-
Notifications
You must be signed in to change notification settings - Fork 3
/
data_preprocess.py
141 lines (114 loc) · 4.64 KB
/
data_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# encoding=utf-8
"""
Created on 10:38 2018/11/10
@author: Jindong Wang
Modified on 23:34 2018/12/25
@contributor: Matheus Jacques
add: create_validation_set(train_data, test_data, batch_size)
modify: load(batch_size=64)
"""
# Imports
import numpy as np
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from torchvision import transforms
# This is for parsing the X data, you can ignore it if you do not need preprocessing
def format_data_x(datafile):
x_data = None
for item in datafile:
item_data = np.loadtxt(item, dtype=np.float)
if x_data is None:
x_data = np.zeros((len(item_data), 1))
x_data = np.hstack((x_data, item_data))
x_data = x_data[:, 1:]
print(x_data.shape)
X = None
for i in range(len(x_data)):
row = np.asarray(x_data[i, :])
row = row.reshape(9, 128).T
if X is None:
X = np.zeros((len(x_data), 128, 9))
X[i] = row
print(X.shape)
return X
# This is for parsing the Y data, you can ignore it if you do not need preprocessing
def format_data_y(datafile):
data = np.loadtxt(datafile, dtype=np.int) - 1
YY = np.eye(6)[data]
return YY
# Load data function, if there exists parsed data file, then use it
# If not, parse the original dataset from scratch
def load_data():
import os
if os.path.isfile('data/data_har.npz') == True:
data = np.load('data/data_har.npz')
X_train = data['X_train']
Y_train = data['Y_train']
X_test = data['X_test']
Y_test = data['Y_test']
else:
# This for processing the dataset from scratch
# After downloading the dataset, put it to somewhere that str_folder can find
str_folder = '/home/jacquesmats/Documents/projects/HAR_CNN/' + 'UCI HAR Dataset/'
INPUT_SIGNAL_TYPES = [
"body_acc_x_",
"body_acc_y_",
"body_acc_z_",
"body_gyro_x_",
"body_gyro_y_",
"body_gyro_z_",
"total_acc_x_",
"total_acc_y_",
"total_acc_z_"
]
str_train_files = [str_folder + 'train/' + 'Inertial Signals/' + item + 'train.txt' for item in
INPUT_SIGNAL_TYPES]
str_test_files = [str_folder + 'test/' + 'Inertial Signals/' + item + 'test.txt' for item in INPUT_SIGNAL_TYPES]
str_train_y = str_folder + 'train/y_train.txt'
str_test_y = str_folder + 'test/y_test.txt'
X_train = format_data_x(str_train_files)
X_test = format_data_x(str_test_files)
Y_train = format_data_y(str_train_y)
Y_test = format_data_y(str_test_y)
return X_train, onehot_to_label(Y_train), X_test, onehot_to_label(Y_test)
def onehot_to_label(y_onehot):
a = np.argwhere(y_onehot == 1)
return a[:, -1]
class data_loader(Dataset):
def __init__(self, samples, labels, t):
self.samples = samples
self.labels = labels
self.T = t
def __getitem__(self, index):
sample, target = self.samples[index], self.labels[index]
return self.T(sample), target
def __len__(self):
return len(self.samples)
def create_validation_set(train_data, test_data,batch_size):
# obtain training indices that will be used for validation
num_train = len(train_data)
indices = list(range(num_train))
np.random.shuffle(indices)
split = int(np.floor(0.2 * num_train)) # Validation Dataset set to 20%
train_idx, valid_idx = indices[split:], indices[:split]
# define samplers for obtaining training and validation batches
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
# prepare data loaders (combine dataset and sampler)
train_loader = DataLoader(train_data, batch_size=batch_size,
sampler=train_sampler)
valid_loader = DataLoader(train_data, batch_size=batch_size,
sampler=valid_sampler)
test_loader = DataLoader(test_data, batch_size=batch_size)
return train_loader, valid_loader, test_loader
def load(batch_size=64):
x_train, y_train, x_test, y_test = load_data()
x_train, x_test = x_train.reshape((-1, 9, 1, 128)), x_test.reshape((-1, 9, 1, 128))
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0,0,0,0,0,0,0,0,0), std=(1,1,1,1,1,1,1,1,1))
])
train_set = data_loader(x_train, y_train, transform)
test_set = data_loader(x_test, y_test, transform)
train_loader, valid_loader, test_loader = create_validation_set(train_set, test_set,batch_size)
return train_loader, valid_loader, test_loader