-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkddcup_merge.py
37 lines (30 loc) · 1.11 KB
/
kddcup_merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os
import glob
import argparse
import numpy as np
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--path", help="directory to dump files")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
range2pred = {}
file_names = glob.glob(os.path.join(args.path, "t_pred_wikikg90m_*_*.npz"))
for file_name in file_names:
print("loading `%s`" % file_name)
dump = np.load(file_name)
start, end = dump["test_range"]
pred = dump["t_pred_top10"]
range2pred[(start, end)] = pred
preds = []
last = -1
for start, end in sorted(range2pred.keys()):
preds.append(range2pred[(start, end)])
if last != -1 and start != last:
raise ValueError("Prediction dumps are not contiguous")
last = end
pred = np.concatenate(preds, axis=0)
print("merge done!")
print("output shape: %s, dtype: %s" % (pred.shape, pred.dtype))
save_file = os.path.join(args.path, "t_pred_wikikg90m")
np.savez_compressed(save_file, t_pred_top10=pred)