-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtactics_generator.py
385 lines (354 loc) · 11.5 KB
/
tactics_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# GENETIC TACTICS ALGORITHM
from copy import copy, deepcopy
import random
from operator import itemgetter
import json
import os
import sys
import easyAI
import gameengine
from tactics import Tactics, GENE_MAP, build_tactics_from_list
# you can launch with combo's limited to one value using FIRST, SEEDS, LOOK
#
# for example:
# python tactics_generator.py FIRST 2 LOOK 5
#
# will only generate JSON files for 'AI GOING FIRST' and 'LOOKAHEAD 5'
def build_scenario_tuples(combos):
if len(sys.argv) >= 3:
try:
i = sys.argv.index("FIRST")
combos[0] = [int(sys.argv[i + 1])]
except ValueError:
pass
try:
i = sys.argv.index("SEEDS")
combos[1] = [int(sys.argv[i + 1])]
except ValueError:
pass
try:
i = sys.argv.index("LOOK")
combos[2] = [int(sys.argv[i + 1])]
except ValueError:
pass
s = []
f = []
for a in combos[0]:
for b in combos[1]:
for c in combos[2]:
for d in combos[3]:
for e in combos[4]:
s.append((a, b, c, d, e))
f.append("tactics_work/kalah-results-{}-{}-{}-{}-{}.json".format(
a, b, c, d, e
))
return s, f
#
# Genetic algorithm used to determine tactical values to be used by the
# minimax (negamax) routines.
#
# COMBOS TO TEST
COMBOS = []
#
# (2) GOES_FIRST vs GOES_SECOND
COMBOS.append([1, 2])
#
# (4) 3, 4, 5, or 6 SEEDS PER PIT
COMBOS.append([4, 3, 5, 6]) # doing 4 first to help with early analysis
#
# (6) LOOKING 1, 2, 3, 4, 5, or 6 TURNS AHEAD
# COMBOS.append([1, 2, 3, 4, 5, 6])
COMBOS.append([0, 3])
#
# (3) CAPTURE RULE VARIATIONS
COMBOS.append([0, 1, 2])
#
# (4) END OF GAME VARIATIONS
COMBOS.append([0, 1, 2, 3])
#
# SO, A TOTAL OF 2x4x6x3x4 = 576 SCENARIOS
SCENARIOS, FILENAMES = build_scenario_tuples(COMBOS)
#
# FINAL RESULTS OF EACH COMBO ARE APPENDED TO 'tactics/kalah-results-A-B-C-D-E.json'
# AT START, FIND THE LAST COMBO to know where to start
#
# LATER, a SCRIPT will assemble the result files into a 'tactical.py' file.
#
# DO 10 "islands" of independent evolution;
# then later run all of them together for 20 more generations
ISLAND_QTY = 4 # 10
#
# RUN 100 generations for each island
GENERATION_QTY = 10 # 100
# HAVE 50 genomes start each generation
POPULATION_SIZE = 12 # 50
# EACH genome engages each of the other genomes in the "attacker" role
# EACH engagement is N plays, the final scores are tallied for fitness
PLAYS_PER_ENGAGEMENT = 1
# WHEN a genome is in the defender role; it COULD have a % chance of wrong move
# per round of play to mimic diversity, however it currently does not
# AFTER ALL engagements are finished, extinct the bottom 60%
EXTINCTION_RATE = 0.60
# BREED replacements:
# 1/3rd get a +1 or -1 change to a random gene
# 1/3rd get a big change to a random gene
# RANGE (-100 to +100)
# 1/3rd swaps values of a random gene with a random survivor
BREED_OPTIONS = ["minor", "major", "cross"]
#
# The GENE values:
#
EMPTY_AGAINST_EMPTY_PIT_VALUE = 0
EMPTY_AGAINST_FULL_PIT_VALUE = 1
EASY_REPEAT_VALUE = 3
EMPTY_PIT = 0
FULL_PIT = 1
GENE_MAP_SIZE = len(GENE_MAP)
PROTO_GENOME = {
'id': 0,
'score': -1000000, # negative 1 million is below all possible scores
'genes': [0] * len(GENE_MAP),
'life_span': 0,
'parent_qty': 0
}
ID_CTR = 1
# GENES CAN RANGE FROM 0 to 8000 BUT THEY CANNOT BE NEGATIVE
##STARTING_TACTICS = {
## TACTIC_EMPTY_PIT_VALUE = [
## (12, 1), # 0 = nearest to STORE, (empty/empty, empty/full)
## (8, 2), # 1 first value is value for empty; second is multiplier
## (5, 1), # 2
## (4, 1), # 3
## (7, 1), # 4
## (9, 1), # 5
## ]
## TACTIC_EASY_REPEAT_VALUE = [
## 4, # pit 0 from store
## 5, #
## 3, #
## 2, #
## 1, #
## 1, #
## ]
##}
settings = {
"ai_chosen": 1,
"who_plays_first": 1,
"first_player": 2, # use inverse because we are from AI point of view
"seeds_per_house_selection": 1,
"seeds_per_house": 4,
"capture_rule": 0,
"eog_rule": 0,
"seed_drop_rate": 0.4,
"randomness_rule": 0
}
ALT_AI_LIST = [
{
"index": 1,
"name": "USER ROLE",
"rank": "1",
"strategy": "negamax", # options: "random", "negamax"
"lookahead": 4, # 1 to 6
"error_rate": 0.00, # 0.0 to 1.0; odds of making mistake
"fitness": "balance", # options: greed, caution, balance
"desc": "test genome",
"tagline": "",
"tactics": "standard"
},
{
"index": 2,
"name": "AI ROLE",
"rank": "1",
"strategy": "negamax", # options: "random", "negamax"
"lookahead": 4, # 1 to 6
"error_rate": 0.00, # 0.0 to 1.0; odds of making mistake
"fitness": "balance", # options: greed, caution, balance
"desc": "test genome defender",
"tagline": "",
"tactics": "standard"
},
]
game = None
INF = 1000000
def play_engagement(genome):
if (genome["score"] > -INF) and (PLAYS_PER_ENGAGEMENT==1):
return genome["score"]
score = 0
for round in range(PLAYS_PER_ENGAGEMENT):
game.reset_board()
# game.play(verbose=False)
while not game.is_over():
if game.nplayer==1:
# USER
apply_genome(game.players[0], PROTO_GENOME)
apply_genome(game.players[1], PROTO_GENOME)
else:
# AI
apply_genome(game.players[0], genome)
apply_genome(game.players[1], genome)
move = game.get_move()
game.play_move(move)
result = game.strategic_scoring(2, 1) # we are scoring from AI perspective
score += result
final_score = score / PLAYS_PER_ENGAGEMENT
return final_score
def do_extinction(genome_list):
l = len(genome_list)
last = int(l * (1.0 - EXTINCTION_RATE))
new_list = genome_list[0:last]
for genome in new_list:
genome['life_span'] += 1
return new_list
def do_reproduction(genome_list):
global ID_CTR
missing = POPULATION_SIZE - len(genome_list)
if missing <= 0:
return
if not genome_list: # on first entry, the list is empty, so create an Adam/Eve
new_genome = deepcopy(PROTO_GENOME)
genome_list.append(new_genome)
for _ in range(missing):
parent = random.choice(genome_list)
new_genome = deepcopy(parent)
qty_changes = random.randint(1, 10)
for _ in range(qty_changes):
action = random.randint(1, 3)
gene_select = random.randint(1, GENE_MAP_SIZE) - 1
gene_type = GENE_MAP[gene_select][0]
if action==1:
# minor adjustment
degree = random.choice([-1, 1])
new_genome['genes'][gene_select] += degree
elif action==2:
# major adjustment
if gene_type==EMPTY_AGAINST_FULL_PIT_VALUE:
degree = random.randint(-4, 4)
else:
degree = random.randint(-2000, 2000)
new_genome['genes'][gene_select] += degree
elif action==3:
# swap genes
life_partner = random.choice(genome_list)
new_genome['genes'][gene_select] = copy(life_partner['genes'][gene_select])
new_genome['life_span'] = 0
new_genome['parent_qty'] += 1
new_genome['id'] = ID_CTR
ID_CTR += 1
new_genome['score'] = -INF
genome_list.append(new_genome)
return
def do_trials(genome_list):
# opp_qty = len(genome_list) - 1
opp_qty = 4
for me, genome in enumerate(genome_list):
# apply_genome(game.players[1], genome) # always apply to AI
print me, "GENOME", genome['id'], "ANCESTORS", genome["parent_qty"],
print "LIFESPAN", genome['life_span'], "OLD_SCORE",
if genome['score'] == -INF:
print "None"
else:
print genome['score']
print " CURRENT:", genome['genes']
genome['score'] = play_engagement(genome)
print " SCORE", genome['score']
return
def apply_genome(character, genome):
t = character.get_tactics()
build_tactics_from_list(t, genome['genes'])
character.set_character()
return
def do_sort(genome_list):
new_list = sorted(genome_list, key=itemgetter('score'), reverse=True)
return new_list
######################################
#
# MAIN
#
######################################
if __name__=="__main__":
for si, scenario in enumerate(SCENARIOS):
#----------
#
# JUMP PAST WORK DONE
#
#----------
a, b, c, d, e = scenario
filename = FILENAMES[si]
print "FILE:", filename
if os.path.exists(filename):
print " FILE ALREADY BUILT"
continue
if os.path.exists(filename+".lock"):
print " FILE ALREADY BEING WORKED ON"
continue
with open(filename+".lock", 'w') as outfile:
outfile.write("lock")
#-----------
#
# SETUP SCENARIO
#
#-----------
short = ""
if a==1:
settings['who_plays_first'] = 2
short += "PLYR FIRST:"
else:
settings['who_plays_first'] = 1
short += "AI FIRST :"
settings['seeds_per_house'] = b
short += "SEEDS"+str(b)+":"
ALT_AI_LIST[1]['lookahead'] = c
short += "LOOK"+str(c)+":"
settings["capture_rule"] = d
short += "CAPTURE"+str(d)+":"
settings["eog_rule"] = e
short += "EOG"+str(e)
game = gameengine.KalahGame(settings, testing=ALT_AI_LIST, verbose=False)
#---------------------
#
# islands
#
#---------------------
winner_list = []
for island in range(ISLAND_QTY):
genome_list = []
#---------------------
#
# generations
#
#---------------------
print "EVOLUTION OF ISLAND", island+1, "OF", ISLAND_QTY
for gen in range(GENERATION_QTY):
print "WORKING ON ", short
print "ISLAND", island, "GENERATION", gen, "OF", GENERATION_QTY
genome_list = do_extinction(genome_list)
do_reproduction(genome_list)
do_trials(genome_list)
genome_list = do_sort(genome_list)
# save the TOP10 winners on this island
winner_list.extend(genome_list[0:10])
#---------------------
#
# compete across the islands
#
#---------------------
print "CHAMPIONSHIP FOR WORLD"
for gen in range(GENERATION_QTY):
print "CHAMPIONSHIP GEN", gen + 1, "OF", GENERATION_QTY
do_trials(winner_list) # for these rounds, START with trials
winner_list = do_sort(winner_list)
winner_list = do_extinction(winner_list)
do_reproduction(winner_list)
#--------------------
#
# save the WINNER
#
#--------------------
winner_list = do_sort(winner_list)
winner = winner_list[0]
print "WINNER:"
print " ", winner
print "WRITING", filename
with open(filename, 'w') as outfile:
json.dump(winner, outfile)
os.remove(filename+".lock")