forked from sdwestwood/ews24
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ews_sw.qmd
726 lines (537 loc) · 12.7 KB
/
ews_sw.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
---
title: "EWS"
author: "Sean Westwood"
format: revealjs
---
```{r, include = FALSE}
knitr::opts_chunk$set(error = TRUE,
echo = TRUE,
message = FALSE,
eval = FALSE)
# remember to set evel = FALSE on code chunks that I don't want code to run
# this may make more sense than error depending if we want error message
```
# Demystifying Functions
## Why Demystification?
::: {.incremental}
- Programming as a beginner is mysterious and scary
- Things almost seem to work by magic
:::
::: {.fragment .absolute left=50 top=350}
![](images/mops3.jpg){width=400 height=300}
:::
::: incremental
- **How can we fix something magical when it breaks??**
:::
::: {.fragment .absolute right=50 top=350}
![](images/fantasia.jpg){width=400 height=300}
:::
## Why Demystification?
::: {.incremental}
- Similar panic can be induced by stats formula
- Mapping intuition onto an equation is not easy
- What if we can find a common solution?
:::
::: {.fragment .absolute left=250 width=700 height=400}
![](images/oneplusone.png)
:::
## The Goal
::: {.incremental}
- Crack open the black box of functions in coding
- Systematically defang scary formulas
- Instill a sense of confidence and independence
:::
::: {.fragment .absolute left=250 width=500 height=300}
![](images/fantasia2.jpg)
:::
## The `function()` Function {auto-animate="true"}
::: fragment
- **Input**: We use the function function to specify our inputs
:::
::: fragment
```{r}
function(`input`)
```
:::
::: fragment
- **Process**: We put the process inside the curly brackets `{}`
:::
::: fragment
```{r}
function(`input`){
# inside the curly brackets goes the process
}
```
:::
::: fragment
- **Output**: We specify the output using `return()`
:::
::: fragment
```{r}
function(`input`){
`process` # inside the curly brackets goes the process
return(`output`) # the outcome of the process goes here
}
```
:::
## Step 1: I Make a Mean Function
::: incremental
- We need a non-intimidating example to ease into things
- The mean is a simple & familiar statistical concept
- An ideal starting point for demystification!!
:::
::: {.fragment .absolute right=100 width=400 height=400}
![](images/mean.png)
:::
::: {.fragment .absolute left=150 bottom=150}
$$
\bar{x} = \frac{\sum x}{n}
$$
:::
## Mean Function: Input {auto-animate="true"}
::: fragment
A vector of numeric values (`x`)
:::
::: {.absolute top="400" left="0" width=700 height="300"}
```{r}
mean_function <- function(x){
}
```
:::
::: {.fragment .absolute right=0 bottom=100}
$$
\bar{x} = \frac
{\sum \color{red}{x}}
{n}
$$
:::
## Mean Function: Process {auto-animate="true"}
1. Add up all the values within `x`
::: {.absolute top=400 left=0 width=700 height="300"}
```{r}
mean_function <- function(x){
numer <- sum(x)
}
```
:::
::: {.absolute right=0 bottom=100}
$$
\bar{x} = \frac
{\color{red}{\sum x}}
{n}
$$
:::
## Mean Function: Process {auto-animate=true}
1. Add up all the values within `x`
2. Find the number of values within `x`
::: {.absolute top=400 left=0 width=700 height="300"}
```{r}
mean_function <- function(x){
numer <- sum(x)
denom <- length(x)
}
```
:::
::: {.absolute right=0 bottom=100}
$$
\bar{x} = \frac
{\sum x}
{\color{red}{n}}
$$
:::
## Mean Function: Process {auto-animate=true}
1. Add up all the values within `x`
2. Find the number of values within `x`
3. Divide the sum of values by the number of values
::: {.absolute top=400 left=0 width=700 height="300"}
```{r}
mean_function <- function(x){
numer <- sum(x)
denom <- length(x)
output <- numer/denom
}
```
:::
::: {.absolute right=0 bottom=100}
$$
\bar{x} = \color{red}{\frac
{\sum x}
{n}}
$$
:::
## Mean Function: Output {auto-animate=true}
Return the value contained in `output`
::: {.absolute top=400 left=0 width=700 height="300"}
```{r, eval=TRUE}
mean_function <- function(x){
numer <- sum(x)
denom <- length(x)
output <- numer/denom
return(output)
}
```
:::
::: {.absolute right=0 bottom=100}
$$
\color{red}{\bar{x}} = \frac
{\sum x}
{n}
$$
:::
## Mean Function: Testing
Now that we have made our function, we can test it by comparing the output it gives us to the regular old `mean()` function in base R!
::: {.fragment .absolute bottom=300}
Let's simulate some random values to test our function with:
:::
::: {.fragment .absolute bottom=100}
```{r, eval=TRUE}
test_data <- rnorm(n = 10, mean = 0, sd = 1)
test_data
```
:::
## Mean Function: Testing
::: {.fragment}
Let's see how our function compares to `mean()` in base R
:::
::: {.fragment}
We can use `test_data` as a test case:
:::
::: {.fragment}
```{r, eval=TRUE}
# print the mean that our function calculates
mean_function(test_data)
```
:::
::: {.fragment}
```{r, eval=TRUE}
# print the mean that the base R function calculates
mean(test_data)
```
:::
:::{.fragment}
```{r, eval=FALSE}
# return TRUE if the two means are equivalent
mean_function(test_data) == mean(test_data)
```
```{r, eval=TRUE, echo=FALSE}
# return TRUE if the two means are equivalent
round(mean_function(test_data),5) == round(mean(test_data),5)
```
:::
:::{.fragment .absolute bottom=25}
**It wasn't magic after all!!**
:::
## Step 2: Variance is the Spice of Life
::: {.incremental}
- Now we have dipped our toe in, let's up the complexity
- Variance is a little trickier, but not totally alien
- We can use our new mean function too!
:::
::: {.fragment .absolute right=50 width=400 height=400}
![](images/var.png)
:::
::: {.fragment .absolute left=150 bottom=150}
$$\sigma^2 = \frac{\sum(x - \bar{x})^2}{n-1}$$
:::
## Variance Function: Input {auto-animate=true}
::: fragment
A vector of numeric values (`x`)
:::
::: {.absolute top="400" left="0" width=700 height="300"}
```{r}
var_function <- function(x){
}
```
:::
::: {.fragment .absolute right=0 bottom=100}
$$
\sigma^2 = \frac
{\sum(\color{red}{x} - \bar{x})^2}
{n-1}
$$
:::
## Variance Function: Process {auto-animate=true}
1. Calculate the mean of `x` using our `mean_function()`
::: {.absolute top="400" left="0" width=700 height="300"}
```{r}
var_function <- function(x){
av <- mean_function(x)
}
```
:::
::: {.absolute right=0 bottom=100}
$$
\sigma^2 = \frac
{\sum(x - \color{red}{\bar{x}})^2}
{n-1}
$$
:::
## Variance Function: Process {auto-animate=true}
2. Calculate the top part (numerator) of the formula
1. subtract the mean from each value of x
::: {.absolute top="400" left="0" width=700 height="300"}
```{r}
var_function <- function(x){
av <- mean_function(x)
numer <- sapply(x,`-`,av)
}
```
:::
::: {.absolute right=0 bottom=100}
$$
\sigma^2 = \frac
{\sum(x \color{red}{-} \bar{x})^2}
{n-1}
$$
:::
## Variance Function: Process {auto-animate=true}
2. Calculate the top part (numerator) of the formula
1. subtract the mean from each value of x
2. square each of the resulting values
::: {.absolute top="400" left="0" width=700 height="300"}
```{r}
var_function <- function(x){
av <- mean_function(x)
numer <- sapply(x,`-`,av)^2
}
```
:::
::: {.absolute right=0 bottom=100}
$$
\sigma^2 = \frac
{\sum(x - \bar{x})^\color{red}{2}}
{n-1}
$$
:::
## Variance Function: Process {auto-animate=true}
2. Calculate the top part (numerator) of the formula
1. subtract the mean from each value of x
2. square each of the resulting values
3. sum all of the squared values together
::: {.absolute top="400" left="0" width=700 height="300"}
```{r}
var_function <- function(x){
av <- mean_function(x)
numer <- sum(sapply(x,`-`,av)^2)
}
```
:::
::: {.absolute right=0 bottom=100}
$$
\sigma^2 = \frac
{\color{red}{\sum}(x - \bar{x})^2}
{n-1}
$$
:::
## Variance Function: Process {auto-animate=true}
3. Calculate the bottom part (denominator) of the formula
::: {.absolute top="400" left="0" width=700 height="300"}
```{r}
var_function <- function(x){
av <- mean_function(x)
numer <- sum(sapply(x,`-`,av)^2)
denom <- length(x) - 1
}
```
:::
::: {.absolute right=0 bottom=100}
$$
\sigma^2 = \frac
{\sum(x - \bar{x})^2}
{\color{red}{n-1}}
$$
:::
## Variance Function: Process {auto-animate=true}
3. Calculate the bottom part (denominator) of the formula
4. Divide the numerator by the denominator
::: {.absolute top="400" left="0" width=700 height="300"}
```{r}
var_function <- function(x){
av <- mean_function(x)
numer <- sum(sapply(x,`-`,av)^2)
denom <- length(x) - 1
output <- numer/denom
}
```
:::
::: {.absolute right=0 bottom=100}
$$
\sigma^2 = \color{red}{
\frac
{\sum (x - \bar{x})^2}
{n-1}
}
$$
:::
## Variance Function: Output {auto-animate=true}
Return the resulting value from Step 4 in the process
::: {.absolute top="400" left="0" width="700" height="300"}
```{r, eval=TRUE}
var_function <- function(x){
av <- mean_function(x)
numer <- sum(sapply(x,`-`,av)^2)
denom <- length(x) - 1
output <- numer/denom
return(output)
}
```
:::
::: {.absolute right=0 bottom=100}
$$
\color{red}{\sigma^2} = \frac
{\sum (x - \bar{x})^2}
{n-1}
$$
:::
## Variance Function: Testing
::: {.fragment}
Let's use our `test_data` again to see if our function works:
:::
::: {.fragment}
```{r, eval=TRUE}
# print the variance that our function calculates
var_function(test_data)
```
:::
::: {.fragment}
```{r, eval=TRUE}
# print the variance that the base R function calculates
var(test_data)
```
:::
:::{.fragment}
```{r, eval=FALSE}
# return TRUE if the two variances are equivalent
var_function(test_data) == var(test_data)
```
```{r, eval=TRUE, echo=FALSE}
# return TRUE if the two variances are equivalent
round(var_function(test_data),5) == round(var(test_data),5)
```
:::
:::{.fragment .absolute bottom=50}
**The mystery is disappearing before our eyes!!**
:::
## Step 3: Making a Standard Error (but in a good way)
::: {.incremental}
- We are now ready to put it all together for our SEM function
- This is a nice practical end goal as there no SEM in base R
- A simple equation that neatly applies our `mean` and `var`
:::
::: fragment
$$
SE = \frac{s}{\sqrt{n}}
$$
:::
::: fragment
Where $s$ is the standard deviation of the sample
(i.e. the square root of the variance)
:::
## SEM Function: Input {auto-animate=true}
::: fragment
A vector of numeric values (`x`)
:::
::: {.absolute top="400" left="0" width=700 height="300"}
```{r}
sem_function <- function(x){
}
```
:::
::: {.fragment .absolute right=0 bottom=100}
$$
SE = \frac{s}{\sqrt{n}}
$$
:::
## SEM Function: Process {auto-animate=true}
1. For our numerator, calculate the standard deviation of `x` by taking the square root of our `var_function()`
::: {.absolute top="400" left="0" width=700 height="300"}
```{r}
sem_function <- function(x){
numer <- sqrt(var_function(x))
}
```
:::
::: {.absolute right=0 bottom=100}
$$
SE = \frac
{\color{red}{s}}
{\sqrt{n}}
$$
:::
## SEM Function: Process {auto-animate=true}
1. For our numerator, calculate the standard deviation of `x` by taking the square root of our `var_function()`
2. For our denominator, take the square root of the number of values in `x`
::: {.absolute top="400" left="0" width=700 height="300"}
```{r}
sem_function <- function(x){
numer <- sqrt(var_function(x))
denom <- sqrt(length(x))
}
```
:::
::: {.absolute right=0 bottom=100}
$$
SE = \frac
{s}
{\color{red}{\sqrt{n}}}
$$
:::
## SEM Function: Process {auto-animate=true}
1. For our numerator, calculate the standard deviation of `x` by taking the square root of our `var_function()`
2. For our denominator, take the square root of the number of values in `x`
::: {.absolute top="400" left="0" width=700 height="300"}
```{r}
sem_function <- function(x){
numer <- sqrt(var_function(x))
denom <- sqrt(length(x))
output <- numer/denom
}
```
:::
::: {.absolute right=0 bottom=100}
$$
SE = \color{red}{\frac
{s}
{\sqrt{n}}
}
$$
:::
## SEM Function: Output {auto-animate=true}
Return the resulting value from this division
::: {.absolute top="400" left="0" width=700 height="300"}
```{r}
sem_function <- function(x){
numer <- sqrt(var_function(x))
denom <- sqrt(length(x))
output <- numer/denom
return(output)
}
```
:::
::: {.absolute right=0 bottom=100}
$$
\color{red}{SE} = \frac
{s}
{\sqrt{n}}
$$
:::
::: fragment
And of course you can start to simplify things e.g.
:::
::: fragment
```{r}
sem_function_mini <- function(x){
sd(x)/sqrt(length(x))
}
```
:::
## Of course many mysteries remain...
::: incremental
- Demystification is a philosophy, not a lesson
- The core idea is **emboldening** and **empowering** learners
- Programming has a special capacity to overwhelm:
- Software and package installation/dependencies
- Project & file management
- Unintuitive logic & conventions
- $\color{red}{\textbf{ERRORS}}$
:::