-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmosaic.py
153 lines (121 loc) · 5.93 KB
/
mosaic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import logging
import pickle
import numpy as np
from PIL import Image, ImageChops, ImageOps
from pathlib import Path
from finder import ImageFinder
from image_progress import image_progress
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# increment the max image size
Image.MAX_IMAGE_PIXELS = 1_000_000_000
DEFAULT_FISA_TEMPLATE = "fisa-{chunk_size}.pkl"
DEFAULT_RANDOMIZATION_FACTOR = 1
class Mosaiker:
def __init__(self, source_image_path, chunk_size, tile_size, out_fname, images_root_dir, model_file=None) -> None:
source_image = Image.open(source_image_path)
self.images_for_comparison = os.path.join(images_root_dir, f"{chunk_size}x{chunk_size}/") # Se deriva de chunk_size
self.target_images_directory = os.path.join(images_root_dir, f"{tile_size}x{tile_size}/") # Se deriva de tile_size
# Corto la imagen original para que entren chunks justos
width, height = source_image.size
width_in_chunks = width // chunk_size
height_in_chunks = height // chunk_size
n_chunks = width_in_chunks * height_in_chunks
exceeding_cols = width % chunk_size
exceeding_rows = height % chunk_size
print(f"Entran {n_chunks} chunks")
print(f"Entran {width_in_chunks} chunks a lo largo y sobran {str(exceeding_cols)} columnas")
print(f"Entran {height_in_chunks} chunks a lo alto y sobran {str(exceeding_rows)} filas")
box = (0, 0, width - exceeding_cols, height - exceeding_rows)
useful_region = source_image.crop(box)
# redefine
width, height = useful_region.size
self.useful_region = useful_region
self.width = width
self.height = height
self.chunk_size = chunk_size
self.width_in_chunks = width_in_chunks
self.height_in_chunks = height_in_chunks
self.n_chunks = n_chunks
self.tile_size = tile_size
self.out_fname = out_fname
self.images_root_dir = images_root_dir
self.fisa = self._load_a_fisa(model_file=model_file)
mosaic_width = tile_size * width_in_chunks
mosaic_height = tile_size * height_in_chunks
self._mosaic = Image.new("RGB", (mosaic_width, mosaic_height), (255, 255, 255))
def _load_a_fisa(self, model_file=None):
""""""
if model_file:
# Use the provided file, blindly
with open(model_file, "rb") as f:
return pickle.load(f)
target_fisa = DEFAULT_FISA_TEMPLATE.format(chunk_size=self.chunk_size)
fisa_file_path = os.path.join(self.images_root_dir, target_fisa)
if os.path.exists(fisa_file_path):
# Look for an existing model in the default location
print(f"Found a Fisa for chunks size {self.chunk_size}! Let's use it...")
with open(fisa_file_path, "rb") as f:
return pickle.load(f)
# Let's just initialize a new Fisa and save it for reuse
print(f"🔎 No Fisa in sight for chunks size {self.chunk_size}! Let's summon one...")
fisa = ImageFinder(
images_path=Path(self.images_for_comparison),
window_height=self.chunk_size,
window_width=self.chunk_size,
)
fisa.prepare()
with open(fisa_file_path, "wb") as f:
pickle.dump(fisa, f)
return fisa
def do_it(self, randomization_factor=DEFAULT_RANDOMIZATION_FACTOR, blend_factor=0, show_progress_window=False):
"""just do it"""
#import ipdb; ipdb.set_trace()
try:
images = image_progress(
base_image=self.out_fname,
width=self.width,
height=self.height,
show_progress_window=show_progress_window,
iterable=list(range(self.height_in_chunks))
)
for chunk_row in images:
#print(f"Chunk Fila {chunk_row}")
for chunk_col in range(self.width_in_chunks):
#print(f"Chunk Columna {chunk_col}")
chunk = self._extract_chunk(chunk_col, chunk_row)
filename = self.fisa.find(chunk, randomization_factor=randomization_factor) # Fisa's
target_image_fname = os.path.join(self.target_images_directory, filename)
target_image = Image.open(target_image_fname)
tile = self._build_tile(chunk, target_image, blend_factor=blend_factor)
self._put_single_tile_in_mosaic(chunk_col, chunk_row, tile)
except ValueError as e:
logger.exception(e)
print("Falló. A llorar al campito 😭")
def _extract_chunk(self, chunk_col, chunk_row):
"""Extract a chunk from the original image."""
col_ini = chunk_col * self.chunk_size
row_ini = chunk_row * self.chunk_size
# En numpy las coords son (y, x) o sea (row, col)
box = (col_ini, row_ini, col_ini + self.chunk_size, row_ini + self.chunk_size)
#print("Chunk box: " + str(box))
chunk = self.useful_region.crop(box)
return np.array(chunk)
def _put_single_tile_in_mosaic(self, chunk_col, chunk_row, target_image):
start_col = chunk_col * self.tile_size
start_row = chunk_row * self.tile_size
tile_upper_left_coords = (start_col, start_row)
self._mosaic.paste(target_image, tile_upper_left_coords)
self._mosaic.save(self.out_fname)
def _build_tile(self, chunk, target_image, blend_factor):
# import ipdb; ipdb.set_trace()
# chunk_per_channel_mean = np.mean(chunk, axis=tuple(range(chunk.ndim-1)))
# tile_per_channel_mean = ImageStat.Stat(target_image).mean
# per_channel_diff = chunk_per_channel_mean - tile_per_channel_mean
# change_factor = per_channel_diff * 0.1
fitted_chunk = ImageOps.fit(
Image.fromarray(chunk),
target_image.size
)
return ImageChops.blend(target_image, fitted_chunk, blend_factor)