-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathalexnet_feature_extractor.py
87 lines (75 loc) · 3.09 KB
/
alexnet_feature_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Apr 15 19:42:31 2018
@author: wu
"""
import tensorflow as tf
import numpy as np
import scipy.io as sio
import matplotlib.pyplot as plt
import tfrecord
import alexnet
BATCH_SIZE=100
IMG_W=100
IMG_H=100
train_filename = '/home/wu/TF_Project/action/sample_TFrecord/train1.tfrecords'
#dir = '/home/wu/TF_Project/action/feature_tensorboard/'
dir = '/home/wu/TF_Project/action/features/'
train_img, train_label = tfrecord.read_and_decode(train_filename)
train_batch, train_label_batch = tf.train.shuffle_batch([train_img, train_label],
batch_size = 100, num_threads=64,
capacity=2000,
min_after_dequeue=1000)
x = tf.placeholder(tf.float32, shape=[BATCH_SIZE, IMG_W, IMG_H, 3])
train_model = alexnet.alexNet(x)
conv1_feature = train_model.conv1
"""
state = tf.Variable(0, name='counter')
one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)
"""
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord,sess=sess)
train_model.load_initial_weights(sess)
#summary_op = tf.summary.merge_all()
#writer = tf.summary.FileWriter(dir,sess.graph)
params=tf.trainable_variables()
print("Trainable variables:------------------------")
for idx, v in enumerate(params):
print(" param {:3}: {:15} {}".format(idx, str(v.get_shape()), v.name))
i = 0
try:
while not coord.should_stop():
tra_images,tra_labels = sess.run([train_batch, train_label_batch])
feature = sess.run(conv1_feature,feed_dict={x:tra_images})
dic1 = {'feature':feature}
sio.savemat(dir+str(i)+'_feature.mat',dic1)
dic2 = {'label':tra_labels}
sio.savemat(dir+str(i)+'_label.mat',dic2)
i += 1
"""
#show feature map by tensorboard
split = tf.split(feature,num_or_size_splits=96,axis=3)
featuremap = tf.summary.image('conv1_image',split[0],40)
writer.add_summary(sess.run(featuremap))
writer.close()
#show feature map by plt
"""
conv1_reshape = sess.run(tf.reshape(feature[0,:,:,:], [96, 1, 23, 23]))
fig1,ax1 = plt.subplots(nrows=1, ncols=1, figsize = (1,1))
for i in range(1):
plt.subplot(3, 4, i + 1)
plt.imshow(conv1_reshape[i][0])
plt.title('Conv1 featuremap')
plt.show()
#all_feature = sess.run(np.append(all_feature,feature,axis=0),feed_dict={:feature})
#all_label = sess.run(np.append(all_label,tra_labels,axis=0))
except tf.errors.OutOfRangeError:
print('Epochs Complete!')
finally:
coord.request_stop()
coord.join(threads)