BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation;
Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yongming Huang, and Youliang Yan;
In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2020.
This project contains training BlendMask for instance segmentation and panoptic segmentation on COCO and configs for segmenting persons on PIC.
wget -O blendmask_r101_dcni3_5x.pth https://cloudstor.aarnet.edu.au/plus/s/vbnKnQtaGlw8TKv/download
python demo/demo.py \
--config-file configs/BlendMask/R_101_dcni3_5x.yaml \
--input datasets/coco/val2017/000000005992.jpg \
--confidence-threshold 0.35 \
--opts MODEL.WEIGHTS blendmask_r101_dcni3_5x.pth
To train a model with "train_net.py", first setup the corresponding datasets following datasets/README.md,
Then follow these steps to generate blendmask format annotations for instance segmentation.
then run:
OMP_NUM_THREADS=1 python tools/train_net.py \
--config-file configs/BlendMask/R_50_1x.yaml \
--num-gpus 4 \
OUTPUT_DIR training_dir/blendmask_R_50_1x
To evaluate the model after training, run:
OMP_NUM_THREADS=1 python tools/train_net.py \
--config-file configs/BlendMask/R_50_1x.yaml \
--eval-only \
--num-gpus 4 \
OUTPUT_DIR training_dir/blendmask_R_50_1x \
MODEL.WEIGHTS training_dir/blendmask_R_50_1x/model_final.pth
Model | Name | inf. time | box AP | mask AP | download |
---|---|---|---|---|---|
Mask R-CNN | R_50_1x | 13 FPS | 38.6 | 35.2 | |
BlendMask | R_50_1x | 14 FPS | 39.9 | 35.8 | model |
Mask R-CNN | R_50_3x | 13 FPS | 41.0 | 37.2 | |
BlendMask | R_50_3x | 14 FPS | 42.7 | 37.8 | model |
Mask R-CNN | R_101_3x | 10 FPS | 42.9 | 38.6 | |
BlendMask | R_101_3x | 11 FPS | 44.8 | 39.5 | model |
BlendMask | R_101_dcni3_5x | 10 FPS | 46.8 | 41.1 | model |
Model | Name | inf. time | box AP | mask AP | download |
---|---|---|---|---|---|
Mask R-CNN | 550_R_50_3x | 16 FPS | 39.1 | 35.3 | |
BlendMask | 550_R_50_3x | 28 FPS | 38.7 | 34.5 | model |
BlendMask | RT_R_50_4x_syncbn_shtw | 31 FPS | 39.3 | 35.1 | model |
BlendMask | RT_R_50_4x_bn-head_syncbn_shtw | 31 FPS | 39.3 | 35.1 | model |
BlendMask | DLA_34_4x | 32 FPS | 40.8 | 36.3 | model |
Model | Name | PQ | PQTh | PQSt | download |
---|---|---|---|---|---|
Panoptic FPN | R_50_3x | 41.5 | 48.3 | 31.2 | |
BlendMask | R_50_3x | 42.5 | 49.5 | 32.0 | model |
Panoptic FPN | R_101_3x | 43.0 | 49.7 | 32.9 | |
BlendMask | R_101_3x | 44.3 | 51.6 | 33.2 | model |
BlendMask | R_101_dcni3_5x | 46.0 | 52.9 | 35.5 | model |
If you use BlendMask in your research or wish to refer to the baseline results, please use the following BibTeX entries.
@inproceedings{chen2020blendmask,
title = {{BlendMask}: Top-Down Meets Bottom-Up for Instance Segmentation},
author = {Chen, Hao and Sun, Kunyang and Tian, Zhi and Shen, Chunhua and Huang, Yongming and Yan, Youliang},
booktitle = {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
year = {2020}
}