes + anim.always( function() { + hooks.unqueued--; + if ( !jQuery.queue( elem, "fx" ).length ) { + hooks.empty.fire(); + } + } ); + } ); + } + + // Detect show/hide animations + for ( prop in props ) { + value = props[ prop ]; + if ( rfxtypes.test( value ) ) { + delete props[ prop ]; + toggle = toggle || value === "toggle"; + if ( value === ( hidden ? "hide" : "show" ) ) { + + // Pretend to be hidden if this is a "show" and + // there is still data from a stopped show/hide + if ( value === "show" && dataShow && dataShow[ prop ] !== undefined ) { + hidden = true; + + // Ignore all other no-op show/hide data + } else { + continue; + } + } + orig[ prop ] = dataShow && dataShow[ prop ] || jQuery.style( elem, prop ); + } + } + + // Bail out if this is a no-op like .hide().hide() + propTween = !jQuery.isEmptyObject( props ); + if ( !propTween && jQuery.isEmptyObject( orig ) ) { + return; + } + + // Restrict "overflow" and "display" styles during box animations + if ( isBox && elem.nodeType === 1 ) { + + // Support: IE <=9 - 11, Edge 12 - 15 + // Record all 3 overflow attributes because IE does not infer the shorthand + // from identically-valued overflowX and overflowY and Edge just mirrors + // the overflowX value there. + opts.overflow = [ style.overflow, style.overflowX, style.overflowY ]; + + // Identify a display type, preferring old show/hide data over the CSS cascade + restoreDisplay = dataShow && dataShow.display; + if ( restoreDisplay == null ) { + restoreDisplay = dataPriv.get( elem, "display" ); + } + display = jQuery.css( elem, "display" ); + if ( display === "none" ) { + if ( restoreDisplay ) { + display = restoreDisplay; + } else { + + // Get nonempty value(s) by temporarily forcing visibility + showHide( [ elem ], true ); + restoreDisplay = elem.style.display || restoreDisplay; + display = jQuery.css( elem, "display" ); + showHide( [ elem ] ); + } + } + + // Animate inline elements as inline-block + if ( display === "inline" || display === "inline-block" && restoreDisplay != null ) { + if ( jQuery.css( elem, "float" ) === "none" ) { + + // Restore the original display value at the end of pure show/hide animations + if ( !propTween ) { + anim.done( function() { + style.display = restoreDisplay; + } ); + if ( restoreDisplay == null ) { + display = style.display; + restoreDisplay = display === "none" ? "" : display; + } + } + style.display = "inline-block"; + } + } + } + + if ( opts.overflow ) { + style.overflow = "hidden"; + anim.always( function() { + style.overflow = opts.overflow[ 0 ]; + style.overflowX = opts.overflow[ 1 ]; + style.overflowY = opts.overflow[ 2 ]; + } ); + } + + // Implement show/hide animations + propTween = false; + for ( prop in orig ) { + + // General show/hide setup for this element animation + if ( !propTween ) { + if ( dataShow ) { + if ( "hidden" in dataShow ) { + hidden = dataShow.hidden; + } + } else { + dataShow = dataPriv.access( elem, "fxshow", { display: restoreDisplay } ); + } + + // Store hidden/visible for toggle so `.stop().toggle()` "reverses" + if ( toggle ) { + dataShow.hidden = !hidden; + } + + // Show elements before animating them + if ( hidden ) { + showHide( [ elem ], true ); + } + + /* eslint-disable no-loop-func */ + + anim.done( function() { + + /* eslint-enable no-loop-func */ + + // The final step of a "hide" animation is actually hiding the element + if ( !hidden ) { + showHide( [ elem ] ); + } + dataPriv.remove( elem, "fxshow" ); + for ( prop in orig ) { + jQuery.style( elem, prop, orig[ prop ] ); + } + } ); + } + + // Per-property setup + propTween = createTween( hidden ? dataShow[ prop ] : 0, prop, anim ); + if ( !( prop in dataShow ) ) { + dataShow[ prop ] = propTween.start; + if ( hidden ) { + propTween.end = propTween.start; + propTween.start = 0; + } + } + } +} + +function propFilter( props, specialEasing ) { + var index, name, easing, value, hooks; + + // camelCase, specialEasing and expand cssHook pass + for ( index in props ) { + name = camelCase( index ); + easing = specialEasing[ name ]; + value = props[ index ]; + if ( Array.isArray( value ) ) { + easing = value[ 1 ]; + value = props[ index ] = value[ 0 ]; + } + + if ( index !== name ) { + props[ name ] = value; + delete props[ index ]; + } + + hooks = jQuery.cssHooks[ name ]; + if ( hooks && "expand" in hooks ) { + value = hooks.expand( value ); + delete props[ name ]; + + // Not quite $.extend, this won't overwrite existing keys. + // Reusing 'index' because we have the correct "name" + for ( index in value ) { + if ( !( index in props ) ) { + props[ index ] = value[ index ]; + specialEasing[ index ] = easing; + } + } + } else { + specialEasing[ name ] = easing; + } + } +} + +function Animation( elem, properties, options ) { + var result, + stopped, + index = 0, + length = Animation.prefilters.length, + deferred = jQuery.Deferred().always( function() { + + // Don't match elem in the :animated selector + delete tick.elem; + } ), + tick = function() { + if ( stopped ) { + return false; + } + var currentTime = fxNow || createFxNow(), + remaining = Math.max( 0, animation.startTime + animation.duration - currentTime ), + + // Support: Android 2.3 only + // Archaic crash bug won't allow us to use `1 - ( 0.5 || 0 )` (#12497) + temp = remaining / animation.duration || 0, + percent = 1 - temp, + index = 0, + length = animation.tweens.length; + + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( percent ); + } + + deferred.notifyWith( elem, [ animation, percent, remaining ] ); + + // If there's more to do, yield + if ( percent < 1 && length ) { + return remaining; + } + + // If this was an empty animation, synthesize a final progress notification + if ( !length ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + } + + // Resolve the animation and report its conclusion + deferred.resolveWith( elem, [ animation ] ); + return false; + }, + animation = deferred.promise( { + elem: elem, + props: jQuery.extend( {}, properties ), + opts: jQuery.extend( true, { + specialEasing: {}, + easing: jQuery.easing._default + }, options ), + originalProperties: properties, + originalOptions: options, + startTime: fxNow || createFxNow(), + duration: options.duration, + tweens: [], + createTween: function( prop, end ) { + var tween = jQuery.Tween( elem, animation.opts, prop, end, + animation.opts.specialEasing[ prop ] || animation.opts.easing ); + animation.tweens.push( tween ); + return tween; + }, + stop: function( gotoEnd ) { + var index = 0, + + // If we are going to the end, we want to run all the tweens + // otherwise we skip this part + length = gotoEnd ? animation.tweens.length : 0; + if ( stopped ) { + return this; + } + stopped = true; + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( 1 ); + } + + // Resolve when we played the last frame; otherwise, reject + if ( gotoEnd ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + deferred.resolveWith( elem, [ animation, gotoEnd ] ); + } else { + deferred.rejectWith( elem, [ animation, gotoEnd ] ); + } + return this; + } + } ), + props = animation.props; + + propFilter( props, animation.opts.specialEasing ); + + for ( ; index < length; index++ ) { + result = Animation.prefilters[ index ].call( animation, elem, props, animation.opts ); + if ( result ) { + if ( isFunction( result.stop ) ) { + jQuery._queueHooks( animation.elem, animation.opts.queue ).stop = + result.stop.bind( result ); + } + return result; + } + } + + jQuery.map( props, createTween, animation ); + + if ( isFunction( animation.opts.start ) ) { + animation.opts.start.call( elem, animation ); + } + + // Attach callbacks from options + animation + .progress( animation.opts.progress ) + .done( animation.opts.done, animation.opts.complete ) + .fail( animation.opts.fail ) + .always( animation.opts.always ); + + jQuery.fx.timer( + jQuery.extend( tick, { + elem: elem, + anim: animation, + queue: animation.opts.queue + } ) + ); + + return animation; +} + +jQuery.Animation = jQuery.extend( Animation, { + + tweeners: { + "*": [ function( prop, value ) { + var tween = this.createTween( prop, value ); + adjustCSS( tween.elem, prop, rcssNum.exec( value ), tween ); + return tween; + } ] + }, + + tweener: function( props, callback ) { + if ( isFunction( props ) ) { + callback = props; + props = [ "*" ]; + } else { + props = props.match( rnothtmlwhite ); + } + + var prop, + index = 0, + length = props.length; + + for ( ; index < length; index++ ) { + prop = props[ index ]; + Animation.tweeners[ prop ] = Animation.tweeners[ prop ] || []; + Animation.tweeners[ prop ].unshift( callback ); + } + }, + + prefilters: [ defaultPrefilter ], + + prefilter: function( callback, prepend ) { + if ( prepend ) { + Animation.prefilters.unshift( callback ); + } else { + Animation.prefilters.push( callback ); + } + } +} ); + +jQuery.speed = function( speed, easing, fn ) { + var opt = speed && typeof speed === "object" ? jQuery.extend( {}, speed ) : { + complete: fn || !fn && easing || + isFunction( speed ) && speed, + duration: speed, + easing: fn && easing || easing && !isFunction( easing ) && easing + }; + + // Go to the end state if fx are off + if ( jQuery.fx.off ) { + opt.duration = 0; + + } else { + if ( typeof opt.duration !== "number" ) { + if ( opt.duration in jQuery.fx.speeds ) { + opt.duration = jQuery.fx.speeds[ opt.duration ]; + + } else { + opt.duration = jQuery.fx.speeds._default; + } + } + } + + // Normalize opt.queue - true/undefined/null -> "fx" + if ( opt.queue == null || opt.queue === true ) { + opt.queue = "fx"; + } + + // Queueing + opt.old = opt.complete; + + opt.complete = function() { + if ( isFunction( opt.old ) ) { + opt.old.call( this ); + } + + if ( opt.queue ) { + jQuery.dequeue( this, opt.queue ); + } + }; + + return opt; +}; + +jQuery.fn.extend( { + fadeTo: function( speed, to, easing, callback ) { + + // Show any hidden elements after setting opacity to 0 + return this.filter( isHiddenWithinTree ).css( "opacity", 0 ).show() + + // Animate to the value specified + .end().animate( { opacity: to }, speed, easing, callback ); + }, + animate: function( prop, speed, easing, callback ) { + var empty = jQuery.isEmptyObject( prop ), + optall = jQuery.speed( speed, easing, callback ), + doAnimation = function() { + + // Operate on a copy of prop so per-property easing won't be lost + var anim = Animation( this, jQuery.extend( {}, prop ), optall ); + + // Empty animations, or finishing resolves immediately + if ( empty || dataPriv.get( this, "finish" ) ) { + anim.stop( true ); + } + }; + doAnimation.finish = doAnimation; + + return empty || optall.queue === false ? + this.each( doAnimation ) : + this.queue( optall.queue, doAnimation ); + }, + stop: function( type, clearQueue, gotoEnd ) { + var stopQueue = function( hooks ) { + var stop = hooks.stop; + delete hooks.stop; + stop( gotoEnd ); + }; + + if ( typeof type !== "string" ) { + gotoEnd = clearQueue; + clearQueue = type; + type = undefined; + } + if ( clearQueue ) { + this.queue( type || "fx", [] ); + } + + return this.each( function() { + var dequeue = true, + index = type != null && type + "queueHooks", + timers = jQuery.timers, + data = dataPriv.get( this ); + + if ( index ) { + if ( data[ index ] && data[ index ].stop ) { + stopQueue( data[ index ] ); + } + } else { + for ( index in data ) { + if ( data[ index ] && data[ index ].stop && rrun.test( index ) ) { + stopQueue( data[ index ] ); + } + } + } + + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && + ( type == null || timers[ index ].queue === type ) ) { + + timers[ index ].anim.stop( gotoEnd ); + dequeue = false; + timers.splice( index, 1 ); + } + } + + // Start the next in the queue if the last step wasn't forced. + // Timers currently will call their complete callbacks, which + // will dequeue but only if they were gotoEnd. + if ( dequeue || !gotoEnd ) { + jQuery.dequeue( this, type ); + } + } ); + }, + finish: function( type ) { + if ( type !== false ) { + type = type || "fx"; + } + return this.each( function() { + var index, + data = dataPriv.get( this ), + queue = data[ type + "queue" ], + hooks = data[ type + "queueHooks" ], + timers = jQuery.timers, + length = queue ? queue.length : 0; + + // Enable finishing flag on private data + data.finish = true; + + // Empty the queue first + jQuery.queue( this, type, [] ); + + if ( hooks && hooks.stop ) { + hooks.stop.call( this, true ); + } + + // Look for any active animations, and finish them + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && timers[ index ].queue === type ) { + timers[ index ].anim.stop( true ); + timers.splice( index, 1 ); + } + } + + // Look for any animations in the old queue and finish them + for ( index = 0; index < length; index++ ) { + if ( queue[ index ] && queue[ index ].finish ) { + queue[ index ].finish.call( this ); + } + } + + // Turn off finishing flag + delete data.finish; + } ); + } +} ); + +jQuery.each( [ "toggle", "show", "hide" ], function( _i, name ) { + var cssFn = jQuery.fn[ name ]; + jQuery.fn[ name ] = function( speed, easing, callback ) { + return speed == null || typeof speed === "boolean" ? + cssFn.apply( this, arguments ) : + this.animate( genFx( name, true ), speed, easing, callback ); + }; +} ); + +// Generate shortcuts for custom animations +jQuery.each( { + slideDown: genFx( "show" ), + slideUp: genFx( "hide" ), + slideToggle: genFx( "toggle" ), + fadeIn: { opacity: "show" }, + fadeOut: { opacity: "hide" }, + fadeToggle: { opacity: "toggle" } +}, function( name, props ) { + jQuery.fn[ name ] = function( speed, easing, callback ) { + return this.animate( props, speed, easing, callback ); + }; +} ); + +jQuery.timers = []; +jQuery.fx.tick = function() { + var timer, + i = 0, + timers = jQuery.timers; + + fxNow = Date.now(); + + for ( ; i < timers.length; i++ ) { + timer = timers[ i ]; + + // Run the timer and safely remove it when done (allowing for external removal) + if ( !timer() && timers[ i ] === timer ) { + timers.splice( i--, 1 ); + } + } + + if ( !timers.length ) { + jQuery.fx.stop(); + } + fxNow = undefined; +}; + +jQuery.fx.timer = function( timer ) { + jQuery.timers.push( timer ); + jQuery.fx.start(); +}; + +jQuery.fx.interval = 13; +jQuery.fx.start = function() { + if ( inProgress ) { + return; + } + + inProgress = true; + schedule(); +}; + +jQuery.fx.stop = function() { + inProgress = null; +}; + +jQuery.fx.speeds = { + slow: 600, + fast: 200, + + // Default speed + _default: 400 +}; + + +// Based off of the plugin by Clint Helfers, with permission. +// https://web.archive.org/web/20100324014747/http://blindsignals.com/index.php/2009/07/jquery-delay/ +jQuery.fn.delay = function( time, type ) { + time = jQuery.fx ? jQuery.fx.speeds[ time ] || time : time; + type = type || "fx"; + + return this.queue( type, function( next, hooks ) { + var timeout = window.setTimeout( next, time ); + hooks.stop = function() { + window.clearTimeout( timeout ); + }; + } ); +}; + + +( function() { + var input = document.createElement( "input" ), + select = document.createElement( "select" ), + opt = select.appendChild( document.createElement( "option" ) ); + + input.type = "checkbox"; + + // Support: Android <=4.3 only + // Default value for a checkbox should be "on" + support.checkOn = input.value !== ""; + + // Support: IE <=11 only + // Must access selectedIndex to make default options select + support.optSelected = opt.selected; + + // Support: IE <=11 only + // An input loses its value after becoming a radio + input = document.createElement( "input" ); + input.value = "t"; + input.type = "radio"; + support.radioValue = input.value === "t"; +} )(); + + +var boolHook, + attrHandle = jQuery.expr.attrHandle; + +jQuery.fn.extend( { + attr: function( name, value ) { + return access( this, jQuery.attr, name, value, arguments.length > 1 ); + }, + + removeAttr: function( name ) { + return this.each( function() { + jQuery.removeAttr( this, name ); + } ); + } +} ); + +jQuery.extend( { + attr: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set attributes on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + // Fallback to prop when attributes are not supported + if ( typeof elem.getAttribute === "undefined" ) { + return jQuery.prop( elem, name, value ); + } + + // Attribute hooks are determined by the lowercase version + // Grab necessary hook if one is defined + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + hooks = jQuery.attrHooks[ name.toLowerCase() ] || + ( jQuery.expr.match.bool.test( name ) ? boolHook : undefined ); + } + + if ( value !== undefined ) { + if ( value === null ) { + jQuery.removeAttr( elem, name ); + return; + } + + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + elem.setAttribute( name, value + "" ); + return value; + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + ret = jQuery.find.attr( elem, name ); + + // Non-existent attributes return null, we normalize to undefined + return ret == null ? undefined : ret; + }, + + attrHooks: { + type: { + set: function( elem, value ) { + if ( !support.radioValue && value === "radio" && + nodeName( elem, "input" ) ) { + var val = elem.value; + elem.setAttribute( "type", value ); + if ( val ) { + elem.value = val; + } + return value; + } + } + } + }, + + removeAttr: function( elem, value ) { + var name, + i = 0, + + // Attribute names can contain non-HTML whitespace characters + // https://html.spec.whatwg.org/multipage/syntax.html#attributes-2 + attrNames = value && value.match( rnothtmlwhite ); + + if ( attrNames && elem.nodeType === 1 ) { + while ( ( name = attrNames[ i++ ] ) ) { + elem.removeAttribute( name ); + } + } + } +} ); + +// Hooks for boolean attributes +boolHook = { + set: function( elem, value, name ) { + if ( value === false ) { + + // Remove boolean attributes when set to false + jQuery.removeAttr( elem, name ); + } else { + elem.setAttribute( name, name ); + } + return name; + } +}; + +jQuery.each( jQuery.expr.match.bool.source.match( /\w+/g ), function( _i, name ) { + var getter = attrHandle[ name ] || jQuery.find.attr; + + attrHandle[ name ] = function( elem, name, isXML ) { + var ret, handle, + lowercaseName = name.toLowerCase(); + + if ( !isXML ) { + + // Avoid an infinite loop by temporarily removing this function from the getter + handle = attrHandle[ lowercaseName ]; + attrHandle[ lowercaseName ] = ret; + ret = getter( elem, name, isXML ) != null ? + lowercaseName : + null; + attrHandle[ lowercaseName ] = handle; + } + return ret; + }; +} ); + + + + +var rfocusable = /^(?:input|select|textarea|button)$/i, + rclickable = /^(?:a|area)$/i; + +jQuery.fn.extend( { + prop: function( name, value ) { + return access( this, jQuery.prop, name, value, arguments.length > 1 ); + }, + + removeProp: function( name ) { + return this.each( function() { + delete this[ jQuery.propFix[ name ] || name ]; + } ); + } +} ); + +jQuery.extend( { + prop: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set properties on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + + // Fix name and attach hooks + name = jQuery.propFix[ name ] || name; + hooks = jQuery.propHooks[ name ]; + } + + if ( value !== undefined ) { + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + return ( elem[ name ] = value ); + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + return elem[ name ]; + }, + + propHooks: { + tabIndex: { + get: function( elem ) { + + // Support: IE <=9 - 11 only + // elem.tabIndex doesn't always return the + // correct value when it hasn't been explicitly set + // https://web.archive.org/web/20141116233347/http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/ + // Use proper attribute retrieval(#12072) + var tabindex = jQuery.find.attr( elem, "tabindex" ); + + if ( tabindex ) { + return parseInt( tabindex, 10 ); + } + + if ( + rfocusable.test( elem.nodeName ) || + rclickable.test( elem.nodeName ) && + elem.href + ) { + return 0; + } + + return -1; + } + } + }, + + propFix: { + "for": "htmlFor", + "class": "className" + } +} ); + +// Support: IE <=11 only +// Accessing the selectedIndex property +// forces the browser to respect setting selected +// on the option +// The getter ensures a default option is selected +// when in an optgroup +// eslint rule "no-unused-expressions" is disabled for this code +// since it considers such accessions noop +if ( !support.optSelected ) { + jQuery.propHooks.selected = { + get: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent && parent.parentNode ) { + parent.parentNode.selectedIndex; + } + return null; + }, + set: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent ) { + parent.selectedIndex; + + if ( parent.parentNode ) { + parent.parentNode.selectedIndex; + } + } + } + }; +} + +jQuery.each( [ + "tabIndex", + "readOnly", + "maxLength", + "cellSpacing", + "cellPadding", + "rowSpan", + "colSpan", + "useMap", + "frameBorder", + "contentEditable" +], function() { + jQuery.propFix[ this.toLowerCase() ] = this; +} ); + + + + + // Strip and collapse whitespace according to HTML spec + // https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace + function stripAndCollapse( value ) { + var tokens = value.match( rnothtmlwhite ) || []; + return tokens.join( " " ); + } + + +function getClass( elem ) { + return elem.getAttribute && elem.getAttribute( "class" ) || ""; +} + +function classesToArray( value ) { + if ( Array.isArray( value ) ) { + return value; + } + if ( typeof value === "string" ) { + return value.match( rnothtmlwhite ) || []; + } + return []; +} + +jQuery.fn.extend( { + addClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).addClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + classes = classesToArray( value ); + + if ( classes.length ) { + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + if ( cur.indexOf( " " + clazz + " " ) < 0 ) { + cur += clazz + " "; + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + removeClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).removeClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + if ( !arguments.length ) { + return this.attr( "class", "" ); + } + + classes = classesToArray( value ); + + if ( classes.length ) { + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + + // This expression is here for better compressibility (see addClass) + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + + // Remove *all* instances + while ( cur.indexOf( " " + clazz + " " ) > -1 ) { + cur = cur.replace( " " + clazz + " ", " " ); + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + toggleClass: function( value, stateVal ) { + var type = typeof value, + isValidValue = type === "string" || Array.isArray( value ); + + if ( typeof stateVal === "boolean" && isValidValue ) { + return stateVal ? this.addClass( value ) : this.removeClass( value ); + } + + if ( isFunction( value ) ) { + return this.each( function( i ) { + jQuery( this ).toggleClass( + value.call( this, i, getClass( this ), stateVal ), + stateVal + ); + } ); + } + + return this.each( function() { + var className, i, self, classNames; + + if ( isValidValue ) { + + // Toggle individual class names + i = 0; + self = jQuery( this ); + classNames = classesToArray( value ); + + while ( ( className = classNames[ i++ ] ) ) { + + // Check each className given, space separated list + if ( self.hasClass( className ) ) { + self.removeClass( className ); + } else { + self.addClass( className ); + } + } + + // Toggle whole class name + } else if ( value === undefined || type === "boolean" ) { + className = getClass( this ); + if ( className ) { + + // Store className if set + dataPriv.set( this, "__className__", className ); + } + + // If the element has a class name or if we're passed `false`, + // then remove the whole classname (if there was one, the above saved it). + // Otherwise bring back whatever was previously saved (if anything), + // falling back to the empty string if nothing was stored. + if ( this.setAttribute ) { + this.setAttribute( "class", + className || value === false ? + "" : + dataPriv.get( this, "__className__" ) || "" + ); + } + } + } ); + }, + + hasClass: function( selector ) { + var className, elem, + i = 0; + + className = " " + selector + " "; + while ( ( elem = this[ i++ ] ) ) { + if ( elem.nodeType === 1 && + ( " " + stripAndCollapse( getClass( elem ) ) + " " ).indexOf( className ) > -1 ) { + return true; + } + } + + return false; + } +} ); + + + + +var rreturn = /\r/g; + +jQuery.fn.extend( { + val: function( value ) { + var hooks, ret, valueIsFunction, + elem = this[ 0 ]; + + if ( !arguments.length ) { + if ( elem ) { + hooks = jQuery.valHooks[ elem.type ] || + jQuery.valHooks[ elem.nodeName.toLowerCase() ]; + + if ( hooks && + "get" in hooks && + ( ret = hooks.get( elem, "value" ) ) !== undefined + ) { + return ret; + } + + ret = elem.value; + + // Handle most common string cases + if ( typeof ret === "string" ) { + return ret.replace( rreturn, "" ); + } + + // Handle cases where value is null/undef or number + return ret == null ? "" : ret; + } + + return; + } + + valueIsFunction = isFunction( value ); + + return this.each( function( i ) { + var val; + + if ( this.nodeType !== 1 ) { + return; + } + + if ( valueIsFunction ) { + val = value.call( this, i, jQuery( this ).val() ); + } else { + val = value; + } + + // Treat null/undefined as ""; convert numbers to string + if ( val == null ) { + val = ""; + + } else if ( typeof val === "number" ) { + val += ""; + + } else if ( Array.isArray( val ) ) { + val = jQuery.map( val, function( value ) { + return value == null ? "" : value + ""; + } ); + } + + hooks = jQuery.valHooks[ this.type ] || jQuery.valHooks[ this.nodeName.toLowerCase() ]; + + // If set returns undefined, fall back to normal setting + if ( !hooks || !( "set" in hooks ) || hooks.set( this, val, "value" ) === undefined ) { + this.value = val; + } + } ); + } +} ); + +jQuery.extend( { + valHooks: { + option: { + get: function( elem ) { + + var val = jQuery.find.attr( elem, "value" ); + return val != null ? + val : + + // Support: IE <=10 - 11 only + // option.text throws exceptions (#14686, #14858) + // Strip and collapse whitespace + // https://html.spec.whatwg.org/#strip-and-collapse-whitespace + stripAndCollapse( jQuery.text( elem ) ); + } + }, + select: { + get: function( elem ) { + var value, option, i, + options = elem.options, + index = elem.selectedIndex, + one = elem.type === "select-one", + values = one ? null : [], + max = one ? index + 1 : options.length; + + if ( index < 0 ) { + i = max; + + } else { + i = one ? index : 0; + } + + // Loop through all the selected options + for ( ; i < max; i++ ) { + option = options[ i ]; + + // Support: IE <=9 only + // IE8-9 doesn't update selected after form reset (#2551) + if ( ( option.selected || i === index ) && + + // Don't return options that are disabled or in a disabled optgroup + !option.disabled && + ( !option.parentNode.disabled || + !nodeName( option.parentNode, "optgroup" ) ) ) { + + // Get the specific value for the option + value = jQuery( option ).val(); + + // We don't need an array for one selects + if ( one ) { + return value; + } + + // Multi-Selects return an array + values.push( value ); + } + } + + return values; + }, + + set: function( elem, value ) { + var optionSet, option, + options = elem.options, + values = jQuery.makeArray( value ), + i = options.length; + + while ( i-- ) { + option = options[ i ]; + + /* eslint-disable no-cond-assign */ + + if ( option.selected = + jQuery.inArray( jQuery.valHooks.option.get( option ), values ) > -1 + ) { + optionSet = true; + } + + /* eslint-enable no-cond-assign */ + } + + // Force browsers to behave consistently when non-matching value is set + if ( !optionSet ) { + elem.selectedIndex = -1; + } + return values; + } + } + } +} ); + +// Radios and checkboxes getter/setter +jQuery.each( [ "radio", "checkbox" ], function() { + jQuery.valHooks[ this ] = { + set: function( elem, value ) { + if ( Array.isArray( value ) ) { + return ( elem.checked = jQuery.inArray( jQuery( elem ).val(), value ) > -1 ); + } + } + }; + if ( !support.checkOn ) { + jQuery.valHooks[ this ].get = function( elem ) { + return elem.getAttribute( "value" ) === null ? "on" : elem.value; + }; + } +} ); + + + + +// Return jQuery for attributes-only inclusion + + +support.focusin = "onfocusin" in window; + + +var rfocusMorph = /^(?:focusinfocus|focusoutblur)$/, + stopPropagationCallback = function( e ) { + e.stopPropagation(); + }; + +jQuery.extend( jQuery.event, { + + trigger: function( event, data, elem, onlyHandlers ) { + + var i, cur, tmp, bubbleType, ontype, handle, special, lastElement, + eventPath = [ elem || document ], + type = hasOwn.call( event, "type" ) ? event.type : event, + namespaces = hasOwn.call( event, "namespace" ) ? event.namespace.split( "." ) : []; + + cur = lastElement = tmp = elem = elem || document; + + // Don't do events on text and comment nodes + if ( elem.nodeType === 3 || elem.nodeType === 8 ) { + return; + } + + // focus/blur morphs to focusin/out; ensure we're not firing them right now + if ( rfocusMorph.test( type + jQuery.event.triggered ) ) { + return; + } + + if ( type.indexOf( "." ) > -1 ) { + + // Namespaced trigger; create a regexp to match event type in handle() + namespaces = type.split( "." ); + type = namespaces.shift(); + namespaces.sort(); + } + ontype = type.indexOf( ":" ) < 0 && "on" + type; + + // Caller can pass in a jQuery.Event object, Object, or just an event type string + event = event[ jQuery.expando ] ? + event : + new jQuery.Event( type, typeof event === "object" && event ); + + // Trigger bitmask: & 1 for native handlers; & 2 for jQuery (always true) + event.isTrigger = onlyHandlers ? 2 : 3; + event.namespace = namespaces.join( "." ); + event.rnamespace = event.namespace ? + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ) : + null; + + // Clean up the event in case it is being reused + event.result = undefined; + if ( !event.target ) { + event.target = elem; + } + + // Clone any incoming data and prepend the event, creating the handler arg list + data = data == null ? + [ event ] : + jQuery.makeArray( data, [ event ] ); + + // Allow special events to draw outside the lines + special = jQuery.event.special[ type ] || {}; + if ( !onlyHandlers && special.trigger && special.trigger.apply( elem, data ) === false ) { + return; + } + + // Determine event propagation path in advance, per W3C events spec (#9951) + // Bubble up to document, then to window; watch for a global ownerDocument var (#9724) + if ( !onlyHandlers && !special.noBubble && !isWindow( elem ) ) { + + bubbleType = special.delegateType || type; + if ( !rfocusMorph.test( bubbleType + type ) ) { + cur = cur.parentNode; + } + for ( ; cur; cur = cur.parentNode ) { + eventPath.push( cur ); + tmp = cur; + } + + // Only add window if we got to document (e.g., not plain obj or detached DOM) + if ( tmp === ( elem.ownerDocument || document ) ) { + eventPath.push( tmp.defaultView || tmp.parentWindow || window ); + } + } + + // Fire handlers on the event path + i = 0; + while ( ( cur = eventPath[ i++ ] ) && !event.isPropagationStopped() ) { + lastElement = cur; + event.type = i > 1 ? + bubbleType : + special.bindType || type; + + // jQuery handler + handle = ( + dataPriv.get( cur, "events" ) || Object.create( null ) + )[ event.type ] && + dataPriv.get( cur, "handle" ); + if ( handle ) { + handle.apply( cur, data ); + } + + // Native handler + handle = ontype && cur[ ontype ]; + if ( handle && handle.apply && acceptData( cur ) ) { + event.result = handle.apply( cur, data ); + if ( event.result === false ) { + event.preventDefault(); + } + } + } + event.type = type; + + // If nobody prevented the default action, do it now + if ( !onlyHandlers && !event.isDefaultPrevented() ) { + + if ( ( !special._default || + special._default.apply( eventPath.pop(), data ) === false ) && + acceptData( elem ) ) { + + // Call a native DOM method on the target with the same name as the event. + // Don't do default actions on window, that's where global variables be (#6170) + if ( ontype && isFunction( elem[ type ] ) && !isWindow( elem ) ) { + + // Don't re-trigger an onFOO event when we call its FOO() method + tmp = elem[ ontype ]; + + if ( tmp ) { + elem[ ontype ] = null; + } + + // Prevent re-triggering of the same event, since we already bubbled it above + jQuery.event.triggered = type; + + if ( event.isPropagationStopped() ) { + lastElement.addEventListener( type, stopPropagationCallback ); + } + + elem[ type ](); + + if ( event.isPropagationStopped() ) { + lastElement.removeEventListener( type, stopPropagationCallback ); + } + + jQuery.event.triggered = undefined; + + if ( tmp ) { + elem[ ontype ] = tmp; + } + } + } + } + + return event.result; + }, + + // Piggyback on a donor event to simulate a different one + // Used only for `focus(in | out)` events + simulate: function( type, elem, event ) { + var e = jQuery.extend( + new jQuery.Event(), + event, + { + type: type, + isSimulated: true + } + ); + + jQuery.event.trigger( e, null, elem ); + } + +} ); + +jQuery.fn.extend( { + + trigger: function( type, data ) { + return this.each( function() { + jQuery.event.trigger( type, data, this ); + } ); + }, + triggerHandler: function( type, data ) { + var elem = this[ 0 ]; + if ( elem ) { + return jQuery.event.trigger( type, data, elem, true ); + } + } +} ); + + +// Support: Firefox <=44 +// Firefox doesn't have focus(in | out) events +// Related ticket - https://bugzilla.mozilla.org/show_bug.cgi?id=687787 +// +// Support: Chrome <=48 - 49, Safari <=9.0 - 9.1 +// focus(in | out) events fire after focus & blur events, +// which is spec violation - http://www.w3.org/TR/DOM-Level-3-Events/#events-focusevent-event-order +// Related ticket - https://bugs.chromium.org/p/chromium/issues/detail?id=449857 +if ( !support.focusin ) { + jQuery.each( { focus: "focusin", blur: "focusout" }, function( orig, fix ) { + + // Attach a single capturing handler on the document while someone wants focusin/focusout + var handler = function( event ) { + jQuery.event.simulate( fix, event.target, jQuery.event.fix( event ) ); + }; + + jQuery.event.special[ fix ] = { + setup: function() { + + // Handle: regular nodes (via `this.ownerDocument`), window + // (via `this.document`) & document (via `this`). + var doc = this.ownerDocument || this.document || this, + attaches = dataPriv.access( doc, fix ); + + if ( !attaches ) { + doc.addEventListener( orig, handler, true ); + } + dataPriv.access( doc, fix, ( attaches || 0 ) + 1 ); + }, + teardown: function() { + var doc = this.ownerDocument || this.document || this, + attaches = dataPriv.access( doc, fix ) - 1; + + if ( !attaches ) { + doc.removeEventListener( orig, handler, true ); + dataPriv.remove( doc, fix ); + + } else { + dataPriv.access( doc, fix, attaches ); + } + } + }; + } ); +} +var location = window.location; + +var nonce = { guid: Date.now() }; + +var rquery = ( /\?/ ); + + + +// Cross-browser xml parsing +jQuery.parseXML = function( data ) { + var xml; + if ( !data || typeof data !== "string" ) { + return null; + } + + // Support: IE 9 - 11 only + // IE throws on parseFromString with invalid input. + try { + xml = ( new window.DOMParser() ).parseFromString( data, "text/xml" ); + } catch ( e ) { + xml = undefined; + } + + if ( !xml || xml.getElementsByTagName( "parsererror" ).length ) { + jQuery.error( "Invalid XML: " + data ); + } + return xml; +}; + + +var + rbracket = /\[\]$/, + rCRLF = /\r?\n/g, + rsubmitterTypes = /^(?:submit|button|image|reset|file)$/i, + rsubmittable = /^(?:input|select|textarea|keygen)/i; + +function buildParams( prefix, obj, traditional, add ) { + var name; + + if ( Array.isArray( obj ) ) { + + // Serialize array item. + jQuery.each( obj, function( i, v ) { + if ( traditional || rbracket.test( prefix ) ) { + + // Treat each array item as a scalar. + add( prefix, v ); + + } else { + + // Item is non-scalar (array or object), encode its numeric index. + buildParams( + prefix + "[" + ( typeof v === "object" && v != null ? i : "" ) + "]", + v, + traditional, + add + ); + } + } ); + + } else if ( !traditional && toType( obj ) === "object" ) { + + // Serialize object item. + for ( name in obj ) { + buildParams( prefix + "[" + name + "]", obj[ name ], traditional, add ); + } + + } else { + + // Serialize scalar item. + add( prefix, obj ); + } +} + +// Serialize an array of form elements or a set of +// key/values into a query string +jQuery.param = function( a, traditional ) { + var prefix, + s = [], + add = function( key, valueOrFunction ) { + + // If value is a function, invoke it and use its return value + var value = isFunction( valueOrFunction ) ? + valueOrFunction() : + valueOrFunction; + + s[ s.length ] = encodeURIComponent( key ) + "=" + + encodeURIComponent( value == null ? "" : value ); + }; + + if ( a == null ) { + return ""; + } + + // If an array was passed in, assume that it is an array of form elements. + if ( Array.isArray( a ) || ( a.jquery && !jQuery.isPlainObject( a ) ) ) { + + // Serialize the form elements + jQuery.each( a, function() { + add( this.name, this.value ); + } ); + + } else { + + // If traditional, encode the "old" way (the way 1.3.2 or older + // did it), otherwise encode params recursively. + for ( prefix in a ) { + buildParams( prefix, a[ prefix ], traditional, add ); + } + } + + // Return the resulting serialization + return s.join( "&" ); +}; + +jQuery.fn.extend( { + serialize: function() { + return jQuery.param( this.serializeArray() ); + }, + serializeArray: function() { + return this.map( function() { + + // Can add propHook for "elements" to filter or add form elements + var elements = jQuery.prop( this, "elements" ); + return elements ? jQuery.makeArray( elements ) : this; + } ) + .filter( function() { + var type = this.type; + + // Use .is( ":disabled" ) so that fieldset[disabled] works + return this.name && !jQuery( this ).is( ":disabled" ) && + rsubmittable.test( this.nodeName ) && !rsubmitterTypes.test( type ) && + ( this.checked || !rcheckableType.test( type ) ); + } ) + .map( function( _i, elem ) { + var val = jQuery( this ).val(); + + if ( val == null ) { + return null; + } + + if ( Array.isArray( val ) ) { + return jQuery.map( val, function( val ) { + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ); + } + + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ).get(); + } +} ); + + +var + r20 = /%20/g, + rhash = /#.*$/, + rantiCache = /([?&])_=[^&]*/, + rheaders = /^(.*?):[ \t]*([^\r\n]*)$/mg, + + // #7653, #8125, #8152: local protocol detection + rlocalProtocol = /^(?:about|app|app-storage|.+-extension|file|res|widget):$/, + rnoContent = /^(?:GET|HEAD)$/, + rprotocol = /^\/\//, + + /* Prefilters + * 1) They are useful to introduce custom dataTypes (see ajax/jsonp.js for an example) + * 2) These are called: + * - BEFORE asking for a transport + * - AFTER param serialization (s.data is a string if s.processData is true) + * 3) key is the dataType + * 4) the catchall symbol "*" can be used + * 5) execution will start with transport dataType and THEN continue down to "*" if needed + */ + prefilters = {}, + + /* Transports bindings + * 1) key is the dataType + * 2) the catchall symbol "*" can be used + * 3) selection will start with transport dataType and THEN go to "*" if needed + */ + transports = {}, + + // Avoid comment-prolog char sequence (#10098); must appease lint and evade compression + allTypes = "*/".concat( "*" ), + + // Anchor tag for parsing the document origin + originAnchor = document.createElement( "a" ); + originAnchor.href = location.href; + +// Base "constructor" for jQuery.ajaxPrefilter and jQuery.ajaxTransport +function addToPrefiltersOrTransports( structure ) { + + // dataTypeExpression is optional and defaults to "*" + return function( dataTypeExpression, func ) { + + if ( typeof dataTypeExpression !== "string" ) { + func = dataTypeExpression; + dataTypeExpression = "*"; + } + + var dataType, + i = 0, + dataTypes = dataTypeExpression.toLowerCase().match( rnothtmlwhite ) || []; + + if ( isFunction( func ) ) { + + // For each dataType in the dataTypeExpression + while ( ( dataType = dataTypes[ i++ ] ) ) { + + // Prepend if requested + if ( dataType[ 0 ] === "+" ) { + dataType = dataType.slice( 1 ) || "*"; + ( structure[ dataType ] = structure[ dataType ] || [] ).unshift( func ); + + // Otherwise append + } else { + ( structure[ dataType ] = structure[ dataType ] || [] ).push( func ); + } + } + } + }; +} + +// Base inspection function for prefilters and transports +function inspectPrefiltersOrTransports( structure, options, originalOptions, jqXHR ) { + + var inspected = {}, + seekingTransport = ( structure === transports ); + + function inspect( dataType ) { + var selected; + inspected[ dataType ] = true; + jQuery.each( structure[ dataType ] || [], function( _, prefilterOrFactory ) { + var dataTypeOrTransport = prefilterOrFactory( options, originalOptions, jqXHR ); + if ( typeof dataTypeOrTransport === "string" && + !seekingTransport && !inspected[ dataTypeOrTransport ] ) { + + options.dataTypes.unshift( dataTypeOrTransport ); + inspect( dataTypeOrTransport ); + return false; + } else if ( seekingTransport ) { + return !( selected = dataTypeOrTransport ); + } + } ); + return selected; + } + + return inspect( options.dataTypes[ 0 ] ) || !inspected[ "*" ] && inspect( "*" ); +} + +// A special extend for ajax options +// that takes "flat" options (not to be deep extended) +// Fixes #9887 +function ajaxExtend( target, src ) { + var key, deep, + flatOptions = jQuery.ajaxSettings.flatOptions || {}; + + for ( key in src ) { + if ( src[ key ] !== undefined ) { + ( flatOptions[ key ] ? target : ( deep || ( deep = {} ) ) )[ key ] = src[ key ]; + } + } + if ( deep ) { + jQuery.extend( true, target, deep ); + } + + return target; +} + +/* Handles responses to an ajax request: + * - finds the right dataType (mediates between content-type and expected dataType) + * - returns the corresponding response + */ +function ajaxHandleResponses( s, jqXHR, responses ) { + + var ct, type, finalDataType, firstDataType, + contents = s.contents, + dataTypes = s.dataTypes; + + // Remove auto dataType and get content-type in the process + while ( dataTypes[ 0 ] === "*" ) { + dataTypes.shift(); + if ( ct === undefined ) { + ct = s.mimeType || jqXHR.getResponseHeader( "Content-Type" ); + } + } + + // Check if we're dealing with a known content-type + if ( ct ) { + for ( type in contents ) { + if ( contents[ type ] && contents[ type ].test( ct ) ) { + dataTypes.unshift( type ); + break; + } + } + } + + // Check to see if we have a response for the expected dataType + if ( dataTypes[ 0 ] in responses ) { + finalDataType = dataTypes[ 0 ]; + } else { + + // Try convertible dataTypes + for ( type in responses ) { + if ( !dataTypes[ 0 ] || s.converters[ type + " " + dataTypes[ 0 ] ] ) { + finalDataType = type; + break; + } + if ( !firstDataType ) { + firstDataType = type; + } + } + + // Or just use first one + finalDataType = finalDataType || firstDataType; + } + + // If we found a dataType + // We add the dataType to the list if needed + // and return the corresponding response + if ( finalDataType ) { + if ( finalDataType !== dataTypes[ 0 ] ) { + dataTypes.unshift( finalDataType ); + } + return responses[ finalDataType ]; + } +} + +/* Chain conversions given the request and the original response + * Also sets the responseXXX fields on the jqXHR instance + */ +function ajaxConvert( s, response, jqXHR, isSuccess ) { + var conv2, current, conv, tmp, prev, + converters = {}, + + // Work with a copy of dataTypes in case we need to modify it for conversion + dataTypes = s.dataTypes.slice(); + + // Create converters map with lowercased keys + if ( dataTypes[ 1 ] ) { + for ( conv in s.converters ) { + converters[ conv.toLowerCase() ] = s.converters[ conv ]; + } + } + + current = dataTypes.shift(); + + // Convert to each sequential dataType + while ( current ) { + + if ( s.responseFields[ current ] ) { + jqXHR[ s.responseFields[ current ] ] = response; + } + + // Apply the dataFilter if provided + if ( !prev && isSuccess && s.dataFilter ) { + response = s.dataFilter( response, s.dataType ); + } + + prev = current; + current = dataTypes.shift(); + + if ( current ) { + + // There's only work to do if current dataType is non-auto + if ( current === "*" ) { + + current = prev; + + // Convert response if prev dataType is non-auto and differs from current + } else if ( prev !== "*" && prev !== current ) { + + // Seek a direct converter + conv = converters[ prev + " " + current ] || converters[ "* " + current ]; + + // If none found, seek a pair + if ( !conv ) { + for ( conv2 in converters ) { + + // If conv2 outputs current + tmp = conv2.split( " " ); + if ( tmp[ 1 ] === current ) { + + // If prev can be converted to accepted input + conv = converters[ prev + " " + tmp[ 0 ] ] || + converters[ "* " + tmp[ 0 ] ]; + if ( conv ) { + + // Condense equivalence converters + if ( conv === true ) { + conv = converters[ conv2 ]; + + // Otherwise, insert the intermediate dataType + } else if ( converters[ conv2 ] !== true ) { + current = tmp[ 0 ]; + dataTypes.unshift( tmp[ 1 ] ); + } + break; + } + } + } + } + + // Apply converter (if not an equivalence) + if ( conv !== true ) { + + // Unless errors are allowed to bubble, catch and return them + if ( conv && s.throws ) { + response = conv( response ); + } else { + try { + response = conv( response ); + } catch ( e ) { + return { + state: "parsererror", + error: conv ? e : "No conversion from " + prev + " to " + current + }; + } + } + } + } + } + } + + return { state: "success", data: response }; +} + +jQuery.extend( { + + // Counter for holding the number of active queries + active: 0, + + // Last-Modified header cache for next request + lastModified: {}, + etag: {}, + + ajaxSettings: { + url: location.href, + type: "GET", + isLocal: rlocalProtocol.test( location.protocol ), + global: true, + processData: true, + async: true, + contentType: "application/x-www-form-urlencoded; charset=UTF-8", + + /* + timeout: 0, + data: null, + dataType: null, + username: null, + password: null, + cache: null, + throws: false, + traditional: false, + headers: {}, + */ + + accepts: { + "*": allTypes, + text: "text/plain", + html: "text/html", + xml: "application/xml, text/xml", + json: "application/json, text/javascript" + }, + + contents: { + xml: /\bxml\b/, + html: /\bhtml/, + json: /\bjson\b/ + }, + + responseFields: { + xml: "responseXML", + text: "responseText", + json: "responseJSON" + }, + + // Data converters + // Keys separate source (or catchall "*") and destination types with a single space + converters: { + + // Convert anything to text + "* text": String, + + // Text to html (true = no transformation) + "text html": true, + + // Evaluate text as a json expression + "text json": JSON.parse, + + // Parse text as xml + "text xml": jQuery.parseXML + }, + + // For options that shouldn't be deep extended: + // you can add your own custom options here if + // and when you create one that shouldn't be + // deep extended (see ajaxExtend) + flatOptions: { + url: true, + context: true + } + }, + + // Creates a full fledged settings object into target + // with both ajaxSettings and settings fields. + // If target is omitted, writes into ajaxSettings. + ajaxSetup: function( target, settings ) { + return settings ? + + // Building a settings object + ajaxExtend( ajaxExtend( target, jQuery.ajaxSettings ), settings ) : + + // Extending ajaxSettings + ajaxExtend( jQuery.ajaxSettings, target ); + }, + + ajaxPrefilter: addToPrefiltersOrTransports( prefilters ), + ajaxTransport: addToPrefiltersOrTransports( transports ), + + // Main method + ajax: function( url, options ) { + + // If url is an object, simulate pre-1.5 signature + if ( typeof url === "object" ) { + options = url; + url = undefined; + } + + // Force options to be an object + options = options || {}; + + var transport, + + // URL without anti-cache param + cacheURL, + + // Response headers + responseHeadersString, + responseHeaders, + + // timeout handle + timeoutTimer, + + // Url cleanup var + urlAnchor, + + // Request state (becomes false upon send and true upon completion) + completed, + + // To know if global events are to be dispatched + fireGlobals, + + // Loop variable + i, + + // uncached part of the url + uncached, + + // Create the final options object + s = jQuery.ajaxSetup( {}, options ), + + // Callbacks context + callbackContext = s.context || s, + + // Context for global events is callbackContext if it is a DOM node or jQuery collection + globalEventContext = s.context && + ( callbackContext.nodeType || callbackContext.jquery ) ? + jQuery( callbackContext ) : + jQuery.event, + + // Deferreds + deferred = jQuery.Deferred(), + completeDeferred = jQuery.Callbacks( "once memory" ), + + // Status-dependent callbacks + statusCode = s.statusCode || {}, + + // Headers (they are sent all at once) + requestHeaders = {}, + requestHeadersNames = {}, + + // Default abort message + strAbort = "canceled", + + // Fake xhr + jqXHR = { + readyState: 0, + + // Builds headers hashtable if needed + getResponseHeader: function( key ) { + var match; + if ( completed ) { + if ( !responseHeaders ) { + responseHeaders = {}; + while ( ( match = rheaders.exec( responseHeadersString ) ) ) { + responseHeaders[ match[ 1 ].toLowerCase() + " " ] = + ( responseHeaders[ match[ 1 ].toLowerCase() + " " ] || [] ) + .concat( match[ 2 ] ); + } + } + match = responseHeaders[ key.toLowerCase() + " " ]; + } + return match == null ? null : match.join( ", " ); + }, + + // Raw string + getAllResponseHeaders: function() { + return completed ? responseHeadersString : null; + }, + + // Caches the header + setRequestHeader: function( name, value ) { + if ( completed == null ) { + name = requestHeadersNames[ name.toLowerCase() ] = + requestHeadersNames[ name.toLowerCase() ] || name; + requestHeaders[ name ] = value; + } + return this; + }, + + // Overrides response content-type header + overrideMimeType: function( type ) { + if ( completed == null ) { + s.mimeType = type; + } + return this; + }, + + // Status-dependent callbacks + statusCode: function( map ) { + var code; + if ( map ) { + if ( completed ) { + + // Execute the appropriate callbacks + jqXHR.always( map[ jqXHR.status ] ); + } else { + + // Lazy-add the new callbacks in a way that preserves old ones + for ( code in map ) { + statusCode[ code ] = [ statusCode[ code ], map[ code ] ]; + } + } + } + return this; + }, + + // Cancel the request + abort: function( statusText ) { + var finalText = statusText || strAbort; + if ( transport ) { + transport.abort( finalText ); + } + done( 0, finalText ); + return this; + } + }; + + // Attach deferreds + deferred.promise( jqXHR ); + + // Add protocol if not provided (prefilters might expect it) + // Handle falsy url in the settings object (#10093: consistency with old signature) + // We also use the url parameter if available + s.url = ( ( url || s.url || location.href ) + "" ) + .replace( rprotocol, location.protocol + "//" ); + + // Alias method option to type as per ticket #12004 + s.type = options.method || options.type || s.method || s.type; + + // Extract dataTypes list + s.dataTypes = ( s.dataType || "*" ).toLowerCase().match( rnothtmlwhite ) || [ "" ]; + + // A cross-domain request is in order when the origin doesn't match the current origin. + if ( s.crossDomain == null ) { + urlAnchor = document.createElement( "a" ); + + // Support: IE <=8 - 11, Edge 12 - 15 + // IE throws exception on accessing the href property if url is malformed, + // e.g. http://example.com:80x/ + try { + urlAnchor.href = s.url; + + // Support: IE <=8 - 11 only + // Anchor's host property isn't correctly set when s.url is relative + urlAnchor.href = urlAnchor.href; + s.crossDomain = originAnchor.protocol + "//" + originAnchor.host !== + urlAnchor.protocol + "//" + urlAnchor.host; + } catch ( e ) { + + // If there is an error parsing the URL, assume it is crossDomain, + // it can be rejected by the transport if it is invalid + s.crossDomain = true; + } + } + + // Convert data if not already a string + if ( s.data && s.processData && typeof s.data !== "string" ) { + s.data = jQuery.param( s.data, s.traditional ); + } + + // Apply prefilters + inspectPrefiltersOrTransports( prefilters, s, options, jqXHR ); + + // If request was aborted inside a prefilter, stop there + if ( completed ) { + return jqXHR; + } + + // We can fire global events as of now if asked to + // Don't fire events if jQuery.event is undefined in an AMD-usage scenario (#15118) + fireGlobals = jQuery.event && s.global; + + // Watch for a new set of requests + if ( fireGlobals && jQuery.active++ === 0 ) { + jQuery.event.trigger( "ajaxStart" ); + } + + // Uppercase the type + s.type = s.type.toUpperCase(); + + // Determine if request has content + s.hasContent = !rnoContent.test( s.type ); + + // Save the URL in case we're toying with the If-Modified-Since + // and/or If-None-Match header later on + // Remove hash to simplify url manipulation + cacheURL = s.url.replace( rhash, "" ); + + // More options handling for requests with no content + if ( !s.hasContent ) { + + // Remember the hash so we can put it back + uncached = s.url.slice( cacheURL.length ); + + // If data is available and should be processed, append data to url + if ( s.data && ( s.processData || typeof s.data === "string" ) ) { + cacheURL += ( rquery.test( cacheURL ) ? "&" : "?" ) + s.data; + + // #9682: remove data so that it's not used in an eventual retry + delete s.data; + } + + // Add or update anti-cache param if needed + if ( s.cache === false ) { + cacheURL = cacheURL.replace( rantiCache, "$1" ); + uncached = ( rquery.test( cacheURL ) ? "&" : "?" ) + "_=" + ( nonce.guid++ ) + + uncached; + } + + // Put hash and anti-cache on the URL that will be requested (gh-1732) + s.url = cacheURL + uncached; + + // Change '%20' to '+' if this is encoded form body content (gh-2658) + } else if ( s.data && s.processData && + ( s.contentType || "" ).indexOf( "application/x-www-form-urlencoded" ) === 0 ) { + s.data = s.data.replace( r20, "+" ); + } + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + if ( jQuery.lastModified[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-Modified-Since", jQuery.lastModified[ cacheURL ] ); + } + if ( jQuery.etag[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-None-Match", jQuery.etag[ cacheURL ] ); + } + } + + // Set the correct header, if data is being sent + if ( s.data && s.hasContent && s.contentType !== false || options.contentType ) { + jqXHR.setRequestHeader( "Content-Type", s.contentType ); + } + + // Set the Accepts header for the server, depending on the dataType + jqXHR.setRequestHeader( + "Accept", + s.dataTypes[ 0 ] && s.accepts[ s.dataTypes[ 0 ] ] ? + s.accepts[ s.dataTypes[ 0 ] ] + + ( s.dataTypes[ 0 ] !== "*" ? ", " + allTypes + "; q=0.01" : "" ) : + s.accepts[ "*" ] + ); + + // Check for headers option + for ( i in s.headers ) { + jqXHR.setRequestHeader( i, s.headers[ i ] ); + } + + // Allow custom headers/mimetypes and early abort + if ( s.beforeSend && + ( s.beforeSend.call( callbackContext, jqXHR, s ) === false || completed ) ) { + + // Abort if not done already and return + return jqXHR.abort(); + } + + // Aborting is no longer a cancellation + strAbort = "abort"; + + // Install callbacks on deferreds + completeDeferred.add( s.complete ); + jqXHR.done( s.success ); + jqXHR.fail( s.error ); + + // Get transport + transport = inspectPrefiltersOrTransports( transports, s, options, jqXHR ); + + // If no transport, we auto-abort + if ( !transport ) { + done( -1, "No Transport" ); + } else { + jqXHR.readyState = 1; + + // Send global event + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxSend", [ jqXHR, s ] ); + } + + // If request was aborted inside ajaxSend, stop there + if ( completed ) { + return jqXHR; + } + + // Timeout + if ( s.async && s.timeout > 0 ) { + timeoutTimer = window.setTimeout( function() { + jqXHR.abort( "timeout" ); + }, s.timeout ); + } + + try { + completed = false; + transport.send( requestHeaders, done ); + } catch ( e ) { + + // Rethrow post-completion exceptions + if ( completed ) { + throw e; + } + + // Propagate others as results + done( -1, e ); + } + } + + // Callback for when everything is done + function done( status, nativeStatusText, responses, headers ) { + var isSuccess, success, error, response, modified, + statusText = nativeStatusText; + + // Ignore repeat invocations + if ( completed ) { + return; + } + + completed = true; + + // Clear timeout if it exists + if ( timeoutTimer ) { + window.clearTimeout( timeoutTimer ); + } + + // Dereference transport for early garbage collection + // (no matter how long the jqXHR object will be used) + transport = undefined; + + // Cache response headers + responseHeadersString = headers || ""; + + // Set readyState + jqXHR.readyState = status > 0 ? 4 : 0; + + // Determine if successful + isSuccess = status >= 200 && status < 300 || status === 304; + + // Get response data + if ( responses ) { + response = ajaxHandleResponses( s, jqXHR, responses ); + } + + // Use a noop converter for missing script + if ( !isSuccess && jQuery.inArray( "script", s.dataTypes ) > -1 ) { + s.converters[ "text script" ] = function() {}; + } + + // Convert no matter what (that way responseXXX fields are always set) + response = ajaxConvert( s, response, jqXHR, isSuccess ); + + // If successful, handle type chaining + if ( isSuccess ) { + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + modified = jqXHR.getResponseHeader( "Last-Modified" ); + if ( modified ) { + jQuery.lastModified[ cacheURL ] = modified; + } + modified = jqXHR.getResponseHeader( "etag" ); + if ( modified ) { + jQuery.etag[ cacheURL ] = modified; + } + } + + // if no content + if ( status === 204 || s.type === "HEAD" ) { + statusText = "nocontent"; + + // if not modified + } else if ( status === 304 ) { + statusText = "notmodified"; + + // If we have data, let's convert it + } else { + statusText = response.state; + success = response.data; + error = response.error; + isSuccess = !error; + } + } else { + + // Extract error from statusText and normalize for non-aborts + error = statusText; + if ( status || !statusText ) { + statusText = "error"; + if ( status < 0 ) { + status = 0; + } + } + } + + // Set data for the fake xhr object + jqXHR.status = status; + jqXHR.statusText = ( nativeStatusText || statusText ) + ""; + + // Success/Error + if ( isSuccess ) { + deferred.resolveWith( callbackContext, [ success, statusText, jqXHR ] ); + } else { + deferred.rejectWith( callbackContext, [ jqXHR, statusText, error ] ); + } + + // Status-dependent callbacks + jqXHR.statusCode( statusCode ); + statusCode = undefined; + + if ( fireGlobals ) { + globalEventContext.trigger( isSuccess ? "ajaxSuccess" : "ajaxError", + [ jqXHR, s, isSuccess ? success : error ] ); + } + + // Complete + completeDeferred.fireWith( callbackContext, [ jqXHR, statusText ] ); + + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxComplete", [ jqXHR, s ] ); + + // Handle the global AJAX counter + if ( !( --jQuery.active ) ) { + jQuery.event.trigger( "ajaxStop" ); + } + } + } + + return jqXHR; + }, + + getJSON: function( url, data, callback ) { + return jQuery.get( url, data, callback, "json" ); + }, + + getScript: function( url, callback ) { + return jQuery.get( url, undefined, callback, "script" ); + } +} ); + +jQuery.each( [ "get", "post" ], function( _i, method ) { + jQuery[ method ] = function( url, data, callback, type ) { + + // Shift arguments if data argument was omitted + if ( isFunction( data ) ) { + type = type || callback; + callback = data; + data = undefined; + } + + // The url can be an options object (which then must have .url) + return jQuery.ajax( jQuery.extend( { + url: url, + type: method, + dataType: type, + data: data, + success: callback + }, jQuery.isPlainObject( url ) && url ) ); + }; +} ); + +jQuery.ajaxPrefilter( function( s ) { + var i; + for ( i in s.headers ) { + if ( i.toLowerCase() === "content-type" ) { + s.contentType = s.headers[ i ] || ""; + } + } +} ); + + +jQuery._evalUrl = function( url, options, doc ) { + return jQuery.ajax( { + url: url, + + // Make this explicit, since user can override this through ajaxSetup (#11264) + type: "GET", + dataType: "script", + cache: true, + async: false, + global: false, + + // Only evaluate the response if it is successful (gh-4126) + // dataFilter is not invoked for failure responses, so using it instead + // of the default converter is kludgy but it works. + converters: { + "text script": function() {} + }, + dataFilter: function( response ) { + jQuery.globalEval( response, options, doc ); + } + } ); +}; + + +jQuery.fn.extend( { + wrapAll: function( html ) { + var wrap; + + if ( this[ 0 ] ) { + if ( isFunction( html ) ) { + html = html.call( this[ 0 ] ); + } + + // The elements to wrap the target around + wrap = jQuery( html, this[ 0 ].ownerDocument ).eq( 0 ).clone( true ); + + if ( this[ 0 ].parentNode ) { + wrap.insertBefore( this[ 0 ] ); + } + + wrap.map( function() { + var elem = this; + + while ( elem.firstElementChild ) { + elem = elem.firstElementChild; + } + + return elem; + } ).append( this ); + } + + return this; + }, + + wrapInner: function( html ) { + if ( isFunction( html ) ) { + return this.each( function( i ) { + jQuery( this ).wrapInner( html.call( this, i ) ); + } ); + } + + return this.each( function() { + var self = jQuery( this ), + contents = self.contents(); + + if ( contents.length ) { + contents.wrapAll( html ); + + } else { + self.append( html ); + } + } ); + }, + + wrap: function( html ) { + var htmlIsFunction = isFunction( html ); + + return this.each( function( i ) { + jQuery( this ).wrapAll( htmlIsFunction ? html.call( this, i ) : html ); + } ); + }, + + unwrap: function( selector ) { + this.parent( selector ).not( "body" ).each( function() { + jQuery( this ).replaceWith( this.childNodes ); + } ); + return this; + } +} ); + + +jQuery.expr.pseudos.hidden = function( elem ) { + return !jQuery.expr.pseudos.visible( elem ); +}; +jQuery.expr.pseudos.visible = function( elem ) { + return !!( elem.offsetWidth || elem.offsetHeight || elem.getClientRects().length ); +}; + + + + +jQuery.ajaxSettings.xhr = function() { + try { + return new window.XMLHttpRequest(); + } catch ( e ) {} +}; + +var xhrSuccessStatus = { + + // File protocol always yields status code 0, assume 200 + 0: 200, + + // Support: IE <=9 only + // #1450: sometimes IE returns 1223 when it should be 204 + 1223: 204 + }, + xhrSupported = jQuery.ajaxSettings.xhr(); + +support.cors = !!xhrSupported && ( "withCredentials" in xhrSupported ); +support.ajax = xhrSupported = !!xhrSupported; + +jQuery.ajaxTransport( function( options ) { + var callback, errorCallback; + + // Cross domain only allowed if supported through XMLHttpRequest + if ( support.cors || xhrSupported && !options.crossDomain ) { + return { + send: function( headers, complete ) { + var i, + xhr = options.xhr(); + + xhr.open( + options.type, + options.url, + options.async, + options.username, + options.password + ); + + // Apply custom fields if provided + if ( options.xhrFields ) { + for ( i in options.xhrFields ) { + xhr[ i ] = options.xhrFields[ i ]; + } + } + + // Override mime type if needed + if ( options.mimeType && xhr.overrideMimeType ) { + xhr.overrideMimeType( options.mimeType ); + } + + // X-Requested-With header + // For cross-domain requests, seeing as conditions for a preflight are + // akin to a jigsaw puzzle, we simply never set it to be sure. + // (it can always be set on a per-request basis or even using ajaxSetup) + // For same-domain requests, won't change header if already provided. + if ( !options.crossDomain && !headers[ "X-Requested-With" ] ) { + headers[ "X-Requested-With" ] = "XMLHttpRequest"; + } + + // Set headers + for ( i in headers ) { + xhr.setRequestHeader( i, headers[ i ] ); + } + + // Callback + callback = function( type ) { + return function() { + if ( callback ) { + callback = errorCallback = xhr.onload = + xhr.onerror = xhr.onabort = xhr.ontimeout = + xhr.onreadystatechange = null; + + if ( type === "abort" ) { + xhr.abort(); + } else if ( type === "error" ) { + + // Support: IE <=9 only + // On a manual native abort, IE9 throws + // errors on any property access that is not readyState + if ( typeof xhr.status !== "number" ) { + complete( 0, "error" ); + } else { + complete( + + // File: protocol always yields status 0; see #8605, #14207 + xhr.status, + xhr.statusText + ); + } + } else { + complete( + xhrSuccessStatus[ xhr.status ] || xhr.status, + xhr.statusText, + + // Support: IE <=9 only + // IE9 has no XHR2 but throws on binary (trac-11426) + // For XHR2 non-text, let the caller handle it (gh-2498) + ( xhr.responseType || "text" ) !== "text" || + typeof xhr.responseText !== "string" ? + { binary: xhr.response } : + { text: xhr.responseText }, + xhr.getAllResponseHeaders() + ); + } + } + }; + }; + + // Listen to events + xhr.onload = callback(); + errorCallback = xhr.onerror = xhr.ontimeout = callback( "error" ); + + // Support: IE 9 only + // Use onreadystatechange to replace onabort + // to handle uncaught aborts + if ( xhr.onabort !== undefined ) { + xhr.onabort = errorCallback; + } else { + xhr.onreadystatechange = function() { + + // Check readyState before timeout as it changes + if ( xhr.readyState === 4 ) { + + // Allow onerror to be called first, + // but that will not handle a native abort + // Also, save errorCallback to a variable + // as xhr.onerror cannot be accessed + window.setTimeout( function() { + if ( callback ) { + errorCallback(); + } + } ); + } + }; + } + + // Create the abort callback + callback = callback( "abort" ); + + try { + + // Do send the request (this may raise an exception) + xhr.send( options.hasContent && options.data || null ); + } catch ( e ) { + + // #14683: Only rethrow if this hasn't been notified as an error yet + if ( callback ) { + throw e; + } + } + }, + + abort: function() { + if ( callback ) { + callback(); + } + } + }; + } +} ); + + + + +// Prevent auto-execution of scripts when no explicit dataType was provided (See gh-2432) +jQuery.ajaxPrefilter( function( s ) { + if ( s.crossDomain ) { + s.contents.script = false; + } +} ); + +// Install script dataType +jQuery.ajaxSetup( { + accepts: { + script: "text/javascript, application/javascript, " + + "application/ecmascript, application/x-ecmascript" + }, + contents: { + script: /\b(?:java|ecma)script\b/ + }, + converters: { + "text script": function( text ) { + jQuery.globalEval( text ); + return text; + } + } +} ); + +// Handle cache's special case and crossDomain +jQuery.ajaxPrefilter( "script", function( s ) { + if ( s.cache === undefined ) { + s.cache = false; + } + if ( s.crossDomain ) { + s.type = "GET"; + } +} ); + +// Bind script tag hack transport +jQuery.ajaxTransport( "script", function( s ) { + + // This transport only deals with cross domain or forced-by-attrs requests + if ( s.crossDomain || s.scriptAttrs ) { + var script, callback; + return { + send: function( _, complete ) { + script = jQuery( " +{% endmacro %} \ No newline at end of file diff --git a/_preview/32/genindex.html b/_preview/32/genindex.html new file mode 100644 index 0000000..4e66e2a --- /dev/null +++ b/_preview/32/genindex.html @@ -0,0 +1,400 @@ + + + + + + + + Index — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+ +
+ + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
+
+ +
+ + +

Index

+ +
+ +
+ + +
+ +
+
+
+
+
+ +
+
+ + + +
+
+ + + + + + + + + +
+
+ + \ No newline at end of file diff --git a/_preview/32/index.html b/_preview/32/index.html new file mode 100644 index 0000000..960bb69 --- /dev/null +++ b/_preview/32/index.html @@ -0,0 +1 @@ + diff --git a/_preview/32/notebooks/complex-search.html b/_preview/32/notebooks/complex-search.html new file mode 100644 index 0000000..4220c6d --- /dev/null +++ b/_preview/32/notebooks/complex-search.html @@ -0,0 +1,1351 @@ + + + + + + + + Complex Searching with intake-esgf — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+ +
+ + + + + + + + + + + + + + + + + + +
+ + + +
+
+
+
+ +
+ +

ESGF logo

+
+

Complex Searching with intake-esgf

+
+

Overview

+

In this tutorial we will present an interface under design to facilitate complex searching using intake-esgf. intake-esgf is a small intake and intake-esm inspired package under development in ESGF2. Please note that there is a name collison with an existing package in PyPI and conda. You will need to install the package from source.

+
+
+

Prerequisites

+ + + + + + + + + + + + + + + + + + + + + + + + + +

Concepts

Importance

Notes

Install Package

Necessary

Understanding of NetCDF

Helpful

Familiarity with metadata structure

Familiar with intake-esm

Helpful

Similar interface

Transient climate response

Background

+
    +
  • Time to learn: 30 minutes

  • +
+
+
+

Imports

+
+
+
from intake_esgf import ESGFCatalog
+
+
+
+
+
+
+

Initializing the Catalog

+

As with intake-esm we first instantiate the catalog. However, since we will populate the catalog with search results, the catalog starts empty. Internally, we query different ESGF index nodes for information about what datasets you wish to include in your analysis. As ESGF2 is actively working on an index redesign, our catlogs by default point to a Globus (ElasticSearch) based index at ALCF (Argonne Leadership Computing Facility).

+
+
+
cat = ESGFCatalog()
+print(cat)
+for ind in cat.indices: # Which indices are included?
+    print(ind)
+
+
+
+
+
Perform a search() to populate the catalog.
+GlobusESGFIndex('anl-dev')
+
+
+
+
+

We also provide support for connecting to the ESGF1 Solr-based indices. You may specify a server or list or just include True to choose all the federated index nodes.

+
+
+
cat = ESGFCatalog(esgf1_indices="esgf-node.llnl.gov")  # include LLNL
+cat = ESGFCatalog(esgf1_indices=["esgf-node.ornl.gov", "esgf.ceda.ac.uk"])  # ORNL & CEDA
+cat = ESGFCatalog(esgf1_indices=True)  # all federated indices
+for ind in cat.indices:
+    print(ind)
+
+
+
+
+
GlobusESGFIndex('anl-dev')
+SolrESGFIndex('esgf.ceda.ac.uk')
+SolrESGFIndex('esgf-data.dkrz.de')
+SolrESGFIndex('esgf-node.ipsl.upmc.fr')
+SolrESGFIndex('esg-dn1.nsc.liu.se')
+SolrESGFIndex('esgf-node.llnl.gov')
+SolrESGFIndex('esgf.nci.org.au')
+SolrESGFIndex('esgf-node.ornl.gov')
+
+
+
+
+
+
+

Populate the catalog

+

Many times, an analysis will require several variables across multiple experiments. For example, if one were to compute the transient climate response (TCRE), you would need tempererature (tas) and carbon emissions from land (nbp) and ocean (fgco2) for a 1% CO2 increase experiment (1pctCO2) as well as the control experiment (piControl). If TCRE is not in your particular science, that is ok for this notebook. It is a motivating example and the specifics are less important than the search concepts. First, we perform a search in a familiar syntax.

+
+
+
cat.search(
+    experiment_id=["piControl", "1pctCO2"],
+    variable_id=["tas", "fgco2", "nbp"],
+    table_id=["Amon", "Omon", "Lmon"],
+)
+print(cat)
+
+
+
+
+
   Searching indices: 100%|███████████████████████████████|8/8 [    1.36s/index]
+
+
+
Summary information for 399 results:
+mip_era                                                     [CMIP6]
+activity_id                                                  [CMIP]
+institution_id    [CNRM-CERFACS, IPSL, MOHC, MRI, MPI-M, NCAR, N...
+source_id         [CNRM-ESM2-1, CNRM-CM6-1, IPSL-CM6A-LR, CNRM-C...
+experiment_id                                  [piControl, 1pctCO2]
+member_id         [r1i1p1f2, r2i1p1f2, r3i1p1f2, r1i1p1f1, r4i1p...
+table_id                                         [Omon, Amon, Lmon]
+variable_id                                       [fgco2, tas, nbp]
+grid_label                                            [gn, gr, gr1]
+dtype: object
+
+
+
+
+

Internally, this launches simultaneous searches that are combined locally to provide a global view of what datasets are available. While the Solr indices themselves can be searched in distributed fashion, they will not report if an index has failed to return a response. As index nodes go down from time to time, this can leave you with a false impression that you have found all the datasets of interest. By managing the searches locally, intake-esgf can report back to you that an index has failed and that your results may be incomplete.

+

If you would like details about what intake-esgf is doing, look in the local cache directory (${HOME}/.esgf/) for a esgf.log file. This is a full history of everything that intake-esgf has searched, downloaded, or accessed. You can also look at just this session by calling session_log(). In this case you will see how long each index took to return a response and if any failed

+
+
+
print(cat.session_log())
+
+
+
+
+
2023-12-07 09:37:01 search begin experiment_id=['piControl', '1pctCO2'], variable_id=['tas', 'fgco2', 'nbp'], table_id=['Amon', 'Omon', 'Lmon']
+2023-12-07 09:37:02 └─SolrESGFIndex('esgf-node.ipsl.upmc.fr') response_time=1.42 total_time=1.89
+2023-12-07 09:37:03 └─GlobusESGFIndex('anl-dev') results=329 response_time=2.19 total_time=2.19
+2023-12-07 09:37:03 └─SolrESGFIndex('esg-dn1.nsc.liu.se') response_time=1.90 total_time=2.47
+2023-12-07 09:37:06 └─SolrESGFIndex('esgf.ceda.ac.uk') response_time=2.40 total_time=5.31
+2023-12-07 09:37:07 └─SolrESGFIndex('esgf.nci.org.au') response_time=3.26 total_time=6.56
+2023-12-07 09:37:08 └─SolrESGFIndex('esgf-node.ornl.gov') response_time=1.51 total_time=6.92
+2023-12-07 09:37:08 └─SolrESGFIndex('esgf-data.dkrz.de') response_time=2.80 total_time=7.63
+2023-12-07 09:37:11 └─SolrESGFIndex('esgf-node.llnl.gov') response_time=1.49 total_time=10.89
+2023-12-07 09:37:12 search end total_time=11.41
+
+
+
+
+

At this stage of the search you have a catalog full of possibly relevant datasets for your analysis, stored in a pandas dataframe. You are free to view and manipulate this dataframe to help hone these results down. It is available to you as the df member of the ESGFCatalog. You should be careful to only remove rows as internally we could use any column in the downloading of the data. Also note that we have removed the user-facing notion of where the data is hosted. The id column of this dataframe is a list of full dataset_ids which includes the location information. At the point when you are ready to download data, we will choose locations automatically that are fastest for you.

+
+
+
cat.df
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
mip_eraactivity_idinstitution_idsource_idexperiment_idmember_idtable_idvariable_idgrid_labelversionid
0CMIP6CMIPCNRM-CERFACSCNRM-ESM2-1piControlr1i1p1f2Omonfgco2gnv20181115[CMIP6.CMIP.CNRM-CERFACS.CNRM-ESM2-1.piControl...
1CMIP6CMIPCNRM-CERFACSCNRM-CM6-1piControlr1i1p1f2Amontasgrv20180814[CMIP6.CMIP.CNRM-CERFACS.CNRM-CM6-1.piControl....
2CMIP6CMIPCNRM-CERFACSCNRM-ESM2-1piControlr1i1p1f2Amontasgrv20181115[CMIP6.CMIP.CNRM-CERFACS.CNRM-ESM2-1.piControl...
3CMIP6CMIPCNRM-CERFACSCNRM-ESM2-1piControlr1i1p1f2Lmonnbpgrv20181115[CMIP6.CMIP.CNRM-CERFACS.CNRM-ESM2-1.piControl...
4CMIP6CMIPCNRM-CERFACSCNRM-CM6-11pctCO2r1i1p1f2Amontasgrv20180626[CMIP6.CMIP.CNRM-CERFACS.CNRM-CM6-1.1pctCO2.r1...
....................................
1304CMIP6CMIPNASA-GISSGISS-E2-1-G1pctCO2r102i1p1f1Lmonnbpgnv20190815[CMIP6.CMIP.NASA-GISS.GISS-E2-1-G.1pctCO2.r102...
1309CMIP6CMIPMRIMRI-ESM2-01pctCO2r1i2p1f1Amontasgnv20191205[CMIP6.CMIP.MRI.MRI-ESM2-0.1pctCO2.r1i2p1f1.Am...
2048CMIP6CMIPMIROCMIROC-ES2HpiControlr1i1p4f2Omonfgco2gr1v20230904[CMIP6.CMIP.MIROC.MIROC-ES2H.piControl.r1i1p4f...
2050CMIP6CMIPE3SM-ProjectE3SM-2-0-NARRM1pctCO2r1i1p1f1Amontasgrv20230427[CMIP6.CMIP.E3SM-Project.E3SM-2-0-NARRM.1pctCO...
2051CMIP6CMIPE3SM-ProjectE3SM-2-0-NARRMpiControlr1i1p1f1Amontasgrv20230505[CMIP6.CMIP.E3SM-Project.E3SM-2-0-NARRM.piCont...
+

399 rows × 11 columns

+
+
+
+
+

Model Groups

+

However, intake-esgf also provides you with some tools to help locate relevant data for your analysis. When conducting these kinds of analyses, we are seeking for unique combinations of a source_id, member_id, and grid_label that have all the variables that we need. We call these model groups. In an ESGF search, it is common to find a model that has, for example, a tas for r1i1p1f1 but not a fgco2. Sorting this out is time consuming and labor intensive. So first, we provide you a function to print out all model groups with the following function.

+
+
+
cat.model_groups().to_frame()
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
variable_id
source_idmember_idgrid_label
ACCESS-CM2r1i1p1f1gn2
ACCESS-ESM1-5r1i1p1f1gn6
AWI-CM-1-1-MRr1i1p1f1gn2
AWI-ESM-1-1-LRr1i1p1f1gn2
BCC-CSM2-MRr1i1p1f1gn3
............
UKESM1-0-LLr1i1p1f2gn6
r2i1p1f2gn3
r3i1p1f2gn3
r4i1p1f2gn3
UKESM1-1-LLr1i1p1f2gn6
+

148 rows × 1 columns

+
+
+

The function model_groups() returns a pandas Series (converted to a dataframe here for printing) with all unique combinations of (source_id,member_id,grid_label) along with the dataset count for each. This helps illustrate why it can be so difficult to locate all the data relevant to a given analysis. At the time of this writing, there are 148 model groups but relatively few of them with all 6 (2 experiments and 3 variables) datasets that we need. Furthermore, you cannot rely on a model group using r1i1p1f1 for its primary result. The results above show that UKESM does not even use f1 at all, further complicating the process of finding results.

+

In addition to this notion of model groups, intake-esgf provides you a method remove_incomplete() for determing which model groups you wish to keep in the current search. Internally, we will group the search results dataframe by model groups and apply a function of your design to the grouped portion of the dataframe. For example, for the current work, I could just check that there are 6 datasets in the sub-dataframe.

+
+
+
def shall_i_keep_it(sub_df):
+    if len(sub_df) == 6:
+        return True
+    return False
+
+
+cat.remove_incomplete(shall_i_keep_it)
+cat.model_groups().to_frame()
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
variable_id
source_idmember_idgrid_label
ACCESS-ESM1-5r1i1p1f1gn6
CanESM5r1i1p1f1gn6
r1i1p2f1gn6
CanESM5-1r1i1p1f1gn6
r1i1p2f1gn6
CanESM5-CanOEr1i1p2f1gn6
CESM2r1i1p1f1gn6
CESM2-FV2r1i1p1f1gn6
CESM2-WACCMr1i1p1f1gn6
CESM2-WACCM-FV2r1i1p1f1gn6
CMCC-ESM2r1i1p1f1gn6
GISS-E2-1-Gr101i1p1f1gn6
r102i1p1f1gn6
INM-CM4-8r1i1p1f1gr16
INM-CM5-0r1i1p1f1gr16
MIROC-ES2Lr1i1p1f2gn6
MPI-ESM-1-2-HAMr1i1p1f1gn6
MPI-ESM1-2-LRr1i1p1f1gn6
MRI-ESM2-0r1i2p1f1gn6
NorCPM1r1i1p1f1gn6
NorESM2-LMr1i1p1f1gn6
r1i1p4f1gn6
NorESM2-MMr1i1p1f1gn6
UKESM1-0-LLr1i1p1f2gn6
UKESM1-1-LLr1i1p1f2gn6
+
+
+

You could write a much more complex check–it depends on what is relevant to your analysis. The effect is that the list of possible models with consistent results is now much more manageable. This method has the added benefit of forcing the user to be concrete about which models were included in an analysis.

+
+
+

Removing Additional Variants

+

It may also be that you wish to only include a single member_id in your analysis. The above search shows we have a few models with multiple variants that have all 6 required datasets. To be fair to those that only have 1, you may wish to only keep the smallest variant. We also provide this function as part of the ESGFCatalog object.

+
+
+
cat.remove_ensembles()
+cat.model_groups().to_frame()
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
variable_id
source_idmember_idgrid_label
ACCESS-ESM1-5r1i1p1f1gn6
CanESM5r1i1p1f1gn6
CanESM5-1r1i1p1f1gn6
CanESM5-CanOEr1i1p2f1gn6
CESM2r1i1p1f1gn6
CESM2-FV2r1i1p1f1gn6
CESM2-WACCMr1i1p1f1gn6
CESM2-WACCM-FV2r1i1p1f1gn6
CMCC-ESM2r1i1p1f1gn6
GISS-E2-1-Gr101i1p1f1gn6
INM-CM4-8r1i1p1f1gr16
INM-CM5-0r1i1p1f1gr16
MIROC-ES2Lr1i1p1f2gn6
MPI-ESM-1-2-HAMr1i1p1f1gn6
MPI-ESM1-2-LRr1i1p1f1gn6
MRI-ESM2-0r1i2p1f1gn6
NorCPM1r1i1p1f1gn6
NorESM2-LMr1i1p1f1gn6
NorESM2-MMr1i1p1f1gn6
UKESM1-0-LLr1i1p1f2gn6
UKESM1-1-LLr1i1p1f2gn6
+
+
+
+
+

Summary

+

At this point, you would be ready to use to_dataset_dict() to download and load all datasets into a dictionary for analysis. The point of this notebook however is to expose the search capabilities. It is our goal to make annoying and time-consuming tasks easier by providing you smart interfaces for common operations. Let us know what else is painful for you in locating relevant data for your science.

+
+
+ + + + +
+ + +
+
+
+ +
+
+ + + +
+
+ + + + + + + + + +
+
+ + \ No newline at end of file diff --git a/_preview/32/notebooks/enso-globus-flow.html b/_preview/32/notebooks/enso-globus-flow.html new file mode 100644 index 0000000..7f457fe --- /dev/null +++ b/_preview/32/notebooks/enso-globus-flow.html @@ -0,0 +1,3327 @@ + + + + + + + + ENSO Calculations using Globus Flows — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+
+ +
+ +

Globus logo +ESGF logo

+
+

ENSO Calculations using Globus Flows

+
+

Overview

+

In this workflow, we combine topics covered in previous Pythia Foundations and CMIP6 Cookbook content to compute the Niño 3.4 Index to multiple datasets, with the primary computations occuring on a remote machine. As a refresher of what the ENSO 3.4 index is, please see the following text, which is also included in the ENSO Xarray content in the Pythia Foundations content.

+
+

Niño 3.4 (5N-5S, 170W-120W): The Niño 3.4 anomalies may be thought of as representing the average equatorial SSTs across the Pacific from about the dateline to the South American coast. The Niño 3.4 index typically uses a 5-month running mean, and El Niño or La Niña events are defined when the Niño 3.4 SSTs exceed +/- 0.4C for a period of six months or more.

+
+
+

Niño X Index computation: a) Compute area averaged total SST from Niño X region; b) Compute monthly climatology (e.g., 1950-1979) for area averaged total SST from Niño X region, and subtract climatology from area averaged total SST time series to obtain anomalies; c) Smooth the anomalies with a 5-month running mean; d) Normalize the smoothed values by its standard deviation over the climatological period.

+
+

+

The previous cookbook, we ran this in a single notebook locally. In this example, we aim to execute the workflow on a remote machine, with only the visualizion of the dataset occuring locally.

+

The overall goal of this tutorial is to introduce the idea of functions as a service with Globus, and how this can be used to calculate ENSO indices.

+
+
+

Prerequisites

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Concepts

Importance

Notes

Intro to Xarray

Necessary

hvPlot Basics

Necessary

Interactive Visualization with hvPlot

Understanding of NetCDF

Helpful

Familiarity with metadata structure

Calculating ENSO with Xarray

Neccessary

Understanding of Masking and Xarray Functions

Dask

Helpful

+
    +
  • Time to learn: 30 minutes

  • +
+
+
+

Imports

+
+
+
import hvplot.xarray
+import holoviews as hv
+import numpy as np
+import hvplot.xarray
+import matplotlib.pyplot as plt
+import cartopy.crs as ccrs
+from intake_esgf import ESGFCatalog
+import xarray as xr
+import cf_xarray
+import warnings
+import json
+import os
+import time
+import globus_sdk
+from globus_compute_sdk import Client, Executor
+from globus_automate_client import FlowsClient
+
+# Import Globus scopes
+from globus_sdk.scopes import SearchScopes
+from globus_sdk.scopes import TransferScopes
+from globus_sdk.scopes import FlowsScopes
+warnings.filterwarnings("ignore")
+
+hv.extension("bokeh")
+
+
+
+
+
+
+
+
+
+ + + + + + + + + +
+
+
+
+
+

Accessing our Data and Computing the ENSO 3.4 Index

+

As mentioned in the introduction, we are utilizing functions from the previous ENSO notebooks. In order to run these with Globus Compute, we need to comply with the following requirements

+
    +
  • All libraries/packages used in the function need to be installed on the globus compute endpoint

  • +
  • All functions/libraries/packages need to be imported and defined within the function to execute

  • +
  • The output from the function needs to serializable (ex. xarray.Dataset, numpy.array)

  • +
+

Using these constraints, we setup the following function, with the key parameter being which model (source_id) to compare. Two examples here include The National Center for Atmospheric Research (NCAR) Model CESM2 and the Model for Interdisciplinary Research on Climate (MIROC) Model MIROC6. Valid responses for this exercise include:

+
    +
  • ACCESS-ESM1-5

  • +
  • EC-Earth3-CC

  • +
  • MPI-ESM1-2-LR

  • +
  • CanESM5

  • +
  • MIROC6

  • +
  • EC-Earth3

  • +
  • CESM2

  • +
  • EC-Earth3-Veg

  • +
  • NorCPM1

  • +
+
+
+
def run_plot_enso(source_id, return_path=False):
+    import numpy as np
+    import matplotlib.pyplot as plt
+    from intake_esgf import ESGFCatalog
+    import xarray as xr
+    import cf_xarray
+    import warnings
+    warnings.filterwarnings("ignore")
+
+    def search_esgf(source_id):
+
+        # Search and load the ocean surface temperature (tos)
+        cat = ESGFCatalog(esgf1_indices="anl-dev")
+        cat.search(
+            activity_id="CMIP",
+            experiment_id="historical",
+            variable_id=["tos"],
+            source_id=source_id,
+            member_id='r1i1p1f1',
+            grid_label="gn",
+            table_id="Omon",
+        )
+        try:
+            tos_ds = cat.to_dataset_dict()["tos"]
+        except ValueError:
+            print(f"Issue with {institution_id} dataset")
+
+        return tos_ds
+
+    def calculate_enso(ds):
+
+        # Subset the El Nino 3.4 index region
+        dso = ds.where(
+        (ds.cf["latitude"] < 5) & (ds.cf["latitude"] > -5) & (ds.cf["longitude"] > 190) & (ds.cf["longitude"] < 240), drop=True
+        )
+
+        # Calculate the monthly means
+        gb = dso.tos.groupby('time.month')
+
+        # Subtract the monthly averages, returning the anomalies
+        tos_nino34_anom = gb - gb.mean(dim='time')
+
+        # Determine the non-time dimensions and average using these
+        non_time_dims = set(tos_nino34_anom.dims)
+        non_time_dims.remove(ds.tos.cf["T"].name)
+        weighted_average = tos_nino34_anom.weighted(ds["areacello"].fillna(0)).mean(dim=list(non_time_dims))
+
+        # Calculate the rolling average
+        rolling_average = weighted_average.rolling(time=5, center=True).mean()
+        std_dev = weighted_average.std()
+        return rolling_average / std_dev
+
+    def add_enso_thresholds(da, threshold=0.4):
+
+        # Conver the xr.DataArray into an xr.Dataset
+        ds = da.to_dataset()
+
+        # Cleanup the time and use the thresholds
+        try:
+            ds["time"]= ds.indexes["time"].to_datetimeindex()
+        except:
+            pass
+        ds["tos_gt_04"] = ("time", ds.tos.where(ds.tos >= threshold, threshold).data)
+        ds["tos_lt_04"] = ("time", ds.tos.where(ds.tos <= -threshold, -threshold).data)
+
+        # Add fields for the thresholds
+        ds["el_nino_threshold"] = ("time", np.zeros_like(ds.tos) + threshold)
+        ds["la_nina_threshold"] = ("time", np.zeros_like(ds.tos) - threshold)
+
+        return ds
+    
+    ds = search_esgf(source_id)
+    enso_index = add_enso_thresholds(calculate_enso(ds).compute())
+    enso_index.attrs = ds.attrs
+    enso_index.attrs["model"] = source_id
+
+    return enso_index
+
+
+
+
+
+
+

Configure Globus Compute

+

Now that we have our functions, we can move toward using Globus Flows and Globus Compute.

+

Globus Flows is a reliable and secure platform for orchestrating and performing research data management and analysis tasks. A flow is often needed to manage data coming from instruments, e.g., image files can be moved from local storage attached to a microscope to a high-performance storage system where they may be accessed by all members of the research project.

+

More examples of creating and running flows can be found on our demo instance.

+
+

Setup a Globus Compute Endpoint

+

Globus Compute (GC) is a service that allows python functions to be sent to remote points, executed, with the output from that function returned to the user. While there are a collection of endpoints already installed, we highlight in this section the steps required to configure for yourself. This idea is also known as “serverless” computing, where users do not need to think about the underlying infrastructure executing the code, but rather submit functions to be run and returned.

+

To start a GC endpoint at your system you need to login, configure a conda environment, and pip install globus-compute-endpoint.

+

You can then run:

+

globus-compute-endpoint configure esgf-test

+

globus-compute-endpoint start esgf-test

+

Note that by default your endpoint will execute tasks on the login node (if you are using a High Performance Compute System). Additional configuration is needed for the endpoint to provision compute nodes. For example, here is the documentation on configuring globus compute endpoints on the Argonne Leadership Computing Facility’s Polaris system

+
    +
  • https://globus-compute.readthedocs.io/en/latest/endpoints.html#polaris-alcf

  • +
+
+
+
endpoint_id = "6836803d-9831-4dc5-b159-eb658250e4bc"
+personal_endpoint_id = "92bb829c-9d88-11ed-b579-33287ee02ec7"
+
+
+
+
+
+
+

Setup an Executor to Run our Functions

+

Once we have our compute endpoint ID, we need to pass this to our executor, which will be used to pass our functions from our local machine to the machine we would like to compute on.

+
+
+
gce = Executor(endpoint_id=endpoint_id)
+gce.amqp_port = 443
+gce
+
+
+
+
+
Executor<ep_id:6836803d-9831-4dc5-b159-eb658250e4bc; tg_id:None; bs:128>
+
+
+
+
+
+
+

Test our Functions

+

Now that we have our functions prepared, and an executor to run on, we can test them out using our endpoint!

+

We pass in our function name, and the additional arguments for our functions. For example, let’s look at comparing at the NCAR and MIROC modeling center’s CMIP6 simulations.

+
+
+
ncar_task = gce.submit(run_plot_enso, source_id='CESM2')
+miroc_task = gce.submit(run_plot_enso, source_id='MIROC6')
+
+
+
+
+

The results are started as python objects, with the resultant datasets available using .result()

+
+
+
ncar_ds = ncar_task.result()
+miroc_ds = miroc_task.result()
+
+ncar_ds
+
+
+
+
+
+ + + + + + + + + + + + + + +
<xarray.Dataset> Size: 111kB
+Dimensions:            (time: 1980)
+Coordinates:
+  * time               (time) datetime64[ns] 16kB 1850-01-15T13:00:00.000008 ...
+    month              (time) int64 16kB 1 2 3 4 5 6 7 8 ... 5 6 7 8 9 10 11 12
+Data variables:
+    tos                (time) float64 16kB nan nan 0.9395 ... -0.5907 nan nan
+    tos_gt_04          (time) float64 16kB 0.4 0.4 0.9395 1.01 ... 0.4 0.4 0.4
+    tos_lt_04          (time) float64 16kB -0.4 -0.4 -0.4 ... -0.5907 -0.4 -0.4
+    el_nino_threshold  (time) float64 16kB 0.4 0.4 0.4 0.4 ... 0.4 0.4 0.4 0.4
+    la_nina_threshold  (time) float64 16kB -0.4 -0.4 -0.4 ... -0.4 -0.4 -0.4
+Attributes: (12/46)
+    Conventions:            CF-1.7 CMIP-6.2
+    activity_id:            CMIP
+    case_id:                15
+    cesm_casename:          b.e21.BHIST.f09_g17.CMIP6-historical.001
+    contact:                cesm_cmip6@ucar.edu
+    creation_date:          2019-01-16T21:31:39Z
+    ...                     ...
+    sub_experiment_id:      none
+    branch_time_in_parent:  219000.0
+    branch_time_in_child:   674885.0
+    branch_method:          standard
+    further_info_url:       https://furtherinfo.es-doc.org/CMIP6.NCAR.CESM2.h...
+    model:                  CESM2
+
+
+
+
ncar_ds = ncar_task.result()
+
+
+
+
+
+
+

Plot our Data

+

Now that we have pre-computed datasets, the last step is to visualize the output. In the other example, we stepped through how to utilize the .hvplot tool to create interactive displays of ENSO values. We will utilize that functionality here, wrapping into a function.

+
+
+
def plot_enso(ds):
+    el_nino = ds.hvplot.area(x="time", y2='tos_gt_04', y='el_nino_threshold', color='red', hover=False)
+    el_nino_label = hv.Text(ds.isel(time=40).time.values, 2, 'El Niño').opts(text_color='red',)
+
+    # Create the La Niña area graphs
+    la_nina = ds.hvplot.area(x="time", y2='tos_lt_04', y='la_nina_threshold', color='blue', hover=False)
+    la_nina_label = hv.Text(ds.isel(time=-40).time.values, -2, 'La Niña').opts(text_color='blue')
+
+    # Plot a timeseries of the ENSO 3.4 index
+    enso = ds.tos.hvplot(x='time', line_width=0.5, color='k', xlabel='Year', ylabel='ENSO 3.4 Index')
+
+    # Combine all the plots into a single plot
+    return (el_nino_label * la_nina_label * el_nino * la_nina * enso).opts(title=f'{ds.attrs["model"]} {ds.attrs["source_id"]} \n Ensemble Member: {ds.attrs["variant_label"]}')
+
+
+
+
+

Once we have the function, we apply to our two datasets and combine into a single column.

+
+
+
(plot_enso(ncar_ds) + plot_enso(miroc_ds)).cols(1)
+
+
+
+
+
+
+
+
+
+
+
+
+

Modify to Run in a Globus Flow

+

Next, let’s modify our script to:

+
    +
  • Search and download ESGF data

  • +
  • Calculate ENSO

  • +
  • Visualize and save the output as an html file

  • +
+
+
+
def run_plot_enso(source_id, return_path=False):
+    import numpy as np
+    import matplotlib.pyplot as plt
+    from intake_esgf import ESGFCatalog
+    import xarray as xr
+    import cf_xarray
+    import warnings
+    import holoviews as hv
+    import os
+    import hvplot
+    import hvplot.xarray
+    hv.extension('bokeh')    
+    warnings.filterwarnings("ignore")
+
+    def search_esgf(source_id):
+
+        # Search and load the ocean surface temperature (tos)
+        cat = ESGFCatalog(esgf1_indices="anl-dev")
+        cat.search(
+            activity_id="CMIP",
+            experiment_id="historical",
+            variable_id=["tos"],
+            source_id=source_id,
+            member_id='r1i1p1f1',
+            grid_label="gn",
+            table_id="Omon",
+        )
+        try:
+            tos_ds = cat.to_dataset_dict()["tos"]
+        except ValueError:
+            print(f"Issue with {institution_id} dataset")
+
+        return tos_ds
+
+    def calculate_enso(ds):
+
+        # Subset the El Nino 3.4 index region
+        dso = ds.where(
+        (ds.cf["latitude"] < 5) & (ds.cf["latitude"] > -5) & (ds.cf["longitude"] > 190) & (ds.cf["longitude"] < 240), drop=True
+        )
+
+        # Calculate the monthly means
+        gb = dso.tos.groupby('time.month')
+
+        # Subtract the monthly averages, returning the anomalies
+        tos_nino34_anom = gb - gb.mean(dim='time')
+
+        # Determine the non-time dimensions and average using these
+        non_time_dims = set(tos_nino34_anom.dims)
+        non_time_dims.remove(ds.tos.cf["T"].name)
+        weighted_average = tos_nino34_anom.weighted(ds["areacello"].fillna(0)).mean(dim=list(non_time_dims))
+
+        # Calculate the rolling average
+        rolling_average = weighted_average.rolling(time=5, center=True).mean()
+        std_dev = weighted_average.std()
+        return rolling_average / std_dev
+
+    def add_enso_thresholds(da, threshold=0.4):
+
+        # Conver the xr.DataArray into an xr.Dataset
+        ds = da.to_dataset()
+
+        # Cleanup the time and use the thresholds
+        try:
+            ds["time"]= ds.indexes["time"].to_datetimeindex()
+        except:
+            pass
+        ds["tos_gt_04"] = ("time", ds.tos.where(ds.tos >= threshold, threshold).data)
+        ds["tos_lt_04"] = ("time", ds.tos.where(ds.tos <= -threshold, -threshold).data)
+
+        # Add fields for the thresholds
+        ds["el_nino_threshold"] = ("time", np.zeros_like(ds.tos) + threshold)
+        ds["la_nina_threshold"] = ("time", np.zeros_like(ds.tos) - threshold)
+
+        return ds
+
+    def plot_enso(ds):
+        el_nino = ds.hvplot.area(x="time", y2='tos_gt_04', y='el_nino_threshold', color='red', hover=False)
+        el_nino_label = hv.Text(ds.isel(time=40).time.values, 2, 'El Niño').opts(text_color='red',)
+
+        # Create the La Niña area graphs
+        la_nina = ds.hvplot.area(x="time", y2='tos_lt_04', y='la_nina_threshold', color='blue', hover=False)
+        la_nina_label = hv.Text(ds.isel(time=-40).time.values, -2, 'La Niña').opts(text_color='blue')
+
+        # Plot a timeseries of the ENSO 3.4 index
+        enso = ds.tos.hvplot(x='time', line_width=0.5, color='k', xlabel='Year', ylabel='ENSO 3.4 Index')
+
+        # Combine all the plots into a single plot
+        return (el_nino_label * la_nina_label * el_nino * la_nina * enso).opts(title=f'{ds.attrs["model"]} {ds.attrs["source_id"]} \n Ensemble Member: {ds.attrs["variant_label"]}')
+    
+    ds = search_esgf(source_id)
+    enso_index = add_enso_thresholds(calculate_enso(ds).compute())
+    enso_index.attrs = ds.attrs
+    enso_index.attrs["model"] = source_id
+    
+    plot = plot_enso(enso_index)
+    
+    if return_path:
+        path = f"{os.getcwd()}/plot.html"
+        hvplot.save(plot, path)
+    
+    else:
+        path = plot
+
+    return path
+
+
+
+
+
+
+
sample = run_plot_enso(source_id="MPI-ESM1-2-LR", return_path=True)
+sample
+
+
+
+
+
+
+
+
+
+ + + + + + + + + +
+
'/Users/mgrover/git_repos/esgf-cookbook/notebooks/plot.html'
+
+
+
+
+
+

Deploy the Function as a Flow

+

Now, let’s deploy this function within a Globus-Flow!

+
+

Configure Authentication

+
+
+
# Set Native App client
+CLIENT_ID = '16659080-53cd-45c7-8737-833d3e719f32'  # From 
+native_auth_client = globus_sdk.NativeAppAuthClient(CLIENT_ID)
+
+# Initialize Globus Auth flow with relevant scopes
+auth_kwargs = {"requested_scopes": [FlowsScopes.manage_flows, SearchScopes.all, TransferScopes.all]}
+native_auth_client.oauth2_start_flow(**auth_kwargs)
+
+# Explicitly start the flow
+print(f"Login Here:\n\n{native_auth_client.oauth2_get_authorize_url()}")
+
+
+
+
+
Login Here:
+
+https://auth.globus.org/v2/oauth2/authorize?client_id=16659080-53cd-45c7-8737-833d3e719f32&redirect_uri=https%3A%2F%2Fauth.globus.org%2Fv2%2Fweb%2Fauth-code&scope=https%3A%2F%2Fauth.globus.org%2Fscopes%2Feec9b274-0c81-4334-bdc2-54e90e689b9a%2Fmanage_flows+urn%3Aglobus%3Aauth%3Ascope%3Asearch.api.globus.org%3Aall+urn%3Aglobus%3Aauth%3Ascope%3Atransfer.api.globus.org%3Aall&state=_default&response_type=code&code_challenge=4-QLwrs2LCzfJS6ezxw0pa2tykJFHb7x9_bbRm-jy2c&code_challenge_method=S256&access_type=online
+
+
+
+
+

Once we have the authentication code, insert it in the cell below.

+
+
+
# Add the authorization code that you got from Globus
+auth_code = "CFnYvreOnCm0HXtBdat9RiiKdGO4kl"
+
+# Exchange code for access tokens
+response_token = native_auth_client.oauth2_exchange_code_for_tokens(auth_code)
+
+# Split tokens based on their resource server
+# This is the token that allows to create a flow client
+# but is before the flow gets authorized, after which 
+# you get another (more powerful) access token code
+tokens = response_token.by_resource_server
+
+# Create a variable for storing flow scope tokens. Each newly deployed flow scope needs to be authorized separately,
+# and will have its own set of tokens. Save each of these tokens by scope.
+# Whatever is in this dictionary has passed the deployment authorization,
+# meaning you do not need to authorize over and over each time you want to run the flow.
+saved_flow_scopes = {}
+
+# Add a callback to the flows client for fetching scopes. It will draw scopes from `saved_flow_scopes`
+def get_flow_authorizer(flow_url, flow_scope, client_id):
+    return globus_sdk.AccessTokenAuthorizer(access_token=saved_flow_scopes[flow_scope]['access_token'])
+
+# Setup the Flow client, using Globus Auth tokens to access the Globus Flows service, and
+# set the `get_flow_authorizer` callback for any new flows we authorize.
+flows_authorizer = globus_sdk.AccessTokenAuthorizer(access_token=tokens['flows.globus.org']['access_token'])
+flows_client = FlowsClient.new_client(CLIENT_ID, get_flow_authorizer, flows_authorizer)
+
+
+
+
+
+
+

Configure the Globus Compute Client and Register our Function

+

Now that we have a function to run our analysis, we need to register it!

+
+
+
print("Instantiating a Globus Compute client ...")
+gcc = Client()
+
+# Register the function within the Globus ecosystem
+print("Registering the Globus Compute function ...")
+compute_function_id = gcc.register_function(run_plot_enso)
+
+print(f"Compute function ID: {compute_function_id}")
+
+
+
+
+
Instantiating a Globus Compute client ...
+Registering the Globus Compute function ...
+Compute function ID: 72310e16-4dfb-43e5-884a-2c9d507ee711
+
+
+
+
+
+
+

Define our Flow

+

We need to define our flow - setting the expected parameters, and transferring the output html file at the end of the analysis. Notice we pass in the function ID we setup in the cell above.

+
+
+
flow_definition = {
+    "Comment": "Compute ENSO Index of a Given CMIP6 Model",
+    "StartAt": "RunPlotENSO",
+    "States": {
+        "RunPlotENSO": {
+            "Comment": "ESGF Search and Plot",
+            "Type": "Action",
+            "ActionUrl": "https://compute.actions.globus.org/",
+            "Parameters": {
+                "endpoint.$": "$.input.compute.id",
+                "function": compute_function_id,
+                "kwargs": {"source_id.$":"$.input.compute_input_data.source_id",
+                             "return_path": True
+                            }
+            },
+            "ResultPath": "$.ESGF_output",
+            "WaitTime": 600,
+            "Next": "TransferResult"
+        },
+        "TransferResult": {
+            "Comment": "Transfer files",
+            "Type": "Action",
+            "ActionUrl": "https://actions.automate.globus.org/transfer/transfer",
+            "Parameters": {
+                "source_endpoint_id.$": "$.input.destination.id",
+                "destination_endpoint_id.$": "$.input.destination.id",
+                "transfer_items": [
+                    {
+                        "source_path.$": "$.ESGF_output.details.result[0]",
+                        "destination_path.$": "$.input.destination.path",
+                        "recursive": False
+                    }
+                ]
+            },
+            "ResultPath": "$.TransferFiles",
+            "WaitTime": 300,
+            "End": True
+        }
+    }
+}
+
+
+
+
+
+
+

Configure the Schema

+

We also need to define the schema, or what is expected, for our flow.

+
+
+
input_schema = {
+    "required": [
+        "input"
+    ],
+    "properties": {
+        "input": {
+            "type": "object",
+            "required": [
+                "compute",
+                "destination",
+                "compute_input_data"
+            ],
+            "properties": {
+                "compute": {
+                    "type": "object",
+                    "title": "Select source collection and path",
+                    "description": "The source collection and path (path MUST end with a slash)",
+                    "required": [
+                        "id",
+                    ],
+                    "properties": {
+                        "id": {
+                            "type": "string",
+                            "format": "uuid",
+                            "default": endpoint_id
+                        },
+                    },
+                    "additionalProperties": False
+                },
+                "destination": {
+                    "type": "object",
+                    "title": "Select destination collection and path",
+                    "description": "The destination collection and path (path MUST end with a slash); default collection is 'Globus Tutorials on ALCF Eagle'",
+                    "required": [
+                        "id",
+                        "path"
+                    ],
+                    "properties": {
+                        "id": {
+                            "type": "string",
+                            "format": "uuid",
+                            "default": personal_endpoint_id
+                        },
+                        "path": {
+                            "type": "string",
+                            "default": f"/plot.html"
+                        }
+                    },
+                    "additionalProperties": False
+                },
+                # Compute function input data
+                "compute_input_data": {
+                    "type": "object",
+                    "title": "Input data required by compute function.",
+                    "description": "Compute function input data.",
+                    "required": [
+                        "source_id",
+                    ],
+                    "properties": {
+                        "source_id": {
+                            "type": "string",
+                            "description": "Source Identifier for the model of interest",
+                            "default": "CESM2"
+                        },
+                    },
+                    "additionalProperties": False
+                }
+            }
+        }
+    }
+}
+
+
+
+
+
+
+

Deploy the flow

+

We can deploy the flow as a test, passing in the default settings and schema.

+
+
+
# Deploy the flow
+flow = flows_client.deploy_flow(
+  flow_definition, 
+  title = "ESGF ENSO Test",
+ input_schema=input_schema,
+)
+
+
+
+
+

We need a few parameters to actually run the deployed flow.

+
+
+
# Store flow information
+flow_id = flow['id']
+flow_scope = flow['globus_auth_scope']
+flow_name = flow['title']
+
+
+
+
+
+
+
# Once deployed, the flow needs to be authorized
+# If the flow scope is already saved, we don't need a new one.
+if flow_scope not in saved_flow_scopes:
+#if True:
+    
+    # Do a native app authentication flow and get tokens that include the newly deployed flow scope
+    native_auth_client = globus_sdk.NativeAppAuthClient(CLIENT_ID)
+    native_auth_client.oauth2_start_flow(requested_scopes=flow_scope)
+    print(f"Login Here:\n\n{native_auth_client.oauth2_get_authorize_url()}")
+    
+    # Authenticate and come back with your authorization code; paste it into the prompt below.
+    auth_code = input('Authorization Code: ')
+    token_response = native_auth_client.oauth2_exchange_code_for_tokens(auth_code)
+    
+    # Save the new token in a place where the flows client can retrieve it.
+    saved_flow_scopes[flow_scope] = token_response.by_scopes[flow_scope]
+    
+    # These are the saved scopes for the flow
+    print(json.dumps(saved_flow_scopes, indent=2))
+
+
+
+
+
Login Here:
+
+https://auth.globus.org/v2/oauth2/authorize?client_id=16659080-53cd-45c7-8737-833d3e719f32&redirect_uri=https%3A%2F%2Fauth.globus.org%2Fv2%2Fweb%2Fauth-code&scope=https%3A%2F%2Fauth.globus.org%2Fscopes%2Fc65bffa0-bbea-4295-ab38-645eca9cdd54%2Fflow_c65bffa0_bbea_4295_ab38_645eca9cdd54_user&state=_default&response_type=code&code_challenge=ZqlFzOoWi3n_p3KFNF4T-HMsAAiR8rIawhUk6dRWsRM&code_challenge_method=S256&access_type=online
+
+
+
{
+  "https://auth.globus.org/scopes/632e1f8b-7e3e-4ffb-a055-cd388659d87c/flow_632e1f8b_7e3e_4ffb_a055_cd388659d87c_user": {
+    "scope": "https://auth.globus.org/scopes/632e1f8b-7e3e-4ffb-a055-cd388659d87c/flow_632e1f8b_7e3e_4ffb_a055_cd388659d87c_user",
+    "access_token": "AgM8lx1V0P02x8dJj6dG2Qx6a8K5gWWvlky6vkP4Dq0okEWMxVtOC2qeJPzjxoMpaK4qeOE88DOqlKCa671p6HPJ2Wz",
+    "refresh_token": null,
+    "token_type": "Bearer",
+    "expires_at_seconds": 1713467553,
+    "resource_server": "632e1f8b-7e3e-4ffb-a055-cd388659d87c"
+  },
+  "https://auth.globus.org/scopes/c65bffa0-bbea-4295-ab38-645eca9cdd54/flow_c65bffa0_bbea_4295_ab38_645eca9cdd54_user": {
+    "scope": "https://auth.globus.org/scopes/c65bffa0-bbea-4295-ab38-645eca9cdd54/flow_c65bffa0_bbea_4295_ab38_645eca9cdd54_user",
+    "access_token": "AgwwJ8rKnOVDdbYrD3Y99VWpY6gKq7jkyOrBy8qvEaopOMQJoHlCvlNQBMa95jdlyKG1E2rl0rWYGs8vqb0NSNbm7b",
+    "refresh_token": null,
+    "token_type": "Bearer",
+    "expires_at_seconds": 1713468049,
+    "resource_server": "c65bffa0-bbea-4295-ab38-645eca9cdd54"
+  }
+}
+
+
+
+
+
+
+

Run the Deployed Flow

+

Once we setup the authentication, we can pass in our parameters and run the flow!

+
+
+
flow_input = {
+    "input": {
+        "compute": {
+            "id": endpoint_id
+        },
+        "destination": {
+            "id": personal_endpoint_id,
+            "path": f"/{os.getcwd()}/esgf_plot.html"
+        },
+        "compute_input_data":{
+            "source_id": "CESM2"
+        }
+    }
+}
+
+flow_action = flows_client.run_flow(
+  flow_id = flow_id,
+  flow_scope = flow_scope,
+  flow_input = flow_input,
+  label="Test local to local",
+)
+
+
+
+
+
+
+
# Get flow execution parameters
+flow_action_id = flow_action['action_id']
+flow_status = flow_action['status']
+print(f"Flow can be monitored in the webapp below: \nhttps://app.globus.org/runs/{flow_action_id}")
+print(f"Flow action started with ID: {flow_action_id} - Status: {flow_status}")
+
+
+
+
+
Flow can be monitored in the webapp below: 
+https://app.globus.org/runs/dc2b4f0c-1ec6-4f70-ae15-0c33bbbfcffb
+Flow action started with ID: dc2b4f0c-1ec6-4f70-ae15-0c33bbbfcffb - Status: ACTIVE
+
+
+
+
+

Here, we setup a check to ensure the flow is still running, and visualize the response when it finishes!

+
+
+
# Poll the Flow service to check on the status of the flow
+while flow_status == 'ACTIVE':
+    time.sleep(5)
+    flow_action = flows_client.flow_action_status(flow_id, flow_scope, flow_action_id)
+    flow_status = flow_action['status']
+    print(f'Flow status: {flow_status}')
+    
+# Flow completed (hopefully successfully!)
+print(json.dumps(flow_action.data, indent=2))
+
+
+
+
+
Flow status: ACTIVE
+Flow status: ACTIVE
+Flow status: ACTIVE
+Flow status: ACTIVE
+Flow status: ACTIVE
+Flow status: ACTIVE
+Flow status: ACTIVE
+Flow status: ACTIVE
+Flow status: SUCCEEDED
+{
+  "run_id": "dc2b4f0c-1ec6-4f70-ae15-0c33bbbfcffb",
+  "flow_id": "c65bffa0-bbea-4295-ab38-645eca9cdd54",
+  "flow_title": "ESGF ENSO Test",
+  "flow_last_updated": "2024-04-16T19:20:37.184469+00:00",
+  "start_time": "2024-04-16T19:20:55.580835+00:00",
+  "completion_time": "2024-04-16T19:21:48.188000+00:00",
+  "status": "SUCCEEDED",
+  "display_status": "SUCCEEDED",
+  "details": {
+    "code": "FlowSucceeded",
+    "output": {
+      "input": {
+        "compute": {
+          "id": "6836803d-9831-4dc5-b159-eb658250e4bc"
+        },
+        "destination": {
+          "id": "92bb829c-9d88-11ed-b579-33287ee02ec7",
+          "path": "//Users/mgrover/git_repos/esgf-cookbook/notebooks/esgf_plot.html"
+        },
+        "compute_input_data": {
+          "source_id": "CESM2"
+        }
+      },
+      "ESGF_output": {
+        "label": null,
+        "status": "SUCCEEDED",
+        "details": {
+          "result": [
+            "/Users/mgrover/plot.html"
+          ],
+          "results": [
+            {
+              "output": "/Users/mgrover/plot.html",
+              "task_id": "e7d42503-81c4-488b-a760-9846be264d6e"
+            }
+          ]
+        },
+        "action_id": "tg_e81f1357-c21e-4a34-af82-6a2aa910bf0e",
+        "manage_by": [
+          "urn:globus:auth:identity:97c1da09-1d6d-4189-a5be-6ae3f85ae21f"
+        ],
+        "creator_id": "urn:globus:auth:identity:97c1da09-1d6d-4189-a5be-6ae3f85ae21f",
+        "monitor_by": [
+          "urn:globus:auth:identity:97c1da09-1d6d-4189-a5be-6ae3f85ae21f"
+        ],
+        "start_time": "2024-04-16T19:21:00.341325+00:00",
+        "state_name": "RunPlotENSO",
+        "release_after": null,
+        "display_status": "All tasks completed",
+        "completion_time": "2024-04-16T19:21:21.806350+00:00"
+      },
+      "TransferFiles": {
+        "label": null,
+        "status": "SUCCEEDED",
+        "details": {
+          "type": "TRANSFER",
+          "files": 1,
+          "is_ok": null,
+          "label": "For Action id IwD1kgdTb0Dn",
+          "faults": 0,
+          "status": "SUCCEEDED",
+          "command": "API 0.10",
+          "task_id": "833f2aaa-fc26-11ee-b703-473d136f742f",
+          "deadline": "2024-04-17T19:21:24+00:00",
+          "owner_id": "97c1da09-1d6d-4189-a5be-6ae3f85ae21f",
+          "symlinks": 0,
+          "username": "u_s7a5uci5nvaytjn6nlr7qwxcd4",
+          "DATA_TYPE": "task",
+          "is_paused": false,
+          "event_list": [
+            {
+              "code": "SUCCEEDED",
+              "time": "2024-04-16T19:21:31+00:00",
+              "details": {
+                "files_succeeded": 1
+              },
+              "is_error": false,
+              "DATA_TYPE": "event",
+              "description": "succeeded"
+            },
+            {
+              "code": "PROGRESS",
+              "time": "2024-04-16T19:21:31+00:00",
+              "details": {
+                "mbps": 0.46,
+                "duration": 4.08,
+                "bytes_transferred": 235449
+              },
+              "is_error": false,
+              "DATA_TYPE": "event",
+              "description": "progress"
+            },
+            {
+              "code": "STARTED",
+              "time": "2024-04-16T19:21:27+00:00",
+              "details": {
+                "type": "GridFTP Transfer",
+                "protocol": "UDT",
+                "pipelining": 20,
+                "concurrency": 2,
+                "parallelism": 2
+              },
+              "is_error": false,
+              "DATA_TYPE": "event",
+              "description": "started"
+            }
+          ],
+          "sync_level": null,
+          "directories": 0,
+          "fatal_error": null,
+          "nice_status": null,
+          "encrypt_data": false,
+          "filter_rules": null,
+          "request_time": "2024-04-16T19:21:24+00:00",
+          "files_skipped": 0,
+          "subtasks_total": 2,
+          "completion_time": "2024-04-16T19:21:31+00:00",
+          "history_deleted": false,
+          "source_endpoint": "u_s7a5uci5nvaytjn6nlr7qwxcd4#92bb829c-9d88-11ed-b579-33287ee02ec7",
+          "subtasks_failed": 0,
+          "verify_checksum": false,
+          "source_base_path": null,
+          "subtasks_expired": 0,
+          "subtasks_pending": 0,
+          "bytes_checksummed": 0,
+          "bytes_transferred": 235449,
+          "canceled_by_admin": null,
+          "files_transferred": 1,
+          "source_local_user": null,
+          "subtasks_canceled": 0,
+          "subtasks_retrying": 0,
+          "preserve_timestamp": false,
+          "recursive_symlinks": "ignore",
+          "skip_source_errors": false,
+          "source_endpoint_id": "92bb829c-9d88-11ed-b579-33287ee02ec7",
+          "subtasks_succeeded": 2,
+          "nice_status_details": null,
+          "destination_endpoint": "u_s7a5uci5nvaytjn6nlr7qwxcd4#92bb829c-9d88-11ed-b579-33287ee02ec7",
+          "fail_on_quota_errors": false,
+          "destination_base_path": null,
+          "destination_local_user": null,
+          "nice_status_expires_in": null,
+          "destination_endpoint_id": "92bb829c-9d88-11ed-b579-33287ee02ec7",
+          "subtasks_skipped_errors": 0,
+          "delete_destination_extra": false,
+          "source_local_user_status": null,
+          "canceled_by_admin_message": null,
+          "effective_bytes_per_second": 30545,
+          "source_endpoint_display_name": "Work Laptop",
+          "destination_local_user_status": null,
+          "nice_status_short_description": null,
+          "destination_endpoint_display_name": "Work Laptop"
+        },
+        "action_id": "IwD1kgdTb0Dn",
+        "manage_by": [],
+        "creator_id": "urn:globus:auth:identity:97c1da09-1d6d-4189-a5be-6ae3f85ae21f",
+        "monitor_by": [],
+        "start_time": "2024-04-16T19:21:23.005698+00:00",
+        "state_name": "TransferResult",
+        "release_after": "P30D",
+        "display_status": "SUCCEEDED",
+        "completion_time": "2024-04-16T19:21:23.005728+00:00"
+      }
+    },
+    "description": "The Flow run reached a successful completion state"
+  },
+  "run_owner": "urn:globus:auth:identity:97c1da09-1d6d-4189-a5be-6ae3f85ae21f",
+  "run_managers": [],
+  "run_monitors": [],
+  "user_role": "run_owner",
+  "label": "Test local to local",
+  "tags": [],
+  "action_id": "dc2b4f0c-1ec6-4f70-ae15-0c33bbbfcffb",
+  "manage_by": [],
+  "monitor_by": [],
+  "created_by": "urn:globus:auth:identity:97c1da09-1d6d-4189-a5be-6ae3f85ae21f"
+}
+
+
+
+
+
+
+
+
+

Summary

+

In this notebook, we applied the ENSO 3.4 index calculations to CMIP6 datasets remotely using Globus Compute and created interactive plots comparing where we see El Niño and La Niña.

+
+

What’s next?

+

We will see some more advanced examples of using the CMIP6 and other data access methods as well as computations.

+
+
+
+

Resources and references

+ +
+
+ + + + +
+ + +
+
+
+ +
+
+ + + +
+
+ + + + + + + + + +
+
+ + \ No newline at end of file diff --git a/_preview/32/notebooks/enso-globus.html b/_preview/32/notebooks/enso-globus.html new file mode 100644 index 0000000..1f21dce --- /dev/null +++ b/_preview/32/notebooks/enso-globus.html @@ -0,0 +1,1923 @@ + + + + + + + + ENSO Calculations using Globus Compute — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+
+ +
+ +

Globus logo +ESGF logo

+
+

ENSO Calculations using Globus Compute

+
+

Overview

+

In this workflow, we combine topics covered in previous Pythia Foundations and CMIP6 Cookbook content to compute the Niño 3.4 Index to multiple datasets, with the primary computations occuring on a remote machine. As a refresher of what the ENSO 3.4 index is, please see the following text, which is also included in the ENSO Xarray content in the Pythia Foundations content.

+
+

Niño 3.4 (5N-5S, 170W-120W): The Niño 3.4 anomalies may be thought of as representing the average equatorial SSTs across the Pacific from about the dateline to the South American coast. The Niño 3.4 index typically uses a 5-month running mean, and El Niño or La Niña events are defined when the Niño 3.4 SSTs exceed +/- 0.4C for a period of six months or more.

+
+
+

Niño X Index computation: a) Compute area averaged total SST from Niño X region; b) Compute monthly climatology (e.g., 1950-1979) for area averaged total SST from Niño X region, and subtract climatology from area averaged total SST time series to obtain anomalies; c) Smooth the anomalies with a 5-month running mean; d) Normalize the smoothed values by its standard deviation over the climatological period.

+
+

+

The previous cookbook, we ran this in a single notebook locally. In this example, we aim to execute the workflow on a remote machine, with only the visualizion of the dataset occuring locally.

+

The overall goal of this tutorial is to introduce the idea of functions as a service with Globus, and how this can be used to calculate ENSO indices.

+
+
+

Prerequisites

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Concepts

Importance

Notes

Intro to Xarray

Necessary

hvPlot Basics

Necessary

Interactive Visualization with hvPlot

Understanding of NetCDF

Helpful

Familiarity with metadata structure

Calculating ENSO with Xarray

Neccessary

Understanding of Masking and Xarray Functions

Dask

Helpful

+
    +
  • Time to learn: 30 minutes

  • +
+
+
+

Imports

+
+
+
import hvplot.xarray
+import holoviews as hv
+import numpy as np
+import hvplot.xarray
+import matplotlib.pyplot as plt
+import cartopy.crs as ccrs
+from intake_esgf import ESGFCatalog
+import xarray as xr
+import cf_xarray
+import warnings
+import os
+from globus_compute_sdk import Executor, Client
+warnings.filterwarnings("ignore")
+
+hv.extension("bokeh")
+
+
+
+
+
+
+ + + + + + + + + +
+
+
+
+
+

Accessing our Data and Computing the ENSO 3.4 Index

+

As mentioned in the introduction, we are utilizing functions from the previous ENSO notebooks. In order to run these with Globus Compute, we need to comply with the following requirements

+
    +
  • All libraries/packages used in the function need to be installed on the globus compute endpoint

  • +
  • All functions/libraries/packages need to be imported and defined within the function to execute

  • +
  • The output from the function needs to serializable (ex. xarray.Dataset, numpy.array)

  • +
+

Using these constraints, we setup the following function, with the key parameter being which modeling center (model) to compare. Two examples here include The National Center for Atmospheric Research (NCAR) and the Model for Interdisciplinary Research on Climate (MIROC).

+
+
+
def run_plot_enso(model, return_path=False):
+    import numpy as np
+    import matplotlib.pyplot as plt
+    from intake_esgf import ESGFCatalog
+    import xarray as xr
+    import cf_xarray
+    import warnings
+    warnings.filterwarnings("ignore")
+
+    def search_esgf(institution_id, grid='gn'):
+
+        # Search and load the ocean surface temperature (tos)
+        cat = ESGFCatalog()
+        cat.search(
+            activity_id="CMIP",
+            experiment_id="historical",
+            institution_id=institution_id,
+            variable_id=["tos"],
+            member_id='r11i1p1f1',
+            table_id="Omon",
+        )
+        try:
+            tos_ds = cat.to_datatree()[grid].to_dataset()
+        except ValueError:
+            tos_ds = cat.to_dataset_dict()[""]
+
+        # Search and load the ocean grid cell area
+        cat = ESGFCatalog()
+        cat.search(
+            activity_id="CMIP",
+            experiment_id="historical",
+            institution_id=institution_id,
+            variable_id=["areacello"],
+            member_id='r11i1p1f1',
+        )
+        try:
+            area_ds = cat.to_datatree()[grid].to_dataset()
+        except ValueError:
+            area_ds = cat.to_dataset_dict()[""]
+        return xr.merge([tos_ds, area_ds])
+
+    def calculate_enso(ds):
+
+        # Subset the El Nino 3.4 index region
+        dso = ds.where(
+        (ds.cf["latitude"] < 5) & (ds.cf["latitude"] > -5) & (ds.cf["longitude"] > 190) & (ds.cf["longitude"] < 240), drop=True
+        )
+
+        # Calculate the monthly means
+        gb = dso.tos.groupby('time.month')
+
+        # Subtract the monthly averages, returning the anomalies
+        tos_nino34_anom = gb - gb.mean(dim='time')
+
+        # Determine the non-time dimensions and average using these
+        non_time_dims = set(tos_nino34_anom.dims)
+        non_time_dims.remove(ds.tos.cf["T"].name)
+        weighted_average = tos_nino34_anom.weighted(ds["areacello"]).mean(dim=list(non_time_dims))
+
+        # Calculate the rolling average
+        rolling_average = weighted_average.rolling(time=5, center=True).mean()
+        std_dev = weighted_average.std()
+        return rolling_average / std_dev
+
+    def add_enso_thresholds(da, threshold=0.4):
+
+        # Conver the xr.DataArray into an xr.Dataset
+        ds = da.to_dataset()
+
+        # Cleanup the time and use the thresholds
+        try:
+            ds["time"]= ds.indexes["time"].to_datetimeindex()
+        except:
+            pass
+        ds["tos_gt_04"] = ("time", ds.tos.where(ds.tos >= threshold, threshold).data)
+        ds["tos_lt_04"] = ("time", ds.tos.where(ds.tos <= -threshold, -threshold).data)
+
+        # Add fields for the thresholds
+        ds["el_nino_threshold"] = ("time", np.zeros_like(ds.tos) + threshold)
+        ds["la_nina_threshold"] = ("time", np.zeros_like(ds.tos) - threshold)
+
+        return ds
+    
+    ds = search_esgf("NCAR")
+    enso_index = add_enso_thresholds(calculate_enso(ds).compute())
+    enso_index.attrs = ds.attrs
+    enso_index.attrs["model"] = model
+
+    return enso_index
+
+
+
+
+
+
+

Configure Globus Compute

+

Now that we have our functions, we can move toward using Globus Flows and Globus Compute.

+

Globus Flows is a reliable and secure platform for orchestrating and performing research data management and analysis tasks. A flow is often needed to manage data coming from instruments, e.g., image files can be moved from local storage attached to a microscope to a high-performance storage system where they may be accessed by all members of the research project.

+

More examples of creating and running flows can be found on our demo instance.

+
+

Setup a Globus Compute Endpoint

+

Globus Compute (GC) is a service that allows python functions to be sent to remote points, executed, with the output from that function returned to the user. While there are a collection of endpoints already installed, we highlight in this section the steps required to configure for yourself. This idea is also known as “serverless” computing, where users do not need to think about the underlying infrastructure executing the code, but rather submit functions to be run and returned.

+

To start a GC endpoint at your system you need to login, configure a conda environment, and pip install globus-compute-endpoint.

+

You can then run:

+

globus-compute-endpoint configure esgf-test

+

globus-compute-endpoint start esgf-test

+

Note that by default your endpoint will execute tasks on the login node (if you are using a High Performance Compute System). Additional configuration is needed for the endpoint to provision compute nodes. For example, here is the documentation on configuring globus compute endpoints on the Argonne Leadership Computing Facility’s Polaris system

+
    +
  • https://globus-compute.readthedocs.io/en/latest/endpoints.html#polaris-alcf

  • +
+
+
+
endpoint_id = "b3d1d669-d49b-412e-af81-95f3368e525c"
+
+
+
+
+
+
+

Setup an Executor to Run our Functions

+

Once we have our compute endpoint ID, we need to pass this to our executor, which will be used to pass our functions from our local machine to the machine we would like to compute on.

+
+
+
gce = Executor(endpoint_id=endpoint_id)
+gce.amqp_port = 443
+gce
+
+
+
+
+
Executor<ep_id:b3d1d669-d49b-412e-af81-95f3368e525c; tg_id:None; bs:128>
+
+
+
+
+
+
+

Test our Functions

+

Now that we have our functions prepared, and an executor to run on, we can test them out using our endpoint!

+

We pass in our function name, and the additional arguments for our functions. For example, let’s look at comparing at the NCAR and MIROC modeling center’s CMIP6 simulations.

+
+
+
ncar_task = gce.submit(run_plot_enso, model='NCAR')
+miroc_task = gce.submit(run_plot_enso, model='MIROC')
+
+
+
+
+

The results are started as python objects, with the resultant datasets available using .result()

+
+
+
ncar_ds = ncar_task.result()
+miroc_ds = miroc_task.result()
+
+ncar_ds
+
+
+
+
+
+ + + + + + + + + + + + + + +
<xarray.Dataset>
+Dimensions:            (time: 1980)
+Coordinates:
+  * time               (time) datetime64[ns] 1850-01-15T13:00:00.000008 ... 2...
+    month              (time) int64 1 2 3 4 5 6 7 8 9 ... 4 5 6 7 8 9 10 11 12
+Data variables:
+    tos                (time) float32 nan nan 0.06341 ... 0.7921 nan nan
+    tos_gt_04          (time) float32 0.4 0.4 0.4 0.4 ... 0.6829 0.7921 0.4 0.4
+    tos_lt_04          (time) float32 -0.4 -0.4 -0.4 -0.4 ... -0.4 -0.4 -0.4
+    el_nino_threshold  (time) float32 0.4 0.4 0.4 0.4 0.4 ... 0.4 0.4 0.4 0.4
+    la_nina_threshold  (time) float32 -0.4 -0.4 -0.4 -0.4 ... -0.4 -0.4 -0.4
+Attributes: (12/46)
+    Conventions:            CF-1.7 CMIP-6.2
+    activity_id:            CMIP
+    branch_method:          standard
+    branch_time_in_child:   674885.0
+    branch_time_in_parent:  219000.0
+    case_id:                972
+    ...                     ...
+    table_id:               Omon
+    tracking_id:            hdl:21.14100/b0ffb89d-095d-4533-a159-a2e1241ff138
+    variable_id:            tos
+    variant_info:           CMIP6 20th century experiments (1850-2014) with C...
+    variant_label:          r11i1p1f1
+    model:                  NCAR
+
+
+
+

Plot our Data

+

Now that we have pre-computed datasets, the last step is to visualize the output. In the other example, we stepped through how to utilize the .hvplot tool to create interactive displays of ENSO values. We will utilize that functionality here, wrapping into a function.

+
+
+
def plot_enso(ds):
+    el_nino = ds.hvplot.area(x="time", y2='tos_gt_04', y='el_nino_threshold', color='red', hover=False)
+    el_nino_label = hv.Text(ds.isel(time=40).time.values, 2, 'El Niño').opts(text_color='red',)
+
+    # Create the La Niña area graphs
+    la_nina = ds.hvplot.area(x="time", y2='tos_lt_04', y='la_nina_threshold', color='blue', hover=False)
+    la_nina_label = hv.Text(ds.isel(time=-40).time.values, -2, 'La Niña').opts(text_color='blue')
+
+    # Plot a timeseries of the ENSO 3.4 index
+    enso = ds.tos.hvplot(x='time', line_width=0.5, color='k', xlabel='Year', ylabel='ENSO 3.4 Index')
+
+    # Combine all the plots into a single plot
+    return (el_nino_label * la_nina_label * el_nino * la_nina * enso).opts(title=f'{ds.attrs["model"]} {ds.attrs["source_id"]} \n Ensemble Member: {ds.attrs["variant_label"]}')
+
+
+
+
+

Once we have the function, we apply to our two datasets and combine into a single column.

+
+
+
(plot_enso(ncar_ds) + plot_enso(miroc_ds)).cols(1)
+
+
+
+
+
+
+
+
+
+
+
+
+

Summary

+

In this notebook, we applied the ENSO 3.4 index calculations to CMIP6 datasets remotely using Globus Compute and created interactive plots comparing where we see El Niño and La Niña.

+
+

What’s next?

+

We will see some more advanced examples of using the CMIP6 and other data access methods as well as computations.

+
+
+
+

Resources and references

+ +
+
+ + + + +
+ + +
+
+
+ +
+
+ + + +
+
+ + + + + + + + + +
+
+ + \ No newline at end of file diff --git a/_preview/32/notebooks/ex-regrid-plot.html b/_preview/32/notebooks/ex-regrid-plot.html new file mode 100644 index 0000000..c750bef --- /dev/null +++ b/_preview/32/notebooks/ex-regrid-plot.html @@ -0,0 +1,1319 @@ + + + + + + + + Demo: Regridding and Plotting with Rooki and Cartopy — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+
+ +
+ +

ESGF logo +Rooki logo +Cartopy logo

+
+

Demo: Regridding and Plotting with Rooki and Cartopy

+
+
+

Overview

+

In this notebook, we demonstrate how to use Rooki to regrid CMIP model data and plot it in Cartopy for two examples:

+
    +
  1. Regrid two CMIP models onto the same grid

  2. +
  3. Coarsen the output for one model

  4. +
+
+
+

Prerequisites

+ + + + + + + + + + + + + + + + + + + + + + + + + +

Concepts

Importance

Notes

Intro to intake-esgf

Necessary

Intro to Cartopy

Necessary

Using Rooki to access CMIP6 data

Helpful

Familiarity with rooki

Understanding of NetCDF

Helpful

Familiarity with metadata structure

+
    +
  • Time to learn: 15 minutes

  • +
+
+
+
+

Imports

+
+
+
import os
+
+import rooki.operators as ops
+import matplotlib.pyplot as plt
+import matplotlib.colors as mcolors
+import cartopy.crs as ccrs
+import cartopy.feature as cfeature
+
+from intake_esgf import ESGFCatalog
+from rooki import rooki
+from matplotlib.gridspec import GridSpec
+from mpl_toolkits.axes_grid1.inset_locator import inset_axes
+
+
+
+
+
+
+

Example 1: Regrid two CMIP6 models onto the same grid

+

In this example, we want to compare the historical precipitation output between two CMIP models, CESM2 and CanESM5. Here will will look at the annual mean precipitation for 2010.

+
+

Access the desired datasets using intake-esgf and rooki

+

The function and workflow to read in CMPI6 data using intake-esgf and rooki in the next few cells are adapted from intake-esgf-with-rooki.ipynb. Essentially, we use intake-esgf to find the dataset IDs we want and then subset and average them using rooki.

+
+
+
def separate_dataset_id(full_dataset):
+    return full_dataset[0].split("|")[0]
+
+
+
+
+
+
+
cat = ESGFCatalog()
+cat.search(
+        activity_id='CMIP',
+        experiment_id=["historical",],
+        variable_id=["pr"],
+        member_id='r1i1p1f1',
+        grid_label='gn',
+        table_id="Amon",
+        source_id = [ "CESM2", "CanESM5"]
+    )
+
+dsets = [separate_dataset_id(dataset) for dataset in list(cat.df.id.values)]
+dsets
+
+
+
+
+
['CMIP6.CMIP.CCCma.CanESM5.historical.r1i1p1f1.Amon.pr.gn.v20190429',
+ 'CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amon.pr.gn.v20190401']
+
+
+
+
+

Subset the data to get the precipitation variable for 2010 and then average by time:

+
+
+
dset_list = [[]]*len(dsets)
+
+for i, dset_id in enumerate(dsets):
+    wf = ops.AverageByTime(
+        ops.Subset(
+            ops.Input('pr', [dset_id]),
+            time='2010/2010'
+        )
+    )
+
+    resp = wf.orchestrate()
+
+    # if it worked, add the dataset to our list
+    if resp.ok:
+        dset_list[i] = resp.datasets()[0]
+        
+    # if it failed, tell us why
+    else:
+        print(resp.status)
+
+
+
+
+
Downloading to /tmp/metalink_6_iqo1_6/pr_Amon_CanESM5_historical_r1i1p1f1_gn_20100101-20100101_avg-year.nc.
+Downloading to /tmp/metalink_d7uge4gt/pr_Amon_CESM2_historical_r1i1p1f1_gn_20100101-20100101_avg-year.nc.
+
+
+
+
+

Print the dataset list to get an overview of the metadata structure:

+
+
+
print(dset_list)
+
+
+
+
+
[<xarray.Dataset> Size: 37kB
+Dimensions:    (lat: 64, time: 1, bnds: 2, lon: 128)
+Coordinates:
+  * lat        (lat) float64 512B -87.86 -85.1 -82.31 ... 82.31 85.1 87.86
+  * lon        (lon) float64 1kB 0.0 2.812 5.625 8.438 ... 351.6 354.4 357.2
+  * time       (time) object 8B 2010-01-01 00:00:00
+Dimensions without coordinates: bnds
+Data variables:
+    lat_bnds   (time, lat, bnds) float64 1kB ...
+    lon_bnds   (time, lon, bnds) float64 2kB ...
+    pr         (time, lat, lon) float32 33kB ...
+    time_bnds  (time, bnds) object 16B ...
+Attributes: (12/53)
+    CCCma_model_hash:            3dedf95315d603326fde4f5340dc0519d80d10c0
+    CCCma_parent_runid:          rc3-pictrl
+    CCCma_pycmor_hash:           33c30511acc319a98240633965a04ca99c26427e
+    CCCma_runid:                 rc3.1-his01
+    Conventions:                 CF-1.7 CMIP-6.2
+    YMDH_branch_time_in_child:   1850:01:01:00
+    ...                          ...
+    tracking_id:                 hdl:21.14100/363e1ebe-46e7-43dc-9feb-a7a4a0c...
+    variable_id:                 pr
+    variant_label:               r1i1p1f1
+    version:                     v20190429
+    license:                     CMIP6 model data produced by The Government ...
+    cmor_version:                3.4.0, <xarray.Dataset> Size: 233kB
+Dimensions:    (time: 1, lat: 192, lon: 288, nbnd: 2)
+Coordinates:
+  * lat        (lat) float64 2kB -90.0 -89.06 -88.12 -87.17 ... 88.12 89.06 90.0
+  * lon        (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8
+  * time       (time) object 8B 2010-01-01 00:00:00
+Dimensions without coordinates: nbnd
+Data variables:
+    pr         (time, lat, lon) float32 221kB ...
+    lat_bnds   (time, lat, nbnd) float64 3kB ...
+    lon_bnds   (time, lon, nbnd) float64 5kB ...
+    time_bnds  (time, nbnd) object 16B ...
+Attributes: (12/45)
+    Conventions:            CF-1.7 CMIP-6.2
+    activity_id:            CMIP
+    branch_method:          standard
+    branch_time_in_child:   674885.0
+    branch_time_in_parent:  219000.0
+    case_id:                15
+    ...                     ...
+    sub_experiment_id:      none
+    table_id:               Amon
+    tracking_id:            hdl:21.14100/a2c2f719-6790-484b-9f66-392e62cd0eb8
+    variable_id:            pr
+    variant_info:           CMIP6 20th century experiments (1850-2014) with C...
+    variant_label:          r1i1p1f1]
+
+
+
+
+
+
+

Compare the precipitation data between models

+

First, let’s quickly plot the 2010 annual mean precipitation for each model to see what we’re working with. Since precipitation values vary greatly in magnitude, using a log-normalized colormap makes the data easier to visualize.

+
+
+
for dset in dset_list:
+    dset.pr.plot(norm=mcolors.LogNorm())
+    plt.show()
+
+
+
+
+../_images/0bbaec25dc76ad4eb1a467a4ab5463e2e70204cd5accc49e8e8e1f2466318814.png +../_images/b1ec660386851ba6cb1bb26d6427f7505a5368fa9d8a52ca2737bd49547209d5.png +
+
+

Uncomment and run the following cell. If we try to take the difference outright, it fails!

+
+
+
# pr_diff = dset_list[0].pr - dset_list[1].pr
+
+
+
+
+

The models have different grids so we can’t directly subtract the data. We can use the grid attribute to get information on which grid each uses.

+
+
+
print(dset_list[0].grid)
+print(dset_list[1].grid)
+
+
+
+
+
T63L49 native atmosphere, T63 Linear Gaussian Grid; 128 x 64 longitude/latitude; 49 levels; top level 1 hPa
+native 0.9x1.25 finite volume grid (192x288 latxlon)
+
+
+
+
+
+
+

Regrid the models onto the same grid with Rooki

+

Look at the documentation on the regrid operator to see the available grid types and regrid methods:

+
+
+
rooki.regrid?
+
+
+
+
+
Signature: rooki.regrid(collection, method='nearest_s2d', grid='auto')
+Docstring:
+Run regridding operator on climate model data using daops (xarray).
+
+Parameters
+----------
+collection : string
+    A dataset identifier or list of comma separated identifiers. Example: c3s-cmip5.output1.ICHEC.EC-EARTH.historical.day.atmos.day.r1i1p1.tas.latest
+method : {'nearest_s2d', 'bilinear', 'conservative', 'patch'}string
+    Please specify regridding method like consevative or bilinear. Default: nearest_s2d
+grid : {'auto', '0pt25deg', '0pt25deg_era5', '0pt5deg_lsm', '0pt625x0pt5deg', '0pt75deg', '1deg', '1pt25deg', '2pt5deg'}string
+    Please specify output grid resolution for regridding. Default: auto
+
+Returns
+-------
+output : ComplexData:mimetype:`application/metalink+xml; version=4.0`
+    Metalink v4 document with references to NetCDF files.
+prov : ComplexData:mimetype:`application/json`
+    Provenance document using W3C standard.
+prov_plot : ComplexData:mimetype:`image/png`
+    Provenance document as diagram.
+File:      ~/esgf-cookbook/notebooks/</srv/conda/envs/notebook/lib/python3.10/site-packages/birdy/client/base.py-8>
+Type:      method
+
+
+
+
+

Here we’ll do the same process as before to read in and subset the datasets with rooki, but now we regrid using ops.Regrid before averaging over time. In this example, we use method=nearest_s2d to regrid each model onto the target grid using a nearest neighbors method. The target grid is a 1.25° grid, specified by grid='1pt25deg'.

+
+
+
rg_list = [[]]*len(dsets)
+
+for i, dset_id in enumerate(dsets):
+    wf = ops.AverageByTime(
+        ops.Regrid(
+            ops.Subset(
+                ops.Input('pr', [dset_id]),
+                time='2010/2010'
+            ),
+            method='nearest_s2d',
+            grid='1pt25deg'
+        )
+    )
+
+
+    resp = wf.orchestrate()
+    
+    # if it worked, add the regridded dataset to our list
+    if resp.ok:
+        rg_list[i] = resp.datasets()[0]
+        
+    # if it failed, tell us why
+    else:
+        print(resp.status)
+        
+
+
+
+
+
Downloading to /tmp/metalink_omjq1m4c/pr_Amon_CanESM5_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.
+Downloading to /tmp/metalink_02o10_9k/pr_Amon_CESM2_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.
+
+
+
+
+

Print the list of regridded datasets to get an overview of the metadata structure. Note how lat and lon are now the same and each dataset has additional attributes, including grid_original and regrid_operation, which all keep track of the regridding operations we just completed.

+
+
+
print(rg_list)
+
+
+
+
+
[<xarray.Dataset> Size: 177kB
+Dimensions:    (lat: 145, lon: 288, bnds: 2, time: 1)
+Coordinates:
+  * lat        (lat) float64 1kB -90.0 -88.75 -87.5 -86.25 ... 87.5 88.75 90.0
+  * lon        (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8
+    lat_bnds   (lat, bnds) float64 2kB ...
+    lon_bnds   (lon, bnds) float64 5kB ...
+  * time       (time) object 8B 2010-01-01 00:00:00
+Dimensions without coordinates: bnds
+Data variables:
+    pr         (time, lat, lon) float32 167kB ...
+    time_bnds  (time, bnds) object 16B ...
+Attributes: (12/58)
+    CCCma_model_hash:             3dedf95315d603326fde4f5340dc0519d80d10c0
+    CCCma_parent_runid:           rc3-pictrl
+    CCCma_pycmor_hash:            33c30511acc319a98240633965a04ca99c26427e
+    CCCma_runid:                  rc3.1-his01
+    Conventions:                  CF-1.7 CMIP-6.2
+    YMDH_branch_time_in_child:    1850:01:01:00
+    ...                           ...
+    grid_original:                T63L49 native atmosphere, T63 Linear Gaussi...
+    grid_label_original:          gn
+    nominal_resolution_original:  500 km
+    regrid_operation:             nearest_s2d_64x128_145x288_peri
+    regrid_tool:                  xESMF_v0.8.2
+    regrid_weights_uid:           549cab49a80314b5a85515237d530e30_f3646e1560..., <xarray.Dataset> Size: 177kB
+Dimensions:    (lat: 145, lon: 288, bnds: 2, time: 1, nbnd: 2)
+Coordinates:
+  * lat        (lat) float64 1kB -90.0 -88.75 -87.5 -86.25 ... 87.5 88.75 90.0
+  * lon        (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8
+    lat_bnds   (lat, bnds) float64 2kB ...
+    lon_bnds   (lon, bnds) float64 5kB ...
+  * time       (time) object 8B 2010-01-01 00:00:00
+Dimensions without coordinates: bnds, nbnd
+Data variables:
+    pr         (time, lat, lon) float32 167kB ...
+    time_bnds  (time, nbnd) object 16B ...
+Attributes: (12/50)
+    Conventions:                  CF-1.7 CMIP-6.2
+    activity_id:                  CMIP
+    branch_method:                standard
+    branch_time_in_child:         674885.0
+    branch_time_in_parent:        219000.0
+    case_id:                      15
+    ...                           ...
+    grid_original:                native 0.9x1.25 finite volume grid (192x288...
+    grid_label_original:          gn
+    nominal_resolution_original:  100 km
+    regrid_operation:             nearest_s2d_192x288_145x288_peri
+    regrid_tool:                  xESMF_v0.8.2
+    regrid_weights_uid:           79e1100d95467f7177a261a94d1333ad_f3646e1560...]
+
+
+
+
+

Now they are on the same grid!

+
+
+
print(rg_list[0].grid)
+print(rg_list[1].grid)
+
+
+
+
+
Global 1.25 degree grid with one cell centered at 0E,0N. As used by ERA-40.
+Global 1.25 degree grid with one cell centered at 0E,0N. As used by ERA-40.
+
+
+
+
+
+
+

Quick plot the before and after for each model

+

The plots largely look the same, as they should - with the nearest neighbors method, we are just shifting the precipitation data onto a different grid without averaging between grid cells.

+
+
+
print(dset_list[0].source_id)
+for ds in [dset_list[0], rg_list[0]]:
+    ds.pr.plot(norm=mcolors.LogNorm())
+    plt.show()
+
+
+
+
+
CanESM5
+
+
+../_images/0bbaec25dc76ad4eb1a467a4ab5463e2e70204cd5accc49e8e8e1f2466318814.png +../_images/ef60ae7d74ee5b9e0b3df66eef882321dab98a17a16284b70f9d8835445f8c2c.png +
+
+
+
+
print(dset_list[1].source_id)
+for ds in [dset_list[1], rg_list[1]]:
+    ds.pr.plot(norm=mcolors.LogNorm())
+    plt.show()
+
+
+
+
+
CESM2
+
+
+../_images/b1ec660386851ba6cb1bb26d6427f7505a5368fa9d8a52ca2737bd49547209d5.png +../_images/b1c6f3c7fc53102ee626212d18c7af834c8db98b9b0ed7091b874c3c43ccd786.png +
+
+
+

Take the difference between precipitation datasets and plot it

+

Now that both models are on the same grid, we can subtract the precipitation datasets and plot the difference!

+
+
+
pr_diff = rg_list[0] - rg_list[1]
+
+pr_diff.pr.plot(cmap="bwr")
+plt.show()
+
+
+
+
+../_images/92635cf380e70848349225b5168c8752f4ae9062534af6a0c5fc5dcfbb63abea.png +
+
+
+
+
+

Plot everything together

+

Plot the regridded precipitation data as well as the difference between models on the same figure. We can use Cartopy to make it pretty. With GridSpec, we can also split up the figure and organize it to use the same colorbar for more than one panel.

+
+
+
# set up figure
+fig = plt.figure(figsize=(6, 8))
+gs = GridSpec(3, 2, width_ratios=[1, 0.1], hspace=0.2)
+
+# specify the projection
+proj = ccrs.Mollweide()
+
+# set up plots for each model
+axpr_1 = plt.subplot(gs[0, 0], projection=proj)
+axpr_2 = plt.subplot(gs[1, 0], projection=proj)
+axdiff = plt.subplot(gs[2, 0], projection=proj)
+
+# axes where the colorbar will go 
+axcb_pr = plt.subplot(gs[:2, 1]) 
+axcb_diff = plt.subplot(gs[2, 1])
+axcb_pr.axis("off")
+axcb_diff.axis("off")
+
+# plot the precipitation for both models
+for i, ax in enumerate([axpr_1, axpr_2]):
+    ds_rg = rg_list[i]
+    pcm = ax.pcolormesh(ds_rg.lon, ds_rg.lat, ds_rg.pr.isel(time=0), norm=mcolors.LogNorm(vmin=1e-7, vmax=3e-4),
+                         transform=ccrs.PlateCarree()
+                       )
+    ax.set_title(ds_rg.parent_source_id)
+    ax.add_feature(cfeature.COASTLINE)
+    
+# now plot the difference
+pcmd = axdiff.pcolormesh(pr_diff.lon, pr_diff.lat, pr_diff.pr.isel(time=0), cmap="bwr", vmin=-3e-4, vmax=3e-4,
+                         transform=ccrs.PlateCarree()
+                        )
+axdiff.set_title("{a} - {b}".format(a=rg_list[0].parent_source_id, b=rg_list[1].parent_source_id))
+axdiff.add_feature(cfeature.COASTLINE)
+
+# set the precipitation colorbar
+axcb_pr_ins = inset_axes(axcb_pr, width="50%", height="75%", loc="center")
+cbar_pr = plt.colorbar(pcm, cax=axcb_pr_ins, orientation="vertical", extend="both")
+cbar_pr.set_label("{n} ({u})".format(n=rg_list[0].pr.long_name, u=rg_list[0].pr.units))
+
+# set the difference colorbar
+axcb_diff_ins = inset_axes(axcb_diff, width="50%", height="100%", loc="center")
+cbar_diff = plt.colorbar(pcmd, cax=axcb_diff_ins, orientation="vertical", extend="both")
+cbar_diff.set_label("Difference ({u})".format(u=pr_diff.pr.units))
+
+plt.show()
+
+
+
+
+../_images/275c8033c1fee9d0a2c06fd7382cf8dc948c78a910d7eb5e29728481eb5c5246.png +
+
+
+
+
+

Example 2: Coarsen the output for one model

+

We can also use Rooki to regrid the data from one model onto a coarser grid. In this case, it may make more sense to use a conservative regridding method, which will conserve the physical fluxes between grid cells, rather than the nearest neighbors method we used in Example 1.

+
+

Get the data using intake-esgf and Rooki again

+

In this example, we’ll look at the annual mean near-surface air temperature for CESM2 in 2010.

+
+
+
cat = ESGFCatalog()
+cat.search(
+        activity_id='CMIP',
+        experiment_id=["historical",],
+        variable_id=["tas"],
+        member_id='r1i1p1f1',
+        grid_label='gn',
+        table_id="Amon",
+        source_id = [ "CESM2"]
+    )
+
+dsets = [separate_dataset_id(dataset) for dataset in list(cat.df.id.values)]
+dsets
+
+
+
+
+
['CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amon.tas.gn.v20190308']
+
+
+
+
+

First, get the dataset with the original grid:

+
+
+
wf = ops.AverageByTime(
+    ops.Subset(
+        ops.Input('tas', [dsets[0]]),
+        time='2010/2010'
+    )
+)
+
+resp = wf.orchestrate()
+
+if resp.ok:
+    ds_og = resp.datasets()[0]
+else:
+    print(resp.status)
+
+
+
+
+
Downloading to /tmp/metalink_tl49gcjj/tas_Amon_CESM2_historical_r1i1p1f1_gn_20100101-20100101_avg-year.nc.
+
+
+
+
+

Use the .grid attribute to get information on the native grid:

+
+
+
ds_og.grid
+
+
+
+
+
'native 0.9x1.25 finite volume grid (192x288 latxlon)'
+
+
+
+
+

The native grid is 0.9°x1.25°, so let’s try coarsening to a 1.25°x1.25° grid using the conservative method:

+
+
+
wf = ops.AverageByTime(
+    ops.Regrid(
+        ops.Subset(
+            ops.Input('tas', [dsets[0]]),
+            time='2010/2010'
+        ),
+        method='conservative',
+        grid='1pt25deg'
+    )
+)
+
+resp = wf.orchestrate()
+
+if resp.ok:
+    ds_125 = resp.datasets()[0]
+else:
+    print(resp.status)
+    
+
+
+
+
+
Downloading to /tmp/metalink_a8ws0b5a/tas_Amon_CESM2_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.
+
+
+
+
+
+
+
ds_125.grid
+
+
+
+
+
'Global 1.25 degree grid with one cell centered at 0E,0N. As used by ERA-40.'
+
+
+
+
+

We can also make it even coarser by regridding to a 2.5°x2.5° grid:

+
+
+
wf = ops.AverageByTime(
+    ops.Regrid(
+        ops.Subset(
+            ops.Input('tas', [dsets[0]]),
+            time='2010/2010'
+        ),
+        method='conservative',
+        grid='2pt5deg'
+    )
+)
+
+resp = wf.orchestrate()
+
+if resp.ok:
+    ds_25 = resp.datasets()[0]
+else:
+    print(resp.status)
+    
+
+
+
+
+
Downloading to /tmp/metalink_1utsadgb/tas_Amon_CESM2_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.
+
+
+
+
+
+
+
ds_25.grid
+
+
+
+
+
'Global 2.5 degree grid with one cell centered at 1.25E,1.25N.'
+
+
+
+
+
+
+

Plot each dataset to look at the coarsened grids

+

Make a quick plot first:

+
+
+
for ds in [ds_og, ds_125, ds_25]:
+    ds["tas"].plot()
+    plt.show()
+    
+
+
+
+
+../_images/6ccd2a32855774feaeddfd75adef8b31d3d8f17b139ed45d2139ab8143d795a0.png +../_images/2e149a2c17716058377bfc85df8d24cfa61c74de1a332fa6b4ec4fcb6a9c92b1.png +../_images/07e5628b1f849b4ce6334f603d7908dc1785a35235ab0aaacc8a587b26d16160.png +
+
+
+
+

Plot the coarsened datsets together using Cartopy

+

Now let’s zoom in on a smaller region, the continental US, to get a clear view of the difference in grid resolution. Here we can also decrease the colorbar limits to better see how the variable tas varies within the smaller region.

+
+
+
# set up the figure
+fig = plt.figure(figsize=(6, 8))
+gs = GridSpec(3, 2, width_ratios=[1, 0.1], height_ratios=[1, 1, 1], hspace=0.3, wspace=0.2)
+
+# specify the projection
+proj = ccrs.PlateCarree()
+
+# set up plot axes
+ax1 = plt.subplot(gs[0, 0], projection=proj)
+ax2 = plt.subplot(gs[1, 0], projection=proj)
+ax3 = plt.subplot(gs[2, 0], projection=proj)
+axes_list = [ax1, ax2, ax3]
+
+# set up colorbar axis
+axcb = plt.subplot(gs[:, 1])
+
+# loop through each dataset and its corresponding axis
+for i, dset in enumerate([ds_og, ds_125, ds_25]):
+    plot_ds = dset.tas.isel(time=0)
+    ax = axes_list[i]
+    pcm = ax.pcolormesh(plot_ds.lon, plot_ds.lat, plot_ds, vmin=270, vmax=302.5, transform=proj)
+    
+    # add borders and coastlines
+    ax.add_feature(cfeature.BORDERS)
+    ax.coastlines()
+    
+    # limit to CONUS for this example
+    ax.set_xlim(-130, -60)
+    ax.set_ylim(22, 52)
+    
+    # add grid labels on bottom & left only
+    gl = ax.gridlines(color="None", draw_labels=True)
+    gl.top_labels = False
+    gl.right_labels = False
+    
+    # label with the regrid type; if it fails, that means it hasn't been regridded
+    # (so label with the grid attribute instead)
+    try:
+        ax.set_title(dset.regrid_operation)
+    except:
+        ax.set_title(dset.grid)
+        
+# use the same colorbar for all plots
+axcb.axis("off")
+axcb_ins = inset_axes(axcb, width="50%", height="75%", loc="center")
+cbar = plt.colorbar(pcm, cax=axcb_ins, orientation="vertical", extend="both")
+cbar.set_label("{n} ({u})".format(n=plot_ds.long_name, u=plot_ds.units))
+        
+plt.show()
+
+
+
+
+../_images/8b8d536107f288ec359faed7f5e58a419e43b9719074e1d3402f1066b8ae768e.png +
+
+
+
+
+
+

Summary

+

Rooki offers a quick and easy way to regrid CMIP model data that can be located using intake-esgf. Cartopy lets us easily customize the plot to neatly display the geospatial data.

+
+
+

Resources and references

+ +
+
+ + + + +
+ + +
+
+
+ +
+
+ + + +
+
+ + + + + + + + + +
+
+ + \ No newline at end of file diff --git a/_preview/32/notebooks/globus-compute-service-demo.html b/_preview/32/notebooks/globus-compute-service-demo.html new file mode 100644 index 0000000..be3329c --- /dev/null +++ b/_preview/32/notebooks/globus-compute-service-demo.html @@ -0,0 +1,2344 @@ + + + + + + + + ESGF Compute Function Service Demo — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+
+ +
+ +
+

ESGF Compute Function Service Demo

+
+

Overview

+

Prior to this demo, a globus-compute function was registered at the Argonne Leadership Computing Facility (ALCF), which has direct file-access to several petabytes of ESGF data. +esgf-compute-diagram

+
+
+

Prerequisites

+ + + + + + + + + + + + + + + + + + + + + + + + + +

Concepts

Importance

Notes

Intro to Xarray

Necessary

Globus Compute Workflows

Necessary

Understanding of globus compute workflows

Understanding of NetCDF

Helpful

Familiarity with metadata structure

hvPlot with Xarray

Helpful

Familiarity with plotting with Xarray and hvPlot

+
    +
  • Time to learn: 15 minutes

  • +
+
+
+

Imports

+

We need to import a few libraries to visualize the output of our data! The rest of the libraries are installed and run on where we defined the function (ALCF).

+
+
+
# Import packages to help with data visualization
+import holoviews as hv
+import hvplot
+import hvplot.xarray
+hv.extension('bokeh')
+
+# Import Globus tools
+from globus_compute_sdk import Executor
+
+
+
+
+
+
+
+
+
+
+
+

Remotely Execute + Access ENSO Data from CMIP6

+

Within this demo, we are looking at a pre-defined, vetted function with the function ID of 49cd1ee0-2c4c-45f1-ab78-c4557fa25aa3. For more on globus-compute function registration, please see the globus compute with ENSO example.

+

For this function, it takes the source_id as an input, one of the facets from CMIP6.

+

The result is an xarray.Dataset! The aggregation + computation were done on the high-performance computing cluster, only returning the much smaller dataset.

+
+

Create Globus compute executor

+

Make sure you only define the executor once (unless the executor becomes disconnected and needs a restart).

+
+
+
# Define the UUID of the pre-canned ESGF "run_plot_enso" function
+run_plot_enso_function_uuid = "49cd1ee0-2c4c-45f1-ab78-c4557fa25aa3"
+
+# Create Globus Compute executor to run computations at ALCF
+endpoint_uuid = "cfaf0e98-2ef3-4c5a-9f11-38e306ddbc2e"
+gce = Executor(endpoint_id=endpoint_uuid)
+gce.amqp_port = 443
+gce
+
+
+
+
+
+
+

Pass in the source_id of Interest

+

Source IDs available:

+
    +
  • ACCESS-ESM1-5

  • +
  • EC-Earth3-CC

  • +
  • MPI-ESM1-2-LR

  • +
  • CanESM5

  • +
  • MIROC6

  • +
  • EC-Earth3

  • +
  • CESM2

  • +
  • EC-Earth3-Veg

  • +
  • NorCPM1

  • +
+
+
+
# Select the target source ID
+source_id = "MIROC6"
+
+# Trigger remote computation
+future = gce.submit_to_registered_function(run_plot_enso_function_uuid, {source_id})
+
+# Wait for result and generate plot from data returned by the Globus Compute executor
+ds = future.result()
+ds
+
+
+
+
+
encountered unknown data fields while reading a result message: {'details'}
+
+
+
+ + + + + + + + + + + + + + +
<xarray.Dataset> Size: 77kB
+Dimensions:            (time: 1980)
+Coordinates:
+  * time               (time) datetime64[ns] 16kB 1850-01-16T12:00:00 ... 201...
+    type               (time) |S3 6kB b'sea' b'sea' b'sea' ... b'sea' b'sea'
+    month              (time) int64 16kB 1 2 3 4 5 6 7 8 ... 5 6 7 8 9 10 11 12
+Data variables:
+    tos                (time) float32 8kB nan nan -0.3451 ... -1.865 nan nan
+    tos_gt_04          (time) float32 8kB 0.4 0.4 0.4 0.4 ... 0.4 0.4 0.4 0.4
+    tos_lt_04          (time) float32 8kB -0.4 -0.4 -0.4 ... -1.865 -0.4 -0.4
+    el_nino_threshold  (time) float32 8kB 0.4 0.4 0.4 0.4 ... 0.4 0.4 0.4 0.4
+    la_nina_threshold  (time) float32 8kB -0.4 -0.4 -0.4 -0.4 ... -0.4 -0.4 -0.4
+Attributes: (12/45)
+    Conventions:            CF-1.7 CMIP-6.2
+    activity_id:            CMIP
+    branch_method:          standard
+    branch_time_in_child:   0.0
+    branch_time_in_parent:  0.0
+    creation_date:          2018-11-30T16:23:03Z
+    ...                     ...
+    variable_id:            tos
+    variant_label:          r1i1p1f1
+    license:                CMIP6 model data produced by MIROC is licensed un...
+    cmor_version:           3.3.2
+    tracking_id:            hdl:21.14100/31c7618d-6a92-400e-8874-c1fbe41abd44
+    model:                  MIROC6
+
+
+
+
+

Visualize the Dataset Locally

+

Now that we have the dataset, we can use holoviz tools to create an interactive plot!

+
+
+
def plot_enso(ds):
+    el_nino = ds.hvplot.area(x="time", y2='tos_gt_04', y='el_nino_threshold', color='red', hover=False)
+    el_nino_label = hv.Text(ds.isel(time=40).time.values, 2, 'El Niño').opts(text_color='red',)
+
+    # Create the La Niña area graphs
+    la_nina = ds.hvplot.area(x="time", y2='tos_lt_04', y='la_nina_threshold', color='blue', hover=False)
+    la_nina_label = hv.Text(ds.isel(time=-40).time.values, -2, 'La Niña').opts(text_color='blue')
+
+    # Plot a timeseries of the ENSO 3.4 index
+    enso = ds.tos.hvplot(x='time', line_width=0.5, color='k', xlabel='Year', ylabel='ENSO 3.4 Index')
+
+    # Combine all the plots into a single plot
+    return (el_nino_label * la_nina_label * el_nino * la_nina * enso).opts(title=f'{ds.attrs["model"]} {ds.attrs["source_id"]} \n Ensemble Member: {ds.attrs["variant_label"]}')
+
+
+
+
+
+
+
plot_enso(ds)
+
+
+
+
+
+
+
+
+
+
+

What was in the 49cd1ee0-2c4c-45f1-ab78-c4557fa25aa3 function??

+

Below is the exact code that was registered at ALCF. If you are interested in writing your own compute functions, please review the Globus Compute with ENSO Notebook

+
+
+ + +Hide code cell source + +
+
def run_plot_enso(source_id):
+    from intake_esgf.exceptions import NoSearchResults
+    import numpy as np
+    import matplotlib.pyplot as plt
+    from intake_esgf import ESGFCatalog
+    import xarray as xr
+    import cf_xarray
+    import warnings
+    warnings.filterwarnings("ignore")
+
+    # List of available source ids
+    valid_source_id = [
+        'ACCESS-ESM1-5', 'EC-Earth3-CC', 'MPI-ESM1-2-LR', 'CanESM5',
+        'MIROC6', 'EC-Earth3', 'CESM2', 'EC-Earth3-Veg', 'NorCPM1'
+    ]
+
+    # Validate user input
+    if not isinstance(source_id, str):
+        raise ValueError("Source ID should be a string.")
+    if not source_id in valid_source_id:
+        raise NoSearchResults("Please use one of the following: "+", ".join(valid_source_id))
+
+    def search_esgf(source_id):
+
+        # Search and load the ocean surface temperature (tos)
+        cat = ESGFCatalog(esgf1_indices="anl-dev")
+        cat.search(
+            activity_id="CMIP",
+            experiment_id="historical",
+            variable_id=["tos"],
+            source_id=source_id,
+            member_id='r1i1p1f1',
+            grid_label="gn",
+            table_id="Omon",
+        )
+        try:
+            tos_ds = cat.to_dataset_dict()["tos"]
+        except ValueError:
+            print(f"Issue with {institution_id} dataset")
+
+        return tos_ds
+
+    def calculate_enso(ds):
+
+        # Subset the El Nino 3.4 index region
+        dso = ds.where(
+        (ds.cf["latitude"] < 5) & (ds.cf["latitude"] > -5) & (ds.cf["longitude"] > 190) & (ds.cf["longitude"] < 240), drop=True
+        )
+
+        # Calculate the monthly means
+        gb = dso.tos.groupby('time.month')
+
+        # Subtract the monthly averages, returning the anomalies
+        tos_nino34_anom = gb - gb.mean(dim='time')
+
+        # Determine the non-time dimensions and average using these
+        non_time_dims = set(tos_nino34_anom.dims)
+        non_time_dims.remove(ds.tos.cf["T"].name)
+        weighted_average = tos_nino34_anom.weighted(ds["areacello"].fillna(0)).mean(dim=list(non_time_dims))
+
+        # Calculate the rolling average
+        rolling_average = weighted_average.rolling(time=5, center=True).mean()
+        std_dev = weighted_average.std()
+        return rolling_average / std_dev
+
+    def add_enso_thresholds(da, threshold=0.4):
+
+        # Conver the xr.DataArray into an xr.Dataset
+        ds = da.to_dataset()
+
+        # Cleanup the time and use the thresholds
+        try:
+            ds["time"]= ds.indexes["time"].to_datetimeindex()
+        except:
+            pass
+        ds["tos_gt_04"] = ("time", ds.tos.where(ds.tos >= threshold, threshold).data)
+        ds["tos_lt_04"] = ("time", ds.tos.where(ds.tos <= -threshold, -threshold).data)
+
+        # Add fields for the thresholds
+        ds["el_nino_threshold"] = ("time", np.zeros_like(ds.tos) + threshold)
+        ds["la_nina_threshold"] = ("time", np.zeros_like(ds.tos) - threshold)
+
+        return ds
+    
+    ds = search_esgf(source_id)
+    enso_index = add_enso_thresholds(calculate_enso(ds).compute())
+    enso_index.attrs = ds.attrs
+    enso_index.attrs["model"] = source_id
+
+    return enso_index
+
+
+
+
+
+
+
+
+

Summary

+

Within this demonstration, we remotely triggered a globus-compute function which read, aggregated, and computed ENSO on datasets located on an HPC system. The computations were all done on the server side, with visualization being the only task done locally.

+
+

What’s next?

+

Some existing questions still exist! Mainly:

+
    +
  • Where do define these functions? How do we ensure these are safe to run?

  • +
  • How do we request “service” accounts on other HPC/cloud facilities?

  • +
  • What other functions, outside of the typical WPS services, can we define?

  • +
  • What other use-cases could this support (ex. kerchunk or zarr creation)?

  • +
+
+
+ +
+ + + + +
+ + +
+
+
+ +
+
+ + + +
+
+ + + + + + + + + +
+
+ + \ No newline at end of file diff --git a/_preview/32/notebooks/how-to-cite.html b/_preview/32/notebooks/how-to-cite.html new file mode 100644 index 0000000..c259871 --- /dev/null +++ b/_preview/32/notebooks/how-to-cite.html @@ -0,0 +1,454 @@ + + + + + + + + How to Cite This Cookbook — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+ +
+ + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
+
+ +
+ +
+

How to Cite This Cookbook

+

The material in this Project Pythia Cookbook is licensed for free and open consumption and reuse. All code is served under Apache 2.0, while all non-code content is licensed under Creative Commons BY 4.0 (CC BY 4.0). Effectively, this means you are free to share and adapt this material so long as you give appropriate credit to the Cookbook authors and the Project Pythia community.

+

The source code for the book is released on GitHub and archived on Zenodo. This DOI will always resolve to the latest release of the book source:

+

DOI

+
+ + + + +
+ + +
+
+
+ +
+
+ + + +
+
+ + + + + + + + + +
+
+ + \ No newline at end of file diff --git a/_preview/32/notebooks/intro-search.html b/_preview/32/notebooks/intro-search.html new file mode 100644 index 0000000..2cfeed9 --- /dev/null +++ b/_preview/32/notebooks/intro-search.html @@ -0,0 +1,1695 @@ + + + + + + + + Introduction to intake-esgf — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+ +
+ + + + + + + + + + + + + + + + + + +
+ + + +
+
+
+
+ +
+ +

ESGF logo

+
+

Introduction to intake-esgf

+
+

Overview

+

In this tutorial we will discuss the basic functionality of intake-esgf and describe some of what it is doing under the hood. intake-esgf is an intake and intake-esm inspired package under development in ESGF2. Please note that there is a name collison with an existing package in PyPI and conda. You will need to install the package from source.

+
+
+

Prerequisites

+ + + + + + + + + + + + + + + + + + + + + +

Concepts

Importance

Notes

Install Package

Necessary

pip install git+https://github.com/esgf2-us/intake-esgf

Familiar with intake-esm

Helpful

Similar interface

Understanding of NetCDF

Helpful

Familiarity with metadata structure

+
    +
  • Time to learn: 30 minutes

  • +
+
+
+

Imports

+
+
+
from intake_esgf import ESGFCatalog
+import matplotlib.pyplot as plt
+
+
+
+
+
+
+

Populate the Catalog

+

Unlike intake-esm, our catalogs initialize empty. This is because while intake-esm +loads a large file-based database into memory, we are going to populate a catalog by +searching one or many index nodes. The ESGFCatalog is configured by default to query +a Globus (ElasticSearch) based index which has information about holdings at the (Argonne Leadership Computing Facility (ALCF) only. We will demonstrate how this may be expanded to include other nodes later.

+
+
+
cat = ESGFCatalog()
+print(cat)  # <-- nothing to see here yet
+
+
+
+
+
Perform a search() to populate the catalog.
+
+
+
+
+
+
+
cat.search(
+    experiment_id="historical",
+    source_id="CanESM5",
+    frequency="mon",
+    variable_id=["gpp", "tas", "pr"],
+)
+print(cat)
+
+
+
+
+
   Searching indices:   0%|          |0/1 [       ?index/s]
+
+
+
   Searching indices: 100%|██████████|1/1 [    1.92s/index]
+
+
+
Summary information for 195 results:
+mip_era                                                     [CMIP6]
+activity_id                                                  [CMIP]
+institution_id                                              [CCCma]
+source_id                                                 [CanESM5]
+experiment_id                                          [historical]
+member_id         [r28i1p2f1, r6i1p2f1, r14i1p1f1, r20i1p2f1, r2...
+table_id                                               [Lmon, Amon]
+variable_id                                          [gpp, tas, pr]
+grid_label                                                     [gn]
+dtype: object
+
+
+
+
+

The search has populated the catalog where results are stored internally as a pandas dataframe, where the columns are the facets common to ESGF. Printing the catalog will display each column as well as a possibly-truncated list of unique values. We can use these to help narrow down our search. In this case, we neglected to mention a member_id (also known as a variant_label). So we can repeat our search with this additional facet. Note that searches are not cumulative and so we need to repeat the previous facets in this subsequent search. Also, while for the tutorial’s sake we repeat the search here, in your own analysis codes, you could simply edit your previous search.

+
+
+
cat.search(
+    experiment_id="historical",
+    source_id="CanESM5",
+    frequency="mon",
+    variable_id=["gpp", "tas", "pr"],
+    variant_label="r1i1p1f1",  # addition from the last search
+)
+print(cat)
+
+
+
+
+
   Searching indices: 100%|██████████|1/1 [    1.73s/index]
+
+
+
Summary information for 3 results:
+mip_era                  [CMIP6]
+activity_id               [CMIP]
+institution_id           [CCCma]
+source_id              [CanESM5]
+experiment_id       [historical]
+member_id             [r1i1p1f1]
+table_id            [Amon, Lmon]
+variable_id       [tas, pr, gpp]
+grid_label                  [gn]
+dtype: object
+
+
+

+
+
+
+
+
+
+

Obtaining the datasets

+

Now we see that our search has located 3 datasets and thus we are ready to load these into memory. Like intake-esm, the catalog will generate a dictionary of xarray datasets. Internally, the catalog is again communicating with the index node and requesting file information. This includes which file or files are part of the datasets, their local paths, download locations, and verification information. We then try to make an optimal decision in getting the data to you as quickly as we can.

+
    +
  1. If you are running on a resource with direct access to the ESGF holdings (such a Jupyter notebook on nimbus.llnl.gov), then we check if the dataset files are locally available. We have a handful of locations built-in to intake-esgf but you can also set a location manually with cat.set_esgf_data_root().

  2. +
  3. If a dataset has associated files that have been previously downloaded into the local cache, then we will load these files into memory.

  4. +
  5. If no direct file access is found, then we will queue the dataset files for download. File downloads will occur in parallel from the locations which provide you the fastest transfer speeds. Initially we will randomize the download locations, but as you use intake-esgf, we keep track of which servers provide you fastest transfer speeds and future downloads will prefer these locations. Once downloaded, we check file validity, and load into xarray containers.

  6. +
+
+
+
dsd = cat.to_dataset_dict()
+
+
+
+
+
 Obtaining file info:   0%|          |0/3 [     ?dataset/s]
+
+
+
 Obtaining file info: 100%|██████████|3/3 [  1.23s/dataset]
+Adding cell measures: 100%|██████████|3/3 [  3.00s/dataset]
+
+
+
+
+

You will notice that progress bars inform you that file information is being obtained +and that downloads are taking place. As files are downloaded, they are placed into a +local cache in ${HOME}/.esgf in a directory structure that mirrors that of the +remote storage. For future analysis which uses these datasets, intake-esgf will +first check this cache to see if a file already exists and use it instead of +re-downloading. Then it returns a dictionary whose keys are by default the minimal set +of facets to uniquely describe a dataset in the current search.

+
+
+
print(dsd.keys())
+
+
+
+
+
dict_keys(['Amon.tas', 'Amon.pr', 'Lmon.gpp'])
+
+
+
+
+

During the download process, you may have also noticed that a progress bar informed +you that we were adding cell measures. If you have worked with ESGF data before, you +know that cell measure information like areacella is needed to take proper +area-weighted means/summations. Yet many times, model centers have not uploaded this +information uniformly in all submissions. We perform a search for each dataset being +placed in the dataset dictionary, progressively dropping dataset facets to find, if +possible, the cell measures that are closest to the dataset being downloaded. +Sometimes they are simply in another variant_label, but other times they could be in a +different activity_id. No matter where they are, we find them for you and add them +by default (disable with to_dataset_dict(add_measures=False)).

+

We determine which measures need downloaded by looking in the dataset attributes. Since tas is an atmospheric variable, we will see that its cell_measures = 'area: areacella'. If you print this variable you will see that measure has been added.

+
+
+
dsd["Amon.tas"]
+
+
+
+
+
+ + + + + + + + + + + + + + +
<xarray.Dataset>
+Dimensions:    (time: 1980, bnds: 2, lat: 64, lon: 128)
+Coordinates:
+  * time       (time) object 1850-01-16 12:00:00 ... 2014-12-16 12:00:00
+  * lat        (lat) float64 -87.86 -85.1 -82.31 -79.53 ... 82.31 85.1 87.86
+  * lon        (lon) float64 0.0 2.812 5.625 8.438 ... 348.8 351.6 354.4 357.2
+    height     float64 ...
+Dimensions without coordinates: bnds
+Data variables:
+    time_bnds  (time, bnds) object ...
+    lat_bnds   (lat, bnds) float64 ...
+    lon_bnds   (lon, bnds) float64 ...
+    tas        (time, lat, lon) float32 ...
+    areacella  (lat, lon) float32 ...
+Attributes: (12/53)
+    CCCma_model_hash:            3dedf95315d603326fde4f5340dc0519d80d10c0
+    CCCma_parent_runid:          rc3-pictrl
+    CCCma_pycmor_hash:           33c30511acc319a98240633965a04ca99c26427e
+    CCCma_runid:                 rc3.1-his01
+    Conventions:                 CF-1.7 CMIP-6.2
+    YMDH_branch_time_in_child:   1850:01:01:00
+    ...                          ...
+    tracking_id:                 hdl:21.14100/872062df-acae-499b-aa0f-9eaca76...
+    variable_id:                 tas
+    variant_label:               r1i1p1f1
+    version:                     v20190429
+    license:                     CMIP6 model data produced by The Government ...
+    cmor_version:                3.4.0
+
+

However, for gpp we also need the land fractions, which is detected by the presence of area: where land in the cell_methods. You will notice that both areacella and sftlf are added to Lmon.gpp.

+
+
+
dsd["Lmon.gpp"]
+
+
+
+
+
+ + + + + + + + + + + + + + +
<xarray.Dataset>
+Dimensions:    (time: 1980, bnds: 2, lat: 64, lon: 128)
+Coordinates:
+  * time       (time) object 1850-01-16 12:00:00 ... 2014-12-16 12:00:00
+  * lat        (lat) float64 -87.86 -85.1 -82.31 -79.53 ... 82.31 85.1 87.86
+  * lon        (lon) float64 0.0 2.812 5.625 8.438 ... 348.8 351.6 354.4 357.2
+    type       |S4 ...
+Dimensions without coordinates: bnds
+Data variables:
+    time_bnds  (time, bnds) object ...
+    lat_bnds   (lat, bnds) float64 ...
+    lon_bnds   (lon, bnds) float64 ...
+    gpp        (time, lat, lon) float32 ...
+    sftlf      (lat, lon) float32 ...
+    areacella  (lat, lon) float32 ...
+Attributes: (12/53)
+    CCCma_model_hash:            3dedf95315d603326fde4f5340dc0519d80d10c0
+    CCCma_parent_runid:          rc3-pictrl
+    CCCma_pycmor_hash:           33c30511acc319a98240633965a04ca99c26427e
+    CCCma_runid:                 rc3.1-his01
+    Conventions:                 CF-1.7 CMIP-6.2
+    YMDH_branch_time_in_child:   1850:01:01:00
+    ...                          ...
+    tracking_id:                 hdl:21.14100/387658c8-f085-4ab8-995c-def848e...
+    variable_id:                 gpp
+    variant_label:               r1i1p1f1
+    version:                     v20190429
+    license:                     CMIP6 model data produced by The Government ...
+    cmor_version:                3.4.0
+
+
+
+

Simple Plotting

+
+
+
fig, axs = plt.subplots(figsize=(6, 12), nrows=3)
+
+# temperature
+ds = dsd["Amon.tas"]["tas"].mean(dim="time") - 273.15  # to [C]
+ds.plot(ax=axs[0], cmap="bwr", vmin=-40, vmax=40, cbar_kwargs={"label": "tas [C]"})
+
+# precipitation
+ds = dsd["Amon.pr"]["pr"].mean(dim="time") * 86400 / 999.8 * 1000  # to [mm d-1]
+ds.plot(ax=axs[1], cmap="Blues", vmax=10, cbar_kwargs={"label": "pr [mm d-1]"})
+
+# gross primary productivty
+ds = dsd["Lmon.gpp"]["gpp"].mean(dim="time") * 86400 * 1000  # to [g m-2 d-1]
+ds.plot(ax=axs[2], cmap="Greens", cbar_kwargs={"label": "gpp [g m-2 d-1]"});
+
+
+
+
+../_images/861a5a7c186719b305d5b20401dcafd868cd5218a418bc67567844bed06ea8a9.png +
+
+
+
+

Summary

+

intake-esgf becomes the way that you download or locate data as well as load it into memory. It is a full specification of what your analysis is about and makes your script portable to other machines or even in use with serverside computing. We are actively developing this codebase. Let us know what other features you would like to see.

+
+
+ + + + +
+ + +
+
+
+ +
+
+ + + +
+
+ + + + + + + + + +
+
+ + \ No newline at end of file diff --git a/_preview/32/notebooks/notebook-template.html b/_preview/32/notebooks/notebook-template.html new file mode 100644 index 0000000..c7eb3fd --- /dev/null +++ b/_preview/32/notebooks/notebook-template.html @@ -0,0 +1,719 @@ + + + + + + + + Project Pythia Notebook Template — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+
+ +
+ +

Let’s start here! If you can directly link to an image relevant to your notebook, such as canonical logos, do so here at the top of your notebook. You can do this with Markdown syntax,

+
+

![<image title>](http://link.com/to/image.png "image alt text")

+
+

or edit this cell to see raw HTML img demonstration. This is preferred if you need to shrink your embedded image. Either way be sure to include alt text for any embedded images to make your content more accessible.

+

Project Pythia Logo

+
+

Project Pythia Notebook Template

+

Next, title your notebook appropriately with a top-level Markdown header, #. Do not use this level header anywhere else in the notebook. Our book build process will use this title in the navbar, table of contents, etc. Keep it short, keep it descriptive. Follow this with a --- cell to visually distinguish the transition to the prerequisites section.

+
+
+

Overview

+

If you have an introductory paragraph, lead with it here! Keep it short and tied to your material, then be sure to continue into the required list of topics below,

+
    +
  1. This is a numbered list of the specific topics

  2. +
  3. These should map approximately to your main sections of content

  4. +
  5. Or each second-level, ##, header in your notebook

  6. +
  7. Keep the size and scope of your notebook in check

  8. +
  9. And be sure to let the reader know up front the important concepts they’ll be leaving with

  10. +
+
+
+

Prerequisites

+

This section was inspired by this template of the wonderful The Turing Way Jupyter Book.

+

Following your overview, tell your reader what concepts, packages, or other background information they’ll need before learning your material. Tie this explicitly with links to other pages here in Foundations or to relevant external resources. Remove this body text, then populate the Markdown table, denoted in this cell with | vertical brackets, below, and fill out the information following. In this table, lay out prerequisite concepts by explicitly linking to other Foundations material or external resources, or describe generally helpful concepts.

+

Label the importance of each concept explicitly as helpful/necessary.

+ + + + + + + + + + + + + + + + + + + + + +

Concepts

Importance

Notes

Intro to Cartopy

Necessary

Understanding of NetCDF

Helpful

Familiarity with metadata structure

Project management

Helpful

+
    +
  • Time to learn: estimate in minutes. For a rough idea, use 5 mins per subsection, 10 if longer; add these up for a total. Safer to round up and overestimate.

  • +
  • System requirements:

    +
      +
    • Populate with any system, version, or non-Python software requirements if necessary

    • +
    • Otherwise use the concepts table above and the Imports section below to describe required packages as necessary

    • +
    • If no extra requirements, remove the System requirements point altogether

    • +
    +
  • +
+
+
+
+

Imports

+

Begin your body of content with another --- divider before continuing into this section, then remove this body text and populate the following code cell with all necessary Python imports up-front:

+
+
+
import sys
+
+
+
+
+
+
+

Your first content section

+

This is where you begin your first section of material, loosely tied to your objectives stated up front. Tie together your notebook as a narrative, with interspersed Markdown text, images, and more as necessary,

+
+
+
# as well as any and all of your code cells
+print("Hello world!")
+
+
+
+
+
+

A content subsection

+

Divide and conquer your objectives with Markdown subsections, which will populate the helpful navbar in Jupyter Lab and here on the Jupyter Book!

+
+
+
# some subsection code
+new = "helpful information"
+
+
+
+
+
+
+

Another content subsection

+

Keep up the good work! A note, try to avoid using code comments as narrative, and instead let them only exist as brief clarifications where necessary.

+
+
+
+

Your second content section

+

Here we can move on to our second objective, and we can demonstrate

+
+

Subsection to the second section

+
+

a quick demonstration

+
+
of further and further
+
+
header levels
+

as well \(m = a * t / h\) text! Similarly, you have access to other \(\LaTeX\) equation functionality via MathJax (demo below from link),

+
+()\[\begin{align} +\dot{x} & = \sigma(y-x) \\ +\dot{y} & = \rho x - y - xz \\ +\dot{z} & = -\beta z + xy +\end{align}\]
+

Check out any number of helpful Markdown resources for further customizing your notebooks and the Jupyter docs for Jupyter-specific formatting information. Don’t hesitate to ask questions if you have problems getting it to look just right.

+
+
+
+
+
+
+

Last Section

+

If you’re comfortable, and as we briefly used for our embedded logo up top, you can embed raw html into Jupyter Markdown cells (edit to see):

+
+

Info

+

Your relevant information here!

+
+

Feel free to copy this around and edit or play around with yourself. Some other admonitions you can put in:

+
+

Success

+

We got this done after all!

+
+
+

Warning

+

Be careful!

+
+
+

Danger

+

Scary stuff be here.

+
+

We also suggest checking out Jupyter Book’s brief demonstration on adding cell tags to your cells in Jupyter Notebook, Lab, or manually. Using these cell tags can allow you to customize how your code content is displayed and even demonstrate errors without altogether crashing our loyal army of machines!

+
+
+
+

Summary

+

Add one final --- marking the end of your body of content, and then conclude with a brief single paragraph summarizing at a high level the key pieces that were learned and how they tied to your objectives. Look to reiterate what the most important takeaways were.

+
+

What’s next?

+

Let Jupyter book tie this to the next (sequential) piece of content that people could move on to down below and in the sidebar. However, if this page uniquely enables your reader to tackle other nonsequential concepts throughout this book, or even external content, link to it here!

+
+
+
+

Resources and references

+

Finally, be rigorous in your citations and references as necessary. Give credit where credit is due. Also, feel free to link to relevant external material, further reading, documentation, etc. Then you’re done! Give yourself a quick review, a high five, and send us a pull request. A few final notes:

+
    +
  • Kernel > Restart Kernel and Run All Cells... to confirm that your notebook will cleanly run from start to finish

  • +
  • Kernel > Restart Kernel and Clear All Outputs... before committing your notebook, our machines will do the heavy lifting

  • +
  • Take credit! Provide author contact information if you’d like; if so, consider adding information here at the bottom of your notebook

  • +
  • Give credit! Attribute appropriate authorship for referenced code, information, images, etc.

  • +
  • Only include what you’re legally allowed: no copyright infringement or plagiarism

  • +
+

Thank you for your contribution!

+
+
+ + + + +
+ +
+
+
+
+
+ +
+
+ + + +
+
+ + + + + + + + + +
+
+ + \ No newline at end of file diff --git a/_preview/32/notebooks/rooki.html b/_preview/32/notebooks/rooki.html new file mode 100644 index 0000000..de2600f --- /dev/null +++ b/_preview/32/notebooks/rooki.html @@ -0,0 +1,1711 @@ + + + + + + + + Compute Demo: Use Rooki to access CMIP6 data — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+
+ +
+ +
+

Compute Demo: Use Rooki to access CMIP6 data

+
+

Overview

+

Rooki is a Python client to interact with Rook data subsetting service for climate model data. This service is used in the backend by the European Copernicus Climate Data Store to access the CMIP6 data pool. The Rook service is deployed for load-balancing at IPSL (Paris) and DKRZ (Hamburg). The CMIP6 data pool is shared with ESGF. The provided CMIP6 subset for Copernicus is synchronized at both sites.

+

Rook provides operators for subsetting, averaging and regridding to retrieve a subset of the CMIP6 data pool. These operators are implemented by the clisops Python libray and are based on xarray. The clisops library is developed by Ouranos (Canada), CEDA (UK) and DKRZ (Germany).

+

The operators can be called remotly using the OGC Web Processing Service (WPS) standard.

+

rook 4 cds

+

ROOK: Remote Operations On Klimadaten

+
    +
  • Rook: https://github.com/roocs/rook

  • +
  • Rooki: https://github.com/roocs/rooki

  • +
  • Clisops: https://github.com/roocs/clisops

  • +
  • Rook Presentation: https://github.com/cehbrecht/talk-rook-status-kickoff-meeting-2022/blob/main/Rook_C3S2_380_2022-02-11.pdf

  • +
+
+
+

Prerequisites

+ + + + + + + + + + + + + + + + + + + + + +

Concepts

Importance

Notes

Intro to Xarray

Necessary

Understanding of NetCDF

Helpful

Familiarity with metadata structure

Knowing OGC services

Helpful

Understanding of the service interfaces

+
    +
  • Time to learn: 15 minutes

  • +
+
+
+

Init Rooki

+
+
+
import os
+os.environ['ROOK_URL'] = 'http://rook.dkrz.de/wps'
+
+from rooki import rooki
+
+
+
+
+
+
+

Retrieve subset of CMIP6 data

+

The CMIP6 dataset is identified by a dataset-id. An intake catalog as available to lookup the available datasets:

+

https://nbviewer.org/github/roocs/rooki/blob/master/notebooks/demo/demo-intake-catalog.ipynb

+
+
+
resp = rooki.subset(
+    collection='c3s-cmip6.CMIP.MPI-M.MPI-ESM1-2-HR.historical.r1i1p1f1.Amon.tas.gn.v20190710',
+    time='2000-01-01/2000-01-31',
+    area='-30,-40,70,80',
+)
+resp.ok
+
+
+
+
+
True
+
+
+
+
+
+

Open Dataset with xarray

+
+
+
ds = resp.datasets()[0]
+ds
+
+
+
+
+
Downloading to /var/folders/5f/t661zdnd181ck1dv429s4p8r0000gn/T/metalink_c868rf7f/tas_Amon_MPI-ESM1-2-HR_historical_r1i1p1f1_gn_20000116-20000116.nc.
+
+
+
+ + + + + + + + + + + + + + +
<xarray.Dataset> Size: 61kB
+Dimensions:    (time: 1, bnds: 2, lat: 129, lon: 107)
+Coordinates:
+  * time       (time) datetime64[ns] 8B 2000-01-16T12:00:00
+  * lat        (lat) float64 1kB -39.74 -38.81 -37.87 ... 78.08 79.01 79.95
+  * lon        (lon) float64 856B -30.0 -29.06 -28.12 ... 67.5 68.44 69.38
+    height     float64 8B ...
+Dimensions without coordinates: bnds
+Data variables:
+    time_bnds  (time, bnds) datetime64[ns] 16B ...
+    lat_bnds   (lat, bnds) float64 2kB ...
+    lon_bnds   (lon, bnds) float64 2kB ...
+    tas        (time, lat, lon) float32 55kB ...
+Attributes: (12/47)
+    Conventions:            CF-1.7 CMIP-6.2
+    activity_id:            CMIP
+    branch_method:          standard
+    branch_time_in_child:   0.0
+    branch_time_in_parent:  0.0
+    contact:                cmip6-mpi-esm@dkrz.de
+    ...                     ...
+    title:                  MPI-ESM1-2-HR output prepared for CMIP6
+    variable_id:            tas
+    variant_label:          r1i1p1f1
+    license:                CMIP6 model data produced by MPI-M is licensed un...
+    cmor_version:           3.5.0
+    tracking_id:            hdl:21.14100/af75dd9f-d9c2-4e0e-a294-2bb0d5b740cf
+
+
+
+

Plot CMIP6 Dataset

+
+
+
ds.tas.isel(time=0).plot()
+
+
+
+
+
<matplotlib.collections.QuadMesh at 0x138066da0>
+
+
+../_images/8799c609e4da1ad391f94a810ac1aa9384138b7a148feeccd930826122364187.png +
+
+
+
+

Show Provenance

+

A provenance document is generated remotely to document the operation steps. +The provenance uses the W3C PROV standard.

+
+
+
from IPython.display import Image
+Image(resp.provenance_image())
+
+
+
+
+../_images/469a332a36efa3a00c56941721e44082329d8f5ffe0350a97e5acc0fedb6e7fd.png +
+
+
+
+
+

Run workflow with subset and average operator

+

Instead of running a single operator one can also chain several operators in a workflow.

+
+

Use rooki operators to create a workflow

+
+
+
from rooki import operators as ops
+
+
+
+
+
+
+

Define the workflow

+

… internally the workflow tree is a json document

+
+
+
tas = ops.Input(
+    'tas', ['c3s-cmip6.CMIP.MPI-M.MPI-ESM1-2-HR.historical.r1i1p1f1.Amon.tas.gn.v20190710']
+)
+
+wf = ops.Subset(
+    tas, 
+    time="2000/2000",
+    time_components="month:jan,feb,mar",
+    area='-30,-40,70,80',  
+)
+
+wf = ops.WeightedAverage(wf)
+
+
+
+
+
+
+

Optional: look at the workflow json document

+

only to give some insight

+
+
+
import json
+print(json.dumps(wf._tree(), indent=4))
+
+
+
+
+
{
+    "inputs": {
+        "tas": [
+            "c3s-cmip6.CMIP.MPI-M.MPI-ESM1-2-HR.historical.r1i1p1f1.Amon.tas.gn.v20190710"
+        ]
+    },
+    "steps": {
+        "subset_tas_1": {
+            "run": "subset",
+            "in": {
+                "collection": "inputs/tas",
+                "time": "2000/2000",
+                "time_components": "month:jan,feb,mar",
+                "area": "-30,-40,70,80"
+            }
+        },
+        "weighted_average_tas_1": {
+            "run": "weighted_average",
+            "in": {
+                "collection": "subset_tas_1/output"
+            }
+        }
+    },
+    "outputs": {
+        "output": "weighted_average_tas_1/output"
+    }
+}
+
+
+
+
+
+
+

Submit workflow job

+
+
+
resp = wf.orchestrate()
+resp.ok
+
+
+
+
+
True
+
+
+
+
+
+
+

Open as xarray dataset

+
+
+
ds = resp.datasets()[0]
+ds
+
+
+
+
+
Downloading to /var/folders/5f/t661zdnd181ck1dv429s4p8r0000gn/T/metalink_zmvs568p/tas_Amon_MPI-ESM1-2-HR_historical_r1i1p1f1_gn_20000116-20000316_w-avg.nc.
+
+
+
+ + + + + + + + + + + + + + +
<xarray.Dataset> Size: 88B
+Dimensions:   (bnds: 2, time: 3)
+Coordinates:
+    height    float64 8B ...
+  * time      (time) datetime64[ns] 24B 2000-01-16T12:00:00 ... 2000-03-16T12...
+Dimensions without coordinates: bnds
+Data variables:
+    lat_bnds  (bnds) float64 16B ...
+    lon_bnds  (bnds) float64 16B ...
+    tas       (time) float64 24B ...
+Attributes: (12/47)
+    Conventions:            CF-1.7 CMIP-6.2
+    activity_id:            CMIP
+    branch_method:          standard
+    branch_time_in_child:   0.0
+    branch_time_in_parent:  0.0
+    contact:                cmip6-mpi-esm@dkrz.de
+    ...                     ...
+    title:                  MPI-ESM1-2-HR output prepared for CMIP6
+    variable_id:            tas
+    variant_label:          r1i1p1f1
+    license:                CMIP6 model data produced by MPI-M is licensed un...
+    cmor_version:           3.5.0
+    tracking_id:            hdl:21.14100/af75dd9f-d9c2-4e0e-a294-2bb0d5b740cf
+
+
+
+

Plot dataset

+
+
+
ds.tas.plot()
+
+
+
+
+
[<matplotlib.lines.Line2D at 0x13820cfa0>]
+
+
+../_images/9e52532f5f89c86a15cd48e1ae1faf66186b994e2d6a1ad67385f992e5094b2d.png +
+
+
+
+

Show provenance

+
+
+
Image(resp.provenance_image())
+
+
+
+
+../_images/9faf2b8ae969e005d19e35d5ad7963e61f95fffb59ef26a7fb4a34446cecedc6.png +
+
+
+
+
+

Summary

+

In this notebook, we used the Rooki Python client to retrieve a subset of a CMIP6 dataset. The operations are executed remotely on a Rook subsetting service (using OGC API and xarray/clisops). The dataset is plotted and a provenance document is shown. We also showed that remote operators can be chained to be executed in a single workflow operation.

+
+

What’s next?

+

This service is used by the European Copernicus Climate Data Store.

+

We need to figure out how this service can be used in the new ESGF:

+
    +
  • where will it be deployed?

  • +
  • how can it be integrated in the ESGF search (STAC catalogs, …)

  • +
  • ???

  • +
+
+
+
+

Resources and references

+ +
+
+ + + + +
+ + +
+
+
+ +
+
+ + + +
+
+ + + + + + + + + +
+
+ + \ No newline at end of file diff --git a/_preview/32/notebooks/rooki_enso_nonlinear.html b/_preview/32/notebooks/rooki_enso_nonlinear.html new file mode 100644 index 0000000..c6bdddd --- /dev/null +++ b/_preview/32/notebooks/rooki_enso_nonlinear.html @@ -0,0 +1,897 @@ + + + + + + + + Compute Demo: ENSO nonlinearity index with CMIP6 data — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+ +
+ + + + + + + + + + + + + + + + + + +
+ + + +
+
+
+
+ +
+ +
+
+

Compute Demo: ENSO nonlinearity index with CMIP6 data

+

Alpha output

+
+
+

Overview

+

In this demo we combine multiple multiple tools described in previous cookbooks to subset, regrid and process CMIP6 data. We will be computing a measure of ENSO nonlinearity by computing the EOFs of the pacific sea surface temperature anomalies. This measure is particularly useful for characterizing models by their ability to represent different ENSO extremes (Karamperidou et al., 2017).

+

The process we are going to follow in this demo is:

+
    +
  1. Find the CMIP6 data we need using intake-esgf

  2. +
  3. Subset the data and regrid it to a common grid using Rooki

  4. +
  5. Load the datasets into xarray and perform the computations

  6. +
  7. Plot the results

  8. +
+
+
+

Prerequisites

+ + + + + + + + + + + + + + + + + + + + + + + + + +

Concepts

Importance

Notes

Intro to Xarray

Necessary

How to use xarray to work with NetCDF data

Intro to Intake-ESGF

Necessary

How to configure a search and use output

Intro to Rooki

Helpful

How to initialize and run rooki

Intro to EOFs

Helpful

Understanding of EOFs

+
    +
  • Time to learn: 20 minutes

  • +
+
+
+

Imports

+
+
+
import os
+
+os.environ["ROOK_URL"] = "http://rook.dkrz.de/wps"
+
+import matplotlib.pyplot as plt
+import numpy as np
+import numpy.polynomial.polynomial as poly
+import xarray as xr
+import xeofs as xe
+from intake_esgf import ESGFCatalog
+from rooki import operators as ops
+from rooki import rooki
+
+
+
+
+
+
+

Retrieve subset of CMIP6 data

+

The CMIP6 dataset is identified by a dataset-id. Using intake-esgf we can query the ESGF database for the variables and models we are interested in. For this demo we are interested in the tos (sea surface temperature) variable for the historical runs. Also, for sake of simplicity we will only query a subset of the models available.

+
+
+
cat = ESGFCatalog()
+cat.search(
+    experiment_id=["historical"],
+    variable_id=["tos"],
+    table_id=["Omon"],
+    project=["CMIP6"],
+    grid_label=["gn"],
+    source_id=[
+        "CAMS-CSM1-0",
+        "FGOALS-g3",
+        "CMCC-CM2-SR5",
+        "CNRM-CM6-1",
+        "CNRM-ESM2-1",
+        "EC-Earth3-Veg",
+        "CESM2",
+    ],
+)
+cat.remove_ensembles()
+print(cat)
+
+
+
+
+
Summary information for 11 results:
+activity_drs                                                 [CMIP]
+variable_id                                                   [tos]
+member_id                                      [r1i1p1f1, r1i1p1f2]
+mip_era                                                [CMIP6, nan]
+source_id         [FGOALS-g3, CAMS-CSM1-0, EC-Earth3-Veg, CMCC-C...
+grid_label                                                     [gn]
+datetime_start    [1848-10-25T13:00:00Z, 1850-01-16T12:00:00Z, 1...
+datetime_stop     [nan, 2014-12-16T12:00:00Z, 2014-12-15T12:00:00Z]
+institution_id    [CAS, CAMS, EC-Earth-Consortium, CMCC, CNRM-CE...
+experiment_id                                          [historical]
+table_id                                                     [Omon]
+project                                                     [CMIP6]
+dtype: object
+
+
+
+
+

Once the catalog has been queried, we have to do some manipulation in pandas to keep only the dataset_id. This has to be done because the same data has multiple locations online, and these get appended at the end of the dataset_id. Rookie only accepts the dataset_id without the online location, so we get rid of it in the next step.

+
+
+
def keep_ds_id(ds):
+    return ds[0].split("|")[0]
+
+
+
+
+
+
+
collections = cat.df.id.apply(keep_ds_id).to_list()
+collections
+
+
+
+
+
['CMIP6.CMIP.CAS.FGOALS-g3.historical.r1i1p1f1.Omon.tos.gn.v20191107',
+ 'CMIP6.CMIP.CAMS.CAMS-CSM1-0.historical.r1i1p1f1.Omon.tos.gn.v20190708',
+ 'CMIP6.CMIP.EC-Earth-Consortium.EC-Earth3-Veg.historical.r1i1p1f1.Omon.tos.gn.v20211207',
+ 'CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical.r1i1p1f1.Omon.tos.gn.v20200616',
+ 'CMIP6.CMIP.CNRM-CERFACS.CNRM-ESM2-1.historical.r1i1p1f2.Omon.tos.gn.v20181206',
+ 'CMIP6.CMIP.CNRM-CERFACS.CNRM-CM6-1.historical.r1i1p1f2.Omon.tos.gn.v20180917',
+ 'CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Omon.tos.gn.v20190308',
+ 'CMIP6.CMIP.CAS.FGOALS-g3.historical.r1i1p1f1.Omon.tos.gn.v20191107',
+ 'CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical.r1i1p1f1.Omon.tos.gn.v20200616',
+ 'CMIP6.CMIP.CNRM-CERFACS.CNRM-CM6-1.historical.r1i1p1f2.Omon.tos.gn.v20180917',
+ 'CMIP6.CMIP.EC-Earth-Consortium.EC-Earth3-Veg.historical.r1i1p1f1.Omon.tos.gn.v20211207']
+
+
+
+
+

We are left with a list of dataset_ids that Rookie can accept as input for the next step.

+
+
+

Subset and regrid the data

+

We define a function that will do the subset and regridding for us for each of the dataset_ids we have. The function will take the dataset_id as input and then use Rookie functions to select 100 years of data for the tos variable in the Pacific Ocean region. We don’t need high resolution data for this particular use, so 2.5 degree resolution is enough.

+
+
+
def get_pacific_ocean(dataset_id):
+    wf = ops.Regrid(
+        ops.Subset(
+            ops.Input("tos", [dataset_id]),
+            time="1900-01-01/2000-01-31",
+            area="100,-20,280,20",
+        ),
+        method="nearest_s2d",
+        grid="2pt5deg",
+    )
+    resp = wf.orchestrate()
+    if resp.ok:
+        print(f"{resp.size_in_mb=}")
+        ds = resp.datasets()[0]
+    else:
+        ds = xr.Dataset()
+    return ds
+
+
+
+
+
+
+
sst_data = {dset: get_pacific_ocean(dset) for dset in collections}
+
+
+
+
+
resp.size_in_mb=47.61813259124756
+Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_fq1_rikt/tos_Omon_FGOALS-g3_historical_r1i1p1f1_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.
+resp.size_in_mb=47.61836910247803
+Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_78zekaf5/tos_Omon_CAMS-CSM1-0_historical_r1i1p1f1_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.
+resp.size_in_mb=47.622283935546875
+Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_btxkrzn3/tos_Omon_CMCC-CM2-SR5_historical_r1i1p1f1_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.
+resp.size_in_mb=47.62028503417969
+Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_guxi9kpa/tos_Omon_CNRM-ESM2-1_historical_r1i1p1f2_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.
+resp.size_in_mb=47.621718406677246
+Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_qw22qb9h/tos_Omon_CNRM-CM6-1_historical_r1i1p1f2_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.
+resp.size_in_mb=47.61574363708496
+Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_fusqog81/tos_Omon_CESM2_historical_r1i1p1f1_gr_19000115-20000115_regrid-nearest_s2d-72x144_cells_grid.nc.
+resp.size_in_mb=47.61813259124756
+Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_6d4b6nu0/tos_Omon_FGOALS-g3_historical_r1i1p1f1_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.
+resp.size_in_mb=47.622283935546875
+Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_15dtyr8e/tos_Omon_CMCC-CM2-SR5_historical_r1i1p1f1_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.
+resp.size_in_mb=47.621886253356934
+Downloading to /var/folders/zr/06cgf3250qb0fzy5t_79rc340000gn/T/metalink_yugmj4nu/tos_Omon_CNRM-CM6-1_historical_r1i1p1f2_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.
+
+
+
+
+
+
+

ENSO nonlinearity measure: alpha value

+

This part of the demo is computation heavy. You can refer to Takahashi et al. (2011) and Karamperidou et al. (2017) for more details on the usefulness and computation of the alpha parameter.

+

The alpha parameter is computed by doing a quadratic fit to the first two EOFs for the DJF season of the SST anomalies in the Pacific region. We are looking to obtain two EOFs modes that represent the Eastern and central pacific SST patterns, which is why we include a correction factor to account for the fact the sometimes the EOFs come with the opposite sign.

+

The higher the value of alpha, the more nonlinear (or extreme) ENSO events can be represented by the model. Likewise, a model with lower alpha values will have a harder time representing extreme ENSO events, making it not suitable for climate studies of ENSO in a warming climate (Cai et al., 2018, 2021).

+

We are looking to obtain data that can reproduce a figure similar to the one below (taken from Karamperiou et al., 2017):

+

Alpha parameter

+

Each of the “wings” of this boomerang-shaped distribution represents a different ENSO extreme, with the left (right) wing representing the extreme central (eastern) pacific El Niño events. More details on Takahashi et al. (2011).

+
+
+
def compute_alpha(pc1, pc2):
+    coefs = poly.polyfit(pc1, pc2, deg=2)
+    xfit = np.arange(pc1.min(), pc1.max() + 0.1, 0.1)
+    fit = poly.polyval(xfit, coefs)
+    return coefs[-1], xfit, fit
+
+
+def correction_factor(model):
+    _eofs = model.components()
+    _subset = dict(lat=slice(-5, 5), lon=slice(140, 180))
+    corr_factor = np.zeros(2)
+    corr_factor[0] = 1 if _eofs.sel(mode=1, **_subset).mean() > 0 else -1
+    corr_factor[1] = 1 if _eofs.sel(mode=2, **_subset).mean() > 0 else -1
+    return xr.DataArray(corr_factor, coords=[("mode", [1, 2])])
+
+
+def compute_index(ds):
+    tos = ds.tos.sel(lat=slice(-20, 20), lon=slice(100, 280))
+    tos_anom = tos.groupby("time.month").apply(lambda x: x - x.mean("time"))
+
+    # Compute Eofs
+    model = xe.models.EOF(n_modes=2, use_coslat=True)
+    model.fit(tos_anom, dim="time")
+    corr_factor = correction_factor(model)
+    # eofs = s_model.components()
+    scale_factor = model.singular_values() / np.sqrt(model.explained_variance())
+    pcs = (
+        model.scores().convert_calendar("standard", align_on="date")
+        * scale_factor
+        * corr_factor
+    )
+
+    pc1 = pcs.sel(mode=1)
+    pc1 = pc1.sel(time=pc1.time.dt.month.isin([12, 1, 2]))
+    pc1 = pc1.resample(time="QS-DEC").mean().dropna("time")
+
+    pc2 = pcs.sel(mode=2)
+    pc2 = pc2.sel(time=pc2.time.dt.month.isin([12, 1, 2]))
+    pc2 = pc2.resample(time="QS-DEC").mean().dropna("time")
+
+    alpha, xfit, fit = compute_alpha(pc1, pc2)
+
+    return pc1, pc2, alpha, xfit, fit
+
+
+
+
+

Now we can compute the alpha parameter for each of the models we have selected.

+
+
+
alpha_fits = {}
+for key, item in sst_data.items():
+    if len(item.variables) == 0:
+        continue
+    alpha_fits[key] = compute_index(item)
+
+
+
+
+
+
+

Plot the results

+

Finally, we can plot the results of the alpha parameter for each of the models we have selected. This will give us an idea of how well the models represent different ENSO extremes.

+
+
+
fig, axs = plt.subplots(nrows=3, ncols=2, figsize=(8, 12))
+axs = axs.ravel()
+for num, (ds, (pc1, pc2, alpha, xfit, fit)) in enumerate(alpha_fits.items()):
+    ax = axs[num]
+    ax.axhline(0, color="k", linestyle="--", alpha=0.2)
+    ax.axvline(0, color="k", linestyle="--", alpha=0.2)
+
+    # draw a line 45 degrees
+    x = np.linspace(-6, 6, 100)
+    y = x
+    ax.plot(x, y, color="k", alpha=0.5, lw=1)
+    ax.plot(-x, y, color="k", alpha=0.5, lw=1)
+
+    ax.scatter(
+        pc1,
+        pc2,
+        s=8,
+        marker="o",
+        c="w",
+        edgecolors="k",
+        linewidths=0.5,
+    )
+
+    ax.plot(xfit, fit, c="r", label=f"$\\alpha=${alpha:.2f}")
+
+    ax.set_xlabel("PC1")
+    ax.set_ylabel("PC2")
+
+    ax.set_title(ds.split(".")[3])
+
+    ax.set_xlim(-4, 4)
+    ax.set_ylim(-4, 4)
+    ax.legend()
+fig.subplots_adjust(hspace=0.3)
+
+
+
+
+../_images/0ac36e4c6d9665808a3fe8583135b2221d7aa3d89457727227f89b098bfddd57.png +
+
+

From this example, we can see that from the subset of models we have selected, the alpha parameter is higher for CMCC-CM2-SR5 compared to the other models as the “boomerang” shape is better represented in this model. This indicates that this model is better at representing extreme ENSO events compared to the other models.

+
+
+

Summary

+

In this notebook, we used intake-esgf with Rooki Python client to retrieve a subset of a CMIP6 dataset. The subset and regrid operations are executed remotely on a Rook subsetting service (using OGC API and xarray/clisops). The dataset is analyzed using xeofs to extract a measurement used in ENSO research. We also showed that remote operators can be chained to be executed in a single workflow operation.

+
+

What’s next?

+

This service is used by the European Copernicus Climate Data Store.

+

We need to figure out how this service can be used in the new ESGF:

+
    +
  • where will it be deployed?

  • +
  • how can it be integrated in the ESGF search (STAC catalogs, …)

  • +
  • ???

  • +
+
+
+ +
+

References

+
    +
  • Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.-S., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Taschetto, A. S., Timmermann, A., Wu, L., Yeh, S.-W., Wang, G., Ng, B., Jia, F., Yang, Y., Ying, J., Zheng, X.-T., … Zhong, W. (2021). Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2(9), 628–644. https://doi.org/10.1038/s43017-021-00199-z

  • +
  • Cai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y., Carréric, A., & McPhaden, M. J. (2018). Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564(7735), 201–206. https://doi.org/10.1038/s41586-018-0776-9

  • +
  • Karamperidou, C., Jin, F.-F., & Conroy, J. L. (2017). The importance of ENSO nonlinearities in tropical pacific response to external forcing. Climate Dynamics, 49(7), 2695–2704. https://doi.org/10.1007/s00382-016-3475-y

  • +
  • Takahashi, K., Montecinos, A., Goubanova, K., & Dewitte, B. (2011). ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophysical Research Letters, 38(10). https://doi.org/10.1029/2011GL047364

  • +
+
+
+ + + + +
+ + +
+
+
+ +
+
+ + + +
+
+ + + + + + + + + +
+
+ + \ No newline at end of file diff --git a/_preview/32/notebooks/use-intake-esgf-with-rooki.html b/_preview/32/notebooks/use-intake-esgf-with-rooki.html new file mode 100644 index 0000000..d4f398e --- /dev/null +++ b/_preview/32/notebooks/use-intake-esgf-with-rooki.html @@ -0,0 +1,2236 @@ + + + + + + + + Using intake-esgf with rooki — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+
+ +
+ +

Intake Rooki Demo

+
+
+

Using intake-esgf with rooki

+

Here we dig into using intake-esgf to search for data, then rooki to do server-side computing!

+
+
+

Overview

+

If you have an introductory paragraph, lead with it here! Keep it short and tied to your material, then be sure to continue into the required list of topics below,

+
    +
  1. Search and find data using intake-esgf, returning the dataset ids

  2. +
  3. Feed the dataset ids to rooki to subset and average the data remotely

  4. +
  5. Visualize the results on the end-user side

  6. +
+
+
+

Prerequisites

+ + + + + + + + + + + + + + + + + + + + + +

Concepts

Importance

Notes

Intro to Intake-ESGF

Necessary

How to configure a search and use output

Intro to Rooki

Helpful

How to initialize and run rooki

Intro to hvPlot

Necessary

How to plot interactive visualizations

+
    +
  • Time to learn: 30 minutes

  • +
+
+
+
+

Imports

+
+
+
import os
+
+from rooki import rooki
+from rooki import operators as ops
+import intake_esgf
+from intake_esgf import ESGFCatalog
+import xarray as xr
+import hvplot.xarray
+import holoviews as hv
+import panel as pn
+hv.extension("bokeh")
+
+
+
+
+
+
+
+
+
+ + + + + + + + + +
+
+
+
+
+

Search and Find Data for Surface Temperature on DKRZ Node

+

Let’s start with refining which index we would like to search from. For this analysis, we are remotely computing on the DKRZ node since this is where rooki is running. We know this from checking the ._url method of rooki!

+
+
+
rooki._url
+
+
+
+
+
'http://rook.dkrz.de/wps'
+
+
+
+
+ +
+
+

Extract the Dataset ID and Pass to Rooki

+

Now that we have set of datasets, we need to extract the dataset_id, which is the unique identifier for the dataset. We can pull this from the id column from intake-esgf

+
+

Separate the Dataset ID

+
+
+
cat.df.id.values[0]
+
+
+
+
+
['CMIP6.CMIP.NCAR.CESM2-WACCM-FV2.historical.r1i1p1f1.Amon.tas.gn.v20191120|esgf3.dkrz.de']
+
+
+
+
+

Notice how the node information is added onto end of the file id. We need to “chop off” that last bit, leaving everything before the | character. We put this into a function to make it easier to generalize and apply.

+
+
+
def separate_dataset_id(full_dataset):
+    return full_dataset[0].split("|")[0]
+
+separate_dataset_id(cat.df.id.values[0])
+
+
+
+
+
'CMIP6.CMIP.NCAR.CESM2-WACCM-FV2.historical.r1i1p1f1.Amon.tas.gn.v20191120'
+
+
+
+
+

Now, we can apply this to the entire list within our dataframe using the following

+
+
+
dsets = [separate_dataset_id(dataset) for dataset in list(cat.df.id.values)]
+dsets
+
+
+
+
+
['CMIP6.CMIP.NCAR.CESM2-WACCM-FV2.historical.r1i1p1f1.Amon.tas.gn.v20191120',
+ 'CMIP6.CMIP.NASA-GISS.GISS-E2-1-G.historical.r1i1p1f1.Amon.tas.gn.v20180827',
+ 'CMIP6.CMIP.NCAR.CESM2-FV2.historical.r1i1p1f1.Amon.tas.gn.v20191120',
+ 'CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amon.tas.gn.v20190308',
+ 'CMIP6.CMIP.NASA-GISS.GISS-E2-1-H.historical.r1i1p1f1.Amon.tas.gn.v20190403',
+ 'CMIP6.CMIP.NCAR.CESM2-WACCM.historical.r1i1p1f1.Amon.tas.gn.v20190227',
+ 'CMIP6.CMIP.MIROC.MIROC6.historical.r1i1p1f1.Amon.tas.gn.v20181212',
+ 'CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical.r1i1p1f1.Amon.tas.gn.v20200616',
+ 'CMIP6.CMIP.CMCC.CMCC-CM2-HR4.historical.r1i1p1f1.Amon.tas.gn.v20200904',
+ 'CMIP6.CMIP.CMCC.CMCC-ESM2.historical.r1i1p1f1.Amon.tas.gn.v20210114']
+
+
+
+
+
+
+

Compute with Rooki

+

Now that we have a list of IDs to pass to rooki, let’s compute!

+

In this case, we are:

+
    +
  • Subsetting from the year 1900 to 2000

  • +
  • Subsetting near India using the bounds 65,0,100,35

  • +
  • Computing the yealy average

  • +
+

We then check to make sure the response is okay, and if it is, return that to the user!

+
+
+
def compute_annual_mean_subset(dset_id):
+    # Subset by area then time
+    wf = ops.AverageByTime(
+        ops.Subset(
+            ops.Input(
+                'tas', [dsets[0]]
+            ),
+            time='1900-01-01/2000-12-31',
+            area='65,0,100,35',
+        ),
+    freq="year"
+    )
+    
+    resp = wf.orchestrate()
+    
+    if resp.ok:
+        ds = resp.datasets()[0]
+    else:
+        ds = xr.Dataset()
+    return ds
+
+
+
+
+
+
+
compute_annual_mean_subset(dsets[0])
+
+
+
+
+
Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_gze8fnoi/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.
+
+
+
+ + + + + + + + + + + + + + +
<xarray.Dataset> Size: 165kB
+Dimensions:    (time: 101, lat: 18, lon: 15, nbnd: 2)
+Coordinates:
+  * lat        (lat) float64 144B 0.9474 2.842 4.737 6.632 ... 29.37 31.26 33.16
+  * lon        (lon) float64 120B 65.0 67.5 70.0 72.5 ... 92.5 95.0 97.5 100.0
+  * time       (time) object 808B 1900-01-01 00:00:00 ... 2000-01-01 00:00:00
+Dimensions without coordinates: nbnd
+Data variables:
+    tas        (time, lat, lon) float32 109kB ...
+    lat_bnds   (time, lat, nbnd) float64 29kB ...
+    lon_bnds   (time, lon, nbnd) float64 24kB ...
+    time_bnds  (time, nbnd) object 2kB ...
+Attributes: (12/45)
+    Conventions:            CF-1.7 CMIP-6.2
+    activity_id:            CMIP
+    branch_method:          standard
+    branch_time_in_child:   674885.0
+    branch_time_in_parent:  10950.0
+    case_id:                1562
+    ...                     ...
+    sub_experiment_id:      none
+    table_id:               Amon
+    tracking_id:            hdl:21.14100/2ebbfd9d-97bf-4858-b893-80d31ffe8cc7
+    variable_id:            tas
+    variant_info:           CMIP6 CESM2 historical ensemble with WACCM6-FV2 (...
+    variant_label:          r1i1p1f1
+
+

Now that it works with a single dataset, let’s do this for all the datasets and put them into a dictionary with the dataset ids as the keys.

+
+
+
dset_dict = {}
+for dset in dsets:
+    dset_dict[dset] = compute_annual_mean_subset(dset)
+
+
+
+
+
Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_shm9lihm/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.
+Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_knwmboqr/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.
+Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_hwnk7sbm/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.
+Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_j_w92ac9/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.
+Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_0qmd9id3/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.
+Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_53g0pvrs/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.
+Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_4p48gwjo/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.
+Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_5p_02p66/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.
+Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_0d20f3r4/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.
+Downloading to /var/folders/bw/c9j8z20x45s2y20vv6528qjc0000gq/T/metalink_xncn6l3t/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19000101-20000101_avg-year.nc.
+
+
+
+
+
+
+
list(dset_dict.keys())[1]
+
+
+
+
+
'CMIP6.CMIP.NASA-GISS.GISS-E2-1-G.historical.r1i1p1f1.Amon.tas.gn.v20180827'
+
+
+
+
+
+
+
+

Visualize the Output

+

Let’s use hvPlot to visualize. The datasets are stored in a dictionary of datasets, we need to:

+
    +
  • Extract a single key

  • +
  • Plot a contour filled visualization, with some geographic features

  • +
+
+
+
dset_dict['CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amon.tas.gn.v20190308'].tas.hvplot.contourf(x='lon',
+                                                                                                 y='lat',
+                                                                                                 cmap='Reds',
+                                                                                                 levels=20,
+                                                                                                 clim=(250, 320),
+                                                                                                 features=["land", "ocean"],
+                                                                                                 alpha=0.7,
+                                                                                                 widget_location='bottom',
+                                                                                                 clabel="Yearly Average Temperature (K)",
+                                                                                                 geo=True)
+
+
+
+
+
+
+
+
+
+
+
+
+

Summary

+

Within this notebook, we learned how to specify a specific index node to search from, pass discovered datasets to rooki, and chain remote-compute with several operations using rooki. We then visualized the output using hvPlot, leading to an interactive plot!

+
+

What’s next?

+

More adaptations of the intake-esgf + rooki to remotely compute on ESGF data.

+
+
+ +
+ + + + +
+ + +
+
+
+ +
+
+ + + +
+
+ + + + + + + + + +
+
+ + \ No newline at end of file diff --git a/_preview/32/notebooks/yearly-average-selection-globus.html b/_preview/32/notebooks/yearly-average-selection-globus.html new file mode 100644 index 0000000..5042766 --- /dev/null +++ b/_preview/32/notebooks/yearly-average-selection-globus.html @@ -0,0 +1,1958 @@ + + + + + + + + Basic Demonstration of Data Reduction Using Globus, Intake-ESGF, and Clisops — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+ +
+ + + + + + + + + + + + + + + + + + +
+ + + +
+
+
+
+ +
+ +

Globus logo +ESGF logo

+
+

Basic Demonstration of Data Reduction Using Globus, Intake-ESGF, and Clisops

+
+

Overview

+

Within this notebook, we highlight how to use a collection of open-source tools in the Earth System Grid Federation user-computing community, to reduce and select datasets available through the federation of servers. Mainly, we will

+
    +
  • Select a given time frame

  • +
  • Subset for a point

  • +
  • Average into yearly frequency

  • +
+
+
+

Prerequisites

+ + + + + + + + + + + + + + + + + +

Concepts

Importance

Notes

Intro to Xarray

Necessary

hvPlot Basics

Necessary

Interactive Visualization with hvPlot

+
    +
  • Time to learn: 30 minutes

  • +
+
+
+

Imports

+
+
+
import hvplot.xarray
+import holoviews as hv
+import numpy as np
+import hvplot.xarray
+import matplotlib.pyplot as plt
+import cartopy.crs as ccrs
+from intake_esgf import ESGFCatalog
+import xarray as xr
+import warnings
+from clisops.ops.subset import subset, subset_bbox
+from clisops.ops.average import average_over_dims, average_time
+import os
+from globus_compute_sdk import Executor, Client
+warnings.filterwarnings("ignore")
+
+hv.extension("matplotlib")
+
+
+
+
+
+
+
+
+
+ + + + + + + + + +
+
+
+
+
+

Search and Find Data Using Intake-ESGF

+

Let’s start with a sample dataset - which we can search for using intake-esgf.

+
+
+
cat = ESGFCatalog()
+cat
+
+
+
+
+
Perform a search() to populate the catalog.
+
+
+
+
+
+
+
cat.search(
+    experiment_id="historical",
+    source_id="CanESM5",
+    frequency="mon",
+    variable_id=["gpp", "tas", "pr"],
+    variant_label="r1i1p1f1",  # addition from the last search
+)
+
+
+
+
+
   Searching indices: 100%|███████████████████████████████|1/1 [    4.22s/index]
+
+
+
Summary information for 3 results:
+mip_era                  [CMIP6]
+activity_id               [CMIP]
+institution_id           [CCCma]
+source_id              [CanESM5]
+experiment_id       [historical]
+member_id             [r1i1p1f1]
+table_id            [Amon, Lmon]
+variable_id       [tas, pr, gpp]
+grid_label                  [gn]
+dtype: object
+
+
+
+
+
+
+
dsd = cat.to_dataset_dict()
+dsd.keys()
+
+
+
+
+
 Obtaining file info: 100%|███████████████████████████████|3/3 [  1.24dataset/s]
+Adding cell measures: 100%|███████████████████████████████|3/3 [  3.04s/dataset]
+
+
+
dict_keys(['Amon.tas', 'Lmon.gpp', 'Amon.pr'])
+
+
+
+
+
+
+
ds = dsd["Amon.tas"]
+ds
+
+
+
+
+
+ + + + + + + + + + + + + + +
<xarray.Dataset>
+Dimensions:    (time: 1980, bnds: 2, lat: 64, lon: 128)
+Coordinates:
+  * time       (time) object 1850-01-16 12:00:00 ... 2014-12-16 12:00:00
+  * lat        (lat) float64 -87.86 -85.1 -82.31 -79.53 ... 82.31 85.1 87.86
+  * lon        (lon) float64 0.0 2.812 5.625 8.438 ... 348.8 351.6 354.4 357.2
+    height     float64 ...
+Dimensions without coordinates: bnds
+Data variables:
+    time_bnds  (time, bnds) object ...
+    lat_bnds   (lat, bnds) float64 ...
+    lon_bnds   (lon, bnds) float64 ...
+    tas        (time, lat, lon) float32 ...
+    areacella  (lat, lon) float32 ...
+Attributes: (12/53)
+    CCCma_model_hash:            3dedf95315d603326fde4f5340dc0519d80d10c0
+    CCCma_parent_runid:          rc3-pictrl
+    CCCma_pycmor_hash:           33c30511acc319a98240633965a04ca99c26427e
+    CCCma_runid:                 rc3.1-his01
+    Conventions:                 CF-1.7 CMIP-6.2
+    YMDH_branch_time_in_child:   1850:01:01:00
+    ...                          ...
+    tracking_id:                 hdl:21.14100/872062df-acae-499b-aa0f-9eaca76...
+    variable_id:                 tas
+    variant_label:               r1i1p1f1
+    version:                     v20190429
+    license:                     CMIP6 model data produced by The Government ...
+    cmor_version:                3.4.0
+
+
+
+

Use clisops to subset for time and location

+
+
+
def subset_time(ds, start_time="1850-01-01T12:00:00Z", end_time="2014-12-30T12:00:00Z"):
+    from clisops.ops.subset import subset
+    
+    return subset(ds, time=f"{start_time}/{end_time}", output="xarray")
+
+def subset_location(ds, lat_bounds=[30, 50], lon_bounds=[-100, -80]):
+    from clisops.ops.subset import subset_bbox
+    
+    return subset_bbox(ds, lat_bnds=lat_bounds, lon_bnds=lon_bounds)
+
+
+
+
+
+
+
ds.tas.isel(time=0).hvplot.quadmesh(geo=True, cmap="Reds")
+
+
+
+
+
+
+
+
+
subset_location(ds).tas.isel(time=-1).hvplot(x='lon',
+                                             y='lat',
+                                             features=["land", "lakes", "ocean", "borders"],
+                                             cmap='Reds',
+                                             geo=True)
+
+
+
+
+
+
+
+

Calculate a yearly average

+
+
+
def yearly_average(ds):
+    from clisops.ops.average import average_time
+    return average_time(ds, "year", output_type="xarray")[0]
+
+
+
+
+
+
+
yearly_average(subset_location(ds)).isel(time=0).tas.hvplot(x='lon',
+                                             y='lat',
+                                             features=["land", "lakes", "ocean", "borders"],
+                                             cmap='Reds',
+                                             geo=True)
+
+
+
+
+
+
+
+
+
yearly_average(subset_location(ds)).isel(time=-1).tas.hvplot(x='lon',
+                                             y='lat',
+                                             features=["land", "lakes", "ocean", "borders"],
+                                             cmap='Reds',
+                                             geo=True)
+
+
+
+
+
+
+
+
+
+

Summary

+

In this notebook, we applied data reduction functions from the ESGF stack to data accessed through intake-esgf.

+
+

What’s next?

+

We will see some more advanced examples of using these functions, including full task orchestration using Globus-Flows.

+
+
+
+

Resources and references

+ +
+
+ + + + +
+ + +
+
+
+ +
+
+ + + +
+
+ + + + + + + + + +
+
+ + \ No newline at end of file diff --git a/_preview/32/objects.inv b/_preview/32/objects.inv new file mode 100644 index 0000000..8271bab Binary files /dev/null and b/_preview/32/objects.inv differ diff --git a/_preview/32/search.html b/_preview/32/search.html new file mode 100644 index 0000000..167f919 --- /dev/null +++ b/_preview/32/search.html @@ -0,0 +1,429 @@ + + + + + + + + Search — ESGF Cookbook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + + + + +
+
+ +
+ + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
+
+ +
+ +

Search

+ + + + +

+ Searching for multiple words only shows matches that contain + all words. +

+ + +
+ + + +
+ + + +
+ +
+ + +
+ +
+
+
+
+
+ +
+
+ + + +
+
+ + + + + + + + + +
+
+ + \ No newline at end of file diff --git a/_preview/32/searchindex.js b/_preview/32/searchindex.js new file mode 100644 index 0000000..6ab615b --- /dev/null +++ b/_preview/32/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({docnames:["README","notebooks/complex-search","notebooks/enso-globus","notebooks/enso-globus-flow","notebooks/ex-regrid-plot","notebooks/globus-compute-service-demo","notebooks/how-to-cite","notebooks/intro-search","notebooks/notebook-template","notebooks/rooki","notebooks/rooki_enso_nonlinear","notebooks/use-intake-esgf-with-rooki","notebooks/yearly-average-selection-globus"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,sphinx:56},filenames:["README.md","notebooks/complex-search.ipynb","notebooks/enso-globus.ipynb","notebooks/enso-globus-flow.ipynb","notebooks/ex-regrid-plot.ipynb","notebooks/globus-compute-service-demo.ipynb","notebooks/how-to-cite.md","notebooks/intro-search.ipynb","notebooks/notebook-template.ipynb","notebooks/rooki.ipynb","notebooks/rooki_enso_nonlinear.ipynb","notebooks/use-intake-esgf-with-rooki.ipynb","notebooks/yearly-average-selection-globus.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"0":[1,2,3,4,5,6,7,9,10,11,12],"00":[2,3,4,5,7,9,10,11,12],"000000000":[2,3,5,9],"000008":[2,3],"000008000":[2,3],"0001":[2,3,5,11],"001":3,"00199":10,"001contact":[3,11],"003":11,"004":5,"0047":5,"005698":3,"005728":3,"00activity_id":[7,12],"00bound":9,"00parent_variant_label":[2,3,9,11],"00ymdh_branch_time_in_par":[7,12],"00z":[10,12],"01":[1,2,3,4,5,7,9,10,11,12],"0119919826722":9,"011992":9,"011contact":2,"011e":7,"012963":9,"016":10,"018":10,"01t01":7,"01t12":12,"01t18":[7,12],"02":[1,2,3,5,7,9,12],"021":10,"025743":9,"02t03":2,"03":[1,2,3,5,7,9,12],"038887":9,"03z":5,"03zdata_specs_vers":[5,11],"04":[2,3,5,7,12],"044726631101724":[7,12],"044727":[7,12],"05":[2,3,5,7,12],"051551":9,"06":[1,2,3,4,5,7,9,12],"0625":[7,9,12],"06341":2,"06341499":2,"064799":9,"06479941071204":9,"06cgf3250qb0fzy5t_79rc340000gn":10,"07":[1,2,3,5,7,12],"0728c79344e0f262bb76e4f9ff0d9afctitl":5,"077007":9,"07700705430369":9,"0776":10,"077901":9,"08":[1,2,3,5,7,9,11,12],"09":[1,2,3,5,7,9,12],"090686":9,"091943881744044":[7,12],"091944":[7,12],"095d":2,"09652698831745":[7,12],"096527":[7,12],"09zdata_specs_vers":2,"0_historical_r1i1p1f1_gr_19000116":10,"0arrai":11,"0axi":11,"0branch_method":3,"0branch_time_in_child":3,"0branch_time_in_par":[2,5,7,9,11,12],"0c33bbbfcffb":3,"0c81":3,"0case_id":[2,11],"0contact":[7,9,12],"0creation_d":5,"0e":4,"0m":[1,4],"0mcollect":4,"0mgrid":4,"0mmethod":4,"0mregrid":4,"0mrooki":4,"0n":4,"0parent_variant_label":[7,12],"0pt25deg":4,"0pt25deg_era5":4,"0pt5deg_lsm":4,"0pt625x0pt5deg":4,"0pt75deg":4,"0tracking_id":9,"0valid_min":11,"0x138066da0":9,"0x13820cfa0":9,"0xarrai":[7,12],"1":[1,2,3,5,7,9,10,11,12],"10":[1,2,3,4,5,7,8,9,10,11,12],"100":[1,2,3,4,5,7,9,10,11,12],"1000":7,"1007":10,"101":[7,11,12],"101lat":11,"1029":[9,10],"1038":[9,10],"103825":9,"104":[7,12],"105263":11,"105263157894726":11,"106":[7,12],"107":9,"107coordin":9,"109":[7,12],"10950":11,"109kb":11,"11":[1,2,3,5,7,9,10,11,12],"111kb":3,"112":[7,12],"115":[7,12],"116502":9,"118":[7,12],"11ed":3,"11ee":3,"11realm":2,"12":[1,2,3,4,5,7,9,10,11,12],"120":[7,12],"120b":11,"120w":[2,3],"1223115":[7,12],"123":[7,12],"125":[7,9,12],"126":[7,12],"128":[2,3,4,5,7,12],"128coordin":[7,12],"129":[7,9,12],"129739":9,"12973913069453":9,"129lon":9,"12arrai":[2,3,5],"13":[2,3,9],"130":4,"1304":1,"1309":1,"132":[7,12],"135":[7,12],"137":[7,12],"13803":9,"1383":9,"138970990239372":[7,12],"138971":[7,12],"14":[2,3,7,9,11,12],"140":[7,10,12],"14100":[2,3,4,5,7,9,11,12],"1413":9,"14201065705359":9,"142011":9,"14284":9,"143":[7,12],"144":11,"144b":11,"145":4,"146":[7,12],"148":1,"149":[7,12],"14t00":[2,3],"15":[2,3,4,5,7,9,11,12],"151":[7,12],"154":[7,12],"155628":9,"1562":11,"1562cesm_casenam":11,"157":[7,12],"157752":[7,12],"15775201158739":[7,12],"157894736842096":11,"157895":11,"15cesm_casenam":3,"15nbnd":11,"15t00":[2,3,5],"15t12":[2,3,9,10],"15t13":[2,3],"16":[5,7,9,11,12],"160":[7,12],"16220160":[7,12],"163":[7,12],"165":[7,12],"165kb":11,"16659080":3,"167kb":4,"168":[7,12],"168764":9,"16axi":11,"16b":[4,9],"16kb":[3,5],"16t00":5,"16t12":[5,9,10],"16t19":3,"16t21":3,"17":[4,9,11],"170w":[2,3],"171":[7,12],"1713467553":3,"1713468049":3,"174":[7,12],"174ee4b6":3,"177":[7,12],"177kb":4,"17t19":3,"17z":[7,12],"17zdata_specs_vers":[7,12],"18":[7,9,11,12],"180":[7,10,12],"181452":9,"182":[7,12],"184469":3,"1848":10,"185":[7,12],"1850":[2,3,4,5,7,9,10,11,12],"185920533189158":[7,12],"185921":[7,12],"1875":[7,9,12],"188":[7,12],"188000":3,"18lon":11,"19":[1,7,9,11,12],"190":[2,3,5],"1900":[10,11],"1901":11,"1902":11,"1903":11,"1904":11,"1905":11,"1906":11,"1907":11,"1908":11,"1909":11,"191":[7,12],"1910":11,"1911":11,"1912":11,"1913":11,"1914":11,"1915":11,"1916":11,"1917":11,"1918":11,"1919":11,"192":[2,3,4,9],"1920":11,"1921":11,"1922":11,"1923":11,"1924":11,"1925":11,"1926":11,"1927":11,"1928":11,"1929":11,"192x288":4,"1930":11,"1931":11,"1932":11,"1933":11,"1934":11,"1935":11,"1936":11,"1937":11,"1938":11,"1939":11,"194":[7,12],"1940":11,"1941":11,"1942":11,"1943":11,"1944":11,"1945":11,"1946":11,"19467874881559":9,"194679":9,"1947":11,"1948":11,"1949":11,"195":7,"1950":[2,3,11],"1951":11,"1952":11,"1953":11,"1954":11,"1955":11,"1956":11,"1957":11,"1958":11,"1959":11,"196":[7,12],"1960":11,"1961":11,"1962":11,"1963":11,"1964":11,"1965":11,"1966":11,"1967":11,"1968":11,"1969":11,"1970":11,"1971":11,"1972":11,"1973":11,"1974":11,"1975":11,"1976":11,"1977":11,"1978":11,"1979":[2,3,11],"1980":[2,3,5,7,11,12],"1980bnd":[7,12],"1980coordin":[2,3,5],"1981":11,"1982":11,"1983":11,"1984":11,"1985":11,"1986":11,"1987":11,"1988":11,"1989":11,"199":[7,12],"1990":11,"1991":11,"1992":11,"1993":11,"1994":11,"1995":11,"1996":11,"1997":11,"1998":11,"1999":11,"1_historical_r1i1p1f2_gr_19000116":10,"1bnd":9,"1d6d":3,"1deg":[4,5],"1e":[4,7,9,12],"1e86":3,"1ec6":3,"1frequenc":[2,3,5,7,9,11,12],"1institut":[2,3,5,7,9,11,12],"1kb":[4,9],"1original_nam":7,"1parent_variant_label":5,"1pctco":1,"1pctco2":1,"1product":[2,3,5,7,9,11,12],"1pt25deg":4,"1realm":[3,5,7,9,11,12],"2":[1,2,3,5,6,7,9,10,11,12],"20":[3,7,9,10,11,12],"2000":[9,10,11],"20000101_avg":11,"20000115_regrid":10,"20000116":9,"20000116_regrid":10,"20000316_w":9,"201":[5,10],"2010":4,"20100101_avg":4,"2011":10,"2011gl047364":10,"2014":[2,3,4,5,7,10,11,12],"20146":9,"2017":[2,3,5,9,10,11],"2017ms001217sourc":9,"2018":[5,9,10],"20180827":11,"20181212":11,"2018ms001400":9,"2019":[2,3,7,9,11,12],"20190227":11,"20190308":11,"20190403":11,"20191120":11,"202":[7,11,12],"20200616":11,"20200904":11,"2021":10,"20210114":11,"2022":9,"2024":3,"2048":1,"205":[7,12],"2050":1,"2051":1,"206":10,"2066315276433":[7,12],"206632":[7,12],"207005":9,"20700512086066":9,"207778":9,"208":[7,12],"20m2023":1,"20th":[2,3,4],"21":[2,3,4,5,7,9,11,12],"210":[7,12],"210526":11,"210526315789465":11,"213":[7,12],"214":9,"216":[7,12],"219":[7,12],"219000":[2,3,4],"22":[4,7,9,12],"22057":9,"221kb":4,"222":[7,12],"225":[7,12],"227":[7,12],"23":[3,5,7,9,11,12],"230":[7,12],"233":[7,12],"233703":9,"233kb":4,"235449":3,"236":[5,7,12],"239":[7,12],"24":[3,9],"240":[2,3,5],"241":[7,12],"244":[7,12],"246401":9,"247":[7,12],"24b":9,"24dataset":12,"24kb":11,"25":[2,3,4,7,9,11,12],"250":[7,11,12],"253":[7,12],"25419466535099":[7,12],"254195":[7,12],"255":[7,12],"256":[5,7,12],"258":[7,9,12],"259618":9,"259618270730414":9,"25e":4,"25n":4,"25t11":9,"25t13":10,"26":[1,7,9,11,12],"261":[7,12],"263157894736835":11,"263158":11,"264":[7,12],"267":[7,12],"2695":10,"27":[3,9,11],"270":[4,7,12],"2704":10,"271992":9,"2719921848602":9,"272":[7,12],"27270":11,"272716":9,"273":[7,12],"275":[7,12],"277":5,"278":[7,12],"28":[7,9,12],"280":10,"281":[7,12],"284":[7,12],"285512":9,"286":[7,12],"288":[2,3,4],"289":[7,12],"28experi":5,"29":[2,7,9,11,12],"290":[7,12],"292":[7,12],"295":[7,12],"298":[7,12],"298641":9,"29experi":[2,3,7,12],"29kb":11,"2activity_id":[2,3,5,9,11],"2bb0d5b740cf":9,"2bb0d5b740cfxarrai":9,"2bound":[7,12],"2c9d507ee711":3,"2coordin":11,"2deg":11,"2ebbfd9d":11,"2ef3":5,"2f":[3,10],"2fauth":3,"2fc65bffa0":3,"2feec9b274":3,"2fflow_c65bffa0_bbea_4295_ab38_645eca9cdd54_us":3,"2fmanage_flow":3,"2fscope":3,"2fv2":3,"2fweb":3,"2kb":[4,9,11],"2lat":[7,9,12],"2pt5deg":[4,10],"2time":9,"2tracking_id":5,"2ymdh_branch_time_in_child":[7,12],"3":[1,4,5,7,9,10,11,12],"30":[1,2,3,7,9,11,12],"300":[3,7,12],"301359621762764":[7,12],"30136":[7,12],"302":4,"303":[7,12],"3030":11,"305":5,"30545":3,"306":[7,12],"309":[7,12],"30experi":9,"30t12":12,"30t16":5,"30t17":[7,12],"31":[1,3,4,7,9,10,11,12],"311349":9,"312":[7,12],"3125":[7,9,12],"31291294788636":[7,12],"312913":[7,12],"315":[7,12],"315789":11,"315789473684205":11,"317":[7,12],"317128c6a93bvariable_id":3,"31c7618d":5,"31experi":11,"31mdocstr":4,"31mfile":4,"31msignatur":4,"31mtype":4,"31t23":11,"32":[2,3,7,9,12],"320":[7,11,12],"3200":5,"320x384":[2,3,11],"323":[7,12],"324557701757275":9,"324558":9,"326":[7,12],"329":[1,7,12],"32msearch":1,"33":[7,9,11,12],"331":[7,12],"33287ee02ec7":3,"334":[7,12],"336973":9,"336973173452":9,"337":[7,12],"337654":9,"33c30511acc319a98240633965a04ca99c26427":[4,7,12],"33c30511acc319a98240633965a04ca99c26427ecccma_runid":[7,12],"33kb":4,"34":[7,9,12],"340":[7,12],"341325":3,"343":[7,12],"345":[7,12],"3451":5,"34511945":5,"3475":10,"348":[7,12],"348364759491508":[7,12],"348365":[7,12],"34m":4,"34z":9,"34zdata_specs_vers":9,"35":[9,11],"350454":9,"351":[4,7,12],"354":[4,7,12],"355":4,"356":4,"357":[4,7,12],"358":4,"36":[1,7,9,12],"360":[5,11],"360x256":5,"361":[7,12],"36358":9,"3636":11,"363e1eb":4,"367756":[7,12],"36775610831324":[7,12],"368421":11,"368421052631575":11,"37":[1,3,7,9,11,12],"374fbe5a2bcca535c40f7f23da271e49titl":[7,12],"375":[7,9,12],"376297":9,"37kb":4,"38":[7,9,10,12],"384":9,"384x320":[2,3],"387658c8":7,"389497":9,"38bound":9,"38e306ddbc2":5,"39":[7,9,12],"392e62cd0eb8":4,"3953069108194975":[7,12],"395307":[7,12],"3960":[7,12],"399":1,"39z":3,"39zdata_specs_vers":3,"3a":3,"3aall":3,"3aauth":3,"3aglobu":3,"3ascop":3,"3asearch":3,"3atransf":3,"3coordin":9,"3dedf95315d603326fde4f5340dc0519d80d10c0":[4,7,12],"3dedf95315d603326fde4f5340dc0519d80d10c0cccma_parent_runid":[7,12],"3e":4,"3kb":4,"4":[1,4,5,6,7,9,10,11,12],"40":[1,2,3,4,5,7,9,12],"400e":5,"401949":9,"40194911295724":9,"402593":9,"404":9,"4062":3,"41":[1,9],"412e":2,"415395":9,"41619952608627":[7,12],"4162":[7,12],"4189":3,"42":[1,7,9,12],"421052631578945":11,"421053":11,"428518":9,"4295":3,"43":[7,9,12],"4334":3,"4375":[7,9,12],"438":[4,7,12],"43dc":4,"43e5":3,"43z":[7,12],"44":9,"441244":9,"443":[2,3,5],"45":[4,5,7,9,10,11,12],"4533":2,"454436":9,"45c7":3,"45z":7,"45zdata_specs_vers":7,"46":[2,3,7,9,12],"463648":[7,12],"46364817811508":[7,12],"46692081100363":9,"466921":9,"467531":9,"46e7":4,"47":[1,7,9,10,12],"473684":11,"473684210526315":11,"473d136f742f":3,"48":[3,7,9,12],"480336":9,"484b":4,"4858":11,"488b":3,"49":[1,4,7,9,10,12],"493457":9,"499b":[7,12],"4a34":3,"4ab8":7,"4arrai":[2,3,5],"4c":[2,3],"4c5a":5,"4dc5":3,"4deg":9,"4dfb":3,"4e0e":9,"4f70":3,"4ffb":3,"5":[1,2,3,4,5,7,8,9,10,11,12],"50":[4,7,9,12],"500":[4,7,12],"50619":9,"5065":[2,3,11],"51":[1,7,9,12],"510769":[7,12],"510769325211022":[7,12],"512b":4,"519375":9,"52":[4,9],"5201":[7,12],"52560657265951":[7,12],"525607":[7,12],"526315789473685":11,"526316":11,"53":[4,7,9,12],"53188891182717":9,"531889":9,"53cd":3,"54":[7,9,12],"545277":9,"549cab49a80314b5a85515237d530e30_f3646e1560":4,"54e90e689b9a":3,"55":[3,9],"557756":[7,12],"55775611523069":[7,12],"558395":9,"55kb":9,"56":[1,7,9,12],"5625":[7,9,12],"564":10,"57":[7,9,12],"571136":9,"577607":[7,12],"57760701082788":[7,12],"578947":11,"57894736842104":11,"58":[4,9],"580835":3,"584315":9,"59":[7,9,12],"59065205":3,"5907":3,"596854":9,"5c2":[7,12],"5e":11,"5f":9,"5kb":4,"5n":[2,3],"5s":[2,3],"6":[1,2,3,4,5,7,9,10,11,12],"60":[2,3,4,9,11],"600":3,"61":[7,9,12],"610218":9,"61574363708496":10,"61813259124756":10,"61836910247803":10,"61kb":9,"62":[7,9,12],"62028503417969":10,"621718406677246":10,"621886253356934":10,"622283935546875":10,"623333":9,"625":[4,7,9,12],"625733674938296":[7,12],"625734":[7,12],"628":10,"63":[1,5,9],"631578947368411":11,"631579":11,"632":11,"632e1f8b":3,"636081":9,"64":[4,7,9,12],"644":10,"645eca9cdd54":3,"649254":9,"64lon":[7,12],"65":[7,9,11,12],"650":5,"66":9,"661816":9,"67":[7,9,11,12],"67308962904537":[7,12],"67309":[7,12],"674885":[2,3,4,11],"675159":9,"6790":4,"68":[7,9,12],"6829":2,"6836803d":3,"68421052631578":11,"684211":11,"6875":[7,9,12],"688272":9,"69":9,"6a2aa910bf0":3,"6a92":5,"6ae3f85ae21f":3,"6kb":5,"7":[1,2,3,4,5,7,9,10,11,12],"70":[7,9,11,12],"701026":9,"71":[7,9,12],"714193":9,"72":[9,11],"72017393353477":[7,12],"720174":[7,12],"72310e16":3,"726776":9,"72x144_cells_grid":10,"73":[7,9,12],"736842":11,"73684210526315":11,"7368996803684":[7,12],"7369":[7,12],"737":11,"74":9,"740099":9,"74009905729821":9,"75":[4,7,9,11,12],"75321":9,"76":[7,9,12],"76597":9,"767145559195578":[7,12],"767146":[7,12],"77":[9,11],"7735":10,"779132":9,"77kb":5,"78":[7,9,12],"78735179896313":[7,12],"787352":[7,12],"78947368421052":11,"789474":11,"79":[7,9,12],"791734":9,"79205155":2,"7921":2,"79e1100d95467f7177a261a94d1333ad_f3646e1560":4,"7e3e":3,"8":[1,2,3,4,5,7,9,10,11,12],"80":[1,9,11,12],"802":9,"80305":[2,3,11],"805039":9,"805039385498155":9,"806350":3,"808b":11,"80d31ffe8cc7":11,"80d31ffe8cc7variable_id":11,"81":[5,7,9,12],"812":[4,7,12],"8125":[7,9,12],"818148":9,"8192":[7,12],"81c4":3,"82":[4,7,11,12],"830914":9,"833d3e719f32":3,"833f2aaa":3,"83524096625064":[7,12],"835241":[7,12],"84":[7,12],"842":11,"842105":11,"8421052631578902":11,"84407":9,"85":[4,7,11,12],"8506":5,"8564":5,"856691":9,"856b":9,"86":[4,7,12],"86379883923273":[7,12],"863799":[7,12],"86400":7,"8647193":5,"865":5,"869979577336935":9,"86998":9,"86bound":[7,12],"87":[4,7,9,11,12],"872062df":[7,12],"8737":3,"875":[7,9,12],"88":4,"8825209937735":[7,12],"882521":[7,12],"883087":9,"884a":3,"8874":5,"88b":9,"89":[1,4],"89473684210526":11,"894737":11,"895857":9,"8b":[4,9],"8kb":5,"9":[2,3,4,5,7,9,10,12],"90":[1,4,7,11,12],"909009":9,"92":[1,7,11,12],"921645":9,"929574":[7,12],"92957425448953":[7,12],"92bb829c":3,"93491964067397":9,"93492":9,"9375":[7,9,12],"9395":3,"9395252":3,"946962":9,"94696224738567":9,"947368":11,"9473684210526301":11,"9474":11,"947515":[7,12],"94751515398974":[7,12],"948025":9,"95":[7,9,11,12],"95bound":9,"95f3368e525c":2,"96":11,"960801":9,"96x144":11,"97":11,"972":2,"972cesm_casenam":2,"973948":9,"976533553948642":[7,12],"976534":[7,12],"97bf":11,"97c1da09":3,"98":[7,12],"9831":3,"9846be264d6":3,"986599":9,"995c":7,"99702":[7,12],"997020108491355":[7,12],"998":9,"999":7,"99985958284597":9,"99986":9,"9d88":3,"9e":9,"9eaca76":[7,12],"9eaca7681abcvariable_id":[7,12],"9f11":5,"9f66":4,"9feb":4,"9source_id":5,"9x1":[2,3,4],"9x2":11,"carr\u00e9ric":10,"case":[1,4,5,7,11],"default":[1,2,3,4,7],"do":[1,2,3,4,5,7,8,10,11],"final":[8,10],"function":[1,4,7,8,10,11,12],"import":[0,9],"long":[1,6],"new":[3,8,9,10,11],"ni\u00f1a":[2,3,5],"ni\u00f1o":[2,3,5,10],"null":3,"return":[1,2,3,4,5,7,10,11,12],"short":[8,11],"transient":1,"true":[1,2,3,4,5,7,9,10,11,12],"try":[2,3,4,5,7,8],"var":[9,10,11],"while":[1,2,3,5,6,7],A:[2,3,4,9,10,11],And:8,As:[1,2,3,4,7],At:1,BY:6,Be:8,By:1,For:[1,2,3,5,7,8,10,11,12],If:[0,1,3,4,5,7,8,11],In:[1,2,3,4,7,8,9,10,11,12],It:[1,3,7],Its:9,Near:[7,9,11,12],No:7,Or:8,The:[0,1,2,3,4,5,6,7,8,9,10,11,12],Then:[7,8],These:[3,8,9],To:[1,2,3],With:4,_default:3,_eof:10,_subset:10,_tree:9,_url:11,a055:3,a159:2,a294:9,a2c2f719:4,a2e1241ff138:2,a2e1241ff138variable_id:2,a5b:3,a760:3,a7a4a0c:4,a7af:3,aa0f:[7,12],ab38:3,abil:10,abl:0,about:[1,2,3,5,7,9,11,12],abov:[1,3,8],ac:1,aca:[7,12],acccess:0,accept:10,acces:0,access:[0,1,7,8,12],access_token:3,access_typ:3,accesstokenauthor:3,account:[5,10],acknowledg:[2,3,5,7,9,11,12],across:[1,2,3],action:3,action_id:3,actionurl:3,activ:[0,1,3,7],activity_dr:[10,11],activity_id:[1,2,3,4,5,7,9,11,12],actual:3,ad:[1,7,8,11,12],adapt:[4,6,11],add:[2,3,4,5,7,8],add_enso_threshold:[2,3,5],add_featur:4,add_measur:7,addhistori:7,addit:[2,3,4,7,12],additionalproperti:3,admonit:8,adv:9,advanc:[2,3,12],ae15:3,aerosol:[2,3,5,7,9,11,12],aersub_experi:[5,11],af75dd9f:9,af81:2,af82:3,afrac:[7,12],after:[0,3,8],again:7,agcm:5,agenc:5,aggreg:5,agm8lx1v0p02x8djj6dg2qx6a8k5gwwvlky6vkp4dq0okewmxvtoc2qejpzjxompak4qeoe88doqlkca671p6hpj2wz:3,agwwj8rknovddbyrd3y99vwpy6gkq7jkyorby8qveaopomqjohlcvlnqbma95jdlykg1e2rl0rwygs8vqb0nsnbm7b:3,aim:[2,3],air:[4,7,9,11,12],air_temperaturelong_nam:[7,9,12],air_temperaturetim:11,al:[9,10],alcf:[1,2,3,5,7],align:8,align_on:10,all:[0,1,2,3,4,5,6,7,8,9,11,12],allow:[2,3,8],along:1,alpha:11,alpha_fit:10,alreadi:[2,3,7],also:[0,1,2,3,4,7,8,9,10],alt:8,alter:[7,9,12],altogeth:8,alwai:6,am:1,american:[2,3],amo:11,amon:[1,4,7,9,11,12],amonout_nam:11,amontable_info:[7,9,12],amontracking_id:11,amqp_port:[2,3,5],an:[1,4,5,7,8,9,10,11],analys:1,analysi:[0,1,2,3,7,11,12],analyz:[0,10],ani:[1,2,3,5,7,8,9,11,12],anl:[1,3,5,11],annoi:1,annual:4,anomali:[2,3,5,10],anoth:[3,7],anywher:8,aogcm:[2,3,5,11],aogcmsub_experi:[7,9,12],aori:5,apach:6,api:[3,9,10],app:3,append:10,appli:[1,2,3,7,10,11,12],applic:4,appropri:[6,8],approxim:[8,9],ar:[0,1,2,3,4,5,6,7,9,10,11,12],arang:10,archiv:6,area:[2,3,5,7,9,10,11,12],area_d:2,area_typ:7,areacella:[7,12],areacellacell_method:11,areacellaforcing_index:[7,9,11,12],areacellahistori:9,areacello:[2,3,5],areacelloforcing_index:[2,3,5],argonn:[1,2,3,5,7,11],argument:[2,3],aris:[2,3,5,7,9,11,12],armi:8,around:8,arrai:[2,3,5,9,11],ask:8,associ:7,atmo:[4,5,7,9,12],atmoschem:[2,3,5,7,9,11,12],atmospher:[2,3,4,5,7,11,12],atmosrefer:[7,9,12],atmossourc:11,atmosstandard_nam:11,attach:[2,3],attr:[2,3,5],attribut:[2,3,4,5,7,8,9,11,12],au:1,auth:3,auth_cod:3,auth_kwarg:3,author:[3,6,8],authorship:8,auto:4,autom:3,automat:1,autotroph:7,avail:[1,2,3,4,5,7,9,10,12],averag:[2,3,4,5,11],average_over_dim:12,average_tim:12,averagebytim:[4,11],avg:9,avoid:8,awi:1,ax1:4,ax2:4,ax3:4,ax:[4,7,10],axcb:4,axcb_diff:4,axcb_diff_in:4,axcb_in:4,axcb_pr:4,axcb_pr_in:4,axdiff:4,axes_grid1:4,axes_list:4,axhlin:10,axi:[4,9],axpr_1:4,axpr_2:4,axvlin:10,b0ffb89d:2,b159:3,b3d1d669:2,b579:3,b703:3,b893:11,b:[2,3,4,5,10,11],back:[1,3],backend:9,background:[1,8],balanc:9,bar:7,base:[1,3,4,7,9],basic:[2,3,7],bbea:3,bc:[7,12],bcc:1,bdc2:3,bearer:3,becaus:[7,10],becom:[5,7],been:[4,7,10],befor:[2,3,7,8,11],begin:[1,8],being:[2,3,5,7],below:[0,3,5,8,10,11],benefit:1,beta:8,better:[4,10],beyond:0,bgc:11,bgcsub_experi:2,bgctable_id:3,bhist:[2,3],bilinear:4,biogeochemistri:[2,3,11],biomass:7,birdi:4,bit:11,blob:9,blue:[2,3,5,7],bnd:[4,7,9,12],bodi:8,bokeh:[2,3,5,11],book:[0,6,8],boomerang:10,border:[4,12],both:[4,7,9],bottom:[4,8,11],boulder:[2,3,11],bound:[7,11,12],bracket:8,branch:[2,11],branch_method:[2,3,4,5,9,11],branch_time_in_child:[2,3,4,5,9,11],branch_time_in_par:[2,3,4,5,9,11],brief:8,briefli:8,bs:[2,3],build:8,built:7,bw:11,bwmahist:11,bwr:[4,7],by_resource_serv:3,by_scop:3,bytes_checksum:3,bytes_transf:3,c1fbe41abd44:5,c1fbe41abd44model:5,c21e:3,c3:[4,9],c65bffa0:3,c9j8z20x45s2y20vv6528qjc0000gq:11,c:[1,2,3,4,7,10],ca:10,cach:[1,7],cacreation_d:[7,12],cai:10,calcul:5,calculate_enso:[2,3,5],calendar:[7,11,12],call:[1,9],callback:3,cam6:[2,3,11],cam:10,can:[0,1,2,3,4,5,7,8,9,10,11,12],canada:[7,9,12],canadainstitution_id:[7,12],canadian:[7,12],canam5:[7,12],canceled_by_admin:3,canceled_by_admin_messag:3,canesm5:[1,3,4,5,7,12],canesm5parent_time_unit:[7,12],canesm5source_typ:[7,12],cannot:1,cano:1,canon:[8,10],capabl:1,carbon:[1,7,12],care:[1,8],carsten:0,cartopi:[2,3,8,12],case_id:[2,3,4,11],cat:[1,2,3,4,5,7,10,11,12],catalog:[9,10,12],catlog:1,cax:4,cbar:4,cbar_diff:4,cbar_kwarg:7,cbar_pr:4,cc:[3,5,6],cccma:[4,7,12],cccma_model_hash:[4,7,12],cccma_parent_runid:[4,7,12],cccma_pycmor_hash:[4,7,12],cccma_runid:[4,7,12],cccmamip_era:[7,12],ccmac:[7,12],ccr:[2,3,4,12],ccsr:5,cd388659d87c:3,cd:0,ce:10,ceda:[1,9],cehbrecht:9,cell:[0,2,3,4,5,7,8,9,11,12],cell_arealong_nam:[7,12],cell_measur:[7,11],cell_method:[7,12],cellsgrid_label:5,center:[2,3,4,5,7,11],centr:[7,12],central:10,centuri:[2,3,4],cerfac:[1,10],cesm2:[1,2,3,4,5,10,11],cesm2parent_time_unit:[2,3],cesm2source_typ:[2,3],cesm2xarrai:3,cesm_casenam:3,cesm_cmip6:[2,3,11],cf:[2,3,4,5,7,9,11,12],cf_xarrai:[2,3,5],cfaf0e98:5,cfeatur:4,cfgphistori:7,cfnyvreoncm0hxtbdat9riikdgo4kl:3,cftime:[7,11,12],cftimeindex:[7,11,12],chain:[9,10,11],chang:[0,2,7,10,11,12],chapter:0,charact:11,character:10,check:[1,3,7,8,11],chem:11,chemistri:[7,11,12],chiba:5,choos:1,chop:11,cice5:[2,3,11],cism2:[2,3,11],citat:[2,3,5,7,8,9,11,12],clabel:11,clarif:8,class3:[7,12],cleanli:8,cleanup:[2,3,5],clear:[4,8],click:0,client:[2,4,9,10,12],client_id:3,clim:11,climat:[0,1,2,3,4,7,9,10,11,12],climatolog:[2,3],clisop:[9,10],clm5:[2,3,11],clone:0,closest:7,cloud:[0,5],cluster:5,cm2:[1,10,11],cm4:1,cm5:1,cm6:[1,10],cm6a:1,cm:1,cmap:[4,7,11,12],cmcc:[1,10,11],cmip5:[0,4],cmip6:[0,1,2,3,7,11,12],cmip6model_doi_url:[2,3,11],cmip6nominal_resolut:[5,7,9,12],cmip6parent_source_id:[2,3,5,7,9,11,12],cmip6realization_index:9,cmip6tracking_id:[7,12],cmip6variable_id:[5,9],cmip:[1,2,3,4,5,7,9,10,11,12],cmip_table_com:[7,12],cmipbranch_method:[2,5,7,9,11,12],cmipcase_id:3,cmipparent_experiment_id:[2,3,5,7,9,11,12],cmoc:[7,12],cmor:[5,7,9,12],cmor_vers:[4,5,7,9,12],cmpi6:4,cnrm:[1,10],co2:[1,9],co:[2,3,11],coarser:4,coast:[2,3],coastlin:4,coco4:5,code:[0,2,3,5,6,7,8],code_challeng:3,code_challenge_method:3,codebas:7,coef:10,col:[2,3],collect:[2,3,4,9,10,12],collier:0,collin:10,collison:[1,7],color:[2,3,4,5,10],colorbar:4,colormap:4,column:[1,2,3,7,11],com:[0,7,8,9],combin:[1,2,3,5,10],come:[2,3,10],comfort:8,comma:4,command:3,comment:[3,7,8],commit:8,common:[1,2,3,5,6,7,9,10,11,12],commun:[6,7,12],compar:[2,3,10],complet:[0,3,4],completion_tim:3,complexdata:4,compli:[2,3],complic:1,compon:10,comput:[0,1,7,12],compute_alpha:10,compute_annual_mean_subset:11,compute_function_id:3,compute_index:10,compute_input_data:3,concept:[1,2,3,4,5,7,8,9,10,11,12],conclud:8,concret:1,concurr:3,conda:[0,1,2,3,4,7],condit:[2,11],conduct:1,conf:11,configur:[7,10,11],confirm:8,connect:1,conquer:8,conroi:10,conserv:4,consev:4,consid:8,consist:[1,2,5,7,9,11,12],consortium:10,constraint:[2,3],consult:[2,3,5,7,9,11,12],consum:1,consumpt:6,contact:[3,8,9],contain:7,content:[0,2,3,6],continent:4,continu:[8,10,11],contour:11,contourf:11,contribut:8,control:[1,2,11],conu:4,convent:[2,3,4,5,7,9,11,12],conver:[2,3,5],convert:1,convert_calendar:10,cookbook:[2,3,4,5,10],coord:10,coordin:[2,3,4,5,7,9,11,12],copernicu:[9,10],copi:8,copyright:8,corner:0,corr_factor:10,correct:10,correction_factor:10,correspond:[4,9],could:[1,5,7,8],count:1,coupl:[2,3,11],cover:[0,2,3],cr:[2,3,4,12],crash:8,creat:[0,2,3],created_bi:3,creation:[5,7,9,12],creation_d:[3,5],creativ:[2,3,5,6,7,9,11,12],creativecommon:[2,3,5,7,9,11,12],creator_id:3,credit:[6,8],csm1:10,csm2:1,ctem1:[7,12],cumul:7,current:[1,7],custom:[4,8],cyberinfrastructur:0,d49b:2,d67h1h0vnominal_resolut:[2,3,11],d9c2:9,d:[2,3,7,8],da:[2,3,5],dai:[2,3,4,5,7,9,11,12],daop:4,dask:[2,3],data:[0,1,7],data_typ:3,dataarrai:[2,3,5,10],databas:[7,10],datafram:[1,7,11],dataset:[0,1,2,3,10,12],dataset_id:[1,10,11],datasetdimens:[2,3,5,7,9,11,12],date:[5,7,9,10,12],datelin:[2,3],datetime64:[2,3,5,9],datetime_start:10,datetime_stop:10,datetimeindex:[2,3,5,9],datetimenoleap:[7,11,12],dc2b4f0c:3,de:[1,9,10,11],deadlin:3,dec:10,decis:7,decreas:4,decreation_d:9,def848:7,def848e7d856variable_id:7,def:[1,2,3,4,5,10,11,12],defin:[2,5,10],deg:[7,10,12],degctok:[7,12],degre:[4,7,10,12],degrees_eastaxi:[7,9,12],degrees_eastvalid_max:11,degrees_northaxi:[7,9,12],degrees_northvalid_max:11,delete_destination_extra:3,demo:[2,3,8],demonstr:[4,5,7],denot:8,depend:1,deploi:[9,10],deploy:3,deploy_flow:3,describ:[0,7,8,10],descript:[3,4,8],design:1,destin:3,destination_base_path:3,destination_endpoint:3,destination_endpoint_display_nam:3,destination_endpoint_id:3,destination_local_us:3,destination_local_user_statu:3,destination_path:3,detail:[0,1,3,5,10],detect:7,determ:1,determin:[2,3,5,7],dev:[0,1,3,5,7,11,12],develop:[1,7,9,12],deviat:[2,3],dewitt:10,df:[1,4,10,11],diagram:4,dict:10,dict_kei:[7,12],dictionari:[1,3,7,11],differ:[1,7,10],difficult:1,dig:11,dim:[2,3,5,7,10],dimens:[2,3,4,5,7,9,11,12],direct:[5,7],directli:[4,8],directori:[0,1,3,7],disabl:7,disconnect:5,discov:11,discuss:7,displac:[2,3],displai:[2,3,4,7,8,9],display_statu:3,distinguish:8,distribut:[1,10],divid:8,djf:10,dkrz:[1,9,10],dn1:1,doc:[2,3,5,7,8,9,11,12],document:[2,3,4,5,8,11,12],documentationbranch_time_in_child:[7,12],doe:1,doi:[2,3,6,9,10,11],don:[3,8,10],done:[5,8,10],dot:8,doubleunit:11,down:[1,7,8],download:[1,3,4,7,9,10,11],draw:[3,10],draw_label:4,drive:[2,3,11],drop:[2,3,5,7],dropna:10,ds:[2,3,4,5,7,9,10,11,12],ds_125:4,ds_25:4,ds_og:4,ds_rg:4,dsd:[7,12],dset:[4,10,11],dset_dict:11,dset_id:[4,11],dset_list:4,dso:[2,3,5],dt:10,dtype:[1,2,3,5,7,9,10,11,12],due:[7,8],dump:[3,9],durat:3,dure:7,dynam:[2,3,9,10,11],e21:[2,3,11],e2:[1,11],e3sm:1,e6ef8ececc8f338646ebfb3aeed36bfctitl:9,e7d42503:3,e:[0,2,3,7,12],each:[1,3,7,8,10],eagl:3,earli:[2,11],earth3:[3,5,10],earth:[0,4,5,9,10,12],earthsyst:9,easi:4,easier:[1,4,11],easili:4,eastern:10,eb658250e4bc:3,ec:[3,4,5,7,10,12],echam6:9,ecosystem:[3,7,12],edgecolor:10,edit:[7,8],edu:3,educreation_d:[2,3,11],effect:[1,6],effective_bytes_per_second:3,ehbrecht:0,either:[0,2,3,5,7,8,9,11,12],el:[2,3,5,10],el_nino:[2,3,5],el_nino_label:[2,3,5],el_nino_threshold:[2,3,5],elasticsearch:[1,7],els:[1,3,4,8,10,11],emb:8,embed:8,emiss:1,emot:9,empti:[1,7],en:[2,3],enabl:[0,8],encount:5,encourag:[2,11],encrypt_data:3,end:[1,2,3,8,10,11],end_tim:12,endpoint_id:[2,3,5],endpoint_uuid:5,energi:[7,12],enough:[2,10,11],ensembl:[2,3,5,11],enso_index:[2,3,5],ensur:[2,3,5,11],enter:0,entir:11,enumer:[4,10],env:[0,4],environ:[0,2,3,7,9,10,12],environment:5,eof:10,ep_id:[2,3],equat:[7,8,12],equatori:[2,3],era:4,error:8,es2h:1,es2l:1,es:[2,3,5,7,9,11,12],esg:1,esgf1:1,esgf1_indic:[1,3,5],esgf2:[0,1,7],esgf3:11,esgf:[2,3,9,10],esgf_output:3,esgf_plot:3,esgfcatalog:[1,2,3,4,5,7,10,11,12],esm1:[1,3,5,9],esm2:[1,10,11],esm:[1,7,9],essenti:4,estim:8,et:[9,10],etc:8,european:[9,10],even:[0,1,4,7,8],event:[2,3,10],event_list:3,everyth:[1,11],evolv:[2,3,11],ex:[0,2,3,5],exact:5,exampl:[0,1,2,3,5,7,10,12],exce:[2,3],except:[2,3,4,5],exchang:3,exclud:[2,3,5,7,9,11,12],execut:[0,2,3,9,10],executor:12,exercis:3,exist:[1,5,7,8],expand:[0,7],expect:3,experi:[0,1,2,3,4],experiment_id:[1,2,3,4,5,7,10,11,12],expires_at_second:3,explained_vari:10,explicitli:[3,8],expos:1,express:[2,3,5,7,9,11,12],extend:4,extens:[2,3,5,11,12],extent:[2,3,5,7,9,11,12],extern:[8,10],extra:8,extract:10,extrem:10,f085:7,f09_g17:[2,3],f19_g17:11,f1:1,f:[0,2,3,5,10,12],face:1,facet:[5,7],facil:[1,2,3,5,7],facilit:1,fact:10,factor:10,fail:[1,4],fail_on_quota_error:3,fair:1,fals:[1,2,3,4,5,7,11],familiar:[1,2,3,4,5,7,8,9],fashion:1,fastest:[1,7],fatal_error:3,fault:3,fc26:3,featur:[4,7,11,12],feb:9,februari:[7,12],feder:[0,1,12],feed:11,feel:8,fetch:3,few:[1,3,4,5,8],fgco2:1,fgoal:10,field:[2,3,5],fig:[4,7,10],figsiz:[4,7,10],figur:[0,4,9,10],file:[0,1,2,3,4,5,7,9,11,12],files_skip:3,files_succeed:3,files_transf:3,fill:[8,11],fillna:[3,5],filter_rul:3,filterwarn:[2,3,5,12],find:[1,4,7,10],finish:[3,8],finit:[2,3,4,11],first:[0,1,4,7,10],fit:[2,3,5,7,9,10,11,12],five:8,flag:[7,9,12],flku:7,flnd:7,float320:[2,5],float32:[2,4,5,7,9,11,12],float32nan:[2,5],float640:[3,7,11,12],float6465:11,float64:[3,4,7,9,11,12],float64index:7,float64nan:3,flow:[2,12],flow_632e1f8b_7e3e_4ffb_a055_cd388659d87c_us:3,flow_act:3,flow_action_id:3,flow_action_statu:3,flow_c65bffa0_bbea_4295_ab38_645eca9cdd54_us:3,flow_definit:3,flow_id:3,flow_input:3,flow_last_upd:3,flow_nam:3,flow_scop:3,flow_statu:3,flow_titl:3,flow_url:3,flows_author:3,flows_client:3,flowsclient:3,flowsscop:3,flowsucceed:3,flux:[4,7,12],focus:0,folder:[9,10,11],follow:[0,1,2,3,4,5,8,10,11],forc:[1,3,5,7,9,10,12],format:[3,4,8],found:[1,2,3,5,7,9,11,12],foundat:[2,3,8],fr:1,fraction:7,frame:12,free:[1,6,8],freq:[2,3,5,7,9,11,12],frequenc:[7,12],from:[0,1,2,3,4,7,8,9,10,11,12],front:8,full:[1,7,12],full_dataset:[4,11],fullest:[2,3,5,7,9,11,12],further:[1,2,3,5,7,9,11,12],further_info_url:[2,3,5,7,9,11,12],furtherinfo:[2,3,5,7,9,11,12],furthermor:1,futur:[5,7],fv2:[1,11],fv2_historical_r1i1p1f1_gn_19000101:11,fv2parent_time_unit:11,fv2source_typ:11,g3:10,g3_historical_r1i1p1f1_gr_19000116:10,g:[1,2,3,7,10,11,12],gaussi:4,gaussian:[4,7,12],gb:[2,3,5],gc:[2,3],gcc:3,gce:[2,3,5],gener:[5,7,8,9,11],geo:[11,12],geograph:11,geophys:[7,10,12],geosci:[7,12],geospati:4,gerardo:0,german:11,germani:9,germanyinstitution_id:9,get:[0,3,7,8,10],get_flow_author:3,get_pacific_ocean:10,getcwd:3,giss:[1,11],git:[0,7],git_repo:3,github:[0,6,7,9,10],give:[6,8,9,10],given:[1,3,12],gl:4,global:[1,2,3,4,5,7,9,11,12],globu:[1,7],globus_auth_scop:3,globus_automate_cli:3,globus_compute_sdk:[2,3,5,12],globus_sdk:3,globusesgfindex:1,gn:[1,2,3,4,5,7,9,10,11,12],gngrid_label:9,gnhistori:[5,7,9,12],gninitialization_index:[2,3,11],go:[1,4,7,10],goal:[1,2,3],good:8,got:[3,8],goubanova:10,gov:[1,2,3,5,7,9,11,12],govern:[2,3,4,5,7,9,11,12],gpp:[7,12],gppvariant_label:7,gr1:1,gr:1,graph:[2,3,5],greatli:4,green:7,greenhous:10,grid:[0,2,3,5,7,9,10,11,12],grid_label:[1,2,3,4,5,7,10,11,12],grid_label_origin:4,grid_origin:4,gridftp:3,gridlin:4,gridspec:4,gross:7,gross_primary_productivity_of_biomass_expressed_as_carbonlong_nam:7,group:[2,11],groupbi:[2,3,5,10],grover:0,gs:4,gt:[2,3,5,7,9,11,12],gx1v7:[2,3],h:[3,8,11],ha:[1,3,4,5,7,10],ham:1,hamburg:9,hamocc6:9,hand:7,harder:10,has_year_zero:[7,11,12],hasn:4,have:[0,1,2,3,4,5,7,8,10,11],hdl:[2,3,4,5,7,9,11,12],heavi:[8,10],height:[4,7,9,12],height_ratio:4,heightstandard_nam:[7,9,12],hello:8,help:[1,2,3,4,5,7,8,9,10,11],here:[1,2,3,4,7,8,11],hesit:8,hibler:9,high:[2,3,5,8,9,10],higher:10,highlight:[0,2,3,12],his01:[4,7,12],his01convent:[7,12],histor:[2,3,4,5,7,9,10,11,12],histori:1,historicalexternal_vari:[2,3,5,7,9,11,12],history_delet:3,hmsaair8riawhuk6drwsrm:3,hold:7,holoview:[2,3,5,11,12],holoviz:5,home:[1,7],hone:1,hood:7,hopefulli:3,horizont:7,host:[0,1],hover:[2,3,5],how:[0,1,2,3,4,5,7,8,9,10,11,12],howev:[1,7,8],hpa:[4,5,7,9,12],hpagrid_label:[7,12],hpc:5,hr4:11,hr:9,hr_historical_r1i1p1f1_gn_20000116:9,hrparent_time_unit:9,hrsource_typ:9,hspace:[4,10],html:[2,3,7,8,12],http:[0,2,3,5,7,8,9,10,11,12],hv:[2,3,5,11,12],hvplot:[2,3,5,11,12],hyogo:5,i:[0,1,4],ibaraki:5,ic:[2,3,7,9,11,12],ichec:4,icon:0,id:[1,2,3,4,5,9,10],idea:[2,3,8,10],ident:3,identifi:[3,4,9,10,11],ignor:[2,3,5,12],illustr:1,imag:[2,3,4,8,9],img:8,implement:9,impli:[2,3,5,7,9,11,12],impos:[2,11],impress:1,includ:[0,1,2,3,4,5,7,8,9,10,11,12],incomplet:1,increas:[1,9,10],ind:1,indent:[3,9],index:[1,5,7,9,12],india:11,indic:[1,2,3,7,10,11,12],industri:[2,11],info:[7,12],inform:[1,2,3,4,5,7,8,9,10,11,12],infrastructur:[0,2,3],infring:8,initi:[3,7,10,11],initialis:[2,11],initialization_index:[5,9],inm:1,inorgan:7,input:[3,4,5,9,10,11],input_schema:3,insert:3,inset_ax:4,inset_loc:4,insight:9,inspir:[1,7,8],instal:[1,2,3,5,7],instanc:[2,3],instanti:[1,3],instead:[4,7,8,9],institut:[5,9],institution_id:[1,2,3,5,7,10,11,12],instrument:[2,3],int641:[2,3,5],int64:[2,3,5],intak:[2,3,9,10],intake_esgf:[1,2,3,4,5,7,10,11,12],integr:[9,10],intens:1,interact:[0,2,3,5,7,9,11,12],intercomparison:0,interdisciplinari:[2,3],interest:[0,1,3,10],interfac:[1,7,9],intern:[1,2,3,5,7,9,11,12],interspers:8,intro:[2,3,4,5,8,9,10,11,12],introduc:[2,3],introduct:[2,3],introductori:[8,11],invert:9,io:[2,3],ipsl:[1,9],ipynb:[4,9],ipython:9,is_error:3,is_ok:3,is_paus:3,isd:11,isel:[2,3,4,5,9,12],isin:10,isinst:5,issu:[3,5,7,12],item:10,its:[1,2,3,4,7],iwd1kgdtb0dn:3,j:[9,10],jacquelin:0,jamstec:5,jan:[9,11],japan:5,jia:10,jin:10,join:5,jsbach3:9,json:[3,4],jupyt:[0,7,8],jupyterlab:0,just:[1,4,8],jy2c:3,k:[2,3,5,9,10,11],kanagawa:5,karamperi:10,karamperid:10,kcell_method:9,keep:[1,4,7,8,10,11],keep_ds_id:10,kei:[2,3,7,8,10,11,12],kerchunk:5,kernel:8,kg:7,kickoff:9,kind:1,km:4,kmparent_activity_id:[2,3,5,7,9,11,12],know:[0,1,7,8,9,11],known:[2,3,7],koriginal_nam:[7,12],kug:10,kvariable_id:11,kwarg:3,l:10,la:[2,3,5],la_nina:[2,3,5],la_nina_label:[2,3,5],la_nina_threshold:[2,3,5],lab:[0,8,11],label:[3,4,7,8,10],labor:1,laboratori:[2,3,11],lai:8,lake:[7,12],lambda:10,land:[1,2,3,5,7,9,11,12],land_area_fractionlong_nam:7,landcom:7,landfrac:7,landic:[2,3,5,7,9,11,12],landrefer:7,languag:0,laptop:3,larg:[4,7],last:[2,3,7,11,12],lat:[4,7,9,10,11,12],lat_bnd:[4,7,9,11,12],lat_bndsstandard_nam:11,lat_bndsunit:[7,9,12],lat_bound:12,later:7,latest:[2,3,4,6],latex:8,latitud:[2,3,4,5,7,9,11,12],latitudearrai:[7,9,12],latitudestandard_nam:[7,9,12],latitudetitl:11,latitudetyp:11,latpandasindexpandasindex:[7,9,11,12],latxlon:[2,3,4,11],launch:[0,1],law:[2,3,5,7,9,11,12],layer:9,lead:[8,11],leadership:[1,2,3,5,7],learn:[1,2,3,4,5,7,8,9,10,11,12],least:[2,11],leav:[1,8,11],left:[4,10],legal:8,legend:10,len:[1,4,10],lengaign:10,length:[2,3,5,7,9,11,12],less:1,let:[1,2,3,4,7,8,11,12],letter:10,level:[2,3,4,5,7,9,11,12],liabil:[2,3,5,7,9,11,12],lib:4,librai:9,librari:[2,3,5,9],licens:[2,3,4,5,6,7,9,11,12],lift:8,like:[0,1,2,3,4,7,8,11],likewis:10,lim2source_id:[7,12],limadaten:9,limit:[2,3,4,5,7,9,11,12],line2d:9,line:[9,10],line_width:[2,3,5],linear:[4,7,12],linestyl:10,linewidth:10,link:8,linspac:10,list:[1,2,3,4,5,7,8,10,11],liu:1,live:0,ll:[0,1,4,8],llnl:[1,2,3,5,7,9,11,12],lm:1,lmon:[1,7,12],lmontable_info:7,load:[1,2,3,5,7,9,10],loc:4,local:[0,1,2,3,7],locat:[1,4,5,7,10],log:[1,4],login:[2,3],lognorm:4,logo:[4,8],lon:[4,7,9,10,11,12],lon_bnd:[4,7,9,11,12],lon_bndsstandard_nam:11,lon_bndsunit:[7,9,12],lon_bound:12,long_nam:[4,7],longer:8,longitud:[2,3,4,5,7,9,11,12],longitudearrai:[7,9,12],longitudestandard_nam:[7,9,12],longitudetitl:11,longitudetyp:11,lonpandasindexpandasindex:[7,9,11,12],look:[1,2,3,5,7,8,10],lookup:9,loop:4,loos:8,lower:10,loyal:8,lr:[1,3,5],lt:[2,3,5,7,9,11,12],lw:10,m2:7,m2original_nam:[7,12],m:[1,2,3,5,7,8,9,10,11,12],ma:11,machin:[2,3,7,8],macv2:9,magnitud:4,mai:[1,2,3,4,7,9],main:[8,9],mainli:[5,12],make:[1,2,3,4,5,7,8,9,10,11,12],mam4:[2,3,11],manag:[1,2,3,8],manage_bi:3,manage_flow:3,mani:[1,7],manipul:[1,10],manual:[7,8],map:8,mar:9,marbl:[2,3,11],marin:5,mark:8,markdown:8,marker:10,mask:[2,3],mass:7,master:9,materi:[0,6,8,11],mathjax:8,matplotlib:[2,3,4,5,7,9,10,12],matsiro6:5,matter:7,mauritsen:9,max:[0,9,10],maxi:[7,9,12],mb:[2,3,11],mbp:3,mcolor:4,mcphaden:10,md5:[5,7,9,12],mean:[2,3,4,5,6,7,10],meancell_measur:[7,9,12],meancom:11,meantime_titl:11,meantitl:11,measur:[7,12],meet:9,member:[1,2,3,5,11],member_id:[1,2,3,4,5,7,10,11,12],memori:7,mention:[2,3,7],merchant:[2,3,5,7,9,11,12],merg:2,mesa:[2,3,11],mesh:[7,12],messag:5,metadata:[1,2,3,4,5,7,8,9],metalink:4,metalink_02o10_9k:4,metalink_0d20f3r4:11,metalink_0qmd9id3:11,metalink_15dtyr8:10,metalink_1utsadgb:4,metalink_4p48gwjo:11,metalink_53g0pvr:11,metalink_5p_02p66:11,metalink_6_iqo1_6:4,metalink_6d4b6nu0:10,metalink_78zekaf5:10,metalink_a8ws0b5a:4,metalink_btxkrzn3:10,metalink_c868rf7f:9,metalink_d7uge4gt:4,metalink_fq1_rikt:10,metalink_fusqog81:10,metalink_guxi9kpa:10,metalink_gze8fnoi:11,metalink_hwnk7sbm:11,metalink_j_w92ac9:11,metalink_knwmboqr:11,metalink_omjq1m4c:4,metalink_qw22qb9h:10,metalink_shm9lihm:11,metalink_tl49gcjj:4,metalink_xncn6l3t:11,metalink_yugmj4nu:10,metalink_zmvs568p:9,meteorolog:9,meter:[7,9,11,12],method:[0,1,2,3,4,10,11],mgrover:3,microscop:[2,3],middl:11,mimetyp:4,min:[8,10],minim:7,minut:[1,2,3,4,5,7,8,9,10,11,12],mip_era:[1,2,3,7,10,11,12],miroc6:[3,5,11],miroc6parent_time_unit:5,miroc6source_typ:5,miroc6xarrai:5,miroc:[1,2,3,5,11],miroc_d:[2,3],miroc_task:[2,3],mirocmip_era:5,mirror:7,miss:[7,9,12],mkwght:[7,12],mltby12em9:7,mm:[1,7],mmip_era:9,mode:10,model:[0,2,3,5,7,9,10,11,12],model_group:1,modoki:10,mohc:1,mol:7,mollweid:4,moment:0,mon:[7,12],monfurther_info_url:[2,5,7,9,11,12],mongrid:3,monid:11,monitor:3,monitor_bi:3,montecino:10,month:[2,3,5,9,10],monthli:[2,3,5],more:[1,2,3,4,5,7,8,10,11,12],most:8,motiv:1,mous:0,move:[0,2,3,8],mpi:[1,3,5,9],mpiom1:9,mpl_toolkit:4,mr:1,mri:1,much:[1,5],mueller:9,multipl:[1,2,3,10],must:3,n:[1,2,3,4,5,9],n_mode:10,name:[1,2,3,5,7,9,11,12],nan:[2,3,5,10],nanarrai:[2,3,5],narr:8,narrm:1,narrow:7,nasa:[1,11],nathan:0,nation:[2,3,5,11],nativ:[2,3,4,5,7,11,12],native_auth_cli:3,nativeappauthcli:3,natur:10,navbar:8,navig:0,nbnd:[4,11],nbp:1,nbviewer:9,nc:[4,9,10,11],ncar:[1,2,3,4,10,11],ncar_d:[2,3],ncar_task:[2,3],ncarlicens:[2,3,11],ncarxarrai:2,nci:1,ncol:10,nearest:4,nearest_s2d:[4,10],nearest_s2d_192x288_145x288_peri:4,nearest_s2d_64x128_145x288_peri:4,neatli:4,neccessari:[2,3],necessari:[1,2,3,4,5,7,8,9,10,11,12],need:[0,1,2,3,5,7,8,9,10,11],neglect:7,neglig:[2,3,5,7,9,11,12],neighbor:4,nemo3:[7,12],net:[7,12],netcdf:[1,2,3,4,5,7,8,9,10],new_client:3,newli:3,next:4,ng:10,nhttp:3,ni:5,nice_statu:3,nice_status_detail:3,nice_status_expires_in:3,nice_status_short_descript:3,nimbu:[0,7],nino:[2,3,5],node:[1,2,3,7],noleap:[7,11,12],nominal_resolution_origin:4,non:[2,3,5,6,8,11],non_time_dim:[2,3,5],none:[2,3,4,5,7,9,11,12],nonebranch_time_in_par:3,nonesub_experiment_id:[2,3,5,7,9,11,12],nonetable_id:[2,5,7,9,11,12],nonsequenti:8,norcpm1:[1,3,5],noresm2:1,norm:4,normal:[2,3,4],nosearchresult:5,note:[1,2,3,4,5,7,8,9,10,11,12],notebook:[1,2,3,4,5,7,9,10,11,12],noth:7,notic:[3,7,11],notion:1,novemb:5,now:[0,1,2,3,4,5,7,10,11],np:[2,3,5,10,12],npzd:[7,12],nrow:[7,10],ns:[2,3,5,9],nsc:1,nugent:0,num:10,number:8,numpi:[2,3,5,10,12],o:[9,10],oak:11,oauth2:3,oauth2_exchange_code_for_token:3,oauth2_get_authorize_url:3,oauth2_start_flow:3,object1850:[7,12],object1900:11,object:[1,2,3,4,7,8,10,11,12],obs4mip:0,observ:[2,11],obtain:[2,3,10,12],occupi:7,occur:[2,3,7],ocean:[1,2,3,5,7,9,10,11,12],oceansourc:[2,3,5],ocnbgchem:[2,3,5,7,9,11,12],off:[4,11],offer:4,often:[2,3],ogc:[9,10],ok:[1,4,9,10,11],okai:11,omip:[7,12],omon:[1,2,3,5,10],omontable_info:5,omontracking_id:[2,3],onc:[2,3,5,7,10],one:[1,2,3,5,7,8,9,10,11],onli:[1,2,3,4,5,7,8,9,10,11],onlin:[3,10],onto:11,op:[4,9,10,11,12],open:[6,12],oper:[1,4,10,11],opposit:10,opt:[2,3,5],optim:7,orca1:[7,12],orchestr:[2,3,4,9,10,11,12],order:[2,3,7,12],org:[1,2,3,5,7,9,10,11,12],organ:4,orient:4,origin:[4,7,12],original_nam:7,ornl:[1,11],os:[2,3,4,9,10,11,12],oscil:10,other:[0,2,3,5,7,8,10],otherwis:8,our:[1,4,5,7,8,11],ourano:9,out:[1,2,3,7,8,9,10],output1:4,output:[0,2,3,5,7,8,9,10,12],output_typ:12,outputproject_id:9,outputrealization_index:[2,3,5,7,11,12],outright:4,outsid:5,over:[2,3,4],overal:[2,3],overestim:8,own:[3,5,7],owner_id:3,oxid:[7,12],p30d:3,pacif:[2,3,10],packag:[1,2,3,4,5,7,8],page:8,pain:1,panda:[1,7,10],panel:[4,11],paragraph:[8,11],parallel:[3,7],paramet:[2,3,4,10],parent_source_id:4,pari:9,part:[1,7,10],particular:[1,2,3,5,7,9,10,11,12],particularli:10,pass:[2,3],past:[2,3,11],pastexperiment_id:[3,5,7,9,12],patch:4,path:[3,7],pattern:10,pc1:10,pc2:10,pc:10,pcm:4,pcmd:4,pcmdi:[2,3,5,7,9,11,12],pcolormesh:4,pdf:9,peopl:8,per:8,perat:9,percentag:7,perform:[1,2,3,5,7,10,12],period:[2,3],permit:[2,3,5,7,9,11,12],personal_endpoint_id:3,perturb:[2,11],petabyt:5,photosynthesi:7,physic:4,phytoplankton:7,pi:[7,12],picont:1,picontrol:1,picontrolparent_mip_era:[2,3,5,7,9,11,12],pictrl:[4,7,12],pictrlcccma_pycmor_hash:[7,12],piec:8,pip:[2,3,7],pipelin:3,place:[3,7],plagiar:8,plai:8,planck:9,plant:7,platecarre:4,platform:[2,3],pleas:[1,2,3,4,5,7],plot:[5,11],plot_d:4,plot_enso:[2,3,5],plt:[2,3,4,5,7,10,12],pn:11,png:[4,8],point:[1,2,3,8,11,12],polari:[2,3],pole:[2,3],poli:10,poll:3,polyfit:10,polynomi:10,polyv:10,pool:9,pop2:[2,3,11],popul:[8,12],portabl:7,portion:1,possibl:[1,7],power:3,pr:[4,7,12],pr_amon_canesm5_historical_r1i1p1f1_gn_20100101:4,pr_amon_canesm5_historical_r1i1p1f1_gr_20100101:4,pr_amon_cesm2_historical_r1i1p1f1_gn_20100101:4,pr_amon_cesm2_historical_r1i1p1f1_gr_20100101:4,pr_diff:4,pre:[2,3,5,11],precipit:7,precursor:7,prefer:[7,8],prepar:[2,3,5,7,9,12],prescrib:[7,9,12],presenc:7,present:[0,1,9],preserve_timestamp:3,press:0,pretti:4,previou:[2,3,7,10],previous:7,primari:[1,2,3,7],primarili:5,print:[1,3,4,5,7,8,9,10],prior:5,problem:8,process:[1,4,7,8,9,10],produc:[2,3,4,5,7,9,11,12],product:7,productivti:7,program:0,progress:[3,7],proj:4,project:[0,1,2,3,4,5,6,10,11],prompt:3,proper:[2,3,5,7,9,11,12],properti:3,protocol:3,prov:[4,9],prov_plot:4,proven:4,provenance_imag:9,provid:[1,2,3,5,7,8,9,11,12],provis:[2,3],pull:[8,11],purpos:[2,3,5,7,9,11,12],put:[8,11],py:4,pypi:[1,7],pyplot:[2,3,4,5,7,10,12],pythia:[0,2,3,5,6],python3:4,python:[0,2,3,8,9,10],qlwrs2lczfjs6ezxw0pa2tykjfhb7x9_bbrm:3,qs:10,quadmesh:[9,12],quadrat:10,queri:[1,7,10],question:[5,8],queue:7,quickli:[4,7],r101i1p1f1:1,r102:1,r102i1p1f1:1,r11i1p1f1:2,r11i1p1f1grid:2,r11i1p1f1model:2,r14i1p1f1:7,r1:[1,11],r1i1p1:[4,11],r1i1p1f1:[1,3,4,5,7,9,10,11,12],r1i1p1f1grid:[5,7,9,11,12],r1i1p1f1licens:[5,9],r1i1p1f1model:3,r1i1p1f1physics_index:[2,3,5,7,9,11,12],r1i1p1f1sub_experi:3,r1i1p1f1vers:[7,12],r1i1p1f1xarrai:11,r1i1p1f2:[1,10],r1i1p2f1:1,r1i1p4f1:1,r1i1p4f2:1,r1i1p4f:1,r1i1p:11,r1i2p1f1:1,r20i1p2f1:7,r28i1p2f1:7,r2:7,r2i1p1f2:1,r3i1p1f2:1,r4i1p1f2:1,r4i1p:1,r6i1p2f1:7,r:[5,7,9,10,11,12],rais:5,ran:[2,3],random:7,rate:7,rather:[2,3,4],ravel:10,raw:8,rc3:[4,7,12],re:[4,7,8],reach:3,read:[4,5,8],reader:8,readi:[1,7],readthedoc:[2,3],realm:11,realunit:11,recent:[2,3,5,7,9,11,12],recip:0,record:[2,3,5,7,9,11,12],recurs:3,recursive_symlink:3,red:[2,3,5,11,12],redesign:1,redirect_uri:3,reduc:12,refer:7,referenc:8,refin:[7,11,12],refresh:[2,3],refresh_token:3,regim:10,region:[2,3,4,5,10],regist:5,register_funct:3,registr:5,regrid:9,regrid_oper:4,regrid_tool:4,regrid_weights_uid:4,reinterpret:10,reiter:8,rel:1,releas:6,release_aft:3,relev:[1,3,8],reli:1,reliabl:[2,3],remot:[2,3,7,9,10,11],remotli:9,remov:[2,3,5,8],remove_ensembl:[1,10],remove_incomplet:1,reorder:[7,12],repeat:7,replac:[0,7,9,12],report:[1,7,12],repositori:0,repres:[2,3,10],reproduc:10,request:[2,5,7,8,11],request_tim:3,requested_scop:3,requir:[1,2,3,5,7,8,9,11,12],resampl:10,research:[2,3,5,10,11],resolut:[4,9,10],resolv:6,resourc:7,resource_serv:3,resp:[4,9,10,11],respir:7,respons:[1,3,9,10,11],response_tim:1,response_token:3,response_typ:3,rest:5,restart:[5,8],result:[1,2,3,5,7,11,12],resultpath:3,retriev:3,return_path:[2,3],reus:6,review:[5,8,10],rewrot:[5,7,9,12],rg_list:4,rho:8,rid:10,ridg:11,right:[0,8,10],right_label:4,rigor:8,riken:5,rivera:0,rocket:0,roll:[2,3,5],rolling_averag:[2,3,5],rooc:[9,10],rook:[9,10,11],rook_c3s2_380_2022:9,rook_url:[9,10],rooki:10,rough:8,round:8,row:1,run:[4,5,7,8,10,11],run_flow:3,run_id:3,run_manag:3,run_monitor:3,run_own:3,run_plot_enso:[2,3,5],run_plot_enso_function_uuid:5,runidinitialization_index:[7,12],runplotenso:3,s00382:10,s256:3,s3:5,s3b:5,s41586:10,s43017:10,s4:7,s:[4,7],s_model:10,safe:5,safer:8,sake:[7,10],same:[2,3,10,11],sampl:[3,12],santoso:10,save:3,saved_flow_scop:3,scalar:[7,9,12],scale_factor:10,scari:8,scatter:10,scienc:[1,5],scientif:0,scope:[0,3,8],score:10,script:[3,7],se:1,sea:[2,3,5,9,10,11],sea_ic:[2,3,11],seaic:[5,7,9,12],search:[2,3,4,5,7,9,10],search_esgf:[2,3,5],searchscop:3,season:10,section:[2,3],secur:[2,3],see:[0,1,2,3,4,5,7,8,10,12],seek:1,sel:10,select:[0,3,5,10,12],semtner:9,send:8,sens:4,sent:[2,3],separ:[3,4],separate_dataset_id:[4,11],sequenti:8,seri:[1,2,3],serializ:[2,3],serv:6,server:[1,3,5,7,11,12],serverless:[2,3],serversid:7,servic:[2,3,9,10],session:1,session_log:1,set:[2,3,4,5,7],set_esgf_data_root:7,set_label:4,set_titl:[4,10],set_xlabel:10,set_xlim:[4,10],set_ylabel:10,set_ylim:[4,10],sever:[1,5,9,11],sftlf:7,shall_i_keep_it:1,shape:10,share:[6,9],sharealik:[2,3,5,7,9,11,12],sheet:[7,12],shift:[0,4],ship:0,should:[0,1,2,4,5,8,11],show:[1,4,10],shown:9,shrink:8,side:[5,11],sidebar:8,sigma:8,sign:10,similar:[1,7,10],similarli:8,simplest:0,simpli:[0,7],simplic:10,simul:[2,3,5,7,9,11,12],simultan:1,sinc:[1,2,3,4,5,7,9,11,12],singl:[0,1,2,3,5,8,9,10,11],singular_valu:10,site:[4,9],six:[2,3],size:[3,4,5,8,9,11],size_in_mb:10,skip_source_error:3,slash:3,sleep:3,slice:10,small:1,smaller:[4,5],smallest:1,smart:1,smooth:[2,3],so:[1,4,6,7,8,10],softwar:8,solr:1,solresgfindex:1,some:[1,2,3,5,7,8,9,10,11,12],sometim:[7,10],sort:1,sourc:[1,3,4,5,6,7,12],source_base_path:3,source_endpoint:3,source_endpoint_display_nam:3,source_endpoint_id:3,source_id:[1,2,3,4,7,9,10,11,12],source_local_us:3,source_local_user_statu:3,source_path:3,south:[2,3],southern:10,sp:9,span:0,special:[7,12],special_issu:[7,12],specif:[1,7,8,11],specifi:[1,4,7,11,12],spectral:9,speed:7,spin:[7,12],split:[3,4,10,11],sprintars6:5,sqrt:10,sr5:[10,11],sr5_historical_r1i1p1f1_gr_19000116:10,srv:4,sst:[2,3,10],sst_data:10,st:[7,12],stac:[9,10],stack:12,stage:1,stagger:[7,12],standard:[2,3,4,5,7,9,10,11,12],standard_nam:[7,9,12],standardbranch_time_in_child:[2,5,9,11],standardfurther_info_url:3,start:[0,1,2,3,8,11,12],start_tim:[3,12],startat:3,state:[3,8],state_nam:3,statu:[3,4,9],std:[2,3,5],std_dev:[2,3,5],step:[2,3,9,10],sthistori:[7,12],still:[3,5],storag:[2,3,7],store:[1,3,7,9,10,11],str:5,string:[3,4,5],strongli:[2,11],structur:[1,2,3,4,5,7,8,9],studi:[5,10],stuecker:10,stuff:8,sub:1,sub_df:1,sub_experiment_id:[3,4,11],submiss:7,submit:[2,3,11],submit_to_registered_funct:5,subplot:[4,7,10],subplots_adjust:10,subsequ:7,subset:[2,3,4,5,11],subset_bbox:12,subset_loc:12,subset_tas_1:9,subset_tim:12,subtasks_cancel:3,subtasks_expir:3,subtasks_fail:3,subtasks_pend:3,subtasks_retri:3,subtasks_skipped_error:3,subtasks_succeed:3,subtasks_tot:3,subtract:[2,3,4,5],succeed:3,success:3,successfulli:3,suggest:8,suitabl:10,sum:[7,12],summar:8,summat:7,suppli:[2,3,5,7,9,11,12],support:[1,5],sure:[0,5,8,11],surfac:[2,3,4,5,7,9,10,12],sy:8,symlink:3,sync_level:3,synchron:9,syntax:[1,8],synthesi:7,syst:9,system:[0,2,3,5,8,9,12],t127:9,t63:[4,7,12],t63l49:[4,7,12],t661zdnd181ck1dv429s4p8r0000gn:9,t85:5,t:[2,3,4,5,8,9,10,11],ta:[1,4,7,9,11,12],tabl:[2,3,7,8,11,12],table_id:[1,2,3,4,5,7,10,11,12],tackl:8,tag:[3,8],takahashi:10,take:[5,7,8,10],takeawai:8,taken:10,talk:9,target:[4,5],tas_amon_cesm2:11,tas_amon_cesm2_historical_r1i1p1f1_gn_20100101:4,tas_amon_cesm2_historical_r1i1p1f1_gr_20100101:4,tas_amon_mpi:9,taschetto:10,task:[1,2,3,5,12],task_id:3,taslong_nam:11,tasprov:11,tasvariant_info:11,tasvariant_label:[7,9,12],tcre:1,technolog:5,tell:[4,8],tello:0,temperatur:[2,3,4,5,7,10],temperaturecom:[7,9,12],temperaturefrequ:11,temperaturemipt:11,temperaturetyp:11,temperatureunit:[7,9,12],tempereratur:1,tempor:11,term:[2,3,5,7,9,11,12],termsofus:[2,3,5,7,9,11,12],text:[2,3,5,8],text_color:[2,3,5],tg_e81f1357:3,tg_id:[2,3],than:[1,4,7,12],thank:8,thei:[1,2,3,4,7,8],them:[0,1,2,3,4,7,8,11],themselv:1,thermodynam:9,thi:[0,1,2,3,4,5,7,8,9,10,11,12],think:[2,3],those:1,thought:[2,3],three:[2,11],threshold:[2,3,5],through:[0,2,3,4,12],throughout:8,thu:7,ti:[8,11],tie:8,time:[1,2,3,4,5,7,8,9,10,11],time_bnd:[4,7,9,11,12],time_bndsaxi:[7,9,12],time_compon:9,timearrai:[7,9,12],timepandasindexpandasindex:[2,3,5,7,9,11,12],timeseri:[2,3,5],timestandard_nam:[7,9,12],timetime_label:11,timmermann:10,titl:[0,2,3,5,8,9],tlong_nam:[7,9,12],tmp:4,to_dataset:[2,3,5],to_dataset_dict:[1,2,3,5,7,12],to_datatre:2,to_datetimeindex:[2,3,5],to_fram:1,to_list:10,togeth:8,token:3,token_respons:3,token_typ:3,tokyo:5,took:1,tool:[1,2,3,5,10,12],top:[0,2,3,4,5,7,8,9,11,12],top_label:4,topic:[2,3,8,11],tos:[2,3,5,10],tos_anom:10,tos_d:[2,3,5],tos_gt_04:[2,3,5],tos_lt_04:[2,3,5],tos_nino34_anom:[2,3,5],tos_omon_cam:10,tos_omon_cesm2_historical_r1i1p1f1_gr_19000115:10,tos_omon_cmcc:10,tos_omon_cnrm:10,tos_omon_fgo:10,tosvariant_info:[2,3],tosvariant_label:5,total:[2,3,8],total_tim:1,toward:[2,3],tp04:9,track:[4,7],tracking_id:[2,4,5,7,9,11,12],transfer:[3,7],transfer_item:3,transferfil:3,transferresult:3,transferscop:3,transform:4,transit:8,treat:[7,9,12],tree:9,trefhtdescript:11,trigger:5,tripolar:[5,7,9,12],tropic:10,truncat:7,ture:8,turn:11,tutori:[1,2,3,7],two:[2,3,10],type:[3,4,5,7],typestandard_nam:7,typic:[2,3,5],u:[4,7],u_s7a5uci5nvaytjn6nlr7qwxcd4:3,ucar:[2,3,11],udt:3,uk:[1,9],ukesm1:1,ukesm:1,un:[5,9],uncom:4,under:[1,2,3,5,6,7,9,10,11,12],underli:[2,3],understand:[1,2,3,4,5,7,8,9,10],uniformli:7,uniqu:[1,7,8,11],unit:[4,7,9,12],univers:5,unknown:5,unless:5,unlik:7,unnam:9,until:0,up:[0,4,7,8,12],upload:7,uplong_nam:[7,9,12],upmc:1,urn:3,us:[0,1,5,7,8,10],usainstitution_id:[2,3,11],use_coslat:10,user:[1,2,3,5,11,12],user_rol:3,usernam:3,usual:[7,9,11,12],util:[0,2,3],uuid:[3,5],v20180626:1,v20180814:1,v20180827:11,v20180917:10,v20181115:1,v20181206:10,v20181212:11,v20190227:11,v20190308:[4,10,11],v20190401:4,v20190403:11,v20190429:[4,7,12],v20190429licens:[7,12],v20190708:10,v20190710:9,v20190815:1,v20191107:10,v20191120:11,v20191205:1,v20200616:[10,11],v20200904:11,v20210114:11,v20211207:10,v20230427:1,v20230505:1,v20230904:1,v2:3,v4:4,v8p:[7,12],valid:[3,5,7],valid_source_id:5,valu:[2,3,4,5,7,9,11,12],valueerror:[2,3,5],vari:4,variabl:[1,2,3,4,5,7,9,10,11,12],variable_id:[1,2,3,4,5,7,9,10,11,12],variablescom:[7,12],variant_info:[2,4,11],variant_label:[2,3,4,5,7,9,11,12],variou:4,veg:[3,5,10],verif:7,verify_checksum:3,version:[1,4,7,8,9,11,12],vertic:[4,7,8,12],vet:5,via:[0,2,3,5,7,8,9,11,12],victoria:[7,12],view:[0,1,4],visual:[2,3,4,8,12],visualizion:[2,3],vmax:[4,7],vmin:[4,7],volum:[2,3,4,11],w3c:[4,9],w:[9,10],wa:8,waccm6:11,waccm:[1,11],wai:[0,4,7,8],wait:5,waittim:3,wang:10,want:[3,4],warm:10,warn:[2,3,5,12],warranti:[2,3,5,7,9,11,12],we:[1,2,3,4,5,7,8,9,10,11,12],web:9,webapp:3,weight:[2,3,5,7],weighted_averag:[2,3,5,9],weighted_average_tas_1:9,weightedaverag:9,well:[0,1,2,3,4,7,8,10],were:[1,5,7,8],wf:[4,9,10,11],wghthistori:[7,12],what:[1,4,7],whatev:3,when:[1,2,3],where:[1,2,3,4,5,7,8,9,10,11],which:[0,1,2,3,4,5,7,8,10,11,12],whose:7,why:[1,4,10],widget_loc:11,width:4,width_ratio:4,wing:10,wish:1,within:[0,2,3,4,5,7,11,12],without:[4,7,8,9,10,11,12],wonder:8,work:[0,1,3,4,7,8,10,11],workflow:[2,3,4,5,10],world:8,would:[1,2,3,7,11],wp:[5,9,10,11],wrap:[2,3],write:[1,5],wspace:4,wu:10,www:[7,12],x1:4,x27:[2,3,5,7,9,11,12],x2:4,x:[2,3,4,5,7,8,9,10,11,12],x_area_fract:7,xarrai:[2,3,4,5,7,10,11,12],xbound:11,xe:10,xeof:10,xesmf_v0:4,xfit:10,xlabel:[2,3,5],xlong_nam:[7,9,12],xml:4,xr:[2,3,5,10,11,12],xy:8,xz:8,y2:[2,3,5],y:[2,3,5,8,10,11,12],yang:10,ybound:11,yeali:11,year:[2,3,4,5,10,11,12],yearli:11,yearly_averag:12,yeh:10,yet:7,ying:10,ylabel:[2,3,5],ylong_nam:[7,9,12],ymdh_branch_time_in_child:[4,7,12],yml:0,you:[0,1,2,3,5,6,7,8,10,11],your:[1,2,3,5,7,11],yourself:[2,3,8],ys:11,z:[8,10],zarr:5,zenodo:6,zero:[9,10],zeros_lik:[2,3,5],zheng:10,zhong:10,zoom:4,zposit:[7,9,12],zqlfzoowi3n_p3kfnf4t:3,zr:10},titles:["ESGF Cookbook","Complex Searching with intake-esgf","ENSO Calculations using Globus Compute","ENSO Calculations using Globus Flows","Demo: Regridding and Plotting with Rooki and Cartopy","ESGF Compute Function Service Demo","How to Cite This Cookbook","Introduction to intake-esgf","Project Pythia Notebook Template","Compute Demo: Use Rooki to access CMIP6 data","Compute Demo: ENSO nonlinearity index with CMIP6 data","Using intake-esgf with rooki","Basic Demonstration of Data Reduction Using Globus, Intake-ESGF, and Clisops"],titleterms:{"1":4,"2":4,"2c4c":5,"3":[2,3],"4":[2,3],"45f1":5,"49cd1ee0":5,"function":[2,3,5],"import":[1,2,3,4,5,7,8,10,11,12],A:8,ab78:5,access:[2,3,4,5,9],addit:1,after:4,again:4,alpha:10,an:[2,3],anoth:8,authent:3,author:0,averag:[9,12],basic:12,befor:4,between:4,binder:0,c4557fa25aa3:5,calcul:[2,3,12],cartopi:4,catalog:[1,7],cite:6,client:3,clisop:12,cmip6:[4,5,9,10],coarsen:4,compar:4,complex:1,comput:[2,3,5,9,10,11],configur:[2,3],content:8,contributor:0,cookbook:[0,6],creat:[5,9],danger:8,data:[2,3,4,5,9,10,11,12],dataset:[4,5,7,9,11],datset:4,defin:[3,9],demo:[4,5,9,10],demonstr:[8,12],deploi:3,desir:4,differ:4,dkrz:11,document:9,each:4,endpoint:[2,3],enso:[2,3,5,10],esgf:[0,1,4,5,7,11,12],everyth:4,exampl:4,execut:5,executor:[2,3,5],extract:11,find:[11,12],first:8,flow:3,from:5,further:8,get:4,globu:[2,3,5,12],grid:4,group:1,header:8,how:6,id:11,index:[2,3,10,11],info:8,init:9,initi:1,intak:[1,4,7,11,12],interest:5,introduct:7,job:9,json:9,last:8,level:8,local:5,locat:12,look:[4,9],machin:0,measur:10,model:[1,4],modifi:3,motiv:0,next:[2,3,5,8,9,10,11,12],node:11,nonlinear:10,notebook:[0,8],obtain:7,one:4,onto:4,open:9,oper:9,option:9,our:[2,3],output:[4,11],overview:[1,2,3,4,5,7,8,9,10,11,12],own:0,pass:[5,11],plot:[2,3,4,7,9,10],popul:[1,7],precipit:4,prerequisit:[1,2,3,4,5,7,8,9,10,11,12],project:8,proven:9,pythia:8,quick:[4,8],reduct:12,refer:[2,3,4,5,8,9,10,11,12],regist:3,regrid:[4,10],remot:5,remov:1,resourc:[2,3,4,5,8,9,10,11,12],result:10,retriev:[9,10],rooki:[4,9,11],run:[0,2,3,9],s:[2,3,5,8,9,10,11,12],same:4,schema:3,search:[0,1,11,12],second:8,section:8,separ:11,servic:5,set:11,setup:[2,3],show:9,simpl:7,source_id:5,structur:0,submit:9,subsect:8,subset:[9,10,12],success:8,summari:[1,2,3,4,5,7,8,9,10,11,12],surfac:11,take:4,temperatur:11,templat:8,test:[2,3],thi:6,time:12,togeth:4,two:4,us:[2,3,4,9,11,12],valu:10,variant:1,visual:[5,11],wa:5,warn:8,what:[2,3,5,8,9,10,11,12],workflow:[0,9],xarrai:9,yearli:12,your:[0,8]}}) \ No newline at end of file