-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_drowsiness.py
189 lines (148 loc) · 5.86 KB
/
detect_drowsiness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#python drowsiness_yawn.py --webcam 0 --alarm alarm.wav
from scipy.spatial import distance as dist
from imutils.video import VideoStream
from imutils import face_utils
from threading import Thread
import numpy as np
import argparse
import imutils
import time
import dlib
import cv2
import os
import playsound
from twilio.rest import Client
import geocoder
g = geocoder.ip('me')
print(str(g.latlng))
account_sid = 'GET FROM YOUR TWILIO ACCOUNT'
auth_token = 'GET FROM YOUR TWILIO ACCOUNT'
client = Client(account_sid, auth_token)
def sound_alarm(path):
# play an alarm sound
playsound.playsound('alarm.wav', False)
def eye_aspect_ratio(eye):
A = dist.euclidean(eye[1], eye[5])
B = dist.euclidean(eye[2], eye[4])
C = dist.euclidean(eye[0], eye[3])
ear = (A + B) / (2.0 * C)
return ear
def final_ear(shape):
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
ear = (leftEAR + rightEAR) / 2.0
return (ear, leftEye, rightEye)
def lip_distance(shape):
top_lip = shape[50:53]
top_lip = np.concatenate((top_lip, shape[61:64]))
low_lip = shape[56:59]
low_lip = np.concatenate((low_lip, shape[65:68]))
top_mean = np.mean(top_lip, axis=0)
low_mean = np.mean(low_lip, axis=0)
distance = abs(top_mean[1] - low_mean[1])
return distance
ap = argparse.ArgumentParser()
##ap.add_argument("-p", "--shape-predictor", required=True, help="path to facial landmark predictor")
ap.add_argument("-a", "--alarm", type=str, default="", help="path alarm .WAV file")
ap.add_argument("-w", "--webcam", type=int, default=0, help="index of webcam on system")
args = vars(ap.parse_args())
EYE_AR_THRESH = 0.3
EYE_AR_CONSEC_FRAMES = 30
YAWN_THRESH = 20
sms_eye = 1
sms_yawn = 1
# initialize the frame counter as well as a boolean used to
# indicate if the alarm is going off
COUNTER = 0
ALARM_ON = False
print("-> Loading the predictor and detector...")
#detector = dlib.get_frontal_face_detector()
detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") #Faster but less accurate
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
print("-> Starting Video Stream")
vs = VideoStream(src=args["webcam"]).start()
#vs= VideoStream(usePiCamera=True).start() //For Raspberry Pi
time.sleep(1.0)
while True:
frame = vs.read()
frame = imutils.resize(frame, width=450)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#rects = detector(gray, 0)
rects = detector.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE)
#for rect in rects:
for (x, y, w, h) in rects:
rect = dlib.rectangle(int(x), int(y), int(x + w),int(y + h))
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
eye = final_ear(shape)
ear = eye[0]
leftEye = eye [1]
rightEye = eye[2]
distance = lip_distance(shape)
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)
lip = shape[48:60]
cv2.drawContours(frame, [lip], -1, (0, 255, 0), 1)
if ear < EYE_AR_THRESH:
COUNTER += 1
if COUNTER >= EYE_AR_CONSEC_FRAMES:
if not ALARM_ON:
ALARM_ON = True
if(sms_eye==1):
message = client.messages \
.create(
body = "Drowsy driver detected at location " + str(g.latlng),
from_='+183xxxxxxxx',
to='+91xxxxxxxxxx'
)
print(message.sid)
sms_eye = 0
print('SMS Sent')
if args["alarm"] != "":
t = Thread(target=sound_alarm, args=(args["alarm"],))
t.deamon = True
t.start()
cv2.putText(frame, "DROWSINESS ALERT!", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
else:
COUNTER = 0
sms_eye = 1
ALARM_ON = False
if (distance > YAWN_THRESH):
cv2.putText(frame, "Yawn Alert", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
if not ALARM_ON:
ALARM_ON = True
if(sms_yawn==1):
message = client.messages \
.create(
body = "Drowsy driver detected at location " + str(g.latlng),
from_='+183xxxxxxxx',
to='+91xxxxxxxxxx'
)
print(message.sid)
sms_yawn = 0
print('SMS Sent')
if args["alarm"] != "":
t = Thread(target=sound_alarm, args=(args["alarm"],))
t.deamon = True
t.start()
else:
sms_yawn = 1
ALARM_ON = False
cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "YAWN: {:.2f}".format(distance), (300, 60),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
cv2.destroyAllWindows()
vs.stop()