-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmatrix.cpp
329 lines (263 loc) · 7.61 KB
/
matrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/*!
@file matrix.cpp
@brief Contains functions for arbitrary (n,n)-matrices
*/
#include <iostream>
#include <cstdlib>
#include "matrix.h"
/// Assigns an array of longs to the matrix. The current data is discarded.
/// This operation changes the dimensions of the matrix, of course. The array
/// will be embedded like this: 0,1,2,..,m for the first row, m+1,...,2m for
/// the second row and so on.
///
/// @param a The array that is to be assigned to the matrix.
/// @param n The number of rows in the array.
/// @param m The number of columns in the array.
///
/// @return The new matrix.
matrix matrix::assign(long* a, unsigned long n, unsigned long m)
{
data.clear();
vector<long> row;
for(unsigned long i = 0; i < n*m; i += m)
{
row.clear();
for(unsigned long j = 0; j < m; j++)
row.push_back(a[i+j]);
data.push_back(row);
}
return(*this);
}
/// Assigns a vector of longs to the matrix. This function is an overloaded
/// version of the assign() funtions that assigns an array of longs.
///
/// @param a The vector that is to be assigned to the matrix.
/// @param n The number of rows in the vector.
/// @param m The number of columns in the vector.
///
/// @return The new matrix.
matrix matrix::assign(vector<long> a, unsigned long n, unsigned long m)
{
data.clear();
vector<long> row;
for(unsigned long i = 0; i < n*m; i += m)
{
row.clear();
for(unsigned long j = 0; j < m; j++)
row.push_back(a[i+j]);
data.push_back(row);
}
return(*this);
}
/// Transforms the current matrix into its Smith Normal Form (abbreviated SNF).
/// Data that is currently held by the matrix will not be changed.
///
/// @return A copy of the matrix in SNF.
matrix matrix::nf_smith(void)
{
matrix res = *this;
res.nf_smith_rec(0,0);
return(res);
}
/// This is the recursive helper function that is called by nf_smith() in order
/// to actually transform the matrix. In each call, the dimensions of the matrix
/// that is processed are reduced. Data of the current matrix is changed, obviously.
///
/// @param row Starting row
/// @param col Starting column
void matrix::nf_smith_rec(size_t row, size_t col)
{
if( (get_num_rows() - row) == 0 ||
(get_num_cols() - col) == 0)
return;
// If the matrix is the zero matrix, we can also quit
bool zero = true;
for(size_t i = row; i < data.size(); i++)
{
for(size_t j = col; j < data[0].size(); j++)
{
if(data[i][j] != 0)
zero = false;
}
}
if(zero)
return;
ldiv_t res;
size_t min_i = row;
size_t min_j = col;
// Search for the smallest element in the matrix.
for(size_t i = row; i < data.size(); i++)
{
for(size_t j = col; j < data[i].size(); j++)
{
// The minimal element is changed if...
//
// 1) A smaller element has been found.
// 2) It is zero, in which case it is assigned the next non-zero
// element.
if( (abs(data[i][j]) <= abs(data[min_i][min_j]) && data[i][j] != 0) ||
(data[min_i][min_j] == 0 && data[i][j] != 0))
{
min_i = i;
min_j = j;
}
}
}
// Swap the first row with the row that contains the minimum and swap
// the first column with the column that contains the minimum.
data[row].swap(data[min_i]);
for(size_t i = row; i < data.size(); i++)
{
long tmp = data[i][min_j];
data[i][min_j] = data[i][col];
data[i][row] = tmp;
}
// Eliminate a row. If not all remainders are zero, a new minimal
// element must be found.
for(size_t j = col+1; j < data[0].size(); j++)
{
res = div(data[row][j], data[row][col]);
// Subtract q*(first column) from the current column. In
// effect, after this transformation, the first row consists of
// the minimal element and the remainders of the division
for(size_t i = row; i < data.size(); i++)
data[i][j] -= res.quot*data[i][col];
}
for(size_t j = col+1; j < data[0].size(); j++)
{
if(data[row][j] != 0)
nf_smith_rec(row, col);
}
// Eliminate a column. If not all remainders are zero, a new minimal
// element must be found.
for(size_t i = row+1; i < data.size(); i++)
{
res = div(data[i][col], data[row][col]);
// Subtract q*(first row) from the current row. In effect,
// after this transformation, the first row consists of the
// minimal element and the remainders of the division
for(size_t j = col; j < data[i].size(); j++)
data[i][j] -= res.quot*data[row][j];
}
for(size_t i = row+1; i < data.size(); i++)
{
if(data[i][col] != 0)
nf_smith_rec(row, col);
}
// Now the first row and the first column are eliminated (excluding one
// element). Check if the minimal element divides every entry of the
// remaining matrix.
for(size_t i = row+1; i < data.size(); i++)
{
for(size_t j = col+1; j < data[i].size(); j++)
{
res = div(data[i][j], data[row][col]);
if(res.rem != 0)
{
// Add the i-th row to the first row and divide
// the current element by the minimal element
// (already stored in res).
for(size_t k = col+1; k < data[i].size(); k++)
data[row][k] += data[i][k];
// Substract q*(first column) from the j-th column and
// repeat this whole function.
for(size_t k = row+1; k < data.size(); k++)
data[k][j] -= res.rem*data[k][col];
nf_smith_rec(row, col);
return;
}
}
}
// Reduce the dimensions and proceed with the reduced
// matrix. After finitely many steps, the matrix will
// be in SNF.
nf_smith_rec(row + 1, col + 1);
}
/// Transposes the matrix.
void matrix::transpose(void)
{
matrix transposed;
long tmp;
for(size_t j = 0; j < data[0].size(); j++)
{
vector<long> row;
for(size_t i = 0; i < data.size(); i++)
row.push_back(data[i][j]);
transposed.data.push_back(row);
}
*this = transposed;
}
/// Prints the matrix to STDOUT. This is used for debugging purposes and
/// for displaying intermediate results.
void matrix::print(void)
{
cout << "*********************************************\n";
for(size_t i = 0; i < data.size(); i++)
{
for(size_t j = 0; j < data[i].size(); j++)
cout << data[i][j] << "\t";
cout << "\n";
}
cout << "*********************************************\n";
}
/// Returns the number of rows in the matrix.
/// @return The number of rows.
size_t matrix::get_num_rows(void)
{
return(data.size());
}
/// Returns the number of columns in the matrix.
/// @return The number of columns.
size_t matrix::get_num_cols(void)
{
if(data.size() == 0)
return(0);
else
return(data[0].size());
}
/// Returns the number of zero columns in the matrix. This is used to compute
/// the order of Z_n. It is assumed that the matrix is already in SNF.
///
/// @return The number of zero columns.
size_t matrix::get_num_zero_cols(void)
{
size_t i = 0;
for(; i < get_num_cols() && i < get_num_rows(); i++)
{
if(data[i][i] == 0)
{
return(get_num_cols() - i);
}
}
return(get_num_cols() - i);
}
/// Returns the number of non-zero rows in the matrix. This is used to compute
/// the order of W_(n-1). It is assumed that the matrix is already in SNF.
///
/// @return The number of non-zero rows.
size_t matrix::get_num_non_zero_rows(void)
{
size_t rows = 0;
for(size_t i = 0; i < get_num_cols() && i < get_num_rows(); i++)
{
if(data[i][i] != 0)
rows++;
}
return(rows);
}
/// Given a matrix in Smith Normal Form (which is assumed throughout the
/// function), return all elements that have an absolute value > 1. These
/// numbers constitute the torsion coefficients.
///
/// @return A vector that contains the absolute values of
/// the torsion coefficients.
vector<unsigned long> matrix::get_torsion(void)
{
vector<unsigned long> result;
for(size_t i = 0; i < get_num_cols() && i < get_num_rows(); i++)
{
if(labs(data[i][i]) > 1)
result.push_back(labs(data[i][i]));
}
return(result);
}