-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathelemK2D8.m
44 lines (41 loc) · 1.17 KB
/
elemK2D8.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
function [K,elemB,D] = elemK2D8(EX,mu,h,x,y,isStress,reduce)
% 计算单元刚度矩阵
% 8节点四边形单元
% 全积分高斯点位置+0.774596669241483,-0.774596669241483,0
%权系数为0.55555555555556,0.55555555555556,0.888888888888888889
% 减缩积分高斯点位置为+0.577350269189626,-0.577350269189626,权系数为1
% mnode == 8
% 4--7--3
% | |
% 8 6
% | |
% 1--5--2
K = zeros(16,16);
if reduce ==1
elemB = zeros(12,16);
else
elemB = 0;
end
if isStress == 1 % 平面应力
D = EX/(1-mu^2)*[1,mu,0;mu,1,0;0,0,(1-mu)/2];
else % 平面应变
D = EX*(1-mu)/((1+mu)*(1-2*mu))*[1,mu/(1-mu),0;mu/(1-mu),1,0;0,0,(1-2*mu)/(2*(1-mu))];
end
if reduce == 0 % 采用完全积分
nip = 3; % 单维方向的积分点数
ks = [-0.774596669241483,0,0.774596669241483]; % 积分点
w = [0.55555555555556,0.888888888888888889,0.55555555555556]; % 权系数
else
nip = 2;
ks = [-0.577350269189626,0.577350269189626]; % 积分点
w = [1,1]; % 权系数
end
for m = 1:nip
for n = 1:nip
[J,B] = elemB2D8(x,y,ks(n),ks(m));
if reduce == 1
elemB(6*m+3*n-8:6*m+3*n-6,:) = B;
end
K = K + w(m)*w(n)*B'*D*B*det(J)*h;
end
end