-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsec_emission_model_furman_pivi.py
631 lines (548 loc) · 26.6 KB
/
sec_emission_model_furman_pivi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
#-Begin-preamble-------------------------------------------------------
#
# CERN
#
# European Organization for Nuclear Research
#
#
# This file is part of the code:
#
# PyECLOUD Version 8.7.1
#
#
# Main author: Giovanni IADAROLA
# BE-ABP Group
# CERN
# CH-1211 GENEVA 23
# SWITZERLAND
# giovanni.iadarola@cern.ch
#
# Contributors: Eleonora Belli
# Philipp Dijkstal
# Lorenzo Giacomel
# Lotta Mether
# Annalisa Romano
# Giovanni Rumolo
# Eric Wulff
#
#
# Copyright CERN, Geneva 2011 - Copyright and any other
# appropriate legal protection of this computer program and
# associated documentation reserved in all countries of the
# world.
#
# Organizations collaborating with CERN may receive this program
# and documentation freely and without charge.
#
# CERN undertakes no obligation for the maintenance of this
# program, nor responsibility for its correctness, and accepts
# no liability whatsoever resulting from its use.
#
# Program and documentation are provided solely for the use of
# the organization to which they are distributed.
#
# This program may not be copied or otherwise distributed
# without permission. This message must be retained on this and
# any other authorized copies.
#
# The material cannot be sold. CERN should be given credit in
# all references.
#
#-End-preamble---------------------------------------------------------
import numpy as np
import numpy.random as random
import scipy
from scipy.special import gamma
from scipy.special import gammainc
from scipy.special import gammaincinv
from scipy.special import binom
from scipy.special import erf
from scipy.special import erfinv
from . import electron_emission as ee
_factorial = np.array([1,
1,
2,
6,
24,
120,
720,
5040,
40320,
362880,
3628800,
39916800,
479001600,
6227020800,
87178291200,
1307674368000,
20922789888000,
355687428096000,
6402373705728000,
121645100408832000,
2432902008176640000])
def factorial(n):
return _factorial[np.array(n)]
class SEY_model_furman_pivi():
event_types = {
0: 'elast',
1: 'true',
2: 'rediff',
3: 'absorb',
}
def __init__(self, furman_pivi_surface,
E_th=None, sigmafit=None, mufit=None,
switch_no_increase_energy=0, thresh_low_energy=None, secondary_angle_distribution=None,
flag_costheta_delta_scale=True, flag_costheta_Emax_shift=True):
self.E_th = E_th
self.sigmafit = sigmafit
self.mufit = mufit
self.switch_no_increase_energy = switch_no_increase_energy
self.thresh_low_energy = thresh_low_energy
self.secondary_angle_distribution = secondary_angle_distribution
if secondary_angle_distribution is not None:
self.angle_dist_func = ee.get_angle_dist_func(secondary_angle_distribution)
else:
self.angle_dist_func = None
self.flag_costheta_delta_scale = flag_costheta_delta_scale
self.flag_costheta_Emax_shift = flag_costheta_Emax_shift
# General FP model parameters
self.use_modified_sigmaE = furman_pivi_surface['use_modified_sigmaE']
self.use_ECLOUD_theta0_dependence = furman_pivi_surface['use_ECLOUD_theta0_dependence']
self.use_ECLOUD_energy = furman_pivi_surface['use_ECLOUD_energy']
self.conserve_energy = furman_pivi_surface['conserve_energy']
self.choice = furman_pivi_surface['choice']
self.M_cut = furman_pivi_surface['M_cut']
self.p_n = furman_pivi_surface['p_n']
self.eps_n = furman_pivi_surface['eps_n']
self.exclude_rediffused = furman_pivi_surface['exclude_rediffused']
# Parameters for backscattered (elastically scattered) electrons
self.p1EInf = furman_pivi_surface['p1EInf']
self.p1Ehat = furman_pivi_surface['p1Ehat']
self.eEHat = furman_pivi_surface['eEHat']
self.w = furman_pivi_surface['w']
self.p = furman_pivi_surface['p']
self.e1 = furman_pivi_surface['e1']
self.e2 = furman_pivi_surface['e2']
self.sigmaE = furman_pivi_surface['sigmaE']
theta_e_max = furman_pivi_surface.get('theta_e_max')
if theta_e_max is not None:
assert theta_e_max > 0 and theta_e_max < np.pi/2
self.costheta_e_clip = np.cos(theta_e_max)
else:
self.costheta_e_clip= 0.
# Parameters for rediffused electrons
self.p1RInf = furman_pivi_surface['p1RInf']
self.eR = furman_pivi_surface['eR']
self.r = furman_pivi_surface['r']
self.q = furman_pivi_surface['q']
self.r1 = furman_pivi_surface['r1']
self.r2 = furman_pivi_surface['r2']
theta_r_max = furman_pivi_surface.get('theta_r_max')
if theta_r_max is not None:
assert theta_r_max > 0 and theta_r_max < np.pi/2
self.costheta_r_clip = np.cos(theta_r_max)
else:
self.costheta_r_clip= 0.
# Parameters for true secondaries
self.deltaTSHat = furman_pivi_surface['deltaTSHat']
self.eHat0 = furman_pivi_surface['eHat0']
self.s = furman_pivi_surface['s']
self.t1 = furman_pivi_surface['t1']
self.t2 = furman_pivi_surface['t2']
if self.use_ECLOUD_theta0_dependence:
# Emax(theta) as in ECLOUD module
self.t3 = 0.7
self.t4 = 1.
else:
self.t3 = furman_pivi_surface['t3']
self.t4 = furman_pivi_surface['t4']
if self.exclude_rediffused:
print(('Secondary emission model: Furman-Pivi excluding rediffused, s=%.4f' % (self.s)))
else:
print(('Secondary emission model: Furman-Pivi, s=%.4f' % (self.s)))
def SEY_model_evol(self, Dt):
pass
def SEY_process(self, E_impact_eV, costheta_impact, i_impact):
"""
Decides event type for each MP colliding with energy E_impact_eV and
incident angle costheta_impact.
Returns the SEY components as well as flags defining the event type of
each MP. Does not rescale the MPs (that is done in impacts_on_surface).
"""
# Furman-Pivi algorithm
# (1): Compute emission angles and energy
# Implemented in the impact_management_class.
# (2): Compute delta_e, delta_r, delta_ts
delta_e, delta_r, delta_ts = self.yield_fun_furman_pivi(E_impact_eV, costheta_impact)
# (3): Generate probability of number of electrons created
# Implemented in the impact_management_class.
# Decide on type
rand = random.rand(E_impact_eV.size)
if self.exclude_rediffused:
flag_truesec = rand > delta_e
flag_backscattered = (~flag_truesec)
return flag_backscattered, None, flag_truesec, delta_e, None, delta_ts
else:
flag_truesec = rand > delta_e + delta_r
flag_backscattered = np.logical_and(~flag_truesec, rand < delta_e)
flag_rediffused = np.logical_and(~flag_truesec, ~flag_backscattered)
# (4): Generate number of secondaries for every impact
# In impacts_on_surface
# (5): Delete if n = 0
# Done automatically by the MP system.
# (6): Generate energy:
# In impacts_on_surface
return flag_backscattered, flag_rediffused, flag_truesec, delta_e, delta_r, delta_ts
def yield_fun_furman_pivi(self, E, costheta, check=True):
delta_e = self.delta_e(E, costheta)
delta_r = self.delta_r(E, costheta)
delta_ts = self.delta_ts(E, costheta)
if check and (delta_e + delta_r >= 1).any():
raise ValueError('delta_e + delta_r is greater than 1')
return delta_e, delta_r, delta_ts
def delta_e(self, E_impact_eV, costheta_impact):
"""
SEY component of backscattered electrons (elastically scattered).
(25) in FP paper.
"""
exp_factor = -(np.abs(E_impact_eV - self.eEHat) / self.w)**self.p / self.p
delta_e0 = self.p1EInf + (self.p1Ehat - self.p1EInf) * np.exp(exp_factor)
if self.flag_costheta_delta_scale:
if self.use_ECLOUD_theta0_dependence:
angular_factor = 1.
else:
costheta_clipped = np.clip(costheta_impact, self.costheta_e_clip, 1.)
angular_factor = 1. + self.e1 * (1. - costheta_clipped**self.e2)
else:
angular_factor = 1
return delta_e0 * angular_factor
def delta_r(self, E_impact_eV, costheta_impact):
"""
SEY component of rediffused electrons (not in ECLOUD model).
(28) in FP paper.
"""
exp_factor = -(E_impact_eV / self.eR)**self.r
delta_r0 = self.p1RInf * (1. - np.exp(exp_factor))
if self.flag_costheta_delta_scale:
costheta_clipped = np.clip(costheta_impact, self.costheta_r_clip, 1.)
angular_factor = 1. + self.r1 * (1. - costheta_clipped**self.r2)
else:
angular_factor = 1
return delta_r0 * angular_factor
def delta_ts(self, E_impact_eV, costheta_impact):
"""
SEY component of true secondaries.
(31) in FP paper.
"""
if self.flag_costheta_Emax_shift:
eHat = self.eHat0 * (1. + self.t3 * (1. - costheta_impact**self.t4))
else:
eHat = self.eHat0
delta_ts0 = self.deltaTSHat * self._D(E_impact_eV / eHat)
if self.flag_costheta_delta_scale:
if self.use_ECLOUD_theta0_dependence:
angular_factor = np.exp(0.5 * (1. - costheta_impact))
else:
angular_factor = 1. + self.t1 * (1. - costheta_impact**self.t2)
else:
angular_factor = 1
return delta_ts0 * angular_factor
def _D(self, x):
"""(32) in FP paper"""
s = self.s
return s * x / (s - 1 + x**s)
def get_energy_backscattered(self, E_0):
"""
Inverse transform sampling of (26) in the Furman-Pivi paper.
Returns emission energies for backscattered electrons.
"""
sqrt2 = np.sqrt(2)
uu = random.rand(len(E_0))
if self.use_modified_sigmaE:
aa = 1.88
bb = 2.5
cc = 1e-2
dd = 1.5e2
sigmaE_modified = (self.sigmaE - aa) + bb * (1 + np.tanh(cc * (E_0 - dd)))
return E_0 + sqrt2 * sigmaE_modified * erfinv((uu - 1) * erf(E_0 / (sqrt2 * sigmaE_modified)))
else:
return E_0 + sqrt2 * self.sigmaE * erfinv((uu - 1) * erf(E_0 / (sqrt2 * self.sigmaE)))
def get_energy_rediffused(self, E0):
"""
Inverse transform sampling of (29) in the Furman-Pivi paper.
Returns emission energies for rediffused electrons.
"""
uu = random.rand(len(E0))
return uu**(1 / (self.q + 1)) * E0
def _true_sec_energy_CDF(self, nn, energy):
"""
Gives the value of the CDF corresponding to nn emitted.
Returns the value of the CDF as well as the area under the PDF before
normalisation.
"""
if isinstance(nn, int) or isinstance(nn, np.float64):
eps_curr = self.eps_n[int(nn - 1)]
p_n_curr = self.p_n[int(nn - 1)]
else:
eps_curr = np.array([self.eps_n[int(ii - 1)] for ii in nn])
p_n_curr = np.array([self.p_n[int(ii - 1)] for ii in nn])
cdf = gammainc(p_n_curr, energy / eps_curr)
area = cdf
cdf = cdf / area[-1]
return cdf, area
def get_energy_true_sec(self, nn, E_0):
"""Returns emission energies for true secondary electrons."""
if self.use_ECLOUD_energy:
Ngen = len(E_0)
return ee.sec_energy_hilleret_model2(self.switch_no_increase_energy, Ngen, self.sigmafit, self.mufit, self.E_th, E_0, self.thresh_low_energy)
else:
if len(E_0) == 0:
return np.array([])
p_n = self.p_n
eps_n = self.eps_n
eps_vec = np.array([eps_n[int(ii - 1)] for ii in nn])
p_n_vec = np.array([p_n[int(ii - 1)] for ii in nn])
_, area = self._true_sec_energy_CDF(nn, energy=E_0) # Putting energy=E_0 gives area under the PDF
normalisation = 1. / area
uu = random.rand(len(E_0))
xx = uu / (normalisation)
xx[xx < 1e-12] = 0.0 # gammaincinv returns nan if xx is too small but not zero
return eps_vec * gammaincinv(p_n_vec, xx)
def inverse_repeat(self, a, repeats, axis):
"""The inverse of numpy.repeat(a, repeats, axis)"""
if isinstance(repeats, int):
indices = np.arange(a.shape[axis] / repeats, dtype=int) * repeats
else: # assume array_like of int
indices = np.cumsum(repeats) - 1
return a.take(indices, axis)
def impacts_on_surface(self, mass, nel_impact, x_impact, y_impact, z_impact,
vx_impact, vy_impact, vz_impact, Norm_x, Norm_y, i_found,
v_impact_n, E_impact_eV, costheta_impact, nel_mp_th, flag_seg):
flag_backscattered, flag_rediffused, flag_truesec, \
delta_e, delta_r, delta_ts = self.SEY_process(E_impact_eV, costheta_impact, i_found)
nel_replace = nel_impact.copy()
x_replace = x_impact.copy()
y_replace = y_impact.copy()
z_replace = z_impact.copy()
vx_replace = vx_impact.copy()
vy_replace = vy_impact.copy()
vz_replace = vz_impact.copy()
if i_found is not None:
i_seg_replace = i_found.copy()
else:
i_seg_replace = i_found
# Backscattered
if self.use_ECLOUD_energy:
vx_replace[flag_backscattered], vy_replace[flag_backscattered] = ee.specular_velocity(
vx_impact[flag_backscattered], vy_impact[flag_backscattered],
Norm_x[flag_backscattered], Norm_y[flag_backscattered], v_impact_n[flag_backscattered])
else:
En_backscattered_eV = self.get_energy_backscattered(E_impact_eV[flag_backscattered])
N_backscattered = np.sum(flag_backscattered)
vx_replace[flag_backscattered], vy_replace[flag_backscattered], vz_replace[flag_backscattered] = self.angle_dist_func(
N_backscattered, En_backscattered_eV, Norm_x[flag_backscattered], Norm_y[flag_backscattered], mass)
if not self.exclude_rediffused:
# Rediffused
En_rediffused_eV = self.get_energy_rediffused(E_impact_eV[flag_rediffused])
N_rediffused = np.sum(flag_rediffused)
vx_replace[flag_rediffused], vy_replace[flag_rediffused], vz_replace[flag_rediffused] = self.angle_dist_func(
N_rediffused, En_rediffused_eV, Norm_x[flag_rediffused], Norm_y[flag_rediffused], mass)
# True secondary
N_true_sec = np.sum(flag_truesec)
n_add_total = 0
n_emit_truesec_MPs = np.zeros_like(flag_truesec, dtype=int)
if N_true_sec > 0:
if self.exclude_rediffused:
delta_ts_prime = delta_ts[flag_truesec] / (1 - delta_e[flag_truesec])
else:
delta_ts_prime = delta_ts[flag_truesec] / (1 - delta_e[flag_truesec] - delta_r[flag_truesec]) # delta_ts^prime in FP paper, eq. (39)
# Decide how many MPs to be emitted
n_emit_truesec_MPs[flag_truesec] = random.poisson(lam=delta_ts_prime) # Using (45)
n_emit_truesec_MPs_flag_true_sec = n_emit_truesec_MPs[flag_truesec]
# Cut above M_cut
flag_above_th = (n_emit_truesec_MPs_flag_true_sec > self.M_cut)
Nabove_th = np.sum(flag_above_th)
i_attempt = 0
while Nabove_th > 0:
n_emit_truesec_MPs_flag_true_sec[flag_above_th] = random.poisson(delta_ts_prime[flag_above_th])
if i_attempt>10:
n_emit_truesec_MPs_flag_true_sec[flag_above_th] = np.clip(
n_emit_truesec_MPs_flag_true_sec[flag_above_th], 0, self.M_cut)
flag_above_th = (n_emit_truesec_MPs_flag_true_sec > self.M_cut)
Nabove_th = np.sum(flag_above_th)
i_attempt += 1
n_emit_truesec_MPs[flag_truesec] = n_emit_truesec_MPs_flag_true_sec
# MPs to be replaced
flag_above_zero = (n_emit_truesec_MPs_flag_true_sec > 0) # I exclude the absorbed
flag_truesec_and_above_zero = flag_truesec & (n_emit_truesec_MPs > 0)
En_truesec_eV = self.get_energy_true_sec(
nn=n_emit_truesec_MPs_flag_true_sec[flag_above_zero],
E_0=E_impact_eV[flag_truesec_and_above_zero]) # First generated MPs
N_true_sec = np.sum(flag_above_zero)
# Add new MPs
n_add = n_emit_truesec_MPs - 1
n_add[n_add < 0] = 0
n_add_total = np.sum(n_add)
if n_add_total != 0:
# Clone MPs
x_new_MPs = np.repeat(x_impact, n_add)
y_new_MPs = np.repeat(y_impact, n_add)
z_new_MPs = np.repeat(z_impact, n_add)
norm_x_add = np.repeat(Norm_x, n_add)
norm_y_add = np.repeat(Norm_y, n_add)
nel_new_MPs = np.repeat(nel_replace, n_add)
E_impact_eV_add = np.repeat(E_impact_eV, n_add)
# Generate new MP properties, angles and energies
n_emit_truesec_MPs_extended = np.repeat(n_emit_truesec_MPs_flag_true_sec, n_add[flag_truesec])
En_truesec_eV_add = self.get_energy_true_sec(nn=n_emit_truesec_MPs_extended, E_0=E_impact_eV_add)
# Ensure energy conservation in each event
if self.conserve_energy:
En_truesec_eV_extended = np.repeat(En_truesec_eV, n_add[flag_truesec][flag_above_zero]) # Energy of replaced MPs
E_impact_eV_add = np.repeat(E_impact_eV[flag_truesec][flag_above_zero], n_add[flag_truesec][flag_above_zero]) # Energy of new MPs
En_emit_eV_event_add = En_truesec_eV_extended + En_truesec_eV_add # Total energy emitted in each trusec event
flag_violation = (En_emit_eV_event_add > E_impact_eV_add) # Violation flag for the new MPs
flag_violation_replace = self.inverse_repeat(flag_violation, repeats=n_add[flag_truesec][flag_above_zero], axis=None) # Violation flag for the replaced MPs
N_violations = np.sum(flag_violation)
while N_violations > 0:
# Regenerating energies for the new MPs
En_truesec_eV_add[flag_violation] = self.get_energy_true_sec(
nn=n_emit_truesec_MPs_extended[flag_violation],
E_0=E_impact_eV_add[flag_violation])
# Regenerating energies for the replaced MPs
En_truesec_eV[flag_violation_replace] = self.get_energy_true_sec(
nn=n_emit_truesec_MPs_flag_true_sec[flag_above_zero][flag_violation_replace],
E_0=E_impact_eV[flag_truesec][flag_above_zero][flag_violation_replace])
En_truesec_eV_extended = np.repeat(En_truesec_eV, n_add[flag_truesec][flag_above_zero])
En_emit_eV_event_add = En_truesec_eV_extended + En_truesec_eV_add
flag_violation = (En_emit_eV_event_add > E_impact_eV_add)
flag_violation_replace = self.inverse_repeat(flag_violation, repeats=n_add[flag_truesec][flag_above_zero], axis=None)
N_violations = np.sum(flag_violation)
# Replace velocities
vx_replace[flag_truesec_and_above_zero], vy_replace[flag_truesec_and_above_zero], vz_replace[flag_truesec_and_above_zero] = self.angle_dist_func(
N_true_sec, En_truesec_eV, Norm_x[flag_truesec_and_above_zero], Norm_y[flag_truesec_and_above_zero], mass)
# New velocities
vx_new_MPs, vy_new_MPs, vz_new_MPs = self.angle_dist_func(
n_add_total, En_truesec_eV_add, norm_x_add, norm_y_add, mass)
if flag_seg:
i_seg_new_MPs = np.repeat(i_found, n_add)
else:
i_seg_new_MPs = None
# Handle absorbed MPs
flag_truesec_and_zero = flag_truesec & (n_emit_truesec_MPs == 0)
nel_replace[flag_truesec_and_zero] = 0.0
vx_replace[flag_truesec_and_zero] = 0.0
vy_replace[flag_truesec_and_zero] = 0.0
vz_replace[flag_truesec_and_zero] = 0.0
x_replace[flag_truesec_and_zero] = 0.0
y_replace[flag_truesec_and_zero] = 0.0
z_replace[flag_truesec_and_zero] = 0.0
if n_add_total == 0:
nel_new_MPs = np.array([])
x_new_MPs = np.array([])
y_new_MPs = np.array([])
z_new_MPs = np.array([])
vx_new_MPs = np.array([])
vy_new_MPs = np.array([])
vz_new_MPs = np.array([])
i_seg_new_MPs = np.array([])
# Elastic and rediffused events emit 1 MP
n_emit_MPs = n_emit_truesec_MPs
n_emit_MPs[flag_backscattered] = 1
if not self.exclude_rediffused:
n_emit_MPs[flag_rediffused] = 1
nel_emit_tot_events = nel_impact * n_emit_MPs
events = flag_truesec.astype(int)
events[n_emit_MPs == 0] = 3 # Absorbed MPs
if self.exclude_rediffused:
pass
else:
events = events + 2 * flag_rediffused.astype(int)
event_type = events
# extended_event_type keeps track of the event type for new MPs, it is
# needed for the extraction of emission-energy distributions.
if n_add_total != 0:
events_add = np.repeat(events, n_add)
events = np.concatenate([events, events_add])
extended_event_type = events
event_info = {'extended_event_type': extended_event_type,
}
return nel_emit_tot_events, event_type, event_info,\
nel_replace, x_replace, y_replace, z_replace, vx_replace, vy_replace, vz_replace, i_seg_replace,\
nel_new_MPs, x_new_MPs, y_new_MPs, z_new_MPs, vx_new_MPs, vy_new_MPs, vz_new_MPs, i_seg_new_MPs
############################################################################
# The following functions are not used in the simulation code but are #
# provided here for use in tests and development. #
############################################################################
def backscattered_energy_PDF(self, energy, E_0):
"""The PDF for backscattered electrons."""
if self.use_modified_sigmaE:
aa = 1.88
bb = 2.5
cc = 1e-2
dd = 1.5e2
sigmaE_modified = (self.sigmaE - aa) + bb * (1 + np.tanh(cc * (E_0 - dd)))
sigma_e = sigmaE_modified
else:
sigma_e = self.sigmaE
ene = energy - E_0
a = 2 * np.exp(-(ene)**2 / (2 * sigma_e**2))
c = (np.sqrt(2 * np.pi) * sigma_e * erf(E_0 / (np.sqrt(2) * sigma_e)))
return a / c
def backscattered_energy_CDF(self, energy, E_0, sigma_e=2.):
"""The CDF for backscattered electrons."""
sqrt2 = np.sqrt(2)
return 1 - erf((E_0 - energy) / (sqrt2 * sigma_e)) / erf(E_0 / (sqrt2 * sigma_e))
def rediffused_energy_PDF(self, energy, E_0, qq=0.5):
for ene in E_0:
if ene < 0:
raise ValueError('Impacting energy E_0 cannot be negative')
prob_density = (qq + 1) * energy**qq / E_0**(qq + 1)
return prob_density
def rediffused_energy_CDF(self, energy, E_0, qq=0.5):
return energy**(qq + 1) / E_0**(qq + 1)
def true_sec_energy_PDF(self, delta_ts, nn, E_0, energy):
"""The PDF for true secondary electrons."""
if nn == 0:
raise ValueError('nn = 0, you cannot emit zero electrons.')
p_n = self.p_n
eps_n = self.eps_n
nn_all = np.arange(0, self.M_cut + 1, 1)
if self.choice == 'poisson':
P_n_ts = np.squeeze(delta_ts**nn_all / factorial(nn_all) * np.exp(-delta_ts))
elif self.choice == 'binomial':
p = delta_ts / self.M_cut
P_n_ts = np.squeeze(binom(self.M_cut, nn) * (p)**nn_all * (1 - p)**(self.M_cut - nn_all))
else:
raise ValueError('choice must be either \'poisson\' or \'binomial\'')
P_n_ts = P_n_ts / np.sum(P_n_ts)
P_n_ts_return = P_n_ts[int(nn)]
eps_curr = eps_n[int(nn - 1)]
p_n_curr = p_n[int(nn - 1)]
if E_0 == 0:
F_n = 0
else:
F_n = 1
f_n_ts = F_n * energy**(p_n_curr - 1) * np.exp(-energy / eps_curr)
area = scipy.integrate.simps(f_n_ts, energy)
f_n_ts = f_n_ts / area # normalisation
return f_n_ts, P_n_ts_return
def average_true_sec_energy_PDF(self, delta_ts, E_0, energy):
nns = np.arange(1, self.M_cut + 1, 1)
average_f_n_ts = np.zeros_like(energy)
for ii in nns:
f_n_ts, P_n_ts = self.true_sec_energy_PDF(delta_ts=delta_ts, nn=ii, E_0=E_0, energy=energy)
if False:#self.conserve_energy:
p_n_curr = self.p_n[ii - 1]
eps_n_curr = self.eps_n[ii - 1]
factor = eps_n_curr**p_n_curr * gamma(p_n_curr) * gammainc(ii * p_n_curr, E_0 / eps_n_curr)
factor = 1.
if ii - 1 == 0:
average_f_n_ts = average_f_n_ts + f_n_ts * P_n_ts * ii * 1. / factor
else:
average_f_n_ts = average_f_n_ts + f_n_ts * P_n_ts * ii * gammainc((ii - 1) * p_n_curr, (E_0 - energy) / eps_n_curr) / factor
else:
average_f_n_ts = average_f_n_ts + f_n_ts * P_n_ts * ii
area = scipy.integrate.simps(average_f_n_ts, energy)
return average_f_n_ts / area
############################################################################
############################################################################