Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Clean references in documentation #722

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions RELEASES.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
- Add version number to the documentation (PR #696)
- Update doc for default regularization in `ot.unbalanced` sinkhorn solvers (Issue #691, PR #700)
- Clean documentation for `gromov`, `lp` and `unbalanced` folders (PR #710)
- Clean references in documentation (PR #722)

## 0.9.5

Expand Down
1 change: 1 addition & 0 deletions ot/bregman/_barycenter.py
Original file line number Diff line number Diff line change
Expand Up @@ -336,6 +336,7 @@ def free_support_sinkhorn_barycenter(
ot.bregman.sinkhorn : Entropic regularized OT solver
ot.lp.free_support_barycenter : Barycenter solver based on Linear Programming


.. _references-free-support-barycenter:
References
----------
Expand Down
3 changes: 2 additions & 1 deletion ot/bregman/_sinkhorn.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,10 +129,10 @@ def sinkhorn(
array([[0.36552929, 0.13447071],
[0.13447071, 0.36552929]])


.. _references-sinkhorn:
References
----------

.. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation
of Optimal Transport, Advances in Neural Information Processing
Systems (NIPS) 26, 2013
Expand Down Expand Up @@ -1460,6 +1460,7 @@ def sinkhorn_epsilon_scaling(
array([[0.36552929, 0.13447071],
[0.13447071, 0.36552929]])


.. _references-sinkhorn-epsilon-scaling:
References
----------
Expand Down
75 changes: 37 additions & 38 deletions ot/da.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,13 +132,13 @@ def sinkhorn_lpl1_mm(
References
----------
.. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy,
"Optimal Transport for Domain Adaptation," in IEEE
Transactions on Pattern Analysis and Machine Intelligence ,
vol.PP, no.99, pp.1-1
"Optimal Transport for Domain Adaptation," in IEEE
Transactions on Pattern Analysis and Machine Intelligence ,
vol.PP, no.99, pp.1-1

.. [7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015).
Generalized conditional gradient: analysis of convergence
and applications. arXiv preprint arXiv:1510.06567.
Generalized conditional gradient: analysis of convergence
and applications. arXiv preprint arXiv:1510.06567.

See Also
--------
Expand Down Expand Up @@ -276,12 +276,12 @@ def sinkhorn_l1l2_gl(
References
----------
.. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy,
"Optimal Transport for Domain Adaptation," in IEEE Transactions
on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1
"Optimal Transport for Domain Adaptation," in IEEE Transactions
on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1

.. [7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015).
Generalized conditional gradient: analysis of convergence and
applications. arXiv preprint arXiv:1510.06567.
Generalized conditional gradient: analysis of convergence and
applications. arXiv preprint arXiv:1510.06567.

See Also
--------
Expand Down Expand Up @@ -423,9 +423,9 @@ def emd_laplace(
References
----------
.. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy,
"Optimal Transport for Domain Adaptation," in IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol.PP, no.99, pp.1-1
"Optimal Transport for Domain Adaptation," in IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol.PP, no.99, pp.1-1

.. [30] R. Flamary, N. Courty, D. Tuia, A. Rakotomamonjy,
"Optimal transport with Laplacian regularization: Applications to domain adaptation and shape matching,"
Expand Down Expand Up @@ -743,8 +743,8 @@ def transform_labels(self, ys=None):
References
----------
.. [27] Ievgen Redko, Nicolas Courty, Rémi Flamary, Devis Tuia
"Optimal transport for multi-source domain adaptation under target shift",
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.
"Optimal transport for multi-source domain adaptation under target shift",
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.

"""
nx = self.nx
Expand Down Expand Up @@ -1073,8 +1073,8 @@ class LinearGWTransport(LinearTransport):
References
----------
.. [57] Delon, J., Desolneux, A., & Salmona, A. (2022). Gromov–Wasserstein
distances between Gaussian distributions. Journal of Applied Probability,
59(4), 1178-1198.
distances between Gaussian distributions. Journal of Applied Probability,
59(4), 1178-1198.

"""

Expand Down Expand Up @@ -1580,17 +1580,17 @@ class SinkhornLpl1Transport(BaseTransport):
References
----------
.. [1] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy,
"Optimal Transport for Domain Adaptation," in IEEE
Transactions on Pattern Analysis and Machine Intelligence ,
vol.PP, no.99, pp.1-1
"Optimal Transport for Domain Adaptation," in IEEE
Transactions on Pattern Analysis and Machine Intelligence ,
vol.PP, no.99, pp.1-1

.. [2] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015).
Generalized conditional gradient: analysis of convergence
and applications. arXiv preprint arXiv:1510.06567.
Generalized conditional gradient: analysis of convergence
and applications. arXiv preprint arXiv:1510.06567.

.. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
Regularized discrete optimal transport. SIAM Journal on Imaging
Sciences, 7(3), 1853-1882.
Regularized discrete optimal transport. SIAM Journal on Imaging
Sciences, 7(3), 1853-1882.
"""

def __init__(
Expand Down Expand Up @@ -1724,8 +1724,8 @@ class EMDLaplaceTransport(BaseTransport):
References
----------
.. [1] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy,
"Optimal Transport for Domain Adaptation," in IEEE Transactions
on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1
"Optimal Transport for Domain Adaptation," in IEEE Transactions
on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1

.. [2] R. Flamary, N. Courty, D. Tuia, A. Rakotomamonjy,
"Optimal transport with Laplacian regularization: Applications to domain adaptation and shape matching,"
Expand Down Expand Up @@ -1873,13 +1873,13 @@ class SinkhornL1l2Transport(BaseTransport):
References
----------
.. [1] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy,
"Optimal Transport for Domain Adaptation," in IEEE
Transactions on Pattern Analysis and Machine Intelligence ,
vol.PP, no.99, pp.1-1
"Optimal Transport for Domain Adaptation," in IEEE
Transactions on Pattern Analysis and Machine Intelligence ,
vol.PP, no.99, pp.1-1

.. [2] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015).
Generalized conditional gradient: analysis of convergence
and applications. arXiv preprint arXiv:1510.06567.
Generalized conditional gradient: analysis of convergence
and applications. arXiv preprint arXiv:1510.06567.

.. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
Regularized discrete optimal transport. SIAM Journal on Imaging
Expand Down Expand Up @@ -2352,14 +2352,13 @@ class JCPOTTransport(BaseTransport):
References
----------
.. [1] Ievgen Redko, Nicolas Courty, Rémi Flamary, Devis Tuia
"Optimal transport for multi-source domain adaptation under target shift",
International Conference on Artificial Intelligence and Statistics (AISTATS),
vol. 89, p.849-858, 2019.
"Optimal transport for multi-source domain adaptation under target shift",
International Conference on Artificial Intelligence and Statistics (AISTATS),
vol. 89, p.849-858, 2019.

.. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
Regularized discrete optimal transport. SIAM Journal on Imaging
Sciences, 7(3), 1853-1882.

Regularized discrete optimal transport. SIAM Journal on Imaging
Sciences, 7(3), 1853-1882.

"""

Expand Down Expand Up @@ -2524,8 +2523,8 @@ def transform_labels(self, ys=None):
References
----------
.. [27] Ievgen Redko, Nicolas Courty, Rémi Flamary, Devis Tuia
"Optimal transport for multi-source domain adaptation under target shift",
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.
"Optimal transport for multi-source domain adaptation under target shift",
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.
"""
nx = self.nx

Expand Down
8 changes: 4 additions & 4 deletions ot/dr.py
Original file line number Diff line number Diff line change
Expand Up @@ -208,7 +208,7 @@ def wda(
References
----------
.. [11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016).
Wasserstein Discriminant Analysis. arXiv preprint arXiv:1608.08063.
Wasserstein Discriminant Analysis. arXiv preprint arXiv:1608.08063.
""" # noqa

if sinkhorn_method.lower() == "sinkhorn":
Expand Down Expand Up @@ -348,8 +348,8 @@ def projection_robust_wasserstein(
References
----------
.. [32] Huang, M. , Ma S. & Lai L. (2021).
A Riemannian Block Coordinate Descent Method for Computing
the Projection Robust Wasserstein Distance, ICML.
A Riemannian Block Coordinate Descent Method for Computing
the Projection Robust Wasserstein Distance, ICML.
""" # noqa

# initialization
Expand Down Expand Up @@ -489,7 +489,7 @@ def ewca(
References
----------
.. [52] Collas, A., Vayer, T., Flamary, F., & Breloy, A. (2023).
Entropic Wasserstein Component Analysis.
Entropic Wasserstein Component Analysis.
""" # noqa
n, d = X.shape
X = X - X.mean(0)
Expand Down
17 changes: 9 additions & 8 deletions ot/gaussian.py
Original file line number Diff line number Diff line change
Expand Up @@ -566,8 +566,8 @@ def gaussian_gromov_wasserstein_distance(Cov_s, Cov_t, log=False):
References
----------
.. [57] Delon, J., Desolneux, A., & Salmona, A. (2022). Gromov–Wasserstein
distances between Gaussian distributions. Journal of Applied Probability,
59(4), 1178-1198.
distances between Gaussian distributions. Journal of Applied Probability,
59(4), 1178-1198.
"""

nx = get_backend(Cov_s, Cov_t)
Expand Down Expand Up @@ -630,8 +630,8 @@ def empirical_gaussian_gromov_wasserstein_distance(xs, xt, ws=None, wt=None, log
References
----------
.. [57] Delon, J., Desolneux, A., & Salmona, A. (2022). Gromov–Wasserstein
distances between Gaussian distributions. Journal of Applied Probability,
59(4), 1178-1198.
distances between Gaussian distributions. Journal of Applied Probability,
59(4), 1178-1198.
"""
xs, xt = list_to_array(xs, xt)
nx = get_backend(xs, xt)
Expand Down Expand Up @@ -698,8 +698,8 @@ def gaussian_gromov_wasserstein_mapping(
References
----------
.. [57] Delon, J., Desolneux, A., & Salmona, A. (2022). Gromov–Wasserstein
distances between Gaussian distributions. Journal of Applied Probability,
59(4), 1178-1198.
distances between Gaussian distributions. Journal of Applied Probability,
59(4), 1178-1198.
"""

nx = get_backend(mu_s, mu_t, Cov_s, Cov_t)
Expand Down Expand Up @@ -788,12 +788,13 @@ def empirical_gaussian_gromov_wasserstein_mapping(
b : (1, dt) array-like
bias


.. _references-empirical_gaussian_gromov_wasserstein_mapping:
References
----------
.. [57] Delon, J., Desolneux, A., & Salmona, A. (2022). Gromov–Wasserstein
distances between Gaussian distributions. Journal of Applied Probability,
59(4), 1178-1198.
distances between Gaussian distributions. Journal of Applied Probability,
59(4), 1178-1198.
"""

xs, xt = list_to_array(xs, xt)
Expand Down
2 changes: 1 addition & 1 deletion ot/gromov/_gw.py
Original file line number Diff line number Diff line change
Expand Up @@ -911,7 +911,6 @@ def solve_gromov_linesearch(


.. _references-solve-linesearch:

References
----------
.. [24] Vayer Titouan, Chapel Laetitia, Flamary Rémi, Tavenard Romain and Courty Nicolas
Expand Down Expand Up @@ -1293,6 +1292,7 @@ def fgw_barycenters(
- :math:`(\mathbf{M}_s)_s`: all distance matrices between the feature of the barycenter and the other features :math:`(dist(\mathbf{X}, \mathbf{Y}_s))_s` shape (`N`, `ns`)
- values used in convergence evaluation.


.. _references-fgw-barycenters:
References
----------
Expand Down
2 changes: 2 additions & 0 deletions ot/gromov/_partial.py
Original file line number Diff line number Diff line change
Expand Up @@ -611,6 +611,7 @@ def partial_fused_gromov_wasserstein(
log : dict
Convergence information and loss.


.. _references-partial-gromov-wasserstein:
References
----------
Expand Down Expand Up @@ -907,6 +908,7 @@ def partial_fused_gromov_wasserstein2(
log : dict
log dictionary returned only if `log` is `True`


.. _references-partial-gromov-wasserstein2:
References
----------
Expand Down
24 changes: 12 additions & 12 deletions ot/gromov/_semirelaxed.py
Original file line number Diff line number Diff line change
Expand Up @@ -474,12 +474,12 @@ def semirelaxed_fused_gromov_wasserstein(
(ICML). 2019.

.. [48] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, Nicolas Courty.
"Semi-relaxed Gromov-Wasserstein divergence and applications on graphs"
International Conference on Learning Representations (ICLR), 2022.
"Semi-relaxed Gromov-Wasserstein divergence and applications on graphs"
International Conference on Learning Representations (ICLR), 2022.

.. [62] H. Van Assel, C. Vincent-Cuaz, T. Vayer, R. Flamary, N. Courty.
"Interpolating between Clustering and Dimensionality Reduction with
Gromov-Wasserstein". NeurIPS 2023 Workshop OTML.
"Interpolating between Clustering and Dimensionality Reduction with
Gromov-Wasserstein". NeurIPS 2023 Workshop OTML.
"""
arr = [M, C1, C2]
if p is not None:
Expand Down Expand Up @@ -688,12 +688,12 @@ def semirelaxed_fused_gromov_wasserstein2(
(ICML). 2019.

.. [48] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, Nicolas Courty.
"Semi-relaxed Gromov-Wasserstein divergence and applications on graphs"
International Conference on Learning Representations (ICLR), 2022.
"Semi-relaxed Gromov-Wasserstein divergence and applications on graphs"
International Conference on Learning Representations (ICLR), 2022.

.. [62] H. Van Assel, C. Vincent-Cuaz, T. Vayer, R. Flamary, N. Courty.
"Interpolating between Clustering and Dimensionality Reduction with
Gromov-Wasserstein". NeurIPS 2023 Workshop OTML.
"Interpolating between Clustering and Dimensionality Reduction with
Gromov-Wasserstein". NeurIPS 2023 Workshop OTML.
"""
# partial get_backend as the full one will be handled in gromov_wasserstein
nx = get_backend(C1, C2)
Expand Down Expand Up @@ -1244,8 +1244,8 @@ def entropic_semirelaxed_fused_gromov_wasserstein(
References
----------
.. [48] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, Nicolas Courty.
"Semi-relaxed Gromov-Wasserstein divergence and applications on graphs"
International Conference on Learning Representations (ICLR), 2022.
"Semi-relaxed Gromov-Wasserstein divergence and applications on graphs"
International Conference on Learning Representations (ICLR), 2022.
"""
arr = [M, C1, C2]
if p is not None:
Expand Down Expand Up @@ -1437,8 +1437,8 @@ def entropic_semirelaxed_fused_gromov_wasserstein2(
References
----------
.. [48] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, Nicolas Courty.
"Semi-relaxed Gromov-Wasserstein divergence and applications on graphs"
International Conference on Learning Representations (ICLR), 2022.
"Semi-relaxed Gromov-Wasserstein divergence and applications on graphs"
International Conference on Learning Representations (ICLR), 2022.
"""
T, log_srfgw = entropic_semirelaxed_fused_gromov_wasserstein(
M,
Expand Down
6 changes: 3 additions & 3 deletions ot/gromov/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -428,9 +428,9 @@ def init_matrix_semirelaxed(C1, C2, p, loss_fun="square_loss", nx=None):
"Gromov-Wasserstein averaging of kernel and distance matrices."
International Conference on Machine Learning (ICML). 2016.

.. [48] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, Nicolas Courty.
"Semi-relaxed Gromov-Wasserstein divergence and applications on graphs"
International Conference on Learning Representations (ICLR), 2022.
.. [48] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, Nicolas Courty.
"Semi-relaxed Gromov-Wasserstein divergence and applications on graphs"
International Conference on Learning Representations (ICLR), 2022.
"""
if nx is None:
C1, C2, p = list_to_array(C1, C2, p)
Expand Down
Loading
Loading